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i

Abstract

Traditional digital communication systems are built on the principle of source-channel separa-
tion, guided by rate-distortion theory and channel coding. This reconstruction-oriented com-
munication paradigm served as a cornerstone through multiple generations of communication
technologies. However, with the rise of machine-to-machine communications and human-to-
machine interactions, task-specific representations are often more compact and more efficient
than full-scale reconstructions, and End-to-End (E2E) trained communication systems have
demonstrated superior task performance over traditional communications. This thesis explores
task-oriented communication as a paradigm shift from traditional reconstruction-oriented
transmission, focusing on optimizing data exchange for machine-driven decision-making
rather than full data fidelity.

We develop a Task-Oriented Source-Channel Coding (TSCC) framework designed for
edge-enabled autonomous driving. By integrating deep learning-based Joint Source-Channel
Coding (JSCC) with an end-to-end autonomous driving agent, TSCC minimizes communica-
tion overhead while maintaining high inference accuracy, ensuring robustness against noisy
channels. Our results demonstrate a 98.36% reduction in communication bandwidth while
maintaining driving performance under low Signal-to-Noise Ratio (SNR) conditions.

To enhance compatibility with existing digital communication infrastructures, we propose
Aligned Task- and Reconstruction-Oriented Communication (ATROC), which bridges task-
oriented communication with traditional reconstruction-oriented paradigms. By leveraging
an information reshaper and variational information bottleneck (VIB) theory, ATROC im-
proves AI-driven inference on edge servers while ensuring seamless integration with digital
communication standards. Experimental results validate that ATROC reduces 99.19% of the
communication load while preserving autonomous driving efficiency.

Recognizing the need for a holistic approach, we introduce a task-oriented co-design
of communication, computing, and control framework tailored for edge-enabled industrial
Cyber-Physical Systems (CPS). This framework jointly optimizes data transmission, compu-
tational efficiency, and control decisions, and integrates task-oriented JSCC with Delay-aware
Trajectory-guided Control Prediction (DTCP) to reduce E2E delay. Experimental results
in autonomous driving simulations demonstrate that our co-design approach significantly
improves driving performance under high latency scenarios.
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Chapter 1

Introduction

1.1 Task-Oriented Communication

Before the emergence of task-oriented communication, the history of traditional mobile
communications can be traced back to 1897 [1]. Since then, the field has witnessed remark-
able advancements. In particular, modern 5G networks not only improve human-to-human
communication but also enable seamless connectivity for human-to-machine, and machine-to-
machine [2]. Traditional communication systems were designed to maximize signal fidelity
while minimizing distortion. However, conventional approaches were mainly reconstruction-
oriented, aiming to reconstruct the original signal at the receiver without considering whether
transmitted information was necessary for performing the final task.

In classical Shannon’s information theory, communication is modeled as a process of
transmitting symbols through a noisy channel, where the objective is to minimize the error
rate between transmitted and received messages. Based on this, separate source and channel
coding were developed, such as JPEG [3] and JPEG2000 [4] for image compression and LDPC
[5] codes for error correction. These methods, while efficient in preserving fidelity, do not
differentiate between mission-critical and task-agnostic information, leading to unnecessary
transmission overhead, especially in increasing machine-to-machine communications.

Task-oriented communication is a paradigm where the transmitted message does not nec-
essarily need to be reconstructed exactly on the receiver side, unlike traditional reconstruction-
oriented communication. Instead, the objective is to transmit minimal yet sufficient infor-
mation that enables the receiver to effectively perform specific tasks (e.g., object detection,
decision-making, and control). For example, the transmitter may send an image while the
receiver recovers only a semantic summary (e.g., a descriptive sentence or latent feature
representation).

This task-oriented framework is related to the classical rate-distortion theory, which
provides a foundational theoretical connection. The rate-distortion theory seeks to optimize
the balance between the compression rate (bandwidth or data transmission rate) and the
fidelity of reconstructed data (distortion). Task-oriented communication extends this classical
concept by redefining the distortion to represent task performance rather than data fidelity. In
other words, the distortion metric in the rate-distortion theory is replaced with a task-specific
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performance measure. Thus, the communication system aims to minimize the rate while
satisfying a constraint on the task performance (task-oriented distortion) or, equivalently, to
minimize distortion while adhering to a given communication rate constraint. Task-oriented
communication significantly reduces bandwidth consumption, reduces latency, and enhances
robustness in noisy environments, making it particularly suitable for AI-driven applications
with large data throughput.

Driven by the growing demand for task-oriented communication designs, researchers have
increasingly explored the Information Bottleneck (IB) approach. The IB [6] method seeks
to maximize the preservation of task-specific information while minimizing task-agnostic
information from input. The traditional IB approach relied on the computationally intensive
Blahut-Arimoto algorithm [7], [8], which was impractical for deep learning applications
due to its complexity [9]. This limitation was addressed by the introduction of a variational
approach to the IB method, known as Variational Information Bottleneck (VIB) [10], which
made it feasible to apply IB principles in deep learning by approximating the true posterior
with a variational distribution.

Recent studies have successfully integrated VIB with deep Joint Source-Channel Cod-
ing (JSCC), formalizing task-oriented communication strategies that outperform traditional
reconstruction-oriented frameworks. For example, recent works [11], [12] have demonstrated
that combining VIB with deep JSCC can significantly improve communication efficiency and
robustness, particularly in scenarios where it is essential to prioritize task-specific information
over the fidelity of raw data. Another study [13] focused on applying semantic communi-
cation for camera relocalization, optimizing the trade-off between inference accuracy and
End-to-End (E2E) latency.

1.1.1 From Semantic Communication to Task-Oriented Communication

Semantic communication marks a major shift from bit-wise fidelity to meaning preservation.
However, in many real-world cyber-physical and autonomous systems, even meaning is not the
end goal. Instead, the objective is to complete a task, such as classifying an object, controlling
a drone, or localizing a robot, based on sensed or transmitted input. In these settings, even an
accurate semantic reconstruction might be redundant if it includes task-agnostic features.

Task-oriented communication goes one step further: It only preserves the information that
is directly relevant to a downstream task. This makes it a subset of semantic communication:

• Semantic communication seeks mutual understanding or meaning alignment (e.g., in
natural language translation).

• Task-oriented communication transmits minimal sufficient information to optimize task
performance, regardless of whether the transmitted data can be semantically interpreted
in isolation.

For example, in autonomous driving, semantic communication can seek to transmit a seg-
mented road map, while task-oriented communication transmits only the features necessary
for a lane-keeping decision, thus improving bandwidth and latency efficiency.
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1.1.2 Theoretical Foundations: Information Bottleneck and Minimal
Sufficient Statistics

Task-oriented communication is rigorously grounded in the IB principle, introduced by [6].
The IB method formalizes the goal of compressing an input signal X into a representation Z
that retains maximum relevance to a target variable Y (e.g., a classification label or control
action), while minimizing its mutual information with the input:

min
p(z|x)

I(X;Z)−βI(Z;Y ). (1.1)

This formulation encourages models to filter out task-agnostic details, making it ideally suited
for task-driven systems operating under communication constraints.

In communication systems, the encoder now plays an active role in jointly learning what to
transmit for maximal task accuracy at the receiver, often under energy, latency, and bandwidth
constraints. Task-oriented communication also aligns closely with concepts like:

• Minimal sufficient statistics,

• Rate-distortion tradeoffs,

• Functional compression (transmitting functions of input data, rather than the input
itself).

These principles ensure that the communication pipeline is tightly integrated with machine
learning and control goals, rather than functioning as an isolated module.

1.1.3 Learning-Based Architectures and Joint Optimization

A cornerstone of modern task-oriented communication systems is their reliance on E2E
learning architectures, particularly those built on Deep Neural Networks (DNNs) that jointly
optimize for both communication efficiency and task performance. Unlike traditional com-
munication models, which separate the pipeline into source encoding, channel encoding,
modulation, and finally decoding, task-oriented systems fuse these components into a single,
trainable framework that learns to extract and transmit only mission-critical information.

The Novelty of JSCC in Task-Oriented Communication

At the heart of this transformation lies JSCC, a concept that violates the classic Shannon
separation theorem. Traditionally, Shannon’s theory asserts that optimal performance in
communication systems can be achieved by separating source and channel coding under
the assumption of infinite block lengths and latency tolerance. However, in low-latency,
high-mobility, and edge-deployed systems, these assumptions do not hold. JSCC, particularly
deep JSCC, enables the encoding of input features directly into channel symbols, bypassing
the need for rigid modular compression and coding schemes.
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The milestone work in this direction is [14], which introduced an autoencoder-based
framework for wireless image transmission where the encoder and decoder were trained as
neural networks under the presence of a simulated noisy channel (e.g., AWGN). The encoder
directly mapped the input images to channel symbols, and the decoder reconstructed the
image at the receiver. Importantly, the model learned to allocate redundancy and compression
adaptively based on content and channel conditions, something hard-coded schemes struggle
to do.

This work demonstrated the key benefit of JSCC:

• Graceful degradation: Unlike digital schemes that exhibit catastrophic failure under
poor channel conditions, deep JSCC degrades smoothly.

• E2E differentiability: The entire encoder–channel–decoder system can be trained
jointly with gradient descent.

• Bandwidth-quality tradeoff: The system learns to balance semantic richness with
transmission constraints implicitly.

Extension to Task-Oriented Architectures

While the [14] targeted image reconstruction, subsequent work extended this model to task-
oriented scenarios, where the goal is not reconstruction but classification, control, or regression
based on received features.

In a typical task-oriented JSCC framework, the system consists of the following modules:

• Task-Aware Encoder: Maps the input (e.g., image, time-series, point cloud) into a
low-dimensional latent space that is task-discriminative.

• Channel Layer: Simulates realistic transmission conditions, such as AWGN, Rayleigh
fading, or quantization noise. This layer must be differentiable to allow for gradient
flow during training.

• Task Decoder: receives the noisy representation and performs the downstream tasks,
such as classification, control decision, or bounding-box estimation.

1.2 Motivation and Research Questions

The growing complexity and autonomy of connected robotic systems demand a shift from
traditional, reconstruction-oriented communication paradigms to more efficient and task-
aware paradigms. In real-world scenarios, such as autonomous driving or industrial control,
communication systems must prioritize providing the most relevant information for decision
making, not simply reproducing fidelity. This transition is motivated by pressing challenges:
limited bandwidth, stringent latency requirements, and extreme channel conditions in edge-
deployed settings. Task-oriented communication, which focuses on transmitting only mission-
critical data, emerges as a promising solution to meet these demands. However, fundamental
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questions remain about how to design robust, learning-based communication schemes that are
compatible with existing infrastructure and capable of operating in dynamic environments.

This thesis addresses the fundamental challenge of efficiently transmitting mission-critical
information in edge-enabled autonomous systems, particularly under constraints of bandwidth,
latency, and reliability. The main questions answered in this thesis are the following.

• How can task-oriented communication frameworks be designed to prioritize task-
specific features while maintaining robustness under limited bandwidth and noisy
channels?
This question investigates the design of deep learning-based source-channel coding
strategies that optimize end-to-end task performance, such as autonomous driving
accuracy, rather than traditional reconstruction fidelity.

• How can task-oriented communication be aligned with existing digital communi-
cation infrastructures to ensure seamless integration and compatibility?
This addresses the practical challenges of deploying task-oriented systems within ex-
isting edge intelligence infrastructures, where compatibility with standard modulation
schemes and data formats is essential.

• How can communication, computing, and control be co-designed in a task-oriented
manner to meet the requirements of Ultra-Reliable Low-Latency Communication
(URLLC) in industrial Cyber-Physical System (CPS)?
This question targets the combination of task-specific encoding with delay-aware
prediction models to mitigate end-to-end latency and ensure reliable decision-making
in real-time mission-critical applications.

1.3 Thesis Statement

This thesis proposes that task-oriented communication, when co-designed with computing
and control strategies, can significantly enhance the performance, robustness, and efficiency
of edge-enabled autonomous systems operating under constrained and dynamic environments.
Departing from the traditional reconstruction-oriented paradigm, this work focuses on optimiz-
ing information transmission for task-specific objectives, such as real-time control decisions,
rather than maximizing data fidelity. The central hypothesis of this thesis is:

Hypothesis By prioritizing mission-critical information and suppressing task-agnostic

content through a task-oriented communication framework – jointly optimized with compu-

tation and control components – edge-enabled autonomous systems can achieve superior

performance and reliability under bandwidth constraints, high latency, and noisy channel

conditions.
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1.4 Thesis Contributions

The main contributions of this thesis are summarized as follows:

Task-Oriented Source-Channel Coding (TSCC): We propose a novel deep TSCC frame-
work based on modified Conditional Variational Autoencoder (CVAE) to enhance edge-
enabled autonomous driving. Inspired by JSCC-enabled image transmission [14] and the
integration of JSCC with Variational Autoencoder (VAE) [15], our approach jointly designs
data transmission with autonomous driving agent, building a resilient E2E communication sys-
tem under low SNR scenarios. Our approach prioritizes task-critical information by deploying
an E2E autonomous driving agent as a training metric. We innovatively integrate β-CVAE
with the autonomous driving agent, offering a holistic view of task-oriented source-channel
coding. The major contributions of TSCC include:

• We design β-CVAE combining the autonomous driving agent with the source-channel
coding, demonstrating a novel approach that integrates communications and computing
in autonomous systems.

• We implement TSCC within an edge-enabled state-of-the-art E2E autonomous driving
agent, demonstrating notable improvements in driving performance over traditional
communication methods and state-of-the-art deep JSCC approaches in terms of driving
score.

Aligned Task- and Reconstruction-Oriented Communications (ATROC): This work
introduces a novel communication framework compatible with reconstruction-oriented com-
munication, especially for edge inference. By extending IB theory [6] and incorporating
JSCC modulation, Aligned Task- and Reconstruction-Oriented Communication (ATROC)
is designed to enhance AI-driven machine-to-machine communication. It prioritizes task-
specific information in data transmission, shifting focus from traditional signal reconstruction
fidelity to operational efficiency and effectiveness in real-world task performance. The key
contributions of ATROC are summarized as follows:

• Based on IB theory, we develop a framework that aligns task-oriented communications
with reconstruction-oriented communications. The framework focuses on maximizing
mutual information between inference results and encoded features, minimizing mutual
information between the encoded features and the input data, and preserving task-
specific information through the information reshaper.

• We introduce an information reshaper within our extended IB theory, laying a founda-
tional aspect of ATROC. This reshaper is expert at transforming received symbols into
task-specific data, maintaining the same data structure as the input while ensuring the
preservation of task-specific information. This component is crucial for adapting the
communication to the specific needs of the task without compromising the integrity of
the transmitted data.
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• Due to the intractability of mutual information in the training and inference of deep
neural networks, we adapt a variational approximation approach, known as VIB. This
approach allows us to establish a tractable upper bound for these terms, enabling
training and inference of deep neural networks.

• We design a JSCC modulation scheme that aligns the JSCC symbols with a predefined
constellation scheme. This scheme ensures compatibility of ATROC with classic modu-
lation techniques, making it more adaptable to existing communication infrastructures.

• In our simulation, we validate that the ATROC framework reduced the communication
load by 99. 19% in terms of bits per service, compared to existing methods, without
compromising the driving score of the autonomous driving agent.

Task-Oriented Co-Design of Communication, Computing, and Control: In this work,
our objective is to address three fundamental questions for edge-enabled mission-critical
industrial CPS:

1. How can data transmission be optimized for bandwidth-constrained and latency-
sensitive applications to ensure that task-specific information is prioritized?

2. How can predictive models be utilized to ensure that edge inference systems make
decisions that reduce perceived E2E delay?

3. How can communication, computing, and control be jointly designed and optimized to
meet the demands of URLLC in mission-critical applications?

The key contributions of this work are summarized as follows:

• We develop a comprehensive task-oriented co-design framework that jointly optimizes
communication, computing, and control. This framework seamlessly integrates task-
oriented JSCC with a delay-aware autonomous driving agent, addressing the critical
challenges of bandwidth constraints, noise interference, and E2E delay to maximize
performance for edge-enabled autonomous driving.

• We formulate the problem of task-oriented communication using the IB approach and
employ a variational approximation to derive a tractable upper bound, resulting in
the VIB method. Additionally, we extend the standard VIB framework to incorporate
conditional information, such as vehicle and channel state information, ensuring better
alignment with mission-critical applications. Our formulation improves communication
efficiency in dynamic and noisy environments, which is essential for the reliable
operation of industrial CPS.

• We establish the Delay-aware Trajectory-guided Control Prediction (DTCP) strategy
for autonomous driving, which combines two dominant autonomous driving paradigms:
trajectory planning and control prediction. The DTCP processes JSCC symbols, state
information, and channel state to predict optimal driving actions that reduce perceived
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E2E delay. In addition, DTCP is co-designed with the task-oriented JSCC and is jointly
trained for machine-to-machine communication.

1.5 Thesis Organization

This thesis is organized as follows:

• In Chapter 2, we introduce the fundamental theories and prior research that form
the basis of this thesis. It starts with rate-distortion theory, including the Asymptotic
Equipartition Property (AEP) and channel capacity. And then it explores the Information
Bottleneck (IB) Approach, which extends the rate-distortion framework for optimizing
task-relevant information. Other important topics include JSCC, edge intelligence and
predictions in URLLC applications.

• In Chapter 3, we introduce the foundation of task-oriented communication for au-
tonomous systems. We propose a novel TSCC framework that jointly optimizes source
coding and channel coding in a task-oriented manner. Specifically, to reduce com-
munication overhead and guarantee autonomous driving performance, we leverage an
autonomous driving agent to guide source-channel coding based on a modified CVAE.
We test the proposed framework on a well-known autonomous driving platform with
different communication channel conditions. The results show that compared to tradi-
tional communication and state-of-the-art deep JSCC, our proposed framework achieves
superior performance by saving 98.36% communication overhead and maintains an
83.24% driving score even at 0 dB SNR.

• In Chapter 4, we discuss the integration of task-oriented communication with the
existing communication paradigms and infrastructure. We propose a communication
framework that aligns task-oriented and reconstruction-oriented communications for
edge intelligence. The idea is to extend the Information Bottleneck (IB) theory to
optimize data transmission by minimizing task-relevant loss function, while maintaining
the structure of the original data by an information reshaper. Such an approach integrates
task-oriented communications with reconstruction-oriented communications, where
a variational approach is designed to handle the intractability of mutual information
in high-dimensional neural network features. We also introduce a JSCC modulation
scheme compatible with classical modulation techniques, enabling the deployment of
AI technologies within existing digital infrastructures. The proposed framework is
particularly effective in edge-based autonomous driving scenarios. Our evaluation in
the Car Learning to Act (CARLA) simulator demonstrates that the proposed framework
significantly reduces bits per service by 99.19% compared to existing methods, such as
JPEG, JPEG2000, and BPG, without compromising the effectiveness of task execution.

• In Chapter 5, we explore the design of holistic systems based on task-oriented communi-
cation. We propose a task-oriented co-design framework that integrates communication,
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computing, and control to address the key challenges of bandwidth limitations, noise
interference, and latency in mission-critical industrial Cyber-Physical Systems (CPS).
To improve communication efficiency and robustness, we design a task-oriented Joint
Source-Channel Coding (JSCC) using Information Bottleneck (IB) to enhance data
transmission efficiency by prioritizing task-specific information. To mitigate the per-
ceived End-to-End (E2E) delays, we develop a Delay-Aware Trajectory-Guided Control
Prediction (DTCP) strategy that integrates trajectory planning with control prediction,
predicting commands based on E2E delay. Moreover, the DTCP is co-designed with
task-oriented JSCC, focusing on transmitting task-specific information for timely and
reliable autonomous driving. Experimental results in the CARLA simulator demonstrate
that, under an E2E delay of 1 second (20 time slots), the proposed framework achieves a
driving score of 48.12, which is 31.59 points higher than using Better Portable Graphics
(BPG) while reducing bandwidth usage by 99.19%.

• In Chapter 6, we summarize the contributions of the thesis and discuss potential research
directions.
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Chapter 2

Background and Related Work

2.1 Historical Evolution of Communication Systems

The evolution of communication systems represents one of the most pivotal technological
advances in human history. From early analog signals to modern intelligent, context-aware
communication paradigms, each generation of systems has been built on the foundations of
information theory, with increasing demands for speed, fidelity, and intelligence.

2.1.1 Early Foundations and Analog Communication

The roots of modern communication can be traced back to the late 19th century with the
invention of the telegraph and telephone. Samuel Morse’s telephone (1837) and Alexander
Graham Bell’s telephone (1876) established the foundations of real-time electrical communi-
cation over distances. These analog systems transmitted signals in continuous waveforms,
susceptible to degradation due to noise and interference. Despite these limitations, they
marked the birth of long-distance human-to-human communication.

2.1.2 The Digital Shift and Birth of Information Theory

A monumental shift occurred in 1948 when Claude Shannon introduced the mathematical
theory of communication, now widely regarded as the foundation of digital communications.
Shannon’s work [16] established two key ideas: the separation of source and channel
coding, and the concept of channel capacity, which defines the theoretical maximum rate at
which data can be transmitted with arbitrarily low error.

This led to the design of modern modular digital systems where:

• Source coding (e.g., JPEG [3] for images, MP3 [17] for audio) compresses data to
reduce redundancy.

• Channel coding (e.g., Hamming codes [18], convolutional codes [19], and Low-Density
Parity-Check (LDPC) [5]) adds controlled redundancy to combat noise in communica-
tion channels.
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The primitive digital communication systems assumed that the goal of communication is
accurate signal reconstruction, an assumption that was held for decades and influenced
generations of system design.

2.1.3 Generations of Mobile Communication: From Voice to Data

The generational progression of mobile communication technologies has been one of continu-
ous transformation, driven by the need for higher data throughput, lower latency, and greater
connectivity. From the analog foundations of 1G to the intelligent, task-aware networks of 5G
and beyond, each generation has introduced core technical shifts that redefined how humans
and machines communicate.

The first generation (1G) of mobile networks, which emerged in the late 1970s and 1980s,
was characterized by analog voice transmission. Technologies such as the Advanced Mobile
Phone System (AMPS) [20] in the United States, the Nordic Mobile Telephone (NMT) [21]
in Scandinavia, and the Total Access Communication System (TACS) [22] in the United
Kingdom were among the early implementations. These systems operated primarily in
the 800-900 MHz bands and utilized Frequency Division Multiple Access (FDMA) [23] to
allocate separate frequency bands to individual users. While these analog systems enabled
mobile telephones for the first time, they suffered from poor spectral efficiency, high levels of
noise interference, and an absence of encryption or secure handover mechanisms, making
them highly vulnerable and inefficient by modern standards [24].

The transition to second-generation (2G) mobile systems in the early 1990s marked a
significant breakthrough in adopting digital modulation techniques. The Global System
for Mobile Communications (GSM) [24], developed in Europe, became the dominant 2G
standard worldwide. Meanwhile, IS-95, based on Code Division Multiple Access (CDMA)
[25], gained traction in North America and parts of Asia. These systems offered more efficient
bandwidth utilization and supported services beyond voice, most notably Short Message
Service (SMS) [26] and basic packet-switched data. GSM operated in the 900 and 1800 MHz
frequency bands and utilized Gaussian Minimum Shift Keying (GMSK) [27] for modulation,
while IS-95 introduced spread-spectrum techniques. The early 2G systems offered data
rates of up to 14.4 kbps, which was extended to more than 384 kbps through the General
Packet Radio Service (GPRS) [28] and the Enhanced Data Rates for GSM Evolution (EDGE)
[29], often referred to as 2.5G and 2.75G, respectively. Additionally, 2G systems introduced
basic Subscriber Identity Module (SIM)-based authentication and encryption, improving the
security and privacy of mobile users [30].

The arrival of third-generation (3G) networks in the early 2000s addressed the increasing
demand for mobile internet access and multimedia services such as email, video calling,
and mobile web browsing. The Universal Mobile Telecommunications System (UMTS)
[31], based on Wideband Code Division Multiple Access (WCDMA) [32], became the
predominant 3G standard. It operated in the 2.1 GHz frequency band and utilized a 5 MHz
channel bandwidth, enabling simultaneous support for voice and high-speed data. 3G systems
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introduced adaptive modulation schemes such as Quadrature Phase Shift Keying (QPSK) [33]
and, later, 16- and 64-Quadrature Amplitude Modulation (QAM) through technologies such
as High Speed Packet Access (HSPA+) [34]. These enhancements pushed downlink data rates
to several megabits per second under favorable conditions. Technical innovations such as rake
receivers, soft handoff, and packet switching made 3G much more versatile and robust than
its predecessors. Most importantly, it laid the foundation for an IP architecture, which would
become central in subsequent generations [35], [36].

Building on this momentum, fourth-generation (4G) networks – led by Long-Term Evolu-
tion (LTE) [37] – initiate the era of high-speed broadband mobility. Launched in the 2010s,
LTE eliminated circuit-switched architecture in favor of a fully packet-switched, IP-based
system, significantly reducing latency and increasing spectral efficiency. LTE operated over a
broad frequency range (from 700 MHz to 2.6 GHz) and employed Orthogonal Frequency Divi-
sion Multiple Access (OFDMA) [38] in the downlink and Single Carrier-Frequency Division
Multiple Access (SC-FDMA) [39] in the uplink. Through advanced modulation schemes (e.g.,
QPSK, 16-QAM, and 64-QAM) and technologies such as Multiple-Input Multiple-Output
(MIMO) [40] and carrier aggregation, LTE supported peak downlink rates approaching 100
Mbps for mobile users and up to 1 Gbps in static environments. The evolution to LTE-
Advanced and LTE-Advanced Pro further improved these rates and enabled features such
as Voice over LTE (VoLTE) and IPv6 support, transforming smartphones into full-fledged
multimedia devices and paving the way for real-time applications such as high-definition
video conferencing and cloud-based gaming [41], [42].

The most recent advancement, fifth-generation (5G) networks, represents a paradigm
shift not just in speed but also in network intelligence and flexibility. Standardized through
3GPP Releases 15 and beyond, 5G networks are designed to serve a diverse range of appli-
cations through three main service categories: enhanced Mobile Broadband (eMBB) [43],
Ultra-Reliable Low-Latency Communications (URLLC) [44], and massive Machine-Type
Communications (mMTC) [45]. These use cases target everything from immersive augmented
reality and 4K/8K video streaming to autonomous driving, industrial automation, and the
Internet of Things (IoT). Technically, 5G networks operate over sub-6 GHz bands and mil-
limeter wave (mmWave) frequencies (above 24 GHz), enabling extremely high data rates
and ultra-low latency. With channel bandwidths reaching up to 400 MHz, massive MIMO
with beamforming, and adaptive modulation schemes up to 256-QAM, 5G promises peak
data rates of 10 Gbps and latency as low as 1 millisecond. Additionally, network slicing
and Multi-access Edge Computing (MEC) [46] allow the creation of virtualized network
environments optimized for different tasks, supporting heterogeneous services with stringent
performance requirements [47].

Looking ahead, sixth-generation (6G) mobile networks are envisioned not merely as faster
or more capacious versions of 5G, but as fundamentally transformative infrastructures that
integrate communication, sensing, computing, and intelligence into a unified framework.
According to the International Telecommunication Union (ITU) and the major 6G research
initiatives worldwide, including the Hexa-X project in Europe, the Next G Alliance in North
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America, and China’s 6G Innovation Hub, 6G will operate in terahertz (THz) frequency bands,
potentially offering data rates exceeding 1 Tbps, submillisecond latency, and high-precision
localization capabilities [48], [49]. Key pillars of 6G research include ubiquitous AI integra-
tion, Intelligent Reflecting Surfaces (IRS), cell-free massive MIMO, and native support for
eXtended Reality (XR) applications and holographic communications [50], [51]. In addition,
6G is expected to mark a paradigm shift from data-centric to task-driven communications,
where the network not only transmits information, but also understands and optimizes for
the task to be performed. In this context, semantic communication, which aims to transmit
meaning rather than raw bits, and task-oriented communication, which focuses on delivering
just enough information to complete a downstream AI task, have emerged as foundational
concepts.

Together, these generational advancements illustrate a clear trajectory: from basic voice
communication to intelligent, context-aware systems designed for task-oriented, ultra-reliable,
and low-latency applications. This evolution sets the stage for the paradigm explored in this
thesis, task-oriented communication for edge intelligence enabled connected robotics systems,
where communication is no longer just about data fidelity, but about precisely delivering the
information needed to perform autonomous actions.

2.1.4 Emergence of AI-Driven Systems and the Need for New Commu-
nication Paradigms

The past decade has witnessed a profound transformation in the architecture and functionality
of intelligent systems. With the maturation of deep learning, the growth of IoT devices, and
the advent of edge computing, we are entering an era in which autonomous systems are
expected to understand, decide, and act on sensory data in real time, ranging from self-driving
vehicles and drones to smart factories and augmented reality platforms. This shift toward
AI-driven autonomy challenges the foundational assumptions of conventional communication
paradigms, where the main goal has historically been the faithful reconstruction of transmitted
signals, independent of the task for which the data are ultimately used.

In traditional communication systems based on Shannon’s theory, the network is modeled
as a pipe for delivering bits from the sender to the receiver with minimal distortion and
delay. Information is encoded, transmitted, and decoded with the objective of reconstructing
the original signal as accurately as possible. This design philosophy works well when the
recipient is a human or a general-purpose computing system tasked with storing or rendering
the data. However, in many modern Machine-to-Machine (M2M) applications, the end goal
is not to reconstruct the data per se, but rather to make a task-specific decision based on them,
such as steering an autonomous vehicle, identifying an object in a video stream, or adjusting
parameters in an industrial controller [52].

This task-centric nature of intelligent systems creates a mismatch between current com-
munication methods and the actual performance requirements of the applications they support.
For example, let’s consider a drone navigating through a dense urban environment. It may



2.1. Historical Evolution of Communication Systems 14

transmit high-resolution video to an edge server for object detection and path planning.
Traditional communication methods aim to deliver the full image with minimal loss, con-
suming bandwidth and incurring latency. However, the drone’s control system only requires
high-confidence information about the location of obstacles or targets, not pixel-perfect
reconstructions. In this case, transmitting task-irrelevant data is inefficient and even counter-
productive in latency-constrained environments [14].

To meet the needs of such applications, the computational paradigm is shifting toward
edge intelligence, a model that distributes processing closer to the data source (i.e., at the
edge of the network). This model enables low-latency inference and decision-making by
allowing data to be compressed, encoded, and interpreted locally, before being transmitted
to centralized servers for further processing if needed [53]. However, even in edge-enabled
architectures, communication remains a bottleneck. Wireless links are bandwidth-limited and
prone to interference, while AI models are increasingly data-hungry. This has led to a growing
recognition that communication itself must be co-optimized with computation and control,
particularly in latency-sensitive domains such as autonomous driving, remote robotics, and
AR/VR [54].

In response to these demands, researchers have begun to explore new communication
paradigms, which seek to transmit only the information necessary for a given downstream
task. A key development in this area is the concept of semantic communication, which aims
to preserve the meaning of the transmitted information rather than its raw form. Unlike
traditional communication, where every bit contributes equally to the reconstruction objective,
semantic communication prioritizes semantically relevant features, often derived from DNN
encoders, to reduce redundancy and enhance efficiency [55]. Another emerging and related
direction is task-oriented communication, which formalizes this idea through information-
theoretic frameworks such as the IB method [10]. Here, the encoder is optimized not to
preserve all information in the input, but only the information that is maximally informative
about the task output, such as classification labels or control actions.

These new paradigms fundamentally redefine the role of communication in AI-driven
systems, from being a neutral data transporter to an active participant in task execution. In
semantic and task-oriented communication, the system is designed not only to transmit but to
understand what needs to be transmitted, depending on context, task criticality, and network
constraints. Importantly, these approaches are especially valuable in edge-enabled CPS, where
data must be processed and acted upon within tight latency and reliability bounds.

This thesis builds on these developments, proposing a set of novel architectures that unify
task-oriented communication with edge intelligence, deep JSCC, and autonomous control.
The goal is to design cooperative systems that selectively transmit mission-critical information,
ensuring robust inference and decision making even under challenging network conditions
such as low SNR, high mobility, and stringent delay budgets.
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2.2 Semantic Communication

As modern communication systems shift focus from human-centric applications to machine-
centric, task-driven services, a critical question arises: Is it always necessary to transmit all
the data for effective communication, or is it sufficient to convey only what is meaningful for a
given task? The concept of semantic communication emerges from this question, representing
a fundamental evolution in how information is encoded, transmitted, and interpreted. Rather
than aiming for bit-level fidelity, semantic communication seeks to preserve the meaning of
transmitted content, aligning the communication process more closely with cognitive and
contextual understanding.

2.2.1 Rethinking Communication Models

In Shannon’s model, information is abstracted as a stream of bits, and the goal is to maximize
the transmission rate under the constraints of bandwidth and noise. However, this model
disregards the actual content or meaning of the message. For example, the phrases “It’s
raining” and “Rain is falling” may convey identical semantic content but differ significantly at
the bit level. Semantic communication breaks from this constraint by shifting the performance
objective from bit-wise accuracy to semantic fidelity.

The modern architecture of a semantic communication system includes semantic encoders
and decoders built on DNNs, which are trained to capture and reconstruct meaning from data.
These systems sometimes incorporate a shared Knowledge Base (KB) between the sender and
the receiver, allowing them to interpret the same symbols in semantically aligned ways. The
semantic encoder filters out redundant information and extracts meaningful features, while
the semantic decoder reconstructs the transmitted message based on contextual and learned
semantic representations.

2.2.2 Key System Components: A New Architecture

Semantic communication systems integrate several new elements beyond classical communi-
cation systems:

• Semantic Encoder: Extracts high-level semantic features from the source data using
DNNs. Examples include LSTM and Transformer models, which map linguistic or
visual inputs into compact semantic embeddings.

• Channel Encoder/Decoder: Manages the actual transmission over noisy channels,
typically integrated into the deep learning pipeline as differentiable layers.

• Semantic Decoder: Reconstructs the semantic message using the received symbols
and the KB, allowing for intelligent inference even under partial or distorted input.

• Knowledge Base (optional): A shared semantic framework that facilitates mutual
understanding between sender and receiver, essential for tasks such as contextual
reasoning and disambiguation.
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This architecture supports both semantic-level communication, which focuses on meaning
preservation, and effectiveness-level communication, which aligns communication with the
success of a downstream task.

2.2.3 Semantic Metrics

Given that traditional metrics such as Bit-Error Rate (BER), Peak Signal-to-Noise Ratio
(PSNR), or Structural Similarity (SSIM) do not capture the preservation of meaning, the
development of semantically aware metrics has become essential for evaluating performance
in semantic communication systems. These metrics fall broadly into three categories:

Semantic Similarity Metrics: These aim to quantify how well the semantics of the received
message align with the original.

• Bilingual Evaluation Understudy (BLEU): Originally used in machine translation to
assess the overlap between predicted and reference sentences. Useful for evaluating
textual semantics.

• BERTScore: Leverages deep language models (e.g., BERT) to compute cosine similar-
ity between embeddings of sentences. More context-sensitive than BLEU.

• Fréchet Inception Distance (FID): Commonly used in image tasks to compare distri-
butions of high-level features between generated and ground-truth data.

• Scene Graph Similarity: For visual semantics, scene graphs (nodes = objects, edges =
relations) allow for evaluating whether core entities and relationships are preserved.

Effectiveness-Oriented Metrics: Used primarily in effectiveness-level semantic communi-
cation systems, where the goal is task success rather than data recovery.

• Task Accuracy: Classification or control performance (e.g., object detection F1-score,
autonomous driving collision rate) is used to indirectly measure the sufficiency of
transmitted semantics.

• Value of Information (VoI): Evaluates how much a received message contributes to
improving task outcomes or decisions.

• Age of Information (AoI): Measures the freshness of the data; especially relevant for
real-time semantic updates in robotic and CPS systems.

Compression-Efficiency Metrics: Semantic communication also seeks transmission effi-
ciency, balancing fidelity and bandwidth:

• Semantic Compression Ratio: The ratio of compressed semantic representation size
to original data size.
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• Transmission Gain vs. Semantic Loss Trade-Off: Explores the trade-off between
fewer bits and decreased task/semantic accuracy.

2.3 Basic Information Theory

2.3.1 Asymptotic Equipartition Property

The Asymptotic Equipartition Property (AEP) is formalized as follows [56]:

Theorem 2.3.1 (AEP): If X1,X2, . . . are i.i.d.∼ p(x), then

− 1
n

logp(X1,X2, . . . ,Xn)→H(X) in probability. (2.1)

Proof:

− 1
n

logp(X1,X2, . . . ,Xn) =− 1
n

∑
i

logp(Xi) (2.2)

Since the functions of independent random variables are also independent random variables,
according to the weak law of large numbers,

− 1
n

∑
i

logp(Xi)→−E logp(X) in probability (2.3)

=H(X). (2.4)

In particular, p(X1,X2, . . . ,Xn) is close to 2−nH(X) with a high probability, which can
be stated as

Pr{(X1,X2, . . . ,Xn) : 2−n(H(X)+ϵ) ≤ p(X1,X2, . . . ,Xn)≤ 2−n(H(X)−ϵ)} ≈ 1 (2.5)

Definition 2.3.1 (Typical Set): The typical set A(n)
ϵ is a set of the sequence (x1,x2, . . . ,xn) ∈

X n respect to p(x) with the following property:

2−n(H(X)+ϵ) ≤ p(x1,x2, . . . ,xn)≤ 2−n(H(X)−ϵ). (2.6)

The previous work [56] had proven that the typical set has a probability close to 1, with
all elements within the typical set being almost equally likely, and the count of elements in
the typical set is approximately 2nH(X). This work mainly focuses on the discussion of the
typical set.
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Figure 2.1: An example system framework of communication.

2.3.2 Channel Capacity

The primary objective of a communication system is to ensure that the transmitted information
is accurately received despite the presence of noise and other channel impairments. A
simplified model of a communication system is illustrated in Fig. 2.1. The encoder takes
the source message X and encodes it into a sequence of channel symbols Zn = [Z1, · · · ,Zn],
where n denotes the length of the symbol sequence. The channel symbols Zn are then
transmitted through the channel, resulting in the output sequence Ẑn = [Ẑ1, · · · , Ẑn]. The
distribution of Ẑn depends on the input sequence Zn and the characteristics of the channel.
From the output sequence Ẑn, the traditional communication aims to accurately reconstruct
the original source message X .

According to Section 2.3.1, the number of elements in the typical set (Ẑn) is about 2nH(Ẑ).
Similarly, for each typical input sequence (z1, z2, . . . , zn) ∈ Zn, there are approximately
2nH(Ẑ|Z) possible output sequences.

In order to distinguish the corresponding input sequence, the typical set of the output
sequence Ẑn should be divided into sets of size 2nH(Ẑ|Z) without overlapping. The number of
divided sets is less than or equal to 2nH(Ẑ)/2nH(Ẑ|Z) = 2n(H(Ẑ)−H(Ẑ|Z)) = 2nI(Z;Ẑ), where
I( · ; ·) denotes mutual information. In that case, up to 2nI(Z;Ẑ) distinguishable sequences of
length n can be transmitted without confusion. This perspective provides an intuitive sense of
information channel capacity, which has the following formal definition [56].

Definition 2.3.2: The information channel capacity of a Discrete Memoryless Channel
(DMC) is defined as

C = max
p(z)

I(Z; Ẑ), (2.7)

where the maximum channel capacity is taken over all possible p(z).

As shown in Fig. 2.1, assume that the messageX is obtained from the index set {1,2, . . . ,M}.
Considering a DMC without feedback, we have the following definitions [56].

Definition 2.3.3: An (M,n) code for the DMC without feedback consists of the following:

1. An index set {1,2, . . . ,M}.

2. An encoding function fEnc : {1,2, . . . ,M}→ Zn.

3. A decoding function fDec : Ẑn→{1,2, . . . ,M}.
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Definition 2.3.4: We define the probability of error of the given sent index i as

λi = Pr(fDec(Ẑn) ̸= i | Zn = fEnc(i)). (2.8)

Definition 2.3.5: We define the maximum probability of error for an (M,n) code as

λmax = max
i∈{1,2,...,M}

λi. (2.9)

Definition 2.3.6: The rate R of an (M,n) code is

R = logM
n

bits per transmission. (2.10)

Definition 2.3.7: If there exists a sequence of
(⌈

2nR
⌉
,n

)
that λmax→ 0 as n→∞, the rate

R is said to be achievable.

Definition 2.3.8: The capacity of DMC is the upper bound of all achievable rates.

2.3.3 Rate-Distortion and Distortion-Rate Theory

Since using a finite rate to precisely describe a random information source X with infinite
precision is a challenge, the actual problem is to find the optimal representation under a given
data rate. Let Xq denote the quantized codebook of the information source X , which can
be characterized by a conditional probability p(x|xq). As discussed in Section 2.3.1, the
number of elements in the space of X is 2H(x). In addition, the average number of elements
in the space of X that can be mapped to the identical element in the space of Xq is 2H(x|xq).
In that case, the elements in the space of X can be divided with the average elements of
2H(X)/2H(X|Xq) = 2H(X)−H(X|Xq) = 2I(X;Xq), where the mutual information I(X;Xq) is
an indicator for the quality of quantization.

In rate-distortion theory [6], [56], this problem is addressed by defining a distortion
function d : X ×Xq→ R+, where a smaller value of the distortion function indicates a more
accurate representation.

The expected distortion is defined as

Ex,xq [d(x,xq)] =
∑
x∈X

p(x)
∑

xq∈Xq

p(xq|x)d(x,xq). (2.11)

In order to minimize the rate while satisfying the expected distortion boundary D, the
rate-distortion function of an i.i.d. information source X with distribution p(x) characterizes
this trade-off via a rate-distortion function R(D):

R(D) = min
{p(xq|x):Ex,xq [d(x,xq)]≤D}

I(X;Xq). (2.12)



2.4. Information Bottleneck Approach 20

Introducing the Lagrange multiplier β, we can instead minimize the following function:

LR(D)[p(xq|x)] = I(X;Xq)+βEx,xq [d(x,xq)]. (2.13)

Similarly, in order to minimize the expected distortion while satisfying the rate constraint
R, we can formulate the distortion-rate function D(R):

D(R) = min
{p(xq|x):I(X;Xq)≤R}

Ex,xq [d(x,xq)]. (2.14)

Introducing the Lagrange multiplier β, we can instead minimize the following function:

LD(R)[p(xq|x)] = Ex,xq [d(x,xq)]+βI(X;Xq). (2.15)

Traditional data compression and communication research primarily focus on the rate-
distortion function (Eq. (2.12)), which characterizes the trade-off between compression
efficiency and reconstruction fidelity. This principle is widely applied in areas such as image
compression, video streaming, and signal processing, where the goal is to minimize the
required transmission rate while maintaining an acceptable level of distortion.

On the other hand, the distortion-rate function (Eq. (2.14)) is particularly well-suited for
neural network-based research, where the structure of the network imposes a fixed capacity
constraint on intermediate representations. In this setting, rather than minimizing the rate for
a given distortion threshold, the objective shifts to minimizing performance loss (D) under a
predefined neural network architecture (R). This is especially relevant in applications such
as knowledge distillation, feature compression, and information bottleneck theory, where
preserving the most critical information within a limited representation space is crucial for
maintaining model performance.

2.4 Information Bottleneck Approach

2.4.1 Information Bottleneck

The rate-distortion theory provides a fundamental perspective on data compression by balanc-
ing information rate and fidelity. However, defining an appropriate distortion function that
generalizes across different data types remains a challenge. Since distortion is typically deter-
mined by the Key Performance Indicators (KPIs) of a given task, a metric that works well in
one scenario may fail in another. A promising approach to addressing this issue is to evaluate
distortion based on the information conveyed rather than on high-fidelity reconstruction.

Considering a Directed Probabilistic Graphical Model (DPGM)

A→X →Xq, (2.16)



2.4. Information Bottleneck Approach 21

where A denotes a relevant variable to X . In this case, we are interested in A, so that we
want the quantized variable Xq to maintain maximum information about A. The amount of
information about A in Xq is expressed by

I(A;Xq) =
∑
a∈A

∑
xq∈Xq

p(a,xq) log p(a,xq)
p(a)p(xq)

. (2.17)

According to the data processing inequality, we have I(A;X)≥ I(A;Xq), which indicates
that quantization cannot increase the relative information of A in Xq in statistics. Instead of
designing a distortion function d(·, ·) to measure the difference between X and Xq, we would
like to shift the objective of Eq. (2.14) to retain the maximum information about A in Xq

subject to the rate constraint. This optimization problem can be formulated as

min
p(xq|x)

− I(A;Xq)

s.t. I(X;Xq)−R≤ 0, (2.18)

where the ‘bottleneck’ is the process from X to Xq. Introducing the Lagrange multiplier β,
we can instead minimize the following function:

LIB[p(xq|x)] =−I(A;Xq)+βI(X;Xq). (2.19)

The IB theory (Eq. (2.18)), which extends from the foundational rate-distortion theory [56],
aims to find an optimal trade-off by maximizing the preservation of task-specific information
in the latent representations, while minimizing the inclusion of task-agnostic information
from the input data. Initially proposed by [6], the practical application of IB theory in training
deep neural networks remained theoretical until significantly later [9].

2.4.2 Variational Information Bottleneck

The application of IB theory in deep learning was primarily hindered by computational
challenges. The traditional optimization of the IB objective function relied on the iterative
Blahut-Arimoto algorithm [7], [8], which is infeasible for deep learning applications due to
its computational complexity and inefficiency in handling large-scale data [9]. Addressing
this limitation, [10] introduced a variational approach to construct a tractable lower bound on
the IB objective, leading to the development of the VIB method. This approach enabled the
practical application of the IB principles in deep learning by approximating the intractable
true posterior with a variational distribution.

Although Section 2.4.1 identifies the quantization as the ‘bottleneck’, it can be more
broadly understood as an encoding process for information source X , leading to the following
DPGM

A→X → Z, (2.20)
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where Z denotes the encoded data. The encoding process X → Z is defined by a parametric
encoder pϕ(z|x). Thus, we can construct an objective as

min
ϕ

− I(A;Z)

s.t. I(X;Z)−R≤ 0. (2.21)

Introducing the Lagrange multiplier β, we can instead minimize the following function:

LIB(ϕ) =−I(A;Z)+βI(X;Z). (2.22)

With the objective function Eq. (2.22), we illustrate how to compute each term in turn.
We start with −I(A;Z), which can be written as

−I(A;Z) =−
∫
p(a,z) log p(a,z)

p(a)p(z) dadz (2.23)

=−
∫
p(a,z) log p(a|z)

p(a) dadz (2.24)

=−
∫
p(a,z) logp(a|z)dadz+

∫
p(a,z) logp(a)dadz (2.25)

=−
∫
p(a,z) logp(a|z)dadz−H(A), (2.26)

where p(a|z) is the posterior probability, which can be derived through the DPGM (Eq. (2.20))
as

p(a|z) =
∫
p(a,x|z)dx (2.27)

=
∫
p(x|z)p(a|x)dx (2.28)

=
∫ p(x)pϕ(z|x)p(a|x)

p(z) dx. (2.29)

Given the complexity of this integration, let qψ(a|z) be a variational approximation to p(a|y).
According to the definition of KL divergence DKL [56], we can derive the following

expression:

DKL(p(a|z)∥qψ(a|z)) =
∫
p(a,z) log p(a|z)

qψ(a|z) dadz (2.30)

=
∫
p(a,z) logp(a|z)dadz−

∫
p(a,z) logqψ(a|z)dadz. (2.31)

Since the KL divergence is always non-negative, we have:

∫
p(a,z) logp(a|z)dadz ≥

∫
p(a,z) logqψ(a|z)dadz, (2.32)
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which derives

−I(A;Z)≤−
∫
p(a,z) logqψ(a|z)dadz−H(A). (2.33)

=−
∫
p(a,x,z) logqψ(a|z)dadxdz−H(A) (2.34)

=−
∫
p(a,x)pϕ(z|x) logqψ(a|z)dadxdz−H(A) (2.35)

= Ea,x
[
Ez|x;ϕ

[
− logqψ(a|z)

]]
−H(A) (2.36)

Note that the entropy H(A) is independent of the optimization and thus can be ignored.
The second term I(X;Z) can be formulated as:

I(X;Z) =
∫
p(x,z) log p(x,z)

p(x)p(z) dxdz (2.37)

=
∫
p(x,z) log pϕ(z|x)

p(z) dxdz (2.38)

=
∫
p(a,x,z)pϕ(z|x)

p(z) dadxdz (2.39)

=
∫
p(a,x)pϕ(z|x)pϕ(z|x)

p(z) dadxdz (2.40)

= Ea,x
[
DKL(pϕ(z|x)∥p(z))

]
, (2.41)

where p(z) is the intractable prior probability of z. Let qϵ(z) be the variational approximation
of p(z). Since DKL(p(z)∥qϵ(z))≥ 0, we have

∫
p(z) logp(z)dz ≥

∫
p(z) logqϵ(z)dz. (2.42)

So that

I(X;Z)≤
∫
p(x,z) log pϕ(z|x)

qϵ(z)
dxdz (2.43)

=
∫
p(a,x,z)pϕ(z|x)

qϵ(z)
dadxdz (2.44)

=
∫
p(a,x)pϕ(z|x)pϕ(z|x)

qϵ(z)
dadxdz (2.45)

= Ea,x
[
DKL(pϕ(z|x)∥qϵ(z))

]
. (2.46)

Combining Eq. (2.36) and Eq. (2.46), the upper bound of the Eq. (2.22) is given by

LVIB(ϕ) = Ea,x
[
Ez|x;ϕ

[
− logqψ(a|z)

]
+DKL(pϕ(z|x)∥qϵ(z))

]
(2.47)

≥ LIB(ϕ)+H(A) (2.48)

=−I(A;Z)+βI(X;Z)+H(A), (2.49)

which can be optimized using stochastic gradient descent through Monte Carlo sampling,
providing a practical framework for empirical estimation and subsequent optimization.
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Recent work has seen the integration of VIB with deep JSCC, which has been effectively
used to formalize task-oriented communication strategies. In particular, the results [11], [12]
have demonstrated that combining VIB with deep JSCC offers superior performance over
reconstruction-oriented communication frameworks. These studies showcase the potential of
VIB in improving the efficiency and robustness of communication systems, particularly in
scenarios where preserving task-specific information and discarding task-agnostic information
are crucial.

Integrating JSCC and IB methods to protect user privacy is an advanced direction in
current research. FedSem [57] had collaboratively trained semantic-channel encoders of
multiple devices coordinated by a semantic-channel decoder using IB theory based on base
stations. Unlike traditional centralized learning approaches, FedSem reduces communication
overhead and mitigates privacy concerns by enabling the sharing of semantic features rather
than raw data. In addition, the author of [58] introduced a privacy-preserving JSCC scheme
for image transmission, using a disentangled IB objective to effectively separate private
information from public data. This approach ensures the protection of privacy-sensitive
information while maintaining high image quality. Although these works show impressive
progress in the integration of JSCC with IB theory, they often require specialized designs that
are challenging to combine with existing systems and devices.

There is a need to design an advanced framework aligning two communication paradigms
– task-oriented communications and reconstruction-oriented communications – and develop a
JSCC modulation scheme for practical deployment.

2.5 Joint Source-Channel Coding

2.5.1 Introduction and Motivation

Communication systems traditionally follow the principles established by Claude Shannon,
notably the source-channel separation theorem. According to Shannon’s theorem, optimal
communication performance can theoretically be achieved by independently optimizing source
coding (data compression) and channel coding (error correction) under the assumptions of
infinite block length and stationary, memoryless channels [16]. This separation principle
has significantly shaped the design of modern communication networks due to its modular
simplicity, allowing separate advancements in source compression methods such as JPEG for
images and MP3 for audio, and channel coding techniques such as LDPC or turbo codes for
error correction [59].

Despite the practical advantages offered by source-channel separation, such as modularity
and ease of standardization, several limitations arise under realistic operating conditions.
One notable limitation is the suboptimal performance in scenarios involving finite block
lengths, which is typical in real-time and latency-critical applications [60]. When the block
length is finite, separation-based approaches may not fully exploit the potential capacity of
a given channel, often leading to degraded performance and inefficiencies. Furthermore,
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Figure 2.2: Examples of the basic point-to-point communication systems: (a) the traditional
communication system and (b) the joint source-channel communication system.

the separation theorem assumes perfect knowledge of channel conditions, which is rarely
achievable in dynamic wireless environments that vary in time such as vehicular networks,
drone communications, and IoT ecosystems [61]. Under rapidly fluctuating channel con-
ditions, separate encoding and decoding schemes frequently suffer from the “cliff effect,”
where system performance drastically deteriorates when channel quality falls below certain
thresholds [62].

Joint Source-Channel Coding (JSCC) emerges as an alternative communication paradigm
aimed at addressing these limitations. JSCC involves jointly optimizing the processes of source
compression and channel coding in a single integrated encoding and decoding framework, as
shown in Fig. 2.2. Unlike separate coding, JSCC does not explicitly compress the data to a
minimal representation before transmission; instead, it directly maps the source information
to the input signals of the channel, optimizing the performance for the specific characteristics
of both the source and the channel simultaneously [63]. This joint optimization allows JSCC
to inherently adapt to channel conditions, ensuring robustness against varying noise levels
and preventing the cliff effect commonly observed in separation-based systems [64].

Recently, the importance of JSCC has been amplified due to the rise of semantic and
task-oriented communications. These modern communication paradigms focus on efficiently
transmitting task-specific or semantic information rather than faithfully reconstructing the
original transmitted signals. For example, in applications such as autonomous driving,
Augmented Reality (AR), Virtual Reality (VR), and remote sensing, it is often unnecessary or
inefficient to reconstruct all transmitted data exactly. Instead, it is more beneficial to transmit
only the relevant information required to perform specific downstream tasks such as detection,
classification, or decision making [14], [65]. In such scenarios, JSCC demonstrates significant
benefits by inherently focusing on the relevance of the transmitted information and optimizing
directly for task performance, resulting in substantial reductions in latency and bandwidth
requirements compared to conventional systems.

Given these emerging trends and practical considerations, this section introduces the funda-
mental principles, practical implementations, and recent advancements in JSCC, particularly
emphasizing its utility in modern semantic and task-oriented communication scenarios.
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2.5.2 Theoretical Foundations of JSCC

The theoretical foundations of JSCC are rooted in the study of the source-channel communi-
cation problem by information theory, where the goal is to reconstruct a source signal over
a noisy channel with the required fidelity. At the heart of classical information theory is
Shannon’s separation theorem, which posits that separate optimization of source and channel
codes does not incur any performance loss, provided the blocklength is infinite and the source
and channel statistics are stationary and known. Under these conditions, the channel capacity
C (Eq. (2.7)) and the rate-distortion functionR(D) (Eq. (2.12)) fully characterize the system’s
performance: reliable communication is achievable if and only if R(D)≤ C [66].

However, in many real-world applications, especially in wireless communication systems,
these ideal assumptions do not hold. That is, in practical settings characterized by finite
blocklength, time-varying channels, and stringent latency constraints, the optimality of
source–channel separation collapses. The work [60] established finite blocklength bounds
that reveal a non-negligible penalty when operating at short delays, leading to performance
degradation in separate source-channel coding schemes. In these regimes, JSCC becomes
advantageous by jointly optimizing encoding strategies for both source characteristics and
channel impairments, achieving improved rate-distortion performance and robustness.

The benefits of JSCC also become evident in scenarios involving continuous or analog
sources transmitted over memoryless Gaussian channels. The seminal work [67] showed
that a linear mapping, essentially an analog transmission scheme, is optimal to transmit a
memoryless Gaussian source over an AWGN channel with mean squared error distortion, thus
illustrating a case where separation is not required. Such examples indicate that, under certain
distortion measures and source-channel matching conditions, JSCC can achieve optimality
with simpler uncoded transmission schemes.

Furthermore, in multi-user or multi-terminal scenarios such as the multiple access channel,
broadcast channel, and relay networks, the separation theorem generally fails. For example, in
distributed source coding over a multiple access channel, correlated sources must be encoded
jointly to effectively exploit source correlations [68]. Similarly, for the transmission of
correlated sources over a broadcast channel, a separate design leads to suboptimal solutions
due to mismatched coding strategies and inefficient resource use [69]. JSCC enables correlated
encoding and decoding strategies that align with network constraints, yielding performance
gains in both efficiency and fidelity.

From an optimization perspective, JSCC can be formulated as a joint minimization
problem in the encoder-channel-decoder system to avoid expected distortion. While this
problem is nonconvex and generally intractable in closed form, advances in information-
theoretic bounds and iterative optimization techniques have provided insight into the structure
of near-optimal joint designs. In addition, hybrid digital-analog schemes represent a practical
design approach that combines the robustness of analog transmission with the efficiency of
digital codes, especially useful in time-varying channels where Channel State Information
(CSI) may be imperfect or outdated [14].
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2.5.3 JSCC for Semantic Communications

JSCC provides substantial benefits for semantic and task-oriented communications by directly
optimizing the transmitted information for specific tasks or meaningful interpretations rather
than precise signal reconstruction. This section introduces the applications of JSCC in three
primary areas: text, audio, and image/video communication.

Text Communication

In semantic text communication, the focus shifts from the exact reproduction of transmitted
bitstreams to the accurate transmission of intended meaning. Traditional separate source and
channel coding systems, which tokenize and encode text before applying error-correcting
codes, often fail under noisy conditions, leading to significant semantic degradation. In con-
trast, JSCC approaches, particularly those leveraging deep learning, offer robust alternatives
by jointly optimizing the encoding and transmission processes to preserve semantic integrity
even in adverse channel conditions.

[70] introduced a variable-length JSCC scheme for text using deep learning, which adapts
the encoding length based on the sentence structure and content. This method improves the
efficiency and reliability of text transmission over noisy channels by dynamically adjusting to
the semantic complexity of the input.

In addition, [71] proposed the Iterative Semantic Joint Source-Channel Coding (IS-JSCC),
a semi-neural framework designed specifically for text communication over wireless channels.
Unlike traditional neural network-based JSCC, IS-JSCC iteratively refines semantic decoding
by using intermediate decoded text as prior knowledge in subsequent decoding iterations. The
semantic information of the candidate words is synthesized in the embedding space, weighted
by posterior probabilities, thus effectively reducing the spread of errors and improving the
robustness against varying channel conditions [71]. This iterative approach demonstrates
superior performance over fully neural end-to-end models in text reconstruction quality,
particularly in dynamic wireless environments.

Moreover, semantic communication systems for text transmission use advanced deep
learning models, notably Transformers [72], to extract and encode semantic meaning directly
from textual content. The DeepSC system developed by [73] is a significant advancement
in this direction. This system utilizes a Transformer-based neural network architecture to
perform JSCC, prioritizing the preservation of semantic meaning over traditional bit-error
metrics. DeepSC employs transfer learning to rapidly adapt to various communication envi-
ronments, maintaining performance under challenging low SNR conditions. By optimizing
the semantic accuracy of reconstructed sentences rather than individual symbols or bits,
DeepSC demonstrates enhanced robustness against channel noise and distortions.

The other notable example is the Transformer-based JSCC framework proposed by [74],
which employs advanced natural language processing techniques to model and encode sen-
tences. This system utilizes a Transformer encoder to extract semantic features from tokenized
text, which are then quantized into fixed-length binary sequences for transmission. Upon
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reception, a Transformer decoder reconstructs the sentences from these sequences. The frame-
work demonstrates superior performance in maintaining semantic similarity and translation
accuracy over various noisy channels, including binary erasure and deletion channels.

Audio Communication

In semantic audio communication, the emphasis is on preserving the comprehensibility and
meaning of speech rather than achieving perfect waveform reconstruction. This approach is
particularly beneficial in applications such as voice-controlled systems, telemedicine, and
emergency communications, where understanding the message conveyed is paramount.

Recent work [75] proposed DeepSC-S, a semantic communication system specifically
designed for deep learning-based speech signals. DeepSC-S incorporates a squeeze-and-
excitation network, which leverages an attention mechanism that identifies and emphasizes
essential speech features. This attention-based approach allows DeepSC-S to assign higher
weights to critical semantic components, thereby enhancing the accuracy of the reconstruction
of audio signals. The system demonstrates superior performance in various channel conditions
without retraining and exhibits enhanced robustness, particularly under low SNR regimes,
making it suitable for applications such as telephone systems and multimedia transmissions.

A notable advancement in this domain is the development of DeepSC-ST [76], a deep
learning-based semantic communication system designed for speech transmission. This
system integrates speech recognition and synthesis tasks, enabling the extraction of semantic
features from speech inputs, which are then transmitted over the channel. At the receiver
end, the system reconstructs the speech using the recognized text and speaker information.
This approach significantly reduces the amount of data transmitted without compromising
performance, particularly excelling in low SNR scenarios.

Another significant contribution is the low-latency deep JSCC framework for speech
transmission over analog Gaussian wireless channels [77]. This system employs a deep neural
network that performs joint source-channel encoding and decoding, facilitating real-time
speech communication with minimal latency. The design is particularly suited for applications
requiring ultra-low delay, such as hearing aids and live broadcasting, demonstrating superior
performance over traditional methods in terms of speech quality and intelligibility under
low-latency constraints.

Furthermore, JSCC has leveraged the predictive capabilities of large language models
(LLMs) to create resilient audio transceivers. The SoundSpring transceiver, introduced by
[78], utilizes dual-functional masked language modeling to achieve high audio compression
efficiency while maintaining robustness against packet loss. This system employs residual
vector quantization (RVQ) to encode latent features into tokens, which are contextually
modeled by masked language models (MLMs). These MLMs serve dual functions: optimizing
entropy coding efficiency during transmission and performing robust packet loss concealment
at the receiver. Extensive experiments show that SoundSpring significantly outperforms
traditional and neural audio codecs under various packet-loss conditions, providing improved
signal fidelity and perceptual audio quality.
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Image/Video Communication

Traditional separate source and channel coding methods, which involve compressing im-
ages using codecs like JPEG or H.264 followed by channel coding, often suffer from the
“cliff effect,” where minor degradations in channel quality can lead to significant drops in
reconstruction fidelity. Deep learning-based JSCC approaches address this limitation by
jointly optimizing encoding and transmission processes, resulting in more robust and efficient
communication systems.

A seminal work in this area is the DeepJSCC framework introduced by [14], which
employs CNNs to directly map image pixel values to channel input symbols. This end-to-end
learning approach eliminates the need for explicit source and channel coding, demonstrating
superior performance over traditional methods, especially in SNR scenarios and under varying
channel conditions.

Building on this foundation, [79] proposed DeepJSCC-f, an extension that incorporates
channel output feedback into the JSCC framework. Using feedback information, DeepJSCC-f
enhances image reconstruction quality and reduces transmission latency, showcasing the ben-
efits of integrating feedback mechanisms into deep learning-based communication systems.

Further advances have been made in adapting JSCC for video transmission. [80] developed
DeepWiVe, an end-to-end JSCC system for wireless video transmission that combines video
compression, channel coding, and modulation into a single neural network. DeepWiVe
introduces a reinforcement learning-based bandwidth allocation strategy, optimizing the
distribution of limited channel resources among video frames to maximize overall visual
quality. This approach outperforms traditional video compression methods like H.264 and
H.265 when combined with channel coding, particularly in dynamic channel environments.

The work [81] introduced two innovative JSCC frameworks: InverseJSCC and Gener-
ativeJSCC, specifically designed for semantic image transmission. InverseJSCC utilizes
pre-trained Generative Adversarial Networks (GANs), particularly StyleGAN, to refine noisy
image reconstructions by solving an inverse optimization problem. GenerativeJSCC, on the
other hand, integrates a StyleGAN-based decoder with an end-to-end optimized encoder-
decoder network trained on both mean squared error (MSE) and learned perceptual image
patch similarity (LPIPS) losses. Experimental results indicate that GenerativeJSCC achieves
substantial improvements in both distortion and perceptual quality compared to conventional
DeepJSCC methods, particularly in low-bandwidth and low-SNR scenarios.

In addition, JSCC techniques have significantly benefited from recent deep learning
advancements, notably through the integration of nonlinear transform coding and deep
JSCC frameworks. The recent work [82] introduced the Deep Video Semantic Transmission
(DVST) framework, a sophisticated JSCC method specifically for video transmission over
wireless channels. DVST integrates non-linear transform coding and a contextual deep JSCC
encoder-decoder architecture, which adaptively extracts and transmits semantic features
based on temporal correlations between frames. Unlike traditional image coding schemes,
DVST utilizes an entropy model to rate-adaptively allocate bandwidth, transmitting semantic
information more efficiently and robustly. Experiments demonstrate the superior performance
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of DVST in perceptual quality metrics, significantly outperforming traditional separated
source channel coding schemes such as H.264/H.265 with LDPC coding.

2.5.4 Paradigm Shift to Task-Oriented Communications

Deep learning-based JSCC has emerged as a robust solution in scenarios characterized
by limited bandwidth and low SNR. Research in deep JSCC for reconstruction-oriented
communication [14], [79], [83] has demonstrated its superiority over traditional source coding
methods, such as JPEG [3] and JPEG2000 [4], as well as channel coding techniques, such as
LDPC codes [5], particularly in environments with low SNR.

Existing reconstruction-oriented communication research primarily focused on data-
centric metrics (e.g., PSNR [79], [83]–[86], SSIM [14], [79], [85], [86], and Multi-Scale
Structural Similarity (MS-SSIM) [79], [85], [86]) to evaluate the effectiveness of deep JSCC.
However, these metrics often lead to suboptimal task performance since high-fidelity recon-
structions are not always necessary from the machine’s perspective, whereas task-specific
semantic information plays the most important role [87]–[92]. For example, in text transmis-
sion, the fidelity of words might be compromised to improve communication efficiency while
still conveying the intended meanings [73], [93]. Similarly, in image transmission, image
fidelity can be sacrificed for less communication overhead and higher task performance [65],
[94], [95].

Nonetheless, existing works, such as [96], assumed that the amplitudes and phases of
channel symbols are analog. Thus, it is not viable to implement them directly in digital
communication systems [97]. To address this issue, the authors of [98] explored image
transmission over the discrete channel (binary symmetric channel) using variational learning
with a Bernoulli prior. This work was further extended by the authors of [99], who introduced
adversarial regularization to enhance robustness. Furthermore, recent works [84], [100] inves-
tigated the transmission of natural images over an Additive White Gaussian Noise (AWGN)
channel model with a finite channel input alphabet. Despite a good fit between the learned con-
stellation diagram and the latent representation, the irregularity of the constellation diagram
still poses significant challenges for deployment on commercial hardware. The author of [101]
developed a digital task-oriented communication framework employing a hardware-limited
scalar quantization approach, specifically tailored for computation-constrained situations,
such as IoT. The results of this work provide valuable insights for future task-oriented JSCC
designs.

2.6 Edge Intelligence

Edge intelligence refers to the integration of AI capabilities with edge computing infrastructure
to enable intelligent data processing near the source of data generation. Unlike the traditional
cloud-centric paradigm, which requires raw data to be transmitted to remote data centers
for processing, edge intelligence decentralizes computational workload, thereby reducing
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communication latency, preserving user privacy, and optimizing bandwidth utilization [102].
The emergence of this paradigm is driven by the proliferation of devices IoT, the exponential
growth of data at the edge, and the increasing demand for real-time, context-sensitive AI-
driven services in sectors such as autonomous driving, smart healthcare, and industrial
automation [103].

The conventional intelligence model relies on centralized cloud servers, where AI models
are trained and deployed, often resulting in significant latency and communication overhead.
This approach becomes infeasible in scenarios requiring ultra-low-latency responses or where
privacy-sensitive data cannot be transferred to external servers. Edge intelligence addresses
these limitations by allowing data collection, storage, training, and inference to occur at the
network edge, such as smartphones, autonomous vehicles, drones, and base stations [104].
Through this decentralization, edge intelligence supports scalable and resilient AI services
that are less dependent on connectivity to the cloud.

At its core, edge intelligence encompasses four essential components: edge caching, edge
training, edge inference, and edge offloading. Each of these elements plays a critical role in
establishing a robust and efficient edge AI ecosystem. Edge caching involves the strategic
storage of data or computation results to minimize redundancy and enhance inference speed.
Edge training leverages localized or distributed datasets to build models that capture user-
or environment-specific patterns with privacy constraints. Edge inference ensures rapid and
efficient execution of AI models at the edge, often through compressed or optimized networks.
Edge offloading facilitates resource-aware task delegation between edge devices, edge servers,
and cloud infrastructure to balance computation load and energy consumption [105].

This paradigm shift is further catalyzed by advances in federated learning, model com-
pression techniques such as pruning and quantization, and lightweight model design, which
collectively make it feasible to deploy sophisticated AI functionality on resource-constrained
devices. Moreover, as the demand for emerging applications grows with the advent of 6G
networks and ubiquitous AI, edge intelligence is regarded as a cornerstone technology to
achieve the vision of ubiquitous and intelligent connectivity [106].

The key architectural approach that underpins recent advances is split inference, where
the inference network is partitioned between the device and the edge [11], [12], [107]–[113].

In this architecture, a mobile device initially processes data using a lightweight neural
network to extract a compact feature vector. Subsequently, this vector is transmitted to an
edge server for further processing, where deep JSCC is integral to the entire procedure [11],
[12], [110]–[113]. Notably, an end-to-end framework that efficiently compresses intermediate
features to optimize the bandwidth and computational resources at the edge was introduced
in [111]. In addition, the authors of [11] developed a method to flexibly adjust the length of
the transmission signal to adapt to dynamic communication environments while maintaining
targeted inference accuracy.

Recent studies have shifted from reconstruction-oriented communication, which focuses
on accurately reconstructing a signal at the receiver, to a task-oriented approach that prioritizes
inference accuracy as the primary performance metric [11], [12], [111], [114], [115]. This
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paradigm shift underscores a move towards optimizing communication systems to support
specific functional requirements rather than general data fidelity.

Note that implementing such split-design architectures often necessitates modifications on
both the device and the edge, which pose challenges in terms of compatibility with existing
communication infrastructures. This issue highlights a significant barrier to widespread
adoption, indicating the need for more compatible solutions that can seamlessly integrate with
current technologies.
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Chapter 3

Foundations: Task-Oriented
Communication for Autonomous Systems

3.1 Introduction

As the era of intelligent transportation systems approaches, the concept of autonomous driving
has moved from a futuristic vision to an imminent reality. The integration of advanced
communication systems with automotive technology is leading the development of connected
automation systems, such as autonomous driving. Edge computing brings computing and data
storage closer to where they are needed, reducing latency, saving computational overhead, and
saving bandwidth. The need for edge-enabled autonomous driving is driven by the limitations
of traditional cloud computing models, which struggle to meet the real-time, high-bandwidth
demands of autonomous vehicles.

Edge-enabled autonomous driving presents formidable challenges to traditional communi-
cation systems. Key challenges include:

1. High Computational Overhead: Autonomous vehicles generate a substantial amount
of sensor data (e.g., radar, camera, and GPS), necessitating real-time transmission and
processing for safe and efficient driving [116].

2. Unreliable Wireless Connectivity: Although 5G supports ultra-reliable low latency,
service continuity remains challenging due to vehicle mobility and obstacle blockage
[117]. In addition, the degradation of SNR in the wireless channel can cause a sudden
breakdown in communication performance, which is known as the cliff effect.

3. Real-time Responsiveness and Latency: Minimizing processing time for sensor data
analysis and decision-making is crucial for timely response in edge-enabled autonomous
driving [116].

To address challenges in connected autonomous systems, especially in low SNR environments,
a paradigm shift that integrates communication with computing becomes essential. This shift
drives rethinking the gap between bit-level transmission built upon Shannon’s theory and the
requirements of tasks in automation systems. Autonomous driving, as a mission-critical task,
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Figure 3.1: Edge computing enabled autonomous driving.

demands an innovative approach that extends communication efficiency beyond traditional
information theory constraints.

From the machine’s perspective, high-fidelity reconstructions are often not needed,
whereas mission-critical semantic information plays the most important role. Semantic
communication, which has emerged as a fundamental aspect of 6G technologies, seeks to
revolutionize this landscape by prioritizing data semantics over bit-level data transmission. In
particular, JSCC integrates the entire transmission process for direct semantic transmission,
contrasting traditional segmented considerations [87]. Deep learning enabled JSCC demon-
strates resilience to the cliff effect, showing superiority over separate source-channel coding,
especially at lower SNRs, including the transmission of natural language [73], images [14],
and videos [82].

In this chapter, we propose a novel deep TSCC framework based on modified CVAE to
enhance edge-enabled autonomous driving. Inspired by JSCC-enabled image transmission
[14] and the integration of JSCC with VAE [15], our approach jointly designs data transmission
with pragmatic tasks, building a resilient E2E communication system against AWGN. Our
methodology prioritizes task-oriented design, employing an E2E autonomous driving agent as
the metric for training deep JSCC. We innovatively integrate β-CVAE with the autonomous
driving agent, offering a holistic view of task-oriented source-channel coding.

The major contributions of this chapter are summarized as follows:

• We propose designing β-CVAE to synergize the autonomous driving agent with the
source-channel coding, demonstrating a novel approach that integrates communications
and computing in autonomous systems.

• By implementing TSCC within an edge-enabled state-of-the-art E2E autonomous driv-
ing agent, we demonstrate notable improvements in driving performance over traditional
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Table 3.1: Summary of Main Symbols

Symbol Explanation

x Input image

z Latent vector

ž Channel input

z̃ Normalized Channel input

ẑ Channel output

m State information

m̂ Received state information

y Reconstructed image

a Ground-truth action

â Estimated action

µ Mean of the latent vector

σ Standard deviation of the latent vector

βc-rec Hyperparameter

α,δ,ψ Parameters of neural networks

n Gaussian noise

k Dimension of the channel input

l Dimension of the input image

P Power constraint of transmitter

i, j General index depended on context

communication methods and state-of-the-art deep JSCC approaches, particularly in
terms of driving score.

• To the best of our knowledge, we pioneer the exploration of deep JSCC design for
autonomous driving, illuminating the potential of comprehensive task-oriented deep
JSCC.

Table 3.1 lists the main symbols used throughout this chapter.

3.2 System Model and Problem Formulation

The considered edge-enabled autonomous driving scenario is shown in Fig. 3.1. In our case
study, we consider an automated vehicle equipped with a single RGB camera on the front,
which is connected to the edge server. Sensor data are encoded and transmitted to the edge
server via wireless communications, where the edge server, located at a base station, serves as
a computational hub. The data are processed by an autonomous driving agent, deployed at
the edge server, interpreting the information and generating appropriate control commands
for the vehicle’s current scenario. These commands are transmitted back to the vehicle for
safe autonomous driving. Since the agent makes decisions based on the images obtained from
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Figure 3.2: Framework of the TSCC enabled autonomous driving.

the RGB camera, image compression and transmission are critical to the performance of the
edge-enabled autonomous driving system.

The following sections present a case study demonstrating our proposed TSCC’s imple-
mentation and effectiveness in edge-enabled autonomous driving, which focuses on bandwidth
utilization and noise resistance for image transmission. We demonstrate the loss function
and the training process, using an E2E autonomous driving framework based on a monocular
RGB camera as a baseline. Figure 3.2 illustrates our case study implementation, providing a
practical perspective on the theoretical concepts. In particular, our approach integrates deep
JSCC within the edge computing framework to address the challenges of bandwidth constraint
and data transmission efficiency.

The input RGB image is denoted by x ∈ Rl, where l = C ×H ×W is defined as the
source bandwidth [14]. C stands for the number of color channels in the image. H and W
represent the height and width of the image, respectively, measured in pixels.

On the vehicle side, instead of directly mapping RGB images to channel inputs [14], we
first obtain the distribution of the latent vector from the encoder,

(µ,σ) = Tα(x), (3.1)
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where Tα(·) is the joint task encoder with the parameters α. The encoder outputs the mean
µ and the standard deviation σ of the latent vector. The latent vector z is sampled by the
reparameterization trick

z = ϵ⊙σ +µ, (3.2)

where ϵ ∈ Rd is sampled from N (0,I), ⊙ is elements-wise multiplication. The channel
inputs ž ∈ Ck can be obtained from the latent vector z by combining every two neighboring
elements into a single complex number. The dimension of the complex vector is half of the
original latent vector, k = d/2. This operation is represented by a reshaping function,

ž = F(z). (3.3)

To ensure that the channel inputs z̃ satisfied the power constraint 1
kE∥z̃∥

2 ≤ P , where P is
the average transmit power constraint, ž is normalized as:

z̃ = N(ž) ≜
√
kP

ž√
ž∗ž

, (3.4)

where N(·) denotes the normalization function, z̃∗ is the conjugate transpose of z̃. In the case
of k < l, we define k/l as the compression ratio [14].

For the AWGN channel, the channel output can be given as follows,

ẑ = z̃ +n, (3.5)

where ẑ is received channel inputs. The reconstructed image y can be obtained from the
decoder, i.e.,

y = T−1
δ (F−1(ẑ)), (3.6)

where T−1
δ (·) is the task decoder with parameters δ, and F−1 is the inverse reshaping function.

Since the goal of our task-oriented design is to maximize autonomous driving performance
rather than to minimize the difference between x and y, the loss function should preserve the
most task-relevant information for the autonomous driving agent and take driving performance
into account as the optimization target.

In autonomous driving scenarios, accurate control commands are crucial and rely on
environmental data (e.g., RGB images) and state information (including navigation informa-
tion, vehicle speed, throttle, brake, and steering angle). As depicted in Fig. 3.2, this state
information, denoted by m, is transmitted using traditional communication methods for two
main reasons: 1) semantic communication may not guarantee the fidelity required for critical
information; 2) the required data rate for the transmission of state information is very low.

Upon receiving state information m̂ and the reconstructed image y, the edge-deployed
autonomous driving agent generates control commands as follows:

â = Aψ(y,m̂), (3.7)
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where Aψ represents the autonomous driving agent, and â are the control commands de-
rived from the received information. The individual components of the inferred action
â = (v̂, ŝ,ŵ, f̂ traj, b̂, f̂ ctrl) are defined as follows:

• v̂: estimated target speed.

• ŝ: value of the extracted features estimated by the expert [118].

• ŵ: predicted waypoints from the trajectory branch.

• f̂ traj: estimated extracted features for trajectory planning.

• b̂ = [b̂0, b̂1, . . . , b̂Γ]: estimated control actions from the beta distribution in the control
prediction branch, where Γ denotes the prediction length.

• f̂ ctrl = [f̂ ctrl
0 , f̂ ctrl

1 , . . . , f̂ ctrl
Γ ]: predicted informative features of the control prediction

branch.

Assuming that there exists a corresponding optimal (ground-truth) action a for each input
RGB image x, the problem of the proposed system model can be formulated as Problem 1.

Problem 1:

min
α,δ

Ea∼p(a|z,m)
{
Eâ∼p(â|z,m) [d(a, â)]

}
(3.8)

s.t. (3.1),(3.2),(3.3),(3.4),(3.5),(3.6),(3.7), (3.9)

where d(·, ·) denotes a task performance metric.

Problem 1 is an abstract formulation that describes the goal of optimizing task performance
through appropriate parameter selection. The next section introduces how to approach
Problem 1 via β-CVAE.

3.3 Variational Autoencoder

3.3.1 Motivation

The rise of data-driven systems in autonomous robotics, edge computing, and semantic
communication has required the development of models capable of extracting compact,
meaningful representations from high-dimensional sensory inputs. Traditional compression
techniques such as JPEG and MPEG, although widely used, are built on handcrafted features
and fail to capture task-relevant semantics, especially under noisy or constrained bandwidth
environments [119].

To address these limitations, deep generative models have emerged as powerful tools
capable of learning latent structures in data. VAEs stand out because of their solid probabilistic
foundation and tractable training methods. VAEs offer an elegant blend of Bayesian inference
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and deep learning, enabling them to encode complex distributions in a low-dimensional latent
space suitable for both data reconstruction and semantic understanding.

In the context of edge-enabled robotics and communication, the ability of VAEs to generate
and compress mission-critical features makes them ideal for low-latency systems. Rather
than transmitting raw data, systems can transmit latent codes that encapsulate semantic or
task-specific information, drastically reducing bandwidth while maintaining utility [14], [120].

VAEs were introduced by [121] as a scalable approach to variational inference using deep
neural networks. They approximate the posterior distribution over latent variables using an
encoder network and optimize the Evidence Lower Bound (ELBO) on the data log-likelihood.
This makes VAEs especially well-suited for settings where both dimensionality reduction and
probabilistic representation are necessary.

Key motivations for using VAEs in intelligent communication systems include:

• Latent compression: VAEs compress high-dimensional data (e.g., images or sensor
measurements) into compact latent vectors that can be efficiently transmitted over noisy
channels.

• Uncertainty modeling: Unlike deterministic autoencoders, VAEs explicitly model
uncertainty, a critical feature for robust inference in real-world robotics and control
systems.

• Semantic disentanglement: Variants like β-VAE encourage disentangled representa-
tions, where each dimension of the latent vector corresponds to a distinct generative
factor, useful for interpretability and control [122].

• Generative modeling: VAEs can sample from the latent space to generate realistic
variations, useful for data augmentation, missing data reconstruction, and simulation-
to-real transfer.

3.3.2 Mathematical Foundation

Consider a dataset X = {x(i)}Ni=1 of observed data samples. We assume the data are generated
by a random process with an unobserved random variable z. This is a two-step process: 1) z is
generated from a prior pθ∗(z); and 2) x is generated from a conditional prior pθ∗(x|z), where
pθ∗(z) and pθ∗(x|z) are from the parametric families pθ∗(z) and pθ∗(x|z), respectively.
However, the true parameters θ∗ and the latent variable z are unknown, which makes it
difficult to model the generation process.

Based on Bayes’ theorem, we can calculate the posterior pθ(z|x) as follows:

pθ(z|x) = pθ(x|z)pθ(z)
pθ(x) , (3.10)

where pθ(x) =
∫
pθ(z)pθ(x|z)dz is intractable due to the integration. Therefore, this poste-

rior is also intractable. To deal with this problem, we define qϕ(z|x) with parameters ϕ as a
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variational approximation of pθ(z|x). Here, we refer to qϕ(z|x) as a probabilistic encoder
and pθ(x|z) as a probabilistic decoder.

Since we aim to optimize the parameters ϕ such that:

qϕ(z|x)≈ pθ(z|x), (3.11)

we minimize the Kullback-Leibler (KL) divergence between them:

DKL(qϕ(z|x)∥pθ(z|x)) =
∫
qϕ(x,z) log qϕ(z|x)

pθ(z|x) dxdz

=
∫
qϕ(x,z) log qϕ(z|x)pθ(x)

pθ(x|z)pθ(z) dxdz

= Eqϕ(x,z)

[
log qϕ(z|x)pθ(x)

pθ(x|z)pθ(z)

]

= Eqϕ(x,z) [− logpθ(x|z)]+Eqϕ(x,z)

[
log qϕ(z|x)

pθ(z)

]
+Eqϕ(x,z) [logpθ(x)] ,

(3.12)

where DKL(·) denotes the KL divergence. The third term in Eq. (3.12) can be rewritten as

Eqϕ(x,z) [logpθ(x)] =
∫
qϕ(x,z) logpθ(x)dxdz

=
∫
qϕ(x)qϕ(z|x) logpθ(x)dxdz

= Eqϕ(x)

[∫
qϕ(z|x) logpθ(x)dz

]
= Eqϕ(x)

[
logpθ(x)

∫
qϕ(z|x)dz

]
= Eqϕ(x) [logpθ(x)]

= Constant. (3.13)

In that case, the third term in Eq. (3.12) is irrelevant to optimization. The target loss function
can be formalized as

L(x;ϕ,θ) =DKL(qϕ(z|x)∥pθ(z|x))−Eqϕ(x,z) [logpθ(x)]

= Eqϕ(x,z) [− logpθ(x|z)]+Eqϕ(x,z)

[
log qϕ(z|x)

pθ(z)

]

= Eqϕ(x)

[∫
qϕ(z|x)(− logpθ(x|z))dz +

∫
qϕ(z|x) log qϕ(z|x)

pθ(z) dz

]

= Eqϕ(x)

Eqϕ(z|x)[− logpθ(x|z)]+DKL(qϕ(z|x)∥pθ(z))︸ ︷︷ ︸
−ELBO

 . (3.14)
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Note that minimizing the loss function of VAE is equivalent to maximizing the ELBO, which
is defined as

ELBO = Eqϕ(z|x)[logpθ(x|z)]−DKL(qϕ(z|x)∥pθ(z)). (3.15)

3.3.3 β-CVAE

In this chapter, the system model comprises two neural networks: an encoder qϕ(z | x) with
parameters ϕ, and a decoder pθ(x | z) with parameters θ. The encoder transforms the data
sample x into a latent vector z, while the decoder reconstructs the original data from the
latent vector. For simplicity, we denote pθ(z) by p(z).

The training of VAE is to minimize the following loss function:

LVAE(x;ϕ,θ) =Ez∼qϕ(z|x) [− lnpθ(x | z)]+Ez∼qϕ(z|x)

[
ln qϕ(z | x)

p(z)

]
(3.16)

=1
t

t∑
i=1
∥x− x̂i∥2 + 1

2

d∑
j=1

(µ2
j +σ2

j − lnσ2
j −1) (3.17)

=Lrec(x;ϕ,θ)+LKL(x;ϕ). (3.18)

Equation (3.17) assumes that pθ(x | z) follows a Gaussian distribution with constant standard
deviation [123]. The reconstructed data x̂i is derived from the decoder pθ(x | zi), and t
represents the number of latent vectors sampled from the latent space. The latent vector,
z ∈ Rd, follows the Gaussian distribution with mean µ ∈ Rd and standard deviation σ ∈ Rd,
where d denotes the dimension of the latent space. Lrec(x;ϕ,θ) is the first term in Eq. (3.17),
which represents the reconstruction errors. Meanwhile, LKL(x;ϕ) is the second term in
Eq. (3.17), which represents the Kullback-Leibler (KL) divergence. In addition, the prior
distribution p(z) is assumed to be a standard Gaussian distribution N (0,I).

β-VAE [122] extended the loss function of vanilla VAE by adding an coefficient βrec:

LVAE(x;ϕ,θ) = βrecLrec(x;ϕ,θ)+LKL(x;ϕ), (3.19)

where βrec for Lrec(x;ϕ,θ) to control the training balance.
CVAE introduces a class label m as a condition, with which the new loss function can be

extended in the following expression:

LCVAE(x,m;ϕ,θ) =Ez∼qϕ(z|x,m) [− lnpθ(x|z,m)]

+Ez∼qϕ(z|x,m)

[
ln qϕ(z|x,m)

p(z|m)

]
(3.20)

=1
t

t∑
i=1
∥x− x̂i∥2 + 1

2

d∑
i=1

(µ2
i +σ2

i − lnσ2
i −1) (3.21)

=Lc-rec(x,m;ϕ,θ)+Lc-KL(x,m;ϕ). (3.22)
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Algorithm 1 TSCC Training Algorithm
Initialization: Initialize the neural network parameters α and δ.

1: Input: Image dataset X with corresponding ground-truth agent output A and state
information M.

2: while not converged do
3: Sample a from A with the corresponding m from M.
4: Sample x from X according to a and m.
5: Encode image x to mean and standard deviation:

µ,σ← Tα(x).
6: Sample latent vector using the reparameterization

trick: ž← ϵ⊙σ +µ.
7: Reshape and normalize latent vector: z̃← N(F(ž)).
8: Reconstruct image from z̃:

y← T−1
δ (F−1(z̃)).

9: Generate control commands: â← Aψ(y,m).
10: Compute Lc-rec(a,m;α,δ) and Lc-KL(a,m;α).
11: Update neural network parameters:

α
+←−∇α(βc-recLc-rec(a,m;α,δ)+Lc-KL(a,m;α)).

δ
+←−∇δβc-recLc-rec(a,m;α,δ).

12: end while
13: Output: The coding neural network Tα(·) and T−1

δ (·).

The autoencoder has been used to train deep JSCC in an E2E manner [15], [73], [75].
Inspired by [15], we designed TSCC based on β-CVAE.

3.3.4 Training of Task-Oriented β-CVAE

Baseline control commands a are produced by a coach AI [118] using lossless images and
state information. We design the β-CVAE for the mapping from a to â. Combining Eq. (3.19),
Eq. (3.21), and Eq. (3.22), we design the task-oriented loss function of TSCC as

LTSCC(a,m;α,δ) =βc-recEz∼qα(z|a,m)[− lnpδ(a|z,m)]

+Ez∼qα(z|a,m)

[
ln qα(z|a,m)

p(z|m)

]
(3.23)

=βc-rec
1
t

t∑
i=1
∥a− âi∥2 + 1

2

d∑
i=1

(µ2
i +σ2

i − lnσ2
i −1) (3.24)

=βc-recLc-rec(a,m;α,δ)+Lc-KL(a,m;α). (3.25)

The first term Lc-rec(·) ensures the fidelity of actions â under the given state information m.
Meanwhile, the second term Lc-KL(·) is adversarial to the first term Lc-rec(·), and introduces
noise into the training process. Since Lc-KL introduces noise, we can train TSCC without
channel noise and execute TSCC over practical channels with various SNRs. Furthermore,
the hyperparameter βc-rec balances two terms to achieve a good trade-off between action
fidelity and noise-resistant ability. The training process of the proposed TSCC is shown in
Algorithm 1.
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3.4 Simulation Result

3.4.1 Dataset

CARLA is an open-source simulator [124], which offers diverse urban environments to
facilitate research on autonomous driving. It offers dynamic agents and traffic scenarios
as in real-world driving conditions. The image dataset from [125] is used to train TSCC.
This dataset comprises images (C = 3, H = 256, and W = 900) across various urban maps,
with training and testing sets containing 189,524 (four maps: Town01, Town03, Town04,
and Town06) and 27,201 images (four maps: Town02, Town05, Town07, and Town10),
respectively. In addition to offline image testing, we use Town05 to test our proposed
framework in real time.

3.4.2 Evaluation Metrics

To evaluate the effectiveness of our approach, we compare the driving performance of TSCC
with different baselines in the CARLA simulator. The driving score1 has been widely used
in the existing literature to evaluate the vehicle’s ability to follow predetermined waypoints,
reach the destination, and avoid violating traffic rules. The driving score of the ith road is
defined as

Scorei =RiPi, (3.26)

where Ri ∈ [0,100] denotes the percentage of the route distance completed by an agent and
Pi denotes the infraction penalty. The infraction penalty is defined as

Pi =
∏
j

p
γj

j , (3.27)

where pγj

j denotes the jth infraction with value pγj and type γj . There are six kinds of
infractions:

• Collisions with pedestrians: pγj = 0.5.

• Collisions with other vehicles: pγj = 0.6.

• Collisions with static elements: pγj = 0.65.

• Running a red light: pγj = 0.70.

• Running a stop sign: pγj = 0.80.

• Off-road driving: The percentage of off-road driving will be reduced from the infraction
penalty, canceling out the part of the route completion.

1 https://leaderboard.carla.org/

https://leaderboard.carla.org/
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The tests are carried out in Town05 with four different scenarios (clear noon, cloudy
sunset, soft rain down, and hard rain night), where the test is repeated three times in each
scenario.

3.4.3 Evaluation on CARLA

The impacts of the compression ratio on the driving score are shown in Fig. 3.3, where SNR =
10 dB. We compare our approach with traditional image coding methods: JPEG, JPEG2000,
and BPG. The source (image) coding is followed by (2048, 6144) LDPC codes with 64-
QAM digital modulation schemes. Specifically, their compression ratios range from 0.009
to 0.251. For the proposed TSCC neural network, we set d= 4096 and k = 2048, resulting
in a significantly lower compression ratio k/l of 0.003. In addition, we set βc-rec = 2048
and P = 1. In particular, we assume m = m̂ in this case study. The results show that when
the required driving score is 20, the TSCC framework could save 98.36% communication
bandwidth compared to the existing methods.
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Figure 3.3: Driving score of traditional image coding method with varied compression ratio.

As shown in Fig. 3.4, the driving score highly depends on SNR. The compression ratios of
JPEG, JPEG2000, and BPG are set to 0.232, 0.251, and 0.183, respectively. The compression
ratio of our method is set to 0.003. In addition, we compare the proposed TSCC with the
state-of-the-art JSCC method using the same neural network structure, with legends “JSCC-
AE” [14] and “JSCC-VAE” [15]. We trained JSCC-AE with different SNRs and found that
the testing performance is similar. In this figure, JSCC-AE is trained with 0 dB SNR. Like the
training of TSCC, JSCC-VAE is trained without channel noise.
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Figure 3.4: Driving score with varied SNR.

The results show that our TSCC achieves much higher driving scores at 0 dB SNR (19.82)
and -5 dB SNR (14.5), respectively, compared to other methods. In contrast, the driving
scores of traditional image coding methods drop dramatically in the low SNR region (below 0
dB).

Although traditional image coding, JSCC-AE, and JSCC-VAE yield high-quality image
reconstructions for human vision, as shown in Fig. 3.5, they retain redundant information not
critical to machine vision. In particular, some mission-critical information, such as pedestrians
and road markers, is not clearly presented by JSCC-AE and JSCC-VAE, leading to poor
performance for edge-enabled autonomous driving. In Table 3.2, we evaluate some other
performance metrics, including PSNR, MS-SSIM, and FID, which are specially designed
for human perception. The different preferences between human vision and machine vision
indicate the importance of task-oriented source-channel coding design for machine vision.

Table 3.2: Human Perceptional Metrics

Method PSNR(dB) ↑ MS-SSIM ↑ FID↓

JPEG 34.56 0.99 5.83
JPEG2000 37.54 0.99 7.17

BPG 34.93 0.98 6.68
JSCC-AE 19.74 0.56 173.46

JSCC-VAE 20.85 0.66 160.66
TSCC 7.72 0.13 347.30
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Figure 3.5: Qualitative example of TSCC and baseline methods at 10 dB SNR. The compres-
sion ratios of example images are shown in the lower right corner.

3.5 Conclusion

In this chapter, we proposed a TSCC framework for edge-enabled autonomous driving that
takes advantage of the knowledge of a well-trained autonomous driving agent. We designed β-
CVAE in a task-oriented way to guide the training of deep source-channel coding to preserve
mission-critical information for machine vision. We carried out a case study in CARLA and
the results showed that proposed TSCC save 98.36% communication bandwidth compared
with the existing method when SNR is 10 dB. In the low SNR region (below 0 dB), all
traditional methods and existing JSCC approaches do not work, while our TSCC approach
can still achieve 83.24% or 60.9% driving scores when SNR is 0 dB or -5 dB.
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Chapter 4

Integration: Aligning Task- and
Reconstruction-Oriented Communication
(ATROC) for Edge Intelligence

4.1 Introduction

Reconstruction-oriented communications are designed to recover the transmitted information
at the receiver sides, often involving traditional source and channel coding techniques. This
approach is commonly used in systems where the fidelity of the information is paramount, such
as in audio or video streaming services. The structure of separate source and channel coding,
a cornerstone in the design of communication systems, has been shown to be theoretically
optimal via AEP with infinitely long source and channel blocks [56]. However, in practical
scenarios, this separation often leads to inefficiencies and suboptimal performance, particularly
for Artificial Intelligence (AI) driven applications [14].

The pervasive advancement of AI technologies, particularly in the context of deep learning,
presents novel challenges for future communication systems, where the throughput required
by AI agents could be much higher than that of human users.

Recent developments in deep learning have shown that JSCC can potentially address some
of these inefficiencies and outperform traditional separate coding designs. This approach
is especially potent in environments where traditional methods struggle to keep pace with
the data demands of AI-driven applications. However, JSCC-based reconstruction-oriented
communications, which focus on accurately reconstructing a signal on receiver sides, often
waste communication resources by transmitting task-agnostic information [79].

To address these issues, task-oriented communication has emerged as a key technology
and has attracted significant research interests [11], [12], [126], [127]. Using the capabilities
of deep learning, task-oriented JSCC focuses on transmitting task-specific information, thus
improving efficiency and reducing the data rate in critical applications. This requires joint
optimization of the JSCC and inference network, which must be co-designed for effective task-
oriented communication [11]. Note that existing JSCC designs are mainly based on analog
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communication principles [14] and cannot be integrated with existing digital communication
infrastructures.

Furthermore, cloud-based services introduce unacceptable latency for real-time appli-
cations, such as autonomous driving [116], [128]. To mitigate this issue, edge inference

[11], [113], [129] has become a promising approach, enabling quick response to real-time AI
applications. However, widely deployed AI agents bring significant communication loads to
communication systems. Emergent methods based on JSCC have shown great potential to
solve this problem [111]–[113].

Recognizing these multifaceted challenges, there is a growing interest in developing
communication systems that are not only task-oriented but also aligned with reconstruction-
oriented communication frameworks. This has led to the proposition of what we refer
to as ATROC, which aims to bridge the gap between the efficiency of task-specific data
transmission and the robustness of reconstruction-oriented communications, enabling the
seamless integration of AI technologies with existing network infrastructures.

4.1.1 Contributions

This chapter introduces a novel communication framework compatible with reconstruction-
oriented communication, especially for edge inference, termed Aligned Task- and Reconstruction-
Oriented Communication (ATROC). By extending IB theory [6] and incorporating JSCC
modulation, this framework is designed to enhance AI-driven applications. It prioritizes task
relevance in data transmission strategies, shifting focus from traditional signal reconstruc-
tion fidelity to operational efficiency and effectiveness in real-world applications. The key
contributions of this chapter are summarized as follows:

• Development of an ATROC Framework: Based on IB theory, we develop a frame-
work that aligns task-oriented communications with reconstruction-oriented communi-
cations. The framework focuses on maximizing mutual information between inference
results and encoded features, minimizing mutual information between the encoded
features and the input data, and preserving task-specific information through the in-
formation reshaper. This reshaper is expert at transforming received symbols into
task-specific data, maintaining the same data structure as the input while ensuring the
preservation of task-specific information.

• Innovation of an Information Reshaper: We introduce an information reshaper
within our extended IB theory, laying a foundational aspect of ATROC. This component
is crucial for adapting the communication to the specific needs of the task without
compromising the integrity of the transmitted data.

• Variational Approximation for Tractable Information Estimation: Due to the in-
tractability of mutual information in the training and inference of deep neural networks,
we employ a variational approximation approach, known as VIB. This approach allows
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us to establish a tractable upper bound for these terms, enabling training and inference
of deep neural networks.

• Adaptation of a JSCC Modulation Scheme: We design a JSCC modulation scheme
that aligns JSCC symbols with a predefined constellation scheme. This scheme ensures
compatibility of our framework with classic modulation techniques, making it more
adaptable to existing communication infrastructures.

• Performance Enhancement in Edge-Based Autonomous Driving: In our simulation,
we validate that the ATROC framework outperforms reconstruction-oriented methods
for edge-based autonomous driving [125]. Specifically, our method reduced 99.19%
communication load, in terms of bits per service, compared to existing methods, without
compromising the driving score of the autonomous driving agent.

4.1.2 Organization and Notations

The rest of this chapter is organized as follows: Section 4.2 details the system model and
discusses how the proposed framework advances reconstruction-oriented and non-aligned
task-oriented communication approaches. Section 4.3 introduces the IB theory for ATROC
and elaborates on the corresponding VIB derivation. In Section 4.4, we propose a JSCC
modulation technique that is compatible with classical modulation methods, such as QAM.
Section 4.5 extends the framework of VIB to enhance edge-based autonomous driving applica-
tions. The experimental results are presented in Section 4.6, which evaluates the performance
of our proposed ATROC framework and the JSCC modulation. Finally, Section 4.7 concludes
this chapter.

Table 4.1 lists the main symbols used throughout this chapter.
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Table 4.1: Summary of Main Symbols

Symbol Explanation

x Input data

x̂ Reconstructed input data

z JSCC symbols

z̄ Quantized JSCC symbols

zin Channel input

zout Channel output

ž Equalized JSCC symbols

z̃ Scaled JSCC symbols

ẑ Reconstructed JSCC symbols

y Task-specific data

a Target action

â Inferred action

β1,β2, β̂1, β̂2 Lagrange multiplier

ϕ,θ,ψ,δ Parameters of neural networks

h Channel coefficient

n Gaussian noise

k Dimension of the JSCC symbols

l Dimension of the input data

ζ Upper bound of rate

Ω Size of mini-batch

u Number of constellation points

r Constellation parameter

e(·) Constellation point

Ptarget Power constraint of transmitter

Pz̄ Power of quantized symbols

βQ Hyperparameter of quantization loss

Γ,λfeat,λtraj,λctrl,λaux Hyperparameters of edge AI agent

J1,J2 Sampling number

i, j General index depended on context
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4.2 ATROC Framework for Edge Intelligence
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(b) Non-aligned task-oriented communication for edge intelligence.

(a) Reconstruction-oriented communication for edge intelligence.

(c) Proposed ATROC for edge intelligence.
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Figure 4.1: Comparison of three JSCC-enabled communication frameworks for edge inference:
Reconstruction-oriented, non-aligned task-oriented, and ATROC frameworks. All three
frameworks can share a similar JSCC encoder structure on the device side. On the edge side,
reconstruction-oriented communication aims to fully reconstruct the input data, including
both task-specific and task-agnostic information. In contrast, non-aligned task-oriented
communication focuses solely on preserving task-specific information and uses JSCC symbols
directly for inference. ATROC merges the benefits of the previous two by transferring task-
specific information and ensuring that data structures are compatible with existing AI agent
networks, enhancing integration and efficiency.

Edge intelligence refers to an AI agent (system) that operates at edge servers rather than
relying on centralized servers or cloud-based services. These systems process data locally on
devices or at the edge of the network as shown in Fig. 4.1.
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The reconstruction-oriented communication framework (see Fig. 4.1a) aims to preserve
all information from the input data x in the reconstructed data x̂. The idea is to minimize the
distance d(x, x̂), where d(·, ·) is a predefined data-centric metric. This task-agnostic strategy
may result in transmitting redundant data for AI agents, leading to poor resource utilization
efficiency.

To improve efficiency, the principle of IB has been developed to transmit task-relevant
information [11], as shown in Fig. 4.1b. However, a significant challenge arises with this
approach: the dimensions of the received symbols often do not align with the input dimensions
required by the edge AI agent. This mismatch necessitates a redesign of the AI agent to
accommodate different input sizes, leading to poor compatibility.

To address this, we propose an ATROC framework, as depicted in Fig. 4.1c, enabling
the use of a unified inference network across both task-oriented and reconstruction-oriented
communication paradigms.

In this framework, the JSCC encoder deployed on the mobile device is denoted by pϕ(z|x),
where ϕ represents the parameters. The encoder maps the input data x ∈ Rl to JSCC symbols
z ∈ Ck, where z = [z1, · · · , zk]. Here, l and k are the dimensions of the input data and the
JSCC symbols, respectively. After quantization and power normalization, the JSCC symbols
z are transmitted through a physical channel. In this chapter, we model the communications
between the mobile device and the edge server as Gaussian or Rayleigh fading channels:

zout = h ·zin +n, (4.1)

where zin represents channel input and zout represents channel output. n∼ CN (0,σ2
nI) is a

Gaussian noise with zero mean and standard deviation σn. For the Gaussian channel, we set
h= 1, whereas for the Rayleigh fading channel, h is modeled as a complex Gaussian variable,
h∼ CN (0,1), to represent the multipath fading effect.

After the process of equalization, scaling, and detection, the reconstructed symbols ẑ are
transformed by the information reshaper pθ(y|ẑ) with parameters θ to provide task-specific
data y. These data are then utilized by the AI agent qψ(a|y) with parameters ψ, to generate
the inferred action â, which approximates the ground truth action a.

4.3 Information Bottleneck for ATROC

4.3.1 Problem Description

Following the standard IB framework [6], [10], we assume the joint distribution of the system
variables as follows:

p(a,x,z, ẑ,y) = p(a)p(x|a)pϕ(z|x)p(ẑ|z)pθ(y|ẑ). (4.2)
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This sets up the Markov chain depicted as:

A↔X ↔ Z↔ Ẑ↔ Y. (4.3)

The transformation from reconstructed symbols ẑ to task-specific data y is designed
to preserve task-specific information, aligning task-oriented paradigms with traditional and
reconstruction-oriented approaches. Based on the IB theory [6], [10], we formulate the
following optimization problem:

min − I(A;Y ) (4.4a)

s.t. I(X; Ẑ)− ζ ≤ 0, (4.4b)

I(A;Y )− I(A; Ẑ) = 0, (4.4c)

where ζ represents the upper bound of data rate depending on the channel. The data processing
inequality [56] implies that, ideally, if Y and Ẑ contain equivalent information about the
action A, the equality I(A;Y )− I(A; Ẑ) = 0 holds.

We further formulate this problem as

LIB(a,x;ϕ,θ) =−I(A;Y )︸ ︷︷ ︸
Distortion

+β1(I(X; Ẑ)︸ ︷︷ ︸
Rate

−ζ)+β2 (I(A;Y )− I(A; Ẑ))︸ ︷︷ ︸
Alignment

(4.5a)

≡−I(A;Y )+ β̂1I(X; Ẑ)− β̂2I(A; Ẑ) (4.5b)

≡ Ea,x[Ey|x;ϕ,θ[− logp(a|y)]+ β̂1DKL(pϕ(ẑ|x)∥p(ẑ))

+ β̂2Eẑ|x;ϕ[− logp(a|ẑ)]], (4.5c)

where β1 > 0 and β2 > 0 are the Lagrange multipliers. The detailed derivation can be found
in Section 4.3.2. The first term −I(A;Y ) and the second term I(X; Ẑ) formalize the classic
information bottleneck, meanwhile, the third term [I(A;Y )−I(A; Ẑ)] aligns the task-relevant
information between the task-specific data y and the reconstructed symbols ẑ.

In the case β2 ̸= 1, we define β̂1 = β1
1−β2

and β̂2 = β2
1−β2

. Then Eq. (4.5a) can be expressed
as Eq. (4.5b). In the case β2 = 1, Eq. (4.5a) is simplified to the classic IB formulation [6],
[10], [11]:

LIB(a,x;ϕ,θ) =−I(A; Ẑ)︸ ︷︷ ︸
Distortion

+β1 I(X; Ẑ)︸ ︷︷ ︸
Rate

. (4.6)

This extended IB theory preserves more task-specific information, and the bits per service is
the same as the previous IB approaches. Meanwhile, it maintains the dimension and structure
required for edge inference.
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4.3.2 Variational Approach

With the objective function Eq. (4.5b), we first illustrate how to compute each term for training
ϕ and θ. We start with the first term, −I(A;Y ), expressed as:

−I(A;Y ) =−
∫
p(a,y) log p(a|y)

p(a) dady

=−
∫
p(a,y) logp(a|y)dady−

[
−

∫
p(a,y) logp(a)dady

]
=−

∫
p(a,y) logp(a|y)dady−

[
−

∫
p(a) logp(a)da

]
=−

∫
p(a,y) logp(a|y)dady−H(A), (4.7)

where H(A) =−
∫
p(a) logp(a)da denotes the entropy. p(a|y) is the posterior probability,

which can be derived through the Markov Chain [10], [11] as:

p(a|y) =
∫
p(a,x,z, ẑ|y)dxdz dẑ

=
∫ p(a)p(x|a)pϕ(z|x)p(ẑ|z)pθ(y|ẑ)

p(y) dxdz dẑ. (4.8)

Given the complexity of this integration, we employ a neural network qψ(a|y) as a variational
approximation to p(a|y).

Denoting the KL divergence as DKL. According to the definition of KL divergence [56],
we can derive the following expression:

DKL(p(a|y) ∥ qψ(a|y)) =
∫
p(a,y) logp(a|y)dady−

∫
p(a,y) logqψ(a|y)dady.

(4.9)

Based on the fact that

DKL(p(a|y) ∥ qψ(a|y))≥ 0, (4.10)

we have

∫
p(a,y) logp(a|y)dady ≥

∫
p(a,y) logqψ(a|y)dady. (4.11)

According to the left part of Eq. (4.11), we can obtain

∫
p(a,y) logp(a|y)dady

=
∫
p(a,x,z, ẑ,y) logp(a|y)dadxdz dẑ dy

=
∫
p(a,x)p(z, ẑ,y|a,x) logp(a|y)dadxdz dẑ dy
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Considering the Markov chainA→X→Z→ Ẑ→Y , we have p(z, ẑ,y|a,x) = p(z, ẑ,y|x).
Since

∫
p(z, ẑ,y|x)dz dẑ = p(y|x), we can obtain

∫
p(a,x)p(z, ẑ,y|a,x) logp(a|y)dadxdz dẑ dy

=
∫
p(a,x)p(y|x) logp(a|y)dadxdy

= Ea,x

[
Ey|x;ϕ,θ[logp(a|y)]

]
.

Similarly, we can obtain

∫
p(a,y) logqψ(a|y)dady = Ea,x

[
Ey|x;ϕ,θ[logqψ(a|y)]

]
.

Based on Eq. (4.11), we can obtain

Ea,x

[
Ey|x;ϕ,θ[logp(a|y)]

]
≥ Ea,x

[
Ey|x;ϕ,θ[logqψ(a|y)]

]
,

so that

Ea,x

[
Ey|x;ϕ,θ[− logp(a|y)]

]
≤ Ea,x

[
Ey|x;ϕ,θ[− logqψ(a|y)]

]
. (4.12)

The second term I(X; Ẑ) [11] is formulated as:

I(X; Ẑ) = Ea,x

[
DKL(pϕ(ẑ|x)∥p(ẑ))

]
, (4.13)

where the marginal probability is

p(ẑ) =
∫
p(a)p(x|a)pϕ(z|x)p(ẑ|z)dadxdz. (4.14)

We adopt a Gaussian approximation q(ẑ)∼N (0, I) as an estimation for p(ẑ) [121]. It is rea-
sonable as the JSCC encoder generates a Gaussian distribution pϕ(ẑ|x)∼N (µϕ(x),σ2

ϕ(x)I),
where µϕ(·) and σϕ(·) are functions that map the input data x to the mean and standard
deviation of the Gaussian distribution.

Since DKL(p(ẑ) ∥ q(ẑ))≥ 0, the following upper bound can be derived:

I(X; Ẑ)≤ Ea,x

[
DKL(pϕ(ẑ|x)∥q(ẑ))

]
, (4.15)

where the KL divergence can be calculated analytically by the method in [130].
Similar to Eq. (4.12), by using qδ(a|ẑ) as a variational approximation of p(a|ẑ), we have

Ea,x

[
Eẑ|x;ϕ,θ[− logp(a|ẑ)]

]
≤ Ea,x

[
Eẑ|x;ϕ,θ[− logqδ(a|ẑ)]

]
. (4.16)
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The above extended VIB formulation determines the upper bound of the IB objective function
(Eq. (4.5c)), which can be expressed as:

LVIB(a,x;ϕ,θ) = Ea,x

{
Ey|x;ϕ,θ[− logqψ(a|y)]

+ β̂1DKL(pϕ(ẑ|x)∥q(ẑ))

+ β̂2Eẑ|x;ϕ,θ[− logqδ(a|ẑ)]
}
. (4.17)

Through Monte Carlo sampling, we train ϕ and θ by minimizing this objective function using
stochastic gradient descent. Specifically, given a mini-batch of data {(ai,xi)}Ωi=1 with batch
size Ω, if the reconstructed JSCC symbols ẑ are sampled J1 times and the task-specific data
y are sampled J2 times for each data pair, the following estimation can be obtained:

LVIB(a,x;ϕ,θ)∼=
1
Ω

Ω∑
i=1

 1
J2

J2∑
j=1

[− logqψ(ai|yj)]

+β̂1DKL(pϕ(ẑ|xi)∥q(ẑ))

+ β̂2
J1

J1∑
j=1

[− logqδ(ai|ẑj)]

 . (4.18)

4.4 JSCC Modulation

In existing communication standards, symbols are transmitted with specific constellation
orders and designs. In this section, we develop a JSCC modulation scheme that can map
arbitrary complex-valued JSCC symbols to a predefined constellation diagram with finite
points, as shown in Fig. 4.2. In addition, we introduce a learning method to adjust the optimal
constellation parameter according to the quantization loss. For clarity, we use QAM as an
example. Note that our method can be easily extended to other modulation schemes.

4.4.1 Quantization and Normalization

To enable the quantization of arbitrary complex-valued JSCC symbols into a predefined
constellation diagram, the following rule is applied to each symbol:

z̄i =Q(zi) = argmin
ej
∥zi− ej∥22, (4.19)

where zi ∈ C represents the original symbol, z̄i ∈ C represents the quantized symbol, i ∈
{1, · · · ,k}, Q(·) denotes the quantization function, and ∥ · ∥2 denote the l2-norm. ej ∈
{e1, · · · , eu} represents the predefined constellation points, where ej ∈ C, and u denote the
number of constellation points. This quantization operation can be extended to a vector as
follows,

z̄ =Q(z) = [Q(z1), · · · ,Q(zk)]. (4.20)
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Figure 4.2: An example of the JSCC modulation and signal transmission procedure for z ∈C4

using 16-QAM.

Since the transmitted symbols should satisfy the average power constraint:

1
k

k∑
i=1
|z̄i|2 ≤ Ptarget, (4.21)

the channel input (normalized symbols) are given by:

zin =

√
Ptarget
√
Pz̄
· z̄, (4.22)

where Pz̄ = 1
k

∑k
i=1 |z̄i|2 denotes the power of quantized symbols z̄.

The channel input zin is transmitted through the channel zout = h ·zin +n. Assume that
the receiver has the full CSI knowledge and knows Pz̄, in the case of the static channel, it can
perform channel equalization:

ž = h∗

|h|2
zout, (4.23)

where h∗ denotes the conjugate of channel coefficient h and ž denotes the equalized symbols.
After equalization, the equalized symbols should be scaled as

z̃ =
√
Pz̄√
Ptarget

· ž, (4.24)

where z̃ denotes the scaled symbols. Then the reconstructed symbols ẑ = Q(z̃) can be
obtained by Eq. (4.20).
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4.4.2 Learnable Constellation Diagram and Fine-Tuning

Traditional modulation techniques, such as QAM, employ a lookup table that maps bits to
constellation points. In contrast, the complex-valued channel symbols produced by the JSCC
encoder are continuous, necessitating a different approach for their mapping.

Equation (4.19) demonstrates that the coordinates of each constellation point ej directly
affect the quantization outcome. We propose a learnable constellation diagram that adapts to
the observed space of JSCC symbols, minimizes quantization loss, and improves performance
with the JSCC encoder and the information reshaper. Taking u-QAM as an example, where u
denotes the number of constellation points, the coordinates of each constellation point can be
derived by the parameter r. This parameter specifies the distance between two constellation
points located at the corners of one side, as illustrated in Fig. 4.2. Then, the real part and
imaginary part of the constellation point ej are given as follows:

Re(ej) =− r2 + (j mod
√
u) · r√

u−1 , (4.25)

Im(ej) =r

2 −
⌊j/
√
u⌋ · r√

u−1 , (4.26)

where “ mod ” denotes the modulo operation and ⌊·⌋ denotes the rounding down function.
The quantization loss is defined as

LQ(z;r) = 1
k

k∑
i=1

min
ej
∥zi− ej∥2. (4.27)

The training process for the learnable constellation diagram begins with the initialization
of the constellation parameter r to a predefined value rinit, along with loading a pre-trained
JSCC encoder. Using an image dataset X with corresponding ground truth actions A, mini-
batches are sampled iteratively during training. For each mini-batch, images are encoded
into JSCC symbols, and the average batch loss is computed based on the quantization error.
The constellation parameter r is then updated by backpropagation until convergence. The
output of this process is the optimal constellation parameter r∗. The detailed constellation
parameter training process is provided in Algorithm 2. Once the optimal r∗ is obtained, the
JSCC encoder and the information reshaper are jointly fine-tuned using the extended loss
function:

LVIB-Q(a,x;ϕ,θ) = LVIB(a,x;ϕ,θ)+βQLQ(z;r∗), (4.28)

where βQ is a hyperparameter that balances the quantization loss with the original VIB loss.
This method enhances the practical applicability of JSCC modulation by integrating it

with established digital communication systems while preserving the benefits of customized
encoding and decoding strategies.

The previous work [84] explores two quantization approaches for JSCC: (1) a fixed soft-
to-hard quantizer, where the constellation points are predefined, and (2) a fully learnable
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Algorithm 2 Training Learnable Constellation Diagram
Initialization: Initialize the constellation parameter
r→ rinit, and load pre-trained JSCC encoder pϕ(z|x).

1: Input: Image dataset X with corresponding ground truth action A.
2: while not converged do
3: Sample mini-batch {(ai,xi)}Ωi=1 from X and A.
4: Encode image {xi}Ωi=1 to symbols {zi}Ωi=1.
5: Compute the average batch loss

1
Ω

∑Ω
i=1LQ(zi;r).

6: Update parameter r through backpropagation.
7: end while
8: Output: Optimal constellation parameter r∗.

soft-to-hard quantizer, where each constellation point can freely adapt its position during
training. Although the second method offers flexible constellation optimization, it typically
results in irregular constellation arrangements that deviate from the standard square lattice
structures used in practical QAM modulation schemes. Consequently, this irregularity could
potentially limit compatibility with existing digital communication infrastructure, which
primarily relies on standard constellations.

In contrast, the proposed method adopts a learnable constellation method while explicitly
maintaining a square lattice arrangement. By constraining constellation points to remain uni-
formly distributed within a square lattice on the complex plane, the proposed method achieves
adaptability to the data distribution while preserving compatibility with widely-deployed
digital communication standards (e.g., standard QAM modulation schemes). Thus, the pro-
posed method offers a beneficial balance between optimized, task-oriented communication
performance and practical applicability within existing communication systems.

4.5 Extended VIB for Edge-based Autonomous Driving

Trajectory-Guided Control Prediction (TGCP)1 is the state-of-the-art E2E self-driving frame-
work that combines trajectory planning and multi-stage control prediction into a unified neural
network [125]. This framework, notable for using only a monocular camera, ranks third on the
CARLA leaderboard2. We extend VIB to TGCP to examine its applicability in an edge-based
autonomous driving system.

4.5.1 Background of TGCP

TGCP on the edge server processes task-specific data y ∈ Rl and additional state information
m to make driving decisions. Note that the task-specific data y ∈Rl shares the same structure
as the input data x ∈ Rl. In this case, x and y are RGB images. The state information m

includes variables such as speed, destination coordinates, and current driving guidance (e.g.,

1To avoid confusion with the Transmission Control Protocol (TCP), we denote Trajectory-guided Control
Prediction as TGCP in this chapter.

2 https://leaderboard.carla.org/leaderboard/

https://leaderboard.carla.org/leaderboard/
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“turn left” or “follow the lane”). For this study, we assume that m can be transmitted losslessly
to the edge server.

The autonomous driving agent is modeled as qψ(a|y), which generates the inferred action
â from task-specific data y. In particular, the individual components of the inferred action
â = (v̂, ŝ,ŵ, f̂ traj, b̂, f̂ ctrl) are defined as follows:

• v̂: estimated target speed.

• ŝ: value of the extracted features estimated by the expert [118].

• ŵ: predicted waypoints from the trajectory branch.

• f̂ traj: estimated extracted features for trajectory planning.

• b̂ = [b̂0, b̂1, . . . , b̂Γ]: estimated control actions from the beta distribution in the control
prediction branch, where Γ denotes the prediction length.

• f̂ ctrl = [f̂ ctrl
0 , f̂ ctrl

1 , . . . , f̂ ctrl
Γ ]: predicted informative features of the control prediction

branch.

4.5.2 Control and Trajectory Prediction Loss Functions

The designed controller, based on [125], computes control commands such as throttle, steer,
and brake using the output of the trajectory and control prediction branches. The correspond-
ing loss functions are defined as:

Ltraj =∥w− ŵ∥1 +λfeat∥f traj− f̂ traj∥2, (4.29)

Lctrl =DKL(Be(b0)∥Be(b̂0))

+ 1
Γ

Γ∑
i=1

DKL(Be(bi)∥Be(b̂i))

+λfeat∥f ctrl
0 − f̂ ctrl

0 ∥2 + 1
Γ

Γ∑
i=1
∥f ctrl

i − f̂ ctrl
i ∥2, (4.30)

where λfeat is a hyperparameter, w, f traj, bi, and f ctrl
i are from the ground truth action a,

∥ · ∥1 denotes the l1-norm, and Be(·) denotes the beta distribution.
Furthermore, the auxiliary loss function is defined as:

Laux = ∥v− v̂∥1 +∥s− ŝ∥2, (4.31)

where speed v and value of features s are from the ground truth action a. Combining these
terms, the overall loss function LTCGP becomes:

LTCGP = λtrajLtraj +λctrlLctrl +λauxLaux, (4.32)

where λtraj, λctrl, and λaux are hyperparameters.
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4.5.3 Task-Oriented End-to-End Training

Typically, we assume that the posterior qψ(a|y) follows a Gaussian distribution

N (µψ(y),Σψ(y)), (4.33)

where µψ(y) ∈ Rd and Σψ(y) = σ2
cId (σc is a constant). Thus, we can derive

− logqψ(a|y)

=− logN
(
µψ(y),Σψ(y)

)
=− log

[
exp

(
−1

2(a−µψ(y))TΣ−1
ψ (y)(a−µψ(y))

)]
+log

[
(2π)

d
2 |Σψ(y)|

1
2

]

=

∥∥∥a−µψ(y)
∥∥∥2

2
2σ2

c
+d logσc+ d

2 log2π.

Since σc is a constant, we have

− logqψ(a|y)∼ 1
2σ2

c
∥a−µψ(y)∥22, (4.34)

where µψ(y) = â. Eq. (4.34) shows that − logqψ(a|y) can serve as a distance metric, like
the l2-norm. Since LTCGP is a combination of distance metric of action a (l1-norm, l2-norm,
and KL divergence), we heuristically propose substituting the first term in Eq. (4.17) with
LTCGP to adapt the objective function as

L′
VIB(a,x;ϕ,θ) = Ea,x

{
LTCGP

+ β̂1DKL(pϕ(ẑ|x)∥q(ẑ))

+ β̂2Eẑ|x;ϕ,θ[− logqδ(a|ẑ)]
}
. (4.35)

In addition, the Eq. (4.28) can be modified as:

L′
VIB-Q(a,x;ϕ,θ) = L′

VIB(a,x;ϕ,θ)+βQLQ(z;r∗). (4.36)

Training of JSCC encoder and information reshaper consists of two stages: pre-training
and fine-tuning. In pre-training, the neural network parameters (ϕ and θ) are initialized,
and images from the dataset are encoded into JSCC symbols, transmitted through a channel
without a fixed constellation, and reshaped into task-specific data. The TGCP model, with
frozen parameters, generates inferred actions â, and the loss L′

VIB is computed to update the
network parameters. Fine-tuning follows a similar process, but the symbols are transmitted
with JSCC modulation, and the loss L′

VIB-Q is used for parameter updates. Finally, the
optimized parameters ϕ and θ are output. The training process of the proposed aligned task-
and reconstruction-oriented JSCC encoder and information reshaper is shown in Algorithm 3.
Here, CH(·) denotes the function of a JSCC modulation and communication channel, while
TGCP(·) denotes the function of TGCP. Specifically, during the fine-tuning process, both
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the JSCC encoder and the information reshaper are actively adjusted, which means that
neither component is frozen. This fine-tuning process reduces the quantization loss of the
encoder’s output and preserves task-critical information, showing the potential for real-world
applications.

Algorithm 3 Training JSCC Encoder and Information Reshaper.
Initialization: Initialize the neural network parameters ϕ and θ.

1: Input: Image dataset X with corresponding ground-truth agent output A. Well-trained
TGCP model with frozen parameters. Learning rate η.

2: while not converged do
3: Sample mini-batch {(ai,xi)}Ωi=1 from A and X .
4: for sample i= 1, . . . ,Ω do
5: Encode image xi to JSCC symbols zi.
6: Transmit JSCC symbols through a channel

without JSCC modulation: ẑi← CH(zi).
7: Reshape the reconstructed JSCC symbols ẑi

to task-specific data yi.
8: Generate inferred action: âi← TGCP(yi).
9: Compute loss L′

VIB based on Eq. (4.35).
10: end for
11: Update parameters (pre-training):

ϕ
+←−η ·∇ϕL′

VIB, θ +←−η ·∇θL′
VIB.

12: end while
13: Find optimal constellation parameter r∗ according to Algorithm 2.
14: while not converged do
15: Sample mini-batch {(ai,xi)}Ωi=1 from A and X .
16: for sample i= 1, . . . ,Ω do
17: Encode image xi to JSCC symbols zi.
18: Transmit JSCC symbols through a channel

with JSCC modulation: ẑi← CH(zi).
19: Reshape the reconstructed JSCC symbols ẑi

to task-specific data yi.
20: Generate inferred action: âi← TGCP(yi).
21: Compute loss L′

VIB-Q based on Eq. (4.36).
22: end for
23: Update parameters (fine-tuning):

ϕ
+←−η ·∇ϕL′

VIB-Q, θ +←−η ·∇θL′
VIB-Q.

24: end while
25: Output: Neural network parameters: ϕ and θ.
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4.6 Performance Evaluation

4.6.1 Experiment Setup

Dataset

We utilize the Car Learning to Act (CARLA) simulator, an open-source platform designed
for autonomous driving research [124], which provides a variety of urban environments that
simulate real-world traffic scenarios. The image dataset from [125], comprising images from
various urban maps, serves as the input data x for our training. In our experiments, the
training dataset consists of 189,524 images from four maps: Town01, Town03, Town04, and
Town06. The test dataset includes 27,201 images from another four maps: Town02, Town05,
Town07, and Town10.

Evaluation Metrics

Our evaluation focuses on comparing the driving performance of our ATROC framework
against various baselines within the CARLA simulator. We use the commonly adopted
driving score3 to assess the vehicle’s ability to navigate according to predetermined waypoints,
destinations, and comply with traffic regulations. Each test is conducted three times in Town05
under four different weather scenarios: clear noon, cloudy sunset, soft rain at dawn, and hard
rain at night.

Basic Settings

In our proposed framework, we configure the JSCC symbols dimension k to 1024, enabling
us to achieve significantly low bits per service of 6144 for 64-QAM. For training of the JSCC
encoder and the information reshaper, we set the Lagrange multipliers β̂1 = 1, β̂2 = 8192,
and the quantization loss hyperparameter βQ = 10, which is a good balance between fidelity
and compression. Furthermore, we set the learning rate η to 4×10−5, and impose a power
constraint with Ptarget = 1.

The TGCP model is trained following the instructions of [125]. The parameters ψ of the
TGCP model are kept fixed throughout all training phases to ensure full compatibility with
the existing edge intelligence infrastructure. Specifically, our goal is for the edge server’s
inference network to effectively handle both conventional (normal) data x and the task-
specific data y, without requiring retraining or fine-tuning of the inference model itself. By
fixing the TGCP parameters, we explicitly demonstrate that our proposed method (e.g., the
JSCC encoder and information reshaper) does not change the edge inference architecture,
highlighting its compatibility with existing systems. This pre-trained TGCP model serves as
the AI agent in the following experiments.

3 https://leaderboard.carla.org/

https://leaderboard.carla.org/
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For simplicity, a deterministic information reshaper is used, allowing us to approximate
qδ(a|ẑ) by qψ(a|y). The architecture and detailed parameters of the proposed JSCC encoder
and the information reshaper are shown in Fig. 4.3.

In addition, we introduce a performance metric bits per service to measure communication
efficiency, which is defined as k · c, where c represents bits per symbol.
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Figure 4.3: Architecture of the proposed JSCC encoder and information reshaper. For
example, ConvC 3-1 represents a convolutional layer with C channels, a 3×3 kernel size, and
padding of 1 on both sides. ↓2 denotes the strided down convolutions, while NN↑2 denotes
the nearest neighbor upsampling. FC2048 refers to a fully connected layer with an output
size of 2048. BatchNorm denotes batch normalization, LReLU represents the leaky ReLU
activation with α= 0.2, and Ω represents the batch size. The dimensions (number of channels)
of the inputs and outputs for the ResBlock remain unchanged.
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Baseline Methods

Three traditional image coding methods are included as baseline methods for comparison: (1)
JPEG [3]; (2) JPEG2000 [4]; (3) and BPG [131]. Each traditional image coding method is
followed by (2048, 6144) LDPC codes combined with a 64-QAM digital modulation scheme.
The average bits per service for these methods range from 36,844 to 1,041,758.

In addition, baseline methods also include two state-of-the-art reconstruction-oriented
JSCC designs, with the legends “ROC-AE” [14] and “ROC-VAE” [15], which represent tradi-
tional autoencoder and variational autoencoder approaches. Note that the training dataset for
the ROC-AE, ROC-VAE, ATROC, and pre-trained TGCP is identical. For a fair comparison,
ROC-AE, ROC-VAE, and ATROC use the same network structure, resulting in the same bits
per service (i.e., 6144). In particular, ROC-VAE and ROC-AE are also fine-tuned by our
proposed JSCC modulation scheme for 64-QAM, where the optimal constellation parameters
r∗ are 4 and 50.4, respectively.

4.6.2 Results of JSCC Modulation

The constellation parameter r is trained using a pre-trained JSCC encoder, as described in
Algorithm 2. Figure 4.4 demonstrates that regardless of the initial value of the constellation
parameter, rinit ∈ {1, · · · ,10}, the optimal constellation parameter r∗ consistently converges,
validating the effectiveness of the proposed modulation approach.

Driving scores from different fine-tuned models across various constellation parameters
based on 64-QAM are presented in Fig. 4.5. The model fine-tuned with the optimal constella-
tion parameter r∗ outperforms other models under the AWGN channel with SNRs range from
-10 dB to 10 dB, showcasing the superiority of our proposed JSCC modulation scheme.
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(b) Training of 64-QAM.
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(c) Training of 256-QAM.

Figure 4.4: Training of the constellation parameter for 16-QAM, 64-QAM, and 256-QAM.
Regardless of the initial value of the constellation parameter, the optimal value consistently
converges.
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Figure 4.5: Driving score of fine-tuned models based on 64-QAM with different constellation
parameters (r ∈ {1, r∗,10}, where r∗ = 3.04) under the AWGN channel with SNR range from
-10 dB to 10 dB.

4.6.3 Evaluation on CARLA

The impact of bits per service on the driving score is illustrated in Fig. 4.6, where the driving
score of TGCP using raw images without communication is 25.34. Notably, our proposed
method achieves significant bandwidth savings (99.19% compared to existing methods) while
maintaining a required driving score of 20 under both the AWGN and Rayleigh fading
channels. This substantial reduction in bits per service not only illustrates the efficiency of our
approach but also underscores its capability to operate effectively under stringent bandwidth
constraints.

Detailed results for specific channel conditions are shown in Fig. 4.7a and Fig. 4.7b,
demonstrating the dependency of driving scores on SNR. For traditional image coding
methods, such as JPEG, JPEG2000, and BPG, we apply two configurations for comparison:
(1) the average bits per service are set to 961,484 for JPEG∗, 1,041,758 for JPEG2000∗,
and 759,683 for BPG∗; (2) the average bits per service are reduced to 524,996 for JPEG−,
472,958 for JPEG2000−, and 442,152 for BPG−. The first configuration highlights the
optimal performance of traditional image coding methods, as shown in Fig. 4.6a and Fig. 4.6b.
In contrast, the second configuration approximately halves the bits per service from the first,
as a basis for further comparison. In contrast, our method requires only 6144 bits per service,
highlighting its superior compression and transmission efficiency. In addition, we compare
the proposed method ATROC with the state-of-the-art reconstruction-oriented JSCC designs
using the same neural network structure, with the legends “ROC-AE” [14] and “ROC-VAE”
[15].

Under AWGN channel conditions, our method significantly outperforms reconstruction-
oriented communication methods with driving scores of 15.72 at SNR = 0 dB, 15.18 at SNR
= -5 dB, and 10.67 at SNR = -10 dB, as shown in Fig. 4.7a. Traditional methods (JPEG∗,
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JPEG−, JPEG2000∗, JPEG2000−, BPG∗, and BPG−,) show a dramatic decline in the driving
score as SNR decreases (below 0 dB), emphasizing the robustness of our ATROC framework
under challenging conditions.

Similarly, in Rayleigh fading channel scenarios (Fig. 4.7b), our proposed method continues
to demonstrate superior performance with driving scores of 18.57 at SNR = 10 dB, 13.1 at
SNR = 5 dB, and 12.73 at SNR = 0 dB. However, traditional methods experience significant
performance degradation when SNR is below 10 dB.

Moreover, JSCC-based reconstruction-oriented communication methods perform poorly
under this extremely limited communication bandwidth, as these methods fail to preserve
task-specific information.
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Figure 4.6: Driving score of traditional reconstruction-oriented communication with varied
bits per service under AWGN channel and Rayleigh channel. The ATROC with 6144 bits per
service serves as a baseline for comparison across both channel conditions. In addition, the
TCGP using raw RGB images (5.5296×106 bits per service) for autonomous driving is also
included as a baseline.
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Figure 4.7: Driving score with varied SNRs under AWGN channel and Rayleigh channel.

These findings are further supported by qualitative analysis, as illustrated in Fig. 4.8.
JSCC-based reconstruction-oriented communication methods, while capable of producing
high-quality image reconstructions suitable for human vision, often fail to retain crucial task-
specific information, such as vehicles, cyclists, road markers, and traffic lights. This deficiency
leads to poor performance in edge-based autonomous driving applications, where precise
detection of such elements is critical for safety and efficiency. In contrast, our proposed
method can effectively preserve task-specific information, shown in the blue, red, and purple
boxes of Fig. 4.8. To reduce the required bits per service, it ignores task-agnostic information,
shown in the green box of Fig. 4.8. Moreover, our proposed method demonstrates remarkable
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Figure 4.8: A qualitative example of our proposed method and baseline methods under
Rayleigh fading channel with SNR = 20 dB and SNR = 0 dB. The bits per service of each
image are provided in the upper left corner. The details in the reconstructed image are
highlighted on the right side of the image. 1) blue box: vehicle and road marks; 2) red box:
traffic lights; 3) purple box: cyclist and road marks; 4) green box: fence in the distance. Since
traditional reconstruction-oriented communication methods (JPEG, JPEG2000, and BPG) fail
to reconstruct images when SNR = 0 dB, we use “N/A” (Not Applicable) to represent the
corrupted images.

noise resistance under low SNR conditions. It effectively preserves task-specific information,
maintaining its completeness even in challenging communication environments.

Furthermore, in Table 4.2, we evaluate additional performance metrics such as PSNR, MS-
SSIM, and FID, which are typically used to assess image quality from a human perspective.
The divergence in performance metrics between traditional reconstruction-oriented methods
and our proposed method highlights the necessity of a communication design that prioritizes
machine vision, particularly in applications where decision-making accuracy is critical.



4.7. Conclusion 72

Table 4.2: Human Perceptional Metrics
Method k · c PSNR(dB) ↑ MS-SSIM ↑ FID↓

JPEG 961484 34.56 0.99 5.83
JPEG2000 1041758 37.54 0.99 7.17

BPG 759683 34.93 0.98 6.68
ROC-AE 6144 17.24 0.41 200.59

ROC-VAE 6144 21.75 0.72 135.68
TOC 6144 11.43 0.27 268.14

4.7 Conclusion

This chapter has investigated an ATROC framework for edge intelligence, aimed at improving
the integration of AI technologies within existing communication infrastructures. By extend-
ing the IB theory and incorporating JSCC modulation, our framework shifts the focus from
traditional signal reconstruction fidelity to task relevance, thus optimizing the performance of
AI-driven applications in bandwidth-constrained and noise-interference environments.

Our evaluations conducted within the CARLA simulator highlight the robustness of the
proposed ATROC framework. Particularly in low SNR conditions, our framework demon-
strated significant superiority over traditional reconstruction-oriented communication methods
by achieving a reduction of up to 99.19% bits per service without sacrificing the effectiveness
of task execution.

The qualitative analysis revealed that while reconstruction-oriented communication meth-
ods are effective for human visual perception, they often fail to satisfy the specific requirements
of machine vision. This observation emphasizes the need for communication designs that
align more closely with the specific information needs of AI systems rather than human
interpretation.
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Chapter 5

Toward Holistic Systems: Task-Oriented
Co-design of Communication, Computing,
and Control for Cyber-Physical Systems

5.1 Introduction

In industrial CPS, ensuring URLLCs is crucial for achieving reliable real-time performance
[44]. Applications such as automated transportation, material handling, and inspection
increasingly rely on autonomous vehicles and robots within factories, warehouses, and
hazardous environments. Autonomous driving plays an important role in these systems,
enabling the automation of essential tasks, optimizing workflow efficiency, and improving
safety [132].

To meet the stringent requirements of URLLC (e.g., the E2E delay should be less than
1 ms and the packet loss probability should be less than 10−5 [133]), edge inference has
emerged as a promising solution [134]. By minimizing the physical distance between data
generation and processing, edge inference significantly reduces latency, which is vital for
autonomous systems that must respond timely to dynamic environmental changes, such
as navigating unpredictable factory layouts or reacting to sudden obstacles. The primary
motivation for using edge computing (also called off-board computing) lies in its ability to
enhance system flexibility, particularly given the differing innovation cycles of the automotive
and semiconductor industries. While a vehicle’s lifespan typically ranges from 10 to 20 years,
advancements in computing capabilities can be significant within this period. By leveraging
edge computing within shared telecommunication infrastructure, the vehicle can enjoy much
better flexibility in upgrading the computing power and software throughout their entire
lifetime. However, the transmission of massive amounts of sensor and video data presents a
challenge to the edge’s ability to handle real-time processing while maintaining the reliability
and low-latency communications. In that case, edge inference, often powered by DNNs, is
still affected by nontrivial communication latency and bandwidth constraints, particularly
under the demands of URLLC in industrial CPS [135].
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Recent developments in deep learning have introduced JSCC as a promising solution to the
limited communication bandwidth and significant noise interference [14]. Unlike traditional
separate coding designs, JSCC integrates source and channel coding, improving data transmis-
sion efficiency. Despite these advantages, conventional JSCC approaches typically focus on
accurate signal reconstruction at the receiver, potentially wasting communication resources on
task-agnostic information that does not directly contribute to the decision-making process [79].
This inefficiency has attracted significant research interest in task-oriented communication, a
technology designed to prioritize the transmission of task-specific information, thus reducing
data rates and improving efficiency, especially for AI-driven applications [65].

Furthermore, data sent to the edge server become outdated due to uplink delays, including
processing, transmission, propagation, and queueing delay, negatively impacting the timeliness
of edge inference results. This issue is further exacerbated by downlink, computing, and
control delays. The E2E delay (round-trip delay) degrades system performance and makes
it difficult to meet the URLLC requirements in industrial CPS. Prediction-based methods
can mitigate perceived E2E delay [136], but longer prediction horizons increase the risk of
inaccuracy, creating a trade-off between minimizing delay and ensuring reliability.

Given the limitations of traditional approaches that design communication, computing,
and control components separately, an integrated task-oriented co-design framework becomes
essential [11], [137], [138]. For example, the work in [139] introduces a joint learning and
communication framework in which agents learn both actions and communication strategies
over noisy channels, specifically designed to enable effective coordination and control in
Multi-Agent Reinforcement Learning (MARL) environments. Similarly, [140] provides a
forward-looking perspective on communication in 6G systems, highlighting the importance
of timely and task-aware information exchange in intelligent networked systems. These
contributions align closely with the motivation of this chapter, which explores E2E co-
design of task-oriented communication and control under real-world constraints such as
communication delays and bandwidth limitations.

In this chapter, our objective is to address three fundamental questions for edge-enabled
mission-critical industrial CPS: 1) How can data transmission be optimized for bandwidth-
constrained and latency-sensitive applications to ensure that task-specific information is
prioritized? 2) How can predictive models be utilized to ensure that edge inference systems
make decisions that reduce perceived E2E delay? 3) How can communication, computing, and
control be jointly designed and optimized to meet the demands of URLLC in mission-critical
applications? The key contributions of this chapter are summarized as follows:

• We develop a comprehensive task-oriented co-design framework that jointly optimizes
communication, computing, and control. This framework seamlessly integrates task-
oriented JSCC with a delay-aware autonomous driving agent, addressing the critical
challenges of bandwidth constraints, noise interference, and E2E delay to maximize
performance for edge-enabled autonomous driving.
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• We formulate the problem of task-oriented communication using the IB approach and
employ a variational approximation to derive a tractable upper bound, resulting in
the VIB method. Additionally, we extend the standard VIB framework to incorpo-
rate conditional information, such as vehicle and channel state information, ensuring
better alignment with mission-critical applications. Furthermore, we handle the KL-
divergence term using a concise approach inspired by [121]. Our formulation improves
communication efficiency in dynamic and noisy environments, which is essential for
the reliable operation of industrial CPS.

• We establish the DTCP strategy for autonomous driving, which uniquely combines two
dominant autonomous driving paradigms: trajectory planning and control prediction.
The DTCP processes JSCC symbols, state information, and channel state to predict
optimal driving actions that reduce perceived E2E delay. In addition, DTCP is specially
co-designed with the task-oriented JSCC and is jointly trained for machine-to-machine
communication.

The rest of this chapter is organized as follows. We detail the fundamentals of predictions
in URLLC applications in Section 5.2. In Section 5.3, we introduce the system model and
formulate the variational problem. Section 5.5 presents the details of DTCP and the proposed
co-design with task-oriented JSCC. The numerical and experimental results are provided in
Section 5.6. Finally, conclusions are drawn in Section 5.7.

The main notations used throughout the chapter are summarized in Table 5.1. To improve
readability and manage the complexity of the joint design of communication, computation,
and control, the temporal subscript of the notation is omitted in Section 5.3.

5.2 Predictions in URLLC Applications

Ultra-Reliable and Low-Latency Communications (URLLC) form the cornerstone of mission-
critical services in modern and future wireless networks, including autonomous driving,
telesurgery, industrial automation, and the Tactile Internet. These applications demand
unprecedented E2E delay limits (often below 1 ms) and ultra-high reliability with packet
loss probabilities in the range of 10−5 to 10−7 [44]. Achieving such stringent requirements,
especially under the unpredictable and dynamic conditions of wireless environments, requires
the use of accurate and real-time prediction mechanisms. Predictions in URLLC systems
play a dual role: first, they proactively mitigate the impact of variable conditions such as
channel fading, network congestion, and mobility; second, they enable anticipatory resource
allocation and control strategies that prevent latency violations and packet losses before they
occur [141].

Traditional model-driven optimization techniques often fall short in meeting URLLC
demands due to their reliance on idealized assumptions and limited tractability in real-time
scenarios. For example, queueing delays, access delays, and processing delays are stochastic
and highly sensitive to network load and topology [60]. Moreover, conventional methods
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Table 5.1: Summary of Main Symbols
x Input image (data) Kb Size of mini-batch
X Random variable of x xt Image captured by a camera at time t

X Space of x z
l(t)
t ,zl

t JSCC symbols with length l transmit-
ted at time t

z Transmitted JSCC symbols ẑl
t−δeu

Reconstructed JSCC symbols with
length l received at time t

Z Random variable of z mt State information transmitted at time t
ẑ Reconstructed JSCC symbols τ Duration of time slot
Z Space of JSCC symbols Dt Index set for zl

t

ž Received JSCC symbols δe Computing delay of JSCC encoding
h Channel state δu Uplink communication delay
n Gaussian noise δa Computing delay of agent
H Random variable of h δd Downlink communication delay
H Space of h δc Control delay
m State information δeu Combined delay of δe and δu

M Random variable of m δ End-to-end delay
M Space of m δT Delay threshold
a Ground-truth action lp Prediction horizon
A Random variable of a lw Extra Prediction Horizon
â Estimated action r

traj
t−δeu

Trajectory feature corresponding
to xt−δeu

Â Random variable of â Rtraj Space of trajectory features
A Space of action h

traj
t−δeu

Trajectory hidden state corresponding
to xt−δeu

fe(·) Function of JSCC encoder wt−δeu Planned waypoint at time t− δeu

fh(·) Function of noisy fading channel c
traj
t−δeu+lp

Predicted trajectory command with
horizon lp for xt−δeu

fa(·) Function of autonomous driving agent rctrl
t−δeu

Control feature corresponding
to xt−δeu

Ptarget Average power constraint of z Rctrl Space of control features
lx Dimension of x hctrl

t−δeu
Control hidden state corresponding
to xt−δeu

lz Dimension of z cctrl
t−δeu+lp

Predicted control command with hori-
zon lp for xt−δeu

g(·, ·) Distortion measuring function ccomb
t−δeu+lp

Predicted combined command with
horizon lp for xt−δeu

ζratio Constraint of bandwidth compression ra-
tio

Ccmd Space of commands

ζrate Constraint of rate ffeat-t(·, ·, ·) Function of trajectory feature extrac-
tor

ϕ Parameters of JSCC encoder ftraj(·) Function of trajactory branch
ψ Parameters of autonomous driving agent ffeat-c(·, ·, ·) Function of control feature extractor
β Lagrange multiplier fctrl(·, ·) Function of control branch
fµ(·) Function for estimating the mean of recon-

structed JSCC symbols
fcomb(·, ·) Function of command combination

fσ(·) Function for estimating the standard devi-
ation of reconstructed JSCC symbols

λ[·] Hyperparameters of agent

Ka Size of dataset i General index depended on the con-
text
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struggle with scalability and adaptation in non-stationary environments, a critical limitation in
high-mobility contexts such as vehicular networks or telesurgical systems. In contrast, data-
driven approaches, particularly deep learning, offer a promising solution by approximating
complex policies and predicting future system states based on historical and contextual data
[142].

However, generic deep learning models require large amounts of training data and often
suffer from poor generalization when deployed in environments with different statistical
properties than those encountered during training. To address this, [44] proposes integrating
domain knowledge, such as information-theoretic bounds, queueing models, and cross-layer
dependencies, into the learning process. This hybrid model- and data-driven approach
improves learning efficiency, convergence rate, and interpretability, enabling URLLC systems
to make accurate predictions under strict Quality of Service (QoS) constraints.

5.2.1 Analytical Foundations for Predictive URLLC

The analytical foundations of predictive URLLC aim to characterize the performance limits
and behaviors of communication systems under stringent latency and reliability constraints.
These foundations provide a critical backbone for prediction mechanisms, offering tractable
models to anticipate performance metrics and guide learning algorithms in low-latency
environments. Central to this analytical core are tools from short blocklength information
theory, queuing theory, and stochastic geometry, each capturing essential dynamics in URLLC
systems.

Short Blocklength Information Theory

Short blocklength information theory revises classical Shannon capacity, which assumes
infinite coding blocklength and vanishing error probability, to better reflect the realities of
URLLC where packets are short and must be delivered with finite delay. [60] introduced
an approximation for the maximum coding rate achievable over AWGN channels given a
fixed blocklength and error probability, highlighting a trade-off between rate, reliability, and
latency. This finite blocklength regime is essential for predicting achievable throughput and
required bandwidth in URLLC applications, especially when channel conditions vary rapidly.
Moreover, these models allow systems to proactively allocate resources based on predicted
reliability performance under different coding and modulation schemes.

Queuing Theory

Queuing theory contributes to predictive URLLC through models that estimate queuing delay
and buffer occupancy probabilities. Although average delay models such as Little’s Law
offer baseline estimates, URLLC requires a focus on statistical delay bounds, particularly
the violation probability of a given latency threshold. Tools such as effective bandwidth
and effective capacity translate arrival and service processes into exponential tail bounds on
queuing delay distributions, offering a predictive mechanism for resource provisioning and
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traffic shaping [143]. Additionally, the AoI metric captures the freshness of received data and
is critical in predictive control systems, where outdated information can undermine decision
accuracy in real-time operations [144].

Stochastic Geometry

Stochastic geometry extends predictive analytics to large-scale networks with random spatial
distributions of users and base stations. This framework models wireless networks as spatial
point processes, allowing statistical predictions of link availability, interference levels, and
access delays under varying user densities. Although most stochastic geometry analyses focus
on average behaviors, recent extensions consider delay distributions and coverage probabilities
tailored for URLLC [145]. For example, modeling the probability of delay outage under
different network topologies enables predictive scheduling and handover strategies that prevent
latency violations.

Cross-layer optimization serves as a unifying framework, integrating insights from these
theories to capture dependencies across physical, link, and network layers. For predictive
purposes, cross-layer models enable the estimation of end-to-end performance metrics based
on contextual parameters such as channel state, queueing status, and mobility patterns.
However, these models are often analytically intractable because of nonconvexity and high
dimensionality. Thus, recent work focuses on using these analytical tools to inform the design
and initialization of learning-based predictors, guide them toward feasible policy spaces, and
reduce training time and error rates [44].

5.2.2 Deep Learning for Predictive Modeling

Deep learning has emerged as a promising paradigm for predictive modeling in URLLC
systems, offering flexible, data-driven methods to approximate complex mappings between
high-dimensional input states and decision outputs. Unlike traditional optimization algorithms,
which often require explicit models and are computationally intensive for real-time use, deep
learning methods can infer near-optimal solutions with low latency once trained, making
them suitable for the sub-millisecond response times demanded by URLLC applications [44].
Predictive modeling using deep learning enables proactive resource allocation, early detection
of latency violations, mobility prediction, and anticipatory handover, thereby improving both
reliability and responsiveness in dynamic wireless environments.

Three primary categories of deep learning techniques are leveraged for predictive tasks
in URLLC: supervised learning, unsupervised learning, and Deep Reinforcement Learning
(DRL).

Supervised Learning

Supervised learning is particularly effective when labeled datasets are available, such as
historical traces of user mobility or network traffic. Models such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), including their gated variants like
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LSTM and GRU, are used to predict time series behavior, such as future channel conditions,
delay violations, or user trajectory. These models enable anticipatory mechanisms, for
example, scheduling resources based on predicted user movement or traffic spikes, reducing
handover failures and packet collisions.

Unsupervised Learning

Unsupervised learning, on the contrary, is used when labeled data are unavailable or im-
practical to collect. Techniques such as autoencoders and GAN are used to learn compact
representations or generate synthetic training data for scenarios with limited observations
[146]. For example, [147] proposed the use of unsupervised deep learning to optimize
resource allocation and network scheduling by learning the structure of the optimization
landscape directly from observed data. This method enables efficient function approximation
in systems with intractable models or unknown distributions.

Deep Reinforcement Learning

Deep reinforcement learning (DRL) combines the predictive power of deep learning with
decision-making under uncertainty, allowing URLLC systems to learn optimal policies
through interaction with the environment. DRL algorithms such as Deep Q-Networks (DQN),
Actor-Critic methods, and Proximal Policy Optimization (PPO) are used to explore and exploit
predictive policies for resource scheduling, access control, and task offloading in real-time
[148]. A key advantage of DRL is its model-free nature, which allows it to learn from
observed feedback without requiring an explicit system model. However, exploration safety
is a critical concern, especially in URLLC, where poor actions can lead to QoS violations or
system instability. This has motivated research on safe DRL, where the search for policies is
restricted to ensure compliance with the reliability and latency limits during both the learning
and inference phases [149].

Despite their potential, deep learning-based prediction systems in URLLC face several
challenges, including non-stationarity of wireless environments, the scarcity of labeled training
data, and the need for fast convergence. To address these, hybrid approaches that integrate
domain knowledge into the learning process are rising, such as initializing models with output
from theoretical frameworks or designing custom loss functions that reflect delay/reliability
trade-offs. These hybrid models improve generalizability, reduce training time, and ensure
compliance with URLLC constraints, making deep learning a viable component of predictive
intelligence in 6G networks.

5.2.3 Recent Advancement

In the context of URLLC, prediction-based methods have been explored to mitigate delays.
For example, [150] proposed a technique to predict movements or force feedback to reduce
perceived delay in tactile Internet applications. Similarly, [151] presented a co-design ap-
proach for packetized predictive control (PPC) in real-time CPS, addressing the delay in the
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Figure 5.1: General framework of edge-enabled autonomous driving.

tight interaction between wireless communication and control systems. For visual content,
[152] investigated how predictive displays can mitigate communication delays in telesurgery
using AR technology. The proposed system provided real-time visual feedback to surgeons by
predicting movements of robotic tools, significantly improving task completion times under
latency without increasing error rates. Likewise, [153] introduced edge intelligence to predict
user motion, enabling pre-rendering and caching of VR content, thus significantly reducing
the latency in VR streaming. However, in these studies [150]–[153], the trade-off between the
prediction horizon and the reliability of the system was not adequately addressed. To bridge
this gap, [136] focused on the challenges of delay and reliability in URLLC by co-designing
prediction and communication systems. The proposed framework enables mobile devices
to predict future states and send these predictions to a data center in advance, thus reducing
perceived delays. The study also analyzed the trade-off between prediction accuracy and
system reliability, demonstrating that longer prediction horizons increase the likelihood of
errors.

5.3 System Model and Problem Formulation

As shown in Fig. 5.1, we consider an edge server that provides computing service for a single
vehicle (device). The vehicle transmits JSCC symbols and encoded state information to the
edge server. After processing the received data, the edge server sends the drive commands
back to the vehicle.

The on-vehicle JSCC encoder fe is defined as:

fe : X → Z : x 7→ z, (5.1)

where x ∈ Rlx denotes the input image, and z = [z1, . . . , zlz ] ∈ Clz denotes the transmitted
JSCC symbols. Here, lx denotes the source bandwidth, which is the product of the height,
width, and number of color channels of the image x. The parameter lz denotes the channel
bandwidth. We define lz/lx as the bandwidth compression ratio [14]. In particular, the
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transmitted JSCC symbols should satisfy the average power constraint Ptarget:

1
lz

lz∑
i=1
|zi|2 ≤ Ptarget. (5.2)

Then z are transmitted to the edge server via communication channels, which can be
mathematically represented by the function:

fh : Z → Z : z 7→ ẑ. (5.3)

In this chapter, we model the communication channel as a frequency-selective channel
implemented through Orthogonal Frequency-Division Multiplexing (OFDM) to mitigate
multipath fading, as detailed in [85]:

ž = fh(z) = h ·z +n, (5.4)

where ž denotes the received JSCC symbols, and n ∼ CN (0,σ2
nI) represents complex

Gaussian noise with zero mean and standard deviation σn, where I denotes the identity
matrix and σn is a diagonal matrix. The channel frequency response h ∈ Clz captures the
characteristics of multipath fading. A comprehensive modeling of the OFDM channel is
provided in Appendix A.

In this chapter, we assume that the perfect CSI is available at the receiver, while the
transmitter has no knowledge of it. After receiving, the JSCC symbols are equalized:

ẑ = h∗

|h|2
ž, (5.5)

where h∗ denotes the conjugate of channel coefficient h and ẑ denotes the reconstructed JSCC
symbols.

Following transmission, the reconstructed JSCC symbols ẑ are processed by the au-
tonomous driving agent fa with state information and channel state, which is defined as:

fa : Z×M×H→A : (ẑ,m,h) 7→ â, (5.6)

where â∼ p(â) denotes the estimated action, which approximates the ground-truth action
a ∼ p(a). In addition, m denotes state information consisting of vehicle speed, discrete
navigation command, destination coordinates, and timestamp. The agent incorporates vehicle
state information m and channel state information h as conditional inputs, establishing a
direct link between communication and control to improve decision-making. Since the state
information m typically consumes negligible bandwidth (in this chapter, m consists of four
floating-point numbers and one integer), we assume that it is received losslessly by the edge
server, provided that the corresponding image is successfully received and decoded.

The task-oriented objective of edge-enabled autonomous driving is to minimize the
expected distortion between the ground-truth action a and the estimated action â, which
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Figure 5.2: The DPGM for edge-enabled autonomous driving.

is defined as g : A×A→ R+. Consequently, the problem of the proposed task-oriented
co-design is defined in Problem 2.

Problem 2:

min
fe,fa

Ea∼p(a|ẑ,m,h)
{
Eâ∼p(â|ẑ,m,h) [g(a, â)]

}
(5.7)

s.t. lz/lx− ζratio ≤ 0, (5.8)

(5.1),(5.2),(5.3),(5.4),(5.6), (5.9)

where ζratio denotes an upper bound of the bandwidth compression ratio.

Problem 2 is an abstract formulation that describes the overarching goal of optimizing
task performance through appropriate parameter selection. Note that the dynamic model of
the vehicle is not explicitly included because it is implicitly captured by the autonomous
driving agent fa. Specifically, the dynamic model of the vehicle is learned by the agent
during the E2E training process, in which the agent is optimized to predict effective control
actions directly from observed data and feedback. Thus, while vehicle dynamics are not
explicitly modeled or parameterized, the learned representation within the agent ensures that
the necessary knowledge of the system dynamics is implicitly embedded within the model
parameters.

However, directly solving Problem 2 poses significant computational challenges, particu-
larly in the evaluation of the expectation over random variables, which involves integration
that can be computationally prohibitive. In addition, finding a proper objective function g(·, ·)
is also difficult. In the following section, we introduce the VIB approach combined with
DNNs to effectively address Problem 2.

5.4 Variational Information Bottleneck Approach

Based on the discussion in Section 5.3, the DPGM of the proposed framework can be depicted
as shown in Fig. 5.2, where A, X , Z, Ẑ, M , H and Â denotes the random variables of the
ground-truth action a, input images x, transmitted JSCC symbols z, reconstructed JSCC
symbols ẑ, state information m, channel state h, and estimated action â, respectively. With
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this DPGM, the IB can be formulated as an optimization problem:

min
ϕ,ψ

− I(A; Ẑ,M,H)

s.t. I(X; Ẑ)− ζrate ≤ 0, (5.10)

where ϕ and ψ are the parameters of JSCC encoder fe and autonomous driving agent fa,
respectively. ζrate denotes the upper bound of the rate. Eq. (5.10) is derived as a practical and
task-oriented reformulation of Problem 2. The objective function in Eq. (5.10), I(A; Ẑ,M,H),
measures the information shared between the target variable A and the combined set of
variables (Ẑ,M,H). By minimizing −I(A; Ẑ,M,H), we ensure that the information about
A retained in (Ẑ,M,H) is maximized, aligning the optimization with the task-specific
objectives of Problem 2. This is supported by the DPGM structure where Â depends on
(Ẑ,M,H), highlighting that preserving information about A in these variables is key to
achieving optimal task performance. Moreover, the constraints in Eq. (5.10) explicitly
incorporate communication limitations through the term I(X,Ẑ), which limits the rate of
transmitted information. These constraints parallel the bandwidth restrictions in Problem 2,
thereby ensuring consistency between the two formulations.

By introducing the Lagrange multiplier β, IB can be further formulated to minimize the
following objective function:

LIB :=−I(A; Ẑ,M,H)︸ ︷︷ ︸
Distortion

+β I(X; Ẑ)︸ ︷︷ ︸
Rate

. (5.11)

Building on the foundational works of [11] and [10], we develop a VIB approach to
approximate each term in Eq. (5.11), addressing the intractability of mutual information. The
first term −I(A; Ẑ,M,H) can be expressed as:

−I(A; Ẑ,M,H) =−
∫
p(a, ẑ,m,h) logp(a|ẑ,m,h)dadẑ dmdh−H(A), (5.12)

where H(A) denotes the entropy of random variable A, which is independent of the optimiza-
tion and thus can be ignored. In addition, p(a|ẑ,m,h) is the posterior probability, which can
be derived from the DPGM [10], [11] as:

p(a|ẑ,m,h) =
∫ p(a)p(x|a)pϕ(z|x)p(ẑ|z)p(m|a)p(h|a)

p(ẑ,m,h) dxdz. (5.13)

Since this integration is intractable in our case, we use qψ(a|ẑ,m,h) as a variational approx-
imation of p(a|ẑ,m,h). Based on the fact that KL divergence is always non-negative, the
following inequality can be obtained:

−I(A; Ẑ,M,H)+H(A)≤ Ea,x

[
Eẑ|x;ϕ

[
Em,h[− logqψ(a|ẑ,m,h)]

]]
. (5.14)
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The second term I(X; Ẑ) can be formulated as:

I(X; Ẑ) = Ea,x

[
DKL(pϕ(ẑ|x)∥p(ẑ))

]
, (5.15)

where p(ẑ) is the intractable prior probability of ẑ. Instead of using approximation proposed in
[154], we adopt a predefined Gaussian distribution q(ẑ)∼N (µẑ,σ

2
ẑI) as the approximation

of p(ẑ) [121], where µẑ and σẑ represent the mean and standard deviation of the Gaussian
distribution, respectively.

In addition, we model the JSCC encoder fe as a probability model pϕ(z|x). Considering
that pϕ(ẑ|x) =

∫
pϕ(z|x)p(ẑ|z)dz, where p(ẑ|z) represents the probabilistic nature of the

channel function fh, and assuming perfect CSI, we define pϕ(ẑ|x) ∼ N (fµ(ẑ),f2
σ(ẑ)I).

Here, fµ(·) and fσ(·) are functions that estimate the mean and standard deviation of this
Gaussian distribution, respectively.

Meanwhile, the mutual information I(X; Ẑ) can also be written as:

I(X; Ẑ) =
∫
p(x, ẑ) log p(x, ẑ)

p(x)p(ẑ) dxdẑ

=
∫
p(x, ẑ) log pϕ(ẑ|x)

p(ẑ) dxdẑ.

Since DKL(p(ẑ) ∥ q(ẑ))≥ 0, we have

∫
p(ẑ) logp(ẑ)dẑ ≥

∫
p(ẑ) logq(ẑ)dẑ.

So that

I(X; Ẑ)≤
∫
p(x, ẑ) log pϕ(ẑ|x)

q(ẑ) dxdẑ

=
∫
p(a,x)pϕ(ẑ|x) log pϕ(ẑ|x)

q(ẑ) dadxdẑ

= Ea,x

[
DKL(pϕ(ẑ|x)∥q(ẑ))

]
. (5.16)

Therefore, we derive the following corollary as an approximation of Eq. (5.11).

Corollary 1: Assume the DPGM shown in Fig. 5.2, let qψ(a|ẑ,m,h) be a variational
approximation of p(a|ẑ,m,h), let q(ẑ) ∼ N (µẑ,σ

2
ẑI) be a variational approximation of

p(ẑ), and let pϕ(ẑ|x) ∼ N (fµ(ẑ),f2
σ(ẑ)I) be a variational approximation of p(ẑ|x), the

upper bound of Eq. (5.11) is given by

LVIB := Ea,x

{
Eẑ|x;ϕ

[
Em,h

[
− logqψ(a|ẑ,m,h)

]]
+βDKL(pϕ(ẑ|x)∥q(ẑ))

}
≥ LIB +H(A). (5.17)

This corollary can be optimized using stochastic gradient descent through Monte Carlo
sampling, providing a practical framework for empirical estimation and subsequent optimiza-
tion. Given a dataset with size Ka, a mini-batch {(ai,xi)}Kb

i=1 of size Kb is randomly drawn
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without overlap in the same epoch to compute the gradient of loss LVIB. In particular, the
number of samples of − logqψ(a|ẑ,m,h) can be set to 1 as long as the size of the dataset
Ka is large enough [121]. Thus, we have the following estimation:

LVIB ≈
1
Kb

Kb∑
i=1

{
− logqψ(ai|ẑi,mi,hi)+βDKL(pϕ(ẑ|xi)∥q(ẑ))

}
. (5.18)

Note that the dataset {(ai,xi)}Ka
i=1 can be collected from expert agents or human drivers.

5.5 Delay-Aware Trajectory-Guided Control Prediction for
Autonomous Driving
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Figure 5.3: The proposed task-oriented co-design framework based on JSCC and DTCP.

TGCP is one of the state-of-the-art frameworks of E2E autonomous driving, integrating
trajectory planning and multistage control prediction together [125]. This advanced frame-
work, which uses only a monocular camera, currently ranks third on the Car Learning to
Act (CARLA) leaderboard1. However, the original TGCP framework relies on a stream of
raw images for decision making, resulting in high bandwidth usage. In addition, it does not
account for the impact of communication latency on decision-making processes.

To overcome these limitations, we have developed a Delay-aware Trajectory-guided
Control Prediction (DTCP) strategy that integrates the trajectory and control branches while
considering the delay, as shown in Fig. 5.3. This integration ensures that predicted drive
commands reduce the perceived E2E delay, leading to safer and more efficient autonomous
driving.

We assume the system is time-slotted and initiates at the time t = 0. The duration of
each time slot is denoted as τ . Let z

l(t)
t denote the transmitted JSCC symbols with length

l(t), and mt represents the state information, both corresponding to the image xt captured

1 https://leaderboard.carla.org/leaderboard/

https://leaderboard.carla.org/leaderboard/
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by the onboard camera at time t. The term 1≤ l(t)≤ lz denotes a function that decides the
number of selected JSCC symbols of zt. For simplicity of notation, we denote l(t) by l in the
following formulation.

Define the index set Dt ⊂ {1,2, . . . , lz} such that:

Dt = {i ∈ {1, . . . , lz} |

|zti |2 is one of the l largest numbers in |zt|2}. (5.19)

In particular, zlt = {zti | i ∈Dt} are JSCC symbols selected from zt = [zt1, . . . , ztlz ] based on
energy significance. The selected JSCC symbols are kept for transmission, while the missing
JSCC symbols are filled with 0 on the edge server. Note that this selection process can be
integrated into the JSCC encoder fe. If only selected JSCC symbols are transmitted, the
receiver must be made aware of the indices of the selected or abandoned JSCC symbols, which
may increase the communication load. In this chapter, we design the selective JSCC symbols
to provide flexibility within this task-oriented communication co-designed paradigm and
demonstrate their potential for dimensionality reduction. To address the additional communi-
cation load introduced by index transmission, methods such as Variable-Length Variational
Feature Encoding (VL-VFE) [11] offer promising directions for further exploration.

5.5.1 Prediction for End-to-End Delay

In edge-enabled autonomous systems, drive commands are often outdated due to E2E delay,
including communication, computation, and control delays. Fig. 5.4 shows a complete cycle
of the communication, computing, and control process, along with the prediction structure.
Assume that an image xt0 is captured by the camera at time t = t0. After encoding and
selecting, the JSCC symbols zlt0 are generated with a computation delay δe. The JSCC
symbols reconstructed by the edge server are denoted as ẑlt0 arriving with an uplink delay
δu. The agent on the edge server takes δa time slots to generate the command ccomb

t0+lp , where
lp ≥ 0 denotes the prediction horizon. The command is then sent back to the vehicle with a
downlink delay δd. Upon receiving the command, the vehicle takes δc time slots to execute
the command. Thus, the E2E delay is expressed as δ = δe+ δu+ δa+ δd+ δc. Consequently,
the perceived E2E delay is given by δ− lp. Since the command ccomb

t0+lp consumes negligible
bandwidth, it is assumed to be transmitted losslessly to the vehicle in this chapter. It is
worth noting that while the uplink delay can be further decomposed into components such
as transmission delay, queuing delay, propagation delay, and processing delay, a detailed
analysis of each individual component lies outside the primary scope of this chapter. Instead,
our focus is on the E2E delay and addressing it through predictive mechanisms.

It is crucial to recognize that in the process described above, when the onboard camera
captures an image xt at any time t, reconstructed JSCC symbols ẑlt−δeu

(corresponding to
image xt−δeu) on the edge server are outdated of δeu = δe+δu time slots. The combined delay
δeu can be calculated from the timestamp in the state information mt−δeu , if it is transmitted
in sync with ẑlt−δeu

. In addition, we assume that the agent’s computation delay δa and the
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Figure 5.5: The framework of the trajectory and control branch of DTCP.

control execution delay δc are known constants, and the edge server continuously measures
the downlink communication delay in real time. With this information, the agent remains
aware of the E2E delay δ, allowing it to dynamically adjust the prediction horizon.

Note that the amount of transmitted information mainly influences the uplink delay δu
and downlink delay δd. In this work, the dimensionality l of the transmitted JSCC symbols
is predefined. As a result, delays caused by transmission can be treated as known and
constant. Although we do not explicitly optimize the communication strategy for these delays
during training, they are inherently controlled through the predefined dimension of the JSCC
symbols. This design choice simplifies the modeling of E2E delay and ensures predictable
communication latency.
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5.5.2 Trajectory Branch

The trajectory branch first generates planned waypoints, and then a low-level PID controller
generates trajectory commands based on them. We define the function of the trajectory feature
extractor as:

ffeat-t : Z×M×H→Rtraj : (ẑlt−δeu
,mt−δeu ,ht−δeu) 7→ r

traj
t−δeu

, (5.20)

where ẑlt−δeu
,mt−δeu , and ht−δeu represent the reconstructed JSCC symbols, state informa-

tion, and channel state, respectively, corresponding to image xt−δeu captured by the camera
δeu time slots ago. At time t, the trajectory feature on the edge server is denoted as r

traj
t−δeu

,
as shown in Fig. 5.5. The trajectory hidden state h

traj
t−δeu

of a Gated Recurrent Unit (GRU)
[155] is initialized with the trajectory feature. Then it auto-regressively generates the se-
quence of trajectory hidden states h

traj-(lp+lw)
t−δeu+lp+lw = (htraj

t−δeu+lp+lw , . . . ,h
traj
t−δeu+1), where lw

denotes an extra prediction horizon for planned waypoints and lp + lw in the superscript
represents the length of the sequence. Using a waypoint inference network, the planned
lp+ lw waypoints can be obtained from the sequence of trajectory hidden states, denoted as
w
lp+lw
t−δeu+lp+lw = (wt−δeu+lp+lw , . . . ,wt−δeu+1). The initial waypoint wt−δeu is defined as the

origin.
Each trajectory wlw+1

t−i+lw = (wt−i+lw , . . . ,wt−i) with length lw +1 is processed by a PID
controller to generate the predicted trajectory command c

traj
t−i, where i = δeu, . . . , δeu− lp.

Thus, the sequence of predicted trajectory commands branch is denoted as c
traj-(lp+1)
t−δeu+lp =

(ctraj
t−δeu+lp , . . . ,c

traj
t−δeu

). We defined the function of the trajectory branch as:

ftraj : Rtraj→ Clp+1
cmd : r

traj
t−δeu

7→ c
traj-(lp+1)
t−δeu+lp . (5.21)

5.5.3 Control Branch

As outlined in [125], a control model that predicts current actions based solely on current
inputs typically employs supervised training similar to behavior cloning, which assumes that
the data is i.i.d. However, for autonomous driving, future states and commands are under the
influence of historical commands. To address this problem and deal with latency, the control
branch predicts control commands in multiple steps in the future and obtains the desired
commands based on the E2E delay δ.

We defined the mapping of the reconstructed JSCC symbols to the control features as:

ffeat-c : Z×M×H→Rctrl : (ẑlt−δeu
,mt−δeu ,ht−δeu) 7→ rctrl

t−δeu
. (5.22)

At time t, the control hidden state hctrl
t−δeu

is initialized with zero value and enters control
GRU with the control feature rctrl

t−δeu
to generate the next hidden state hctrl

t−δeu+1. The hidden
state of the control branch hctrl

t−δeu+1 and the hidden state of the trajectory branch h
traj
t−δeu+1

are used to estimate the important regions of the image by generating a binary mask that
matches the shape of the image feature map from the middle layer of the control feature
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extractor [125]. This mask is then applied through element-wise multiplication with the
feature map. The results of image attention are then used to generate the predicted control
feature rctrl

t−δeu+1 and the control command cctrl
t−δeu+1. The next control GRU hidden state

hctrl
t−δeu+2 is obtained from the previous hidden state hctrl

t−δeu+1 and the predicted control
feature rctrl

t−δeu+1. This process auto-regressively generates the sequence of control hidden
states h

ctrl-lp
t−δeu+lp = (hctrl

t−δeu+lp , . . . ,h
ctrl
t−δeu+1), which is used to generate the sequence of

predicted control features r
ctrl-lp
t−δeu+lp = (rctrl

t−δeu+lp , . . . ,r
ctrl
t−δeu+1). Based on that, the sequence

of predicted control commands c
ctrl-(lp+1)
t−δeu+lp = (cctrl

t−δeu+lp , . . . ,c
ctrl
t−δeu

) is derived from a low-
level controller, where cctrl

t−δeu
is directly generated from the initial control feature rctrl

t−δeu
. The

function of the trajectory branch is defined as:

fctrl : Rctrl×Hlp
traj→ Clp+1

cmd : (rctrl
t−δeu

,h
traj-lp
t−δeu+lp) 7→ c

ctrl-(lp+1)
t−δeu+lp . (5.23)

5.5.4 Two Branch Combination

To minimize the perceived E2E delay δr, lp ≥ δ must be satisfied, i.e., lp− δeu ≥ δa+ δd+ δc.
Because the trajectory branch and the control branch specialize in different driving scenarios,
commands from the two branches are conditionally fused to obtain the combined command
ccomb
t−δeu+lp . This fusion depends on the driving situation – whether the vehicle is turning or not.

In addition, considering the trade-off between the prediction horizon and the reliability of the
system, the predicted control is applied when the delay exceeds a certain threshold δT for the
turning situation. Otherwise, the robustness of the system can deal with the delay better than
applying predicted commands. We define this combination function as:

fcomb : Clp+1
cmd ×Clp+1

cmd → Ccmd : (ctraj-(lp+1)
t−δeu+lp ,c

ctrl-(lp+1)
t−δeu+lp ) 7→ ccomb

t−δeu+lp . (5.24)

The combined command ccomb
t−δeu+lp is denoted as:

ccomb
t−δeu+lp =


λc ·ctraj

t−δeu+lp +(1−λc) ·cctrl
t−δeu+lp , if turning and δ ≥ δT ,

λc ·ctraj
t−δeu

+(1−λc) ·cctrl
t−δeu

, if turning and δ < δT ,

λc ·cctrl
t−δeu

+(1−λc) ·ctraj
t−δeu

, otherwise,

(5.25)

where λc ∈ [0.5,1] is a hyperparameter. The details of a complete cycle of communication,
computing, and control of DTCP and task-oriented JSCC are illustrated in Algorithm 4.
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Algorithm 4 Communication, Computing, and Control of DTCP and Task-Oriented JSCC.
1: Initialization: Load the pre-trained parameter ϕ for JSCC encoder (fe) and parameter ψ

for DTCP (ffeat-t,ffeat-c,ftraj, and fctrl).
2: Vehicle:
3: At time t− δeu, capture image xt−δeu and generate

state information mt−δeu .
4: At time t− δu, generate selected JSCC symbols:

zlt−δeu
← fe(xt−δeu).

5: Edge Server:
6: At time t, receive reconstructed JSCC symbols

ẑlt−δeu
← fh(zlt−δeu

) and state information mt−δeu .
Measure corresponding channel state ht−δeu .

7: Generate trajectory feature:
r

traj
t−δeu

← ffeat-t(ẑlt−δeu
,mt−δeu ,ht−δeu).

8: Generate sequence of trajectory command:
c

traj-(lp+1)
t−δeu+lp ← ftraj(rtraj

t−δeu
), and sequence of hidden

state h
traj-lp
t−δeu+lp .

9: Generate control feature:
rctrl
t−δeu

← ffeat-c(ẑlt−δeu
,mt−δeu ,ht−δeu).

10: Generate sequence of control command:
c

ctrl-(lp+1)
t−δeu+lp ← fctrl(rctrl

t−δeu
,h

traj-lp
t−δeu+lp).

11: At time t+ δa, generate combined command:
ccomb
t−δeu+lp ← fcomb(ctraj-(lp+1)

t−δeu+lp ,c
ctrl-(lp+1)
t−δeu+lp ).

12: Vehicle:
13: At time t+ δa+ δd, receive command ccomb

t−δeu+lp .
14: At time t+ δa+ δd+ δc, vehicle is controlled by the

command ccomb
t−δeu+lp .

5.5.5 Loss function

We denote the estimated action corresponding to image xt−δeu by

ât−δeu = (vt−δeu , st−δeu ,w
lp+lw
t−δeu+lp+lw ,r

traj
t−δeu

,c
ctrl-(lp+1)
t−δeu+lp ,r

ctrl-(lp+1)
t−δeu+lp ), (5.26)

which consists of task-critical variables, where vt−δeu denotes the estimated target velocity
and st−δeu denotes the value of the extracted features. The corresponding ground-truth action
is defined as:

at−δeu = (exvt−δeu ,
exst−δeu ,

exw
lp+lw
t−δeu+lp+lw ,

exr
traj
t−δeu

, exc
ctrl-(lp+1)
t−δeu+lp ,

exr
ctrl-(lp+1)
t−δeu+lp ), (5.27)

which is collected from expert agents or human drivers.
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The loss function of the trajectory branch is defined as follows:

Ltraj = ∥wlp+lw
t−δeu+lp+lw −

exw
lp+lw
t−δeu+lp+lw∥1 +λfeat∥rtraj

t−δeu
− exr

traj
t−δeu

∥2, (5.28)

where λfeat is a hyperparameter, ∥ · ∥1 denotes the l1-norm, ∥ · ∥2 denotes the Euclidean
distance (l2-norm).

For the control branch, the distribution of the control action is modeled as a beta distribu-
tion [125]. The loss function of the control branch is defined as follows:

Lctrl = 1
lp+1

t−δeu+lp∑
i=t−δeu

DKL(Be(cctrl
i )∥Be(excctrl

i ))+λfeat∥r
ctrl-(lp+1)
t−δeu+lp −

exr
ctrl-(lp+1)
t−δeu+lp ∥2,

(5.29)

where Be(·) denotes the beta distribution. Furthermore, an auxiliary function is used to
measure the accuracy of the estimated current speed and value that is obtained from the speed
head and the value head, respectively, to help the agent make decisions [125]. The auxiliary
function is defined as:

Laux = λvalue∥vt−δeu− exvt−δeu∥1 +λspeed∥st−δeu− exst−δeu∥2, (5.30)

where λvalue and λspeed are hyperparameters. Thus, the overall loss function of the DTCP is
defined as:

LDTCP = λtrajLtraj +λctrlLctrl +λauxLaux, (5.31)

where λtraj, λctrl, and λaux are hyperparameters. The design of the loss functions in Eq. (5.28),
Eq. (5.29), and Eq. (5.30) follows a consistent principle: combining an output loss and a
feature loss through a weighted summation. We consider these weights essential because the
two types of variables (e.g., waypoints and trajectory features) typically have different scales
and ranges, requiring proper balancing to ensure meaningful contributions from each term.
For the overall loss function in Eq. (5.31), the weights (λtraj, λctrl, λaux) are carefully chosen
to ensure that each component contributes appropriately to the task objective, aligning with
the goal of achieving better system performance.

5.5.6 Joint Training

To jointly train the DTCP and task-oriented JSCC, we employ imitation learning, specifically
through behavior cloning. In this approach, the agent learns to perform tasks by replicating
the actions of experts based on a dataset of expert demonstrations. Behavior cloning works
by directly mapping observed states to corresponding actions, allowing the agent to learn a
policy that mirrors the expert’s behavior. This approach is particularly effective in scenarios
where a large amount of labeled data is available, allowing the agent to generalize from the
expert’s actions to similar situations encountered during autonomous driving.
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Algorithm 5 Joint Training of DTCP and Task-Oriented JSCC.
Initialization: Initialize the neural network parameters ϕ and ψ.

1: Input: Image dataset X with corresponding ground-truth agent output A and state
information M.

2: while not converged do
3: Sample mini-batch {(ai,xi)}Kb

i=1 from A and X with
corresponding state information {mi}Kb

i=1 from M.
4: for sample i= 1, . . . ,Kb do
5: Encode image to JSCC symbols: zi← fe(xi).
6: Transmit JSCC symbols through channel and apply

equalization: ẑi← fh(zi).
7: Estimate mean and standard deviation:

µi← fµ(ẑi), σi← fσ(ẑi).
8: Compute KL divergence DKL(pϕ(ẑ|xi)∥q(ẑ)).
9: Generate estimated action: âi← fa(ẑi,mi,hi).

10: Compute DTCP loss based on Eq. (5.31).
11: end for
12: Compute joint loss L′

VIB of this mini-batch based on
Eq. (5.34).

13: Update neural network parameters: ϕ +←−∇ϕL′
VIB,

ψ
+←−∇ψL′

VIB.
14: end while

Assuming the posterior qψ(a|ẑ,m,h) follows a Gaussian distribution

N (µψ(ẑ,m,h),σ2
constI), (5.32)

where µψ(ẑ,m,h) maps reconstructed JSCC symbols ẑ, state information m, and channel
state h to the mean of a Gaussian distribution and σconst is a constant, we can derive the
following expression:

− logqψ(a|ẑ,m,h)∼ 1
2σ2

const
∥a−µψ(ẑ,m,h)∥22, (5.33)

where µψ(ẑ,m,h) = â. Eq. (5.33) shows that − logqψ(a|ẑ,m,h) can serve as a distance
metric, analogous to the square of the l2-norm. From this perspective, we heuristically regard
the loss function of DTCP as an extension of the first term in Eq. (5.18), thus we can jointly
optimize DTCP with task-oriented communication as follows:

L′
VIB := 1

Kb

Kb∑
i=1

{
LDTCP +βDKL(pϕ(ẑ|xi)∥q(ẑ))

}
. (5.34)

The joint training process of proposed task-oriented co-design is shown in Algorithm 5.
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5.6 Performance Evaluation

In this section, we present a case study of our proposed task-oriented co-design framework.
The evaluation is carried out within the simulator CARLA, which offers a variety of urban
environments that closely mimic real-world traffic scenarios.

5.6.1 Experimental Setup

Dataset We utilize the well-structured dataset provided by [125], which consists of images
(height = 256, width = 900, channels = 3) captured from various urban environments, along
with the corresponding vehicle state information. Specifically, the dataset contains Ka =
189524 images from four maps (Town01, Town03, Town04, and Town06) for training, and
27201 images from four different maps (Town02, Town05, Town07, and Town10) for testing.
This well-structured dataset allows us to effectively train and validate the proposed framework
across a range of real-world-like scenarios.

To train DTCP using behavior cloning, we use Roach [118] as the expert agent in our
experiments. Roach is a highly capable autonomous driving agent that relies on Bird’s-eye
View (BEV) as input. Since BEV data are challenging to collect in real time for real-world
autonomous driving, this highlights the importance of training autonomous driving agents
using data from standard sensors. Our proposed DTCP, equipped with only one camera,
demonstrates strong potential for practical deployment in real-world scenarios.

Evaluation The experiment is designed to evaluate the driving performance of the proposed
task-oriented co-design framework against established baselines under varying communica-
tion conditions. These conditions include significant communication latency, constrained
bandwidth, and the presence of noisy fading channels. The baselines for comparison include
three widely recognized image coding techniques: 1) JPEG [3]; 2) JPEG2000 [4]; and 3)
BPG [131]. Each coding method is followed by (2048, 6144) LDPC codes with a 64-QAM
digital modulation scheme.

In addition, two JSCC-based methods, referred to as “JSCC-AE” [14] and “JSCC-VAE”
[15], are also included as baselines. JSCC-AE is a seminal work that introduced the concept
of joint source-channel coding without relying on explicit separate codes for compression or
error correction, making it a foundational approach in this area. Based on this, JSCC-VAE
offers robustness against variations in channel conditions, further enhancing its practical
applicability. These methods focus on accurately reconstructing the image at the edge server,
but do not co-design with the autonomous driving agent (DTCP). Furthermore, the baseline
includes [125], which performs driving tasks using uncompressed images, denoted as “TGCP.”

Driving performance is quantified using the established driving score metric2 of CARLA,
which evaluates the vehicle’s ability to follow predefined waypoints, reach target destinations,
and comply with traffic regulations. To ensure robustness, each experiment is repeated three

2 https://leaderboard.carla.org/

https://leaderboard.carla.org/
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times on a selected route in Town05, under four distinct weather conditions: clear noon,
cloudy sunset, soft rain at dawn, and heavy rain at night.

In Chapter 4, the driving scores for all methods are below 26, despite the theoretical
upper bound being 100. This indicates that all methods, including TGCP (i.e., the agent
driving with raw images), perform relatively poorly in those specific test scenarios, making
performance comparisons less informative. To enable a more meaningful and intuitive
comparison in Chapter 5, we selected road sections where TGCP achieves a perfect driving
score of 100. This ensures that the baseline performance is strong, and any performance
degradation observed in the compressed or task-oriented communication cases can be more
clearly attributed to the proposed design, rather than to the difficulty of the scenario itself.

Parameters Settings For the task-oriented JSCC encoder, we configure the dimension of
the JSCC symbols to lz = 1024, achieving a significant low bandwidth compression ratio of
lz/lx ≈ 0.0015. The average power constraint Ptarget for JSCC symbols is fixed at 1. The
predefined Gaussian distribution is assumed to be q(ẑ)∼N (0, I). In addition, “JSCC-AE”
and “JSCC-VAE” use the same network structure as the proposed task-oriented JSCC for fair
comparisons.

For DTCP, the parameters are configured as follows: λc = 0.7, λfeat = 0.05, λvalue = 0.001,
λspeed = 0.05, and λtraj = λctrl = λaux = 1. The values of λ[·] were selected based on our
preliminary tests, which ensure a stable training process and achieve relatively optimal driving
performance. In our preliminary tests, we observed that excessively large (β > 0.01) or small
(β < 0.000001) values of β can disrupt the balance between the IB terms, leading to training
instability and crashes. To address this, we set β = 0.0001 for jointly training JSCC encoder
and DTCP under the IB objective. This β value creates a reasonable balance between the
two IB terms, ensuring stable training and achieving good overall performance. For the
mini-batch, we set Kb = 32. Moreover, the duration of each time slot τ is synchronized with
the simulation time step of CARLA, which is 0.05 seconds. The neural network architectures
of the proposed JSCC encoder and DTCP are shown in Fig. 5.6.

For the OFDM system, the parameters are set to: Nsub = 12, Npath = 8, γ = 4, and the
length of the cyclic prefix (CP) is 3.
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Figure 5.6: Neural network architecture of the proposed JSCC encoder and DTCP. The
main components are annotated as follows: Conv: Convolutional layer, with parameters
specified as (input channel size × output channel size × kernel size × stride × padding). FC:
Fully-connected layer, where the following number indicates the output dimensions. NN↑2:
Nearest neighbor upsampling. ResBlock: Residual block, with parameters specifying the
input and output channel sizes. Reshape: Reshaping layer, with parameters specifying the
target dimensions. LReLU: Leaky ReLU activation function with α= 0.2. Softplus: Softplus
activation function. Sum Dim(2,3): Summation operation performed along dimensions 2 and
3 [125]. GRU: Gated Recurrent Unit (GRU) [155]. Connection points o1 and o2 represent
linked points, specifically, all instances of o1 are interconnected, as are all instances of o2.
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5.6.2 Evaluation on CARLA

Constrained Bandwidth Compression Ratio

The effect of the bandwidth compression ratio on the driving score is illustrated in Fig. 5.7.
When the required driving score is 90, the proposed DTCP secures substantial reductions in
bandwidth usage by at least 99.19% compared to traditional coding methods. In contrast,
if bandwidth compression ratios are drastically reduced for traditional coding methods (i.e.,
less than 0.05), the corresponding reduction in image quality leads to a severe degradation in
driving performance, with driving scores struggling to exceed 20. This comparison shows the
limits of conventional approaches under extreme bandwidth constraints and showcases the
superior adaptability of our task-oriented co-design framework in such challenging scenarios.

Noisy Fading Channel

In Fig. 5.8, we analyze variations in driving performance as a function of SNR under an
OFDM channel. Drawing from the findings in the constrained bandwidth compression ratio
experiment, we set the bandwidth compression ratios to 0.232 for JPEG, 0.251 for JPEG2000,
and 0.183 for BPG, where traditional methods perform comparably to DTCP, with driving
scores consistently higher than 90, ensuring a fair comparison.

When SNR ≥ 15 dB, the proposed DTCP framework performs similarly to traditional
coding methods. When SNR = 10 dB, JPEG, JPEG2000, and BPG occasionally encounter
decoding errors, leading to driving scores below 72, while DTCP still maintains a driving
score above 89. As SNR drops below 5 dB, the DTCP framework continues to maintain robust
driving performance, with scores remaining above 49. Specifically, the DTCP framework
achieves driving scores of 59.78 at SNR = 5 dB and 49.29 at SNR = 0 dB. In contrast, severe
noise significantly hampers the performance of systems utilizing traditional coding methods
when SNR is lower than 5 dB, causing frequent decoding failures and dramatically low
driving scores (below 21 when SNR = 5 dB and below 2 when SNR = 0 dB). Additionally,
both the JSCC-AE and JSCC-VAE methods consistently produce driving scores below 20
across all SNR levels, highlighting the importance of task-oriented co-design in transmitting
task-critical information.

These results underscore the resilience of our task-oriented co-design framework under
adverse noise conditions, demonstrating its ability to maintain effective performance even in
highly challenging environments. Moreover, the framework achieves excellent scores under
regular channel conditions while simultaneously achieving bandwidth savings of at least
99.19%. This highlights the efficiency and robustness of the DTCP approach, making it a
viable solution for real-world scenarios where communication channels are unreliable and
constrained.
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Figure 5.7: Driving scores of traditional coding methods with varied bandwidth compression
ratios under OFDM channel with SNR = 20 dB.

Selection of JSCC symbols

Given the characteristics of JSCC, symbols with relatively low energy are particularly vul-
nerable to noise. To optimize the trade-off between bandwidth compression and driving
performance, we explore the selection of generated JSCC symbols, aiming to further reduce
the bandwidth while maintaining the required driving performance.

As shown in Fig. 5.9, the number of selected JSCC symbols varies from 168 to 1008, in
increments of 168, while the corresponding bandwidth compression ratio varies from 0.00024
to 0.00146. The choice of 168 as the incremental step size is based on the structure of a 5G
resource block, which consists of 12 subcarriers and 14 OFDM symbols per slot, totaling 168
resource elements [156]. This value is a natural fit for our simulation setup, as it aligns with
the granularity of resource allocation in modern cellular networks, making the results more
relevant for real-world applications.

The driving score exhibits a gradual decline (from 89.28 to 80.81) as the number of
selected JSCC symbols decreases from 1008 to 504. However, the driving score drops sharply
(from 80.81 to 52.15) when the number of selected JSCC symbols is reduced further from
504 to 168. This significant drop suggests that high-energy JSCC symbols are more critical to
task performance, as they carry essential information required for accurate decision-making
in autonomous driving tasks.

Our proposed DTCP framework demonstrates the ability to maintain a driving score above
80 by transmitting only the top 504 high-energy JSCC symbols. This selective transmission
strategy demonstrates the potential to reduce communication overhead by 50.78% compared to
transmitting 1024 JSCC symbols. Achieving this reduction depends on adequately mitigating
index transmission overhead, which could be addressed by applying techniques such as
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Figure 5.8: Driving scores with varied SNRs under OFDM channel.

VL-VFE [11]. This approach not only optimizes bandwidth usage but also ensures robust
driving performance.

Compensate Perceived E2E Delay

The impact of communication delays on driving performance using the DTCP framework is
presented in Fig. 5.10. The delay ranges from 0 to 20 time slots, increasing by increments of
2 time slots. We evaluate five distinct configurations within the DTCP framework:

• DTCP-1: Transmits all JSCC symbols and generates commands based on Eq. (5.25)
with parameters l = 1024, lp = δ, and δT = 10. This is also the default configuration of
DTCP in previous experiments.

• DTCP-2: Selects 504 JSCC symbols for transmission, generating commands according
to Eq. (5.25) with l = 504, lp = δ, and δT = 10.

• DTCP-3: Transmits all JSCC symbols and always generates predicted commands for
the turning situation (l = 1024, lp = δ, and δT = 0).

• DTCP-4: Transmits all JSCC symbols but generates commands without prediction
(l = 1024, lp = 0, and δT →∞).

• DTCP-5: Transmits all JSCC symbols and always generates predicted commands for
all situations (l = 1024, lp = δ, and δT = 0).

In this experiment, BPG with a bandwidth compression ratio of 0.183 is used as a representa-
tive baseline.
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The results show that DTCP-5 experiences a steep decline in driving scores, falling
below 61 even with a delay of just 2 time slots, and continues to decrease with increasing
delay. In addition, DTCP-5 also performs worse than BPG in the presence of delays. These
results indicate that relying exclusively on predicted commands is unreliable, particularly in
non-turning scenarios.

When the delay is less than 10 time slots, DTCP-4 manages to maintain a driving score
greater than 80 without relying on predicted commands. However, beyond 10 time slots,
driving performance sharply declines, highlighting the limitations of unpredicted commands
in high-latency conditions. In particular, when the delay is less than 8 time slots, the superior
performance of DTCP-4 compared to DTCP-3 demonstrates that receiving accurate com-
mands, even with some latency, is more critical than receiving inaccurate predicted commands
under low latency. In contrast, when the delay exceeds 10 time slots, DTCP-3 outperforms
DTCP-4, showing that adopting predicted commands becomes more effective in high-latency
environments.

DTCP-1 combines the advantages of DTCP-3 and DTCP-4, offering the most balanced
performance by dynamically switching between unpredicted and predicted commands based
on E2E delay. It outperforms DTCP-4 and BPG significantly by 20.39 and 21.38 points at
δ = 16, 35.78 and 35.69 points at δ = 18, and 26.95 and 31.59 points at δ = 20, respectively.
Furthermore, DTCP-1 outperforms DTCP-3 when the delay is less than 10 time slots.

DTCP-2, while leading to an average reduction of 17 points compared to DTCP-1, shows
the potential to preserve 50.78% of communication resources. Despite the decrease in driving
performance, DTCP-2 still maintains a driving score above 50, even with delays of up to 12
time slots. Furthermore, the driving scores of DTCP-2 exceed BPG and DTCP-4 when the
delay is greater than 8 and 16 time slots, respectively, highlighting the efficiency of DTCP-
2 in managing significant delays and offering a viable trade-off between communication
bandwidth and driving performance.

The delay range from 0.05 s to 1 s (i.e., 1 to 20 time slots with each slot being 0.05 s)
is intentionally chosen to evaluate the impact of E2E delay on driving performance and to
demonstrate the effectiveness of the proposed prediction mechanism in compensating for
such delays. While a 1-second E2E delay may seem large, it is not uncommon in practical
deployments where the system involves high-resolution sensor data transmission, edge server
queuing, computation, and control signal feedback, particularly in congested or lossy wireless
networks or under adverse channel conditions. Including a delay of up to 1 s allows us to
stress-test the system and analyze its robustness under extreme but plausible conditions. In
this experiment, a 1-second delay leads to a substantial performance drop (from a perfect
score of 100 to around 20 for the DTCP-4 baseline) that highlights the severity of delayed
perception and action. In contrast, our proposed prediction mechanism (DTCP-1) mitigates
the impact of delay and maintains a driving score of approximately 50, clearly demonstrating
its practical value and robustness under realistic high-latency conditions.
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Figure 5.9: Driving scores with varied selected JSCC symbols under OFDM channel with
SNR = 20 dB.
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Figure 5.10: Driving scores with varied delays under OFDM channel with SNR = 20 dB.

5.7 Conclusion

In this chapter, we introduced a novel task-oriented co-design framework that integrates
communication, computing, and control, specifically tailored for edge-enabled industrial
CPS. By leveraging task-oriented JSCC through VIB theory, our approach effectively dis-
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cards task-agnostic information, resulting in significant savings in communication bandwidth.
Furthermore, with the incorporation of delay awareness into the trajectory-guided control pre-
diction framework, the proposed DTCP framework adaptively generates predicted commands
based on real-time delay, thereby maintaining driving performance even with significant
latency.

Extensive evaluations using the CARLA simulator demonstrate that the task-oriented co-
design framework significantly improves driving performance under conditions of constrained
bandwidth, noise interference, and varying communication delays. The proposed DTCP
consistently outperforms traditional methods across multiple scenarios. In particular, with an
E2E delay of 1 second (equivalent to 20 time slots in CARLA), our framework achieves a
driving score of 48.12, which is 31.59 points higher than when using BPG, while also reducing
bandwidth usage by 99.19%. Moreover, our analysis of compensating for perceived E2E delay
highlights the inherent unreliability of prediction under certain conditions, underscoring the
need to balance predicted and unpredicted commands for optimal system performance. There
are several promising directions for future research based on this chapter, such as extending
the framework to more realistic wireless environments, including Urban Micro (UMi) and
Urban Macro (UMa), and dynamically optimizing coding rates and modulation schemes based
on channel conditions and SNR, leveraging 5G Modulation and Coding Scheme (MCS).
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions and Discussion

6.1.1 Summary

In this thesis, we explore task-oriented communication for edge intelligence enabled connected
robotics systems, focusing on optimizing data transmission, processing, and decision-making
for mission-critical applications.

Key contributions of this thesis include:

1. Task-Oriented Source-Channel Coding (TSCC): We proposed a novel TSCC frame-
work to optimize data transmission for edge-enabled autonomous driving, which signif-
icantly reduces communication bandwidth usage while preserving task-critical informa-
tion. We leverage an autonomous driving agent to guide source-channel coding based
on a modified CVAE. We test the proposed framework on a well-known autonomous
driving platform (CARLA) with different communication channel conditions. The ex-
perimental results show that compared to traditional communication and state-of-the-art
deep JSCC, TSCC achieves superior performance by saving 98.36% communication
overhead and maintains an 83.24% driving score even at 0 dB SNR.

2. Aligned Task- and Reconstruction-Oriented Communication (ATROC): We pro-
posed integrating information bottleneck principles with deep JSCC to align task- and
reconstruction-oriented communication. The idea is to extend the Information Bot-
tleneck (IB) theory to optimize data transmission by minimizing task-relevant loss
function, while maintaining the structure of the original data by an information reshaper.
We also introduce a JSCC modulation scheme compatible with classical modulation
techniques, which enables the deployment within existing infrastructures. Our evalua-
tion in the CARLA simulator demonstrates that the proposed framework significantly
reduces bits per service by 99.19% compared to existing methods, such as JPEG,
JPEG2000, and BPG, without compromising the effectiveness of task execution.

3. Task-Oriented Co-Design of Communication, Computing, and Control: We de-
veloped a Delay-Aware Trajectory-Guided Control Prediction (DTCP) framework for
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real-time decision-making in industrial CPS. In addition, the DTCP is co-designed with
task-oriented JSCC, focusing on transmitting task-specific information for timely and
reliable autonomous driving. Experimental results in the CARLA simulator demonstrate
that, under an E2E delay of 1 second (20 time slots), the proposed framework achieves a
driving score of 48.12, which is 31.59 points higher than using Better Portable Graphics
(BPG) while reducing bandwidth usage by 99.19%.

Our comprehensive evaluations demonstrated the effectiveness of the proposed frameworks
in enhancing communication efficiency, system robustness, and real-time decision-making
capabilities.

6.1.2 Generalization Capabilities of the Proposed Method

The proposed task-oriented communication framework and associated methods demonstrate a
promising degree of generalization due to their reliance on deep learning architectures. The
generalization capability of the proposed methods stems from the use of the VIB framework.
VIB inherently encourages the model to extract and preserve mission-critical information
while discarding redundant task-agnostic data. This selective preservation of information
leads to learned representations that are more robust to variations in channel conditions, sensor
inputs, and operational contexts. As a result, the proposed framework can generalize well
across different noise scenarios and SNR conditions without the need for retraining.

In addition, the integration of JSCC modulation with traditional constellation diagrams
(e.g., QAM) ensures compatibility with existing digital communication infrastructures. This
compatibility facilitates deployment within diverse, real-world network infrastructures that
vary widely in communication standards and protocols.

Moreover, the deep learning architectures used in this thesis have been carefully designed
and trained with varied environmental scenarios. This approach helps the system achieve
good performance across different operational environments. For instance, although trained
primarily on the CARLA simulator for autonomous driving tasks, the proposed method’s
design principles could generalize to other robotics or CPS applications, such as robotic
manipulation, drone navigation, and remote monitoring, by retraining on the relevant task-
specific datasets.

However, it is essential to acknowledge that the generalization capability of deep learning-
based methods inherently depends on the diversity and quality of the training data. If training
data do not adequately represent the real-world variations (e.g., varying lighting conditions,
dynamic obstacles, and multiple weather scenarios), the generalization performance may be
limited when deployed in environments significantly different from the training conditions.

Although extensive simulation experiments and careful model design suggest promising
generalization capabilities, additional real-world validation is necessary. Future work should
include evaluating the proposed methods across multiple real-world scenarios and different
sensor modalities to rigorously test and further improve their generalization capabilities.
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6.1.3 Comprehensive Reflections and Research Outlook

At the early stage, I explored the potential of online training for JSCC neural networks within
a closed-loop autonomous driving simulator (CARLA). However, the high computational cost
and slow simulation speed made real-time or online training infeasible. This limitation led to
a pragmatic shift toward using an offline dataset for training, effectively framing the learning
process as an imitation learning or knowledge distillation problem. Although this approach
provided a solid foundation, it also revealed the limitations of static training when applied to
dynamic environments.

This experience highlights a critical future direction: integrating reinforcement learning
or online adaptation mechanisms with JSCC models, provided that simulation platforms or
real-world deployment environments can support faster or more efficient data generation and
collection. Such integration would enable communication strategies to adapt on-the-fly to
environmental changes such as varying channel conditions, sensor configurations, or task
requirements.

One important fact is that the effectiveness of a task-oriented JSCC model is linked to
the capability of the downstream task agent. The performance ceiling of the agent limits
the potential benefit of communication optimization. Therefore, advances in autonomous
driving models (e.g., more accurate, robust, and generalizable perception and control agents)
can directly translate into improvements in JSCC design. Future work may benefit from
co-optimizing the communication model and the task agent.

Additionally, this thesis focuses on visual input in the form of RGB images. Although
this is a practical and common choice, real-world autonomous systems typically rely on
multimodal sensory inputs, including depth images, LiDAR point clouds, and voxel-based
representations. A promising research direction lies in extending the task-oriented JSCC
framework to handle multimodal fusion, which would require careful design to balance
modality-specific compression with shared task relevance across input types.

Finally, this work remains at the simulation level. Validating the proposed methods on real-
world hardware, such as embedded communication modules and autonomous robots, would
offer critical insights into latency, noise, interoperability, and deployment feasibility. In par-
ticular, implementing and evaluating the proposed ATROC framework in a hardware testbed
would provide practical validation of its task-oriented benefits under real-time constraints.

Overall, this thesis lays the groundwork for a new generation of intelligent and efficient
systems where perception, transmission, and action are co-designed for the task at hand.
It also opens several rich avenues for future exploration, combining theoretical rigor with
practical relevance across simulation, learning, and deployment.

6.2 Future Directions

While this thesis has addressed several key challenges, there remain numerous directions for
further research and development:
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1. Extension to More Realistic Wireless Environments: Future studies could explore
the deployment of the proposed frameworks in complex real-world communication
environments, such as Urban Micro (UMi) and Urban Macro (UMa) scenarios, to
further assess robustness against channel variations and interference.

2. Adaptive and Dynamic Task-Oriented Communication: The integration of adaptive
learning mechanisms to dynamically optimize coding rates, modulation schemes, and
inference strategies based on real-time channel conditions and system requirements
remains an open challenge.

3. Integration with 5G and Beyond Networks: Leveraging advanced wireless technolo-
gies, such as 5G Modulation and Coding Scheme (MCS) and future 6G paradigms,
could provide new opportunities to improve communication efficiency and reliability in
edge intelligence systems.

4. Security and Privacy Enhancements: Further research is needed to address pri-
vacy concerns related to task-oriented communication, such as developing a privacy-
preserving task-oriented JSCC.

5. Human-in-the-Loop Edge Intelligence: Incorporating human feedback into task-
oriented communication and decision-making frameworks could improve adaptability
and robustness, particularly in dynamic and unpredictable environments.

By addressing these challenges and advancing task-oriented communication frameworks,
future research can contribute to the continued evolution of intelligent connected autonomous
systems, fostering their deployment in safety-critical and resource-constrained applications
across various scenarios.
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Appendix A

Modeling Frequency-Selective Channel

We consider a multipath fading channel described by a discrete channel transfer function:

žtime = htime ∗ztime +ntime, (A.1)

where ∗ denotes the convolution operation. Here, žtime and ztime are the received and trans-
mitted signals in the time domain, respectively, while ntime represents the additive Gaussian
noise. The impulse response htime = [htime-0, · · · ,htime-(Npath−1)] captures the multipath effect,
where htime-i ∼ CN (0,σ2

i ) for i = 0,1, · · · ,Npath− 1. We assume that path power decays
exponentially as σ2

i = αie
− i

γ , with αi ensuring power normalization
∑Npath−1
i=0 σ2

i = 1. Here,
γ is a delay spread constant.

To simplify, we assume synchronized transmission/reception without carrier frequency
offset, and perfectly estimated channel state information by block-type pilot symbols. First,
JSCC symbols z ∈ Clz are padded with Nsub− (lz mod Nsub) zeros and reshaped to zr ∈
CNsym×Nsub , where Nsym = ⌈lz/Nsub⌉ denotes the number of OFDM symbols and Nsub rep-
resents the number of subcarriers per OFDM symbol. When lz/Nsub is not an integer, the
subcarriers in the final OFDM symbol are not fully utilized for driving, but can be used for
other tasks as needed.

Next, the Inverse Discrete Fourier Transform (IDFT) and cyclic prefix (CP) are applied,
followed by transmission through the multipath channel as described in Eq. (A.1). The
receiver removes the CP and applies the Discrete Fourier Transform (DFT) to yield the
received JSCC symbols žr ∈ CNsym×Nsub . Therefore, we have the following equation:

žr[j,k] = hr[j,k]zr[j,k]+nr[j,k], (A.2)

where k denotes the kth subcarrier, j denotes the jth OFDM symbol, and hr[j,k] = hr[j′,k],
∀j,j′ ∈ {1, · · · ,Nsym} represents the subcarrier-specific channel response. Flatting each
term and removing the dimensions of driving-irrelevant subcarriers lead to the simplified
expression:

ž = h ·z +n,
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where ž ∈ Clz , h ∈ Clz , and n ∈ Clz .
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