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Abstract

This thesis presents a data-driven mixed finite element framework for solving elliptic equations,
i.e. nonlinear diffusion problems, focusing on heat transfer in porous media such as nuclear
graphite. Traditional computational approaches rely on phenomenological material models,
which contain empirically estimated parameters. However, the models carry uncertainty about
the values of these parameters, which we lose by choosing a single value per parameter, which
often leads to inaccuracy or overconfidence with complex or inherently stochastic materials. In
contrast, the data-driven (DD) approach, as first introduced by Kirchdoerfer and Ortiz [2016],
leverages material data directly, avoiding the need for fitted models and allowing uncertainty
estimation from data imperfections, such as noise or missing values.

The framework, which employs a weaker DD formulation, is designed to ensure adherence
to conservation laws and boundary conditions. The temperature and its gradient are approxi-
mated in the L2 (discontinuous) space while the heat flux is approximated in the H(div) space,
which enforces normal flux continuity across internal boundaries and provides a posteriori error
estimates. An algorithm for adaptive mesh and order refinement is proposed, guided by error in-
dicators and the proximity of the computed fields to the material dataset, assessing the suitability
of the material dataset to the problem at hand while minimising computational effort. In contrast
to the original “stronger” DD approach, weaker mixed DD formulation results in problems with
fewer unknowns and searches through the material dataset while reaching the same accuracy.

The developed framework is applied to a nonlinear problem where heat flux depends on both
temperature and its gradient. Uncertainty quantification is performed by perturbing the resulting
fields and repeating the iterative process, akin to Monte Carlo simulations, to obtain the standard
deviation of the results. Knowing the standard deviation of the results and the distances of the
resulting fields from the dataset, the information of the quality of the material dataset for the
problem is obtained, suggesting where the material data does not cover the ranges of the fields
in the analysis or where the data is too noisy or missing.

The developed framework reformulates the original DD approach and can be further ex-
tended to include more complex material datasets and physical phenomena. Allowing for the
control and minimisation of FE errors before quantifying the uncertainty of the results propa-
gating from the dataset, the framework can be applied to challenging industrial problems.

This thesis is one of the steps towards the development of a data-driven finite element frame-
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work for the analysis of graphite bricks in the advanced gas cooled nuclear reactors (AGRs),
which is a complex and evolving environment. The current work introduces and tests the
"weaker" DD approach on diffusion problems and provides a foundation for future research
and development of the DD framework for more complex problems, such as fracture analysis
in nuclear graphite bricks. To this end, a preliminary study is performed on a nuclear graphite
brick slice with synthetically generated material datasets.

This thesis is written for engineers, and all of the work is open and reproducible. The im-
plemented framework is an independently developed module [Kulikova, 2024a] in MoFEM,
an open-source parallel finite element library, and all examples are collected in another open
repository [Kulikova, 2024b] for the reproducibility of the results presented in this thesis.
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Chapter 1

Introduction

Classical computational approaches to engineering problems, such as solid and fluid mechanics,
as well as diffusion and transport phenomena, require two components: equations of conserva-
tion laws (complemented by appropriate boundary conditions) and constitutive behaviour of the
material. While conservation law is a physical law which all systems must obey, any constitu-
tive behaviour is an approximation of reality, often represented by material models obtained by
fitting to the experimental data. Material models can vary from simple ones with one or two
parameters (e.g. Darcy’s law for fully saturated flow, linear diffusion/heat flow, isotropic linear
elasticity) to more complex ones (unsaturated flow [Vogel et al., 2000], nonlinear heat trans-
fer [Matsuo, 1980], hyperelasticity [Bonet and Wood, 1997] and plasticity [Ibrahimbegovic,
2009], among many others).

Fitting material models to experimental data allows for relatively fast and accurate solutions
to boundary value problems using physics-based methods, depending on both the complexity
of the model and the conformity of the fit. Some examples of the physics-based methods in-
clude the finite element method (FEM) [Zienkiewicz and Taylor, 2000], finite difference method
(FDM) [Smith, 1985], finite volume method (FVM) [Versteeg, 2007], boundary element method
(BEM) [Katsikadelis, 2002], meshfree methods [Liu and Liu, 2003], spectral methods [Boyd,
2001], see Figure 1.1. The material models used in physics-based methods are often constructed
and improved by phenomenological laws, with existing models reused for materials of similar
types, allowing for extrapolation into states not included in the original experiments (e.g., ap-
plying unsaturated flow models developed for soil to microfluidic flow in filter paper [Gerlero
et al., 2022]). However, certain materials may not directly fit any established model if under-
lying phenomenon is unknown [Singh et al., 2022], exhibit changing properties over time due
to usage conditions (such as irradiated graphite [Tzelepi et al., 2018; Jordan et al., 2018]), or
display inherent variance in their responses [Jones et al., 2019]. Moreover, the fit of material
models to actual material behaviour observed in experiments is often poorly understood, particu-
larly regarding the conditions under which these constitutive relations apply [Edition and Bauld,
1986; Belytschko et al., 2014]. Some materials may also exhibit stochastic behaviour, which

1
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Figure 1.1: Physics based and data-driven approaches.
Note: DDCM = Data-Driven Computational Mechanics [Kirchdoerfer and Ortiz, 2016].

is generally averaged out during model fitting, leading subsequent research to seek methods to
reincorporate stochasticity into numerical analyses [Rao, 2013; Bensoussan, 1991].

Comparatively to the past, advances in data acquisition have enabled the collection of larger
datasets from experimental studies on materials nowadays [Agarwal and Dhar, 2014; Baesens,
2014]. The variability of this data, along with the different experimental setups and data col-
lection methodologies, impacts how the data is incorporated into numerical simulations. Alter-
natives to traditional material models include machine learning (ML) [Bishop and Nasrabadi,
2006], neural networks (NN) [Bishop, 1995], and deep reinforcement learning (DRL) [Arulku-
maran et al., 2017], which can either identify material behaviour for future use or find solutions
to entire problems. However, machine learning approaches which are used on their own are
often considered "black boxes", providing solutions that may not adhere to established physical
laws [Pateras et al., 2023]. Progress in this research area has led to the development of physics-
informed machine learning (PIML) [Pateras et al., 2023], constitutive artificial neural networks
(CANNs) [Linka et al., 2021], and physics-informed neural networks (PINNs) [Raissi et al.,
2019], bringing the solution back to obeying conservation laws [Grossmann et al., 2023]. For
visual representation of the difference between the physics-based and data-driven approaches,
see Figure 1.1.

Recently, a new approach has emerged in computational mechanics, which provides an al-
ternative to creating material models and allows the use of the data directly in numerical simu-
lations while satisfying conservation laws by means of the finite element method [Kirchdoerfer
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and Ortiz, 2016]. This method requires the dataset to define relationships between key variables
that would typically be represented in a material model, e.g. stress and strain; heat flux and
gradient of temperature; heat flux, temperature and its gradient; etc. These relationships are
captured as points within a multidimensional dataset, which can be searched, and where each
variable represents a dimension.

Data-driven computational mechanics [Kirchdoerfer and Ortiz, 2016] enables the use of ma-
terial datasets directly instead of constitutive models and does not infer any material models in
the process or try to fit or average the data in any way. This allows the inherent imperfections
of the material datasets to influence the results and, therefore, provides future means of quan-
tifying uncertainty related to the material behaviour. The data-driven approach was initially
developed for elastic stress-strain problems and has, since its first introduction, been expand-
ing [Kirchdoerfer and Ortiz, 2017; Ayensa-Jiménez et al., 2018]. The applications now include
diffusion [Nguyen et al., 2020], elasticity [Conti et al., 2018], nonlinear elasticity [Nguyen and
Keip, 2018], inelasticity [Eggersmann et al., 2019], plasticity, and fracture [Carrara et al., 2020].
Other research areas also include retrieving material datasets through data-driven identifica-
tion [Stainier et al., 2019], multiscale analyses using data-driven approaches in one or multiple
scales [Mora-Macías et al., 2020; Karapiperis et al., 2021], methods for completing incomplete
datasets [Ayensa-Jiménez et al., 2019], etc.

This thesis is one of the steps towards the development of a data-driven finite element frame-
work for the analysis of graphite bricks in the advanced gas cooled nuclear reactors (AGRs),
which is a complex and evolving environment. To verify and assess the implications of using
the developed data-driven approach, this thesis uses synthetic material datasets and focuses on
nonlinear heat transfer through porous media, such as graphite used in nuclear reactors [Mat-
suo, 1980] or fibrous and foamed insulating materials used in thermal insulation [Larkin and
Churchill, 1959]. When dealing with porous media, radiation through the pores might have a
significant impact on the thermal conductivity relative to the temperature the body is experienc-
ing [Larkin and Churchill, 1959]. Therefore, the constitutive relationship for heat is expressed
by Fourier’s/Fick’s law, where the dependence of thermal conductivity on temperature can in-
troduce nonlinearity to the system.

As a main novelty in this thesis, a "weaker" data-driven formulation is formulated by de-
riving the data-driven approach [Kirchdoerfer and Ortiz, 2016] with the mixed finite element
formulation [Boffi et al., 2013]. The fields of temperature and its gradient are approximated in
the L2 (discontinuous) space, allowing for discontinuities between the elements, while the heat
flux is approximated in the H(div) (Brezzi-Douglas-Marini) space, which enforces the continu-
ity of the normal flux component across any inner boundaries.

The mixed formulation naturally provides error indicators and estimators [Braess and Ver-
fürth, 1996], which can be used for adaptive mesh and approximation order refinement [Zander
et al., 2022]. In the proposed framework, the adaptive refinement is guided by the error indica-
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tors and improved by considering the proximity of the computed fields to the material dataset,
ensuring only the elements whose refinement might impact the solution are refined. This ap-
proach minimises the computational effort required to reach a desired accuracy.

Nevertheless, using a material dataset instead of a material model in the finite element anal-
ysis introduces uncertainty related to the material dataset to the results. The material dataset can
be sparse, not cover all the required material states, contain noise or outliers, which can impact
the solution accuracy. In industrial applications, it is important to not only obtain the results
of the analysis but also quantify the certainty of their results. The errors/uncertainty have two
sources, the finite element approximation errors and the material dataset quality. Since the finite
element approximation errors can be controlled by adaptive refinement, these errors should be
reduced first to ensure the material dataset quality is the main source of uncertainty.

If the material dataset contains noisy material datapoints, the solution of the data-driven
approach is not unique and the result can vary depending on the initial field values when using
the same material dataset [Kirchdoerfer and Ortiz, 2017], the solution can be perturbed and the
analysis repeated to quantify the uncertainty in the results. This allows for the quantification of
uncertainty in the results, akin to Monte Carlo simulations, which obtain the standard deviation
of the results. Since this requires repeating the simulation multiple times, and search through
the material dataset happens at every integration point, the adaptive refinement is needed to
reduce the number of integration points for a given accuracy, which allows for the uncertainty
quantification to be performed in a reasonable time frame.

The aim of this thesis is to build a base for the "weaker" data-driven finite element formula-
tion, which considers nonlinear diffusion problem and the developed techniques can be extended
to other problems in further research. This includes the derivation, implementation and testing of
the new formulation, adaptive refinement, influence of the material dataset quality, and gaining
knowledge of uncertainty through quantifying of the nonuniqueness of the results.

All of the numerical analysis in this work (or thesis) has been performed using specifi-
cally developed data-driven module [Kulikova, 2024a] in an open-source finite element software
MoFEM [Kaczmarczyk et al., 2020].

1.1 Structure of the thesis

This thesis is organised into the following chapters, each building upon the previous to explore
progressively more complex formulations and approaches to solving nonlinear diffusion prob-
lems.

• Remainder of chapter 1 addresses the literature review of material behaviour and data
acquisition, related uncertainty, data-driven approaches, mixed formulations, and their
applications in computational mechanics.
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• Chapter 2 provides a review of the standard finite element (FE) formulation for diffusion
problems, setting the groundwork for the work presented in the subsequent chapters.

• Chapter 3 presents the mixed FE formulation for diffusion problems, in which the primary
variable (e.g. temperature) and auxiliary variable (e.g. heat flux) are approximated sepa-
rately using distinct functional spaces. This chapter explores techniques for error estima-
tion and adaptive hp-refinement, with numerical examples demonstrating the convergence
of the solutions.

• Chapter 4 addresses a "stronger" data-driven approach to solving diffusion problems. In-
stead of relying on predefined material models, this approach uses experimental material
datasets directly. The chapter also discusses the effects of dataset noise and sparsity on
convergence and solution accuracy. A graphite brick example and six independent mate-
rial datasets are introduced, which are used to demonstrate how each subsequent chapter
adds a new layer to the brick analysis solution and the certainty with which the result is
obtained.

• Chapter 5 introduces a "weaker" data-driven approach that combines the data-driven method
with the mixed FE formulation, providing error estimation and adaptive refinement capa-
bilities while using material datasets instead of material models.

• Chapter 6 focuses on uncertainty quantification of the formulations developed in the pre-
vious chapters, introducing Monte Carlo simulations to assess the impact of noisy or in-
complete datasets on solution accuracy. This chapter also explores the variability of results
due to dataset imperfections and discusses strategies to mitigate these uncertainties.

• Chapter 7 concludes the thesis by summarising the key findings and contributions of the
research. The chapter also outlines potential avenues for future work.

1.2 Literature review

This section presents a literature review of modern data-driven computational methods for mod-
elling material response and advances in finite-element approaches. Starting with the material
behaviour and data acquisition, the position of the data-driven approach in the bigger picture of
the computational analysis and overview of the current data-driven research, finishing with the
overview of the mixed formulation.

1.2.1 Material behaviour and material data acquisition

Understanding material behaviour is crucial in the development and application of predictive
models. These models are typically derived from experimental data, with the material properties
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of interest characterised by parameters that are fitted to the data. However, the accuracy of these
models can be limited by the complexity of the material behaviour, the experimental conditions,
and the assumptions made during model development [Singh et al., 2022].

The field of material informatics [Rajan, 2005] has emerged as a means of addressing these
challenges. It combines materials science, data science, and informatics to process and interpret
vast amounts of data related to materials properties, behaviours, and applications. This approach
aligns with the broader field of Data Science, which focuses on extracting knowledge from large
volumes of unstructured data [Agarwal and Dhar, 2014; Baesens, 2014].

Sources of material data

An important question in adopting data-driven approaches is: "Where can the necessary data be
sourced?" Existing experimental measurement equipment can obtain data for various materials
under specific physical conditions [Franck et al., 2007; Mettas, 2010]. However, existing exper-
imental measurement equipment may not be universally applicable as constraints such as high
costs, extreme environmental conditions, or the lack of suitable devices for specific material
systems can limit data availability.

To address these challenges, innovative techniques for material dataset acquisition are being
explored. One promising method is data-driven identification (DDI), which combines digital im-
age correlation with numerical analysis to generate material datasets. This technique builds upon
the data-driven paradigm [Kirchdoerfer and Ortiz, 2016], where strain is derived from measured
displacements, and stress is determined through finite element analysis, ensuring consistency
with experimental boundary conditions [Stainier et al., 2019; Leygue et al., 2018; Valdés-Alonzo
et al., 2022].

Originally developed to identify the mechanical response of truss structures [Leygue et al.,
2018], DDI can be adapted to other domains such as heat transfer. Consider a large database of
measurements, obtained for example using a thermal camera, on a material subjected to varying
thermal conditions. For each experiment or data item, indexed by X , the following quantities
are available:

• Nodal temperature T X from the measurements;

• Domain geometry and connectivity, allowing the computation of the temperature gradient
—T X via finite element mesh setup;

• Prescribed heat source term s in the domain W;

• Prescribed heat flux q ·n = q̄ on the boundary Gq;

• Prescribed temperature T = T̄ on the boundary GT ;

• Conservation law: — ·q = s in W.

The solution involves an iterative process that computes and maps between the mechanical
and material states of the temperature gradient and heat flux. The output of the DDI process is a
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set of material states {g
⇤
i ,q

⇤
i }, where g

⇤
i represents the temperature gradient and q

⇤
i the heat flux,

for i 2 1 : N⇤, with N⇤ denoting the number of material states.
DDI can produce a substantial number of material states, resulting in sufficiently large

datasets without assuming any material model. However, it relies heavily on the quality of
the equipment and the experimental setup, including full control over boundary conditions.

Another approach involves multiscale computational methods. Simulations on representa-
tive volume elements (RVEs) or unit cells can populate the database with relevant material states
[Karapiperis et al., 2021; Gorgogianni et al., 2023]. These datasets can be created either before-
hand or in situ during data-driven analysis, where material states are computed on the fly and
stored for future use. While this approach is flexible and can capture a wide range of material
behaviors and conditions, it requires detailed knowledge of lower-scale material properties.

This thesis does not focus on the data acquisition process but rather on how to use the data
once it is obtained, therefore, synthetic datasets are used to demonstrate the capabilities of the
developed data-driven approach. The material datasets used throughout this work are synthetic
with various number of material states (material datapoints), which can could theoretically be
obtained by the DDI process or multiscale computational methods described above.

Material modelling approaches

Historically, various material models were applied to capture heat transfer behaviour using ex-
perimental data [Larkin and Churchill, 1959], machine learning techniques [Tamaddon-Jahromi
et al., 2020], and homogenisation methods [Rooney et al., 2021; Liu and Zhang, 2006; Le et al.,
2022; Luo et al., 2022]. Furthermore, multiscale modelling and homogenisation techniques have
been employed, even in scenarios without data-driven methods [Smit et al., 1998; Miehe et al.,
1999; Feyel and Chaboche, 2000; Kaczmarczyk et al., 2008; Kochmann and Bertoldi, 2017].

While these methods have been successful in many applications, they may not fully cap-
ture the complexity of material behaviour, particularly in cases where the material response is
stochastic or exhibits significant variability. One such example is the behaviour of graphite
bricks within nuclear reactors, an example used in this thesis.

Case study: graphite bricks in nuclear reactors

The primary application of the framework developed in this thesis is the heat flow through
graphite bricks used in advanced gas-cooled reactors (AGR) in the UK. Graphite bricks form the
core of the reactor, providing structural support, and graphite also serves as a neutron moderator,
slowing down fast neutrons during the operation. Graphite bricks experience changes in material
properties over time, including a decrease in thermal conductivity, an increase in porosity, and
density loss due to radiation exposure inside the nuclear reactor’s core [Kelly, 1982].

The principles discussed herein regarding nonlinear heat transfer in graphite bricks can also
apply to other reactor components, such as boilers, or to entirely different contexts, such as



CHAPTER 1. INTRODUCTION 8

building insulation or the diffusion of substances like algae in aquatic environments. The prop-
erties of graphite bricks, influenced by porosity, depend on factors including weight loss and
microstructural changes resulting from irradiation duration and intensity, as well as the specific
location within the reactor.

Synthetic datasets for demonstration

While this thesis does not employ real experimental data for the properties of the graphite bricks,
it will utilise synthetic datasets to demonstrate the capabilities of the developed data-driven
approach. These synthetic datasets are generated through various synthetic experiments, for
more details see Section 4.3.2, using one of multiple possible material models for heat transfer
in graphite:

k(T ) = 134.0�0.1074T +3.719⇥10�5T 2, (1.1)

where k [W/mK] represents the thermal conductivity of the graphite brick, and T is the tempera-
ture in �C. This model is derived from work conducted for high-temperature gas-cooled reactors,
encompassing temperature ranges from room temperature to 1000�C, where measurements of
thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity
[McEligot et al., 2016].

Note that the material model chosen is for the demonstration purposes only and is not the
only possible model for the heat transfer in graphite. The data-driven approach developed in this
thesis can be applied to any material dataset, regardless of the underlying material model.

Variability in material properties

The variability in the material properties of irradiated graphite has been a subject of extensive
research [Price, 1973]. Previous studies provide insights into the material properties of graphite,
highlighting the presence of molecular-level defects due to radiation [Marsden et al., 2005],
which can lead to changes in thermal conductivity over time [Snead, 2008; Marsden et al.,
2008]. Increased porosity further influences thermal conductivity in nuclear graphite [Babout
et al., 2007]. Moreover, heat transfer problem solutions are essential for stress and fracture
analyses of the graphite brick [Hashim et al., 2017; Tzelepi et al., 2018; Jordan et al., 2018].

Graphite is not the only material subject to such changes and varying responses in material
behaviour. Other materials, such as concrete, polymers, metals, etc., exhibit similar complexities
in their responses to external factors [Jones et al., 2019; Edition and Bauld, 1986], requiring the
development of advanced computational methods to model their behaviour accurately. The data-
driven approach enables skipping of the material modelling process and allows for the direct use
of experimental data, which can be particularly beneficial in cases where the material behaviour
is not well understood or is subject to significant variability.
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1.2.2 Uncertainty in material behaviour

Computational mechanics can be described as an art of controlling errors and uncertainties in
the numerical analysis. The finite element approximation errors can be controlled by refining
the mesh, increasing the order of the finite element approximation, or using adaptive refinement.
Nevertheless, the choice of how the material behaviour is represented is nearly always an ap-
proximation of reality regardless of whether a material model or a material dataset is used for the
analysis. The choice of material behaviour representation introduces uncertainty that should be
carefully evaluated when interpreting results of numerical analysis concerning sensitive usage
cases, such as nuclear reactors, as each model inherently simplifies the complexity of real-world
material responses.

When using set material models and the material behaviour is stochastic, the stochasticity
is averaged out by the material model. The stochasticity can be brought back to the numerical
analysis [Ghanem and Spanos, 2003; Rao, 2013; Bensoussan, 1991] or random uncertainty can
be introduced to the stiffness matrix [Soize, 2000] or uncertainty can also be embedded in the
FEM framework [Jones et al., 2019].

Alternatively, if sensor data is available, the data can be integrated with the finite element
models. Statistical finite element methods account for uncertainties in sensor measurements,
loading conditions, and model specifications [Febrianto et al., 2022; Herath et al., 2022; Giro-
lami et al., 2021], offering a robust framework for uncertainty quantification in complex, data-
rich environments.

In data-driven approaches, where material datasets are used directly without imposing a
predefined model structure, the inherent uncertainties within the dataset can propagate into the
analysis results. This propagation of uncertainty offers opportunities for uncertainty quantifica-
tion, allowing for an understanding of the variability in the analysis predictions. The next section
describes the current state of the data-driven approaches and their applications in computational
mechanics.

1.2.3 Data-driven approaches

Using data instead of traditional material models is not a new concept. Rather than relying
solely on constitutive equations, material behaviour can be identified directly from experimental
data using machine learning or neural networks [Bishop and Nasrabadi, 2006; Bishop, 1995].
In this context, approaches such as Constitutive Artificial Neural Networks (CANNs)[Linka
et al., 2021] aim to construct new material models which can then be used in numerical sim-
ulations similarly to conventional ones. Other purely data-driven techniques attempt to bypass
the modelling stage entirely by using machine learning to approximate numerical solutions di-
rectly. However, when applied without enforcing physical constraints, such methods may act as
"black-box" solvers, producing outputs that lack interpretability and may violate fundamental
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principles, such as the conservation of energy[Pateras et al., 2023; Grossmann et al., 2023].
To address these shortcomings, hybrid approaches have emerged in which physical laws

are embedded directly into the learning process. For example, physics-informed neural net-
works (PINNs)[Raissi et al., 2019] and physics-informed machine learning (PIML)[Pateras
et al., 2023] incorporate governing equations as constraints, ensuring adherence to conserva-
tion principles and improving the physical reliability of the solutions.

Building on these developments, a new class of data-driven methods was proposed [Kirch-
doerfer and Ortiz, 2016], in which experimental data is used directly in the formulation of the
governing equations, rather than to construct surrogate models. This formulation eliminates the
"black-box" nature of traditional machine learning approaches and maintains consistency with
the underlying physics. The present work contributes to this emerging direction by investigat-
ing its application to diffusion problems, as a foundation for more complex analyses involving
nuclear graphite.

Data-driven computational mechanics: evolution and expansion

The data-driven computational mechanics started with Kirchdoerfer and Ortiz, who introduced
a novel data-driven approach to solving elasticity problems [Kirchdoerfer and Ortiz, 2016]. This
approach can be presented as an iterative process of searching the material dataset, consisting
of stress-strain material datapoints, to find the appropriate material behaviour for different parts
of the domain to use in the numerical analysis, which brings the solution back to satisfying
conservation laws. This work set the foundation for further developments in the data-driven
mechanics [Kirchdoerfer and Ortiz, 2018; Kirchdoerfer, 2018].

The data-driven mechanics’ initial methodology was later adapted to handle noisy data, in-
corporating clustering analysis and simulated annealing as techniques to enhance data relia-
bility [Kirchdoerfer and Ortiz, 2017]. Statistical techniques further advanced the data-driven
framework, enabling inferences on material behaviours and facilitating statistical adjustments in
data-driven models [Conti et al., 2021; Prume et al., 2023].

Since the data-driven approach searches through material datasets which can be too large to
manage by regular data searching algorithms, various methods have been developed to optimise
this process, including advanced dataset assembly techniques and optimised search algorithms
[Eggersmann et al., 2021; Bahmani and Sun, 2021]. Recent innovations even explore the use of
quantum computing to expedite data searching and handling, promising substantial performance
gains in computational mechanics [Xu et al., 2024; Liu et al., 2024].

Application of data-driven mechanics to complex scenarios

The data-driven approach was subsequently extended to address finite strain elasticity [Platzer,
2020] and nonlinear elasticity involving large deformations [Nguyen and Keip, 2018]. Other
expansions considered factors such as angular momentum [Platzer et al., 2021] and dynamic
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behaviours [Kirchdoerfer and Ortiz, 2018], increasing the applicability of data-driven mechanics
to more complex material conditions.

If the material behaviour is history-dependent, short-term temporal dependency can be incor-
porated into the data-driven framework, supporting applications for inelasticity, viscoelasticity,
and plasticity [Eggersmann et al., 2019]. The data-driven approach has also been applied in wave
propagation studies within viscoelastic solids [Salahshoor and Ortiz, 2023] and in biomedical
engineering contexts, such as analysing the mechanical response of the human brain to sonic
and ultrasonic stimuli through in situ and in vivo imaging [Salahshoor and Ortiz, 2022].

In some cases, combining data-driven approaches with traditional model-driven frameworks
has yielded promising results. Data-driven methods can be selectively applied in regions of high
uncertainty, while model-driven methods address more predictable material behaviours [Yang
et al., 2022]. The data-driven approach can also be combined with traditional material models
to compute problems represented by multiple constitutive behaviours. For example, in fracture
mechanics, the stress-strain relationship can be addressed using the traditional material mod-
els, while the data-driven approach can be used to determine how far a crack will propagate in
brittle material [Carrara et al., 2020]. This hybrid approach can be extended further by integrat-
ing multiple physical phenomena, employing both data-driven and model-driven approaches as
appropriate for each phenomenon [Bahmani and Sun, 2021]. Further applications in molecu-
lar dynamics allow for data-driven analysis of interatomic interactions, adding molecular-level
detail to the computational framework [Bulin et al., 2022].

Furthermore, data-driven mechanics has increasingly been used to bridge the gap between
microscale and macroscale material properties. For instance, in cases where material datasets are
incomplete, microscale analyses can be performed ad hoc to generate necessary data for macro-
scale applications [Karapiperis et al., 2021]. This multiscale approach has been implemented for
composite materials, where datasets are compiled at the microscale prior to conducting larger-
scale data-driven analyses [Huang et al., 2021]. In materials with predictable microstructures,
such as open-cell foams, a micro-scale analysis provides insights into macro-scale behaviour,
especially when considering anisotropic and nonlinear properties influenced by stochastic mi-
crostructural variations [Korzeniowski and Weinberg, 2022].

1.2.4 Mixed formulations

Currently, the original formulation of the data-driven computational mechanics for elasticity
already utilises a mixed formulation since two different fields are independently approximated:
stress and displacement. Functional spaces appropriate for such a formulation are L

2(W,R(n⇥n)
symm )

for stresses and H1(W,Rn) for displacements, described in [Conti et al., 2018; Korzeniowski,
2022; Nguyen et al., 2020]. L

2(W,R(n⇥n)
symm ) is the space for symmetric matrices with square

integrable values and H1(W,Rn) is the space for vector fields with square integrable values and
derivatives.
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The equivalent for the heat transfer data-driven formulation is L
2(W,Rn) for the flux and

H1(W,R) for the temperature [Kuliková et al., 2021; Nguyen et al., 2020], where L
2(W,Rn) is

a space for vector functions with square integrable values and H1(W,R) is a space for scalar
functions with square integrable values and derivatives, also discussed in Chapter 4.

For comparison, functional spaces used for mechanical and heat transport problems in the
standard finite element approach are the relevant H1(W) space for displacement and temperature,
and stresses and fluxes are derived with the help of the constitutive laws [Zienkiewicz and Taylor,
2000; Boffi et al., 2013]. The derived/secondary variable (stress, flux) classically depends on the
gradients of the primary variable (displacement, temperature) and is therefore approximated in a
relevant L

2(W) space. In comparison, the secondary variable (stress, flux) is solved for directly
in the data-driven approaches.

The mixed finite element formulations started with introducing a new field being calculated
for, be it the way boundary conditions are applied [Babuška, 1973], contact formulation [Yas-
trebov, 2013; Wriggers and Laursen, 2006], incompressible flow/elasticity [Boffi et al., 2013],
etc.

In addition, combining two or more fields to solve for leads to separating the primary and
secondary variables and solving for them separately. This allows for more natural functional
spaces to be chosen for each of the fields [Brezzi et al., 2008; Wakeni et al., 2022; Boffi et al.,
2013; Arnold, 1990]. For heat diffusion, the primary variable is the temperature, which, after
integration by parts, can be approximated in L2(W) space, which allows for the temperature to
be discontinuous across the elements. Although the exact solution for temperature is always in
H1 space, L2 space better approximates sharp irregularities. The secondary variable is the heat
flux, which is approximated in H(div;W) space, which enforces the continuity of the normal
flux component across any inner boundaries. Such spaces can accommodate problems with
expected jumps in temperature, such as problems with high jumps in the heat source term, e.g. a
chequerboard pattern, or interaction of materials with different properties [Wakeni et al., 2022].

Error estimation and adaptive refinement

Multiple ways to calculate error estimates were proposed in literature [Oden et al., 1989; Repin,
2008; Grätsch and Bathe, 2005]. However, due to the temperature T and flux q belonging to
different functional spaces in the mixed formulation, naturally emerging error indicators and es-
timators with little extra computational cost are available [Ainsworth, 2008; Braess and Verfürth,
1996; Carstensen, 1997].

Moreover, the error indicators can be utilised for adaptive refinements of mesh and/or finite
element approximation order [Zander et al., 2022]. More information about the development
and application of such algorithms is presented in Chapter 3.
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Data-driven approach Naming convention

derived with standard formulation "stronger" DD

derived with mixed formulation "weaker" DD

Table 1.1: Naming convection for the data-driven approaches.

1.2.5 Conclusion of the literature review

To conclude, in many applications of computational modelling, material behaviour is not certain
and using material datasets instead of material models is possible and advantageous in situations
where the material models are lacking or the material behaviour is unpredictable. The data-
driven mechanics has advanced in the recent years and is applied to a range of scenarios with
complex material behaviour.

Nevertheless, the functional spaces of the standard data-driven computational mechanics
formulations could be improved by deriving the problems with a mixed formulation. Since the
existing data-driven approach [Kirchdoerfer and Ortiz, 2016] is already mixed, i.e., it contains
multiple unknown fields for one physical process [Nguyen et al., 2020], to distinguish between
the existing data-driven approach and the data-driven approach derived with the mixed formula-
tion, the latter is referred to as the "weaker" data-driven approach, see Table 1.1. The "weaker"
mixed data-driven formulation is the topic of this research, and there is a gap in the current
literature.



Chapter 2

Standard finite element approach

to diffusion problems

2.1 Boundary value problem for heat diffusion

Diffusion problems are fundamental in many fields of science and engineering. These problems
analyse the distribution and movement of a quantity, e.g. heat or mass transfer, within a physical
system. This chapter introduces the basic concepts and notation that will be used throughout
the discussion of these problems. The formulations and examples considered are time indepen-
dent and are solved using the finite element method. This introductory chapter aims to provide
the necessary background and set the stage for the more complex formulations explored in the
subsequent chapters.

The conservation of energy law for the heat diffusion problem, neglecting the effect of time,
reads:

— ·q = s in W, (2.1)

where — is the gradient operator, q = q(x) is a field of the heat flux, T = T (x) is a field of
the temperature and s = s(x) is a field for the heat source in the domain W. For the simplicity
of writing the fields will be from now on referred to as temperature T , flux q and source s
respectively. The boundary conditions on G = dW which compliment the conservation law (2.1)
are as follows:

(
T = T̄ on GT , (2.2a)

q ·n = q̄ on Gq, (2.2b)

where n is the outward normal vector to the boundary G, q̄ is the function of normal flux on Gq,
and T̄ is the prescribed function of temperature on GT , see Figure 2.1 and Table 2.1 for the types
of boundary conditions of boundary value problems in this work.

To be able to solve a heat diffusion boundary value problem [Lienhard and Lienhard, 2020],

14
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Figure 2.1: A sketch visualising the domain where the conservation of energy is fulfilled and the
parts of the boundary where the Dirichlet and Neumann boundary conditions are applied.

BC type Field on which the condition is applied Boundary

Dirichlet Primary variable: temperature T GT

Neumann Secondary variable: heat flux q Gq

Table 2.1: Types of boundary conditions for boundary value problems.

the relation between flux q and temperature T needs to be introduced. In the simplest (linear)
case, this can be done through the phenomenological constitutive equation (Fourier’s law):

q = �k—T, (2.3)

where k is the heat conductivity [Lienhard and Lienhard, 2020].
However, thermal conductivity k can introduce nonlinearity to the system by the dependence

on the unknown temperature T , i.e. k = k(T ). Additionally, the thermal conductivity can be
dependent on the spatial heterogeneity, such as the porosity of the material, which may evolve
in time, e.g. years or months. However, this thesis focuses on a snapshot of the system at a
specific point in time, thereby discarding this time dependence. Spatial dependence is also not
considered in this work but can be introduced in the future. The resulting constitutive relation
could be highly nonlinear and depend on a set of empirical parameters [Lienhard and Lienhard,
2020].

2.2 Linear diffusion problems

Linear diffusion problems assume that the thermal conductivity k is not dependent on the un-
known variables, such as temperature, but can be a constant or a function of space representing
heat conductivities of different materials present in the domain. The flux can therefore rep-
resented by the Fourier’s law (2.3) and the conservation of energy law (2.1) can be rewritten
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as:
— · (�k—T ) = s in W (2.4)

with the boundary conditions (2.2).
Multiplying both sides of (2.4) by a test function dT and integrating over the domain W,

gives: Z

W

dT — · (�k—T ) dW =
Z

W

dT s dW 8dT 2 H1
0 (W), (2.5)

where H1
0 (W) is a Sobolev space of scalar functions with square-integrable gradient, which have

zero values on the boundary GT , see section A.2 for more information.
Integrating the first term in (2.5) by parts gives the weak form:

Z

W

k—dT ·—T dW+
Z

G

dT (�k—T ·n) dG =
Z

W

dT s dW 8dT 2 H1
0 (W). (2.6)

The boundary G is split into two parts, Gq and GT . The test function dT is zero on the
boundary GT and the flux boundary condition (2.2b) is applied as follows:

Z

W

k—dT ·—T dW+
Z

GT

���*0
dT (�k—T ·n) dG+

Z

Gq

dT
✓
⇠⇠⇠⇠⇠⇠: q̄
�k—T ·n

◆
dG =

Z

W

dT s dW 8dT 2 H1
0 (W),

(2.7)
resulting in the following weak form of the problem (2.6):

Find T 2 T such that:
Z

W

k—dT ·—T dW+
Z

Gq

dT q̄ dG =
Z

W

dT sdW 8dT 2 H1
0 (W), (2.8)

where the spaces for trial and test functions are defined in Table 2.2.

Field Space

Temperature T (trial function) T 2 T = {u 2 H1(W) |u = T̄ on GT }

dT (test function) dT 2 H1
0 (W) = {v 2 H1(W) |v = 0 on GT }

Table 2.2: Functional spaces for the standard approach to diffusion problems.

For definition of Sobolev space H1(W), see section A.2.
The summation over repeated indices is assumed hereinafter unless stated otherwise. The

temperature T and test function dT are approximated by the finite element base functions, Na(x)

and Nb (x), respectively:

T h(x) = TaNa(x) and dT h(x) = dTb Nb (x), (2.9)
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where Ta and dTb are the coefficients of the approximation, and a and b are the indices of the
base function for H1 space, see glossary for indices of other functional spaces. Spatial depen-
dence (x) is hereinafter omitted for brevity. Since the gradients —T h and —dT h are dependants
of Ta and dTb , their approximation is as follows:

—T h = Ta—Na and —dT h = dTb —Nb . (2.10)

The same notations as were introduced in the continuous problem statement are preserved for
discretised geometric entities for brevity, i.e. W will be used in place of Wh.

Substituting the approximations (2.9) and (2.10) into the weak form (2.8) obtains:

dTb

Z

W

k
�
—Nb ·—Na

�
dWTa +dTb

Z

Gq

Nb q̄ dG = dTb

Z

W

Nb s dW 8dTb . (2.11)

Since (2.11) holds for any coefficients dTb , the coefficients of the temperature Ta can be
obtained by solving the following matrix form:

[Kab ][Ta ] = [Fb ], (2.12)

where [Ta ] is the vector of unknown coefficients Ta , [Kab ] is the diffusivity matrix:

[Kab ] =
Z

W

k
�
—Nb ·—Na

�
dW, (2.13)

and
⇥
Fb
⇤

is the external flux vector containing contributions from the heat source s and the
Neumann boundary condition q̄,

[Fb ] =
Z

W

Nb s dW+
Z

Gq

Nb q̄ dG. (2.14)

Bilinear (2.13) and linear (2.14) integral forms are evaluated using numerical integration, e.g.
the Gauss quadrature. Hierarchical base functions available in MoFEM [Kaczmarczyk et al.,
2020] are used for the approximation throughout this thesis. The hierarchical base functions en-
able a straightforward implementation of p-refinement as increasing of the approximation order
adds higher order functions to the existing ones instead of replacing all of the functions in the
element, as is the case with Lagrange base functions. The use of hierarchical base functions also
allows for multiple fields of different approximation orders and function spaces to be used in the
same element. It is important to note that for the case of hierarchical base functions, appropriate
integration rules should be chosen to ensure the exact, or sufficiently precise, computations of
the integrals of polynomial functions of an arbitrary order.

In the standard finite element approach to the diffusion problems, the Neuman boundary
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condition (2.2b) is satisfied as a natural boundary condition and is imposed as a part of the
weak form (2.12). The Dirichlet boundary condition (2.2a) is satisfied as an essential boundary
condition by either prescribing the value of temperature T a priori on the boundary GT or by
using the least squares method, see section 2.3 for more details.

BC type Field on which the condition is applied Boundary

Essential satisfied in the strong sense GEssential = GT

Natural imposed as a part of the weak form GNatural = Gq

Table 2.3: Imposition of boundary conditions in the standard finite element approach.

Table 2.3 summarises the imposition of boundary conditions for the standard approach.
However, these impositions will be reversed when mixed formulation is introduced in chap-
ter 3, where the Neumann boundary condition will be imposed as essential and the Dirichlet
boundary condition as natural.

The next section addresses how the Dirichlet boundary condition can be applied in the stan-
dard approach.

2.3 Essential boundary conditions for temperature

There are multiple approaches for enforcing the essential boundary conditions in finite element
method. This section will discuss two of these approaches for the Dirichlet essential boundary
condition, which in this case is for temperature, i.e. GEssential = GT .

The matrix form of the problem, e.g. (2.12), complemented by the essential boundary con-
dition (2.2a) contains parts describing both the domain and the essential boundary. The degrees
of freedom corresponding to the essential boundary B and the rest of the domain D are shown in
Figure 2.2.

The matrices representing the whole problem are split into the domain D and essential
boundary B blocks for visual simplicity:

"
KDD KDB

KBD KBB

#"
TD

TB

#
=

"
RD

RB

#
(2.15)

where [K] is the stiffness matrix, [T] is the temperature vector, and [R] is a vector containing
sources and boundary conditions. The subscripts D and B denote the domain and essential
boundary parts, respectively, corresponding to Figure 2.2.

Note that for the following derivation, RD remains unchanged from the main problem for-
mulation, described by (2.14) in section 2.2, however it does not apply to the degree of freedom
indices on the essential boundary.
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Figure 2.2: Discretisation of the domain W with the essential boundary GT for the standard
formulation of the heat diffusion problem. The essential boundary is represented by the degrees
of freedom B and the rest of the domain by the degrees of freedom D.

2.3.1 Temperature BC applied a priori

The temperature T can be set to T̄ a priori on the boundary GT , i.e. before solving the problem.
This can be achieved by setting: h

RB

i
=
h
T̄B

i
, (2.16)

changing KBB into identity matrix I and removing KBD and KDB from the diffusivity matrix of
the problem. The effect of the preset essential boundary condition is reintroduced by calculating
the change of the domain through KDB:

"
KDD 0

0 I

#"
TD

TB

#
=

"
RD �KDBRB

RB

#
. (2.17)

However, applying the essential boundary through this method does not allow for high ac-
curacy when the prescribed value on the boundary is a function of space, as the prescribed
temperature T̄ (x) might not be interpolated accurately by higher order hierarchical shape func-
tions. The next section describes an alternative to this approach, where the essential boundary
condition is enforced through the least squares method.

2.3.2 Temperature BC applied through the least squares method

The aim of this method is to minimise the error between the prescribed boundary condition T̄
and the solution T on the boundary GT . Such an error can be defined as:

Z(T ) =
1
2

Z

GT

(T � T̄ )2 dG. (2.18)

The weak form for the least squares method is derived by minimising the error (2.18) by
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taking a variation with respect to T and setting it equal to zero:
Z

GT

dT T dG =
Z

GT

dT T̄ dG 8dT 2 H1/2(G), (2.19)

where H1/2(G) is the space for traces of functions from H1(W) on the boundary [Boffi et al.,
2013].

Applying shape functions to the variation dT and the solution T in the same way as described
by (2.9), the discretised form of the least squares method is as follows:

dTb

Z

GT

(Nb Na) dG Ta = dTb

Z

GT

Nb T̄ dG 8dTb . (2.20)

Note that dT is set to zero on GT for the diffusion formulation described in this chapter.
Therefore, the rows of the stiffness matrix and the force vector corresponding to the essential
boundary are zero. However, by using least squares method, the (2.20) is added to the main
problem formulation, and the rows of the stiffness matrix and the force vector corresponding
to the essential boundary are no longer zero. The amended matrix form (2.20) can then be
presented as:

2

64
KDD KDB

0

Z

GT

Nb Na dG

3

75

"
TD

TB

#
=

2

64
RDZ

GT

Nb T̄ dG

3

75 (2.21)

where KDD, KDB and RD remain unchanged from the main problem formulation (2.12), and
KBB and FB are defined by the least squares method.

In practise, KBB is not neatly organised in a corner of the global matrix K, and the matrix K

itself becomes asymmetric, therefore, the use of more advanced solving algorithms is advised.
Such matrices could be solved robustly with block solvers, e.g. FieldSplit in PETSc [Sanan
et al., 2022].

2.3.3 Convergence to the exact solution

A convergence to the exact solution with mesh and approximation order refinement is expected
when solving a problem with a finite element method. This has been demonstrated and con-
firmed in literature [Zienkiewicz and Taylor, 2000; Lienhard and Lienhard, 2020] but an ex-
ample is provided here for the sake of completeness and to demonstrate the convergence of
the implemented code. The following chapters will use the same approach to demonstrate the
convergence of the implemented methods for more complex problems.

To verify the implementation, a heat transfer problem in a square domain with a known ana-
lytical solution is studied, see Figure 2.3. This toy example is a two-dimensional heat diffusion
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problem with a sinusoidal source term and Dirichlet boundary conditions and contains no high
localised gradients or flux singularities. The plotted exact solution, its gradient and source are
shown in Figure 2.4 for a linear thermal conductivity k = 1 W/(m· �C).

Figure 2.3: Example SinCos: Corresponding to the exact solution T̃ = cos(2py)sin(2px). The
domain is a square with side length L = 1m and the temperature T̄ is prescribed to three sides
of the boundary. The source term s and prescribed flux boundary condition q̄, are dependent on
the heat conductivity k.

The verification is assessed by calculating the L2-norms and H1-seminorm of the errors with
respect to the exact solutions [Brenner and Scott, 2008; Boffi et al., 2013] of temperature T̃ ,
temperature gradient —T̃ and flux q̃, see Figure 2.4 for the plotted exact solutions. The global
norms of the errors [Boffi et al., 2013] are calculated as follows:

L2-norm of the temperature error:

||T � T̃ ||W =

0

@
Z

W

|T � T̃ |2 dW

1

A
1/2

. (2.22)

H1-seminorm of the temperature error, equal to the L2-norm of the gradient error:

|T � T̃ |1,W =

0

@
Z

W

|—T �—T̃ |2 dW

1

A
1/2

. (2.23)

L2-norm of the flux error:

||q� q̃||W =

0

@
Z

W

|q� q̃|2 dW

1

A
1/2

. (2.24)
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(a) T̃ = cos(2py)sin(2px)
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(b) s = 8kp2 cos(2py)sin(2px)
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(c) ∂ T̃/∂x = 2p cos(2px)cos(2py)
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(d) ∂ T̃/∂y = �2p sin(2px)sin(2py)
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(f) q̃y = 2kp sin(2px)sin(2py)

Figure 2.4: Example SinCos: Exact solution, its gradient, flux and source term for the linear
diffusion problem with thermal conductivity k = 1 W/(m· �C).
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The convergence of the global errors with respect to the exact solution is shown in Figure 2.5.
The figure shows the convergence w.r.t. the element size (left) and the number of integration
points (right). The reason for showing the number of integration points instead of the number
of degrees of freedom is due to the fact that in later chapters, chapters 4 and 5, a data search
will take place at every integration point of the domain. The number of integration points is,
therefore, a more relevant parameter to show the convergence with respect to and will be used
from this point onwards because that will affect the overall time of the calculation.

The global errors decrease with the mesh and approximation order refinement, which con-
firms the correctness of the implemented code and sets up and example to compare to in the
future chapters. In 2D, the total number of Gauss points in a regular mesh is inversely propor-
tional to h2, therefore, the slope on the right hand side of Figure 2.5 is 2 times smaller and the
trend is in the opposite direction.

Additionally, the slope of the convergence can be checked using the a priori error estimators
for the standard finite element method [Grätsch and Bathe, 2005]:

||T̃ �T h||W  Chp+1,

|T̃ �T h|1,W  Chp,

||q̃�q
h||W  Chp,

(2.25)

where C is a constant, h is the element size, and p is the approximation order of the temperature
T field. The convergence rates of the global errors with respect to the element size and the
number of integration points are shown in Figure 2.5 and for the element sizes agree with the a
priori error estimators (2.25).

Next section will focus on nonlinear diffusion problems and their linearisation with the
Newton-Raphson method as another example to refer to in future chapters.

2.4 Nonlinear diffusion problems

Nonlinearity of the problem can be introduced through the thermal conductivity k in the Fourier’s
law (2.3). The conductivity k can be a function of temperature T , gradient of temperature —T ,
age of the material, its porosity, or any other influential factors. The resulting constitutive rela-
tion could be highly nonlinear and depend on a lot of empirical parameters.

In this thesis, we will focus on the case when the thermal conductivity k is a function of
temperature T only, for example:

k(T ) = a+bT + cT 2, (2.26)

where a, b and c are constants, which corresponds to one of the possible representations of heat
transfer thermal conductivity (1.1) in nuclear graphite [McEligot et al., 2016].
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Figure 2.5: Example SinCos: Convergence of the finite element solution to the exact one with
decreasing element size and increasing approximation order. a) and b) show the L2-norm, c)
and d) show the H1-seminorm, e) and f) show the flux error norm, whereas left column shows
the convergence with decreasing element size and right column shows the convergence with
increasing number of integration points.
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When thermal conductivity k is a nonlinear function of T , the conservation of energy law
(2.1) can be written as:

— · (�k(T )—T ) = s in W. (2.27)

The boundary conditions (2.2) remain the same as in the linear case and the nonlinear weak
form of the problem (2.27) can be written as:

Z

W

k(T )—dT ·—T dW�
Z

Gq

dT q̄ dG =
Z

W

dT s dW 8dT 2 H1
0 (W), (2.28)

where the gradients —T and —dT are considered as dependent variables, which is consistent
with the finite element approximation.

However, unlike the linear case, nonlinear problems require linearisation.

2.4.1 Linearisation of nonlinear diffusion problems

There are multiple ways to linearise a nonlinear problem [Zienkiewicz and Taylor, 2000]. This
example follows the consistent linearisation using Newton-Raphson method. Starting with defi-
nition of the residual, or the "right-hand-side" of the problem:

R(T ;dT ) = 0 8dT 2 H1
0 (W) (2.29)

which represents (2.28):

R(T ;dT ) =
Z

W

k(T )—dT ·—T dW�
Z

Gq

dT q̄ dG�
Z

W

dT s dW. (2.30)

Substituting the nonlinear thermal conductivity k(T ), see (2.26),

R(T ;dT ) =
Z

W

�
a+bT + cT 2�—dT ·—T dW�

Z

Gq

dT q̄ dG�
Z

W

dT s dW. (2.31)

To find the field T for which the residual R(T ;dT ) is zero (for any dT ) or is sufficiently
small, the Newton-Raphson method is one of the most common approaches to solving nonlinear
equations. Writing the expansion of R(T ;dT ) into Taylor series around T0 [Bonet and Wood,
1997],

R(T0 +DT ;dT ) = R(T0;dT )+DR(T0;dT ) [DT ]+O
�
DT 2� , (2.32)

where T0 is the temperature field in the last iteration (or the last converged step), DT is the change
in the temperature field, and O

�
DT 2� represent the higher order terms in DT which approach

zero when DT is small and are therefore neglected, see [Zienkiewicz and Taylor, 2000; Bonet
and Wood, 1997] for more information. Note that in (2.32), the derivative with respect to —T
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is not taken, as —T is considered to be dependent on T , which will be enforced using the finite
element approximation.

DR(T0;dT ) [DT ] is the Gateaux (directional) derivative of the residual R(T ;dT ) with respect
to the change in the temperature field in direction of DT at T0 [Bonet and Wood, 1997]:

DR(T0;dT ) [DT ] = lim
e!0

R(T0 + eDT ;dT )�R(T0;dT )

e
. (2.33)

Computing the Gateaux (directional) derivative and using the chain rule, results in the fol-
lowing:

DR(T0;dT ) [DT ] =
Z

W

—dT ·
⇥�

a+bT0 + cT 2
0
�

—DT +(b+2cT0)—T0 DT
⇤

dW. (2.34)

To discretise the residual and its Gateaux derivative, the finite element base functions are
used to approximate the test and change functions dT and DT respectively:

dT h = dTb Nb and DT h = DTgNg (2.35)

where the summation over repeated indices is assumed and gradients are dependants, following
the same principles as (2.9) and (2.10). Again, for brevity, we preserve the same notations for
discretised entities as were introduced in the continuous problem statement.

When the residual of the current step R(T0 +DT,dTb ) is equated to zero for any coefficients
dTb , see (2.32), the coefficients of the change in temperature field DTg can be obtained by
solving the system of equations presented in the matrix form:

[Kbg ][DTg ] = �[Rb ], (2.36)

where [DTg ] is the vector of unknown coefficients, [Kbg ] is the tangent matrix [Bonet and Wood,
1997] derived from (2.34):

⇥
Kbg

⇤
=
Z

W

�
a+bT0 + cT 2

0
��

—Nb ·—Ng
�
+(b+2cT0)Ng

�
—Nb ·—T0

�
dW, (2.37)

and [Rb ] is the residual vector derived from (2.31):

[Rb ] =
Z

W

�
a+bT0 + cT 2

0
�

—Nb ·—T0 dW�
Z

W

Nb s dW�
Z

Gq

Nb q̄ dG. (2.38)

The boundary conditions can be satisfied in a similar way to the the linear case, see sec-
tion 2.2 and section 2.3 for more information.
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2.4.2 Convergence to the exact solution

The same convergence analysis is performed for the nonlinear diffusion problem as for the linear
diffusion problem subsection 2.3.3. The problem setup is shown in Figure 2.3, however, the
thermal conductivity is now nonlinear with respect to the temperature T , see Figure 2.6 for the
plotted thermal conductivity k(T ) on the domain considered, for the given exact solution shown
in Figure 2.3.
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(a) Nonlinear thermal conductivity k in relation to
temperature T .

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

1.0

1.5

2.0

2.5

T
he

rm
al

co
nd

uc
ti

vi
ty

k
[W

/(
m

·� C
)]

(b) Thermal conductivity corresponding to the exact
solution, T̃ = cos(2py)sin(2px).

Figure 2.6: Example SinCos: Nonlinear thermal conductivity k(T ) = 1+T +T 2.
Note that (b) is for demonstration purposes only and is not an input for the analysis.

The exact formulas for fluxes and sources for the nonlinear SinCos example also differ from
the linear case since they depend on the thermal conductivity k(T ), see Figure 2.7 for the plotted
exact solutions and sources.

The convergence with respect to the exact solution is shown in Figure 2.8.
The global errors decrease with the mesh and approximation order refinement in the same

convergence rate as the linear example, see Figure 2.5. The convergence rate follows the a priori
error estimation (2.25), which verifies the implemented code and sets up an example to compare
to in future chapters.

The material nonlinearity was introduced through thermal conductivity k(T ), which depends
on the temperature T . However, the definition of material behaviour varies according to the
material and where it is applied, and it often depends on empirical material parameters. Further-
more, most material models are approximations and interpolations of collected material data,
and although significantly different material laws may require customised formulations, modern
FE codes typically generalise the linearisation process to accommodate a broad class of nonlin-
ear behaviours [Zienkiewicz et al., 2010; Wriggers, 2008]. Nevertheless, an alternative approach
to using nonlinear material models is discussed in chapter 4.
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(a) T̃ = cos(2py)sin(2px)
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(b) s = 8kp2 cos(2py)sin(2px)
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(c) ∂ T̃/∂x = 2p cos(2px)cos(2py)
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(d) ∂ T̃/∂y = �2p sin(2px)sin(2py)
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(e) q̃x = �2kp cos(2px)cos(2py)
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(f) q̃y = 2kp sin(2px)sin(2py)

Figure 2.7: Example SinCos (nonlinear): Exact solutions and applied source term for the non-
linear diffusion problem with thermal conductivity k = 1+T +T 2.



CHAPTER 2. STANDARD FINITE ELEMENT APPROACHTO DIFFUSION PROBLEMS29

10�2 10�1

Element size

10�9

10�7

10�5

10�3

10�1

G
lo

ba
l
er

ro
r
L

2 -
no

rm

Gradient = 1.93

Gradient = 3.01

Gradient = 4.06

Gradient = 4.99 p = 1

p = 2

p = 3

p = 4

(a)

103 104 105

Number of integration points

10�9

10�7

10�5

10�3

10�1

G
lo

ba
l
er

ro
r
L

2 -
no

rm

Gradient = -0.96

Gradient = -1.51

Gradient = -2.03

Gradient = -2.50p = 1

p = 2

p = 3

p = 4

(b)

10�2 10�1

Element size

10�6

10�4

10�2

100

G
lo

ba
l
er

ro
r
H

1 -
se

m
in

or
m Gradient = 0.98

Gradient = 1.97

Gradient = 3.00

Gradient = 3.99 p = 1

p = 2

p = 3

p = 4

(c)

103 104 105

Number of integration points

10�6

10�4

10�2

100

G
lo

ba
l
er

ro
r
H

1 -
se

m
in

or
m Gradient = -0.49

Gradient = -0.99

Gradient = -1.50

Gradient = -2.00p = 1

p = 2

p = 3

p = 4

(d)

10�2 10�1

Element size

10�6

10�4

10�2

100

G
lo

ba
l
F
lu

x
er

ro
r

Gradient = 0.96

Gradient = 1.97

Gradient = 2.98

Gradient = 3.99 p = 1

p = 2

p = 3

p = 4

(e)

103 104 105

Number of integration points

10�6

10�4

10�2

100

G
lo

ba
l
F
lu

x
er

ro
r

Gradient = -0.48

Gradient = -0.98

Gradient = -1.49

Gradient = -1.99p = 1

p = 2

p = 3

p = 4

(f)

Figure 2.8: Example SinCos (nonlinear): Convergence of nonlinear diffusion problem global
errors with respect to the exact solution with mesh and approximation order refinement. a) and
b) show the L2-norm, c) and d) show the H1-seminorm, e) and f) show the flux error norm,
whereas left column shows the convergence with respect to the element size and right column
shows the convergence with respect to the number of integration points.
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2.5 Summary

In this chapter, the classical finite element approach to solving diffusion problems, both linear
and nonlinear, was described. The subsequent chapters will refer to it as a benchmark to com-
pare the results of other formulations and methods. Convergence was achieved with mesh and
approximation order refinement as the results were compared to the exact solution. However,
the error estimation introduced here is tied to knowing the exact solution and the refinement
used is global.

The next chapter will introduce the concept of mixed formulation and its application to
diffusion problems. Some of the benefits of this approach include error estimation without the
need for knowing the exact solution providing the possibility of a local (adaptive) mesh and
approximation order refinement.



Chapter 3

Mixed formulation for diffusion problems

The previous chapter described a more common (standard) approach to solving diffusion prob-
lems, including linear and nonlinear heat transfer, with the finite element method. This chapter
starts with the same equations of equilibrium, constitutive behaviour and boundary conditions,
but the approach to solving the problem is different, as we will use so-called mixed formulation.

One way to introduce the concept of the mixed formulation is by highlighting the similarities
and differences between coupled problems and mixed problem formulations. Coupled problems
involve the interaction of two or more sub-problems, each governed by distinct physics and de-
scribed by multiple variables, e.g. thermoelasticity, electroelasticity, fluid-structure interaction,
fluid-particle interaction, magnetohydrodynamics, etc. [Boffi et al., 2013; Zienkiewicz et al.,
2010]. On the other hand, the mixed problem formulation introduces one or more auxiliary vari-
ables in a problem governed by one physical process. In this chapter, two-field solution will be
obtained for the heat diffusion problem: temperature T corresponding to the primary variable,
and heat flux q as the auxiliary (secondary) variable.

The variables are assigned functional spaces approximated by relevant finite element basis
functions. In particular, the heat flux is approximated in H(div) functional space, which ensures
that the flux is continuous across any inner boundaries, which ensures that the conservation
law is satisfied apriori, and is therefore natural for the diffusion problems. The temperature
is approximated in L2 functional space, which allows for discontinuities across the element
boundaries. The chapter will also describe a posteriori error estimates provided by the choice
of the functional spaces and an example of how they can be utilised for adaptive mesh and/or
order refinement for the problem.

3.1 Linear diffusion problems - mixed formulation

The conservation law and boundary conditions for this problem are the same as in the previous
chapter and are shown in (2.1) and (2.2) respectively, also see Figure 2.1.

First, to obtain the mixed formulation [Boffi et al., 2013], the constitutive relation (2.3) is

31
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added as a separate equation alongside (2.1) and (2.2). The heat flux becomes an independent
variable leading to the problem statement:

Find T 2 L2 and q 2 Q such that:

8
>>>><

>>>>:

— ·q = s in W (3.1a)

q/k = �—T in W (3.1b)

q ·n = q̄ on Gq (3.1c)

T = T̄ on GT . (3.1d)

To obtain the weak form of the problem, (3.1a) is multiplied by a scalar test function dT and
integrated over the domain W. Additionally, (3.1b) is multiplied by a vectorial test function dq

and integrated over the domain W. These steps result in the following equations:
8
>>>><

>>>>:

Z

W

dT (— ·q) dW =
Z

W

dT s dW 8dT 2 L2(W) (3.2a)

Z

W

1
k

dq ·q dW = �
Z

W

dq ·—T dW 8dq 2 Q0, (3.2b)

where L2(W) is a space of square-integrable scalar functions and Q0 is a space of square-
integrable vectorial functions with square integrable divergence and zero normal component
on the boundary Gq, for more information on functional spaces see Table 3.1 and Appendix A.

The right-hand side term
Z

W

dq · —T dW in (3.2b) is integrated by parts and the temperature

boundary condition (3.1d) is applied on the boundary GT , note that dq · n = 0 on Gq, resulting
in the following weak form of the problem (3.2):

Find T 2 L2 and q 2 Q such that:
8
>>>><

>>>>:

Z

W

dT (— ·q) dW =
Z

W

dT s dW 8dT 2 L2(W) (3.3a)

Z

W

1
k

dq ·q dW =
Z

W

(— ·dq)T dW�
Z

GT

(dq ·n) T̄ dGT 8dq 2 Q0 , (3.3b)

where the spaces for trial and test functions are defined in Table 3.1.
The temperature T , flux q and test functions dT and dq are approximated by the finite

element basis functions N and Q as shown in Table 3.2.
Substituting the approximations into the weak form (3.3) and multiplying (3.3a) by (�1) to



CHAPTER 3. MIXED FORMULATION FOR DIFFUSION PROBLEMS 33

Field Space

Temperature T (trial function) T 2 L2(W)

dT (test function) dT 2 L2(W)

Flux q (trial function) q 2 Q = {u 2 H(div;W) |u ·n = q̄ on Gq}

dq (test function) dq 2 Q0 = {v 2 H(div;W) |v ·n = 0 on Gq}

Table 3.1: Functional spaces for the mixed formulation of the diffusion problem.

Trial function Test function

Temperature T h = TaNa dT h = dTbNb

Flux q
h = qA QA dq

h = dqBQB

Divergence of flux — ·q
h = qA (— ·QA ) — ·dq

h = dqB (— ·QB)

Table 3.2: Finite element basis functions for the mixed formulation of the diffusion problem.
Ta, dTb, qA and dqB are the coefficients of the approximation. Na and Nb are the scalar base
functions; and QA and QB are the vectorial base functions.

enable the symmetric form of the problem results in:

8
>>>>>>>><

>>>>>>>>:

�
Z

W

dTbNb (— ·QA )qA dW = �
Z

W

dTbNbs dW 8dTb

�
Z

W

dqB (— ·QB)NaTa dW+
Z

W

1
k

dqB (QB ·QA )qA dW

= �
Z

GT

dqB (QB ·n) T̄ dGT 8dqB.

(3.4)

Since (3.4) holds for any dTb and dqB, the following saddle point problem in a matrix form
is written as:

2

6664

0 �
Z

W

Nb (— ·QA ) dW

�
Z

W

(— ·QB)Na dW
Z

W

1
k

QB ·QA dW

3

7775

"
Ta
qA

#
=

2

6664

�
Z

W

Nbs dW

�
Z

GT

(QB ·n) T̄ dGT

3

7775
. (3.5)

The mixed formulation can utilise the hierarchical shape functions available in MoFEM
[Kaczmarczyk et al., 2020] and applies Gaussian quadrature to compute the integrals. To satisfy
the LBB (Ladyzhenskaya-Babuška-Brezzi) stability conditions [Boffi et al., 2013; Gatica, 2014],
which ensure the stability and convergence of mixed finite element methods by requiring a
proper balance between the approximation spaces of the unknown fields, the approximation
orders are assigned accordingly; see Table 3.3.
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Field Approximation order

Temperature T p

Flux q p+1

Table 3.3: Approximation orders for the mixed formulation of the diffusion problem.

Table 3.3 shows the approximation orders relation between the temperature T and the flux
q fields. If the temperature field is approximated by order p, the flux field is approximated by
order p + 1. Trial and test functions are approximated by the same shape functions and using
the same orders, i.e. Galerkin method [Demkowicz, 2024].

3.1.1 Boundary conditions in the mixed formulation

In the mixed formulation, the boundary conditions differ from the standard formulation for
diffusion problems described in the previous chapter. The Neumann (flux) boundary condition
(3.1c) is applied on the boundary Gq and is satisfied as an essential boundary condition, see
space description in Table 3.1. The Dirichlet (temperature) boundary condition (3.1d) is applied
on the boundary GT , see (3.1d), and is satisfied as a natural boundary condition. The imposition
of the boundary conditions in the mixed formulation is summarised in Table 3.4.

BC type Field on which the condition is applied Boundary

Essential satisfied in the strong sense GEssential = Gq

Natural imposed as a part of the weak form GNatural = GT

Table 3.4: Imposition of boundary conditions in the mixed (weaker) formulation of the heat
diffusion problem.

The essential (flux) boundary condition can be satisfied in a similar way to how it is described
in section 2.3.

Figure 3.1 explains how the degrees of freedom are distributed and where the boundary
conditions are applied. Note that the temperature and flux boundary conditions are swapped in
comparison to the standard diffusion distribution, see Figure 2.2 for reference.

3.2 Convergence and a priori error estimates

To verify the implementation of the mixed formulation discussed above and demonstrate the
effectiveness of the adaptive refinement driven by the error estimators, a diffusion problem in
a square 2D domain with homogeneous Dirichlet boundary conditions prescribed on the whole
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Figure 3.1: Discretisation of the domain W with the essential boundary Gq for the mixed for-
mulation of the heat diffusion problem. The essential boundary is represented by the degrees of
freedom B and the rest of the domain by the degrees of freedom D, which are different to the
ones presented in Figure 2.2.

boundary is considered:
8
>>><

>>>:

— ·q = s in W := (�0.5;0.5)⇥ (�0.5;0.5)

q/k = �—T in W

T = 0 on ∂W.

(3.6)

For testing purposes, we constructed the problem for a given solution of temperature T̃ (x,y):

T̃ (x,y) = e�100(x2+y2) cospxcospy. (3.7)

The source term s(x,y) applied to the problem is obtained from the temperature T̃ (x,y) and
the thermal conductivity k as follows:

s(x,y) = 2ke�100(x2+y2) {�200pxsin(px)cos(py)

+cos(px)
�
(p2 �200(100x2 +100y2 �1))cos(py)�200pysin(py)

� 
.

(3.8)

The exact solutions to temperature T̃ , its gradient —T̃ , the heat flux q̃, and the source term
s are shown in Figure 3.3. The example was chosen due to the localised high gradients which
cause numerical difficulties and high finite element approximation errors with low order approx-
imations. For this example, thermal conductivity k = 1 W/(m· �C) is used and the analysis setup
is shown in Figure 3.2.

The resulting temperature field T is shown in Figure 3.4 for different approximation orders
p. Due to the temperature field belonging to the L2 space, the field is allowed to be discontinuous
across the element boundaries. The jumps of temperature values between the elements decrease
with higher approximation orders when the source term applied to the problem is continuous.
Note that the approximation order can be decreased to 0 which corresponds to the values being
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(a) Dimensions and boundary conditions. (b) Source term (3.8) applied to the domain.

Figure 3.2: Example Exp-Hat: Analysis setup which corresponds to the exact solution T̃ =
e�100(x2+y2) cospxcospy.

constant within the element.
Any finite element analysis with a unique solution contains a priori error estimates that

depend on the mesh element size and the approximation order used. Figure 3.5 shows the
convergence of the finite element solution to the exact one with decreasing element size and
increasing approximation order.

The a priori error estimates for mixed formulation [Boffi et al., 2013] are:

||T̃ �T h||W  Chp+1,

|T̃ �T h|1,W  Chp,

||q̃�q
h||W  Chp+2,

(3.9)

where C is a constant which does not depend on the mesh, h is the element size, p is the approxi-
mation order of temperature field, note that the approximation order for flux is p+1. The norms
of the errors, see (2.22) (2.23) (2.24), are shown in Figure 3.5, and the convergence agrees with
the error estimates (3.9).

Furthermore, a comparison between the standard formulation described in the chapter 2 and
the mixed formulation is shown in Figure 3.6.

From Figure 3.6 (a-d) it can be seen that the L2-norm and H1-seminorm of the temperature
error converge with the same order as the standard formulation. This is also confirmed with
the same a priori estimates for the temperature field in (3.9). However, the flux error norm
converges with a higher order than the standard formulation, as shown in Figure 3.6 (e-f). This
is due to the higher approximation order of the flux field in the mixed formulation.

In the standard formulation, the flux is computed a posteriori by applying the conservation
law to the gradient of the temperature field, resulting in the flux approximation equivalent of
order p � 1, when the approximation of the temperature is of order p. On the other hand, if
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(b) Source s expressed in (3.8)
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q̃x =ke(�100(x2+y2)) cos(py)
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Figure 3.3: Example Exp-Hat: Exact solutions for the temperature, its gradient and the heat
flux, and the source term for the linear heat diffusion problem with thermal conductivity k = 1
[W/(m· �C)].
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T

(a) Approximation order p = 0.

0 0.25 0.5 0.75 1
T

(b) Approximation order p = 1.

0 0.25 0.5 0.75 1
T

(c) Approximation order p = 2.

0 0.25 0.5 0.75 1
T

(d) Approximation order p = 3.

Figure 3.4: Example Exp-Hat: Temperature field T in L2 showing jumps across the element
boundaries with increasing approximation order p. Element size h = 0.05.
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Figure 3.5: Example Exp-Hat: Convergence of the finite element solution to the exact one with
decreasing element size and increasing approximation order. a) and b) show the L2-norm, c)
and d) show the H1-seminorm, e) and f) show the flux error norm, whereas left column shows
the convergence with respect to the element size and right column shows the convergence with
respect to the number of integration points.
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Figure 3.6: Example Exp-Hat: Comparison of convergence of the finite element solution ob-
tained by the standard and mixed formulation to the exact one with decreasing element size and
increasing approximation order. a) and b) show the L2-norm, c) and d) show the H1-seminorm,
e) and f) show the flux error norm, whereas left column shows the convergence with respect to
the element size and right column shows the convergence with respect to the number of integra-
tion points.
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order p is chosen for the temperature field in the mixed formulation, the flux is approximated
directly by the basis functions of order p + 1. This results in a higher convergence rate of the
flux error norm compared to the standard formulation.

Nevertheless, these a priori error estimates describe global quantities and cannot be used
for adaptive refinement in the presented formulation. Error indicators made for the standard
approach that can be used for adaptive refinement exist [Oden et al., 1989], however, the mixed
formulation allows for different embedded error indicators which are more straightforward to
calculate. The following section will describe a posteriori error estimates and indicators that
can be used for adaptive refinements with the mixed formulation described in this chapter.

3.3 A posteriori error estimators and indicators

Numerical solution obtained with the finite element method contains finite element approxima-
tion errors. Error estimators can be used to estimate the error of the numerical solution, for a
given element size and approximation order.

Multiple ways to calculate error estimates were proposed in literature [Oden et al., 1989;
Repin, 2008; Grätsch and Bathe, 2005]. Nevertheless, due to the temperature T and flux q

belonging to different functional spaces in the mixed formulation, error indicators and estimators
with little extra computational cost are available [Ainsworth, 2008; Braess and Verfürth, 1996;
Carstensen, 1997]. The particular a posteriori error indicators and error estimate calculated in
this thesis follow [Braess and Verfürth, 1996].

Error indicators indicate where the approximation errors discoverable by that particular indi-
cator are the highest, however, any one error indicator might not capture all of the finite element
approximation errors on its own. Therefore, the error estimate introduced in this section is com-
posed of error indicators associated with temperature gradient, flux divergence, and jumps of
values across the inner boundaries between elements, described in the following subsections.
The error estimate can be used as a whole or parts of it can be used as error indicators for
adaptive refinements.

3.3.1 Error indicator associated with temperature gradient

The first error indicator is associated with the temperature gradient —T . Since temperature T is
approximated by L2 space, the field is not forced to be continuous, see Figure 3.4, and therefore
does not allow to compute temperature gradient. Nevertheless, given that in the finite-element
approach the fields are approximated using polynomial base functions, even if the tempera-
ture field is not continuous between elements, the gradient of the corresponding polynomial
approximation T h can be readily computed at each element’s integration points independently
a posteriori. This temperature gradient is compared to the flux q, which is related through the
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constitutive relationship (3.1c). Since the flux field is approximated directly with higher ap-
proximation order, p + 1, the resulting field is much smoother than the computed gradient of
temperature —T , see Figure 3.7. The error indicator he(—T,q) is computed over a finite element
We as follows:

he (—T,q) = ||k—T +q||2We
. (3.10)

0.00  2.50  5.00  7.50  10.0  
Grad T

(a) Magnitude of the gradient of temperature —T .

0.00  2.50  5.00  7.50  10.0  
Q

(b) Magnitude of the heat flux q/k.

Figure 3.7: Example Exp-Hat: Comparison of the magnitudes of the gradient of temperature
—T and the heat flux q for approximation order p = 1 and element size h = 0.05.

The magnitudes of the fields shown in Figure 3.7 should theoretically have the same values
since the thermal conductivity chosen for the Exp-Hat example is k = 1 and q/k = �—T , there-
fore q = �—T and |q| = |—T |. However, due to the finite element approximation and satisfying
the constitutive equation in a weak sense, the results shown in Figure 3.7 differ. The error in-
dicator he (—T,q) computed for Exp-Hat example is shown in Figure 3.8a. The error indicator
can be used to identify elements where the temperature gradient are not well approximated, and
where the refinement is needed.

This error indicator alone is sufficient to indicate where the temperature gradient is not well
approximated, and where the refinement is needed. The gradient error indicator (3.10) can be
compared to the H1-seminorm of the temperature error to the exact solution and, as shown in
Figure 3.8b, the same elements are identified as problematic.

3.3.2 Error indicator associated with flux divergence

The second error indicator is associated with the flux divergence — ·q. The error indicator mea-
sures the difference between the source term s and the divergence of the flux — ·q, which corre-
sponds to the conservation of energy (3.1a). The divergence error indicator ne(q) is computed
over a finite element We as follows:

ne (q) = h||s�— ·q||2We
(3.11)
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1.29e-11 0.0272 0.0544 0.0816 0.109 
ERROR_INDICATOR_GRAD

(a) Error indicator he (—T,q).

3.80e-11 0.0280 0.0559 0.0839 0.112 
ERROR_H1_SEMINORM

(b) Temperature error H1-seminorm.

Figure 3.8: Example Exp-Hat: Comparison of the error indicator associated with temperature
gradient he (—T,q), see (3.10), and the H1-seminorm of temperature error to the exact solution
evaluated per finite element.

where h is the representative size of the element We; h =
p

|We|, where |We| is the area of the
element We.

The error indicator ne(— · q) computed for Exp-Hat example is shown in Figure 3.9. The
error indicator can be used to identify elements where the source term s and the divergence of
the flux — ·q are not conforming, see Figure 3.9.

3.30e-21 0.0274 0.0548 0.0822 0.110 
ERROR_INDICATOR_DIV

Figure 3.9: Example Exp-Hat: Error indicator assessing the conformity of the numerical solution
to the conservation of energy equation (3.1a) on element basis.

3.3.3 Jump across the inner boundaries

Since the temperature field is in L2 functional space, the finite element solution is not continuous
and jump of the field values across the inner boundaries can be calculated, for visual represen-
tation of the temperature field values and the jumps between elements see Figure 3.4. A part of
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the jump error indicator, gl(T ), is computed over any inner boundary Gl as follows:

gl(T ) = h�1/2||J(T )||0,l (3.12)

where J(T ) is the jump of the temperature field T across one of the inner boundaries Gl belong-

ing to an element We and h is the representative size of the element We; h =
p

|We1+
p

|We2|
2 , where

|We1| and |We2| are the areas of the elements We1 and We2 sharing the inner boundary Gl .
The jump error indicator ge(T ) for the element is computed by summation of the jumps gl(T )

across all boundaries associated with that element:

ge(T ) =
nGe

Â
l=1

gl(T ) (3.13)

The jump error indicator for Exp-Hat example is shown in Figure 3.10, highlighting where
the jump of temperature values between elements is the highest, see Figure 3.4b for the temper-
ature field visualisation.

9.27e-14 0.00870 0.0174 0.0261 0.0348
JUMP_L2

Figure 3.10: Example Exp-Hat: Error indicator evaluating the jumps of temperature values, see
(3.13), through the inner boundaries, evaluated per element.

3.3.4 Error estimator

The complete error estimator [Braess and Verfürth, 1996] is a combination of the error indicators
associated with temperature gradient (3.10), flux divergence (3.11), and jumps across the inner
boundaries (3.13):

µe =
�
h2

e +n2
e + g2

e
�1/2

. (3.14)

The global error estimator can be computed as:

µg =

 

Â
e2W

⇥
h2

e +n2
e
⇤
+ Â

l2G
g2

l

!1/2

, (3.15)
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1.33e-11 0.0392 0.0783 0.117 0.157 
ERROR_ESTIMATOR

(a) Error estimator µe evaluated per element.

3.80e-11 0.0280 0.0559 0.0839 0.112 
TOTAL ERROR

(b) Total mesh dependent error norm evaluated per
element: kT �Thk1,h +kq�qhk0,h.

Figure 3.11: Example Exp-Hat: Error estimator calculated according to (3.14) evaluating the
temperature gradient, flux divergence, and jumps of temperature values through the inner bound-
aries, evaluated per element compared to the total mesh dependent error norm.

where G refers to the inner boundaries.
The error estimator, or its parts, can be used as error indicators for adaptive refinement, and

the complete error estimator can also be extended to calculate the lower and upper bounds of the
numerical error [Braess and Verfürth, 1996].

The resulting error estimator for the Example Exp-Hat with approximation order p = 1 and
element size h = 0.05 is shown in Figure 3.11. The estimation of upper and lower bounds of
the numerical error for the mixed formulation is not in the scope of this thesis, however, the
error estimator can be used to identify elements where the solution is not well approximated and
where the refinement is needed.

3.4 Adaptive refinement

Adaptive refinement aims to achieve higher accuracy with adding as few new degrees of free-
dom as possible. The error indicators described in the previous section can guide the adaptive
refinement by identifying elements where the solution is not approximated well and a refinement
is recommended.

The choice of elements to be refined according to a given error estimator or indicator vary
and can include one or more of the following criteria for the choice of which elements should
be refined:

• the highest error indicators.

• the error indicators higher than a certain threshold.

• a certain percentage of elements with the highest error indicators.
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• the error indicators higher than the average value of the error indicators.

• the error indicators higher than a fraction of the maximum value of the error indicators.

• a combination of the above approaches and more.

The error indicators can be used to refine the mesh, increase the approximation order, or
both, using one or more criteria from the list above. This section will address the adaptive
refinements based on the error indicators and estimators described in the previous section.

3.4.1 Adaptive approximation order refinement

For the Example Exp-Hat, Figure 3.2, there are no singularities in any of the fields but there is
a high localised temperature gradient present inside of the domain. Intuitively, to capture higher
gradients, approximation order refinement (p-refinement) is preferable over a mesh refinement
(h-refinement).

To illustrate this approach, on the elements where the errors estimator is higher than the
average, the approximation orders for T and q fields are increased by one, i.e.:

pe :=

8
<

:
pe +1 if µe > µavg

pe otherwise.
(3.16)

For this algorithm, it is necessary to set the number of refinements as it can continue infinitely
many times as a new average is calculated after every solution.

The convergence to the exact solution with global mesh and approximation order refinement
is compared to the adaptive order refinement error norms in Figure 3.12. For all of the error
norms, p-refinement achieves high accuracy with orders of magnitude smaller number of in-
tegration points than the global refinement, although the chosen algorithm does not reach the
error norms as small as the global refinement with around 100 times the number of integration
points. Figure 3.12 also shows the results of an adaptive h-refinement, which is described in the
next subsection 3.4.2 of this thesis, which in this case does not achieve the same improvement
in accuracy as p-refinement.

The convergence with the adaptive refinement is considerably faster than that of the global
refinement with respect to the number of integration points. The choice of the criterion for
refinement will also affect the convergence rate, and the choice of the algorithm should be based
on the problem at hand.

It is important to note that increasing of the approximation order does not alter the mesh and
is possible when hierarchical shape functions are utilised Zienkiewicz et al. [2010], for example,
using MoFEM [Kaczmarczyk et al., 2020], see Appendix A.
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(a) Global temperature error L2-norm.
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(b) Global L2�norm of temperature jumps across
inner boundaries.
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(c) Global temperature error H1-seminorm.
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(d) Global L2-norm of the gradient error indicator.
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(e) Global flux error L2-norm.
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(f) Global L2-norm of the divergence error indica-
tor.

Figure 3.12: Example Exp-Hat: Convergence of the finite element solution to the exact one and
error indicators with increasing number of Gauss points driven by the global and local h and p
refinement.
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Figure 3.13: Example Exp-Hat: Resulting approximation orders of the adaptive refinement with
the algorithm described in Algorithm 1.

Furthermore, the algorithm should not allow for two elements next to each other to have the
difference between the approximation orders more than two. Hence, an additional algorithm is
introduced to prevent this from happening, see Algorithm 1.

Algorithm 1 Adjusting approximation order for mixed formulation
1: Initialise W as the highest p in the mesh
2: while W > pmin +2 do

3: Identify all elements with the current approximation order W as EW
4: for each EW do

4: Find neighbouring elements connected by an edge to EW
5: for each neighbouring element do

5: Get approximation order of the element We
5: We = max(W �1,We)
6: end for

7: end for

8: W = W �1
9: end while

In other words, the algorithm will increase the approximation order of the neighbouring
element (connected by an edge) if the difference between the approximation orders is more than
one. The increase of the order of neighbouring elements will typically take place in the area
where the order refinement has taken place several times.

In the Example Exp-Hat, the area with the high gradient will be refined multiple times, e.g.
the approximation order increased to 5, and the neighbouring elements would have the approx-
imation order 1. This would result in the high gradient area being approximated with a much
higher order than the neighbouring elements, which is not desired as it potentially introduces
other approximation issues. The algorithm will prevent this from happening by adjusting the
approximation orders of the neighbouring elements, see Figure 3.13.

The algorithm is applied to the Example Exp-Hat and the convergence is shown in Fig-
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ure 3.12. The convergence is significantly improved compared to the global refinement.

3.4.2 Adaptive mesh refinement

Adaptive mesh refinement (h-refinement) uses a similar algorithm as the adaptive p-refinement
(refine if µe > µavg), however, it is the most required when singularities are present in the prob-
lem. When applied to the Example Exp-Hat, the convergence was not improved as significantly
as with the order refinement and the error norms were reduced more by a global p-refinement,
see Figure 3.12.

To study the possible cases when the mesh refinement is more effective than the order re-
finement, a new example is introduced which was created based on an exact solution with a
singularity following [Demkowicz and Gopalakrishnan, 2011]. The exact solution is shown in
Figure 3.14 and is defined in polar coordinates as follows:

T̃ (r,q) = r
2
3 sin

✓
2
3

⇣
q +

p
2

⌘◆
. (3.17)

However, as we usually work in Cartesian coordinates, the exact solution is transformed to
Cartesian coordinates as follows:

T (x,y) =
�
x2 + y2� 1

3 sin
✓

2
3
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arctan(y/x)+
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. (3.18)
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Figure 3.14: Example L-shape: Exact solutions and the source term for the linear diffusion
problem with thermal conductivity k = 1.

The geometry and boundary conditions are shown in Figure 3.15 and the analysis is done
with global and adaptive refinements. The resulting error norms are shown in Figure 3.16 and
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hp-refinement is described in the next subsection 3.4.3.

Figure 3.15: Example L-shape: Geometry and boundary conditions. Note that q̄ is derived from
the exact solution (3.18) with linear material behaviour and thermal conductivity k = 1.

The solution to the problem does not improve with the increase of the approximation order,
as the singularity is not well approximated.

The adaptive mesh refinement is more suitable for problems with singularities, and the adap-
tive order refinement is more suitable for problems with high gradients of unknown fields. The
choice of the algorithm should be based on the problem at hand. Nevertheless, the adaptive
refinement can be a combination of the two algorithms, and the choice of the algorithm should
be based on the problem at hand.

3.4.3 Adaptive mesh and order refinement algorithm

The mesh and order refinement algorithm, also known as hp-refinement is a combination of
the previously mentioned approximation order and mesh refinements. The algorithm can have
various implementations, and the following algorithm has been implemented in this thesis:

Algorithm 2 Adaptive Refinement and Order Adjustment
1: Initialize with the lowest approximation order p = 1 and the coarsest mesh.
2: repeat

3: Solve the problem (3.5).
4: Calculate the error indicators and estimator (3.14).
5: if an element’s error estimator is higher than the average error estimator then

6: Increase the approximation order, ensuring that the difference between the approxima-
tion orders of neighbouring elements is not more than one, following Algorithm 1.

7: if an element is adjacent to the boundary G then

8: Refine mesh of this element.
9: end if

10: end if

11: until a specified number of iterations is reached or the error estimator is below a specified
threshold
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(a) Global temperature error L2-norm.
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(b) Global L2�norm of temperature jumps across
inner boundaries.
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(c) Global temperature error H1-seminorm.
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(d) Global L2-norm of the gradient error indicator.
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(e) Global flux error L2-norm.
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(f) Global L2-norm of the divergence error indica-
tor.

Figure 3.16: Example L-shape: Convergence of the finite element solution to the exact one and
error indicators with increasing number of Gauss points due to global and local mesh and order
refinement.



CHAPTER 3. MIXED FORMULATION FOR DIFFUSION PROBLEMS 52

The convergence to the exact solution and errors with the adaptive mesh and order refine-
ment is shown in Figure 3.16. The convergence is significantly improved compared to the global
refinement, however the algorithm can be further adjusted to improve the convergence. The re-
finement algorithms used later in this thesis use parts of the algorithm described above combined
with other inputs, some of which are described later in this thesis, indicating where the mesh re-
finement should or should not take place and where the approximation order should be increased
or decreased.

3.5 Summary

As introduced in the chapter, high finite element approximation errors can be located and re-
duced with the use of the mixed formulation and associated error indicators/estimators. Once
the problematic elements are identified, the adaptive refinements can be applied to reduce the er-
ror. The adaptive refinements can be based on the error indicators and estimators associated with
temperature gradients, flux divergence, and jumps across the inner boundaries. The adaptive re-
finements can be applied in terms of the mesh refinement, approximation order refinement, or a
combination of the two. The choice of the algorithm should be based on the problem at hand,
and the adaptive refinement can be a combination of the two algorithms. The choice of the
algorithm should be based on the problem at hand.

The next chapter will introduce a different concept, data-driven approach, not related to the
mixed formulation described in this chapter. The principles and concepts introduced in this
section will reappear in chapter 5 in combination with the data-driven approach.



Chapter 4

Data-Driven formulation for diffusive

problems

In this chapter, data-driven approach for diffusion problems is presented. This work follows and
builds on the previous work, see [Kirchdoerfer and Ortiz, 2016], where the idea and implemen-
tation of using "model-free" numerical analysis started to thrive. This approach also uses no
machine learning or neural networks, but instead relies on the data directly, without any fitting
to a model.

The topic has been explored in multiple directions since its establishment in 2016, including
elasticity [Kirchdoerfer and Ortiz, 2016], inelasticity [Kirchdoerfer and Ortiz, 2017], fracture
[Carrara et al., 2020], etc. with more details on the current state of the topic presented in the
literature review in section 1.2.

To introduce the concept of the data-driven approach, this thesis focuses on the scalar prob-
lem of heat diffusion, which is introduced and solved using the standard FE approach in chap-
ter 2. The main difference from the standard approach is that the relation between the flux and
the gradient of temperature is introduced through the material dataset instead of a constitutive
model, meaning that the Fourier’s law (2.3) is not used in the formulation nor numerical analysis.

The origin of the constitutive relationships comes from experimentation. In the past, the col-
lection of the material data after experiments produced smaller and often less accurate material
datasets. However, with the development of software and technology, such as digital volume
correlation or thermal cameras, the data collection has become more efficient and the datasets
are larger and more accurate, although there are no out of the box solutions to collect the heat
transfer material datasets required at this point. Nevertheless, some material models are still dif-
ficult to represent by a model, even when the data has been collected, such as unsaturated flow
[Vogel et al., 2000], hyper elasticity, Griffith energy for fracture analysis in nuclear graphite
[Tzelepi et al., 2018], etc., requiring fitting of multiple parameters which are often empirical.
This has led to the idea of using the data directly in the numerical analysis, without fitting to a
model.

53
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The next section introduces the data-driven formulation after a definition of an example
material dataset. The following sections present the results of the data-driven approach for
the heat transfer problem, including the convergence analysis, effects of noise in the material
dataset, and the choice of numerical integration scheme.

4.1 Introduction to the data-driven formulation

The simplest material behaviour for heat diffusion is a linear Fourier’s law, where the flux q is
proportional to the gradient of temperature —T , q = �k—T as introduced in (2.3), where, in this
case, k is the heat conductivity constant.

For the purpose of introduction to the data-driven method, an example dataset is created
as follows: the gradient of temperature —T are generated in the range [�A,A] for ∂T/∂x and
∂T/∂y independently using a uniform distribution. The flux is then determined from the consti-
tutive equation, (2.3) with a constant thermal conductivity, creating a grid of material datapoints,
see Figure 4.1.
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Figure 4.1: Regular material dataset: Simplest grid material dataset D with k = 1.

Any data coming from any kind of material dataset will be denoted with a star, e.g. {g
⇤,q⇤},

where g
⇤ is the material dataset dimension for the gradient of temperature. In this case the

dataset D is 4D, {g⇤
x ,g⇤

y ,q⇤
x ,q⇤

y}4D. Similarly, the corresponding unknown fields’ values at a
single integration point result in a point {∂T/∂x,∂T/∂y,qx,qy}4D.

The data-driven approach [Kirchdoerfer and Ortiz, 2016] is essentially an iterative 2-step
procedure, where at each iteration the closest points in the dataset to the previous solution are
found and the distance of the unknown fields to the subset of closest datapoints is minimised
while satisfying the conservation law and boundary conditions.

For every point (x,y) in the domain W, we can define the distance of the values of the tem-
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perature gradient and heat flux to the dataset D as follows:

dist({—T,q},D) = min
{g⇤,q⇤}2D

q
Sg (—T �g⇤)2 +Sq(q�q⇤)2, (4.1)

where Sg and Sq are stabilisation/scaling parameters that depend on a numerical scheme and, in
our case, make the distance unitless. Additionally, if no noise is present and the dataset includes
a sufficient number of points, Sg and Sq would affect the speed of convergence and not the
result. For this section, Sg and Sq are set to one and scaling will be discussed in subsection 4.1.2.
Furthermore, a shorthand notation is used for the dot product between two vectors, such as the
following in (4.1):

(—T �g
⇤)2 = (—T �g

⇤) · (—T �g
⇤) . (4.2)

The closest material datapoint is found as a minimiser of (4.1), which can be found for any
point in the domain. To achieve that, C++ boost library [Boost, 2024] allows for efficient search
through the dataset using the R-tree data structure [Guttman, 1984].

Depending on the number of data points, the creation of the R-tree can take a significant
amount of time, however, the search through the dataset is very efficient. Nevertheless, the
search will be executed at every integration point which will take a significant time when the
problem has a large number of integration points.

Therefore, in this work, the packing algorithm with the fastest data search offered by the
chosen library, R*-Tree [Boost, 2024], is chosen for the implementation of the DD method, on
the expense of time for creating the R-tree itself.

The functional representing the integrated distance of the unknown fields q and gradient of
T to the dataset D can be defined:

J(—T,q) =
1
2

Z

W

Sg (—T �g
⇤)2 dW+

1
2

Z

W

Sq(q�q
⇤)2 dW, (4.3)

where g
⇤ and q

⇤ are the closest datapoints to the values of the unknown fields at every point
(x,y) in the domain Omega. The solution of the problem can be found upon minimisation of
the functional (4.3) with the conservation law (2.1) imposed as a constraint. Therefore, we
formulate the Lagrangian:

L (—T,q,l ) = J(—T,q)�
Z

W

l— ·q dW+
Z

W

l s dW, (4.4)

where l is the field of scalar Lagrange multipliers.
Integration by parts of the term representing the constraint in the Lagrangian (4.4) and im-

posing l = 0 on GT , see [Nguyen et al., 2020], results in:
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L (—T,q,l ) = J(—T,q)+
Z

W

—l ·q dW�
Z

Gq

lq ·n dG+
Z

W

l s dW

= J(—T,q)+
Z

W

—l ·q dW�
Z

Gq

l q̄ dG+
Z

W

l s dW,
(4.5)

where the Neumann boundary condition (2.2b) was taken into account.
The solution is found as a stationary point of the Lagrangian at which its variation vanishes:

8
>>>>>>>><

>>>>>>>>:

Z

W

Sg(—T �g
⇤) ·—dT dW = 0 8dT 2 H1

0 (W)

Z

W

Sq(q�q
⇤) ·dq dW+

Z

W

—l ·dq dW = 0 8dq 2 L
2(W)

Z

W

q ·—dl dW�
Z

Gq

q̄dl dG+
Z

W

sdl dW = 0 8dl 2 H1
0 (W),

(4.6)

where the unknown test and trial functions belong to the spaces shown in Table 4.1. Note that
l = 0 on GT reflects the enforcement of the Dirichlet boundary condition on the primary field T
and ensures the problem is well posed [Nguyen et al., 2020].

Field Space

Temperature T (trial function) T 2 T = {u 2 H1(W) |u = T̄ on GT }

dT (test function) dT 2 H1
0 (W)

Flux q (trial function) q 2 L
2(W)

dq (test function) dq 2 L
2(W)

l (trial function) l 2 H1
0 (W)

dl (test function) dl 2 H1
0 (W)

Table 4.1: Functional spaces for the data-driven formulation for the diffusion problem. For
spaces definitions see appendix A.

The unknown fields are then approximated by the finite element basis functions, see Ta-
ble 4.2.

Since (4.6) holds for any dTb , dqb, and dlb the following saddle point problem in a matrix
form is written as (4.7).
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Trial function Test function

Temperature T h = TaNa dT h = dTb Nb

Flux q
h = qaQa dq

h = dqbQb

Lagrange multiplier l h = laLa dl h = dlb Lb

Gradient of temperature —T h = Ta—Na —dT h = dTb —Nb

Gradient of l —l h = la—La —dl h = dlb —Lb

Table 4.2: Finite element basis functions for the data-driven formulation of the diffusion prob-
lem. Ta , dTb , qa, dqb, la and dlb are the coefficients of the approximation. Na , Qa and La
are the scalar basis functions.
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(4.7)
where I is the identity matrix.

For a saddle point problem (4.7), LBB stability conditions need to be satisfied to prevent
an ill-conditioned system [Boffi et al., 2013], hence, the approximation orders are assigned to
unknown fields as shown in Table 4.3.

Field Approximation order

Temperature T p

Lagrange multiplier l p

Flux q p�1

Table 4.3: Approximation orders for the data-driven formulation of the diffusion problem.

The initial solution obtained by solving (4.7) with g
⇤ = q

⇤ = 0, satisfies the conservation
law (2.1) and the boundary conditions (2.2), however, the result is not correctly informed of the
material behaviour. In the standard finite element formulation, it can be compared to using an
incorrect material model or model parameters, e.g. k = 1 instead of k = 5000. The next section
addresses the iterative procedure of the data-driven approach, where the closest points in the
dataset are found and the solution is updated accordingly.
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4.1.1 Iterative procedure and convergence of the data-driven approach

The iterative process therefore consists of two steps:

1. find closest material datapoint {g
⇤,q⇤}4D for every integration point in the domain using

eq. (4.1),

2. solve eq. (4.7) which utilises the found points and enforces the conservation laws and
boundary conditions.

The staggered scheme alternates between these two projections until convergence [Kirchdoerfer
and Ortiz, 2016; Nguyen et al., 2020]. An example path of an integration point is shown in
Figure 4.2, where all unknown fields start with zero values. The figure shows how the iterative
process updates values of just one integration point between the point retrieved from the un-
known field values {—T,q} (orange cross) after solving eq. (4.7), and the closest point found in
the material dataset {g

⇤,q⇤} (blue star) until convergence is achieved.
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Figure 4.2: Regular material dataset & Example SinCos: Path of an integration point finding the
closest point in the dataset (Closest data point) and projecting it into a space where conservation
laws and boundary conditions are satisfied (Field values).

An option for a stopping criterion is comparing RMS measure of the distance between the
field values and the dataset between the two iterations with a prior set tolerance:

ed(—T,q) =

vuut 1
µ(W)

Z

W

(dist({—T,q},D))2 dW, (4.8)

where µ(W) is the area of the domain W in a 2D case, and its volume in a 3D case. Another
alternative consists of choosing the same closest points everywhere twice [Kirchdoerfer and
Ortiz, 2016; Nguyen et al., 2020], which is equivalent to setting the tolerance ed(—T,q) to zero.

The convergence of the data-driven approach for the SinCos example is shown in Figure 4.3
for the regular datasets with increasing number of data points, as shown in Figure 4.1, and
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the "saturated" dataset where the distance calculated by (4.1) is able to reach approximately
zero, e.g. the dataset is dense enough that at the end of the iterative procedure, the closest
point in the dataset is the same as the field values {—T,q} at every integration point. The
dataset search for the "saturated" dataset is replaced with finding the closest point satisfying the
constitutive equation, which in this case is a linear relationship between the flux and the gradient
of temperature. See Appendix B for the algorithm to find the closest point on the line (B.1) to
the field values {—T,q}4D at an integration point.
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(a) Temperature error L2-norm (2.22).

0 5 10 15 20 25
Iteration

10�1

100

G
ra

di
en

t
er

ro
r

114 points

1014 points

10014 points

100014 points

line equation

(b) Temperature error H1-seminorm (2.23).
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(c) Flux error L2-norm (2.24).
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(d) RMS distance (4.8).

Figure 4.3: Example SinCos (Figure 2.3): Global error norms w.r.t. the exact solution and point
distance RMS measure (4.8). Convergence with the number of points in the regular material
dataset, see Figure 4.1.

As algorithm iterates between the dataset search (4.1) and solving the system of equations
(4.7), the global errors w.r.t. the exact solution and the distance RMS measure (4.8) decrease.
Regardless to whether the dataset is saturated or not, the RMS measure for all errors reaches a
plateau, which can correspond to the element size h and the approximation order p used; the
quality of the material dataset used; or a combination of both.

If a “saturated" dataset is used, the convergence with element size and approximation order
is achieved similarly to the standard FEM solutions, as shown in Figure 4.4.
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Figure 4.4: Example SinCos: Comparison of Standard FE and data-driven (DD) FE solutions’
convergence with element size h and approximation order p if a "saturated" dataset is used (see
Appendix B).

The convergence rate produced by the data-driven formulation shown in Figure 4.4 shows
the same slopes as the standard heat transfer formulation introduced in chapter 2 and follows the
same a priori error estimates (2.25).

4.1.2 Scaling the dataset

Since the data-driven method requires searching through a material dataset, one needs to take
into account the difference in magnitudes between the dimensions of the dataset. For example,
the magnitudes of the temperature gradient are in tens [� C / m], and the fluxes are in thousands
[W/m2]. The most common search through a dataset is based on minimising the Euclidean
distance (4.1) between the point obtained from the field values and the points of the material
dataset, which in this case would strongly favour correcting the flux values and almost ignoring
the temperature gradient since it would result in a smaller distance (4.1).

To demonstrate this in more detail, we consider a “saturated” dataset again, where the data
search is replaced by getting the closest value on the line corresponding to the conservation law
(2.3), see Appendix B. Setting the thermal conductivity to k = 0.1 W/(m· �C) and plotting the
path of the values of one integration point already shows how a difference in magnitude of the
values of the dimensions of the material dataset increases the number of iterations required to
converge; see Figure 4.5 in comparison to Figure 4.2.

The comparison of the number of iterations needed to solve a problem for different values of
conductivity is presented in Figure 4.6. The fastest convergence is achieved when conductivity
is close to one, i.e. heat flux and gradient of temperature have the same order of magnitude,
hence a scaling of the dataset is desirable. The thermal conductivity is a good measure for this
example but would not be applicable when the conductivity is unknown, a nonlinear dataset is
used, or if the dataset extends to more dimensions and starts to depend on temperature, porosity
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Figure 4.5: Example SinCos: Path of one integration point as the convergence is achieved.
Conductivity k = 0.1 W/(m· �C).
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Figure 4.6: Number of iterations with changing conductivity k. The limit for number of
iterations is set to 5000.

value, etc.
Choosing the scaling parameters is important when the differences between the dimensions

are large, but will only have a noticeable effect on the rate of convergence and not the result
when the dataset is saturated. When the material dataset is sparse, and the differences between
the dimensions are large, the scaling can have a significant effect on the result, including being
able to provide reasonable results, see Figure 4.7.

The scaling strategy chosen for this thesis is to consider temperature gradient as the main
dimension and scale all other dimensions to be of a similar order of magnitude, i.e. Sg and Sq

become scaling parameters: Sg = 1 and Sq is chosen accordingly. For example, if the temperature
gradient is in the order of 10�2 and the heat flux is in the order of 103, then Sq = 10�5 for the
whole domain.

The scaling is applied as a preprocessing step to the dataset, the boundary conditions, and the
sources. The results are then scaled back in the postprocessing step to regain the correct values.
When new dimensions are added to the dataset, e.g. temperature, the same principle applies,
and a separate scaling parameter is chosen for each independent dimension to fit the temperature
gradient’s order of magnitude. Additionally, if any of the dataset dimensions are deemed less
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-1 -0.5 0 0.5 1
T

(a) k = 1.0 W/(m· �C)

-1 -0.5 0 0.5 1
T

(b) k = 0.1 W/(m· �C)

Figure 4.7: Example SinCos: Temperature T result with sparse regular material dataset contain-
ing 414 points with different thermal conductivities without scaling. Note that if scaling is used,
(b) will have the same result as (a).

important than the others, they can be scaled to a smaller order of magnitude to have less effect
on the result. For example, if humidity has a small influence on the temperature gradient/heat
flux relationship, its values can be an order of magnitude smaller than the other dimensions, so
the humidity is taken into consideration, but choosing values close to the temperature gradient
and heat flux is prioritised.

Nevertheless, material datasets are rarely as organised and noiseless as in Figure 4.1, and the
quality of the dataset affects the result of the numerical analysis. The next section will address
the cases when noise is present in the material dataset.

4.2 Working with noisy material datasets

To imitate a slightly more realistic dataset, but still keep control over the input, a new synthetic
way of creating datasets is introduced.

First, random values in range [�A,A] for the components of the temperature gradient ∂T/∂x
and ∂T/∂y are generated independently using uniform distribution, see Figure 4.8(a).

Next, flux is determined from constitutive equation (2.3) plus a noise h value randomly
generated with normal distribution with probability density function:

f (h ; µ,sh) =
1p

2psh 2
e
� (h�µ)2

2sh 2 , (4.9)

where mean µ = 0, and the standard deviation sh is the input for the noise analysis.
There are multiple options on where to add the noise h and any of them are likely to appear

in an experimental material dataset. The first one shown in Figure 4.8(b)-(c) can be used to
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Figure 4.8: Dataset generation example: (a) Regularly distributed components of temperature
gradient; Flux components following linear constitutive law with noise representing (b)-(c) mea-
surement error, (d)-(e) stochastic material behaviour

represent measurement errors:
q = �k—T +h , (4.10)

while the second one shown by Figure 4.8(d)-(e) represents a stochastic material behaviour:

q = �(k +h)—T. (4.11)

All of the points in the generated dataset, examples of which are shown in Figure 4.8,(b) and
(c), or (d) and (e), depending on the choice of noise generation.

For the synthetically created material dataset for a 2D problem, one can choose the range A
of gradient of temperature —T , number of data points generated overall, conductivity k, corre-
sponding to a constitutive relationship (2.3) and the standard deviation of the noise h applied to
the corresponding flux generation (4.10) or (4.11).

Once noise is present in the dataset, a convergence with an increase in the number of material
datapoints (points in dataset D) is not guaranteed, as it becomes possible for the data search to
pick the points affected by the noise (noisy points). To evaluate how much effect the noise
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present in the dataset has on the convergence, the L2-norm of temperature error (2.22) and flux
error (2.24) is calculated after recreating the dataset with the same parameters. The generation
of material dataset and numerical analysis are repeated 30 times for each different combination
of the number of material datapoints and standard deviation of noise sh , and the mean and
standard deviation of the calculated error L2 norms are plotted in Figure 4.9.
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Figure 4.9: Example Exp-Hat (Figure 3.2): Influence of noise and number of material data
points on global error L2-norms for temperature and flux, averaged over 30 realisations (order
p = 2, element size h = 0.05).

The results show that the noise in the dataset has a significant effect on the convergence of
the data-driven approach, therefore both, the material dataset uncertainties and finite element
approximation errors due to mesh size and approximation order, need to be taken into account.
The error L2 norms increase with the standard deviation of the noise sh , as expected. However,
increasing the number of material datapoints for the same sh does not decrease the error norms
nor lead to convergence. On the contrary, if the noise is significant, the error norms start to
increase with the number of material datapoints.

It can be concluded that once noise is present in the dataset, the basic version of the data-
driven approach presented here is not robust enough since the accuracy of the solution cannot
be determined without knowing the exact solution beforehand.

The initial assumption was that more data would provide more accurate results, but the
results shown in Figure 4.9 indicate that this is not the case. Upon additional consideration,
it is important to acknowledge that the noise follows a normal distribution centred around the
selected constitutive equation during generation. Why noisy points are likely to be chosen can
be better understood by looking at the material dataset sample shown in Figure 4.10. The dataset
is created with a range of [-9,9] for temperature gradient, the same as used in the analysis for
Figure 4.9, and if the field values at an integration point are far from the material dataset, the
closest point is likely to be a noisy point.
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Figure 4.10: Sample of noisy material dataset with 106 material datapoints and sh = 0.1

4.2.1 Data search averaging

In order to overcome the increase in error with the increasing number of material datapoints, we
test the following modification of the procedure described in subsection 4.1.1. Instead of using
the closest point {g

⇤,q⇤}4D found as the minimiser of the distance function (4.1), averaged
values of the 30 closest points to the field values are found for each integration point. Figure
4.11 presents the results of this adjustment, highlighting an improvement in the robustness of
the method against data noise influence. However, the error norm still shows an increase with
the number of material datapoints with sh = 0.1. Additionally, the L2-norm of the temperature
error is higher for less noisy datasets in comparison to the solution without data search averaging
shown in Figure 4.9, including the dataset with no noise sh = 0: temperature error L2-norm
increases from 7⇥10�4 to 1⇥10�3.
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Figure 4.11: Example Exp-Hat (Figure 3.2): Using an average of 30 closest material datapoints
instead of the closest point only in material data search (4.1) for the same analysis as Figure 4.9.
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Hence, the number of points for averaging depends on the particular dataset and its influ-
ence is not detected without knowing the solution beforehand. Therefore, this solution is not
objective, as it depends on an arbitrary choice of the averaging parameters.

The issue of noisy datasets can be mitigated by employing a more advanced data selection
method that prioritises points in the centre of the distribution, where data points are more densely
clustered and have more neighbours [Kirchdoerfer and Ortiz, 2017]. Alternatively, techniques
like Gaussian processes can be applied locally to handle noise independently, as these methods
create a smooth model fit that minimises noise impact. However, this approach can inadvertently
fulfil the role of a material model, potentially disregarding the effects of noise on the results,
which may be an important source of uncertainty in some analyses.

In conclusion, data search averaging will not be used in the rest of this thesis and handling
and evaluating uncertainties on the material dataset will be discussed in more detail in chapter 6.

4.3 5D material datasets

The data-driven approach presented in sections 4.1 and 4.2 was limited to 4D material datasets
{g

⇤,q⇤}4D, however, the dataset can be extended to include more dimensions, such as tempera-
ture, humidity, porosity, etc. To include temperature in a material dataset, as it is a dependancy
for a graphite constitutive behaviour (section 1.2.1), a 5D material dataset is introduced. The
dataset is then defined as D5D = (T ⇤,g⇤,q⇤), where T ⇤ is the temperature, g

⇤ is the temperature
gradient and q

⇤ is the heat flux.
Nevertheless, this is not the only way to extend the dataset, and the dataset can include

more dimensions if they are relevant to the material response, such as porosity of the material,
which can be prescribed within the domain, hydraulic pressure experienced by the material,
which can be solved for by a different part of the numerical analysis, etc. The dimensions of the
dataset do not have to correspond to fields that are directly solved for in the numerical problem;
instead, they can be any quantities of interest, such as environmental conditions (amount of
radiation exposed to, humidity, etc.) or material properties (density, porosity, etc.), that can be
spatially assigned within the domain. Alternatively, if there is no information about some of the
dimensions of the dataset in the domain, those dimensions can be left out of the dataset and their
influence on the dataset can be considered as a source of uncertainty.

When the dataset D has 5 dimensions, the distance to the dataset (4.1) needs to be updated
to include the temperature T as well. The distance to the dataset is then defined as:

dist({T,—T,q},D) = min
{T,g⇤,q⇤}2D

q
ST (T �T ⇤)2 +Sg (—T �g⇤)2 +Sq(q�q⇤)2, (4.12)

where ST is the scaling applied to temperature T , in a similar way to Sg and Sq in subsec-
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tion 4.1.2.
The integrated distance functional J(—T,q) (4.3) remains unchanged because the relation-

ship between the gradient of temperature and heat flux is dictated by Fourier’s law, a fundamen-
tal principle in thermodynamics. Fourier’s law dictates that heat flows from regions of higher
temperature to regions of lower temperature, connecting the heat flux and temperature gradient
only. Consequently, temperature T should solely be used to identify the material state of heat
flux q and temperature gradient —T through q

⇤ and g
⇤.

In conclusion, the only change in the formulation of the problem is the search through the
dataset (from (4.1) to (4.12)) and not the finite element formulation (4.7). The formulation does
not change even when the material behaviour is nonlinear or dependant on multiple additional
dimensions, removing the need for linearisation of formulations with complicated material mod-
els, an example of which is described in subsection 2.4.1.

The following subsections describe the creation of synthetic material datasets for testing
purposes. Ideally, the dataset would be created from a real-life experiment, but this is not always
possible and will not be covered in this thesis, the reader is referred to subsection 1.2.1 and the
references therein for more information.

The synthetic datasets follow a nonlinear material behaviour of graphite based on [McEligot
et al., 2016], see Figure 4.12:

k(T ) = 134�0.1047T +3.719⇤10�5T 2, (4.13)

where the thermal conductivity k is in W/mK and temperature T is in �C.

(a) Thermal conductivity k dependence on tempera-
ture T used for the synthetic experiment, see (4.13).

(b) Impact of the temperature dependant conduc-
tivity k(T ) on the relationship between temperature
gradient and flux.

Figure 4.12: Nonlinear thermal conductivity k dependence on temperature T used for the syn-
thetic material dataset generation.

In this case, in the temperature range [400,1000], the increase in temperature causes the ther-
mal conductivity to decrease. For more information about the thermal conductivity of graphite,
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see section 1.2.1.

4.3.1 Fully artificial material datasets

Starting with a regular material dataset, similar to Figure 4.1, the dataset is extended to include
the temperature T as an additional dimension. Based on (4.13) and Figure 4.1, Algorithm 3 is
implemented to create a regular 5D material dataset.

Algorithm 3 Creating a regular 5D Material Dataset
1: Initialize an empty dataset D

2: for each temperature T in the range [Tmin,Tmax] with countT equally spaced intervals do

3: for each temperature gradient gx in the range [Gmin,Gmax] with countG equally spaced
intervals do

4: for each temperature gradient gy in the range [Gmin,Gmax] with countG equally spaced
intervals do

5: Calculate the flux component qx using qx = �(134�0.1047T +3.719⇤10�5T 2)gx
6: Calculate the flux component qy using qy = �(134�0.1047T +3.719⇤10�5T 2)gy
7: Add the point (T,gx,gy,qx,qy) to the dataset D5D = {T ⇤,g⇤,q⇤}
8: end for

9: end for

10: end for

Algorithm 3 creates a regular 5D material dataset, where the temperature T is in the range
[Tmin,Tmax] with countT equally spaced intervals, and the temperature gradient gx and gy are in
the range [Gmin,Gmax] with countG equally spaced intervals. The flux components qx and qy are
calculated using the nonlinear relationship (4.13).

Two variants of the regular 5D material dataset are created, one with countT = 50 and
countG = 50 for material dataset A, and the other with countT = 100 and countG = 100 for
material dataset B. The material dataset A is shown in Figure 4.13 and the material dataset B is
similar but denser. The number of material data points was selected arbitrarily, with the inten-
tion of evaluating how the developed method responds to different levels of dataset saturation.
Datasets such as A and B could, in principle, be generated through microscale simulations, pro-
vided that the material behaviour is well characterised at that scale. By prescribing appropriate
boundary conditions and source terms, one can run finite element analyses at the microscale
to compute the corresponding flux values q

⇤, temperature gradients g
⇤, and temperatures T ⇤.

This process is conceptually similar to representative volume element (RVE) analysis used in
multiscale modelling, where the microscale response is computed directly rather than assumed
through a constitutive model. In the data-driven context, these simulation results could be col-
lected beforehand and assembled into a material dataset, which is then used in the macroscopic
analysis in place of a fitted model.

Since noise is often present in the material datasets, a controlled way to introduce noise is
implemented to evaluate the ability of the implemented tools to capture it and to evaluate the
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Figure 4.13: Material dataset A created by Algorithm 3 with countT = 50, countG = 50. The
temperature range is [400,1100], and the gradient range is [�40 ⇥ 103,40 ⇥ 103]. Material
dataset B is similar but with countT = 100, countG = 100, making it denser.

uncertainty of the results. The noise is added to the flux values only in certain parts of the
dataset to assess its influence on the results throughout the domain and the capabilities of the
new features introduced in throughout this thesis. Such noise could correspond to an issue with
a measurement equipment or the material experiencing reversible microstructural changes at
around the specified range of temperature gradient magnitude, which would affect the material
behaviour and the flux values.

The noise is generated using a normal distribution with a standard deviation sh and added
to the thermal conductivity k when generating flux values q

⇤, same as (4.11). Additionally, the
values for the temperature T ⇤ and the temperature gradient g

⇤ are generated using a uniform
distribution, instead of being equally spaced in a range. The algorithm for creating a noisy 5D
material dataset is shown in Algorithm 4.

Algorithm 4 Creating a 5D Material Dataset with noise and random distribution
1: Initialize an empty dataset D

2: for chosen number of material datapoints do

3: Generate temperature T in the range [Tmin,Tmax] with uniform distribution
4: Generate temperature gradient gx and gy in the range [Gmin,Gmax] with uniform distribu-

tion
5: Calculate the magnitude of the gradient: |g| =

q
g2

x +g2
y

6: if |g| is within the range chosen for the noisy datapoints [Bmin,Bmax] then

7: Calculate the flux component qx using qx = �(k(T )+h)gx
8: Calculate the flux component qy using qy = �(k(T )+h)gy
9: else

10: Calculate the flux component qx using qx = �k(T )gx
11: Calculate the flux component qy using qy = �k(T )gy
12: end if

13: Add the point (T,gx,gy,qx,qy) to the dataset D5D = {T ⇤,g⇤,q⇤}
14: end for
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The noisy 5D material dataset C is created using Algorithm 4 within the same ranges as
the regular dataset A, and the noise is applied in the range [Bmin,Bmax] = [10 ⇥ 103,15 ⇥ 103].
The standard deviation of the noise is set to sh = 1.0, for reference see (4.11). The resulting
material dataset C is shown in Figure 4.14 and since the noise is not visible due to the number
of dimensions, the material datapoints which are affected by noise are shown in blue.

(a) T ⇤, g⇤
y and q⇤

y . (b) g⇤
x , g⇤

y and q⇤
y .

Figure 4.14: Material dataset C created by Algorithm 4 with 106 material datapoints. The
temperature range is [400,1100], the gradient range is [�40 ⇥ 103,40 ⇥ 103], and the noise is
applied in the range [10⇥103,15⇥103] with standard deviation sh = 1.0.

4.3.2 Material datasets from synthetic experiments

Material datasets from real-life experiments are rarely as organised as they were presented in the
previous subsection, and noise, scarcity of data and irregularity in dataset density are expected.

In addition to datasets A, B and C created in the previous subsection, we will generate
datasets D, E and F using sets of synthetic experiments. A synthetic experiment aims to repli-
cate a real-life experiment on a piece of material considered, such as a piece of graphite used
in a nuclear reactor. The geometry and mesh used for the synthetic experiment are shown in
Figure 4.15, and the analysis is performed with hierarchical shape functions with approximation
order p = 2. For an example setup, the temperature on the inner surface is kept at 500�C and on
the outer surface at 1100�C for one of the experiments. More experiments are conducted with
different inner and outer temperature for each instance of the experiment to cover the possible
ranges of temperature, temperature gradient and flux graphite might reach in a nuclear reactor.
The temperature, its gradient and flux are recorded at a set of points (integration points of Gauss
quadrature), which might be similar to datapoints obtained by a method such as data-driven
identification [Leygue et al., 2018; Stainier et al., 2019; Valdés-Alonzo et al., 2022].

The synthetic experiments simulate nonlinear material behaviour (see (4.13)) and apply the
nonlinear heat diffusion formulation introduced in section 2.4. These experiments are conducted
over a temperature range of [400,1100] by iterating through 10 equally spaced values for both
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(a) Geometry and boundary conditions. (b) Mesh (h = 0.0002).

Figure 4.15: Example Synthetic experiment: Geometry and mesh used for the synthetic
experiment setup with T̄in and T̄out as temperature boundary conditions.

T̄in and T̄out within this range. Each combination of T̄in and T̄out values is tested to produce the
material dataset D, shown in Figure 4.16.

(a) T ⇤, g⇤
y and q⇤

y . (b) g⇤
x , g⇤

y , q⇤
x and q⇤

y .

Figure 4.16: Material dataset D created by synthetic experiments.

For material dataset E, the same synthetic experiment is conducted with an adjusted temper-
ature range of [550,1100]. In this dataset, shown in Figure 4.17, temperature gradients g⇤

x and g⇤
y

outside the range [�10⇥103,10⇥103] are intentionally removed. This modified dataset serves
to test the robustness of the data-driven approach when the field values of an analysis, introduced
in the next section, reach values outside of the material data range, i.e. minimum temperature
value in the dataset is 550�C and one of the temperature boundary condition will be 500�C.
The missing data in this dataset could correspond to a situation where the experiments simply
did not consider the temperature range of [400,550] or a bulk of the data was removed during
preprocessing and only the temperature gradient range of [�10⇥103,10⇥103] was preserved.

Finally, material dataset F is created by taking the material datased D and adding noise to
the values with a magnitude of the gradient of temperature smaller than 2 [�C/m] to test the
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Figure 4.17: Material dataset E created by synthetic experiments with missing data.

robustness of the approach, imitating being unable to measure accurately small values of heat
flow. The resulting material dataset F is shown in Figure 4.18.

Figure 4.18: Material dataset F created by synthetic experiments with intentionally added noise
around to values with magnitude of gradient of temperature smaller than 2 [�C/m].

The datasets introduced in this section are summarised in Table 4.4.

4.4 2D brick example with six material datasets

From this chapter onwards, a graphite brick example, along with the material datasets introduced
in section 4.3, is used to evaluate the data-driven approach to diffusion problems. The material
datasets A-F (Table 4.4) with the data-driven finite element formulation (4.7) are used to ap-
proximate the temperatures and fluxes through the brick. There is no exact solution to compare
to; instead, we rely on the uncertainty quantification measures and error estimation introduced
in this and the following chapters.

Due to the symmetrical nature of the new example representing a graphite brick in a nuclear
reactor and the boundary conditions only a quarter is used in the numerical analysis, as shown in
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Dataset Description Figure Refer-

ence

A (regular sparse) Created directly from the constitu-
tive relationship (4.13) by prescrib-
ing the ranges of temperatures and
temperature gradients and calculat-
ing the flux values.

Figure 4.13

B (regular dense) Generated similarly to A, but con-
tains much more datapoints.

Not shown (simi-
lar to Figure 4.13)

C (random noisy) Created directly from the consti-
tutive relationship (4.13) by using
uniform random distribution and
Gaussian noise (4.11) is added to a
part of the dataset.

Figure 4.14

D (synthetic experiment) Created by running a synthetic ex-
periment (SE).

Figure 4.16

E (SE w/ missing data) Created by running a synthetic ex-
periment similar to D, but the re-
sulting dataset covers a smaller
range of values.

Figure 4.17

F (SE w/ noisy data) Created by adding noise to a set of
datapoints in dataset D.

Figure 4.18

Table 4.4: Summary of 5D Material Datasets

Figure 4.19. The inner boundary is kept at 1000�C to simulate the heat from a nuclear reaction,
and the outer boundary is kept at 500�C by the gas when the reactor is operational. These tem-
peratures are chosen for testing purposes only as the temperatures for each of the graphite bricks
vary throughout a nuclear reactor. At the same time, it is assumed that there is no heat transfer
through the small inner holes, which are filled with methane gas, a poor thermal conductor under
reactor operating conditions. The resulting fields of the analysis with material dataset B (regular
dense) are shown in Figure 4.20.

Once a solution is obtained, the distance from the dataset can be evaluated at each Gauss
point of every finite element. After that, the average distance to material dataset can be computed
for each element separately. Additionally, the standard deviation of the distance to the material
dataset per element can also be calculated for each element.

The average distance from the dataset per element is shown in Figure 4.21 where the results
of simulations with datasets A-F are compared. The results should be interpreted as if there
was no prior knowledge of the quality of the datasets, as the aim of this work is to evaluate the
capabilities of the introduced approach, not the synthetic material creation. From Figure 4.21 it
can be seen that if the dataset is uniformly distributed and covers all of the areas of concern (A,
C, D and F), the distance to the dataset depends on the sparsity of the dataset. On the other hand,
when more realistic datasets (D-F) are taken into account, the distance to the dataset is more
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Figure 4.19: Example Brick: Geometry and mesh of a nuclear graphite brick with a testing
boundary conditions of T̄in = 1000�C and T̄out = 500�C and q̄ = 0 on the symmetry lines and the
small inner holes, also see Appendix C

500 625 750 875 1e+03
T

(a) Temperature T .

8.5e+03 4.1e+05 8.12e+05 1.21e+06 1.62e+06
Q

(b) Magnitude of flux q.

Figure 4.20: Example Brick: results of the analysis with a dense material dataset with no noise
present (dataset B).

localised and the areas of concern, which are identifiable areas with potentially less accurate
results than the rest of the domain, are more easily identified. Notably, for the analysis with
dataset E, the distance to the material dataset per element is the highest in the area where the
resulting field values are not covered by the dataset.

However, the distance to the dataset itself does not carry practical information since the
datasets have been scaled a priori (see subsection 4.1.2) and the distance is not directly related
to the quality of the dataset. The scaling used is Sq = 0.01 and ST = 10.0 for all of the datasets
to bring the flux values in the material dataset to the same order of magnitude as the temperature
gradient considering a comparison of both the maximum and the standard deviation of the values
of each of the dimentions g⇤

x , g⇤
y , q⇤

x and q⇤
y . The scaling is done to ensure that the distance is

not dominated by one of the dimensions. The temperature has been scaled to be an order of
magnitude lower than the temperature gradient to inform the material data search choice but not
to be the dominating factor. The average distance in Figure 4.21 is rather a measure through
a 5D space. Hence, if only one material dataset is present, further investigation is required to



CHAPTER 4. DATA-DRIVEN FORMULATION FOR DIFFUSIVE PROBLEMS 75

0 250 500 750 1e+03
DD_DISTANCE_AVE

(a) Dataset A (regular sparse): The distance to
the dataset is the highest of all datasets but no
area is affected more than others.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(b) Dataset B (regular dense): Undetermined
conclusions.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(c) Dataset C (random noisy): Undetermined
conclusions.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(d) Dataset D (synthetic experiment): Areas of
concerns are visible but the distance is low.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(e) Dataset E (SE w/ missing data): The dis-
tance to the dataset is high and the areas of con-
cern are localised.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(f) Dataset F (SE w/ noisy data): Undetermined
conclusions.

Figure 4.21: Example Brick: Average distance from the dataset per element upon solution of
the problem using datasets A-F.
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evaluate whether the dataset is sufficient for the analysis and how far the resulting fields are from
the dataset. The distance can also be calculated in the relevant dataset dimension, such as the
temperature dimension, to evaluate the suitability of the dataset for the analysis considered.

Figure 4.22 and Figure 4.23 show the distances of the resulting fields to the material datasets
for temperature and flux in y direction after scaling the relevant components back to the original
values. The resulting distances can now be compared directly to the resulting fields in Fig-
ure 4.20 for the overall range of values considered. It is up to the user, e.g. an analyst engineer,
to decide whether the distance is acceptable or not, and the distance can be used as a measure of
the suitability of the dataset for the analysis. From Figure 4.22, it can be seen that the resulting
distance between temperature field and temperature component of the closest points for dataset
E are ⇡ 85 in the area of the domain where the temperature is ⇡ 500. It can also be seen that the
flux qy distance in Figure 4.23 for dataset A is ⇡ 70⇥103 in large part of the domain, including
areas where the magnitude of flux reaches as little as ⇡ 20⇥103.

The standard deviation of the distance to the dataset computed separately for each element
can be calculated to evaluate the variance of the distance to the dataset. The standard deviation
of the distance to the dataset per element is shown in Figure 4.24. If the standard deviation
is high on an element, it means that the element considered is partially covered by the dataset
and partially not, i.e. field values at some integration points are further from the dataset than at
other integration points of the same element. Refining the mesh at these particular elements can
help discover the areas where the dataset is far from the values searched for and also isolate and
identify the influence of the outliers on the results. Since the datasets B, C, D and F sufficiently
cover all of the areas of concern, the standard deviation of the distance is also comparatively
low in comparison to the results with datasets A and E. Notably, results with dataset A show no
pattern in the standard deviation of the distance, however, results with dataset E show a localised
high standard deviation of the distance in some of the corner elements where refinement might
have a positive effect on the results. Further discussion about adaptive refinement follows in
subsection 5.2.3 after "weaker" data-driven approach is introduced.

The results of the analysis with the data-driven approach introduced in this chapter show that
the distance to the material dataset can be used to evaluate the suitability of the dataset and the
results obtained and related potential accuracy issues.

The data-driven formulation introduced relies on finding the closest point in the material
dataset at every integration point and then using the found points to satisfy the conservation
laws and boundary conditions.

Real-life problems do not have an exact solution to compare the results obtained to, but
the steps of this formulation, more specifically the search through the material dataset at every
integration point, provide for a sanity check:

1. How does the average distance between the unknown fields and the material dataset vary
across the domain?
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0 22.5 45 67.5 90
T - T_STAR

(a) Dataset A.

0 22.5 45 67.5 90
T - T_STAR

(b) Dataset B.

0 22.5 45 67.5 90
T - T_STAR

(c) Dataset C.

0 22.5 45 67.5 90
T - T_STAR

(d) Dataset D.

0 22.5 45 67.5 90
T - T_STAR

(e) Dataset E.

0 22.5 45 67.5 90
T - T_STAR

(f) Dataset F.

Figure 4.22: Example Brick: Distance for each integration point between the resulting temper-
ature field T and the temperature component T ⇤ of the closest points in the material dataset
upon solution of the problem using datasets A-F. For the resulting values of temperature see
Figure 4.20a.
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0 2.5e+04 5e+04 7.5e+04 1e+05
Q - Q_STAR

(a) Dataset A.

0 2.5e+04 5e+04 7.5e+04 1e+05
Q - Q_STAR

(b) Dataset B.

0 2.5e+04 5e+04 7.5e+04 1e+05
Q - Q_STAR

(c) Dataset C.

0 2.5e+04 5e+04 7.5e+04 1e+05
Q - Q_STAR

(d) Dataset D.

0 2.5e+04 5e+04 7.5e+04 1e+05
Q - Q_STAR

(e) Dataset E.

0 2.5e+04 5e+04 7.5e+04 1e+05
Q - Q_STAR

(f) Dataset F.

Figure 4.23: Example Brick: Distance for each integration point between the resulting flux
field in y direction qy and the y flux component q⇤

y of the closest points in the material dataset
upon solution of the problem using datasets A-F. For the resulting values of flux magnitude see
Figure 4.20b.
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0 250 500 750 1e+03
DD_DISTANCE_VAR

(a) Dataset A. Moderatelly high variance in dis-
tances in elements but with no pattern.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(b) Dataset B.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(c) Dataset C.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(d) Dataset D.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(e) Dataset E. High variance in distances within
specific elements.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(f) Dataset F.

Figure 4.24: Example Brick: Standard deviation of the distance from the dataset per element
upon solution of the problem using datasets A-F.
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2. In which dimension of the dataset is the distance high?

3. Is the distance to the material dataset acceptable in the overall range of values considered?

4. Where could the mesh be refined to reduce the uncertainty of the results, i.e. high standard
deviation of the distance within an element?

The first point highlights potential problematic areas of the domain where the data from the
material dataset is far from the calculated field values, and therefore these areas might not be
correctly informed of how the actual material might behave.

The second point identifies which dimensions of the dataset cause the distance to be high in
these areas and provides a guide to in which ranges new data could be obtained if possible and
necessary.

The third point assesses if the distance is acceptable by comparing the distance in the individ-
ual dimensions of the dataset to the resulting field values. This step depends on the requirements
of the analysis at hand, for example, there will always be missing data at the singularity (flux
field) in the inner corners of the graphite brick where the flux is theoretically infinite.

The last point addresses a potential improvement in accuracy or locating of the problematic
areas with a higher number of integration points, i.e. refinement of the element.

However, if the material dataset is dense but noisy, e.g. dataset C and F, a similar scenario
to Figure 4.9 is observed and the distances from the material dataset, see Figure 4.21, are small
since each noisy point is close to the resulting values of the unknown fields. More on how to
address this behaviour is discussed in chapter 6.

Additionally, the data-driven formulation introduced in this chapter does not allow for the
a posteriori error estimation introduced in chapter 3 and cannot tell where the finite element
approximation errors are the highest without further development. The derivation and imple-
mentation of robust and accurate finite element error indicators for this formulation are not
straightforward and are not covered in this thesis. Instead, the next chapter will introduce a
data-driven approach derived with the weaker mixed formulation, which will have access to the
uncertainty/error measurements introduced in the present chapter 4 and the previous chapter 3
at the same time.

4.5 Summary

In this chapter, the data-driven approach following [Kirchdoerfer and Ortiz, 2016] is introduced
for the heat diffusion problem. The derived formulation is implemented in MoFEM [Kaczmar-
czyk et al., 2020] and tested with synthetic datasets on examples w.r.t. the analytical solution and
the results obtained with the standard FE formulation. The same convergence rate is observed
for the data-driven approach as for the standard FE formulation, when the material dataset con-
tains a sufficient number of datapoints ("saturated" dataset) and no noise is present. The same
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results are obtained for "saturated" dataset with orders of magnitude difference between the
flux and temperature gradient values in the dataset, however, the number of iterations required
to converge with the same precision is higher. Moreover, the results obtained with a material
dataset with a smaller number of datapoints and orders of magnitude difference between the
values of the material dataset dimensions are not satisfactory. Therefore, scaling was introduced
to bring the values of the dataset to the same order of magnitude, which is a common practice
when searching for a closest point, and improved results were obtained.

This chapter also introduces six 5D synthetic material datasets {T ⇤,g⇤
x ,g⇤

y ,q⇤
x ,q⇤

y}, which are
used for validation of the approach on an example of 2D graphite brick slice. To accommodate
the extra dimension T ⇤, the search through the material dataset is modified to find the closest
point in the dataset in 5D space. Some of the material datasets purposefully include noise at
specific locations or do not cover the entire range of values to test the robustness of the data-
driven approach.

On top of robustness, the aim is to evaluate the ability to determine how certain the user/-
analyst can be about the results obtained with the data-driven approach. With the formulation
introduced in this chapter, the distance to the dataset can be used to evaluate if and where the
data does not cover the range of values required for the analysis at hand. The distance can then
be further inspected for the individual dimensions. Nevertheless, when noise is present in the
material dataset, the results are less accurate and the distance to the dataset can be small and not
alert the user to potential issues with the results. The topic of noise and uncertainty is further
explored in chapter 6.

The next chapter will combine and expand the data-driven approach introduced in this chap-
ter and the mixed formulation introduced in chapter 3.



Chapter 5

Weaker mixed data-driven formulation

The "stronger" data-driven FE formulation [Kirchdoerfer and Ortiz, 2016; Nguyen et al., 2020]
discussed in the previous section is already mixed, i.e., it contains multiple unknown fields
for one physical process. However, the choice of spaces in which these unknown fields are
approximated is not natural from the functional analysis point of view.

This chapter contains the main novelty of this thesis, deriving the data-driven approach
with the mixed formulation resulting in a weaker mixed data-driven formulation (weaker DD).
Weaker DD formulation utilises more natural spaces for a diffusion problem, same as the mixed
formulation introduced in chapter 3. The heat flux is approximated in H(div;W) space, which
enforces the continuity of the normal flux component across any inner boundaries, further en-
forcing the conservation of energy a priori. The temperature belongs to L2(W) space, which
allows for discontinuous temperature fields across the element boundaries. Furthermore, error
indicators from chapter 3 are amended to fit the weaker DD formulation, allowing for adaptive
refinement.

The data-driven part of this formulation evolves from the previous chapter, chapter 4, where
a material dataset is used instead of a constitutive equation. The search algorithm used for
finding the closest points from the material dataset to the unknown field values remains the
same as in the previous chapter, as well as the iterative procedure for solving the problem. The
distance to the material dataset continues to be used to indicate the quality of the solution, and
is additionally used to further improve the adaptive refinement algorithm.

Weaker DD, the main new contribution to the field, is the combination of data-driven ap-
proach and mixed formulation concepts, introduced in chapter 4 and chapter 3, respectively,
takes advantages and strengths of both and allows for further improvements which would be
difficult to achieve with either of them alone.

82
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5.1 Derivation

In chapter 3, the mixed diffusion problem was derived upon introducing a new variable, flux
q, using the constitutive equation, see (3.1). However, since the data-driven approach uses a
material dataset, the constitutive equation does not exist in this formulation. Therefore, a new
field g = g(x) is introduced, representing the gradient of temperature field T :

g = —T in W, (5.1)

which becomes one of the unknown fields in the finite element analysis. From now on, this field
will be referred to as the gradient g. The problem statement can be summarised as follows:

Find T 2 L2 and q 2 Q such that:

8
>>>><

>>>>:

— ·q = s in W (5.2a)

g = —T in W (5.2b)

q ·n = q̄ on Gq (5.2c)

T = T̄ on GT (5.2d)

The distance of the fields to the material dataset D , defined previously in (4.1), which min-
imisation can find the closest material state {g

⇤,q⇤} for any point in the domain, is redefined
as:

dist({g,q},D) = min
{g⇤,q⇤}2D

q
Sg (g�g⇤)2 +Sq(q�q⇤)2, (5.3)

which uses the new variable, gradient g, instead of the temperature gradient —T , and Sg and Sq

remain the same stabilising/scaling parameters.
Similarly, the integrated distance functional (4.3), is redefined as follows:

J(g,q) =
1
2

Z

W

Sg (g�g
⇤)2 dW+

1
2

Z

W

Sq (q�q
⇤)2 dW, (5.4)

Next, the Lagrangian is formulated by minimising the integrated distance functional (5.4),
while imposing the energy conservation law (5.2a) and the new variable definition (5.2b) as
constraints:

L (—T,g,q,ttt,l ) = J(g,q)+
Z

W

ttt · (g�—T ) dW+
Z

W

l (— ·q� s) dW, (5.5)

where l and ttt are scalar and vector fields of Lagrange multipliers, respectively.
The regularity requirement on temperature is weakened by integrating the component con-

taining the gradient of temperature —T by parts, satisfying at the same time the temperature
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boundary condition (5.2d) and imposing ttt ·n = 0 on Gq:

L (T,g,q,ttt,l ) =
Z

W

Sg (g�g
⇤)2 dW+

Z

W

Sq(q�q
⇤)2 dW

+
Z

W

ttt ·g dW�
Z

GT

(ttt ·n) T̄ dGT +
Z

W

(— · ttt) T dW

+
Z

W

l (— ·q) dW�
Z

W

l s dW.

(5.6)

Note that ttt ·n = 0 on Gq reflects the enforcement of the Dirichlet boundary condition and ensures
the problem is well posed.

The solution is found as a stationary point of the Lagrangian (5.6) at which its variation
vanishes:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Z

W

dT (— · ttt) dW = 0 8dT 2 L2(W)

Z

W

Sgdg · (g�g
⇤) dW+

Z

W

dg · ttt dW = 0 8dg 2 L
2(W)

Z

W

Sqdq · (q�q
⇤) dW+

Z

W

(— ·dq) l dW = 0 8dq 2 Q0

Z

W

dl (— ·q) dW�
Z

W

dl s dW = 0 8dl 2 L2(W)

Z

W

(dttt ·g+(— ·dttt) T ) dW�
Z

GT

(dttt ·n) T̄ dG = 0 8dttt 2 Q0.

(5.7)

The test and trial functions belong to functional spaces as assigned in Table 5.1, where
L2(W) and L

2(W) are the Lebesgue spaces for square-integrable scalar and vector functions,
respectively, and H(div;W) is the space for vector functions with square-integrable divergence,
also see Appendix A.

The choice of spaces in this weaker mixed formulation results in less requirements on the
regularity of the solution, compared with the stronger data-driven formulation presented in chap-
ter 4, since the spaces for T and g do not require these fields to be smooth across the element
boundaries. However, the continuity of the normal flux q is enforced across any inner bound-
aries. This choice of spaces is more natural for the transport problems such as heat transfer.

For comparison, the solution of the stronger mixed formulation for the data-driven heat
transfer problem would have temperature T in H1(W) Sobolev space for square-integrable scalar
functions, and flux q in L

2(W), see Table 4.1, i.e. continuity of flux across element boundaries
would not be ensured, which is not natural for the considered transport problem.

The test and trial functions are approximated by the finite element basis functions, see Ta-
ble 5.2, compare with Table 4.2 and Table 3.2. Note that both the gradient g and the flux q are
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Field Space

Temperature T (trial function) T 2 L2(W)

dT (test function) dT 2 L2(W)

Gradient g g 2 L
2(W)

dg dg 2 L
2(W)

Flux q q 2 Q,Q = {u 2 H(div;W) |u ·n = q̄ on Gq}

dq dq 2 Q0,Q0 = {v 2 H(div;W) |v ·n = 0 on Gq}

Lagrange multiplier l (scalar) l 2 L2(W)

dl dl 2 L2(W)

Lagrange multiplier t (vectorial) ttt 2 Q0

dt dttt 2 Q0

Table 5.1: Functional spaces for the data-driven weaker mixed formulation.

vectorial fields, however, the components of gradient are approximated by scalar basis functions
Ga, while the flux is approximated by a vectorial basis function QA . Indices next to the basis
functions N, G, Q, L and M indicate the index of the basis function, see glossary for more de-
tails. This is due to the fact that the gradient belongs to L

2(W) space, while the flux belongs to
H(div;W) space.

Trial function Test function

Temperature T h = TaNa dT h = dTbNb

Gradient g
h = gaGa dg

h = dgbGb

Flux q
h = qA QA dq

h = dqBQB

Lagrange multiplier
(scalar)

l h = laLa dl h = dlbLb

Lagrange multiplier
(vectorial)

ttth = tA MA dttth = dtBMB

Divergence of flux — ·q
h = qA (— ·QA ) — ·dq

h = dqB (— ·QB)

Divergence of ttt — · ttth = tA (— ·MA ) — ·dttth = dtB (— ·MB)

Table 5.2: Finite element basis functions for the weaker data-driven formulation of the diffusion
problem.

Each field can be interpolated using hierarchical shape functions [Kaczmarczyk et al., 2020]
and to satisfy LBB stability conditions [Boffi et al., 2013], the approximation orders are assigned
to unknown fields as shown in Table 5.3. Note that the approximation order for the gradient field
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g is p+1 as order p is not stable in this formulation.

Field Approximation order

Temperature T p

Gradient g p+1

Flux q p+1

Scalar Lagrange multiplier l p

Vectorial Lagrange multiplier ttt p+1

Table 5.3: Approximation orders for the weaker mixed data-driven formulation.

The procedure of deriving the final matrix form of the problem is similar to the one presented
in chapter 3, and the final matrix form of the problem is as follows:

[Kab ][ua ] = [Fb ], (5.8)

where [ua ] is the vector of vectors of unknown coefficients:

[ua ] =

2

6666664

Ta
ga

qA

la
tttA

3

7777775
, (5.9)

[Kab ] is the diffusivity matrix, where dW is dropped in writing the integral for brevity:

[Kab ] =

2

666666666666666664

0 0 0 0

Z

W

Nb (— ·MA )

0

Z

W

SgGbGa 0 0

Z

W

GbMA

0 0

Z

W

Sq (QB ·QA )
Z

W

(— ·QB)La 0

0 0

Z

W

Lb (— ·QA ) 0 0

Z

W

(— ·MB)Na

Z

W

MBGa 0 0 0

3

777777777777777775

,

(5.10)
and [Fb ] is the vector of right-hand side terms, which can be written for the two-step data-driven
iterative procedure, see subsection 4.1.1, as follows:



CHAPTER 5. WEAKER MIXED DATA-DRIVEN FORMULATION 87

[Fb ] =

2

6666666666666664

0Z

W

SgGbg
⇤ dW

Z

W

SqQB ·q
⇤ dW

Z

W

Lbs dW
Z

GT

(MB ·n) T̄ dG

3

7777777777777775

. (5.11)

While (5.11) is used for the iterative loop in the two-step data-driven procedure, the proce-
dure can be streamlined by chaining both steps into an iterative solver, similar to what is used for
nonlinear problems like the Newton-Raphson method shown in section 2.4. The matrices cor-
respond to (2.36), however, the tangent matrix (5.10) is constant in this case, and the right-hand
side residual vector (5.12) is updated at every iteration as follows:

[Rb ] =

2

666666666666666664

Z

W

Nb (— · ttt0) dW
Z

W

SgGb (g0 �g
⇤) dW+

Z

W

Gbttt0 dW
Z

W

SqQB · (q0 �q
⇤) dW+

Z

W

(— ·QB)l0 dW
Z

W

Lb (— ·q0) dW�
Z

W

Lb s dW
Z

W

MB ·g0 dW+
Z

W

(— ·MB) T0 dW�
Z

GT

(MB ·n) T̄ dG

3

777777777777777775

, (5.12)

where the subscript (·)0 denotes the previous iteration values of the unknown fields. This allows
for a more straightforward implementation of the data-driven iterative procedure utilising itera-
tive solvers, such as SNES in PETSc [Balay et al., 2023] with custom stopping criteria (same as
in subsection 4.1.1).

Applying the same procedure with which Figure 4.3 was obtained, it can be seen that the
error norms converge to a plateau with the number of iterations in a similar way with the weaker
data-driven formulation, see Figure 5.1. The plateau reached is due to the resulting fields dis-
tance to the material dataset, and the finite element approximation errors relating to the quality
of the mesh and the approximation orders.

It can be noted that the flux error L2-norm, Figure 5.1c, converges to a value which is mag-
nitudes smaller than the one expressed in Figure 4.3c. This is due to the flux field q belonging
to H(div;W) space which in this case is approximated by a higher approximation order (p+1)

than it was in chapter 4 (p�1). The next section compares the computational complexity of the
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(a) Temperature error L2-norm (2.22).
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(b) Temperature error H1-seminorm (2.23).
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(c) Flux L2-norm (2.24).
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(d) RMS distance (4.8).

Figure 5.1: Example SinCos (Figure 2.3): Global error norms w.r.t. exact solution and point
distance RMS measure (4.8). Convergence with the number of points in the Uniform material
dataset, see Figure 4.1.

standard and data-driven FE formulations.

5.1.1 Computational complexity comparison

For this comparison, the resulting finite element systems, obtained by standard and mixed formu-
lations, are considered to be solved using a Newton-Raphson scheme, where the nonlinearities
are solved iteratively. The data-driven formulations are also solved iteratively but require only a
single matrix inversion.

Standard nonlinear FE formulation is described in section 2.4. At each iteration, a global
system is assembled and solved. Assuming an efficient sparse solver, the matrix inversion scales
as O(n3/2

dof ), where ndof is the number of degrees of freedom. With NNR Newton iterations, the
total complexity becomes:

O(NNR ·n3/2
dof ). (5.13)

The mixed formulation introduces additional unknowns (e.g., fluxes), increasing the system size
but not the order of complexity.
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In contrast, the data-driven formulations have a constant diffusivity matrix [Kab ], see (4.7)
and (5.10), requiring only a single matrix inversion: O(n3/2

dof ). However, an iterative process
which includes searching for a closest material datapoint for each integration point is performed,
see subsection 4.1.1. The cost of searching for the closest point in the dataset is O(nint · nmat),
where nint is the number of integration points and nmat is the number of material data points. At
each iteration, a nearest-neighbour search is carried out at every integration point using an R-
tree [Guttman, 1984], yielding a search cost of approximately:O(nint · lognmat), where nint is the
number of integration points and nmat the number of material data points. With NDD iterations,
the total complexity is:

O(n3/2
dof )+O(NDD ·nint · lognmat). (5.14)

The resulting computational cost difference between the standard and data-driven formula-
tions depends on the size of the problem (ndof and nint), the size of the material dataset (nmat),
and the number of iterations required for convergence (NNR or NDD). Larger problems with more
degrees of freedom and integration points might perform faster with the data-driven approach,
especially if the material dataset is small, as it avoids the need for multiple matrix inversions.
On the contrary, small problems with fewer degrees of freedom and integration points will likely
perform better with the standard approach, especially if the material dataset is large.

The bottleneck of the data-driven approach is the search through the material dataset, which
can be minimised by using efficient data structures (e.g., R-trees) and algorithms, and by keep-
ing the number of integration points to a minimum. For the data-driven approach, the number of
degrees of freedom is not the limiting factor, as the diffusivity matrix only needs to be inverted
once, and therefore, the increased number of unknowns due to the "weaker" formulation is rea-
sonable. Additionally, to ensure the minimum number of integration points, the error indicators
leading to adaptive refinement strategies enabled by the "weaker" formulation are advantageous,
see section 3.3.

The next section compares the results obtained by the weaker data-driven FE formulation
derived in this chapter to the mixed FE formulation and the stronger data-driven FE formulation,
discussed in chapter 3 and chapter 4, respectively.

5.1.2 Verification with other formulations

The weaker data-driven FE formulation builds up on the mixed FE formulation introduced in
chapter 3, and the stronger data-driven FE formulation introduced in chapter 4. The comparison
of the three formulations in this section is performed using the Example Exp-Hat, see Figure 3.3,
and the global norms of errors w.r.t. the exact solution are evaluated. This analysis is done with
a "saturated" dataset to confirm the global mesh and approximation convergence properties of
the present weaker data-driven FE formulation.

Considering no adaptive refinements, the global error norms are calculated for the tempera-
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ture field T , the flux field q are shown in Figure 5.2. The finite element approximation order is
the same for the temperature T field in all formulations, but due to the different formulations, it
varies for the flux q and gradient g fields, see tables 3.3, 4.3 and 5.3. This is reflected in the con-
vergence observed in the global error norms. The comparison shows that the weaker data-driven
FE formulation converges to the exact solution in the same way as the mixed FE formulation,
i.e. following the a priori error estimates defined in (3.9).
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Figure 5.2: Example Exp-Hat: Comparison of weaker DD, mixed formulation (chapter 3) and
stronger DD formulation (chapter 4). Convergence of the finite element solution w.r.t. the exact
one with fully saturated dataset (Appendix B).

The temperature L2-norm and H1-seminorm follow the same convergence for all three for-
mulations, whereas the flux L2-norm differs between the formulations due to the finite element
approximation order for the flux field. In this case the weaker DD follows the mixed formulation.

The gradient L2-norm can only be evaluated for the weaker DD formulation since the other
formulations do not contain this field. The gradient L2-norm follows the same convergence as
the flux L2-norm in the weaker DD formulation, which suggests the following:

||—T̃ �g
h||(W)  Chp+2, (5.15)
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where —T̃ is the exact solution of the gradient field, g
h is the finite element approximation of

the gradient field, C is a constant, h is the element size and p is the temperature approximation
order.

5.2 Comparison with the mixed formulation

In the previous subsection, it was shown that when a saturated material dataset is used, the
weaker data-driven FE formulation (weaker DD) closely follows the mixed FE formulation.
However, there is no constitutive equation in the weaker DD and a new field for temperature
gradient g belonging to L

2(W) space is introduced. This has an effect on the calculation of
the error indicators and estimators; for reference, see section 3.3. This section addresses the
changes to the a posteriori error indicators formulation and investigates the differences between
the mixed FE and weaker DD formulations for saturated material dataset before introducing
noise and scarcity in the material dataset.

5.2.1 Error indicators associated with temperature gradients

Unlike the mixed FE formulation in chapter 3, constitutive relation (3.1c) is not present as in
subsection 3.3.1. Instead, the error indicator associated with the gradient of the temperatures
can be defined using the new variable definition (5.2b) of g as follows:

he (—T,g) = ||—T �g||2We
. (5.16)

The temperature gradient —T is calculated a posteriori and it is compared to the gradient
field g, which represents the gradient of temperature. In other words, this indicator checks the
conformity to the new variable definition (5.2b), which is one of the constraints in the Lagrangian
(5.5). On the elements where the error indicator he is high, high finite element approximation
error is expected.

5.2.2 Error estimators

The other two error indicators associated with the conservation law,

ne (q) = h||s�— ·q||2We

as in subsection 3.3.2, and temperature jumps across inner boundaries,

ge(T ) =
nGe

Â
l=1

h1/2||J(T )||0,l

as in subsection 3.3.3, remain unchanged.
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The error estimator [Braess and Verfürth, 1996]

µe =
�
h2

e +n2
e + g2

e
�1/2

is calculated in the same way as (3.14), however, when noise or scarcity are present in the
material dataset, it will not have the same properties as expected from an estimator, i.e. it may
not be possible to prove that it can be used to calculate upper or lower bounds of the resulting
error on the element. Therefore, the error estimator µe presented in this section is not a true error
estimator.

However, for notation and consistency the error estimator will continue to be referred to as
the error estimator, for summary of the naming and notation of the error indicators see Table 5.4.

Error indicator Name

he (—T,g) = ||—T �g||2We
Gradient error indicator

ne (q) = h||s�— ·q||2We
Divergence error indicator

ge(T ) = ÂnGe
l=1 h1/2||J(T )||0,l Jump error indicator

µe =
�
h2

e +n2
e + g2

e
�1/2 Error estimator

Table 5.4: Definitions and notations of the error indicators for the weaker data-driven formula-
tion.

5.2.3 Adaptive refinement

Since error indicators can be computed a posteriori, and they still highlight the elements with
the worst finite element approximation errors, adaptive refinement can be implemented. For
completeness, the same order refinement algorithm is applied to the weaker DD and mixed FE
formulations for the Example Exp-Hat, see Figure 3.3. The results with a saturated dataset are
shown in Figure 5.3.

The same behaviour is experienced by both the weaker DD and mixed formulations in terms
of the number of integration points. Even though the number of degrees of freedom might
differ due to the number of fields and the differences in functional spaces of the unknown fields,
the search through the material dataset happens at every integration point instead of a degree
of freedom, and it is, therefore, more important to consider the number of integration points.
The resulting error norms and error indicators follow each other closely and the same elements
are highlighted for refinement in both cases, see the resulting approximation orders for both
solutions in Figure 5.4.

The weaker data-driven formulation solves for more unknown fields than the mixed formu-
lation introduced in chapter 3, however, unlike with the testing in chapter 3, no constitutive
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(b) Global L2�norm of temperature jumps across
inner boundaries.
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(c) Global temperature error H1-seminorm.
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(d) Global L2-norm of the gradient error indicator.
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(e) Global flux error L2-norm.
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(f) Global L2-norm of the divergence error indica-
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Figure 5.3: Example Exp-Hat: Comparison of weaker DD and mixed formulation with adaptive
order refinement.
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(a) Weaker data-driven FE formulation.
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(b) Mixed FE formulation.

Figure 5.4: Example Exp-Hat: Resulting approximation orders of the adaptive refinement with
the algorithm described in Algorithm 1.

equations are necessary to run the data-driven formulation introduced in this chapter. The mate-
rial behaviour can be nonlinear, the dataset can be sparse or have data missing and the solution
process does not change with nonlinearity as it does when a material model is used, e.g. non-
linear material model in section 2.4. Next, a comparison between the data-driven formulation
discussed in chapter 4 and the weaker data-driven formulation derived in this chapter is explored.

5.3 Results compared to the stronger data-driven formula-

tion

The convergence with mesh and approximation order refinement between the weaker and stronger
data-driven formulations is shown in Figure 5.2 for a fully saturated dataset. However, in indus-
trial applications, the material dataset is seldom as saturated and noise-free.

Therefore, the comparison in this section is done with noise-free material dataset with 105

4D material datapoints created with uniform random distribution, see section 4.2 but without
noise h , to confirm the global mesh and approximation convergence properties of the data-
driven formulations with the same material dataset. The example used for the comparison is
Exp-Hat, Figure 3.3, and the material dataset is created in ranges [�9,9] for the temperature
gradients and datapoints with the gradients of values [�6,�5] in the x-direction are removed,
see Figure 5.5.

Figure 5.6 shows the global error norms and error indicators for the weaker data-driven for-
mulation and the standard data-driven formulation. The adaptive refinement is only available for
the weaker data-driven formulation, and the error indicators are not calculated for the standard
data-driven formulation.

Unlike with the fully saturated dataset (Figure 5.3), the global error norms reach a plateau
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(a) x-direction (b) y-direction

Figure 5.5: Example Exp-Hat tweaked dataset: dataset is created with uniform random distri-
bution for temperature gradients in ranges [�9,9] and flux is afterwards calculated by q = �g.
105 material datapoints are generated and a range of datapoints containing values of [�6,�5] in
temperature gradient in x-direction is removed for testing purposes.

with the order and mesh refinements, see Figure 5.6. This is due to the distance between the
resulting fields and the material dataset introducing uncertainty and errors to the numerical so-
lution.

Additionally, it can be observed that the weaker data-driven formulation reaches the plateau
faster than the standard data-driven formulation. However, the overall number of degrees of
freedom is higher for the weaker data-driven formulation due to the additional fields used in the
formulation.

Nevertheless, the availability of the error indicators and estimators still allows for the use of
adaptive refinements to improve the results and Figure 5.6 shows that the adaptive refinement is
able reach the same plateaus with orders of magnitude smaller number of integration points than
the standard data-driven formulation with global refinement. The individual error indicators,
shown in figs. 5.6b, 5.6d and 5.6f also reach the plateau slower than the global error norms,
figs. 5.6a, 5.6c and 5.6e, ensuring the resulting fields have a sufficient reduction in the finite
element approximation errors by the time the adaptive refinement is stopped.

The error indicators/estimators are not calculated in the analysis using the stronger data-
driven formulation since they are not introduced there in the same way as in the weaker formu-
lation. Therefore, the adaptive refinement is only available for the data-driven approach with the
weaker mixed formulation.

Similarly to the stronger data-driven approach, the increasing noise/sparsity in the material
dataset results in more uncertainty of the results. Furthermore, when the quality of the mate-
rial dataset is decreased, the error indicators are affected by the quality of the material dataset
used. Figure 5.7 shows error estimators are high despite the finite element approximation order
increase in the area highlighted by the error indicators. Furthermore, the plateaus reached by the
error indicators in figs. 5.6b, 5.6d and 5.6f correspond to the error estimator shown in Figure 5.7.
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inner boundaries.
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(c) Global temperature error H1-seminorm.
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(d) Global L2-norm of the gradient error indicator.
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(e) Global flux error L2-norm.
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(f) Global L2-norm of the divergence error indica-
tor.

Figure 5.6: Example Exp-Hat: Comparison of data-driven and weaker data-driven formulation
and with adaptive order refinement.
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Figure 5.7: Example Exp-Hat: Error estimator and approximation order per element for the
weaker data-driven formulation with missing data after adaptive order refinement.

5.3.1 Effect of the material dataset quality on the error indicators

As scarcity of the dataset and noise are introduced to the material dataset, the error indicators
can be calculated in the same way as in subsection 5.1.2. The error indicators, similarly to the
errors w.r.t. the exact solution, reach a plateau, as shown in Figure 5.6. Upon further inspection
of the error indicators plotted on the elements, it is observed that the error indicators are affected
by the quality of the material dataset used.

Nevertheless, the error indicators can still be used to identify the elements with the highest
finite element approximation errors, and the adaptive refinement can be applied to improve the
results and refine the problematic areas of the analysis to pinpoint where the error/uncertainty
is the highest, see improvement of the results with the adaptive order refinement in black in
Figure 5.6.

Using the adaptive refinement reduces the errors associated with the finite element approx-
imation and it is assumed that the remaining error is associated with the material dataset. This
claim is due to the fact that when the material dataset was replaced with a line equation, see (B.3)
and Figure 5.1, the errors experienced the expected convergence with the global approximation
order and mesh refinement, as shown in Figure 5.2. On the other hand, when a material dataset
is used, the resulting global errors eventually reach a plateau which is higher than the predicted
error associated with the finite element approximation.

5.4 Adaptive refinement for weaker data-driven formulation

In the data-driven finite element formulations introduced in chapters 4 and 5, the errors and
uncertainties have two main sources: finite element approximation errors, and the quality of
the material dataset used for the simulation. As it was shown in the previous section, the error
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indicators highlight the finite element approximation errors. However, the imperfections in the
material dataset sometimes result in high error indicators. When the elements with high error
indicators due to the material dataset issues are refined, more accurate result is not guaranteed
and can lead to overfitting the result to material behaviour which might not be accurate. This
causes an imbalance between the bias and variance.

To prevent overfitting, additional checks and tolerances to the adaptive refinement algorithm,
Algorithm 2, are proposed as follows:

• when the result is too far from the material dataset for the considered element: do not
refine the approximation order

• when the standard deviation of the distance to the dataset is too high: consider refining the
element to isolate the problematic area.

Taking into account the standard deviation and the average distance to the dataset further
refines the adaptive refinement, however, the definition of the values per element being too high
is ambiguous.

The following subsections provide options for the adaptive refinement considering error in-
dicators and distances to the material dataset per element but a more sophisticated method is a
subject of further research.

5.4.1 Distance to the material dataset per element

Distance of the results to the material dataset, which will be denote hereinafter as d, is calculated
as a part of finding the closest points in the dataset D for every integration point using (4.1),
(4.12), (5.3) or equivalent.

To identify the problematic elements, average of the distances per element is calculated as
follows:

dave =

G

Â
g=1

dg

G
, (5.17)

where G is the number of integration points for the element considered, and g is the integration
point.

To address the question of which values are too high, a comparative measurement x with the
same units as d is needed, which represents RMS of the field values relevant for the material data
search. x can either be calculated locally for each element or globally for the whole domain,
representing relative and absolute distance comparison. Since in this case we are interested in
high distances globally, a global x is defined as follows:
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, (5.18)

where µ(W) is the area of the domain W in a 2D case, and its volume in a 3D case. A shorthand
notation is used in this section for the dot product between two vectors: g

2 = g · g. Note that

(5.18) matches the units of dist({g,q},D) = min{g⇤,q⇤}2D

q
Sg (g�g⇤)2 +Sq(q�q⇤)2 and new

dimensions can be added according to the dataset used.
Alternatively, if the relative distance to the dataset is of importance, x can be calculated and

compared to on the element basis.
A new tolerance tave for the ratio of the average distance per element dave and the equivalent

root mean squared measure x is introduced to determine which elements should not be taken
into account for the adaptive p-refinement as follows:

Do not increase the approximation order of the element if

dave > tave x . (5.19)

The relative tolerance tave is a percentage, therefore, if e.g. tave = 2 the elements which av-
erage distance to the dataset is higher than 2% of the root mean square measure of the whole
domain, it is deemed to not be properly informed of the material properties, and therefore inac-
curate by default and further refinement would be overfitting the result.

5.4.2 Standard deviation of the distance to the material dataset per ele-

ment

On the other hand, let us consider an element of which one side is well informed of the material
properties, and the other side is not. For example Figure 5.8 where there is data missing in a
localised area. If the element size is big enough for parts of it to be covered by the dataset and
part to be in the middle of the gap, it can sometimes be beneficial to apply mesh refinement to
the element.

The standard deviation of the distance to the material dataset on element is calculated as
follows:

dstd =

vuuuut

G

Â
g=1

(dg �dave)
2

G
, (5.20)

where dave is defined by (5.17).
In a similar way to subsection 5.4.1, dstd can be compared to x by taking into considera-

tion the elements which have values higher than a percentage of the relevant root mean square
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Figure 5.8: Example Exp-Hat: Using the standard deviation of the distance to the material
dataset to refine the mesh and identify the problematic areas w.r.t. the distance to the material
dataset.

measure:
dstd > tstd x , (5.21)

where tstd is a tolerance related to the standard deviation of the distance and the equivalent RMS
measure (5.18).

However, high standard deviation of the distance d within an element does not mean that
refining the element mesh yields improved results or provides more information about the prob-
lem uncertainty. If an element where all of the values at the integration points are too far from
the dataset is considered, i.e. have high distance d, refinement does not provide any advantage.

Therefore, an additional check is proposed which compares the values of the average and
standard deviation in the element to evaluate if the refinement should take place:

dstd > tave
std dave, (5.22)

where tave
std is another user set tolerance. It is advised to set tave

std � 0.5 if this criteria is considered.
The adjustments to the refinement criteria (5.19, 5.21, 5.22) can be used together or sepa-

rately from each other. The resulting adaptive hp-refinement algorithm is shown in Algorithm 5.
Note that line 12 in Algorithm 5 mentions refinement only in the elements adjacent to the bound-
ary G, however, to tackle singularities more efficiently this should be implemented only in the
elements adjacent to the corners.

Applying the whole adaptive refinement scheme with tave = 4.0, tstd = 0.5, tave
std = 0.5 and

tolerances for order and mesh refinement control set to tp = 3.0 and th = 4.0, respectively, the
results are shown in Figure 5.9. Figure 5.9a shows how the approximation order has not been
increased where the distance of the resulting fields to the material dataset is considered too high,
as shown in Figure 5.9c. Refining the mesh in the areas where the standard deviation of the
distance to the dataset is too high but satisfies (5.22), see resulting distance standard deviation
in Figure 5.9d, also isolates the problematic areas of the analysis while improving the results.
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Algorithm 5 Adaptive hp-refinement with error estimator and distance to the material dataset
taken into account

1: Initialize with the lowest approximation order p = 1 and the coarsest mesh.
2: repeat

3: Solve the problem (5.7).
4: Calculate the error indicators and estimator, see Table 5.4.
5: Calculate the distance to the material dataset at every integration point using (4.1), (4.12),

(5.3) or equivalent.
6: Calculate the average distance dave with (5.17) per element
7: Calculate the standard deviation of the distance dstd with (5.20) per element
8: Calculate the comparative measurement x with (5.18)
9: if µe > µavg tp and dave  tave x then

10: pe = pe +1
11: end if

12: if µe > µavg th and element is adjacent to the boundary G then

13: Refine mesh of this element.
14: end if

15: if dstd > tstd x and dstd > tave
std dave then

16: Refine mesh of this element.
17: end if

18: Run Algorithm 1 to prevent big jumps in the approximation order between elements.
19: until a specified number of iterations is reached

5.5 Capturing brick refinement

Before any further uncertainty quantification is considered, The same kind of adaptive refine-
ment is applied to the problem concerning the brick example, see Figure 4.19. The same adaptive
refinement with tolerances shown in Table 5.5 was chosen for analysis with all of the material
datasets described in Table 4.4.

Refinement criteria name value

tp 1.0

th 4.0

tave 1.0

tstd 2.0

tave
std 0.5

Table 5.5: Adaptive refinemnt criteria for the brick example.

Starting with the material dataset E, see Figure 4.17, which does not cover all of the required
material states, the adaptive refinement is applied. Figure 5.10 shows the error estimators µ and
the average dave and standard deviation dstd of the distance to the material dataset per element
before and after the adaptive refinement. The measures shown in Figure 5.10 serve as the criteria
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1.00  2.00  3.00  4.00  5.00  
ORDER

(a) Approximation order p.

6.29e-06 0.00195 0.00390 0.00584 0.00779
ERROR_ESTIMATOR

(b) Error estimators.

0.0316 0.216 0.400 0.585 0.769 
DD_DISTANCE_AVE

(c) Distance to the dataset.

5.07e-05 0.113 0.227 0.340 0.453 
DD_DISTANCE_VAR

(d) Distance standard deviation.

Figure 5.9: Example Exp-Hat: Adaptive refinement with the algorithm described in Algorithm 5.

for the adaptive refinement and measurements of accuracy of the solution at the same time.
Figure 5.10a experiences high error estimators in the corners due to singularities, which are

successfully decreased after the refinement, see Figure 5.10b. The average distance to the dataset
per element dave is high and does not decrease with the refinement, however, the area of high
distances is now more localised. On the other hand, the standard deviation of the distance to the
dataset per element dstd is high but the effect of refinement is more pronounced by isolating the
problematic ares, see Figure 5.10e and Figure 5.10f. Overall, this process successfully identifies
the areas where the material dataset is missing the required material states and the areas where
the finite element approximation is less reliable.

On the contrary, when using material dataset C, see Figure 4.14, with noise incorporated to
the material dataset, the refinement helps to reduce the finite element approximation errors, see
Figure 5.11a and Figure 5.11b, but does not concretely identify the areas of concern and how
severely it effects the results.
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5.6 Summary

This chapter introduced a data-driven approach derived with the weaker mixed formulation for
the heat transfer problem. The approach is compared to the mixed formulation introduced in
chapter 3 and the standard data-driven approach introduced in chapter 4.

The approach has access to all the error and uncertainty measurements introduced in the
previous chapters as well as the indicators for where the adaptive refinement should take place.
To summarise, so far the errors and uncertainties can be identified by:

• error indicators associated with the finite element approximation errors, see Table 5.4

– possible reduction by adaptive refinements

• distance to the material dataset closest point at every integration point

• standard deviation of the distance to the material dataset per element

The error estimation presented in this thesis so far is able to highlight, and possibly improve,
some of the problematic areas of the numerical analysis if they are present. However, so far the
uncertainty estimation identifies the areas where the material dataset is sufficiently saturated,
however, it does not recognise if the material dataset includes a substantial amount of noise and
variance. Additionally, the uncertainty is not yet shown in a range of possible outcomes for the
resulting fields.

The next chapter addresses the uncertainty quantification in terms of uncertainty of the re-
sulting fields which, as will be shown, in turn capture locations of noise in the dataset. The noise
is not removed, instead it is captured and measured to be assessed after the analysis.
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0 2.88 5.75 8.62 11.5
ERROR_ESTIMATOR

(a) Error estimator before refinement.

0 2.88 5.75 8.62 11.5
ERROR_ESTIMATOR

(b) Error estimator after refinement.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(c) dave before refinement.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(d) dave after refinement.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(e) dstd before refinement.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(f) dstd after refinement.

Figure 5.10: Example Brick: Effect of adaptive refinement on (a-b) error estimator (c-d) average
distance to the dataset per element, see subsection 5.4.1, and (e-f) standard deviation of the
distance to the dataset per element, see subsection 5.4.2. Analysis with material dataset E, see
Figure 4.17.
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0 2.88 5.75 8.62 11.5
ERROR_ESTIMATOR

(a) Error estimator before refinement.

0 2.88 5.75 8.62 11.5
ERROR_ESTIMATOR

(b) Error estimator after refinement.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(c) dave before refinement.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(d) dave after refinement.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(e) dstd before refinement.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(f) dstd after refinement.

Figure 5.11: Example Brick: Effect of adaptive refinement on (a-b) average distance to the
dataset per element, see subsection 5.4.1, and (c-d) standard deviation of the distance to the
dataset per element, see subsection 5.4.2. Analysis with material dataset C, see Figure 4.14.
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0 2.88 5.75 8.62 11.5
ERROR_ESTIMATOR

(a) Error estimator before refinement.

0 2.88 5.75 8.62 11.5
ERROR_ESTIMATOR

(b) Error estimator after refinement.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(c) dave before refinement.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(d) dave after refinement.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(e) dstd before refinement.

0 250 500 750 1e+03
DD_DISTANCE_VAR

(f) dstd after refinement.

Figure 5.12: Example Brick: Effect of adaptive refinement on (a-b) average distance to the
dataset per element, see subsection 5.4.1, and (c-d) standard deviation of the distance to the
dataset per element, see subsection 5.4.2. Analysis with material dataset A.



Chapter 6

Quantification of nonuniqueness

In the previous chapters, a weaker mixed formulation for the data-driven approach was intro-
duced. This formulation incorporates both the minimisation of finite element approximation
errors and the evaluation of distances between computed fields and the material dataset.

This chapter investigates the nonuniqueness of the solution obtained using the weaker data-
driven formulation and proposes a method to quantify the nonuniqueness, thereby providing
insight into the uncertainty of the results. The proposed method is based on Markov chain
Monte-Carlo simulations, iterating between solving the problem using the data-driven approach
and perturbing the resulting fields to obtain a set of possible solutions.

To keep the finite element approximation errors from polluting the quantification of nonunique-
ness, the weaker data-driven formulation’s adaptive refinement algorithm is used to reduce the
finite element approximation errors while keeping the number of integration points as small as
possible for the desired accuracy. The adaptive refinement is based on the error indicators em-
bedded in the mixed formulation and the distances of the field values to the material dataset, as
described in section 5.4.

Since the material dataset is used to obtain a solution that more accurately represents a real-
life response of the system, such as a graphite brick in a nuclear reactor, the uncertainty related
to the material dataset propagates to the numerical prediction. Quantifying the nonuniqueness,
helps to gain information about the uncertainty, which is essential from the safety perspective
to ensure the numerical prediction is interpreted correctly and can, therefore, be used to make
informed decisions for the safety of the system.

In most cases, some areas in the domain require higher safety than others. For example, re-
gions likely to develop cracks or other defects are of higher concern when analysing a graphite
brick, similar to how a nuclear reactor core requires higher safety than the cooling system. Ad-
ditionally, higher uncertainty requires higher safety factors to be applied. Therefore, identifying
the uncertainty in high-risk areas and potentially reducing it by conducting further experiments
or simulations to obtain more relevant material data could decrease the safety factors necessary
to keep the risk low.

107
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0 0.318 0.635 0.953 1.27
T

(a) Initial fields are zero.

0 0.318 0.635 0.953 1.27
T

(b) Initial fields are random. (c) Material dataset.

Figure 6.1: Example L: Temperature field for different initial values of the fields and the material
dataset, with 104 material datapoints and sh = 0.02, used for both analyses. Note the different
maximum values of the temperature field in the domain’s top right corner.

While this chapter proposes a method for quantifying the nonuniqueness and uncertainty
arising from the material dataset, it does not aim to define safety factors for specific industrial
applications. Rather, the goal is to provide a framework for evaluating uncertainty in data-
driven simulations and the conclusions that can be drawn from the various uncertainty indicators
introduced in this thesis.

6.1 Uniqueness of the solution

The data-driven approach is based on finding the closest material datapoints to the current values
of the unknown fields, using the material states of these datapoints to compute the fields, ensur-
ing the satisfaction of the conservation laws, and repeating the process until the convergence
criteria are satisfied; this process is described in more detail in Chapter 4. From mathematical
point of view, the problem is well-posed, however, the solution obtained is not unique.

The non-uniqueness emerges through the data-driven algorithm. First, the distance of the
resulting field values can be the same for multiple material datapoints. Another non-uniqueness
comes from the data-driven algorithm searching for a subset of material datapoints closest to
the resulting field values that satisfy the conservation laws and boundary conditions as multiple
combinations exist (resulting field and material subset).

Therefore, the result differs depending on the initial values of the fields considered in find-
ing the closest material datapoints, as shown in Figure 6.1. The material dataset used in this
example is generated with 105 material datapoints with noise added to the thermal conductivity
to highlight the non-uniqueness of the solution. The standard deviation of the noise added to the
data is sh = 0.02; for more information, see section 4.2.

Both of the solutions in Figure 6.1 use the same material dataset and have the same boundary
conditions applied, however, Figure 6.1a analysis starts with zero initial fields and Figure 6.1b
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starts with random initial fields. The solutions are different; however, they are both valid as
they satisfy the conservation laws, boundary conditions, and criteria for stopping the iterations.
When no noise is present in a sufficiently saturated material dataset covering all of the required
material states, the dependence of the solution on the initial values is less pronounced or com-
pletely negligible; see subsection 4.1.1 for the convergence of results with no noise and increased
number of material datapoints.

This lack of uniqueness of the solution is a feature of the material dataset being used instead
of equations representing the constitutive material behaviour, and this feature can be exploited
to evaluate the uncertainty of the solution through quantification of nonuniqueness.

Implemented within the weaker mixed formulation, error indicators highlight the elements
with a high error in the finite element approximation of the fields. Adaptive refinement based on
the error indicators increases the number of integration points only where it improves the finite
element approximation of the fields, or where the material dataset quality is low.

By choosing an appropriate algorithm for the adaptive refinement, the increase of the number
of integration points can be minimised for a given accuracy, often saving orders of magnitude of
the number of integration points and computational time compared to the global refinement, see
section 5.4 for refinement details. This method removes the trial and error method of defining the
mesh and approximation orders before running the analysis. Therefore, the time saved preparing
the analysis and solving the problem can be used to repeat the analysis and obtain a set of
possible solutions with different initial values of the fields. This process can be automated by
using Markov chain Monte-Carlo simulations.

6.2 Markov chain Monte-Carlo simulations

Markov chain Monte-Carlo simulations are used to quantify the nonuniqueness and therefore
evaluate the uncertainty of the solution, and will hereinafter be referred to as Monte-Carlo. The
start of the analysis is the same as in the previous chapters regarding the data-driven approach,
regardless of whether a stronger or weaker formulation is used. The resulting fields are saved and
perturbed once the data-driven convergence and adaptive refinement criteria are satisfied. The
perturbed fields are then used as initial fields for the next Monte-Carlo iteration. The process is
repeated several times, and the results are saved. The algorithm for the Monte-Carlo simulations
for the data-driven approach is shown in Algorithm 6.

Instruction on line 1 of Algorithm 6 initialises the fields which can be random or zero.
Considering the number of repeated runs of the analysis, the choice of the initial fields has little
impact on the resulting standard deviation. However, depending on whether adaptive refinement
is used, the initial fields can impact how the domain is refined. When noise and sparsity are
present in the material dataset, starting with random initial fields can result in noise affecting
the error estimator values before the refinement is completed. Figure 6.2 shows that the zero
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Algorithm 6 Monte-Carlo Simulations
1: Initialize the fields.
2: Solve the problem using the data-driven approach and adaptive refinement.
3: repeat

4: Solve the problem.
5: Save the fields.
6: Perturb the fields.
7: Use the perturbed fields as initial fields.
8: until Monte-Carlo criteria are satisfied
9: Calculate the average and standard deviation of the resulting fields.

initial field values result in more localised high error estimator values than the random initial
field values. Therefore, for the first initialising of the fields, the zero-valued fields are used in
the examples in this chapter to minimise the effect of the noise on the error estimator values
before the adaptive refinement is completed.

0 0.00465 0.0093 0.0139 0.0186
ERROR_ESTIMATOR

(a) Initial fields are zero.

0 0.00465 0.0093 0.0139 0.0186
ERROR_ESTIMATOR

(b) Initial fields are random.

Figure 6.2: Example L: Error estimator for different initial values of the fields.

Instruction on line 2 of Algorithm 6 solves the problem either using the stronger or weaker
formulation of the data-driven approach, described in chapter 4 and chapter 5, respectively. If
the adaptive refinement is used, the refinement is done before the Monte-Carlo simulations are
started. The adaptive refinement is done based on the error indicators imbedded in the mixed
formulation and the distances of the field values to the material dataset, described in section 5.4.
Once sufficient refinement has been achieved, the resulting fields are saved.

The resulting fields are then perturbed in a random direction by a perturbation value, which
is normally distributed as:

y ⇠ N (0,k), (6.1)

where k is a metaparameter corresponding to the standard deviation of the perturbation value.
The perturbation metaparameter k can be chosen based on the average value of the field, the
current local standard deviation of the field, the maximum value of the field, or the local or
average distance to the material dataset.
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Larger perturbation values can result in longer computation times, as more data-driven iter-
ations might be needed to obtain a solution for each of the Monte-Carlo iterations. On the other
hand, a small value for the perturbation parameter can result in a slow or a lack of exploration of
the solution space. Since exploring the most suitable perturbation parameter is not in the scope
of this work, a fixed value of k = 10 is used in the example in this section, which is deemed
sufficiently large in relation to each of the material datasets used, see Figure 6.3. Figure 6.3a
shows that convergence is also reached with values smaller than k = 10. Nevertheless, values
of k order of magnitude bigger do not slow the convergence w.r.t. the number of iterations, see
Figure 6.3b, therefore, using higher k , such as k = 10, is sufficient.
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(a) Convergence w.r.t. k .

0 20 40 60 80 100
Iteration

10�4

10�3

�
m

ax
T

� = 10�4

� = 10�2

� = 1

� = 10

� = 100

(b) Convergence w.r.t. number of iterations.

Figure 6.3: Example L: Influence of standard deviation of perturbation k on the maximum
standard deviation of the resulting fields: smax

T , smax
gx , smax

gy , and smax
qx .

The fields requiring perturbation are the fields that are being solved for and are at the same
time used in the search for the closest material data points, i.e. the flux field q, the gradient field
g for the weaker formulation or the temperature field T for the stronger formulation or if 5D
material dataset is used.

The perturbed fields are then used as initial fields for the next Monte-Carlo iteration of the
analysis. Henceforth, iteration refers to a Monte-Carlo iteration unless stated otherwise. The
mesh and the approximation order are unchanged between the iterations and remain the same as
at the end of the adaptive refinement. After each solution, the resulting fields are saved and the
process is repeated a number of times until the Monte-Carlo criteria are satisfied. The stopping
criteria can be set to the number of iterations or the difference between the average standard
deviation of the fields from the previous and the current iteration.

The integration scheme used for calculating the fields is Gauss quadrature, with standard
Gauss points chosen based on the approximation order of the fields. In contrast, the field values
used for statistical analysis are evaluated and stored at regularly spaced locations within each
element, determined using Newton-Cotes points. These Newton-Cotes points are not used for
integration; rather, they serve only as evaluation points to simplify the computation of uncer-
tainty due to nonuniqueness.
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The results of the Monte-Carlo simulations are the average and the standard deviation of the
fields evaluated on each regular evaluation point. The standard deviation is in the same units as
the fields; hence, the interpretation is straightforward and understandable by the naked eye. The
standard deviations are furthermore summarised per element for ease of interpretation.

6.2.1 Effect of noise on the standard deviation of results

To consider the effect of noise on the standard deviation of the fields, the Monte-Carlo simula-
tions are run for the material dataset with different standard deviations of noise. The material
dataset used in this example is generated with 106 material datapoints and the noise is added to
the thermal conductivity only in the x-direction. The material datasets used for the Monte-Carlo
simulations with standard deviation of noise in x-direction sh x = 0, sh x = 0.02, and sh x = 0.05
are shown in Figure 6.4.

(a) sh x = 0. (b) sh x = 0.02. (c) sh x = 0.05.

Figure 6.4: Example L: Material datasets with various standard deviation of noise sh applied to
the thermal conductivity in the x-direction. There is no noise present for the values in y-direction
and the number of material datapoints is 106.

As the noise is applied only to the x-direction of the material dataset, the standard deviation
of the results shows higher values for the x-direction in comparison to y-direction, see Figure 6.5.
Nevertheless, even if the dataset only includes noise in the x-direction, the standard deviation
of the results of the y-direction is affected. Additionally, the maximum standard deviation of
the results obtained with the weaker data-driven formulation is higher than the maximum stan-
dard deviation of the results obtained with the stronger data-driven formulation, which might
be desirable from a safety point of view, especially in sensitive environments such as nuclear
reactors.
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Figure 6.5: Example L: Maximum standard deviation convergence of the fields for standard
deviation of noise sh x = 0.02 and sh y = 0 in the material dataset.

The values of the maximum standard deviation stabilise with the increasing number of the
Monte-Carlo steps, as shown in Figure 6.5 for the Example L analysis with sh x = 0.02. The
resulting standard deviation of the temperature field is also shown in Figure 6.6 for the stronger
and weaker mixed formulation and the weaker mixed formulation with adaptive refinement.

0 0.0003750.000750.00113 0.0015
SIGMA_T

(a) Stronger DD.

0 0.0003750.000750.00113 0.0015
SIGMA_T

(b) Weaker DD.

0 0.0003750.000750.00113 0.0015
SIGMA_T

(c) Weaker DD w/ AR.

Figure 6.6: Example L: Standard deviation of the temperature field for standard deviation of
noise sh x = 0.02 in the material dataset using the stronger and weaker mixed formulation. Note
that w/ AR stands for "with adaptive refinement".

In this case, the resulting standard deviation of temperature obtained with the stronger DD
formulation, Figure 6.6a, is the highest on the right side of the inner corner, which corresponds
to the area to which the closest points from the material dataset are in an area with the noisy
points (high values of flux in the x-direction, see Figure 6.4b).

On the other hand, the location of the highest resulting standard deviation of temperature
obtained with the weaker DD formulation extends further to the right side of the domain. This
behaviour is probably associated with the lower regularity of the temperature solution and the
ability of the L2 space to better approximate the jumps caused by the material dataset and, hence,
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the variability of the solution.
Nevertheless, the resulting maximum standard deviation of the temperature field for any one

regular integration point of the temperature field for both formulations is less than 0.0015 with
the average value of the temperature field being around 0.53, see Figure 3.14.

While the standard deviation of the flux field captures the noisy area in both formulations,
it is more pronounced with the weaker DD, for magnitudes see Figure 6.7. Refining the mesh
further localises the high standard deviation of the flux field and identifies the noisy areas in
the material dataset. Unlike with the temperature results, the flux results differ more between
the stronger and weaker DD formulations in terms of the maximum standard deviation, see
Figure 6.5b.

0 0.02 0.04 0.06 0.08
SIGMA_FLUX_MAG

(a) Stronger DD.

0 0.02 0.04 0.06 0.08
SIGMA_FLUX_MAG

(b) Weaker DD.

0 0.02 0.04 0.06 0.08
SIGMA_FLUX_MAG

(c) Weaker DD w/ AR.

Figure 6.7: Example L: Standard deviation of the flux field for standard deviation of noise
sh x = 0.02 in the material dataset using the stronger and weaker mixed formulation. Note that
w/ AR stands for "with adaptive refinement".

Furthermore, the noise is applied in x-direction only, and the standard deviation of the flux
field has its highest values at the location of the highest noise for both the x and y-directions, see
Figure 6.8, even though the noise in y-direction is of a smaller magnitude.
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SIGMA_FLUX_X

(a) Flux in x-direction
Weaker DD w/ AR.

0 0.02 0.04 0.06 0.08
SIGMA_FLUX_Y

(b) Flux in y-direction
Weaker DD w/ AR.

Figure 6.8: Example L: Standard deviation of the flux field for standard deviation of noise
sh x = 0.02 in the material dataset using the weaker DD formulation with adaptive refinement.

Figure 6.9 shows the maximum standard deviation of the fields for different standard devia-
tions of noise in x-direction of the material dataset. The results show that the standard deviation
of the fields increases with the standard deviation of the noise in the material dataset, however,
more statistical analysis is needed to confirm the relationship between the noise in the material
dataset and the standard deviation of the results, which is out of the scope of this work.
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Figure 6.9: Example L: Maximum standard deviation of the fields for different standard devia-
tions of noise in the material dataset.

Additionally, Figure 6.9 shows that using stronger and weaker data-driven formulation with
the same mesh produces similar results. Nevertheless, using the weaker DD formulation with
the adaptive refinement shows an increase in the resulting fields’ standard deviation compared
to the analysis without any refinement. This is due to the singularity experiencing higher noise
due to the choice of the material dataset generation, see Figure 6.4, and refinement allowing for
higher flux values in the singularity area.

These results show that Monte-Carlo simulations can be used to evaluate the uncertainty of
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the results produced with material datasets instead of material models. Such an analysis can also
broadly identify the potentially problematic areas of the material dataset used. Additionally, in
the context of this thesis, reducing the regularity of the approximation spaces enables to better
see the discrete nature of the dataset and the uncertainties associated with it. The following
section applies the Monte-Carlo simulations with the methods from previous chapters to the
Brick example, see Figure 4.19, to summarise the different ways the uncertainty of the results
can be evaluated.

6.3 Summary of uncertainty measurements on

the Brick example

The Brick example was introduced in the data-driven chapter 4 where the material datasets,
summarised in Table 4.4, were used with the stronger data-driven approach. The results con-
tained the temperature field, the flux field, and the distance d of the results to the 5D dataset D

used for the analysis. The distance d and its components are calculated in the same way for the
stronger and weaker data-driven approach. They are one of the ways to evaluate how informed
the results are by the material dataset, i.e. material dataset A is nearly equally sparse throughout
the domain considered and material dataset E does not sufficiently cover a part of the domain.

Next, calculating the error indicators and estimator with the weaker data-driven approach,
see chapter 5, allows for checking the conformity to the chosen constraints, i.e. conservation
law — · q = �s, equality of the gradient of temperature g = —T , and the continuity of tem-
perature across inner boundaries. The error indicators and estimator are used for the adaptive
hp-refinement. The adaptive refinement is used to improve the finite element approximation of
the fields and to reduce the numerical errors and decrease bias. Nevertheless, refining the mesh
too much can increase the variance significantly and cause overfitting, and hence, the distance
of the results to the material dataset is also taken into account.

The error estimators highlight where the finite element approximation is the highest within
the domain, but the cause can be the finite element approximation error, which is reducible by
hp-refinement, or the material dataset quality. Nevertheless, the error estimator does not provide
values that are comprehensive enough to evaluate the magnitude of the uncertainty of the results;
it only provides the areas where the finite element approximation error is the highest.

The Monte-Carlo analysis provides a way of quantifying uncertainty in the same units as
the results obtained, therefore, it is easily interpretable. Table 6.1 shows the maximum standard
deviations of the resulting fields for the 5D material datasets.
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Material dataset maxsT [�C] maxsg [�C/m] maxsq [W/m2]

A (regular sparse) 2.52 724 67 ⇥103

B (regular dense) 0.83 389 25.7 ⇥103

C (random w/ noise) 4.18 695 124 ⇥103

D (artificial experiment) 0.387 330 29.4 ⇥103

E (experiment w/ missing data) 0.3 342 28.6 ⇥103

F (experiment w/ noise) 4.67 1380 213 ⇥103

Table 6.1: Example Brick: Maximum standard deviation of the fields for different material
datasets obtained with weaker DD with adaptive refinement , also see Table 4.4.

The maximum standard deviations of the results only offer a rough estimate of the overall
quality of the results and need to be compared to the values of resulting fields in the relevant
areas of the domain. The resulting fields with material dataset D for the Brick example are
shown in Figure 6.10.

500 625 750 875 1e+03
T

(a) Temperature T .

0 6.25e+03 1.25e+04 1.88e+04 2.5e+04
G

(b) Magnitude of gradient g.

0 6.25e+05 1.25e+06 1.88e+06 2.5e+06
Q

(c) Magnitude of flux q.

Figure 6.10: Example Brick: Resulting fields with material dataset D. Note that D is the most
accurate dataset, and these resulting fields are therefore chosen for comparison to all of the
further results to avoid repeating the figures.

Material datasets A and E have already been flagged with issues thanks to the calculation
of the distance to the material dataset. The resulting locations of the high standard deviations
of the results also correspond to the areas of the high distance to the material dataset, and the
uncertainty can propagate to one or multiple of the fields solved for, as shown in Figure 6.11.
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0 250 500 750 1e+03
DD_DISTANCE_AVE

(a) dave; dataset A.

0.113 0.715 1.32 1.92 2.52
SIGMA_T

(b) sT ; dataset A.

3.28e+03 1.92e+04 3.51e+04 5.11e+04 6.7e+04
SIGMA_FLUX_MAG

(c) sq; dataset A.

Figure 6.11: Example Brick: Distance to the material dataset and standard deviation of the
results for material dataset A (regular sparse) after Monte-Carlo analysis.

The sparsity of dataset A results in a high standard deviation of the results in most of the
domain. Comparing the magnitudes of the standard deviation of flux sq in Figure 6.11c with the
flux q values in Figure 6.10c, values of sq around 60⇥103 are observed in areas where the flux
is around 0. For the summary of findings of the analysis with material dataset A see Table 6.2.

Observation 1 distance to the material dataset dave is high in most of the domain
Interpretation 1 the dataset is too sparse or does not cover the ranges required by the

analysis sufficiently
Observation 2 standard deviation of the results s is high in most of the domain
Interpretation 2 it is not confirmed if the dataset includes noise
Recommendation the results are not reliable, additional experiments are needed to im-

prove the dataset

Table 6.2: Summary of findings of analysis with material dataset A.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(a) dave; dataset E.

0.00718 0.0883 0.169 0.251 0.332
SIGMA_T

(b) sT ; dataset E.

1.33e+03 8.15e+03 1.5e+04 2.18e+04 2.86e+04
SIGMA_FLUX_MAG

(c) sq; dataset E.

Figure 6.12: Example Brick: Distance to the material dataset and standard deviation of the
results for material dataset E (experiment missing) after Monte-Carlo analysis.
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On the other hand, due to the boundary conditions of the Brick example, dataset E results
have low values of the temperature standard deviation since the highest noise is located at the
temperature boundary condition. The flux field, however, has high standard deviations in the
areas where the material data is missing, see Figure 6.12 and Table 6.3.

Observation 1 distance to the material dataset dave is high in specific areas of the
domain

Interpretation 1 the dataset is missing information in the areas where the distance to
the dataset is high

Observation 2 standard deviation of the results s is high in the same areas where
the distance to the dataset is high

Interpretation 2 the noise is assumed to be low for the points of the dataset used in the
analysis where the distance to the dataset and the standard deviation
of the results are low

Interpretation 3 the results are not reliable in the areas where the standard deviation
is high and the uncertainty there might have affected the results in
the rest of the domain if the boundary conditions were different

Recommendation additional experiments are needed to obtain more data for the values
missing in the dataset to improve the dataset and certainty of the
results

Table 6.3: Summary of findings of analysis with material dataset E.

The highest standard deviation of the flux field observed in Table 6.1 is performed in the
analysis with the material dataset F. Figure 6.13 shows that the highest standard deviation of
flux is no longer located where the flux values are the highest, but are located where the noise in
the material dataset is the highest. Upon inspection of the result and standard deviation values,
it can be determined that the results obtained with the material dataset F for this analysis are not
reliable in the area on the outside edge of the brick. Note that max sq = 0.2 ⇥ 106 [W/m2] on
the outside of the brick, when max q ⇡ 2.5⇥106 [W/m2] is at the singularity.
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0 250 500 750 1e+03
DD_DISTANCE_AVE

(a) dave; dataset F.

0.0361 1.19 2.35 3.51 4.67
SIGMA_T

(b) sT ; dataset F.

2e+03 5.47e+04 1.07e+05 1.6e+05 2.13e+05
SIGMA_FLUX_MAG

(c) sq; dataset F.

Figure 6.13: Example Brick: Distance to the material dataset and standard deviation of the
results for material dataset F (experiment noisy) after Monte-Carlo analysis.

Analysis run with material dataset C (random noisy) also shows increased flux standard
deviation in the areas where the noise in the material dataset is the highest, see Figure 6.14. The
results show that the standard deviation of the flux field is higher in the areas where the noise in
the material dataset is higher. The combined summary of analysis with material datasets C and
F is shown in Table 6.4.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(a) dave; dataset C.

0.0492 1.08 2.12 3.15 4.18
SIGMA_T

(b) sT ; dataset C.

3.77e+03 3.38e+04 6.39e+04 9.4e+04 1.24e+05
SIGMA_FLUX_MAG

(c) sq; dataset C.

Figure 6.14: Example Brick: Distance to the material dataset and standard deviation of the
results for material dataset C (random noisy) after Monte-Carlo analysis.
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Observation 1 distance to the material dataset dave is low in most of the domain with
few exceptions

Interpretation 1 the dataset and the results can be slightly improved by conducting
more experiments in the areas where the distance to the dataset is
high

Observation 2 standard deviation of the results s is high in particular areas of the
domain

Interpretation 2 since dave is low where the standard deviation of the results is high,
the dataset contains noise which affects the results

Recommendation 1 the parts of the distance to the dataset can be checked individually,
e.g. T h �T ⇤, throughout the domain to identify potential areas where
the dataset is lacking and conduct more experiments in those areas

Recommendation 2 review of the material dataset is advised to analyse the noise
• the noise is the stochastic response of the material: the results

are likely sound
• the noise is an error in the dataset handling/measurements: fix

the errors if possible, otherwise accept that the results are affected
by the noise

• the noise source is unclear: accept the results for what they are
or conduct a new set of experiments

Table 6.4: Summary of findings of analysis with material dataset C and F.

On the other hand, material datasets which are denser and do not contain any added noise
still do not result in a unique solution, and the resulting standard deviation of the results can be
computed. The results for the material dataset B (regular dense) are shown in Figure 6.15.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(a) dave; dataset B.

0.0246 0.227 0.429 0.631 0.833
SIGMA_T

(b) sT ; dataset B.

4.85e+03 1.01e+04 1.53e+04 2.05e+04 2.57e+04
SIGMA_FLUX_MAG

(c) sq; dataset B.

Figure 6.15: Example Brick: Distance to the material dataset and standard deviation of the
results for material dataset B (regular dense) after Monte-Carlo analysis.
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In comparison to the analysis with dataset B (regular dense), the results for the material
dataset D (artificial experiment) show that the standard deviation of the results is lower, see
Figure 6.16. The summary of findings of the analysis with material datasets B and D is shown
in Table 6.5.

0 250 500 750 1e+03
DD_DISTANCE_AVE

(a) dave; dataset D.

0.00975 0.104 0.198 0.292 0.387
SIGMA_T

(b) sT ; dataset D.

1.04e+03 8.21e+03 1.54e+04 2.26e+04 2.97e+04
SIGMA_FLUX_MAG

(c) sq; dataset D.

Figure 6.16: Example Brick: Distance to the material dataset and standard deviation of the
results for material dataset D (artificial experiment) after Monte-Carlo analysis.

Observation 1 distance to the material dataset dave is low throughout the domain
Interpretation 1 the dataset is dense and covers the ranges required by the analysis

sufficiently
Observation 2 standard deviation of the results s is low throughout the domain with

the highest values at identifiable areas
Interpretation 2 the reliability of the results depends on the requirements of the anal-

ysis, i.e. how much distance to the dataset and uncertainty is accept-
able

Recommendation the results are likely sound, however, recommendations from the
summary of analysis with material dataset C and F can be used, see
Table 6.4

Table 6.5: Summary of findings of analysis with material dataset B and D.

This section could be read without the need to see or analyse the material datasets before-
hand, however, glimpses of each material dataset are shown in Figure 6.17 for reference. The
summaries of findings of the analysis in this section identify the quality of the material dataset
used without prior knowledge of the dataset. All of the results could be used as presented
without any further interference, however, the uncertainty needs to be taken into account when
interpreting the results.

To conclude, the analysis with the data-driven weaker mixed formulation does not provide
a unique solution. The nonuniqueness can therefore be quantified and be used to evaluate the
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(a) Material dataset A.
Regular sparse

(b) Material dataset B.
Regular dense

(c) Material dataset C.
Random noisy

(d) Material dataset D.
Artificial experiment

(e) Material dataset E.
Experiment trimmed

(f) Material dataset F.
Experiment noisy

Figure 6.17: Example Brick: Extract of material datasets used for the Brick example analysis.
More information in section 4.3 and Table 4.4.
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uncertainty of the results, which should be viewed together with the distance to the material
dataset. The data-driven formulation is able to provide results with a single material datapoint
in the material dataset which would show no standard deviation of the resulting fields, however,
the information of the material behaviour would be wrong. Therefore, both the distance to the
material dataset and the standard deviation of the results should be used to evaluate the certainty
with which the results are viewed. On the other hand, it should be noted that the boundary
conditions reduce the nonuniqueness of the relevant fields in their vicinity, regardless of the
state of the material dataset in that region. Additionally, the boundary conditions are rarely
known with as high accuracy as it is assumed in the presented formulation of the data-driven
approach and should be taken into consideration.



Chapter 7

Conclusions and Perspectives

7.1 Conclusions

This thesis presented an investigation into diffusion problems, particularly nonlinear heat trans-
fer, through a combination of classical finite element method (FEM), mixed formulation, and a
data-driven approach.

The standard FE formulation, described in chapter 2, serves as a foundation for the more
advanced methods introduced in subsequent chapters. The study confirmed the reliability of
standard FE formulation in solving linear and nonlinear diffusion problems, demonstrating con-
vergence through global mesh and approximation order refinement.

The mixed FE formulation, discussed in chapter 3, consists of a two-field solution for heat
diffusion problems, separating the temperature field from the heat flux field. One of the advan-
tages of the mixed formulation is the higher order convergence of heat flux errors compared to
standard formulations, enhancing the accuracy of numerical solutions for flux. The formulation
also allows for adaptive mesh and order refinements, guided by error indicators associated with
temperature gradients, flux divergence, and jumps across inner boundaries. The adaptive refine-
ments were shown to reduce errors and improve convergence to exact solutions, demonstrating
the effectiveness of the mixed formulation in managing approximation errors.

The stronger data-driven approach, presented in chapter 4, is based on a novel method for
solving diffusion problems by using material datasets instead of constitutive models. The ap-
proach is able to use data directly to perform the numerical analysis, providing information
on the accuracy of the results in terms of the distance to the dataset. The study found that
the stronger data-driven approach permits the identification of whether the results are far from
the material dataset, caused by the dataset not covering parts of the domain or being sparse.
However, it is not able to detect if the dataset is noisy or if the solution contains finite element
approximation errors without knowing the exact solution beforehand.

To address these limitations, chapter 5 introduces a weaker data-driven approach that derives
the data-driven approach with the mixed formulation, which is the main novelty of this research.
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The weaker data-driven approach combines the advantages of the mixed formulation and data-
driven approach, providing more natural spaces for the diffusion problem, a posteriori error
indicators/estimates, adaptive refinement, and the use of material datasets instead of constitutive
equations. The study showed that the error estimates capture problematic areas of the numerical
analysis, which includes finite element approximation errors and/or when a significantly prob-
lematic part of the dataset is used to evaluate the results. New adaptive refinement algorithm is
proposed, which considers the error estimator, the distance of the results to the material dataset,
and the variance of this distance within an element. The adaptive refinement is able to reduce
the error in the solution in terms of finite element approximation errors and prevent overfitting
where the knowledge of the material behaviour is poor. However, the error estimators and the
distance of the results to the material dataset cannot capture the resulting uncertainty of the re-
sults in easily measurable terms and cannot evaluate if there is a noise present in the material
dataset used.

Therefore, repeating the simulations with perturbed initial field values, akin to Monte-Carlo
simulations, while keeping the same material dataset is proposed in chapter 6. Since the adaptive
refinement can reduce the finite element approximation errors with a much smaller increase to
the total number of integration points in comparison to global refinement for similar accuracy,
repeating the analysis multiple times becomes feasible. Saving the resulting fields of each iter-
ation of the Monte-Carlo simulation allows for the evaluation of the standard deviation of the
results, which has the same units as the fields themselves, making it easier to interpret the over-
all uncertainty of the solution obtained. The study confirmed that the material dataset’s quality
affects the solution’s uncertainty. The standard deviation of the results is high where there is
noise in the dataset and where the dataset has sparse or missing parts of the data required for the
analysis. Additionally, depending on the boundary conditions, the uncertainty can propagate to
the parts of the domain where the dataset is relatively complete and noise-free. Regardless, it is
possible to identify what issues are present in the material dataset and suggest which values are
affected if obtaining more data is possible.

Overall, the study showed that the mixed formulation and data-driven approach can be com-
bined and provide a solution with information about the accuracy and uncertainty of the results.

7.1.1 Novelties introduced in this research

The main novelty of this research is the proposed framework combining the mixed formulation
and data-driven approach. Mixed formulation uses the natural spaces for the unknown fields,
allows for the jump of temperature between elements, and enforces the continuity of the normal
flux component across any inner boundaries. The mixed formulation provides naturally arising
error indicators and estimator, which are used for adaptive refinement criteria.

The adaptive refinement algorithm was extended by calculating the variance of the distance
to the material dataset within an element, which can be used together with the average distance
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to the material dataset per element to choose which elements should be refined.
The error indicators introduced through the mixed formulation were adapted to the weaker

data-driven approach. The analysis showed that the standard error indicators highlight not only
where the finite element approximation is poor, which can be decreased by refinement, but also
elements that use a problematic part of a material dataset. By using the proposed criteria for
adaptive hp refinement and choosing where h and p refinement takes place independently of
each other, the refinement is able to reduce the finite element approximation errors where the
material dataset is relatively reliable and isolate areas where the material dataset is missing data.

Having used the adaptive refinement in the areas where it makes an impact on the accuracy,
it is feasible to repeat the analysis multiple times with different initial field values to evaluate
the uncertainty of the results.

The final novelty is quantifying the uncertainty of the resulting fields values using Monte-
Carlo simulations, evaluating the standard deviation of the results, and interpreting the uncer-
tainty in terms of the material dataset used.

Using this approach provides transparent results and it is possible to differentiate between
the errors coming from the finite element approximation, uncertainty related to sparse, missing
or noisy parts of material dataset.

7.2 Limitations and Future Work

The research presented in this thesis has several limitations that could be addressed in future
work. First, even if the formulation is general, the implementation and the problems considered
were 2D, and the extension to three-dimensional problems is an obvious next step when tackling
real-life problems.

7.2.1 Data-driven approach

There already exist improved versions of the data-driven approach than the formulation used for
the weaker DD formulation introduced in this work. The most straightforward formulation was
chosen to assess the influence of the mixed formulation on the data-driven approach, but it is not
the limit.

Novel algorithms for searching the material dataset, which are more suited for highly nonlin-
ear problems and large number of material datapoints, could be implemented. The dimensions
of the material dataset needed for the numerical analysis could also be updated, e.g. instead of
gradient of temperature and flux in x and y direction, magnitudes can be used for homogenous
and isotropic materials, or magnitudes and information of the local anisotropic behaviour can be
used.

The data-driven approach could be extended to include the uncertainty of the material dataset,
e.g. by using the Bayesian approach or simulated annealing to estimate the uncertainty of the
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material dataset and the results. Additionally, local information about the material behaviour
can be extracted as part of the material dataset search and inform the system of equations to
accelerate the convergence of the solution.

Research on most of the topics mentioned is already done or ongoing for the stronger data-
driven approach, i.e. without the mixed formulation, and could be derived with the mixed for-
mulation.

Additionally, in relation to the nuclear graphite analysis, irradiation or porosity within the
brick/reactor can be added as one of the dimensions of the material dataset. The addition of an-
other dimension could follow the same process as the temperature dimension in see section 4.3,
however, the irradiation can be prescribed on the domain beforehand or be a result of another
analysis. Since the material properties change with time and irradiation dosage within the re-
actor, the thermal conductivity and other material properties can be updated with the irradiation
dosage and porosity without the need for fitting experimental datasets into material models.

7.2.2 Source of material datasets

The material datasets used in this work were synthetic since the focus was on the development of
the numerical analysis method and not on obtaining the material dataset itself. One of the main
challenges in applying data-driven methods in practice is the limited availability of suitable
material datasets. In many cases, the data required to fully capture material behaviour across
relevant loading and environmental conditions are either incomplete or simply not available.
Often, material data are collected under standardised testing procedures that may not reflect the
specific conditions of interest, particularly in complex systems such as components operating
in high-temperature or irradiated environments. The data-driven identification [Stainier et al.,
2019; Leygue et al., 2018; Valdés-Alonzo et al., 2022] has been proposed and used for obtaining
material datasets for solid mechanics problems and the formulation can be amended to fit diffu-
sion problems such as heat transfer, utilising tools such as digital image correlation or infrared
thermography. Ongoing research in the acquisition of the material data is being done through the
advancements in the experimental equipment and techniques such as data-driven identification
or multiscale approaches but the approaches are not yet widely available.

7.2.3 Uncertainty quantification

Advanced statistical methods could be used to evaluate the uncertainty of the results, e.g. the
Bayesian approach or the Gaussian processes, at various stages of the analysis. Simulated an-
nealing mentioned in the data-driven section subsection 7.2.1 can also be implemented in the
current framework.
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7.2.4 Adaptive refinements

The adaptive refinement presented in this work is a proof of concept and has a potential for
improvement. Each criterion for refinement at the element can be optimised for the problem at
hand, and the combination of the criteria can be adjusted to the problem.

Mesh refinement with hanging nodes was not considered in this work, and it could be im-
plemented in the future to improve the accuracy of the results and enable the possibility of de-
creasing the refinement in parts of the domain where it is no longer necessary when considering
time-dependent problems.

Finally, adaptive refinement with higher-order geometries is lacking in this work and could
be implemented to improve the accuracy of the results along curved boundaries.

7.2.5 Other applications

The methods introduced can be expanded to other applications, e.g., a data-driven approach for
elasticity derived with the mixed formulation. The data-driven approach also does not have to be
limited to replacing all of the constitutive models. The examples include using the data-driven
approach for the diffusion calculation and the constitutive model for elasticity for the thermal
elastic problems, or using the data-driven approach for the part of the domain where the material
dataset is available and using the constitutive model for the rest of the domain.

7.2.6 Matrix structure and scalability

Using the mixed formulation offers a matrix structure that has lower bandwidth and predictable
connectivity. This applies to the weaker mixed data-driven formulation as well. A block-
diagonal structure may develop in certain situations, such as with L2 fields. This allows for
the exact inversion of element matrices in parallel, especially on GPUs. Block preconditioners
like the Schur block-solver can be implemented for the developed framework. As a result, the
scalability for large-scale problems should be enhanced on high-performance computing (HPC)
systems, using both CPUs and GPUs.



Appendix A

Functional spaces

In this section, all of the functional spaces [Boffi et al., 2013] used in this thesis are defined.
Some of these appear as an intermediate step for construction of other functional spaces only,
but are included here for the sake of completeness.

The figures in this section illustrate the hierarchical shape functions for the functional spaces
in 2D, which are used in this thesis. The properties of the functional spaces in 3D are similar,
but the figures are omitted for brevity.

A.1 L2
Lebesgue space

The Lebesgue space L2(W) is a set of scalar functions with square integrable values on W:

L2(W) :=
⇢

u(x) : W ! R
����
Z

W
|u|2 dW = ||u||2W < +•

�
. (A.1)

Lebesgue space can be used for both scalar and vectorial functions, denoted by L2(W) and
L

2(W), respectively. The vectorial Lebesgue space can further be defined by [L2(W)]d , where d
is the dimension of the problem. This thesis only considers two-dimensional problems therefore
L

2(W) refers to [L2(W)]2 throughout the chapters of this thesis.
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Figure A.1: Hierarchical shape functions of L2(W) space, up to the third order.

Unlike other spaces introduced in this section, Lebesgue space L2(W) shape functions can
approximate the 0th approximation order scalar field, which is a constant on an element, see first
row in Figure A.1. Additionally, L2(W) shape functions are discontinuous between elements
and, therefore, allow for jumps of field values between the elements.

A.2 H1
Sobolev space

Sobolev space H1(W) is a set of scalar functions with square-integrable values and square inte-
grable derivatives.

H1(W) :=
⇢

u 2 L2(W)

����
Z

W
|—u|2 dW < +•, i.e. —u 2 L

2(W) =
⇥
L2(W)

⇤d
�

. (A.2)

A subset of this space, H1
0 (W), is used throughout this thesis to represent the functions from

H1(W) with prescribed zero values on the boundaries with an essential boundary condition:

H1
0 (W) :=

�
u0 2 H1(W) |u0 = 0 on GEssential

 
, (A.3)

where GEssential is used for the Dirichlet boundary condition GDirichlet, e.g. temperature GT , in
the standard finite element approach.

H1 shape functions are shown in Figure A.2 and are continuous between elements.
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Figure A.2: Hierarchical shape functions of H1(W) space, up to the third order.

A.3 H(curl) space

Nédélec space is a set of vectorial functions with square-integrable values and square-integrable
curl:

H(curl;W) :=

(
v 2

⇥
L2(W)

⇤d
����� curl v 2

⇥
L2(W)

⇤n
,

n = 1 if d = 2
n = 3 if d = 3

)
(A.4)

Curl of a vector function v in 2D is defined as:

curl v :=
∂vy

∂x
� ∂vx

∂y
(A.5)

A property of H(curl) space is that the tangential component of the function is continuous
across any inner boundary in the domain, which is natural for (electro)magnetic problems, see
Figure A.3.
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Figure A.3: Conservation of tangential component in H(curl) space between elements.

The hierarchical shape functions of H(curl) space are illustrated in Figure A.4. The H(curl)
space is not used in this thesis by itself, however, it is used as an intermediate step to construct
the H(div;W) space in 2D in subsection A.4.1.

Figure A.4: Hierarchical shape functions of H(curl) space (Nédélec (second kind)), up to the
third order.

A.4 H(div) space

Brezzi-Douglas-Marini H(div) space is a set of vectorial functions with square-integrable values
and square-integrable divergence:

H(div;W) :=
n

v 2
⇥
L2(W)

⇤d �� — ·v 2 L2(W)
o

(A.6)

Divergence of a vector function v is defined as:

— ·v =
∂vx

∂x
+

∂vy

∂y
(A.7)

A property of H(div) space is that the normal component of the function is continuous across
any inner boundaries in the domain, which is natural for flow problems, see Figure A.5.
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Figure A.5: Conservation of normal component in H(div) space between elements.

A.4.1 Functional spaces in 2D

This thesis considers problems in two dimensions only, and the spaces H(div) and H(curl) are
isomorphic in 2D [Boffi et al., 2013]:

�div v
? = curl v. (A.8)

Therefore H(div) space can be constructed from H(curl) space by rotating the vector field
by a right angle:

(vx,vy)
? = (�vy,vx). (A.9)

Two dimensional H(div) space constructed from H(curl) space is used in chapter 3 and
for the rest of the thesis thereafter and is referred to as H(div) space only and is visualised in
Figure A.6.

Figure A.6: Hierarchical shape functions of H(div) space (Brezzi-Douglas-Marini), up to the
third order. Note that for 2D problems, H(div) space is constructed from H(curl) space by (A.9).
See the similarity to Figure A.4.



Appendix B

Finding the closest point on a line

The data search described by (4.1) in chapter 4, in case of "fully saturated" dataset, can be
replaced by the search for the closest point on a curve corresponding to the conservation law
equation (2.3). For simplicity, —T = g, and (·)⇤ refers to the value on the line in this section.

To find the closest point {g
⇤,q⇤}4D on the line

q
⇤ = �kg

⇤ (B.1)

to the field values {g,q}4D at an integration point, the data search can be replaced by the follow-
ing algorithm. First the distance of the point {g

⇤,q⇤}4D to the line (B.1) is defined as:

dist({g,q}4D,q⇤ + kg
⇤ = 0) =

|q+ kg|p
1+ k2

. (B.2)

Then the closest point on the line to the field values {g,q}4D is found by:

q
⇤ =

k (kq�g)

1+ k2

g
⇤ =

(�kq+g)

1+ k2 ,

(B.3)

for a linear constitutive relationship.
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Appendix C

Example Brick geometry and mesh

The following is a content of a journal file with witch the geometry and mesh can be reproduced
in Coreform Cubit software.

reset

set duplicate block elements on

# GEOMETRY

# main body

create surface circle radius 0.22975 zplane

create surface circle radius 0.131625 zplane

subtract surface 2 from surface 1

# cut straight edges

webcut surface all with plane xplane offset 0.214

webcut surface all with plane xplane offset -0.214

webcut surface all with plane yplane offset 0.214

webcut surface all with plane yplane offset -0.214

delete Surface 7 10 4 9

# rotate

rotate all about z angle -45

# create and subtract rectangles

create surface rectangle width 0.05995 height 0.050 zplane

move surface 12 y -0.205

rotate surface 12 about z angle 45

surface 12 copy rotate 90 about z repeat 3

subtract surface 12 13 14 15 from surface 11

# create and subtract rectangles

create surface rectangle width 0.0267 height 0.050 zplane

move surface 17 y -0.215

surface 17 copy rotate 90 about z repeat 3

subtract surface 17 18 19 20 from surface 16
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# make all quarters separate

webcut surface all with plane xplane

webcut surface all with plane yplane

# delete three quarters of the brick

delete Surface 24 27 26

# methane holes

create surface circle radius {0.00785 / 2} zplane

surface 28 copy move y {0.362 / 2}

move surface 28 y {0.415 / 2}

rotate surface 28 29 about z angle -13

surface 28 copy rotate {-90 + 2 * 13} about z

surface 29 copy rotate {-90 + 2 * 13} about z

create curve arc radius {0.415 / 2} center location 0 0 0 normal 0 0

1 start angle 0 stop angle 90

create curve arc radius {0.362 / 2} center location 0 0 0 normal 0 0

1 start angle 0 stop angle 90

create curve location 0 0 0 location 0.300 0 0

curve 123 copy move y 0.059

move curve 123 midpoint y -0.059

rotate curve 124 123 about z angle 45

create vertex atintersection curve 121 123 bounded

create vertex atintersection curve 121 124 bounded

create vertex atintersection curve 122 123 bounded

create vertex atintersection curve 122 124 bounded

delete curve 121 122 123 124

create surface circle radius {0.00785 / 2} zplane

move Surface 32 location vertex 113

create surface circle radius {0.00785 / 2} zplane

move Surface 33 location vertex 112

create surface circle radius {0.00785 / 2} zplane

move Surface 34 location vertex 114

create surface circle radius {0.00785 / 2} zplane

move Surface 35 location vertex 115

delete vertex 112 113 114 115

# remove methane holes from the main body

subtract surface 32 33 34 35 36 28 29 30 31 from surface 25

# ensure normals of edges are pointing outwards

create surface rectangle width 0.500 height 0.500 zplane
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intersect surface all

curve all tangent opposite

#BLOCKSETS

block 1 add curve 162 161 156 157 158 155 159 160

block 1 name "FLUX_UNIFORM_HOLES"

block 1 attribute count 1

block 1 attribute index 1 0

block 4 add curve 153 141

block 4 name "FLUX_UNIFORM_0"

block 4 attribute count 1

block 4 attribute index 1 0

block 2 add curve 154

block 2 name "PRESSURE_UNIFORM_1000"

block 2 attribute count 1

block 2 attribute index 1 1000

block 3 add curve 152 151 150 149 148 147 146 145 144 143 142

block 3 name "PRESSURE_UNIFORM_OUT"

block 3 attribute count 1

block 3 attribute index 1 500

block 5 add surface all

block 5 name "domain"

block 5 attribute count 1

block 5 attribute index 1 0

#mesh

{scale=7}

surf all scheme trimesh

surf all sizing function type skeleton scale {scale}

mesh surf all
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