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Abstract 

 

The livestock industry has seen substantial growth in the development and 

availability of technologies and tools in recent decades. These precision livestock 

farming (PLF) technologies can be employed by farmers to monitor an array of 

behavioural, physiological, and environmental variables to assist in production and 

welfare management. Benefits of employing such tools have been demonstrated 

within intensive farming systems, such as pig and poultry, and for dairy cattle, 

where PLF tools have seen the greatest adoption. However, the uptake of tools 

for species considered to have a lower economic value, such as domestic sheep 

(Ovis aries), has been slower, especially in grazing systems where fewer 

technologies have been developed, validated, and made commercially available. 

The incorporation of PLF tools within grazing systems can be more complex given 

the potential scale of farms, flock sizes, and dispersion of animals over wide areas, 

which can create challenges in transmitting information. Given the fairly small 

physical size of sheep compared to cattle, there is also a requirement for devices 

to be robust, lightweight, and cost-effective.  

Bluetooth low energy (BLE) is a rapidly growing technology which has expanded 

across multiple sectors in recent years, predominantly for location and proximity 

monitoring. As a low-cost, low-power device, with long-battery life, and suitable 

for use in outdoor conditions, it offers promising potential as PLF tool in sheep 

grazing systems. Whilst animals in extensive systems are generally considered to 

have more behavioural freedom than those in intensive systems, they are exposed 

to greater environmental challenges. The ability to monitor animal location, 

proximity and relationships over time could provide useful information for both 

production and welfare aspects of sheep management. However, the signal 

strength of BLE devices can be noisy, and further information is needed to 

understand the relationship between signal strength and distance within an 

outdoor environment to assess the ability of BLE to act as on-sheep monitoring 

tool.  

A prototype BLE system was developed for the thesis, consisting of a purpose-built 

device with BLE reader, trialled alongside three types of commercially available 

BLE beacons. The main aims of the thesis were (1) to characterise the relationship 
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between BLE signal strength and distance, and to assess the range of BLE in 

outdoor systems, (2) to assess the application of BLE for sheep localisation in 

grazing systems, and (3) to investigate the capability of BLE to be utilised as a 

monitoring tool to detect sheep contact patterns and relationships, and changes 

over time - which may indicate a potential welfare or management problem. 

Calibration studies of the three beacon types were conducted within a field 

environment to explore how signal strength changed with distance and whether 

this was affected by device height and thus animal behaviour. From these 

calibrations, distance prediction equations based on signal strength were 

developed. The potential impact of sheep bodies on the signal strength and 

operating range was assessed for two of the beacon types by conducting 

calibrations under both a clear and blocked line-of-sight. Across all beacon types, 

signal strength declined with increasing beacon distance from a reader, with 

reduced ranges at lower reader and beacon heights. An on-sheep study, with 

corresponding observer data, demonstrated that animal behaviour, thus posture 

and height of the BLE device from the ground also impacted on both the beacon’s 

probability of being reported and its signal strength. This showed that operating 

ranges and translation of signal strength into a distance is then highly dependent 

upon the behaviours displayed by sheep during a recording interval.  

BLE was also trialled as a means of localisation within a grazing system. A static 

multilateration approach was tested in a paddock (approximately 5 440 m2) using 

six BLE readers, followed by an on-sheep validation in the localisation of a weaned 

lamb, fitted with both a BLE beacon and separate global navigation satellite 

system (GNSS) device, within a larger paddock (1.4 ha), surrounded by nine BLE 

readers. In the static approach, the multilateration method produced a mean 

localisation error of 22.02 m, with the on-sheep validation producing similar mean 

localisation errors – 19.00 m using a midpoint method, and 23.77 m using the 

multilateration method. Whilst the studies demonstrated the technical feasibility 

of localising sheep in an outdoor system using BLE, it also highlighted that 

interpretation of signal strength into distance can be unpredictable, particularly 

in relation to animal behaviour and movement. Based on the range of BLE devices 

tested, a high number of static readers would also be required to adequately cover 

a grazing system. Substantial development in BLE range and accuracy would then 

be required for any viable commercial application of such a system.  
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Finally, an on-sheep study examined the use of the BLE system as a monitoring 

tool, conducted during the high activity period of lambing and early lactation. 

Lamb mortality and poor ewe-lamb relationships remain a top welfare and 

economic concern, with high numbers of lamb losses occurring between birth and 

weaning. Using the purpose-built device as an on-animal device worn by ewes (also 

fitted with a BLE beacon) alongside BLE beacons on lambs, ewe-ewe and ewe-

lamb relationships were assessed across pre- to post-lambing phases, and in 

relation to lamb age over a six-week period. The BLE system successfully detected 

and demonstrated expected patterns in ewe and lamb relationships. The numbers 

of ewe-ewe contacts reported within a 5-minute duty cycle was found to decline 

between pre-lambing to lambing, and lambing to post-lambing, suggestive of 

segregation at parturition. The pattern in the number of daily ewe-lamb contacts 

changed across increasing lamb ages. Whilst initially reporting a high number of 

contacts, this gradually declined until approximately 14 days old, a period during 

which lambs typically begin to spend more time within peer groups. The number 

of contacts was also assessed in relation to ewe lameness, with the BLE system 

indicating a reduction in contacts with neighbouring ewes, and an increase in 

contacts with their own lambs. As lame ewes are more inactive, then it may be 

easier for lambs to remain in closer proximity.  

To conclude, the investigations within this thesis trialled a BLE system for the 

purposes of animal monitoring within a sheep grazing system. Calibration studies 

identified challenges in the detection of BLE signals and translation into distance, 

which can be affected by device height, animal behaviour and orientation. The 

potential operating ranges and extent to which signal strength can provide useful 

information may then limit BLE application in some scenarios as this will be highly 

affected by animal behaviour. However, the BLE system did demonstrated 

potential in identifying contact patterns and relationships amongst ewes and 

lambs, which could be used to monitor and identify both positive ewe-lamb 

relationships, as well as potential issues if ewe-lamb contacts deviated from an 

expected range based on the lambs age and breed. Adding BLE to a suite of sensors 

and data streams could potentially enhance and complement findings from this 

thesis.  
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Chapter 1 General Introduction 

 

Modern livestock production is a complex situation, where in addition to achieving 

a decent economic return, farmers must manage animal health and welfare, 

product quality and food safety, whilst also minimising the environmental impact 

(Frost, 2003; Berckmans, 2014). In addition, the demand for animal products has 

increased, whilst the number of farmers producing livestock has declined, 

resulting in fewer but larger farms holding increasing numbers of livestock 

(Berckmans, 2014; Andonovic et al., 2018). Simultaneously, the availability of 

skilled labour within this industry has declined (Halachmi et al., 2019; Waterhouse 

et al, 2019). Consequently, farmers often have less time to spend on individual 

monitoring, making it more challenging to manage animals and their welfare as 

effectively. Thus, to remain sustainable, whilst meeting technical, economic, and 

regulatory demands, there is an increased incentive for livestock farmers to adopt 

automated systems which can assist in monitoring and managing the production 

process (Wathes, 2007). Indeed, in recent decades there has been substantial 

development in the advancement of precision livestock farming (PLF) technologies 

(Aquilani et al., 2022), and tools providing real-time or near real-time monitoring 

are becoming increasingly available. However, whilst a range of technologies have 

now been developed and incorporated into more intensive farming systems, such 

as pig and poultry, and for the dairy sector (Buller, 2020; Aquilani et al., 2022),  

the development and application of tools in more extensive systems, and for 

species considered to have a lower economic value, such as sheep and goats, has 

been much slower (Bahlo et al, 2019). There is therefore a gap in knowledge on 

the application of such technologies within extensive systems of these species 

(Silva et al., 2022). 

 

This chapter aims to provide an overview on the existing literature on PLF 

technologies and their implementation within different livestock systems and 

discuss some of the challenges associated with applying PLF in grazing sheep 

systems. The chapter will also discuss the main welfare challenges in sheep 

systems, and the potential areas in which PLF technologies could assist in 

improving management and welfare, as well as the overall aims of the thesis.  
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1.1 Precision livestock farming 

 

PLF can be defined as the use of technologies and process engineering principles 

to automatically monitor animals over time and space, to model and manage 

animal production, health, and welfare (Wathes, 2009; Van Hertem et al., 2017). 

Whilst definitions vary within literature, PLF is generally considered to encompass 

the use of single, or multiple tools within an integrated system (Aquilani et al., 

2022), where the aim is to monitor livestock at the smallest manageable 

production unit, through continuous direct monitoring of an output or outputs 

(Wathes, 2009). Whilst then implementing PLF at a basic level would allow for 

management at the pen, herd or flock level, the real benefit of PLF is that animals 

could be monitored at the individual level – known as the “per animal approach” 

(Halachmi & Guarino, 2016), hence allowing farmers to make more informed and 

targeted management decisions.  

 

The term ‘precision livestock farming’ or ‘PLF’ is most widely used within 

literature to describe the application of technologies within livestock systems (and 

is therefore the term used throughout this thesis); however, the term was not 

coined until 2004 (Berckmans, 2004), and other terms such as ‘integrated 

management systems (IMS)’ and ‘Smart Farming’ have also been utilised 

(Werkheiser, 2018). Research into the use of information and communication 

technologies within livestock production began to increase from the early 1990’s 

(Norton et al., 2019), however, the first widely adopted application of PLF can be 

considered to have occurred within the 1970’s, with the introduction of the 

electronic milk meter for dairy cows (Halachmi & Guarino, 2016). Since this time, 

the PLF sector has grown rapidly (Aquilani et al., 2022), and applications of PLF 

technologies have expanded across livestock sectors. However, the development 

of these tools has remained greatest within intensive farming systems, particularly 

indoors, where conditions and access to facilities make application and 

transmission of information easier to implement (Aquilani et al., 2022). 
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1.1.2 Types of PLF technologies 

 

A wide range of PLF technologies and tools have been developed to suit a variety 

of purposes, and for different livestock systems. These technologies can be both 

animal-based; measuring a physical, physiological or behavioural aspect, or non-

animal based; monitoring the environment or conditions in which animals are 

kept, to monitor management aspects (such as feeding, milking, and bedding), or 

to monitor physical or behavioural indicators in the animals themselves (Herlin et 

al., 2021). An overview of some of the main PLF tools is provided in Table 1.1.  

 

Animal-based sensors (often referred to as wearables) can be attached to the 

animal externally, typically in the form of an ear tag, collar, or leg strap, or 

internally, as a bolus or implant. Non-animal sensors are typically located within 

the animals vicinity, or at specific locations relating to the management practice 

or activity being measured (Herlin et al., 2021).  
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Table 1.1 Examples of precision livestock farming (PLF) tools. 

Technology 

Type 

Precision Livestock 

Farming (PLF) tool 
References 

Electronic 

identification 

(EID) 

Radio frequency 

identification (RFID)  

Cappai et al. (2018) 

Morgan-Davies et al. (2018) 

Biometric identification Shojaeipour et al. (2021) 

Management 

Tools 

Auto drafter Morgan-Davies et al. (2018) 

EID enabled Weigh crate Morgan-Davies et al. (2018) 

Walk-over-weigher (WOW) González-García et al. (2018) 

Virtual fencing (VF) Staahltoft et al. (2023) 

Confessore et al (2021) 

Automated milking system / 

Milking robot 

Ji et al (2022) 

Zanchi et al (2025) 

Automated grass 

measurement system 

Castro Muñoz et al. (2021) 

Location Global navigation satellite 

system (GNSS) tracker 

Thomas et al. (2008) 

Taylor et al. (2011) 

Radar Gygax et al. (2007) 

Bluetooth low energy (BLE) Trogh et al., 2017 

Maroto-Molina et al. (2019)  

Maxa et al., 2023 

Unmanned aerial vehicles 

(UAVs) / Drones 

Nyholm (2020) 

Vucic and Axell (2022) 

Social 

Interactions 

Contact / proximity loggers Triguero‑Ocaña et al. (2019) 

Ozella et al. (2020) 

Bluetooth low energy (BLE) Sohi et al. (2017)  

Paganoni et al. (2021) 

Motion sensors / 

Activity 

Accelerometer Barwick et al. (2018) 

Fogarty et al. (2020) 

Price et al. (2022) 
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Inertial monitoring unit (IMU) Achour et al. (2019) 

Liu et al. (2023) 

Pitch and roll sensor Umstätter et al. (2008) 

Inclinometer Voß et al. (2021) 

Mercury tilt switches Rutter et al. (1997) 

Pedometers López-Gatius et al. (2005) 

Jaw and bite sensors Rutter et al. (1997) 

Physiological 

sensors 

Temperature sensors Atkins et al. (2018) 

Fuchs et al. (2019) 

Heart rate monitors Munro et al. (2017) 

Reefmann et al., 2009 

Oxygen sensor Salzer et al. (2022) 

Respiration sensor Atkins et al. (2018) 

Reefmann et al., 2009 

Oestrus detectors Alhamada et al., (2017) 

Urine sensors Betteridge et al. (2010) 

Environmental 

sensors 

Weather station Alexy and Horváth (2022) 

Soil moisture Plauborg et al. (2005) 

Barn / shed environment 

(e.g. temperature, humidity, 

ventilation, light) 

Atkins et al. (2018) 

Chen and Chen (2019) 

Camera Camera / video (image 

analysis, computer vision, 

machine learning) 

Samperio et al. (2021) 

Molina et al. (2023) 

Sound analysis Microphone / sound sensor Ferrari et al. (2008) 

Galli et al. (2011) 
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1.1.2.1 Electronic identification 

 

As the target goal of PLF is individual animal management, electronic 

identification (EID) of animals is a crucial component towards this objective. EID 

systems not only allow for independent animal identification, but for associated 

information (e.g. management, breeding, health information) to be stored and 

carried with animals throughout their life (Vaintrub et al., 2021; Finzel et al., 

2023). The development of identification systems began in the 1960s, with passive 

EID systems beginning to be trialled on farms in the 1970s (Rossing, 1999). Passive 

EID operates using an EID tag which is assigned to an animal and read by an active 

reader. The tags do not have a battery, but instead contain a copper coil which is 

charged during data transmission with a reader (Vaintrub et al., 2021).  

 

Radio-frequency identification (RFID) works by transmitting radio waves 

(containing the identity of an animal) from an RFID tag to an RFID reader 

(Moubayed et al., 2012). RFID can be passive - requiring energy from the reader 

to charge and respond to it, semi-active - where the RFID tag contains a battery, 

but is active only when a radio signal is received from the reader, and active - 

where the tag can continuously transmit a signal (Moubayed et al., 2012). RFID 

also operates on different radio frequency levels - classified into three groups: 

low frequency (LF), high frequency (HF), and ultra-high frequency (UHF), which 

will influence the distance over which tags and readers can transmit information 

(Vaintrub et al., 2021). Whilst active tags may operate within a range of 20—100 

m, passive tags typically have a range of 3 m or less (Tzanidakis et al., 2023). EID 

tags are most commonly applied to animals in the form of an ear tag, however, 

other methods such as a ruminal bolus or injectable sub-cutaneous electronic 

identification are also available (Vaintrub et al., 2021). 

 

Biometric identification systems have also been proposed (although not widely 

deployed), whereby a unique, lifetime identity is associated with an animal based 

on a unique trait or identifier, such as muzzle / nose pattern, iris pattern, facial 

image, or DNA profile (Awad, 2016). However, there are challenges surrounding 

biometric identification accuracy, particularly arising from inefficient image 

capturing (Awad, 2016).  
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1.1.2.2 Management tools 

 

Management tools can be considered any device or technology which can assist 

farmers in data collation and management, or management tasks such as 

managing and maximising pasture productivity (i.e. by adjusting stocking densities 

and time spent in specific locations), improving grazing efficiency, reducing costs 

associated with fencing and animal movement, and reducing manual labour 

(Vaintrub et al, 2021). Information collection on a large range of animal 

parameters can be difficult to collate and maintain, thus the development of 

sensor and computer technology to implement automated data collection systems 

is perhaps one of the most useful PLF tools (Banhazi and Black, 2009). Information 

regarding animal performance, labour input, environmental performance and 

other essential criteria (i.e. flock / herd registry, tracking yield, breeding and 

genetics) could then be stored and processed (Banhazi and Black, 2009; Vaintrub 

et al, 2021). 

 

Stationary management tools include devices such as automatic drafters, walk-

over-weighers (WOWs), and weigh crates. Automatic drafters typically operate 

alongside EID tags and antenna / readers and use a selective gate for animal 

management (e.g. feeding control). Walk-over-weighers (WOWs) use a weighing 

platform within a one-way corridor (leading to a stimulant) and an EID reader to 

identify and record data for individual animals, whilst weigh crates allow each 

individual animal to be weighed standing still by passing through a corridor (with 

manually operated door), whereby identities are read via either a handheld RFID 

reader or fixed antenna (Vaintrub et al., 2021). Similarly, mating detection 

systems for reproductive management (such as the electronic Alpha Detector 

(Alpha D) in sheep) also use EID, whereby rams are fitted with a harness containing 

an active EID reader which detects and records ewe EID tags, allowing farmers to 

monitor mating frequency and the number of ewes mated (Alhamada et al., 2017).  

 

Virtual fencing (VF) systems have been developed as an alternative grazing 

management tool, whereby animals are managed and contained via electronic 

boundaries (Tzanidakis et al., 2023). Using this system, animals are fitted with a 

collar containing Global navigation satellite systems (GNSS), audio signal 

reproduction and a battery powered (or battery and solar powered) device which 
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can deliver an electric shock (Tzanidakis et al., 2023). Animals are directed and 

retained in chosen areas by applying an audible and / or electrical stimulus when 

approaching the electronic boundary (Aquilani. et al, 2022). Whilst the system 

does not completely negate the need for physical barriers (e.g. security for roads, 

property rights) it can be applied as a means of guiding and moving animals based 

on pasture availability and management requirements (Vaintrub et al., 2021). 

There has been significant research into this type of technology, primarily for 

cattle, but also for sheep and goats. Several products have been commercially 

available such as Agersens / eShepherd, BoviGuard, Halter, Monil, NoFence, and 

Vence (Vaintrub et al., 2021; Aquilani. et al, 2022). However, factors such as 

device cost and battery performance, along with available infrastructure and 

network coverage have hindered uptake and implementation. There have also 

been some welfare concerns regarding the repeated need for stimuli observed in 

some individuals, and the effects of prolonged exposure to electric shocks 

(Vaintrub et al., 2021; Aquilani. et al, 2022). Other types of pasture management 

systems include tools for automated grass measurement, e.g. Grasshopper, which 

is integrated with GNSS to provide real-time grass height measurements using 

sonic transmission (Vaintrub et al., 2021).    

 

Other types of management systems include devices such as automatic milking 

systems and automatic feed systems. Automatic milking systems are one of the 

earliest examples of PLF technology, with milking robots first being trialled in 

experimental farms in 1986 and applied within a commercial dairy farming in 1992 

(John et al. 2016). Automatic milking systems have been widely adopted within 

the dairy industry, and advancements in the technology means that milking 

systems can now be applied not only in indoor systems, but also in pasture based 

systems, as well as allowing animals to choose when to be milked across the 24 hr 

period (Monteiro et al., 2021). Electronic milk meters and flow indicators can 

monitor the milk flow and volume of each individual animal, as well as analyse 

milk samples to assess animal health (Simitzis et al., 2022). Today many milking 

robot systems also assess factors such as milk yield, colour, composition (i.e. 

percentages of lactose, fat and protein), blood percentage, and somatic cell 

count. This can provide information regarding yield and productivity, but also on 

animal health and disease detection (e.g. mastitis). Precision feeding systems may 

be conducted at an individual level through dedicated single animal feeders, or at 
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more of a group level; whereby animals are assigned groups based on yield / 

weight, and sorted using automatic drafting systems (Vaintrub et al., 2021). 

Individual automated feeding systems can record the animals ID, time and date of 

feeding, feeding duration, and weight of feed consumed, whilst recent 

developments in automated feeding systems can also tailor the amount and 

composition of feed to ensure nutrient specifications are met (Monteiro et al., 

2021). Feed management systems have been implemented within several sectors, 

but most notably within poultry systems, such as the implementation of the 

Flockman system, which can allow farmers to monitor feed intake and adjust 

based on projected growth trajectories. In addition, this system can also assess 

the effects of environmental factors on growth and health (Neethirajan, 2017). 

 

 

1.1.2.3 Animal location 

 

Location or positioning systems include a variety of devices by which animals can 

be located, or tracked to monitor their movements, both in outdoor grazing 

systems and within buildings in intensive systems (Halachmi et al., 2019). Animal 

position may be classed not just as a specific location, but also positioning within 

references to known points or resources. Continuous monitoring of animal location 

can provide information regarding animal behaviour, health, spatial and resource 

use, and social interactions (Gygax et al., 2007). The basis of most indoor 

positioning systems are wearable on-animal devices (i.e. a tag) which transmit a 

signal, and multiple stationary readers (located throughout the study area) which 

can detect and report these signals. Examples of these systems include radar, 

ultra-wideband (UWB), low frequency positioning (eg. NEDAP and Smartbow), 

RFID, and Bluetooth (Halachmi et al., 2019; Herlin et al., 2021).  

 

Radar systems, such as that by Gygax et al. (2007) use a battery operated 

transponder which transmits a radar signal (attached to animals via a neck collar), 

and multiple base stations at fixed points within a barn which report these signals. 

This system can provide coordinates on the x, y, and z-axis (thus also indicating 

animal posture), however, the accuracy on the z-axis is reported to be affected 

by base station height and orientation to the animal. In addition, barn equipment, 

in particular metal obstacles, such as partitions and feed racks can also interfere 
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on the signal (Gygax et al., 2007). UWB localisation similarly uses animal tags and 

stationary receivers. Animal location within a barn or indoor system is calculated 

based on the arrival time of a UWB tags radio signal to multiple time-synchronised 

receivers (Ren et al., 2021; Benaissa et al., 2023). However, within larger indoor 

systems a high number of receiving devices may be required to provide adequate 

coverage, whilst Benaissa et al. (2023) report a device lifespan of approximately 

4-6 months.  

 

Whilst initially developed as a means of identification, RFID has also been applied 

as a positioning technology (Herlin et al., 2021). Animals are fitted with a form of 

RFID tag, whilst antennas or readers are located throughout the study area, thus 

the animal is ‘seen’ and reported by the reader when within a given operating 

range (Bonneau et al., 2020). However, RFID is considered to have a poor spatial 

accuracy given the typically short range of devices, and therefore more applicable 

as a means of monitoring location in terms of presence / absence within a 

particular area or zone, or to monitor visits to a water or feeding point (Bonneau 

et al., 2020). Similar drawbacks across these technologies include the high number 

of receivers often required for accurate localisation, which in larger indoor 

systems could be substantial, as well as issues regarding signal range, and 

environment / obstacle interference on signals. 

 

GNSS devices are geospatial positioning tools which can estimate locations based 

on triangulation with at least three orbiting satellites (Fogarty et al., 2015). GNSS 

devices can use one or multiple satellite systems such as Global Positioning System 

(GPS – US), GLONASS (Russia), and Galileo (EU). Distances to each satellite are 

calculated based on the time taken for a satellites transmitted electromagnetic 

wave to be received by the GNSS device (Kaplan, 2017). GNSS is one of the most 

extensively research tools within wildlife and livestock monitoring, and many GNSS 

based tools are commercially available, especially for cattle. Some examples of 

these systems include mOOvement, Herddogg, and The CowManger System (dos 

Reis et al., 2021). 
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Other forms of animal localisation include acoustic tags (most commonly 

employed in fisheries), whereby animal position is calculated by triangulating tags 

from multiple receivers (Bonneau et al., 2020). Whilst more recently, computer 

vision has been proposed and tested as a non-invasive method of location 

monitoring, However, the camera type, environment, lighting, and animal 

distance from the camera have been found to influence the accuracy of detection 

(Bonneau et al., 2020).  

 

An emerging promising technology is Bluetooth or Bluetooth low energy (BLE) 

which has begun to be explored over the last few years due to the relatively low-

cost, long-battery life and ability to communicate data wirelessly. BLE has been 

proposed and trialled as a means of animal location based on path loss of a 

transmitted radio signal (Nikodem, 2021). Trials within indoor barn systems and 

small outdoor paddock systems have utilised multiple fixed receivers, with BLE 

tags (which transmit a signal) fitted on animals. Animal position is then calculated 

based on the received signal strength at the fixed receivers. Some studies have 

also proposed and tested the use of combined technologies within grazing systems, 

whereby a proportion of animals are fitted with BLE tags, whilst others within the 

flock or herd are fitted with both a BLE receiver and GNSS (Maroto-Molina et al., 

2019). In addition, BLE has also been investigated as a form of proximity 

monitoring (Sohi et al., 2017; Waterhouse et al., 2019; Paganoni et al., 2021) to 

monitor social interactions or resource use.  

 

Proximity loggers work by recording the date, time and length of an interaction 

with another individual (Handcock et al., 2009). In this instance location is given 

relative to other individuals within the monitored population, as opposed to a 

definitive location. Monitoring animal interactions can provide useful information 

on population and group dynamics, mating events, and disease transmission 

(Handcock et al., 2009).  
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1.1.2.4 Motion sensors / activity 

 

Motion and activity sensors include devices which measure a change in body or 

body-part position, or animal motion and acceleration (Fogarty et al., 2019). An 

early example of a motion sensor is a mercury tilt switch, which is a dichotomous 

switch consisting of a mercury bead and two connecting leads contained within a 

sealed glass chamber. Specific behaviours associated with a change in orientation 

(e.g. head lowering during feeding) were identified through the opening and 

closing of the circuit based on the rotation of the sensor and mercury bead 

(Whitford and Klimley, 2019). However, the last experiments utilising mercury tilt 

sensors were conducted in the 1990s, with other types of sensor (e.g. 

accelerometers) becoming more popular (Fogarty et al., 2018). Devices such as 

inclinometers also measure tilt or the angle of a slope or elevation and have been 

applied to monitor activities such tail raising in cattle, which may be associated 

with calving (Voß et al., 2021), e.g. the commercially available Moocall.  

 

Pedometers measure the number of steps taken by an animal and thus can 

estimate the daily distance travelled (Neethirajan and Kemp, 2021). In addition 

to general activity and patterns, pedometers have also been used for 

identification of specific events – particularly oestrus in cattle (Wathes et al., 

2008; Tekin et al., 2021). However, whilst commercial pedometers can calculate 

lying time, step count, and activity on the sensor, only summaries are typically 

transmitted to farm software (Halachmi et al., 2019). 

 

Accelerometers are electromechanical devices which measure accelerating 

forces, whereby the velocity and orientation of movement are calculated based 

on the voltage generated on microscopic crystals within the sensor (Chapa et al., 

2020). Accelerometers are mounted within wearable on-animal devices, typically 

attached to the foot, neck, head, or ear, thus allowing animal movement to be 

measured in terms of speed and direction (Vaintrub et al., 2021). In terms of 

monitoring livestock behaviour, accelerometers are considered one of the most 

promising PLF technologies (Benjamin and Yik, 2019). Over the last decade, tri-

axial accelerometers, which measure movement on an x, y, and z-axis (by 

measuring the earths gravitational pull in relation to the degree by which the 

device is tilted (Benjamin and Yik, 2019)), and thus also allow for animal posture 
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to be measured, have been widely studied (Fogarty et al., 2018). Applications of 

accelerometers include detection of parturition, detection of lameness, 

monitoring grazing behaviour, energy expenditure, and monitoring changes in 

activity patterns.  Whilst not yet widely commercially available for other sectors, 

there are several sensors within the cattle industry which utilise accelerometers, 

such as IceTag, RumiWatch, MooMonitor, CowManager Sensor, and Heatime HR LD 

system, (Herlin et al., 2021; Neethirajan and Kemp, 2021). 

 

As an extension of this approach studies have also investigated the application of 

inertial measurement units (IMUs) as a means of activity and behaviour 

monitoring. IMUs consist of a 3-axis accelerometer, alongside a 3-axis gyroscope, 

and 3-axis magnetometer, and can therefore measure linear and angular 

accelerations, which can be used to estimate an animal’s trajectory (Achour et 

al., 2019). Studies involving IMUs have largely centred around developing 

behavioural classification models (Andriamandroso et al., 2017; Achour et al., 

2019; Liu et al., 2023; Peng et al., 2024), for application of gait analysis in cattle 

(Fischer et al., 2022), and to monitor grazing behaviour in sheep (Guo et al., 

2018). 

 

 

1.1.2.5 Physiological sensors 

 

Physiological sensors are devices which can measure heart rate, body 

temperature, rumen pH, bodily fluids (such as blood or urine), or even changes in 

production output (e.g. milk yield, egg production) (Nielsen, 2022). Radio 

telemetric thermal sensors can transmit information regarding body temperature, 

and are available as rectal probes, microprocessor controlled temperature 

loggers, or as ruminal boluses (Kasawan et al., 2024). Continual monitoring would 

allow for identification of temperature changes, which may be indicative of 

illness, disease or inflammation, or be utilised for detection of events such as 

oestrus (Kasawan et al., 2024). Other devices such as wearable sweat analysers 

are electromechanical devices which can measure sodium and lactate levels or 

monitor sweat levels as indication of stress, whilst rumen or reticulum boluses can 

measure multiple parameters such as temperature, pH, and rumen activity 
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(Kasawan et al., 2024). Some commercially available options (e.g. eBolus) are also 

able to transmit this data wirelessly, allowing real-time monitoring.  

 

1.1.2.6 Environmental sensors 

 

The environment in which animals are kept can significantly affect animal health, 

welfare and productivity (Fournel et al., 2017; Lovarelli et al., 2020). The majority 

of environmental sensors used in PLF systems to date are typically associated with 

indoor systems to manage conditions within animal housing facilities (Potter and 

Oloyede, 2023); particularly for the dairy cattle sector, and for pigs and poultry. 

Examples of indoor environmental sensors include temperature, ventilation, and 

climate control systems (which can help prevent heat and cold stress), humidity 

and air quality sensors (which can help monitor and prevent respiratory issues and 

diseases); including specific devices to monitor dust, and ammonia, oxygen, and 

carbon dioxide concentrations (Rowe et al., 2019; Lovarelli et al., 2020; Potter 

and Oloyede, 2023). There are also a number of devices to monitor water supply 

quality;including temperature, pH, phosphate and nitrate concentrations (Kaur et 

al., 2023), as well as other environmental factors such as vibration and radiation 

(Rowe et al., 2019).  These types of environmental sensors have largely been 

developed and incorporated into poultry management, such as the commercially 

available ChickenBoy; to monitor gases and air quality (Buller et al., 2020), whilst 

more recent studies have investigated the use of electronic noses and air analysis 

to monitor poultry health and identification of enteric diseases (Halachmi et al., 

2019). However, as highlighted by Fournel et al. (2017) the animals’ environment 

also consists of physiological and behavioural factors, such as the degree of 

crowding, spatial distribution, and social interactions, which may be monitored 

by other types of PLF tools (i.e. cameras and image analysis). Such environmental 

sensors may also be employed within other aspects of the livestock industry, 

including transportation and abattoirs. 

 

Within outdoor systems, environmental sensors include weather stations 

(including real-time or automatic weather stations) which can provide information 

on multiple climatic parameters such as rainfall, temperature, humidity, solar 

exposure, wind speed, cloud cover and atmospheric pressure (Nyamuryekung’e, 

2024). Other individual environmental sensors revolve around soil quality; 
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including temperature (e.g. digital thermometers), moisture (e.g. resistive and 

capacitive sensors), pH (pH soil sensors), and soil nutrient and structure (e.g. 

portable X-ray fluorescence spectrometers and near infrared spectrometers), as 

well as temperature and humidity sensors, atmospheric pressure sensors, rain 

gauge or sensors, and anemometers to measure wind (Brick et al., 2023). Remote 

sensing applications such as drones and satellite imagery / weather satellite can 

also be used to map and monitor climatic conditions, grassland and grazing 

attributes, and can also be integrated with predictive models (Mbuthia et al., 

2022; Nyamuryekung’e, 2024) 

 

1.1.2.7 Cameras 

 

Cameras are a non-invasive tool which can monitor a range of animal-related 

factors, such as individual identification through image analysis and machine 

learning, to monitor animal weight, water, and feed intake, to detect potential 

health issues such as lameness through gait analysis, to measure pain (Neethirajan 

and Kemp, 2021) such as the grimace scale in pigs (Viscardi et al., 2017), as a 

means of animal localisation (Bonneau et al., 2020), and to monitor distribution 

and activity; such as the eYenamic system for poultry (Buller et al., 2020). Various 

types of cameras and image analysis have been developed, largely for indoor 

systems where they can be easily installed, but also within grazing systems.  

 

Thermal cameras use infrared (IR) radiating energy to provide heat-based images 

(thermograms) to measure body temperature. Thermal imaging can therefore 

monitor and detect changes in body temperature and may be applied as a means 

of climate control (e.g. in poultry houses - Halachmi et al., 2019), detecting heat 

stress, oestrus, infection or inflammation (e.g. hoof lesions), and mastitis (Caja 

et al., 2020). Other proposed applications of thermal cameras include combined 

use with unmanned ariel vehicles (UAVs) to located separated or injured animals 

in more extensive systems (e.g. to locate lost lambs) (Caja et al., 2020). 3D 

cameras have been employed as a means of body condition scoring (BCS), to 

measure feed intake (Halachmi et al., 2019), and to successfully detect lameness 

in cattle (Lovarelli et al., 2020). Multi-spectral images from satellites have also 

been used within extensive grazing systems to assess changes in pasture and 

rangeland condition, biomass, and growth rate (Handcock et al., 2009).  
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1.1.2.8 Sound analysis 

 

Sound analysis is a non-invasive method of continuous animal monitoring, whereby 

microphones or sound sensors are mounted within animal housing (Norton et al., 

2019). Sound analysers are one of the few PLF technologies which have been 

primarily developed and studied as a means of monitoring animal health and 

welfare, particularly within the pig and poultry sectors (Norton et al., 2019). 

Within the pig industry, cough sound analysis has been successfully used to 

distinguish between healthy and sick pigs, such as detection of respiratory 

diseases to provide an early warning system to farmers (Ferrari et al., 2008; 

Neethirajan, 2017; Norton et al., 2019). Some commercial options such as 

SoundTalks are available in this area (SoundTalks, 2022). Vocalisations have also 

been classified to identify specific behaviours such as playing, as well as signs of 

stress and / or pain, such as scream detection (Ferrari et al., 2008; Neethirajan, 

2017; Norton et al., 2019). More recently there has also been increased interest 

and research of vocalisation analysis within the poultry sector, such as to monitor 

thermal comfort and environmental factors on chick health (Neethirajan, 2017), 

in relation to growth and feed uptake (Aydin et al., 2014), to monitor social 

separation, and for the detection of disease and other welfare issues such as 

feather pecking (Norton et al., 2019). On-animal microphones and sound analysers 

have also been applied in the monitoring of behavioural aspects, particularly 

surrounding grazing. Acoustic biotelemetry has been applied to investigate jaw 

activity and ingestive behaviour in both cattle and sheep (Galli et al., 2011), whilst 

rumination microphones have been used to detect cud chewing in cows 

(Neethirajan, 2017).  
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1.1.3 Application of PLF in sheep grazing systems 

 

Whilst being less developed than other livestock sectors, there has been growing 

interest in the application of sensors and other wearable technologies within 

sheep research since the late 1990s (Neethirajan, 2017; Fogarty et al., 2018). The 

application of PLF tools within sheep research has previously been reviewed by 

Fogarty et al. (2018), in extensive sheep systems by Silva et al. (2022), and in 

extensive dairy sheep farming by Vaintrub et al. (2021). PLF tools employed within 

research settings have primarily centred around GNSS devices (with almost 50 % 

of studies reviewed by Fogarty et al. (2018) utilising GNSS), as well as motion 

sensors (in particular tri-axial accelerometers), or a combination of both (Fogarty 

et al., 2018; Vaintrub et al., 2021). Alternatively, studies have also investigated 

applications of physiological sensors (such as heart rate monitors, oestrus 

detectors, temperature sensors, urine sensors, and oxygen and respiration 

sensors), with a smaller number of studies investigating jaw and bite sensors, and 

contact loggers (Fogarty et al., 2018). Primary research purposes of PLF tools have 

been to categorize and quantify animal behaviour, to investigate feeding patterns 

and feed intake, to monitor animal position and flock movement, or to validate 

sensors (Fogarty et al., 2018; Vaintrub et al., 2021).  

 

In terms of PLF application within the sheep sector itself, there is typically a poor 

uptake of tools and technologies, although this does vary by country, production 

system, and economic return (Morgan-Davies et al., 2024). Where technologies 

are in place, they typically relate to production and management, such as weigh-

crates, milk meters, EID stick readers, and flock management systems (Morgan-

Davies et al., 2024). EID is perhaps one of the tools with the greatest uptake, 

having become mandatory for sheep and goats in the EU in 2004 (Cappai et al., 

2018; Morgan-Davies et al., 2018), and will become mandatory in Australia as of 

January 2025 (Australian Government, 2024). However, uptake in other areas (e.g. 

western US and New Zealand) where EID is not mandatory has been poorer (Finzel 

et al., 2023). EID systems could significantly aid farmers decision making regarding 

animal management and health by allowing identification of poorly / or well 

performing individuals, or to identify specific traits (Finzel et al., 2023), as well 

as assisting in traceability and disease control (Banhazi et al., 2012). However, EID 

is perhaps most beneficial when applied alongside other management tools such 
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as automatic drafters and weigh scales (Vaintrub et al., 2021). These tools utilise 

EID records for sorting and selection and could therefore also act to reduce manual 

labour associated with animal selection, as this tends to be one of the most labour-

intensive activities. The use of these combined technologies also allows for a 

targeted management approach as demonstrated by Morgan-Davies et al. (2018) 

to provide targeted winter feeding and selective worming treatment. The study 

highlighted potential benefits of a PLF approach within extensive systems not only 

to improve welfare, but also to improve labour efficiency, anthelmintic control, 

and economic resilience. However, whilst extensively tested, stationary 

management tools such as automatic drafters are not yet in widespread use 

(Vaintrub et al, 2021), or in the case of walk-over-weighers (WOW) not yet 

commercially available (Morgan-Davies et al., 2024) despite promising results.  

 

Wearable on-animal sensors have been applied in research settings to investigate 

a range of behavioural and physiological factors within grazing sheep systems. 

GNSS devices have been the most extensively utilised device within sheep 

research, for applications such as monitoring grazing areas in hill sheep (Rutter et 

al., 1997), to investigate sheep grazing patterns, distribution, and use of water 

points in relation to weather conditions (Thomas et al., 2008), as a means of 

assessing shelter-seeking and paddock utilisation in merino ewes (Taylor et al., 

2011), as well as to identify parturition and to assess lamb weaning weights in 

relation to ewe movement and activity (Johnson et al., 2022). In addition, GNSS 

has also been employed with flock / pasture management systems such as virtual 

fencing. Whilst less numerous than devices offered within the cattle sector, 

commercial GNSS devices for sheep include Digitanimal GPS sheep tracker, and 

NoFence (Vaintrub et al., 2021; Digitanimal, 2024).   

 

Within experimental settings accelerometers have been used for behavioural 

classification of ewes and lambs to register movement patterns linked with 

specified behaviours such as resting, grazing, moving, and running or playing 

(Giovanetti et al., 2017; Vaintrub et al., 2021; Price et al., 2022). Recent sheep 

research has also examined the ability of accelerometers to detect specific events 

or states, such as to identify behavioural changes associated with parturition 

(Fogarty et al., 2020), to identify abnormal gait patterns and detection of 

lameness (Barwick et al., 2018), to assess activity and behavioural changes in 
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parasitised sheep (Ikurior et al., 2020), to detect urination events (Lush et al., 

2018), to detect mating behaviour in rams (Mozo et al., 2019), and to monitor 

lamb suckling events (Kuźnicka and Gburzyński, 2017). Whilst many of these 

research studies have demonstrated promising classification of behaviours and 

high success in detecting events, commercial options employing such systems are 

not generally available within the sheep industry.  

 

Physiological sensors could provide insight into the animals health and welfare, 

and response to environmental conditions over time. Studies have investigated the 

use of devices such as heart monitors, respiration belts, and wearable body 

surface humidity and temperature loggers to investigate emotional reactions in 

sheep in response to both positive and negative stimuli (Reefmann et al., 2009). 

Heart rate and body temperature sensors in the form of implantable sensors have 

also been investigated and validated – showing changes in heart rate and 

temperature in relation to diurnal and seasonal patterns (Fuchs et al., 2019). 

However, implantable sensors would require surgery and thus are not a viable 

commercial option. However, other forms of temperature sensors could be 

particularly beneficial for monitoring factors such as heat stress, illness and 

disease. Other applications of wearable sensors include automatic oestrus 

detection to assist farmers in reproductive management (Alhamada et al., 2017).  

 

There is therefore lots of potential in how PLF technologies could be adopted into 

the management of small ruminants. However, in considering how these tools 

could act to improve welfare and animal management it is important to consider 

how the issues in grazing systems may differ from more intensive farming. 
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1.1.4 Challenges to implementing PLF in extensive systems 

 

Where PLF technologies are available for implementation within sheep systems, 

uptake is still typically poor.  Boothby and White (2021) cite the main barrier to 

adoption as the high initial investment cost of implementing devices or systems, 

along with upkeep costs, and a lack of subsidies to support implementation. Lack 

of integration between systems and a lack of support after technology uptake, as 

well as connectivity issues also play a role. There also tends to be a general 

reluctance towards adoption in some instances due to negative experiences 

reported by other adopters, and the level of investment and training required to 

implement some technologies (Boothby and White, 2021). In comparison with 

intensive production systems, there are also additional challenges for the 

development and incorporation of PLF tools within extensive systems (Bahlo et 

al., 2019).  

 

 

1.1.4.1 Data transmission 

 

Whilst intensive farming systems typically have more infrastructure in place which 

can support the integration of PLF systems and allow for data transmission from 

the facilities in which livestock are kept (Tedeschi et al., 2021), data transmission 

within extensive systems is often more complex (Maroto-Molina et al., 2019), 

particularly where the aim is to provide real-time monitoring. The scale of farms, 

and often high livestock numbers means that animals can be dispersed over wide, 

and often remote areas (Bahlo et al., 2019), hence data may need to be 

transmitted over large distances, in areas where electricity and internet networks 

are often absent (Castagnolo et al., 2023) and transmission is typically limited. In 

addition, data transmission may be further confounded by the environmental 

conditions, as factors such as the type of terrain, slope and vegetation cover have 

all been reported to limit and / or interfere with the use of positioning systems 

and wireless communications (Bahlo et al., 2019), whilst in many cases 

communication via copper wire and wi-fi (wireless fidelity) based systems do not 

work within extensive systems (Waterhouse et al., 2019). Options such as the 

Global System for Mobile Communications (GSM) have provided opportunity for 

more frequent update and transfer of information, however, GSM can have 
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inconsistent coverage within rural areas and may not be an energy efficient means 

of monitoring livestock under extensive conditions (Maroto-Molina et al., 2019; 

Castagnolo et al., 2023). However, the introduction of the Internet of Things (IoT) 

and low power wide area (LPWA) networks has enhanced connectivity for the 

development of sensors and smart devices within extensive systems, being more 

energy efficient and relatively inexpensive (Maroto-Molina et al., 2019). LPWA 

technologies such as Sigfox, LoRa (long range), and NB-IoT and Ingenu can provide 

long-range communication, with reported coverage ranges of 30-50 km (SIGFOX), 

10-15 km (LoRa) and ~15km (Ingenu) within rural areas (Centenaro et al., 2016).  

In addition, a single gateway can receive data from thousands of sensors 

(Waterhouse et al., 2019) hence few reception devices would be required to 

provide transmission over large areas. 

 

 

1.1.4.2 Energy and battery life 

 

Within extensive systems, devices will typically need to have a long battery life 

and low energy consumption to be a viable long-term monitoring solution 

(Aquilani, et al., 2022). There may then need to be a trade-off between the range 

over which data can be transmitted and the power requirements to maximise 

device life (Bahlo et al., 2019). Where there are many wireless sensor networks 

(WSNs) operating, high network traffic could result in signal collisions and lead to 

a faster energy depletion because of data retransmission (Anisi et al., 2015). 

Whilst LPWA technologies offer great potential for the development of PLF within 

extensive systems, there may still be some limitations depending on number of 

devices, frequency of broadcasting, and the size of data packets. As there is 

typically a lower level of input and frequency of handling in extensive systems, 

there is further requirements to maximise the operational life of devices and 

minimise the frequency at which maintenance is required (Bahlo et al., 2019), 

particularly for wearable on-animal devices. 
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1.1.4.3 Environmental conditions 

 

In addition to the potential impacts of animals themselves on sensors or other PLF 

tools, devices implemented in extensive systems need to be able to withstand 

variable climate and weather conditions and are more prone to physical damage 

and interference (Aqeel-Ur-Rehman et al., 2014). To protect electronic 

components, devices therefore need to be robust and with a high fault tolerance 

(Bahlo et al., 2019), as factors such as continuous exposure to high or low 

temperatures may reduce the battery life or capacity of wireless sensor nodes 

(Park et al., 2005). 

 

 
 

1.2 Sheep production, management and welfare 

 

The sheep or domestic sheep (Ovis aries) industry is an important farming sector, 

contributing to major products such as meat, wool / hair, milk, and skins (Morris, 

2009). There is an estimated world population of ~1 000 million sheep, with the 

most prominent sheep farming areas occurring in Europe, Asia, Australia, New 

Zealand, and South America (Morris, 2017). Within temperate regions sheep are 

primarily kept for meat production (Morris, 2009), whilst dairy sheep production 

is largely in sub-tropical temperate areas of Asia, Europe, and Africa (Pulina et 

al., 2018). 

 

There are three major management systems used for sheep production: extensive 

(for wool and meat), intensive (typically dairy), and traditional pastoralism 

(Morris, 2017). The type of system in place will vary according to both country and 

product, however, extensive management systems are the most common within 

sheep producing countries (Kilgour et al., 2008). Extensive management systems 

can include both lowland farming systems; with relatively small flocks grazing in 

fenced enclosures, and rangeland management systems; with large flocks on 

unfenced pastures (Kilgour et al., 2008). However, extensive management systems 

are typically characterised by animals which are managed outdoors year-round, 

relying on pasture feeding (often on poorer quality grassland), and with limited 

monitoring and human interaction (Munoz et al., 2019).  
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Sheep in extensive systems are often believed to have a higher welfare than those 

in intensive systems (Goddard et al., 2006), as they are kept in more ‘natural’ 

conditions with greater behavioural freedom and opportunities to control their 

movement (Dwyer and Lawrence, 2008; Munoz et al., 2019). However, sheep in 

extensive systems are exposed to greater environmental challenges (Dwyer and 

Lawrence, 2008). Exposure to extreme conditions, combined with other 

challenges such poor nutrition and body condition, predation risk, and lack of 

shelter are not only issues in themselves but may lead to chronic stress.  

 

The lack of regular inspection within more extensive sheep grazing systems may 

also lead to chronic or untreated disease and / or injury, as issues may go 

undetected for variable lengths of time (Goddard et al., 2006). Common issues 

resulting from reduced human interaction are often related to obstetric 

difficulties and issues around lambing, as well as lameness, flystrike and parasitic 

infection (Dwyer & Lawrence, 2008). Some of these challenges may cause 

significant pain and / or stress, or in more extreme cases be fatal. Furthermore, 

the infrequent or reduced human contact may result in additional stress for sheep 

during handling, transportation, and slaughter than those subject to greater levels 

of interaction (Goddard et al., 2006).  

 

Within extensive sheep systems nutrition remains an important factor in ewe and 

lamb mortality due to the often low nutritional value and quantity of available 

grazing (Morris, 2017). As pregnancy occurs during winter grazing, often a period 

of undernutrition, this can impact on ewe health and productivity (Morgan-Davies 

et al., 2008), and the levels of lamb mortality observed. Undernourishment has 

been found to influence the expression of both maternal and neonate behaviours 

expressed at parturition which may subsequently lead to poor bond development 

and an increased likelihood of ewes deserting lambs (Dwyer et al., 2003). 

 

Indeed, the top welfare challenges identified in extensive sheep systems in 

Australia include ewe and lamb mortality, poor nutrition, intestinal parasites, 

flystrike, mastitis, and the provision of water and shelter (Munoz et al., 2019). 

Whilst specific welfare challenges will vary between countries, relating to the 

production, scale and environment (Munoz et al., 2019), similar welfare issues 
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have also been identified within European countries. Within the TechCare project 

(of which this thesis was part) the top welfare challenges reported by stakeholders 

from nine sheep-producing countries related to nutritional issues (under / 

malnutrition), health issues – in particular lameness, gastrointestinal parasites, 

ectoparasites, and mastitis, as well as poor maternal relationships, mortality and 

reproductive disorders (Morgan-Davies et al., 2024).  

 

 

 

1.3 Potential applications of PLF to address sheep 

management and welfare challenges 

 

Across livestock sectors the development and application of PLF technologies have 

focused on tools and integrated information systems to monitor and improve 

animal productivity and health (Buller et al., 2020). However, more recently there 

has been a shift to incorporate other aspects of animal welfare which could be 

monitored by PLF technologies. In addition, given the environmental, structural, 

and technological challenges associated with more extensive systems such as for 

sheep and goats, PLF technologies applied in grazing systems to date have tended 

to be at the group or flock level, rather than individual level (Buller et al., 2020). 

As discussed previously, many of the PLF tools which have been examined within 

sheep research are also not commercially available. However, research studies 

have demonstrated the potential of various PLF tools to detect and monitor 

aspects of animal behaviour, physiology, location, movement, and interactions, 

which could assist in the management and welfare management of sheep grazing 

systems, by identifying individual animals requiring some form of action.  

 

Within grazing sheep systems infectious diseases and lameness are common 

management and welfare concerns (Morrone et al., 2022; Silva et al., 2022). 

Technologies which can help farmers detect and therefore treat animals at an 

early stage would therefore act to improve welfare and help minimise economic 

losses on farms (Morrone et al., 2022). Proposed benefits of activity monitoring, 

particularly accelerometers or IMUs, include identification and alert of 

parturition, which may help in early detection of dystocia and in reducing lamb 
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mortality (Silva et al., 2022). Monitoring feeding and drinking behaviours such as 

grazing and ruminating would provide insight into animal nutrition and 

gastrointestinal health, which is a main concern within the sheep industry. 

However, many of these tools are still within the development and or validation 

stages for small ruminants (Schillings et al., 2021).  

 

Changes in animal behaviour or deviation from usual activity patterns and 

interactions are perhaps some of the most indicative measures of animal health 

and welfare (Kasawan et al., 2024). Sensors which can monitor animal location, 

movements and activity in real-time could then act as a potential early warning 

of a health or welfare issue (Rutter, 2014). In addition, proximity and location 

monitoring provides information on spatial and resource use – such as feed and 

water points, or use of shelters, as well as flock interactions which could be used 

to monitor disease transmission. One of the most promising technologies in terms 

of localisation and proximity monitoring, across a multitude of industries, is BLE. 

The development of BLE into an energy efficient, low data rate technology makes 

it particularly suitable for use within IoT applications (Jeon et al., 2018). Since 

the aim of PLF is individual animal monitoring in real-time, BLE as a relatively 

low-cost, low weight device which can transmit and communicate information in 

real-time, warrants further investigation for application in extensive sheep 

systems.  
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1.3.1 Applications of BLE  

 

Since the introduction of BLE there has been a growing development and 

incorporation of the technology across multiple sectors, such as for asset tracking, 

contact tracing, health monitoring, and to provide proximity-based services or 

marketing (Spachos and Plataniotis, 2020; Yang et al., 2020). 

 

 

1.3.1.1 Asset tracking & supply chain monitoring 

 

One of the main applications to date has been for asset tracking, both for personal 

belongings (e.g. luggage, bikes, and keys), pets, and within commercial settings 

such as for industrial asset tracking, inventory management within warehouses, 

and for healthcare asset management (Pinto, 2023). This could include tracking of 

equipment or parts, tools, and personnel (Krishnan & Mendoza Santos, 2021). In 

addition to providing asset location, proposed benefits comprise more efficient 

allocation of resources, error reduction, loss prevention, improved maintenance 

and servicing, and cost reduction in terms of time, labour, and asset loss / 

replacement (Pinto, 2023). There has also been significant investment into this 

area, with the development of Apple Inc’s AirTags, Samsung SmartTag’s, Tile and 

other similar applications (Jang et al., 2024).  

 

 

1.3.1.2 Health monitoring 

 

Within the healthcare industry BLE has been applied as a means of contact tracing, 

most notably through mobile contact tracing apps during the COVID-19 pandemic 

(Etzlinger et al., 2021), and, in some studies, using wearable BLE devices and BLE 

beacons within hospital and care home settings (Thompson et al., 2023; Zhang et 

al., 2023). However, BLE has also been proposed for other health monitoring 

purposes, such as detection of wandering behaviour in dementia patients 

(Kolakowski et al., 2019), and as a means of monitoring health and well-being, 

and detection of emergency situations for residents within care homes and active 

and assisted living (KolaKowski et al., 2020). 
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1.3.1.3 Proximity based services and marketing 

 

Within the retail sector, BLE can be utilized as a means of both proximity 

marketing to highlight offers and discounts to customers, as well as offering 

opportunity to monitor and manage store flow, layout and identification of popular 

products. Similarly, within the tourism and entertainment industry BLE can be 

used as a means of providing self-guided tours, providing point of interest 

information, or for networking and directions during events and within smart 

museums (Spachos and Plataniotis, 2020).  

 

 

1.3.2 Applications of BLE in animal monitoring 

 

BLE has also expanded into applications within wildlife and livestock monitoring, 

largely by providing a means by which information collected via other sensors and 

devices can be transmitted. Studies incorporating BLE for this purpose range from 

activity monitoring in crabs and turtles (Kaidarova, et al., 2018), acoustic 

monitoring in birds (Magno et al., 2020), wireless blood pressure monitoring in rats 

(Uemura et al., 2004), and data capture of electric signals in captive harbour seals 

(Kim et al., 2021). Indeed, within the livestock industry several commercially 

available tools and management systems (e.g. livestock RFID readers and weigh 

creates) employ BLE as a means of data communication and connectivity. 

 

The use of BLE as a monitoring tool in and of itself is however in the early stages 

of development, but in comparison with “store-on-board” proximity loggers, 

offers the potential for real-time monitoring. Within the livestock industry, most 

applications of BLE to date have occurred within indoor barn environments, and 

largely for the monitoring and localisation of dairy cows (Tøgersen et al., 2010; 

Trogh et al., 2017; Bloch and Pastell, 2020; Nikodem, 2021; Maxa et al., 2023, Szyc 

et al., 2023). These studies have typically entailed the use of BLE readers at fixed 

reference points within a barn, and BLE devices which broadcast a signal assigned 

to animals via a collar or other form of attachment. Other indoor applications of 

BLE as a PLF tool have also included activity monitoring and investigation of 

resting and feeding areas in pigs (Lee et al., 2022). 
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Within outdoor environments BLE has mainly been applied as a monitoring tool in 

conjunction with other technologies, typically GNSS, where a proportion of 

animals in the herd or flock are fitted with a BLE beacon, whilst some individuals 

are fitted with a GNSS device, which also acts as roving BLE reader for the BLE 

beacons. Maroto-Molina et al. (2019) utilised a combination of GNSS collars and 

BLE tags for location monitoring of both sheep and cattle in grazing systems, whilst 

Vidal-Cardos et al. (2024) employed a combination of GNSS collars and BLE tags to 

monitor cow-calf relationships in beef cattle. Some commercially available virtual 

fencing systems (e.g. Nofence), have now also began to incorporate BLE into their 

monitoring systems. Whilst primarily providing animal location via GNSS, devices 

can also switch to a BLE based location when animals are located within shelters 

or barns, thus conserving battery life of the devices (Nordic Semiconductor, 2018). 

Other proposed methods of animal monitoring and localisation using BLE involve 

the use of UAVs fitted with a BLE reader and GNSS device. Such a system was 

investigated in off-animal studies by Mesquita et al., (2023) who tested the use of 

Apple Inc AirTags alongside a UAV (with mobile phone to read the beacon signals 

and obtain GNSS locations), and by Nyholm (2020) and Vucic and Axell (2022) who 

both investigated the application of BLE tags and UAVs as a means of tracking 

sheep in grazing systems in Norway. Within this system BLE tags were mounted to 

collars and / or ear tags, which could be read by a BLE receiver on-board a UAV 

when flying overhead. Estimated field locations were based on the UAVs GNSS 

position at the time the BLE tag was read.  

 

More specifically within sheep systems, BLE has largely been investigated as a 

proximity monitoring tool, particularly to measure the ewe-lamb relationship. 

Both Sohi et al. (2017) and Paganoni et al. (2021) utilised the BLE component of 

Actigraph GT3X sensors to monitor ewe-lamb interactions for the purpose of 

determining maternal pedigree. Similarly, Waterhouse et al. (2019) reported a 

higher number of ewe-lamb contacts and stronger BLE signal strength in related 

vs unrelated ewe-lamb pairings using a Bluetooth proximity sensor. Commercial 

options utilizing Bluetooth as an alternative to traditional mothering up and 

genomic testing have also been developed for commercial use (e.g. Smart 

Shepherd). The system uses Bluetooth-enabled collars which are worn by ewes 

and lambs for a minimum period of 48-hours to record ewe and lamb interactions 

and proximities. The system is reported to have a high level of agreement (98 %) 
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with DNA based pedigrees, whilst offering a cheaper and less time-consuming 

method of obtaining dam pedigrees. However, the store-on-board method, does 

require data to be downloaded from individual devices upon collar removal, as 

real-time transmission is not currently available.  

 

Whilst several studies and commercially available PLF tools have begun to explore 

the use of BLE as a monitoring tool within different livestock sectors, the majority 

have tended to occur in indoor systems where there has typically been a high 

number of BLE readers covering relatively small areas, or in outdoor systems using 

BLE to monitor close contacts at relatively short distances. However, BLE devices 

continue to be developed, and the advertised operating ranges continue to 

increase, offering greater potential for the application of BLE in outdoor livestock 

systems. In addition, whilst BLE signal strength and range has been investigated 

in multiple indoor scenarios, there are fewer studies which have explored BLE 

range in outdoor systems, especially in the context of on-animal application (Huels 

et al., 2025; Kirkpatrick et al., 2021). Where this has been investigated it has 

typically been over short distance ranges. The overarching aim of this thesis was 

therefore to test and assess the functionality of BLE as potential PLF monitoring 

tool, within the context of outdoor sheep systems.  
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1.4 Aims of the thesis 

 

This thesis was part of the TechCare project, funded by EU Horizon 2020. The 

TechCare project aimed to investigate and develop innovative approaches and 

business models to monitor and improve welfare management in sheep and goats 

through precision technologies. The project aimed to identify PLF tools which 

could monitor and / or manage animal welfare, behaviour, health, or 

performance, testing some of these tools in situ to evaluate their potential for 

application in commercial small ruminant systems.  

 

The primary objective of this thesis was to investigate the potential for a BLE 

system to act as monitoring tool in grazing sheep systems, using a multi-sensor 

device developed for the project. The primary aims of the thesis were to: 

 

1. Characterise the relationship between BLE signal strength and distance in 

outdoor systems. 

2. Assess the application of BLE for animal localisation, and  

3. To investigate the capability of BLE to be utilised as a monitoring tool to detect 

relationships, and changes to these – which may indicate a potential welfare 

or management problem, by applying the BLE system as a mean of monitoring 

ewe and lamb contacts.  

 

Specific aims of the thesis were to: 

 

1. Calibrate devices to assess signal strength and potential operating range of 

BLE in an outdoor field environment and develop distance prediction 

equations whereby the distance between devices can be estimated. The 

calibration also aimed to assess effects of: 

a. device height (Chapters 3 and 4)  

b. line-of-sight (Chapter 4)  

2. Investigate the feasibility of utilising BLE as a means of localisation within 

a sheep grazing system (Chapter 3). 

3. Assess the accuracy / sensitivity of the BLE system in reporting expected 

sheep identities and investigate how this relates to ewe-lamb distance and 

sheep behaviour (Chapter 5). 
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4. Investigate the potential of BLE to monitor the ewe-lamb relationship 

during the lambing and early lactation period (Chapter 6). More specifically 

to: 

a. Monitor changes in ewe-ewe relationships across the pre- to post-

lambing phases. 

b. Detect changes in ewe-lamb relationships based on lamb age, and 

whether this related to lamb performance in the context of lamb 

weight change. 

c. Investigate whether BLE could identify differences in ewe-ewe and 

ewe-lamb contacts between lame and non-lame ewes. 
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Chapter 2 Development of a protype Bluetooth Low 

Energy (BLE) system for sheep studies 

 

 

2.1 Introduction 

 

2.1.1 Bluetooth Low Energy 

 

BLE, also previously known as Bluetooth Smart, Wibree, and Ultra Low Power (ULP) 

(Townsend, 2014; Gupta, 2016), is a short-range wireless communication 

technology which operates using radio waves (Yang et al., 2020). Introduced in 

June 2010 by the Bluetooth Special Interest Group, BLE was developed as part of 

the ‘Bluetooth 4.0 Core Specification’ with the aim of “designing a radio standard 

with the lowest possible power consumption, specifically optimized for low cost, 

low bandwidth, low power, and low complexity” (Townsend, 2014). BLE was 

initially designed for applications in the growing IoT industry, where the earlier 

‘Bluetooth Classic’ (the 1st iteration of Bluetooth) was less efficient. Hence, whilst 

still having similarities to ‘Bluetooth Classic’ they are distinct protocols, with the 

BLE protocol focusing on low latency and energy consumption (Yang et al., 2020). 

To obtain this goal, the basis of BLE is that the radio is turned off as quickly and 

for as long as possible, by transmitting data in short bursts, and spacing connection 

intervals as far as possible over a programable interval (between 7.5 ms – 4 s), 

thus conserving battery life (Townsend, 2014). It is therefore possible for devices 

utilising the BLE standard to operate for months or years on “coin-cell” or smaller 

batteries without recharging or replacement (Gupta, 2016). 

  



54 

2.1.1.1 BLE stack protocol 

 

BLE devices operate following the BLE protocol, which is a layered architecture 

(called a protocol stack) consisting of multiple smaller protocols relating to 

specific areas of operation and data transmission (Afaneh, 2022). These layers 

work together to define how BLE devices can communicate and exchange 

information. There are three main components to the BLE stack; the application, 

which is the highest layer, contains the user interface and defines the logic on how 

data sent and received is handled, whilst the core components, the host and 

controller, are composed of multiple layers, each with a specific responsibility 

(Figure 2.1). Information is passed between these layers via the Host Controller 

Interface (HCI) (Townsend, 2014). The controller (or lower layer) functions are 

typically applied on a Bluetooth chip, to perform low-level operations such as 

discovering nearby devices, making connections, and exchanging data packets. 

The host (or upper layers) then use the low-level processes to conduct more 

complex tasks such as transferring large chunks of data, by splitting them into 

smaller sections and reassembling them (Gupta, 2016).   
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Figure 2.1 Bluetooth Low Energy (BLE) protocol stack - layers defining the 
operation and transmission of information (adapted from Townsend, 2014). 

 

 

 

2.1.1.2 Communication and transmission of data 

 

The role of a BLE device and its interaction with other devices is determined by 

the Generic Access Profile (GAP) layer (Afaneh, 2020). There are two methods by 

which BLE devices can communicate data: broadcasting and connections, each 

requiring two device roles. Broadcasting is a one-way form of communication 

whereby ‘advertising’ packets are periodically transmitted from one device (the 

broadcaster) to a secondary device (an observer or reader), which repeatedly 

scans preset frequencies for any advertising devices (Townsend, 2014). The main 

benefits to this type of communication are that in addition to being fast and easy 

to use, data can be sent to multiple devices at a time. However, as any scanning 

device (observer) can pick up the advertised data, this may not be a suitable 

method of transmission for sensitive data. In contrast, communication via 

“connections” allows for two-way exchange of data packets, via a private and 

permanent connection. In this instance, a central (master) device, repeatedly 
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scans preset frequencies for ‘advertising’ packets by a peripheral (slave) device. 

Once a connection is established the central device dictates the timing of 

periodical exchange of ‘data’ packets between devices (Townsend, 2014). 

However, it should be noted that BLE devices can act as both a central and 

peripheral device and may be connected to multiple other peripheral and central 

devices. The additional protocol layers using this method of communication can 

allow for greater control and organisation of data, and may consume less power 

than broadcasting, as the timed data exchange can allow the radio to be turned 

off for longer periods (Townsend, 2014).  

 

The physical transmission of information between BLE devices is controlled by the 

physical (PHY) layer. The radio uses the 2.4 GHz Industrial, Scientific, and Medical 

(ISM) radio band, also used by Bluetooth Classic and Wi-Fi (Townsend, 2014; Mäkelä 

and Lindskogen, 2018). This band is divided into 40 radio frequency channels 

between 2400 – 2483.5 MHz, each separated by 2 MHz (Afaneh, 2018). Three 

channels (37, 38, and 39) act as the primary advertising channels; used for 

broadcasting, discovery, and initiation of connections between devices. To 

minimise interference between advertising channels, they are spread across the 

radio frequency band, at 2402, 2426, and 2480 MHz for channels 37-39 respectively 

(Townsend, 2014; Mäkelä and Lindskogen, 2018). The other 37 channels, classed 

as data channels, are used for secondary advertising and transmission of data 

following connection between devices (Mäkelä and Lindskogen, 2018). As the ISM 

radio band is shared with other protocols (i.e. Bluetooth Classic, Wi-Fi, Zigbee) 

the BLE standard implements a ‘frequency hopping spread spectrum’ technique. 

Using this method, the radio of connected devices will ‘hop’ between the 37 data 

channels for each connection event, with the value of the ‘hop’ communicated at 

the initiation of the connection (Townsend, 2014). This minimises congestion on a 

single channel, thereby reducing the potential for information to be lost due to 

collision of data packets (Mäkelä and Lindskogen, 2018). 

 

The link layer (LL) controls the operational state of the radio (based on the device 

role outlined by the GAP layer) and determines which actions can be performed. 

There are seven states in which the radio can operate: standby, advertising, 

scanning, initiating, connection, synchronisation, and isochronous broadcasting 
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(Hlapisi, 2023). The focus here will be on the five main states (Mäkelä and 

Lindskogen, 2018): 

 

• Standby: the device is in idle or sleep mode – not sending or receiving 

information (packets). In this state the radio is powered off, hence the 

device requires very little power. 

• Advertising: The device sends ‘advertising’ packets and may also listen 

for and respond to requests from other devices. 

• Scanning: The device is listening for ‘advertising’ packets being 

broadcast by any devices within range and may respond to them. 

• Initiating: The device attempts to establish a connection with another 

BLE device - the device initiating the connection is referred to as the 

initiator.  

• Connection: The radio is connected with another BLE device under one 

of two roles - the initiator from the initiating state will act as the central 

(master) device, with the second device operating as the peripheral 

(slave). 
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The possible states of a given device depend upon the type of connection and the 

device role (Afaneh, 2022), as outlined in Figure 2.2. 

 

 

 

Figure 2.2 Radio states based on the method of communication and device 
role (adapted from Afaneh, 2022). 

 

 

2.1.1.3 BLE range and signal strength 

 

The operating range over which BLE devices can communicate is dependent on 

several factors, such as the operating environment, line-of-sight, antenna design, 

quality of the transmitter and receiver, the enclosure, and device orientation 

(Townsend, 2014). Advertising devices typically have a configurable transmission 

(TX) power, which can be used to increase the strength of the signal transmitted. 

Usually this is across a short programable range of -30 to 0 decibels per milliwatt 

(dBm) but will be dependent upon the specific device and manufacturer. However, 

a higher TX power will reduce the battery life of the device, hence there is often 

a trade-off between battery life and device range (Townsend, 2014). In addition, 

the signal strength reported may still be limited by the receiving antenna.   
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2.2 Design of a multi-sensor device 

 

As part of the overarching TechCare project, a multi-sensor device was 

commissioned from CENSIS: Scotland's Innovation Centre for sensing, imaging and 

Internet of Things (IoT) technologies. The device, named a WISP (wearable 

integrated sensor platform), consisted of an enclosure ~ 12×8×5 cm and weighing 

333 g (Figure 2.3), which contained three sensors: a BLE reader, GNSS receiver, 

and accelerometer, as well as a long range wide area network (LoRaWAN) 

communication module (which transmits data using a wireless modulation 

technique), and an 8 megabyte (MB) flash memory drive. All three sensors were 

programmed to record and report data on a 5-minute duty cycle, both in real-time 

(where LoRa gateway coverage was available), and to the on-board flash drive. 

The sensors were split over a primary and secondary micro board, allowing some 

sensors to stay in a low power mode until required to take some form of action, 

and thus conserve energy. Space was also included within the WISP enclosure for 

an optional BLE beacon to be included, depending upon the purpose of 

application. 
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Figure 2.3 Wearable integrated sensor platform (WISP), containing a 
Bluetooth Low Energy (BLE) reader, global navigation satellite system (GNSS) 
receiver, and accelerometer (~ 12x8x5 cm, 333 g). 
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2.2.1 WISP enclosure 

 

The electronic components of the WISP were contained in an enclosure with an 

ingress protection (IP) rating of 65. The IP rating is a standardised measure of an 

enclosure’s resistance to accidental contact or foreign objects (ingress of dust) – 

1st digit, and protection against liquids – 2nd digit (International Electrotechnical 

Commission, 2024). The resistance to contact / foreign objects is rated from 0 (no 

protection) to 6 (no ingress of dust), hence the WISP enclosure, with a ranking of 

6, is classed as “dust-tight” (International Electrotechnical Commission, 2024). 

The resistance of an enclosure to liquids is ranked from 0 (no protection) to 9 (no 

harmful effects from water projected at high pressure and high temperature). 

With a rating of 5, the WISP is classed as “protected against water jets” 

(International Electrotechnical Commission, 2024), hence, whilst not protected 

from water immersion, the WISP enclosure was considered waterproof and 

suitable for outdoor application. 

 

 

2.2.2 Sensors 

 

2.2.2.1 GNSS receiver 

 

The GNSS receiver was programmed to operate for the first three minutes of each 

duty cycle. WISPs were multi-constellation enabled (GALILEO, GLONASS, GPS), and 

were programmed to report a valid fix once a minimum of 4 satellites were 

tracked. At the end of every duty cycle, a rolling average filter was applied (to 

minimum of 10 valid fixes) to generate a single GNSS location for each duty cycle. 

 

2.2.2.2 Accelerometer 

 

The tri-axial accelerometer remained active for the full duty cycle, and operated 

by calculating the root mean square (RMS) of acceleration across all three (x, y, 

z) axes every 30 s. At the end of the duty cycle the highest RMS recorded was 

reported, hence a single motion index number corresponding to the largest RMS 

of acceleration in a 30 s interval was reported per duty cycle. 
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2.2.2.3 BLE reader 

 

The BLE reader within the WISP (an Observer) was designed to operate alongside 

commercial BLE beacons (a Broadcaster) (Figure 2.4). The BLE components of the 

system operated most simply as a beacon which transmitted (referred to as 

“advertising”) a unique ID, and readers which received and reported these ID’s 

along with the beacon’s received signal strength indicator (RSSI), reported as 

negative values in units of decibels per milliwatt (dBm). The BLE reader within 

the WISP (operating on BLE 4.2) was programmed to report the identity and RSSI 

of the 16 beacons with the highest average RSSI within each duty cycle. Readers 

operated by scanning for 30 s then idling for 30 seconds (s). During each scanning 

window the RSSI of any beacon seen was added to that of any previous adverts. At 

the end of each duty cycle beacons were sorted and reported based on their 

average RSSI (e.g., Total Power (sum of beacon RSSI) / No. of adverts (No. of times 

beacon seen by the reader)), where the beacon reported at beacon rank 1 

exhibited the highest average RSSI for that duty cycle and the beacon at the 

highest reported rank (up to 16) the lowest average RSSI.  
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Figure 2.4 Example of a commercial Bluetooth low energy (BLE) beacon - 
Beacon Type 1 (Shenzhen Feasycom Technology Co., Ltd). 

 

 

2.2.3 BLE beacons 

 

Due to beacon availability and development, three types of commercially 

available BLE beacons were trialled alongside the WISP. Beacon Type 1 was used 

within the first WISP-beacon calibration and localisation studies (Chapter 3), 

whilst Beacon Types 2 and 3 were used in further calibration studies (Chapter 4), 

and in the on-sheep ewe-lamb studies (Chapters 5 and 6). Each of these beacons 

operated on a different version of BLE and thus had different publicised maximum 

BLE advertising ranges (Table 2.1). Regardless of the beacon type, each beacon 

used in the project was programmed with a 4-digit beacon identity prior to use, 

using the “FeasyBeacon” app (Shenzhen Feasycom Technology Co., Ltd), which 

would be reported by the BLE reader within the WISP. These identities were 

assigned based on the last 4 digits of each beacon’s universally unique identifier 

(UUID). For consistency across beacon types and studies, all beacons were set to 

an advertising interval of 1285 milliseconds (ms), and a TX power of 0 dBm. 

  



64 

Table 2.1 Beacon characteristics and settings. 

 Beacon Type 1 Beacon Type 2 Beacon Type 3 

Beacon Name FSC-BP103 FSC-BP108B FSC-BP108N 

Manufacturer FeasyBeacon FeasyBeacon FeasyBeacon 

BLE version 5.0 5.1 5.2 

Chipset TI CC2640R2F Renesas / Dialog 
DA14531 

Nordic nRF52832 

Size 37.8×33.8×7.9 mm 48×37×7.8 mm 48×37×7.8 mm 

Net weight 6.4 g 15 g 14 g 

IP IP40 IP67 IP67 

Operating 
temperature 
range 

-20 to +60°C -20 to +60°C -20 to +60°C 

Estimated battery 
life (Based on 
default settings: 
advertising 
interval 1300 ms,  
TX power 0 dBm) 

1 year 6 years 2 years 

Power supply 
(battery type) 

CR2032 CR3032 CR3032 

Antenna type PCB Coil antenna PCB serpentine 
antenna 

Ceramic antenna 

Default 
advertising 
interval 

1300 ms 1300 ms 1300 ms 

Programable 
advertising range  

0 to 10000 ms 0 to 10000 ms 0 to 10000 ms 

Default TX power 0 dBm 0 dBm 0 dBm 

Programable TX 
power range 

-23 to +5 dBm -19.5 to +2.5 dBm -40 to +4 dBm 

RSSI range 0 to ~127 dBm 0 to ~127 dBm 0 to ~127 dBm 

Maximum 
advertising 
distance 

130 m 400 m (open 
area) 

500 m (open 
area) 

 

* Data obtained from manufacturers data sheets: Beacon Type 1 (Shenzhen 

Feasycom Technology Co., Ltd, a), Beacon Type 2 (Shenzhen Feasycom Technology 

Co., Ltd, b), and Beacon Type 3 (Shenzhen Feasycom Technology Co., Ltd, c). 
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2.2.4 Data reporting 

 

2.2.4.1 Flash memory drive 

 

WISPs recorded and stored data from each duty cycle to the on-board flash 

memory drive (Figure 2.5). Data was retrieved from individual WISPs via a data 

logger app (a frozen python app - using wxWidgets for the graphical user interfaces 

(GUI) elements), using a micro USB to USB cable, which exported and downloaded 

any stored data as a .csv file. 

 

 

2.2.4.2 LoRa 

 

Where LoRa gateway coverage was available, WISPs also transmitted data in near 

real-time via its LoRaWAN communication module. For each duty cycle, the 

gateway would receive a data packet from the WISP, which was uploaded firstly 

to The Things Network (TTN), an open-source network for LoRa. From here, data 

was forwarded through a cloud-based middleware and a decoder, where the data 

was translated and pushed to the final application server, in this case ArcGIS, to 

be stored and downloaded as a .csv file (Figure 2.5). 
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2.2.4.3 Data output per duty cycle 

 

The .csv files contained one row of data per duty cycle, which included: 

• A message ID 

• WISP device ID (via LoRa only) 

• Timestamp (corresponding to the time the data was stored to the flash 

memory drive / or sent via LoRa) 

• Battery voltage 

• GNSS: 

▪ Latitude (degrees) 

▪ Longitude (degrees) 

▪ Altitude (metres above sea level – MAMSL) 

▪ Number of satellites seen 

▪ Horizontal dilution of precision (hdop) – a measure of the GNSS accuracy 

on the horizontal plane. 

• Accelerometer: 

▪ Motion index number 

• BLE reader: 

▪ Beacon ID: 4 digit beacon identity (of up to 16 BLE beacons) 

▪ RSSI value (corresponding to each Beacon ID) 
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Figure 2.5 Illustration of the system and process of data transmission between 
the Bluetooth Low Energy (BLE) beacons, wearable integrated sensor 
platforms (WISPs) and raw data files. 
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2.2.5 Application and attachment of devices 

 

2.2.5.1 WISP attachment 

 

WISPs were designed for use both as a static BLE reader and wearable on-animal 

device (for adult sheep): 

 

1. Static BLE reader (Chapters 3 and 4):  

WISPs were placed inside a plastic zip-lock bag and secured to a cane / wooden 

fence post / plastic electric fence post at the desired height from the ground 

using waterproof duct tape (Figure 2.6).  

 

2. Wearable on-animal device – ewes only (Chapters 5 and 6): 

WISPs were placed inside a plastic zip-lock bag and secured with waterproof 

duct tape; on which the WISP’s ID was recorded in marker pen. WISPs were 

then attached to adjustable neck collars made of wide polypropylene webbing 

and plastic buckle attachment, with a backing layer onto which WISPs were 

fixed by cable ties. As some chafing was noted during the first phase of on-

sheep studies, WISPs were additionally padded with a layer of foam, secured 

with waterproof duct tape, during all further on-sheep phases (Figures 2.7 and 

2.8). 
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2.2.5.2 BLE beacon application 

 

The BLE beacons were also applied in both off-sheep calibration and on-sheep 

studies, where they were attached using one of the following methods: 

 

1. Off-sheep calibration (Chapters 3 and 4):  

During device calibration studies, where beacons were tested at static 

positions, they were either wrapped in cellophane or placed within a zip-lock 

bag and duct-taped to a plastic electric fence posts at the desired height 

(Figure 2.9). 

 

2. Contained with the WISP – ewes only (Chapters 5 and 6):  

Where WISPs were used as an on-animal device, a BLE beacon was also placed 

within the WISP enclosure (Figures 2.3 and 2.8). 

 

3. String - ewes only (Chapters 5 and 6):  

Where ewes were assigned a beacon, but not a WISP, beacons were attached 

simply with sting secured around the neck (Figure 2.10). 

 

4. Collar 1 - weaned lambs (Chapter 3):  

BLE beacons were contained within an adjustable elasticated polyester running 

belt (within a zipped pocket), fitted around the lambs’ neck as a collar (Figure 

2.11). 

 

5. Collar 2 - lambs aged 1 to 45 days old (Chapters 5 and 6):  

Expandable elasticated neckbands with a Velcro closure were handsewn for the 

study. The beacons were contained within a small pouch at the front of the 

collar (worn underneath the lambs neck) to which a small cable tie with the 

beacons 4-digit ID was attached (Figure 2.12). 
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Figure 2.6 Set-up and attachment of a wearable integrated sensor platform 
(WISP) as a static Bluetooth Low Energy (BLE) reader. 

 

 

 
Figure 2.7 Collar design and attachment of the wearable integrated sensor 
platform (WISP) as a wearable on-animal device. 

 



71 

 

Figure 2.8 Attachment of a wearable integrated sensor platform (WISP) on ewe 
as a wearable on-animal device. 

 

 
Figure 2.9 Set-up and attachment of Bluetooth Low Energy (BLE) beacon in 
static off-sheep calibration. 
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Figure 2.10 Attachment of Bluetooth Low Energy (BLE) beacon to ewe via 
string. 
 

 
Figure 2.11 Attachment of Bluetooth Low Energy (BLE) beacon using collar 
type 1. 
 

 

 
Figure 2.12 Attachment of Bluetooth Low Energy (BLE) beacon using collar 
type 2. 
 



Chapter 3 Application of Bluetooth Low Energy 

(BLE) for proximity and location monitoring in 

grazing sheep 

 

 

The studies present in this chapter have been published in animal, “Development 

of a novel Bluetooth Low Energy device for proximity and location monitoring 

in grazing sheep”, Vol 18 (9), September 2024, 101276; available online 25th July 

2024. Provided in Appendix A. 
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3.1 Introduction 

 

Monitoring animal location and proximity can provide useful information regarding 

landscape and resource use, social contacts, and animal performance and 

behaviour (Maroto-Molina et al., 2019). Over time this can also provide 

information on animal activity, which can be a useful indicator of health and 

welfare status (Liu et al., 2018; Nikodem, 2021). However, many of the 

technologies available tend to be impractical for use within grazing systems. Given 

the low value of individual animals and the often large flock sizes, the cost of PLF 

tools will be a factor in the uptake and use of such technologies within small 

ruminant sectors (Umstätter et al., 2008; Maroto-Molina et al., 2019). The 

introduction of IoT and LPWA networks has enhanced connectivity options, and 

along with advancements in technology such as BLE, presents opportunities for 

development of real-time monitoring within extensive systems. Whilst GNSS has 

been one of the most employed sensors within sheep research (Fogarty et al., 

2018), BLE could offer a less power-intensive means of monitoring both novel 

animal proximity and animal location. Several studies have already begun to 

explore the use of BLE within livestock monitoring (Maroto-Molina et al., 2019; 

Lee et al., 2022, Maxa et al., 2023), both in combination with other technologies, 

as a means of localisation within indoor systems (Tøgersen et al, 2010; Bloch and 

Pastell, 2020; Szyc et al, 2023), and within sheep systems to investigate the ewe-

lamb relationship (Sohi et al., 2017; Waterhouse et al., 2019; Paganoni et al., 

2021).  

 

However, BLE signal strength is known to be a noisy measure of proximity (Lovett 

et al., 2020), and whilst there have been several studies exploring BLE signal 

strength and range within indoor environments, there have been fewer in outdoor 

systems (Luciani and Davis, 2013; Mathew et al., 2017). Hence further information 

is required to ascertain how BLE devices would perform within a field setting. 

There were two main aims to this study, the first being the characterisation of the 

relationship between BLE signal strength and distance in an outdoor environment, 

using the purpose-built WISP alongside a BLE beacon. The second aim was to assess 

the use of BLE for the location of grazing sheep. Localisation was trialled in a field 

environment, firstly in a static beacon localisation study, and then an on-sheep 

validation, where a weaned lamb was fitted with a BLE beacon. 
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3.2 Material and methods 

 

The studies within this chapter were conducted using WISPs alongside Type 1 BLE 

beacons, the characteristics of which are detailed in Chapter 2. The calibration 

and static localisation studies were conducted off-sheep and not subject to ethical 

approval. The on-sheep validation study used data obtained from a larger pilot 

study conducted under the scope of the overarching TechCare project. Ethical 

approval for this study was obtained through the Moredun Research Institute’s 

Animal Welfare and Ethical Review Body (ref: E20/21). 

 

 

3.2.1 Calibration study 

 

3.2.1.1 Study design 

 

The WISPs and BLE beacons were calibrated within a field environment to evaluate 

the relationship between a beacon’s reported RSSI and its distance from a BLE 

reader (within a WISP), to assess the BLE signal range, and to develop a prediction 

equation whereby beacon distance from a WISP could be estimated based on its 

reported RSSI (Figure 3.1). Five WISPs were attached to a plastic electric-fence 

post located at a central point within the field. Eight beacons attached to posts 

were rotationally located at log intervals at distances of 1–128 m from WISPs, 

measured using a measuring wheel (Voche, Surveyors metric folding distance 

measuring wheel). Beacons were located at each of these measured distances for 

29-minutes to allow opportunity for WISPs to obtain five possible RSSI readings per 

distance for each WISP-beacon pair. To determine whether WISP or beacon height 

impacted the likelihood of a beacon being received by the reader, or the RSSI 

values reported, both device types were tested at multiple heights. Beacons were 

tested at heights of 0.3 m (representing approximate ewe lying or lamb height) 

and 0.7 m (representing approximate ewe standing height), whilst WISPs were 

tested at 0.3, 0.7 and 2 m (Figure 3.2). 



 

Figure 3.1 Flow diagram indicating the process of analysis for the off-sheep calibration study. 

Abbreviations: RSSI = received signal strength indicator; WISP = wearable integrated sensor platform. 

 

Figure 3.2 Configuration of the off-sheep calibration study, showing the device heights and distances examined, where Bluetooth 
Low Energy (BLE) beacons were tested at log distances of 1 – 128 m from wearable integrated sensor platforms (WISPs). 



3.2.1.2 Range of devices 

 

The maximum measured distance at which a beacon’s signal was reported by a 

WISP was used to assess the BLE range at different WISP and beacon heights. As 

the precise distance at which a beacon’s signal could no longer be reported by a 

WISP occurred at an unknown distance between two actual measured distances, 

the calibration data from each individual WISP-beacon height group was 

structured as interval-censored data sets, whereby for each WISP-beacon pairing 

the lower bound was the greatest measured distance at which the beacon was 

reported by the WISP, and the upper bound the subsequent measured distance, 

from which point the WISP failed to report the beacon. The “survreg” and “surv” 

functions from the survival package in R (version 3.5-5; Therneau, 2023) were 

applied to the data set to fit a Weibull accelerated failure time model. This model 

was considered to encompass the features required to describe the signal strength 

and is often employed to model reliability and survival. The “predict” function 

(version 4.2.2; R Core Team, 2022) was then applied to generate survival curves 

of the probability of a beacon being reported with increasing distance from the 

WISP for each of the WISP and beacon height combinations. 

 

 

3.2.1.3 Development of the distance prediction model 

 

A distance prediction equation was developed from the RSSI values obtained at 

each measured distance during the calibration by applying the “lm” function in R 

(version 4.2.2; R Core Team, 2022) to fit a regression. This was conducted for 

three models: linear, natural log, and inverse square, applied to both the full data 

set collectively, and for each individual WISP-beacon height group. The inverse 

function from the regression (generated for each group) was then applied along 

with the “predict” function to generate predicted distances for given RSSI values 

of -45 to -90 dBm. The three models were assessed based on their CV and R² results 

to select the most appropriate prediction equation for the WISP-beacon heights 

used within each study stage. 
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3.2.2 Static beacon localisation study 

 

3.2.2.1 Study design 

 

A localisation study was conducted on static beacons within an ~60 x 90 m area to 

determine whether beacons could be located based on their RSSI from multiple 

WISPs. The objectives of this study were to assess the error associated with the 

RSSI and distance prediction equation, and to test a multilateration approach as 

a means of localisation, the process for which is outlined in Figure 3.3. Six WISPs 

(numbered 1 – 6) were attached to fence posts at a height of 0.7 m; two located 

along the width of the paddocks (~60 m) at the 15 and 45 m mark, whilst four 

WISPs were located along a partial length of the outer fence line at distances of 

approximately 30, 50, 70, and 90 m. This resulted in an average WISP-WISP 

distance of 50.75 m. Sixteen beacons (labelled Beacon A – P) were attached to 

posts (0.7 m height) and laid out in a grid-like array within the paddock (Figure 

3.4). As WISPs could report a maximum of 16 unique beacon identities within a 

duty cycle, there was no risk of competition between beacons for recording by 

any of the WISPs. WISPs and beacons were located at their designated position for 

a 2-hour period to provide a possible 24 RSSI readings per WISP-beacon pair. 

Locations of each WISP were based on the mean (of 17-24) GNSS coordinates from 

the on-board GNSS receiver, recorded during the data capture window. There was 

a mean difference of 1.02 – 3.03 m between single and mean WISP-GNSS 

coordinates of individual WISPs. GNSS locations for the beacons were obtained 

using the Android app “GPS Logger” (version 3.2.1, Basic Air Data). A separate 

study was conducted to assess the error associated with this app using 2 mobile 

phones to obtain 12 GNSS coordinates per phone for 2 locations. There was a mean 

difference of 0.93 m (SD = 0.57) between individual and mean coordinates for 

Phone 1 (used within the static beacon study), and 1.73 m (SD = 1.13) for Phone 

2. Coordinates obtained by each phone had a mean difference of 2.14 m. 

  



 

 

 

Figure 3.3 Flow diagram indicating the process of analysis for beacon and lamb localisation, as conducted in the static beacon 
localisation and on-sheep validation studies. 

Abbreviations: BLE = Bluetooth low energy; GNSS = global navigation satellite systems; RSSI = received signal strength indicator. 

 

  



 

Figure 3.4 Off-sheep static beacon localisation study layout. 

The 16 beacon global navigation satellite system (GNSS) locations labelled A-P. 
Mean GNSS locations of wearable integrated sensor platforms (WISPs), labelled 
W1-6, along the paddock fence lines. 

 

 

3.2.2.2 Statistical analysis 

 

Flash drive data (selected as the most complete data set) from each WISP was 

downloaded and combined, and the relevant 2-hour window of data selected for 

analysis. Data was reviewed to determine which WISPs had reported which 

beacons and compare variation in RSSI over time. Distances between each of the 

six WISPs (using mean GNSS coordinates), and between each WISP and beacon 

were calculated using the “disthaversine” function from the “geosphere” package 

in R (Version 1.5-18; Hijmans, 2022). BLE based WISP-beacon distances (for each 

possible WISP-beacon pairing) were calculated by applying the RSSI of each beacon 

reading obtained to the distance prediction equation and then calculating the 

overall mean across time for each WISP-beacon pair. These were then compared 

with the WISP-GNSS based distance estimates. To then calculate beacon locations, 

GNSS coordinates of WISPs were first converted from longitude and latitude 
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(WGS84 / EPSG: 4 326) to that of the British National Grid (EPSG: 27 700) using 

the “st_transform” function from the “sf” package in R (Version 1.0-14; Pebesma 

and Bivand, 2023). Final estimated beacon locations were calculated using a 

multilateration approach (Zhou et al., 2012; Luomala and Hakala, 2022) described 

below. Field boundaries for the study area were calculated based on the GNSS 

coordinates of corner and mid-paddock fence posts. 

 

Multilateration localisation method: Applying the multilateration approach, the 

beacon’s predicted distance was plotted as the radius of a circle around the 

reporting WISP, given by: 

 

Equation 3.1 

Predicted distance2  =  (x − WISP longitude)2  +  (y − WISP latitude)2 

 

Where beacons were reported by multiple WISPs, the intersection of the resulting 

circles was solved to generate potential beacon locations, using: 

 

Equation 3.2 

𝐵𝑒𝑎𝑐𝑜𝑛 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1,2  =  
(𝑎 + 𝑐)

2
 +  

((𝑐 − 𝑎)(𝑟0
2  −  𝑟1

2))

2𝐷2
 ± 2

(𝑏 − 𝑑)

𝐷2
 𝜕

𝐵𝑒𝑎𝑐𝑜𝑛 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1,2  =  
(𝑏 + 𝑑)

2
 +  

((𝑑 − 𝑏)(𝑟0
2  −  𝑟1

2))

2𝐷2
 ∓ 2

(𝑎 − 𝑐)

𝐷2
 𝜕

𝑎𝑛𝑑 𝜕 =  
1

4
 √(𝐷 +  𝑟0  +  𝑟1)(𝐷 +  𝑟0  −  𝑟1)(𝐷 −  𝑟0  +  𝑟1)(−𝐷 +  𝑟0  +  𝑟1)

 

 

where: a = 1st WISP longitude; b = 1st WISP latitude; c = 2nd WISP longitude; d = 2nd 

WISP latitude; D = distance between 1st and 2nd WISP; r0 = beacon predicted 

distance from WISP 1; r1 = beacon predicted distance from WISP 2; and ∂ = area of 

a triangle with edge lengths r0, r1, and D. 

 

These points were filtered to remove those which fell outside the paddock 

boundary. The final estimated beacon location was calculated as the mean of the 

potential beacon locations falling within the paddock boundary, and the resulting 

coordinates were compared with the beacons GNSS based location. An example of 

the multilateration process for one of the beacons (Beacon E) is shown in Figure 

3.5. 

 



82 

 

 

 

 

Figure 3.5 Example of the multilateration localisation method used within the 
static beacon localisation study and on-sheep validation. 

a) displays the predicted distances of beacon E, plotted as the radius of a circle from 
each wearable integrated sensor platform (WISP), denoted by W1-6, which reported 
the beacon. 

b) shows the estimated beacon locations - points where the circles intersected and 
which fell within the field boundary. 

c) shows the final Bluetooth Low Energy (BLE) estimated beacon location - the 
mean of points calculated in b, in comparison with the corresponding global 
navigation satellite systems (GNSS) estimated location. 
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3.2.3 On-sheep validation 

 

3.2.3.1 Study design 

 

Localisation and proximity distance using BLE was then validated in an on-sheep 

scenario, where 24 weaned lambs (Texel x Mule) were fitted with collars 

containing a BLE beacon (Collar 1 – Chapter 2), 12 of which also had separate GNSS 

devices (i-gotU 200 or i-gotU 600, Mobile Action Technology). Lambs were all 

released into two adjoining paddocks (~1.4 ha) with connecting open gateway, 

which were surrounded by nine WISPs (Figure 3.6). The WISPs were located at a 

height of 2 m, attached to canes along the fence line. Four WISPs were staggered 

along the length of both outer fence lines (~240 m), whilst one was located at the 

open gateway between paddocks (indicated by W5 within Figure 3.6). 

 

              
Figure 3.6 Layout of the on-sheep validation showing the configuration of the 
two adjacent paddocks. 

Labels W1-9 indicated the mean global navigation satellite systems (GNSS) location 
of the nine wearable integrated sensor platforms (WISPs) located along the 
surrounding fence lines. 
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3.2.3.2 Statistical analysis 

 

The analysis presented here examines a sample of data (24 h) from one lamb, 

wearing both a BLE beacon and i-gotU 200, as a validation of the developed 

distance prediction equation for both proximity monitoring and illustration of the 

use of BLE as a means of localisation in an on-animal scenario. As the most 

complete data set, WISP data was gathered from WISP flash drives for the selected 

day (8 September 2021) and combined into a single .csv file. For each data point, 

the reported RSSI was applied to the prediction equation to estimate the beacons, 

and hence lamb’s distance from the reporting WISP.   

 

Similarly, the lamb’s GNSS data was downloaded from the i-got-u and filtered using 

a similar approach to Hromada et al. (2023), where locations with outlying altitude 

data (< 210 m and > 240 m) were removed from the data set (~1%). A new variable, 

“movement”, was derived: lambs were classed as being stationary or moving 

depending upon whether lamb coordinates remained consistent – moving 0 m 

(stationary), or there was a change in GNSS coordinates (moving) between the 

timestamp of interest and the preceding 5-minutes. Similarly, a variable “distance 

travelled” was calculated using the “disthaversine” function from the 

“geosphere” package in R (Version 1.5-18; Hijmans, 2022) to calculate the total 

distance travelled between the corresponding GNSS coordinates for the reporting 

timestamp and each of the coordinates over the preceding 5-minutes.  A “distance 

travelled group” was assigned based on the “distance travelled”, where 0 m = 

none, > 0-10 m = very low, 10-20 m = low, 20-40 m = mid, and > 40 m = high. GNSS 

coordinates were then transformed from longitude and latitude to British National 

Grid as described previously.  

 

The timestamps of both the WISP (BLE) and i-got-u (GNSS) data sets were then 

rounded to the nearest minute and joined based on the rounded time. To estimate 

lamb locations, data was grouped to find occasions where multiple WISPs reported 

the lamb’s beacon within any independent 5-minute interval (i.e. 00:00:00–

00:04:59, 00:01:00–00:05:59) over the course of the day, giving a total possible 

1436 intervals. As all WISPs operated on independent time intervals, grouped data 

included instances where WISP reporting periods overlapped from between 1-5 

minutes. Where independent intervals resulted in the same groupings of WISPs 
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with the same reporting timestamp, any duplicates were removed. Overall 

“movement” and “distance travelled group” categorisations were therefore 

assigned for each interval – where movement was assigned if listed for any of the 

reporting WISPs, and the highest “distance travelled group” from any of the 

reporting WISPs assigned overall.  

 

Two BLE localisation methods were then evaluated to calculate lamb locations for 

each possible 5-minute interval. For each time interval, a single new BLE 

timestamp was generated by calculating the mean timestamp of all reporting 

WISPs. Similarly, a new GNSS timestamp and coordinates were calculated by 

finding the mean of the GNSS data points within the corresponding interval. The 

first localisation method followed the multilateration approach described 

previously (Figure 3.3). However, in this instance intersecting points which fell 

outside the field boundary were not filtered out, and the final estimated lamb 

location was based on all potential locations generated. 

 

Midpoint localisation method: The second localisation approach was based on 

calculating the midpoint (mean) between estimated coordinates on the straight-

line distance between reporting WISP pairs. This was conducted for every possible 

WISP pairing within the time interval. Initial beacon coordinates were calculated 

from each WISP within a pair by plotting the predicted distance along the straight 

line between the two respective WISPs; calculated as follows:  
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Equation 3.3 

𝑏𝑒𝑎𝑐𝑜𝑛 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1  = 𝑥1 + ((
𝑑1

𝐷
) × (𝑥2 − 𝑥1))

𝐵𝑒𝑎𝑐𝑜𝑛 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1  = 𝑦1 ((
𝑑1

𝐷
) × (𝑦2 − 𝑦1))

𝐵𝑒𝑎𝑐𝑜𝑛 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒2  = 𝑥2 + ((
𝑑2

𝐷
) × (𝑥1 − 𝑥2))

𝐵𝑒𝑎𝑐𝑜𝑛 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒2  = 𝑦2 + ((
𝑑2

𝐷
) × (𝑦1 − 𝑦2))

 

 

where: x1 = 1st WISP longitude; y1 = 1st WISP latitude; x2 = 2nd WISP longitude; y2 

= 2nd WISP latitude; d1 = beacon predicted distance from WISP 1; d2 = beacon 

predicted distance from WISP 2; and D = distance between 1st and 2nd WISP. 

 

 

For that pairing, the estimated beacon location was taken as the mean of these 

two points along the WISP-WISP distance. The final lamb location for each time 

interval was calculated by finding the mean of the estimated locations from all 

pairings of the reporting WISPs. To examine opportunities to scale up, lamb 

trajectories were generated from both BLE localisation methods and compared 

with that of the original GNSS locations reporting every 1 min. Trajectories were 

produced using the “ltraj” function in the adehabitatLT package in R (version 

0.3.27; Calenge et al., 2023) both for the full 24-hour study period and per hour. 
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3.3 Results 

 

3.3.1 Calibration study 

 

The relationship between WISP-beacon distance and RSSI was examined firstly as 

one data set, regardless of WISP or beacon height. Although there was an overall 

decline in RSSI with increasing beacon distance, there was a wide range in the 

RSSI values reported per distance and these values also overlapped between 

distances (Figure 3.7). However, individual WISP-beacon pairs produced similar 

RSSI values across repetitions, typically reporting a consistent RSSI or varying by 

1-2 dBm. Apart from three instances out of 1 463 data points, where there was a 

difference of 8, 9, and 16 dBm (all at distances of 1 and 2 m) pairings varied by 

no more than 5 dBm. Where beacons were reported by a WISP, they were generally 

reported in all five repetitions, particularly at shorter distances of 1-16 m, whilst 

at distances of 32 and 64 m there were more instances of the beacon only being 

reported during some repetitions.  

 

 

Figure 3.7 Beacon received signal strength indicator (RSSI) values reported 
by wearable integrated sensor platforms (WISPs) at measured beacon 
distances at log intervals from 1-64 m, based on combined device height data 
from the off-sheep calibration study. 
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3.3.1.1 Range of devices 

 

The proportion of beacons reported per distance differed between WISP-beacon 

height groups (Figure 3.8). At 16 m all groups reported ≥ 92.5% of beacons, 

however by 32 m this had fallen to 18.5% where both devices were at a height of 

0.3 m. The total number of beacon readings per WISP and beacon for each distance 

is summarised in Tables 3.1 and 3.2.  

 

Two Weibull accelerated failure time models were compared; the first model 

assessing the impact of WISP and beacon height only, and the second model 

assessing the impact of WISP and beacon height, as well as their interaction. A 

likelihood ratio test indicated that the second model provided a better fit, with a 

higher log-likelihood value (-1182.1) than the first model (-1187.5), X2 (2) = 

10.752, p = 0.004626), hence the second (interaction) model was selected for use. 

The Weibull accelerated failure time model indicated that the BLE signal range 

differed according to the height at which the WISPs and beacons were located. 

WISP and beacon heights were both found to be significant factors within the 

model (Table 3.3), with higher device heights resulting in a longer signal range. 

The interaction between WISP and beacon heights was also found to be significant 

at a WISP height of 2 m and beacon height of 0.7 m. The probability of a beacon 

being reported declined at much shorter distances when both devices were 

located at a height of 0.3 m, declining to a 0 % probability at distances beyond ~ 

60 m. In comparison, WISPs at a height of 2 m and beacon height of 0.7 m had > 

80% probability of reporting beacons beyond 60 m, reaching a ~ 0 % probability by 

~ 120 m (Figure 3.9). Setting a 95 % probability threshold the WISP-beacon range 

would therefore be between ~ 8 to 44 m depending upon both the WISP and beacon 

heights, whilst a 75 % probability threshold would give a range of ~ 17 to 66 m. 
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Figure 3.8 Total number of beacons reported per distance by the wearable 
integrated sensor platforms (WISPs) during the off-sheep calibration study. 

This is shown for each WISP-beacon height group, where WISPs were tested at 
heights of 0.3, 0.7, and 2 m, and beacons were tested at heights of 0.3 and 0.7 m. 

 

 

Table 3.1 Off-sheep calibration study summary: total beacon readings 
reported per individual wearable integrated sensor platform (WISP). 

 WISP ID 

Distance 1 2 3 4 5 

1 240 (100%) 240 (100%) 240 (100%) 240 (100%) 240 (100%) 

2 240 (100%) 240 (100%) 240 (100%) 240 (100%) 240 (100%) 

4 240 (100%) 240 (100%) 240 (100%) 240 (100%) 239 (99.6%) 

8 240 (100%) 240 (100%) 240 (100%) 240 (100%) 239 (99.6%) 

16 236 (98.3%) 234 (97.5%) 240 (100%) 239 (99.6%) 230 (95.8%) 

32 232 (96.7%) 148 (61.7%) 141 (58.8%) 130 (54.2%) 156 (65%) 

64 158 (65.8%) 71 (29.6%) 33 (13.8%) 70 (29.2%) 90 (37.5%) 

128 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Total no. 

beacon 

readings 

1586 

(82.6%) 

1413 

(73.6%) 

1374 

(71.6%) 

1399 

(72.9%) 

1434 

(74.7%) 
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Table 3.2 Off-sheep calibration study summary: total beacon readings 
reported per individual beacon. 

 Beacon ID 

Distance 1 2 3 4 5 6 7 8 

1 150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

2 150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

4 150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

149 

99.3 % 

8 150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

149 

99.3% 

16 150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

150 

100 % 

129   

86 % 

32 105   

70 % 

100   

67 % 

92   

61.3 % 

105   

70 % 

101   

67 % 

88     

59 % 

123    

82 % 

93     

62 % 

64 50     

33 % 

46     

31 % 

49   

32.7 % 

63     

42 % 

45     

30.0 % 

49     

33 % 

92     

61 % 

28     

19 % 

128 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Total no. 

beacon 

readings 

905   

75 % 

896   

75 % 

891   

74 % 

918   

77 % 

896   

75 % 

887   

74 % 

965   

80 % 

848   

71 % 
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Table 3.3 Summary of the Weibull accelerated failure time model of beacon 
distance to failure of being reported, based on wearable integrated sensor 
platform (WISP) and beacon height during the off-sheep calibration study. 

Parameter Value SE z p-value 

Intercept1 3.4234 0.0288 118.84 <2 × 10-16 

WISP height 

0.3 m Reference WISP height 

0.7 m 0.4677 0.0409 11.45 <2 × 10-16 

2 m 0.8669 0.0430 20.15 <2 × 10-16 

Beacon height 

0.3 m Reference beacon height 

0.7 m 0.3039 0.0403 7.55 4.4 × 10-14 

WISP height × Beacon height 

WISP 0.3 m × 

Beacon 0.3 m Reference WISP × Beacon height 

WISP 0.7 m × 

Beacon 0.7 m 0.0769 0.0592 1.30 0.194 

WISP 2 m × 

Beacon 0.7 m -0.1235 0.0596 -2.07 0.038 

Log (scale)2 -1.0414 0.0262 -39.76 <2 × 10-16 

 

1 Intercept as given by the survreg function is the log of the standard 
parameterisation of the Weibull distribution scale parameter. 

2 Log (scale) as given by the survreg function is the natural log of the scale 
parameter (Scale = 0.353, x2 = 662.06 (5), p = 7.8 x 10-141), where scale is the 
reciprocal of the standard parameterisation of the Weibull distribution shape (hence 
shape = 1/0.353 = 2.83). 
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Figure 3.9 Bluetooth Low Energy (BLE) signal survival curves generated from 
the off-sheep calibration study. 

Where the y-axis indicates the probability of a beacon signal being reported by a 
wearable integrated sensor platform (WISP) beyond that distance. W0.3-B0.3 
indicates a WISP and beacon height of 0.3 m, W0.3-B0.7 a WISP height of 0.3 m 
and beacon height of 0.7 m, W0.7-B0.3 a WISP height of 0.7 m and beacon height 
of 0.3 m, W0.7-B0.7 a WISP and beacon height of 0.7 m, W2-B0.3 a WISP height 
of 2 m and beacon height of 0.3 m, and W2-B0.7 a WISP height of 2 m and beacon 
height of 0.7 m. 

 

 

 

3.3.1.2 Development of the distance prediction model 

 

Three prediction models (linear, natural log, and inverse square) were then 

applied to the obtained RSSI values for both the full calibration study data set and 

individually for each WISP-beacon height group. Comparison of the models, with 

the resulting SDs, CVs, and upper and lower confidence intervals of mean 

predicted distances, for each measured distance is provided within Appendix B, 

along with each model’s adjusted R2. Of the three models tested, the natural log 

model resulted in the highest adjusted R2 values across all WISP and beacon height 

combinations and was selected for use in the distance prediction equation. As the 

BLE range and proportion of beacons reported varied with WISP and beacon height, 

the prediction equations applied within the static beacon localisation study and 
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on-sheep validation corresponded to the WISP and beacon heights used in each 

scenario. We therefore report on two distance prediction equations, the first 

applies to the static beacon localisation study, and is based on a WISP and beacon 

height of 0.7 m (equation 3.4), and the second prediction equation is based on a 

WISP height of 2 m and combined beacon heights of 0.3 and 0.7 m (to equate to 

sheep both lying and standing) which was applied to the on-sheep validation 

(equation 3.5). For prediction equation 1, the regression resulted in a distance 

prediction equation of: 

 

Equation 3.4 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑒−7.468966 −(0.126271 ×𝑅𝑆𝑆𝐼) 

(adjusted R2 = 0.7517, F (1, 1 290) = 3 910, p < 0.0001). 

 

Whilst for prediction equation 2, the regression gave a distance prediction 

equation of:  

 

Equation 3.5 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑒−9.501993 −(0.151980 ×𝑅𝑆𝑆𝐼) 

(adjusted R2 = 0.695, F (1, 2 645) = p < 0.0001). 

 

The prediction equations generated for each of the WISP-beacon height groups, 

and the relationship between RSSI and distance are shown in Figure 3.10. All 

prediction equations resulted in similar distance estimations for RSSI values of 

approximately -45 to -75 dBm, covering an estimated distance range of ~0–8 m, 

after which point the prediction equations began to diverge in their estimations. 

At lower RSSI values of -80 to -90 dBm there was much greater variation in the 

distances estimated by the different prediction equations, and a greater change 

in distance estimation between RSSI values where WISPs and beacons were located 

at higher heights. For example, at a WISP and beacon height of 0.3 m a change in 

RSSI from -89 to -90 resulted in a difference in distance estimation of 2.24 m, 

whilst at a WISP height of 2 m and beacon height of 0.7 m there was a difference 

of 11.45 m. In terms of the on-sheep validation, this means that a lower RSSI value 

is likely to be reported by lambs lying down vs standing at the same distance. 
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Figure 3.10 Comparison of the off-sheep calibration regression lines. 

Where estimated beacon distances were calculated from received signal strength 
indicator (RSSI) for each of the wearable integrated sensor platform (WISP)-beacon 
height group prediction equations. WISPs were tested at heights of 0.3, 0.7, and 2 
m, and beacons were tested at heights of 0.3 and 0.7 m.   

 

 

3.3.2 Static beacon localisation study 

 

3.3.2.1 Received signal strength indicator and distance prediction equation 

 

During the static beacon study, WISPs reported a large proportion of messages via 

LoRa, 141 of a possible 144 messages (98 %), however flash drive data was selected 

for analysis being the most complete data set. Fifteen of the 16 beacons were 

reported by at least one WISP during the study period, with individual WISPs 

reporting between 6 – 13 beacons, thus generating at least one RSSI reading for 54 

of 96 possible WISP-beacon pairings (56 %). The total number of beacons reported 

per WISP, and corresponding number of RSSI readings is summarised in Table 3.4. 

WISP-beacon distances ranged from 1.93 to 97.77 m, and whilst RSSI readings were 

reported for 38 of the 44 WISP-beacon pairings (86 %) located < 63 m apart, RSSI 

readings were obtained for only 16 of 52 WISP-beacon pairings (31 %) when > 63 

m apart. However, this was the distance at which the Weibull survival analysis 

estimated a 50 % probability of a beacon being reported beyond.  
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Table 3.4 Total number of received signal strength indicator (RSSI) readings 
(out of 24) for each wearable integrated sensor platform (WISP)-beacon 
pairing during the off-sheep static beacon localisation study. 

 

 WISP ID  

Beacon ID 1 2 3 4 5 6 

Total no. of 

WISPs 

Reporting 

A -- 14 -- 24 23 -- 3 

B 8 14 21 23 23  5 

C -- -- -- -- -- -- 0 

D 1 -- -- -- 23 1 3 

E 9 22 -- 24 23 24 5 

F 24 4 24 24 -- -- 4 

G 24 22 24 24 -- -- 4 

H 1 2 -- 1 23 24 5 

I 24 22 24 -- -- -- 3 

J -- -- -- -- 23 24 2 

K 24 22 24 -- -- -- 3 

L 24 -- -- -- -- -- 1 

M 24 -- -- -- 23 24 3 

N 24 22 24 24 1 -- 5 

O 24 -- -- 1 -- -- 2 

P 24 22 24 24 23 8 6 

Total no. of 

beacons 

reported 13 10 7 9 9 6 54 
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Where multiple RSSI readings for a WISP-beacon pair were obtained across the 2-

hour data collection period, reported RSSI values had a maximum difference of 6 

dBm and mean difference of 2.21 dBm. Estimated beacon distances from WISPs 

were calculated by applying the reported RSSI values to equation 3.4, as this used 

the 0.7 m height settings. The final estimated beacon distance was classed as the 

mean predicted distance generated from all RSSI values for that pairing (Figure 

3.11).  Overall, there was a mean underestimation of 12.13 m (SD = 15.97) by the 

prediction equation in comparison with the WISP-GNSS estimated beacon 

distances. Of the 54 WISP-beacon pairings for which a distance was obtained, 21 

beacons (39 %) were estimated to within 10 m of the GNSS distance, and 41 

beacons (76 %) to within 20 m.  The largest differences between GNSS and BLE 

distance estimations occurred at distances over 64 m, which was beyond that of 

the calibration data, and the 50 % probability of being reported. 

 

 

 

Figure 3.11 Comparison of the estimated distances between each wearable 
integrated sensor platform (WISP) and beacon in the off-sheep static beacon 
localisation study. 

Calculated using Bluetooth Low Energy (BLE) - based on the mean received signal 
strength indicator (RSSI) and applying prediction equation 1, vs distances calculated 
based on global navigation satellite systems (GNSS). 
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3.3.2.2 Localisation: static beacons 

 

Applying the predicted distances to the multilateration method (with a minimum 

of two intersecting WISPs reporting a given beacon) allowed locations for 11 of 

the 16 beacons to be generated (Table 3.5). The localisation error was classed as 

the distance between final estimated beacon locations and their respective GNSS 

coordinates. The error ranged from 5.34 – 37.34 m, with a mean distance of 22.02 

m (SD = 9.77). Where beacons were unable to be located using the multilateration 

approach, this was either the result of not being reported by the required number 

of WISPs (Beacons C and L), or the predicted distances resulted in circles which 

did not intersect (Beacons D, I, J). 

 

 

Table 3.5 Summary of the off-sheep static beacon localisation study, 
indicating the number of wearable integrated sensor platforms (WISPs) 
reporting each beacon, and the associated localisation error. 

Beacon ID 

No. of reporting 

WISPs 

No. of 

intersecting 

WISP pairs 

Beacon 

localisation error 

(m) 

A 3 1 28.11 

B 5 8 5.34 

C 0 -- -- 

D 3 0 -- 

E 5 4 24.13 

F 4 3 32.42 

G 4 2 11.57 

H 5 6 37.34 

I 3 0 -- 

J 2 0 -- 

K 3 1 23.83 

L 1 -- -- 

M 3 1 22.77 

N 5 3 14.00 

O 2 1 28.89 

P 6 4 13.81 
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3.3.3 On-sheep validation 

 

3.3.3.1 Received signal strength indicator and distance prediction equation 

 

Of the 24 lambs within the study, data from a single lamb (“most average” lamb) 

was selected as a proof of concept and illustration of the system. The lamb 

selected for analysis had a total beacon count of 323 of a possible 2 592 messages 

(12.46 %) reported for the chosen study day. This was considered typical with 

beacon counts obtained for other lambs, which ranged from 197 – 454, with an 

overall mean beacon count of 280 (based on all 24 lambs) and mean beacon count 

of 314 based on the 12 lambs for which GNSS data was obtained. This averaged at 

1.12 WISP readers reporting the selected lamb’s beacon in each 5-minute interval, 

however, distribution in time and space was very varied. Individual WISPs reported 

between 17 (5.90 %) and 64 (22.22 %) RSSI readings, of a maximum 288. This was 

not unexpected as the paddock was ~236 m in length, which was beyond the WISP- 

beacon range, and therefore not possible for every WISP to report on every 

occasion. However, the staggering of WISPs around the paddock resulted in a 

maximum distance of 73 m between WISPs along each paddock length, and 77 m 

between WISPs located on the opposite fence line. The maximum distance of a 

lamb’s beacon from at least one WISP at any given time would therefore be ~39 

m, a distance at which the Weibull accelerated failure time model indicated that 

> 90 % of beacons would be reported beyond. 

 

In comparison with the WISP-beacon mean GNSS estimated distances, the 

corresponding BLE predicted distances resulted in an error ranging from an 

underestimation of 104.22 m to an overestimation of 70.72 m, and mean 

underestimation of 1.59 m (SD = 18.52) (Figure 3.12). Overall, equation 3.5 

underestimated beacon distance, however mean errors by individual WISPs varied 

from an underestimation of 9.09 m to an overestimation of 7.69 m. Instances 

where the lamb was considered stationary resulted in a mean underestimation of 

0.40 m (SD = 17.72) and moving points in a mean underestimation of 2.80 m (SD = 

19.23); t (1 638.9) = -2.64, p = 0.008. A one-way ANOVA also found a difference in 

prediction error between “distance travelled group”, (F (4, 1 651) = 16.24, p = 

4.74 × 10-13), with Tukey’s HSD post hoc tests indicating a higher prediction error 
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in “low” vs “high” levels of movement (p = 0.043) and “low” vs “mid” levels of 

movement (p = 0.093). 

 

 

Figure 3.12 Comparison of estimated distances between wearable integrated 
sensor platforms (WISPs) and the lamb (beacon) during the on-sheep 
validation. 

Calculated using Bluetooth Low Energy (BLE) – by applying prediction equation 2, 
vs distances calculated based on global navigation satellite systems (GNSS). 

 
 

 
3.3.3.2 Localisation: on-sheep 

 

The lamb’s beacon was reported by a maximum of 4 of 9 WISPs during any given 

independent 5-minute interval (i.e. 00:00:00–00:04:59, 00:01:00–00:05:59). In 

most cases the lamb was reported by a single WISP, whilst reported by two or more 

WISPs in 26 % of intervals (Table 3.6). There were also periods during which the 

lamb was not observed by any WISP, the longest of which was a period of 1 h 8 

min. Both localisation methods were then applied and filtered to ensure unique 

groupings of reporting WISPs across intervals. The midpoint method generated a 

greater number of lamb locations, primarily where there were just two reporting 

WISPs (Table 3.7).  
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Table 3.6 Summary of the on-sheep validation, indicating the number of 
wearable integrated sensor platforms (WISPs) reporting the lamb’s beacon 
within any independent 5-minute interval. 

No. of reporting WISPs No. of intervals % of intervals 

0 277 19.29 

1 788 54.87 

2 276 19.22 

3 64 4.45 

4 31 2.16 

Total no. of Intervals for 

day 1436 100 

 

 

Table 3.7 Summary of the number of lamb locations generated within the on-
sheep validation, by localisation method. Abbreviations: WISPs = wearable 
integrated sensor platforms. 

 No. of lamb locations generated 

No. of reporting WISPs Multilateration Method Midpoint Method 

2 69 111 

3 27 30 

4 9 9 

Total no. of locations 105 150 

 
 

 

When the resulting lamb locations were compared with the lamb’s mean GNSS 

coordinates for the corresponding interval, the distance between locations (the 

localisation error), ranged from 1.39 – 74.67 m using the multilateration method, 

and 0.87 – 71.58 m using the midpoint method (Figure 3.13). The multilateration 

method resulted in a slightly higher localisation error with a mean of 23.77 m (SD 

= 12.49), whilst the midpoint method resulted in a mean of 19.00 m (SD = 11.00); 

t (205.38) = 3.15, p = .002. There was also a greater proportion of locations 

estimated to within 10 and 20 m of the GNSS location using the midpoint method, 

with 26 of 150 locations (17.33 %) within 10 m and 89 of 150 locations (59.33 %) 

within 20 m. In comparison, the multilateration method estimated 9 of 105 

locations (8.57 %) to within 10 m, and 44 of 105 locations (41.90 %) to within 20 

m. The midpoint method appeared to generate similar mean localisation errors 
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for both 2, 3, and 4 reporting WISPs, of 19.20, 18.05, and 19.76 m, respectively. 

Mean localisation errors appeared marginally higher with an increased number of 

reporting WISPs for the multilateration method, with mean localisation errors of 

22.55, 25.42, and 28.19 m. However, due to the low number of observations where 

there were 4 reporting WISPs, this was not analysed further.  

 

 

 

 

Figure 3.13 Comparison of distance between Bluetooth Low Energy (BLE) 
estimated lamb locations and corresponding mean global navigation satellite 
systems (GNSS) lamb locations (the localisation error) for both localisation 
methods. 

Star indicates the mean localisation error. 
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A two-way ANOVA showed no statistically significant interaction between the 

localisation method and movement variable - lamb moving vs stationary (F (1, 251) 

= 0.90, P = 0.34), however simple main effects analysis indicated that both 

localisation method (p = 0.001) and movement (p = 0.043) had an effect on the 

localisation error. There was very little difference in mean localisation error 

however between moving and stationary points within both localisation methods. 

The multilateration method resulted in a mean localisation error of 21.01 m (SD = 

12.02) for stationary and 25.68 m (SD = 12.54) for moving points; t (92.876) = 1.92, 

p = 0.058, whilst the midpoint method resulted in slightly lower mean localisation 

errors of 17.90 (SD = 10.16) for stationary points and 19.72 (SD = 11.51) for moving 

points; t (134.6) = 1.01, p = 0.31. Thus, regardless of the localisation method, the 

error was always greater when the lamb was moving as opposed to stationary, and 

similarly the error was greater using the multilateration method regardless of 

whether the lamb was moving or stationary. However, the effect of lamb 

movement on the error does not appear to be dependent on the localisation 

method or vice versa. 

 

When compared based on the lamb’s “distance travelled group”, instances where 

the lamb had a very low level of movement resulted in the highest mean 

localisation errors, using both the multilateration and midpoint methods (Figure 

3.14). A one-way ANOVA indicated that there was a difference in localisation error 

between “distance travelled group” within both the multilateration (F (4, 100) = 

2.70, p = 0.035) and midpoint methods (F (4, 145) = 2.86, p = 0.026). Tukey’s HSD 

post hoc tests found that for the multilateration method the mean localisation 

error was higher in instances where the lamb had a “very low” level of movement 

compared with both “mid” (p = 0.097) and “none” (p = 0.037). Whilst for the 

midpoint method there was a higher mean localisation error for “very low” 

compared with a “mid” level of movement (p = 0.065). 
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Figure 3.14 Comparison of distance between Bluetooth Low Energy (BLE) 
generated lamb locations and mean global navigation satellite systems 
(GNSS) lamb locations by the distance travelled group. 

Star indicates the mean distance (m). 

 

 

3.3.3.3 Lamb trajectories 

 

Given the low total number of lamb locations generated by both localisation 

methods, the trajectories produced from the BLE were based on much fewer data 

points than the full GNSS data. When split into hourly trajectories there were six 

hours for which the multilateration method, and three hours for which the 

midpoint method failed to produce a single location. During hours in which 

trajectories were generated, these were based on a maximum of 14 

(multilateration) and 16 (midpoint) locations. The GNSS was set to report every 1-

minute, however, some locations were given more frequently, and as a result 

hourly trajectories contained between 58 and 71 lamb locations. An example 

trajectory from 0100 h - 0200 h is displayed in Figure 3.15; chosen as this period 

contained the greatest number of data points from both BLE localisation methods, 

as well as 59 GNSS locations. Whilst having similar start and end points for the 
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hour, the trajectories generated by both BLE methods show greater movement 

patterns and changes in direction than displayed by the GNSS trajectory, which 

indicated that lamb travelled ~40 m during this period. This pattern was similarly 

observed across hourly trajectories, including those where the GNSS indicated that 

the lamb was stationary throughout. 

 

 

 

Figure 3.15 Lamb trajectories from 0100 h – 02:00 h comparing the full global 
navigation satellite systems (GNSS) data for the hour with Bluetooth Low 
Energy (BLE) trajectories using the multilateration and midpoint localisation 
methods. 

  

Start point 
 
End point 
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3.4 Discussion 

 

3.4.1 Received signal strength indicator: distance, device height, 

and range 

 

One of the aims of this study was to characterise RSSI in terms of beacon distance 

from the BLE reader within the WISP and investigate the potential range and 

limitations of the BLE devices in an outdoor environment. As observed from the 

overall pattern of the calibration study, there is a natural decrease in the strength 

of a radio wave over distance, known as the path loss (Nyholm, 2020). This trend 

of RSSI declining with increasing beacon distance from the WISP was observed 

across all WISP-beacon height groups. However, within each of the measured 

distances there was a large range in the RSSI values reported, and these values 

would often overlap between distances. RSSI is known to be a noisy measure of 

proximity, and this overlap in RSSI values being reported across a range of 

distances has also been found within a barn system (Nikodem, 2021) and other 

indoor environments (Vanheel et al., 2011). However, whilst there was a large 

overall range per distance, there was in-fact very little variation in signal strength 

of individual WISP-beacon pairings across repetitions, with most pairings differing 

by 2 dBm or less. This was the case across distances, although at 32 m and 64 m, 

there were fewer overall instances of beacons being reported, and more occasions 

where beacons were reported by WISPs during only some repetitions. The ranges 

in RSSI per distance, even within WISP-beacon height groups, therefore, indicate 

that a proportion of the variation observed is a result of the specific devices used, 

and differences arising between individual WISP and beacon pairings. This was 

particularly evident at a WISP and beacon height of 0.3 m, where only one of the 

five WISPs reported beacons at distances of 32 and 64 m. As a result, this could 

make standardising a distance prediction equation for a large number of devices 

more challenging.  

 

As indicated by the Weibull accelerated failure time model (Figure 3.9), depending 

on the threshold set as an acceptable proportion of beacons being reported, the 

functional range of the BLE devices will be reduced at lower WISP and beacon 

heights. Triguero‑Ocaña et al. (2019) similarly found a decreased probability of 



106 

devices being received with increasing distance (up to 20 m) in proximity loggers, 

and a decreased signal strength when devices were located at a height of 0 m 

compared to 1 m. The presence of vegetation was also found to decrease the 

signal strength, with a greater impact at further distances. Whilst conducted 

across much shorter distances of 2 m, Kirkpatrick et al. (2021) also report an 

increased device range in proximity loggers when the receiving devices were 

located at a higher height, and that mean RSSI values were lower in long grass 

compared to cut grass, indicating that vegetation was also likely influencing the 

signal strength. 

 

The operating range of BLE devices and the signal strength reported will be 

influenced by the transmission power as well as the transmitting and receiving 

antennas design and location (Townsend et al., 2014), all of which will differ to 

some degree between individual beacons and WISPs. The operating environment 

of the devices will also impact on the signal strength (Townsend et al., 2014), and 

obstacles located between the transmitter and receiver, may result in absorption, 

reflection or scattering of the signal (Goldsmith, 2005). This could act to alter the 

reported RSSI from that if there had been a clear line of sight between devices, 

or in some cases prevent the beacon from being reported. These factors make the 

translation of RSSI values into a corresponding distance challenging in an outdoor 

environment, where obstacles within the field (i.e., fences, water troughs, and 

vegetation), as well as the field topography, weather conditions, and the animals 

themselves all have the potential to interfere with the signal. When using the BLE 

beacons on sheep, the placement of the beacons, as well as their behaviour, 

posture, and orientation to the reporting WISP at a given time could therefore 

influence both the likelihood of the beacon being received by the reader, and on 

the RSSI value which is reported. Instances where the lamb is lying down, or 

grazing (and the beacon is in a lowered position) are therefore likely to have a 

reduce probability of being reported, in comparison with a lamb standing or 

actively walking with head and neck erect at the same distance, particularly as 

that distance increases. 
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3.4.2 Distance prediction equations 

 

As both WISP and beacon height was found to influence the potential range of the 

BLE signal, multiple distance prediction equations were developed from the 

calibration data to correspond to the WISP and beacon heights used within each 

of the studies, rather than applying one single equation. Equation 3.4, used within 

the static study, had an overall tendency to underestimate the WISP-beacon 

distance, with a mean underestimation of 12.13 m. However, the prediction 

equation was able to estimate 76 % of the beacons to within 20 m of the WISP-

GNSS estimated beacon distance, and 39 % to within 10 m. Beacons located at 

distances over 60 m resulted in the largest underestimations compared with WISP-

GNSS distances and tended to have multiple beacons located between them and 

the reporting WISP. At these greater distances, variations in RSSI had potential to 

have a greater impact on the predicted distance. Small changes in RSSI resulting 

in large changes in distance estimation have been found within other radio 

frequency transceivers (Mukhopadhyay et al., 2015). However, some of the 

differences observed between the predicted and WISP-GNSS estimated distances 

will also include error associated with both the WISPs GNSS receiver and the GPS 

logger app used to obtain the beacon coordinates. Typically, GNSS systems are 

considered accurate in a range of 5 – 30 m (Maroto-Molina et al., 2019). Within 

this study, the WISPs had a grand mean error of 1.69 m between individual and 

mean GNSS coordinates, whilst the GPS logger app had a mean difference of 0.93 

m, both of which will contribute to some of the variation between estimations. 

 

The on-sheep validation presented different challenges in terms of estimating the 

beacon’s and therefore the lamb’s distance from any given WISP, given the 

potential distance which a lamb could move over the recording period. Johnson 

et al. (2021) reports an average of 3.4 km (± 0.89) travelled by sheep over the 

course of the day, resulting in a mean of 11.81 m within a 5-minute period. Within 

the study the lamb under observation was found to travel a maximum estimated 

distance of 81.24 m and mean of 9.50 m during a 5-minute interval. When 

compared with the mean GNSS location for the corresponding interval, equation 

3.5 resulted in a close mean underestimation of 1.59 m, however, there were also 

some extreme values produced where the estimated distance differed from the 

WISP-GNSS distance by as much as 104 m. Despite some of these larger errors, a 
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large proportion of the lamb’s beacon readings were estimated to within 20 m of 

the WISP-GNSS estimated distance (254 of 332 – 77 %), and 156 (47 %) to within 10 

m. Whilst the prediction equation resulted in a slightly closer mean distance 

estimation for stationary compared with moving points, instances where the lamb 

had travelled furthest over the interval did not produce the largest errors. Instead, 

instances where the lamb was classed as having a “very low” level of movement 

resulted in the greatest differences between the predicted and mean WISP-GNSS 

distance for the interval.  

 

Some of the error observed between these estimates may be due to the 

configuration of the WISPs and the way in which they operate. The WISPs report a 

single figure, the mean RSSI, for a 5-minute interval, however, during this time 

the lamb could move beyond the range of the reporting WISP, even if only moving 

a short distance. In addition, the lamb’s behaviour and posture may also change 

over the interval and could be within the WISPs range when standing, but not if 

lying down. These estimations also do not consider the presence of other sheep or 

obstacles which may impact on the signal strength over the course of the reporting 

interval, which may act to prevent the focal lamb’s beacon being received by the 

WISP, or to reduce the signal strength reported. As the readers scan on a 30 s on / 

30 s off, the mean RSSI value reported could also be based on readings from as 

little as a 30 s period when the lamb was within range, resulting in a higher than 

expected RSSI and therefore a closer distance estimation by the prediction 

equation. This is a potential limitation of the system, where in the current 

configuration a lamb’s beacon reported only once, but with a high RSSI could be 

reported over a lamb with multiple readings but lower average RSSI. Whilst we 

found very few instances in this study where all 16 beacon positions for a WISP 

were filled (16 of 2585 – 0.62 %), and so few opportunities for this to have 

occurred, this could be a larger issue where a greater number of sheep are 

present. In such instances, sheep consistently located towards the edge of a WISPs 

range, and therefore with a lower average RSSI may be missed by WISPs. As the 

lamb’s behaviour and posture for a given interval was unknown, equation 3.5 was 

developed based on combined calibration data from a WISP height of 2 m and 

beacon heights of both 0.3 and 0.7 m. However, individual prediction equations 

(Figure 3.10) developed for each beacon height indicate that as the RSSI value 

decreases there is a greater difference in distance estimates, with a beacon height 
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of 0.3 m producing a shorter distance than those located at 0.7 m. Lamb behaviour 

and posture are therefore likely to have a greater impact on the prediction 

equation when located further from the reporting WISP. The GNSS locations used 

to estimate the beacon distances are themselves also subject to error. Duncan et 

al. (2013) reported a mean error of 19.6 m ± 30.9 m and a circular error of 10.8 

m using the i-gotU GT-600, which will also contribute to the differences observed 

between GNSS and BLE estimated beacon distances. 

 

Distance estimation errors based on RSSI will vary depending upon the devices 

used, the conditions in which they are applied, and the methods used to translate 

RSSI to distance. Previous studies have reported very low mean distance 

estimation errors of 0.41 m (Thaljaoui et al., 2015) and 0.98 m (Adewumi et al., 

2013) in an indoor environment, and 0.88 m in an outdoor environment (Adewumi 

et al., 2013). However, these studies tested RSSI across smaller distance ranges of 

between 0.25 – 3.5 m (Thaljaoui et al., 2015) and 1 – 10 m (Adewumi et al., 2013). 

Whilst variability in RSSI between WISP-beacon pairs, combined with effects of 

lamb movement on contact success and number of RSSI readings reported during 

each window resulted in a level of noise within the estimated distance from the 

prediction equation, an average mean underestimation of 1.59 m within the 

context of the ~1.4 ha paddock is relatively small. 

 

 

3.4.3 Localisation 

 

The static beacon localisation study aimed to locate beacons within an ~5 400 m² 

area based on data obtained over a 2-hour period. Using the multilateration 

approach, locations were generated for 11 of the 16 beacons, all of which were 

estimated to within 37.34 m of their estimated GNSS location, resulting in a mean 

difference of 22.02 m. The beacon with the largest localisation error, Beacon H, 

was the beacon which had both the greatest over and underestimation by the 

prediction equation. This resulted in circles intersecting at different areas within 

the paddock, hence the mean estimated location was much further from that of 

the GNSS. In comparison, Beacon B was reported by the same number of WISPs 

(five), however, four of these WISPs all intersected at very similar points, with a 

larger underestimation from just one WISP, therefore resulting in a closer mean 
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estimate, with a localisation error of 5.34 m. Highlighted during the static beacon 

study was that the multilateration method was reliant on RSSI values generating 

predicted distances which produced intersecting circles, where under ideal 

circumstances the method would generate a cluster of points which intersected 

at the same (or close to the same) position. However, whilst occurring for some 

beacons, this was not in the case in all instances, and hence the mean of estimated 

points was instead applied to generate the final estimated location. Nonetheless, 

in some instances beacons were not able to be located despite having been 

reported by multiple WISPs, as no circles intersected.  

 

The on-sheep validation therefore investigated both the multilateration and a 

midpoint localisation method, which did not require distance estimations to 

intersect. However, both methods still required a minimum of two WISPs reporting 

within an overlapping 5-minute interval to estimate the lamb’s location. Given the 

length of the paddocks (~236 m) it was expected that each individual WISP would 

not report on every occasion, as there would be times when the lamb was beyond 

a WISPs range, particularly those located at either end of the paddocks. The 

lamb’s beacon was most frequently reported by only a single WISP during any given 

5-minute interval, giving an indication of proximity to the reporting WISP but not 

a definitive location. However, over time, this could still give an indication of the 

lamb’s activity throughout the paddock. There were also periods during which the 

lamb was not reported by any WISP, the longest of which was between 1120 h and 

1228 h, when the corresponding GNSS suggests that the lamb was stationary. If 

lying down, this would reduce the chance of the lamb’s beacon being reported 

and more likely that the lamb was beyond the effective range of any WISP, as the 

beacon would be located closer to the ground.  

 

A total of 105 locations were generated for the lamb over the course of the day 

using the multilateration method, whilst 150 locations were generated using the 

midpoint method. Although, similar localisation errors were generated by both 

methods, there was a slightly lower mean error using the midpoint method, and a 

greater proportion of locations were estimated to within 10 m of the GNSS. 

Instances where the lamb was classed as having a “low” level of movement 

resulted in the highest mean localisation error, however, there was no significant 

difference in mean localisation error between most of the “distance travelled 
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group” classifications. The distance travelled was calculated based on the lamb’s 

GNSS locations reporting every minute, and so was subject to error from the i-

gotU. In addition, the classification was based on the highest level of movement 

from any WISP, however as WISPs reported on independent intervals the proportion 

of the 5-minute interval for which each WISP reported could vary from between 1 

to 5 minutes. Some of the errors arising in the localisation are therefore likely a 

result of the configuration of the WISP reporting intervals, where the movement 

classification and distance travelled may have differed between each of the 

reporting WISPs. Particularly using the multilateration method, the length of the 

overlapping period and difference in the distance travelled between recording 

periods of WISPs could impact on whether distance prediction estimates generated 

overlapping circles.  

 

The study investigated the range of BLE devices in an outdoor system, and the 

feasibility of applying BLE technology as a means of animal proximity and location 

monitoring within outdoor livestock systems and highlights some potential 

challenges for on-animal application. The calibration of the WISPs and beacons 

suggests that the species, their height and behaviour, as well as the beacon 

placement, and the environment of intended application will need to be taken 

into account when considering the effective BLE range within that particular 

scenario. In addition, variation in animal posture and the potential distance and 

speed at which they might travel over a recording interval will affect the 

likelihood of being reported, and the possible interpretation of BLE signal strength 

into distance. Whilst static BLE readers could offer a means of monitoring livestock 

proximity within range of known points within extensive systems, animal 

localisation, given the BLE ranges observed, would require many BLE readers. 

Hence a combination of BLE beacons and on-sheep roving readers, equipped with 

GNSS, may be more plausible. However, improvements in BLE range and accuracy 

would be required for practical application. In terms of real-time monitoring, 

whilst almost all data was transmitted during the static localisation study, data 

acquisition within extensive systems can be variable, with previous studies 

utilising LoRaWAN reporting data acquisition in the ranges of 46 % (McIntosh et al., 

2023) to 82 % (Ojo et al., 2022), hence data loss and its potential effect on the 

interpretation of results will also need to be considered. However, depending upon 

the intended purpose of monitoring, the time frame for a recording period will 
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alter, and it may also not be necessary for animals to be recorded on every 

occasion. This poses several questions, namely: what proportion of beacon loss is 

acceptable in terms of livestock monitoring, and does this alter depending on 

purpose? And how close do proximity and localisation estimates need to be? - 

particularly in more extensive sheep systems where a lower degree of resolution 

may be acceptable given the potential scale of farms. 

 

 

3.5 Conclusion 

 

The study reports on the calibration of BLE devices within outdoor systems, where 

BLE signal strength was found to decline with increasing beacon distance from a 

reader. As the height at which both the reader and beacon were located had an 

impact on the survival of BLE signals, when applied on-sheep, the functional BLE 

range will therefore be influenced by animal behaviour and posture. As proof of 

concept, the study then utilised developed distance prediction equations from 

RSSI values for the localisation of grazing sheep. Whilst not yet too practical given 

the range and number of readers (WISPs) which may be required in more extensive 

settings, this study demonstrates that the application of BLE as fixed readers for 

animal monitoring and localisation is possible. Continued advances in the range of 

BLE devices, along with opportunity for data to be received in real-time through 

developments in IoT technologies makes BLE a potential tool for future 

development in this sector.   
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Chapter 4 WISP-Beacon Calibration and 

investigation of shadowing effects 

 

 

4.1 Introduction 

 

As a type of wireless radio communication, BLE is subject to the same challenges 

as other wireless communication systems. Where there is a clear line-of-sight 

between a transmitter and receiver the reported signal strength will differ 

according to the distance between devices due to path loss. Path loss is the 

reduction in power density of an electromagnetic wave as it propagates through 

space (Tetcos LLP, 2024). This may or may not include differences in RSSI arising 

from antenna gains. However, whilst the transmission of a radio wave travelling in 

a clear line-of-sight would allow for a constant RSSI for a given distance, the 

environment and terrain in outdoor systems will impact on the signal reported 

(Tetcos LLP, 2024). Signal interference can impact on the interpretation of signal 

strength, thus translation into an estimated distance can be challenging. In most 

wireless communications a transmitted signal will usually travel to a receiver via 

multiple paths - known as multipath propagation (Lee, 1997), because of 

scattering, reflection, refraction, or diffraction of the transmitted 

electromagnetic wave (Speidel, 2021). This can occur when a transmitted signal 

hits objects within the surrounding environment, including buildings, hills, 

vegetation, rain, snow, or other objects (Speidel, 2021). Hence even in instances 

where there is a clear line-of-sight between transmitters and receivers, multipath 

propagation is likely to still occur.  

 

Signal fading is the term used to describe the fluctuation in the amplitude of a 

radio signal over time and / or distance (Younis, 2018) caused by multipath 

propagation. The interference on the transmitted signal can result in multiple 

versions of a given signal being received, but with varying amplitudes, phases, 

angles and times of arrival (Lee, 1997). These signals may combine at the receiver 

constructively or destructively, causing the signal strength to vary for different 

points in space (Lee, 1997). Delay spread is the term given to the wider time width 
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of a transmitted signal arriving at a receiver (i.e. the difference in arrival time 

between the first and last versions of a transmitted signal) arising from the 

different signal paths taken (Lee, 1997). Doppler spread refers to the increase or 

decrease in signal path length due to motion between the receiver and 

transmitter. This can shift the frequency of the electromagnetic wave received, 

which will be either positive or negative, as transmitters and receivers move 

towards or away from one another respectively (Lee, 1997). 

 

In some circumstances multiple versions of a signal will then be received, but the 

‘first version’ will be that arising from the clear line-of-sight pathway. However, 

shadowing can occur when obstacles between a transmitter and receiver are 

positioned such that there is no clear line-of-sight, hence all received versions of 

a transmitted signal have undergone scattering, reflection, refraction, or 

diffraction. As radio signals travel at different speeds through air as opposed to 

objects such as walls, human or sheep bodies (Flueratoru et al., 2021) there may 

be more significant effects on the reported RSSI. Thus, in an outdoor sheep 

system, the weather conditions, environment (e.g. vegetation, field / paddock 

layout and topography, field features – walls, fences etc.), and flock size may all 

impact on the BLE signal. Another potential issue in systems where there are 

multiple broadcasting devices is packet collisions, whereby signals are transmitted 

from two or more broadcasting devices at the same time, and on the same 

channel, resulting in a loss of information of the collided data (Ghamari et al., 

2018). The chances of this occurring will increase as the density of broadcasting 

devices increases (Ng et al., 2020).  

 

This series of calibration studies aimed to assess the BLE signal range between the 

WISPs and Beacon Types 2 and 3, to characterise the relationship between RSSI 

and distance in an outdoor environment. This calibration was then used to develop 

a distance prediction equation for each beacon type, whereby a beacons distance 

from a WISP could be estimated based on its RSSI. As the device height was found 

to impact on the BLE signal of Beacon Type 1 (Chapter 3), the calibration also 

aimed to assess whether WISP and / or beacon height impacted on the likelihood 

of a beacon being reported by a WISP and the RSSI values given, and thus in an on-

sheep scenario whether the assignment of a beacon to a ewe or lamb, and their 

behaviour could impact on the signal strength. The study further aimed to assess 
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the impact of shadowing on the BLE signal, in particular whether a sheep’s body 

itself could impact on the signal. This was assessed by conducting the calibration 

firstly where there was a clear line of sight between WISPs and beacons, followed 

by a “shadowing” study where the line of sight between devices was blocked. 

 

 

4.2 Material and methods 

 

Following the calibration of Beacon Type 1 and localisation studies (Chapter 3), 

two new beacon types – Beacon Types 2 and 3 were trialled alongside the WISPs. 

As described in Chapter 2, these beacons were publicised as having a greater BLE 

operating range than that of Beacon Type 1, with distance ranges of 400 m and 

500 m (in open areas) for Beacon Types 2 and 3 respectively. The beacons were 

programmed following the process described in Chapter 2, with the WISP-beacon 

system also operating and reporting in the same manner.  

 

 

4.2.1 Standard (clear line-of-sight) calibration 

 

4.2.1.1 Study design 

 

A calibration study was conducted to assess and compare the WISP-beacon range 

of the Type 2 and 3 beacons within a field environment, and to evaluate the 

relationship between a beacon’s reported RSSI and its distance from a WISP. The 

study was conducted within a field of permanent pasture (~1.73 ha) at SRUC’s Hill 

and Mountain Research Centre at Crianlarich, within a relatively flat section along 

the lower length of the field (Figure 4.1) to minimise any potential impacts of 

topography on the BLE signal. 

 



 
Figure 4.1 Field location of the calibration study - SRUC’s Hill and Mountain Research Centre.  



The calibration was conducted using six WISPs and eight of each beacon type, 

following the same protocol as described for the calibration of Beacon Type 1 

(Chapter 3). However, due to the drop of in RSSI readings observed between 64 

and 128 m when using a log scale for Beacon Type 1, the WISP-beacon distances 

in this instance were 0, 1, 2, 5, 10, 20, 30, 50, 70, 90, and 110 m, as it was 

expected that the use of shorter distance increments would provide a clearer 

indication of the WISP-beacon signal range. WISPs and beacons were also tested 

at heights of 0.3 m (representing approximate ewe lying or lamb standing height) 

and 0.7 m (representing approximate ewe standing height) only. Prior to the start 

of the study, and at various points throughout, the FeasyBeacon app was used to 

verify that the 16 beacons were ‘on’ and ‘advertising’. The date, start, and end 

times of when beacons were located at each of the measured distances were 

manually recorded, to later select the relevant data points from each of the 

WISPs. 

 

 

4.2.1.2 Data handling 

 

Of the six WISPs used in this calibration, three experienced battery loss prior to 

the end of the study, and hence only partial data was available. The calibration of 

the devices is therefore based on data from the three WISPs which recorded over 

the full study duration. Whilst data was recorded both to the flash drive and sent 

via LoRa, the data analysis was conducted using that of the individual WISP flash 

drives, being the most complete data set. Data was downloaded from each WISP 

using a “Data Logger” app (Chapter 2). The date and times of when beacons were 

located at each of the measured distances were used to manually pull out the 

relevant data points from each individual WISP file, to create a final full .csv file 

containing the data for both beacon types (which included the beacon type, 

distance, WISP ID, WISP height, beacon ID, beacon height, repetition – from 1-5, 

and RSSI value). All statistical analysis was then conducted in R (R Core Team, 

2022). 
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4.2.1.3 Statistical analysis 

 

An initial assessment of the WISP-beacon range and effect of the device heights 

was conducted by examining the proportion of beacon readings reported per 

measured distance for each of the beacon types, WISP and beacon heights, and 

device identities – visualised using “ggplot2” (Wickham, 2016). To conduct a 

survival analysis of the WISP-beacon BLE signal, a new column “Status” was 

assigned to indicate whether (for each individual observation) the event of 

interest “BLE signal death” (ie. failure of a WISP to report an RSSI value for the 

beacon) had occurred - assigned a value of “1”, or not occurred (ie. WISP reported 

an RSSI value for the beacon) – assigned a value of “0”. Measured WISP-beacon 

distances of “0 m” were then converted to a value of “0.01 m” to allow a Weibull 

accelerated failure time model to be fitted to the data and to generate survival 

curves. This followed the same protocol as described for the Type 1 Beacons 

(Chapter 3). 

 

The relationship between RSSI and distance was examined based on the range and 

mean RSSI values obtained per measured distance for each of the beacon types, 

device heights and identities. The RSSI values obtained at each of the measured 

distances were then utilised to develop a prediction equation for each of the 

beacon types, whereby the WISP-beacon distance could be estimated based on 

the RSSI value reported. A natural log model was then fitted to the data (chosen 

as the natural log model provided the best fit for the Type 1 Beacons – Chapter 3) 

by applying the “lm” function in R (version 4.2.2; R Core Team, 2022) to fit a 

regression. Following the protocol used for the Type 1 Beacons (Chapter 3) this 

was conducted for the full data set collectively (regardless of WISP and beacon 

height) and for each WISP-beacon height combination individually. The inverse 

function of the regression was then applied to the “predict” function to generate 

predicted distances for given RSSI values of -100 to -10 dBm. 
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4.2.2 Shadowing (blocked line-of-sight) calibration 

 

4.2.1.1 Study design 

 

An additional calibration was then conducted to examine the potential effects of 

shadowing, whereby there was an obstruction between the BLE transmitter 

(beacon) and receiver (WISP), to determine if and how this might impact on the 

likelihood of a beacon’s signal being received, and / or on the RSSI value reported. 

For comparison with the line-of-sight calibration conducted in study 1, the same 

six WISP and 16 beacon identities were used. The set up of devices followed the 

protocol outlined in Study 1, however, in this instance, to simulate the effects of 

the WISP-beacon signal being blocked by a ewe’s or lamb’s body, two adjoining 4-

pint milk cartons (totalling 4.55 L) filled with water were placed on top of a crate 

in front of the beacon to block the signal pathway to the WISP. The milk cartons 

were of the same size and shape, and both filled to the same marker line, to 

ensure content volume was as consistent as possible. The same crate and milk 

cartons (38 x 20 x 36.5 cm) were utilised across the study, placed approximately 

10 cm from the beacon under test (hence individual milk cartons were located 

approximately 10 and 20 cm respectively in front of the beacon) (Figure 4.2). This 

was conducted for only one device height combination - WISP height 0.7 m and 

beacon height 0.3 m, replicating approximate ewe and lamb standing heights, and 

only for measured distances of 1, 2, 5, 10, 20, and 30 m. For each measured 

distance, beacons were left in position for a minimum of 14 minutes to obtain a 

possible two RSSI readings for each WISP-beacon pairing, and the date, start, and 

end times recorded to later allow the relevant data points to be selected for each 

WISP. 
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Figure 4.2 Set-up and layout of shadowing (blocked line-of-sight) calibration. 

 

 

 

4.2.1.2 Data handling 

 

As the field work for Studies 1 and 2 was conducted successively, data for the 

study was available from three WISPs only (the same identities as that of Study 

1). Flash drive data from each of the three reporting WISPs was downloaded via 

the “Data Logger” app (Chapter 2). The relevant data points for when each beacon 

was located at each measured distance were manually selected to create a final 

full .csv file containing the information from all three WISPs. All further analysis 

was then conducted in R (R Core Team, 2022). 
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4.2.1.3 Statistical analysis 

 

Initial analysis investigating the proportion of beacon readings reported and 

survival analysis of the BLE signal was conducted following the methods described 

in Study 1. For comparison between the blocked and clear line-of-sight 

calibrations, data from Study 1 was filtered to select a subset of data (WISP height 

0.7 m and beacon height 0.3 m – for measured distances of 1- 30 m only) 

corresponding to the device heights and distances used within Study 2. The data 

sets were then merged, with a new variable “Calibration Type” derived. For each 

beacon type, a regression model; using the “lm” function in R (version 4.2.2; R 

Core Team, 2022), was generated to assess the effect of log(distance), the 

calibration type, and their interaction on the reported signal strength (RSSI) of a 

beacon. The regression models were then visualized using the visreg package in R 

(version 2.7.0; Breheny & Burchett, 2017).  
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4.3 Results 

 

4.3.1 Study 1: clear line-of-sight calibration 

 

4.3.1.1 Proportion of RSSI values reported 

 

A total of 6 228 RSSI readings (58.98%) were obtained across the study from a total 

possible 10 560, had an RSSI been reported for every WISP-beacon pairing at every 

measured distance. However, beacon readings were not expected to be obtained 

on every occasion, as a drop off in beacon readings was anticipated to occur as 

the WISP-beacon distance increased and reached the limit of the BLE signal range 

between devices. A greater proportion of RSSI readings were obtained for Beacon 

Type 2 as opposed to Beacon Type 3, both overall and by individual WISPs (Table 

4.1), with WISP ID 1 reporting a greater proportion of readings for both beacon 

types (63.69%). The total number of possible RSSI readings reported for individual 

beacons varied from 60-69% for Beacon Type 2, and between 58-67% for Beacon 

Type 3 (Table 4.2) – except for Beacon 3.7, for which no RSSI values were obtained. 

WISP ID 1 reported the greatest proportion of RSSI readings for both beacon types, 

the only exception being Beacon 2.6, for which WISP ID 1 reported the fewest RSSI 

readings. In some cases, there was a difference of as much as 20% between the 

proportion of possible RSSI readings reported by individual WISPs for the same 

beacon ID (e.g. Beacon 3.8). 

 

 

Table 4.1 Number of beacon readings reported (and percentage of total 
possible) by wearable integrated sensor platform (WISP) ID and beacon type. 

WISP ID Beacon Type 2 

(of 1760) 

Beacon Type 3 

(of 1760) 

Total 

(of 3520) 

1 1219 (69.26%) 1042 (59.20%) 2261 (63.69%) 

2 1101 (62.56%) 912 (51.82%) 2013 (57.19%) 

3 1051 (59.72%) 903 (51.31%) 1954 (55.51%) 

Total 

(of 5280) 

3371 (63.84%) 2857 (54.11%) 6228 (58.98%) 

(of10560) 
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Table 4.2 Number of beacon readings reported (and percentage of total 
possible) by wearable integrated sensor platform (WISP) and beacon ID. 

Beacon ID WISP ID 1 

(of 220) 

WISP ID 2 

(of 220) 

WISP ID 3 

(of 220) 

Total 

(of 660) 

Type 2 Beacons 

2.1 154 (70.00%) 137 (62.27%) 129 (58.64%) 420 (63.64%) 

2.2 149 (67.73%) 135 (61.36%) 129 (58.64%) 413 (62.58%) 

2.3 155 (70.45%) 132 (60.00%) 126 (57.27%) 413 (62.58%) 

2.4 165 (75.00%) 145 (65.91%) 145 (65.91%) 455 (68.94%) 

2.5 142 (64.55%) 131 (59.55%) 127 (57.73%) 400 (60.61%) 

2.6 138 (62.73%) 147 (66.82%) 141 (64.09%) 426 (64.55%) 

2.7 169 (76.82%) 141 (64.09%) 129 (58.64%) 439 (66.52%) 

2.8 147 (66.82%) 133 (60.45%) 125 (56.82%) 405 (61.36%) 

Type 3 Beacons 

3.1 161 (73.18%) 134 (60.91%) 147 (66.82%) 442 (66.97%) 

3.2 161 (73.18%) 133 (60.45%) 141 (64.09%) 435 (65.91%) 

3.3 156 (70.91%) 127 (57.73%) 121 (55.00%) 404 (61.21%) 

3.4 133 (60.45%) 124 (56.36%) 128 (58.18%) 385 (58.33%) 

3.5 141 (64.09%) 131 (59.55%) 123 (55.91%) 395 (59.85%) 

3.6 130 (59.09%) 127 (57.73%) 127 (57.73%) 384 (58.18%) 

3.7 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 

3.8 160 (72.73%) 136 (61.82%) 116 (52.73%) 412 (62.42%) 

 

 

The proportion of beacons reported per distance differed according to both the 

beacon type, and the height at which the WISP and beacon were located (Figure 

4.3). Beacon Type 2 reported at least 75 % of possible RSSI readings across all 

device height groups at distances of 0-10 m, however, the proportion of readings 

reported declined to less than 25 % by a distance of 30 m when WISPs were located 

at a height of 0.3 m, and by a distance of 50 m when WISPs were at 0.7 m and 

beacons at 0.3 m. In contrast, where both WISPs and beacons were at a height of 

0.7 m, more than 50 % of possible RSSI readings were still reported at a distance 

of 90 m, falling to 27 % at the maximum measured distance of 110 m. Within the 

Type 3 beacon, there was a reduced proportion of RSSI readings at earlier 

distances in comparison with the Type 2 beacon, due to the failure of one of the 

beacons to be reported during the study. Despite this, more than 70 % of possible 

RSSI readings were still obtained at distances up to 20 m across all device height 
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groups. However, by 30 m the proportion of RSSI readings reported fell to between 

66 – 68 % when WISPs were at a height of 0.7 m, and to between 33 – 48 % at a 

WISP height of 0.3 m. By 50 m less than 33 % of possible RSSI readings were 

reported within any device height group, and whilst RSSI readings were still 

obtained at 110 m for a combined WISP and beacon height of 0.7 m, only 15 % of 

possible RSSI readings were reported. 

 

 

 
Figure 4.3 Proportion of possible beacon readings obtained per measured 
distance. 

 

 

The proportion of RSSI readings reported per distance also varied depending upon 

the identity of the reporting WISP (Figure 4.4). Within Beacon Type 2, WISP ID 1 

reported readings at greater distances than that of other WISPs when devices were 

at mixed heights, being responsible for all RSSI values reported at distances 

greater than 30 m when WISPs were at a height of 0.3 m and beacons at 0.7 m, 

and at distances greater than 20 m when WISPs were at a height of 0.7 m and 

beacons at 0.3 m. WISP ID 1 similarly reported a greater proportion of beacons at 

longer WISP-beacon distances for Beacon Type 3, when both WISPs and beacons 

were located at a height of 0.7 m. There was also some variation in the proportion 

of RSSI readings obtained for individual WISP-beacon pairings, particularly at 

greater distances (Figure 4.5). Within both beacon types, when a beacon was 
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reported at shorter distances, readings tended to be reported for all five 

repetitions of that WISP-beacon pairing. However, as the WISP-beacon distance 

increased, there were more instances of readings being reported for only some 

repetitions. 

 

 

 

Figure 4.4 Proportion of possible beacon readings obtained per measured 
distance by wearable integrated sensor platform (WISP) ID. 

  



 

Figure 4.5 Proportion of possible beacon readings obtained per measured distance for each wearable integrated sensor (WISP)-
beacon pairing, for each WISP/beacon height group.



4.3.1.2 Range of devices - BLE signal survival  

 

The Weibull accelerated failure time models generated for each of the beacon 

types indicated that the probability of a beacon’s BLE signal being received and 

reported by a WISP declined with increasing WISP-beacon distance, and differed 

according to the height at which WISPs and beacons were located (Figures 4.6 and 

4.7). Within both beacon types, the probability of a beacon signal being reported 

declined at shorter distances when both WISPs and beacons were at a height 0.3 

m, whilst the greatest distance ranges in signal survival occurred when both 

devices were at a height of 0.7 m. Instances, where devices were at mixed heights 

resulted in very similar curves regardless of whether it was the WISP or beacon at 

0.3 or 0.7 m. Whilst the curves generated for each of the device height 

combinations were similar for both beacon types, the 75 % and 50 % survival 

probability thresholds were reached at shorter distances for Beacon Type 3. Based 

on a 75 % probability threshold, the BLE WISP-beacon signal range of the Type 2 

Beacons would be between ~39 – 50 m depending on the device heights, whilst the 

range of the Type 3 beacons would be between ~34 – 47.5 m. However, if reduced 

to a 50 % probability threshold the BLE signal ranges increased to between ~62 – 

81 m for Type 2 Beacons, and ~55 – 77 m for Type 3 Beacons. The beacon types 

were found to be a significant factor within the model, with Beacon Type 3 having 

a reduced signal range (Table 4.3). The height at which both the WISP and beacon 

were located were also found to be significant factors within the model, with the 

higher device heights of 0.7 m resulting in a longer distance range. Likewise, the 

interaction between WISP and beacon height was significant at combined WISP 

and beacon heights of 0.7 m. 
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Figure 4.6 Weibull survival curves for Beacon Type 2, based on wearable 
integrated sensor platform (WISP) and beacon height. 

 

 

 

 

Figure 4.7 Weibull survival curves for Beacon Type 3, based on wearable 
integrated sensor platform (WISP) and beacon height. 
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Table 4.3 Summary of the Weibull accelerated failure time model. 

Parameter Value SE z p-value 

Intercept1 4.3501 0.0175 248.57 <2 × 10-16 

Beacon Type 

2 Reference Beacon Type 

3 -01281 0.0165 -7.76 8.7 × 10-15 

WISP height 

0.3 m Reference WISP height 

0.7 m 0.0573 0.0216 2.65 0.0081 

Beacon height 

0.3 m Reference beacon height 

0.7 m 0.0684 0.0218 3.14 0.0017 

WISP Height x Beacon Height 

0.3 x 0.3 Reference WISP and beacon height 

0.7 x 0.7 0.2052 0.0337 6.09 1.1 × 10-9 

Log (scale)2 -0.6211 0.0121 -51.43 <2 × 10-16 

 

1 Intercept as given by the survreg function is the log of the standard 
parameterisation of the Weibull distribution scale parameter. 
 
2 Log (scale) as given by the survreg function is the natural log of the scale 
parameter (Scale = 0.537, X2 = 265.73 (4), p = 2.7 x 10-56), where scale is the 
reciprocal of the standard parameterisation of the Weibull distribution shape (hence 
shape = 1/0.537 = 1.86). 
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4.3.1.3 Relationship between RSSI and WISP-beacon distance 

 

The relationship between RSSI and WISP-beacon distance was investigated firstly 

as a full data set for each beacon type, regardless of WISP and beacon height. 

Overall RSSI values for Beacon Type 2 ranged from -92 to -16 dBm, whilst values 

for Beacon Type 3 ranged from -92 to -20 dBm. Both beacon types displayed similar 

patterns of declining RSSI as the WISP-beacon distance increased, with similar 

ranges in RSSI values per measured distance (Figures 4.8 and 4.9). RSSI values at 

a single measured distance differed by as much as 47 and 45 dBm for Type 2 and 

3 beacons respectively, with large ranges in RSSI values (of between 22 – 47 dBm) 

observed for WISP-beacon distances of 0 – 30 m, and shorter RSSI ranges (of 

between 4 – 15 dBm) at longer WISP-beacon distances of 50 – 110 m. The RSSI 

values reported at each measured distance also overlapped, and particularly at 

longer WISP-beacon distances, very similar mean RSSI values were reported for 

measured WISP-beacon distances of 50 - 110 m for Beacon Type 2, and 30 - 110 m 

for Beacon Type 3 (Table 4.4). 
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Figure 4.8 Received signal strength (RSSI) values reported per distance for 
Beacon Type 2. 

 

 

 

Figure 4.9 Received signal strength (RSSI) values reported per distance for 
Beacon Type 3. 
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Table 4.4 Summary of RSSI values reported per distance. 

Distance Mean 
RSSI 

Minimum 
RSSI 

Maximum 
RSSI 

RSSI 
Range 

RSSI 1st 
Quantile 

RSSI 3rd 
Quantile 

Beacon Type 2 

0 -40.68 -63 -16 47 -46 -36 

1 -52.90 -73 -38 35 -57 -49 

2 -59.49 -73 -47 26 -63 -56 

5 -66.18 -89 -50 39 -71 -61 

10 -72.44 -89 -60 29 -76 -68 

20 -78.15 -90 -62 28 -84 -74 

30 -80.27 -92 -65 27 -85 -75 

50 -85.47 -91 -76 15 -88 -84 

70 -85.57 -91 -79 12 -87 -84 

90 -85.20 -90 -81 9 -86 -84 

110 -86.37 -90 -78 12 -88 -85 

Beacon Type 3 

0 -44.20 -65 -20 45 -52 -38 

1 -57.72 -71 -42 29 -62 -53 

2 -61.98 -77 -47 30 -67 -57 

5 -68.93 -86 -53 33 -74 -64 

10 -74.68 -92 -62 30 -78 -72 

20 -79.37 -90 -62 28 -83 -77 

30 -84.07 -92 -70 22 -87 -82 

50 -85.16 -91 -77 14 -87 -83 

70 -85.21 -89 -80 9 -87 -84 

90 -84.19 -87 -80 7 -86 -83 

110 -85.89 -87 -83 4 -86.75 -85.25 
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The relationship between RSSI and distance was then examined when data was 

grouped based on WISP and beacon height (Figures 4.10 and 4.11). Within all 

height groups, for both beacon types, there were larger ranges in RSSI at shorter 

distances, and much smaller ranges in RSSI as the distance increased – however 

this was likely due to the smaller overall number of observations obtained at 

longer distances. For Type 2 beacons, there was a gradual decline in RSSI between 

0 to ~30 m within height groups where either device was located at 0.3 m. Within 

the combined 0.7 m WISP and beacon height group there was an initial decline in 

RSSI values between 0 and 1 m, and then a steady decline in RSSI, with values 

plateauing at distances of 50 – 110 m. This pattern was similarly observed for the 

Type 3 beacons, however, RSSI values began to plateau at an earlier distance of 

~30 m. 
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Figure 4.10 Received signal strength indicator (RSSI) values reported per 
distance for Beacon Type 2, for each WISP and beacon height group. 

 

 

 

Figure 4.11 Received signal strength indicator (RSSI) values reported per 
distance for Beacon Type 3, for each WISP and beacon height group. 
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Whilst large ranges in RSSI values were then reported per distance within each 

height group, RSSI values of individual WISP-beacon pairings tended to have little 

variation. Within Beacon Type 2, individual WISP-beacon pairings typically 

produced similar RSSI values across all five repetitions at each distance, with 65 

% of instances resulting in either a consistent RSSI or varying by only 1 dBm. This 

resulted in a mean difference in RSSI of 2.04 dBm. However, there were also some 

extreme instances where individual pairings varied up to a maximum of 30 dBm, 

the seven greatest of which all occurred at a WISP-beacon distance of 5 m. 

Similarly, within Beacon Type 3, RSSI values per WISP-beacon pairing had a mean 

difference of 1.93 dBm between repetitions, with 61 % of instances resulting in a 

consistent RSSI or difference of 1 dBm. The maximum difference in RSSI was 23 

dBm, with the three greatest differences occurring at a WISP-beacon distance of 

10 m. 

 

A MEM indicated that for both beacon types, the distance between a WISP and 

beacon, and the height combination of both devices, had an effect on RSSI (Tables 

4.5 And 4.6). For both beacon types, a higher random intercept variance resulted 

from the WISP ID as opposed to the Beacon ID, whilst a higher random intercept 

variance was generated for both WISP and beacon ID (and their interaction) for 

the Type 3 beacon in comparison with the Type 2 beacon. This suggests that at 0 

m there is a greater difference in RSSI values between specific WISP-beacon 

pairings for Type 3 beacons. The intraclass correlation coefficient (ICC) was also 

greater in the Type 3 beacons, suggesting that WISP ID and Beacon ID explain a 

greater proportion of the variance within that data set. However, in both instances 

the ICC was relatively low suggesting that RSSI values based on WISP ID, beacon 

ID, or the WISP-beacon pairing were only moderately different from the variation 

within each WISP or beacon ID, or WISP-beacon pairing.  
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Table 4.5 Summary of mixed effects model (MEM) output for RSSI based on 
WISP-beacon distance and height group for Beacon Type 2. 

Parameter 
Lamb Daily Weight Gain 

Estimate CI p-value 

Intercept -58.517014 -60.96 – -56.07 < 0.001 

Distance -0.520897 -0.54 – -0.50 < 0.001 

WISP-Beacon Height Group: 

WISP 0.3m : Beacon 0.3m Reference ewe breed 

WISP 0.3m : Beacon 0.3m -2.173650 -3.32 – -1.02  < 0.001 

WISP 0.3m : Beacon 0.3m -1.354415 -2.54 – -0.17 0.025 

WISP 0.3m : Beacon 0.3m 5.115090 3.97 – 6.26 < 0.001 

 

Random effects 

1σ2 126.32 

2τ00 WISP ID X Beacon ID 0.51 

2τ00 WISP ID
 3.07 

2τ00 Beacon ID
 2.53 

3 ICC 0.05 

4 N WISP ID 3 

4 N Beacon ID
 8 

 

Observations 3371 

5 Marginal R2 0.469 

6 Conditional R2 0.493 

 

1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
WISP and Beacon ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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Table 4.6 Summary of mixed effects model (MEM) output for RSSI based on 
WISP-beacon distance and height group for Beacon Type 3. 

Parameter 
Lamb Daily Weight Gain 

Estimate CI p-value 

Intercept -61.696421 -64.88 – -58.52 < 0.001 

Distance -0.600654 -0.63 – -0.58 < 0.001 

WISP-Beacon Height Group: 

WISP 0.3m : Beacon 0.3m Reference ewe breed 

WISP 0.3m : Beacon 0.3m -0.877469 -2.02 – -0.27 0.134 

WISP 0.3m : Beacon 0.3m -0.220515 -0.89 – -1.33 0.697 

WISP 0.3m : Beacon 0.3m 4.944716 3.84 – 6.04 < 0.001 

 

Random effects 

1σ2 112.24 

2τ00 WISP ID X Beacon ID 1.97 

2τ00 WISP ID
 5.35 

2τ00 Beacon ID
 4.03 

3 ICC 0.09 

4 N WISP ID 3 

4 N Beacon ID
 7 

 

Observations 2857 

5 Marginal R2 0.440 

6 Conditional R2 0.491 

 

1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
WISP and Beacon ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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4.3.1.4 Development of distance prediction models 

 

Following the same protocol as that of Beacon Type 1 (Chapter 3), a natural log 

model was applied to the obtained RSSI values from each of the measured 

distances, both for the full data set and each of the device height groups of both 

beacon types. A comparison of the resulting SDs, CVs, upper and lower confidence 

intervals, and adjusted R2 values of mean predicted distances, for each measured 

distance is provided in Appendix C. Within both beacon types, the resulting 

distance estimations for given RSSI values in the range of -100 to -10 dBm differed 

according to the height at which both the WISP and beacon were located (Figures 

4.12 and 4.13). Across all beacon types and devices heights, RSSI values in the 

range of approximately -60 to -10 dBm resulted in distance estimations of less 

than 1 m (a large range in RSSI).  As the RSSI declined the curves generated from 

each of the device height combinations began to differ, and by -100 dBm the 

distance estimations between the height combinations differed by as much as 518 

m (for Beacon Type 2). As RSSI values decreased, and particularly at values of -90 

to -100 dBm, a small change of just 1 dBm resulted in fairly large changes in 

distance estimation, with RSSI values at the lower end of the scale generating 

predicted distances beyond that of any actual measured distance within the 

calibration study.  

As this combination of WISPs and BLE beacons were planned for use in on-sheep 

studies, where their behaviour, and thus WISP and beacon height would be 

variable, the final distance prediction equations utilised in all further studies (for 

each beacon type) were based upon the calibration of all combined WISP and 

beacon heights (indicated in red within Figures 4.12 and 4.13). Two distance 

prediction equations were therefore developed, with the regression for Beacon 

Type 2 giving a distance prediction equation of: 

 

Equation 4.1 

Predicted Distance = e−8.546723 − (0.147242 × RSSI) 

 

And the regression for Beacon Type 3 giving a distance prediction equation of: 

 

Equation 4.2 

Predicted Distance = e−9.365093 − (0.153242 × RSSI) 
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Figure 4.12 Predicted wearable integrated sensor platform (WISP)-beacon 
distances based on device heights, using the natural log model for Beacon 
Type 2. 

 

 

 

Figure 4.13 Predicted wearable integrated sensor platform (WISP)-beacon 
distances based on device heights, using the natural log model for Beacon 
Type 3. 
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4.3.2 Study 2: blocked line-of-sight calibration 

 

4.3.2.1 Proportion of RSSI values reported. 

 

A total of 509 (88 %) RSSI readings were obtained from a total possible 576 

readings, had an RSSI been reported for all possible WISP-beacon pairings. A 

greater proportion of readings were reported for the Type 2 as opposed to the 

Type 3 beacons, with WISP ID 1 being responsible for the greatest proportion of 

overall RSSI readings, and WISP ID 3 the fewest (Table 4.7). The overall proportion 

of RSSI readings for individual beacons varied from 94-100 % for the Type 2 

beacons, and 0-100 % for the Type 3 beacons (Table 4.8), with greater variation in 

the proportion of readings reported by WISP ID 3. As observed within Study 1, 

Beacon 3.7 (Type 3 beacon) failed to be reported by any WISP at any point in the 

study. 

 

 

Table 4.7 Number of beacon readings reported (and percentage of total 
possible) by wearable integrated sensor platform (WISP) ID and beacon type. 

WISP ID Beacon Type 2 

(of 96) 

Beacon Type 3 

(of 96) 

Total 

(of 192) 

1 96 (100%) 82 (85.42%) 178 (92.71%) 

2 96 (100%) 74 (77.08%) 170 (88.54%) 

3 92 (95.83%) 69 (71.88%) 161 (83.85%) 

Total 

(of 288) 

284 (98.61%) 225 (78.13%) 509 (88.37%) 

(of 576) 
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Table 4.8 Number of beacon readings reported (and percentage of total 
possible) by wearable integrated sensor platform (WISP) and beacon ID. 

Beacon ID WISP ID 1 

(of 12) 

WISP ID 2 

(of 12) 

WISP ID 3 

(of 12) 

Total 

(of 36) 

Type 2 Beacons 

2.1 12 (100%) 12 (100%) 10 (83.33%) 34 (94.44%) 

2.2 12 (100%) 12 (100%) 11 (91.67%) 35 (97.22%) 

2.3 12 (100%) 12 (100%) 12 (100%) 36 (100%) 

2.4 12 (100%) 12 (100%) 11 (91.67%) 35 (97.22%) 

2.5 12 (100%) 12 (100%) 12 (100%) 36 (100%) 

2.6 12 (100%) 12 (100%) 12 (100%) 36 (100%) 

2.7 12 (100%) 12 (100%) 12 (100%) 36 (100%) 

2.8 12 (100%) 12 (100%) 12 (100%) 36 (100%) 

Type 3 Beacons 

3.1 12 (100%) 12 (100%) 12 (100%) 36 (100%) 

3.2 10 (83.33%) 10 (83.33%) 8 (66.67%) 28 (77.78%) 

3.3 12 (100%) 10 (83.33%) 9 (75.00%) 31 (86.11%) 

3.4 12 (100%) 10 (83.33%) 10 (83.33%) 32 (88.89%) 

3.5 12 (100%) 10 (83.33%) 9 (75.00%) 31 (86.11%) 

3.6 12 (100%) 10 (83.33%) 10 (83.33%) 32 (88.89%) 

3.7 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

3.8 12 (100%) 12 (100%) 11 (91.67%) 35 (97.22%) 
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Within this shadowing calibration, the Type 2 beacon reported all possible RSSI 

readings at distances of 1-20 m, falling to 92 % at the 30 m mark. This was a 

greater proportion than that observed during the standard calibration (Study 1), 

where the proportion of RSSI readings began to decline at 10 m (Figure 4.14). 

Within the Type 3 Beacon, all possible RSSI readings (apart from Beacon 3.7) were 

reported at distances of 1-5 m, after which point the proportion of RSSI readings 

began to decline, falling to 54 % at 30 m. This was a slightly earlier and greater 

decline than that observed within the standard calibration (Study 1) of the Type 3 

beacon. 

 

 

 

 

Figure 4.14 Percentage of beacon readings reported per beacon type for 
each measured distance during the shadowing effects vs standard 
calibration. 

Where: shadowing = total possible 48 beacons per distance, and standard = total 
possible 120 beacons per distance. 
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The proportion of RSSI readings reported for the Type 2 beacon was found to 

decline at a shorter WISP-beacon distance during the standard as opposed to the 

shadowing calibration. Whilst WISP IDs 2 and 3 failed to generate any RSSI readings 

at the 30m mark during the standard calibration of beacon type 2, both WISPs 

reported 75% or greater during the shadowing calibration (Figure 4.15).  Beacon 

Type 3 displayed a similar pattern across both the standard and shadowing 

calibrations, however, there was a slightly greater decline in the proportion of 

RSSI readings reported by WISPs 2 and 3 at distances of 10-30m (Figure 4.16). 

 

 

 

 

Figure 4.15 Percentage of beacon readings reported per beacon type for 
each measured distance and wearable integrated sensor platform (WISP) ID 
during the shadowing effects vs standard calibration. 

Where: shadowing = total possible of 16 beacons per distance, and standard = total 
possible 40 beacons per distance. 
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Figure 4.16 Percentage of beacon readings reported per beacon type for 
each measured distance and Beacon ID during the shadowing effects vs 
standard calibration. 

Where: shadowing = total possible 16 beacons per distance, and standard = total 
possible 40 beacons per distance. 

 

 

 

4.3.2.2 Range of devices - BLE signal survival 

 

The Weibull accelerated failure time model generated very similar survival curves 

for both beacon types under standard calibration (Study 1) conditions, reaching a 

75 % probability threshold at ~ 19.5 m (Figure 4.17). However, whilst there was a 

reduced BLE distance range for the Type 3 beacon under shadowing conditions, 

which reached a 75 % probability threshold at ~17 m, the Type 2 beacon displayed 

an increased BLE distance range, with a probability of ~ 94 % at the maximum 

measured distance of 30 m. The beacon type, calibration type and their 

interaction (for Type 3 beacons under standard calibration conditions) were all 

found to be significant factors within the model (Table 4.9). 
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Figure 4.17 Weibull survival curves based on Beacon Type and Calibration 
Type (for a wearable integrated sensor platform (WISP) height of 0.7 m and 
beacon height of 0.3 m). 
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Table 4.9 Summary of the Weibull accelerated failure time model. 

Parameter Value SE z p-value 

Intercept1 4.8740 0.2610 18.67 <2 × 10-16 

Calibration Type 

Standard Reference Calibration Type 

Shadowing -1.2416 0.2599 -4.78 1.8 × 10-6 

Beacon Type 

2 Reference Beacon Type 

3 -1.3775 0.2648 -5.20 2 × 10-7 

Calibration Type x Beacon Type 

Standard × 2 Reference Calibration and Beacon Type 

Shadowing × 3 1.3692 0.2724 5.03 5 × 10-7 

Log (scale)2 -0.6938 0.0443 -15.65 <2 × 10-16 

 

1 Intercept as given by the survreg function is the log of the standard 
parameterisation of the Weibull distribution scale parameter. 
 
2 Log (scale) as given by the survreg function is the natural log of the scale 
parameter (Scale = 0.5, X2 = 70.19 (3), p = 3.9 x 10-15), where scale is the reciprocal 
of the standard parameterisation of the Weibull distribution shape (hence shape = 
1/0.5 = 2). 
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4.3.2.3 Effects of blocked line-of-sight (shadowing) on reported RSSI values 

 

Regressions generated for both Beacon Type 2 (Table 4.10) and Beacon Type 3 

(Table 4.11) found that both log(distance) (m), the calibration type, and the 

interaction of log(distance) (m) and calibration type, were significant factors. 

Hence the effects of shadowing / blocked line of sight on the reported signal 

strength (RSSI) is dependent on the distance between the WISP and beacon. Within 

Beacon Type 2 the mean RSSI at a distance of 0 m, under standard conditions is -

52.43 dBm, with a unit change in log(distance) (m) resulting a decrease of 9.25 

dBm. At a distance of 0 m the RSSI is 6.05 dBm lower under shadowing as opposed 

to standard conditions. The difference in RSSI between calibration types (blocked 

vs clear line-of-sight) changes by 2.30 dBm for every unit change in log(distance) 

(m). A similar trend was also observed for Beacon Type 3, where under standard 

conditions the mean RSSI at a distance of 0 m was -55.45 dBm, with a decline of 

8.29 dBm for every unit change in log(distance) (m). At a distance of 0 m the RSSI 

was 9.95 dBm lower for the shadowing compared with the standard calibration, 

whilst the RSSI between calibration types changed by 3.17 dBm for every unit 

change in log(distance) (m).   

 

Across both beacon and calibration types, the range in RSSI values tended be 

greater at shorter WISP-beacon distances, with a reduced range in RSSI reported 

at greater distances of 20 and 30 m. Mean RSSI values at each measured distance 

differed by a maximum of 6 dBm between the shadowing and standard calibrations 

for Beacon Type 2, and 11 dBm for Beacon Type 3. Across both beacon types, the 

blocked line-of-sight (shadowing calibration) resulted in a weaker BLE signal being 

reported, particularly at shorter WISP-beacon distances of 1-5 m. However, as the 

WISP-beacon distance increased the blocked line-of-sight had less of an impact on 

the RSSI reported (Figure 4.18).  
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Table 4.10 Summary of regression model for Beacon Type 2. 

Parameter Estimate SE t-value p-value 

Intercept -52.4323 0.4001 -131.045 <2 × 10-16 

Log (distance) 

m -9.2451 0.2098 -44.065 <2 × 10-16 

Calibration Type 

Standard Reference Calibration and Beacon Type 

Shadowing -6.0465 0.7334 -8.245 5.99 × 10-16 

Distance x Calibration Type 

0 m x Standard Reference Distance and Calibration Type 

Distance x 

Shadowing 2.3003 0.3521 6,533 1.09 × 10-10 

Adjusted R2 0.7502 

F statistic 884.8 

DF 3 and 880 

p-value 2,2 × 10-16 
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Table 4.11 Summary of regression model for Beacon Type 3. 

Parameter Estimate SE t-value p-value 

Intercept -55.4502 0.3910 -141.824 <2 × 10-16 

Log (distance) 

m -8.2867 0.1842 -45.000 <2 × 10-16 

Calibration Type 

Standard Reference Calibration and Beacon Type 

Shadowing -9.9504 0.7347 -13.543 <2 × 10-16 

Distance x Calibration Type 

0 m x Standard Reference Distance and Calibration Type 

Distance x 

Shadowing 3.1702 0.3555 8.918 <2 × 10-16 

Adjusted R2 0.7444 

F statistic 798.9 

DF 3 and 819 

p-value 2,2 × 10-16 
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a) 

 

 

b) 

 
 
Figure 4.18 Comparison of regression lines under shadowing (blocked line 
of sight) and standard (clear line of sight) conditions, for a) Beacon Type 2, 
and b) Beacon Type 3.  
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4.4 Discussion 

 

4.4.1 WISP-beacon BLE range 

 

As observed within the calibration of the Type 1 beacon (Chapter 3) the height at 

which WISPs and beacons (Beacon Types 2 and 3) were located impacted on both 

the probability of a beacon being reported and the RSSI values reported per 

distance. Given the previous calibration (Chapter 3), a level of variation between 

device heights was expected and has been reported in multiple BLE studies 

(Triguero‑Ocaña et al., 2019; Kirkpatrick et al., 2021; Zou et al., 2024). Factors 

affecting RSSI and BLE positioning within indoor systems have also reported 

variations in RSSI in relation to receiver height, and orientation of both the 

receiving and transmitting devices (Mamun et al., 2019). A level of variation 

around a mean value would therefore be expected at each distance. However, the 

WISP ID, beacon ID, and the specific pairing of WISP-beacon IDs also impacted on 

the proportion of beacons reported at each distance, with some devices (e.g. WISP 

ID 1) appearing to have a greater BLE operating range in terms of either 

transmitting or receiving data packets. As demonstrated across the standard and 

shadowing calibrations, this variation appeared to be consistent - with particular 

device IDs (e.g. WISP ID 1) being responsible for a greater number of readings and 

higher RSSI values across both studies. Similar device variations between different 

BLE pairings were also reported by Bloch and Pastell (2020) within a barn 

environment. The specific WISP-beacon pairing could then influence both the BLE 

operating range and RSSI value reported at each distance. If this is variation is 

consistent, then it would be technically feasible for device ID to be considered 

within interpretation of RSSI values. However, this would be highly impractical for 

wide scale application.  

 

Whilst Beacon Types 2 and 3 were described within the manufacturers data sheets 

as having operating ranges of 400 (Shenzhen Feasycom Technology Co., Ltd, b) and 

500 m (Shenzhen Feasycom Technology Co., Ltd, c) respectively (within an open 

environment), under the field conditions in which they were tested the effective 

ranges of the BLE beacons with the WISP were found to be much shorter (< 100 

m). The survival curves generated from the Weibull distributions indicate that 
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beyond 81 m for Type 2 and 77 m for Type 3 beacons there was only a 50 % chance 

that beacons would be reported at distances greater than this. However, given 

that in most applications a higher probability threshold of at least 75 % would 

likely be required, the BLE ranges of the WISP-beacon system could be considered 

to fall within 30-50 m depending upon the device heights. Whilst this is a greater 

range than that of the Type 1 beacon, the increase was not as great as expected.  

 

There are multiple potential reasons for the BLE ranges observed. Firstly, the large 

BLE ranges reported within newer BLE versions are typically only observed in large 

open environments with a clear line-of-sight between transmitter and receiver 

(Jeon et al., 2018). However, the maximum theoretical distance is typically based 

only on RSSI values without consideration to the environmental conditions and 

based on transmitters operating at the maximum TX power (Jeon et al., 2018). As 

TX power will influence the battery life of devices, the study here used the default 

of 0 dBm rather than the maximum possible for each of the beacon types. In 

addition, whilst this study aimed to conduct the experiments within as flat an area 

as possible, the nature of the environment and distance covered (up to 110 m) 

means that there will be some variation in ground height across the study area 

which may contribute to variations in signal strength reported across distances. In 

most circumstances, rather than just a single direct line-of-sight path existing, 

rather variations of the signal will also be received via ground reflected 

propagation pathways (Rappaport, 2024). As these signals are reflected, the 

wavelengths may be altered in relation to the height and angle of the transmitting 

device (Rappaport, 2024). Hence, even in conditions where there is a clear line-

of-sight, in practice, unavoidable environmental factors will result in a faster rate 

of signal decay than would be theoretically expected (Jeon et al., 2018). 

Furthermore, whilst the beacons (operating on BLE 5.1 and 5.2 respectively) have 

an increased broadcasting range, one of the main limiting factors to the tested 

system is that the BLE receiver within the WISP is operating on BLE 4.2. Whilst 

newer versions of BLE are backwards compatible with BLE 4.2 there may be 

limitations to the receivers range and reception. 

 

It was also noted that whilst WISP-beacon parings typically resulted in an RSSI 

value being reported during all repetitions at shorter measured distances, as the 

distance increased more beacons tended to be reported during only some 
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repetitions. Packet collisions can occur when two or more beacons transmit a 

signal on the same channel at the same time, resulting in the receiver being unable 

to correctly decode some or all transmitted data packets. These collisions can 

then result in slow or incomplete discoveries depending upon the discovery time, 

advertisement frequency, scan duration, and scan frequency (Molina et al., 2021). 

Whilst packet collisions may be responsible for some beacons failing to be 

reported, this would require collisions to occur during all scanning windows over 

the 5-minute duty cycle. Given that this variability across repetitions tended to 

occur alongside an overall reduction in the proportion of beacons reported, it 

would suggest that this variability is associated with WISP-beacon pairings 

approaching the limit over which their BLE range can communicate – either due 

to distance or environmental factors acting to block or reduce the signal strength. 

 

 

4.4.2 RSSI and distance estimation 

 

The advertising channel and corresponding frequency over which a signal is 

transmitted can result in variable RSSI values being reported for devices operating 

at the same distance and under the same conditions. Flueratoru et al. (2021) 

reported variations of 5 dBm in BLE devices tested at 2 m in indoor environments, 

whilst Powar et al. (2017) similarly found variations of up to 15 dBm between 

advertising channels in BLE beacons tested in an indoor system. The study by 

Powar et al. (2017) also demonstrated that although some fluctuation still exists 

when devices broadcast on a single channel, there is less variation than when 

devices advertise by transitioning through all advertisement channels. As the BLE 

specification does not currently provide a means of recording and reporting the 

broadcasting channel over which a data packet has been sent (Powar et al., 2017) 

fluctuation in RSSI around a mean should be expected to occur at each distance. 

This study did find that within both beacon types a range of RSSI values were 

reported at each distance, but that the variability in RSSI decreased as the WISP-

beacon distance increased - this may be in part due to the fewer observations 

obtained at greater distances as WISP-beacon pairings fell out of BLE range.  

 

Whilst mean RSSI values initially declined with increasing WISP-beacon distance 

the RSSI values plateaued at ~50 m, varying by only a few dBm after this distance. 
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Hence whilst the prediction model may be useful as indicator of approximate 

distance, the generated equation shows that a unit change in RSSI translates to a 

greater change in distance (m) as RSSI values decline. There is therefore a very 

large RSSI range (approximately -20 to -60 dBm) over which there is little change 

in distance, but all indicating a very close WISP-beacon proximity. Similarly, whilst 

the equation could theoretically estimate distances > 100 m, from approximately 

50-110 m RSSI values appeared to fluctuate around approximately -85 dBm, whilst 

the greatest observed value within the study was -92 dBm. Hence, by a certain 

distance within this system (30-50 m depending on device height), the BLE 

operates such that a beacon’s signal is either reported or not, but that the RSSI 

value contributes little to interpretation of an actual distance, other than being 

greater than ~50 m. The use of the equation to interpret distance would therefore 

appear to be most useful within an RSSI range of approximately -60 to -90 dBm. 

However, the variability amongst devices, combined with variability from the 

environment in which devices are being applied, could make widescale 

standardisation of range and distance translation difficult. Interpretation of RSSI 

into distance ranges, or a “very close” to “far” distance categorisation may be 

more realistic within some applications.  

 

 

4.4.3 Impact of shadowing / blocked line-of-sight 

 

Within on-sheep applications the probability of a BLE signal being reported is likely 

to be further confounded by the presence of other sheep. Within the Type 3 

beacon, the shadowing study acted to reduce the survival curve of the BLE signal, 

indicating a range of ~17 m at a 75 % probability threshold, and ~27 m at a 50 % 

probability threshold. However, the shadowing did not act to reduce the signal 

survival of the Type 2 beacon. With the exception of 10 m, the placement of an 

obstacle between the beacon and WISP also altered the mean signal strength 

reported when compared to values during the standard calibration. RSSI is known 

to vary as a result of obstacles which can attenuate the radio signal, however, the 

alteration observed will depend on the size, location (i.e. the position of the 

obstacle in relation to both the transmitter and receiver), type of material, and 

thickness of the obstacle (Szyc et al., 2023).  Previous studies have demonstrated 

the effects of BLE signals travelling through a human body, which can absorb part 
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of the signal leading to a greater rate of decay (Della Rosa et al., 2012). The study 

by Della Rosa et al. (2012), found that RSSI reduced by up to 15 dBm at 3 m when 

blocked by a human body, whilst variations of up to 30 dBm were reported by 

Mamun et al. (2019) in a similar study. This study also reports that the extent of 

fluctuation in RSSI related to the angle / position of the human body in relation 

to the transmitting and receiving devices. The level to which attenuation occurs 

is also different between tissue types.  Christoe et al. (2021) report varying 

degrees of signal depletion when travelling through water, meat and fat. Hence 

the animals body composition, size (ewe and lamb), and orientation to the 

receiving and transmitting antennas could influence the RSSI reported. 

 

 

4.4.4 Implications for application on-sheep 

 

As a gregarious species, instances will then arise where multiple sheep bodies may 

be within very close proximity when applying BLE as a wearable on-animal device. 

This could act to block or alter signals between the individual with the reporting 

WISP and the animal of interest with the broadcasting beacon. Furthermore, the 

behaviour (and thus beacon height) of both individuals, as well as the animals 

body position and orientation of the device relative to one another will likely 

impact on the BLE signal. This could be particularly relevant for some behaviours 

such as suckling, or instances where both animals are lying. Given the reduced 

BLE range at lower device heights, ewe-lamb contacts would be expected to have 

a shorter range than ewe-ewe contacts. However, as the WISP reports the average 

RSSI of a 5-minute duty cycle, a substantial number of signals would have to be 

blocked or reduced to prevent a beacon being reported. However, it is more likely 

that the interpretation of animal distances will be affected. Even when applied 

within the same system, weather conditions (e.g. rain, snow), humidity, and 

temperature could influence the RSSI values reported (Szyc et al., 2023). Whilst 

the developed prediction equations within this study may then be indicative of an 

approximate WISP-beacon distance within this particular setting, the variability 

amongst devices, combined with variability from the environment in which devices 

are being applied, could then make widescale standardisation of range and 

distance translation difficult as RSSI values are dependent on conditions at specific 

points in both space and time.  
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4.4.4 Limitations 

 

A limitation of the “shadowing” / blocked line of sight study, is that only a single 

obstacle was tested, and only at single set distance from the beacon. Whilst the 

study then demonstrated that the signal strength and likelihood of a beacon being 

reported was impacted by the presence of an obstacle, further studies would be 

required to examine the extent to which sheep bodies impacted the BLE signal, 

and potential factors (such as number of sheep, orientation, distance between 

WISP and beacon, and body size) which may influence this. The study was also 

limited by the number of WISPs for which data was obtained. Due to battery 

failure, the study compared only three WISPs, however, the data indicates a strong 

WISP ID effect, and further studies should therefore include a greater number of 

WISPs to assess the overall trend and effects of WISP-beacon interactions on the 

reported BLE signal.    

 

Thes studies also demonstrated potential issues with the BLE technology and the 

transmission of the signal between devices. Within both the standard and 

shadowing calibration study, Beacon 3.7 was not reported by any WISP at any point 

within the study. However, the beacon was operating and functioning when 

checked using the “FeasyBeacon” app. As it was therefore unclear whether there 

was a connection issue between all tested WISPs and this particular beacon, or all 

devices were functioning correctly, but the beacon simply failed to be reported, 

the decision was made to include the beacon within the analysis.  
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4.5 Conclusion 

 

The calibration studies of the Type 2 and 3 beacons further demonstrated 

variability in signal strength arising from specific device IDs and combinations of 

WISP-beacon pairings. This could make a standardised distance translation more 

complex.  The survival curves generated also reinforced that the effects of height, 

as observed within the calibration of the Type 1 beacon (Chapter 3) were not 

related to a specific beacon type, but rather associated with line of-sight and BLE 

range across BLE specifications. The RSSI values reported also indicated that signal 

strength was likely to be a poor indicator of distance changes beyond 

approximately 50 m. In addition, the blocked line-of-sight study suggests that 

where sheep are located between the BLE beacon and WISP, beacons may be less 

likely to be reported (particularly the Type 3 beacon). Where signals are reported, 

these will be weaker than where there is a clear line-of-sight, especially at close 

distances of 1-10 m. This may then have implications for on-sheep studies, where 

sheep in close proximity appear further away based on RSSI values.  
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Chapter 5 Application of Bluetooth Low Energy 

(BLE) to monitor the ewe-lamb relationship during 

the early lactation period: Methodology and focal 

ewe-lamb analysis. 

 

 

5.1 Introduction 

 

Previous studies applying BLE within sheep monitoring have explored the use of 

the technology to detect very close contacts, such as use of resources – i.e. to 

quantify drinking habits (Abecia et al., 2024), within location monitoring of 

grazing flocks – e.g. using a combination of GNSS collars and BLE beacons (Maroto-

Molina et al., 2019), or utilising BLE readers on-board UAVs to detect beacons on 

sheep (Vucic and Axell, 2022). Several studies have also applied BLE within the 

context of proximity monitoring of ewe-lamb contacts, primarily as a means of 

determining maternal pedigree – determined based on the number of BLE signals 

received between ewe-lamb pairings (Sohi et al., 2017; Waterhouse et al., 2019; 

Paganoni et al., 2021). These studies have demonstrated differences in contact 

duration and distances between related and non-related ewes and lambs, and the 

ability of BLE to successfully match lambs with their dams. The estimated BLE 

distances assessed within these studies have been within ranges of 0 - 24 m (Sohi 

et al., 2017) and 1 - 15 m (Paganoni et al., 2021), however, more recent versions 

of BLE could allow for monitoring over greater distance ranges. This then presents 

an opportunity to monitor not just the number of contacts but could provide 

insight into changes in spatial proximity of relationships over time.  

 

Within gregarious species, such as sheep, social factors can have an important 

influence on behaviour (Hinch, 2017). Associations between ewes and lambs, and 

between conspecifics, can influence group sizes, home ranges, and spatial 

distributions, which will be further influenced by the environmental conditions 

and size of area in which the flock is kept (Hinch, 2017). During the lambing and 

post-lambing period the relationship and spatial distance between ewes and ewe-
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lamb pairs changes over time according to lamb age / time since lambing, but also 

across daily diurnal activity patterns (Galeana et al., 2007; Arnold & Grassia, 

1985). Within the study by Sohi et al. (2017) the number of ewe-lamb contacts 

was found to differ between light and dark periods, with higher contacts occurring 

at night – a period during which flocks would not typically be inspected. Being 

able to remotely and continuously monitor sheep interactions could then provide 

a wealth of information in relation to flock dynamics and establishing typical ewe-

lamb patterns, which could allow for identification of potential issues when these 

patterns deviate. 

 

BLE offers a potential solution by which this information could be monitored within 

grazing sheep systems, particularly within the context of ewe-lamb monitoring, 

as the light weight of BLE beacons (~6 - 15 g according to beacon type) present a 

device suitable for use on lambs. However, whilst signal strength of BLE typically 

declines with increasing separation distance between devices (as observed within 

the calibration studies – Chapter 4), the application of the BLE system as an on-

sheep proximity monitoring tool does present additional challenges for the 

transmission and detection of beacon signals. The combined movement of sheep, 

and direction and speed at which they travel towards or apart from one another, 

will likely have implications on the transmitted beacon signal being received (Lee, 

1997), and the strength of the signal reported. Given that device height can also 

impact BLE range (Triguero‑Ocaña et al., 2019; Kirkpatrick et al., 2021), signals 

may be further confounded by the behaviour and postural changes (impacting on 

the height-distance relationship between transmitting and receiving devices on 

the respective sheep of interest) across individual and consecutive duty cycles. To 

then assess the functionality of BLE as a proximity monitoring tool within sheep 

grazing systems, the WISP and BLE beacons were trialled within an on-sheep study 

during the high activity period of pre-lambing and early lactation. This chapter 

details the data collection and methodology of the ewe-lamb study design and 

presents the data analysis and results relating to a subset of the data during which 

focal observations were conducted. The statistical analysis and results obtained 

for the full ewe-lamb study are discussed within Chapter 6. 

 

The primary aim of the focal observations was to assess how the BLE devices 

performed when both the WISPs and beacons were on sheep. Contacts between 
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observed ewe-lamb groups (ewes with twin lambs) were assessed to examine if 

sheep behaviour influenced the likelihood of a beacon being reported, and / or 

the reported RSSI and thus distance estimation. The study therefore consisted of 

several smaller aims: 

 

1. To examine the overall proportion of expected focal ewe and focal lamb 

beacons reported.  

2. To assess whether a beacon being reported was affected by ewe and lamb 

behaviour, and ewe-lamb distance.  

3. To examine how BLE signal strength and the developed distance prediction 

equation for the type 3 beacon (Chapter 4) related to ewe-lamb distances 

estimated by an observer and assess if this was affected by ewe and lamb 

behaviour. 

4. To examine the consistency of focal lamb beacons being reported by their 

dam over time.  

 

 

5.2 Material and methods 

 

All procedures and experimental protocols were approved by SRUC’s Animal 

Experiment Committee (SHE AE 10-2022 – approved 13th April 2022). 

 

5.2.1. Study dates and location 

 

The ewe-lamb study was conducted over a six-week period from the 20th April to 

2nd June 2022 at Auchtertyre Farm (SRUC’s Hill and Mountain Research Centre) 

near Crianlarich, in the West Highlands of Scotland. The study flock was kept 

within two adjoining fields of ~3 ha of permanent pasture – the lower field being 

the location for all calibration studies (Chapters 3 and 4). The upper field was 

~1.07 ha, and the lower field ~1.73 ha, which were connected via an open gate 

(Figure 5.1). A single water trough was located in the southwest corner of the 

lower field.  



 

Figure 5.1 Location of ewe-lamb study fields and indoor handling shed. 



5.2.2. Animals and study phases 

 

The study flock consisted of 38 ewes (25 Lleyn and 13 Scottish Blackface) and their 

lambs. Whilst the study aimed to follow twin-bearing ewes, 26 ewes had twin 

lambs, three had single lambs, six had triplets, and three did not lamb. The study 

therefore included 73 lambs, alongside one fostered-on lamb, for a total of 74 

lambs. In addition, to typical daily checks by farm shepherds, farm technicians 

conducted checks on the study flock twice-daily (morning / afternoon) during the 

first four weeks, reducing to once daily during weeks five and six (as most ewes 

had lambed).  

 

The study was conducted over three phases (Table 5.1). WISPs and beacons were 

fitted on-sheep for a period of 9 - 15 days, followed by a rest period of three / 

four days to allow the batteries to be replaced and the data to be downloaded 

from the WISPs. As five of the ewes (Group 2) lambed on or within 2 d prior to the 

study start date, these ewes and their lambs were fitted with devices at a slightly 

later start date during Phase 1 than the other 33 ewes within the flock (Group 1). 

Ewes were supplemented with hay during Phase 1, whilst the whole study flock 

was temporarily moved to nearby pasture between Phases 2 and 3 to allow the 

grass to recover. 

 

 

Table 5.1 Study phase dates and durations. 

Phase Start Date End Date Duration 

1 – Group 1 20/04/22 02/05/22 14 d 

1 – Group 2 22/04/22 02/05/22 12 d 

2 06/05/22 20/05/22 15 d 

3 24/05/22 02/06/22 10 d 
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5.2.3. Devices and device assignment 

 

The study used a combination of WISPs as wearable on-animal devices on ewes 

(containing a Type 2 Beacon – Chapter 2), alongside Type 2 and 3 beacons fitted 

to ewes via string or to lambs via collar type 2 (containing a Type 3 Beacon - 

Chapter 2). Assignment of beacon types to ewes and lambs was based on available 

numbers of each beacon type. The system operated as previously described in 

Chapter 2. 

 

At the initial study start date, Group 1 was gathered within the Shed (indoor 

handling pens) at Auchtertyre Farm (Figure 5.1). Ewes were fitted with either a 

WISP (containing a BLE beacon) or BLE beacon only and spray-painted on both 

flanks with a study number (1 - 33); recorded against their farm tag ID, to allow 

for visual identification at a distance. As there were a limited number of WISPs 

(23), four WISPs were held back to be assigned to ewes within Group 2. This was 

to ensure ewe-lamb data during the 1st week after lambing was captured. Ewes 

within Group 1 were then randomly assigned one of the remaining 19 WISPs or a 

BLE beacon only (14). Group 2 was gathered within a pen in the study field (Figure 

5.1) two days later, where they were also assigned a device and spray painted with 

a study number (34 - 38). During Phases 2 and 3, all ewes were assigned devices 

on the same date during a gathering within the shed. However, there was a 

reduction in the number of WISPs available (16) due to use within the wider 

TechCare project. In addition, as some ewes experienced chaffing from the WISP 

collars (eight ewes in total across the study), they were subsequently assigned a 

Beacon only in following phases, with adjustments made to the WISP design 

(Chapter 2). Of the ewes which did not experience chaffing or had previously been 

assigned a BLE beacon only, the allocation of devices during Phases 2 and 3 was 

based on whether the ewe had lambed, age of lamb(s), and breed of ewe.  

 

During Phase 1, the 10 lambs which had been born prior to the start of the study 

were assigned their collar alongside their dams during the in-field gathering of 

Group 2. All other lambs were assigned their neckband at the time of standard 

tagging and recording, which would occur within 24 h of birth. At this point the 

ewe’s ID, lamb’s ID and their assigned BLE beacon number were recorded, and 

lambs were spray-painted with their dam’s study number on each side of the body. 
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For twin lambs, the second lamb was additionally spray-painted with a dot on its 

back. Of the ewes which lambed triplets, either the entire group was removed 

from the study, or only two lambs remained within the study (one lamb fostered-

off) hence there was no requirement for a third spray marking type. After initial 

BLE beacon assignment at tagging and recording, new beacon IDs were allocated 

(based on neckband size) when the flock was gathered and handled within the 

shed at the start of each study phase.  

 

 

5.2.3. Animal removal from study 

 

Throughout the study period seven ewes and their lambs were temporarily 

removed from the study to indoor pens within the shed. In these instances, devices 

(where already assigned) were removed, before being refitted on the same 

animals prior to re-joining the study. In addition, several animals were 

permanently removed from the study, resulting in a total of 33 ewes and 53 lambs 

by the end of the study period. Reasons for removals are outlined in Table 5.2. 
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Table 5.2 Animals removed during the study period. 

 Ewe / Lamb No. of Animals Reason for Removal 

Temporary 

Removal 

Ewe 1 Prolapse 

1 Mastitis 

1 Ewe not enough milk 

4 Small / weak lamb 

Lamb 2 Prolapse 

1 Mastitis 

2 Ewe not enough milk 

6 Small / weak lamb 

Permanent 

Removal 

Ewe 4 Lambed triplets – moved indoors 

with all lambs 

1 Died following lambing 

Lamb 12 Triplet lamb – moved indoors with 

dam 

5 Moved to indoor pen – orphan 

lamb / lamb removed from ewe 

3 Died at lambing / prior to 

recording and tagging 

1 Missing during Phase 2 – 

suspected to have been taken by 

a fox 

 

 

 
 
5.2.4. Collection of animal data  

 

5.2.4.1 Ewe data 

 

All ewes were assessed prior to the start of the study and at the end of the study 

to obtain a body condition score (BCS) and weight in kilograms (kg). These were 

obtained by Auchtertyre Farm technicians during in-shed handling, following the 

protocols outlined within the TechCare Meat Sheep Welfare Assessment Measures 

(TechCare, 2023) – provided within Appendix D. BCS was measured on a scale of 1 
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to 5, in 0.25 increments, using methods by Russell et al. (1968), whilst weights 

were obtained using an EID weigh crate (0.1 kg error). Starting BCS and weights 

were obtained for ewes in Group 1 on the study start date (20th April), whilst for 

Group 2 information was taken from an earlier assessment on 21st March 2022. 

Study end weights were obtained at device removal of Phase 3 on 2nd June 2022.  

 

 

5.2.4.2 Lamb data 

 

Lamb birth weights (kg) were recorded by a farm technician using a manual scale 

(Figure 5.2) at the time of standard tagging and recording. Study end weights and 

BCS for lambs followed the same protocol as outlined for ewes, obtained on 2nd 

June 2022.  

 

 
Figure 5.2 Weighing of a lamb at recording and tagging. 
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5.2.4.1 Ewe condition / welfare data 

 

Sheep condition data, hereby referred to as “welfare data” was also collected 

during pre-study (21st March 2022) and end-of-study (2nd June 2022) handling, at 

in-shed gathering events (collected by farm technicians), as well as during six 

weekly in-field welfare assessments (conducted every Friday). The selected 

measures (Table 5.3) respectively followed the handled and in-field protocols 

outlined in the TechCare project (TechCare, 2023) – provided in Appendix D.  

  

 

Table 5.3 Summary of sheep condition (welfare) data collected. 

Welfare measure Score Range Conducted during: 

in-shed in-field 

Ewe-lamb distance (m) – related 
to maternal behaviour 

Recorded in 
(estimated) 1 m 

increments from 1-50 
m, after which lambs 

were classed as >50 m 

 X 

Lameness (gait) scoring 0-3 X X 

DAG score (extent of faecal 
deposition on the fleece) – 
related to gastrointestinal 

parasites / nutrition 

0-4 X X 

Fleece condition (fleece loss / 
irritation – itching or scratching) 
– related to ectoparasites and/or 

myiasis (flystrike) / nutrition 

0 / 1 (binary scoring) X X 

Respiratory problems 0 / 1 (binary scoring) X  

Dental loss 0-2 X  
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5.2.5. Focal observations 

 

Focal observations were carried out three days per week, with a total of 56 

observations across the three study phases. Focal observations were conducted on 

ewe-lamb groups (dam with twin lambs only), with the aim of obtaining data (from 

the focal ewes WISP) across a range of lamb ages and for both ewe breeds. On a 

given day, the focal groups selected for observation were therefore based on the 

focal ewe having a WISP, the ewe breed, and lamb age. Whilst groups selected 

were initially based on the order in which they were spotted within the field, 

observations therefore became progressively more targeted towards groups where 

data for specific lamb ages and ewe breeds were lacking.  

 

Once a focal group was selected, the ewe and both lambs were observed for a 20-

minute period. The date, an observation ID, observation start time, and each 

animals spray-marked ID was recorded (e.g. ewe = E1, lamb 1 (no dot) = L1, lamb 

2 (with dot) = L1D). At 1-minute intervals the following information was recorded 

under each lamb ID: 

▪ Ewe’s behaviour (from a pre-defined list – Table 5.4). 

▪ Lamb’s behaviour (from a pre-defined list – Table 5.4). 

▪ Estimated ewe-lamb distance in metres (m) – using field features and 

distance between fence posts (~2 m) as reference.  

▪ Whether the lamb was within the ewes nearest 15 neighbours (and 

therefore expected to be reported if within the BLE distance range) – 

defined as YES / NO / UNSURE. This was an estimation based on the 

observers assessment – being easier to ascertain during some behaviours, 

at closer distances, and when fewer sheep were within proximity.  

▪ Where possible, an expected beacon rank position (2-16) relating to the 

order in which beacons were expected to be reported by the focal ewes’ 

WISP (the strongest signal being reported first) was also recorded. For 

instance, if the lamb was consistently the closest animal to the focal ewe, 

then the expected rank position was 2 – as the ewes own ID was expected 

at Rank 1. Given the movement of ewes and lambs across a duty cycle, this 

was only recorded in some instances (typically where ewes and lambs were 

in very close proximity and there was little or no movement).  
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Table 5.4 Ethogram of ewe and lamb behaviours during focal observation. 

Behaviour Ewe / Lamb Description of behaviour 

Grazing1 Ewe & Lamb Grazing with head down or chewing with head up, 

either standing still or moving. 

Lying1 Ewe & Lamb In a lying posture whilst idle or inactive - a 

recumbent position with minor head movements. 

Playing2,3 Lamb only Including superfluous activity such as running, 

jumping or frolicking in a co-ordinated manner 

(with no apparent purpose), object play, or social 

play - interacting with another lamb or lambs.  

Scratching4 Ewe & Lamb Rubbing body against objects, scratching body 

with hind leg or stretching whole or part of the 

body. 

Standing1 Ewe & Lamb Static standing with minor limb and head 

movements, whilst idle or inactive. Head may be 

up or down. 

Suckling5 Lamb only Places head under ewe - in contact with udder for 

more than 5 s. 

Walking1 Ewe & Lamb Minimum of 2 progressive steps forward, 

backwards or sideways. 

Not 

Observed 

Lamb only Lamb not seen within vicinity of ewe – not located 

using binocular search.  

 

Behavioural definitions based on: 1 Barwick et al., 2018, 2 Dwyer, 2003, 3 Randle, 

1993, 4 Chapagain et al., 2014, 5 Pickup and Dwyer, 2011.  
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During the observations animals were observed from a distance, using binoculars, 

when necessary, to minimise disturbance. If the focal ewe was particularly active, 

they were followed at a distance to maintain a view of all three individuals (where 

possible). If one of the lambs was unable to be located at a given 1 min interval 

it was recorded as not observed. If at the end of the study the lamb was still not 

observed a search was conducted within the field to locate the lamb. On occasions 

where lambs were positioned such (i.e. lying) that lamb twin identity (dot / no 

dot) could not be determined, information was recorded under two columns, and 

lambs were approached at the end of the observation period to confirm identities 

of each. All observational data was recorded on paper and transcribed into a single 

.csv file.  

 

 
5.2.6. Statistical analysis of focal observation data 

 

5.2.6.1 Data collation 

 

As there was no LoRa gateway operating during Phase 1 of the study, data analysis 

was conducted using flash drive data downloaded from each individual WISP. Data 

from individual flash drives was manually filtered to select data rows 

corresponding to relevant time periods of focal observations only. This data was 

then merged into one single .csv file containing data for all focal observations – 

with new variables “Observation ID”, “WISP ID”, and “Total no. of beacons 

reported” generated. In one instance (observation 40) where flash drive data was 

unavailable, but LoRa data could be obtained, the relevant information was 

similarly selected from the LoRa .csv file. All further analysis was conducted in R 

version 2.4.4 (R Core Team, 2020). The data was lengthened by converting the 

.csv file from reporting 16 beacons per row, to a single beacon per row, and 

assigning a new variable “Beacon rank” based on the position (out of 16) at which 

the beacon was reported. All rows where no beacon was reported were removed 

from the data set to create a final “working data set”.  

 

The observational data set was initially edited within excel. Data was grouped into 

intervals corresponding to the duty cycle of the focal ewes WISP (i.e. five 1-minute 

observations per duty cycle). Using the WISPs reporting timestamp, the data was 
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transformed into a single row per lamb for each duty cycle, with the following 

variables: 

▪ Timestamp (based on the focal ewes WISP). 

▪ Observation ID. 

▪ WISP ID. 

▪ Focal ewe ID (i.e. E1). 

▪ Focal lamb ID (i.e. L1 or L1D). 

▪ Lamb age (days) at observation. 

▪ The ewe behaviour recorded at each 1-minute observation (i.e. Ewe 

behaviour 1/2/3/4/5). 

▪ The lamb behaviour recorded at each 1-minute observation (i.e. Lamb 

behaviour 1/2/3/4/5). 

▪ The observer estimated ewe-lamb distance at each 1-minute observation. 

▪ Whether the focal lamb was within the ewes nearest 15 neighbours (defined 

as Yes / No).  

▪ The expected beacon rank of the focal lamb 

 

Three new variables were then generated to summarise ewe and lamb data for 

each duty cycle. A “Mean Observer Estimated Ewe-Lamb Distance”, “Overall Ewe 

Behaviour” and “Overall Lamb Behaviour” were categorised based on all five 1-

minute observations. If a single behaviour was recorded at all observations (i.e. 

five observations of lying) then this behaviour was given as the overall behaviour. 

However, where two or more behaviours were recorded, the overall classifications 

were: 

▪ Inactive (where observations consisted of a mix of lying and standing). 

▪ Active (where for the ewe: observations consisted of a mix of grazing and 

walking, and for lambs: grazing, walking, playing, and suckling). 

▪ Mixed (where both inactive and active behaviours were recorded).  

 
 
 
5.2.6.2 Initial summary of data 

 

Initial summarisation of the data was conducted using the “dplyr” package in R 

(Version 1.1.2; Wickham et al., 2023).  
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5.2.6.3 Analysis of focal ewe beacons 

 

The “working data set” was filtered to find rows in which a focal ewes’ WISP 

reported its own beacon only. The proportion of beacons reported was summarised 

using the “dplyr” package in R (Version 1.1.2; Wickham et al., 2023). Data was 

further grouped and summarised based on the “WISP ID” (and thus WISP-beacon 

pairing), to assess for variation amongst device identities.  

 

The distance prediction equation for the Type 2 beacons (equation 4.1 - Chapter 

4) was applied to the obtained RSSI values for each data row to generate a new 

variable “BLE Estimated Distance”. A summary of the overall signal strength, and 

per WISP ID, was generated via the “dplyr” package in R (Version 1.1.2; Wickham 

et al., 2023). A Kruskal-Wallis and Dunn’s test was conducted to assess whether 

there was a difference in signal strength between individual WISP-beacon pairings. 

Within the “working data set” a new variable was generated to specify whether a 

reported beacon was a ewe’s own beacon or that or a neighbouring sheep. A 

comparison of RSSI values between a ewe’s own beacon (located within the WISP), 

and that of neighbouring sheep, was visualised using ggplot2 (Version 3.5.1; 

Wickham, 2016). 

 

Using the subset of data relating to reports of a ewe’s own beacon only, data was 

grouped by “Observation ID” and summarised to obtain the number of possible 

duty cycles per observation (either 3 or 4 duty cycles depending upon the reporting 

timestamp of the focal ewes’ WISP), and the number of duty cycle in which the 

ewe’s own beacon was reported. 

 
 
 
5.2.6.4 Analysis of focal lamb beacons 

 

The “working data set” was filtered to include rows relating to a ewe reporting 

its own lambs only. This subset of data was then merged with the observational 

data set, and a new variable “Beacon Reported” (Yes / No) was generated. 

Instances where a lamb had not been fully observable for a full duty cycle, or the 

observer had been unable to determine whether the lamb was one of the focal 

ewes nearest 15 neighbours, or not, were removed.  
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A “Distance Group” variable was generated based on the mean observer estimated 

ewe-lamb distances reported – with classifications of “0-1 m”, “1-2 m”, “2-5 m”, 

“5-10 m”, “10-20 m”, and “> 20 m”. The proportion of beacons reported within 

each of these categories was summarised using the “dplyr” package in R (Version 

1.1.2; Wickham et al., 2023). The proportion of beacons reported was then 

assessed in relation to combined “Overall Ewe behaviour” and “Overall Lamb 

Behaviour” by grouping and summarising the data via the “dplyr” package in R 

(Version 1.1.2; Wickham et al., 2023). Combined ewe and lamb behaviours for 

which there were 18 or more observations were then summarised to assess the 

proportion of beacons reported within each of the “Distance Group” categories.  

 

Comparison of signal strength in relation to the mean observer estimated ewe-

lamb distances was visualised using ggplot2 (Version 3.5.1; Wickham, 2016). The 

distance prediction equation for the Type 3 beacons (equation 4.2 - Chapter 4) 

was applied to the obtained RSSI values for each data row to generate a new 

variable “BLE Estimated Distance”. BLE estimated distances were also visualised 

in relation to the mean observer estimated ewe-lamb distances using ggplot2 

(Version 3.5.1; Wickham, 2016). For each of the selected “Combined ewe and 

lamb behaviours” the signal strength and “BLE Estimated Distance” were similarly 

visualised using ggplot2 (Version 3.5.1; Wickham, 2016). The “lm” function in R 

(version 4.2.2; R Core Team, 2022) was then applied to calculate the gradient of 

the regression line within each behaviour category. 

 

Data was then grouped by “Observation ID” and “Focal Lamb ID” to summarise: 

▪ the number of duty cycles per observation for which data was obtained. 

▪ the number of potential duty cycles in which a lamb could be reported (i.e. 

the focal lamb was observed to be within the ewe’s nearest 15 neighbours 

and had a maximum mean observer estimated distance of 42 m across all 

corresponding duty cycles of the observation period). 

▪ The number of duty cycles in which the focal lamb beacon was reported by 

the focal ewes’ WISP. 

Instances where data was not available for all duty cycles were filtered out, and 

the remaining data was summarised using the “dplyr” package (Version 1.1.2; 

Wickham et al., 2023) to compare the number of times a focal lamb’s beacon was 
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reported across consecutive duty cycles (of either 3 or 4 duty cycles depending 

upon the reporting timestamp of the focal ewes’ WISP). 

 

 

5.3 Results: Ewe-lamb focal observations 

 

5.3.1 Summary of data obtained 

 

BLE data was obtained for 53 of 56 focal observations, due to battery failure in 

the other three instances. As observations were conducted on twin lambs, data 

was available relating to 106 individual ewe-lamb focal observations (Table 5.5). 

Due to the rotation of WISPs between ewes (per study Phase) data was collected 

from 19 different WISP IDs – with 1-7 observations per WISP.  

 

Table 5.5 Summary of Bluetooth Low Energy (BLE) data obtained for focal 
observations. 

 Ewe Breed Total 

Lleyn Ewes Scottish Blackface 

Total no. of focal 

observations 

39 14 53 

Total individual ewe-lamb 

observations 

78 28 106 

Total no. of unique groups 15 5 20 

No. of observations per 

unique focal group 

1-5 2-4 1-5 

Age range of lambs (days) 1-34 2-24 1-34 

 

 

Due to the differing 5-minute duty cycles of each WISP, data from most 

observations (44 of 53 – 83%) related to a 15-minute observation period – i.e. 3 

corresponding timestamps. However, for 9 observations (17 %) timestamps 

reported such that there were 4 corresponding timestamps – covering the full 20-

minute observation. Data was therefore obtained from a total of 168 unique duty 

cycles.  
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5.3.1.1 Overall proportion of beacons reported 

 

Of the possible 2 688 beacons that could have been reported (168 duty cycles x 16 

beacons per duty cycle), 1 800 (66.96 %) were reported. WISPs always reported a 

minimum of two beacons, indicating that there was always at least one sheep 

within BLE range, as it was expected that each ewe’s own beacon would be 

reported at the 1st beacon rank (i.e. its own beacon was closest and thus should 

have the strongest signal). A minimum of eight beacons, and thus at least seven 

neighbouring sheep were reported in 125 duty cycles (74 %), whilst 16 beacons 

were reported in 43 duty cycles (26 %).  

 

 

5.3.2 Reporting of focal ewe “own” beacons 

 

5.3.2.1 Proportion of beacons reported 

 

Of the 168 duty cycles, a ewe’s own beacon was reported in 141 duty cycles (84 

%), but failed to be reported in 27 duty cycles. Except for one instance (where a 

total of 3 beacons were reported), all cases where a ewe’s own beacon failed to 

be reported occurred in duty cycles for which the maximum of 16 beacons were 

reported by the ewe’s WISP.  In all instances where a beacon was reported, this 

was always at the 1st beacon rank, and thus had the strongest signal of any beacon 

reported in that duty cycle. As WISPs were reallocated at each study phase, there 

were 39 different WISP-ewe pairings, of which 17 (44 %) resulted in the ewes own 

beacon failing to be reported at least once during the observation period. On 

average, WISPs reported their own beacon in 81% of instances, however, the 

proportion of own beacon reports varied depending on individual WISP ID (Table 

5.6) – although there were few data points for some WISPs.  
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Table 5.6 Summary of "own beacon" reports by wearable integrated sensor 
platform (WISP) ID. 

WISP ID Total possible “Own 

beacon” readings 

“Own beacon” 

readings reported 

2 3 2 (67%) 

4 3 1 (33%) 

6 3 2 (67%) 

10 6 6 (100%) 

11 22 16 (73%) 

12 4 4 (100%) 

13 6 4 (67%) 

14 10 10 (100%) 

15 12 9 (75%) 

17 3 2 (67%) 

18 6 6 (100%) 

19 12 12 (100%) 

20 6 4 (67%) 

21 13 11 (85%) 

22 6 4 (67%) 

23 11 11 (100%) 

24 16 15 (94%) 

27 10 10 (100%) 

29 16 12 (75%) 
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5.3.2.2 Signal strength of focal ewe beacons 

 

Overall RSSI values reported for focal ewe beacons ranged from -50 to -14 dBm 

(range of 36 dBm). However, individual WISP-beacon pairings resulted in ranges of 

0 – 12 dBm, and mean range of 3.53 dBm (Figure 5.3) A Kruskal-Wallis test 

indicated that there was a difference in reported RSSI values of a WISP’s own 

beacon depending upon the WISP-beacon pairing, Χ2 (df =18, n=19) = 130.73, p = 

2.2 x 10-16. Post hoc comparisons using Dunn’s test (with a Bonferroni correction 

for multiple tests) found differences between some but not all WISP-beacon 

pairings. 

 

 

Figure 5.3 Comparison of signal strength reported for a wearable integrated 
sensor’s (WISP’s) "own beacon" by WISP-beacon pairing. 

 

 

However, whilst there was some variation between device pairings, RSSI values of 

a focal ewe’s own beacons were higher than those reported for any neighbouring 

sheep, which had a mean RSSI of -80.45 dBm and ranged from -92 to -34 dBm 

(Figure 5.4). There were only 5 of 1637 RSSI readings (0.31 %) from neighbouring 

sheep which fell within the same signal strength range as a ewe’s own beacon. 

Three of these instances were by the same WISP (WISP ID 29), and in all 5 instances 

the neighbouring sheep reported was a focal lamb, where in at least one of the 
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five 1-minute observations for the duty cycle the observed ewe-lamb distance was 

0 m (ewe and lamb in-contact). 

 

 

 

Figure 5.4 Comparison of reported signal strength of a focal ewes own vs 
neighbouring sheep beacon. 

 

 

Distance estimates of ewes’ own beacons - Type 2 beacons (equation 4.1 - Chapter 

4), ranged from 0.02 – 0.82 m, with a mean predicted distance of 0.14 m. When 

examined based on WISP-beacon pairing, mean predicted distances of “own 

beacons” ranged from 0.03 to 0.23 m for all except one WISP - WISP ID 24, which 

had a higher mean predicted distance of 0.48 m.   

 

 

5.3.2.3 Reporting of beacons over time 

 
The ewe’s own beacon was reported across the entire observational period (15 or 

20 min depending on whether 3 or 4 duty cycles of data were obtained) in 36 of 

the 52 (69 %) observations for which data was obtained. Whilst in 16 observations 

beacons were missed during some duty cycles, there were no instances where the 

ewe’s own beacon was not reported at least once during an observation period 

(Table 5.7). 
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Table 5.7 Summary of ewe "own beacon" reports per observation period. 

No. of duty cycles for 

which data was reported 

Data obtained for: 

3 duty cycles (15 min) 4 duty cycles (20 min) 

0 0 (0%) 0 (0%) 

1 5 (11.63%) 1 (11.11%) 

2 8 (18.60%) 1 (11.11%) 

3 30 (69.77%) 1 (11.11%) 

4 NA 6 (66.67%) 

Total duty cycles 43 9 

 

 

 

5.3.3 Reporting of focal lamb beacons 

 

5.3.3.1 Proportion of beacons reported 

 

A total of 282 data points (individual lamb duty cycles) remained after filtering. 

Of these observations, there were 266 instances (94 %) where the lamb was 

considered to have been within the ewe’s nearest 15 neighbours for the full duty 

cycle and thus, distance dependent (in relation to the BLE range), expected to be 

reported by the focal ewe’s WISP. In the other 16 instances, lambs were observed 

for the full duty cycle, but at least 15 other sheep were observed to be located 

between the focal lamb and ewe, and it was therefore expected that these 

beacons would be reported, rather than that of the focal lamb.  

 

Lambs considered to have been within the focal ewes nearest 15 neighbours, had 

mean observer estimated distances of 0 – 42 m. These observed distances were 

considered to be within a reasonable BLE distance range given that the 75 % 

probability threshold for Type 3 beacons (Chapter 4) was between ~34 – 47.5 m, 

depending on device height. Lambs considered to be beyond the ewes nearest 15 

neighbours also had greater mean observer estimated distances of 42 – 60 m, and 

thus a reduced probability of being reported. However, a relatively high proportion 

of lamb beacons were not reported by the focal ewes’ WISP even at close distance 

ranges (Table 5.8). In addition, there were three instances where a focal lamb’s 
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beacon was reported when at least 15 other sheep were located between the lamb 

and focal ewe – including the lamb located at the furthest mean observed distance 

of 60 m. In all three cases, the “Overall Ewe Behaviour” was categorised as 

“Grazing”, however the “Overall Lamb Behaviour” varied, being either “Lying” 

(43.4 m), “Playing” (60 m), or “Active” (48 m). 

 

 

 

Table 5.8 Reporting of focal lamb beacons in comparison with observer 
estimated ewe-lamb distances. 

Mean observer estimated 

ewe-lamb distance (m) 

No. of data 

points 

Lamb reported Lamb Not 

reported 

Lamb within focal ewes nearest 15 neighbours: 

0 - 1 77 47 (61 %) 30 (39 %) 

1.01 - 2 46 23 (50 %) 23 (50 %) 

2.01 -5 46 31 (67 %) 15 (33 %) 

5.01 - 10 0 NA NA 

10.01 - 20 44 32 (73 %) 12 (27 %) 

20.01 - 42 53 31 (58 %) 22 (42 %) 

Lamb beyond focal ewes nearest 15 neighbours: 

42.01 -60 16 3 (19 %) 13 (81 %) 

Total 282 167 (59 %) 115 (41 %) 
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5.3.3.2 Effect of ewe and lamb behaviour on proportion of beacons reported 

 

Of the 266 observations where a focal lamb was considered to have been within 

the focal ewe’s nearest 15 neighbours, the lamb’s beacon was reported in 164 

instances (62 %). A matrix of the number of observations and number of focal lamb 

beacons reported, per combined “Overall Ewe Behaviour” and “Overall Lamb 

Behaviour” is provided in Table 5.9. Ewes were categorised as having five possible 

overall behaviours, whilst lambs had seven possible categorisations. Whilst for 

some ewe behaviours the lamb behaviour was variable (i.e. for ewe “Mixed” 

behaviour, lamb behaviours were recorded in all seven categorises), others 

appeared to be linked (i.e. when the ewe was “Lying” the lamb was also “Lying” 

in 91 % of observations).  

 

Given the low number of observations within some ewe-lamb behaviour 

classifications, the combined effect of distance and sheep behaviour on the 

proportion of beacons reported was examined for five behaviour classification 

groups - those with a minimum total of 18 observations (Table 5.10). Some 

behaviour classifications occurred more frequently at shorter (i.e. ewe lying / 

lamb lying), or longer (i.e. ewe grazing /lamb lying) distances, whilst others 

occurred across a range of observer estimated ewe-lamb distances. Within each 

distance range the proportion of beacons reported differed according to the 

behaviour classification, in some cases by as much as a 75 %. 



Table 5.9 Proportion of focal lamb beacons reported within a duty cycle per ewe-lamb behaviour classification. 

Overall Ewe 

Behaviour 

Overall Lamb Behaviour Total 

Observations 

Lying Standing Walking Grazing Inactive Active Mixed 

Lying 43 

35 (81%) 

0 0 0 0 0 4 

4 (100%) 

47 

39 (83%) 

Grazing 27 

14 (52%) 

18 

9 (50%) 

2 

1 (50%) 

10 

6 (60%) 

4 

1 (25%) 

10 

6 (60%) 

66 

46 (70%) 

137 

83 (61%) 

Inactive 1 

0 (0%) 

0 0 0 2 

1 (50%) 

0 3 

1 (33%) 

6 

2 (33%) 

Active 2 

2 (100%) 

0 3 

0 (0%) 

0 0 2 

0 (0%) 

16 

11 (69%) 

23 

13 (57%) 

Mixed 9 

5 (56%) 

4 

1 (25%) 

1 

0 (0%) 

2 

2 (100%) 

2 

0 (0%) 

3 

2 (67%) 

32 

17 (53%) 

53 

27 (51%) 

Total 

Observations 

82 

56 (68%) 

22 

10 (45%) 

6 

1 (17%) 

12 

8 (67%) 

8 

2 (25%) 

15 

8 (53%) 

121 

79 (65%) 

266 

164 (62%) 

 

*Total number of observations in black (i.e. possible no. of focal lamb beacons which could be reported within category), total number (%) of 

focal lamb beacons reported in blue. 
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Table 5.10 Proportion of focal lamb beacons reported within a duty cycle based on ewe-lamb behaviour classification and observer 
estimated distance groups. 

Mean observer 

estimated ewe-

lamb distance (m) 

Ewe / Lamb Behaviour Classification 

Ewe Lying / 

Lamb Lying 

Ewe Grazing / 

Lamb Lying 

Ewe Grazing / 

Lamb Standing 

Ewe Grazing / 

Lamb Mixed 

Ewe Mixed / 

Lamb Mixed 

0 - 1 26 

25 (96%) 

1 

1 (100%) 

NA NA 17 

7 (41%) 

1.01 - 2 8 

6 (75%) 

NA 5 

1 (20%) 

11 

6 (55%) 

6 

4 (67%) 

2.01 -5 2 

2 (100%) 

2 

1 (50%) 

5 

2 (40%) 

17 

14 (82%) 

2 

1 (50%) 

5.01 - 10 NA NA NA NA NA 

10.01 - 20 7 

2 (29%) 

10 

6 (60%) 

NA 16 

15 (94%) 

6 

5 (83%) 

20.01 - 42 NA 14 

6 (43%) 

8 

6 (75%) 

16 

10 (63%) 

1 

0 (0%) 

Total 43 

35 (81%) 

27 

14 (52%) 

18 

8 (50%) 

66 

46 (70%) 

32 

17 (53%) 

 

*Total number of observations in black (i.e. possible no. of focal lamb beacons which could be reported within category), total number (%) of 

focal lamb beacons reported in blue. 



5.3.3.3 Signal strength of focal lamb beacons 

 

Of the 167 focal lamb beacons reported, RSSI values ranged from -88 to -34 dBm. 

When applying the BLE prediction equation for Type 3 beacons (equation 4.2 - 

Chapter 4) this translated to estimated ewe-lamb distances within the range of 

0.17 – 33.56 m. A comparison of the mean observer estimated distance in relation 

to the obtained RSSI values and corresponding BLE distance estimates is shown in 

Figure 5.5. There was a wide spread in RSSI values obtained at shorter mean 

observer estimated distances, with a tendency for the prediction equation to 

overestimate ewe-lamb distance. At greater mean observer estimated distances 

the prediction equation underpredicted ewe-lamb distance, however, there were 

much fewer observations at these distances. In addition, the three greatest mean 

observer estimate distances related to the lamb beacons which were beyond the 

focal ewes nearest 15 neighbours, and hence not expected to have been reported. 

The reporting of these beacons therefore represented instances in which the 

beacon of at least one sheep located closer to the focal ewe failed to be detected 

by the WISP or produced a lower RSSI than that of the focal lamb. 

 

 

 

Figure 5.5 Comparison of a) reported signal strength indicator (RSSI) of focal 
lamb beacons, and b) Bluetooth Low Energy (BLE) estimated ewe-lamb 
distances, in relation to observer based ewe-lamb distance estimations. 
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5.3.3.4 Effect of ewe and lamb behaviour on signal strength  

 

The RSSI and distance prediction equations were then assessed in relation to 

combined ewe and lamb behaviour, using data from the same five ewe and lamb 

behaviour classifications outlined in section 5.3.3. The large spread in RSSI values 

was particularly evident when both ewes and lambs were “Lying”, especially as 

all values occurred within a close proximity range (Figure 5.6). In comparison, RSSI 

values when the ewe was “Grazing” and the lamb was “Standing” were less 

variable. In addition, there was a more evident decline in RSSI as the mean 

observer estimated distance increased.  

 

 

 

Figure 5.6 Relationship between reported beacon signal strength indicator 
(RSSI) of a focal lamb's beacon and observer estimated ewe-lamb distances 
for different ewe-lamb behaviour classifications over a 5-minute duty cycle. 
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The resulting slopes of the BLE estimated distance in relation to the mean observer 

estimated distance differed between each of the behaviour categories (Table 

5.11). Within both “Ewe Lying / Lamb Lying” and “Ewe Mixed / Lamb Mixed” the 

resulting slopes were particularly steep with the BLE tending to overestimate the 

ewe-lamb distance, however, mean observer estimated distances did not exceed 

10 m in these instances (Figure 5.7). In all cases where the ewe was classed as 

“Grazing” the slopes were not as steep, however there was still large variations 

in BLE estimated distance, with a tendency to underpredict at larger mean 

observer estimated distances.  

 

 

Table 5.11 Linear regression of Bluetooth Low Energy (BLE) vs observer 
estimated ewe-lamb distances for different ewe and lamb behaviour 
classifications. 

Behaviour 

Classification 

No. of 

Observations 

Regression line slope 

Ewe Grazing / 

Lamb Lying 

14 0.3459 (R2 = 0.003816, p = 0.3258) 

Ewe Grazing / 

Lamb Mixed 

46 0.5622 (R2 = 0.2954, p = 5.663 x 10-05) 

Ewe Grazing / 

Lamb Standing 

8 0.7885 (R2 = 0.5495, p = 0.01349) 

Ewe Lying / 

Lamb Lying 

35 2.2651 (R2 = 0.2388, p = 0.001703) 

Ewe Mixed / 

Lamb Mixed 

17 3.274 (R2 = 0.7399, p = 5.793 x 10-06) 
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Figure 5.7 Comparison of Bluetooth Low Energy (BLE) estimated, and 
observer estimated ewe-lamb distances (m) for different ewe-lamb behaviour 
classifications over a 5-minute duty cycle. 
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5.3.3.5 Reporting of beacons over time 

 

Of the 106 individual ewe-lamb focal observations for which data was obtained, 

there were 81 in which the focal lamb had potential to be reported across the 

entire observational period (15 or 20 min depending on whether 3 or 4 duty cycles 

of data were obtained). In 12 of the 81 observations (15 %) the focal lamb’s beacon 

failed to be reported across the entire interval. However, in most cases the beacon 

was reported in at least one duty cycle across a 15 or 20-minute period (Table 

5.12). 

 

 

Table 5.12 Summary of focal lamb beacon reports per observation period. 

No. of duty cycles for 

which data was reported 

Data obtained for: 

3 duty cycles (15 min) 4 duty cycles (20 min) 

0 8 (12.31 %) 4 (25.00 %) 

1 15 (23.08 %) 2 (12.50 %) 

2 21 (32.31 %) 2 (12.50 %) 

3 21 (32.31 %) 1 (6.25 %) 

4 NA 7 (43.75 %) 

Total duty cycles 65 16 

 

 

In the 8 instances where the beacon failed to be reported in all duty cycles, all 

“Overall Ewe Behaviour” classifications were observed except for “Inactive”, 

whilst all seven possible “Overall Lamb Behaviours” were observed. Hence, the 

consecutive failure to report the beacon did not appear to be the result of a 

specific ewe, lamb, or combined ewe-lamb behaviour. In addition, the mean 

observed ewe-lamb distance differed between duty cycles of the observation 

period, in all except one instance – with observer estimated ewe-lamb distances 

ranging from 0 – 30 m.  
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5.4 Discussion 

 

Across the focal observation study, at least one neighbouring sheep’s beacon was 

reported in every duty cycle for which data was obtained, and in most cases (74 

%) a minimum of seven neighbouring sheep were reported. Within this small flock 

scenario, the BLE range would therefore appear sufficient in terms of spatial 

distance between individuals or groups, that occurrence of contacts could be 

monitored over time. However, applications in larger scale systems may be 

dependent on the scale over which the flock could disperse and gregariousness of 

the flock, which can differ between sheep breeds (Hinch, 2017). 

 

Whilst a relatively high proportion of a focal ewes’ own beacons were reported, 

they were expected to have been reported within every duty cycle given that the 

beacon was located within the WISP, and thus within a few cm of the BLE reader. 

The failure of ewes’ “own beacons” to be reported occurred across multiple WISP-

beacon pairings. However, within an observation period (15 or 20 min) a ewe’s 

“own beacon” was always reported in at least one instance, suggesting the issue 

was related to a temporary interference of the signal. Given that failures mostly 

occurred when 16 beacons were reported (and thus 15 neighbouring sheep, or 

more, were within the focal ewe’s proximity) – a potential reason for these failures 

may be related to the higher signal traffic. Large numbers of advertising devices 

operating within range of a BLE receiver can lead to increased signal collisions and 

are more likely to occur with increasing transmission frequency and short 

advertisement intervals (Shan et al., 2017; Tipparaju, 2021). Alternatively, this 

could indicate an issue with very close proximity between a beacon and reader – 

however, this was not observed within the calibration studies. 

 

The ewe-lamb distances estimated by the observer were considered to be within 

a reasonable range over which the BLE could operate based on the device 

calibrations (Chapter 4). However, it should be noted that the observer estimated 

ewe-lamb distances will also have a level of error. It was also expected that some 

beacons may be missed at longer ewe-lamb separation distances as devices 

reached the edge of their operating range. The proportion of beacons reported 

was found to vary between distance group classifications, however, the highest 

proportion of beacons being reported occurred within a range of 10-20 m, whilst 
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a high proportion of beacons failed to be reported at very close observer estimated 

ewe-lamb distances (as much as 50% at 1-2 m). A study by Huels et al. (2025) which 

tested BLE proximity loggers in grassland at 0-2 m, also observed a reduction in 

the number of data points between 0 and 1.5 m, but an increase again at 2 m. 

Studies investigating the effects of the human body on BLE signals report a large 

decay in RSSI signals because of absorption due to the high water percentage (Deng 

et al., 2018). In addition, the orientation of a person’s body and placement 

between the transmitting and receiving device by impact on how signals are 

affected (Mamun et al., 2019). It would then be expected that sheep bodies would 

similarly act upon the transmitted BLE signals, and at closer proximities the 

shadowing effects may be greater, particularly if sheep are positioned in such a 

way that the line-of-sight is blocked by both the ewe and lamb. One aspect which 

differed from the calibration is the layer of foam padding surrounding the WISP, 

which would also contribute to a level of signal interference.  

 

The relationship between distance and the likelihood of a beacon being reported 

was also associated with the combined ewe and lamb behaviour, and the influence 

of behaviour on the separation distance between the focal ewe and lamb. For 

instance, if the ewe was “Lying” then the lamb was also most frequently recorded 

as “Lying”, and this combined behaviour combination was most frequently 

observed at relatively close ewe-lamb observer estimated distances. In 

comparison, when the ewe was “Grazing”, the lamb’s behaviour was more 

variable, and there were more observations at greater ewe-lamb observer 

estimated distances. The displayed behaviours and separation distances at which 

they were expressed, in turn had implications on the signal strength and the 

relationship between RSSI and distance. Behaviour classifications of “Ewe Lying / 

Lamb Lying” and “Ewe Mixed / Lamb Mixed” both had particularly steep gradients, 

resulting from the rapid decline in RSSI over a short observer estimated distance. 

In addition, particularly, where both individuals were “Lying” there was a high 

variability in RSSI values. This may be associated with the posture of the animal 

and the reduced device heights, which as observed within the calibration study, 

acted to reduce the range over which BLE could effectively operate. In many 

instances where both individuals were observed “Lying”, lambs were positioned 

with their body next to that of the ewe - with the collar and beacon facing away 

from the ewe’s body, whilst the ewe’s WISP was positioned underneath their neck. 
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In both cases, the devices were also within or close to vegetation. There are then 

many factors within this context which could contribute to multipath propagation 

and shadowing, and thus a reduction in signal strength. For other behaviour 

classifications where the lamb was in an upright posture during at least some duty 

cycles (e.g. “Standing”, “Mixed”) beacons were reported at greater observer 

estimated distances and the resulting slopes of the regression were closer to one. 

However, there was still a tendency for the reported RSSI to result in an 

overestimation of ewe-lamb distance as observer estimated distance increased. 

The variability in RSSI across observer estimated distances was also observed (to 

varying degrees) across behaviour classifications.  

 

 

5.5 Conclusion 

 

The application of the BLE system to monitor contacts in relation to distance 

would then appear to be heavily dependent upon the behaviours displayed by both 

the individual with the transmitting device and the receiving device. The 

behaviours displayed during a given duty cycle, as well the number of other sheep 

within proximity, their orientation towards one another, and the broadcasting time 

of the devices, will all play a role in determining whether a beacon is “seen” and 

reported by a WISP, and on the signal strength. Interpretation of RSSI into a 

distance is then complicated by these factors, and for some behaviour 

classifications would appear to be a poor predictor of distance. For other 

behaviour classifications BLE based distance estimates are more indicative of 

observed distances, but still contain a level of variability. Hence depending upon 

the application, the use of BLE for proximity monitoring may be better suited 

towards presence /absence. The study demonstrated that whilst beacons would 

periodically be missed in relation to the above factors, a high number of 

interactions would still be detected over the course of a day. In terms of 

monitoring the ewe-lamb relationship, single missed observations and 

reappearance of the lamb within subsequent intervals would still provide insight 

into the relationship.  
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Chapter 6 Analysis of ewe-ewe and ewe-lamb 

relationships during the lambing and early lactation 

period using Bluetooth Low Energy (BLE) 

 

 

6.1 Introduction 

 

The lambing and early lactation period is a stage during which sheep are likely to 

be more vulnerable to welfare and environmental challenges, with potential to 

have ongoing implications on animal productivity and welfare (Dwyer and 

Lawrence, 2005; Fogarty et al., 2021). It is also a period of high activity and 

evolving dynamics, thus presenting an ideal period in which to investigate the 

application of Bluetooth Low Energy (BLE) as a monitoring tool in grazing sheep.  

 

Within extensive systems, the often harsh and variable environments, along with 

less frequent supervision, can result in issues going undetected (Dwyer and 

Lawrence, 2005). Lamb mortality is a welfare and economic concern (Dwyer and 

Lawrence, 1998), impacting on farming productivity and profitability. In addition, 

poor maternal relationships were cited by stakeholders within the TechCare 

project as one of the main welfare concerns (Morgan-Davies et al., 2024). Within 

extensive systems a high number of lamb losses can occur between birth and 

weaning, estimated at approximately 15 % (Temple and Manteca, 2020). Most 

losses occur during the first three days, with perinatal mortality accounting for 

between 80-90 % of pre-weaning mortality (Everett-Hincks and Dodds, 2008). A 

considerable proportion of these losses can be attributed to the Starvation-

Mismothering-Exposure (SME) complex, which is more commonly observed in twin 

or multiple lambs (Haughey, 1991). Lamb performance and survival is dependent 

on multiple interlinked factors including lamb birth weight, litter size, sex, birth 

ease, weather conditions at lambing, environment and lambing site 

characteristics, ewe condition and nutrition during pregnancy, ewe breed and 

social behaviour, ewe age and parity, and the development of the ewe-lamb bond 

(Lockwood, 2018). In many extensive systems predation will also contribute to 
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lamb survival which may be influenced not only by predator density, but by 

maternal behaviour and response to predation – such as flocking behaviours which 

can differ between breeds (Dwyer, 2009).  

 

Ewe behaviour prior to, during, and after lambing can also have a significant effect 

on lamb survival (Dwyer and Lawrence, 1998). Early attachment behaviours which 

promote ewe-lamb recognition encourage exclusive attachment with the lamb and 

can impact on the quality of subsequent care such as maternal vigilance, frequent 

sucking interactions, and maintaining a close spatial proximity, which may have 

implications in later lamb life and lamb survival (Dwyer, 2014). Whilst lamb birth 

weight is considered the primary factor contributing to lamb survival (Paganoni et 

al., 2014), optimal birth weights will vary according to the ewe breed, age and 

size (Hinch and Brien, 2014). In addition, lamb survival and growth rates are 

typically poorer in primiparous compared with multiparous ewes (Paganoni et al., 

2014). Several factors may contribute towards this lower survival, such as lower 

lamb birth weights, higher rates of dystocia, and longer delivery periods, which in 

turn may lead to a poorer ewe-lamb bond being established. The ewe-lamb 

relationship can also change significantly between birth and weaning. Whilst the 

ewe-lamb bond is considered to remain strong for between 90-100 days, there is 

a gradual increase in mean ewe-lamb distance (Galeana et al., 2007). Typically, 

lambs will stay close to their mother during the first weeks, but separation 

distance will gradually increase until around four weeks of age when lambs spend 

more time within peer groups (Arnold & Grassia, 1985).  

 

Within extensive systems, human-animal contacts can be infrequent and seasonal 

(Temple and Manteca, 2020), and sheep will often lamb unsupervised 

(Waterhouse, 1996). Neonatal survival has been identified as an area of welfare 

concern, however the provision of shepherding during this period could be 

considerably valuable (Goddard et al., 2006). The availability and recruitment of 

skilled labour can however make this challenging, and also represents the highest 

costs associated with sheep systems (Goddard et al., 2006). Depending upon the 

type of system, the flock size, scale of dispersal and the availability of labour, the 

frequency of inspection may then be limited. This can make human intervention 

during parturition difficult, whilst issues arising post-lambing may go unidentified 

for a period of time (Goddard et al., 2006; Temple and Manteca, 2020). The 
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development of devices or tools which could allow farmers to monitor ewe-lamb 

relationships and identify potential issues in real-time could then be particularly 

beneficial both from a management and welfare perspective (Temple and 

Manteca, 2020).  

 

The primary objective of this study was to assess the functionality of BLE as a 

proximity monitoring tool, by determining whether BLE could detect trends and 

patterns in ewe-ewe and ewe-lamb relationships over the pre-lambing and early 

lactation period. There were three main goals within this: 

 

1. To investigate the ewe-ewe relationship: whether ewe-ewe contacts and 

signal strength differed with the lambing stage (pre- / during / post-) of 

the reporting ewe, and whether this differed between breeds, and between 

primiparous and multiparous ewes.  

2. To investigate the ewe-lamb relationship: to determine if and how the 

number of BLE contacts and signal strength changed with lamb age, and 

how this relationship compared based on ewe breed, status (primiparous vs 

multiparous), and between twin lambs.  

3. To investigate welfare and production issues: whether BLE could detect 

differences in counts and signal strength based on production and / or 

welfare measures - firstly, investigating the effects of ewe lameness on the 

number of ewe and lamb contacts reported, and secondly by investigating 

whether ewe-lamb contacts corresponded to lamb weight change. 
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6.2 Material and methods 

 

This chapter utilises the full BLE data set obtained from the six-week ewe-lamb 

study, along with the animal and in-field welfare data, as described in the material 

and methods section of Chapter 5.  

 

 

6.2.1 Data collation 

 

The collation of data sets and all further analysis was conducted in R version 2.4.4 

(R Core Team, 2020). For each study phase, flash drive data from each individual 

WISP was combined into a single .csv file, with new variables “WISP ID” and “Study 

phase” assigned. The data was then lengthened by converting the .csv file from 

reporting 16 beacons per row, to a single beacon per row, and assigning a new 

variable “Beacon rank order” based on the position (out of 16) at which the beacon 

was reported. All rows where no beacon was reported were removed from the 

data set. Separate “Date” and “Time” variables were then generated from the 

“Timestamp” variable, before combining data from all three phases into one large 

working .csv file.  

 

Several new variables were then generated using the “dplyr” package in R (Version 

1.1.2; Wickham et al., 2018): 

• WISP Animal ID: visual spray-marked ID of the ewe assigned to the reporting 

WISP. 

• WISP Animal breed: breed of the ewe assigned to the reporting WISP. 

• Beacon animal ID: visual spray-marked ID of the ewe / lamb assigned to the 

beacon being reported by the WISP. 

• Beacon animal breed: breed of the ewe / lamb assigned to the beacon being 

reported by the WISP. 

• Ewe status: classification of the ewe assigned to the reporting WISP – 

classed as either “Primiparous” (1st lambing) or “Multiparous” (ewe 

previously lambed). 

• Lambing status: classification of the ewe assigned to the reporting WISP’s 

lambing stage, defined as either “pre-lambing”, “lambing”, or “post-
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lambing”. Where “lambing” encompassed a 3-day period from the day prior 

to the day following the date on which lambing was noted / presumed, and 

pre- and post-lambing included all data prior to / after this phase.  

 

These were generated by joining the data set with separate .csv files containing 

the assignment of WISPs and beacons during each phase; joined based on the date, 

WISP or Beacon ID, and date of lambing.  

 

Weather data including daily precipitation (mm), minimum, maximum and mean 

temperature (°C) were obtained for the study period from the Met Office: Kirkton 

(Tyndrum No. 3) Met Office weather station (grid ref. NN 35949 28385; 170 

m.a.s.l.). It should be noted that daily measurements were here reported from 

09:00 to 09:00 the following day. For the purposes of the study, daily 

measurements were considered to be for the single date on which the 

measurement began and thus merged with the lambing data set (using this date) 

accordingly.  

 

 

6.2.2 Data analysis ewe-ewe relationships 

 

Ewes that did not lamb (three ewes) or who were permanently removed from the 

study following lambing (four ewes) were not included in any further analysis.  

 

The reporting of ewe beacons was summarised using the “dplyr” package in R 

(Version 1.1.2; Wickham et al., 2023), with counts and RSSI values visualised using 

“ggplot2” package (Version 3.5.1; Wickham, 2016). Differences between the 

reporting of “own” and “neighbouring ewe” beacons were tested using Welch’s t-

test. Analysis of the effects of lambing status and other potential factors (ewe 

breed and ewe status) on the number of ewe-ewe contacts and RSSI values were 

conducted using a mixed-effects model (MEM), using the “lme4” package in R 

(Version 1.1-35.5; Bates et al., 2015), with Gaussian distribution, whereby the ewe 

ID was included as a random effect. 
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6.2.3 Data analysis ewe-lamb relationships 

 

Analysis of ewe-lamb relationships focused on contacts between a dam and own 

lambs only. The data set was therefore filtered to include instances of a lamb 

beacon being reported by its dam only. Where fewer than three days’ worth of 

data was available for a ewe-lamb pairing, this data was excluded from further 

analysis. Data relating to single lamb (one instance), or where data was only 

available for one twin lamb of a ewe-lamb group, were also removed.  

 

The relationship between ewe-lamb contacts and lamb age was visualised using 

ggplot2 (Version 3.5.1; Wickham, 2016). Analysis of the effects of lamb age, and 

additional factors (ewe breed, ewe status, and lamb birth weight) on the number 

of ewe-lamb beacon readings reported per day was conducted using a mixed-

effects model (MEM), using the “lme4” package in R (Version 1.1-35.5; Bates et 

al., 2015), with Gaussian distribution, where Ewe ID, Lamb ID, and the interaction 

of Ewe ID and Lamb age were included as a random effect. Two MEM models were 

then generated; the first including a linear term for lamb age, the second 

including a polynomial term for lamb age using the “poly” function from R base 

(version 4.2.2; R Core Team, 2022). An ANOVA was then conducted to compare and 

select the most appropriate model. The model output was displayed visually using 

the “ggeffects” package (version 2.2.1; Lüdecke, 2018). 

 

 

6.2.4 Analysis of ewe-ewe and ewe-lamb relationships in relation 

to production and welfare measures 

 

Whilst weekly in-field welfare measures included lameness, fleece and dag scores, 

only lameness will be discussed further, as several observations of both lame and 

non-lame ewes were recorded. 

 

 

6.2.4.1 Effects of ewe lameness on ewe-ewe contacts  

 

The effects of ewe lameness on ewe-ewe contacts used a subset of the data from 

the “neighbouring ewe” data set in section 6.2.2. Data was selected from the 21st 
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April – 30th May (a total of 30 study days, where devices were on animals). Data 

was summarised using the “dplyr” package in R (Version 1.1.2; Wickham et al., 

2018) to generate a new variable “mean no. of neighbours reported” per day, per 

ewe ID. A lamb age variable was then generated based on lambing date, whereby 

day 0 related to the day of lambing, and pre-lambing days were represented by a 

negative number. As lameness scores were recorded every Friday, a variable 

“lameness status” was assigned based on study day for a weeklong period running 

from the Tuesday prior to the day of lameness assessment, to the Monday after 

the day of lameness assessment (under the assumption that changes in lameness 

status occurred approximately halfway between each assessment. The effect of 

lameness on the mean number of ewe-ewe contacts in relation to lamb age was 

then assessed using a mixed-effects model (MEM), using the “lme4” package in R 

(Version 1.1-35.5; Bates et al., 2015), whereby ewe ID was a random effect.  

 

 

6.2.4.2 Effects of ewe lameness on ewe-lamb contacts  

 

The effects of ewe lameness on ewe-lamb contacts were similarly conducted on a 

six day subset of the “ewe-lamb” data set described in section 6.2.3 using the 

same process as described above.  

 

6.2.4.3 Effects of ewe-lamb contacts on lamb daily weight gain 

 

Using the ewe-lamb data set from section 6.2.3, the “dplyr” package in R (Version 

1.1.2; Wickham et al., 2023) was used to summarise the mean daily number of 

ewe-lamb contacts per ewe-lamb pair. The daily weight gain for each lamb was 

calculated based on the weight change (kg) between a lamb’s birth weight 

(obtained within 24 hours of birth) and weight at the study end. A MEM, using the 

“lme4” package in R (Version 1.1-35.5; Bates et al., 2015) was used to assess the 

effects of mean ewe-lamb contacts on lamb daily weight gain. This also considered 

the effects of ewe breed (Lleyn or Scottish Blackface) and ewe status (primiparous 

or multiparous), as well as ewe ID (as a random effect).   
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6.3 Results 

 

From the filtered data set a total of 1 284 271 individual BLE beacon readings were 

obtained across 128 819 duty cycles, based on data from 32 ewes: 22 Lleyn and 10 

Scottish Blackface. As the number of WISPs available and the assignment of WISPs 

to ewes differed across study phases, the number of data points obtained varied 

between individual ewes (Table 6.1). Weather data from the study period is 

summarised in Table 6.2. 

 

 
Table 6.1 Summary of data obtained per ewe. 

 Minimum Maximum Mean 

Days of data obtained 3.00 28.00 14.44 

Mean no. of duty cycles 
reported per day 

229.80 288.00 276.08 

Total number of duty cycles in 
which data was reported 

864.00 7890.00 4025.59 

Total proportion of possible 
duty cycles in which data was 
reported 

79.72% 100.00% 95.82% 

Total number of BLE beacon 
readings reported 

8290.00 89671.00 41441.34 

Mean number of BLE 
beacons reported per duty 
cycle 

7.08 13.38 9.88 

Mean RSSI (dBm) -72.36 -79.09 -75.95 

Total range in RSSI (dBm) 60.00 82.00 72.88 

 

 

 

All ewes reported between 1-16 beacons within a duty cycle, with beacons 

reported at all 16 possible slots in 25 093 of 128 819 duty cycles (19.48 %). Lleyn 

ewes reported a higher overall mean of 10.33 beacons per duty cycle (SD = 4.71), 

in comparison with Scottish Blackface ewes, which reported a mean of 9.28 

beacons per duty cycle (SD = 4.70); t (89 418) = 37.958, p < 0.001 (Welch’s t-test). 
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Table 6.2 Summary of weather data over study period. 

 Min Max Mean 

Precipitation (mm) 0.00 40.40 5.68 
Mean daily temp °C 6.15 12.60 10.02 
 

Total dry days 15 
Total rain days 17 

*Data obtained from: Met Office Automatic weather data - Kirkton (Tyndrum No.3) 
Met Office weather station: grid ref. NN 35949 28385, 170 m.a.s.l. 

 

 

6.3.1 Analysis of ewe-ewe relationships pre-, during, and post-

lambing 

 

Of the 32 ewes for which data was obtained, 28 ewes produced lambs and 

remained within the study for the full six-week duration. Further ewe-ewe analysis 

will therefore focus on these 28 ewes.   

 

 

6.3.1.1 Summary of ewe beacons reported 

 

A total of 663 205 BLE readings of beacons assigned to ewes were obtained over 

the course of the study, from 121 006 unique WISP duty cycles. Of these readings, 

100 450 (15.15 %) related to a ewe reporting its own beacon (contained within its 

assigned WISP). Whilst ewes’ reported their own beacon in most instances, there 

were some duty cycles in which they were not reported (Table 6.3). When a ewe’s 

WISP did report its own beacon, RSSI values were typically much higher (thus the 

signal was stronger) than those reported for neighbouring ewe beacons (Figure 

6.1). 

 

Table 6.3 Summary of ewe beacons reported per duty cycle. 

Beacon Type Reported No. of duty cycles 

(of 121 006) 

Proportion of duty 

cycles (%) 

“Own” beacon only 8 533 7.05 

Neighbouring ewe beacons only 20 556 16.99 

“Own” beacon + neighbouring 

ewe beacons 

91 917 75.96 
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Figure 6.1 Comparison of received signal strength indicator (RSSI) values 
reported for a ewes own beacon and that of a neighbouring ewe beacon. 

The mean is indicated by the star, whilst the boxplot indicates the median, 1st and 
3rd quartiles. 

 

 

From the 112 473 duty cycles during which neighbouring ewe beacons were 

reported, a total of 562 755 individual ewe-ewe BLE readings were obtained, 

based on WISP data from 28 ewes (20 Lleyn and 8 Scottish Blackface). An overall 

mean of 5.00 neighbouring ewes were reported per duty cycle, however, the 

Lleyns ewes reported a greater mean of 5.17 (SD = 3.02), in comparison to 4.65 

(SD = 2.82) for the Scottish Blackface ewes; t (73 449) = 28.127, p < 0.001 (Welch’s 

t-test). The mean number of neighbouring ewes reported also differed based on 

ewe status, with multiparous ewes reporting a greater mean of 5.14 (SD = 3.00) 

neighbouring ewe beacons, in comparison to primiparous ewes, which reported a 

mean of 4.77 (SD = 2.89) neighbouring ewe beacons per duty cycle; t (90 629) = 

20.905, p < 0.001 (Welch’s t-test). 
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6.3.1.2 Ewe-ewe contacts based on lambing status 

 

A summary of available data on ewe-ewe contacts, based on the reporting ewes 

lambing status is given in Table 6.4.  

 

Table 6.4 Summary of neighbouring ewe beacons reported based on 
lambing status of the reporting ewe. 

 Lambing Status 

Pre-Lambing Lambing Post-Lambing 

No. reporting sheep 14 12 25 

Min no. duty cycles 
per ewe 

153 165 253 

Max no. duty cycles 
per ewe 

3080 857 6587 

Mean no. duty cycles 
per ewe 

1408.43 564.50 3439.24 

Min average no. of 
neighbouring ewes 
reported per ewe 

4.94 2.97 3.53 

Max average no. of 
neighbouring ewes 
reported per ewe 

8.70 8.72 7.45 

Mean average no. of 
neighbouring ewes 
reported per ewe 

6.74 5.67 4.73 

Mean average RSSI 
(dBm) per ewe 

-80.54 -81.20 -81.57 

 

 

The mean number of ewe-ewe contacts reported per ewe differed according to 

the lambing phase (Figure 6.2). All except two ewes (E25 and E7, both Lleyn) 

reported a greater number of ewe-ewe contacts per duty cycle during pre-lambing 

compared with lambing and post-lambing. A MEM, where the ewe ID was a random 

effect, indicated that there was a reduction in the number of ewe-ewe contacts 

between pre-lambing to lambing, and post-lambing, and that the number of ewe-

ewe contacts differed according to the ewe breed (Table 6.5). Within both breeds 

the mean number of ewe-ewe contacts declined from pre-lambing to lambing, and 

lambing to post-lambing, however, the mean number of contacts was also lower 

in Scottish Blackface compared within Lleyn ewes across all three phases (Figure 

6.3). 
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Figure 6.2 Mean number of ewe-ewe contacts reported per ewe, based on 
lambing status. 

The mean is indicated by the star, whilst the boxplot indicates the median, 1st and 
3rd quartiles.  
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Table 6.5 Summary of mixed effects model (MEM) output for number of ewe-
ewe contacts based on lambing phase. 

Parameter 
Average no. ewe-ewe contacts 

Estimate CI p-value 

Intercept 6.7616 6.18 – 7.34 < 0.001 

Lambing status: 

Pre-lambing Reference lambing status 

Lambing -1.1965 -1.85 – -0.54   0.001 

Post-lambing -2.0412 -2.64 – -1.44 < 0.001 

Ewe breed: 

Lleyn Reference ewe breed 

Scottish Blackface -0.8637 -1.71 – -0.02 0.045 

 

Random effects 

1 σ2 0.65 

2 τ00 Ewe ID 0.54 

3 ICC 0.45 

4 N Ewe ID 28 

 

Observations 51 

5 Marginal R2 0.430 

6 Conditional R2 0.688 

 

1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
Ewe ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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Figure 6.3 Mean number of ewe-ewe contacts reported per ewe, according to 
lambing status and breed. 

The mean is indicated by the star, whilst the boxplot indicates the median, 1st 

and 3rd quartiles.  

 

 

The mean RSSI values reported for neighbouring ewes similarly declined across 

lambing stages (Figure 6.4). A MEM, where the ewe ID was a random effect, 

indicated that there was a small but significant reduction in the mean RSSI 

between pre-lambing to lambing, and post-lambing, (Table 6.6).  Applying the 

developed distance prediction equations (Chapter 4) to the mean RSSI values 

results in an overall increase in mean ewe-ewe distance of 4.50 m (from 27.44 to 

31.94 m) across the three lambing status phases using the Type 2 beacon, and 3.36 

m (from 19.63 to 22.99 m) using the Type 3 beacon. 
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Figure 6.4 Mean RSSI of neighbouring ewes, according to lambing status. 

The mean is indicated by the star, whilst the boxplot indicates the median, 1st 

and 3rd quartiles.   
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Table 6.6 Summary of mixed effects model (MEM) output of mean 
neighbouring ewe RSSI in relation to lambing phase. 

Parameter 
Average no. ewe-ewe contacts 

Estimate CI p-value 

Intercept -80.5183 -80.98 – -80.06 < 0.001 

Lambing status: 

Pre-lambing Reference lambing status 

Lambing -0.7327 -1.28 – -0.18   0.010 

Post-lambing -1.0010 -1.49 – -0.51 < 0.001 

 

Random effects 

1 σ2 0.45 

2 τ00 Ewe ID 0.37 

3 ICC 0.45 

4 N Ewe ID 28 

 

Observations 51 

5 Marginal R2 0.181 

6 Conditional R2 0.553 

 

1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
Ewe ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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6.3.2 Analysis of ewe-lamb relationships 

 

Data relating to 21 ewes and their twin lambs was yielded from the filtered data 

set. As WISPs were reallocated to ewes between study phases, the number of days 

data and lamb ages for which data was obtained differed between ewe-lamb 

pairings. A summary of the data obtained is given in Table 6.7. 

 

 

Table 6.7 Summary of ewe-lamb data obtained. 

 Total Lleyn Scottish 
Blackface 

Total No. of ewes with 
available data 

21 15 6 

Total no. lambs / ewe-
lamb pairings  

42 30 

*15 sets of twins 

12 

*6 sets of twins 

Total beacon readings 
obtained 

97483 61810 35673 

Min no. of days data 
per ewe-lamb pair 

3 3 8 

Max no. of days data 
per ewe-lamb pair 

26 24 26 

Mean no. of days data 
per ewe-lamb pair 

14.05 13.20 16.17 

Lamb-age range 1-44 days 1-39 days 1-44 days 

No. multiparous ewes 13 10 3 

No. primiparous ewes 8 5 3 

 

 

 

6.3.2.1 Relationship between ewe-lamb contacts and lamb age 

 

The total number of ewe-lamb contacts per day differed according to the lamb’s 

age. The number of ewe-lamb contacts per day was typically high at young lamb 

ages (1-4 days old) with a steady decline in contacts until ~14 days old. The mean 

number of contacts per day then ranged from 133-167 contacts per day, before 

increasing again at approximately 24 days old (Figure 6.5). The mean signal 

strength was similarly the highest (strongest) when lambs were 1-3 days old and 

declined from approximately -67 dBm to -71 dBm from 1-15 days old. Between 
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lamb ages of 16-44, mean RSSI values fluctuated between approximately -71 to     

-68 dBm (Figure 6.6). When translated into an estimated distance using the overall 

Beacon Type 3 prediction equation (equation 4.2, Chapter 4) ewe-lamb distances 

ranged from 0.002 – 154.42 m. However, for 93 934 of the 97 483 beacon readings 

obtained (96.36%) estimated ewe-lamb distances were less than 50 m, and in 86 

957 of 97 483 instances (89.20 %) less than 30 m. This resulted in an overall mean 

ewe-lamb estimated distance of 10.79 m, whilst mean estimated distances per 

lamb age ranged from approximately 6-14 m.  

 

 

 

Figure 6.5 Daily number of ewe-lamb contacts (of a maximum 288) in relation 
to lamb age (based on 2-25 ewe-lamb pairings per lamb age). 

The mean is indicated by the star, whilst the boxplot indicates the median, 1st and 
3rd quartiles. 
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Figure 6.6 Received signal strength indicator (RSSI) values reported for 
contacts with a ewe’s own lamb, based on lamb age. 

The mean is indicated by the star, whilst the boxplot indicates the median, 1st and 
3rd quartiles. 

 

The relationship between the number of ewe-lamb contacts per day was modelled 

over lamb age (days) in relation to ewe breed and parity, as well as lamb birth 

weight (kg). A comparison of a two mixed effects models (MEMs) indicated that a 

polynomial regression for lamb age provided a better fit than a linear regression 

for lamb age (p = 8.462 x 10-8) and was selected for use. The model indicated that 

the interaction of lamb age, ewe breed, ewe status, and lamb birth weight all 

influenced the daily number of ewe-lamb contacts (Table 6.8). Model predictions 

for the number of daily ewe-lamb contacts across increasing lamb age (days), for 

both ewe breeds and parities in relation to three selected lamb birth weights (2.5, 

3.5, and 4.5 kg), are presented in Figure 6.7. 

  



211 

Table 6.8 Summary of mixed effects model (MEM) output for number of ewe-
lamb contacts per day. 

Parameter 
Daily no. ewe-lamb contacts 

Estimate CI p-value 

Intercept 140.3372 28.13 – 252.54 0.014 

Lamb age [1st degree] 
-645.0925 

-2293.98 – 
1003.80 

0.443 

Lamb age [2nd degree] 
-415.1309 

-2355.38 – 
1525.11 

0.674 

Lamb birth weight (kg) 6.7630 -23.95 – 37.47 0.665 

Ewe breed: 

Lleyn Reference ewe breed 

Scottish Blackface 
27.5259 

-175.72 – 
230.77 

0.790 

Ewe status: 

Primiparous Reference ewe status 

Multiparous 
-69.3549 

-234.85 – 
96.14 

0.411 

Lamb age [1st degree] x  

Lamb birth weight (kg) 
192.7753 

-259.05 – 
644.60 

0.402 

Lamb age [2nd degree] x  

Lamb birth weight (kg) 
254.5868 

-294.52 – 
803.69 

0.363 

Lamb age [1st degree] x 

Ewe breed (Scottish 
Blackface) 

-647.1743 
-2568.48 – 

1274.13 
0.508 

Lamb age [2nd degree]  
x Ewe breed (Scottish 
Blackface) 

2092.3854 
-23.37 – 
4208.14 

0.053 

Lamb age [1st degree] x 

Ewe status 
(Multiparous) 

2456.9942 
527.22 – 
4386.76 

0.013 

Lamb age [2nd degree]  
x Ewe status 
(Multiparous) 

906.2142 
-1297.82 – 

3110.25 
0.420 

Lamb birth weight (kg) x 

Ewe breed (Scottish 
Blackface) 

-2.6211 -56.14 – 50.90 0.923 

Lamb birth weight (kg) x 

Ewe status 
(Multiparous) 

12.7217 -30.08 – 55.53 0.560 
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Ewe breed (Scottish 
Blackface) x 

Ewe status 
(Multiparous) 

179.9007 
-144.01 – 

503.81 
0.276 

Lamb age [1st degree] x  

Lamb birth weight (kg) x 

Ewe breed (Scottish 
Blackface) 

124.0200 
-385.41 – 

633.45 
0.633 

Lamb age [2nd degree] x  

Lamb birth weight (kg) x 

Ewe breed (Scottish 
Blackface) 

-559.7412 
-1146.11 – 

26.63 
0.061 

Lamb age [1st degree] x  

Lamb birth weight (kg) x 

Ewe status 
(Multiparous) 

-633.3671 
-1147.83 - -

118.90 
0.016 

Lamb age [2nd degree] x  

Lamb birth weight (kg) x 

Ewe status 
(Multiparous) 

-323.6149 
-926.21 – 

278.98 
0.292 

Lamb age [1st degree] x  

Ewe breed (Scottish 
Blackface) x 

Ewe status 
(Multiparous) 

-2082.2161 
-4647.80 – 

483.36 
0.111 

Lamb age [2nd degree] x  

Ewe breed (Scottish 
Blackface) x 

Ewe status 
(Multiparous) 

-3408.1007 
-6108.06 - -

708.15 
0.013 

Lamb birth weight (kg) x 

Ewe breed (Scottish 
Blackface) x 

Ewe status 
(Multiparous) 

-49.6242 
-140.19 – 

40.94 
0.282 

Lamb age [1st degree] x 
Lamb birth weight (kg) x 
Ewe breed (Scottish 
Blackface) x Ewe status 
(Multiparous) 

726.4722 
-12.90 – 
1465.84 

0.054 
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Lamb age [2nd degree] x 
Lamb birth weight (kg) x 
Ewe breed (Scottish 
Blackface) x Ewe status 
(Multiparous) 

951.6696 
168.57 – 
1734.78 

0.017 

 

Random effects 

1 σ2 244.12 

2 τ00 Ewe ID x Lamb age 991.72 

2 τ00 Lamb ID: Ewe ID 667.43 

2 τ00 Ewe ID
 576.20 

3 ICC 0.90 

4 N Lamb ID 42 

4 N Ewe ID
 21 

4 N Ewe ID x Lamb age
 314 

 

Observations 589 

5 Marginal R2 0.212 

6 Conditional R2 0.922 

 
1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
Ewe ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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Figure 6.7 Number of daily ewe-lamb contacts per lamb age based on mixed 
effects model (MEM). 

 

 

  



215 

6.3.2.2 Comparison of ewe-lamb contacts between twin lambs 

 

The daily difference in the number of ewe-lamb contacts between twin lambs is 

summarised in Table 6.9. The number of ewe-lamb contacts per day between a 

dam and both lambs tended to be similar, with an overall mean difference of 27.33 

and median difference of 12.63 contacts. In most ewe-lamb groupings (17 of 21 – 

81 %), the mean difference between twins ranged from 7.60 - 17.33 contacts. 

However, there were two instances where there was a particularly large difference 

in mean contacts between lambs, for Ewe ID’s E12 and E20. This is likely due to 

very few, or in the case of E20, no beacon readings, being reported for one of the 

lambs on some days.  

 

The difference in daily ewe-lamb contacts between twins differed according to 

the ewe breed. There was a greater difference in ewe-lamb contacts between 

twin lambs of Scottish Blackface ewes, which reported a mean difference of 35.87 

contacts (SD = 65.61), in comparison to Lleyn ewes, which reported a mean 

difference of 17.62 contacts (SD = 24.21); t (106.99) = -2.6239, p = 0.00996 

(Welch’s t-test). Daily ewe-lamb contacts also differed based on ewe status, with 

primiparous ewes reporting a mean difference of 31.73 contacts (SD = 60.25) and 

multiparous ewes reporting a mean difference of 18.20 contacts (SD = 25.16); t 

(142.78) = -2.2868, p = 0.0237 (Welch’s t-test).   

  



Table 6.9 Comparison of daily ewe-lamb contacts between twin lambs. 

Ewe ID Ewe Breed Ewe Status 
No. of 
days 
data 

Difference in 
lamb birth 

weights (kg) 

Mean 
difference in 

daily ewe-
lamb 

contacts 

Min 
difference in 

daily ewe-
lamb 

contacts 

Max 
difference in 

daily ewe-
lamb 

contacts 

SD 
difference in 

daily ewe-
lamb 

contacts 

E2 Lleyn Primiparous 8 3.0 11.87 0 24 9.23 

E4 Lleyn Multiparous 19 0.6 12.63 2 38 9.39 

E5 Lleyn Primiparous 5 0.2 7.60 0 15 5.77 

E6 Lleyn Multiparous 21 0.4 17.33 0 42 14.91 

E9 Lleyn Primiparous 13 0.1 12.15 2 24 7.45 

E12 Lleyn Multiparous 3 0.2 128.00 1 207 111.07 

E14 Scottish Blackface Multiparous 8 0.3 10.63 2 32 10.86 

E16 Lleyn Multiparous 11 0.6 14.91 4 41 12.64 

E17 Lleyn Primiparous 16 0.2 15.13 0 62 16.29 

E20 Scottish Blackface Primiparous 18 0.5 137.72 2 247 98.53 

E21 Scottish Blackface Primiparous 26 0.7 12.50 2 30 9.61 

E22 Lleyn Multiparous 14 0.5 7.67 0 14 5.61 

E23 Lleyn Multiparous 24 0.2 9.96 1 29 9.22 

E28 Lleyn Multiparous 7 0.2 40.14 16 63 19.06 

E29 Lleyn Multiparous 7 0.4 9.72 1 28 9.11 

E31 Lleyn Multiparous 19 0.4 15.32 1 55 15.39 

E34 Lleyn Primiparous 22 0.5 9.36 0 34 8.95 

E35 Lleyn Multiparous 9 0.5 59.11 45 80 10.73 

E36 Scottish Blackface Multiparous 26 0.3 9.19 0 32 7.63 

E37 Scottish Blackface Multiparous 9 0.4 15.78 2 33 10.58 

E38 Scottish Blackface Primiparous 8 1.4 17.25 2 68 21.14 
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6.3.3 Analysis of ewe-ewe and ewe-lamb relationships in relation 

to production and welfare measures 

 

6.3.3.1 Effects of ewe lameness on ewe-ewe contacts 

 

A total of 406 observations were obtained from 28 different ewes; 20 Lleyn and 8 

Scottish Blackface, which is summarised in Table 6.10. Nineteen of the 28 ewes 

were recorded as sound across the full study period, whilst nine were recorded as 

lame across part the study.   

 

 

Table 6.10 Summary of data obtained for ewe-ewe contacts relation to ewe 
lameness. 

 Total 

Ewe Breed 

Lleyn Scottish 
Blackface 

No. unique ewe IDs 28 20 8 

Total no. of observations 406 274 132 

No. ewes lame (for at 
least 3 days) 

9 5 4 

Lamb age range -15 – 42 -9 – 37 -15 – 42 

Min no. of ewes 
reporting per lamb age 

1 1 1 

Max no. of ewes 
reporting per lamb age 

14 11 5 

Mean no. of ewes 
reporting per lamb age 

7 5.83 2.36 

 

 

A MEM found that the daily mean number of ewe-ewe contacts was influenced by 

the interaction of lamb age and ewe breed, and the lameness status of the ewe 

(Table 6.11). Across both breeds, ewes which were lame tended to display a lower 

mean number of ewe-ewe contacts in comparison with non-lame ewes at that 

lamb age. A simplified GAM showing the relationship between the mean number 

of ewe-ewe contacts across increasing lamb age, and according to ewe lameness 

status, is presented in Figure 6.8. 
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Table 6.11 Summary of mixed effects model (MEM) output of daily mean no. 
of ewe-ewe contacts in relation to lamb age and lameness. 

Parameter 
Mean no. ewe-ewe contacts 

Estimate CI p-value 

Intercept 6.2344 5.89 – 6.58 < 0.001 

Lamb age -0.0659 -0.08 – -0.06 < 0.001 

Lameness Status: 

Not lame Reference lameness status 

lame -0.7034 -0.97 – -0.44 < 0.001 

Ewe breed: 

Lleyn Reference lambing status 

Scottish Blackface -0.8228 -1.46 – -0.19 0.011 

Lamb age x 

Ewe breed (Scottish 
Blackface) 

0.0243 0.01 – 0.04 0.008 

 

Random effects 

1 σ2 0.74 

2 τ00 Ewe ID 0.46 

3 ICC 0.38 

4 N Ewe ID 28 

 

Observations 406 

5 Marginal R2 0.391 

6 Conditional R2 0.624 

 

1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
Ewe ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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Figure 6.8 Number of daily ewe-ewe contacts per lamb age with fitted 
Generalised additive model (GAM), in relation to lameness status and ewe 
breed. 
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6.3.3.2 Effects of ewe lameness on ewe-lamb contacts 

 

A summary of the subset of data relating to contacts between a ewe and her own 

lambs in relation to the ewes lameness status is provided in Table 6.12. Data was 

obtained for lamb ages of 1-42 days old, where a minimum of one ewe, thus two 

lambs was reported at each lamb age.  

 

 

Table 6.12 Summary of data obtained for ewe-lamb contacts relation to ewe 
lameness. 

 Total 

Total no. ewes 21 

Total no. lambs 42 

Total no. of observations 546 

Lamb age range 1 – 42 

Min no. of observations per lamb age 1 

Max no. of observations per lamb age 14 

Mean no. of observations per lamb age 7 

Min no. of lame ewes per lamb age 1 

Max no. of lame ewes per lamb age 9 

Mean no. of lame ewes per lamb age 3.55 

 

 

A MEM indicated that the daily mean number of ewe-lamb contacts (where ewe 

and lamb ID were a random factor) differed in relation to the interaction between 

lamb age and birth weight, as well as the lameness status of the ewe (Table 6.13). 

Ewes which were classed as lame tended to report a higher mean number of ewe-

lamb contacts per day in comparison with non-lame ewes across the observed 

lamb age range. A simplified GAM (based on ewe lameness status only) shows the 

overall relationship between the daily number of ewe-lamb contacts with 

increasing lamb age (Figure 6.9).  
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Table 6.13 Summary of mixed effects model (MEM) output of daily mean no. 
of ewe-lamb contacts in relation to lamb age and lameness. 

Parameter 
Mean no. ewe-ewe contacts 

Estimate CI p-value 

Intercept 101.4515 46.81 – 156.09 < 0.001 

Lamb age 2.3569 0.44 – 4.28 0.016 

Lamb birth weight (kg) 13.8230 -0.17 – 27.82 0.053 

Lameness Status: 

Not lame Reference lameness status 

lame 14.7455 4.83 – 24.66 0.004 

Lamb age x 

Lamb birth weight (kg) 
-0.5685 -1.08 – -0.06 0.030 

 

Random effects 

1 σ2 1459.68 

2 τ00 Ewe ID 900.00 

3 ICC 0.38 

4 N Ewe ID 21 

 

Observations 546 

5 Marginal R2 0.030 

6 Conditional R2 0.400 

 

1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
Ewe ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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Figure 6.9 Number of daily ewe-lamb contacts per lamb age with fitted 
Generalised additive model (GAM), in relation to lameness status. 

 
 
 
 

 
6.3.3.3 Do ewe-lamb contacts relate to lamb weight change? 

 
A MEM indicated that the mean daily number of contacts, and the interaction of 

ewe breed and status, had an effect on lamb daily weight gain (Table 6.14). 

However, lamb daily weight gain was typically higher in Lleyn as opposed to 

Scottish Blackface ewes, with means of 0.26 kg (SD = 0.07) and 0.21 kg (SD = 0.04) 

respectfully. Lamb daily weight gain was also found to be higher in multiparous 

ewes, with a mean of 0.28 kg (SD = 0.07), compared with primiparous ewes, with 

a mean of 0.20 kg (SD = 0.04). The relationship between mean daily number of 

ewe-lamb contacts and lamb daily weight gain is displayed in Figure 6.10.  
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Table 6.14 Summary of mixed effects model (MEM) output for number of 
ewe-lamb contacts per day. 

Parameter 
Lamb Daily Weight Gain 

Estimate CI p-value 

Intercept 0.1189 0.04 – 0.19 0.003 

Mean daily no. of contacts 0.000503 0.00 – 0.00 0.022 

Ewe breed: 

Lleyn Reference ewe breed 

Scottish Blackface 0.0047 -0.06 – -0.07 0.877 

Ewe status: 

Primiparous Reference ewe status 

Multiparous 0.1049 0.06 – -0.15 < 0.001 

Ewe breed × Ewe status: 

Lleyn × Primiparous Reference ewe breed and ewe status 

Scottish Blackface × Multiparous -0.0963 -0.18 – -0.02 0.021 

 

Random effects 

1σ2 0.0023 

2τ00 Ewe ID 0.0044 

3 ICC 0.1584 

4 N Ewe ID 21 

 

Observations 42 

5 Marginal R2 0.483 

6 Conditional R2 0.565 

 

1 Residual variance: the variability unexplained by the model parameters (fixed 
effects). 
2 Random intercept variance: between group variance. 
3 Intraclass correlation coefficient: quantifies the proportion of variance explained by 
Ewe ID. 
4 Total number of observations. 
5 Variance explained by fixed effects. 
6 Variance explained by fixed and random effects. 
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Figure 6.10 Lamb daily weight gain in relation to mean number of daily ewe-
lamb contacts. 
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6.4 Discussion 

 

6.4.1 BLE detection of ewe-ewe contacts and relationship patterns 

 

The WISP-beacon system demonstrated that BLE could detect changes in ewe-ewe 

contact patterns across the study period. Ewe-ewe contacts declined between the 

pre-lambing to lambing, and lambing to post-lambing phases. Other PLF sensors, 

such as accelerometers, have also demonstrated behavioural and postural changes 

in ewes at parturition (Fogarty et al., 2020). Whilst sheep are usually highly 

gregarious, ewes will retreat from the flock to give birth and often remain 

segregated for several hours following parturition (Lindsay et al., 1990). This 

separation is considered an important factor in contributing to lamb survival, as 

the absence of other ewes may promote the ewe-lamb bond and lamb recognition 

of the ewe (Dwyer and Lawrence, 2005). However, the inclination to isolate and 

length of separation differs between breeds and parities (Dwyer and Lawrence, 

2005). This was observed within the study, with Scottish Blackface ewes reporting 

fewer ewe-ewe contacts than Lleyn ewes, not only during lambing, but across all 

phases. The continued reduction in ewe-ewe contacts post-lambing, by both 

breeds, fits with previous sheep contact network studies, where ewe-ewe contacts 

were reduced when lambs were present within the flock, particularly for ewes 

with newborn as opposed to almost weaned lambs (Norton et al., 2012). 

 

 

6.4.2 BLE detection of ewe-lamb contacts and relationship patterns 

 

The WISP-beacon system also illustrated a change in ewe-lamb dynamics with 

increasing lamb age and time from parturition. The MEM indicated that the 

number of ewe-lamb contacts reported by the BLE differed according to the 

interaction of lamb age, lamb birth weight, ewe breed, and ewe parity. However, 

whilst the interaction of these multiple factors was found to be significant, the 

plotted predicted values of the number of ewe-lamb contacts per lamb age 

showed a similar overall trend across breeds and parities, for the three selected 

lamb birth weights. Although, there was also a typically higher predicted number 

of ewe-lamb contacts in Scottish Blackface, as opposed to Lleyn, across all groups. 
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The strongest mean RSSI values for ewe-lamb contacts were recorded at lamb ages 

of 1-3 days, resulting in a close mean BLE estimated distance of 6.82 m during this 

period. There was also a high number of ewe-lamb contacts during this period, 

which is in line with previous studies, as lambs typically remain close to their dam 

following birth (Arnold and Grassia, 1985). Ewe-lamb pairs have also been 

reported to remain in close proximity for the first week after birth (Arnold and 

Grassia, 1985). The RSSI values reported indicated that lambs remained in 

relatively close proximity throughout the lamb ages observed (1-44 days), with 

mean BLE estimated distances ranging from approximately 6-14 m depending on 

lamb age. However, the study did find a decline in the number of contacts between 

lamb ages of 1-14 days, followed by an increase in contacts again at approximately 

24 days old. The period where the lowest number of ewe-lamb contacts were 

observed (lamb ages 12-23 days) does coincide with the period (aged 2-3 weeks) 

during which peer contacts and play behaviours have been reported to peak (Sachs 

and Harris, 1978). This trend was observed within the model for both breeds; 

however, the curve was more apparent in multiparous ewes. In addition, contacts 

are dependent on multiple associated factors including ewe nutrition, 

environmental conditions, the lambing process, and the expression of maternal 

and neonate behaviours (Dwyer and Lawrence, 1998), thus individual variation 

would be expected to occur between ewe-lamb pairings.  

 

The litter size can also influence the ewe-lamb relationship, with multiple born 

lambs often having a lower association with their dam than single-born lambs, but 

close association with their siblings (Ozella et al., 2022). Multiple born lambs have 

been observed to spend large proportions of time in close proximity with one 

another, often developing high levels of synchronisation in activities (Galeana et 

al., 2007; Abecia et al., 2022). For instance, as lambs get older, ewes may only 

allow twins to suckle when both lambs are present (Galeana et al., 2007). At the 

same time, higher levels of separation and maternal abandonment have been 

reported in twin lambs, with breed and parity both thought to contribute to the 

incidence of this occurring (Alexander et al., 1983). Within this study, the mean 

number of contacts between ewes and lambs tended to be comparable for both 

twins - in most instances differing by less than 20 contacts per day. The similarity 

in ewe-lamb contacts reported by the BLE, fits with the visual observations 
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(Chapter 5) and in-field welfare assessments conducted, where twin-lambs were 

typically observed to be in close proximity (within a few metres of one another).  

 

Whilst there was greater variation in ewe-lamb contacts between twins of Scottish 

Blackface ewes, this may be a result of the smaller number of Scottish Blackface 

ewes compared with the Lleyn ewes, and one particularly large difference in ewe 

E20. However, the BLE system also detected a difference in the number of contacts 

between twins of primiparous and multiparous ewes, which would suggest ewe-

lamb contacts are more variable between twins during the first parity.  

 

The two instances where particularly high variation occurred between twins (ewes 

E12 and E20), is thought to be a result in this instance of contact issues between 

the WISP and beacon rather than an indication of ewe-lamb separation, as during 

all visual observations (Chapter 5) and in-field welfare assessments the pairings 

were observed within relatively close proximities and comparable ranges with 

other pairings. Given the effects of sheep behaviour and device height on the 

likelihood of a WISP reporting a beacon, and impact on signal strength (Chapters 

4 and 5), it is likely that there will be instances where lambs are within the vicinity 

of their dam but are not reported by the ewes WISP. However, the very low counts 

observed in some cases are suggestive of beacon failure or failure to connect with 

the WISP, rather than signal interference. There were also a further three 

instances where a beacon failed to be reported not only by a focal ewe, but by 

any WISP during a full study phase. As two of these beacons were reported in an 

earlier phase, this would suggest a failure of the beacon, or loss of battery.  

 

Given the availability of WISPs and assignment across phases, data was not 

available for all pairings across all lamb ages. Whilst the focus of this study was 

on investigating whether BLE could detect changes in contact patterns, 

understanding the individual variation in contacts of healthy ewe-lamb pairings 

(in relation to breed, parity, and lamb age) would be required to establish an 

expected contact range before BLE could be applied as a potential alert of a 

possible issue. Based on the effects of behaviour on the translation of RSSI into 

distance (Chapter 5), it is unlikely that RSSI estimates would be reliable enough 

to be utilised, or at the very most would need to be based on broad distance 

ranges. However, an expected number of contacts per day (within a range), or 
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maximum length of time without contact (dependent on lamb age) could be a 

feasible option. 

 

 

6.4.3 Investigation of BLE contacts in relation to production / 

welfare measures 

 

The WISP-beacon system indicated that ewe-ewe and ewe-lamb contacts were 

altered in ewes which were lame. Affected ewes reported a reduced number of 

neighbouring ewes per duty cycle but tended to report a higher number of 

contacts with their own lambs per day in comparison with ewe-lamb interactions 

of non-lame ewes. In addition, the mean signal strength of ewe-lamb contacts was 

greater in lame ewes, suggesting that lambs were typically in closer proximity 

than lambs of non-lame ewes. Previous sensor-based studies (Lewis et al., 2023) 

have reported behavioural differences between lame and non-lame ewes, 

whereby lame ewes displayed a greater proportion of inactive behaviours, as did 

their lamb(s). The study also found that increased inactivity in ewes and lambs 

resulted in a greater number of ewe-lamb contacts. Within the focal observations 

of this study (Chapter 5), ewe and lamb behaviour often appeared to be linked, 

particularly when “lying”, when the ewe-lamb distance was typically < 10 m. Thus, 

if lameness results in increased periods of inactivity, such as “lying”, then 

increased ewe-lamb contacts would likely be detected by BLE. There could then 

be potential for BLE contacts to act as an indicator of lameness (or other welfare 

issue). However, as contacts also differed between breeds, parity, and lamb age, 

consideration may also need to be given to these factors to determine an 

appropriate stage for an alert, where the number of contacts deviates from an 

expected level.  

 

The results of the study also suggest that ewe-lamb contacts could be indicative 

of lamb daily weight gain, with greater ewe-lamb contacts typically resulting in a 

greater weight gain. Preweaning performance is considered to be the most 

important phase of lamb growth, and period during which the largest daily 

liveweight gains can be achieved (Gascoigne and Lovatt, 2015). Lamb growth and 

weight gain can be influenced by several variables, including litter size, dam age 
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and parity, sire and dam breed, lamb sex, as well as ewe milk production 

(influenced by ewe nutrition during pregnancy) and concentration of protein 

(Gascoigne and Lovatt, 2015; Lima et al., 2019). However, the milk supply 

provided by the ewe is considered to be the main determinant of lamb growth 

during the first few weeks (Ewbank, 1967), with milk yield peaking between 2-4 

weeks after lambing. Between 4-6 weeks lambs begin to consume forage, and by 

8-weeks milk accounts for only a small proportion of their energy intake 

(Gascoigne and Lovatt, 2015). The higher number of contacts could be associated 

with increased suckling and thus a potentially greater milk intake, leading to 

increased growth. A positive correlation between suckling behaviours and milk 

yield has previously been reported (Hinch, 1989). Higher daily weight gain in lambs 

has also been associated with lambs and dams spending a greater proportion of 

time performing inactive behaviours (Price et al., 2022). As observed within 

Chapter 5, instances where both ewes and lamb were lying typically occurred at 

short distances ranges, and hence there may be more opportunity for beacons to 

be detected. The relationship between the number of contacts and growth rates 

also differed between ewe breeds and parities. Whilst there were a small number 

of observations within some groups, the data was suggestive that lamb weight gain 

was greater in multiparous ewes, who had maternal experience.  
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6.4.4 Conclusion 

 

The WISP-beacon system demonstrated that BLE is capable of detecting patterns 

and relationships based on the daily count of beacon readings reported. The mean 

number of neighbouring ewes was found to decline at onset of lambing, and 

further reduced after lambing, which may be indicative of segregation from the 

flock at parturition, and display of maternal attachment behaviours. Decreased 

ewe-ewe contacts and increased ewe-lamb contacts were also associated with 

lame ewes. In addition, the BLE system demonstrated changes in the number of 

ewe-lamb contacts in relation to lamb age, with very similar daily counts obtained 

between twins, who typically display high levels of synchronisation. BLE could 

then potentially be used to detect when ewe-lamb contacts deviate from an 

expect range, acting to alert farmers to a potential issue. High contacts between 

ewes and lambs were also related with a higher daily weight, thus monitoring 

contacts could also have benefits in terms of production.  
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Chapter 7 Discussion 

 

This thesis identified BLE as an emerging low-cost, low-energy device, worthy of 

investigation as a potential PLF tool to assist farmers in production and welfare 

monitoring within sheep grazing systems. However, BLE has been reported to be a 

noisy measure of proximity and distance, and information regarding the range and 

signal strength in grass / vegetative systems is limited (Luciani and Davis, 2013; 

Mathew et al., 2017), particularly within the context of a field grazing 

environment. The thesis therefore aimed to investigate the relationship between 

BLE signal strength and distance within a field environment using a multi-sensor 

device developed for the project. The thesis then sought to assess the potential 

of a BLE system for localisation within a sheep grazing environment, and as a 

proximity monitoring tool to identify changes in relationships (set during the 

lambing and early lactation period) which could be indicative of a potential issue.  

 

 

7.1 Main findings 

 

7.1.1 Signal strength and distance 

 

Three types of BLE beacon operating on differing BLE specifications were trialled 

alongside the developed WISP in off-sheep calibration studies. Whilst range (as 

described through the survival curves) differed between each beacon type, in all 

cases, the probability that a beacon reported at a measured distance would still 

be reported at greater distances declined as the WISP-beacon distance increased. 

The height at which the transmitting (beacon) and receiving (WISP) device were 

located also impacted on the probability of a beacon signal being reported, with 

those at lower heights having a reduced range. The survival curves generated 

indicated that across all beacon types the 75% threshold was reached by 

approximately 50 m for the “on-sheep” heights tested (0.3 and 0.7 m). In addition, 

whilst there was an initial decline in signal strength with increasing distance, the 

RSSI values reported tended to level off at between 30-50 m. This would suggest 

that whilst some beacons may be reported beyond this distance, these lower RSSI 

values could be reported across wide distance ranges, thus whilst confirming 
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presence of a beacon, would not be indicative of a distance from the WISP. The 

strength of the signal reported was also found to fluctuate within each measured 

distance, even where there was a clear line-of-sight between devices. Some of 

this variation was attributed to specific WISPs or beacons, or combinations of 

WISP-beacon parings producing higher or lower RSSI values.  

 

 

7.1.2 Impact of sheep behaviour on BLE signal 

 

Perhaps the most important finding of the thesis, however, was the on-sheep focal 

ewe-lamb study (Chapter 5) which demonstrated that the probability of a beacon 

being “seen” and reported by a WISP, as well as translation of BLE signal strength 

into distance was confounded by the behaviour of both animals, as this would 

influence their orientation, posture, and thus height of the device from the 

ground. Variability arising from the behaviour of the animal wearing a BLE beacon 

will have implications on any application of a BLE system, including localisation 

and proximity. However, implications will be greater where both the BLE reader 

and beacon are on-sheep, and thus signals being reported are determined by two 

independent and moving animals. Given these factors, and potential distances 

which sheep could move toward or apart from one another over a 5-minute duty 

cycle, the translation of RSSI into distance is then likely to be a poor indicator of 

actual sheep distance within a grazing system. Although a “close”, “near”, “far” 

categorisation could provide an indication.  

 

 

7.1.3 Localisation potential 

 

Within Chapter 3, BLE was trialled as a means of localisation and thus potential 

proxy for activity monitoring within a sheep grazing system. Within this setup the 

WISPs were utilised as static BLE readers with known locations to detect and 

report on beacons assigned to weaned lambs. The study used developed distance 

prediction equations based on the static calibration work. The resulting individual 

distances estimated from the BLE for each WISP-beacon pairing during a static 

beacon localisation study typically underestimated distance when compared with 

GNSS based estimates. The underestimations at larger WISP-beacon distances (65-
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90 m) may in part be due to the calibration study of the Type 1 beacons not 

obtaining RSSI values within this distance range. However, as observed within the 

Type 2 and 3 beacon calibrations (Chapter 4), this underestimation may also be 

reflective of RSSI values plateauing beyond a certain distance, and hence no longer 

indicative of increasing distance. Whilst the distance prediction equation resulted 

in a mean underestimation of just 1.59 m in the on-sheep validation, large over 

(71 m) and underestimations (104 m) were also produced, thus reflecting the wide 

range in RSSI values obtained for independent GNSS based distances. The number 

of intervals for which a lamb location could be generated was also limited by the 

number of WISPs which had reported the beacon, as there were only 26 % of 

intervals where two or more WISPs reported the beacon during the same period. 

Whilst 60 % of lamb locations generated via BLE were within 20 m of the GNSS 

based location, the maximum distance between WISPs was 73 m. As a result of the 

RSSI fluctuations and translation to distance, trajectories generated, although 

indicative of the animals movement, produced a “zig zag” pattern. To mitigate 

for temporal fluctuations in RSSI within a similar BLE localisation study in cattle, 

Yamanishi et al. (2019) implemented a “long short term memory” localisation 

technique, a type of recurrent neural network (whereby a location at a given point 

in time depends on the previous location) which reduced the “zig zag” pattern 

also exhibited in the cows BLE based trajectory. Data training and machine 

learning models could then help to improve the accuracy of the BLE location 

estimations.  

 

 

7.1.4 BLE as a monitoring tool 

 

The third primary aim of the thesis was to assess whether BLE could act as a 

monitoring tool to detect changes in relationships and proximity – which may be 

indicative of a management or welfare issue. This was examined during the 

lambing and early lactation period given that lamb mortality and poor ewe-lamb 

relationships are considered one of the main welfare concerns within sheep 

systems. Whilst the calibration (Chapter 4) and focal ewe-lamb studies (Chapter 

5) suggested that RSSI and distance interpretation would be a poor indicator in 

many instances due to the high variability in signal strength, the use of BLE to 

monitor the number of ewe-ewe and ewe-lamb contacts (Chapter 6) showed 
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potential as a monitoring tool to explore how relationships changed over time. 

Based on the field observations conducted throughout the ewe-lamb study and 

based on literature from previous ewe-lamb studies, several expected differences 

were detected by the BLE system.  

 

Firstly, the number of ewe-ewe contacts declined based on the lambing stage, 

which fits with reports of ewe separation at parturition. This was, however, a 

subtle decrease, and as exact timings of lambing were not known for all sheep 

within the study, further work would be required to assess the scale at which BLE 

could detect this separation. Secondly, the BLE system was capable of detecting 

changes in the ewe-lamb relationship according to lamb age and time from 

parturition. The pattern in daily ewe-lamb counts observed by the BLE is in 

keeping with behavioural observations of previous ewe-lamb studies (Arnold and 

Grassia, 1985; Sachs and Harris, 1978), with high contacts and very close proximity 

during the first three days, with the number of contacts declining as lambs become 

more independent, spending time with peers. The number of ewe-lamb contacts 

was also typically very similar between twin lambs, who often display high levels 

of synchronization (Galeana et al., 2007). Furthermore, higher contacts between 

ewes and lambs were also associated with a higher daily weight gain, in relation 

to breed and parity, potentially due to better maternal care. If typical ewe-lamb 

patterns were established (e.g. in relation to breed and lamb age) then BLE could 

potentially offer a means of detecting both good ewe-lamb relationships and 

identifying any potential issues, where for example, ill or separated lambs result 

in a deviation from an expected, or population rolling statistic describing number 

or timing of contacts. Whilst there were no welfare challenges to the lambs 

monitored by the BLE in this study, the ability to detect contact patterns suggests 

it could be an interesting avenue for further exploration. Thirdly, when contacts 

were examined in relation to ewe lameness, it was found that lame ewes reported 

fewer neighbouring ewe beacons during a duty cycle but reported a higher number 

of ewe-lamb contacts per day. This is likely due to lame ewes being more inactive, 

thus spending less time with conspecifics, whilst increasing opportunity for lambs 

to be in closer proximity. 
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7.2 Limitations, challenges and future considerations 

 

7.2.1 Technical limitations 

 

A potential limiting factor in the assessment of BLE range and signal strength could 

have been due to the BLE reader within the WISP operating on BLE 4.2, thus the 

receiving device may have acted to limit the BLE range of the various beacon 

types. Beacons operating on more recent BLE specifications could potentially have 

an enhanced range if also operating alongside readers on a more recent BLE 

specification.  

 

The duty cycles and thus reporting times of WISPs were staggered to accommodate 

the transmission of real-time data via LoRa. However, this did present a challenge 

within the on-sheep localisation study, as each generated location data was based 

on overlapping 5-minute intervals as opposed to the same 5-minute period. This 

will have contributed to the variation in distance estimations and contributed to 

discrepancies in the final BLE estimated location, especially where different levels 

of movement occurred within each interval. Ideally WISPs would have reported so 

that duty cycles corresponded to the same intervals, to more accurately assess 

the time-synchronised location estimates of the BLE. 

 

The ewe-lamb studies (Chapters 5 and 6) were limited by availability and 

timescales to obtain beacons, thus a mixture of both Type 2 and Type 3 beacons 

were employed. There were a limited number of WISPs available for application 

during the study and this also reduced between phases due to use within the wider 

TechCare project. In addition, some ewes experienced chafing around the neck 

due to the WISP – which was not experienced during a pilot trial the previous year. 

To reduce the risk of this occurring again, additional foam padding was applied 

around the WISP in subsequent phases, which may have caused a level of 

interference on the beacon signals (a factor not accounted for within the 

calibration studies). This also reduced the number of ewes within each phase who 

could potentially be assigned a WISP, as those showing signs of chafing from the 

previous phase were discounted from WISP application – instead being fitted with 

a beacon only. This limited the data collected at varying lamb ages and within 
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differing ewe breeds and parities. One lamb within the study also repeatedly 

escaped from the BLE collar – hence periods of data could not be utilised. 

Nonetheless, as the WISPs were operating on a 5-minute duty cycle, a substantial 

amount of data was obtained over the six-week study period.  

 

There were also some technical issues with a small number of beacons, which 

failed to be reported throughout a study or failed in subsequent phases, despite 

having been identified on the FeasyBeacon app at the start of the study. Beacons 

which were not functioning at the end of the study, likely suffered from battery 

loss or malfunction, however, those still operating at study end suggest potential 

communication issues with the BLE reader in the WISP.  

 

 

7.2.3 Welfare implications 

 

The chafing experienced by the ewes within the on-sheep study also highlights 

that whilst PLF technologies are designed to assist in production and welfare 

management, the devices themselves may have welfare implications. It is 

therefore important that devices are validated and assessed to prevent adverse 

outcomes from any PLF technologies applied (Tuyttens et al., 2022). For use within 

extensive systems where visual inspections are sometimes limited (thus the area 

in which PLF tools could be potentially most beneficial), this also raises concerns 

if devices result in injury or cause distress but go undetected (Herlin et al., 2021). 

Thus, work to assess the implications of technologies and wearables on health and 

welfare is also essential. When designing devices especially for commercial 

application, the type of attachment and placement should then aim to be both 

suitable and comfortable for long-term term wear by sheep, whilst also optimising 

the technology. The potential for this problem, and actions taken, were included 

within the ethical approval process. No animals experienced harms beyond that 

considered in ethical approval.  
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7.2.4 Practical limitations 

 

7.2.4.1 Battery life and power 

 

BLE beacons are capable of functioning for several years without requiring a 

battery swap. However, to be functional within a commercial setting the BLE 

reader would also be required to have a longer battery life. Within this thesis, the 

BLE reader was part of prototype multi-sensor device, which included GNSS, thus 

the battery life was approximately 14 days. However, using only the BLE reader 

and LoRa for data transmission would increase the length of time over which the 

device could operate. Although the size, weight, and lifespan are current issues 

for wearable technologies, it is realistic to expect most of these issues can be 

overcome in time.  

 

 

7.2.4.1 Number of WISPs / BLE readers deployed 

 

Whilst the studies in Chapter 3 did demonstrate that localisation using BLE was 

feasible within a field setting, they also highlighted several challenges. Firstly, the 

generation of a location requires a beacon to be “seen” and reported by multiple 

devices within the same period. However, based on distance ranges over which 

BLE signals were detected and reported within this thesis, a high density of static 

BLE readers would be required for BLE to sufficiently cover areas in which sheep 

were grazing. A high number of readers was similarly required within the cattle 

localisation by Yamanishi et al. (2019). Whilst this high density of readers would 

be achievable and more easily implemented within indoor systems, it would be 

impractical in most outdoor systems, particularly more extensive environments 

where animals could be distributed over large areas.  

 

The study also highlighted that animal behaviour and level of movement over an 

interval would impact not only on signal strength, and thus distance 

interpretation, but on whether the animal was detected at all. Periods where the 

lamb was unable to be located corresponded to instances where the GNSS devices 

suggested the lamb was stationary, and thus likely lying. This fits with the reduced 
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survival curves generated during the calibration studies when devices were 

located closer to the ground. 

 

7.2.5 Opportunities and avenues for further investigation 

 

Whilst the thesis highlighted limitations to the use of BLE for localisation in grazing 

systems when applied as a static reader, BLE could still offer opportunity for 

localisation within sheep grazing systems by utilising BLE in combination with 

GNSS. Under this system, most of the flock would be assigned a BLE beacon only, 

whilst a proportion would be fitted with a GNSS device and BLE receiver. 

Individuals wearing the BLE receiver would then report on neighbouring sheep 

beacons detected, and their GNSS location used as a proxy for all sheep identified. 

Such systems have been demonstrated within grazing livestock by Maroto-Molina 

et al. (2019) and Vidal-Cardos et al. (2024), and a similar system has been 

developed for sheep by Norwegian Company “RealTimeID” (RealTimeID, 2025) 

during the same timeline as this PhD, with commercial launch planned for 2025. 

However, based on the BLE ranges observed within this thesis, consideration will 

likely need to be given to the type of flock system, gregariousness of the sheep 

breed and potential scale of flock distribution, as well as an understanding of 

sheep subgroups to best select individuals assigned the GNSS / BLE reader devices.  

 

The behaviour of the sheep will also influence the proximity range over which they 

operate. Given the effects which device height could have on the likelihood of a 

beacon being reported, further investigation into the effects of combined 

topography and animal behaviour on BLE signal would be beneficial in 

understanding how different environments might limit the proximity range over 

which neighbouring beacons could be detected. This system could then take 

advantage of both the higher location accuracy of GNSS, and lightweight, low-

power BLE beacons, which would be more cost-effective for application in sheep 

systems. However, whilst the BLE beacons offer a long-battery life, there would 

still be limitations due to the battery life of the GNSS. Alternatively, the use of 

UAVs (equipped with GNSS and BLE reader) to read BLE beacons on sheep have 

been proposed (Nyholm, 2020; Vucic and Axell, 2022). Depending upon the 

location in which beacons fitted to sheep, UAVs could potentially achieve a better 

BLE range, due to line-of-sight, and reduced impact of vegetation and proximity 
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of other sheep on the signal strength. However, it would likely be necessary to fly 

at low heights to maximise the number of beacons read – which could cause a level 

of distress amongst the flock. An alternative opportunity for BLE localisation would 

be the use of strategically placed BLE readers to provide information regarding 

presence / absence within range of specific locations or at resources.  

 

The BLE system did demonstrate potential as a monitoring tool during lambing and 

to assess the ewe-lamb relationship. Whilst exact lambing times were not known 

for all sheep within this study, the reduction in neighbouring ewes observed during 

the “lambing” phase suggests that identification of parturition could be a 

potential avenue for further investigation of BLE - using accurate lambing times 

and with in-field observations to confirm separation from other ewes. Although, 

as discussed by Fogarty et al. (2020) regarding GNSS, BLE would perhaps only 

provide information on a daily scale, whilst technologies such as accelerometers 

may provide information on behavioural changes on a finer hourly scale. Expected 

changes to the ewe-lamb relationship were observed in the number of contacts 

between ewe-lamb pairs in relation to lamb age, as well as between ewe breeds 

and parity. As a main area of production loss and welfare concern, the 

identification of positive ewe-lamb relationship and alerts of potentially poor 

welfare / issue could be beneficial in both regards, particularly if this was in real-

time. Further investigation in this area could help to identify baseline ranges of 

expected contacts, whilst the inclusion of lamb issues – such as lamb separation, 

ill health, or other welfare issue, would provide information on how this affected 

the number of contacts received by the BLE system, and stage at which this was 

identified.  

 

 

7.2.5 Further applications / investigation of the WISP system 

 

In addition to the BLE data examined, a large amount of data was available from 

the other sensors within WISP (GNSS and accelerometer data). Whilst these were 

not the focus of the thesis, analysis of other sensor types in relation to ewe-lamb 

monitoring could be investigated in future, using the same visual observations and 

welfare data. Other potential avenues for exploration of the WISP are summarised 

in Table 7.1.  
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Table 7.1 Potential applications and areas of further investigation using the 
developed Bluetooth low energy (BLE) device. 

Technology 

and data 

Application 

Accelerometer 1. Detection of events: can gathering events / disturbances / 

predation (in relevant systems) be detected based on the 

reported motion index. 

2. Animal activity: comparison of daily activity patterns 

• Relationship to welfare / production measures 

• Relationship to weather conditions  

• By factors such as breed, lamb age  

BLE 1. Proximity: 

• Presence / absence 

• Social networks and contact patterns 

• Ewe-lamb relationships / dam assignment  

• Disease transmission 

2. Animal localisation / animal activity 

GNSS 1. Animal localisation 

2. Animal activity / range 

• Diurnal patterns 

• Trajectories & distances 

• Spatial / resource use 

LoRa / Flash 

drive 

1. Data transmission: Comparison of data obtained from LoRa 

vs flash drive – what proportion of real-time data is reported 

via LoRa?  

• What proportion could be missed without affecting the 

interpretation of the data?  

• Is this affected by weather? 
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7.3 Conclusion 

 

Bluetooth low energy (BLE) has expanded rapidly across sectors as a localisation 

and proximity monitoring tool. The low cost of BLE beacons, their light weight, 

and ability to communicate and allow transmission of data in real-time, are 

features which make them appealing tools for application within the livestock 

sector. This thesis assessed how the technology could perform within the context 

of an outdoor grazing system. Despite factors such as device height, animal 

behaviour, transmission ranges and environment, as a monitoring tool to examine 

interactions between individuals, BLE showed promising results in the detection 

of patterns between contacts in relation to lamb age. This thesis highlighted that 

BLE could then be avenue for further exploration as a surveillance tool to monitor 

ewe-lamb relationships. The thesis also highlights the merits of a balance in PLF 

research and product development / testing of both on-animal work, with tests in 

non-animal field conditions. Both aspects together provide a good evaluation and 

understanding of the technology in a sheep grazing environment.  
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Appendix A Published version of studies 

presented in Chapter 3 
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Appendix B Prediction model comparison Beacon 

Type 1 (Chapter 3) 

 

Table B.1 Comparison of the three distance prediction models (linear, natural 
log, and inverse square) examined for Beacon Type 1 - for both the full off-
sheep calibration data set (regardless of device height), and individually for 
each device height group. 

 Comparison of Distance Prediction Models 

 Linear Model 

Distance (m) SD CV L95% CI U95% CI Adj R² 

All Combined Device Heights1 

1 8.02 782.03 0.57 1.48 

0.51 

 

2 6.00 239.91 2.16 2.84 

4 5.79 72.07 7.70 8.35 

8 6.76 45.41 14.51 15.27 

16 5.60 27.27 20.20 20.84 

32 4.32 16.25 26.26 26.86 

64 4.32 14.76 28.83 29.66 

128 -- -- -- -- 

WISP 0.3 m / Beacon 0.3 m2 

1 3.57 200.06 1.29 2.29 

0.56 

 

2 3.67 152.64 1.89 2.92 

4 3.00 57.07 4.83 5.67 

8 2.97 28.22 10.08 10.90 

16 2.37 16.03 14.45 15.14 

32 1.02 5.82 17.24 17.92 

64 3.02 16.65 14.37 21.85 

128 -- -- -- -- 

WISP 0.3 m / Beacon 0.7 m3 

1 4.91 2043.42 -0.44 0.93 

0.51 

 

2 4.84 125.21 3.19 4.54 

4 3.79 52.81 6.64 7.70 

8 5.62 53.04 9.82 11.39 

16 4.74 27.65 16.47 17.81 
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32 3.81 16.64 21.91 23.86 

64 2.58 10.10 24.48 26.52 

128 -- -- -- -- 

WISP 0.7 m / Beacon 0.3 m4 

1 6.22 1159.57 -0.33 1.40 

0.63 

 

2 4.31 209.61 1.46 2.65 

4 4.50 52.35 7.97 9.22 

8 5.61 52.35 9.09 10.65 

16 5.08 27.73 17.61 19.03 

32 2.45 9.13 26.37 27.22 

64 2.90 9.79 28.52 30.72 

128 -- -- -- -- 

WISP 0.7 m / Beacon 0.7 m5 

1 7.53 -308.16 -3.49 -1.39 

0.50 

 

2 5.80 167.66 2.65 4.27 

4 5.95 60.70 8.97 10.63 

8 4.23 19.07 21.61 22.79 

16 5.30 28.21 18.05 19.53 

32 4.34 16.19 26.19 27.41 

64 3.23 10.23 30.89 32.19 

128 -- -- -- -- 

WISP 2 m / Beacon 0.3 m6 

1 7.46 177.19 3.17 5.25 

0.57 

 

2 5.57 735.99 -0.02 1.53 

4 7.70 134.27 4.66 6.81 

8 9.35 65.90 12.88 15.49 

16 5.37 22.00 23.65 25.15 

32 5.26 18.32 27.98 29.47 

64 7.28 21.17 32.98 35.84 

128 -- -- -- -- 

WISP 2 m / Beacon 0.7 m7 

1 10.82 416.64 1.09 4.11 

0.57 

 

2 6.82 -1269.58 -1.49 0.41 

4 7.47 86.54 7.59 9.67 

8 6.18 33.60 17.53 19.26 
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16 7.584576 33.06 21.88 24.00 

32 6.36 19.18 32.26 34.09 

64 5.83 15.91 35.77 37.58 

128 -- -- -- -- 

 Natural Log Model 

Distance (m) SD CV L95% CI U95% CI Adj R² 

All Combined Device Heights1 

1 2.43 89.33 2.58 2.85 

0.69 

 

2 1.63 59.02 2.67 2.85 

4 2.63 57.95 4.39 4.70 

8 6.10 67.96 8.63 9.32 

16 7.62 53.85 13.72 14.59 

32 8.58 36.91 22.66 23.84 

64 8.58 29.45 28.32 29.96 

128 -- -- -- -- 

WISP 0.3 m / Beacon 0.3 m2 

1 1.04 47.09 2.06 2.35 

0.70 

 

2 1.45 58.73 2.26 2.66 

4 1.56 44.42 3.30 3.73 

8 3.44 46.10 6.97 7.93 

16 4.54 34.05 12.68 14.00 

32 2.78 14.62 18.06 19.91 

64 1.02 5.04 19.02 21.56 

128 -- -- -- -- 

WISP 0.3 m / Beacon 0.7 m3 

1 1.32 62.43 1.93 2.30 

0.68 

 

2 2.16 67.89 2.88 3.48 

4 1.76 41.64 3.99 4.48 

8 6.77 94.33 6.23 8.12 

16 7.22 54.22 12.30 14.34 

32 9.83 41.29 21.28 26.32 

64 7.58 25.08 27.22 33.21 

128 -- -- -- -- 

WISP 0.7 m / Beacon 0.3 m4 

1 1.43 6.93 2.19 2.59 0.72 
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2 1.20 46.89 2.39 2.73  

4 2.39 48.38 4.61 5.27 

8 3.74 62.69 5.44 6.48 

16 7.70 57.40 12.33 14.48 

32 7.70 22.23 26.99 29.15 

64 6.93 18.94 33.94 39.20 

128 -- -- -- -- 

WISP 0.7 m / Beacon 0.7 m5 

1 1.48 79.90 1.65 2.06 

0.75 

 

2 1.63 57.10 2.63 3.08 

4 2.84 55.65 4.71 5.51 

8 5.67 38.49 13.95 15.53 

16 5.55 49.24 10.50 12.04 

32 8.16 36.41 21.26 23.57 

64 9.18 27.45 31.61 35.31 

128 -- -- -- -- 

WISP 2 m / Beacon 0.3 m6 

1 2.03 58.31 3.20 3.76 

0.68 

 

2 1.17 47.66 2.30 2.62 

4 3.93 93.55 3.65 4.75 

8 8.49 94.79 7.77 10.14 

16 7.68 46.74 15.36 17.51 

32 9.29 40.28 21.75 24.38 

64 10.38 29.51 33.12 37.20 

128 -- -- -- -- 

WISP 2 m / Beacon 0.7 m7 

1 6.61 169.13 2.99 4.83 

0.72 

 

2 1.66 70.90 2.11 2.57 

4 2.58 54.94 4.34 5.06 

8 3.81 40.89 8.79 9.86 

16 8.53 60.66 12.87 15.25 

32 12.53 43.49 27.02 30.61 

64 15.60 42.09 34.65 39.49 

128 -- -- -- -- 

 Inverse Square Model 
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Distance (m) SD CV L95% CI U95% CI Adj R² 

All Combined Device Heights1 

1 0.37 23.19 NaN NaN 

0.33 

 

2 0.27 16.74 1.61 1.65 

4 0.43 22.18 NaN NaN 

8 1.28 47.58 NaN NaN 

16 1.74 47.46 NaN NaN 

32 2.04 40.64 NaN NaN 

64 2.04 33.53 NaN NaN 

128 -- -- -- -- 

WISP 0.3 m / Beacon 0.3 m2 

1 0.22 14.25 1.50 1.56 

0.33 

 

2 0.34 21.01 1.55 1.64 

4 0.36 19.90 1.77 1.88 

8 1.14 40.26 NaN NaN 

16 1.55 36.90 NaN NaN 

32 NA NA NaN NaN 

64 NA NA NaN NaN 

128 -- -- -- -- 

WISP 0.3 m / Beacon 0.7 m3 

1 0.27 18.04 1.46 1.54 

0.36 

 

2 0.64 36.52 1.68 1.86 

4 0.40 20.51 1.88 1.99 

8 0.60 26.79 NaN NaN 

16 4.30 95.67 NaN NaN 

32 0.25 7.77 NaN NaN 

64 NA NA NaN NaN 

128 -- -- -- -- 

WISP 0.7 m / Beacon 0.3 m4 

1 0.26 16.34 1.54 1.61 

0.33 

 

2 0.20 12.65 1.58 1.64 

4 0.51 25.11 1.98 2.12 

8 1.25 52.50 NaN NaN 

16 1.16 34.44 NaN NaN 

32 0.00 0.00 NaN NaN 
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64 NA NA NaN NaN 

128 -- -- -- -- 

WISP 0.7 m / Beacon 0.7 m5 

1 0.25 17.88 1.37 1.44 

0.50 

 

2 0.26 16.66 1.55 1.62 

4 0.59 29.57 1.91 2.08 

8 1.37 36.08 NaN NaN 

16 0.92 32.07 NaN NaN 

32 1.75 38.56 NaN NaN 

64 0.00 0.00 NaN NaN 

128 -- -- -- -- 

WISP 2 m / Beacon 0.3 m6 

1 0.27 15.09 1.75 1.82 

0.22 

 

2 0.16 9.95 1.63 1.67 

4 0.73 38.31 NaN NaN 

8 0.80 35.04 NaN NaN 

16 1.20 33.27 NaN NaN 

32 1.58 36.40 NaN NaN 

64 1.57 32.27 NaN NaN 

128 -- -- -- -- 

WISP 2 m / Beacon 0.7 m7 

1 0.48 27.55 NaN NaN 

0.28 

 

2 0.23 14.09 1.57 1.63 

4 0.33 17.10 1.87 1.96 

8 0.60 23.35 2.47 2.63 

16 1.09 35.73 NaN NaN 

32 1.48 34.99 NaN NaN 

64 1.49 29.63 NaN NaN 

128 -- -- -- -- 
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Appendix C Natural log prediction models Beacon 

Types 2 and 3 (Chapter 4) 

 

Table C.1 Comparison of the natural log prediction models generated for 
each of the WISP-beacon height groups for Beacon Type 2.  

 Natural Log Model – Beacon Type 2 

Distance (m) SD CV (%) L95% CI U95% CI Adj R² 

All Combined Device Heights1 

0 0.27 164.96 0.14 0.19 

0.7574 

1 0.79 116.74 0.61 0.75 

2 1.51 88.82 1.57 1.84 

5 13.01 170.57 6.45 8.80 

10 12.19 100.25 11.02 13.30 

20 23.98 84.61 26.01 30.66 

30 29.20 77.49 34.16 41.20 

50 25.54 40.85 58.08 66.98 

70 23.61 37.93 57.22 67.29 

90 21.35 36.92 53.26 62.42 

110 21.24 30.96 61.31 75.91 

WISP 0.3 m / Beacon 0.3 m2 

0 0.05 76.92 0.05 0.07 

0.7896 

1 0.54 81.80 0.57 0.76 

2 1.09 81.24 1.14 1.53 

5 3.95 87.89 3.78 5.21 

10 10.36 74.17 11.80 16.13 

20 13.12 34.53 34.82 41.18 

30 14.76 31.80 38.54 54.26 

50 NA NA NaN NaN 

70 NA NA NaN NaN 

90 NA NA NaN NaN 

110 2.88 19.28 -10.93 40.76 

WISP 0.3 m / Beacon 0.7 m3 

0 0.18 124.36 0.12 0.18 
0.7289 

1 1.03 155.90 0.47 0.85 
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2 1.26 76.32 1.42 1.88 

5 18.53 132.90 10.52 17.37 

10 4.49 70.01 5.60 7.23 

20 12.21 70.93 15.01 19.42 

30 23.22 54.69 37.97 46.96 

50 20.60 31.90 54.33 74.82 

70 20.15 26.50 64.87 87.19 

90 NA NA NaN NaN 

110 NA NA NaN NaN 

WISP 0.7 m / Beacon 0.3 m4 

0 0.32 129.38 0.19 0.31 

0.6354 

1 0.31 67.80 0.41 0.52 

2 1.08 80.38 1.14 1.53 

5 6.21 141.86 3.26 5.50 

10 10.14 91.85 9.13 12.95 

20 16.13 60.19 23.64 29.95 

30 16.54 34.87 40.75 54.11 

50 12.61 22.02 49.23 65.25 

70 6.27 8.57 57.58 88.72 

90 NA NA NaN NaN 

110 NA NA NaN NaN 

WISP 0.7 m / Beacon 0.7 m5 

0 0.12 111.69 0.09 0.13 

0.8562 

1 0.50 66.95 0.65 0.83 

2 2.31 113.73 1.62 2.45 

5 2.36 70.18 2.94 3.80 

10 8.00 67.33 10.43 13.32 

20 12.22 69.78 15.30 19.72 

30 19.09 73.31 22.59 29.50 

50 41.24 43.49 86.59 103.04 

70 29.39 32.89 82.30 96.42 

90 34.65 36.99 86.18 101.13 

110 29.27 24.91 106.96 128.07 
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Table C.2 Comparison of the natural log prediction models generated for 
each of the WISP-beacon height groups for Beacon Type 3.  

 Natural Log Model – Beacon Type 3 

Distance (m) SD CV L95% CI U95% CI Adj R² 

All Combined Device Heights1 

0 0.23 130.21 0.15 0.20 

0.7368 

1 0.97 101.65 0.87 1.05 

2 2.04 110.02 1.66 2.05 

5 5.97 109.46 4.88 6.03 

10 11.79 103.33 10.25 12.57 

20 15.21 70.27 20.12 23.16 

30 21.77 53.37 38.13 43.46 

50 20.95 46.26 39.72 50.84 

70 16.79 38.54 38.34 48.81 

90 11.90 32.66 31.03 41.87 

110 6.53 14.50 41.80 48.29 

WISP 0.3 m / Beacon 0.3 m2 

0 0.06 135.87 0.03 0.06 

0.8583 

1 1.03 83.90 1.03 1.42 

2 1.81 94.86 1.56 2.26 

5 5.77 89.11 5.36 7.59 

10 6.41 60.03 9.44 11.92 

20 13.38 59.34 19.79 25.30 

30 17.22 49.94 29.96 39.01 

50 10.45 21.48 38.99 58.32 

70 NA NA NaN NaN 

90 NA NA NaN NaN 

110 NA NA NaN NaN 

WISP 0.3 m / Beacon 0.7 m3 

0 0.21 125.72 0.13 0.21 

0.6983 

1 0.80 98.36 0.66 0.97 

2 1.72 97.05 1.44 2.10 

5 3.87 99.76 3.13 4.63 

10 14.61 127.11 8.32 14.66 

20 11.76 52.54 19.97 24.78 
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30 12.30 27.24 41.17 49.14 

50 NA NA NaN Nan 

70 NA NA NaN NaN 

90 NA NA NaN NaN 

110 NA NA NaN NaN 

WISP 0.7 m / Beacon 0.3 m4 

0 0.21 85.14 0.20 0.28 

0.6615 

1 0.59 111.93 0.41 0.64 

2 2.08 146.92 1.01 1.81 

5 7.01 121.16 4.42 7.15 

10 12.05 109.31 8.69 13.36 

20 12.70 67.87 16.15 21.27 

30 20.79 50.28 36.77 45.91 

50 17.28 29.89 45.44 70.16 

70 14.04 25.80 46.93 61.89 

90 NA NA NaN NaN 

110 NA NA NaN NaN 

WISP 0.7 m / Beacon 0.7 m5 

0 0.23 128.87 0.13 0.22 

0.7697 

1 1.12 95.84 0.95 1.38 

2 2.06 100.72 1.65 2.44 

5 4.94 107.76 3.62 5.53 

10 8.00 70.62 9.78 12.88 

20 15.31 81.78 15.73 21.71 

30 32.31 67.82 40.45 54.82 

50 31.16 52.76 48.96 69.17 

70 25.13 43.84 46.95 67.70 

90 17.41 32.40 45.60 61.90 

110 9.80 14.44 63.02 72.77 
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