

Ding, Yuqi (2025) Neuromorphic signal processing for wearable devices.

PhD thesis.

https://theses.gla.ac.uk/85340/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/85340/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Neuromorphic Signal Processing
for Wearable Devices

Yuqi Ding

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

James Watt School of Engineering

College of Science and Engineering

University of Glasgow

June 2025

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consider-
ation for any other degree or qualification in this, or any other university. This dissertation is
my own work and contains nothing which is the outcome of work done in collaboration with
others, except as specified in the text and Acknowledgements. This dissertation contains fewer
than 65,000 words including appendices, bibliography, footnotes, tables and equations and has
fewer than 150 figures.

Yuqi Ding
June 2025

i

Abstract

Wearable health devices have a strong demand in real-time biomedical signal processing. Over
the past few decades, advances in Artificial Intelligence (AI), and particularly the development
of neural networks, have significantly impacted the field of signal processing, enabling more
efficient and accurate analysis of complex biomedical signals. However, continuous monitoring
could generate massive amounts of data, resulting in an information bottleneck that challenges
data transfer and subsequent post-processing. Neuromorphic computing, an emerging brain-
inspired computational architecture, has garnered significant research attention in recent years.
In contrast to the conventional von Neumann architecture, which relies on a separation between
memory and processing units, neuromorphic systems integrate computation and data storage
within a unified physical framework. This design emulates the synaptic dynamics observed in
biological neural networks. Such methods can process data proximate to the sensor with reduced
power consumption, latency and bandwidth, providing new solutions to signal processing for
wearable devices. Among neuromorphic systems, Physical Reservoir Computing (PRC) has
emerged as a compelling solution. PRC harnesses the intrinsic dynamics of physical systems to
accelerate and reduce the energy consumption of machine learning computations.

This thesis focuses on modelling and implementing PRC frameworks in signal processing appli-
cations. In the initial stage, the potential of PRC as a predictor for biomedical applications was
explored. The model successfully maps the Magnetomyography (MMG) signal to Electromyo-
graphy (EMG) with an acceptable normalized root mean square error (NRMSE) of 0.3894. In
addition, an average NRMSE of 0.3690 was obtained for predicting Electrocardiography (ECG)
to Phonocardiography (PCG).

However, practical applications of signal processing present more complex challenges. While
the neuromorphic signal processing underperforms compared to state-of-the-art Deep Learning
(DL) algorithms, and relatively few studies have investigated its application in classification
tasks, the research is extended to examine the use of PRC in a complex biometric identification
task. An overall classification accuracy of 89.03% in identifying twelve testing subjects was
achieved during the intermediate stage.

Nevertheless, a significant concern emerged with respect to maintaining precision when im-

ii

ABSTRACT iii

plementing high-resolution signals via electronic circuits in PRC-based systems, particularly
due to limitations in electronic components. This challenge motivated the research to the next
stage that explores a hybrid approach of combining PRC and Spiking Neural Network (SNN),
which allows for the conversion of signals from the high-precision analogue domain into a low-
precision discrete spiking domain, thereby reducing hardware and storage costs. Consequently,
an event-driven PRC framework was proposed and validated in the final stages to address this
concern. An average classification accuracy of 80.3% was obtained in classifying 50 gestures
which outperforms current SNN-based methods. The results pipeline a new insight into process-
ing real-time signals at the edge for wearable devices, promising compact and ultra-low power
electronic systems for temporal signal processing in wearable devices.

Acknowledgements

Completing this PhD journey has been one of the most challenging yet rewarding experiences
of my life. This work would not have been possible without the support, guidance, and encour-
agement of many individuals and institutions.

First and foremost, I would like to express my deepest gratitude to my supervisor, Prof. Hadi
Heidari, for offering an opportunity to pursue my PhD as a member of Microelectronics Lab
(meLAB). His patience, support, and encouragement to think critically and independently have
been a source of motivation, especially during the most challenging moments of my PhD jour-
ney. I sincerely appreciate his help, not only in guiding me through my research but also in
shaping my approach to scientific inquiry and professional development. I would also like to
express my deep appreciation to Dr. Xiangpeng Liang and Dr. Haobo Li, for their invaluable
guidance through my research journey. Their expertise and mentorship have greatly benefited
me in establishing the knowledge I need in the field of reservoir computing and biomedical
signal processing, respectively.

I would also like to express my sincere gratitude to the Institute of Neuroinformatics (INI)
for generously offering me a two-month visiting opportunity at the University of Zurich and
ETH Zurich. A special thanks to Dr. Elisa Donati for hosting and supervising me during my
visit at INI. Her deep understanding of electromyography (EMG) and spiking neural networks
(SNNs) has had a profound impact on my research. The access to resources, expert insights, and
professional support provided by INI and its members was invaluable in advancing my work.

In addition, I would like to acknowledge the MEG-Center Tübingen at the University of Tübin-
gen and the Extreme Light Group at the University of Glasgow for generously providing the
datasets used in this thesis.

I wish to thank all the meLAB members with special appreciation for those who helped in my
PhD research: Dr. Bhavani Yalagala, Dr. Hannah Thompson, Dr. Jungang (Judy) Zhang, Dr.
Mohammed Waqas Mughal, Dr. Siming Zuo, Antonia Pavlidou, Changhao Ge, Huxi Wang,
and Yuanxi Cheng. A special thanks to Jiaoran Wang, with whom I shared daily lunches and
countless conversations. Also, her guidance in scientific figure plotting has been invaluable to

iv

ACKNOWLEDGEMENTS v

me. I would also like to express my heartfelt gratitude to my roommate in Glasgow, Xinmiao
Liu, for her support and encouragement during difficult moments, as well as for generously
sharing her delicious homemade pastries and sweets.

Lastly, I would like to express my deepest appreciation for the unconditional love, endless sup-
port of my family throughout my life. My deepest gratitude goes to my father Guoqiang Ding;
my mother Guozhen Zhang; cousins Yuhan Ding, Weihao Zhang and Yuchan Zhang; and all
my other family members, whose encouragement has given me the strength and courage to face
challenges. I would also like to thank my beloved dog, Buding. Your cute and fluffy presence
brought me comfort during difficult times and accompanied me through my journey from junior
school to university. Though it is a pity that you could not witness my doctoral graduation, your
sincerity and enthusiasm have always made me optimistic, and for that, I will always be grateful.

Abbreviations

• Acc - Accuracy

• ADC - Analog-to-Digital Converter

• AI - Artificial Intelligence

• ALR - Auto-Labelling-Refining

• ALU - Arithmetic Logic Unit

• ANN - Artificial Neural Network

• ASIC - Application-Specific Integrated Circuit

• Bi-LSTM - Bidirectional Long Short-Term Memory

• BCI - Brain-Computer Interface

• BioPatRec - Biological Pattern Recognition

• BPTT - Backpropagation-Through-Time

• C2C - Cycle-to-Cycle

• CE - Cross-Entropy

• CMOS - Complementary Metal-Oxide-Semiconductor

• CNN - Convolutional Neural Network

• CVD - Cardiovascular Disease

• D2D - Device-to-Device

• DAC - Digital-to-Analog Converter

• DL - Deep Learning

• DLR - Delay Line Reservoir

vi

ABBREVIATIONS vii

• DNN - Deep Neural Network

• DOE - Diffractive Optical Element

• ECG - Electrocardiography

• EEG - Electroencephalography

• EMG - Electromyography

• eRNR - electronic Rotating Neuron Reservoir

• ESN - Echo State Network

• FN - False Negative

• FP - False Positive

• FPGA - Field-Programmable Gate Array

• GUI - Graphical User Interface

• GPU - Graphics Processing Unit

• HIST - Histogram

• HYSER - High-densitY Surface Electromyogram Recordings

• IoT - Internet of Things

• k-NN - k-Nearest Neighbours

• LDA - Linear Discriminant Analysis

• LIF - Leaky Integrate-and-Fire

• LSM - Liquid State Machine

• LSTM - Long Short-Term Memory

• MC - Memory Capacity

• MCG - Magnetocardiography

• mDWT - marginal Discrete Wavelet Transform

• MMG - Magnetomyography

• NinaPro - Non-Invasive Adaptive Prosthetics

• NRMSE - Normalized Root Mean Square Error

ABBREVIATIONS viii

• NVM - Non-Volatile Memory

• ODE - Ordinary Differential Equation

• PCA - Principal Component Analysis

• PCB - Printed Circuit Board

• PCG - Phonocardiography

• PP - Positive Predictivity

• PPG - Photoplethysmography

• PRC - Physical Reservoir Computing

• RBF - Radial Basis Function

• RC - Reservoir Computing

• ReLU - Rectified Linear Unit

• RF - Random Forest

• RMS - Root Mean Square

• RNN - Recurrent Neural Network

• RNR - Rotating Neuron Reservoir

• ROI - Region of Interest

• SCR - Simple Cycle Reservoir

• Se - Sensitivity

• sEMG - surface Electromyography

• sFCN - spiking Fully Connected Layer

• SNN - Spiking Neural Network

• SNR - Signal-to-Noise Ratio

• SOA - Semiconductor Optical Amplifier

• Sp - Specification

• sRNR - spiking Rotating Neuron Reservoir

• STDP - Spike-Timing-Dependent Plasticity

ABBREVIATIONS ix

• STM - Short Term Memory

• SVM - Support Vector Machine

• TD - Time-Domain

• TN - Ture Negative

• TP - True Positive

• t-SNE - t-Distributed Stochastic Neighbor Embedding

• VLSI - Very Large Scale Integration

• VMM - Vector–Matrix Multiplication

• WTA - Winner-Take-All

Symbols

• α - Learning rate

• β - Regularization parameter

• γ - Scaling parameter in RNR

• τ - Time constant for the dynamic neuron

• τr - Rate of rotation in

• σ - Standard deviation

• b - Vectors of biases

• f - Activation function

• fsampling - Sampling frequency

• ∆w - Change in the synaptic weight

• ∆t - time difference between the postsynaptic and presynaptic spikes

• A+ and A− - Scaling constants for potentiation and depression

• C - Capacitance

• M - Number of parallel reservoirs

• N - Network size

• I - Identity matrix

• R - Resistance

• W - Weight matrix for the reservoir layer

• s(n) - State vector at time step n

• u(n) - Input at time n

x

SYMBOLS xi

• y(n) - Output at time n

• ŷ - Predicted output

• Iin - Injected current

• Sout - Output spike trains

• Vmem - Membrane potential

• Vthr - Threshold voltage

• Vreset - Reset voltage

• Vrest - baseline Membrane potential when the neuron is inactive

• Win - Weight matrix for the input layer

• Wout - Weight matrix for the output layer

• Spk(t) - Input spike trains

• SpkM(t) - Masked input spike trains

• P(y = i) - Output probability for the i-th class

• cov - Covariance

Contents

Declaration i

Abstract ii

Acknowledgements iv

Abbreviations vi

Symbols x

1 Introduction 1
1.1 Process signals at the edge . 1
1.2 Neuromorphic computing . 2

1.2.1 Reservoir computing . 3
1.2.2 Physical reservoir computing . 4
1.2.3 Spiking neural network . 5

1.3 Research summary . 6
1.4 List of publications . 8

1.4.1 Journal publications . 8
1.4.2 Conference proceedings . 8

2 Literature Review 9
2.1 Introduction . 9
2.2 Reservoir computing . 10

2.2.1 Modelling neurons . 10
2.2.2 Structural frameworks . 12
2.2.3 Physical reservoir computing (PRC) 13

2.3 Implementation paradigms . 14
2.3.1 Complementary metal-oxide-semiconductor (CMOS) technology . . . 14
2.3.2 Emerging devices . 17
2.3.3 Photonics . 17

xii

CONTENTS xiii

2.4 Biomedical signal applications . 19
2.4.1 Heart signals . 20
2.4.2 Muscle signals . 21
2.4.3 Brain signals . 23

2.5 Training the readout layer . 23
2.5.1 ANN-based training methods . 23
2.5.2 SNN-based training methods . 26
2.5.3 Summary of AI techniques across chapters 26

2.6 Conclusion and Discussion . 27

3 PRC as Predictors 29
3.1 Introduction . 29

3.1.1 MMG/EMG mapping . 29
3.1.2 ECG-to-PCG signals prediction . 30

3.2 Methodology . 31
3.2.1 Network description . 31
3.2.2 Dataset description for MMG and EMG 32
3.2.3 Dataset description for ECG and PCG 33

3.3 Results and analysis . 35
3.3.1 Prediction error for MMG/EMG mapping 35
3.3.2 Prediction error for ECG/PPG mapping 36

3.4 Discussion and conclusion . 37

4 PRC for Heart Sound-based Biometric Identification 38
4.1 Introduction . 38

4.1.1 PRC for heart sound biometric identification 38
4.1.2 Impact statement . 40

4.2 Experiment setup and data pre-processing . 42
4.2.1 Dataset description . 42
4.2.2 Signal pre-processing . 43

4.3 Network design . 44
4.3.1 Parallel reservoirs . 44
4.3.2 Training and Regression . 46
4.3.3 Classification . 46

4.4 Performance evaluation . 49
4.4.1 Parameter optimization . 49
4.4.2 Noise analysis . 51
4.4.3 Memory capacity . 53
4.4.4 Comparison with consistent software network 53

CONTENTS xiv

4.4.5 Power analysis . 55
4.5 Evaluation of the identification performance under after-exercise condition . . . 56
4.6 Discussion and Conclusion . 56

5 Event-Driven RNR for sEMG-based Gesture Recognition 59
5.1 Introduction . 59

5.1.1 Event-driven Implementation for sEMG-based Gesture Recognition . . 59
5.1.2 Impact Statement . 61

5.2 Dataset description and pre-processing . 62
5.2.1 sEMG dataset and pre-processing . 62
5.2.2 Spike encoding . 64

5.3 Network design . 67
5.3.1 Network description . 67
5.3.2 Readout and classification . 71

5.4 Analysis and results . 72
5.4.1 t-SNE . 72
5.4.2 SVM for classification . 73
5.4.3 Delta learning rule for classification 75
5.4.4 Comparison with the state-of-the-art 76

5.5 Discussion and Conclusion . 78

6 Conclusions and Future Perspectives 80
6.1 Conclusions of this thesis . 80
6.2 Future perspectives . 81

6.2.1 Algorithm . 81
6.2.2 Hardware implementation . 82
6.2.3 Biomedical signals . 82

References 83

Appendices 95
A PRC as predictors (Python) . 95
B PRC as predictors (MATLAB) . 97
C PRC for biometric identification (MATLAB) 98
D Spike encoding for sEMG data (MATLAB) 101
E Spiking RNR for gesture recognition (Python) 104

List of Figures

1.1 A classical RC network. 3
1.2 The evolved RNR topology. (a) A simplified cyclic reservoir topology. (b) A

3D representation of an RNR topology. (c) The electronic implementation of a
4-neuron RNR topology. 5

1.3 The description of dynamic neurons. (a) The nonlinear integration-ReLU-Leakage
neuron model and the generated dynamics in terms of continuous output states.
(b) The leaky integrate-and-fire neuron model. The neuron will fire a spike when
the membrane potential Vmem exceeds the threshold Vthr. 6

2.1 (a) The classical reservoir topologies. (b) Two different modelling neurons. Up-
per: artificial neurons. Lower: spiking neurons. (c) The hierarchical frame-
works. Left: deep reservoirs. Right: wide reservoirs. (d) Physical reservoirs. . . 11

2.2 (a) The fundamental structure for a delay-based reservoir, adapted from [29]
(CC BY-NC-SA 3.0). The nonlinear node is implemented through a Mackey-
Glass type nonlinear node as in reference [61]. The delay loop is implemented
by ADCs and DACs. (b) The fundamental structure of a cyclic rotating reservoir,
adapted from [15] (CC BY 4.0). The input-to-reservoir and reservoir-to-output
connections are cyclically rotated at each time step controlled by analog multi-
plexers and bit counters. 15

2.3 (a) A 4 × 4 swirl topology for spatially distributed photonic RC using SOA,
adapted from [13] (CC BY 4.0). (b)The building blocks for an optoelectronic
implementation of delay-based RC, adapted from [90] (CC BY-NC-SA 3.0).
The delay is generated by a long fiber. 18

2.4 Left: Three representative signals from brain, muscle, and heart, respectively.
Right: The applications of biomedical signals in a sector chart. 20

2.5 A design toolbox for training the readout layer. 24

3.1 The conceptual picture of the EMG-MMG mapping process 30
3.2 The conceptual figure of ECG-to-PCG prediction using a physical reservoir pro-

cessor. 31

xv

LIST OF FIGURES xvi

3.3 The block diagram of the circuit inside the dynamic neuron simulated in Simulink. 32
3.4 Experimental setup of ECG and PCG measurement 33
3.5 The results of the prediction using RNR while γ = 0.7,τ = 3s. 34
3.6 (a) The relationship between NRMSE and leaking rate for SCR network (b)The

relationship between NRMSE and input scaling parameter γ and time constant
τ for eRNR network. The reservoir size is fixed to 400. 35

3.7 An example of prediction results. (Top) The input ECG for a time duration of
6s. (Bottom) The measured PCG and the reconstructed PCG data. 36

3.8 Histogram for the distribution of NRMSE for each subject. 37

4.1 The experimental setup of heart sound data collection using laser and the com-
parison of the conventional Von Neumann-based machine learning classifier
method and the hardware RC classification method. (a) In a Von Neumann-
based computer, the processing and memory units are separated in the Von Neu-
mann architecture, and additional power is consumed for data transmission. In
terms of the classification algorithm, the signals experience data segmentation
and feature extraction before they are sent into a classifier. (b) An electronic
components-built reservoir in the hardware RC method realizes both memory
and processing. The signals are kept analogue all the time. Therefore, for clas-
sification, a program that detects where the peak occurs can be applied to obtain
the classification results. 40

4.2 The retrieved heart sound of each testing subject. 43
4.3 (a) The network description of the processing procedures with an example of a

4-neuron reservoir. In practice, the number of neurons can be increased. The
original data is resampled at 147Hz and goes into an input weight matrix im-
plemented by randomly chosen positive and negative signal sources. For train-
ing, the states are collected by applying ridge regression to calculate the output
weight matrix Wout . For testing, predictions are obtained by the multiplication
of the states s(n) and Wout . A peak-finding method is used to find the predicted
label. 44

4.4 An example of M parallel reservoir topology with 12 prediction classes. 45
4.5 Examples of labelling and output prediction of each heart sound for subject 1 to

subject 6. Continued on Fig. 4.6 in the next page. 47

LIST OF FIGURES xvii

4.6 Examples of labelling and output prediction of each heart sound data for subject
7 to subject 12. The magnitude for each label is about 0.27 seconds. The data
is manually labelled in a continuous and point-by-point fashion. At the end of
each heartbeat, a set of ‘1’s, which is represented by the red dots in the figure, is
used to declare the corresponding subject, while the rest of the label set is kept
‘0’. In the output, there will be 12 channels representing the prediction results.
The predicted label decision is made where the peak occurs. 48

4.7 The relationship between the accuracy and the reservoir size for different num-
bers of subjects involved. 49

4.8 The heatmap for parameter adjustment. The two parameters, input scaling and
input bias define the input range of the injected signals. 50

4.9 The confusion matrix for the accuracy of each subject. 51
4.10 The effects of different noise levels on the classification accuracy by artificially

adding Gaussian white noise to (a) the collected heart sound signals (b) the state
vectors. 52

4.11 The bar chart of the comparison in terms of performance matrix for the five
networks and RNR for the mixed elevated and normal dataset. 55

4.12 (a) An example of normal heart sound and elevated heart sound. (b) A confusion
matrix for biometric identification under mixed normal heart sound and elevated
heart sound dataset. (c) A flow chart for identifying mixed elevated and normal
heart sound data. (d) An example of employing a 4-second window and making
an overall prediction of subject 4 as it appears most frequently. The testing
signal belongs to the elevated category as the heart rate of the testing signal is 105. 57

5.1 Architecture of the proposed classification system. The raw sEMG signals are
encoded into SNN-compatible spike trains by an event-based encoding scheme.
An SNN consisting of physical reservoirs is used to generate transient responses
to a higher dimensional feature space. The collected dynamical states are trained
in the readout layer only by machine learning algorithms for classifying gestures. 60

5.2 Examples of one channel of normalized sEMG signals and encoded spike trains
for Gesture 1, Gesture 5 and Gesture 8, respectively. 63

5.3 The process of spike encoding. After encoding, the original 12 channels of
sEMG signals are encoded to 48 channels of spike trains. 64

LIST OF FIGURES xviii

5.4 The description of reservoir topologies. The weights of input masks is rep-
resented by different colors, dash types and line thicknesses. (a) A classical
reservoir topology. The input weight mask Win is fixed and random from a uni-
form distribution [-1,1]. In addition, the connections among neurons are also
fixed and random. (b)&(c) An RNR topology. A 3D description in (b) and a
2D sketch expanded by time in (c). The connections of the input-to-reservoir
layer and reservoir-to-output layer are circularly shifted at each time step. (b)
exhibits a binary input mask, randomly selected numbers from {-1,1} in con-
ventional eRNR. (c) demonstrates a binary input mask {0,1} in a three-neuron
sRNR topology proposed in our work that incorporates spike trains as inputs.
The resulting outputs are also spike trains. 66

5.5 Each 10-neuron reservoir processes an input spike train. The parallel reservoirs
project the input spike trains to a higher dimension (from 48 to 480). 69

5.6 The effect of network size on the classification accuracy of a representative sub-
ject by performing exercise B (17 gestures). 70

5.7 Two examples of input spike patterns (left) and output spike patterns (right). . . 71
5.8 Two-dimensional t-SNE projections applied on the input layer (pre-reservoir)

and output layer (post-reservoir) for Exercises B, C, and D separately in a repre-
sentative subject. Linear separability is enhanced and observed by more closely
clustered patterns following the reservoir layer, where the data are projected into
a higher-dimensional feature space. 73

5.9 The accuracies for testing sets using SVM (both linear kernel and RBF kernel)
and delta learning rule with softmax classifier, respectively. Results were aver-
aged over all the subjects with average and standard deviation reported in the
bar chart. 74

5.10 Observed classification accuracies on training sets and testing sets for subject 1,
subject 30 and subject 37 through 200 epochs of training. 74

5.11 Confusion matrix for classifying 50 gestures on the testing set for all subjects. . 75

List of Tables

2.1 Comparison of the power for PRC implementation platforms. 14
2.2 Various biomedical signals and their representative datasets. 19
2.3 A summary of the training methods and accuracy for reservoir computing algo-

rithms in biomedical applications. 25

3.1 Experimental results for each subject. 37

5.1 Parameter settings for LIF neuron. 70
5.2 The results of statistical analysis. 77
5.3 Comparison of recent research found in the literature using sEMG-based gesture

recognition. 79

xix

Chapter 1

Introduction

This chapter introduces the neuromorphic implementation for processing signals at the edge of
wearable devices, beginning with a general overview of edge computing for wearable devices.
The applications of neuromorphic algorithms and architectures for processing biomedical sig-
nals from wearable sensors and devices are stated as motivations for this study. In addition, the
aims and objectives are put forward, followed by the contributions to the field of neuromorphic
signal processing.

1.1 Process signals at the edge

In the context of signal processing for wearable sensors, edge computing plays an important
role in enabling real-time, efficient data analysis. It allows for processing data locally on the
wearable device or nearby, rather than sending data to a centralized server for subsequent post-
processing, thereby saving computational overhead and decreasing bandwidth usage. Moreover,
local data processing mitigates the risk of potential privacy breaches, which is particularly crit-
ical in applications involving sensitive patient information [1]. Traditional machine learning
approaches, such as, support vector machine (SVM), k-nearest neighbours (k-NN), linear dis-
criminant analysis (LDA), and random forest (RF) require feature extractions from both the
time domain and frequency domain. In contrast, deep learning (DL) models have demonstrated
superior performance by automatically learning features. Specialized hardware for accelerat-
ing computation has been introduced and extensively utilized in recent years, especially with
the advent of graphics processing units (GPUs), which has driven DL algorithms to the pre-
dominant techniques in machine learning. However, this comes at the cost of increased power
consumption and memory requirements. While GPUs typically operate at around 200 Watts
for training deep neural networks (DNNs) [2], their integration into lightweight and portable
wearable devices is highly impractical. Ensuring efficient processing with minimal computa-

1

CHAPTER 1. INTRODUCTION 2

tional resources in edge devices remains a critical challenge, necessitating innovations in both
software and hardware design.

First, from the software aspect, it is essential to apply learning algorithms implementable on
chips with low training costs to ensure efficient operations within resource-constrained environ-
ments. Backpropagation is the core algorithm to train DNNs, enabling them to learn from data
by adjusting internal weights to minimize the error and using the chain rule to propagate the er-
ror backwards [3]. However, backpropagation could be computationally expensive to converge
to a local minimum. Even worse, for large datasets or complex models, gradients can become
extremely small (vanishing) or large (exploding), causing slow learning or numerical instability
during the training phase. But, could the backpropagation be avoided?

Second, from the hardware aspect, it is meaningful to reference computing systems that mimic
the architecture of information processing in the brain. Although the Von Neumann computer
architecture has made significant contributions to science and technology for decades, its per-
formance is inherently limited by inefficiencies arising from the separation of the storage and
processing units. This separation results in relatively slow and energy-intensive data movement,
leading to suboptimal computational efficiency [4]. But, is it possible to realize simultaneous
storage and computation in signal processing by comprising dedicated electronic circuits to im-
plement neuron and synapse circuits?

1.2 Neuromorphic computing

Inspired by how the brain functions, a fundamentally different way to construct information
processing was originally proposed by Carver Mead in 1990s, known as neuromorphic or brain-
inspired computing [5]. It refers to mixed signal very large scale integration (VLSI) computing
systems that take inspiration from the intrinsic built-in physical capabilities of the human brain
to learn and deal with complex data.

Neuromorphic systems are characterized by their highly interconnected and parallel structures,
low-power consumption, and the integration of memory and processing units. While the design
is inherently compelling, the importance has grown due to several emerging challenges: the
expected end of Moore’s law, the rising power demands linked to the breakdown of Dennard
scaling, and the limitations of low data transfer rates between processing units and memory
units, commonly known as the von Neumann bottleneck [6, 7]. The neuromorphic approach
prioritizes low latency and energy efficiency, making it a promising solution for processing
temporal signals at the edge.

Neuromorphic computing, as a broad concept, encompasses multiple domains, including al-
gorithms, circuits, materials and devices. This thesis mainly focused on the neuromorphic

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A classical RC network.

software-hardware co-design and the applications in biomedical signal processing tasks.

1.2.1 Reservoir computing

The reservoir computing (RC) is a feedforward computational framework derived from recurrent
neural networks (RNNs) that leverages the high-dimensional dynamic behaviours of complex
systems for efficient information processing. It was proposed in 2000s by incorporating the
concepts of echo state network (ESN) and liquid state machine (LSM) [8, 9, 10]. Within the
range of RNNs, it is particularly well-suited for tasks involving temporal data and systems, as the
reservoir’s recurrent connections naturally capture and transform these dynamics into a higher-
dimensional feature space to be linearly separable. The key feature of reservoir computing is
that only the weights of the output layer are trained, while the internal reservoir’s connections
remain static, allowing for fewer parameters monitoring and lower training costs compared to
traditional RNNs that require backpropagation-through-time (BPTT).

A classical RC network is shown in Fig. 1.1, it typically consists of three key elements: an input
layer, a fixed "reservoir" layer of recurrently connected neurons, and a readout layer. Given an
input u(n), an output y(n), and a reservoir size of N (N neurons), a conventional routine of an
RC network is introduced by the following:

• Input layer: The input layer incorporates an input masking procedure that interfaces the
inputs with the reservoir layer by an input mask, denoted by Win.

• Reservoir layer: The reservoir layer delivers transient responses for the inputs, denoted by
s(n), which are also known as the states/dynamics of the reservoir. In this case, the inputs
are mapped to the high-dimensional feature space for linear separability with recurrent
connections.

• Readout layer: While the two layers mentioned above remain fixed, only the readout layer
requires training.

CHAPTER 1. INTRODUCTION 4

1.2.2 Physical reservoir computing

The concept of physical reservoir computing (PRC) was proposed to exploit the complex dy-
namics of physical systems, being capable of processing information for edge devices in a de-
centralized manner to reduce adaption delay caused by data transmission [11, 12, 13]. In the
classical reservoir topology, the weights and connections among neurons are, although fixed,
both randomly generated as introduced in Section 1.2.1, making it hard to implement by hard-
ware components directly. Nevertheless, a simplified cyclic topology was proposed to minimize
the complexity of the reservoir without degrading the performance [14]. According to the struc-
ture shown in Fig. 1.2(a), the units are organized in a ring topology, and nonzero elements in
reservoir weight matrix W are on the Wi+1,i = 1 and W1,N = 1, described by the matrix in equa-
tion (1.1):

0 0 · · · 0 0 1

1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
...

...

0 0 . . . 1 0 0

0 0 . . . 0 1 0

(1.1)

This simplified topology was later realized by electronic circuits using rotating elements (ana-
logue multiplexers) and known as rotating neuron reservoir (RNR) [15]. The connections of the
input-to-reservoir layer and reservoir-to-output layer are circularly shifted at each time step, as
demonstrated in Fig. 1.2(b). The circular shifts of connections among layers and neurons are
realized by analogue multiplexers while the dynamic neurons are realized by Leaky-integrate
rectified linear unit (ReLU) circuit, as represented in Fig. 1.2. The weights of the input mask in
this case are randomly selected from {-1,1}, denoted by negative/positive signal sources.

The RNR framework was proposed and verified by several simple benchmark datasets in [15],
however, the potential of its ability was not fully exploited in complex tasks. Therefore, during
the initial stages of my research, I applied it to two prediction tasks and one complex and high-
resolution classification task.

While results demonstrated the feasibility of RNR in processing practical biomedical signals,
significant problems occur in terms of solving classification tasks using RC-related networks.
Typically, a prevalent way for classification tasks relies on a linear model trained by a convex
optimization technique like ridge regression, and using a winner-take-all (WTA) algorithm to
determine the corresponding target class that exceeds a certain threshold [16, 17, 18]. This
method is effective when the number of classes to be classified is fewer than ten, and brings a

CHAPTER 1. INTRODUCTION 5

Figure 1.2: The evolved RNR topology. (a) A simplified cyclic reservoir topology. (b) A 3D
representation of an RNR topology. (c) The electronic implementation of a 4-neuron RNR
topology.

larger network size which is costly in hardware. With the increase of target classes, nonlinear
classifiers could demonstrate superior performance and decrease the network size. However,
the high-dimension and high-precision reservoir states prevent the use of standard nonlinear
classifiers being applied on the readout layer while some dimension reduction procedures on the
reservoir states were proposed to apply classifiers on the readout layer [19]. Another possible
solution for solving this challenge could be implementing the reservoir in the low-precision
spiking domain, which refers to the next phase of my research.

1.2.3 Spiking neural network

The major difference between an spiking neural network (SNN) and an artificial neural net-
work (ANN) lies in the nonlinear neuron. While ANNs usually receive continuous analogue
information and passes the information through sigmoid or ReLU neurons for nonlinear acti-
vation, SNNs applies biologically plausible spiking neurons to receive spike-based information,
which drives the inner membrane potential and generates outputs also in terms of spikes. Fig. 1.3
provides insights into the circuit for the two dynamic neuron models.

In this research, for the first time, we proposed the SNN-based RNR framework. This incorpo-
ration offers three key benefits: (i) A spike is a single-bit event, either a ’1’ or a ’0’, which is
more hardware-friendly than floating-point values. In comparison, the electronic rotating neu-
ron reservoir (eRNR) where signals are processed in the analogue domain. However, floating
point values’ precision in analogue circuits is costly in terms of complexity and power con-
sumption [20], hence, processing information in the form of low-precision spike trains could be
a possible solution. (ii) Event-driven processing allows for energy efficiency and low latency as

CHAPTER 1. INTRODUCTION 6

Figure 1.3: The description of dynamic neurons. (a) The nonlinear integration-ReLU-Leakage
neuron model and the generated dynamics in terms of continuous output states. (b) The leaky
integrate-and-fire neuron model. The neuron will fire a spike when the membrane potential Vmem
exceeds the threshold Vthr.

the neurons only respond when an event occurs, leading to sparse vectors/tensors that are cheap
to store and low-power to move [21]. (iii) This fusion still retains the advantages of RNR’s
simple and hardware-friendly structure, with only the readout layer requiring training. At the
same time, the low-precision reservoir states enable the use of standard classifiers for complex
classification tasks to further improve classification performance.

1.3 Research summary

The primary objective of this thesis is to implement neuromorphic algorithms and frameworks in
biomedical signal processing for wearable devices, facilitating both prediction and classification
tasks. Notable advancements have been achieved in developing hardware-compatible algorithms
in a more computationally efficient form while maintaining performance levels comparable to
DL-based strategies.

Consequently, to facilitate the development of hardware-compatible algorithms, this study fo-
cuses on three primary research objectives:

• The RNR network for biomedical prediction tasks — This initial phase serves to validate
the network’s efficacy while providing foundational insights for parameter optimization.

• The RNR network using linear regression for complex biomedical classification tasks – In
this intermediate research phase, the RNR network’s performance on classification tasks

CHAPTER 1. INTRODUCTION 7

was evaluated in the analogue domain. Key challenges concerning network scalability and
computational efficiency were identified, which subsequently guided the research direc-
tion toward further development.

• Integration of RNR and SNN for complex classification Tasks – In this final phase, the
network architecture was adapted to the spiking neural domain, achieving a substantial re-
duction in network size while maintaining high classification accuracy and computational
efficiency.

An outline of the thesis is presented below:

Chapter 2 presents a comprehensive literature review of PRC in biomedical applications. Specif-
ically, it examines various implementation paradigms of PRC systems, categorizing them based
on different approaches and their applications in biomedical signal processing. In addition to
analyzing reservoir implementation platforms, this chapter reviews training methodologies for
diverse biomedical signal processing tasks, as these methods significantly influence the perfor-
mance of neuromorphic systems.

Chapter 3 presents two prediction tasks utilizing the RNR architecture, accompanied by a com-
prehensive investigation into parameter tuning and validation. The results demonstrate that the
prediction errors achieved using RNR remain minimal and are comparable to those obtained
with the software-based cyclic reservoir algorithm. This successful implementation serves as
a foundation for the subsequent stage of research, which focuses on applying RNR to a more
complex classification task.

Chapter 4 introduces an optical stethoscope-based laser-camera system for biometric identifica-
tion, utilizing RNR as the processing core. The heart sound signals collected from the optical
stethoscope are employed as unique biometric identifiers, with RNR demonstrating exceptional
accuracy in distinguishing among 12 subjects. However, the current RNR implementation re-
quires a large network size of 3000 neurons, and the readout classification methods remain sub-
optimal due to the high dimensionality and resolution of reservoir states. Consequently, the next
phase of research focuses on transitioning RNR to the SNN domain to address these challenges.

Chapter 5 introduces a network that integrates a PRC framework, specifically RNR, within a
SNN architecture and adopts an event-based encoding scheme to transform electromyography
(EMG) signals into spike trains. This approach outperforms existing SNN-based methods in
classification accuracy for gesture recognition tasks while maintaining competitiveness with DL
models in a more computationally efficient manner. Notably, the network size is significantly
reduced to 480 neurons for the classification of 50 gestures. This advancement contributes to
the development of next-generation lightweight wearable systems with ultra-low latency and
embedded intelligence.

CHAPTER 1. INTRODUCTION 8

Chapter 6 provides a comprehensive summary of the key contributions presented in this thesis.
Additionally, it critically discusses the emerging opportunities and existing challenges related to
the practical industrial deployment of PRC systems.

1.4 List of publications

1.4.1 Journal publications

[1] Y. Ding, H. Li, X. Liang, M. Vaskeviciute, D. Faccio and H. Heidari, "Physical Reservoir
Computing for optical stethoscope-based Heart Sound Biometric Identification", IEEE
Transactions on Artificial Intelligence, 2024. (Under review, major revision)

[2] Y. Ding, E. Donati, H. Li, H. Heidari, "Event-Driven Implementation of a Physical Reser-
voir Computing Framework for Superficial EMG-based Gesture Recognition", IEEE Trans-
actions on Artificial Intelligence, 2025. (Under review, major revision)
arXiv preprint version available: arXiv:2503.13492

[3] Y. Ding, B. Yalagala, H. Li, M. Mughal, "Physical Reservoir Computing for Biomedical
Applications", Neuromorphic Computing and Engineering, 2025. (Under review, major
revision)

[4] M. Mughal, B. Yalagala, A. Pavlidou, Y. Ding, H. Heidari, "Fully Hardware Readout
Layer for The Neuromorphic Reservoir Computing (RC) Using Memristors", IEEE Trans-
actions on Nanotechnology. (Under review)

1.4.2 Conference proceedings

[1] Y. Ding, X. Liang, T. Middelmann, J. Marquetand, and H. Heidari. (2022) MMG/EMG
Mapping with Reservoir Computing. In: 2022 IEEE International Conference on Elec-
tronics, Circuits and Systems (ICECS), Glasgow, United Kingdom, 24-26 October 2022.
(doi: 10.1109/ICECS202256217.2022.9971109) (Oral presentation)

[2] Y. Ding, H. Li, X. Liang, M. Vaskeviociute, D. Faccio, H. Heidari. (2024) A Physical
Reservoir Computing Processor for ECG-to-PCG Signals Prediction. In: 2024 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), Singapore, 19-22 May 2024.
(doi: 10.1109/ISCAS58744.2024.10557860) (Oral presentation)

[3] J. Wang, J. Zhang, Y. Ding, M. Kirimi, N. Mirzai, J. Mercer, H. Heidari. (2025) Intel-
ligent Rapid Antenna Design with Integrated Impedance Matching Network for Wireless
Communication System. (2025) IEEE International Symposium on Circuits and Systems
(ISCAS), London, United Kingdom, 25-28 May 2025. (Accepted for publication)

https://arxiv.org/abs/2503.13492
https://ieeexplore.ieee.org/document/9971109
https://ieeexplore.ieee.org/document/10557860

Chapter 2

Literature Review

A wide range of interdisciplinary research has been undertaken in recent years to fully enhance
the capabilities of RC, especially with the advent of PRC. PRC has demonstrated efficacy
in applications for biomedical edge devices with advantages in power consumption, latency,
bandwidth and privacy. This chapter provides a comprehensive review of PRC implementation
paradigms in different categories and their applications in biomedical signal processing, includ-
ing the training methods.

2.1 Introduction

The neuromorphic approach where memory and processing units are not separated, distinct from
traditional Von Neumann architectures, prioritizes low latency and energy efficiency, making it
a promising solution for processing temporal signals at the edge. Under the term neuromorphic,
RC occurs as a compelling algorithm which is derived from RNNs. As a feedforward compu-
tational network, RC leverages the high-dimensional dynamic behaviors of complex systems
for efficient information processing. Within the range of RNN, it is particularly well-suited for
tasks involving temporal data and systems, as the reservoir’s recurrent connections naturally
capture and transform these dynamics into a higher dimensional feature space to be linearly sep-
arable. The key feature of reservoir computing is that only the weights of the output layer are
trained, while the internal reservoir’s connections remain static, allowing for fewer parameters
monitoring and lower training costs compared to traditional RNNs that require BPTT [22, 23].
Based on the simple structure of RC algorithms, the concept of PRC was proposed to exploit
the dynamics of physical systems, being capable of processing information for edge devices
in a decentralized manner to reduce power consumption and adaption delay [11, 13]. As an
emerging computational paradigm, PRC is compatible with various physical systems, such as
electronics, photonics, and mechanical systems. By harnessing the inherent nonlinear charac-

9

CHAPTER 2. LITERATURE REVIEW 10

teristics in physical systems, PRC bridges the gap between hardware and algorithmic efficiency,
offering a compelling solution to traditional computational methods for tasks requiring real-time
processing and adaptability.

The integration of PRC into biomedical signal processing offers innovative frameworks for clas-
sification, anomaly detection, and prediction tasks, paving the way for faster, more accurate,
and energy-efficient healthcare solutions [24, 25, 26, 27, 28]. Despite the spring-up research of
PRC in low-power computing, a thorough summary of the recent state-of-the-art is meaningful
to provide experience in selecting and designing compatible solutions for biomedical-related ap-
plications in future research. Therefore, a systematic review of the recent advances of PRC and
its applications in biomedical signal processing is covered in this chapter. This chapter explores
the implementation paradigms of PRC as the hardware design of PRC plays a critical role in the
performance effects. Additionally, the primary biomedical signals, where PRC is applied as the
processing core are identified. It is also worth mentioning the traditional and emerging training
methods for RC systems. Finally, a discussion of the competitiveness of PRC systems and the
existing challenges for practical industrial applications is provided.

2.2 Reservoir computing

The core of RC is the reservoir, which serves as a temporal kernel to project the input data
to a high-dimensional feature space through the random recurrent connections, and this high-
dimensional projection enhances the linear separability of the data. Notably, both the input-to-
reservoir layer and the reservoir dynamics remain fixed, while only the reservoir-to-output layer
requires training, significantly reducing computational complexity and training requirements.

A classical RC network is shown in Fig. 2.1(a), it typically consists of three key elements: an
input layer, a fixed "reservoir" layer of recurrently connected neurons, and a readout layer.

Nevertheless, the randomly weighted and interconnected neurons within the reservoir exhibit
significant complexity while the complexity of the reservoir could be minimized by introduc-
ing simplified topologies without degrading the performance [14]. The proposed simplified
reservoir topologies, such as delay line reservoir (DLR) and simple cycle reservoir (SCR), have
demonstrated broad applicability in constructing PRC systems [15, 29, 30, 31].

In this review, RC is classified using various criteria, according to structural frameworks, mod-
eling neurons and physical realizations, as shown in Fig. 2.1(b)-(d).

2.2.1 Modelling neurons

The modelling neuron serves as the fundamental computational unit of a neural network. Vari-
ations in the characteristics of modeling neurons lead to distinct types of neural networks. Two

CHAPTER 2. LITERATURE REVIEW 11

Figure 2.1: (a) The classical reservoir topologies. (b) Two different modelling neurons. Upper:
artificial neurons. Lower: spiking neurons. (c) The hierarchical frameworks. Left: deep reser-
voirs. Right: wide reservoirs. (d) Physical reservoirs.

primary categories of neural networks are ANNs and SNNs, consisting of artificial neurons
and spiking neurons, respectively. While the artificial neurons use sigmoid units or ReLUs for
continuous nonlinear activation, the spiking neurons are distinct from artificial neurons by pre-
senting and exchanging information in an event-driven manner in the spiking domain for sparse
representation beneficial to storage costs and energy consumption [32]. The fundamental neu-
ron model for SNNs mimics the behaviour of biological neurons by transmitting information
through discrete electrical pulses called spikes [33]. In contrast, the artificial neuron dominated
the ANN scenes for decades [34]. This neuron model processes multiple inputs by computing
their weighted sum, incorporating an additional bias term. The resulting value is then passed
through an activation function to generate the neuron’s output.

The reservoir network proposed in the field of the SNN was configured as LSM [9] while the
one proposed in the field of ANN was configured as ESN [35]. Both networks were unified and
defined as reservoir computing in the subsequent years [10, 22, 36].

Liquid state machine (LSM)

In LSMs, the simplest spiking neuron model is the leaky integrate-and-fire (LIF) neuron. The
dynamics in a LIF neuron can be quantified by an ordinary differential equation (ODE) given
in (2.1) which provides a discrete and recurrent representation. The neuron will fire a spike
(Sout(t) = 1) when the membrane potential Vmem(t) exceeds the threshold Vthr and it is reset to

CHAPTER 2. LITERATURE REVIEW 12

Vreset . Otherwise, the reset term will not be applied (Sout(t) = 0). This process can be denoted
by equations (2.1) and (2.2):

τ
dVmem(t)

dt
=−Vmem(t)+RIin (2.1)

V (t) =Vreset ⇐ Sout(t) = 1 (2.2)

This model coarsely represents a low-pass filter circuit of a resistor R and a capacitor C. In ad-
dition, τ is the time constant for the membrane relaxation time, Vmem is the membrane potential,
and Iin is the injected current that drives the membrane potential. The neuron receives spikes as
inputs and also generates dynamics in terms of spikes.

Echo state network (ESN)

The ESN adopts discrete-time artificial neurons as the basic units to generate high-dimensional
states. Given a k-dimensional input u(n) and a reservoir size of N (N neurons), the update
equation for the states is defined in equation (2.3):

s(n) = f (W N×k
in u(n)+W N×Ns(n−1)+b) (2.3)

The component b stands for the vectors of biases, and the function f represents the activation
function, among which the sigmoid units and ReLU are basic neuron activation units.

2.2.2 Structural frameworks

In addition to reservoir topology designs, the structural designs involving stacked deep reser-
voirs and parallel reservoirs are also worth mentioning. The structural designs of RC systems
could be roughly categorized into deep reservoirs and wide reservoirs [37, 38]. The reservoirs
are configured either in a cascaded series arrangement or in parallel to enhance performance on
complex tasks compared to traditional, single-reservoir models. While some physical realiza-
tions of RC systems have adopted the wide reservoir structure, the deep reservoir structure is
still in the software implementation level. In this section, a brief review of the deep reservoir
and wide reservoir frameworks is covered.

Deep reservoir framework

The deep reservoir framework was innovated from deep learning topologies. The hidden layer is
represented by stacked sub-reservoir components and the outputs of each reservoir are fed into
the input for the next reservoir [39], as depicted in Fig. 2.1(b). Although the shallow reservoir

CHAPTER 2. LITERATURE REVIEW 13

already provides a rich pool of dynamics, the deep stacked form makes it possible to achieve
temporal data representations across multiple layers, thereby enhancing the network’s capac-
ity for processing complex temporal patterns [40]. This idea was extended to deep fuzzy RC
using reinforce learning to strengthen the feature extraction ability of the reservoir [41]. Strate-
gies such as adding additional layers between reservoirs to achieve better short-term memory
property and state richness also gained attention in the following years [42, 43].

Wide reservoir framework

In contrast, the wide reservoir framework processes inputs simultaneously by parallel connected
sub-reservoirs. This architecture has been particularly effective in enabling applications within
hardware implementations. When using optical amplifiers to implement the RC system, the
parallel structure offers a faster and power-efficient mode in terms of photonics integration [44].
Similarly, volatile memristors-formed RC systems also adopt the parallel framework, while each
device serves as a processing core to receive the input. Consequently, the device-to-device
(D2D) variability of volatile devices could increase the state richness and thus improve the
performance of RC systems [45, 46]. RC performed by electronic circuits also favors parallel
configurations due to their compatibility with more straightforward integration strategies [15].

2.2.3 Physical reservoir computing (PRC)

RC can be analogized to the physical process of dropping a stone into a still body of water,
where the impact of the stone generates ripples that propagate outward. The key idea is that
the characteristics of the stone, such as its weight and velocity, can be inferred by observing the
resulting ripples in the water. In this analogy, the input corresponds to the initial disturbance, for
example, the act of dropping the stone, while the dynamics represent the subsequent ripples that
evolve over time. The term "reservoir" is used to describe this system, as it reflects a dynamic
environment that captures and processes the input. Based on the concept, one of the earliest
physical realizations of the reservoir systems was implemented by electric motors to generate
ripples and a bucket of water to reflect ripple patterns [47].

However, such a system lacks portability and precise controllability, limiting its practical im-
plementation. While Lepri et al. proposed that a time-delayed dynamical system can generate
high-dimensional patterns [48, 49], Appeltant et al. took inspiration from the delayed sys-
tem and applied it to construct an RC framework by using a single nonlinear node with delay
line [29]. Incorporating delay lines to create a delay-coupled reservoir significantly reduces the
number of nonlinear neurons to one. This simplification enables efficient hardware implemen-
tation, supporting high-speed and low-power computing.

In more recent years, various dynamical models and physical systems have been explored as

CHAPTER 2. LITERATURE REVIEW 14

Table 2.1: Comparison of the power for PRC implementation platforms.

Implementation platform # of neurons Network
type

Computation speed (Hz) Power Reference

Analog circuits 64 ANN 107 4.7 mW [15]

65 nm COMS IC 10 ANN 4×105 ≈ 4.4mW [55]

FPGA 48 ANN 106 1.5W [56]

DynapSE 192 SNN - 0.05mW [57]

Loihi 1250 SNN - ≤ 0.45W [58]

SpiNNaker 1471 SNN - 1-4 W (1W per chip) [59]

Memristors system 24 ANN - 22 µW [18]

Photonics 388 ANN 1.3×107 150 W [60]

potential reservoirs [11, 13, 50, 51]. The system was constructed by different combinations of
reservoir topologies, structural frameworks, modelling neurons and physical substrates. In the
following section, we review the implementation paradigms for PRC systematically.

2.3 Implementation paradigms

The implementation of PRC spans a wide range of platforms, each leveraging different physical
properties to create efficient reservoirs. Under the term neuromorphic, PRC also depend on
specialized hardware to fully realize its potential, just like deep learning with GPUs [52, 53,
54]. In this review, these platforms are broadly categorized into three key areas: complementary
metal-oxide-semiconductor (CMOS)-based implementations, emerging devices, and photonic
systems. A comparison of representative implementation platforms chosen from the three areas
is provided in Table 2.1. A relatively fair comparison is attempted by considering the number
of neurons, the network type and the computation speed (if provided) to evaluate the power
of each platform. Note that some literature delivers the power consumption in Joules, they
are transformed into Watts according to the information provided in the article for intuitive
comparisons.

2.3.1 Complementary metal-oxide-semiconductor (CMOS) technology

The CMOS technology is a widely used semiconductor fabrication process that forms the basis
of modern digital and analog circuits. It remains the most dominant and fundamental com-
putation platform for neural networks by offering scalability and compatibility in VLSI cir-
cuits. In this section, we mainly review the reservoirs implemented at a chip level, achieved by
application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs) and
dedicated neuromorphic chips.

CHAPTER 2. LITERATURE REVIEW 15

Figure 2.2: (a) The fundamental structure for a delay-based reservoir, adapted from [29] (CC
BY-NC-SA 3.0). The nonlinear node is implemented through a Mackey-Glass type nonlinear
node as in reference [61]. The delay loop is implemented by ADCs and DACs. (b) The fun-
damental structure of a cyclic rotating reservoir, adapted from [15] (CC BY 4.0). The input-to-
reservoir and reservoir-to-output connections are cyclically rotated at each time step controlled
by analog multiplexers and bit counters.

ASICs

The ASIC is a custom-designed chip built for a specific application. Once manufactured, post-
manufacturing modifications are impossible. As mentioned in Section 2.2, the complexity of
the reservoir can be minimized to adapt to hardware implementation by introducing the delay
node [29, 62]. A structure of the framework and a fundamental neuron circuit for the delay
node are shown in Fig. 2.2(a). Several investigations of ASIC implemented delay-node reser-
voirs were conducted in the following years, either incorporating asynchronous pulses [63] or
spikes [64, 65]. In addition, a 65-nm based CMOS IC that performs computations of the reser-
voir layer in the mixed signal domain was proposed also using the delay-based architecture [55].
A more recently proposed cyclic reservoir node based on rotating elements is also worth men-
tioning; it evolved from the SCR reservoir topology mentioned in Section 2.2 [46]. A schematic
of building blocks for the cyclic reservoir is demonstrated in Fig. 2.2(b). However, currently,
the analog circuits are implemented at a printed circuit board (PCB) level with the readout layer
implemented by a memristor crossbar array. The integration of this architecture into an ASIC
chip level is promising for future studies as the cyclic architecture could reduce hardware costs

CHAPTER 2. LITERATURE REVIEW 16

compared with the delay node architecture, attributed to the parallel realizations and lack of
memory units and analog-to-digital converters (ADCs) units.

FPGAs

In contrast, the FPGA is a reconfigurable chip that can be reprogrammed multiple times after
manufacturing. It has gained significant attention as a hardware acceleration platform for neural
networks by offering reconfigurability [66, 67]. In the context of RC, various FPGA implemen-
tations have been explored for reservoir construction. An FPGA processor allows for real-time
signal processing and online training with signal recorded from the board and transferred to the
computer via USB [68]. Similar to the situation explained in Section 2.3.1, with the simplified
delay node design, the network implementation on FPGA boards can be optimized with reduced
resource utilization [69, 70, 71, 72]. Furthermore, the simplified cyclic reservoir was also in-
vestigated through FPGA implementation to save circuit area and power [56]. In addition to the
reservoir node design, efforts have been made to execute the readout learning layer with weight
quantization techniques for memory storage efficiency recently [73].

Neuromorphic chips

Apart from ASICs and FPGAs, significant advancements have been achieved in the develop-
ment of dedicated neuromorphic chips. These platforms are more compatible and flexible with
neuromorphic-based algorithms, especially SNNs. The SpiNNaker is a massively parallel com-
puter system for simulating spiking neurons by using ARM cores. Both the architecture and
chip design were developed by the University of Manchester in 2014 [74]. The system does
not support online training, the readout layer of RC requires pre-training offline and then the
extracted weights are used as synaptic weights in SpiNNaker chip [59, 75, 76]. The TrueNorth,
designed by IBM in 2015, is a milestone of large-scale digital neuromorphic chips [77]. It also
pre-trains RC networks offline and then deploys the weights on the chip for inference only.
Both the SpiNNaker and TrueNorth rely entirely on digital circuits, making them suitable for
scalability and computational flexibility, though less biologically plausible in certain behaviors
compared to mixed-signal systems. The Loihi, designed by Intel in 2017, processes information
asynchronously and provides programmable synaptic on-chip learning rules [78]. Various RC-
solved tasks were then implemented on Loihi in the following years [58, 79, 80]. In the same
year, the Institute of Neuroinformatics proposed DYNAP [81]. It is a mixed-signal processor
that developed to combine the benefits of analog for neuron membrane potentials and synaptic
weights, and digital for control and communication. This configuration offers improved power
efficiency and flexibility for custom-designed neural networks, making it an excellent platform
for RC systems [24, 82]. The subsequent version, DYNAP-SE2, was released in 2024 with
improvements in interfacing with natural signals in closed-loop applications [83].

CHAPTER 2. LITERATURE REVIEW 17

2.3.2 Emerging devices

In recent years, the continuous scaling of transistors, denoted as Moore’s law, has slowed down
as silicon-based transistors are approaching their physical limit [6]. The emerging devices are
being explored as potential alternatives for ’beyond CMOS’ technologies [54]. Recently, various
emerging devices based on diverse technological approaches have been proposed for physical
reservoir computing [12]. Among all, efficient memory devices are critical for the hardware im-
plementation of physical reservoir computing, with both volatile devices for dynamic properties
and non-volatile devices for mimicking the synaptic behaviours.

Memristors are the devices that usually exhibit the pinched hysteresis characteristics between
the applied voltage and current. The change in the resistance of the device is proportional
to the history of the current flows through the device and it remembers the amount of charge
that flows through it, thus making them ideal candidates for non-volatile memory applications.
Furthermore, there are numerous advantages of memristor devices such as the nanoscale device
dimensions, low-power consumption, higher switching speeds, CMOS compatibility, scalability,
analog behaviours. A pioneering study of applying nanoscale memristor devices as synapses
in neuromorphic systems was conducted and demonstrated the feasibility of the non-volatile
characteristics of memristors [84]. In addition to the non-volatile memory characteristic, the
volatile memory property of dynamic memristors was also explored to serve as the dynamic
neuron to project features from the temporal inputs to a high-dimensional feature space [85,
86]. In more recent years, the fully analogue RC system was studies based on both volatile
memristors for dynamic neurons and non-volatile memristors for artificial synapses [18].

2.3.3 Photonics

Other than electrons, photons can also serve as carriers of information, providing faster, and
higher bandwidth solutions for RC systems. In addition, photonic nodes can exhibit more com-
plex internal dynamics compared to sigmoidal nodes used in software, potentially enhancing
processing capabilities. The concept of photonic reservoir computing was proposed in 2008
by employing semiconductor optical amplifiers (SOAs) as the basic building blocks [87], con-
figured as a spatially distributed RC. Later in 2011, the introduction of delay-based systems
significantly reduced hardware costs. Subsequent research in this area further accelerated ad-
vancements in photonic RC in the following years [88, 89]. In this section, we provide a brief
review of photonic RC based on the two categories mentioned above.

Spatially distributed design

In a spatially distributed RC system, the reservoir consists of an optical node array made by
SOAs to boost optical signals. The node array is organized in a 4× 4 matrix, with each node

CHAPTER 2. LITERATURE REVIEW 18

Figure 2.3: (a) A 4×4 swirl topology for spatially distributed photonic RC using SOA, adapted
from [13] (CC BY 4.0). (b)The building blocks for an optoelectronic implementation of delay-
based RC, adapted from [90] (CC BY-NC-SA 3.0). The delay is generated by a long fiber.

connected to the nearest 4 neighbours in a swirl topology, as demonstrated in Fig. 2.3(a). This
work was a preliminary simulation to validate the feasibility of photonic RC systems [87]. A
further investigation, including structure design, noise effects and parameter fine-tuning, was
followed up [44]. Finally, this prototype was experimentally performed on a silicon-photonics
chip [91]. However, the actual readout was trained offline and implemented electronically. In-
stead of SOAs, the optical node can also be implemented by diffractive optical elements (DOEs).
For example, Daniel et al. applied the semiconductor laser based on diffractive optical coupling
to form a 8× 8 optical array [92]. While the above two implementations fall within the do-
main of classical ANNs, where the optical nodes serve as the artificial neurons that sum up the
weighted current and provide nonlinearity, a different approach to exploit the spiking behaviours
of excitable photonic was investigated using laser systems [93].

Delay-based design

While the time-delayed dynamical system was introduced in 2011 to reduce the complexity
of the physical reservoir [29], following-up research focus not only on the electronics-based
implementations as introduced in Section 2.3.1, but also in the field of photonics. It is worth
mentioning that delayed coupling inherently comes from unwanted reflections, which leads to
oscillations and chaos in optics. This property was utilized to develop time-delayed optical RC
systems. A general building block of this system is shown in Fig. 2.3(b). Two of the earliest
research in this area both used an optoelectronic oscillator to generate delay feedback [90, 94].
Light is continuously emitted from a laser source and modulated, while the delayed feedback
loop is implemented by a long fiber, an amplifier and a filter. Besides, photodiodes are applied
to detect and collect output states, saved for training in the post procedures. Despite the success
of optoelectronic reservoirs, significant efforts have been directed toward the implementation
of all-optical RC due to its potential for integration into photonic chips. Electronics in the
feedback loop (filter and amplifier) were replaced by all-optical components like SOAs, fiber

CHAPTER 2. LITERATURE REVIEW 19

Table 2.2: Various biomedical signals and their representative datasets.

Signal Dataset sensor position Applications

ECG MIT-BIH AR [101] ECG electrodes Chest, arms, and legs Cardiovascular arrhythmias detection

PCG
PhysioNet [102, 103] Digital stethoscope Chest Abnormal heartbeats and heart murmurs detec-

tion

- Optical stethoscope Remote, laser pointed at
neck

Biometric identification

PPG PhysioNet [104] Photosensors Wrist and finger Heart rate monitoring

sEMG

NinaPro [105, 106, 107,
108, 109, 110] EMG electrodes Forearm surface Gesture recognition and estimation
BioPatRec [111]

HYSER [112]

MMG - magnetic sensors Muscle surface human-computer interaction

EEG

Bonn [113]

EEG electrodes Scalp

Epilepsy seizure detection

CHB-MIT [114] Epilepsy seizure detection

SEED [115] Emotion Recognition

coupler and fiber amplifiers [95]. Brunner et al. reached a milestone of applying a network
size of 388 neurons to solve computationally hard tasks at data rates beyond 1 Gbyte/s, which
bridges the gap between photonic RC and cognitive information science [96]. With the theory
foundation and feasibility verification in terms of delay-based photonic RC, following research
endeavour in refining input layer time-masking [60, 97], analog readout layer [98], reducing
hyperparameters [99], and on-chip implementations [100].

2.4 Biomedical signal applications

Biomedical signals are generated by biological systems, such as the human heart, muscle, and
brain, which can be measured and analyzed to provide valuable information useful in medical
diagnoses, monitoring, and treatment. While intelligent wearable sensor systems have revolu-
tionized healthcare by enabling continuous monitoring of biomedical signals with the advance-
ment of artificial intelligence techniques, the vast amount of real-time biomedical data generated
by these devices requires efficient processing solutions to ensure timely analysis and response.
Neuromorphic approaches for edge computing contexts provide a platform for processing data
locally on the wearable device or nearby, rather than sending data to a centralized server for
subsequent post-processing, thereby saving computational overhead and decreasing bandwidth
usage [1]. In this section, we review various types of biomedical signals that have been widely
used by RC methods and their publicly available benchmarks. Table 2.2 shows the summary of
biomedical signals and Fig. 2.4 shows the representative biomedical signals and their applica-
tions.

CHAPTER 2. LITERATURE REVIEW 20

PRC platforms

for bio-signals

H
e
ar

t s
ignals

M
u
s
c
le

s
ig

n
als

Brainsig
na

ls

Human

machine

interaction

Prosthetic

control

Rehabilitation

Biometric

identificationCardiovascular

disease

diagnosis

Heartrate

monitoring

Epilepsy

seizure

detection

Emotion

recognition Brain-

computer

interface

Figure 2.4: Left: Three representative signals from brain, muscle, and heart, respectively. Right:
The applications of biomedical signals in a sector chart.

2.4.1 Heart signals

Electrocardiography (ECG)

The electrocardiography (ECG) is a non-invasive technique used to measure the electrical activ-
ity of the heart over time. It records electrical impulses generated by heart through electrodes
placed on the skin (usually on the chest, arms, and legs), providing valuable information about
heart rhythm, rate, and potential abnormalities such as arrhythmias and other cardiovascular dis-
orders. This technology is widely used in medical diagnostics, continuous health monitoring for
wearable cardiac devices. The MIT-BIH arrhythmia (MIT-BIH AR) database is one of the most
internationally authorised large-scale ECG datasets, including 48 ECG records, each lasting 30
minutes [101]. All the heartbeat annotation labels are classified into five heartbeat types by in-
dependent experts: N (normal beats), S (supraventricular ectopic beats), V (ventricular ectopic
beats), F (fusion beats), and Q (unclassifiable beats). In the term of RC algorithm, a software-
based RC classifier was used for arrhythmia detection based on a classical (random-connected)
reservoir topology and a ring (cyclic) topology [116]. The delay-based PRC topology was also
applied for ventricular heartbeat detection with the delay node simulated by a circuit [16]. Re-
garding the experimental implementation of PRC for ECG-related applications in hardware, var-
ious approaches have been explored. Specifically, a random-connected reservoir was deployed
on a neuromorphic chip in the SNN domain [24]. Furthermore, a delay-based topology was
implemented on FPGA and ASIC chips [55, 72]. In addition, a fully analog, memristors-based
PRC system has been implemented for the task of ventricular heartbeat detection [18].

CHAPTER 2. LITERATURE REVIEW 21

Phonocardiography (PCG)

The phonocardiography (PCG) is a non-invasive technique used to record the sound waves pro-
duced by the structural and hemodynamic changes consisting of a complex of heart muscle,
valves, and blood flow. It involves the use of a digital stethoscope consisting of microphone-
based acoustic sensors placed on the chest to capture vibrations produced by the heart during the
cardiac cycle. Normally, the first (S1) and the second (S2) heart sounds are the two most easily
recorded. PCG signals are useful in detecting cardiovascular diseases (CVDs), such as aortic
stenosis, mitral regurgitation, and heart murmurs. Numerous PCG heart sound recordings can
be accessed in PhysioNet, for purposes of abnormal heartbeat detection and heart murmurs de-
tection [102, 103]. PCG signals serve as a complementary tool of ECG in medical applications,
a PRC based framework was proposed to predict ECG to PCG by regression methods through
a custom-developed dataset, aiming at decreasing clinical measurements for patient while pro-
viding distinct insights into operations of the heart for doctors [28]. Despite advancements in
PRC systems, their applications in heart murmur detection are limited. Future research in this
area could further demonstrate the ability of PRC systems in CVD applications. Instead of
CVDs detection, heart sound can also be a biometric information for identification [117]. A
custom-developed optical stethoscope-based PCG dataset was utilized for biometric identifica-
tion, while the optical stethoscope is composed of a laser-camera system with laser pointing at
the neck remotely [118].

Photoplethysmography (PPG)

The photoplethysmography (PPG) is a non-invasive optical technique used to measure blood
flow changes generated by the heartbeat. It relies on a light emitter and a photosensor placed on
the wrist or finger to detect variations in light absorption, which correspond to pulsatile blood
flow. PPG is widely used in heart rate monitoring, blood oxygen saturation measurement, and
vascular health assessment. Compared with ECG and PCG, although the PPG delivers limited
heart-related information, it is low-cost in measurement, making it a popular intermedia in heart
rate measurement for wearable devices. In terms of datasets, PPG is usually recorded as a
supplementary indicator for ECG and other bio-signals. The PhysioNet provides accessible
PPG dataset [104], and an optoelectronic-based delay node PRC system was applied to detect
atrial fibrillation based on this dataset [119].

2.4.2 Muscle signals

Surface electromyography (sEMG)

The surface electromyography (sEMG) is a non-invasive method used to capture the electrical
activity of the skeletal muscles, offering valuable information on muscle function for diagnosis,

CHAPTER 2. LITERATURE REVIEW 22

rehabilitation, and various medical applications. This technology supports applications in wear-
able devices, particularly in fields such as human-computer interaction, prosthetic control, and
robotics [120]. Great efforts have been made in establishing sEMG datasets, several datasets
that provide sEMG signals for a variety of tasks are open-access, enabling the development
of algorithms and models for signal analysis. Non-Invasive Adaptive Prosthetics (NinaPro)
databases (from DB1 to DB9) are the most widely utilized dataset, comprising EMG signals
collected from multiple subjects performing a variety of hand and finger gestures [105, 106,
107, 108, 109, 110]. This dataset is extensively applied in hand gesture classification, as well
as in the estimation of hand kinematics and dynamics. Similarly, Biological Pattern Recogni-
tion (BioPatRec) datasets also contain multiple databases, capturing various hand movements
such as finger gestures and wrist movements [111]. High-densitY Surface Electromyogram
Recordings (HYSER) is a more recently released high-density sEMG dataset, particularly use-
ful for muscle force estimation with high-density sEMG channels [112]. Among them, a PRC
system was successfully applied in gesture recognition by applying the NinaPro DB2 in gesture
classification tasks in the domain of SNNs [82]. In addition to the widely used large datasets,
some custom-developed sEMG datasets were also applied in the performance evaluation of PRC
systems [57]. Successful demonstrations highlight the feasibility of PRC systems in sEMG sig-
nal processing. However, further investigations are required to explore various implementation
platforms of PRC in the context of sEMG, particularly in large-scale datasets and more complex
tasks.

Magnetomyography (MMG)

The magnetomyography (MMG) is a technique for measuring the magnetic fields generated by
human muscle activity, serving as an informative bio-signal. In recent years, MMG has gained
significant research interests due to its potential applications in biomedical and neuromuscular
studies. While EMG and MMG signals are both biomedical signals resulting from muscle ac-
tivities and play essential roles in health monitoring and human-machine interaction, EMG is
the measurement of the electrical currents generated from muscle activities and MMG signal is
from the magnetic field generated by the electronic currents [121, 122]. Although MMG signals
are subject to various sources of background magnetic noise from the surrounding environment,
which pose challenges for noise reduction, they offer the advantages of being measured in a con-
tactless manner and providing superior spatial resolution compared to other techniques. Since
MMG is an emerging area, it is at the infancy stage of focusing on magnetic sensors develop-
ment and measurement setup [123]. A few large-scale and open-access datasets could be found
in the literature. Instead, attempts of applying PRC for MMG to EMG mapping were studied to
extract desirable information from the noisy MMG signals through a custom dataset [27].

CHAPTER 2. LITERATURE REVIEW 23

2.4.3 Brain signals

Electroencephalography (EEG)

The electroencephalography (EEG) is a non-invasive technique used to record electrical activity
in the brain. It captures voltage fluctuations resulting from synaptic activity among neurons us-
ing electrodes placed at specific scalp locations to capture activity from different brain regions.
EEG has a wide range of applications in medical diagnostics by providing real-time monitoring
of brain activity, such as epilepsy, sleep disorders, and brain injuries. In neuroscience research,
EEG is used to study cognitive functions, attention, memory, and emotional responses. In ad-
dition, EEG plays a crucial role in brain-computer interfaces (BCIs), an emerging research area
that enables real-time direct control between the brain and external devices, which benefits in-
dividuals with disabilities. A substantial number of EEG datasets have been developed, each
designed for specific research applications. In the domain of epilepsy detection, the Bonn EEG
dataset, constructed by the University of Bonn [113], and CHB-MIT EEG dataset, collected at
the Children’s Hospital Boston [114], are widely recognized as benchmark datasets for evalu-
ating classification models. Memristive PRC systems were applied for epileptic seizure detec-
tion based on the Bonn dataset [124, 125]. Moreover, EEG-based emotion recognition datasets
have witnessed significant progress in recent years, with several open-access datasets emerging.
Among them, The SJTU Emotion EEG Dataset (SEED) dataset is one of the most widely used
datasets for affective computing research [115]. Based on the contribution of previous studies,
PRC systems implemented across various frameworks, algorithms, and platforms demonstrate
significant potential in advancing EEG-related applications.

2.5 Training the readout layer

While the majority of RC-related literature focuses on the implementation of the reservoir layer,
the training process, despite its simplicity, still requires careful consideration, particularly for
complex classification tasks in biomedical applications. A wide range of strategies are applied
to train the readout layer. In this section, we provide a summary of mainstream training methods
for RC readout layer in the field of ANN and SNN, separately. A design toolbox useful for
selecting training methods is introduced in Fig. 2.5. A summary of the representative training
methods for various biomedical tasks can be referenced in Table 2.3.

2.5.1 ANN-based training methods

A traditional way to train the readout layer is to apply linear regression on the high-dimensional
reservoir states by solving an optimization problem to determine the optimal output weight ma-
trix Wout , and a prediction is simply made by a vector–matrix multiplication (VMM) as described
in equation (2.4). Two common linear regression techniques are defined as lasso regression

CHAPTER 2. LITERATURE REVIEW 24

Figure 2.5: A design toolbox for training the readout layer.

(L1 regularization) and ridge regression (L2 regularization). The Lasso regression applies L1
penalty to enforce sparsity as shown in equation (2.5), while the ridge regression applies L2 to
minimize the cost function in equation (2.6). β is the regularization parameter in both cases.
While ridge regression is usually preferred in training RC readout by providing a closed-form
solution shown in equation (2.7) for lower computation cost compared with lasso regression
which involves iterative methods, lasso regression may perform well in certain tasks with sparse
representation [16].

y(n) = Wout ·x(n) (2.4)

Wout = argmin
W ∑

t
∥Wx(t)−y(t)∥2 +β ∑ |wi| (2.5)

Wout = argmin
W ∑

t
∥Wx(t)−y(t)∥2 +β∥W∥2 (2.6)

Wout = (XT X+β I)−1XT Y (2.7)

However, while linear regression methods are simple and commonly employed for time-series
prediction tasks, classification tasks necessitate additional considerations. One solution could
be still applying linear regression methods, wherein the correct prediction in the output vectors

CHAPTER 2. LITERATURE REVIEW 25

Table 2.3: A summary of the training methods and accuracy for reservoir computing algorithms
in biomedical applications.

Reference Signal Network
type

Platform # of classes Training method Accuracy
(%)

Liang et al [15] ECG ANN Simulated circuit 2 Lasso regression+detect
spikes exceed threshold

98

Bauer et al [24] ECG SNN Neuromorphic
chip

5 Kernel+least mean
squares+detect spikes

exceed threshold

92

Chandrasekaran [55] ECG ANN 65nm CMOS chip 2

Logistic regression 87

SVM 87

2-layer neural network 86

Sharma et al [119] PPG ANN Photonics 2 2-layer neural network 83

Ma et al [82] sEMG SNN Neuromorphic chip

3
STDP 83

SVM 75

8
STDP 57

SVM 35

Donati et al [57] sEMG SNN Neuromorphic chip 3

Logistic regression 81

SVM 84

kernel+delta rule 74

Garg et al [126] sEMG SNN Software

3
SVM 88

LDA 83

5
SVM 70

LDA 62

Fourati et al [127] EEG ANN Software 8 Intrinsic plasticity rule 70

Merkel et al [124] EEG ANN Memristors 2 Linear regression+detect
spikes exceed threshold

85

Kudithipudi et
al [125]

EEG ANN Memristors 2 Least mean square
through memrsitor

crossbar+detect spikes
exceed threshold

90

will appear as a spike, while the values corresponding to other classes remain flat. In this case,
an algorithm can be utilized to identify the spike that exceeds a predefined threshold or to de-
termine the maximum value within a specified interval, also known as a WTA method [16, 17,
45]. Another solution is to apply nonlinear methods, such as logistic regression, multi-layer
neural networks, and SVM classifiers, which are better for classification tasks. However, for
complex tasks, reservoir states are typically high-dimensional and high-resolution, leading to
increased computational complexity. To address this, some dimensionality reduction techniques
are employed. A common approach involves selecting either the last reservoir state or the mean
of all reservoir states, though this often results in a reduction in classification accuracy. Alterna-
tively, methods such as principal component analysis (PCA) and other dimensionality reduction
strategies can be applied to mitigate computational demands while preserving performance [19].

CHAPTER 2. LITERATURE REVIEW 26

2.5.2 SNN-based training methods

Different from RC in the ANN domain, the spiking RC generates outputs in terms of spikes.
Although SNN brings the merits of sparse and low-precision representation beneficial to storage
and computation costs, it is tricky to find a suitable learning rule due to the non-differentiability
of spikes. One traditional way involves applying kernel methods to transform spike trains into
continuous series and natural numbers and then using common techniques in signal processing
for further analysis [24, 57]. A comprehensive review of kernel methods is presented in [128].

In recent years, driven by the significant success of DNNs, there has been growing research in-
terest in applying gradient descent methods to SNNs. In the training of a single-layer network, a
simple weight update rule, such as the delta rule, is applied to minimize the loss and converge to
a local minimum. However, complex tasks typically require multi-layer networks for effective
loss convergence, necessitating the use of gradient descent methods to propagate errors back-
wards. Due to the non-differentiability of spikes, traditional gradient descent methods cannot
be directly applied to SNNs. Efforts have been directed toward identifying approximate deriva-
tives of spike activity to address the non-differentiability issue inherent in SNNs [129, 130]. A
thorough tutorial of applying lessons learned from DNNs to train SNN is presented in [131].

Distinct from classical ANN-based learning rules, the spike-timing-dependent plasticity (STDP),
a more biologically plausible learning rule, was proposed as an unsupervised learning rule, be-
ing more suitable for SNNs [82, 132, 133]. The fundamental weight update rule is expressed in
equation (2.8):

∆w =

A+ · exp
(

∆t
τ+

)
, if ∆t > 0,

−A− · exp
(−∆t

τ−
)
, if ∆t < 0.

(2.8)

Where ∆w is the change in the synaptic weight, ∆t = tpost − tpre is the time difference between
the postsynaptic and presynaptic spikes, A+ and A− are the scaling constants for potentiation
and depression, respectively, τ+ and τ− are the time constants that govern the time scales for
potentiation and depression. It adjusts synaptic weights based on the precise timing of spikes
between pre- and post-synaptic neurons. The implementation of the local synaptic plasticity
learning rule is promising to be implemented physically by circuits and to build efficient on-
chip learning in neuromorphic processing systems [134].

2.5.3 Summary of AI techniques across chapters

Based on the training methods mentioned above, several supervised training methods were ap-
plied to solve certain tasks in the following chapters, ranging from ANN-based methods to
SNN-based methods. A detailed breakdown is introduced as follows:

CHAPTER 2. LITERATURE REVIEW 27

• Linear regression method is used for the prediction tasks described in Chapter 3.

• Linear regression method and an algorithm to detect where the peak occurs are used for
the biometric identification task described in Chapter 4.

• Chapter 5, a kernel method is employed to transform spike-based event data into numer-
ical representations for an event-based gesture recognition task. An SVM serves as the
baseline model to optimize parameters during spike encoding and network construction.
Furthermore, a delta learning rule paired with a Softmax classifier is applied to the same
task, as the delta rule’s computational simplicity makes it amenable to hardware imple-
mentation, potentially enabling a fully neuromorphic system in future work.

• The normalized root mean square error (NRMSE) is used for evaluating the performance
for predictions and a performance matrix including accuracy (Acc), specification (Sp),
sensitivity (Se), precision and F1 score is used to evaluate the classification tasks. In ad-
dition, for classification tasks, the confusion matrix that compares the predictions against
actual (true) values is also applied as a performance evaluation technique in classification
tasks.

• Network size and power consumption are applied as factors for measuring computational
efficiency.

2.6 Conclusion and Discussion

This chapter reviews a wide range of implementation paradigms for PRC systems based on dif-
ferent categories. In addition, a variety of training methods for the readout layer were discussed
and provided in the review. In conclusion, PRC holds significant promise in pioneering inno-
vative solutions for wearable biomedical devices in the context of edge computing, by enabling
computationally efficient yet effective algorithms in resource-constrained environments.

In practical hardware implementations, CMOS-based circuits have gained a large variety of
applications, achieving low power consumption. Although certain large-scale neuromorphic
systems offer a platform with reconfigurable network structures for PRC and have demon-
strated feasibility in biomedical applications, simplified hardware architectures, as illustrated in
Fig. 2.2, present a promising opportunity for integration into CMOS chip-level implementations
with reduced hardware costs. Beyond conventional CMOS technology, emerging memory de-
vices hold significant potential, enabling in-memory computing solutions with ultra-low power
consumption. However, challenges related to device reliability, including D2D and cycle-to-
cycle (C2C) variability, must be addressed to ensure their practical deployment in biomedical
applications [12]. Photonics provide a faster computation speed, the energy consumption is
not optimal compared with other solutions, and a critical research question is the alignment of

CHAPTER 2. LITERATURE REVIEW 28

timescales between the task and the reservoirs [135].

PRC currently exhibits limited real-world applicability compared to established artificial intel-
ligence (AI)-methods, primarily due to its nascent developmental stage. Further research is
warranted to advance PRC through improved algorithmic frameworks and optimized hardware
implementations, which could enhance its practical utility in future applications.

While the earlier proposed delay-based PRC model has been widely studied, the RNR architec-
ture is chosen as the main objective in this thesis due to several advantages: (1) The absence
of ADC and digital-to-analog converter (DAC) modules reduce hardware cost. (2) Balance the
memory capacity (MC) and state richness. (3) Parallel computing owing to the unnecessity of
time-multiplexing. The improvement on RNR network and the applications in various tasks are
introduced in the following chapters.

Chapter 3

PRC as Predictors

Under the term neuromorphic, PRC processes the raw signals in the analogue domain with in-
memory computing, thus reducing massive power consumption and adaption delay. At the same
time, RC is a special type of RNN that is suitable for time-dependent signal processing. The
biomedical signals generated from the terminal of wearable devices could be applied by using
PRC in prediction tasks under medical contexts, and specific applications in muscle signals
(MMG and EMG) and heart signals (PCG and ECG) are covered in this chapter.

3.1 Introduction

3.1.1 MMG/EMG mapping

Measuring muscle movement has been a challenging area over the past decades. EMG and
MMG signals are both biomedical signals resulting from muscle activities and play essential
roles in health monitoring and human-machine interaction [121, 122]. EMG is the measurement
of the electrical current generated from muscle activities, and the MMG signal is from the mag-
netic field generated by the electronic current. While EMG provides low spatial resolution, other
equivalent methods such as MMG can address this issue [136]. However, MMG suffers from
various noises, including 1/ f noise and ambient noise. Spatial resolution in measuring muscle
activity can be increased by using needles inserted under the skin to collect the signals, which is
painful and inconvenient [137]. The advantage of MMG signals is that they can be measured in a
contactless way and more easily collected. However, MMG signals contain various background
magnetic noises from surrounding equipment that are challenging to remove. Similar problems
occur in magnetocardiography (MCG) signals. Noise-removal methods by mapping the MCG to
ECG signals by applying machine learning methods including deep learning and software-based
RC have been implemented [26]. RC has demonstrated a fast computation ability and a small
error in MCG/ECG mapping tasks. In principle, similar methods could be applied to MMG for

29

CHAPTER 3. PRC AS PREDICTORS 30

Figure 3.1: The conceptual picture of the EMG-MMG mapping process

noise-removal purposes. In our work, both the MMG and EMG datasets are real-world data
collected from humans.

3.1.2 ECG-to-PCG signals prediction

The ECG is a skin-surface measurement of the potential changes that result from the electrical
polarisation changes of the heart. The magnitude of the signal recorded at the cutaneous level
depends on the mass of the activated heart muscle. The recorded waves, therefore, relate to the
activation state of the heart. In particular, a normal ECG recording usually contains three distinct
features - the QRS complex, and the P and T waves- that arise from different activation states.
The P wave indicates the onset of atrial contraction, the QRS complex arises from the activation
of the ventricles, and the T wave is produced by the electrical repolarisation of the ventricles.
The PCG, on the other hand, is a recording of the sound waves produced by the structural and
hemodynamic changes that consist of a complex of the heart muscle, valves, and blood flow. As
the heart repeats its contraction-relaxation (systole-diastole) cycle, pressure waves emanate to
the chest wall and this is then set into vibration. Therefore, a PCG recording is mainly produced
by those cardio-hemic effects that are energetic enough to travel to the skin surface without
dissipating. Normally, the first (S1) and the second (S2) heart sounds are the two most easily
recorded. Unsurprisingly, these are related to the most energetic heart muscle movements - the
onset of the systole and diastole, respectively.

PCG and ECG are both diagnostic tools used in cardiology, but they provide different types
of information about the heart and its functioning. Since ECG provides information about the
electrical activity of the heart, it can diagnose arrhythmias, ischemia (inadequate blood flow to

CHAPTER 3. PRC AS PREDICTORS 31

Figure 3.2: The conceptual figure of ECG-to-PCG prediction using a physical reservoir proces-
sor.

the heart), and conduction system abnormalities. It’s particularly useful for identifying irregular
heart rhythms and ischemic events. PCG provides information about the mechanical aspects of
the heart’s functioning. It is often the first screening for cardiac problems and can help identify
abnormalities in heart sounds, such as murmurs or extra heart sounds, which can be indicative
of valvular problems, chamber abnormalities, or other structural heart issues. From a clinical
standpoint, obtaining ECG measurements is more convenient for healthcare professionals be-
cause the traditional medical stethoscope cannot deliver PCG data in a digital format. Therefore,
the ability to predict PCG information from recorded ECG signals is highly valuable, particu-
larly considering that these two signals offer distinct insights into the heart’s operation. Machine
learning algorithms can be applied to predict the PCG based on collected ECG signals to avoid
repetitive measurement for patients while providing valuable insights into heart operations to as-
sist in medical diagnosis in clinical environments. Machine learning algorithms can be applied
to predict the PCG based on collected ECG signals. In this work, we applied RNR to perform
the ECG-to-PCG prediction task for 10 subjects, with data collected in an office environment at
the University of Glasgow.

3.2 Methodology

3.2.1 Network description

RC is a special type of RNN, where the current network responses are dependent not only
on the current inputs but also on the historical inputs. The network can be sensitive to small
changes in the time series, which endows it with an excellent ability to process time-dependent
sequences. Some also think of RC as an analogy to SVM, and consider the reservoir as a
temporal kernel [22]. Both techniques apply a trick to map the input to a high-dimensional

CHAPTER 3. PRC AS PREDICTORS 32

Figure 3.3: The block diagram of the circuit inside the dynamic neuron simulated in Simulink.

feature space to allow for linear separation. The difference is that RC has a recurrent nature
owing to its structure.

A reservoir network contains three layers: an input layer, a reservoir layer, and an output layer.
The injected input u(n) is multiplied by an input weight matrix Win, and then this product goes
to the reservoir layer. The reservoir generates transient responses s(n) for the input injection.
The process can be represented by the state update equation as shown in equation (2.3) in Sec-
tion 2.2.1 of literature review chapter.

The responses, also known as the states of the reservoir, are collected for training. In our work,
we used a simple linear regression called ridge regression for the prediction task. The output
weight matrix Wout is calculated by the equation discussed in the equation (2.7) in Section 2.5.1.
Finally, in the output layer, the prediction at time n is achieved by multiplying the output weight
matrix Wout and the state s(n) generated for the input at time n, denoted by equation (2.4) in
Section 2.5.1.

The RNR architecture is the electronic circuit implementation of the SCR topology as discussed
in Section 1.2.2. Analogue multiplexers are used to shift the connections between input-to-
reservoir and reservoir-to-output and deliver the masked input at each time step. The dynamic
neurons are modelled by Leaky-Integrate circuits, with a diode to act as the ReLU activation
function. The dynamic responses of each neuron at the whole training phase are collected for
training by linear regression. The dynamic neuron is simulated in Simulink, MATLAB, and the
building blocks inside the dynamic neuron is presented in Fig. 3.3.

3.2.2 Dataset description for MMG and EMG

The MMG and EMG datasets used here were collected at the BMSR-2 (Berlin Magnetically
Shielded Room 2), located in the national metrology institute in Berlin, Germany utilizing a

CHAPTER 3. PRC AS PREDICTORS 33

Figure 3.4: Experimental setup of ECG and PCG measurement

SQUID sensors array. The measurement system consists of 92 channels of MMG signals, 4
channels of surface EMG signals and 1 channel of needle EMG. The experiments were con-
ducted according to the standards of the World Medical Association (World Medical Associa-
tion, 2001). The subject of this study gave his consent for his data to be published online. MMG
and EMG signals were collected synchronously at an 8000 Hz sampling rate.

Due to the limited memory capacity in RC system, the network cannot remember a long-term
signal. Therefore, downsampling is required to shorten the length of signals, so the information
within a same time duration can be less and easier to be remembered by the network. The orig-
inal sampling rate for both MMG and EMG signals are 8000 Hz, which was down-sampled to
500 Hz. The raw data was injected into the network without preprocessing or feature extraction.

According to the dataset, there are 92 MMG channels in total and 4 EMG channels. However,
the last two EMG channels were skipped because of their poor signal quality. 70% of the MMG
and EMG datasets were treated as training data and the remaining were treated as testing data.

3.2.3 Dataset description for ECG and PCG

ECG and PCG were simultaneously gathered in an office setting at the University of Glasgow,
as depicted in Fig. 3.4. The data was acquired using the ’Attys’ device, a creation of the Extreme
Light Group at the University of Glasgow. This ECG device is linked to three identical electrodes

CHAPTER 3. PRC AS PREDICTORS 34

Figure 3.5: The results of the prediction using RNR while γ = 0.7,τ = 3s.

for recording electrical signals from the left and right elbow, as well as the inner side of the ankle.
Subsequently, the collected data is transmitted to a Bluetooth connection. As for the PCG data,
it was obtained using an optical stethoscope, positioned approximately 1 meter in front of the
test subject. This optical stethoscope comprises a 532nm laser diode and a high-speed industrial
camera. The laser diode emits a beam towards the subject’s neck area, while the camera captures
the reflected speckle pattern from the neck. Due to that the laser speckle movement is highly
correlated with the blood flow movement in the neck blood vessel, a Farneback optical flow
algorithm [138], is then utilized to transform the laser speckle vibrations into the audio PCG
signal.

The ECG and PCG signals were downsampled from 500Hz and 1470Hz to 150Hz respectively
owing to the limitation of memory capacity in RC. After the downsampling, the signals are
injected into the network directly without any segmentation and feature extraction, which is one
of the merits of RC.

CHAPTER 3. PRC AS PREDICTORS 35

Figure 3.6: (a) The relationship between NRMSE and leaking rate for SCR network (b)The
relationship between NRMSE and input scaling parameter γ and time constant τ for eRNR
network. The reservoir size is fixed to 400.

3.3 Results and analysis

3.3.1 Prediction error for MMG/EMG mapping

The result that compares the estimated EMG signals and the measured EMG signals is shown
in Fig. 3.5. For the EMG signals that only contain spikes, the network could accurately capture
where the spike occurs and the peaks of the spikes. Parameters in both SCR and eRNR structures
could be adjusted to achieve better performance.

For reservoir size in both structures, the NRMSE does not decrease as the reservoir size increases
in this task. The reservoir size of both structures is fixed to 400 for simplicity. For the SCR
network, the parameter that affects NRMSE hugely and is worth adjusting is the leaking rate.
The leaking rate is the parameter that affects how much percent of the states in the previous
time step are involved in updating the current state of the reservoir. The leaking rate for optimal
performance varies in different tasks. In this task, the best leaking rate occurs when it is equal
to 0.1, as shown in Fig. 3.6(a), the NEMSE at this point is 0.3641. For the eRNR network, the
involved parameters are different from the ones in SCR. There are two parameters that affect
the NRMSE: input scaling parameter γ and the time constant τ (τ = RintCint). As illustrated in
Fig. 3.6(b), the NRMSE will decrease as γ increases. However, NRMSE increase slightly as γ

is over 0.7. From observation, the simulation time will increase as γ increases. Considering the
cost of computation, the best γ lies in the range of (0.7,1). The time constant τ should lie in
the range 2s to 5s for a smaller NRMSE, according to the results in Fig. 3.6(b). The smallest
NRMSE is 0.3894 when γ is 1 and τ is 5s.

For both SCR and eRNR methods, the smallest NRMSE achieved by optimizing the parameters
in each network respectively are very close. This is because the eRNR network is the hard-

CHAPTER 3. PRC AS PREDICTORS 36

Figure 3.7: An example of prediction results. (Top) The input ECG for a time duration of 6s.
(Bottom) The measured PCG and the reconstructed PCG data.

ware implementation of the SCR network. Although the parameters might change when it is
implemented by hardware, the performance is similar.

3.3.2 Prediction error for ECG/PPG mapping

Included in the dataset, there are 9 repetitions for each of the 10 subjects. 6 of them were used
for training and the remaining were used for testing. It was simulated in MATLAB with an
electronic circuit built by Simulink. In the simulation, there are 400 neurons in total and other
parameters are kept in accordance to the empirical value as proposed in [15]. The prediction
error was also quantified by NRMSE. An example of the prediction results for subject a repre-
sentative subject is shown in Fig. 3.7. The NRMSE for subject 5 is 0.1604 and the network is
able to predict the reconstructed PCG from the input ECG data in an excellent way.

A histogram illustrating the distribution of NRMSE for each subject is shown in Fig. 3.8. The
NRMSE for half of the subjects lies in the interval [0,0.3] and the other half distributes in [0.4,
0.7]. This could be a result of the collection of the dataset. The difference among the NRMSE
for different subjects occurs because of the recording of the dataset was not recorded under
the exact same conditions. In the future, the impact of varying data recording conditions for
different subjects can be studied to eliminate the inter-subject variability. Overall, the network
can predict spikes of PCG signals accurately for each subject. The NRMSE for each subject

CHAPTER 3. PRC AS PREDICTORS 37

Figure 3.8: Histogram for the distribution of NRMSE for each subject.

Table 3.1: Experimental results for each subject.

Subject No. 1 2 3 4 5 6 7 8 9 10 Average

NRMSE 0.6927 0.6006 0.4704 0.1676 0.1604 0.2120 0.2023 0.5719 0.0647 0.5478 0.3690

varies, the highest NRMSE is 0.6927 for subject 1, and the lowest NRMSE is 0.0647 for subject
9, and their average is 0.3690. The experimental results for each subject are listed in Table 3.1.

3.4 Discussion and conclusion

This chapter presents two tasks using PRC in biomedical signal forecasting tasks, and the pre-
diction errors are evaluated by NRMSE. It is notable that biomedical signals were collected
and evaluated in an intra-subject format since the biomedical signals from individuals are inher-
ently different. Results demonstrate the ability of RNR as a predictor compared with other deep
learning methods. In addition, the lightweight algorithm of RC holds the potential for PRC to be
embedded as a processing core for wearable devices in medical applications. As an initial trial
in the field of biomedical signal processing, the predictive modelling tasks serve to advance the
research conducted during my PhD to the next stage, enabling the exploration of more complex
classification challenges.

Chapter 4

PRC for Heart Sound-based Biometric
Identification

Heart sound signal has emerged as a promising solution to biometric identification. In this chap-
ter, an optical stethoscope-based laser-camera system for biometric identification using PRC
was introduced. As a bio-inspired algorithm, RC has attracted growing research interests in
recent years. Unlike conventional machine learning classifiers, RNR is a hardware-based neu-
romorphic model that preserves the majority of computing in the analogue domain, holding the
promise of a next-generation machine learning accelerator. The proposed system is verified
by an experimentally collected heart sound dataset by laser-camera system achieving an over-
all accuracy of 89.03% in identifying twelve testing subjects. Additionally, the elevated heart
sounds from 8 subjects have been blended with their normal heart sounds to assess the robust-
ness of the proposed system. The classification accuracy reaches over 83% in this mixed test.
The successful demonstration promises a novel application of physical RC for future biometric
identification.

4.1 Introduction

4.1.1 PRC for heart sound biometric identification

The importance of human identification has grown over the past decades as more services have
expanded into the digital domain. Currently, identification is commonly found in our daily
lives, e.g., accessing private facilities or proving identity to third parties when accessing on-
line services or physical locations. The shift from knowledge- (e.g., passwords) and ownership-
(e.g., tokens) based authentication methods towards biological recognition technology has in-
creasingly become desirable, considering the growing security risks tied to password reuse and
security fatigue.

38

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 39

Biological recognition technology offers an alternative identification approach that relies on ei-
ther physiological or behavioural features [139]. Over the past two decades, heart sounds have
emerged as a novel physiological biometric capable of sidestepping issues arising in knowledge-
and ownership-based authentication methods. Conventionally, heart sounds refer to cardiac
sounds acquired using a PCG method. PCG is a record of acoustic vibrations of the heart, usu-
ally recorded in the chest area using a microphone [140]. This recording qualifies as a potential
identity factor due to its universality, comparative uniqueness and acceptability [139].

An alternative method for recording cardiovascular data has been proposed [141] and applied
to biometric identification [142]. It relies on an interference pattern, called speckle, that arises
when coherent light interacts with a diffuse medium. As this medium moves, its changes are
reflected in the changes of the speckle pattern; these, in turn, can be tracked to collect informa-
tion about the vibrations of the material [143]. This ability to track vibrations forms the basis of
using coherent light illumination to extract the heart sound information. The device, consisting
of a camera and a laser, points at a patch of skin that vibrates as the heart contracts during its
cycle. When a suitable location is chosen, most of the vibrations recorded by the device are due
to cardiovascular activity.

Considering the uniqueness of individual hearts and the different skin conditions, such a signal
possesses a uniqueness level that makes it suitable for biometric identification [144]. It compares
favourably with other biometric identification technologies in several areas. Unlike radar-based
systems that rely on single-subject environments [145], it can function in comparatively busy
ones as long as its view of the subject is unobstructed. Similarly, it works in environments where
noise levels make voice-based recognition impossible. It requires no contact with a sensor,
unlike the systems based on hand recognition [146]. These advantages make the laser-camera
system particularly suitable when contactless and continuous identity monitoring is required.
For example, embedding the laser module in a smartphone and collecting data through the built-
in camera.

Neural networks, as bio-inspired algorithms, have been widely applied for information pro-
cessing tasks. For software-based neural networks relying on Von Neumann architecture, the
analogue input information is converted into digital bits and calculations are performed in a
digital system. In addition, in this system, processing and memory units are separated. Addi-
tional power is consumed for data transmission between these two blocks [147]. Besides, the
scaling of transistors in the conventional computer, as noted by Moore’s Law, is approaching
its end and thus hinders the further development of Von Neumann-based computers [6, 20].
Neuromorphic computing, as a bio-inspired computing paradigm, is expected to break the Von
Neumann bottleneck and solve machine learning problems with low-power, collocating memory
and processing [148].

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 40

Figure 4.1: The experimental setup of heart sound data collection using laser and the comparison
of the conventional Von Neumann-based machine learning classifier method and the hardware
RC classification method. (a) In a Von Neumann-based computer, the processing and memory
units are separated in the Von Neumann architecture, and additional power is consumed for data
transmission. In terms of the classification algorithm, the signals experience data segmentation
and feature extraction before they are sent into a classifier. (b) An electronic components-built
reservoir in the hardware RC method realizes both memory and processing. The signals are kept
analogue all the time. Therefore, for classification, a program that detects where the peak occurs
can be applied to obtain the classification results.

RC is an RNN-based framework suitable for sequential signal processing owing to the inner
connections between the current input with the past network states. Furthermore, this algorithm
employs a reservoir layer to project the input data into a high-dimensional feature space, thereby
enhancing linear separability. Consequently, only a single layer necessitates training, signif-
icantly reducing computational demands compared to DL-based approaches. Under the term
neuromorphic, physical realizations of RC are promising to drive the next-generation machine
learning hardware devices [11, 13, 149]. RNR was proposed recently as a potential hardware
implementation of RC. Using rotating elements for implementing cyclic reservoirs, RNR ful-
fills a hardware-friendly analogue system [15]. Compared with the previously proposed peer
work [29], which utilized a delay line to construct a delay-coupled reservoir, the reservoir layer
of RNR is advantageous from several perspectives: 1) The absence of ADC and DAC modules
reduces hardware cost. 2) Balance the MC and state richness. 3) Parallel computing owing to
the unnecessity for time-multiplexing.

In this work, we introduced a fast PRC recognition processor called RNR constructed from
optical stethoscope-based heart sound biometrics. Contrasting this processor with a conventional
Von Neumann-oriented computer, a conceptual figure is illustrated in Fig. 4.1.

4.1.2 Impact statement

Biometric identification plays an important role in daily life. However, existing methods like
fingerprints and facial biometrics are susceptible to being acquired and duplicated, resulting

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 41

in privacy breaches and online fraud. In contrast, heart sounds as biometrics are expected to
be more secure as heart sounds are hard to imitate and abuse. While traditional neural net-
works require data sent to a workstation or cloud for training and analysis, this work proposes
a PRC-based biometric identification system by applying the optical stethoscope retrieved heart
sound signal. The PRC architecture, under the term neuromorphic computing, provides a fast
hardware-based machine learning processor where computation is performed on devices at the
edge and thus minimizes energy consumption. The proposed identification system was evalu-
ated by experimentally collected datasets. It is promising that this system can be implemented in
modern devices like smartphones and smartwatches through embedded laser modules to collect
and retrieve the heart sound data and an RNR processor to function as the processing core.

The merits of this work are stated as follows:

• Heart sounds as biometrics are expected to be more secure as heart sounds are hard for
imitation and information abuse. It raises fewer ethical and private concerns than the
systems requiring recognisable images capturing [150]. Fingerprints and facial images
are susceptible to being acquired and duplicated [117]. Especially, facial biometrics are
prone to privacy breaches and online fraud due to the inherent risk of information leakage.
Heart sound data for individuals is unique and hard to imitate and abuse.

• Laser-camera system for remote heart sound data collection through an optical stetho-
scope. We point an eye-safe laser at the neck of testing subjects while a CMOS camera is
utilized to capture the reflected speckle patterns. The reflected speckle patterns are con-
verted into video frames and the human heart sound is retrieved by calculating the optical
flow from the video data. Compared to conventional stethoscope-based technology, the
laser-camera-based method we proposed avoids skin contact. It can even be deployed
in photo booths, allowing users to monitor their heart health at any time. Our proposed
method also allows free movement of the limbs of testing participants during data record-
ing. Moreover, it is very robust to the interference caused by other moving human targets
because of the focused ability of laser sensing. In addition, an optical stethoscope has a
much higher signal-to-noise ratio (SNR) than a traditional digital stethoscope.

• Collocating memory and processing units. As shown in Fig. 4.1(a), a conventional software-
based neural network approach usually relies on a Von Neumann computer. Signals are
first digitized into bit streams and then stored in a memory block and waiting for a calling
from the control block to perform calculations in the arithmetic logic unit (ALU). In con-
trast, a physical RC processor is not simply executing instructions. The learning procedure
takes place inside the reservoir, where memory and processing units are combined, and
signals remain analogue, as illustrated in Fig. 4.1(b). Data is processed near the device
and reduces the need for data transmission, thereby lowering bandwidth requirements and

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 42

improving response times.

• Reduction in computing complexity but with a satisfactory classification result. Ma-
chine learning classifiers require a complex classification training algorithm as well as
segmentation and feature extraction techniques, where massive computational power is
consumed. For an RC algorithm, the training is a simple linear regression. In addition,
raw signals are directly fed into the reservoir, and no segmentation and feature extraction
methods are needed.

• Combination of the optical stethoscope and the RNR algorithm. Optical stethoscope re-
quires subsequent signal processing and machine learning, while RNR as a neuromorphic
model can perform local data processing and machine learning, greatly reducing power
consumption and enhancing data security, as there is no need to transmit to the cloud or
server.

4.2 Experiment setup and data pre-processing

4.2.1 Dataset description

The experimental setup is illustrated in Fig. 4.1, where the laser-camera joint system is fixed
on a 1.2 m tripod, and the camera is connected to a laptop via a USB cable for powering and
data transferring. The laser diode (DJ532-40, Thorlabs) with a wavelength equal to 532nm is
pointed to the neck of the participants, producing an illumination spot of approximately 5 mm
diameter, whereas the CMOS camera (acA640-750um, Basler Optics) captures the reflected
speckle pattern with an FPS equal to 1.47 kHz. The green laser diode has a distance of around
1 m from the participants, and the laser power exposed on human skin is below an eye-safe
level (0̃.5 mW, safe for long-term eye/skin exposure). The focal length and f-stop of the camera
objective are set as 25 mm and 0.95, respectively, allowing the camera system to detect the laser
speckle from a very close (0.1 m) to a relatively far range (up to 3 m). Additionally, the size of
region of interest (ROI) window is chosen as 128x128 pixels, and the camera exposure time is
set as 600 µs.

The data was collected with 12 people (8 males, 4 females) aged from 22 to 32 in an office envi-
ronment (5 m x 4 m office area) by the Extreme Light Group, School of Physics and Astronomy,
at the University of Glasgow. The participants were asked to sit naturally on an office chair in
front of the laser-camera system while the camera recorded the dynamic speckle patterns from
their neck skin. For each of the 12 participants, we measured 10s heart sound 10 times using
a Python-based graphical user interface (GUI). The GUI incorporates a data processing feature
and is capable of offering real-time visualization of human heart sounds.

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 43

4.2.2 Signal pre-processing

Figure 4.2: The retrieved heart sound of each testing subject.
.

The raw data is in the format of a video frame, for a 10s duration, the video frame size is
128x128x14700. In order to retrieve the heart sound from video data, an optical flow-based
algorithm called Farenback [138, 141, 151] is utilized for estimating the directions and speed
of reflected laser speckles. However, subtle movements during the measurement, such as tilting
of the neck skin, will influence the flow of the interference pattern [141]. Therefore, after the
computation of optical flow, a bandpass filter with a cut-off frequency equal to 20 and 700 Hz is
applied to remove the unwanted frequency components due to skin or neck movement.

The filtered signal of each participant is illustrated in Fig. 4.2. It is clear that every participant
has two peaks within one cycle and they are separated in a good manner. The first peak is
known as S1 and the second peak is known as S2. S1 is generated by the closure of the mitral
and tricuspid at the beginning of heart systole, whereas S2 is generated by the closure of aortic
and pulmonary valves and it represents an end of heart systole.

The original dataset should be resampled by the resampling rate of 147 Hz. This is because
of the memory capacity limits in RNR. Due to the short-term memory property, the network

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 44

Figure 4.3: (a) The network description of the processing procedures with an example of a 4-
neuron reservoir. In practice, the number of neurons can be increased. The original data is
resampled at 147Hz and goes into an input weight matrix implemented by randomly chosen
positive and negative signal sources. For training, the states are collected by applying ridge
regression to calculate the output weight matrix Wout . For testing, predictions are obtained by
the multiplication of the states s(n) and Wout . A peak-finding method is used to find the predicted
label.

cannot remember a long-term signal. Downsampling the signal can shorten the length of the
signal, which means data points inside the same time duration are fewer, thus the network can
remember the information of an entire heartbeat event more easily.

4.3 Network design

4.3.1 Parallel reservoirs

In this work, RNR is used to fulfil biometric identification by using heart sound signals. As
a hardware architecture, RNR is different from traditional Von Neumann-based architectures
where the processing unit and storage unit are separated. In RNR, the information is processed
immediately without being stored. Therefore, a large amount of power consumed for transmis-
sion between the process and storage units under conventional digital computers can be saved.
Furthermore, the data flow for RNR does not contain any feature extraction techniques that bring
additional costs in signal processing. The raw signal directly goes into the RNR processor and
performs the prediction, and the majority of computing occurs in the analogue domain. Such a
hardware RNR system can handle biometric identification tasks faster and more power-efficient.

We hereby compare RC with two related machine learning algorithms, SVM and long short-
term memory (LSTM). RC shares a similar computing method with SVM, both apply a trick
to map the input to a high-dimensional feature space to allow for linear separability. The merit
of RC compared with SVM in processing temporal data is that it adds the temporal feature to
the projection through its state-updating equation. While the state-updating equation endows

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 45

Figure 4.4: An example of M parallel reservoir topology with 12 prediction classes.

RC with a recurrent nature, RC does not need to deal with complex gradient problems like
other RNNs do. In this case, RC could stand out and bring high efficiency in temporal signal
processing. Therefore, reservoir computing is expected to show excellent performance in terms
of distinguishing different people according to their unique heart sound signals effectively.

As discussed in Section 2.2, a classical reservoir network contains three layers: an input layer, a
reservoir layer and an output layer. The circuit of the network as shown in Fig. 4.3 is simulated
in MATLAB R2023a and Simulink. The neuron circuit was modelled in Simulink by building
blocks and modules. The discrete states generated in Simulink were subsequently transferred
to the MATLAB workspace for further analysis. Additionally, the pre- and post-neuron rotors
were modelled by continuously shifting Winu(k) and collected states from Simulink.

However, a 12-people identification task relies on a large network size to provide rich reservoir
states. Increasing network size will lead to extensive simulation time. As one of the primi-
tives in neuromorphic computing, parallel processing is a crucial element that enables the brain
to rapidly perform computations [20]. To speed up computation time and provide rich state
dynamics [15, 44] at the same time, we adopted a parallel reservoir computing topology with
multiple reservoirs (M) in parallel and each reservoir size (N) of 500. The topology of the
parallel reservoir is shown in Fig. 4.4.

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 46

4.3.2 Training and Regression

Different from the traditional classifiers that introduce a segmentation and feature extraction
method, RC processes the complete raw signal. Therefore, the labelling of the dataset should
be treated differently from the traditional ones. The labelling of the dataset was done manually,
which means there will be artificial errors in labelling because one cannot tell where each heart-
beat exactly ends, while in traditional classifiers, this can be avoided by limiting the signal in a
certain segmentation. Therefore, the dataset should be carefully labelled by certain techniques.
In our work, the dataset is manually labelled in a continuous and point-by-point fashion, which
is similar to prior works [16, 18, 22]. Usually, at the end of each heartbeat, there is a ‘1’ to
declare the corresponding subject and a ‘0’ for the rest of the label set. However, for the purpose
of facilitating the classification and avoiding artificial errors, the number of ‘1’s is expanded to
their multiple neighbouring positions as shown in Fig. 4.5 and 4.6. The reason for this is that
the longer length of the label could make the network less sensitive to the location where the
heartbeat ends, because the end of each heartbeat can only be roughly estimated and labelled
which is less likely to be identical.

The reservoir states of each parallel reservoir will be concatenated to build s(n) which will be
collected for training the output layer. In RC, the most common regression method is called
ridge regression. The output weights can be calculated by equation (2.7). Finally, the prediction
of the classification is obtained by the multiplication of the output weight matrix Wout and the
state of the reservoir at time n, written as equation (2.4).

In recent studies, the output readout layer can be expected to be realized by a memristor crossbar
array to keep the signals analogue [18, 84]. Hence, the output prediction is in the form of a
continuous analogue signal as shown in Fig. 4.5 and Fig. 4.6.

4.3.3 Classification

There are two steps for classification: training and testing. 70% of the dataset constructs the
training set and the rest is for the testing set. A sample of classification results is shown in
Fig. 4.5 and Fig. 4.6. In the method presented in our work, the decision of which subject the
heart sound signal belongs to is made during each interval in the testing procedure by a peak-
finding operation [15, 18]. The input channel is a one-dimensional heart sound signal while
the output contains 12 channels that represent the possibilities for the 12 subjects as shown in
Fig. 4.4. Ideally, the other 11 channels remain zero while the corresponding correct prediction
appears as one. Therefore, the target class can be easily decided according to where the highest
peak occurs.

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 47

Figure 4.5: Examples of labelling and output prediction of each heart sound for subject 1 to
subject 6. Continued on Fig. 4.6 in the next page.

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 48

Figure 4.6: Examples of labelling and output prediction of each heart sound data for subject 7 to
subject 12. The magnitude for each label is about 0.27 seconds. The data is manually labelled
in a continuous and point-by-point fashion. At the end of each heartbeat, a set of ‘1’s, which
is represented by the red dots in the figure, is used to declare the corresponding subject, while
the rest of the label set is kept ‘0’. In the output, there will be 12 channels representing the
prediction results. The predicted label decision is made where the peak occurs.

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 49

Figure 4.7: The relationship between the accuracy and the reservoir size for different numbers
of subjects involved.

4.4 Performance evaluation

4.4.1 Parameter optimization

The parameters in RNR can affect classification accuracy significantly. The three dominant
parameters are the time constant τ , reservoir size M×N and the input range.

The time constant τ is a parameter that affects the performance of the dynamic neuron. As a
neuromorphic computing system, the time constant for RNR is biologically realistic and the time
constant is usually greater than the millisecond scale. In RNR, the dynamic neuron is realized
by a leaky-integration-ReLU circuit. The circuit defines τ by the following equation:

τ = RintCint (4.1)

where Rint is the integral resistance and Cint is the integral capacitance. τr is the rate of rotation,
which should be consistent with multiplexers. For example, τr = τ/8 for 8-switches multiplexers
and τr = τ/4 for 4-switches multiplexers. The choice of the value for τ and τr should be matched
to make the system function properly. In this work, we choose the empirical value of τ = 1s and
τr = τ/8 fixed for the following parameter optimization.

The reservoir size is made up of M parallel reservoirs, and each reservoir size of N. It is a param-
eter that defines how many neurons are included in the reservoir. A small reservoir size could

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 50

Figure 4.8: The heatmap for parameter adjustment. The two parameters, input scaling and input
bias define the input range of the injected signals.

not be sufficient for solving a complex task while a large reservoir size could bring complexity
to the hardware and not necessarily increase the network performance. We provided an anal-
ysis of the comparison of the accuracy when the number of people is increased, as illustrated
in Fig. 4.7. For a 4-people or 6-people classification task, a network size of 1 ×500 is enough
to obtain an accuracy of around 90%. However, the accuracy will dramatically decrease when
the number of people exceeds 8. Adding multiple parallel reservoirs could efficiently enhance
identification performance. When the network size is approaching 5×500, the accuracy for 12-
people identification is over 88%. Therefore, considering the cost of the hardware, we finally
chose the reservoir size to be 6×500.

The parameter that defines the input range is the input scaling parameter γ and the bias. Re-
stricted to the circuit, the input range cannot exceed the supply voltage, for example, 3.3V.
Therefore, the range of the parameter γ we consider is in the interval (0,1). In this case, the
adjustment of the data input range is within (-3.3V, 3.3V). From the heatmap, the best classifi-
cation result is 89.03% and it is obtained when γ is 0.05 and the bias is 0.1, as demonstrated on
the heatmap in Fig. 4.8. At this time, the data input range is (-0.21, 0.19).

A confusion matrix to see the accuracy for each class is shown in Fig. 4.9. The error mainly
occurred when predicting the 3rd subject. The 3rd subject is occasionally recognized as the 8th
subject and the 10th subject. The possible reasons for the failure cases could lie in the manual
labelling of the dataset. Although we extended label length to make the network less sensitive to
where a heartbeat ends as discussed in Section 4.3.2, artificial errors still exist. The information

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 51

Figure 4.9: The confusion matrix for the accuracy of each subject.

of one signal remembered by the network may be similar to another different signal remem-
bered by the network due to the label position change brought by manual labelling, resulting
in indistinguishable classes attributed to higher acceptance rates. One solution to address this
issue in practical applications could involve utilizing a longer analysis window encompassing
multiple heartbeats. By making an overall prediction of the class that appears most frequently,
as discussed in Section 4.5, the accuracy and robustness of the classification could potentially
be improved.

4.4.2 Noise analysis

In addition to analysing the tuning of the reservoir’s internal parameters, we conducted a com-
prehensive evaluation of potential noise factors encountered during signal acquisition and the
hardware implementation of the network, to provide a more thorough understanding of the
method’s robustness and practical applicability.

In terms of signal acquisition, two primary sources of noise were identified: (1) subtle move-
ments of participants’ skin and neck, and (2) noise originating from the acquisition equipment.
The first source of noise, due to minor movements, can be mitigated using a bandpass filter
between 20 Hz and 700 Hz, effectively removing unwanted frequencies as discussed in Sec-
tion 4.2.1. The second source of noise stems from the laser and signal acquisition equipment,
with noise levels influenced by the laser’s power and the CMOS camera’s performance, both
of which were standardized across all measurements in our study. However, to assess the po-

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 52

Figure 4.10: The effects of different noise levels on the classification accuracy by artificially
adding Gaussian white noise to (a) the collected heart sound signals (b) the state vectors.

tential impact of noise for future applications that may use different acquisition equipment, we
conducted a noise analysis by artificially introducing Gaussian white noise to the collected heart
sound signals. This approach allowed us to evaluate how varying noise levels affect classifica-
tion accuracy, thereby offering insights into the robustness of the method under different noise
conditions.

As shown in the simulation results in Fig. 4.10(a), the system maintains high classification ac-
curacy with SNR above 20 dB, which is achievable with commercial laser and data acquisition
equipment. This possible reason is likely due to the neural network’s inherent robustness to mod-
erate noise levels. These findings suggest that the system can effectively tolerate noise incurred
during signal acquisition, thereby supporting its potential reliability in practical applications.

Another source of noise incurred during the hardware implementation of the RNR system. A
typical challenging problem in analogue computing is the D2D and C2C variability and noise
for hardware implementations. The design of the system in our study was based on the use
of commercially available components, such as resistors, capacitors, diodes, and multiplexers.
These components are characterized by excellent D2D and C2C consistency, along with mini-
mal noise levels. While recent research in analog computing has focused extensively on novel,
emerging electronic devices that leverage intrinsic memory properties and nonlinear dynamics
to generate transient states, D2D and C2C variability of these novel devices should be carefully
considered. Nevertheless, the variability in D2D could enhance the state richness and thus im-
prove the performance of the network as revealed by some research, while the C2C variability
should be avoided [12, 86].

To assess the impact of noise on classification accuracy, Gaussian white noise was introduced to
the collected state vectors to evaluate the SNR required for a realistic hardware implementation
of the RNR system. As illustrated in Fig. 4.10(b), the network requires an SNR of at least
70 dB to attain a classification accuracy exceeding 80%, indicating a careful hardware design

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 53

in constructing neuron circuits and collecting state vectors. Enhancing classification accuracy
could be achieved by increasing the SNR within the circuit or expanding the network size.

4.4.3 Memory capacity

The short term memory (STM) denotes the ability of the network to remember past information
and MC is a quantitative concept that measures this ability. To define the MC, Jaeger[152]
proposed the equation below:

M(k) =
cov2(u(t − k),y(t))

σ2(u(t)σ2(y(t))
(4.2)

This equation indicates the k-delay STM capacity, which means how much information from
k time steps ago can be recovered by the reservoir[153]. cov is the covariance and σ is the
standard deviation. Usually, M(k) is in the scope [0,1] and it will decrease as the reservoir needs
to reconstruct the information from farther past. MC is the summation of all the M(k) from
k = 1 to infinity, as denoted by the equation below:

MC =
∞

∑
k=1

M(k) (4.3)

MC is affected by many factors: reservoir size and parameters τ and γ in the reservoir. For CR
and RNR, as they are theoretically equivalent, the MC for them are almost the same when the
parameters are matched [15].

A higher MC does not promise better performance. Redundant information might be remem-
bered and affect the network’s decision of the correct result. In our work, the MC is 68.91 when
the best classification result is obtained with parameter τ = 1s, γ = 0.05, bias = 0.1.

4.4.4 Comparison with consistent software network

To observe the consistency between RNR and the software RC, including the classical reservoir
and CR, a performance matrix is used for comparison. The comparison can be seen in Fig. 4.11.
The performance matrix is composed of Acc, Se, Sp, precision and F1 score. The calculation
of these values involves true positive (TP), ture negative (TN), false positive (FP) and false
negative (FN), denoted by the following equations:

Acc =
T P+T N

T P+T N +FN +FP
(4.4)

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 54

Se =
T P

T P+FN
(4.5)

Sp =
T N

T N +FP
(4.6)

Precision =
T P

T P+FP
(4.7)

F1 =
2T

2T P+FP+FN
(4.8)

For RNR, the input matrix Win is realized by using a switch to randomly select a positive or
negative signal source. Therefore, the corresponding Win in CR should be binary and composed
of randomly chosen -1 and 1. However, from our observation, CR with a matrix of randomly
chosen -1 and 1 has a decline in performance compared with any other networks. It is surprising
that the RNR can obtain a higher performance than the corresponding software network CR.
The possible reasons for RNR and classical reservoir showing a better performance could lie in
two perspectives: 1) From the masking type perspective. Compared with the classical reservoir
whose weights in Win are randomly chosen numbers from the uniform distribution [-1,1], the bi-
nary Win in CR could not provide complex dynamics of the response and result in a performance
reduction [154]. 2) From the dynamic neuron perspective. Although the topologies for CR and
RNR are mathematically equivalent, the realizations of the neurons for the two are slightly dif-
ferent. RNR applies a Leaky-Integrate circuit and a rectifying diode to implement the neuron.
The Leaky-integrate circuit could result in parameter mismatches. In addition, the activation
ReLU function for RNR and CR are different. When the optimal parameter for RNR is obtained
after fine-tuning, the input data fed into the neuron is in the nonlinear region of the diode, which
is different from the ideal ON/OFF form of software-implemented ReLU. This could enhance
the state representation for RNR [15] and hence improve the performance.

Compared with the optimal software RC networks, RNR only shows a slight reduction in the
performance with Acc = 89.03%, Se = 89.3%, Sp = 99%, Precision = 89.31%, F1score =

88.87%. Compared with the state-of-the-art models, specifically an SVM classifier employing
16 time-domain features with a polynomial kernel and a bidirectional long short-term memory
(Bi-LSTM) network with 120 hidden neurons and learning rate set to 0.01, batch size set to
16, which achieved a classification accuracy of 85.42% for SVM and 90.56% for LSTM after
200 epochs of training respectively. The RNR model demonstrates a slight decrease in accuracy
compared with the Bi-LSTM network. This result shows the feasibility of applying a fully
hardware RNR processor for heart sound biometric identification.

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 55

Figure 4.11: The bar chart of the comparison in terms of performance matrix for the five net-
works and RNR for the mixed elevated and normal dataset.

4.4.5 Power analysis

Although this study is based on simulation, the power consumption can be estimated by refer-
encing the work conducted by Liang et al. [15], where the system is implemented through PCB
circuits and memristor crossbar arrays.

The total power consumption P can be expressed by equation (4.9):

P = Pc +(Ps +Pt +
Edyn

c +Edyn
t

τr
)×M+

Edyn
m

τr
(4.9)

where Ps is the driving power source, Pc and Pt are the static power of the counter and transmis-
sion dates, respectively. Edyn

c and Edyn
t represent the dynamic energy dissipated in the transition

region driven by the rate of rotation τr. Edyn
m is the energy consumed in the output layer (memris-

tor array) for one inference. According to [15], Ps = 3.27µW , Pc = 0.93µW , and Pt = 0.70µW ,
regardless of how fast the rotors are operating. Edyn

c = 0.31pJ and Edyn
t = 0.07pJ are related

the the rotor speed. The number of neurons is scaled from 8× 8 to 500× 6, therefore, a scal-
ing parameter of 46.88 was multiplied by M. The dynamic energy of the memristor array is
Edyn

m = 463.36pJ/class. In addition, in the experiment conducted in this thesis, the rotor speed
τr is 0.125s. Therefore, a power consumption of 230.60µW can be estimated for the overall sys-
tem based on the parameter settings in this experiment. In comparison to a baseline DL system
running on a low-cost device, such as a Jetson Nano that has a power around 5W to 10W , the

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 56

power for the RNR is much lower.

4.5 Evaluation of the identification performance under after-
exercise condition

In a practical situation, a subject may encounter different scenarios leading to changes in heart
sounds. For example, a subject may use the identification system after running. Therefore,
to evaluate the performance of the identification system under the after-excise situation, we
collect heart sound data from eight individuals (4 males and 4 females) following a two-minute
jumping jack exercise. An example of the comparison between the elevated heart sound signals
and normal heart sound signals is depicted in Fig. 4.12(a).

It is evident that the main difference between an elevated heart sound and a normal heart sound
is the heart rate. In this case, we could not train all the samples together as the normal heart
sound signals and elevated heart sound signals are naturally different. Therefore, to identify
the mixed elevated and normal heart sound signals, we trained two reservoir systems, one for
normal heart sound and one for elevated heart sound. The testing data will first be confirmed to
be normal or elevated according to the heart rate (heart rate over 100 to be elevated and heart
rate below 100 to be normal), and then it will be delivered to the corresponding reservoir system
for prediction. The flow chart of the procedures is illustrated in Fig. 4.12(c). The accuracy
of the identification for 8 people is 83.01% with a reservoir size of 1000 (M=2, N =500). A
confusion matrix for the result is shown in Fig. 4.12(b). The accuracy decreases compared
with a normal-condition-only system. The possible reason behind this is that the differences
between each elevated heartbeat are large as our identification system is based on only one
heartbeat identification. In practical application, as the cardiac rhythm is continuous, enhanced
accuracy can be attained by employing the most frequently occurring prediction within a given
temporal window. As illustrated in Fig. 4.12(d), we employ a 4-second window with 7 heartbeats
included. In this case, the heart rate is 105 which belongs to the elevated category. 6 of the
heartbeats are predicted to belong to subject 4 and 1 of the heartbeats is predicted to be subject
5. In this case, an overall prediction of subject 4 is made as it appears the most frequently.

4.6 Discussion and Conclusion

In this chapter, we introduced a novel biometric identification method by retrieving optical
stethoscope-based human heart sound signal through a laser camera system and processing it
based on a PRC architecture called RNR for the first time. Through parameters optimization,
the classification accuracy for a 12-subject identification can reach 89.03%. We also evaluated
the identification accuracy of people after exercise and achieved an accuracy of 83.01% for

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 57

Figure 4.12: (a) An example of normal heart sound and elevated heart sound. (b) A confusion
matrix for biometric identification under mixed normal heart sound and elevated heart sound
dataset. (c) A flow chart for identifying mixed elevated and normal heart sound data. (d) An
example of employing a 4-second window and making an overall prediction of subject 4 as it
appears most frequently. The testing signal belongs to the elevated category as the heart rate of
the testing signal is 105.

CHAPTER 4. PRC FOR HEART SOUND-BASED BIOMETRIC IDENTIFICATION 58

mixed elevated and normal heart sound datasets. It is noticeable that in our work, the accuracy
of the prediction results is for one single heartbeat. However, the cardiac rhythm is continuous.
In practical industrial scenarios, real-time identification can process a sequence of heartbeats
and repeat the identification procedures. Enhanced accuracy can be attained by employing the
most frequently occurring prediction within a given temporal window. Under the concept of
neuromorphic, this model processes the raw heart sound signals in the analogue domain with
in-memory computing, thus reducing massive power consumption. So far, our work takes the
first insight into the feasibility of a PRC system in terms of heart sound biometric identification.
It is promising that this technology could be implemented in modern devices like smartphones
and smartwatches through embedded laser modules to collect and retrieve the heart sound data
and RNR processor to function as the processing core.

Full development of such an identification system remains a topic for future exploration. First,
there is only a small size of samples included in this experiment, a larger and more functional
public dataset is expected to be constructed and analyzed to further refine the system applicable
under various conditions and potential outliers. Second, with a network size of 3000 neurons,
integration of the system into chip level is desired, which requires interdisciplinary research with
other fields. Evaluation could be enhanced with long-term/longitudinal test data and robustness
checks (e.g. posture variation, background noise).

Chapter 5

Event-Driven RNR for sEMG-based
Gesture Recognition

Wearable health devices have a strong demand in real-time biomedical signal processing. How-
ever, traditional methods often require data transmission to a centralized processing unit with
substantial computational resources after collecting it from edge devices. Neuromorphic com-
puting is an emerging field that seeks to design specialized hardware for computing systems
inspired by the structure, function, and dynamics of the human brain, offering significant ad-
vantages in latency and power consumption. This chapter explores a novel neuromorphic im-
plementation approach for gesture recognition by extracting spatiotemporal spiking information
from sEMG data in an event-driven manner. At the same time, the network was designed by
implementing a simple-structured and hardware-friendly PRC framework called RNR within
the domain of SNN. The spiking rotating neuron reservoir (sRNR) is promising to pipeline
an innovative solution to compact embedded wearable systems, enabling low-latency, real-time
processing directly at the sensor level. The proposed system was validated by an open-access
large-scale sEMG database and achieved an average classification accuracy of 74.6% and 80.3%
using a classical machine learning classifier and a delta learning rule algorithm, respectively.
While the delta learning rule could be fully spiking and implementable on neuromorphic chips,
the proposed gesture recognition system demonstrates the potential for near-sensor low-latency
processing.

5.1 Introduction

5.1.1 Event-driven Implementation for sEMG-based Gesture Recognition

The sEMG is a non-invasive technique that reflects the electrical activities of skeletal muscle
movements, providing insights into muscle cells essential for diagnosis, rehabilitation and other

59

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 60

Figure 5.1: Architecture of the proposed classification system. The raw sEMG signals are en-
coded into SNN-compatible spike trains by an event-based encoding scheme. An SNN consist-
ing of physical reservoirs is used to generate transient responses to a higher dimensional feature
space. The collected dynamical states are trained in the readout layer only by machine learning
algorithms for classifying gestures.

medical applications. sEMG-based gesture classification is a specialized application that fo-
cuses on recognizing motor intentions by analyzing the electrical activity of muscles. This field
enables applications involving wearable devices in areas such as human-computer interaction,
prosthetics control and robotics [57, 120]. Processing data locally on the wearable device or
nearby, rather than sending data to a centralized server is crucial to perform real-time analy-
sis, save bandwidth, improve privacy and save battery. To further improve local processing, it
is crucial to identify lightweight gesture recognition algorithms. Traditional machine learning
approaches, such as, SVM, k-NN, LDA, and RF require feature extractions from both the time
domain and frequency domain [105]. Deep learning models have recently achieved higher clas-
sification accuracy on raw sEMG signals by automatically learning features [155, 156]. How-
ever, this comes at the cost of increased power consumption and memory requirements.

Neuromorphic computing, which prioritizes low latency and energy efficiency, is another promis-
ing approach for processing temporal signals at the edge [1, 7, 157, 158]. Among neuromorphic
systems, PRC has emerged as a compelling solution. PRC harnesses the intrinsic dynamics of
physical systems with collocated memory and processing units, distinct from traditional Von
Neumann architecture, to accelerate and reduce the memory requirements of machine learning
computations. This approach aligns well with the demands of edge computing, where infor-
mation processing is performed closer to sensors, minimizing the latency associated with data
transmission [11, 12, 159]. At the same time, RC is a form of RNNs used primarily for process-
ing time-series data, but what makes it different is the use of a fixed, untrained network called
a "reservoir" that projects input data into a high-dimensional space. In this high-dimensional
space, complex temporal patterns can be more easily processed with training readout layer only
to avoid costly operations for backpropogation associated DNNs.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 61

RNR is a novel PRC paradigm characterized by its simple, hardware-compatible architecture,
realized through an analog electronic circuit [15]. This architecture has demonstrated its effi-
cacy in various temporal signal forecasting applications [27, 28]. For the first time we propose
an SNN based RNR framework, more biologically plausible than traditional ANNs based on
sigmoid units or ReLU [32, 160, 161]. This incorporation offers three key benefits: (i) A spike
is a single-bit event, either a ’1’ or a ’0’, which is more hardware-friendly than floating point val-
ues. In comparison, the eRNR [15] where signals are processed in the analog domain. However,
floating point values precision in analog circuits is costly in terms of complexity and hardware
costs [20], hence, processing information in the form of low-precision spike trains could be a
possible solution. (ii) event-driven processing allows for energy efficiency and low latency as
the neurons only respond when an event occurs, leading to sparse vectors/tensors that are cheap
to store and low-power to move [162]. (iii) This fusion still retains the advantages of RNR’s
simple and hardware-friendly structure with training readout layer only. At the same time, the
low-precision reservoir states enables the use of trainable classifiers to further improve classifi-
cation performance.

Encoding sEMG signals into spatiotemporal spiking information plays an important role in ex-
ecuting SNNs. A common signal-to-spike encoding technique is the delta-modulator analog-to-
digital converter [57, 82, 163]. However, the classification performance by using this strategy
lags behind the state-of-the-art, especially compared with deep learning methods. In our work,
we adopted an event-based encoding fashion for sEMG signals which was validated by a re-
gression task. This method is inspired by how mammalian cochlea processes auditory signals
and has been applied for feature extraction of neural and audio signals [164, 165]. It extracted
enough informative features from sEMG signals and performed well in a force estimation re-
gression task [166]. The integration of this encoding scheme and our proposed sRNR network
escalated the SNN-based gesture recognition accuracy to a new level.

5.1.2 Impact Statement

While deep learning dominates sEMG-based gesture recognition, its high computational cost
limits real-time, low-power applications. Neuromorphic computing offers an energy-efficient
alternative, making it ideal for edge computing in resource-constrained environments. This work
is the first to integrate a PRC framework, specifically the RNR, within an SNN architecture and
introduce a novel event-based encoding scheme to convert superficial EMG signals into spike
trains. Our approach surpasses existing SNN-based methods in classification accuracy while
remaining competitive with deep learning models in a more lightweight form. Crucially, the
use of recurrent reservoirs addresses a fundamental challenge in neuromorphic systems—the
absence of built-in memory. By generating memory at the network level, this method enables
robust, real-time processing of dynamic signals, which is essential for real-world biomedical

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 62

applications. This advancement paves the way for next-generation wearable systems with ultra-
low latency and embedded intelligence.

The proposed gesture recognition system was verified by an open-access database. While the
use of SNNs for sEMG-based gesture recognition has been explored previously, this research
offers substantial advancements in this field, as detailed below:

• We incorporated a PRC framework called RNR with an SNN scheme for the first time to
achieve sparse and low-precision data representation beneficial to memory requirements
and low latency. While PRC generates dynamics directly through physical systems bene-
ficial to resource-efficient information processing, the RNR paradigm additionally outper-
forms other PRC paradigms by offering a simplified hardware design that is more easily
interpretable by algorithms. This design minimizes the need for modules such as ADC,
buffer and memory, thereby reducing overall system complexity.

• The proposed network has a fixed and simplified topology, which is hardware-friendly
and capable of using trainable nonlinear classifiers. Additionally, only the readout layer
requires training, resulting in fewer parameters monitoring and reduced operations com-
pared with backpropagation-aided DNNs.

• The proposed work obtained state-of-the-art performance among SNNs and demonstrated
competitiveness with deep learning methods.

5.2 Dataset description and pre-processing

We evaluated our method using a publicly available sEMG dataset. Encoding signal to spikes is a
crucial step in event-based signal processing [167]. In this work, the signals were converted into
spike trains using an event-based encoding scheme inspired by the mammalian cochlea [166,
168] to feed into a novel RNR, implemented in an SNN using SNNtorch [131] to classify hand
gestures.

5.2.1 sEMG dataset and pre-processing

NinaPro databases are open-access EMG datasets that are commonly used in hand gesture clas-
sification tasks [105]. In our project, the NinaPro DB2 was chosen to validate the proposed
approach. This database is composed of 40 intact subjects (28 males, 12 females) performing
50 gestures with 6 repetitions for each. The sEMG signals were collected by 12 Delsys Trigno
Wireless electrodes placed on the forearm and sampled at a rate of 2 kHz. Each movement repe-
tition lasts 5 s and then returns to the rest state for 3 s to remove any residual muscular activation.
The 50 gestures include exercise B, C, D and rest position: exercise B comprises 8 isometric

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 63

Figure 5.2: Examples of one channel of normalized sEMG signals and encoded spike trains for
Gesture 1, Gesture 5 and Gesture 8, respectively.

and isotonic hand configurations and 9 wrist movements; exercise C comprises 23 grasping
movements which are common daily-life actions; exercise D includes 9 force patterns [105].

Before converting the signal to spike trains that are compatible with an SNN architecture, a
pre-processing procedure including normalization and segmentation is required to construct the
training and testing datasets, as described in the following steps:

1. Normalization: To make it easier to compare sEMG signals from different repetitions
and subjects and ensure that all signals have the same data distributions, a normalization
procedure is applied to scale the signals to the range of (0,1) by equation (5.1).

signalnormalized =
signal −min(signal)

max(signal)−min(signal)
(5.1)

2. Segmentation and Windowing: In biomedical recognition tasks, the acquisition of pre-
cisely labelled datasets is essential. As some participants may start the movement earlier
than the actual motion and some may start later, we only investigated the steady state of the
movements. This work omitted the initial and final 600 ms of each repetition, which may
include gesture transition states, similar to the work done in [82] for intuitive comparison.
Besides, an optimal window length of 150-250 ms is preferred regarding classification
performance latency in prosthetic control [169]. Given the constraints, we constructed a
dataset with an equal distribution of gestures, employing a window length of 200 ms for
each segment. The examples of preprocessed sEMG signals with a window length of 200
ms can be viewed in Fig. 5.2.

3. Training and Testing Sets: We focused on evaluating the intra-subject gesture classifica-

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 64

Figure 5.3: The process of spike encoding. After encoding, the original 12 channels of sEMG
signals are encoded to 48 channels of spike trains.

tion performance. For each subject, the training and testing sets were shuffled and split by
a 4:1 ratio. The classification accuracy and standard deviation were obtained by averaging
over all 40 subjects included in Ninapro DB2.

5.2.2 Spike encoding

Encoding the raw sEMG into spike trains is a crucial step in terms of performing spike-based
gesture classification. The spike sequences should convey as much intrinsic information about
muscle activity included in the raw sEMG signals as possible during the encoding process. In-
spired by how mammalian cochlea process auditory signals, we adopted an event-based encod-
ing scheme in our project that exploits the raw sEMG signals to four different frequency bands
and encodes the extracted signals in each frequency band to spike trains by LIF neurons based
on the energy of the frequencies [166, 168]. Since in this work we performed a classification
task, the spike encoding is slightly different. The detailed encoding strategy is explained below
and a flow chart of this process is illustrated in Fig. 5.3.

1. Bandpass Filtering: Each channel of the raw sEMG signals is filtered by a four 4th-
order Butterworth bandpass filter. According to the Nyquist-Shannon Sampling Theorem,
the sampling frequency should be twice the highest frequency component of the signal to
avoid aliasing as defined in equation (5.2):

fsampling ≥ 2 fmax (5.2)

As the sampling frequency for NinaPro DB2 is fsampling = 2kHz, the max cutoff frequency
for the frequency bands should be fmax = 1kHz. Besides, the energy of sEMG signals is
mainly concentrated within the frequency range of 10 to 500Hz [170]. In this case, we
split the (0,1 kHz) band into 4 frequency bands, denoted by the logarithmic-distributed
cutoff frequencies presented in equation (5.3).

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 65

fcuto f f = {0,100,250,500,1000}Hz (5.3)

The 12 channels of raw sEMG signals will be expanded to 48 channels accordingly.

2. Full-wave rectifying: The injected currents in LIF neurons are required to be positive,
therefore, a full-wave rectifier is applied to keep all components positive.

3. Genereating spikes through LIF neurons: The LIF neuron is a simplified model used
to describe the electrical characteristics of a biological neuron. The dynamics of the LIF
neuron is governed by the following differential equation (5.4):

dVmem(t)
dt

=
−(Vmem(t)−Vrest)

τ
+

Iin(t)
Cm

(5.4)

where τ is the time constant for membrane relaxation time, Vmem(t) is the membrane
potential at time t, Vrest is the baseline membrane potential when the neuron is inactive,
Iin(t) is the injected current that drives the membrane potential and Cm is the membrane
capacitance. Sout(t)∈ {0,1} is the output spike train generated by the neuron. The neuron
will fire a spike (Sout(t) = 1) when the membrane potential Vmem(t) exceeds the threshold
Vthr and it is reset to Vreset . Otherwise, the reset term will not be applied (Sout(t) = 0).
This process can be denoted by equations (5.5) and (5.6):

Sout(t) =

1,V (t)≥Vthr

0,otherwise
(5.5)

V (t) =Vreset ,whenSout(t) = 1 (5.6)

In this work, a set of 48 LIF neurons is employed to convert the 48 channels of processed sEMG
signals to 48 channels of spike trains. Examples of encoded spike trains for 3 gestures all from
electrode 1 are demonstrated in Fig. 5.2. The parameters in each of the LIF neurons were fine-
tuned to keep the spike firing rate of each channel under 300 Hz. As the spike trains include
precise timing of spikes, higher firing rate could result in saturated neurons which may blur the
distinction between significant temporal patterns and lose valuable information. The selection of
300 Hz as the maximum spike firing rate was considered to prevent the network from reaching
saturation and causing performance degradation. Each subject shares the same parameters in
terms of spike encoding.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 66

Figure 5.4: The description of reservoir topologies. The weights of input masks is represented
by different colors, dash types and line thicknesses. (a) A classical reservoir topology. The input
weight mask Win is fixed and random from a uniform distribution [-1,1]. In addition, the connec-
tions among neurons are also fixed and random. (b)&(c) An RNR topology. A 3D description
in (b) and a 2D sketch expanded by time in (c). The connections of the input-to-reservoir layer
and reservoir-to-output layer are circularly shifted at each time step. (b) exhibits a binary input
mask, randomly selected numbers from {-1,1} in conventional eRNR. (c) demonstrates a binary
input mask {0,1} in a three-neuron sRNR topology proposed in our work that incorporates spike
trains as inputs. The resulting outputs are also spike trains.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 67

5.3 Network design

5.3.1 Network description

A reservoir computing network, as a subset of RNNs, is particularly suitable for temporal signal
processing due to the recurrent connections among its neurons [22, 36]. The reservoir projects
the inputs to a higher dimension by a set of randomly inter-connected recurrent neurons and
generates rich dynamics in the high-dimensional feature space that facilitates linear separabil-
ity. The values of weights and connections among neurons in the reservoir are fixed, and only
the output layer requires training. Compared with other deep RNNs which require weight up-
dates in every layer with careful selection of learning parameters, the training cost for reservoir
computing is lower.

As wearable devices have a strong demand for low-power time series processing, the PRC frame-
work was proposed to meet edge computing requirements that incorporate information process-
ing near sensors or into sensors and reduce adaption delay caused by data transmission [11].
In our study, we conducted a gesture recognition task, with a preference for processing data
proximate to the terminal device that generates it to minimize the need for data transmission to
a centralized server, thereby saving computational overhead and decreasing bandwidth usage.
Moreover, local data processing mitigates the risk of potential privacy breaches, which is partic-
ularly critical in applications involving sensitive patient information. Consequently, we selected
a PRC architecture called RNR to execute the gesture classification task.

In the classical reservoir topology, the weights and connections among neurons are, although
fixed, both randomly generated as shown in Fig. 5.4(a), making it hard to implement by hardware
components directly. Nevertheless, a simplified cyclic topology was proposed to minimize the
complexity of the reservoir without degrading the performance [14]. In this structure, the units
are organized in a ring topology, and nonzeros elements in reservoir weight matrix W are on the
Wi,i+1 = 1 and W1,N = 1, described by the matrix in equation (1.1).

This simplified topology was later realized by electronic circuits using rotating elements (ana-
log multiplexers) and known as eRNR [15]. The topology of theRNR is demonstrated in
Fig. 5.4(b). The connections of the input-to-reservoir layer and reservoir-to-output layer are
circularly shifted at each time step. A sketch of the working principle of this circular shift pro-
cedure expanded by time is demonstrated in Fig. 5.4(c). The impact of this rotating procedure
on the inputs is mathematically the same as the weight matrix W in equation (1.1) [15]. The
authors conducted comparisons between the RNR structure and the single node with delayed
feedback structure [29], the latter being another widely utilized topology in PRC, and claim
advantages mainly in terms of (i) lower hardware components costs without ADCs, (ii) parallel
operation decrease system complexity and latency while the delayed feedback line operates in a

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 68

serial manner, (iii) capable for large-scale integration.

Based on the description of RNR above, we implement it in an SNN architecture, and a sketch
of the working principle of this sRNR is illustrated in Fig. 5.3(c).

There are three layers in a typical reservoir computing paradigm: an input layer, a reservoir layer,
and a readout layer. As mentioned above, the structure of the input is fixed and the reservoir layer
is predetermined to rotate periodically at the initialization stage, only the readout layer requires
training. Typically, a prevalent way for solving classification tasks using RC-related network re-
lies on linear model trained by convex optimization technique like ridge regression, and using a
WTA algorithm to determine the corresponding target class that exceeds a certain threshold [15,
16, 18]. Despite their exceptional training speed, multivariate time series classifiers utilizing
a standard RC architecture with linear regression fail to attain the accuracy levels achieved by
fully trainable neural networks. With the increase of target classes, such as the gesture recog-
nition task in our work that involves 50 distinct gestures, nonlinear methods could demonstrate
superior performance. However, the high-dimension and high-precision reservoir states prevent
the use of standard nonlinear classifiers being applied on the readout layer, while some dimen-
sion reduction procedures on the reservoir states were proposed to apply nonlinear classifiers on
the readout layer [19]. In contrast, we implemented the reservoir in the low-precision spiking
domain in this work, solving the challenge of using nonlinear classifiers. Two distinct classifiers
were utilized: the SVM classifier and a delta learning rule with Softmax activation.

The detailed design of the input and reservoir layers will be introduced as follows and the train-
ing of the readout layer will be covered in Section 5.3.2.

1. Input layer: The input layer incorporates an input masking procedure that interfaces the
input spike trains with the reservoir layer given by equation (5.7), targeting at increasing
state richness [12]:

SpkN×L
M (t) =W N×1

in ⊗Spk(t)1×L (5.7)

where Spk(t) denotes the input spike trains, Win denotes the input mask matrix, SpkM(t)

denotes the masked spike trains, N is the reservoir size (N neurons in the reservoir), and
L is the length of the spike train. The masking matrix Win usually contains randomly
selected numbers from a uniform distribution of [-1,1] or randomly chosen binary weights
{-1,1} in classical RC and eRNR frameworks respectively as indicated in Fig. 5.4(a) and
5.3(b). And the 1 and -1 denote the positive/negative signal source in eRNR. However, as
a spike-based framework proposed in our work, these choices may not be compatible with
the network, as negative and floating point numbers should be avoided to add additional
hardware costs. At the same time, a sparse connection to establish connection probabilities

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 69

Figure 5.5: Each 10-neuron reservoir processes an input spike train. The parallel reservoirs
project the input spike trains to a higher dimension (from 48 to 480).

might be useful in SNN [171]. Taking the two factors into account, we finally chose the
binary mask {0,1} as shown in Fig. 5.4(c). When 0 is applied, it indicates an absence of
connection between the input and the LIF neuron. Otherwise, it exerts no effect on the
connection between the input and LIF neuron at that time step.

2. Reservoir layer: The major difference between sRNR and eRNR lies in the dynamic neu-
rons in the reservoirs. Fig. 1.3 provides insights into the circuit for the two neuron mod-
els. In eRNR, the neuron is a nonlinear integration-ReLU-Leakage circuit that performs
two important functions: nonlinearity and dynamics. While the nonlinearity is realized by
diodes which have similar characteristics with the ReLU activation function and dynamics
are provided by the leaky and integrate circuit. However, in sRNR, the dynamic neuron is
a biologically plausible LIF model. It also has integration and leakage characteristics, but
different from a nonlinear activation for a continuous analog signal, the neuron receives
spikes as inputs and also generates dynamics in the term of spikes. The neuron model we
used in our project is called the Lapicque LIF neuron model provided by the simulator
SNNtorch [33, 131]. The dynamics in a LIF neuron can be quantified by an ODE given in
equation (2.1) which provides a discrete and recurrent representation.

This model coarsely represents a low-pass filter circuit of a resistor R and a capacitor
C. The parameter setting is presented in Table 5.1. The working principle is the same as
discussed in Section 5.2.2. The neuron will fire a spike when the membrane potential Vmem

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 70

Table 5.1: Parameter settings for LIF neuron.

Resistance (R) Capacitance (C) Time step Threshold
5 3×10−3 1×10−3 0.5V

Figure 5.6: The effect of network size on the classification accuracy of a representative subject
by performing exercise B (17 gestures).

exceeds the threshold Vthr. Instead of collecting the continuous internal states as shown in
Fig. 1.3(a), we collected the output spikes for training sRNR.

The spike trains are injected into the reservoir layer to generate transient dynamics that
will be collected for training. There are 48 spike trains and each of the spike trains is
injected into a 10-neuron reservoir to form a parallel structure as shown in Fig. 5.5. The
reason for this is that the simulation time for large reservoirs will be extensive and long,
a parallel structure allows for neurons states to be computed simultaneously and speeding
up the computation times [44]. The size of 10 was chosen by conducting experiments on
a subset of the gestures, as shown in Fig. 5.6. The accuracy does not necessarily increase
with a larger network size, therefore, a size of 10 was chosen by considering the tradeoff
between accuracy and computation cost.

According to the reservoir structure, output spikes have a dimension of 480. An example of
input spike trains and output spike trains is shown in Fig. 5.7.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 71

Figure 5.7: Two examples of input spike patterns (left) and output spike patterns (right).

5.3.2 Readout and classification

After the generated output spikes are collected, they will undergo training for classification. As
discussed in Section 5.3.1, the training takes place in the readout layer only. In this chapter,
two different supervised classification algorithms were adopted to train the readout layer: a
SVM classifier and a delta rule as the learning rule for the single-layer neural network. The
SVM classifier is utilized as a baseline to assess the performance of the network and optimize
parameters related to spike-encoding and the dynamics generated by reservoirs. Subsequently,
a delta rule is applied as it could be fully spiking, offering the potential for implementation on
neuromorphic chips which has been investigated by several research [57, 172, 173].

The feature vectors sent to classification consisted of spike counts in a time duration, which
refers to a count and binned kernel [128]. In this case, the spiking information is transformed
into natural numbers.

SVM is a supervised machine learning algorithm used for classification tasks which works by
finding hyperplanes that best separate the dataset. In the SVM algorithm, we split the training

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 72

and testing sets in a 4:1 ratio, and the samples for training were shuffled. In addition, the results
were cross-validated over 5 different combinations of training and testing sets to evaluate the
performance of classification.

Delta rule is a foundational learning rule typically applied in the training of a single-layer neural
network. The rule adjusts the weights (w) of the inputs feature (x) based on the difference
between the expected output (y) and the actual output (ŷ) to reduce the error in predictions:

∆w = α(y− ŷ)x (5.8)

where ∆w is the weight change and α is the learning rate.

Since it is a multi-class classification task, we applied Softmax activation in the output layer. It
converts the linear outputs into probabilities that sum up to 1. The prediction is made by finding
the maximum softmax scores (probability). The process is denoted by the following equations:

P(y = i) =
ezi

∑
k−1
j=0 ez j

, i ∈ {0, ...,k−1} (5.9)

ŷ = max(P(y = i), i = 0, ...,k−1) (5.10)

where P(y = i) is the output probability for the i-th class, zi is the i-th element in the input vector
z and ŷ is the predicted output class. The cross-entropy (CE) loss is computed at each epoch as
the cost function to evaluate how well the model’s predictions align with the actual target values.

5.4 Analysis and results

In this section, we presented a t-distributed stochastic neighbor embedding (t-SNE) technique
which assists in revealing clusters and patterns in the data. Also, we compared the performance
by applying different training algorithms. Furthermore, we compared our method with state-of-
the-art gesture recognition using sEMG signals from Ninapro databases.

5.4.1 t-SNE

As introduced in previous sections, the reservoir projects the inputs to a higher dimensional
feature space to facilitate linear separability. Therefore, to visualize the linear separability, we
performed a t-SNE analysis on the input layer (pre-reservoir) and output layer (post-reservoir) to
observe clusters and patterns inside the data. The t-SNE was applied separately to exercises B,
C, and D described in Ninapro DB2, as visualizing all gestures in the same plot would result in

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 73

Figure 5.8: Two-dimensional t-SNE projections applied on the input layer (pre-reservoir) and
output layer (post-reservoir) for Exercises B, C, and D separately in a representative subject.
Linear separability is enhanced and observed by more closely clustered patterns following the
reservoir layer, where the data are projected into a higher-dimensional feature space.

indistinguishable colour discrimination. According to the demonstration in Fig. 5.8, projecting
the data to a higher-dimensional space facilitates separability since data points belonging to the
same class form more closely clustered groups.

5.4.2 SVM for classification

SVMs apply kernel functions to map the data into a higher-dimensional space where data are
linearly separable. In this work, we applied both a linear kernel and an radial basis function
(RBF) kernel to distinguish all 50 gestures included in Ninapro DB2 and obtained accuracy
of 74.6%± 6.3% and 65.2%± 7.4% on the testing sets respectively. Applying a linear kernel
achieved around 10% higher accuracy. This improvement can be attributed to the fact that a
linear kernel does not perform any transformation on the data, making it well-suited for data
that is already linearly separable. In contrast, the RBF kernel, as a nonlinear kernel, projects
the data to an infinite-dimensional space which is often used for nonlinear problems. Since
the reservoir layer in our proposed method already performs the higher-dimensional mapping
which facilitates linear separability, a linear kernel could demonstrate superior classification
performance.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 74

Figure 5.9: The accuracies for testing sets using SVM (both linear kernel and RBF kernel)
and delta learning rule with softmax classifier, respectively. Results were averaged over all the
subjects with average and standard deviation reported in the bar chart.

Figure 5.10: Observed classification accuracies on training sets and testing sets for subject 1,
subject 30 and subject 37 through 200 epochs of training.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 75

Figure 5.11: Confusion matrix for classifying 50 gestures on the testing set for all subjects.

5.4.3 Delta learning rule for classification

Using the learning rule explained in Section 5.3.2, we applied it to classify all 50 gestures by
setting the learning rate to 0.005 and batch size to 1. The loss for each subject converges to
below 0.2 after 50 epochs of training and achieves a maximum classification accuracy of 94.6%
on the training set and 80.3% on the testing set after 200 epochs of training by averaging over
the 40 subjects. Taking the obtained classification accuracy by SVM classifiers as a baseline,
we compared the performance of different algorithms as reported in Fig. 5.9. Delta learning
rule by applying softmax classifier shows a slightly higher classification accuracy. In addition,
Fig. 5.10 illustrates the observed accuracies on training and testing sets through training for
three representative subjects and a confusion matrix to illustrate the performance of classifying
50 gestures by averaging all subjects on the testing sets using the delta rule.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 76

In addition to the evaluation of classification accuracy, we also assess the model performance
based on Positive Predictivity (PP), Sp, Se and F1 score. These metrics can be calculated by
using the values of TP, TN, FP and FN. Se, also known as recall, is the ability to correctly
identify all positive instances of a class, defined by equation (4.5).

Sp presents the ability of a classifier to correctly identify all negative instances of a class, defined
by equation (4.6).

PP, also known as precision, is the proportion of predicted positives that are actually positive,
defined by equation (4.7).

F1 score is the combined assessment of precision and sensitivity, defined by equation (4.8).

The detailed statistical results of the metrics in percentage mentioned above for each subject are
shown in Table 5.2, with an overall accuracy of 80.3%, PP of 80.1%, Sp of 99.6%, Se of 77.2%
and F1 score of 78.9%.

5.4.4 Comparison with the state-of-the-art

In recent years, significant advancements have been made in the field of sEMG-based gesture
recognition, particularly with the development of state-of-the-art methods such as deep learning
algorithms. These approaches have demonstrated notable improvements in classification accu-
racy. Before deep learning, conventional machine learning algorithms relied on feature extrac-
tion in the pre-processing stage. A common machine learning technique selected five feature
sets consisting of root mean square (RMS), Time-Domain (TD) statistics, histogram (HIST),
marginal Discrete Wavelet Transform (mDWT) and the normalized combination of all above,
and achieved an overall classification accuracy of 75.3% using RF to classify all 50 gestures
in the Ninapro DB2 dataset [105]. In contrast, DNNs can automatically learn from data to
extract features while maintaining a high classification accuracy. For example, a multi-view
convolutional neural network (CNN) method achieved an overall accuracy of 83.7% in classi-
fying all 50 gestures included in Ninapro DB2 while another Auto-Labelling-Refining (ALR)
CNN method achieved an overall accuracy of 87.9% in classifying 41 gestures in Ninapro DB2
(all gestures included in exercise B and C) [155, 156]. However, DNN-related methods usu-
ally bring increased computational costs, making them unsuitable for the lightweight algorithm
requirement of edge devices. In addition, continuous monitoring the muscle activities through
wearable devices could generate massive sEMG data, resulting in an information bottleneck that
challenges data transfer and subsequent post-precessing.

Neuromorphic-based approaches were studied to solve these challenges by bringing analogue
and continuous sEMG signals to the discrete spiking domain in an event-driven mode. Such
methods can process data on the sensor side with reduced computational overhead and latency,

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 77

Table 5.2: The results of statistical analysis.

Subject No. Acc (%) PP (%) Sp (%) Se (%) F1 (%)
1 84.6 85.3 99.6 80.1 81.5
2 80.8 79.3 99.6 77.5 80.0
3 85.8 84.3 99.7 81.5 80.0
4 80.4 80.5 99.6 77.7 79.1
5 83.7 85.7 99.6 82.2 83.8
6 82.1 82.4 99.7 81.0 82.1
7 80.4 77.4 99.5 75.3 77.0
8 79.6 80.8 99.6 78.4 80.1
9 87.1 83.8 99.7 81.5 83.2
10 81.7 77.7 99.6 76.4 79.5
11 80.4 77.0 99.6 74.8 77.4
12 63.8 62.1 99.2 57.7 59.3
13 79.2 81.3 99.6 78.9 79.7
14 73.8 74.2 99.4 70.8 72.4
15 85.4 87.2 99.7 85.0 86.0
16 68.3 63.0 99.3 61.9 64.8
17 87.9 87.6 99.7 83.6 85.3
18 72.9 73.0 99.4 69.8 72.3
19 89.2 88.6 99.8 87.8 89.1
20 71.6 74.6 99.4 72.3 73.3
21 71.7 75.5 99.5 72.5 75.9
22 84.2 83.9 99.7 83.3 84.9
23 91.3 91.3 99.8 89.8 90.8
24 83.8 82.8 99.7 81.4 82.3
25 82.1 77.1 99.5 74.6 76.6
26 82.1 83.1 99.6 79.6 80.9
27 65.8 62.0 99.2 60.1 64.1
28 78.8 77.6 99.5 74.5 76.8
29 77.9 81.4 99.5 76.9 79.0
30 85.4 82.9 99.7 81.6 83.2
31 72.1 76.6 99.4 70.1 71.2
32 86.7 87.4 99.7 84.0 84.3
33 88.3 89.3 99.7 86.8 87.7
34 81.7 78.2 99.6 76.1 78.5
35 86.7 86.5 99.7 83.5 84.1
36 77.1 81.3 99.5 77.4 78.5
37 80.8 79.9 99.5 75.8 77.9
38 82.5 79.3 99.5 76.4 79.2
39 77.9 79.7 99.5 76.9 78.9
40 78.3 81.3 99.5 73.0 74.6

overall 80.3 80.1 99.6 77.2 78.9

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 78

providing a new solution to wearable devices. Nevertheless, a significant degradation in classi-
fication performance arises in SNN-based methods. An accuracy of only 57.2% was obtained
in classifying a subset of 8 selected gestures in Ninapro DB2 by applying a spiking RNN with
a STDP learning rule [82]. In addition, the same network was deployed on a configurable neu-
romorphic chip and achieved a classification accuracy of 55.9%, only a small reduction com-
pared with the software simulation result. An improvement to 74.0% was made by applying
a spiking fully connected layer (sFCN) to classify a subset of 13 gestures in Ninapro DB5,
also implemented on a neuromorphic chip [163]. However, the results remain less competitive
than state-of-the-art machine learning algorithms. In our work, we adopted a novel event-based
spike encoding scheme for sEMG signals and proposed an sRNR which attempted the fusion
of PRC and SNN for the first time and achieved an overall accuracy of 80.3% by applying a
delta learning rule and softmax classifier in classifying all 50 gestures in Ninapro DB2, with
fewer parameters monitoring in training a single-layer readout. This marks a significant im-
provement over the existing state-of-the-art in terms of sEMG-based gesture recognition in the
SNN domain. Although this work is not implemented on a similar neuromorphic chip since
the changing connections, as described in Section 5.3.1, are not compatible with neuromorphic
chips which require initialization of network topologies during the startup phase, it still paves
way to the integration into chip level with dedicated hardware design for future research. A
summary of the comparison of the state-of-the-art is demonstrated in Table 5.3.

5.5 Discussion and Conclusion

In this chapter, a novel sEMG-based gesture recognition framework by implementing a PRC
topology within an SNN architecture was introduced, alongside an innovative event-based spik-
ing encoding strategy for the sEMG signals. We performed a thorough investigation into the pro-
posed approach by a t-SNE visualization of internal network activity and two different classifiers
to evaluate the classification performance. The results indicate that our approach significantly
outperforms existing SNN-based methods for the large-scale public dataset with higher classi-
fication accuracy, and at the same time, has a lower training cost compared with deep learning
algorithms. Although this work focuses on sEMG signals, the modular and event-driven nature
of the proposed sRNR architecture is compatible with other bio-signals such as EEG and ECG,
provided a suitable spike encoding layer. The reservoir can be reused with minimal changes,
enabling cross-domain generalization. Statistical evaluations demonstrate that our proposed so-
lution pipelines a new insight into processing real-time signals at the edge for wearable devices,
promising compact and lightweight electronic systems for temporal signal processing in wear-
able devices. While this experiment is based on collected and processed data, a real-time latency
evaluation could be retained for future real-world applications.

CHAPTER 5. EVENT-DRIVEN RNR FOR SEMG-BASED GESTURE RECOGNITION 79

Ta
bl

e
5.

3:
C

om
pa

ri
so

n
of

re
ce

nt
re

se
ar

ch
fo

un
d

in
th

e
lit

er
at

ur
e

us
in

g
sE

M
G

-b
as

ed
ge

st
ur

e
re

co
gn

iti
on

.

W
or

k
A

pp
ro

ac
h

Fe
at

ur
e

ex
tr

ac
tio

n
D

em
on

st
ra

tio
n

D
N

N
D

at
ab

as
e

N
o.

of
G

es
tu

re
s

to
be

cl
as

si
fie

d
A

cc
ur

ac
y(

%
)

A
tz

or
ie

t
al

.[
10

5]
R

F
Y

es
So

ft
w

ar
e

N
o

N
in

ap
ro

D
B

2
50

75
.3

Fa
ta

ye
re

t
al

.[
15

6]
A

L
R

-C
N

N
N

o
So

ft
w

ar
e

Y
es

N
in

ap
ro

D
B

2
41

87
.9

W
ei

et
al

.[
15

5]
M

ul
ti-

vi
ew

C
N

N
N

o
So

ft
w

ar
e

Y
es

N
in

ap
ro

D
B

2
50

83
.7

V
ita

le
et

al
.[

16
3]

Sp
ik

in
g

FC
N

N
o

H
ar

dw
ar

e
Y

es
N

in
ap

ro
D

B
5

13
74

.0

M
a

et
al

.[
82

]S
pi

ki
ng

R
N

N
+

ST
D

P
N

o
So

ft
w

ar
e

N
o

N
in

ap
ro

D
B

2
8

57
.2

H
ar

dw
ar

e
55

.9

T
hi

sw
or

k
Sp

ik
in

g
R

N
R

N
o

So
ft

w
ar

e
N

o
N

in
ap

ro
D

B
2

50
80

.3

Chapter 6

Conclusions and Future Perspectives

6.1 Conclusions of this thesis

This thesis presents the vision of PRC for processing biomedical signals at the edge of wearable
devices, emphasizing its advantages in enabling real-time and low-latency applications. While
there is a growing interest in existing PRC systems for biomedical applications, the primary
focus of this thesis is the RNR framework and its applicability to various real-world biomedical
signal processing tasks. Current research predominantly centers on hardware implementation
platforms and is often validated through relatively simple tasks; however, the potential of PRC
for handling complex tasks within the domain of edge computing remains underexplored. This
thesis addresses this gap by introducing advancements in RNR design that bridge the gap be-
tween hardware and algorithmic efficiency, offering a compelling solution to traditional compu-
tational methods for tasks requiring real-time and adaptive signal processing.

Firstly, we systematically review a wide range of implementation paradigms of PRC systems,
classifying them according to distinct methodologies and their applications in biomedical signal
processing. Beyond examining reservoir implementation platforms, we also evaluate training
methodologies for various biomedical signal processing tasks, highlighting their crucial impact
on the performance of neuromorphic systems.

To comprehensively assess the effectiveness of RNR, the main objective of this thesis, in biomed-
ical signal processing tasks, the initial phase of this research investigated the feasibility of utiliz-
ing PRC as a predictive model for biomedical applications, along with parameter optimization
techniques. The findings, as detailed in Chapter 3, demonstrated low prediction errors, high-
lighting the potential of PRC in this domain.

However, real-world signal processing tasks present significantly greater complexities. While
neuromorphic signal processing currently underperforms compared to state-of-the-art DL algo-

80

CHAPTER 6. CONCLUSIONS AND FUTURE PERSPECTIVES 81

rithms and has been relatively underexplored in classification tasks, this study was extended
to investigate the application of PRC in a more complex biometric identification task based on
heart sounds collected from optical stethoscope. The intermediate phase of the research yielded
promising results, with a classification accuracy of 89% in identifying 12 subjects as reported in
Chapter 4.

A significant challenge emerged concerning the precision of high-resolution signal processing
when implemented in electronic circuits within PRC-based systems. This limitation not only
led to increased hardware costs associated with electronic components but also introduced scal-
ability issues due to the large network size. This challenge motivated the next phase of research,
which focused on developing a hybrid approach that integrates PRC with SNN. This combi-
nation facilitates the conversion of high-precision analog signals into a low-precision discrete
spiking domain, thereby reducing both hardware complexity and storage requirements. To ad-
dress this issue, an event-driven PRC framework was proposed and subsequently validated in the
final research phase. The proposed algorithm reports an overall classification accuracy of 80%
in recognizing 50 sEMG-based gestures, outperforming the existing SNN-based approaches.
Statistical evaluations demonstrate that the proposed solution offers a novel approach to real-
time signal processing at the edge for wearable devices, paving the way for compact, low-power
and low-latency electronic systems capable of handling temporal signal processing in wearable
technologies.

6.2 Future perspectives

As an emerging area, PRC holds significant promise in pioneering innovative solutions for wear-
able biomedical devices in the context of edge computing, by enabling computationally efficient
yet effective algorithms in resource-constrained environments. However, the practical applica-
tion of PRC systems in real-time biomedical signal processing presents a three-fold challenge,
requiring careful considerations of both software and hardware aspects, alongside biomedical
signal collections.

6.2.1 Algorithm

An efficient algorithm plays a crucial role in determining the overall performance of PRC sys-
tems. Regarding reservoir architecture, the deep reservoirs and wide reservoirs can be applied to
enhance state richness. While wide reservoirs, characterized by a parallel architecture, have been
utilized in PRC systems, further exploration of deep reservoir architectures presents a promising
direction for future research. Besides, the significance of training algorithms for the readout
layer is often underestimated in the current research. Traditionally, the readout layer employs
linear regression for training to evaluate the performance of PRC systems with simple bench-

CHAPTER 6. CONCLUSIONS AND FUTURE PERSPECTIVES 82

marks; however, when it comes to real-world biomedical signals, this approach is suboptimal for
handling complex classification tasks [19]. Further research into RC algorithms for effectively
training the readout layer in PRC-implemented biomedical applications is urgently required.
Leveraging insights from DNNs or incorporating biological learning rules from the domain of
SNN may provide novel approaches to enhance the performance of these systems [131, 147].

6.2.2 Hardware implementation

Hardware serves as a crucial part for the implementation paradigms of PRC. Although certain
large-scale neuromorphic systems offer a platform with reconfigurable network structures for
PRC and have demonstrated feasibility in biomedical applications, simplified hardware archi-
tectures, as illustrated in Fig. 2.2, present a promising opportunity for integration into CMOS
chip-level implementations with reduced hardware costs. Beyond conventional CMOS tech-
nology, emerging memory devices hold significant potential, enabling in-memory computing
solutions with ultra-low power consumption. However, challenges related to device reliability,
including D2D and C2C variability, must be addressed to ensure their practical deployment in
biomedical applications [12]. Photonics provide a faster computation speed, the energy con-
sumption is not optimal compared with other solutions, and a critical research question is the
alignment of timescales between the task and the reservoirs [135]. In addition to the implemen-
tation of the reservoir layer, the development of trainable circuits for the readout layer warrants
further research, as it provides support for on-chip learning [73, 134, 174].

6.2.3 Biomedical signals

Biomedical signals provide valuable insights into the physiological and pathological states of
the human body, however, they often exhibit noise, artifacts and subject-specific variability. It is
crucial to develop robust preprocessing and denoising techniques at the level of wearable sensors
to enhance signal quality and reliability [175]. Furthermore, in the context of SNNs-based
biomedical signal processing, signal-to-spike conversion methods play a fundamental role in the
representation of spiking information. The spike encoding scheme must effectively capture and
convey essential information from the original signals to ensure high accuracy and robustness
while maintaining compatibility with wearable sensor systems [167]. Traditional spike encoding
methods, such as rate encoding and temporal encoding, are widely utilized in SNNs, while the
delta modulation method exhibits good performance in biomedical circuits and systems [57,
82, 163]. In addition, a multi-frequency band spike conversion method inspired by cochlear
acoustic signal processing also achieved good performance in both biomedical signal regression
tasks and classification tasks in recent research [166, 168, 176]. It is promising to apply different
encoding schemes to multiple biomedical signals to evaluate the performance in future research.

References

[1] Erika Covi et al. “Adaptive extreme edge computing for wearable devices”. In: Frontiers

in Neuroscience 15 (2021), p. 611300.
[2] Albert Reuther et al. “AI accelerator survey and trends”. In: 2021 IEEE High Perfor-

mance Extreme Computing Conference (HPEC). IEEE. 2021, pp. 1–9.
[3] Paul J Werbos. “Backpropagation through time: what it does and how to do it”. In:

Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.
[4] Dennis V Christensen et al. “2022 roadmap on neuromorphic computing and engineer-

ing”. In: Neuromorphic Computing and Engineering 2.2 (2022), p. 022501.
[5] Carver Mead. “Neuromorphic electronic systems”. In: Proceedings of the IEEE 78.10

(1990), pp. 1629–1636.
[6] M Mitchell Waldrop. “The chips are down for Moore’s law”. In: Nature News 530.7589

(2016), p. 144.
[7] Catherine D Schuman et al. “A survey of neuromorphic computing and neural networks

in hardware”. In: arXiv preprint arXiv: 1705.06963 (2017).
[8] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL,

EKF and the echo state network approach. Vol. 5. 1. Citeseer, 2002.
[9] Wolfgang Maass, Thomas Natschläger, and Henry Markram. “Real-time computing

without stable states: A new framework for neural computation based on perturbations”.
In: Neural Computation 14.11 (2002), pp. 2531–2560.

[10] David Verstraeten et al. “An experimental unification of reservoir computing methods”.
In: Neural Networks 20.3 (2007), pp. 391–403.

[11] Kohei Nakajima. “Physical reservoir computing—an introductory perspective”. In: Japanese

Journal of Applied Physics 59.6 (2020), p. 060501.
[12] Xiangpeng Liang et al. “Physical reservoir computing with emerging electronics”. In:

Nature Electronics 7.3 (2024), pp. 193–206.
[13] Gouhei Tanaka et al. “Recent advances in physical reservoir computing: A review”. In:

Neural Networks 115 (2019), pp. 100–123.
[14] Ali Rodan and Peter Tino. “Minimum complexity echo state network”. In: IEEE Trans-

actions on Neural Networks 22.1 (2010), pp. 131–144.

83

REFERENCES 84

[15] Xiangpeng Liang et al. “Rotating neurons for all-analog implementation of cyclic reser-
voir computing”. In: Nature Communications 13.1 (2022), p. 1549.

[16] Xiangpeng Liang et al. “A neuromorphic model with delay-based reservoir for continu-
ous ventricular heartbeat detection”. In: IEEE Transactions on Biomedical Engineering

69.6 (2021), pp. 1837–1849.
[17] Xingxing Feng et al. “Human recognition with the optoelectronic reservoir-computing-

based micro-Doppler radar signal processing”. In: Applied Optics 61.19 (2022), pp. 5782–
5789.

[18] Yanan Zhong et al. “A memristor-based analogue reservoir computing system for real-
time and power-efficient signal processing”. In: Nature Electronics 5.10 (2022), pp. 672–
681.

[19] Filippo Maria Bianchi et al. “Reservoir computing approaches for representation and
classification of multivariate time series”. In: IEEE Transactions on Neural Networks

and Learning Systems 32.5 (2020), pp. 2169–2179.
[20] Jack D Kendall and Suhas Kumar. “The building blocks of a brain-inspired computer”.

In: Applied Physics Reviews 7.1 (2020).
[21] Amirhossein Tavanaei et al. “Deep learning in spiking neural networks”. In: Neural

Networks 111 (2019), pp. 47–63.
[22] Mantas Lukoševičius and Herbert Jaeger. “Reservoir computing approaches to recurrent

neural network training”. In: Computer Science Review 3.3 (2009), pp. 127–149.
[23] Min Yan et al. “Emerging opportunities and challenges for the future of reservoir com-

puting”. In: Nature Communications 15.1 (2024), p. 2056.
[24] Felix Christian Bauer, Dylan Richard Muir, and Giacomo Indiveri. “Real-time ultra-

low power ECG anomaly detection using an event-driven neuromorphic processor”. In:
IEEE Transactions on Biomedical Circuits and Systems 13.6 (2019), pp. 1575–1582.

[25] Silvia Ortín et al. “Automated real-time method for ventricular heartbeat classification”.
In: Computer Methods and Programs in Biomedicine 169 (2019), pp. 1–8.

[26] Sadman Sakib et al. “Noise-removal from spectrally-similar signals using reservoir com-
puting for MCG monitoring”. In: ICC 2021-IEEE International Conference on Commu-

nications. IEEE. 2021, pp. 1–6.
[27] Yuqi Ding et al. “MMG/EMG mapping with reservoir computing”. In: 2022 29th IEEE

International Conference on Electronics, Circuits and Systems (ICECS). IEEE. 2022,
pp. 1–4.

[28] Yuqi Ding et al. “A Physical Reservoir Computing Processor for ECG-to-PCG Signals
Prediction”. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE. 2024, pp. 1–5.

[29] Lennert Appeltant et al. “Information processing using a single dynamical node as com-
plex system”. In: Nature Communications 2.1 (2011), p. 468.

REFERENCES 85

[30] Lennert Appeltant et al. “Constructing optimized binary masks for reservoir computing
with delay systems”. In: Scientific Reports 4.1 (2014), p. 3629.

[31] Heshan Wang and Xuefeng Yan. “Improved simple deterministically constructed cycle
reservoir network with sensitive iterative pruning algorithm”. In: Neurocomputing 145
(2014), pp. 353–362.

[32] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. “Towards spike-based ma-
chine intelligence with neuromorphic computing”. In: Nature 575.7784 (2019), pp. 607–
617.

[33] Louis Édouard Lapicque. “Louis lapicque”. In: J. physiol 9 (1907), pp. 620–635.
[34] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in

nervous activity”. In: The Bulletin of Mathematical Biophysics 5 (1943), pp. 115–133.
[35] Herbert Jaeger. “The “echo state” approach to analysing and training recurrent neural

networks-with an erratum note”. In: Bonn, Germany: German National Research Center

for Information Technology GMD Technical Report 148.34 (2001), p. 13.
[36] Mantas Lukoševičius, Herbert Jaeger, and Benjamin Schrauwen. “Reservoir computing

trends”. In: KI-Künstliche Intelligenz 26 (2012), pp. 365–371.
[37] John Moon, Yuting Wu, and Wei D Lu. “Hierarchical architectures in reservoir comput-

ing systems”. In: Neuromorphic Computing and Engineering 1.1 (2021), p. 014006.
[38] Chenxi Sun et al. “A review of designs and applications of echo state networks”. In:

arXiv preprint arXiv: 2012.02974 (2020).
[39] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. “Deep reservoir computing: A

critical experimental analysis”. In: Neurocomputing 268 (2017), pp. 87–99.
[40] Claudio Gallicchio and Alessio Micheli. “Why layering in recurrent neural networks? a

DeepESN survey”. In: 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE. 2018, pp. 1–8.

[41] Shaohui Zhang et al. “Deep fuzzy echo state networks for machinery fault diagnosis”.
In: IEEE Transactions on Fuzzy Systems 28.7 (2019), pp. 1205–1218.

[42] Paolo Arena, Luca Patanè, and Angelo Giuseppe Spinosa. “Robust modelling of binary
decisions in Laplacian Eigenmaps-based Echo State Networks”. In: Engineering Appli-

cations of Artificial Intelligence 95 (2020), p. 103828.
[43] Ying-Chun Bo, Ping Wang, and Xin Zhang. “An asynchronously deep reservoir comput-

ing for predicting chaotic time series”. In: Applied Soft Computing 95 (2020), p. 106530.
[44] Kristof Vandoorne et al. “Parallel reservoir computing using optical amplifiers”. In:

IEEE Transactions on Neural Networks 22.9 (2011), pp. 1469–1481.
[45] Yanan Zhong et al. “Dynamic memristor-based reservoir computing for high-efficiency

temporal signal processing”. In: Nature Communications 12.1 (2021), p. 408.

REFERENCES 86

[46] Xiangpeng Liang et al. “A Physical Reservoir Computing Model Based on Volatile
Memristor for Temporal Signal Processing”. In: 2022 29th IEEE International Con-

ference on Electronics, Circuits and Systems (ICECS). IEEE. 2022, pp. 1–4.
[47] Chrisantha Fernando and Sampsa Sojakka. “Pattern recognition in a bucket”. In: Euro-

pean Conference on Artificial Life. Springer. 2003, pp. 588–597.
[48] Kensuke Ikeda and Kenji Matsumoto. “High-dimensional chaotic behavior in systems

with time-delayed feedback”. In: Physica D: Nonlinear Phenomena 29.1-2 (1987), pp. 223–
235.

[49] S Lepri et al. “High-dimensional chaos in delayed dynamical systems”. In: Physica D:

Nonlinear Phenomena 70.3 (1994), pp. 235–249.
[50] Dan A Allwood et al. “A perspective on physical reservoir computing with nanomag-

netic devices”. In: Applied Physics Letters 122.4 (2023), p. 040501.
[51] Susan Stepney. “Physical reservoir computing: a tutorial”. In: Natural Computing (2024),

pp. 1–21.
[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in Neural Information Processing

Systems 25 (2012).
[53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553

(2015), pp. 436–444.
[54] Dhireesha Kudithipudi et al. “Neuromorphic computing at scale”. In: Nature 637.8047

(2025), pp. 801–812.
[55] Sanjeev Tannirkulam Chandrasekaran et al. “Toward real-time, at-home patient health

monitoring using reservoir computing CMOS IC”. In: IEEE Journal on Emerging and

Selected Topics in Circuits and Systems 11.4 (2021), pp. 829–839.
[56] Miquel L Alomar et al. “Efficient parallel implementation of reservoir computing sys-

tems”. In: Neural Computing and Applications 32 (2020), pp. 2299–2313.
[57] Elisa Donati et al. “Discrimination of EMG signals using a neuromorphic implementa-

tion of a spiking neural network”. In: IEEE Transactions on Biomedical Circuits and

Systems 13.5 (2019), pp. 795–803.
[58] Ramashish Gaurav, Terrence C Stewart, and Yang Cindy Yi. “Spiking reservoir com-

puting for temporal edge intelligence on loihi”. In: 2022 IEEE/ACM 7th Symposium on

Edge Computing (SEC). IEEE. 2022, pp. 526–530.
[59] Jan Behrenbeck et al. “Classification and regression of spatio-temporal signals using

NeuCube and its realization on SpiNNaker neuromorphic hardware”. In: Journal of Neu-

ral Engineering 16.2 (2019), p. 026014.
[60] Daniel Brunner, Miguel Cornelles Soriano, and Ingo Fischer. “High-speed optical vector

and matrix operations using a semiconductor laser”. In: IEEE Photonics Technology

Letters 25.17 (2013), pp. 1680–1683.

REFERENCES 87

[61] A Namajūnas, K Pyragas, and A Tamaševičius. “An electronic analog of the Mackey-
Glass system”. In: Physics Letters A 201.1 (1995), pp. 42–46.

[62] Miguel C Soriano et al. “Delay-based reservoir computing: noise effects in a combined
analog and digital implementation”. In: IEEE Transactions on Neural Networks and

Learning Systems 26.2 (2014), pp. 388–393.
[63] Peter Petre and Jose Cruz-Albrecht. “Neuromorphic mixed-signal circuitry for asyn-

chronous pulse processing”. In: 2016 IEEE International Conference on Rebooting Com-

puting (ICRC). IEEE. 2016, pp. 1–4.
[64] Chenyuan Zhao et al. “Novel spike based reservoir node design with high performance

spike delay loop”. In: Proceedings of the 3rd ACM International Conference on Nanoscale

Computing and Communication. 2016, pp. 1–5.
[65] Jialing Li et al. “Analog hardware implementation of spike-based delayed feedback

reservoir computing system”. In: 2017 International Joint Conference on Neural Net-

works (IJCNN). IEEE. 2017, pp. 3439–3446.
[66] David Verstraeten, Benjamin Schrauwen, and Dirk Stroobandt. “Reservoir computing

with stochastic bitstream neurons”. In: Proceedings of the 16th Annual Prorisc Work-

shop. Citeseer. 2005, pp. 454–459.
[67] Amos R Omondi. FPGA implementations of neural networks. Springer, 2006.
[68] Piotr Antonik et al. “FPGA implementation of reservoir computing with online learn-

ing”. In: 24th Belgian-Dutch Conference on Machine Learning. 2015, p. 99.
[69] Miquel L Alomar et al. “Digital implementation of a single dynamical node reservoir

computer”. In: IEEE Transactions on Circuits and Systems II: Express Briefs 62.10
(2015), pp. 977–981.

[70] Bogdan Penkovsky, Laurent Larger, and Daniel Brunner. “Efficient design of hardware-
enabled reservoir computing in FPGAs”. In: Journal of Applied Physics 124.16 (2018),
p. 162101.

[71] Chunxiao Lin, Yibin Liang, and Yang Yi. “Fpga-based reservoir computing with opti-
mized reservoir node architecture”. In: 2022 23rd International Symposium on Quality

Electronic Design (ISQED). IEEE. 2022, pp. 1–6.
[72] Aya N Elbedwehy et al. “FPGA-based reservoir computing system for ECG denoising”.

In: Microprocessors and Microsystems 91 (2022), p. 104549.
[73] Cong Shi et al. “Ghost Reservoir: A Memory-Efficient Low-Power and Real-Time Neu-

romorphic Processor of Liquid State Machine With On-Chip Learning”. In: IEEE Trans-

actions on Circuits and Systems II: Express Briefs 71.10 (2024), pp. 4526–4530.
[74] Steve B Furber et al. “The spinnaker project”. In: Proceedings of the IEEE 102.5 (2014),

pp. 652–665.
[75] Alberto Patiño-Saucedo et al. “Liquid state machine on spinnaker for spatio-temporal

classification tasks”. In: Frontiers in Neuroscience 16 (2022), p. 819063.

REFERENCES 88

[76] Oscar I Alvarez-Canchila et al. “Optimizing Reservoir Separability in Liquid State Ma-
chines for Spatio-Temporal Classification in Neuromorphic Hardware”. In: Journal of

Low Power Electronics and Applications 15.1 (2025), p. 4.
[77] Filipp Akopyan et al. “Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip”. In: IEEE Transactions on Computer-aided Design

of Integrated Circuits and Systems 34.10 (2015), pp. 1537–1557.
[78] Mike Davies et al. “Loihi: A neuromorphic manycore processor with on-chip learning”.

In: IEEE Micro 38.1 (2018), pp. 82–99.
[79] Ramashish Gaurav, Terrence C Stewart, and Yang Yi. “Reservoir based spiking models

for univariate Time Series Classification”. In: Frontiers in Computational Neuroscience

17 (2023), p. 1148284.
[80] Denis Kleyko et al. “Principled neuromorphic reservoir computing”. In: Nature Com-

munications 16.1 (2025), p. 640.
[81] Saber Moradi et al. “A scalable multicore architecture with heterogeneous memory

structures for dynamic neuromorphic asynchronous processors (DYNAPs)”. In: IEEE

Transactions on Biomedical Circuits and Systems 12.1 (2017), pp. 106–122.
[82] Yongqiang Ma et al. “EMG-based gestures classification using a mixed-signal neuro-

morphic processing system”. In: IEEE Journal on Emerging and Selected Topics in Cir-

cuits and Systems 10.4 (2020), pp. 578–587.
[83] Ole Richter et al. “DYNAP-SE2: a scalable multi-core dynamic neuromorphic asyn-

chronous spiking neural network processor”. In: Neuromorphic Computing and Engi-

neering 4.1 (2024), p. 014003.
[84] Sung Hyun Jo et al. “Nanoscale memristor device as synapse in neuromorphic systems”.

In: Nano Letters 10.4 (2010), pp. 1297–1301.
[85] Chao Du et al. “Reservoir computing using dynamic memristors for temporal informa-

tion processing”. In: Nature Communications 8.1 (2017), p. 2204.
[86] John Moon et al. “Temporal data classification and forecasting using a memristor-based

reservoir computing system”. In: Nature Electronics 2.10 (2019), pp. 480–487.
[87] Kristof Vandoorne et al. “Toward optical signal processing using photonic reservoir

computing”. In: Optics Express 16.15 (2008), pp. 11182–11192.
[88] Guy Van der Sande, Daniel Brunner, and Miguel C Soriano. “Advances in photonic

reservoir computing”. In: Nanophotonics 6.3 (2017), pp. 561–576.
[89] S Abreu et al. “A photonics perspective on computing with physical substrates”. In:

Reviews in Physics (2024), p. 100093.
[90] Yvan Paquot et al. “Optoelectronic reservoir computing”. In: Scientific Reports 2.1

(2012), p. 287.
[91] Kristof Vandoorne et al. “Experimental demonstration of reservoir computing on a sili-

con photonics chip”. In: Nature Communications 5.1 (2014), p. 3541.

REFERENCES 89

[92] Daniel Brunner and Ingo Fischer. “Reconfigurable semiconductor laser networks based
on diffractive coupling”. In: Optics Letters 40.16 (2015), pp. 3854–3857.

[93] A Hurtado et al. “Investigation of vertical cavity surface emitting laser dynamics for
neuromorphic photonic systems”. In: Applied Physics Letters 100.10 (2012), p. 103703.

[94] Laurent Larger et al. “Photonic information processing beyond Turing: an optoelectronic
implementation of reservoir computing”. In: Optics Express 20.3 (2012), pp. 3241–
3249.

[95] François Duport et al. “All-optical reservoir computing”. In: Optics Express 20.20 (2012),
pp. 22783–22795.

[96] Daniel Brunner et al. “Parallel photonic information processing at gigabyte per second
data rates using transient states”. In: Nature Communications 4.1 (2013), p. 1364.

[97] Ian Bauwens et al. “Use of a Simple Passive Hardware Mask to Replace the Digital
Masking Procedure in Photonic Delay-Based Reservoir Computing”. In: IEEE Journal

of Selected Topics in Quantum Electronics (2024), pp. 1–13.
[98] François Duport et al. “Fully analogue photonic reservoir computer”. In: Scientific Re-

ports 6.1 (2016), p. 22381.
[99] Lina Jaurigue and Kathy Lüdge. “Reducing reservoir computer hyperparameter depen-

dence by external timescale tailoring”. In: Neuromorphic Computing and Engineering

4.1 (2024), p. 014001.
[100] Kosuke Takano et al. “Compact reservoir computing with a photonic integrated circuit”.

In: Optics Express 26.22 (2018), pp. 29424–29439.
[101] George B Moody and Roger G Mark. “The impact of the MIT-BIH arrhythmia database”.

In: IEEE Engineering in Medicine and Biology Magazine 20.3 (2001), pp. 45–50.
[102] Gari D Clifford et al. “Classification of normal/abnormal heart sound recordings: The

PhysioNet/Computing in Cardiology Challenge 2016”. In: 2016 Computing in Cardiol-

ogy Conference (CinC). IEEE. 2016, pp. 609–612.
[103] Matthew A Reyna et al. “Heart murmur detection from phonocardiogram recordings:

The george b. moody physionet challenge 2022”. In: PLOS Digital Health 2.9 (2023),
e0000324.

[104] B Moody et al. MIMIC-III Waveform Database Matched Subset (version1. 0). Phys-

ioNet. 2020.
[105] Manfredo Atzori et al. “Electromyography data for non-invasive naturally-controlled

robotic hand prostheses”. In: Scientific Data 1.1 (2014), pp. 1–13.
[106] Stefano Pizzolato et al. “Comparison of six electromyography acquisition setups on hand

movement classification tasks”. In: PloS One 12.10 (2017), e0186132.
[107] Francesca Palermo et al. “Repeatability of grasp recognition for robotic hand prosthe-

sis control based on sEMG data”. In: 2017 International Conference on Rehabilitation

Robotics (ICORR). IEEE. 2017, pp. 1154–1159.

REFERENCES 90

[108] Agamemnon Krasoulis et al. “Improved prosthetic hand control with concurrent use of
myoelectric and inertial measurements”. In: Journal of Neuroengineering and Rehabili-

tation 14 (2017), pp. 1–14.
[109] Agamemnon Krasoulis, Sethu Vijayakumar, and Kianoush Nazarpour. “Effect of user

practice on prosthetic finger control with an intuitive myoelectric decoder”. In: Frontiers

in Neuroscience 13 (2019), p. 891.
[110] Néstor J Jarque-Bou, Manfredo Atzori, and Henning Müller. “A large calibrated database

of hand movements and grasps kinematics”. In: Scientific Data 7.1 (2020), p. 12.
[111] Max Ortiz-Catalan, Rickard Brånemark, and Bo Håkansson. “BioPatRec: A modular

research platform for the control of artificial limbs based on pattern recognition algo-
rithms”. In: Source Code for Biology and Medicine 8 (2013), pp. 1–18.

[112] Xinyu Jiang et al. “Open access dataset, toolbox and benchmark processing results of
high-density surface electromyogram recordings”. In: IEEE Transactions on Neural Sys-

tems and Rehabilitation Engineering 29 (2021), pp. 1035–1046.
[113] Ralph G Andrzejak et al. “Indications of nonlinear deterministic and finite-dimensional

structures in time series of brain electrical activity: Dependence on recording region and
brain state”. In: Physical Review E 64.6 (2001), p. 061907.

[114] John Guttag. CHB-MIT Scalp EEG Database. PhysioNet. 2010. URL: https : / /
physionet.org/content/chbmit/1.0.0/.

[115] Wei-Long Zheng and Bao-Liang Lu. “Investigating critical frequency bands and chan-
nels for EEG-based emotion recognition with deep neural networks”. In: IEEE Transac-

tions on Autonomous Mental Development 7.3 (2015), pp. 162–175.
[116] Miquel Alfaras, Miguel C Soriano, and Silvia Ortín. “A fast machine learning model for

ECG-based heartbeat classification and arrhythmia detection”. In: Frontiers in Physics

7 (2019), p. 103.
[117] Koksoon Phua et al. “Heart sound as a biometric”. In: Pattern Recognition 41.3 (2008),

pp. 906–919.
[118] Haobo Li et al. “Remote optical sensing of heart sounds for biometric identification

using information fusion”. In: IEEE Transactions on Instrumentation and Measurement

73 (2024), pp. 1–12.
[119] Divyam Sharma et al. “Halide perovskite photovoltaics for in-sensor reservoir comput-

ing”. In: Nano Energy 129 (2024), p. 109949.
[120] Lin Guo, Zongxing Lu, and Ligang Yao. “Human-machine interaction sensing technol-

ogy based on hand gesture recognition: A review”. In: IEEE Transactions on Human-

Machine Systems 51.4 (2021), pp. 300–309.
[121] Siming Zuo et al. “Ultrasensitive magnetoelectric sensing system for pico-tesla magne-

tomyography”. In: IEEE Transactions on Biomedical Circuits and Systems 14.5 (2020),
pp. 971–984.

https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/chbmit/1.0.0/

REFERENCES 91

[122] Siming Zuo et al. “Miniaturized magnetic sensors for implantable magnetomyography”.
In: Advanced Materials Technologies 5.6 (2020), p. 2000185.

[123] Negin Ghahremani Arekhloo et al. “Alignment of magnetic sensing and clinical magne-
tomyography”. In: Frontiers in Neuroscience 17 (2023), p. 1154572.

[124] Cory Merkel et al. “Memristive reservoir computing architecture for epileptic seizure
detection”. In: Procedia Computer Science 41 (2014), pp. 249–254.

[125] Dhireesha Kudithipudi et al. “Design and analysis of a neuromemristive reservoir com-
puting architecture for biosignal processing”. In: Frontiers in Neuroscience 9 (2016),
p. 502.

[126] Nikhil Garg et al. “Signals to spikes for neuromorphic regulated reservoir computing
and EMG hand gesture recognition”. In: International Conference on Neuromorphic

Systems 2021. 2021, pp. 1–8.
[127] Rahma Fourati et al. “Unsupervised learning in reservoir computing for EEG-based

emotion recognition”. In: IEEE Transactions on Affective Computing 13.2 (2020), pp. 972–
984.

[128] Il Memming Park et al. “Kernel methods on spike train space for neuroscience: a tuto-
rial”. In: IEEE Signal Processing Magazine 30.4 (2013), pp. 149–160.

[129] Yujie Wu et al. “Spatio-temporal backpropagation for training high-performance spiking
neural networks”. In: Frontiers in Neuroscience 12 (2018), p. 331.

[130] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 51–63.

[131] Jason K Eshraghian et al. “Training spiking neural networks using lessons from deep
learning”. In: Proceedings of the IEEE 111.9 (2023), pp. 1016–1054.

[132] Yang Dan and Mu-ming Poo. “Spike timing-dependent plasticity of neural circuits”. In:
Neuron 44.1 (2004), pp. 23–30.

[133] Peter U Diehl and Matthew Cook. “Unsupervised learning of digit recognition using
spike-timing-dependent plasticity”. In: Frontiers in Computational Neuroscience 9 (2015),
p. 99.

[134] Lyes Khacef et al. “Spike-based local synaptic plasticity: A survey of computational
models and neuromorphic circuits”. In: Neuromorphic Computing and Engineering 3.4
(2023), p. 042001.

[135] Daniel Brunner et al. “Roadmap on Neuromorphic Photonics”. In: arXiv preprint arXiv:

2501.07917 (2025).
[136] Thomas Klotz, Leonardo Gizzi, and Oliver Röhrle. “Investigating the spatial resolution

of EMG and MMG based on a systemic multi-scale model”. In: Biomechanics and Mod-

eling in Mechanobiology 21.3 (2022), pp. 983–997.

REFERENCES 92

[137] Justus Marquetand et al. “Optically pumped magnetometers reveal fasciculations non-
invasively”. In: Clinical Neurophysiology 132.10 (2021), pp. 2681–2684.

[138] Gunnar Farnebäck. “Two-frame motion estimation based on polynomial expansion”. In:
Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June

29–July 2, 2003 Proceedings 13. Springer. 2003, pp. 363–370.
[139] Mohammed Abo-Zahhad, Sabah M Ahmed, and Sherif N Abbas. “Biometric authenti-

cation based on PCG and ECG signals: present status and future directions”. In: Signal,

Image and Video Processing 8 (2014), pp. 739–751.
[140] Aubrey Leatham. “Phonocardiography”. In: British medical bulletin 8.4 (1952), pp. 333–

342.
[141] Zeev Zalevsky et al. “Simultaneous remote extraction of multiple speech sources and

heart beats from secondary speckles pattern”. In: Optics Express 17.24 (2009), pp. 21566–
21580.

[142] Lucrezia Cester et al. “Remote laser-speckle sensing of heart sounds for health assess-
ment and biometric identification”. In: Biomedical Optics Express 13.7 (2022), pp. 3743–
3750.

[143] Silvio Bianchi. “Vibration detection by observation of speckle patterns”. In: Applied

Optics 53.5 (2014), pp. 931–936.
[144] Takhellambam Gautam Meitei, Sinam Ajitkumar Singh, and Swanirbhar Majumder.

“PCG-Based Biometrics”. In: Handbook of Research on Information Security in Biomed-

ical Signal Processing. IGI Global, 2018, pp. 1–25.
[145] Shekh MM Islam and Victor M Lubecke. “BreathID: Radar’s New Role in Biometrics”.

In: IEEE Aerospace and Electronic Systems Magazine 36.12 (2021), pp. 16–23.
[146] CO Folorunso, OS Asaolu, and OP Popoola. “A review of voice-base person identifica-

tion: State-of-the-art”. In: Covenant Journal of Engineering Technology (2019).
[147] Catherine D Schuman et al. “Opportunities for neuromorphic computing algorithms and

applications”. In: Nature Computational Science 2.1 (2022), pp. 10–19.
[148] Adnan Mehonic and Anthony J Kenyon. “Brain-inspired computing needs a master

plan”. In: Nature 604.7905 (2022), pp. 255–260.
[149] Linfeng Sun et al. “In-sensor reservoir computing for language learning via two-dimensional

memristors”. In: Science Advances 7.20 (2021), eabg1455.
[150] Lixiang Li et al. “A review of face recognition technology”. In: IEEE Access 8 (2020),

pp. 139110–139120.
[151] Nan Wu and S Haruyama. “Real-time audio detection and regeneration of moving sound

source based on optical flow algorithm of laser speckle images”. In: Optics Express 28.4
(2020), pp. 4475–4488.

[152] Herbert Jaeger. “Short term memory in echo state networks”. In: (2001).

REFERENCES 93

[153] Qianli Ma et al. “Direct model of memory properties and the linear reservoir topologies
in echo state networks”. In: Applied Soft Computing 22 (2014), pp. 622–628.

[154] Yoma Kuriki et al. “Impact of input mask signals on delay-based photonic reservoir
computing with semiconductor lasers”. In: Optics Express 26.5 (2018), pp. 5777–5788.

[155] Wentao Wei et al. “Surface-electromyography-based gesture recognition by multi-view
deep learning”. In: IEEE Transactions on Biomedical Engineering 66.10 (2019), pp. 2964–
2973.

[156] Akram Fatayer, Wenpeng Gao, and Yili Fu. “sEMG-based gesture recognition using
deep learning from noisy labels”. In: IEEE Journal of Biomedical and Health Informat-

ics 26.9 (2022), pp. 4462–4473.
[157] Mostafa Rahimi Azghadi et al. “Hardware implementation of deep network accelerators

towards healthcare and biomedical applications”. In: IEEE Transactions on Biomedical

Circuits and Systems 14.6 (2020), pp. 1138–1159.
[158] Elisa Donati and Giacomo Indiveri. “Neuromorphic bioelectronic medicine for nervous

system interfaces: from neural computational primitives to medical applications”. In:
Progress in Biomedical Engineering 5.1 (2023), p. 013002.

[159] Logan G Wright et al. “Deep physical neural networks trained with backpropagation”.
In: Nature 601.7894 (2022), pp. 549–555.

[160] Kashu Yamazaki et al. “Spiking neural networks and their applications: A review”. In:
Brain Sciences 12.7 (2022), p. 863.

[161] Wolfgang Maass. “Networks of spiking neurons: the third generation of neural network
models”. In: Neural Networks 10.9 (1997), pp. 1659–1671.

[162] Amirhossein Tavanaei et al. “Deep learning in spiking neural networks”. In: Neural

Networks 111 (2019), pp. 47–63.
[163] Antonio Vitale et al. “Neuromorphic edge computing for biomedical applications: Ges-

ture classification using emg signals”. In: IEEE Sensors Journal 22.20 (2022), pp. 19490–
19499.

[164] Federico Corradi and Giacomo Indiveri. “A neuromorphic event-based neural record-
ing system for smart brain-machine-interfaces”. In: IEEE Transactions on Biomedical

Circuits and Systems 9.5 (2015), pp. 699–709.
[165] Minhao Yang et al. “A 0.5 V 55 µW 64 × 2 Channel Binaural Silicon Cochlea for Event-

Driven Stereo-Audio Sensing”. In: IEEE Journal of Solid-State Circuits 51.11 (2016),
pp. 2554–2569.

[166] Marcello Zanghieri et al. “Event-based Estimation of Hand Forces from High-Density
Surface EMG on a Parallel Ultra-Low-Power Microcontroller”. In: IEEE Sensors Jour-

nal 25.5 (2024), pp. 7771–7780.

REFERENCES 94

[167] Sizhen Bian, Elisa Donati, and Michele Magno. “Evaluation of Encoding Schemes
on Ubiquitous Sensor Signal for Spiking Neural Network”. In: IEEE Sensors Journal

(2024).
[168] Marcello Zanghieri et al. “Event-based low-power and low-latency regression method

for hand kinematics from surface EMG”. In: 2023 9th International Workshop on Ad-

vances in Sensors and Interfaces (IWASI). IEEE. 2023, pp. 293–298.
[169] Lauren H. Smith et al. “Determining the Optimal Window Length for Pattern Recognition-

Based Myoelectric Control: Balancing the Competing Effects of Classification Error and
Controller Delay”. In: IEEE Transactions on Neural Systems and Rehabilitation Engi-

neering 19.2 (2011), pp. 186–192. DOI: 10.1109/TNSRE.2010.2100828.
[170] Kexiang Li et al. “A review of the key technologies for sEMG-based human-robot inter-

action systems”. In: Biomedical Signal Processing and Control 62 (2020), p. 102074.
[171] Ryan Pyle and Robert Rosenbaum. “Spatiotemporal dynamics and reliable computa-

tions in recurrent spiking neural networks”. In: Physical Review Letters 118.1 (2017),
p. 018103.

[172] Elisabetta Chicca et al. “Neuromorphic electronic circuits for building autonomous cog-
nitive systems”. In: Proceedings of the IEEE 102.9 (2014), pp. 1367–1388.

[173] Tobias Delbrueck and C Mead. “Bump circuits”. In: Proceedings of International Joint

Conference on Neural Networks. Vol. 1. Citeseer. 1993, pp. 475–479.
[174] Yi Zhong et al. “An efficient neuromorphic implementation of temporal coding-based

on-chip STDP learning”. In: IEEE Transactions on Circuits and Systems II: Express

Briefs 70.11 (2023), pp. 4241–4245.
[175] Metin Akay. Biomedical signal processing. Academic Press, 2012.
[176] Yuqi Ding et al. “Event-Driven Implementation of a Physical Reservoir Computing

Framework for superficial EMG-based Gesture Recognition”. In: arXiv preprint arXiv:

2503.13492 (2025).

https://doi.org/10.1109/TNSRE.2010.2100828

Appendices

A PRC as predictors (Python)

The main Python codes for the SCR network, referring to contents elaborated in Section 3.1.1.

1 ’’’ Setting reservoir parameters ’’’

2 inSize = 92

3 outSize = 4

4 resSize = 1000

5 a = 0.8 # leaking rate

6 trainLen = 40000

7 testLen = 10000

8 initLen = 200

9

10 ’’’ Random generated Win ’’’

11 np.random.seed(42)

12 Win = (np.random.rand(resSize, inSize) - 0.5) * 1

13

14 ’’’ Fixed value Wres - using Simple Cylic Reservoir (SCR) Structure

’’’

15 r = 0.5 # weight value

16 W = np.zeros((resSize, resSize))

17 for i in range(0,resSize-1):

18 W[i+1,i] = r

19 W[0, resSize - 1] = r

20 rhoW = max(abs(linalg.eig(W)[0]))

21

22 ’’’ Allocated memory for the design (collected states) matrix ’’’

23 X = np.zeros((inSize + resSize, trainLen - initLen))

24 # set the corresponding target matrix directly

25 Yt = data_EMG[:, initLen :trainLen]

26

27 ’’’ Run the reservoir with the data and collect X ’’’

95

APPENDICES 96

28 x = np.zeros((resSize, 1))

29 for t in range(trainLen):

30 u = data_MMG[:,t]

31 u = u.reshape(92,1)

32 x = (1 - a) * x + a * np.tanh(np.dot(Win, u) + np.dot(W, x))

33 if t >= initLen:

34 X[:, t - initLen] = np.vstack((u, x))[:, 0]

35

36 ’’’ Calculate Wout ’’’

37 reg = 1e-10

38 Wout = linalg.solve(np.dot(X, X.T) + reg * np.eye(inSize + resSize),

39 np.dot(X, Yt.T)).T

40

41 ’’’ Use the trained reservoir to obtain predicted output based on

test data input ’’’

42 Y = np.zeros((outSize, testLen))

43 X = np.zeros((inSize + resSize, testLen))

44 for t in range(testLen):

45 u = data_MMG[:,t+trainLen]

46 u = u.reshape(92,1)

47 x = (1 - a) * x + a * np.tanh(np.dot(Win, u) + np.dot(W, x))

48 X[:, t] = np.vstack((u, x))[:, 0]

49

50 ’’’ Use Wout and collected states in test data to predict the output

value Y ’’’

51 Y = np.dot(Wout,X)

52

53 ’’’ The function to calculate the mse and NRMSE in each channel, also

plot the camparison figure in each channel ’’’

54 def error_calculate(data_EMG,Y,trainLen,errorLen):

55 for i in range(np.size(data_EMG,0)):

56 mse = sum(np.square(data_EMG[i,trainLen :trainLen + errorLen]

-

57 Y[i, 0:errorLen])) / errorLen

58 NRMSE = np.sqrt(np.divide(

59 np.mean(np.square(data_EMG[i,trainLen : trainLen + errorLen]-

Y[i, 0:errorLen])),

60 np.var(data_EMG[i,trainLen : trainLen + errorLen])))

61 print(’EMG channel ’+str(i+1)+’\n mse:’+ str(mse) + ’\n NRMSE

:’ + str(NRMSE) + ’\n’)

62 plt.figure(i).clear()

APPENDICES 97

63 plt.plot(data_EMG[i,trainLen:trainLen + testLen - 500], ’g’)

64 plt.plot(Y[i,0:testLen - 500].T, ’b’)

65 plt.title(’channel ’ + str(i+1) + ’ Target and generated

signals $y(n)$ starting at $n=0$’ + ’\n NRMSE = ’ + str(

round(NRMSE,4)))

66 plt.legend([’Target signal’, ’Free-running predicted signal’

])

67

68 ’’’ Calculate prediction errors ’’’

69 errorLen = 1000

70 error_calculate(data_EMG,Y,trainLen,errorLen)

Listing 1: Python codes for SCR network (EMG/MMG mapping)

B PRC as predictors (MATLAB)

The main MATLAB codes for RNR network, referring to contents elaborated in Section 3.1.2.

1 % Setting reservoir parameters

2 N = 400;

3 rand(’seed’, 42);

4 Win = (zeros(N,1)+1) .* (round(rand(N,1))*2 - 1);

5 tau_n = 1;

6 tau_r = tau_n/8;

7 C = 10e-6;

8 R1 = tau_n/C;

9 R2 = 1000e3;

10 Is = 25e-9;

11 gama = 0.05;

12 offset= 0;

13 Len_train = size(traindata,1)*size(traindata,2);

14 Len_test = size(testdata,1)*size(testdata,2);

15 Len_init = 100;

16

17 % Simulink module setttings

18 SimulationTime = tau_r*(Len_train+Len_test);

19 x = (0:tau_r:tau_r*((Len_train+Len_test)-1))’;

20 dataMask = [traindata;testdata]’.*Win*gama + offset;

21 for i = 1:length(dataMask) %% pre-neuron rotation

22 dataShifted(:,(i-1)+1:(i-1)+1) = circshift(dataMask(:,i),i-1)-0.1;

23 end

APPENDICES 98

24 theta=tau_r;

25 dataIN = dataShifted’;

26 sim(’Neuron.slx’); %% dynamic neuron

27 ak = dataOUT(2:end,:)’;

28

29 % Collected states after rotation

30 sk = zeros(N,(Len_train+Len_test));

31 for t = 1:(Len_train+Len_test) %% post-neuron rotation

32 sk(:,t) = circshift(ak(:,t),-t+1);

33 end

34

35 % Calculate output weight matrix Wout

36 ahead = 0;

37 reg = 1e-10; % regularization coefficient

38 target = traintarget(Len_init+1+ahead:Len_train+ahead)’;

39 trainingState = sk(:,Len_init+1:Len_train);

40 Wout = (target*trainingState’ / (trainingState*trainingState’ + reg*

eye(N)))’;

41

42 % Calculate the predicted outputs

43 testTarget = testtarget(1+ahead:Len_test+ahead);

44 testingStates = sk(:,Len_train+1:Len_test+Len_train);

45 output = testingStates’*Wout;

46

47 % Calculate the prediction errors

48 NRMSE = sqrt(mean((output(Len_init+1:end)-testTarget(Len_init+1:end))

.^2)./var(testTarget(Len_init+1:end)));

49 disp([’NRMSE = ’ num2str(NRMSE)])

Listing 2: MATLAB codes for RNR network (ECG-to-PCG prediction)

C PRC for biometric identification (MATLAB)

The main MATLAB codes for RNR network in a biometric identification task based on human
heart sounds, referring to contents elaborated in Chapter 4.1.

1 % Parameter settings

2 N = 500;

3 Nres = 2; % number of parallel reservoirs -> refer to M in the thesis

4 tau_n = 1;

5 tau_r = tau_n/8;

APPENDICES 99

6 theta = tau_r;

7 C = 10e-6;

8 R1 = tau_n/C;

9 R2 = 1000e3;

10 Is = 25e-9;

11

12 % Define input weight matrix Win

13 rand(’seed’, 42);

14 for i = 1:Nres

15 signal = round(rand(N,1))*2 - 1;

16 Win(:,i) = (zeros(N,1)+1) .* signal;

17 end

18

19 % Parallel reservoirs

20 % The function for parallel RNR

21 function [dataIN,SimulationTime,x,Len_train,Len_test,Len_init] = RNR(

traindata, testdata,tau_n,Win)

22 tau_r = tau_n/8;

23 gama = 0.05;

24 offset= 0.1;

25 Len_train = size(traindata,1)*size(traindata,2);

26 Len_test = size(testdata,1)*size(testdata,2);

27 Len_init = 100;

28 SimulationTime = tau_r*(Len_train+Len_test);

29 x = (0:tau_r:tau_r*((Len_train+Len_test)-1))’;

30 dataMask = [traindata;testdata]’.*Win*gama + offset;

31 for i = 1:length(dataMask) %% pre-neuron rotation

32 dataShifted(:,(i-1)+1:(i-1)+1) = circshift(dataMask(:,i),i-1)-0.1;

33 end

34 dataIN = dataShifted’;

35 end

36

37 % Apply parallel reservoirs on the inputs

38 [dataIN,SimulationTime,x,Len_train,Len_test,Len_init] = RNR(traindata

, testdata,tau_n,Win(:,1));

39 sim(’Neuron.slx’); % dynamic neuron

40 ak1 = dataOUT(2:end,:)’;

41 sk1 = zeros(N,(Len_train+Len_test));

42 for t = 1:(Len_train+Len_test) %% post-neuron rotation

43 sk1(:,t) = circshift(ak1(:,t),-t+1);

44 end

APPENDICES 100

45

46 [dataIN,SimulationTime,x,Len_train,Len_test,Len_init] = RNR(traindata

, testdata,tau_n,Win(:,2));

47 sim(’Neuron.slx’); % dynamic neuron

48 ak2 = dataOUT(2:end,:)’;

49 sk2 = zeros(N,(Len_train+Len_test));

50 for t = 1:(Len_train+Len_test) %% post-neuron rotation

51 sk2(:,t) = circshift(ak2(:,t),-t+1);

52 end

53

54 % Stack the states from each reservoir

55 sk = [sk1;sk2];

56

57 % Calculate the output weight matrix Wout

58 ahead = 0;

59 reg = 1e-8; % regularization coefficient

60 target = trainlabel(:,Len_init+1+ahead:Len_train+ahead);

61 trainingState = sk(:,Len_init+1:Len_train);

62 Wout = (target*trainingState’ / (trainingState*trainingState’ + reg*

eye(N*Nres)))’;

63

64 % Testing

65 testTarget = testlabel(:,1+ahead:Len_test+ahead);

66 testingStates = sk(:,Len_train+1:Len_test+Len_train);

67 output = testingStates’*Wout;

68

69 % Find the peak and calculate the acc

70 [m,n] = find(testlabel_old==1);

71 num_sample = length(m);

72 real = zeros(1,num_sample);

73 label = zeros(1,num_sample);

74 shift = 10;

75 for i = 1:num_sample

76 yloc = n(i)-shift;

77 xloc = n(i)-shift-70;

78 seg_signal = output(xloc:yloc,:);

79 max_signal = max(seg_signal,[],1);

80 [~,id] = max(max_signal);

81 real(i) = id;

82 label(i) = m(i);

83 end

APPENDICES 101

84 acc = sum(real == label);

85 acc = acc/num_sample;

Listing 3: MATLAB codes for RNR network (biometric identification)

D Spike encoding for sEMG data (MATLAB)

The main MATLAB codes for spike encoding of sEMG signals, refering to contents elaborated
in Section 5.2.

1 % Setting window length

2 fs = 2e3

3 window_len = 0.25*fs; % 200ms

4

5 % Setting 4 encoded spike trains for each of the 12 channels of sEMG

signals

6 input = emg(:,1);

7 L = size(input,1);

8 spike_train = zeros(L+1, num_chs*4);

9

10 % Nomalization of original signals

11 for k = 1:num_chs

12 input = emg(:,k);

13 min_val = min(input);

14 max_val = max(input);

15 normalized_input = (input - min_val) / (max_val - min_val);

16

17 % Setting cutoff frequencies

18 cutoff1 = 999/ratio;

19 cutoff2 = 500/ratio;

20 cutoff3 = 250/ratio;

21 cutoff4 = 100/ratio;

22

23 order = 4; % The order of butterworth filter

24

25 % The function for highpass butterworth filter

26 function filtered_signal = lopass_butterworth(inputsignal,cutoff_freq

,Fs,order)

27 Wn = 2*cutoff_freq/Fs; % non-dimensional frequency

28 [filtb,filta] = butter(order,Wn,’high’); % construct the filter

29 filtered_signal = filter(filtb,filta,inputsignal); % filter the data

APPENDICES 102

with zero phase

30 end

31

32 % The function for bandpass butterworth filter

33 function filtered_signal = bandpass_butterworth(inputsignal,

cutoff_freqs,Fs,order)

34 Wn = 2*cutoff_freqs/Fs; % non-dimensional frequency

35 [filtb,filta] = butter(order,Wn,’bandpass’); % construct the filter

36 filtered_signal = filter(filtb,filta,inputsignal); % filter the data

with zero phase

37 end

38

39 % The function for lowpass butterworth filter

40 function filtered_signal = lopass_butterworth(inputsignal,cutoff_freq

,Fs,order)

41 Wn = 2*cutoff_freq/Fs; % non-dimensional frequency

42 [filtb,filta] = butter(order,Wn,’low’); % construct the filter

43 filtered_signal = filter(filtb,filta,inputsignal); % filter the data

with zero phase

44 end

45

46 % Filter each channel of the sEMG signasl to different freqency bands

47 y_filt1 = hipass_butterworth(normalized_input,cutoff2,fs,order);

48 y_filt2 = bandpass_butterworth(normalized_input,[cutoff3 cutoff2],fs,

order);

49 y_filt3 = bandpass_butterworth(normalized_input,[cutoff4 cutoff3],fs,

order);

50 y_filt4 = lopass_butterworth(normalized_input,cutoff4,fs,order);

51

52 % The function for full-wave rectifier

53 function rectified_sig = full_rectifier(input_sig)

54 rectified_sig = abs(input_sig);

55 end

56

57 % Full-rectify the filtered signals

58 t = (1:length(normalized_input))/fs; % time

59 y_rectif1 = full_rectifier(y_filt1);

60 y_rectif2 = full_rectifier(y_filt2);

61 y_rectif3 = full_rectifier(y_filt3);

62 y_rectif4 = full_rectifier(y_filt4);

63

APPENDICES 103

64 % Spike coding through LIF neuron

65 v_th = [8e-6 3e-5 8e-5 5e-3 ...

66 8e-6 3e-5 8e-5 6e-3 ...

67 3e-6 1e-5 2e-5 5e-3 ...

68 5e-6 1e-5 4e-5 7e-3 ...

69 1e-5 2e-5 6e-5 7e-3 ...

70 1e-5 3e-5 5e-5 4e-3 ...

71 5e-6 2e-5 5e-5 4e-3 ...

72 2e-5 5e-5 1e-4 4e-3 ...

73 1e-5 5e-5 5e-5 5e-3 ...

74 4e-6 3e-5 7e-5 3e-3 ...

75 25e-6 5e-5 7e-5 3e-3 ...

76 1e-5 5e-5 7e-5 3e-3]; % voltage threshold, which is fine-tuned

77

78 v0 = 0; % reset voltage

79 dt = 1/fs; % sampling time

80 v_rest = 0; % reset voltage

81 tau = 1; % time constant

82

83 % The function for LIF ODE

84 function [v,spk] = LIF_ODE(v_th,v_rest,v0, dt, I, tau)

85 v = v0 + (dt / tau) * (-(v0 - v_rest) + I);

86 spk = false;

87 if v >= v_th

88 v = v_rest;

89 spk = true;

90 end

91 end

92

93 % The function for generating spike trains through LIF neurons

94 function [spike_train,T] = spikeLIFcoding(v_th, I_ext, v0, dt, v_rest

, tau)

95 n_tSteps = length(I_ext) + 1;

96 V = zeros(n_tSteps,1);

97 V(1) = v0;

98 T = zeros(n_tSteps,1);

99 spike_train = zeros(n_tSteps,1);

100 for i=1:n_tSteps -1

101 [v,spk] = LIF_ODE(v_th,v_rest,v0, dt, I_ext(i),tau);

102 T(i+1) = T(i)+dt;

103 V(i+1) = v;

APPENDICES 104

104 if spk == true

105 spike_train(i+1) = 1;

106 end

107 v0 = v;

108 end

109

110 % generating spike trains through LIF neurons

111 [spike_train1, T] = spikeLIFcoding(v_th(4*k-3), y_rectif1, v0, dt,

v_rest, tau);

112 [spike_train2, T] = spikeLIFcoding(v_th(4*k-2), y_rectif2, v0, dt,

v_rest, tau);

113 [spike_train3, T] = spikeLIFcoding(v_th(4*k-1), y_rectif3, v0, dt,

v_rest, tau);

114 [spike_train4, T] = spikeLIFcoding(v_th(4*k), y_rectif4, v0, dt,

v_rest, tau);

115

116 % Construct the spike trains

117 spike_train(:,4*k-3) = spike_train1;

118 spike_train(:,4*k-2) = spike_train2;

119 spike_train(:,4*k-1) = spike_train3;

120 spike_train(:,4*k) = spike_train4;

121 end

Listing 4: MATLAB codes for the spike encoding of sEMG data

E Spiking RNR for gesture recognition (Python)

The main Python codes for spiking RNR in gesture recognition, referring to contents elaborated
in Section 5.3 and Section 5.4.

1 ’’’ Initialize the parameters ’’’

2 num_inputs = 48

3 resSize = 10

4 num_outspk = num_inputs*resSize

5 num_outputs = 17 # refer to 17 gestures in exercise B, change to 23

for exercise A and 9 for exercise C, respectively

6 tau_r1 = 1e-3

7 R1 = 5

8 C1 = 3e-3

9 trh1 = 0.5

10 tau_r2 = 2e-3

APPENDICES 105

11 R2 = 5

12 C2 = 5e-3

13 trh2 = 0.3

14

15 ’’’ Initialize LIF neurons ’’’

16 lif1 = snn.Lapicque(R=R1, C=C1, time_step=tau_r1, threshold = trh1)

17 lif2 = snn.Lapicque(R=R2, C=C2, time_step=tau_r2, threshold = trh2)

18 lif = [lif1, lif2]

19 np.random.seed(42)

20 lif_index = np.random.randint(0,2,size = num_inputs)

21

22 ’’’ Define the sRNR network ’’’

23 def sRNR(spiketrain,resSize,lif):

24 spiketrain = np.reshape(spiketrain,(len(spiketrain),-1))

25

26 # input masking by randomly chosen {0,1}

27 np.random.seed(42)

28 Win = np.random.randint(0,2,size = (1,resSize))

29 dataMask = np.dot(spiketrain,Win)

30 dataMask = np.transpose(dataMask)

31 num_steps = dataMask.shape[1]

32 dataShifted = np.zeros((resSize, num_steps))

33 for i in range(num_steps):

34 dataShifted[:,i] = np.roll(dataMask[:,i], i)

35 cur_in = torch.tensor(dataShifted[:,:])

36 mem = torch.zeros((1,resSize))

37 spk_out = torch.zeros((1,resSize))

38 mem_rec = [mem]

39 spk_rec = [spk_out]

40 for step in range(num_steps):

41 spk_out, mem = lif(cur_in[:,step], mem)

42 # Store recordings

43 mem_rec.append(mem)

44 spk_rec.append(spk_out)

45

46 # convert the list of tensors into one tensor

47 mem_rec = torch.stack(mem_rec)

48 spk_rec = torch.stack(spk_rec)

49 mem_rec = mem_rec.numpy()

50 spk_rec = spk_rec.numpy()

51 mem_rec = mem_rec.squeeze()

APPENDICES 106

52 spk_rec = spk_rec.squeeze()

53 spk_rec = spk_rec.T

54 sk = np.zeros((resSize,num_steps))

55 for t in range(num_steps):

56 sk[:,t] = np.roll(spk_rec[:,t],-t)

57 sk_T = sk.T

58 sk_T = torch.from_numpy(sk_T)

59 mem_rec = torch.from_numpy(mem_rec)

60 return sk_T,mem_rec

61

62 ’’’ Spikes injected to the reservoir and receive the genereted output

spikes ’’’

63 num_sample = num_outputs*24

64 data_spk = np.zeros((num_sample,400,num_outspk))

65 data_mem = np.zeros((num_sample,401,num_outspk))

66 for j in range(len(data)):

67 spike = data[j,0]

68 spk = torch.zeros(0)

69 mem = torch.zeros(0)

70 for k in range(num_inputs):

71 spiketrain = spike[:,k]

72 spk_rec, mem_rec = sRNR(spiketrain,resSize,lif[lif_index[

num_inputs-1]])

73 spk = torch.cat((spk,spk_rec), dim=1)

74 mem = torch.cat((mem,mem_rec), dim=1)

75 spk = spk.numpy()

76 mem = mem.numpy()

77 data_spk[j,:,:] = spk

78 data_mem[j,:,:] = mem

79

80 ’’’ Apply a window to bin the signal (count and bin kernel) ’’’

81 def bin_signal(window_size, signal,step_size):

82 bins = []

83 for i in range(0, len(signal) - window_size + 1,step_size):

84 window = signal[i:i + window_size,:]

85 val = np.sum(window, axis=0)

86 bins.append(val)

87 bins = np.array(bins)

88 return bins

89 window_size = 400

90 step_size = 400

APPENDICES 107

91 fea_len = int(400/window_size)

92

93 ’’’ Bin the output spikes (400 features)’’’

94 feature_map = np.zeros((num_sample,fea_len,in_fea))

95 for i in range(num_sample):

96 x = bin_signal(window_size,spike[i,:,:],step_size)

97 feature_map[i,:,:] = x

98

99 # Reshape the features

100 X = feature_map

101 Y = new_label

102 X = X.squeeze()

103 Y = Y.squeeze()

104 Y = Y.astype(int)

105

106 ’’’ Classification algorithms in the readout layer ’’’

107

108 ’’’ Delta learning rule ’’’

109 # Construct training and testing sets and shuffle the dataset

110 scaler = StandardScaler()

111 X_scaled = scaler.fit_transform(X)

112 X_train, X_test, y_train, y_test = train_test_split(X_scaled,Y,

test_size=.2, random_state=42)

113 y_train_one_hot = np.eye(num_classes)[y_train]

114 num_features = out_fea # output features

115 weights = np.random.randn(num_features, num_classes) * 0.01

116 biases = np.zeros(num_classes)

117 learning_rate = 0.005

118 epochs = 200

119

120 # Softmax activation function for classification

121 def softmax(z):

122 exp_z = np.exp(z - np.max(z, axis=1, keepdims=True))

123 return exp_z / exp_z.sum(axis=1, keepdims=True)

124

125 # Deifne the function to pridict the output

126 def predict(X, weights, biases):

127 linear_output = np.dot(X, weights) + biases

128 probabilities = softmax(linear_output)

129 return np.argmax(probabilities, axis=1)

130

APPENDICES 108

131 # Training loop

132 epoch_lst = []

133 loss_lst = []

134 acc_test_lst = []

135 acc_train_lst = []

136 for epoch in range(epochs):

137 # Forward pass

138 linear_output = np.dot(X_train, weights) + biases

139 output = softmax(linear_output)

140

141 # Compute the error

142 error = y_train_one_hot - output

143

144 # Weight and bias updates

145 weights += learning_rate * np.dot(X_train.T, error)

146 biases += learning_rate * error.sum(axis=0)

147

148 # Compute the loss (cross-entropy)

149 loss = -np.mean(np.sum(y_train_one_hot * np.log(output + 1e-9),

axis=1))

150

151 # Print the loss every epoch

152 test_predictions = predict(X_test, weights, biases)

153 train_predictions = predict(X_train, weights, biases)

154 accuracy_test = (test_predictions == y_test).sum() / y_test.shape

[0]

155 accuracy_train = (train_predictions == y_train).sum() / y_train.

shape[0]

156 epoch_lst.append(epoch)

157 loss_lst.append(loss)

158 acc_test_lst.append(accuracy_test)

159 acc_train_lst.append(accuracy_train)

160 if (epoch + 1) % 10 == 0:

161 print(f’Epoch {epoch+1}/{epochs}, Loss: {loss:.4f}’)

162

163 # Testing loop (predict and evaluate)

164 y_pred = test_predictions

165 report = classification_report(y_test, y_pred)

166 print(report)

167

168 ’’’ SVM classifier ’’’

APPENDICES 109

169 # Construct datasets, change random_state for cross-validation

170 scaler = StandardScaler()

171 X_scaled = scaler.fit_transform(X)

172 X_train, X_test, y_train, y_test = train_test_split(X_scaled,Y,

test_size=.2, random_state=42)

173

174 # Apply RBF kernel, change to kernel=’linear’ for linear kernel

175 classifier = SVC(kernel=’rbf’, random_state=42,degree=1)

176 classifier.fit(X_train, y_train)

177

178 # Predict and evaluate

179 y_pred = classifier.predict(X_test)

180 accuracy = accuracy_score(y_test, y_pred)

181 report = classification_report(y_test, y_pred)

182 print(report)

183

184 ’’’ Statistical analysis ’’’

185 sensitivity = np.zeros(num_classes)

186 specificity = np.zeros(num_classes)

187 precision = np.zeros(num_classes)

188 f1_score = np.zeros(num_classes)

189 for i in range(num_classes):

190 TP = cm[i, i] # True Positives for class i

191 FP = cm[:, i].sum() - TP # False Positives for class i

192 FN = cm[i, :].sum() - TP # False Negatives for class i

193 TN = cm.sum() - (FP + FN + TP) # True Negatives for class i

194

195 sensitivity[i] = TP / (TP + FN) if (TP + FN) != 0 else 0

196 specificity[i] = TN / (TN + FP) if (TN + FP) != 0 else 0

197 precision[i] = TP / (TP + FP) if (TP + FP) != 0 else 0

198 f1_score[i] = 2 * precision[i] * sensitivity[i] / (precision[i] +

sensitivity[i]) if (precision[i] + sensitivity[i]) != 0 else

0

199 overall_sensitivity_macro = np.mean(sensitivity)

200 overall_specificity_macro = np.mean(specificity)

201 overall_precision_macro = np.mean(precision)

202 overall_f1_macro = np.mean(f1_score)

203

204 ’’’ Plot the confusion matrix ’’’

205 y_pred = test_predictions

206 cm = confusion_matrix(y_test, y_pred)

APPENDICES 110

207 cm_percentage = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]

208 plt.figure(figsize=(20, 15))

209 sns.heatmap(cm_percentage, annot=False, fmt=’.1f’, cmap=’Blues’,

xticklabels=[i for i in range(0,50)], yticklabels=[i for i in

range(0,50)])

210 plt.xlabel(’Predicted’)

211 plt.ylabel(’True’)

212 plt.title(’Confusion Matrix’)

213 plt.show()

214

215 ’’’t-SNE visualization - an example for gestures in exercise B from

input data’’’

216 scaler = StandardScaler()

217 X_scaled = scaler.fit_transform(X)

218

219 # t-SNE settings

220 tsne = TSNE(n_components=2, random_state=42)

221 X_tsne = tsne.fit_transform(X_scaled)

222 p1 = 0

223 p2 = 1

224

225 # Plot the embedded data

226 plt.figure(figsize=(8,6), dpi=300)

227 plt.scatter(X_tsne[:, p1], X_tsne[:, p2],c=label, cmap=plt.cm.

get_cmap("jet", 17)) # 17 refers to 17 gestures

228 plt.colorbar(ticks=range(18))

229 plt.title(’Exercise B’,fontsize = 22)

230 plt.xlabel(’Comp- ’ + str(p1+1),fontsize = 18)

231 plt.ylabel(’Comp- ’+ str(p2+1),fontsize = 18)

232 plt.xticks(fontsize=14)

233 plt.yticks(fontsize=14)

234 plt.show()

Listing 5: Python codes for the spiking RNR network (gesture recognition)

	Thesis Cover Sheet (My Version)
	2025DingPhD
	Declaration
	Abstract
	Acknowledgements
	Abbreviations
	Symbols
	Introduction
	Process signals at the edge
	Neuromorphic computing
	Reservoir computing
	Physical reservoir computing
	Spiking neural network

	Research summary
	List of publications
	Journal publications
	Conference proceedings

	Literature Review
	Introduction
	Reservoir computing
	Modelling neurons
	Structural frameworks
	Physical reservoir computing (PRC)

	Implementation paradigms
	Complementary metal-oxide-semiconductor (CMOS) technology
	Emerging devices
	Photonics

	Biomedical signal applications
	Heart signals
	Muscle signals
	Brain signals

	Training the readout layer
	ANN-based training methods
	SNN-based training methods
	Summary of AI techniques across chapters

	Conclusion and Discussion

	PRC as Predictors
	Introduction
	MMG/EMG mapping
	ECG-to-PCG signals prediction

	Methodology
	Network description
	Dataset description for MMG and EMG
	Dataset description for ECG and PCG

	Results and analysis
	Prediction error for MMG/EMG mapping
	Prediction error for ECG/PPG mapping

	Discussion and conclusion

	PRC for Heart Sound-based Biometric Identification
	Introduction
	PRC for heart sound biometric identification
	Impact statement

	Experiment setup and data pre-processing
	Dataset description
	Signal pre-processing

	Network design
	Parallel reservoirs
	Training and Regression
	Classification

	Performance evaluation
	Parameter optimization
	Noise analysis
	Memory capacity
	Comparison with consistent software network
	Power analysis

	Evaluation of the identification performance under after-exercise condition
	Discussion and Conclusion

	Event-Driven RNR for sEMG-based Gesture Recognition
	Introduction
	Event-driven Implementation for sEMG-based Gesture Recognition
	Impact Statement

	Dataset description and pre-processing
	sEMG dataset and pre-processing
	Spike encoding

	Network design
	Network description
	Readout and classification

	Analysis and results
	t-SNE
	SVM for classification
	Delta learning rule for classification
	Comparison with the state-of-the-art

	Discussion and Conclusion

	Conclusions and Future Perspectives
	Conclusions of this thesis
	Future perspectives
	Algorithm
	Hardware implementation
	Biomedical signals

	References
	Appendices
	PRC as predictors (Python)
	PRC as predictors (MATLAB)
	PRC for biometric identification (MATLAB)
	Spike encoding for sEMG data (MATLAB)
	Spiking RNR for gesture recognition (Python)

