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Abstract

The rapid proliferation of Internet of Things technologies, coupled with artificial intelligence-
driven applications, has revolutionised human activity recognition, enabling pervasive real-time
monitoring across smart homes, healthcare, security, and ambient-assisted living environments.
This transformation holds particular significance for healthcare systems, as radar-based recog-
nition of physical and physiological activities facilitates continuous remote monitoring through
invasive and non-invasive technologies, supporting personalised care and early intervention at
scale. Traditionally, activity recognition systems have relied primarily on invasive or contact-
based devices, such as wearables and biosensors, which often lead to user discomfort, require
frequent maintenance or charging, and risk non-compliance, especially among elderly individ-
uals. Conversely, cameras, Wi-Fi, and radar are all treated as non-invasive sensing modalities;
however, cameras raise serious privacy concerns and are constrained by lighting conditions,
whereas Wi-Fi-based sensing suffers from multipath interference and spectrum-sharing chal-
lenges. Radar sensing emerges as a promising tool and privacy-preserving alternative with ro-
bustness to environmental variations. Despite these advantages, systems built on radar for activ-
ity recognition face significant challenges in real-world applications. This thesis addresses three
critical challenges in radar-based human activity recognition: enabling non-intrusive recogni-
tion of both macro-level physical activities (e.g., falls, gait) and micro-level physiological sig-
nals (e.g., heart rate, respiration rate); data diversity and radar domain adaptation; and ensur-
ing energy-efficient, privacy-aware edge deployment. The first contribution addresses the chal-
lenges of non-intrusive recognition of macro-level human activities and radar domain adaptation
by developing a radar signal processing framework that transforms complex signals into four
two-dimensional domain representations for robust activity recognition. By integrating domain-
specific preprocessing with transfer learning, the framework improves adaptability across en-
vironments and reduces the complexity of raw signal data. Experimental results show up to
29.36% improvement in recognition accuracy compared to a baseline convolutional neural net-
work, with transfer learning models achieving 96.03% on the primary dataset and demonstrating
strong generalisation across two additional radar datasets. Building upon this, the second con-
tribution focuses on finer-grained sensing, addressing the challenge of non-intrusive monitoring
of micro-level physiological signals by extending the system to support radar-based extraction
of vital signs such as heart rate and respiration rate. This is achieved using two radar modalities:
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ultra-wideband and millimetre-wave frequency-modulated continuous wave radar. A compre-
hensive analysis was conducted to evaluate the impact of varying distances and radar position-
ing configurations on the accuracy of vital sign extraction. The third contribution addresses
the challenges of domain adaptation and energy efficiency by optimising transfer learning mod-
els for lightweight, energy-efficient, and privacy-aware deployment on edge devices. Using
post-training quantisation and selective domain-model pairing, the system significantly reduces
computational costs while maintaining high recognition performance across radar domains. Re-
sults indicate energy consumption as low as 0.42 mWh and response times of 1.32 seconds for
5-second activities, confirming its suitability for real-time, on-device monitoring. Additionally,
the framework incorporates differential privacy techniques to strengthen local inference privacy
with minimal loss in accuracy. Collectively, these contributions enhance the scalability, robust-
ness, and efficiency of activity recognition systems, paving the way for non-invasive, AI-driven
applications in healthcare and real-world environments.
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Chapter 1

Introduction

1.1 Background

The ageing population in the United Kingdom (UK) presents mounting healthcare challenges,
with Office for National Statistics data showing the proportion of individuals aged 65 years
and above increasing from 16.4% in 2011 to nearly 20% in 2024, projected to reach 25% by
2050 [1]. This demographic shift has intensified pressure on the National Health Service (NHS),
particularly regarding hospital capacity, where the average bed occupancy reached 89.8% in
2023, significantly exceeding the 85% safety threshold [2]. A primary contributor to this strain
is “bed blocking”, where medically fit patients remain hospitalised due to delayed community
or social care arrangements [3]. As illustrated in Fig. 1.1, bed occupancy has emerged as
one of the most pressing concerns among NHS hospitals, showing an increasing trend over the
past decade and often exceeding 90% in recent years, which highlights the sustained pressure
on healthcare industry [4]. Age-related conditions exacerbate this problem, with falls being
particularly significant; they cost the NHS over £2.3 billion annually, affect approximately one-
third of individuals age over 65 years [5], and frequently result in extended hospitalisations with
complex discharge requirements. These interconnected challenges of an ageing demographic,
increased prevalence of chronic conditions, limited hospital capacity, and the specific burden of
falls collectively underscore the urgent need for innovative approaches to healthcare delivery for
older adults.

To address these challenges, the UK government has prioritised investment in technology-
enabled care, allocating £30 million in 2023 to expand virtual wards and remote monitoring
solutions [6]. Within this context, Human Activity Recognition (HAR) has emerged as a foun-
dational field to support independent living for older and vulnerable individuals while reducing
pressure on inpatient services. HAR automatically identifies and classifies human physical and
physiological activities by analysing data from various sensing devices [7]. The systems or al-
gorithms that perform these tasks are commonly referred to as HAR systems (HARS). Within
the domain of HAR, human activities are broadly classified into two principal categories [8]:

1
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Year

Figure 1.1: Most reported operational issues by NHS hospitals, with bed occupancy as the top
concern [4].

1. Macro-Activities: These involve large, easily observable movements, such as walking,
sitting, lying down, or falling. The detection of such actions is critical for applications
such as fall detection and mobility monitoring.

2. Micro-Activities: These encompass subtle physiological and behavioural signals, includ-
ing breathing patterns, chest wall displacement, and minor gestures. Continuous monitor-
ing of these micro-activities, which represent vital signs such as heart rate (HR) and res-
piration rate (RR), enables the early detection of health deterioration and supports chronic
disease management.

Several UK-based companies have developed commercial HAR solutions specifically de-
signed for elderly care. For example, Tunstall healthcare provides telecare and telehealth sys-
tems with fall detection and emergency response capabilities [9]. Canary care offers smart home
monitoring that analyses patterns of daily living to detect anomalies [10], while Howz uses
energy consumption data to infer behavioural changes indicative of health risks [11]. These
systems support older adults in maintaining independence by enabling continuous remote mon-
itoring, thereby reducing hospital admissions and alleviating pressure on the UK healthcare
system.

Despite these promising developments, conventional HARS, particularly those based on
wearable and vision-based sensors, faces significant obstacles:

• User Compliance and Comfort: Despite their tracking capabilities, wearable devices
face adoption barriers among older adults due to requirements for consistent interaction
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that challenge individuals with cognitive or physical limitations. Long-term adherence is
hindered by physical discomfort, battery maintenance requirements, and usability issues,
including complex interfaces and small displays that collectively limit effectiveness in
elderly populations [12].

• Privacy and Ethical Concerns: Vision-based HARS deliver rich contextual data but
introduce privacy concerns through continuous visual capture in personal spaces, which
proves particularly problematic in homes and care facilities [13]. Their performance varies
with environmental conditions, such as lighting and physical obstructions, which further
reduce reliability [14]. These privacy and performance limitations create significant barri-
ers to acceptance among vulnerable users, despite the technical capabilities of the systems.

• Activity Detection Accuracy and Reliability: Recognising both macro and micro-activities
in uncontrolled indoor environments presents significant technical challenges [8]. Differ-
entiating between similar actions, filtering background noise, and capturing subtle physio-
logical changes remains difficult. Wearables may fail to detect nuanced micro-movements
and often require user input during emergencies, which is impractical when the individual
is incapacitated [15].

• System Integration and Scalability: Deploying HARS at scale within existing health-
care infrastructures, such as the NHS, requires interoperability, standardisation, and ex-
tensive technical support. Adapting these technologies to support large and diverse popu-
lations involves substantial financial investment and long-term sustainability planning.

In response to these challenges, radio frequency (RF)-based HAR sensing has gained pop-
ularity owing to its advantages over vision and wearable systems [16]. RF-based approaches
offer distinct advantages due to their non-invasive nature, eliminating the need for users to wear,
charge, or interact with devices, while simultaneously preserving privacy by not capturing iden-
tifiable visual information. Among RF technologies, radar stands out as particularly promising,
demonstrating performance advantages over Wi-Fi-based alternatives in both activity classifica-
tion and vital sign monitoring [17]. Operating at higher frequencies, radar provides enhanced
Doppler resolution and greater sensitivity to both macro and micro-motions. This capability
enables more accurate detection of physiological changes that are crucial for health monitoring
applications.

1.2 Scope and Motivation

Radar technology is increasingly recognised as a key enabler for next-generation HARS, of-
fering contactless, privacy-preserving, and robust monitoring of human activities across diverse
environments [18]. In contrast to other RF-based sensors such as WiFi or RFID [19], which often
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suffer from lower spatial resolution, are more susceptible to environmental interference, and rely
on requirements like the placement of RFID tags, radar operates non-intrusively and can sense
through obstacles. This results in superior robustness and reliability, particularly for complex or
cluttered indoor environments. Furthermore, radar systems provide high Doppler resolution and
are highly sensitive to both macro- and micro-level human motions, enabling accurate detection
across a wide range of activities without requiring user compliance or compromising privacy.

The integration of radar with artificial intelligence (AI) applications and Internet of Things
(IoT) devices has created unprecedented opportunities for continuous, real-time activity mon-
itoring in healthcare and ambient-assisted living (AAL) contexts. Radar-enabled systems di-
rectly support critical initiatives such as “ageing in place” [20], by facilitating early detection
of adverse events and subtle behavioural changes, thereby reducing hospital admissions and
alleviating pressure on strained healthcare systems. While traditional machine learning (ML)
approaches applied to radar data have relied on handcrafted features [21], deep learning (DL)
methodologies have demonstrated remarkable potential by automatically extracting discrimina-
tive spatio-temporal features from raw radar signals [22], substantially improving recognition
accuracy while reducing dependence on manual feature engineering.

Despite the advantages of radar-based HAR (R-HAR), current frameworks face several chal-
lenges that hinder their widespread adoption and effectiveness in complex real-world environ-
ments. One key challenge is non-intrusive multi-scale monitoring, which in this context refers
to the recognition of both macro-level physical activities (e.g. walking, falling), and micro-
level physiological signals (e.g. heart rate (HR), respiration rate (RR)) within a unified system.
Radar has been shown to be highly effective in capturing large-scale body movements due to
its sensitivity to motion and robustness to environmental conditions [15,23]. It has also demon-
strated a strong capability in detecting subtle physiological signals through micro-Doppler anal-
ysis [24, 25]. However, most existing research focuses on either macro- or micro-activities
in isolation, with few approaches attempting to integrate both levels within a comprehensive
framework [19]. This separation complicates unified feature representation and cohesive sys-
tem design, particularly in the presence of signal sparsity and environmental noise. Developing
radar-based systems capable of robust multi-scale analysis, which here refers to the combined
processing of macro- and micro-activity data, without relying on wearable devices or compro-
mising user privacy remains a critical research direction for healthcare and AAL environments.

Another significant challenge is data diversity, as radar systems deployed across different set-
tings often generate non-independent and identically distributed (non-IID) data due to variations
in user behaviour, device specifications, sensor placement, and environmental conditions [26].
This heterogeneity complicates the training of DL models and often results in suboptimal gen-
eralisation when applied beyond the original training context. To achieve accurate recognition
across such diverse conditions, complex models are often required, which increases the training
cost and makes deployment on resource-constrained systems more difficult [27, 28]. In addi-
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tion, most existing studies rely on a single-domain radar input, typically time-Doppler (TD)
patterns [23, 29], which limits the model’s ability to fully capture the diverse characteristics
present in radar signals [30]. In this context, multiple radar domains refer to distinct signal rep-
resentations derived from the same radar data, such as range, velocity, and phase. Evaluating
each of these domains individually enables a clearer understanding of their respective strengths,
limitations, and suitability for various HAR tasks.

For real-world deployment, R-HARS face a critical challenge in terms of achieving energy
efficient systems, which involves both computational costs and communication overhead. The
computation cost refers to the amount of energy required to process radar signals and perform
inference of DL models on edge devices, whereas the communication cost is the amount of
energy needed to transmit data or model updates during inference or training. Traditional HARS
rely on cloud-based processing, which increases latency and raises privacy concerns due to the
external transmission of sensitive data [31]. Edge computing offers a promising alternative
by enabling local processing on resource-constrained devices [32], and has therefore become
a preferred solution for real-time HAR in IoT applications. However, deploying large deep
neural networks (DNNs) on these devices is limited by memory, computing capacity, and power
consumption constraints [33]. These limitations are particularly critical for battery-powered
systems, where continuous radar inference can significantly drain energy resources. In addition,
maintaining data privacy during on-device processing remains a major concern, particularly in
healthcare settings that involve sensitive physiological data. This thesis specifically considers
privacy at the local inference stage, focusing on protecting personal health information through
techniques such as differential privacy (DP). Addressing these challenges is essential to enable
reliable, energy-efficient, and privacy-preserving radar-based activity recognition in real-world
settings.

1.3 Problem Statement and Objectives

Despite the advancements in R-HAR, significant challenges persist in achieving optimal effi-
ciency, security, and robustness across various intelligent applications. The scope of this thesis
addresses three critical challenges that limit the deployment of R-HARS in real-world scenarios,
which include:

C1 Non-Intrusive Multi-Scale Monitoring: Radar sensing, due to its non-intrusive, contact-
less nature and robustness to environmental conditions, is well-suited for capturing both
macro-activities, and micro-physiological signals within indoor settings. For instance, de-
tecting a fall followed by post-event HR variability could provide a critical context for
emergency response [34]. However, most existing R-HARS target only one activity scale,
limiting their effectiveness in continuous and holistic health monitoring. The divergent
temporal and spectral characteristics of macro and micro-signals complicate unified sig-
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nal processing and feature extraction, while environmental clutter further degrades the
detection accuracy. Strong micro-Doppler (mD) signatures from limb movements can ob-
scure subtle chest displacements associated with breathing, and conventional ML models
often lack the complex structure needed to separate these mixed signals occurring at dif-
ferent scales [35]. Moreover, achieving balanced sensitivity and specificity across both
macro- and micro-activities, while maintaining robust performance in dynamic and clut-
tered environments remains an open problem. These limitations underscore the need for
integrated approaches capable of simultaneously and reliably interpreting human activity
across scales without requiring user interaction or compromising privacy.

C2 Data Diversity: A core limitation of R-HARS lies in their vulnerability to data diversity,
which significantly affects model generalisation across users and deployment environ-
ments. Radar signals vary due to differences in body morphology, individual movement
patterns, sensor placement, and ambient conditions, leading to non-IID data distributions.
These variations correspond to well-established heterogeneity types, including subject-
level, spatial, and modality-based differences [36]. The high-dimensional and non-linear
nature of radar signals further complicates the learning of robust and transferable features.
Traditional ML models often rely on handcrafted features that fail to capture these com-
plexities, whereas DL approaches require large volumes of annotated data that are expen-
sive and difficult to obtain. Although using different radar domain representations may
offer improved informativeness and efficiency, there is limited understanding of which
domains are best suited for learning generalisable activity-specific features under data
scarcity and heterogeneous conditions. Together, these factors constrain the scalability of
R-HARS, particularly for applications involving diverse populations and real-world envi-
ronments where frequent retraining is impractical.

C3 Energy Efficiency: Energy efficiency is another critical challenge in HAR research, par-
ticularly for resource-constrained edge devices, such as IoT sensors that coupled with
radar systems. In R-HARS, energy consumption stems from two main sources: compu-
tational cost, which involves the energy required for both model training and inference,
and communication cost, which is incurred when transmitting radar data, extracted fea-
tures, or model updates between edge devices and remote servers. For battery-powered or
standalone systems, these demands can lead to rapid energy depletion, increased latency,
and reduced operational lifetime. Traditional DL models are typically large and compu-
tationally intensive, necessitating effective model compression techniques to reduce the
memory footprint and processing requirements without sacrificing accuracy. In addition
to these constraints, preserving user data privacy during inference adds further complex-
ity, especially in sensitive settings within healthcare. While radar sensors avoid capturing
identifiable visual information, they still process behavioural and physiological data that
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require protection. These challenges highlight the need for lightweight, energy-efficient,
and privacy-aware HAR frameworks that support real-time operation without compromis-
ing recognition performance.

1.3.1 Aims and Objectives

In response to the three challenges identified in the problem statement, the objectives of this
thesis are outlined as follows:

1. Design and implement R-HAR frameworks capable of reliable multi-scale activity recog-
nition, supporting both macro- and micro-activities. This involves developing signal pro-
cessing and learning strategies that address overlapping motion patterns and environmen-
tal interference while ensuring non-intrusiveness and robustness in real-world healthcare
environments.

2. Develop generalisable HAR algorithms that perform reliably across diverse users, settings,
and radar signal characteristics. This includes evaluating multiple radar representations,
applying transfer learning (TL) to mitigate data scarcity, and avoiding the limitations of
handcrafted features or retraining during each deployment scenario.

3. Design and implement a scalable and energy-efficient R-HAR framework optimised for
resource-constrained edge devices. The aim is to develop lightweight and compressed
DL models that minimise computational and communication costs while supporting real-
time responsiveness. This also includes integrating differential privacy (DP) techniques to
protect sensitive physical data during inference, ensuring user privacy without sacrificing
performance or sustainability during standalone deployment.

1.4 Research Contributions

The main contributions of this thesis are itemised as follows:

• The first contribution of this thesis is the development of a radar signal preprocessing and
domain representation framework that addresses challenges C1 and C2 by recognising
macro-activities and enhancing model generalisation across users and environments. The
framework is built on a 5.8 GHz Frequency Modulated Continuous Wave (FMCW) radar,
which offers reliable Doppler and range information critical for both robust motion cap-
ture and fine-resolution analysis. This contribution introduces a unified methodology to
evaluate and compare four radar domain representations: range-time (RT), range-Doppler
(RD), TD based short-time Fourier transform (STFT), and smoothed pseudo Wigner-Ville
distribution (SPWVD), along with their associated preprocessing pipelines and compu-
tational costs. Each domain is encoded as a two-dimensional (2D) image matrix, which
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is subsequently analysed using a baseline convolutional neural network (CNN) to bench-
mark the feature extraction capability of each representation. To overcome data scarcity
and improve recognition accuracy, the framework integrates state-of-the-art TL models,
which significantly reduce the misclassification of critical events such as falls. The analy-
sis includes key performance metrics, such as classification accuracy, preprocessing time,
training duration, and inference latency, providing a holistic view of the trade-offs between
model performance and computational efficiency. A subject-wise data splitting strategy
ensures that models are evaluated on unseen individuals, reducing the risk of data leak-
age and promoting realistic generalisation. The effectiveness of the selected radar domain
and model combinations is validated using two additional publicly available FMCW radar
datasets operating at 24 and 77 GHz, confirming their robustness across different sensing
technologies. This contribution culminates in a decision framework that guides the selec-
tion of the optimal radar domain and model pairs for real-time deployment in R-HARS.

• The second contribution of this thesis is the development of a radar-based vital sign
monitoring framework that addresses challenge C1 by enabling non-invasive recogni-
tion of micro-activities, specifically HR and RR. This study extends R-HARS beyond
macro-activity detection by supporting continuous physiological monitoring through sub-
tle chest wall motion analysis. To extract cardiopulmonary parameters, we implemented
a dedicated signal processing pipeline using spectral estimation and peak detection tech-
niques, which also enabled breathing pattern classification to distinguish between normal,
shallow, and held respiration states. Initially, the study utilised ultra-wideband (UWB)
radar operating at a centre frequency of 6.5 GHz with a single-subject setup to establish
the feasibility of radar-based micro-activity monitoring. However, limitations in band-
width efficiency, system integration, and scalability prompted a transition to millimetre
wave (mmWave) FMCW radar, operating at 60.25 GHz with a 3.75 GHz bandwidth.
The FMCW radar offers significant advantages, including improved hardware integration,
lower power consumption, and better proximity sensing, while providing high Doppler
and range resolution for the precise detection of fine physiological motions and reliable
differentiation of multiple targets. All radar measurements were benchmarked against
medical-grade reference sensors to confirm their clinical relevance. This contribution
demonstrates the feasibility of radar as a unified, privacy-preserving sensing modality
for the continuous monitoring of both macro- and micro-activities.

• The third contribution of this thesis is the development of an edge-optimised, privacy-
aware R-HAR framework that addresses challenges C2 and C3 by enabling efficient de-
ployment on resource-constrained devices while preserving user privacy. Building on
previously selected radar domains, this contribution adapts DL models for practical use
on platforms such as Raspberry Pi and Jetson Nano. GPU-based energy profiling was con-
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ducted during model training to measure power usage and estimate carbon emissions for
each architecture, thus supporting environmentally sustainable model selection aligned
with the green AI principles. To address deployment constraints, the framework ap-
plies model compression through post-training quantisation (PTQ), significantly reduc-
ing model size and computational cost without compromising accuracy. Radar signal
preprocessing pipelines were integrated to support domain representations suitable for
real-time edge inference. The system was evaluated on edge devices using key metrics,
including preprocessing time, inference latency, and energy precision ratio (EPR), high-
lighting the trade-offs between accuracy and energy consumption. To ensure data privacy,
a lightweight local differential privacy (LDP) mechanism was implemented directly on
the device, securing prediction outputs without retraining or impacting performance. Al-
together, this contribution delivers a deployable, energy-efficient, and privacy-preserving
R-HARS optimised for real-world use in constrained and sensitive settings. Crucially, it
culminates in an end-to-end decision framework that identifies the optimal combination
of radar representation, TL model, and edge hardware, which enables informed trade-offs
across performance, efficiency, and privacy for robust deployment in healthcare and AAL
environments.

1.5 Thesis Organisation

This thesis is structured into six chapters, each addressing specific aspects of the research chal-
lenges, proposed solutions, and their applications. The detailed organisation of the remaining
chapters is as follows:

Chapter 1 provides an overview of the research context, motivation, and objectives of this
study. It highlights the contributions and outlines the challenges addressed, laying the foundation
for the subsequent chapters.

Chapter 2 comprehensively reviews the existing literature on non-invasive AI-driven HAR
and its applications. It begins by exploring state-of-the-art sensing technologies for HAR, their
limitations, and their applications in healthcare domains. This chapter also analyses the critical
challenges associated with different HAR motions such as macro and micro-level, data diversity,
DL models, privacy considerations, and energy efficiency. This review identifies research gaps,
particularly in R-HARS on the basis of two different HAR activities, edge computing, privacy-
utility tradeoffs, and computational efficiency for real-world settings. The chapter concludes
with a discussion of potential application areas for R-HAR, emphasising the need for innovative
frameworks to address the identified three challenges discussed in Section 1.3.

Chapter 3 addresses challenges C1 and C2 by developing a radar preprocessing framework
for macro-activity recognition and improving model generalisation across users and environ-
ments. It compares four radar-domain techniques using a 5.8 GHz FMCW radar and evaluates
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DL models in terms of accuracy, training time, and inference latency. A decision framework is
proposed to guide the selection of radar-domain and model combinations for practical R-HAR
applications.

Chapter 4 explores non-invasive vital sign monitoring using radar technology, highlighting
the non-intrusive capability of radar to detect micro-physiological movements that tackle chal-
lenge C1. This chapter investigates two different radar systems, a UWB and mmWave FMCW
radar, for estimating HR and RR. It evaluates the effects of distance, radar height positioning,
and signal processing approaches on the measurement accuracy, providing valuable insights for
contactless health monitoring applications.

Chapter 5 presents an edge-optimised, privacy-aware R-HAR framework that addresses
challenges C2 and C3 by enhancing model generalisation in real-world scenarios and enabling
efficient deployment on resource-constrained devices. It applies model compression to reduce
computational cost, evaluates energy-efficient inference on low-power edge devices, and inte-
grates a lightweight DP mechanism at the output stage. The framework supports real-time,
privacy, and efficient activity recognition suitable for real-world use.

Chapter 6 concludes the thesis by summarising the key contributions, discussing their
broader impact, and reflecting on the advancements made in R-HAR frameworks in addressing
the three core challenges outlined in Section 1.3. It also outlines future research directions, in-
cluding advanced ML architectures, multimodal sensor fusion, and stronger privacy-preserving
methods, with potential to further enhance radar-based sensing and extend its application to new
domains.



Chapter 2

Literature Review

In the rapidly evolving landscape of HAR, radar technology augmented by ML has emerged as
a powerful and privacy-preserving solution capable of enabling scalable, contactless monitoring
in real-world environments. This chapter begins by outlining the fundamental aspects of HARS,
with a focus on non-invasive, AI-driven solutions for healthcare and real-world environments. It
presents foundational concepts, including sensing modalities in HAR, and the rationale behind
radar selection in real-world settings. Radar offers both privacy and security advantages for
users, this chapter also explores established methods, such as DP, to protect data confidentiality.
Furthermore, this chapter specifically aligns the literature review with the three critical chal-
lenges identified in Section 1.3, and how these factors impact model performance and conver-
gence in R-HAR settings. For instance, Section 2.2, covers radar signal processing, emphasising
its importance in robust multi-scale feature extraction for both macro- and micro-activities, key
aspect of challenge C1. AI-driven techniques for HAR, including conventional ML and DL
models, have been explored in Section 2.3, and 2.5 for their limitations in generalisation across
users and environments, which relate to challenge C2, while also prompting the development of
edge AI solutions, energy-efficient architectures, and privacy-preserving inference methods to
support real-world deployment, aligning with challenge C3. Further examination of challenge
C1 is presented in Section 2.4, with a review of radar for micro-activity monitoring in health-
care domains and AAL environments, identifying current limitations and research gaps. Finally,
Section 2.6, summarises the research gap and links it with three core challenges identified in the
thesis.

2.1 Human Activity Recognition: An Overview

In the context of AAL, HARS enable the real-time monitoring of human activities, offering
critical insights into behavioral patterns, health, and well-being. By accurately identifying and
classifying human activities, these systems can contribute to the development of context-aware
AAL environments. Such systems are designed to provide timely assistance, detect anoma-

11
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lies, and enhance daily support for individuals, particularly in healthcare and care homes [37].
Recent advancements in HAR research have led to significant improvements in the algorithm
performance and system capabilities [38]. HARS have been applied across diverse domains, in-
cluding automotive safety [39], human-machine interaction [40], smart home automation [41],
and healthcare monitoring [42]. These systems play a vital role in understanding and interpret-
ing human movements across various contexts, offering both practical and theoretical value.

Typically, the HAR process can be divided into four key stages [43], as illustrated in Fig.
2.1: (1) capturing activity signals, (2) data preprocessing, (3) AI-based activity recognition, and
(4) a user interface for activity management. Each stage can be implemented using various tech-
niques, resulting in various design choices. Factors such as the application domain, type of data
acquisition device, and selection of AI algorithms for activity detection further complicate these
decisions. This chapter delves into the technologies and methodologies underlying these stages,
with a particular focus on sensing modalities, signal processing, and AI-driven approaches. The
following subsection explores the sensing modalities in HAR and compare their strengths and
limitations in the context of real-world applications.

Figure 2.1: End-to-end HARS architecture for activity monitoring and classification

2.1.1 Sensing Modalities in Human Activity Recognition

Sensing technologies play a key role in healthcare, providing innovative solutions for monitor-
ing, and diagnostics in AAL settings. At the core of HARS are algorithms that automatically
identify activities based on the data collected from different sensors, as shown in Fig. 2.1 (stage
1). Over the years, various sensing modalities have been explored, including vision-based sen-
sors [44], acoustic sensors [45], inertial measurement units (IMUs) [46], and radio frequency
(RF) [47] sensors, as illustrated in Table 2.1, and broadly explained in detail below. The choice
of sensing modality directly affects the accuracy, robustness, and applicability of the HARS.
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Vision-Based Sensors

Vision-based sensors utilise visual data to interpret human actions and environmental context.
This category includes standard red, green, and blue (RGB) cameras as well as advanced imag-
ing technologies such as infrared cameras, thermal cameras, and depth sensors such as Microsoft
Kinect [48]. These sensors capture rich spatial and temporal information, making them ideal for
detailed motion analyses and posture recognition. However, their reliance on line-of-sight and
susceptibility to varying lighting conditions can limit their performance in uncontrolled environ-
ments. Despite these challenges, vision-based sensing has been extensively adopted in domains
such as healthcare, surveillance, and smart-home automation [49].

Acoustic Sensors

Acoustic sensing leverages audio signals to identify human activity and environmental events.
Microphones or microphone arrays are typically used to capture sound patterns, which are then
processed to detect specific activities, such as speech, footsteps, or ambient sounds [50]. Acous-
tic sensors are particularly useful in scenarios where visual data are unavailable or where pri-
vacy concerns restrict the use of cameras. However, these sensors are highly sensitive to noise
interference, which can degrade their accuracy in dynamic and noisy environments. Advanced
audio signal processing techniques such as noise suppression and feature extraction are often
employed to address these limitations.

Inertial Sensors

Wearable inertial sensors, including accelerometers, gyroscopes, and magnetometers, are widely
used because of their ability to capture motion and orientation data [51]. These sensors are of-
ten embedded in devices such as smartwatches, fitness trackers, or smartphones, making them
convenient for everyday use. Inertial sensing is particularly effective for detecting fine-grained
motion patterns such as walking, running, or hand gestures. However, these systems require
consistent user compliance because improper device placement or usage can affect the perfor-
mance. Recent advancements in ML algorithms have significantly improved the robustness of
inertial sensing for HAR applications.

Radio Frequency Based Sensors

RF sensors, particularly those employing Wi-Fi [52] and radar [53], have gained more interest
for various applications including HAR, due to their contactless nature. These sensors influence
the unique characteristics of radio waves in the detection and classification of human activities.
Wi-Fi-based systems use the fluctuations in wireless signal strength, such as received signal
strength indicators (RSSI) and channel state information (CSI), caused by human movement
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[52]. On the other hand, radar systems rely on Doppler shifts, range profiles, and mD signatures
to analyse motion patterns, as detailed in Section 2.2.

Beyond Wi-Fi and radar, other RF-based technologies, such as Bluetooth, universal software
radio peripherals (USRP), and channel sounders, are also relevant for HAR [54]. RF sensors
exploit variations in signal propagation characteristics, including amplitude, phase, or frequency,
caused by body movements. By analysing these changes, RF systems can capture the unique
signatures of moving body segments, enabling precise and reliable activity recognition.

Multi-Modal Sensing

To enhance accuracy and robustness, HARS often integrate multiple sensing modalities, a prac-
tice known as multi-modal sensing [55]. By combining complementary data sources, such as
visual and inertial sensors or acoustic and RF sensors, these systems can achieve higher reli-
ability and contextual awareness. Advanced strategies such as feature-level and decision-level
fusion enable the integration of diverse sensor outputs into a unified framework [56]. Addition-
ally, context-aware algorithms and ensemble learning techniques further enhance system perfor-
mance by continuously adjusting their models in response to shifts in environmental conditions
and user behaviour patterns.

As summarised in Table 2.1, a wide range of sensing modalities has been explored for HARS,
each offering unique advantages and presenting specific challenges. Among these, vision, iner-
tial, and RF sensors are the most widely used because of their ability to capture diverse activity
patterns. For simplicity, these sensors can be broadly classified into invasive and non-invasive
systems.

2.1.2 Comparison of Invasive vs. Non-Invasive Human Activity Recogni-
tion System

HARS are broadly categorised into invasive and non-invasive systems, each presenting distinct
strengths and limitations. Invasive systems typically require direct contact with the human body,
such as wearables or implantables to capture physiological or motion-related data, offering high-
fidelity signals but at the cost of user compliance and comfort. In contrast, non-invasive systems
operate remotely through modalities such as cameras and RF sensors. Each category has its
unique advantages and limitations, as detailed below:

• Invasive HARS: Invasive or contact-based HARS use physical sensors worn by users,
including smartwatches, smart belts, and in-ear sensors. These devices capture precise
physiological and kinematic signals, excelling in fitness monitoring, rehabilitation, and
clinical applications [51]. However, they require consistent user compliance, creating
barriers for continuous monitoring, especially among older adults or those with cogni-
tive impairments [12]. Practical limitations such as discomfort, charging requirements,
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Table 2.1: Overview of HARS implemented using various sensing modalities and associated
techniques with their strength and limitations.

Sensing Type Techniques and Sen-
sors

References Strengths and Weaknesses

Vision
Sensing

Infrared, Thermal and
wearable Cameras

[44, 57, 58] High spatial resolution and
interpretability; affected by
lighting, occlusion, and privacy
concerns.Depth sensors [59]

Pose estimation [60]

Acoustic
Sensing

Microphone [61] Low-cost and passive sensing;
highly sensitive to ambient
noise and lacks spatial detail.

Audio signal process-
ing

[50]

Acoustic event detec-
tion

[45]

Inertial
Sensing

Accelerometers [51, 62]
Lightweight, energy-efficient,
and widely used; prone to signal
drift, calibration issues, and user
compliance.

Gyroscopes [51, 63]

Magnetometers [46]

Wearable sensors (e.g.,
smartwatches)

[64]

RF Sensing

SISO and MIMO radars [53, 65–67] Non-intrusive and robust to
lighting; requires complex
signal processing and can be
affected by multipath
interference.

Wi-Fi systems [52, 68]

Pattern recognition
technique

[69, 70]

Multi-modal
Sensing

Multi-modal sensor
framework

[56] Combines complementary
strengths for enhanced
accuracy; adds computational
complexity and data
synchronisation challenges.

Sensor Fusion tech-
niques

[55]

and susceptibility to damage or calibration drift restrict their effectiveness for multi-scale
monitoring scenarios, where tracking both macro- and micro-activities is necessary. Fur-
thermore, these user-specific systems often face generalisation problems across popula-
tions or contexts, corresponding to the data heterogeneity issue [71].

• Non-invasive HARS: Such systems rely on remote sensing technologies such as vision-
based sensors and RF sensors. These systems eliminate the need for physical contact,
enabling more user-friendly and continuous monitoring. However, not all non-invasive
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modalities are equally privacy-preserving; vision-based systems often raise significant
privacy concerns in sensitive environments [13]. In contrast, RF-based methods like radar
offer a contactless and privacy alternative, making them particularly suitable for long-term
ambient monitoring [66]. Unlike Wi-Fi-based systems, radar sensors do not suffer from
carrier frequency offsets, which can lead to noisy channel-frequency responses. Radar
systems demonstrate robust performance in capturing both macro-activities (e.g., walk-
ing, falling) and micro-physiological signals (e.g., RR, HR), even under poor lighting or
occlusion conditions [19]. This capability makes radar especially valuable in addressing
the challenge of non-intrusive multi-scale monitoring, as it supports comprehensive and
continuous observation without user intervention. Nevertheless, radar systems face a sig-
nificant challenge regarding data diversity and generalisation due to the high variability in
user posture, movement styles, environmental layout, and sensor positioning. This vari-
ability leads to non-independent and identically distributed (non-IID) data, where each
instance reflects localised patterns and biases that hinder the generalisation of learned
models across users and settings [26].

R-HARS is gaining popularity due to its robustness across diverse environmental conditions, in-
cluding fog, rain, poor lighting, and darkness [72]. While it complements other sensing modal-
ities such as visual, infrared, and wearable systems, two major challenges arises. First, multi-
scale monitoring demands accurate tracking of both macro-activities and subtle physiological
micro-signals to estimate vital sign accurately, requiring advanced signal processing. Second,
radar data is highly heterogeneous and non-IID due to variability in user posture, movement,
and environmental settings, limiting generalisation. Cluttered environment and overlapping
micro-Doppler (mD) features further complicate classification, necessitating domain-adaptive
ML models. Addressing these challenges forms the core of this thesis, as elaborated in Section
2.2 and Chapters 3 and 5. Table 2.2 provides a detailed comparison of invasive and non-invasive
devices, summarising their sensor types, clinical usage, advantages, and limitations, which high-
lights the complementary role of these technologies in HAR.

2.1.3 Overview of Non-Invasive Macro-Activity Monitoring using Radar
Technology

The comprehensive range of sensing technologies described in Section 2.1.2 and in Table 2.2,
prompt the question: What is the rationale for adopting radar technology for HAR? Its main
advantage is its contactless sensing capability, allowing it to recognise human posture, move-
ments, and specific activities without the need to wear, carry, or interact with any sensors, which
is especially useful for quickly identifying critical events, such as falls [15]. This feature sig-
nificantly improves user compliance, especially for the elderly, who may forget to carry the
sensor or recharge their batteries. Additionally, radar does not produce traditional visual images
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Table 2.2: Comparison of invasive and non-invasive sensor technologies for HARS, including
clinical applications, advantages, and limitations.

Category
Sensor

Type

Clinical

Applications
Advantages Limitations Ref.

Invasive

Devices

Smartwatch

HR, RR

Blood pressure,

Physical activity

Notifications, Individualised,

health tracking

Limited battery life, Inaccurate

information, expensive
[73]

Smart Belt HR, RR Precise, Reliable, Easy to connect Required extra strap, uncomfortable [74]

Temperature

Sensor

Body

Temperature
Affordable, accurate

Limited utility under extreme conditions

(e.g., freezing point of mercury)
[75]

EEG Sensor

Brain disorder,

Emotions,

Sensitivity

High temporal precision

Limited spatial resolution, lacks

precision in locating the source of

brain activity

[76]

In-ear sensor
HR, RR,

Temperature

Stable placement

Environmental isolation

Miniaturisation, Power consumption

Signal artifacts, standardisation
[77]

Non-Invasive

Devices

Other RF

sensors

HR,

RR,

Gait analysis

Human activity

Real-Time data, Scalability,

Ease of integration

Interference, Security risks, Reliability

Bandwidth sharing decrease the speed,

Power consumption

[78, 79]

Camera

Fall Detection,

Physical activity,

Target detection

High image resolution, Versatile

for object and activity detection

Fails to preserve privacy, Unsuitable

for certain environments, Poor

performance in low-light conditions

[44]

Radar sensor

Gait Analysis,

Vital sign

Fall detection

Privacy-preserving ,Non-intrusive,

robust to noise, Capable of

penetrating barriers, Range,

velocity and angle measurements

Limited spatial resolution,

Background noise sensitivity, need for

advanced signal processing

[15, 80]

or videos, thereby protecting the privacy of individuals and their surroundings. These privacy-
preserving features make radar sensor more acceptable to end-users, alleviating concerns about
intrusion and data security, especially in the context of AAL.

In recent years, radar-based technologies have gained significant attention, with numerous
researchers exploring their potential in specific healthcare domains [81,82]. As illustrated in Fig.
2.2, radar sensors have evolved into distinct healthcare research areas. This thesis focuses on
two key applications: radar-based macro-activity recognition, which is discussed in this section
and detailed further in Sections 2.3, 2.5, and Chapters 3 and 5, and radar-based micro-activity
monitoring, which is detailed in Sections 2.4 and Chapter 4 for vital sign monitoring. Together,
these applications demonstrate the versatility of radar as a comprehensive non-intrusive moni-
toring technology capable of detecting both physical activity and subtle physiological signals,
representing the main contribution of this thesis. R-HARS consists of two main technological
components: the radar system and the ML network, as illustrated in Fig. 2.3. The radar system
captures human activity data, whereas the ML models process these data to identify and classify
various activities, as shown in Fig. 2.1 and described in detail in Section 2.3.
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Figure 2.2: Categorisation of radar-based healthcare applications.

Figure 2.3: Overview of R-HARS architecture and data flow.

Radar Types for Non-Invasive Activity Sensing

Radar systems are categorised based on their signal transmission methodology, functioning ei-
ther actively or passively. Active radar systems generate and transmit their own RF signals via
an antenna toward targets and analyse the backscattered signals to determine crucial parameters,
including range, velocity, and physical dimensions [83]. The reflected signals are then processed
using a dedicated signal processor to extract meaningful information [84]. In contrast, passive
radar systems operate without internal transmitters, instead utilising external illuminators of op-
portunity, such as television or radio broadcasts, for target detection and tracking purposes [83].
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Table 2.3: The comparison of active radars configurations.

Feature Monostatic
Radar

Bistatic Radar Multistatic
Radar

MIMO
Radar

Antenna
Configuration

Single or co-
located antenna
for Tx and Rx

Separate antennas
for Tx and Rx

Multiple antennas
for Tx and/or Rx

Multiple
antennas for
Tx and Rx

Hardware
Complexity

Lower Higher Higher (due to
number of units)

Highest

Cost Generally lower Generally higher Higher Highest

Signal
Processing

Simplified More complex More complex Most com-
plex

Synchronisation Easier (co-
located Tx/Rx)

More complex More complex Most com-
plex

Latency Generally lower May vary May vary May vary

Coverage
Area

Limited to line-
of-sight

Potentially
broader depend-
ing on geometry

Wide-area due to
distributed units

Wide, but
depends
on antenna
layout

Resilience to
Interference

Lower Moderate High (spatial di-
versity)

Very high
(waveform
and spatial
diversity)

Active radar systems can be further classified into four principal configurations based on the
spatial arrangement of their transmitting and receiving elements: monostatic, bistatic, multi-
static, and Multiple-Input Multiple-Output (MIMO) radar systems [83]. To facilitate compari-
son among these configurations, Table 2.3 summarised their key features, highlighting relative
advantages and operational trade-offs.

Radar configuration plays a vital role in the design and performance of radar-based sys-
tems, particularly in applications such as HAR, where the quality and nature of the acquired
signals have a direct influence on system effectiveness [85]. The key configuration parameters
include the operating frequency band, pulse repetition frequency, and antenna geometry. These
factors collectively determine the spatial resolution, signal penetration, and robustness of the
radar [85]. Radar systems can be classified in several ways; however, one of the most widely
used approaches is based on the nature of transmitted signals. Within this framework, radar
technologies are typically divided into continuous wave (CW) radar and pulse radar.

• The CW radar operates by continuously transmitting an RF signal and analysing the
Doppler shift in the reflected signal to estimate the target velocity. This type of radar
is characterised by its simplicity, low power consumption, and high resolution in velocity
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Table 2.4: Comparison of radar types based on the transmitted signal characteristics for non-
invasive activity sensing.

Feature CW Radar Conventional
Pulse Radar

UWB Radar FMCW Radar

Signal Type Unmodulated
continuous
wave

Pulsed with
modulations

Ultra-wide band,
ultra-short pulses

Frequency-
modulated
continuous

Range
Measurement

No Yes Yes Yes

Short Range
Detection

Better Moderate Best (very high
resolution)

Better

Velocity
Measurement

Yes Yes No (typically not
Doppler-based)

Yes

Complexity Low High Moderate to High High

Power
Consumption

Low High Low (often low
average power)

High

estimation, although it does not provide range information [86]. When the CW is modu-
lated in frequency, typically using a linear or sinusoidal pattern, the system is referred to
as frequency modulated CW (FMCW) radar [87], with which we can measure both range
and velocity, respectively.

• In contrast, pulse radar transmits discrete bursts of RF energy, calculates the target range
based on the time delay of the returning echo, and can also estimate velocity using Doppler
analysis [88]. A specific form of pulse radar is ultra-wideband (UWB) radar, which trans-
mits extremely short pulses with a wide bandwidth [89]. Due to its high temporal resolu-
tion, UWB radar is particularly effective in short-range applications and is well suited for
tasks such as micro-motion detection and through-wall sensing.

A detailed comparison of these radar types, focusing on their relevance to macro- and micro-
activity monitoring, is provided in Table 2.4. In this thesis, we employed an FMCW radar for
both macro- and micro-activity monitoring, as it is particularly suitable for HAR research in
indoor environments. The application of the FMCW radar for macro-activity recognition is dis-
cussed in chapter 3, and micro-activity monitoring is addressed in chapter 4. The frequency
modulation capability of the FMCW radar enables representation of time-domain information
in the frequency domain, allowing simultaneous estimation of range and velocity through effi-
cient signal processing techniques such as the Fourier transform [90]. This approach reduces
the computational burden while maintaining a high temporal and range resolution [87]. The
high-resolution output generated by the FMCW radar proves particularly effective for ML-based
HAR models, enhancing recognition accuracy while maintaining system efficiency. Addition-
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ally, in chapter 4, we initially investigated micro-activity monitoring under controlled experi-
mental conditions using UWB radar before transitioning to FMCW radar. Both radar systems
offer advantages, including low power consumption and moderate hardware complexity, making
them ideal for continuous monitoring applications in home or clinical environments.

Working Principle of FMCW Radar

Recent advances in computing and processing have made it possible to implement new modu-
lation techniques that can estimate range and velocity information. FMCW radar is one such
system that continuously transmits a frequency-modulated signal. A synoptic of FMCW radar
system is illustrated in Fig. 2.4. The transmitted signal is reflected by the target and the radar
receiver recognises the reflected signal. The range (distance) of the target was estimated by
comparing the frequencies of the transmitted and received signals. The velocity (Doppler) in-
formation between radar and target is determined by the Doppler shift caused by human move-
ment [91].

Figure 2.4: Block diagram of FMCW radar system.

The operation of an FMCW radar involves transmitting a CW signal modulated by a linear
frequency sweep over time with a fixed duration, commonly referred to as a “chirp” signal, as
shown in Fig. 2.5. A chirp signal is characterised by three key parameters [92]: center frequency
( fc), bandwidth (B) and duration of the chirp (Tc). In addition, it has a slope (α), which defines
the rate of frequency change over time (B/Tc). These parameters can be configured to optimise
the transmitted and received radar signals to satisfy specific application requirements. When fc

is used to sweep through the linear frequency chirp sequence, the instantaneous frequency at any



CHAPTER 2. LITERATURE REVIEW 22

Figure 2.5: A sample of chirp pattern.

given time f (t), can be expressed using the following Eq. (2.1) [84]:

f (t) = fc +
B
Tc

t = fc +αt (2.1)

The instantaneous angular frequency ω(t) that correspond to f (t) by a factor of 2π and can be
derived using Eq. (2.2):

ω(t) =
dϕ(t)

dt
= 2π f (t) (2.2)

Here ϕ(t) shows the instantaneous phase of the signal. Substitute Eq. (2.1) into Eq. (2.2), we
can define ω(t) as:

ω(t) = 2π( fc +αt) (2.3)

Thus, we can acquire the equation of ϕ(t) as:

ϕ(t) =
∫ t

0
2π f (t)dt = 2π

(
fct +

α

2
t2
)
+ϕ0 (2.4)

Where ϕ0 denotes the initial phase at t = 0. The transmitted signal from radar Tx antenna now
expressed as:

s(t) = Acos(ϕ(t)) = Acos
(

2π

(
fct +

α

2
t2
)
+ϕ0

)
(2.5)

Here A shows the amplitude of Tx signal, which is a constant term and related to signal power. In
the signal processing stage [84], the frequency difference between the transmitted and received
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signals is called the beat frequency ( fb), as shown in Fig. 2.5. This frequency difference is pro-
portional to the time delay (τd) between the radar and target, allowing the range (R) information
to be extracted directly through the fb and frequency offset analysis, as expressed in Eq. (2.6)
and (2.8)

τd

Tc
=

fb

B
(2.6)

From Eq. (2.6) we can define the beat frequency ( fb) as:

fd =
Bτd

Tc
(2.7)

R =
τdc
2

(2.8)

Where c is the speed of light. For a target at a range R, the τd of received signal can be define
as:

τd =
2R
c

(2.9)

According to Eq. (2.5), the received signal r(t) can be expressed as follows:

r(t) = Bcos
(

2π

(
fc(t− τd)+

α

2
(t− τd)

2
)
+ϕ0

)
(2.10)

Where B denotes the amplitude of Rx signal, which is also a constant term and related to received
signal power. Assuming that both the transmitted and received chirp signals have normalised
amplitudes, excluding the initial phase, we derive two general expressions for the transmitted
signal s(t) and received signal r(t) [84]:

s(t) = cos
(

2π( fct +
α

2
t2)
)

(2.11)

r(t) = cos
(

2π

(
fc(t− τd)+

α

2
(t− τd)

2
))

(2.12)

The demodulator mixes the transmitted and received signals to generate I/Q components. There-
fore, as shown in Fig. 2.4, the output of the in-phase mixer or component I is the product of two
functions, which can be written as follows:

I(t) = s(t)r(t) = cos
(

2π

(
fct +

α

2
t2
))

cos
(

2π

(
fc(t− τ)+

α

2
(t− τ)2

))
(2.13)

By employing trigonometric equation cos(x).cos(y) = 1
2(cos(x+y)+cos(x−y)), the Eq. (2.13)

can be rewritten as:

I(t) =
1
2
(
cos
(
2πt (2 fc−ατ)+2παt2−2π fcτ

)
+ cos

(
πατ

2−2παtτ−2π fcτ
))

(2.14)

From Fig. 2.4, a low-pass filter (LPF) is used to eliminate high-frequency components after the
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mixing stage. The final equation for the I signal is given as:

I(t) =
1
2

cos
(
πατ

2−2παtτ−2π fcτ
)

(2.15)

On the other hand, the Q component is generated by mixing a 90◦-shifted replica of the trans-
mitted signal, as shown in Fig. 2.4, with the received signal, as shown in Eq. (2.16):

Q(t) =
1
2
(
sin
(
2πt (2 fc−ατ)+2παt2−2π fcτ

)
+ sin

(
πατ

2−2παtτ−2π fcτ
))

(2.16)

After using the LPF again to remove high-frequency components, the final Q signal is expressed
as:

Q(t) =−1
2

sin
(
πατ

2−2παtτ−2π fcτ
)

(2.17)

The capability of I/Q components to represent radar signals in a complex form is one of their
most important advantages. Therefore, the general FMCW radar signal s[n] can be expressed in
complex form as Eq. (2.18), and the phase ϕ(t) can be expressed in Eq. (2.19):

s[n] = I[n]+ jQ[n] = e−πατ2+2παtτ+2π fcτ (2.18)

ϕ(t) =−πατ
2 +2παtτ +2π fcτ (2.19)

Although the fb is related to the phase derivative of the mixed signal, it is typically calculated
using frequency domain analysis. The R (range) can be expressed as a function of τd , so that
the angular frequency ωbeat , fb, and the estimated range Re can be expressed in Eq. (2.20) and
in Eq. (2.22):

ωbeat =
d(−πατ2 +2παtτ +2π fcτ)

dt
= 2πατ (2.20)

fbeat =
ωbeat

2π
= ατ (2.21)

Re =
c fbeat

2α
(2.22)

In the previous equations, the focus was on a simple, ideal scenario: a single chirp interacting
with a stationary target. In a real-world scenario, an FMCW radar typically transmits a series
of continuous chirps as the target moves back and forth from the radar at radial velocity v.
Consequently, the time delay τr can be restated as:

τr =
2(R+ v(ts +nT ))

c
=

2R+2v(ts +nT )
c

(2.23)

Here n shows number of chirps that we analysed, ts is the start time to nth chirp. By substituting
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τ with τr in Eq. (2.21), the f ′beat can be obtained as:

f ′beat =
(2Rα +2v fc +2nBv)

c
=

2Rα

c
+

2v fc

c
+

2nBv
c

(2.24)

The beat frequency f ′beat includes not only the range information as shown in Eq. (2.24), but
also the Doppler shift produced by the radial velocity of the target. The velocity produces an
additional phase shift that appears as an additional bound on f ′beat . Since c≫ 2nBv, this term
can usually be ignored in normal cases. However, in cases involving a large number of chirp
signals meaning that the transmitting time is long, this limitation may become important and
should not be ignored.

2.2 Radar Signal Representations for Human Activity Recog-
nition

R-HARS rely heavily on how raw radar signals are transformed and represented before being fed
into ML models for classification. These transformed views, referred to as radar data domains or
signal representations, determine how effectively spatial, temporal, and motion-related patterns
are extracted. Building on the FMCW radar principles, the signal processing pipeline typically
begins with complex baseband I/Q signals derived from the IF signal. These are processed to
extract features such as range, Doppler, and mD signatures, which form the basis for various sig-
nal representations. In the context of FMCW radar, common domains include spatial-frequency
profiles such as the range-fast Fourier transform (R-FFT) and time-frequency (TF) maps based
on the short-time Fourier transform (STFT) [90]. Each representation captures different aspects
of human macro-motion and directly affects the model’s ability to learn discriminative features.

Despite the availability of diverse transformation techniques, most existing R-HAR stud-
ies adopt a single fixed representation [23, 93], typically STFT, without assessing how domain
choice influences generalisation across users, settings, or radar devices. However, real-world
radar signals vary significantly due to factors such as body morphology, movement style, cloth-
ing, sensor placement, and environmental interference. These variations result in non-IID data,
making it challenging for models trained under one condition to perform reliably in others [94].
In this context, the choice of signal representation is critical for achieving adaptive and general-
isable HAR. However, limited insight exists into which radar domain representations are most
effective under diverse or unseen conditions.
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2.2.1 Range-FFT Processing for Radar-based Human Activity Recogni-
tion System

An important component of FMCW radar systems, particularly for HAR applications, is the
generation of a range profile. The range profile provides a quick overview of the surrounding
environment by showing the presence of targets at different distances from the radar [95]. Simi-
lar to the previous formulations, the Fourier transform can be used to convert a beat-note signal
from the time domain to the frequency domain in order to obtain its range information. By sub-
stituting Eq. (2.24) into Eq. (2.19), one can get the radar signal mathematical formulations by
neglecting 2nBv

c , discussed before, so it is not considered:

ϕR(t) =
4π fcv

c
nT +2π

(
2v fc

c
+ατ

)
(2.25)

As from the Eq.(2.18), we can write as:

s(t) = e−ϕR(t) (2.26)

It is noteworthy that the Fourier transform is traditionally defined as a continuous integral over
infinite time. However, computing continuous integrals is impractical and the necessity of an
infinite duration cannot be achieved in practical applications. To address these limitations, it is
important to apply a discrete Fourier transform (DFT) [95].

Figure 2.6: FMCW radar chirp information.

The radar beat frequency signal was sampled over time, creating a structured data matrix, as
illustrated in Fig. 2.6. This matrix has dimensions N×M, where: N represents the number of
successive chirps (slow time) and M corresponds to the number of samples per chirp (fast time).
Each row in the matrix corresponds to a single radar chirp and each column represents a range
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bin. The sampling process creates a structured grid, where the radar captures the range and time
information of the signal for each transmitted chirp. The number of bins, M, is determined by
the sampling rate fs and the chirp duration Tc as shown in Fig. 2.5, and expressed as:

M = fsTc. (2.27)

To extract range information, an FFT is applied to the beat frequency signal s(p,q) along the
fast-time dimension (chirp-wise), as illustrated in Fig. 2.6. The transformed signal S(p,q) in the
frequency domain is given by:

S(p,q) =
M

∑
q=1

s(p,q)e− j 2π

M qt , (2.28)

where p represents the chirp index (slow time), q corresponds to the range bin index in the
frequency domain, and S(p,q) encapsulates the range profile information of the target. The
frequency profiling stage, obtained by applying FFT along the fast time dimension, serves as a
fundamental component in many R-HARS. This range profile identifies the spatial position of
the subject, which is often used to define a region of interest (ROI) for further analysis [96]. In
more advanced pipelines, such as TF processing, STFT is applied specifically to the range bins
corresponding to the detected target location. This targeted application helps reduce background
clutter and computational costs while focusing on human motion dynamics.

However, despite its central role in radar signal processing, the use of R-FFT as a standalone
domain representation for macro-activity recognition has received limited attention. Most R-
HAR studies have focused almost exclusively on STFT spectrograms, overlooking the potential
of range profiles to convey motion-related energy patterns that can serve as informative input
features [97]. This highlights a critical gap in the literature regarding the independent evalua-
tion of radar frequency profiling as a valid and potentially complementary domain. We address
this gap by systematically evaluating R-FFT maps alongside other domain representations and
assessing their ability to capture discriminative features under data diversity conditions. This in-
cludes their integration into ML models for macro-activity classification, as discussed in chapter
3, as well as their application for precise chest region localisation in micro-activity estimation,
as explored in chapter 4.

2.2.2 TF-Domain Analysis in Radar-based Human Activity Recognition
System

FMCW radar systems leverage the Doppler effect to detect macro- and micro-motion patterns,
enabling the identification of human activities ranging from dynamic actions such as running
to subtle events such as falls [98]. The Doppler effect is a phenomenon in which radar signals
reflected from a moving target experience a frequency shift, providing valuable information re-
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garding the velocity and direction of the target. By analysing these velocity data, radar systems
can effectively monitor human motion and facilitate HAR techniques [99]. For R-HAR, TF rep-
resentations play a crucial role in capturing the non-stationary characteristics of human motion.
Among these, STFT [90] is widely used as a robust method for analysing such signals. Unlike
traditional fourier transform, which operates purely in the time or frequency domain, STFT di-
vides the signal into segments and applies the transform to each, yielding a localised analysis
of frequency content over time. The STFT representation for the signal s(n), as derived in Eq.
(2.18), is mathematically expressed as [90]:

STFT(n,ω) =
∞

∑
m=−∞

s(n)h(n−mR)e− jωn (2.29)

For n = 0, ....,N−1, N represents the total number of time samples, h(n) is the window function
applied to each segment, R is the hop size or step size in samples, which controls the over-
lap between adjacent windows, and m is the length of the window. A spectrogram is a widely
utilised technique for visualising the time-varying spectral density of a radar signal. It serves as
a spectro-temporal representation that captures the dynamic changes in the Doppler frequency
components of a signal over time [100]. The spectrogram is computed using STFT and is rep-
resented by the squared magnitude of the STFT, excluding the phase information of the signal,
mathematically expressed as,

Spectrogram(n,ω) = |STFT(n,ω)|.2 (2.30)

STFT is regarded as one of the most computationally efficient techniques for generating
TF spectral representations and remains the dominant method in R-HAR research. Its ability
to highlight time-localised Doppler shifts makes it particularly effective for capturing dynamic
motion events. However, STFT operates with a fixed window size, leading to an inherent trade-
off between time and frequency resolution. This limitation constrains its ability to accurately
resolve fine-grained or overlapping micro-motions, which are especially relevant in complex ac-
tivity scenarios [100]. Despite its widespread adoption, most R-HAR studies apply STFT as a
default representation without critically evaluating its robustness under data diversity or its abil-
ity to generalise across subjects, sensor placements, or environments. Furthermore, there has
been little effort to benchmark STFT against alternative signal representations within a unified
experimental framework [101]. This study presents two key gaps in the literature: First, compar-
ative studies evaluating multiple radar domain representations under consistent preprocessing
and evaluation conditions are lacking. Second, existing methods largely ignore the challenge
of domain adaptation under non-IID data, such as subject-to-subject or frequency-to-frequency
generalisation. These limitations restrict the development of scalable adaptive HARS suitable
for deployment in real-world unconstrained settings.

To address these challenges, this thesis proposes a unified radar signal processing and repre-
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sentation framework that systematically evaluates multiple-domain representations derived from
a single radar signal. In addition to STFT, this includes the implementation of the Smoothed
Pseudo Wigner-Ville distribution (SPWVD), a subset of the Wigner-Ville distribution (WVD)
[102], which provides high-resolution quadratic TF features with reduced cross-term interfer-
ence. While STFT remains the most commonly adopted method in prior R-HAR literature, its
performance under non-IID conditions and in comparison to other domain representations like
R-FFT has not been extensively studied. This thesis addresses that gap by experimentally evalu-
ating the generalisability of each domain representation under cross-subject and cross-frequency
conditions. The framework measures trade-offs between recognition accuracy, computational
efficiency, and robustness. By integrating these representations into AI-driven models, this the-
sis contributes new insights into domain adaptation, signal encoding, and feature generalisation
for scalable and real-world R-HARS.

2.3 AI-Driven Techniques in Human Activity Recognition

As illustrated in Fig. 2.1 (stage 3), represents a critical phase in R-HARS, where the processed
sensor data are fed into AI models to recognise and classify human activities. Importantly,
the ability to handle data diversity and perform domain adaptation, particularly under non-IID
conditions, significantly depends on the capabilities of these AI-driven models. Without robust
AI methods, it becomes difficult to extract generalisable features from varied domain represen-
tations or to adapt models across subjects, scenes, or sensing conditions. The integration of
AI has been transformative, significantly expanding the capabilities of HAR by enabling more
accurate and efficient activity recognition. This synergy between AI and radar-based human
activity not only enhances system performance but also broadens its application across diverse
domains [18]. However, the advent of advanced AI methodologies, particularly DL, has enabled
HARS to process intricate motion patterns and handle diverse datasets effectively [103]. As a
result, AI continues to drive the evolution of R-HARS, serving as the core mechanism through
which representational diversity is harnessed and generalisation challenges are addressed.

AI-driven HAR techniques can be broadly categorised into two approaches [104]: conven-
tional ML and DL based methods. Conventional ML techniques are built on well-established
theoretical frameworks, making them highly interpretable and computationally efficient. In con-
trast, DL approaches utilise large datasets and sophisticated neural network architectures to un-
cover complex patterns, thereby offering superior performance in recognising intricate activities.

2.3.1 Machine Learning for Human Activity Recognition

ML is a subfield of AI that focuses on developing algorithms and statistical models to enable
computers to perform tasks without explicit programming [105]. The primary aim of ML is to
allow machines to learn from data to make accurate predictions or decisions. In HAR, sensors



CHAPTER 2. LITERATURE REVIEW 30

like radar collect raw signals that are then processed into feature representations used to train
ML algorithms for activity classification, as illustrated in Figures 2.1 and 2.3. A number of con-
ventional ML algorithms, such as Decision Trees [106], K-Nearest Neighbor (KNN) [107], and
Support Vector Machines (SVM) [107], have been applied to R-HAR data for activity classifica-
tion. These methods rely on handcrafted features, which are extracted through a manual process
based on human visual judgment and domain expert knowledge rather than being automatically
learned by the system [104]. R-HAR has widely used conventional ML algorithms, but their
robustness and generalisation capabilities suffer from several limitation:

• Conventional ML-based classification methods depend heavily on heuristic and manual
feature extraction, which are time consuming and require significant human expertise.

• Manual features often capture only low-level statistical information, such as the mean,
variance, frequency, and amplitude, which have weak transferability and generalisation
[108]. Consequently, applying a trained ML model to a new scenario or dataset often
results in significant performance degradation.

• Achieving classification using conventional ML techniques involves a complex, multi-
step pipeline, including preprocessing, feature extraction, feature selection, learning, and
classification [108], as shown in Fig. 2.7. Each of these steps requires careful tuning and
domain expertise. For instance, feature selection has a significant impact on the perfor-
mance of ML models, and biased or suboptimal feature selection can lead to incorrect
discrimination between classes [109]. This multi-step process not only increases the com-
plexity of the system but also introduces potential sources of error at each stage, making
ML methods less robust and scalable for real-time R-HARS.

In contrast, DL enables learning and classification to be achieved in a single shot, as shown
in Fig. 2.7. DL models excel in R-HAR due to their ability to automatically learn hierarchical
features directly from raw radar data, unlike conventional ML methods [109]. This eliminates
the need for manual feature extraction and reduces dependency on human intervention and do-
main expertise. Furthermore, the emergence of graphics processing units (GPUs) has enabled
DL algorithms to leverage massive datasets and perform fast data processing and computation
through parallel computing [110]. This significantly accelerated the training and deployment of
DL models, making them more practical for real-world applications.

Given these advantages, conventional ML models are beyond the scope of the R-HAR in
this thesis. Instead, we focused on DL methods, which are discussed in detail in the following
subsections.
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Figure 2.7: Comparison between conventional ML and DL algorithm pipelines.

2.3.2 Deep Learning for Human Activity Recognition

In recent years, DL has emerged as an exceptionally popular subfield of AI-driven by the rapid
expansion and evolution of big data [111]. Its ability to process large-scale data and uncover in-
tricate patterns has enabled significant progress across various domains, including image super-
resolution [112], object detection [113], and image recognition [114]. The architecture of DL
models typically consist of three primary components: an input layer, hidden layers, and an out-
put layer [111]. The input layer receives training data, which are processed through a series of
hidden layers before generating predictions at the output layer. The term “deep learning” stems
from the depth of these hidden layers, which can range from a few to hundreds or even thou-
sands depending on the complexity of the model and task [115]. Each hidden layer performs
mathematical operations such as multiplying input values by learned weights, followed by the
application of activation functions to extract and learn patterns within the data [116].

The network’s predictions were compared to the ground truth labels to calculate the loss
using categorical cross-entropy, which is appropriate for the multi-classification task of R-
HAR. This loss is then used to adjust the network weights through backpropagation [109]. The
backpropagation algorithm iteratively fine-tunes the weights by propagating the error backward
through layers [111]. As this process is repeated, small adjustments to the weight values re-
fine the network’s ability to identify and learn patterns in the data, thereby improving its pre-
dictive accuracy [115]. This iterative optimisation is performed over multiple cycles, known
as “epochs,” during which the network becomes progressively better at capturing complex re-
lationships in the data [116]. By leveraging these principles, DL models can achieve a high
performance across a wide range of applications, including R-HAR.

Radar echo signals carry rich information about the targets in the environment, including the
range and Doppler frequencies. A critical challenge in R-HAR is the design of DL based signal
processing algorithms to effectively extract target related information from these echoes. This
thesis focuses on exploring and applying DL approaches to radar-based macro-activity signals,
specifically leveraging the dimensions of radar returns. Radar signals can be transformed into
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two dimensional (2D) representations, same as camera-based images. Consequently, compared
to other 2D radar echoes, TF maps are most commonly used for macro-activity recognition
[93]. In this work, we primarily focused on 2D radar maps, generating four distinct types of
representations, as discussed in Section 2.2, and further elaborated in chapter 3.

To fully exploit information within radar echoes, DL methods must be tailored to the unique
characteristics of these representations. Although 3D human backscattering echoes provide ex-
tensive activity-related data, their complexity makes them challenging to process [22]. In con-
trast, 2D radar echoes strike a balance, offering sufficient activity information, while being more
computationally manageable [22]. These 2D echoes are often treated as images, aligned with
methodologies in computer vision, and used for activity classification tasks. Consequently, HAR
based on 2D radar echoes often resembles an image classification problem, where DL architec-
tures, particularly those rooted in vision-based models, excel in extracting meaningful patterns
for accurate activity recognition. For HAR, DL techniques can be broadly categorised into three
main types: deep neural networks (DNNs) [117], hybrid DL (HDL) models [118], and transfer
learning (TL) based models [119].

DNNs include models such as convolutional neural networks (CNNs) [120], recurrent neu-
ral networks (RNNs) [121], and RNN variants such as long short-term memory (LSTM) and
gated recurrent units (GRUs) [122]. Hybrid HAR models integrate CNN and RNN architectures
to effectively process spatio-temporal data. Notable hybrid models proposed recently include
DeepSense [123] and DeepConvLSTM [124]. These approaches have demonstrated significant
advancements in HAR by combining the spatial feature extraction capabilities of CNNs with
the temporal analysis strengths of RNNs. The various DL-based models applied to radar data
domains are summarised in Table 2.5. Each row presents one representative example from
the literature, however several other studies also exist for each radar type and configuration.
Although CNNs, RNNs, and their hybrid variants have significantly advanced R-HAR by effec-
tively utilising spatial and temporal information, these methods often require large, well anno-
tated datasets and computational resources for training. This presents challenges in healthcare
applications, where datasets can be scarce and computational efficiency is crucial. To address
these limitations, TL has emerged as a promising alternative, enabling the reuse of knowledge
from pre-trained models for R-HAR tasks.

Transfer Learning (TL) Approach

DL is highly data dependent and requires large-scale labelled datasets to achieve optimal per-
formance [137]. However, acquiring such datasets for macro-activity monitoring is challeng-
ing, given the difficulties in collecting and annotating radar data. TL offers a powerful solu-
tion by enabling models to reuse the knowledge learned from one task and adapt it to another,
thus reducing data dependency and improving generalisation [138]. Instead of training a DNN
from scratch, TL allows models to leverage pre-trained feature representations from large scale
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Table 2.5: Summary of existing R-HAR methods utilising DL models.

Radar Type Carrier Freq. Radar Domains Classifier/Models Example Ref.

CW radar
4 GHz

time-Doppler maps

CNN [125]
24 GHz CNN [93]
8 GHz LSTM [122]

Doppler radar

2.4 GHz CNN [126]
24 GHz 1D CNN+LSTM [127]
5.8 GHz CNN [23]
25 GHz LSTM [128]

UWB radar

4 GHz CNN [129]
4.3 GHz CNN [130]

7.25 GHz CNN [131]
4 GHz CNN [132]

FMCW radar

24 GHz CNN [133]
60 GHz CNN+LSTM [134]
77 GHz 1D CNN+LSTM [29]
5.8 GHz CNN [120]

UWB radar 3.9 GHz
time-range maps

CNN [135]
FMCW radar 24 GHz 3D CNN+LSTM [136]

datasets, such as ImageNet, which has 1.2 million images distributed over 1000 classes, or from
simulated radar data [129]. This significantly accelerates training convergence and improves
model performance, even with limited radar-based datasets.

The TL mechanism involves training a deep CNN model on a large dataset, thereby allowing
the network to learn generalisable feature representations. During training, the model optimises
the key parameters, including weights and biases, to improve classification accuracy [137]. In
the next phase, these learned parameters are transferred to a new network that is fine-tuned
using a smaller radar dataset. This transfer of knowledge enables the new model to use pre-
trained weights, eliminating the need to train from scratch, while accelerating convergence and
enhancing accuracy [138].

Given that radar signals can be converted into 2D dimension, TL has been successfully ap-
plied by adapting CNNs pre-trained on optical image data to analyse radar TF maps, as demon-
strated in recent studies [139]. In R-HAR task, TL is applied using two primary approaches:
transferring models trained on large scale natural image datasets [140], and transferring of mod-
els trained on simulated radar datasets to real-world HAR applications [141]. To implement TL
effectively, two techniques are commonly employed [138]:

• Feature Extraction: The last layers of the pre-trained network were removed and re-
placed with new task-specific layers, which were then randomly initialised and trained on
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the target dataset.

• Fine-tuning (FT): A pre-trained model is trained further using a smaller radar dataset,
optimising the final layers while keeping the earlier layers frozen to retain the previously
learned features.

By FT CNNs pre-trained on large-scale datasets, radar-based DL models benefit from faster
convergence, decrease computational cost, and reduced overfitting, even with limited training
data [142]. For instance, one study introduced a DCNN model pre-trained on ImageNet, and
subsequently FT the network using measured radar TF maps for human aquatic activity clas-
sification [141]. Similarly, another study [143] proposed a residual learning-based model, Di-
vNet, that was initially trained on a simulated radar spectrogram dataset and later FT with real
measured radar data to classify seven distinct human activities. Additionally, a convolutional
autoencoder (CAE) model [144] was first pre-trained in an unsupervised manner and then FT
using a limited number of labelled radar maps.

The FT strategy adopted in these methods leverages a small amount of target data to adjust
pre-trained DL models, thereby transferring knowledge from the source domain to mitigate the
limitations of target-domain data insufficiency. Various pre-trained DL architectures, including
ResNet-50 [145], MobileNet-v2 [146], VGGNet [147], have been extensively employed in TL.
These architectures have been effectively FT for R-HAR, capitalising on their robust feature-
extraction capabilities. In this thesis, TL plays a central role in recognition of macro-activities,
enabling the integration of pre-trained CNN models to effectively train on limited radar datasets.
By leveraging TL, we enhance classification accuracy while ensuring that the model adapts well
to diverse scenarios. The detailed implementation and fine-tuning strategies adopted in this
thesis are discussed in chapters 3 and 5.

2.3.3 Limitations and Research Gap

Despite the widespread used of TL in HAR applications, most TL-based research has been pre-
dominantly applied to wearable sensors [64], vision-based approaches [58], and Wi-Fi-based
HARS [68]. In wearable sensor-based HAR, TL has facilitated cross-subject and cross-device
adaptation, enabling models trained on one user group to effectively generalise to others. In
vision-based HAR, TL has been extensively utilised to FT pre-trained CNNs, such as ResNet,
VGG, and Inception, achieving notable improvements in accuracy across diverse datasets [148].
Similarly, Wi-Fi-based HAR has benefited from domain adaptation techniques, such as Decision-
boundary Iterative Refinement Training with a Teacher (DIRT-T) and Virtual Adversarial Do-
main Adaptation (VADA) models, to handle cross-environment variability [149]. However, R-
HAR remains largely under explored in the context of TL, as highlighted by Ray and Kolekar
[150]. This lack of focused research presents a major gap in this field. To address this challenge,
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our work systematically evaluates TL models across multiple radar domains, demonstrating the
feasibility and effectiveness of radar-based macro-activity recognition.

One significant gap in R-HAR is the lack of a systematic evaluation of radar representations
for TL. Radar data can be represented in various forms, unlike traditional image or wearable
sensor data, radar signals encode complex motion-related features that require specialised pro-
cessing techniques. However, current research has not adequately investigated the impact of
different radar domains on TL effectiveness. In contrast, vision-based HAR studies have shown
that different modalities such as RGB, optical flow, and depth can significantly influence TL per-
formance [151]. A similar comparative analysis is notably absent in R-HAR, which represents
a critical gap in optimising TL-based models for radar domains.

Recent studies have shown that TL can effectively address the challenges in R-HAR, such
as limited labeled datasets and computational inefficiency. Models such as AlexNet, ResNet,
VGG, GoogLeNet, and DenseNet have been adapted for TF-based spectrograms classification,
achieving high accuracy while reducing the training complexity [152]. Some studies have fur-
ther enhanced the TL performance through domain adaptation, adversarial learning, and data
augmentation, making models more robust in diverse environments [153].

Although previous studies have primarily focused on TF-based preprocessing with advanced
CNN models in TL settings, as illustrated in Table 2.5, this work presents a comprehensive eval-
uation of multiple radar domain representations and their integration with state-of-the-art TL
models. By exploring the strengths and limitations of each method, we aim to identify radar
preprocessing techniques that optimise both recognition accuracy and computational efficiency.
To achieve this, we compare the performance of various TL architectures, including DenseNet-
201 [154], ResNet-34 [155], VGG-16 [154], VGG-19 [154], and EfficientNet-B0 [156], across
different radar domain representations. This thesis also investigates how TL models address the
limitations of training CNNs from scratch, particularly in low-data scenarios, and their effective-
ness in reducing misclassification rates, especially for fall detection in applications for elderly
care.

Furthermore, there is limited comparative research between TL models and CNNs trained
from scratch in R-HAR. DCNNs trained from scratch are resource-intensive and require large-
scale labelled datasets and substantial computational power [150]. In other HAR domains like
wearable and Wi-Fi-based systems, TL has proven to reduce training costs and enhance model
robustness [157]. However, no comprehensive study has been conducted to quantify the ben-
efits of TL over traditional CNNs for macro-activity recognition, specifically in terms of the
following:

• Improvement in classification accuracy and reduction in computational cost.

• Enhanced training efficiency and faster convergence rates.

• Performance in unseen radar environments and real-time applications, particularly for
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edge devices.

In summary, while TL presents promising opportunities for enhancing radar-based macro-
activity recognition, significant gaps persist in the systematic evaluation of its effectiveness
across various radar domains, optimisation of domain adaptation techniques, and its applica-
tion to complex activity recognition. This thesis addresses these challenges by systematically
evaluating TL models, benchmarking their performance against CNNs trained from scratch, and
exploring innovative approaches to improving R-HAR capabilities, as detailed in chapter 3.

2.4 Micro-Activity Monitoring using Radar

Micro-activities such as heart rate (HR) and respiration rate (RR) are critical indicators of an
individual’s health and are routinely monitored in clinical environments to detect early signs
of conditions such as congestive heart failure or cardiac arrest [158, 159]. These physiological
parameters are highly dynamic, with patterns that vary considerably during sleep, physical exer-
tion, or psychological stress. A healthy adult typically breathes 12–20 times per minute at rest,
while the HR ranges between 60 and 100 beats per minute [160]. RR is commonly inferred from
chest or abdominal movements during the respiratory cycle. Conventional measurement tools,
such as chest straps or contact-based sensors, although effective, suffer from limitations related
to user comfort, long-term wearability, and privacy. These limitations render them unsuitable
for continuous and unobtrusive monitoring. Within the broader context of R-HARS, accurately
capturing micro-activity signals in a non-intrusive manner remains a major challenge. Unlike
macro-activities, micro-physiological signals involve extremely subtle motions that are often
masked by environmental clutter or stronger overlapping movements. This thesis addresses this
gap by exploring radar technologies capable of reliably extracting such signals without requiring
direct contact or compromising user privacy.

Recent advancements in the Internet of Medical Things (IoMT) have accelerated the de-
velopment of remote, non-contact sensing systems. Radar-based solutions have emerged as
promising alternatives, offering unique benefits, including comfort, unobtrusiveness, privacy
preservation, and real-time continuous monitoring. Radar sensors can estimate HR and RR by
detecting minute chest wall displacements and micro-movements associated with cardiovascular
and respiratory activity without any physical attachment to the body [25]. In Section 2.1.3, we
discuss two radar types explored for micro-activity monitoring: UWB and mmWave FMCW
radars. While the core principles of the FMCW radar were covered previously, additional tech-
nical details and implementation results are provided in chapter 4.

Since the Federal Communications Commission (FCC) approved UWB usage in 2002 [161],
it has been widely studied for contactless RR monitoring owing to its ability to penetrate walls
and deliver accurate time-domain measurements [162]. Among UWB-based solutions, the Wal-
abot device has gained attention for its affordability and capability to detect respiratory motion.
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While commonly used for through-wall imaging and construction applications, Walabot’s po-
tential for remote health monitoring has made it a notable candidate for low-cost, non-invasive
RR detection. A detailed discussion of the use and adaptation of the Walabot system is provided
in chapter 4.

2.4.1 Significant Studies and Findings in Radar-Based Micro-Activity Es-
timation

This section provides an overview of state-of-the-art literature on non-invasive micro-activity
monitoring. The discussion highlights key studies, methods, and advances in this field, empha-
sizing their contributions and limitations. In one study, short-range radar technologies were used
for contactless respiration, HR, and stress monitoring [163]. They found that while automotive
radars can estimate vital signs, they are power hungry and optimised for long-range applica-
tions rather than healthcare. Studies also highlight the potential of frequency bands such as the
60 GHz and 122 GHz ISM bands for FMCW and UWB radar-based monitoring, while high-
frequency CW refractometers (75–110 GHz) present challenges in interference and harmonics,
necessitating mmWave FMCW radar and ML techniques for improved estimation [164].

Other studies, such as those by [165], emphasize the challenges of separating the RR from
HR signals and reducing motion artifacts, which require advanced signal processing techniques.
One study reviewed non-contact sensors, including microwave radar and Doppler-based sys-
tems, which enhance robustness and efficiency, but still struggle with motion artifacts [166].
FMCW radar and wireless sensing show promising results but highlight classification and inter-
ference challenges. Beyond radar, alternative technologies such as thermal imaging, lasers, and
ultrasound have been studied, but they often suffer from sensitivity to movement or inefficiency
in HR detection. Emerging methods, such as airflow-based acoustic sensing, provide novel ap-
proaches for sleep monitoring, but require further validation [167]. A comparative overview of
micro-activity monitoring studies is presented in Table 2.6, highlighting key differences based
on radar type, experimental setup, and limitations.

2.4.2 Research Gap

Although significant progress has been made in micro-activity monitoring using radars, there
are still some research gaps. Most existing studies focus either on UWB or FMCW radars, with
limited comparative analysis under standardised conditions [25, 169]. This thesis bridges this
gap by using and comparing these two types of radar and taking advantage of their strengths in
vital sign monitoring. Moreover, previous studies have mainly focused on sitting or lying posi-
tions and ignored standing positions, which are essential for practical applications, as illustrated
in Table 2.6. This thesis addressed this limitation by incorporating experiments with standing
subjects. Furthermore, this thesis provides a detailed comparison of signal processing tech-
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Table 2.6: Comparison between contactless micro-activity monitoring systems based on radar
type.

Ref. Radar Type Subject Position Distance Radar Position Key Outcomes Limitations

UWB FMCW Sit Lying

[168] ✓ – ✓ ✓ 0.5-1.5
m

Towards chest,
Beside the bed

Achieved high accuracy with
an average MAE of 0.73
BrPM across three studies.

Sensitive to body movements,
resolution/granularity, and ir-
regular breathing.

[169] ✓ – ✓ – 1.7 m 3 radars at equi-
lateral triangle
vertices

Average HR accuracy of
94.3% across six body orien-
tations.

Orientation dependence,
static postures, setup com-
plexity.

[170] ✓ – ✓ – 1.1 m Positioned
aimed towards
upper body

CNN-based method achieved
an average RMSE of 20.6 ms
for HR.

Synchronization dependency,
static scenario, fixed radar po-
sition.

[171] ✓ – ✓ – 0.5-3 m Directly to-
wards subject
chest

Eigenvalue improved the
SNR: +12 dB for RR and +18
dB for HR. HR achieved an
error of 2.56% compared to
reference.

Synchronization dependency,
static scenario, noise removal
dependency, fixed radar posi-
tion.

[172] ✓ – ✓ – 0.6-1 m In front of sub-
ject Positioned
towards chest

Average HR detection accu-
racy of 89%, 100% accuracy
for RR detection in 3 out of 4
subjects

Short Distances, Static sce-
nario, fixed radar position

[173] ✓ – ✓ – 1-1.5 m In front & back
of human torso

Average HR detection accu-
racy of 98.5%, accurate 2D
localization and vital sign
monitoring

Short Distances, Static sce-
nario, fixed radar position,
Complex Setup

[174] ✓ – ✓ ✓ 20 cm Front of bed
positioned to-
wards abdomen

RR: 95.02%, MAE of 0.2297
brpm

Short Distances, Static sce-
nario, fixed radar position

[175] – ✓ – – 2-4 m single radar in
front of subject

RR: 12 and 16 Brpm, HR:
70 and 80 Bpm compared to
ground truth

One scenario, one radar posi-
tion resolution limits

[176] – ✓ – ✓ 2 m Radar mounted
on the ceiling
above the bed

Achieved an average of
96.30% accuracy with 1.03
MAE for HR, 1.41 for RR

One radar position, only one
distance, limited study group

[25] – ✓ – ✓ 1.7 m Radar mounted
on the ceiling
above the bed

HR: Achieved an average of
80% accuracy, RR: 94% ac-
curacy correlation with refer-
ence

One radar position, single
setup, only one individual

[177] – ✓ ✓ – 1 m In front of sub-
ject

RMSE: 1.5 Bpm for HR, and
1 Brpm for RR

One radar position, single
setup, subject variability

[178] – ✓ ✓ – 1 m In front of
seated subject

Using CS-OMP and RA-
DWT algorithms obtained
93% accuracy

One radar position, single
setup, limited validation

[179] – ✓ ✓ – 30 cm In front of
seated subject
towards chest

21.3 Brpm for RR and 72.6
Bpm for HR, with minimal
distortion using DC offset
calibration

One radar position, single
setup, short distance

[180] – ✓ ✓ – 0.5-1.5
m

In front of
seated subject
towards chest

HR: 96% (0.5 m), 94% (1
m),92% (1.5 m) and for RR:
97% (0.5 m), 95% (1 m), 94%
(1.5 m)

Single setup, controlled envi-
ronment

niques for UWB and FMCW radar data, and compares these methods with reference sensors.
Research progresses from traditional signal processing for UWB radar demonstration to more
robust and high-data rate and real-time applications using mmWave FMCW radar, providing a
comprehensive and scalable approach for non-invasive R-HARS.
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2.5 Radar-based Human Activity Recognition for Edge De-
vices

In the previous sections, we discussed the rationale for using radar sensing and DL models for
macro-motion classification. While DL has significantly improved classification accuracy, real-
time inference remains a critical requirement for real-world applications. In scenarios such as el-
derly fall detection, industrial safety, and human-computer interaction, activities must be recog-
nised within milliseconds (ms) to enable timely responses and prevent hazardous outcomes.
Traditional cloud-based HARS, however, introduce challenges such as network latency, privacy
concerns, and dependency on internet connectivity, making them unsuitable for time-sensitive
healthcare applications [181].

To address these limitations, edge computing has emerged as a promising solution. By
enabling on-device processing, edge computing reduces inference delays and supports fast, au-
tonomous decision-making [181]. However, deploying DL models on low-power edge devices
presents significant challenges, including computational constraints, memory limitations, and
energy efficiency trade-offs. These challenges are particularly relevant in the context of the IoT,
where the rapid expansion of connected devices has driven the need for efficient ML implemen-
tations on resource-constrained hardware. While many IoT-based HAR applications leverage
ML models for intelligent decision-making, small embedded devices often lack the computa-
tional resources required to run complex DL models effectively.

A key advancement in this domain is TinyML [182], an innovative technology that enables
the deployment of DL models on microcontrollers and other edge devices with stringent re-
source constraints. TinyML facilitates real-time data analysis and inference directly on the de-
vice, eliminating the need to transmit raw data to the cloud. This approach enhances privacy and
efficiency by localising data processing, reducing communication costs, and minimizing security
risks. The integration of edge computing with IoT has opened new possibilities for implement-
ing intelligent HARS at the network edge [181]. Unlike traditional cloud-based ML, which relies
on significant computational power and incurs network delays, edge-based ML processes data
locally, thereby reducing latency and energy consumption. This is particularly advantageous for
applications such as smart home automation, healthcare monitoring, and industrial automation,
where real-time responses and uninterrupted operations are critical.

Several studies have explored the deployment of DL models for real-time R-HAR on edge
devices, addressing challenges related to computational efficiency, energy consumption, and
inference speed. One study proposed Mobile-RadarNet [183], which is a lightweight CNN
optimised for low-power edge devices. Using depth-wise separable convolutions significantly
reduces computational complexity while achieving 97.31% accuracy and 91% accuracy for un-
seen subjects. Deployed on a Hisilicon Kirin 710F ARM processor with TensorFlow Lite, it
delivers inference 3× faster than 1D-CNNs and 23× faster than 2D-CNNs, with a 15× reduction



CHAPTER 2. LITERATURE REVIEW 40

in parameters and 40× lower computational cost. These results confirmed that Mobile-RadarNet
is an efficient and scalable solution for R-HAR on edge devices. Similarly, another study de-
veloped an edge deployable DNN model that processes range-doppler maps from FMCW radar
signals in real time [184]. Their study demonstrated the feasibility of recognising an on-device
five human activity, achieving 93.2% accuracy with an inference time of 2.95 seconds on a
Raspberry Pi 4.

In addition to CNN-based models, hybrid architectures that combine CNNs and recurrent
networks have demonstrated improved performance for sequential radar data. One study intro-
duced tinyRadar [185], a system that integrates an LSTM network with CNN-based feature ex-
traction to classify multi-target human activities in real time. This approach effectively captures
the spatial and temporal dependencies in radar-based spectrograms, achieving 93% accuracy
while operating within 10 ms per frame on a Raspberry Pi 4. Similarly, another study extended
the tinyRadar framework for gesture recognition by leveraging hardware accelerators and quan-
tised DL models to optimise the power consumption below 80 mW, making it ideal for HAR
applications [186].

Despite these advancements, transitioning DL models from high-performance cloud envi-
ronments or server-based training to low-power edge devices presents several challenges:

• Preserving classification accuracy while reducing model size and computational complex-
ity.

• Optimising DL models for inference to meet real-time requirements on embedded radar
devices.

• Minimising energy consumption to ensure efficient deployment in portable or battery-
powered systems.

To overcome these challenges, researchers have focused on developing lightweight DL archi-
tectures or employing model compression techniques [187]. These methods aim to maintain
classification accuracy while minimising model size, computational complexity, and energy
consumption, thereby enabling efficient deployment on resource-constrained edge devices. Ad-
vancements in this area are crucial for ensuring that DL models can operate effectively in real-
time applications. Addressing these challenges is a major contribution of this thesis, and is
further explored in chapter 5.

2.5.1 Model Complexity in Deep Learning

The model complexity in R-HARS is determined by factors such as model size, number of
parameters, and computational requirements, all of which directly impact the feasibility of de-
ploying models on resource-constrained edge devices [188]. Traditional DL models have grown
significantly in size over the years. For instance, AlexNet [189], introduced in 2012, contained
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60 million parameters, whereas VGG-Net [147], published in 2013, expanded to 133 million
parameters, achieving 71.1% top-1 accuracy. These models were developed for the ImageNet
Large Scale Visual Recognition challenge (ILSVRC) [190], where the primary evaluation met-
ric was the top-1 absolute accuracy, with little consideration of execution time or computational
efficiency. This focus on accuracy alone led to neural network architectures with significant
redundancy in their designs.

As DL models continue to evolve, modern architectures have reached unprecedented scales,
with some models exceeding 175 billion parameters as of 2020 [191]. While such large-scale
models are well suited for cloud-based data centers, they are impractical for real-time edge
computing applications, where computational resources, power, and memory are severely con-
strained. To address these limitations, researchers have developed reduced-parameter mod-
els that maintain competitive accuracy, while being computationally efficient. For example,
GoogLeNet [192] achieves an accuracy comparable to that of VGG-16 (69.78% top-1 accuracy),
but with only seven million parameters. Similarly, MobileNet [183], designed specifically for
mobile and edge computing, achieves 70% top-1 accuracy while containing just 4.2 million pa-
rameters and requiring only 1.14 Giga Floating-points (GFLOPs). These developments highlight
the growing need for efficient model architectures that balance the accuracy and computational
feasibility, particularly for edge-based HAR applications.

However, while MobileNet and similar lightweight models are optimised for mobile and
edge computing [183], they become significantly larger and computationally expensive when
trained on radar data representations, such as TF maps. These models consume more memory
and energy during inference, making them less suitable for direct deployment on low-power
edge devices. Addressing this challenge is the key focus of this thesis, as detailed in chapter
5. To address this issue, various model compression techniques have been explored to reduce
the complexity of DL models, facilitating their efficient deployment on resource-constrained
devices, while preserving the classification accuracy:

• Model Pruning: Model Pruning is a technique that reduces model complexity by remov-
ing redundant parameters, thereby minimizing memory usage and computational load. It
achieves this by selectively eliminating weights or neurons that contribute minimally to
the model predictions. Two primary types of pruning exist: Structured pruning removes
all neurons, channels, and layers while preserving the overall architecture of the model,
while Unstructured pruning removes individual weights based on their magnitude, result-
ing in a sparse model [187].

• Knowledge Distillation: Knowledge Distillation is a method used to compress DL mod-
els. It works by transferring knowledge from a large, complex model (called the “teacher”)
to a smaller, simpler model (called the “student”). This allows the student model to per-
form almost as well as the teacher model while using much less computational power and
time. Unlike regular training, which uses only hard labels (like “class A” or “class B”),
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knowledge distillation uses the teacher’s “soft probabilities”. These probabilities provide
more detailed information regarding how the teacher model views the relationships be-
tween classes. This extra detail helps the student model to learn better and becomes more
accurate and robust. However, achieving high accuracy when compressing the model
is still difficult, particularly if knowledge distillation is used alone without other tech-
niques [187].

• Quantisation: Quantisation is a popular technique for making DL models faster and re-
quires less memory. It converts high-precision numbers (such as floating-point values)
into simpler low-bit integer formats [193]. There are two types of quantisation: quantisa-
tion aware training (QAT) and post training quantisation (PTQ).

– QAT includes quantisation during the Training process. This helps the model adapt
to lower precision while it learns, thereby reducing the accuracy loss that usually
occurs with quantisation. QAT is especially useful for models that require high pre-
cision, such as those that use less than 8-bit representations. However, QAT requires
retraining of the model with simulated quantisation, which can be slow and compu-
tationally expensive [194].

– PTQ applies quantisation after the model is already trained without changing the
model’s weights. This makes PTQ faster and easier to use, particularly for deploy-
ing models on edge devices or in real-time applications. Some models may lose
their accuracy when moving from high-precision floating-point numbers to low-bit
integers [194].

In this thesis, we used PTQ because it allows us to deploy models efficiently on edge devices
without re-training. It also strikes a good balance between computational efficiency and accu-
racy. A detailed explanation of this approach and its implementation are provided in chapter
5.

2.5.2 Limitations and Research Gaps

R-HARS has shown great promise for real-time applications; however, several challenges re-
main, particularly in terms of energy efficiency, privacy preservation, and efficient edge deploy-
ment. Although DL models have been widely used for macro-activity recognition, they are often
too computationally intensive for resource-constrained, battery-operated edge devices, discussed
in Section 2.4. This section outlines the key limitations of the current study and identifies the
gaps addressed in this thesis.

Most R-HAR studies rely on DL architectures, such as CNNs and hybrid CNN-LSTM mod-
els, which achieve high classification accuracy but require millions of parameters. This makes
them impractical for real-time, low-power edge deployments. For instance, a CAE achieved
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94.2% accuracy but was not implemented on edge devices [195]. Similarly, a compact 1D-
CNN reached 95.8% accuracy but did not address real-time embedded inference [196]. More
recent models, such as a CNN-LSTM hybrid (94.75% accuracy, 70M parameters) [127] and a
deep CNN with inception blocks (96.1% accuracy, 365 K parameters) [197], demonstrate strong
classification performance, but remain too large for efficient deployment. Finally, Table 2.7
summarises the contributions and limitations of related work.

Radar sensing offers inherent privacy advantages over camera-based systems, as it does not
capture identifiable images, detailed in Section 2.2. However, deploying radar-based DL models
on edge devices introduces new privacy concerns such as data security and user privacy. Cur-
rent studies often overlook privacy-preserving techniques like differential privacy (DP) [198]
or secure Federated Learning (FL) [199]. Moreover, the processing of radar data on edge de-
vices without robust security mechanisms increases the risk of data leakage. To address these
challenges, this thesis implemented local DP (LDP), ensuring secure and private radar data pro-
cessing directly on edge devices. LDP minimises the risk of sensitive data exposure while main-
taining model accuracy, making R-HARS a privacy-aware and practical solution for real-world
deployment. In addition to privacy preservation, this thesis leverages PTQ to reduce the model
size and computational complexity without sacrificing classification accuracy. The quantised
models are deployed on edge devices, where their energy consumption and power efficiency are
evaluated to ensure their suitability for battery-operated applications.

Despite the potential of combining radar signal representations with model compression
techniques to enhance the efficiency and accuracy in real-time implementations, this area re-
mains underexplored. By integrating PTQ and LDP, this thesis bridges these gaps, enabling an
efficient, privacy-preserving, energy-optimised R-HAR framework tailored for edge devices.

2.6 Summary of Literature Review, Research Gaps, and Link
with challenges

This chapter has examined the evolution of HARS, beginning with an overview of different
sensor modalities, including vision-based, acoustic, inertial, and RF sensors, and progressing
toward the emerging prominence of radar-based approaches. Radar technology has increas-
ingly become a preferred modality owing to its non-intrusive, privacy-preserving nature and
robustness under occlusion, lighting variations, and complex indoor environments. Compared
with vision-based or wearable systems, radar offers the unique advantage of supporting both
macro-activity recognition and micro-physiological monitoring within a single sensing frame-
work. Despite these advantages, the literature reveals several limitations that align with the
three core challenges identified in Section 1.3. Non-intrusive multi-scale monitoring C1 re-
mains a critical challenge in R-HARS, where the effective integration of macro-activity recog-
nition and micro-physiological monitoring is significantly hindered by their divergent temporal-
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Table 2.7: Comparative analysis of recent advances in HARS with contributions and limitations.

Ref Contributions Limitations
[200] Introduces a lightweight DL

and parameter estimation hybrid
model for multi-directional
HAR. TF maps were used for
activity representation, achieving
96.67% accuracy with reduced
complexity.

Lacks edge deployment, real-time infer-
ence. No quantisation or privacy tech-
niques are applied. Focuses solely on TF
maps from the target’s range bin, ignoring
the extended target features and boundary
scenarios.

[201] A lightweight framework for
HAR in wearable devices using
edge computing was developed.
Evaluate DL models on a micro-
controller, optimising with quan-
tisation and model compression.

It uses wearable sensor data (not radar) and
focuses on acceleration data. Lacks PTQ,
LDP, and evaluation of metrics on edge de-
vice.

[202] Developed a cloud-based HAR
and gait monitoring system using
radar. The employed RD maps
and GRU-based DL for real-time
classification achieved 93% accu-
racy in controlled settings.

Lack of standalone edge inference relying
on cloud computing. No PTQ and LDP ex-
plored for real-time systems.

[203] Developed TWR-FMSN, a
lightweight multi-scale neural
network for indoor HAR using
through-the-wall radar, achieving
94% accuracy with 0.6s inference
time.

Despite being lightweight, it lacks edge de-
ployment and real-time inference on em-
bedded hardware.

[204] Fall detection system using
FMCW radar with RD maps, a
Bi-LSTM model, and a two-stage
CNN-based detection process,
achieving 96% accuracy.

Focuses on a single human activity class
with only one radar representation.

[205] Integrates the feasibility of quan-
tizing radar-based HAR models
for edge deployment with min-
imal accuracy loss for efficient,
low-power real-time recognition.

Requires QAT for the best accuracy, but
is time consuming. The accuracy drops
with lower-bit quantisation. Scalability
and real-world edge performance were not
evaluated in this study.

spectral characteristics and environmental clutter. Despite radar advantages in contactless and
privacy-preserving monitoring, existing systems predominantly focus on either macro- or micro-
activity recognition, lacking unified frameworks that effectively bridge these scales for contin-
uous health tracking. The coexistence of these divergent features complicates signal process-
ing because strong macro-Doppler components often obscure the subtle variations required for
micro-activity detection. Current approaches rely heavily on a single radar representation such
as STFT-based maps [90], without systematically evaluating their suitability under overlapping
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motion conditions. This limitation has restricted the exploration of alternative or complemen-
tary domains such as range-Doppler (RD) and SPWVD that might offer advantages in cluttered
environments. Addressing these gaps requires more robust signal processing techniques, fea-
ture extraction strategies, and comprehensive evaluation frameworks that can effectively handle
multi-scale monitoring under realistic conditions.

Data diversity and generalisation C2 presents a fundamental bottleneck in R-HARS devel-
opment, where non-IID radar data across subjects, device configurations, and ambient environ-
ments significantly degrades model generalisation in real-world, unconstrained settings [26].
Conventional ML methods, such as SVM and KNN, have shown limited success owing to their
heavy dependence on manual feature engineering, resulting in brittle performance under dy-
namic contexts [107]. Although DL approaches, particularly CNNs, have improved classifica-
tion accuracy, they remain prohibitively data-intensive in radar settings where large, labelled
datasets are difficult to acquire. The TL approach has emerged as a promising solution to mit-
igate data scarcity; however, there is a critical lack of systematic comparative analysis on how
different radar domain representations influence TL effectiveness [119]. This field suffers from
insufficient evaluation across multiple radar signal representation types, carrier frequencies, and
feature encodings, which has impeded the development of scalable R-HARS solutions. This
research gap restricts progress toward building truly generalisable systems capable of adapt-
ing across domains, frequencies, and user populations without extensive retraining, ultimately
limiting widespread practical deployment.

Energy efficiency and edge deployment C3 present a substantial barrier to the practical im-
plementation of R-HARS in resource-constrained environments. While DL models achieve high
accuracy for macro-activity recognition, they impose prohibitive computational, memory con-
straint, and power demands that limit deployment on low-cost battery-operated platforms, such
as IoT nodes, Raspberry Pi, or Jetson Nano. Recent advances in TinyML, model compres-
sion techniques, and efficient architectures such as MobileNet [183], offer promising pathways
forward, yet their integration into radar-specific processing pipelines remains severely limited.
Although radar systems provide inherent privacy advantages over vision-based alternatives, the
on-device processing of sensitive behavioural and physiological data still necessitates robust
privacy-preserving mechanisms such as LDP, which are rarely considered in current implemen-
tations. This critical gap in lightweight, quantised, and privacy-aware DL frameworks specif-
ically designed for radar data significantly hampers the feasibility of deploying R-HARS at
scale in real-world healthcare and AAL scenarios, despite their potential to transform continu-
ous monitoring applications. Furthermore, the fundamental trade-off between model complexity
and communication efficiency presents an ongoing challenge: complex models enhance recogni-
tion accuracy but correspondingly increase communication overhead, whereas simplified models
may compromise performance. Consequently, innovative optimisation strategies are imperative
to effectively balance these competing demands, particularly for resource-constrained edge de-
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vices operating in dynamic monitoring environments.
In summary, addressing the core challenges in HAR requires innovative frameworks that

effectively handle radar data diversity and domain adaptation without increasing computational
overhead while simultaneously enhancing privacy preservation and optimising model complex-
ity for deployment on resource-constrained devices. This thesis addresses these critical gaps
through contributions that collectively advance the real-world viability of macro- and micro-
activity monitoring systems by enhancing their accuracy, adaptability, efficiency, and privacy-
preservation capabilities. The proposed solutions make R-HARS more practical for widespread
implementation in healthcare, AAL settings, and intelligent environments without compromis-
ing performance or user privacy, ultimately bridging the gap between laboratory demonstrations
and practical sustainable deployment in everyday settings.



Chapter 3

Macro-Activity Recognition Using FMCW
Radar Signals

This chapter presents the first core contribution of this thesis, focusing on improving radar-based
macro-activity recognition by addressing challenges C1 and C2, outlined in Section 1.3. This
study develops a framework that transforms a single radar signal into multiple domain repre-
sentations, each capturing different aspects of range, velocity, and frequency information. This
approach leverages the inherent diversity and complexity of radar data to enhance model stability
and performance. By integrating transfer learning models, the framework aims to improve clas-
sification accuracy and generalisation across subjects under non-IID conditions. The evaluation
uses subject-wise validation and performance metrics, such as classification accuracy, inference
time, and preprocessing cost, to guide the selection of effective domain-model combinations for
robust, non-intrusive activity monitoring.

3.1 Introduction

Radar-based macro-activity has become an important technology for ensuring human safety and
well-being, especially in scenarios that require continuous monitoring and assessment [80]. One
of the main advantages of radar systems is their ease of use, as they require little preparation or
cooperation from the monitored person [206]. Radar sensors are non-intrusive devices that can
penetrate opaque objects such as walls and furniture, making them effective even in obstructed
environments [207].

The effectiveness of R-HARS depends heavily on preprocessing radar echoes into 2D sig-
nal representations such as range-time (RT), range-Doppler (RD), and time-frequency (TF)
maps [204]. These representations are crucial for extracting meaningful features to improve
recognition accuracy and reliability. Conventional preprocessing methods, such as applying
range fast Fourier transform (R-FFT) to generate RT maps, provide a spatial representation of
the target’s movement over time and range. However, these RT maps lack Doppler information,

47
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making them less effective in capturing fine motion details such as slight limb movements or
Doppler changes. To overcome this limitation, we perform additional Doppler FFT on slow-
time samples (across multiple chirps) after the R-FFT, resulting in RD maps. These RD maps
encode both range and Doppler (velocity) information, providing richer insights into motion
dynamics and enabling better discrimination of activities based on velocity profiles.

TF representation further enhances R-HAR by capturing the Doppler variations over time.
In this regard, two widely used Doppler analysis techniques are linear and quadratic methods.
Linear TF analysis, such as STFT, provides a clear and interpretable representation of the time-
varying frequency content but is limited by its fixed window length, resulting in a trade-off
between time and frequency resolution. On the other hand, quadratic methods, such as Wigner-
Ville distribution (WVD) [102] and its subset SPWVD provide higher resolution in both time
and frequency domains. While WVD provides powerful TF aggregation, it suffers from cross-
term interference, making it less suitable for complex multi-component signals. SPWVD is an
improved version of WVD that effectively suppresses cross-term interference while maintaining
a high-resolution TF representation. In this study, both STFT and SPWVD are used to generate
a TF representation, providing insight into the time-varying Doppler shift. While STFT provides
a simpler and more computationally efficient representation, SPWVD can capture finer motion
details but is computationally more expensive, potentially limiting real-time feasibility.

Furthermore, seamless integration of radar with ML models enables recognition, detection,
and classification of human activities. R-HARS have transitioned from traditional ML to DL,
significantly improving feature extraction and generalisation capabilities. CNNs, known for
their hierarchical feature extraction capabilities, have become the foundation of modern HARS,
effectively processing radar images to capture complex activity details that were previously
difficult to extract manually [108]. While early studies explored traditional ML methods, recent
advances have shifted to DL applications on radar datasets [103].

However, a major challenge facing R-HAR is the limited availability of labelled training
data, which can hinder the effectiveness of DL models. To address this issue, we utilise transfer
learning (TL) method [138] to leverage pre-trained models on large-scale datasets to improve
recognition performance and reduce the need for large amounts of labelled radar data. For
macro-activity monitoring, it is critical to address the challenges associated with different radar
domain representations and optimise TL models for activity classification.

A notable example of DL is the fall detection system proposed in [208], which employs
a contactless impulse radio ultra-wideband (IR-UWB) radar sensor and a CNN model. Their
framework effectively distinguishes between “fall” and “non-fall” activities of daily living (ADL),
protecting the privacy and comfort of the user, while achieving an impressive 96% test accuracy.
However, their approach converts the radar signal into a single-channel grayscale image be-
fore feeding it into the CNN model for classification. We argue that ignoring the multi-domain
radar information and reducing it to a single grayscale image may limit the model’s ability to
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capture essential activity features. This study explores alternative preprocessing strategies, in-
cluding leveraging multi-domain radar representations, to enhance classification performance
and robustness in HAR applications. This study not only benchmarks the performance of tradi-
tional radar preprocessing methods but also explores their integration with advanced TL mod-
els, providing a unique perspective for optimising the accuracy and computational efficiency of
radar-based macro-activity recognition.

3.2 Contributions

This study aims to comprehensively evaluate different radar domains using FFT and its cor-
responding preprocessing techniques to improve HAR performance. Unlike previous studies
that focus on a single radar domain or preprocessing method [23, 93], our work systematically
compares the extraction and communication of essential features from raw radar data. To this
end, the radar domain representation is converted into image format and analysed using different
CNNs models trained specifically on radar data. This work addresses a significant gap in the lit-
erature by integrating four distinct radar domain representations in a single study and evaluating
them using various state-of-the-art DNN models. We focus on understanding how these tech-
niques convey features from raw radar data and influence the model’s ability to classify human
activities.

The primary contributions of this study are summarised and elaborated as follows:

• A detailed computational evaluation of four radar domain representations, such as RT, RD,
TF using STFT, and SPWVD is performed, along with their preprocessing techniques and
computational costs. This evaluation provides insights into the computational require-
ments and feature extraction capabilities of each domain, enabling the selection of the
best representation for a specific HAR application.

• The feature extraction capabilities of each radar domain are benchmarked by analysing
how they convey features from raw radar data using a baseline CNN trained from scratch.
This baseline serves as a reference for evaluating the effectiveness of TL models and high-
lights the strengths and limitations of each preprocessing method in capturing essential
activity features.

• A key contribution of this study is the application of advanced TL models to minimise
the misclassification of falls, which is particularly important indicator for elderly care. By
leveraging the advantages of TL models, we improve the reliability of fall detection and
reduce false alarms, thereby improving the overall safety and effectiveness of the system.

• A comprehensive comparative analysis of the computational cost and recognition per-
formance of various combinations of radar preprocessing techniques and TL models is
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performed. The analysis identifies the most effective and efficient methods for real-time
HAR applications, striking a balance between accuracy and computational feasibility.

• The cross-frequency generalisability of the optimal radar domain model pairs was vali-
dated using two additional publicly available FMCW radar datasets operating at 24 and
77 GHz. This validation demonstrates the robustness of the proposed approach across
diverse radar-sensing technologies and confirms its applicability to various radar-based
macro-activity systems, regardless of the operating frequency.

3.3 System Model for Macro-Activity Monitoring

This section introduces the system model underlying the proposed approach for R-HAR. The
model comprises three core components: radar data acquisition, signal preprocessing through
multiple domain transformations, and DL-based classification. It was specifically designed to
support robust macro-activity recognition under indoor conditions using FMCW radar signals.
Fig. 3.1 presents the data processing pipeline for macro-activity recognition, outlining the key
stages from data acquisition to radar signal preprocessing and dataset preparation. The figure
illustrates how raw FMCW radar signals are transformed into four distinct domain representa-
tions: RT, RD, TF-based STFT, and SPWVD maps, each capturing unique aspects of human
activities. These processed radar maps form the input to several CNN models, including a
baseline CNN and several TL models, which are evaluated for their effectiveness in classifying
macro-activities. The following subsections describe each component of the processing pipeline
in detail.

Figure 3.1: The workflow illustrates the radar data preprocessing flow, resulting in four distinct
maps.

3.3.1 Radar Data Acquisition

This section outlines the radar data acquisition process, first focusing on the rationale for dataset
selection, followed by the radar system used to collect the data. As the dataset forms the basis for
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subsequent preprocessing and classification tasks, it is essential to understand both the context
in which it was collected and the raw signal structure, which concludes with an intermediate
frequency (IF) signal.

The Dataset

Despite the significant progress in R-HAR, a major limitation is the lack of large, standardised
dataset for benchmarking classification algorithms. Most studies rely on proprietary datasets,
which are typically collected using different radar sensors and involve a small, homogeneous
group of participants, typically students. Such datasets limit the generalisability of DL models,
as they may not represent realistic variations in human motion, environmental conditions, or
population diversity. To address this issue, the radar community is increasingly advocating
for open datasets, similar to what is done in image and audio processing. Efforts such as the
Open Radar Initiative and classification challenges at major radar conferences (e.g., IEEE Radar
Conference 2022 and IET Radar Conference 2020) encourage the public release of R-HAR
datasets [209]. Some of the most widely used datasets include the following:

1. The Open Radar Initiative was presented at the 2021 IEEE Radar Conference to promote
the sharing of datasets for algorithm benchmarking [209].
Available: https://doi.org/10.1109/RadarConf2147009.2021.9455239

2. The “Radar Signatures of Human Activity” published by the Communication Sensing and
Imaging Group at the University of Glasgow (UoG) is one of the first publicly shared
datasets in R-HAR, with over 100 downloads [210].
Available: https://researchdata.gla.ac.uk/848/

3. The DopNet dataset published by UCL Radar Group focuses on human gestures for
human-computer interaction [211]. Available:https://github.com/UCLRadarGroup/DopNet

4. The PARrad dataset released by the University of Ghent focuses on recording patient
activities in hospital environments [212]. Available: https://sumo.intec.ugent.be/parrad

5. The Radar Computational Intelligence Laboratory at the University of Alabama provides
several datasets for research purposes [213]. Available: https://github.com/ci4r

For this study, we selected the radar dataset from the UOG (item 2 in the above list). This
dataset forms the basis of all experimental work on macro-activity recognition presented in this
chapter and is also used in Chapter 5 for edge-optimised inference. The following sections
describe how the dataset was preprocessed, partitioned using subject-based splits, and used to
train and evaluate a range of DL models across multiple radar domain representations. Table
3.1, provides an overview of the activity classes in the dataset, including the number of samples
and their respective durations. Despite the limited number of activity types, the dataset offers
several unique advantages, which are discussed in detail below:

https://doi.org/10.1109/RadarConf2147009.2021.9455239
https://researchdata.gla.ac.uk/848/
https://github.com/UCLRadarGroup/DopNet
https://sumo.intec.ugent.be/parrad
https://github.com/ci4r
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Table 3.1: Description of macro-activity classes in the UoG radar dataset.

Short Name Activity Description Samples Duration
A1 Walking back and forth 312 10 s
A2 Sitting on a chair 312 5 s
A3 Standing up 311 5 s
A4 Bend to pick an object 311 5 s
A5 Drinking water 310 5 s
A6 Fall 198 5 s

• First, the dataset included recordings from actual nursing home residents collected in their
natural living environments and additional data from students and staff collected in lab-
oratory settings. Specifically, nursing home residents were recorded at the Glasgow NG
Nursing Home (three rooms) and the West Cumbria Elderly Centre (two rooms), while
student and staff data were collected at the UoG laboratories, common rooms, and MAST
labs. This environmental diversity introduces variations in background clutter (e.g. fur-
niture and walls) and radar-to-subject distance, which are critical factors affecting radar
signal quality. Unlike conventional datasets collected under strictly controlled laboratory
settings [213], this setup captured more realistic variability. Consequently, it provides a
valuable test bed for evaluating the model robustness under non-IID conditions, which is
one of the key challenges addressed in this study.

• Second, the dataset comprised recordings from 105 subjects, including 26 female par-
ticipants, with ages ranging from 21 to 98 years. This demographic diversity allows for
the analysis of variations in gait and activity patterns across different age and sex groups,
which are often under-represented in datasets composed primarily of younger individu-
als [22]. Although the dataset contains 1,754 samples, which is relatively small compared
to those used in wearable sensor research, it still provides a valuable contribution to R-
HAR by capturing the inter-subject variability that is critical for developing generalisable
models.

Radar Configuration and Signal Characteristics

The dataset was collected using a commercial off-the-shelf (COTS) FMCW radar model 580-B
from Ancortek. The system operates at a center frequency of 5.8 GHz with a chirp bandwidth
of 400 MHz, providing high-resolution range and Doppler information. The experimental setup
uses two Yagi antennas, one for transmission and one for reception, with a gain of approxi-
mately +18 dBi for each antenna. Both antennas are identical −17 dBi Yagi models, ensuring
consistent signal transmission and reception characteristics [210]. The raw radar data consists of
de-chirped complex beat frequency samples with 128 in-phase (I) and quadrature (Q) samples
per chirp. These I and Q samples are essential for capturing amplitude and phase information,
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allowing for detailed analysis of the radar signal. At this stage, the data is considered as “raw”,
because no preprocessing has been applied. Detailed radar parameters for the dataset are pro-
vided in the Table 3.2.

Table 3.2: FMCW radar parameters set during data collection.

Radar Parameters Values
Duration of 1 chirp 1 ms
ADC samples per chirp 128
Pulse-repetition Factor (PRF) 1 KHz
Range Resolution 37.5 cm
Doppler Resolution 1.25 Hz
Velocity Resolution 3.2 cm/s2

Max Doppler frequency ( fdmax) 500 Hz
Max Range (Rmax) 24 m

The working principle of the FMCW radar system is explained in Section 2.1.3. Briefly, the
IF signal is obtained by mixing the transmitted signal with the conjugate of the received sig-
nal, followed by low-pass filtering and digitisation via the radar’s onboard ADC. The resulting
complex IF signal contains beat frequency information and is expressed as,

IF(t) = e j(2π fdt+φb), (3.1)

where φb = 2π fcτd is the phase term, which represents the phase difference between the trans-
mitted and received signals. This IF signal is then demodulated to obtain the I/Q components,
from which the range and Doppler information are extracted. Thus, the dataset consists of radar
data matrices rich in spatio-temporal information, forming the input for the subsequent prepro-
cessing and classification stages.

3.3.2 Radar Data Preprocessing

Human activities exhibit complex spatiotemporal signatures that cannot be fully captured by a
single radar domain. To address this, raw radar signals are transformed into three complementary
2D representations: RT, RD, and TF domains. Each of these domains captures a different aspect
of human motion. The RT maps provided spatial positioning and coarse movement patterns over
time. RD maps emphasise velocity characteristics through Doppler shifts, whereas TF maps
highlight periodic or transient motion through time-varying spectral analysis. As illustrated in
Fig. 3.1, this multi-domain approach enables CNNs to extract hierarchical and cross-domain
features that are otherwise inaccessible through a single representation. By integrating these
perspectives, the system becomes more robust to variations in viewpoints, partial occlusions, and
ambiguous motion patterns, which are common challenges in real-world deployment scenarios.
The preprocessing pipeline ensures that each domain preserves essential motion dynamics while
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effectively reducing background noise, thereby producing optimal inputs for DL based macro-
activity recognition.

R-FFT for RT Domain

The IQ components of the IF signals undergo several processing steps to enhance their quality
and accurately represent human activity. Initially, these signals are combined to form a complex
digital signal y[n] = I[n]+ jQ[n], where j is the imaginary unit, detailed in Section 2.1.3. The
complex signal is then reshaped into a 2D matrix to align the data for subsequent processing
steps.

The process begins by applying the Hamming window to minimize spectral leakage, fol-
lowed by conducting an FFT on the fast-time axis (also referred to as the number of ADC
samples per chirp) to extract range information over time, known as R-FFT or range profile.
The range profile Xn[k], for chirps n = 1,2, ....,Ntot (Ntot is the total number of chirps), is defined
as the DFT of y[i] [95]. For the presence of a target, we examine the peaks in the magnitude of
Xn[k], which is acquired via DFT as:

Xn[k] =
N

∑
i=0

w[i]yn[i]e− j2π
ki
N , (3.2)

where N = 128 is the number of ADC samples of the received IF signal yn for chirp n, k shows
the frequency bin, and w shows the window function, which is hamming in our case.

The RT domain reflects the time-varying range information between the radar and the target.
A filter called a moving target indicator (MTI) detects only moving targets and effectively re-
moves any clutter or stationary objects from the radar signal. The MTI filter was designed as a
fourth-order Butterworth high-pass filter with a cut-off frequency of 0.0075 Hz. After applying
the MTI filter, relevant range bins corresponding to the target’s expected range are extracted,
and the data are further processed to generate the RT map. The filtered RT map now provides
a clearer representation, as shown in Fig. 3.2, by eliminating background noise and focusing
on target movement. This graphical representation shows how the signal amplitude varies over
time and range, effectively visualising the target’s movement.

Once the RT map is generated, it is used as one of the preprocessed input for the DL models.
By visually inspecting these maps, we identified the range bins of interest k∗, where the targets
are predominantly detected. Additionally, only the range bins of interest, specifically from 5 to
25 (1.8 m to 9.3 m), where the subjects are detected, are selected. These selected bins form the
basis for subsequent RD and TF analysis using STFT and SPWVD techniques.
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(a) Walking towards and away
from radar

(b) Sitting

(c) Standing (d) Picking up an object

(e) Drinking water (f) Fall

Figure 3.2: The RT maps of a young adult performing different activities.

RD Domain

After performing the FFT and obtaining the RT Map, the next step was to extract Doppler
information. This is achieved by applying a second FFT across the chirp dimension (slow-
time axis) for each range bin, which is also known as Doppler-FFT (D-FFT). The result reveals
the Doppler shift, a frequency shift caused by the relative motion of the target with respect
to the radar. The Doppler shift is proportional to the target’s velocity. The D-FFT is performed
independently for each range bin, resulting in a 2D matrix called the RD Map. The mathematical
representation of D-FFT is [214]:

D[m, l] =
M−1

∑
n=0

XMTI[m,n]e− j 2π

M ln (3.3)

Hence, D[m, l] represents the RD domain, m is the range bin, and l is the Doppler frequency
bin. XMTI[m,n] is the output of the R-FFT and MTI filtering for the mth range bin and nth chirp,
and M is the number of chirps. Each column in the resulting RD matrix corresponds to a single
Doppler bin for all chirps, and each row represents a specific range bin. The RD maps for
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different macro-activities are shown in Fig. 3.3, and is used as input to the CNN, which serves
as the second radar domain representation method after RT map, as illustrated in Fig. 3.1.

(a) Walking towards and away from
radar

(b) Sitting

(c) Standing (d) Picking up an object

(e) Drinking water (f) Fall

Figure 3.3: The RD maps of a young adult performing different activities.

STFT-Based TF Domain

To obtain a TF-based radar representation of the macro-activity, we employed the STFT tech-
nique. In particular, the STFT employs a Hann window of size 200, with the FFT incorporating
800 sampling points, a zero padding factor of 4, and a 95% overlap between consecutive frames
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(i.e., 190 samples). This approach balances frequency and time information, resulting in a 2D
image, as shown in Fig. 3.4. The mathematical equation of the STFT applied to the selected
range bins of interest k∗ from the range profile Xn[k∗] is given by:

Θ[m, f ] =
∞

∑
n=−∞

Xn[k∗]gs[n−mR]e− j2π f n. (10)

Where k∗ denotes the range bins of interest (5 to 25), and gs represents the window function,
which is a Hann window with a segment length of s = 200 samples and a hope size of R = 10
samples. The TF spectrograms which were generated by taking the magnitude of Θ[m, f ], are
shown in Fig. 3.4. The TF resolution of the STFT domain is contingent upon the selection of

(a) Walking towards and away
from radar

(b) Sitting down

(c) Standing (d) Picking an Object

(e) Drinking water (f) Fall

Figure 3.4: The TF maps based on STFT of a young adult performing different activities.

the window function. An extended window increases the frequency resolution, but a reduced
window maximises the time resolution. As a result, the STFT experiences a trade-off, rendering
it unable to achieve high resolution in both the time and frequency domains concurrently.
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SPWVD-Based TF Domain

Since STFT is limited by non-independent time and frequency windows, SPWVD provides a
more sophisticated approach to TF analysis by utilising independent windows. SPWVD is a
subset of the WVD, which offers a high TF resolution but suffers from cross-term artifacts. SP-
WVD addresses this limitation by applying smoothing operations in both the time and frequency
domains, effectively eliminating the cross terms in both dimensions. This dual smoothing opera-
tion makes SPWVD advantageous for WVD by providing a cleaner TF representation. SPWVD
is also applied to the extracted range bins of interest, Xn[k∗], and is mathematically expressed as
follows [215]:

Θ[m, f ] =
+∞

∑
n=−∞

+∞

∑
τ=−∞

X
(

k∗+
τ

2
,n
)

X
(

k∗− τ

2
,n
)
×h(τ)w(n−m)e− j2π f τ (11)

Here,± τ

2 , represents the symmetrical time shifts used for cross-term smoothing in the SPWVD.
For the frequency smoothing window h(τ), we employed a Hann window with a length of 15,
whereas for the time smoothing window w(n−m), we used a Kaiser window with a length
of 25, and m is the time index. To further reduce artifacts and avoid intensity spikes, the SP-
WVD outputs were normalized by the number of range bins. This comprehensive approach
provides detailed SPWVD-based TF representations, as shown in Fig. 3.5. For dimensional-
ity reduction, we apply Doppler spectrum band-limiting to remove out-of-band noise, retaining
only the reduced portion of the Doppler axis between normalised frequencies. Specifically, for
the STFT, we maintained the range between [-0.1, 0.1] Hz, whereas for the SPWVD, the range
was adjusted to [-0.3, 0.3] Hz. These frequency bands were identified and selected by visually
inspecting the maximum significant extent of the Doppler spectra for the specific radar repre-
sentations.

One of the objectives of this study is to evaluate the applicability of the SPWVD as a spec-
trogram technique and to examine its characteristics to determine the potential benefits for effi-
cient HARS. Therefore, integrating these four domains, utilising their respective strengths, and
addressing their challenges are essential to improve the performance of the R-HARS. This com-
prehensive approach ensures that the data fed into the CNN architectures are well suited for
learning and recognising activity-specific features, thus achieving a balance between processing
efficiency and performance accuracy.

3.3.3 Dataset Settings and Splitting

A critical aspect of this study is the careful division of the dataset into training, validation, and
testing sets to avoid data leakage, which is a common issue that can lead to inflated performance
metrics. In contrast to the typical 80-20% random split used in other studies [28], where repe-
titions of the same activity by the same subject may appear in both training and testing sets, we
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(a) Walking towards and away from
radar

(b) Sitting down

(c) Standing (d) Picking an object

(e) Drinking water (f) Fall

Figure 3.5: The SPWVD-based TF maps of a young adult performing different activities.

opted for a subject based split, as illustrated in Table 3.3. This ensured that the subjects used for
testing were entirely different from those used in training, thus preventing the model from mem-
orising specific patterns associated with particular individuals rather than learning to recognise
the activities. Each subject performed the same activity three times; thus, it is, crucial to split
the dataset in such a way that all repetitions from a single subject for a particular activity are
confined to a single set. This methodology ensures that the model’s performance is evaluated on
truly unseen data, thereby providing a more accurate assessment of the model’s generalisability.

3.4 Deep Learning for Macro-Activity Recognition

In this section, we present our DL framework for macro-activity recognition using radar data.
We explain the models used, the optimisation strategies applied, and how these methods improve
the classification accuracy using each radar data representation. The workflow of the DL for R-
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Table 3.3: Subject-based dataset splitting.

Total Split Subjects

105 Subjects Training (75%) 79 Subjects
*Remaining (25%) 26 Subjects

*Remaining (25%) Validation (75%) 19 Subjects
Testing (25%) 7 Subjects

Classes Short Name Training Samples
Walking back and forth A1 232
Sitting on a chair A2 234
Standing A3 234
Picking up an object A4 232
Drinking A5 234
Fall A6 120
Training 1286 Samples
Validation 336 Samples
Testing 126 Samples

HARS is shown in Fig. 3.6, which provides a comprehensive overview of the process. The main
goal is to determine the best performing radar map in combination with the most suitable DL
model.

To do this, we first train radar maps on a baseline CNN to establish a performance base-
line and identify limitations. These limitations are then addressed using TL-based models that
leverage pre-trained architectures to improve accuracy and generalisation. With this systematic
approach, we aim to optimise the model performance of each radar representation, ensuring
robust and accurate classification of human activities in real-world applications.

Figure 3.6: Workflow of radar-based human macro-activity recognition using deep and transfer
learning models.

3.4.1 Image Processing and Data Augmentation

After applying the preprocessing steps, each technique produced a distinct representation of the
radar echo reflections. The radar domain representations must be prepared before being fed into
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the CNN models. The first step in the model training pipeline is to standardize all images in
the dataset. Each image was resized to a uniform size of 224 × 224 to satisfy the input size
requirement of the selected CNN model. The preprocessing stage includes image normalisation
and subtraction of the mean RGB value based on the model and training strategies, along with
other necessary transformations.

Because the dataset was split manually, as detailed in Table 3.3, there was no further need for
splitting or shuffling. However, due to the small size of the training dataset and the presence of
class imbalance, we implemented two key techniques to mitigate overfitting: Data Augmentation
and Class Weights.

• Data augmentation was applied exclusively to the training set using the data generator
function from the Keras library, while the validation and test sets were kept unchanged to
ensure fair model evaluation.

• Secondly, class weights from the scikit-learn library were used to address the class imbal-
ance.

This function automatically adjusts the loss function to assign weights to underrepresented
classes, ensuring that the model does not disproportionately favor more frequent classes. The
augmentation strategy attempts to improve model generalisation by reducing overfitting, and
this should result a smaller gap between the training and validation accuracies. The proposed
augmented approach was inspired by the work of [216], who demonstrated the effectiveness of
a similar technique for image classification tasks. In addition, class weighting was selected for
its seamless integration into the model training process, offering a simple yet effective way to
handle class imbalance without altering the dataset distribution or increasing the computational
overhead.

3.4.2 Convolutional Neural Network

The evaluation begins with a baseline CNN model. The proposed baseline model serves as a
starting point for assessing the effectiveness of various radar domain representations and pre-
processing techniques. By analysing the performance of this baseline model, we gain initial in-
sights into the ability of each method to enhance data representation for accurate classification.
The structure and operation of the baseline CNN model used in this study are illustrated in Fig.
3.7. The model architecture consists of four parts: the input layer, convolutional layer, pooling
layer, fully connected (FC) layer and output layer, which are explained in detail below [108]:

• Convolutional Layer: This layer applies a series of filters, also called kernels, to the
input data. Each filter slides across the input to generate a feature map. By aggregating all
generated feature maps, we obtain the output of the convolutional layer. The mathematical
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relationship between the input and output in a convolution layer is given by [108]:

yl
j = gl(vl

j) = gl

(
∑

i
(yl−1

i ∗wl
i j)+ cl

j

)
(13)

where yl
j denotes the output feature map of the jth channel in layer l. The function gl(.)

represents the activation function of the convolution layer, which is ReLU in this study,
applied to the net activation vl

j of the jth channel. The net activation vl
j is computed as the

sum of the convolutions over the input channels yl−1
i using the convolution kernel wl

i j and,
the bias term cl

j.

• Pooling Layer: This layer takes the feature maps as input and performs subsampling to
reduces their dimensionality. Pooling reduces computational complexity and retains the
most significant features. We employ the MaxPooling layer, which selects the maximum
value from a defined window over the feature map, effectively reducing the size while
preserving the key spatial features. The mathematical relationship between the input and
output of the pooling layer is given by [108]:

yl
j = gl

pooling(v
l
j) (14)

Where yl
j shows the output of the channel jth in pooling layer l, and vl

j represents the input
activation. The function gl

pooling denotes the pooling function, which is MaxPooling in this
case, and selects the maximum value from each region of the input feature map.

• FC Layer: This layer takes the output from the convolutional and pooling layers and
flattens it into a vector. This vector serves as the input to the classification function, which
involves a softmax activation function, [108]:

vl
j = ∑

i
xl

i ·wl
i j + cl

j (15)

yl
j = gl(vl

j) = max(0,vl
j) (16)

In these equations, vl
j denots the net activation of the jth neuron in the fully connected

layer l, and yl
j represents the output after applying the activation function. wl

i j is the
weight associated with the connection between input i and neuron j, and cl

j is the bias
term. The ReLU activation function, represented by max(0,ul

j), ensures non-linearity in
the network.

Training the baseline CNN model involved hyperparameter optimisation via grid search and
manual tuning to determine the best configuration for each radar map. These parameters in-
cluded a batch size of 32, the Adam optimiser, the He Uniform kernel initializer, and a patience
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Figure 3.7: Baseline CNN Model Architecture.

learning rate (lr) reduction mechanism for three epochs. To prevent overfitting, we also imple-
mented early stopping with a patience interval of 10 epochs, ensuring that training would stop
if the model stopped improving. The total number of epochs for training the baseline CNN was
set to 150 across all radar maps.

The model initially had a lr of 1.0× 10−4 for all radar maps, except for SPWVD, which
required a higher lr of 1.0×10−3. In subsequent stages, the lr is decreased as follows:

• TR and STFT: 5.0×10−5

• SPWVD: 1.0×10−5

• RD: kept at 1.0×10−4

To further alleviate overfitting, L2 regularisation with different coefficients is applied:

• TR and STFT: 5.0×10−5

• SPWVD: 1.0×10−3

• RD: 2.0×10−3

The dropout rate for TR and STFT is set to 0.4, for SPWVD is set to 0.5, and for RD is set to
0.2. The FC layers also vary depending on the radar representation, such as: for TR and STFT,
two FC layers with 128 and 64 neurons, for RD one FC layer with 128 neurons, and for SPWVD
two FC layers with 256 and 128 neurons, respectively, due to its higher complexity.

3.4.3 Transfer Learning Models

Transfer Learning (TL) is a powerful technique in which a model developed for one task is
reused as the starting point for a model on a second task [141]. It is particularly beneficial in
scenarios with limited labeled data because, it enables faster convergence and better generalisa-
tion for new tasks by leveraging knowledge from pre-trained models. In the TL, the pre-trained
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models, which has been trained on a large dataset, transfers its learned parameters, especially
the weights into the target network. After evaluating the four radar domain representations and
preprocessing methods with the baseline CNN, we utilised the same methods to be an input
to various pre-trained models, including DenseNet-201, ResNet-34, VGG-16, VGG-19, and
EfficientNet-B0, as shown in Fig. 3.6.

DenseNet-201 Model

The densely connected convolutional network (DenseNet) proposed by [217] well known for
its outstanding performance on benchmark datasets such as CIFAR-100 and ImageNet [218].
The architecture adopts a densely connected pattern, where each layer is directly connected to
all previous layers in a feed-forward manner. Compared with traditional CNNs, this design
enhances feature propagation, encourages feature reuse, alleviates the gradient vanishing prob-
lem, and reduces the number of parameters. In this study, a variant of DenseNet-201 consisting
of 201 trainable layers was selected because it can effectively process radar signals after 2D
transformation. DenseNet-201 achieved the best results when trained on STFT-based TF maps,
highlighting its potential in HAR. A custom classification head was added to tune the classifica-
tion model. This head contains:

• Global Average Pooling (GAP) layer for feature aggregation

• Batch normalisation layer for stable training

• Dropout layer with rate of 0.3 to prevent overfitting

• Final dense layer with 6 neurons that shows classes and softmax activation for multi-class
classification

ResNet-34 Model

The Residual Network (ResNet) proposed by [145], introduced skip connections to enable
deeper CNN architectures by alleviating the vanishing gradient problem. ResNet-34 is a vari-
ant with 34 layers and is widely used for image classification and feature extraction due to its
high training efficiency and high accuracy [219]. The key innovation of ResNet is the residual
building block, which bypasses the convolutional layers using shortcut connections, allowing
the model to retain necessary low-level features while learning deep representations. This archi-
tecture is particularly beneficial for R-HAR, as subtle motion patterns must be extracted from
different radar representations.

In this study, ResNet-34 is used as the backbone model and pre-trained on ImageNet. The
classification head consists of a GAP layer for feature extraction, followed by batch normali-
sation and a dropout layer with a dropout rate of 0.4. The final dense layer is initialised with
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He Normal and has six output neurons with softmax activation corresponding to the six activity
classes for classification.

VGG-16 Model

Developed by the Visual Geometry Group (VGG) at the University of Oxford [147], VGG-
16 is a 16-layer deep CNN architecture known for its simplicity and strong performance in
image classification tasks. The main advantage of VGG-16 is that it uses multiple small 3 ×
3 convolutional filters instead of larger kernel sizes, which enhances feature extraction while
maintaining computational efficiency. The model achieves 92.7% top-5 accuracy on ImageNet,
demonstrating its effectiveness in feature learning.

In this study, VGG-16 was used as a pre-trained backbone model, trained on ImageNet,
to extract features from radar data. To adapt the architecture for macro-activity recognition, a
custom classification head was added, including a GAP layer for feature aggregation, followed
by batch normalisation to stabilise training. Dropout layers were added to prevent overfitting,
and the final dense layer contained six neurons with softmax activation function for multi-class
classification. Apply He normal initialization to all dense layers to improve weight initialization
and training stability.

VGG-19 Model

VGG-19 is an extended version of VGG-16 with 19 layers instead of 16. While maintaining the
same architectural principles, the additional layers enable deeper feature extraction, which im-
proves recognition performance, especially for complex motion patterns in R-HAR. The model
uses small 3×3 convolutional filters to effectively capture spatial features while reducing com-
putational complexity.

In this study, VGG-19 was used as a pre-trained backbone model initialised with weights
from ImageNet to extract high-level features from radar data. To adapt the model to HAR, a
custom classification head was added, which consists of a GAP layer for feature aggregation
followed by batch normalisation to ensure stable training. A dropout layer with a dropout rate
of 0.4 was added to mitigate overfitting, and the final dense layer contained six output neurons
with softmax activation for activity classification. This architecture leverages the deep feature
extraction capabilities of VGG-19, making it well suited for R-HAR tasks.

EfficientNet-Bo Model

EfficientNet is an efficient CNN architecture designed to achieve state-of-the-art accuracy while
maintaining computational efficiency [220]. Unlike traditional deep networks, EfficientNet uses
compound scaling, adjusting depth, width, and resolution simultaneously to obtain the best bal-
ance between performance and efficiency. In addition, it leverages AutoML for automatic hy-
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perparameter tuning and efficient convolution operations to reduce computational overhead. For
macro-activity recognition using radar data, we selected EfficientNet-B0, which is the baseline
model in the EfficientNet family. EfficientNet-B0 is designed using Neural Architecture Search
(NAS) and serves as the basis for larger models of increasing complexity. The model uses 3 × 3
convolutional filters for feature extraction.

We use the pre-trained EfficientNet-B0 model and apply TL to classify R-HAR into six
activity categories. To adapt EfficientNet-B0 for HAR, a custom classification head is added,
including GAP for feature extraction, followed by batch normalisation to stabilise training. A
dropout layer with dropout rate of 0.5 is included for regularisation, and the final dense layer
contains six softmax neurons for classification.

3.4.4 Model Training and Optimisation

Each radar representation, is trained sequentially using aformentioned TL based models. The
training strategy adopts a two-phase approach to ensure effective feature extraction and fine-
tuning for HAR. For each radar map input to the TL model, we optimise the parameters deter-
mined by grid search and manual tuning as described in the baseline CNN model. To prevent
overfitting and improve generalisation, we apply techniques such as L2 regularisation, dropout
layers, and class weights. The dropout rate ranges from 0.3 to 0.6, while the L2 regularisation
value is adjusted according to the model and radar representation to balance feature preserva-
tion and generalisation. The lr is initialised to 0.0001, and some models reduce it to 0.00002 or
0.00001 during fine-tuning to ensure gradual adaptation. A set of callbacks are used to stabilise
training and optimise learning.

• Model Checkpoint: Save the best performing model based on validation loss.

• ReduceLROnPlateau: Dynamically reduce the lr if validation loss stabilises.

• EarlyStopping: Stop training if no improvement is observed within a predefined number
of times.

• Time History: Record training time for performance evaluation.

• Learning Rate Warmup: Gradually increase the lr in the initial epochs to stabilise train-
ing.

These callbacks ensure efficient training by dynamically adjusting the lr, saving the best model,
and preventing overfitting.

Optimisation Strategy for Each Radar Representation

The optimisation strategy is tailored to the unique features of each radar representation. All
models were trained using the Adam optimiser, with the exception of ResNet-34 in phase 1,



CHAPTER 3. MACRO-ACTIVITY RECOGNITION USING FMCW RADAR SIGNALS 67

which employed SGD. Categorical cross-entropy served as the loss function across all experi-
ments, with further details provided below.

• RT maps contain high feature variability due to their complex and noisy temporal and
spatial resolution, requiring larger dense layers (256 neurons), higher dropout (0.6), and
stronger L2 regularisation (0.003 for EfficientNet and 0.001 for VGG-16, VGG-19, and
ResNet-34). A lr warmup strategy was applied, with EfficientNet warming up for 10
epochs and VGG and ResNet models warming up for 20 epochs before transitioning to
fine-tuning. The lr was initially set to 0.0001 and was reduced to 0.00002 in order to
fine-tune the weight updates of the control.

• The RD maps exhibits smoother feature transitions, which reduces the complexity of the
classification task, allowing the use of smaller classification heads (128 neurons) and mod-
erate L2 regularisation (0.001) to prevent overfitting. Dropout values were set to 0.5 and
0.4 to balance feature preservation and generalisation. A lr warmup of 15 epochs stabilised
the training before fine-tuning. The initial lr was set to 0.0001, then reduced to 0.00001 in
the second stage to enable gradual adaptation of the learned features from radar data.

• The STFT maps encodes local spectral information and shares features with the RD map,
such as smooth feature transitions, allowing similar optimisation methods. The dense
layer contains 128 neurons with dropout values of 0.5 and 0.4, respectively, while L2
regularisation was set to 0.001. A lr warmup value period of 15 epochs precedes fine-
tuning to ensure smooth adaptation. The lr begins at 0.0001, and decreases to 0.00001 to
optimise spectral feature learning.

• The SPWVD maps requires larger dense layers (256 neurons) and moderate dropout (0.5)
to effectively capture fine-grained spectro-temporal features, which are more complex
and detailed compared to other radar representations. L2 regularisation (0.001) is applied
to prevent overfitting. Before fine-tuning, the EfficientNet and VGG models used a lr
warmup of 20 epochs to ensure stable weight updates. Unlike other maps, all layers (in-
cluding batch normalisation layers) are unfrozen during fine-tuning, allowing the models
to fully adapt to the radar dataset.

Two-Phase Training Approach for TL Models

Each radar representation was evaluated using five different TL-based models, resulting in 20
model-domain combinations. The architecture on top of these models is shown in Fig. 3.8, and
a two-phase training approach is employed for these models, thereby allowing effective feature
extraction and fine-tuning of the model.

1. Phase 1: Feature Extraction: In Phase 1, the pre-trained model was used as the feature
extractor. The base pre-trained model remains frozen, meaning that its weights are not
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Figure 3.8: Customized TL-based models architecture, which underwent two-phase training.

updated during this phase. Its role is to extract general features from the radar dataset by
using the knowledge acquired by training on the large-scale ImageNet dataset. During
this phase, only the new layers, which are added to the base model, are trained, as shown
in Fig. 3.8. This allows the model to learn how to classify radar-based data without
modifying the pre-trained features.

2. Phase 2: Fine-Tuning: In Phase 2, some or all of the base model layers are unfrozen,
and its weights are fine-tuned on the radar dataset. This step allows the model to adjust
and refine the features it initially learned from ImageNet, thereby making them more
relevant for radar data. The fine-tuning process prevents overfitting or excessive bias
towards the ImageNet dataset. By gradually adapting the model to the new domain, the
model can be better generalised and specialised for radar-based classification, minimising
confusion between ImageNet and radar map features. Thus, Phase 1 ensures that the
model begins with strong, generalised features, while Phase 2 refines these features to
align more closely with the R-HAR dataset, thereby avoiding interference from ImageNet
specific characteristics.

Runtime Environment

In this study, we performed data preprocessing on raw radar data and CNN training using Python
toolkits on a GPU-accelerated desktop PC. The system was equipped with an 11th Generation
Intel® Core™ i7-11700 processor with 8 cores and 16 threads enabled by hyper-threading tech-
nology and a base frequency of 2.50 GHz. It was also equipped with 16 GB of RAM and an
NVIDIA GeForce RTX 3060 Ti graphics card with 8 GB of memory. To generate radar spectra,
we used Python libraries such as Scipy for signal processing, TF for spectrum analysis, and
fftpack from scipy for FFT execution. For CNN model training, we used the Keras and Tensor-
Flow frameworks, taking advantage of the multicore and multithreaded CPU capabilities of the
workstation and the parallel processing power of the GPU.
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3.4.5 Evaluation Metrics

When evaluating the impact of radar domain representation and DL models using TL approaches
for real-world deployment settings, both computational efficiency and recognition accuracy must
be considered. While additional time components exist, such as radar preprocessing, ADC con-
version, and signal processing within radar boards, these remain consistent across all processing
methods. Consequently, they are excluded from the comparison since they do not affect the
relative performance differences between preprocessing techniques and models.

The time complexity of training a CNN models is theoretically determined by the number of
epochs (T ), number of parameters (D), and the number of batches (B), as indicated by O(T.D.B)

[221]. In our comparative analysis, we measured the training time per epoch to provide an
empirical estimate of computational cost. Given that the model was trained for T epochs, the
total training time can be approximated by multiplying the average training time per epoch by
T . This empirical analysis complements the theoretical complexity by providing a real-world
context for the computational effort.

To quantify the prediction or inference time, we compute various statistical measures based
on the inference times tinfer,i for each sample i in the test set, where N is the total number of
samples as follows:

• Average Inference Time: The average inference time is calculated by taking the inference
time for each individual image and then averaging these values across all images:

t̄infer =
1
N

N

∑
i=1

tinfer, i (17)

• Standard Deviation: The standard deviation of inference time, σinfer, is defined as fol-
lows:

σinfer =

√
1

N−1

N

∑
i=1

(tinfer, i− t̄infer)
2 (18)

• Standard Error: The standard error of inference time, SEinfer, is calculated as follows:

SEinfer =
σinfer√

N
(19)

These metrics provide a comprehensive understanding of the model’s time efficiency and con-
sistency, which are critical for real-time applications.

However, fast prediction is insufficient without accurate performance. Thus, recognition ac-
curacy is also a critical metric, especially for applications involving critical tasks such as moni-
toring elderly people in their homes. High accuracy ensures reliability and safety, reducing the
likelihood of false alarms and missed detections. Therefore, for this purpose, we can calculate
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accuracy as follows:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

=
∑

C
i=1 TPi

N
. (20)

Here C is the number of classes, N is the total number of samples, and TPi is the number of true
positives for class i. To provide a more detailed assessment of the model’s performance across
different classes, we compute the precision, recall, and F1-score for each class i:

Precisioni =
TPi

TPi +FPi
, (21)

Recalli =
TPi

TPi +FNi
, (22)

F1-Scorei = 2× Precisioni×Recalli
Precisioni +Recalli

, (23)

where TPi shows True Positives for class i, FPi is the False Positives for class i, and FNi is False
Negatives for class i. These metrics help identify the model’s ability to correctly classify in-
stances in each class, thereby minimising FP and FN. Training and validation accuracies, along
with confusion matrices, were analysed to assess model performance and generalisation capa-
bilities across different radar preprocessing techniques. These metrics provide comprehensive
insights into model effectiveness while identifying potential overfitting or underfitting issues.

3.4.6 Proposed Radar-Based Macro-Activity Recognition Algorithm

The proposed radar-based macro activity recognition system is outlined in Algorithm 1, which
covers the entire pipeline from data acquisition through preprocessing, model training, and ac-
tivity classification.

3.5 Experimental Results and Discussion

This section presents the performance evaluation of baseline CNN and TL models across differ-
ent radar domain representations. The evaluation focuses on classification metrics and compu-
tational efficiency, with particular emphasis on cross-subject generalisation to assess real-world
deployment feasibility.

3.5.1 Radar Data Preprocessing Time Analysis

The preprocessing techniques employed in this study showed significant differences in the time
required to process radar data events. Among the methods evaluated, SPWVD had the longest
preprocessing time (tpre) due to its high computational complexity. This method processes two
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Algorithm 1: Proposed Radar-Based Macro-Activity Recognition System
Require: Raw radar data y[i]
Ensure: Classified human activities

1: procedure DATA ACQUISITION AND PREPROCESSING

2: Collect raw radar data {y[i]} and convert to complex signal s[i] = y[i]+ j · ŷ[i]
3: Reshape s[i]→ S, a 2D matrix of size (N,M)
4: Apply Hamming window w[n]: Sw[i] = S[i] ·w[n]
5: Apply IIR Notch MTI filter: Sfiltered[i] = IIR(Sw[i])
6: Perform Range-FFT: Xn[k] = FFT(Sfiltered[i])
7: Extract desired range bins: R = Xn[k], for k ∈ Range bins
8: Choose Preprocessing Method:
9: Option 1: Generate Range-Time (RT) maps: RT(t,r)

10: Option 2: Generate Range-Doppler (RD) maps: RD(t,r)
11: Option 3: Apply STFT: TF(t, f ) = STFT(R)
12: Option 4: Apply SPWVD: TFhigh-res(t, f ) = SPWVD(R)
13: Apply Band Limiting (for TF-based methods):
14: If Option 3: Apply frequency band limiting to STFT:

TFband(t, f ) = TF(t, f )| f∈[−0.1,0.1] Hz
15: If Option 4: Apply frequency band limiting to SPWVD:

TFband(t, f ) = TFhigh-res(t, f )| f∈[−0.3,0.3] Hz
16: If Option 1 or 2: No band limiting applied
17: Resize images to 224×224 and normalize: I = Norm(I224×224)
18: Split data: Itrain,Ival,Itest← Split(I)
19: end procedure
20: procedure MODEL SELECTION AND TRAINING

21: Choose CNN base model:
22:

Base pre-trained model ∈ {DenseNet-201,ResNet-34,VGG-16,VGG-19,EfficientNet-B0}
23: Load pre-trained weights: Base Model Weights← Pre-trained
24: Inputs: x→ Base Model Input
25: Add Custom Layers:
26: z← Dense(N,activation=‘softmax’) ▷ N: number of activity classes
27: Define Model: M = Model(input = x,output = z)
28: Compile Model: M ← Adam(α = 0.0004),Loss = Categorical Crossentropy
29: Train Model: Mtrained← Train(M ,Itrain)
30: Estimate Training Time: Ttraining = End Time−Start Time
31: Save Model Weights: W ∗←Wt , where Aval,t = max{Aval,1, . . . ,Aval,T}
32: end procedure
33: procedure ACTIVITY CLASSIFICATION

34: Input unseen radar data ynew = Itest
35: Preprocess: Inew = Preprocess(ynew)
36: Predict Activity: â = Mtrained(Inew)
37: Output Classified Activity: a = argmax(â)
38: Estimate Inference Time: Tinference = End Time−Start Time
39: end procedure
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independent variables, time and frequency, simultaneously, which increases the computational
load. As a result, SPWVD takes an average of 56 seconds to process a 5-second radar event. In
comparison, simpler techniques such as RT, RD, and STFT complete preprocessing in approxi-
mately 0.5 seconds for the same event duration, as shown in Table 3.4.

Table 3.4: Generation time of radar maps.

Class Data Length Preprocessing Techniques tpre (s)

Walking (A1) 10 s
RT 0.97
RD 0.88

STFT 1.07
SPWVD 113.00

Others (A2-A6) 5 s
RT 0.48
RD 0.43

STFT 0.51
SPWVD 56.00

The large difference in tpre highlights the trade-off between achieving high TF resolution and
maintaining computational efficiency. While SPWVD provides superior TF resolution and can
capture complex motion dynamics, its computational cost makes it less suitable for real-time ap-
plications. In contrast, RT and RD represent computationally efficient but may lose fine-grained
motion details, which could affect recognition performance. The tpre reported here were mea-
sured using a single-input single-output (SISO) radar sensor operating at a chirp rate of 1000
Hz, where each chirp has a duration of 1 ms. This configuration was chosen because it matches
a typical R-HARS, where real-time processing is critical. The ability to efficiently preprocess
radar data is particularly important for time-sensitive applications, such as fall detection in el-
derly care, where delayed event recognition could compromise safety.

3.5.2 Model Performance Across Radar Domains

To evaluate the impact of different preprocessing methods on feature representation, we first
established baseline CNN model by training separate networks on each radar domain represen-
tation, as described in Section 3.4.2. Building upon these baselines, we then implemented and
evaluated the TL models detailed in Section 3.4.3 to determine their effectiveness in improving
recognition and classification accuracy across different radar representations. The baseline CNN
models were designated as M1, M7, M13, and M19, corresponding to networks trained with RT,
RD, STFT, and SPWVD preprocessing techniques, respectively. The TL models, when paired
with each radar representation, formed a comprehensive set of 20 model-map pairs, systemati-
cally labelled as M2 to M6, M8 to M12, M14 to M18, and M20 to M24. A detailed summary
of these model configurations, along with their performance metrics and computational costs, is
presented in Tables 3.5 and 3.6.
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Table 3.5: Performance metrics comparison of baseline CNN and TL models across four radar
representations.

Model-Map
Maps Models

Accuracy (%)
Precision Recall F1-score

Model Memory

Pairs Train Valid Test Size (MB) Footprint (MB)

M1 Baseline CNN 55.81 64.58 64.29 0.6553 0.6429 0.6347 78.19 26.03

M2 DenseNet-201 78.92 81.25 89.68 0.8993 0.8968 0.8968 213.61 70.93

M3
RT

ResNet-34 88.02 88.69 89.68 0.9016 0.8968 0.8968 245.16 81.59

M4 VGG-16 92.61 91.07 92.06 0.9241 0.9206 0.9186 169.32 56.40

M5 VGG-19 93.31 92.26 91.27 0.9126 0.9127 0.9090 230.87 76.91

M6 EfficientNet-B0 86.47 85.42 93.65 0.9383 0.9365 0.9366 50.75 16.73

M7 Basline CNN 62.60 65.48 72.22 0.7338 0.7222 0.7094 78.08 25.99

M8 DenseNet-201 85.06 85.11 84.92 0.8662 0.8492 0.8477 223.39 74.19

M9
RD

ResNet-34 87.09 85.71 84.92 0.8457 0.8492 0.8440 246.11 81.91

M10 VGG-16 86.63 88.69 93.65 0.9372 0.9365 0.9360 169.32 56.40

M11 VGG-19 90.90 90.48 93.65 0.9432 0.9365 0.9371 230.10 76.65

M12 EfficientNet-B0 79.05 85.12 92.06 0.9189 0.9206 0.9195 48.86 16.10

M13 Baseline CNN 58.01 78.87 79.37 0.7887 0.7937 0.7867 78.19 26.03

M14 DenseNet-201 98.75 97.02 96.03 0.9627 0.9603 0.9602 217.01 72.06

M15
STFT

ResNet-34 91.06 95.54 93.65 0.9357 0.9365 0.9359 246.49 82.04

M16 VGG-16 96.35 95.54 95.24 0.9529 0.9524 0.9519 169.32 56.40

M17 VGG-19 97.67 95.83 95.24 0.9530 0.9524 0.9521 230.10 76.65

M18 EfficientNet-B0 94.79 93.15 94.44 0.945 0.9444 0.9442 48.86 16.10

M19 Baseline CNN 59.72 76.49 80.95 0.8119 0.8095 0.8011 151.98 50.62

M20 DenseNet-201 87.55 88.69 90.48 0.9080 0.9048 0.9038 224.92 74.70

M21
SPWVD

ResNet-34 90.75 92.56 92.06 0.9184 0.9206 0.9188 245.16 81.59

M22 VGG-16 91.91 93.75 91.27 0.9129 0.9127 0.9125 170.08 56.65

M23 VGG-19 90.20 92.26 90.48 0.9060 0.9048 0.9047 230.87 76.91

M24 EfficientNet-B0 81.57 89.58 88.10 0.8778 0.8810 0.8782 50.75 16.73

RT Domain

As shown in Table 3.5, applying TL models to RT representations significantly improves classi-
fication accuracy compared to the baseline CNN. Among them, EfficientNet-B0 (M6) performs
well, achieving a peak recognition accuracy of 93.65%, a significant improvement of 29.36%
over the baseline CNN model (M1), which achieves an accuracy of 64.29%. Fig. 3.9 shows this
significant improvement, highlighting the ability of TL models to extract and effectively utilise
features from RT representations. In addition, VGG-16 and VGG-19 perform well, achieving
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Figure 3.9: Comparison between baseline CNN and best performing TL models for each radar
preprocessing techniques.

accuracies of 92.06% and 91.27%, respectively. However, denser and more complex models
such as DensNet-201 and ResNet-34 are less effective on RT maps, suggesting that they may
not be the most suitable choice for R-HARS that rely on RT preprocessing.

RD Domain

The RD maps also show significant gain when used as input to the TL model. The TL model
improves the classification performance by 21.43% compared to the baseline CNN (M7) that
achieves 72.22% accuracy, as shown in Fig. 3.9. The recognition accuracy for VGG-16 and
VGG-19 reaches up to 93.65%, as illustrated in Table 3.5 . These results highlight the ability
of the TL model to effectively exploit the detailed range and Doppler information embedded
in the RD representation. Overall, the excellent performance of the TL model on the RD map
suggests that this representation is a promising candidate for real-time, computationally efficient
R-HARS.

STFT Domain

Combining the TL model with the STFT preprocessing method achieves consistently high clas-
sification accuracy across all tested architectures. DenseNet-201 (M14) emerges as the best per-
forming model with a peak accuracy of 96.03%, demonstrating its ability to extract relevant TF
features necessary for macro-activity recognition. This performance is significantly better than
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the baseline CNN (M13), which achieves an accuracy of 79.37%, as shown in Fig. 3.9. These
findings further confirm the effectiveness of the STFT as a robust TF representation, especially
when paired with a well-optimised CNN architecture.

SPWVD Domain

Despite providing rich TF information, SPWVD-based representations do not always outper-
form other preprocessing methods (e.g., STFT and RD) when combined with TL models. As
shown in the Fig. 3.9, the highest recognition accuracy in this category is ResNet-34 (M20),
which achieves 92.06%. While this is an 11.11% improvement over the baseline CNN (M19)
with an accuracy of 80.95%, it still does not reach the performance of STFT or even RT when
fused with EfficientNet-B0.

A major contributing factor to this limitation is that SPWVD is more computationally ex-
pensive and takes longer to preprocess, as described in Table 3.4. Although SPWVD can cap-
ture detailed Doppler features, the added complexity does not necessarily translate into higher
classification accuracy. As described in Table 3.5, model map pairs such as M21 and M23
achieve competitive accuracies of approximately 90.48% and 91.27%, respectively. However,
their counterparts using STFT or RD generally outperform them, further confirmation the con-
clusion that while SPWVD is a rich representation, its practical benefits may be offset by its
computational requirements.

3.5.3 Fall Event Detection and False Alarm Reduction

Accurately identifying fall events and minimising false alarms are critical requirements in R-
HARS. Most radar domain preprocessing methods enable the baseline CNN to achieve high
or perfect fall detection accuracy, as shown in Fig. 3.10. Notably, RT representation yielded
80.95% fall detection, whereas RD, STFT, and SPWVD achieved 100% fall detection. How-
ever, the RT-based CNN model exhibited a high false positive rate, with 42.86% of A2 (sitting)
instances incorrectly classified as falls, indicating a significant overlap in signal features be-
tween these activities. TL models has led to substantial improvements, as seen in Fig. 3.11,
the EfficientNet-B0 model trained on RT representation completely eliminated misclassifica-
tion of A2 as falls. Overall, the TL models consistently outperformed the baseline CNN by
enhancing inter-class separation and reducing misclassification rates, particularly in critical fall
detection tasks. Among the high-resolution methods, SPWVD (Fig. 3.11d) demonstrated strong
performance with high fall detection accuracy and reduced confusion with adjacent classes. De-
spite a slight residual misclassification of A5 (drinking) as A6 (fall), it remained significantly
more robust than the baseline. Nevertheless, the computational overhead of SPWVD prepro-
cessing remains a challenge, particularly for real-time deployment. These findings suggest that
although RT is computationally efficient, its discriminative power significantly improves when
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(a) TR map with CNN (b) RD map with CNN

(c) STFT map with CNN (d) SPWVD map with CNN

Figure 3.10: Confusion Matrices for the baseline CNN model using radar domains as input.

paired with advanced TL models. Similarly, STFT and RD representations combined with TL
successfully minimised false positives, further reinforcing the benefits of integrating with radar
data.

3.5.4 Analysis of Computational Efficiency

Computational efficiency is a key factor in real-world settings, especially in terms of training and
inference time. Training time determines how quickly a model learns from a radar data, while
inference time measures how quickly predictions are made. To evaluate training efficiency,
we examined the time required per epoch for each model to process a specific radar domain
representation, as illustrated in Table 3.6. Among the evaluated models, the baseline CNN
(M7) trained with the RD representation exhibited the shortest training time, taking only 6.71
seconds to complete one epoch. While the training duration varied between the TL models due
to architectural differences, the uniform input image size of 224 × 224 pixels ensured relatively
consistent training times for all radar representations.

As shown in Table 3.6, the average inference time varied little, ranging from 31.14 ms (SP-
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(a) TR map with EfficientNet-B0 (b) RD map with VGG-19

(c) STFT map with DenseNet-201 (d) SPWVD map with ResNet-34

Figure 3.11: Confusion Matrices for the selected best TL models using radar domains as input.

WVD) to 32.86 ms (STFT). SPWVD has the smallest fluctuation in inference time, as evidenced
by its smaller standard deviation (STF) and standard error (SE). Despite the higher preprocess-
ing overhead, SPWVD’s inference latency remains comparable to other techniques. This con-
sistency can be attributed to the standardised input size (224 × 224 pixels), which helps mitigate
the computational complexity differences between different preprocessing methods, thereby en-
suring consistency in prediction regardless of the model selected.

VGG-16 based models (M4, M10, M16, and M22) exhibit relatively low inference times
while maintaining strong recognition accuracy, making them particularly suitable for latency-
sensitive applications. In contrast, DenseNet-201 based models (M2, M8, M14, and M20)
require longer inference times due to their deeper architectures and increased computational
requirements. Although DenseNet-201 achieves the highest classification accuracy, its extended
processing time may pose a challenge in scenarios where fast decision making is critical. While
inference latencies below 100 ms may be negligible for event windows of 5 seconds, these la-
tencies may become significant when deploying models on low-power edge devices with limited
computational resources. Models based on EfficientNet-B0 (M6, M12, M18, and M24) achieve
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Table 3.6: Comparison of radar maps with different TL based networks and their computational
costs.

Pairs Training Inference STF (ms) SE (ms)Time/epoch (s) Time/sample (ms)
M1 8.55 31.99 5.78 0.51
M2 22.18 71.17 7.35 0.65
M3 7.81 46.89 11.10 0.98
M4 9.85 38.19 2.63 0.23
M5 11.76 39.93 5.62 0.50
M6 10.84 55.31 9.79 0.82
M7 6.71 31.65 2.31 0.20
M8 21.31 70.42 8.12 0.72
M9 7.57 42.02 7.21 0.64

M10 9.77 37.82 3.20 0.28
M11 11.77 39.09 5.55 0.49
M12 10.72 51.47 5.41 0.48
M13 8.74 32.86 2.69 0.23
M14 22.36 70.68 7.18 0.63
M15 7.86 45.38 9.74 0.86
M16 10.13 37.14 2.85 0.25
M17 11.78 39.69 5.76 0.51
M18 10.85 52.82 9.61 0.85
M19 7.03 31.14 1.86 0.16
M20 22.36 70.68 7.48 0.66
M21 8.00 43.04 7.35 0.65
M22 10.02 37.29 2.75 0.24
M23 11.89 40.54 4.86 0.43
M24 10.53 52.08 9.72 0.86

a balance between accuracy and computational efficiency. These models provide competitive
classification performance while maintaining moderate inference times, making them a practi-
cal choice for applications where accuracy and real-time performance are equally important, as
shown in Table 3.6.

3.5.5 Implications for Real-world Deployment

For real-world deployments, particularly for low-power edge devices used in applications such
as elderly monitoring and smart security systems, achieving a balance between recognition accu-
racy and computational efficiency is essential. Systems must make prompt decisions to prevent
adverse outcomes. To quantitatively assess this trade-off, we define a simple balance metric
which can be computed as: Sbal =

Accuracy (%)
tpre+tinfer

. This metric is used to evaluate the efficiency of
each model-domain pair (MDP) by jointly considering recognition performance and computa-
tional latency.

The top-performing MDPs, along with their computed Sbal values and corresponding de-
ployment suitability, are listed in Table3.7. This metric reflects the accuracy per unit inference
latency, where a higher score indicates a more efficient balance between performance and re-
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Table 3.7: Top model-domain pairs with highest balanced scores and their suitability for deploy-
ment.

MDP Sbal Best Use Case

M6 91.34
Real-time applications where moderate processing time is
acceptable.

M11 101.89 Lowest total processing time; ideal for latency-critical
scenarios.

M14 84.19 Maximum accuracy where moderate latency is acceptable.
M21 0.81 Offline analysis; not suitable for real-time deployment.

Figure 3.12: Accuracy vs. total inference latency for top MDPs. Here Acc = Accuracy, Preproc
= tpre, Infer = tinfer.

sponsiveness. The detailed performance and inference latency characteristics are shown in Fig.
3.12. Different MDPs are optimal for different application contexts. M11 (RD + VGG-19)
achieved the highest score of 101.89, making it ideal for low-latency, real-time systems. M6 (TR
+ EfficientNet-B0) offers a strong balance between speed and accuracy, whereas M14 (STFT +
DenseNet-201) delivers maximum recognition accuracy with a modest latency overhead. In
contrast, M21 (SPWVD + ResNet-34) suffers from an extremely long Sbal, rendering it unsuit-
able for responsive deployments. This evaluation framework allows system designers to move
beyond accuracy only comparisons and incorporate inference latency aware decision making.
Developers can use Sbal to objectively assess whether a given MDP offers an efficient trade-off
for their deployment scenario.
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3.5.6 Cross-Frequency Validation of the Proposed Framework

To assess the generalisability of our framework beyond a single dataset and radar configuration,
we selected the two most suitable radar representations, RD and STFT maps, paired with their
best-performing models, VGG-19 and DenseNet-201, respectively. We utilised two publicly
available datasets collected using a 24 GHz Ancortek radar and a 77 GHz mmWave FMCW
radar, which are detailed in [213] and listed as item 5 in our dataset explanation (see Section
3.3.1). These datasets contain 11 daily activities recorded from six subjects, with each subject
performing 10 repetitions of each activity. This initially provided 660 samples; however, after
removing corrupted raw files, 600 samples were used for the analysis.

Owing to the limited number of subjects and samples, we implemented a Leave-One-Subject-
Out Cross-Validation (LOSO-CV) strategy, which aligns well with our subject-based evaluation
approach used for the primary dataset. For each of the six folds, we trained on five subjects
and tested on the excluded subject, maintaining our commitment to evaluating performance on
completely unseen individuals. The raw radar data were processed into RD and STFT repre-
sentations using identical preprocessing pipelines as applied to our primary 5.8 GHz dataset.
We then trained the VGG-19 and DenseNet-201 models using the same hyperparameters and
training procedures established in our primary experiments.

Table 3.8 presents the cross-frequency generalisation performance of the optimal MDPs.
The reported accuracies represent the average performance across all six test subjects with their
STD. The results demonstrate that our preprocessing techniques and TL models maintain strong
performance across different radar frequencies, with STFT as domain and DenseNet-201 as
model, achieving particularly impressive recognition accuracy of 96.42%±2.12 using 24 GHz
radar raw data. This cross-frequency validation confirms the robustness of our approach and its
potential applicability in diverse R-HARS, regardless of the operating frequency.

Table 3.8: Generalisation performance of optimal radar domain-model pairs across different
frequencies using LOSO-CV.

Domain Model Freq. Acc. (%) Precision Recall F1-score

RD VGG-19
24 GHz 86.74±2.20 0.8772 0.8674 0.8655
77 GHz 89.70±2.21 0.9074 0.8970 0.8974

STFT DenseNet-201
24 GHz 96.42±2.12 0.9658 0.9642 0.9641
77 GHz 91.71±1.31 0.9228 0.9171 0.9164

Overall, the quantified performance across both radar frequencies was strong. In particular,
the STFT maps with DenseNet-201 model achieved an excellent accuracy of 96.42% at 24 GHz
and maintained a high accuracy of 91.71% at 77 GHz. These values are considered very good
for R-HAR tasks, particularly given the challenging cross-frequency validation setup. The RD
maps with VGG-19 model also demonstrated reliable performance, achieving 86.74% at 24
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GHz and improving slightly to 89.70% at 77 GHz. The decrease in accuracy for the STFT maps
with DenseNet-201 pair at 77 GHz can be attributed to multiple factors. Higher-frequency radar
signals are more sensitive to environmental clutter, noise, and multipath interference, which can
degrade signal quality. They also suffer from reduced penetration and effective range compared
to lower frequencies like 24 GHz. In addition, the 77 GHz dataset includes more variability
and slightly lower-quality samples, which may further challenge model generalisation. These
aspects collectively contribute to the modest but consistent performance reduction observed at
77 GHz.

3.6 Summary

This chapter presents a comprehensive evaluation of DL models for non-intrusive macro-activity
recognition using various radar-domain representations. The analysis focused on balancing the
classification performance with computational efficiency to address challenges C1 and C2 out-
lined in Section 1.3. To mitigate the challenge of limited data diversity in radar-based activity
recognition, this study transformed raw signals from a single radar sensor into multiple domain
representations, including range-time (RT), range-Doppler (RD), and time-frequency (TF) rep-
resentations using STFT and SPWVD. This multi-domain preprocessing strategy enriches the
input feature space, enabling the identification of the most informative representations for real-
world deployment scenarios. The study also demonstrated effective model domain adaptation
through TL, wherein pre-trained architectures originally developed for natural image classifi-
cation were successfully adapted to radar-based inputs. This approach has proven valuable in
scenarios in which labelled radar data are scarce. Analysis of the preprocessing time revealed
that high-resolution techniques, such as SPWVD, capture rich Doppler information but impose
a significant computational burden. In contrast, RT and RD maps offer a favourable trade-off,
achieving faster preprocessing with competitive classification accuracy.

Among the evaluated models, TL approaches, particularly EfficientNet-B0, VGG-16, VGG-
19, and DenseNet-201, consistently outperformed the baseline CNN across all radar domains.
EfficientNet-B0 has emerged as the most balanced architecture in terms of accuracy and infer-
ence latency, making it a strong candidate for real-time applications. Although deeper networks,
such as DenseNet-201, achieved higher accuracy, their increased inference time reduced their
suitability for real-time deployment. Models such as VGG-16 and EfficientNet-B0 were found
to provide a better balance between computational cost and recognition performance, which is
critical for practical use. Multi-frequency validation using datasets collected at 24 GHz and 77
GHz confirmed that the proposed preprocessing pipeline and TL models generalise effectively
across different radar frequencies. This reinforces the adaptability of the framework to varied
sensing conditions and its potential for integration into multiple radar platforms. Fall detec-
tion analysis reveals that TL models effectively reduce false alarms while improving system
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reliability, establishing a foundation for more accurate and reliable HARS in safety-critical ap-
plications, such as AAL. Class imbalance remains a common challenge in R-HAR, especially
for critical events such as falls. In this study, the limited fall data reflects the ethical and practical
constraints of collecting such samples from elderly participants. Although data augmentation
and class weighting were used to reduce their impact, future work should aim to expand the
datasets for better representation of minority classes.

The comprehensive analysis presented in this study, while demonstrating the effectiveness
of various radar processing techniques and TL approaches, has been conducted primarily on
GPU-based systems with high computational demands and large models with millions of pa-
rameters. These resource-intensive requirements pose significant challenges for the real-world
deployment of resource-constrained edge devices, where memory limitations, power constraints,
and processing capabilities are severely restricted. Having established the optimal radar signal
processing techniques and identified the most promising model architectures for macro-activity
recognition, the next critical step involves adapting these findings for edge-based deployment
scenarios that maintain recognition accuracy while meeting the stringent computational con-
straints of edge-computing environments.



Chapter 4

Radar-based Vital Sign Monitoring

This chapter investigates the use of radar technology for vital sign monitoring by focusing on
micro-activity monitoring in healthcare applications, thereby addressing challenge C1. As out-
lined in Section 1.3, one of the core contributions of this thesis is enabling non-intrusive multi-
scale HAR using radar sensor. While radar has already proven effective for macro-activity
recognition, such as walking, sitting, and fall detection, it also offers a unique capability to de-
tect micro-activities that reflect the vital signs of the human body. These micro-activities include
subtle physiological movements such as chest wall displacements caused by respiratory cycles
and cardiac activity, which correspond to respiratory rate (RR) and heart rate (HR), respectively.
These vital signs serve as key indicators of health status and are integral to continuous moni-
toring in both clinical and non-clinical settings. The ability of radar to unobtrusively capture
both physical and physiological signals positions it as a versatile solution for multi-scale HAR
applications. This chapter examines two radar systems specifically designed for micro-activity
estimation and details the robust signal processing strategies employed to accurately extract and
estimate HR and RR under real-world conditions.

4.1 Introduction

Accurate monitoring of human micro-activities such as HR and RR, is essential for safeguard-
ing health, particularly in vulnerable populations. Patients with chronic conditions such as sleep
apnoea require continuous physiological monitoring, while individuals trapped during natural
disasters may need to be detected through barriers such as walls or debris. Similarly, elderly
patients and infants in intensive care units (ICUs) benefit from contactless systems because
conventional wearable or wired sensors can cause discomfort, skin irritation, or restricted mo-
bility [222]. To address these needs, radar-based biomedical sensing has emerged as a powerful
solution, capable of remotely capturing vital signs by detecting subtle physiological movements,
such as chest wall displacements. Recent progress in this area includes the use of a 24 GHz radar
sensor for tracking breathing patterns in patients with sleep apnoea [223]. These advancements
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lay the groundwork for broader healthcare applications, particularly in elderly care and critical
care environments, where continuous and comfortable monitoring is vital for patient safety.

The underlying principle of radar-based vital sign monitoring relies on the transmission and
analysis of electromagnetic signals that interact with the human body. When a radar transmit-
ter emits periodic signals, these waves reflect off targets within the radar cross-section (RCS)
and return to the receiver with modified characteristics that encode information about target
movement and displacement [80]. In biomedical applications, even tiny movements, such as
chest expansion during breathing or surface vibrations from the heartbeat, can cause detectable
changes in the reflected signals. By strategically positioning radar sensors within clinical envi-
ronments, healthcare providers can establish ambient-intelligence platforms that automatically
extract health-related data streams without requiring patient cooperation or awareness [25]. This
approach marks a significant shift from traditional monitoring methods, allowing for the creation
of smart healthcare environments in which diagnostic information is gathered seamlessly and in-
tegrated into comprehensive patient care systems.

Over the past few decades, three main types of radar systems have been employed for vital
sign monitoring: pulse radar (also known as UWB radar) [224], CW Doppler radar [225], and
mmWave FMCW radar [25,226]. In one study [224], a 3.3 GHz UWB radar was used to extract
the HR and RR by applying a time-varying filter to reduce noise, although the detection accuracy
was not evaluated. While UWB radar can effectively capture physiological signals, it faces chal-
lenges related to system integration and low-power operation due to its high bandwidth require-
ments. In contrast, CW and FMCW radars offer better integration, lower power consumption,
and improved performance in proximity detection. Among these, the FMCW radar stands out
for its high range and Doppler resolution, as well as its stronger resistance to noise compared to
pulse-based systems. A key advantage of the FMCW radar is its ability to distinguish reflections
from different distances, making it suitable for monitoring the vital signs of multiple individuals
simultaneously which is a major strength highlighted in recent research [178].

In this study, we employed two radar sensors, UWB radar and mmWave FMCW radar, for
vital sign estimation. These radars were used for data collection and analysis, leveraging their
unique characteristics to improve the accuracy and stability of contactless vital sign monitoring.
The performance of both radar systems is affected by factors such as the distance between the
radar and the target, as well as the position and orientation of the target relative to the radar.
Several studies have explored the use of mmWave radars for HR monitoring [25,178]. However,
most of these approaches require the subject to remain seated or lie at a fixed distance, as even
minor body movements can exceed the amplitude of chest displacements, making accurate HR
detection more challenging. In contrast, this study proposes an mmWave radar system designed
to collect data from individuals in a standing position, with the radar placed at varying distances
and orientations to evaluate performance under more flexible and realistic conditions. When
designing radar-based healthcare application for vital sign detection, it is important to validate
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the extracted biomedical signals against a clinically established gold standard. Therefore, in
this study, signals from both radar systems were recorded simultaneously using a gold standard
medical device. This approach enabled quantitative correlation analysis of the physiological
signals extracted by the radar and the reference measurements. This validation step ensured
reliability, accuracy, and clinical applicability in real-world healthcare scenarios.

4.2 Contributions

Radar-based vital sign monitoring relies on the reflection of electromagnetic signals from the
human body to measure HR and RR. The phase shift of the reflected signal is proportional to
the distance the signal has travelled [25]. By analysing this phase change, the target distance
can be determined and vital sign information can be extracted. Therefore, an important factor to
consider in radar-based vital sign monitoring is the operating distance of the radar and the signal
processing techniques used to detect chest wall motion and target presence. These detected
signals are then processed to extract and estimate human micro-level activities. In summary, the
main contributions of this work are highlighted as follows:

• This study investigated the effect of distance on the accuracy of radar-based vital sign esti-
mation using UWB radar signals to reliably estimate RR, and HR. An empirical study was
conducted using a single subject to evaluate the effectiveness of the system, with data col-
lected at three different distances, and validated using medical-grade equipment. A simple
traditional signal processing method based on the FFT was used to determine the HR and
RR. Additionally, radar-based features extracted from the raw data were used to identify
and classify three breathing patterns: hypopnoea (or breath-holding), normal breathing,
and shallow or elevated breathing. This work demonstrates the feasibility of using UWB
radar for vital sign monitoring and lays the foundation for further development.

• A major advance in this study is the transition from UWB radar to more sophisticated
FMCW radar operating in the mmWave spectrum. Due to its superior raw data conversion
capabilities, this radar technology provides enhanced capabilities including target detec-
tion, distance measurement, and high data rates. These attributes make mmWave radar
particularly suitable for remote monitoring applications such as elderly care and patient
monitoring. An advanced signal processing framework was developed to extract and esti-
mate vital signs from radar data.

• To address a critical research gap, this study extensively evaluated mmWave radar at dif-
ferent height positions (including one meter, chest height, and two meters) to determine
the optimal radar position for accurate estimation of vital signs. In addition, a unique ex-
perimental setup was designed in which the target remained in a standing posture while the
radar position was changed. This provide valuable insights into the ideal radar placement
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for optimal performance. This study was conducted using an advanced technology setup
incorporating a DCA1000 data acquisition module. This module enables real-time data
transmission and seamlessly interfaces with emerging 5G and B5G network standards,
making it a promising solution for future wireless medical applications.

4.3 Vital Sign Monitoring Using Ultra-wideBand Radar

UWB radars offer several advantages over microwave Doppler radars, including lower human
exposure risk, and higher signal-to-noise ratio (SNR). These advantages make UWB radars
ideal for contactless vital sign estimation, especially in healthcare and biomedical applications
[224]. Recently, there has been a growing interest in contactless physiological monitoring using
UWB radars [172, 173]. Vital signs are estimated by detecting the time-of-flight changes of
narrow pulses emitted by the radar, which are reflected from the human chest and return to
the receiver. In addition to vital sign monitoring, UWB radars have also been used for human
localisation and gait analysis [227], demonstrating their versatility in HAR applications. Despite
these advantages, radar-based monitoring techniques are susceptible to low SNR and clutter
effects, as reported in recent studies [228]. To address this challenge, we used a commercial off-
the-shelf (COTS) UWB radar device, a Walabot, which has recently emerged as an affordable
solution with potential RR monitoring capabilities [229].

4.3.1 System Model and Preliminaries

This section presents an overview of the Walabot radar system used for contactless vital-sign
monitoring. It outlines the operating principles, technical specifications, and medical-grade ref-
erence sensor employed for validation. The system’s performance was assessed by comparing
its output with that of the reference sensor to evaluate its effectiveness as a non-invasive alterna-
tive to traditional wearable devices. Fig. 4.1 illustrates the complete workflow of the proposed
system, which includes radar signal acquisition, raw data processing, and vital sign estimation.

Figure 4.1: The Walabot radar captures raw data, which is processed to estimate vital signs.

Overview of UWB Radar

The Walabot developer version [230] used in this study for vital sign monitoring, is a 3D imaging
sensor that employs UWB technology, operating in the frequency range of 5–8 GHz, with a
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transmit power of 5dBm [231]. Its core is the Vayyar YYR2401 A3 system-on-chip (SoC)
integrated circuit (IC), supported by an array of 18 linearly polarised broadband antennas, as
shown in Fig. 4.2, [231]. The radar is powered by simply connecting a USB wire to the host
device, which is also used to send data between the radar and the host device using the cypress
controller, as shown in Fig. 4.3A. The given frequency range is good enough to detect direct
distance within 10 meters based on the gradient of radar pulse. The transmit chirp of Walabot
radar was characterised by [230]:

x(t) = Asin
(

2π

(
f1− f0

2T
(t− t0)

2 + f0 (t− t0)
))

(4.1)

Where A represents the amplitude of the linear frequency, f0 represents the starting frequency
of the linear frequency modulation, f1 represents the ending frequency, t0 represents the starting
time and T corresponds to the linear frequency modulation period.

Figure 4.2: Walabot radar sensor with front view showing the black outer shell (left) and an
internal antenna array board comprising 18 linearly polarised antennas (right).

Although the Walabot radar is widely used for applications such as detecting wires and pipes
behind walls, its design also offers distinct advantages for vital sign monitoring [232]. Its user-
friendly design and respiratory monitoring capabilities made it a practical choice for this study.
Walabot’s compact, integrated architecture combines the transmitter and receiver into a single
unit, simplifying the system setup and minimising the alignment challenges. This makes it
particularly well suited for research on user positioning and system configurations in real-world
scenarios. Walabot used a parameter called a “Profile” to identify which antenna pairs to use for
a specific application. Four profile options are available: short-range imaging, trackers, sensors,
and sensor narrow. The sensor narrow profile provides lower resolution and higher capture
rates, making it particularly suitable for applications involving motion detection, including RR
monitoring [231].
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Radar Arena Setup & Calibration: Arena is a term used to describe the area scanned by a de-
vice. To ensure a precise operation, the orientation of the arena must follow specific guidelines,
as shown in Fig. 4.3. Using Cartesian coordinates parameters X, Y, and Z, Arena are defined for
short-range imaging profiles, which typically correspond to the size of the device [233]. X and
Y parameters were defined from -10 to 10 cm, whereas Z was defined from 1 to 20 cm. For all
other profile categories, the Arena is specified using spherical coordinates parameters: R, theta

(θ), and phi (φ) [231].

Figure 4.3: Walabot Radar and coordinate systems: A) Connection between the Walabot and
host device, B) Cartesian coordinates from the antenna array, C) Cartesian and spherical coor-
dinates.

In this context, R specifies the Z range (1 to 1000 cm), while θ and φ determine the hori-
zontal (Y-axis) and vertical (X-axis) angles ranging from 0 to 90 degrees, respectively. When
developing a new application, the user can choose to configure the arena by using either Carte-
sian or Spherical coordinates. The application automatically converts spherical coordinates to
Cartesian coordinates when required, using the following equations [233]:

X = R · sinθ (4.2)

Y = R · cosθ · sinφ (4.3)

Z = R · cosθ · cosφ (4.4)

Regardless of the coordinate system used, each parameter was associated with a resolution pa-
rameter that was configurable in the range of 0.1 to 10. The resolution parameter determines the
validity of related parameters. The ranges of all the parameters depend on the specific features
used [231].

The calibration process must be performed before starting the application, as calibration en-
sures that the device ignores walls and reflections. It should be performed in a quiet environment
with no moving objects to improve accuracy. Proper calibration of the Walabot radar prior to
sensing improves detection reliability [233]. Table 4.1 lists the key parameters configured for
the Walabot radar during data acquisition, employed in this study. These parameters define the
radar’s initialisation, sensing range, and filtering techniques to ensure accurate detection within
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the specified range.

Table 4.1: Configured parameters of the Walabot radar during calibration.

Parameter Configured Value
API to Read Signals GetImageEnergy()
Arena Parameters Wlbt.SetArenaTheta(-0.1, 0.1, 1)

Wlbt.SetArenaPhi(-0.1, 0.1, 1)
Wlbt.SetArenaR(20, 80, 0.2)

Applied Filter Wlbt.SetDynamicImageFilter
(Wlbt.FILTER_TYPE_DERIVATIVE)

Radar Specifications & Parameters

Table 4.2 lists the specifications and parameters of the Walabot radar during the vital sign ex-
perimental setup.

Table 4.2: Radar specifications for collecting vital sign data

Parameters Values

Center Frequency 6.5 GHz
Bandwidth 3 GHz
PRF 53.5 MHz
Range 0 - 10 meters
Range Resolution Up to 2mm
Angular Resolution Up to 2mm
Frames Rate 1-10 frames per second
Sampling rate (fs) 4 Hz

Medical-Grade Reference Sensor

In our experiment, we used a respiration belt from GDX-RB, Vernier, USA [234], as shown
in Fig. 4.4, as the reference sensor to measure RR that worn around the upper abdomen, just
below the chest. The belt is highly sensitive and accurate, with a frequency response range of
10 Hz, making it suitable for capturing low-frequency vibrations caused by breathing. Upon
receiving the data, a Python script was used to conduct a frequency spectral analysis using the
FFT technique. This would determine the dominant frequency component of the force signal,
which corresponds to the subject’s RR. This allows us to establish a reliable reference signal for
validating the RR obtained from the radar, by comparing the RR measurements obtained from
both sensors, we can assess the performance of the radar.
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Figure 4.4: Gold-standard medical grade respiration belt that worn around the upper abdomen.

Experimental Setup

The Walabot radar was initialised using Python programming and the API’s to establish a con-
nection between the radar and the PC via a micro USB cable, as shown in Fig. 4.5A. Once
the calibration process was completed, the sensing area (Arena) was configured, and the system
was ready for data collection. During data acquisition, each captured signal was stored in a
comma-separated value (CSV) file for easy post-processing and analysis. To extract vital sign
information, breathing energy was generated using the GetImageEnergy() function from the
Walabot API. In addition, various API functions were used to configure the system and receive
signals, as summarised in Table 4.3.

Table 4.3: Different API’s of the Walabot during data collection of vital sign estimation

Walabot API’s Description
Walabot Init() To initialise the Walabot for start
Walabot Connect() Start communication with Walabot
Walabot Set Parameters() Set the Arena size
Walabot Calibrate() Calibrate the Walabot
Walabot Start() Start the system for capturing
Walabot Trigger() Scan according to profile and record the signal
Walabot stop() Stop capturing data
Walabot disconnect() Disconnect from the running phase

Data Collection

The experiments were conducted in an open room with an area of 16 × 13 square feet, as shown
in Fig. 4.5B, which shows a top view of the experimental setup. The data collection process was
divided into two phases to ensure a comprehensive validation of the UWB radar-based micro-
activity monitoring.

In the first phase, data was collected at three different distances between the radar and the
participant: 55, 60, and 65 cm. The experimental setup is shown in Fig. 4.5A, where the partici-
pant is sitting 60 cm away from the radar sensor, while wearing a medical grade respiration belt
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Figure 4.5: Experimental Setup: A) A person seated 60 cm in front of the radar during data
collection, B) Top view of the experimental setup.

as a reference sensor. Each experiment lasted one minute, during which the radar and the ref-
erence sensor simultaneously recorded the breathing signal to ensure accuracy and consistency.
The sampling frequency of the Walabot radar was configured to 4 Hz to capture subtle chest
movements associated with breathing.

In the second phase, data were collected while the participant maintained a fixed distance
of 60 cm from the radar. This phase assessed the system’s ability to detect different breathing
patterns. Participants performed the following breathing patterns:

• Slow breathing

• Normal breathing

• Elevated breathing

Each breathing pattern was maintained and collected for one minute, followed by a one minute
break before transitioning to the next pattern. Throughout this phase, the participant continued
to wear a medical grade respiration belt, ensuring reliable ground truth validation. This protocol
was designed to evaluate the radar accuracy across varying respiratory conditions and its poten-
tial for real-world deployment. Throughout the data collection process, a real-time breathing
pattern graph was displayed on the laptop screen to provide visual feedback on the respiratory
activity, as depicted in Fig. 4.6. The breathing signal was recorded simultaneously during post-
processing. FFT based signal processing techniques were applied to extract and estimate RR
and HR.

4.3.2 Data Preprocessing for Vital Sign Estimation

The entire pipeline for preprocessing the radar data to estimate HR, RR, and breathing patterns
is illustrated in Fig. 4.7. This diagram demonstrates how raw radar data undergoes systematic
signal processing to extract vital signs with high accuracy. The process begins with the acquisi-
tion of raw radar signals, which capture complex, multidimensional reflections from the human
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Figure 4.6: The capture of a Real-time graph that shows breathing application.

chest due to micro-movements caused by breathing and heartbeat. However, these signals are
not directly usable for frequency-based analyses because of their complex structures. To pre-
pare the data for processing, a flattening operation was applied to convert the radar reflections
into one-dimensional time series. This transformation ensures that all relevant physiological
information is structured into a format suitable for subsequent filtering and spectral analysis, as
shown in Fig. 4.8.

Figure 4.7: Signal processing pipeline for vital sign estimation from raw radar data.

For filtering, we employed a second-order Butterworth bandpass filter with different cutoff
frequencies for specific estimations. For RR estimation, the cutoff frequency was set to a range
of 0.16 – 0.33 Hz to capture respiration oscillations. For the HR estimation, a higher frequency
range 0.8 – 2.0 Hz was used to isolate the heartbeat signal. The application of these bandpass
filters ensures that the extracted signal components correspond only to respiratory and cardiac
activity, removing disturbances from random body movements or background noise. To ver-
ify the effectiveness of the bandpass filter, its frequency response was computed using freqz()
function in Python, ensuring that the selected cutoff frequencies correctly isolated respiratory or
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Figure 4.8: Time series Raw data of radar and belt after data flattening.

cardiac oscillations while suppressing unwanted noise components.
Once the signal was filtered, an FFT was performed to convert the time domain data into

the frequency domain. This transformation allows the identification of the dominant periodic
components that correspond to respiration and heartbeat cycles. To improve the spectral resolu-
tion and enhance the peak detection stability, a sixty second window was used before applying
FFT. The FFT spectrum reveals the strongest peaks at the dominant frequencies. The largest
peak in the 0.16 – 0.33 Hz range corresponds to the RR. The largest peak in the 0.8 – 2.0 Hz
range corresponds to the HR. The fundamental frequency of these peaks was then converted
into beats per minute (Bpm) for HR and breaths per minute (Brpm) for RR using the following
equation [235]:

Bpm = DominantFrequency×60. (4.5)

To further refine the accuracy of peak detection, cubic signal interpolation was applied after FFT.
The interpolation technique was used to smooth spectral fluctuations, reduce noise effects, and
improve frequency resolution for better peak estimation. Additionally, post-processing filters
were used to remove sudden variations or outliers, ensuring the stability of the final estimated
HR and RR values.

The same processing pipeline was used to classify different breathing patterns, and the input
dataset was changed accordingly. By adjusting the cutoff frequencies, the dominant frequency
for each breathing pattern was extracted and mapped to predefined categories based on Bpm
ranges. The classification criteria are summarised in Table 4.4, which differentiates between low,
normal, and elevated breathing based on their respective Brpm and frequency ranges [236]. The
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final decision making process was used, where the extracted HR and RR values were classified
into their respective physiological categories.

Table 4.4: Breathing classification based on frequency and Brpm ranges with key physiological
indicators.

Breathing Class Frequency
Range (Hz)

Brpm Key Characteristics

Slow breathing < 0.2 < 12 May indicate sleep apnea
Normal Breathing 0.2 - 0.33 12 - 20 Stable, effortless
Elevated Breathing > 0.33 > 20 Linked to anxiety

4.3.3 Experimental Results and Discussion

In this section, we present and evaluate the experimental results obtained during the preprocess-
ing of UWB radar data. The accuracy of the radar derived measurements was verified using a
medical grade reference sensor. Specifically, we focus on the estimation of HR and RR, fol-
lowed by an analysis of the breathing pattern classification. For the RR validation, we used a
respiration belt as the reference sensor; thus, comparisons were limited to the RR derived from
the radar data.

Micro-Activity Estimation

The primary objective of the study was to estimate radar-based micro-activities that correspond
to RR and HR, and then compare the outcome with a ground truth reference sensor (a respiration
belt) and evaluate the accuracy of the system. The filtered signals from both the radar and
respiration belt are displayed in Fig. 4.9, demonstrating a periodic breathing pattern over a
sixty-second interval. The synchronised waveforms indicate that the radar effectively captured
the chest motion associated with respiration.

To estimate RR, FFT was applied to the filtered data, converting it into the frequency domain.
This transformation enabled the identification of the dominant breathing frequency, which cor-
respond to the RR in Hz. The frequency spectra obtained from both the radar and respiration
belt are presented in Fig. 4.10. The dominant frequency component identified from the FFT
spectra for RR estimation is 0.28 Hz which, when converted to Brpm using Eq. 4.5, yields a
value of 16.8 Brpm, falling within the normal breathing range. For the reference belt sensor,
the corresponding value is 0.30 Hz, which translates to 18 Brpm. The absolute error in the RR
estimation between the two sensors was 1.2 Brpm. This minor discrepancy can be attributed
to slight motion artifacts and radar sensitivity to small chest displacement. Nevertheless, radar-
based estimation remains within the normal physiological breathing range and demonstrates
close alignment with the reference sensor.
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Figure 4.9: Output of the bandpass filter applied to both radar and reference sensor signals.

Figure 4.10: Comparison of RR estimates obtained from radar signals and a reference respiration
belt using FFT-based analysis.

The human HR typically ranges from 60 to 240 Bpm, which corresponds to 1 – 4 Hz in
the frequency domain. However, to isolate the heartbeat signal, a second-order Butterworth
bandpass filter with a cut-off frequency of 1 – 2 Hz was applied to the radar signal. This filtering
step removes lower frequency components below 1 Hz and higher frequency components above
2 Hz. After filtering, an FFT was performed to obtain the frequency spectrum, which allowed us
to extract the dominant HR frequency component. The resulting HR spectrum is shown in Fig.
4.11, where a distinct peak in the range of 1 – 2 Hz corresponds to the estimated HR. Among the
identified frequency peaks, the one with the highest magnitude was selected for HR estimation.
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The extracted frequency was found to be 1.25 Hz, which, when converted to Bpm using the
same Eq. 4.5, yields an estimated HR of 75 Bpm, which falls within the normal resting HR range
for adults, that collected during normal breathing. Unlike RR, HR estimation was not validated
with a reference sensor in this experiment because the respiration belt used for RR measurement
does not provide HR values. However, the detected HR falls within a physiologically reasonable
range, indicating that the radar-based approach is effective for HR monitoring.

Figure 4.11: Radar-based HR estimation following FFT and interpolation processing.

Effect of Distance on RR Estimation: Another focus of this study was to evaluate the effect
of distance on the radar-based RR estimation. To investigate this, experiments were conducted
at three different distances between the radar and the participant: 55 cm, 60 cm, and 65 cm.
The results indicate that as the distance varies, the accuracy of the RR estimation fluctuates,
showing deviations from the ground-truth respiration belt measurements. Table 4.5 summarises
the experimental results, presenting the RR and HR frequencies, the estimated Brpm, and Bpm
from both the radar and the reference sensor, along with the absolute error at each distance.

Table 4.5: Comparison of radar-based micro-activity estimates with reference measurements at
varying distances.

Distance Radar HR Radar RR Ref. RR Range Error

Freq (Hz) Bpm Freq (Hz) Brpm Brpm Brpm Brpm

55 cm 1.26 75.6 0.20 12.0 15.6 3.6
60 cm 1.25 75.0 0.28 16.8 18.0 1.2
65 cm 1.07 64.2 0.19 11.4 13.8 2.4
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The results showed that the most accurate RR estimation occurred at 60 cm, where the ab-
solute error was only 1.2 Brpm. This suggests that, at this optimal distance, the radar receives
strong, unobstructed reflections from chest motion, leading to a higher SNR and improved de-
tection accuracy. Additionally, the HR estimation at 60 cm was 75.0 Bpm, which falls within
the expected physiological range. At 55 cm and 65 cm, the absolute errors in RR estimation in-
creased to 3.6 Brpm and 2.4 Brpm, respectively. At shorter distances, the radar near-field effects
and stronger multipath reflections likely introduced noise, leading to a higher deviation from the
reference sensor measurements.

Similarly, at longer distances, weaker radar reflections and increased attenuation reduce the
signal strength, making it more challenging to extract an accurate respiratory frequency. Addi-
tionally, the HR estimation at 65 cm dropped to 64.2 Bpm, which is lower than the HR values
estimated at 55 cm (75.6 Bpm) and 60 cm (75.0 Bpm). This reduction in HR accuracy at longer
distances may be attributed to weaker radar signal reflections, leading to a less reliable heartbeat
detection. These results suggest that, while radar-based vital sign estimation is feasible across
different distances, performance is optimal at 60 cm, likely because of the balance between
strong reflections, minimal signal attenuation, and reduced noise interference.

Breathing Pattern Classification

In this study, RR estimation was used to classify three distinct breathing patterns: low, normal,
and elevated. The classification was based on frequency ranges and Brpm, as summarised in
Table 4.4.

Figure 4.12: Slow breathing: (A) Original and filtered radar signal; (B) estimated spectrum of
radar and reference sensor.

Slow breathing Estimation: Hypopnea, or slow breathing, is characterised by RR value be-
low 12 Brpm, corresponding to a frequency of 0.16 Hz. Fig. 4.12 illustrates the time domain
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representation of the raw and filtered radar signals. In subplot A, the raw signal appears noisy,
while the filtered signal clearly highlights the periodic breathing cycles. Subplot B compares the
radar estimated RR of 0.08 Hz (4.8 Brpm) to the reference RR of 0.06 Hz (3.6 Brpm), confirming
slow breathing class. In addition, the estimated HR during slow breathing is shown in Fig. 4.13,
indicates a dominant frequency of 1.12 Hz, corresponding to 67.2 Bpm. This slightly reduced
HR is consistent with the expected physiological response to slow breathing. These results val-
idate the ability of radar-based monitoring to detect hypopnea patterns and their physiological
impact.

Figure 4.13: Estimated HR during Slow breathing class.

Normal Breathing Estimation: Normal breathing of an adult is typically lying in the range
of 12-20 Brpm, corresponding to a frequency range of 0.16-0.33 Hz. Fig. 4.14 illustrates the
time domain representation of the raw and filtered radar signals. In subplot A, the raw signal
appears noisy, while the filtered signal clearly highlights a stable breathing pattern. Subplot B
compares the radar estimated RR of 0.20 Hz (12 Brpm) to the reference RR of 0.23 Hz (13.8
Brpm), confirming normal breathing. In addition, the estimated HR during normal breathing,
shown in Fig. 4.15, indicates a dominant frequency of 1.34 Hz, corresponding to 80.4 Bpm. This
HR value is within the expected range of resting HR and reflects stable cardiovascular activity.
These results validate the radar’s ability to accurately detect normal breathing patterns and their
associated physiological responses.

Elevated Breathing Estimation: Hyperpnea or elevated breathing is defined as a RR exceed-
ing 20 Brpm, corresponding to a frequency above 0.33 Hz. Fig. 4.16 shows the time domain
representation of the raw and filtered radar signals. In subplot A, the respiratory cycles occur
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Figure 4.14: Normal Breathing: (A) Original and filtered radar signal; (B) Estimated spectrum
of radar and reference sensor.

Figure 4.15: Estimated HR during normal breathing class.

more frequently than normal breathing, and the filtered signal can clearly capture the breathing
pattern. Subplot B compares the radar estimated RR of 0.52 Hz (31.2 Brpm) to the reference
RR of 0.57 Hz (34.2 Brpm), confirming the classification of elevated breathing. In addition, the
estimated HR during hyperpnea, shown in Fig. 4.17, shows a dominant frequency of 1.80 Hz,
corresponding to 108 Bpm. This increase in HR reflects the expected physiological response
to an increase in RR, which may be due to higher metabolic demands and activation of the
sympathetic nervous system. These results demonstrate the ability of radar to accurately detect
elevated breathing patterns and their associated physiological effects.



CHAPTER 4. RADAR-BASED VITAL SIGN MONITORING 100

Figure 4.16: Elevated Breathing: (A) Original and filtered radar signal; (B) Estimated spectra of
radar and reference sensor.

Figure 4.17: Estimated HR during elevated breathing class.

4.4 Vital Sign Monitoring Using Millimetre Wave Radar

Building on the previous discussion, this section explores a study that investigates the use of
mmWave radar for non-invasive monitoring of micro-activities or vital sign specifically HR and
RR. In the previous sections, we examined the use of UWB radar for vital sign estimation. While
promising, this study was constrained by a limited experimental setup, as data were collected
from only a single subject seated at varying distances, reducing the generalisability of the find-
ings. To address these limitations and enhance the robustness and accuracy of micro-activity
monitoring, we adopted a more advanced sensing approach using mmWave radar. Operating in
the mmWave band, this technology offers higher resolution, improved sensitivity to minute chest
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movements, and better suitability for diverse subject testing and real-world applications [25].
Among the various radar types, mmWave FMCW radars offer a combination of capabilities not
available in single alternative systems. A key advantage is that they operate in the mmWave fre-
quency range, which experiences high attenuation. This feature ensures high isolation between
multiple co-located radars, even if they are only a few meters apart [178].

In addition, mmWave radars are highly sensitive to small displacements in the mm range,
making them particularly suitable for detecting chest wall motion associated with breathing
and heartbeat. Another important feature of these radars is their ability to distinguish between
reflections at different ranges, allowing for multi-subject vital sign detection. This capability,
highlighted in [237], offers a significant advantage over CW radars, which suffer from multipath
fading due to their inability to distinguish between reflections at different ranges. FMCW radars
mitigate this problem by reducing the likelihood of multiple reflections interfering with the main
signal, especially in environments with minimal scattering.

Additionally, FMCW radar signals are inherently more robust against thermal noise than
UWB radars. Similar to frequency modulation (FM) signals, vital sign information in the
FMCW radar is encoded in the received phase, making it less susceptible to noise interference.
This enhanced noise immunity contributes to the reliability of radar-based vital sign monitoring,
even under non-ideal conditions. Despite these advantages, an important aspect to consider is
the radar’s ability to detect vital signs when it is placed at elevated positions relative to the sub-
ject. This is particularly relevant in scenarios where the radar must remain fixed, regardless of
variations in the subject height or position. Previous studies explored various orientations and
use cases. For instance, [238] analysed radar performance across multiple orientations, includ-
ing front, back, left, and right, at varying distances and concluded that position and orientation
significantly impact accuracy.

Another study [239] examined non-contact RR detection while a subject was on a treadmill,
demonstrating the feasibility of radar-based vital sign monitoring during physical activity, which
holds promise for sports and fitness applications. Similarly, [240] investigated the use of radar
in automotive environments, where a sensor mounted on the top of a windshield successfully
detected a driver’s vital signs, reinforcing the potential of non-contact monitoring in real-world
settings. However, these studies did not evaluate radar performance at different heights, leaving
a gap in the understanding of its effectiveness when placed at elevated positions.

Our research aims to bridge this gap by systematically evaluating the performance of the
FMCW radar at different heights. To conduct this study, we employed an advanced setup
featuring the DCA1000 data acquisition module, which facilitates real-time data transmission
and aligns with emerging 5G/B5G network standards. Additionally, we incorporated two dis-
tinct signal processing methods, FFT and peak counting, to analyse the acquired data. FFT is
well suited for frequency domain analysis, enabling precise identification of vital sign patterns,
whereas the peak count method provides a more straightforward approach for detecting respira-
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tory cycles. By comparing these techniques in terms of computational complexity and detection
accuracy, our study aims to optimise signal-processing strategies for mmWave radar-based vital
sign monitoring.

4.4.1 System Overview

The system model, as depicted in Fig. 4.18, was developed to evaluate the accuracy and reli-
ability of the FMCW radar in monitoring vital signs at three distinct heights: 1 m, 2 m, and
the standard chest height, based on the subject’s height measurements. The setup consists of an
FMCW radar sensor paired with a DCA1000 data acquisition module, which transmits IF signals
to a PC for preprocessing and vital sign estimation. Additionally, reference sensors, including
an in-ear sensor and respiration belt, were used for benchmarking, enabling error quantification.
The following subsections provide a detailed breakdown of each system component and its role
in the framework.

Figure 4.18: Block Diagram of our Proposed System Model.

mmWave Radar Sensor

In this study, we employed the IWR6843AOP radar sensor from Texas Instruments (TI) [241],
which features an antenna-on-package (AoP) design that eliminates the need for external an-
tennas or additional connectors. This self contained architecture minimises signal degradation
from external interference, thereby ensuring high fidelity measurements of human respiration.
As shown in Fig. 4.19A illustrates the radar sensor with its compact antenna configuration,
whereas Fig. 4.19B presents the sensor connected to the DCA1000 data acquisition module
used for transmitting IF signal to the connected PC with high data rate.
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Figure 4.19: IWR6843 radar sensor board with DCA1000. (A) illustrates the radar sensor with
its antenna configuration, while (B) shows the sensor connected to the DCA1000 data capture
card.

The radar sensor is equipped with three transmitting antennas (3Tx) and four receiving an-
tennas (4Tx). However, in this study, we utilised 1Tx and all 4Rx antennas to optimise the
chest displacement detection during breathing. The radar operated at a starting frequency of
60.25 GHz with a bandwidth of 3.75 GHz, providing high resolution phase and amplitude mea-
surements. To further detail the system’s functionality, Table 4.6 summarises the key technical
specifications of the FMCW radar sensor and the settings optimised for vital sign extraction and
estimation.

Table 4.6: FMCW mmWave radar settings for vital sign estimation.

Parameters Values

Center Frequency 60.25 GHz
Bandwidth 3.75 GHz
No. of ADC samples 256
No. of Frames 2400
No. of Chirps per frame 2
Frame Periodicity 50 msec
Chirp Duration 64 µsec
Maximum range 10 meters
Range Resolution 0.05 meter
Radar Memory 1.5 MB

mmWave Radar Basics: A detailed overview of FMCW radar sensor is provided in Chapter
2 (see Section 2.2), here, we summarise only the essential concepts relevant to vital sign estima-
tion. The FMCW radar system transmits a chirp signal towards the subject’s body and receives
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the reflected signal, which can be mathematically expressed as [25]:

s(t) = e j(2π fct+π
B
T t2), (4.6)

r(t) = e j(2π fc(t−td)+π
B
T (t−td)2), (4.7)

where fc is the carrier frequency, B is the bandwidth of the chirp, T is the chirp duration and
B/T is the frequency modulation slope of the chirp. The received signal is a delayed td and
attenuated version of the transmitted signal, that shows td = 2R

c , R shows the range of the target,
and c shows the speed of light.

To extract the range, phase, and vital sign information, the received signal was mixed with a
copy of the transmitted signal and filtered using a mixer. This mixing process generates a beat
signal b(t) of a target at range R as:

b(t) = e j(4π
BR
cT t+ 4π

λ
R) (4.8)

Here fb = 4π
BR
cT shows the beat frequency and φb = 4π

λ
R represents the phase shift, which

encodes the displacement information of the subject’s chest due to respiration and heartbeat.
For vital sign monitoring of a single subject, we analyse the phase variation of the beat signal

b(t), which is sinusoidal and consists of both frequency fb and phase φb:

b(t) = e j( fbt+φb) (4.9)

To measure small scale vibrations such as chest displacement during respiration, we tracked the
phase changes of the FMCW radar signal over time. If an object moves by a small displacement
∆R, the corresponding phase change between consecutive measurements is:

∆φb =
4π

λ
∆R (4.10)

For example, at a wavelength λ = 4mm, a displacement as small as ∆R=1 mm results in a phase
change of ∆φb = π . To extract this phase information, we take the FFT of the beat signal and
compute the phase at the target range bin. The displacement signal can then be derived from the
phase variations over time:

x(m,nTs) =
λ

4π
φb(m,nTs) (4.11)

Where m is the range bin, n is the chirp index, and Ts is the time interval between consecutive
chirps. It is assumed that the vibrations x(t) are small, ensuring that the target remains in the
same range bin throughout the measurement period. The resulting beat signal, which contains I
and Q components, was collected via the DCA1000 module for further processing.
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DCA1000 Data Capture Module

DCA1000EVM is an evaluation module (EVM) designed by TI [242] for high speed data ac-
quisition from FMCW radar sensors. It serves as an interface between the radar sensor and
the host PC, enabling the real-time capture and storage of raw ADC data for post-processing.
The DCA1000 connects to the radar module through a 60 pin high-density samtec connector,
ensuring a low latency data transfer. The captured data were streamed via a one Gbps ethernet in-
terface to the host PC. The module is equipped with an field-programmable gate array (FPGA)
to handle data processing, and a USB interface for additional configurations. The DCA1000
supports two configuration modes.

• Hardware switch configuration mode: Configured via on-board switches to define data
logging and transfer settings.

• Software CLI configuration mode: Configured via JSON files and executed using a
command-line interface (CLI) on Windows or Linux systems.

To ensure seamless operation, the DCA1000 provides raw and multi-mode logging for diverse
data acquisition requirements and support for different LVDS modes (4-lane / 2-lane) to optimise
data capture. The flexible stop conditions include byte count, frame count, duration-based, or
infinite streaming. Error detection and LED indicators for status monitoring (e.g. data transfer,
buffer overflow, and LVDS path errors). The captured data are stored in a binary format (.bin),
which can later be processed to extract phase, range, and vital sign information as detailed in
subsequent sections.

Experimental and Data Collection Setup

This study investigated the performance of an FMCW radar system for detecting RR and HR at
multiple heights. The experiment was conducted in a controlled laboratory environment at the
University of Glasgow, UK, and involved 10 test subjects who remained stationary while the
radar recorded their vital signs. The radar system was placed at three different heights:

1. 1 meter above the ground

2. Chest height of the subject (baseline, varied per individual)

3. 2 meters above the ground

To ensure accuracy, the radar measurements were compared with of those two reference sensors.
A respiration belt was worn around the upper abdomen of the subject for the RR estimation, and
an in-ear sensor was inserted into each subject’s ear for HR estimation.

Each experimental session lasted 120 second per radar position for each subject, ensuring
that all sensors were properly synchronised and operational before the data collection began.
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The radar was positioned 0.8 meters away from the subject in all cases for consistency. When
placed at the chest height, it was mounted to maintain a zero tilt angle, ensuring that its main
beam was perpendicular to the chest of the subject. However, at a height of 1 m, the radar was
tilted upward towards the chest, forming an average elevation angle of 25.3°, as illustrated in
Fig. 4.20A. At a height of 2 m, the radar was tilted downward at an average depression angle of
41.5°, as shown in Fig. 4.20B. These variations allowed for a comparative analysis of the radar
performance across different heights and angles.

Figure 4.20: Radar positioning at different heights and corresponding tilt angles. (A) Radar
elevated at 1 m with an elevated angle, while (B) shows radar elevated at 2 m with a depression
angle.

During data collection, test subjects were instructed to stand still and breathe normally, and
their RR and HR were recorded. All sensors were synchronised and tested each time before
the start of data collection from a new subject to ensure proper consistency and accuracy of
the sensors. Radar data were collected from three predetermined heights and stored for post-
processing. Two Dell laptops were used for the data acquisition and storage.

• Laptop 1 Collected respiration belt and in-ear sensor data via USB, controlled through a
Python script.

• Laptop 2 Managed radar data acquisition, storing raw binary (.bin) files, which were later
parsed and processed using MATLAB and Python for vital sign estimation.

The experimental environment and data collection setup are shown in Fig. 4.21, showing the
radar at different heights and the subject positioning during the experiment.

4.4.2 Radar Data Preprocessing for Vital Sign Estimation

Extracting vital signs from radar data is a multi-stage process involving systematic signal pro-
cessing, as shown in Fig. 4.22. The process consists of three key steps: Human detection, Phase
extraction, and Signal separation for HR and RR estimation. Each stage plays a vital role in
ensuring accurate and reliable detection of human heartbeat and breathing signals.
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Figure 4.21: Experimental setup during data collection. (A) shows the data collection environ-
ment with radar at 2 meters height, while (B) illustrates a subject positioned for measurements
when the radar was at 1 meter height.

Figure 4.22: Block diagram illustrating radar data Preprocessing steps for vital sign estimation.

Human Detection: The first step in radar data processing is to detect and localise the subject,
as only the range bins corresponding to the subject’s position contain relevant vital sign infor-
mation. This is achieved using Range-FFT, which transforms the received time-domain signal
into a range profile, separating the reflected signals based on their distance from the radar. In
an FMCW system, each column in the range profile represents the FFT of one chirp and each
row corresponds to the beat frequency at a specific target distance, known as a range bin [95].
Over multiple chirps, the range profile formed a slow time axis. For stationary subjects, the sub-
ject’s chest location was identified within a specific range bin. For example, in Fig. 4.22B, the
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subject is primarily located in bins 9-11, with the strongest signal at bin 9.5. The optimal range
bin can be selected by selecting the bin with the highest signal magnitude or maximum energy
in the detected region. Once the subject’s range bin is determined, vital sign signal processing
algorithms can proceed.

Phase Extraction: After identifying the subject’s range bin, phase information was extracted
to capture the chest displacement caused by respiration and heartbeat. The phase values de-
rived from the complex range profile data were measured over time, assuming that the subject
remained within the same range bin. If the subject moves, the algorithm re-locks onto the new
range bin after a short delay.

The extracted phase values are initially wrapped within the range [−π,π], causing disconti-
nuities when the phase exceeds this range. Phase unwrapping corrects these jumps by adding or
subtracting 2π whenever the phase difference between consecutive values exceeds±π , ensuring
a smooth, continuous signal. To further refine the signal, the phase difference was computed by
subtracting successive unwrapped phase values. This step enhances the heartbeat signal while
reducing low-frequency drifts, which can impact the accuracy. The phase variations correspond
directly to the chest displacement, enabling the estimation of respiration and heartbeat induced
movement.

As shown in Fig. 4.22C, the unwrapped phase can be converted to displacement distance
over the entire 120 second recording period, where large displacements represent breathing and
smaller superimposed displacements correspond to heartbeats. At the 70 second mark, the sub-
jects were instructed to hold their breath, allowing for an isolated observation of the heartbeat
waveform. To approximate the maximum line-of-sight (LOS) motion of the target, we used the
following relation [178]:

dmax =
πRpp fx

fPRF
. (4.12)

Where Rpp is the peak-to-peak sinusoidal motion, fx is the motion frequency, and fPRF is the
pulse repetition frequency of the radar.

For an extreme case of breathing, assuming Rpp= 2cm and fx=0.5Hz, this constrains fPRF≤13
Hz for the unwrapping process to remain valid. Because the unwrapped phase is directly pro-
portional to the displacement distance, the chest displacement can be expressed as [178]:

R[n] =
cΦ[n]
4π fc

(4.13)

where fc is the center frequency of the EM wave, c is the speed of light in the propagation
medium, and Φ[n] represents the unwrapped phase at time step n. These chest displacement
variations, originating from the breaths and heartbeats, can be observed in Fig. 4.22C, prior
to any filtering or signal processing. Although some noise may still be present, the distinct
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breathing and heartbeat waveforms remain partially identifiable.

Signal Separation and Estimations: After the phase extraction, the next step involves sepa-
rating the respiratory and heartbeat signals and estimating their respective frequencies. Because
both signals were superimposed in the extracted phase data, they were isolated based on their
distinct spectral characteristics using bandpass filtering and spectral estimation techniques. The
extracted phase values first underwent bandpass filtering to eliminate noise and isolate the fre-
quency ranges associated with RR and HR.

A fourth order Butterworth filter is applied with cutoff frequencies set between 0.1 – 0.5 Hz
for RR (6 – 30 Brpm) and 0.8 – 4 Hz for HR (48 – 240 Bpm). To address motion artifacts or
large body movements, segments with high-amplitude distortions were either scaled down or
discarded if their energy exceeded a predefined threshold, ensuring that only clean and reliable
data were used for further analysis. Once the signals are filtered, spectral estimation techniques
such as FFT and peak detection are applied to identify the dominant frequency components
corresponding to RR and HR. FFT computes the power spectral density (PSD) of the filtered
signals and identifies the strongest frequency component associated with either RR or HR. The
RR, for instance, can be calculated using the equation [235]:

RR =
∆ f
2 fm
×60 (4.14)

Where ∆ f represents the detected frequency component and fm is the modulation frequency.
Additionally, time-domain peak detection analyses the periodic variation in the chest dis-

placement signal by identifying peak-to-peak intervals corresponding to breathing or heartbeat
cycles, thereby providing another estimate of RR and HR. To enhance accuracy, a confidence
metric is computed by incorporating factors such as the SNR, peak prominence, and consis-
tency across multiple spectral techniques. The final HR and RR values are determined based
on the confidence metric from these spectral estimation techniques, ensuring the robustness and
accuracy of the vital sign measurements.

Quantification Across Reference Sensors

To evaluate the accuracy of the FMCW radar sensor in monitoring RR and HR, we compared its
performance with that of reference sensors. The same respiration belt previously used in UWB-
based vital sign estimation was used for RR measurements in this study. For HR estimation, an
in-ear sensor from cosinuss Germany [243], was employed that wirelessly transmitted real-time
data to a dedicated server equipped with a built-in Wi-Fi module. The in-ear sensor system
recorded HR data in real time and stored preprocessed values along with the corresponding
timestamps. The HR data were retrieved from the server in the CSV format at a sampling
rate of 1 Hz and transferred to a local PC for further analysis. To ensure consistency in the
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performance evaluation, an equal number of RR and HR values were collected from both the
radar and reference sensors at each radar height.

The resulting discrepancies in the measurements were analysed to benchmark the radar’s
accuracy in detecting the vital signs. To systematically quantify the errors between the radar-
based and reference sensor measurements, we calculated two statistical error metrics:

1. Mean Absolute Error (MAE): Measures the average deviation between radar and reference
sensor readings.

2. Root Mean Square Error (RMSE): Captures the variance and overall accuracy of radar-
based estimations.

These benchmarking metrics provide insights into the precision and reliability of the radar sys-
tem in capturing vital signs at different height positions.

4.4.3 Results and Discussion

This section presents the key findings of our study on extracting vital signs from raw mmWave
radar data using two primary signal processing techniques: FFT and peak count analysis. We
evaluated the performance of these methods across three radar heights (1 m, chest height,
and 2 m) to assess their accuracy in detecting micro-activities and determine the reliability of
mmWave-based FMCW radar for non-invasive vital sign monitoring. The experimental setup
utilised two Dell laptops, each equipped with an 11th generation Intel core i7 processor (3.00
GHz) and 16 GB of RAM, for data storage and preprocessing of both radar and reference sensor
data. Our analysis aimed to identify which signal processing method delivers the most con-
sistent and accurate measurements across different height configurations. The following sub-
sections provide a detailed comparative analysis of FFT and peak count techniques, examining
their respective strengths, limitations, and suitability for multi-height radar-based micro-activity
monitoring.

Performance Comparison of HR and RR

Fig. 4.23 presents 120 seconds of breathing and heartbeat waveforms, extracted from raw radar
data after applying a bandpass filter, as described in the previous section. To validate the radar-
derived estimates of RR and HR, a thorough comparison with reference sensor readings was
performed. This comparison allows us to assess the accuracy and reliability of radar-based mea-
surements under different processing techniques. In Fig. 4.24 , we present the estimated RR and
HR obtained using the FFT and peak counting methods, as well as the reference sensor bench-
mark. While the analysis was performed for all ten subjects at three different radar altitudes,
the results shown here correspond to one subject at 2 m altitude as a representative example of
data consistency across conditions. The comparison shows that the estimates obtained using the
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peak counting method are in closer agreement with the reference sensor measurements for HR
and RR. This suggests that the peak counting method has a higher accuracy in detecting vital
signs than the FFT-based method. But still FFT based outcomes fall under the normal RR and
HR estimations.

Figure 4.23: Filtered HR (bottom) and RR (top) waveforms over 120 seconds.

Statistical Analysis of Error Metrics

To assess the accuracy of RR and HR estimations using the FFT and Peak Count methods, we
analysed the MAE and RMSE values at three radar heights: 1 m, chest level, and 2 m. Fig. 4.25,
illustrate the error comparisons, showing that placing the radar at 2 m, which is closer to the
standing height of the subjects (160 - 185 cm), results in lower errors compared to 1 m. This
suggests that aligning the radar height with the subject’s height, such as using 1 m for seated or
lying positions, could further optimise the accuracy.

Additionally, Table 4.7 presents the mean error metrics for both FFT and Peak Count tech-
niques, confirming that the Peak Count consistently outperforms FFT with lower error values
across all height configurations. The Chest_ref column provides a baseline reference for RR
and HR errors at chest height, whereas the RR_all and HR_all columns aggregate the errors
across all height positions, reinforcing the adaptability of the radar system for non-contact vital
sign monitoring. Further statistical analysis explored the relationship between subject height
and error variations, as shown in Table 4.8. The correlation coefficients indicated a weak nega-
tive correlation between subject height and errors at 1 m radar height, whereas a weak positive
correlation was observed at chest height and 2 m. The correlation coefficients (r) for MAE and
RMSE ranged from -0.13 to 0.33, suggesting that subject height had a minimal impact on radar
measurement accuracy. The mean MAE values range from 4.1 to 5.9, and mean RMSE values
range from 5.2 to 6.7, with the STD and variance showing relatively stable consistency across
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Figure 4.24: Estimated HR (bottom) and RR (top) over 120 seconds: Radar FFT and Peak count
methods vs. reference sensors.

Figure 4.25: Mean Error Metrics. A) Comparison of RR mean error metrics across radar heights.
B) Comparison of HR mean error metrics across radar heights.

different radar heights. These findings validate the robustness of the radar system and signal
processing techniques and demonstrate their capability to reliably estimate vital signs across
various subject positions and conditions.

Overall, the Peak Count method outperformed FFT-based spectral estimation, consistently
yielding lower MAE and RMSE values. Additionally, radar height placement significantly influ-
ences error rates, with higher radar elevations (closer to the subject’s height) reducing the errors.
The weak correlation between subject height and error metrics suggests that the accuracy of
the radar system is largely independent of subject height, further confirming its adaptability and
reliability in non-invasive HAR applications.
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Table 4.7: Mean error metrics for RR and HR estimations using FFT and Peak Count methods
at 1 m, 2 m, and all heights.

Errors Chest_ref RR HR RR_all HR_all

FFT

MAE 4.5 6.3 4.9 5.4 4.7
RMSE 4.8 6.2 5.2 5.5 5

Peak Count

MAE 4.2 5.5 4.2 4.9 4.2
RMSE 4.4 5.4 4.5 4.8 4.4

Table 4.8: Correlation and statistical analysis between radar height and error metrics.

Metrics 1 m Chest 2 m
Var MAE 2.3 5.2 5.1
Var RMSE 2.5 6.5 4.8
STD MAE 1.51 2.2 2.25
STD RMSE 1.58 2.5 2.20
r MAE -0.13 0.25 0.33
r RMSE -0.06 0.19 0.27
Mean MAE 5.7 4.09 5.9
Mean RMSE 6.7 5.24 6.7

4.5 Summary

This chapter presents a comprehensive study on two different radar technologies, UWB and
mmWave FMCW radar, for non-intrusive micro-activity monitoring, that tackle the challenge
C1, as discussed in Section 1.3. In the first phase, we evaluated HR and RR estimation using
UWB radar by collecting data from a single subject in a sitting position under various breath-
ing patterns. This initial study allowed us to analyse radar performance, refine signal process-
ing techniques, and establish a baseline algorithm for subsequent advanced signal processing.
The UWB radar evaluation provided critical insights into radar-based physiological monitoring,
helping to prepare a signal processing pipeline for more complex scenarios. In the second phase,
we extended our study to the FMCW radar for multi-subject, multi-position vital sign monitor-
ing. This phase involved 10 subjects with radar data collected at three different heights (1 m,
chest level, and 2 m) to examine the impact of radar placement on RR and HR estimation.

We developed a comprehensive signal processing pipeline, including range bin selection,
phase extraction, phase unwrapping, and frequency based signal separation. The Peak Count
method consistently outperformed the FFT, demonstrating lower MAE and RMSE values and
greater robustness in extracting vital signs. Additionally, while radar placement influenced the
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error rates, statistical analysis revealed a weak correlation between subject height and estimation
accuracy, confirming the versatility and adaptability of the radar system across different scenar-
ios. This chapter highlights the progression from UWB to FMCW radar, demonstrating the
capabilities, limitations, and necessary optimisations for effective radar-based vital sign moni-
toring. Building on this foundation, this study addresses the challenge of using radar for non-
intrusive, multi-scale HAR by accurately estimating micro-activities, alongside macro-activity
recognition. The findings confirm that the radar is a reliable and accurate tool for non-contact
physiological monitoring, reinforcing its potential as a preferred solution for AI-driven, non-
invasive HAR applications in healthcare and remote monitoring.



Chapter 5

Edge-Optimised Privacy Preserved
Macro-Activity Recognition

This Chapter marks another contribution of this thesis: the transition from radar data processing
to the real-time deployment of a robust R-HARS for healthcare applications. This addresses
challenges C2 and C3, as detailed in Section 1.3. Our prior evaluation of four radar prepro-
cessing techniques using TL identified two optimal candidates, namely RD and STFT-based TF
domains. These were selected because of their balance between computational efficiency and
recognition performance, making them suitable for resource-constrained environments. These
domains are integrated with DL models and optimised for low-latency inference on edge devices.
Energy efficiency is a key deployment challenge, requiring comprehensive model optimisation
strategies that minimise computational overhead while maintaining recognition accuracy. Addi-
tionally, determining the optimal pairing between radar domain representations and TL models
ensures strong performance under constrained conditions. Although radar technology is inher-
ently privacy-preserving, we further enhance data security by incorporating a local differential
privacy (LDP) mechanism to enable secure on-device inference. By bridging the gap between
research and implementation, this study demonstrates the feasibility of deploying optimised and
privacy-aware radar-based macro-activity recognition systems on edge platforms. This advance-
ment paves the way for practical applications of AAL and beyond.

5.1 Introduction

The integration of artificial intelligence (AI), the Internet of Things (IoT), and Edge comput-
ing has transformed real-time decision-making in various fields, especially in healthcare. AI-
enabled edge computing systems address major global challenges including resource limitations,
high energy consumption, and security vulnerabilities [244]. However, traditional cloud-based
solutions have powerful computing capabilities, they also have significant drawbacks, including
high communication latency, increased energy consumption, and potential privacy risks [181].
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These limitations make cloud-based AI unsuitable for real-time, resource-constrained IoT ap-
plications that require fast processing and secure data transmission [245].

Edge intelligence (EI) has emerged as an effective solution to overcome these challenges.
EI integrates AI and edge computing to perform real-time data processing directly on edge de-
vices without relying on remote cloud servers [246]. This approach can reduce latency, save
bandwidth, and enhance privacy by keeping sensitive data locally. Compared with traditional
cloud-based AI that requires large amounts of data to be transmitted to remote servers for pro-
cessing, edge AI performs inference locally, making it suitable for real-time applications such
as healthcare monitoring and emergency response systems. Despite its advantages, deploying
DL models on edge devices still faces significant challenges due to limited computing resources
and power constraints. Inference on edge devices requires optimised AI models that can run
efficiently within hardware limitations, ensuring a balance between accuracy, speed, and energy
consumption.

Although EI enables real-time decision-making, training DL models directly on edge de-
vices is impractical due to their limited computational and memory capacities. To address this,
we adopt a TL approach in which models are pre-trained and optimised on high-performance
GPU-based systems before being deployed to edge devices for inference. This significantly re-
duces the computational burden on resource-constrained platforms while maintaining inference
accuracy and efficiency. Following optimisation, the models are deployed on single-board com-
puters (SBCs), enabling low-latency inference with minimal energy and memory consumption.
A prominent application of this approach in healthcare is HAR, particularly fall detection. By
combining FMCW radar sensing with edge AI, the system delivers accurate motion detection
while preserving user privacy. The deployment of DNNs on SBCs ensures that critical events
such as falls can be detected in real time, allowing immediate alerts and timely medical inter-
vention [247].

However, the complexity of DL models and complex radar datasets pose challenges related
to computational efficiency and deployment feasibility. TL and model compression techniques
provide effective solutions by reducing the computational requirements during inference. In-
stead of manually optimising models, the proposed approach leverages pre-trained networks
and fine-tunes them for specific healthcare tasks, reducing the need for extensive training and
enabling scalable, real-time AI solutions. By processing radar data directly at the edge, the sys-
tem minimises latency, computational overhead, and security risks, making it a viable solution
for applications such as AAL and real-time patient monitoring at the hospitals. The proposed ap-
proach demonstrates the potential of edge AI to transform healthcare by enabling cost-effective,
intelligent, and real-time decision making in resource-constrained environments.
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5.2 Contributions

The key contributions of this Chapter is summarised as follows:

• Developed an optimised signal processing pipeline that generates radar-based RD and TF
representations on edge devices, reducing both computational and communication costs
while improving real-time inference efficiency.

• TL-based approaches were employed with comprehensive GPU-based energy profiling
during training to minimise computational costs, enhance model generalisation, and re-
duce the carbon footprint for large-scale DL deployment. Framework generalisability was
validated using publicly available 24GHz and 77GHz radar datasets on GPU systems for
accuracy and performance assessment. The real-time edge deployment energy consump-
tion was precisely measured using DC current monitoring with INA219 sensors integrated
with edge devices during inference and radar signal processing.

• Applied post-training quantisation (PTQ) techniques to achieve significant model size re-
duction and computational cost optimisation while maintaining recognition accuracy, en-
abling efficient inference on low-power edge devices, such as Raspberry Pi (RPi) and
Jetson Nano (JNano), with minimal communication overhead.

• Local differential privacy (LDP) directly at the edge for inference outputs, ensuring privacy-
compliant predictions without server-side data exposure or model retraining requirements.
This approach maintains real-time HAR performance while eliminating sensitive data
transmission costs and regulatory compliance risks.

• Delivered a comprehensive decision framework that optimally combined radar domain
representation, TL architecture, and edge hardware selection, enabling systematic trade-
off between performance, energy efficiency, communication costs, and privacy preserva-
tion for robust healthcare and AAL deployments.

5.3 Proposed Method

In this section, we present the proposed methodology for a R-HARS designed for real-time
inferences on edge devices. As illustrated in Fig. 5.1, the conceptual collaborative learning
framework follows a structured pipeline, beginning with data acquisition from an FMCW radar,
followed by data preprocessing at the edge, DNNs modeling, and model compression tech-
niques to optimise edge deployment. A key component of this framework is the integration of
LDP alongside radar data, ensuring privacy preservation by securing both data transmission and
model inference at the edge. Unlike traditional DP methods, LDP is applied near the edge be-
fore inference, ensuring that predictions remain privacy-preserving while maintaining the model
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Figure 5.1: Conceptual collaborative learning framework for HAR using FMCW radar con-
nected to edge devices.

Figure 5.2: Proposed methodology from data acquisition to edge deployment for radar-based
macro-activity recognition.

utility. The following subsections provide a detailed explanation of each step in the proposed
system, as shown in Fig. 5.2.

5.3.1 Data Preprocessing

As previously described in Chapter 3, the data acquisition process and dataset splitting strategy
for FMCW radar remain the same in this Chapter, and the same dataset is used for analysis.
Our previous investigation in Chapter 3 showed that two specific data preprocessing techniques
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(a) RD map (b) TF-based STFT map

Figure 5.3: Example of the walking class, acquired using RD and STFT techniques, with
Doppler band-limiting and gaussian filtering applied for smoothing.

performed well among the available options for R-HARS. Based on this analysis, we adopt
the RD technique and the TF-based STFT approach as the main preprocessing methods in this
Chapter, as shown in Fig. 5.2.

To maintain consistency across radar domain representations, the same preprocessing work-
flow was applied to both the RD and STFT outputs. This included two key steps: Gaussian filter-
ing [248], and Doppler band-limiting. A Gaussian filter with a standard deviation of σ = 0.5 was
applied to suppress high-frequency noise and smooth the edges of the radar maps. This step re-
duces abrupt intensity variations, leading to cleaner spatial and temporal features, which in turn
facilitates more stable convergence during model training. In addition, a Doppler band-limiting
filter was applied within the frequency range of -0.1 Hz to 0.1 Hz. This range was selected to
preserve the most relevant low-frequency motion components typically associated with macro-
activities, such as walking, while discarding irrelevant background noise and micro-movements.
Band-limiting helps reduce input dimensionality and focuses the model on discriminative mo-
tion patterns, thereby improving feature extraction efficiency and reducing overfitting. As shown
in Fig. 5.3A, the RD map highlights Doppler intensity concentrated within range bins 1–40,
clearly delineating motion signatures associated with walking. Similarly, Fig. 5.3B presents the
STFT representation for a 10-second activity window, where frequency-localised motion com-
ponents are retained after filtering. This refined preprocessing pipeline enhances the quality of
the training data by preserving the high-impact motion features while eliminating redundant or
noisy information, ultimately supporting more efficient and robust model learning.

5.3.2 Deep Neural Networks

In this study, we adopted TL based strategy, as detailed in the previous Chapter 3, but with
different model selections. The purpose of using various models is to evaluate the edge deploy-
ment feasibility of baseline and compressed models. Specifically, we tried four different models
to analyse their performance on edge devices, deployment constraints, and inference latency.
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The pre-trained DNNs used in this study include Inception-v3, Xception, DenseNet-169, and
ResNet-18.

The same class imbalance handling technique discussed in Chapter 3, was applied in this
study. Similarly, data augmentation strategies were implemented across all models to enhance
the generalisation and adaptability to radar-based data [216]. Augmentation techniques include
rotation, shift, scaling, and horizontal flipping to simulate real-world radar variations and to
prevent overfitting. For models such as DenseNet-169, Xception, and ResNet-18, STFT based
spectrograms were rotated by 10◦, offset by 20% in width and height, scaled by 10-20%, and
flipped horizontally to ensure robustness to variations. RD based maps were rotated by 5−10◦,
offset by 10-20% in width and height, scaled by 10%, and flipped horizontally where applicable,
further improving the ability to learn features from motion-induced Doppler shifts.

In this study, we employed a set of streamlined yet effective DNNs, each enhanced with
a custom classification head specifically designed for fine-tuning radar-based macro-activity
recognition tasks. While the backbone networks share a common feature extraction architec-
ture, the custom layers appended to each model are tailored to improve the learning efficiency
and generalisation. The classification head begins with a GAP layer, which reduces the spatial
dimensions of feature maps while retaining essential semantic information. This is followed
by batch normalisation to stabilise the activation distributions and accelerate training conver-
gence. To mitigate overfitting, we applied a dropout layer with a high dropout rate (50-60%),
which randomly deactivates neurones during training. Subsequently, a fully connected dense
layer is introduced with a ReLU activation function and L2 regularisation, encouraging spar-
sity and penalising complex weights. An additional round of batch normalisation and dropout
further strengthens model robustness and generalisation. Finally, a softmax layer produces the
output probabilities across six predefined macro-activity classes, completing a structured and
regularised pipeline optimised for real-time R-HARS.

Model Configuration and Hyperparamters Tuning

To ensure compatibility with all selected pre-trained models, radar-based representations were
transformed to 224×224 pixels and aligned with the input size requirements of ImageNet pre-
trained models. This standardisation allowed the models to effectively leverage TL, utilising
ImageNet pre-trained weights for feature extraction before fine-tuning the radar-based macro-
activity dataset. The training process was conducted using RD-based and STFT-based radar
maps employing four DNNs.

Each model was initialised with pre-trained ImageNet weights and fine-tuned for radar-based
classification. Training was conducted using the Adam optimiser, with a learning rate (lr) of
0.0001 for DenseNet-169, and Xception, whereas Inception-v3 and ResNet-18 used a slightly
higher lr of 0.0002 for improved convergence. The batch size was set to 32 for all models except
DenseNet-169, which used a batch size of 16 owing to the memory constraints. Categorical
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cross-entropy loss was applied to optimise the classification performance. The other parameter
settings are presented in Table 5.1.

Table 5.1: Parameter settings during DL models training.

Models Inception-v3 Xception DenseNet-169 ResNet-18
RD Maps

Batch Size 32 32 16 32
Learning rate 0.0002 0.0001 0.0001 0.0002
No. of Neurons 128 256 512,256 256,256
L2 regulariser 0.004 0.004 0.0005 0.004
Drop out rate 0.5 0.5-0.6 0.5 0.4

STFT Maps
Batch Size 32 32 16 32
Learning rate 0.0002 0.0001 0.0001 0.0002
No. of Neurons 128 256 256,256 256,256
L2 regulariser 0.004 0.004 0.004 0.004
Drop out rate 0.5 0.5-0.6 0.4-0.5 0.4

To improve the training efficiency, callbacks were implemented to enhance the model con-
vergence and prevent overfitting, which are details as follows:

• ModelCheckpoint: The best model was selected based on validation accuracy.

• ReduceLROnPlateau: Adjusted lr dynamically when validation loss plateaued (fac-
tor=0.2, patience=7, min lr=1e-7).

• EarlyStopping: Training was stopped if validation loss did not improve (patience=10,
restore best weights=True).

• CSVLogger: Logged training progress for further analysis.

Each model was trained for 100 epochs to ensure optimal performance through adaptive lr and
batch size adjustments. The fully connected layers were fine-tuned while retaining the pre-
trained convolutional layers, allowing the models to adapt to radar-specific feature learning ef-
fectively. This comparative approach provides insights into the performance of various CNN
architectures for radar spectrogram classification, optimising feature extraction, and classifica-
tion for both STFT and RD-based domains.

Energy Tracking during Training

The Emission Tracker from CodeCarbon [249], is a Python API designed to measure and track
the energy consumption and carbon footprint of DL model during training on GPU based system.
It monitors power usage across key hardware components, including GPU, CPU, and RAM, and
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calculates electricity consumption in kilowatt-hour (kwh) and carbon dioxide (CO2) emissions,
expressed as kilograms of (CO2)-equivalents [kgCO2eq]. During training, it leverages the pyn-
vml library to track Nvidia GPU power usage, while CPU power is estimated using either Intel
power gadget for windows and mac or Intel RAPL files for Linux. If direct CPU tracking is
unavailable, the tracker resorts to fallback mode based on predefined power consumption val-
ues. Additionally, the RAM energy consumption is approximated based on memory allocation.
The CO2 emissions are determined by multiplying the energy consumed by the carbon intensity
of the electricity grid, which is inferred from global databases or country specific data when
available [249]. Code carbon runs power measurements at configurable time intervals by default
with every 15 second and logs the results into a CSV file for further analysis. This tool provides
a lightweight and efficient approach for quantifying and optimising the environmental impacts
of computational workloads.

5.3.3 Post-Training Quantisation

In this study, we employed model compression technique such as PTQ in this case [194], to op-
timise DL models for edge deployment. As shown in Fig. 5.4, PTQ involves calculating scaling
factors to convert a full precision or floating-point 32-bit (FP32) model to a lower precision for-
mat after training. A representative dataset, called the calibration data, is used to capture the ac-
tivation distribution of each activation tensor. These distributions are then used to calculate scale
values for each tensor, and the weight distribution is used to determine the weight scale [193].
Using PTQ, we developed three versions of the compressed model: a non-quantised version that
is directly converted to TensorFlow-Lite (TF-Lite), a FP16 floating point (FP16) quantised ver-
sion, and INT8 integer (INT8) quantised version. While quantisation may result in a slight loss
in accuracy due to the lower precision of weights and activations, the goal is to minimise this
loss while significantly improving model efficiency. These modifications adjust the bit width of
operations to optimise the model for efficient edge deployment.

To prepare the models for quantisation, radar-based representations were preprocessed by
loading and normalising the images using a standard preprocessing pipeline inspired by Ima-
geNet techniques. The pixel values were first scaled between 0 and 1, followed by mean sub-
traction and STD normalisation to standardise the input features. Class labels were extracted
from the image filenames and converted into a categorical format using one-hot encoding to
match the classification task requirements. Once preprocessing was completed, different quan-
tisation strategies were applied using TF-Lite to convert the trained model, reduce the memory
footprint, and improve inference efficiency. It is important to note that this preprocessing ap-
proach is a general implementation and may vary across different models. Each model requires
specific preprocessing steps tailored to its input requirements. For FP32, the model was directly
converted and saved in TF-Lite format without modifications. In FP16 quantisation, an optimi-
sation setting was enabled to support FP16, leading to lower memory consumption according to
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Figure 5.4: Post-training quantisation workflow with transfer learning approach.

the following equation:
xfp16 = convert(xfp32), (5.1)

where the conversion function reduces the precision of the fp numbers by modifying the expo-
nent and mantissa bit sizes according to the IEEE 754 standard [184]. For INT8 quantisation, the
converter was configured to enforce an INT8 representation for weights and activations using a
representative dataset to ensure calibration. The INT8 quantisation process is as follows [250]:

xint8 = round
(xfp32

s

)
+ z, (5.2)

Here xfp32 is the original model, s is the scaling factor determined during calibration, and z is
the zero point offset for adjusting the range. To ensure that the quantised values remain within
valid integer limits, the following clamping function is applied:

xint8 = clamp(xint8,−128,127) (5.3)

For general integer quantisation, the final representation is computed as:

xint = clamp(⌊x/s⌉− z, pmin, pmax) (5.4)

Here clamping ensures that the values do not exceed the allowed limits, and Pmin and Pmax define
the valid integer range.
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5.3.4 Local Differential Privacy

In scenarios where raw data must remain private even before leaving the user’s device, local
differential privacy (LDP) provides a powerful solution. By adding controlled randomness to
the outputs, LDP ensures that individual data points remain indistinguishable from one another
before inference, preserving privacy while maintaining the usability of the predictions. Unlike
traditional DP methods [251], which are often applied in centralised settings to protect data dur-
ing model training, the LDP operates at the edge device before inference [252]. This ensures
that the output predictions remain privacy-preserving, mitigating the risk of sensitive informa-
tion leakage without affecting the model training phase [253]. As illustrated in Fig. 5.1, before
generating predictions, LDP is applied to the output, ensuring that even if an adversary gains
access to the inference results, they cannot infer sensitive information about the original data.
Formally, LDP guarantees that a randomised mechanism M : X → R, which maps an input do-
main X to an output range R, satisfies epsilon ε-LDP if, for any two neighboring input data
points x,x′ ∈ X , and for all measurable sets S⊆ R, the following inequality holds [254]:

Pr[M(x) ∈ S]≤ eε ·Pr[M(x′) ∈ S], (5.5)

where ε represents the privacy budget, which governs the level of oneness between perturbed
outputs, and Pr[·] is the probability of (·). A smaller ε value offers stronger privacy guarantees, as
the perturbed outputs become highly similar, making it difficult for an adversary to differentiate
between them. Conversely, a higher ε value weakens privacy protection by making the outputs
more distinguishable. In this study, LDP is applied before inference at the edge, where the
perturbation probability of retaining or modifying a class label is determined by β , given by
[254]:

β =
eε/K−1

eε/K−1+C
(5.6)

where K represents the number of perturbation steps, and C is the total number of class labels.
This equation dynamically adjusts the perturbation probability based on the privacy budget and
classification complexity, ensuring a balance between privacy protection and model utility.

Noise Injection Mechanism for LDP

To enforce the LDP at the edge, a randomised response mechanism was employed, which in-
troduced controlled noise into the inference process. This noise injection ensures that, even if
an adversary gains access to the predictions, they cannot confidently determine whether they
correspond to the actual class or a perturbed label. The mechanism operates by selectively
perturbing the predicted labels according to a Bernoulli-distributed random variable, ensuring
controlled randomness while preserving the usability [254]. For each predicted class label, the
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noise-injection mechanism is as follows:

ŷ =

y, with probability β

y′, with probability (1−β ),
(5.7)

where y represents the original predicted label, and y′ is a randomly selected label from the set of
possible classes. The probability of retaining the true label is determined by β , while the proba-
bility of perturbing the label is 1−β . This ensures that each output remains privacy-preserving
without completely degrading the inference accuracy. By applying LDP at the edge before in-
ference, the system ensures strong privacy guarantees while maintaining model performance.
Because perturbation is applied only to inference outputs, it does not interfere with the training
process on the server, allowing the model to learn from clean, unaltered data.

In addition, applying privacy protection at the edge reduces the communication overhead,
as no differentially private transformations are required during data transmission. The localised
application of LDP ensures that privacy is enforced at the exact point of decision-making, pre-
venting the potential exposure of sensitive user data while still enabling real-time inference.
This approach is particularly beneficial for edge-based HAR, where privacy concerns arise ow-
ing to continuous monitoring and personal data collection. By integrating LDP at the inference
stage, the system achieves a robust trade-off between privacy and utility, ensuring that privacy-
preserving decisions can be made directly at the edge, while leveraging DL models trained on a
central server.

5.3.5 Deployment Setup

In this study, we employed three different hardware platforms along with various software
frameworks to facilitate DL model training, optimisation, and deployment, as shown in Table
5.2. The DNN training process was conducted on a GPU-based system, leveraging TensorFlow
and Keras, which are widely used in both academia and industry owing to their flexibility and
computational efficiency [255]. These frameworks provide a good trade-off between platform
compatibility and performance, making them ideal for DL applications. All data preprocessing,
model training, optimisation, quantisation, and LDP processing were performed on the GPU-
based system to accelerate computation, significantly reducing the processing time compared
with CPU-based systems. The GPU hardware used in this study is detailed in Chapter 3, and
further specifications are summarised in Table 5.2. For DL framework compatibility, we used:
TensorFlow 2.10 and Keras 2.10 for training and model development. Scikit-learn for data pre-
processing and feature engineering. TF-Lite for model quantisation and edge deployment, and
Python 3.11 as the programming environment.
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Table 5.2: DL Model Training and deployment Platforms.

Platforms
Nvidia GeForce RPi 4 Nvidia Jetson

RTX 3090 Model B Nano

Processor 1.5 GHz 64-bit Quadcore 1.43 GHz Quadcore
Framework (OS) Cuda 11.4 Debian 64-bit Os Ubunto 20.04
Memory 8 GB 4 GB 2 GB
Usage Training Edge Inference
Type Installed in CPU Itself a CPU GPU + CPU
DL Framework Full Tensorflow Tensorflow and TF-Lite

Edge Hardware Configuration

To evaluate the performance of edge devices for real-time inference, this study employed two
distinct SBCs: the RPi 4 and the NVIDIA JNano. The device characteristics are listed in Table
5.2. Each SBC was tested for its ability to execute DL models efficiently, with a focus on infer-
ence latency, energy consumption, and deployment feasibility in edge computing environments.
The RPi is used in this study, as a cost-effective and reliable edge computing platform for real-
time HAR using FMCW radar data [256]. In a practical deployment scenario, the FMCW radar
continuously captures raw IF signals, which are subsequently processed directly on the RPi.
A custom Python script running on the device executes the optimised TF-Lite model, enabling
low-latency prediction of human macro-activities in real time, while operating under constrained
computational and memory resources.

In contrast, NVIDIA JNano is a compact system-on-module (SoM) designed for executing
multiple DL networks concurrently. It provides a better balance between computational power
and energy efficiency, making it well suited for embedded AI applications. Operating under a
low power requirement of less than 5 W, JNano excels in tasks such as image classification,
object detection, semantic segmentation, and HAR [257]. To further enhance the DL inference
efficiency on the JNano, this study utilised TF-Lite, an inference optimisation toolkit along with
PTQ which can run quantised and optimised models on JNano efficiently.

By employing both the RPi 4 and JNano, this study provides a comparative analysis of their
performance in real-time HAR tasks. The RPi 4, which is energy-efficient and cost-effective,
is limited by its computational capabilities and is best suited for simpler tasks. On the other
hand, JNano, with its superior processing power, demonstrates better performance in handling
complex DL models, albeit at a slightly higher cost and energy consumption. This compari-
son highlights the trade-offs between computational capability, energy efficiency, and cost, and
offers valuable insights for selecting an appropriate edge device based on specific application
requirements.

The INA219 sensor was employed for real-time current, voltage, and power monitoring
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in an edge hardware setup [258]. It is a high-precision bidirectional power monitoring circuit
capable of measuring up to 26V and 3.2A with a resolution of 0.8mA. Operating within a voltage
range of 3.0V to 5.5V, the sensor uses the I²C communication protocol, enabling seamless data
acquisition by embedded systems. The INA219 breakout board integrates a 0.1 ohm shunt
resistor, labelled as R100 on sensor, which measures voltage drop across the load, allowing
current computation using Ohm’s Law: I =V R, where I represents the current, V is the measured
voltage drop, and R is the shunt resistance. With the default 0.1 ohm resistor, the maximum
measurable current was 3.2A. For higher current applications, the shunt resistor can be replaced
with a lower-value resistor while considering power dissipation:P = I2R where P represents the
heat dissipation in watts.

RPi and JNano both operate at 5V/3A and share the same connection scheme. However, for
simplicity, Fig. 5.5 illustrates only the RPi setup. A USB Type-C breakout board was used to
supply 5V/3A power, which was also monitored using INA219. The Vin+ terminal of INA219
connects to the positive terminal of the power source, while Vin− connects to the RPi, which
power up the devices, and enabling the measurement of current consumption. To interface the
INA219 sensor with the RPi or JNano, the following connections were established:

1. The VCC of INA219 is connected to 3.3V (pin 1) on the RPi.

2. The GND of INA219 is connected to the GND (Pin 39) to ensure a common reference
voltage.

3. The SDA (I²C data line) of INA219 is connected to GPIO2 (pin 3).

4. The I²C clock line (SCL) of INA219 is connected to GPIO3 (Pin 5).

Figure 5.5: Connection setup between the RPi, INA219 sensor, and Type-C breakout board for
device powering and real-time current and power measurement.
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5.3.6 Performance and Computational Metrics

A rigorous evaluation of the predictive model is essential to demonstrate the effectiveness of the
edge-optimised R-HARS. To achieve this, various metrics were analysed to comprehensively
assess the efficiency and effectiveness of the system.

Predictive Model Evaluation

The HAR task is treated as a multiclass classification problem based on the collected radar data.
To assess the model’s performance, we evaluated both training and validation accuracy, which
measures how well the model learns from the training data and generalises to unseen validation
data. Training accuracy represents the proportion of correctly classified instances in the training
dataset, whereas validation accuracy helps assess the model’s generalisation ability and detect
potential overfitting.

While accuracy is a commonly used metric during training and testing of a model, it can
be misleading in the presence of class imbalance owing to the accuracy paradox. To ensure a
balanced evaluation, we also consider additional performance metrics, including: Precision=

T P
T P+FP , Recall= T P

T P+FN and F1-score= 2X PrecisionXRecall
Precision+Recall , where TP (True Positives), FP (False

Positives), and FN (False Negatives) quantify the model’s classification performance. Precision
measures the number of predicted positive instances that are actually correct, recall evaluates
how well the model captures actual positive cases, and the F1-score provides a harmonic mean
of precision and recall for a balanced assessment. These metrics offer a deeper insight into the
predictive power of the model, particularly for handling variations in human activities captured
by radar signals.

Energy Efficiency and Latency Analysis

To evaluate the computational efficiency and environmental impact of the training phase, we
analysed GPU energy consumption, power usage, and CO2 emissions. The total energy con-
sumed by the GPU during training was estimated using integrated power monitoring tools, such
as NVIDIA’s pynvml via nvidia-smi with help of codecarbon. The energy consumption was
computed as follows: EGPU = PGPU×T , where PGPU represents the power consumption of GPU
during training in watts, and T is the training duration. The CO2 emissions generated by GPU
energy consumption were estimated using: CO2GPU = EGPU×C, C is the carbon intensity of
electricity (kgCO2/kWh), which depends on the energy source of the local grid. If specific grid
data is unavailable, a default world average of 0.475 (kgCO2/kWh) is used [249].

To account for the complete energy usage of the system, the CPU and RAM power consump-
tion are included in the total energy estimation. CPU power is measured using an Intel Power
Gadget or inferred from Intel RAPL files, whereas RAM power consumption is approximated
as: PRAM = 3WPer8GB [249]. The total system energy consumption during training is then
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calculated as:
Etotal = EGPU +ECPU +ERAM, (5.8)

where each term represents the energy consumed by the GPU, CPU, and RAM during the train-
ing period. For edge deployment, the energy consumption and power usage were evaluated
to measure the efficiency of inference under real-time conditions. Because edge devices have
limited computational resources, an optimised and quantised model was deployed to reduce
both power consumption and latency. The INA219 sensor was used to measure power con-
sumption during inference. The total energy consumed during inference is then calculated as:
Eedge = Pedge× tinf, where Pedge is total power in mW measure during inference using INA219
sensor, and tin f is the inference time per sample in second.

Finally, the latency of the system was evaluated based on the time required for data capture
by the radar (tcap), data preprocessing (dpx), and inference (tin f ) on the edge device. The total
end-to-end latency D is expressed as:

D = tcap +dpx + tin f . (5.9)

This latency metric helps to analyse the trade-off between on-device inference and energy effi-
ciency.

5.4 Results and Discussion

In this section, we present a comprehensive analysis of our evaluation metrics, performance
outcomes, and computational measurements obtained during the DL model training and edge
deployment. Our research aims to assess the effectiveness of radar-based macro-activity recog-
nition for real-time applications, particularly in AAL and Assisted Smart Living (ASL). We
evaluated these systems in multiple dimensions that include accuracy, energy efficiency, and
adaptability when processing radar data. Given the increasing emphasis on privacy-preserving
technologies, radar-based sensing offers a privacy-aware alternative to the conventional vision-
based systems. However, to further enhance privacy, we incorporated LDP, ensuring both model
and data privacy during inference. Finally, we provide a thorough energy efficiency comparison
and latency analysis, highlighting the practical advantages of performing on-device inference on
edge devices.

5.4.1 Computational Efficiency and Model Performance

A comprehensive analysis of the outcomes measured and estimated using GPU based server dur-
ing the offline training and testing phases. Our study evaluated four DL models in conjunction
with two radar representations to determine both the efficiency and performance characteristics
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of R-HARS intended for real-world settings. When developing edge AI systems, two comple-
mentary aspects require careful assessment: classification accuracy and computational efficiency
(measured using metrics such as inference time, power consumption, and energy-precision ra-
tio). The classification accuracy depends critically on proper model training, avoiding both
overfitting and underfitting, to ensure that the models generalise effectively to unseen data when
deployed on edge devices. During the training phase, we measured the computational efficiency
of each DL model to identify the optimal combination of model architecture and radar represen-
tation for future deployment scenarios.

Energy-aware Training Efficiency

During training, we assessed the computational efficiency of the system by measuring GPU
power consumption, energy usage, and CO2 emissions, as summarised in Table 5.3. The results
indicate that Xception exhibits the highest GPU power usage, consuming 155.33 W with RD
and 157.88 W with STFT, leading to increased energy consumption and environmental impact.
In contrast, ResNet-18 consumed 100.74 W with RD and 94.21 W with STFT, indicating that
STFT-based training requires less power. Although Xception and DenseNet-169 require more
power and energy for training, their higher computational demand may be justified by their
classification performance, which is evaluated in the next section.

Table 5.3: Energy consumption and environmental impact of DL models during training with
different radar representations.

Data Type Models GPU
Power (W)

Energy
(kWh)

Energy/
Epoch (kWh)

CO2
(g.CO2eq/s)

Inception-v3 133.55 0.018 4.50×10−4 0.0116
Xception 155.33 0.043 8.52×10−4 0.0133

RD DenseNet-169 137.73 0.046 8.54×10−4 0.0119
ResNet-18 100.74 0.007 2.94×10−4 0.0094

Inception-v3 139.24 0.019 4.40×10−4 0.0120
Xception 157.88 0.070 8.57×10−4 0.0133

STFT DenseNet-169 119.35 0.028 7.91×10−4 0.0108
ResNet-18 94.21 0.006 2.68×10−4 0.0091

DL Model Performance

The performance of the models was evaluated using unseen test data. As discussed earlier (see
Chapter 3), the dataset was split such that the test set consisted of 126 samples from seven sub-
jects, who were completely excluded from the training and validation sets. This setup ensured
that the generalisation capability of the models could be assessed. All four models were tested
using unseen data. For the RD maps, the highest recognition accuracy of 95.24% was achieved
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by the Xception model. In comparison, for the STFT maps, the Inception-v3 model performed
the best at 98.41%. A summary of the accuracy and other performance metrics for all models is
provided in Table 5.4.

Table 5.4: Performance metrics of all four models with their radar representations.

Data Type Models Accuracy (%) Precision Recall F1-score
Inception-v3 92.86 0.9295 0.9286 0.9274
Xception 95.24 0.9527 0.9524 0.9524

RD DenseNet-169 93.65 0.9381 0.9365 0.9351
ResNet-18 94.44 0.9441 0.9444 0.9434

Inception-v3 98.41 0.9845 0.9841 0.9841
Xception 94.44 0.9508 0.9444 0.9440

STFT DenseNet-169 96.83 0.9688 0.9683 0.9678
ResNet-18 96.03 0.9598 0.9603 0.9597

The confusion matrices for the best-performing models such as Xception for the RD maps
and Inception-v3 for the STFT maps, are shown in Fig. 5.6. Both models achieved 100% recog-
nition accuracy for fall detection, which is crucial because misclassification of falls can have
serious consequences. In addition, no class was misclassified as a fall, reinforcing the relia-
bility of these models for critical activity recognition. However, some misclassifications were
observed, like picking of an object (A4) and drinking water (A5) activities were occasionally
confused, particularly in the Xception model using the RD maps. This can be attributed to the
similar hand movements involved in both actions, which led to misinterpretations of the radar
signal.

Generalisation on other Radar Datasets

To validate the effectiveness of our framework across different radar frequencies, we applied the
same cross-frequency generalisation strategy described in Chapter 3. The dataset and prepro-
cessing pipeline remained consistent; however, the models used in this evaluation were Xception
for RD and Inception-v3 for STFT, as they achieved the highest recognition accuracy on the 5.8
GHz radar dataset. Table 5.5 presents the multi-frequency generalisation performances of these
optimal domain-model pairs. The reported accuracies reflect the average performance of the
six test subjects, along with their standard deviations. The results demonstrate that our prepro-
cessing methods and TL models maintain strong performance across varying radar frequencies,
with STFT and Inception-v3 achieving an impressive accuracy of 94.39% ± 2.40 using 24 GHz
radar data. This multi-frequency evaluation confirmed the robustness of our approach and its
potential applicability in diverse radar-based macro-activity recognition system, regardless of
the operating frequency. It also highlights the feasibility of using different radar frequencies in
edge-based HAR scenarios.



CHAPTER 5. EDGE-OPTIMISED PRIVACY PRESERVED MACRO-ACTIVITY RECOGNITION132

(a) Xception model with RD map

(b) Inception-v3 model with STFT map

Figure 5.6: Confusion matrices of models that shows highest accuracy for RD and STFT maps
as input.

Impact of Quantisation on Model Performance

In this study, we applied three different PTQ methods: no quantisation, FP16, and INT8 quan-
tisation. For RD maps, all PTQ methods significantly reduced the model sizes, making them
more suitable for deployment on resource-constrained edge devices, as shown in Table 5.6. The
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Table 5.5: Generalisation performance of optimal radar domain-model pairs across different
frequencies using LOSO-CV.

Domain Model Freq. Acc. (%) Precision Recall F1-score

RD Xception
24 GHz 88.22±2.63 0.8913 0.8823 0.8821
77 GHz 84.17±2.06 0.8570 0.8418 0.8404

STFT Inception-v3
24 GHz 94.39±2.40 0.9530 0.9493 0.9496
77 GHz 92.75±1.34 0.9319 0.9275 0.9262

sizes remained consistent across the RD and STFT inputs, with INT8 achieving the highest
compression up to ∼12x reduction factor in size. However, INT8 quantisation caused slight ac-
curacy drops for the RD maps, most notably for DenseNet-169, which decreased from 93.65%
to 89.68%. However, the performance remains within an acceptable range for real-time edge
deployment. In contrast, for STFT maps, all models maintained their accuracy across the differ-
ent PTQ methods, confirming that the quantisation effects depend on the input representation.
Regardless of the input type, all the models benefited from reduced sizes, further enhancing their
feasibility for edge deployment.

Table 5.6: Effect of PTQ on model size and accuracy for different input representations.

Model Model Size (MB) Accuracy (%)

FP32 No-quant FP16 INT8 FP32 (RD) / INT8 (RD)

Inception-v3 253.36 84.10 42.11 21.52 92.86 / 93.65
Xception 245.04 81.33 40.71 21.62 95.24 / 93.65
DenseNet-169 157.02 51.50 25.89 13.38 93.65 / 89.68
ResNet-18 130.58 43.42 21.73 11.00 94.44 / 93.65

5.4.2 Edge System Assessment

The computational cost of deploying DL models on edge devices has been evaluated based on
the inference time, power consumption, model size, and Energy-Precision Ratio (EPR). These
metrics provide critical insights for selecting the optimal combination of radar data representa-
tion and DL models for edge-based system deployment. The power consumption was measured
using an INA219 sensor connected to both RPi and JNano to ensure accurate measurement of
the current and power during model inference. The EPR metric, which provides a complete
evaluation of the accuracy-energy efficiency trade-offs, was computed as: EPR = Error×EPI,
where Error represents the classification error rate (1 - accuracy) and EPI (Energy Per item) is
calculated by multiplying inference time with incremental power consumption.

To establish meaningful comparisons, baseline power measurements were first recorded dur-
ing the idle state by averaging the readings over 10 iterations. For inference, all metrics were
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Table 5.7: FP16 quantised model computational cost on Edge Platforms.

Model Inference Time ± SD (ms) Energy ± SD (mWh) EPR (mWh)

RPi JNano RPi JNano RPi JNano
RD maps

Inception-v3 659.58 ± 0.82 503.56 ± 2.23 0.23 ± 0.03 0.34 ± 0.008 0.016 0.024
Xception 1138.10 ± 1.71 966.98 ± 13.90 0.46 ± 0.04 0.63 ± 0.061 0.022 0.030
DenseNet-169 821.89 ± 2.04 668.67 ± 4.55 0.27 ± 0.04 0.44 ± 0.076 0.017 0.028
ResNet-18 452.98 ± 20.64 358.45 ± 2.66 0.17 ± 0.02 0.24 ± 0.014 0.009 0.013

STFT maps

Inception-v3 672.38 ± 2.27 516.51 ± 1.80 0.23 ± 0.025 0.33 ± 0.008 0.004 0.005
Xception 1139.80 ± 1.38 977.10 ± 8.79 0.46 ± 0.037 0.63 ± 0.035 0.026 0.035
DenseNet-169 846.98 ± 46.73 668.55 ± 3.21 0.29 ± 0.074 0.43 ± 0.015 0.009 0.014
ResNet-18 450.85 ± 9.01 358.39 ± 3.12 0.16 ± 0.023 0.24 ± 0.013 0.006 0.010

computed over 40 iterations to ensure the statistical reliability. Table 5.7, presents the com-
putational cost of the FP16 quantised models. For the RD maps, ResNet-18 achieved the best
balance of accuracy and efficiency, with the lowest EPR values of 0.009 mWh for RPi and 0.013
mWh for JNano, while maintaining the second fastest inference times of 453 ms on RPi and 358
ms on JNano. Despite Xception’s strong classification accuracy, it exhibits the highest inference
times and power consumption, leading to EPR values approximately 2.5 times higher than those
of ResNet-18. For STFT maps, Inception-v3 emerged as the most efficient model, achieving ex-
ceptionally low EPR values of 0.004 mWh for RPi and 0.005 mWh for JNano owing to its high
classification accuracy of 98.41%. Despite its moderate energy consumption, the significantly
low error rate compensates for power requirements, making it the optimal choice for the STFT
domain. DenseNet-169 and ResNet-18 also demonstrated competitive performance, with EPR
values notably lower than Xception, further reinforcing their suitability for edge deployment.

The performance of the INT8 quantised models, summarised in Table 5.8, demonstrates sub-
stantial improvements in inference time and energy efficiency across all architectures. Compared
to FP16, INT8 quantisation reduces the inference time by approximately 50% while simultane-
ously decreasing the energy consumption by 30-50%. For the RD maps, ResNet-18 remained
the most efficient model, achieving the lowest EPR values of 0.007 and 0.008 mWh for RPi and
JNano, respectively. The slight accuracy drop observed with INT8 quantisation from 94.44%
to 93.65% was compensated by significant reductions in inference time and power consump-
tion. For STFT maps, INT8 quantisation delivers even more impressive gains, particularly for
Inception-v3, which achieves an EPR of only 0.002 mWh on RPi and 0.003 mWh on JNano.
This marks a 50% reduction in EPR compared with its FP16 counterpart, with no loss in clas-
sification accuracy. Similarly, ResNet-18 with STFT maps demonstrated exceptional energy
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Table 5.8: INT8 quantised model performance metrics with Energy-Precision Ratio on Edge
Platforms.

Model Inference Time ± SD (ms) Energy ± SD (mWh) EPR (mWh)

RPi JNano RPi JNano RPi JNano
RD map

Inception-v3 323.19 ± 0.41 301.78 ± 1.43 0.12 ± 0.015 0.20 ± 0.005 0.009 0.014
Xception 453.42 ± 0.87 492.35 ± 8.32 0.20 ± 0.02 0.32 ± 0.031 0.010 0.015
DenseNet-169 387.45 ± 1.12 367.91 ± 2.87 0.14 ± 0.02 0.28 ± 0.045 0.009 0.018
ResNet-18 221.35 ± 9.86 201.43 ± 1.58 0.13 ± 0.01 0.14 ± 0.008 0.007 0.008

STFT map

Inception-v3 328.64 ± 1.13 308.65 ± 1.07 0.12 ± 0.013 0.20 ± 0.005 0.002 0.003
Xception 454.77 ± 0.69 498.48 ± 5.13 0.20 ± 0.019 0.33 ± 0.024 0.011 0.018
DenseNet-169 403.12 ± 23.19 369.87 ± 1.93 0.18 ± 0.037 0.41 ± 0.009 0.006 0.013
ResNet-18 220.63 ± 4.57 202.51 ± 1.68 0.08 ± 0.012 0.14 ± 0.007 0.003 0.006

efficiency, achieving an EPR of 0.003 mWh for RPi and 0.006 mWh for JNano.
The best models based on EPR values are listed in Table 5.9, reflecting the optimal trade-off

between the classification accuracy and energy efficiency. For RD representations, ResNet-18
consistently emerged as the best model, maintaining high accuracies of 94.44% for FP16 and a
reduced 0.8% for INT8. This demonstrates the lowest EPR values across both edge platforms.
For STFT representations, Inception-v3 proved to be the most efficient, particularly with INT8
quantisation, where it achieved the lowest EPR observed in the entire evaluation while main-
taining an exceptional accuracy of 98.41%.

Table 5.9: Best performing domain-model pairs based on EPR with accuracy and inference time
values.

Data Bit Platform Best Accuracy Inference EPR
Type Precision Model (%) Time (ms) (mWh)

RD
FP16

RPi ResNet-18 94.44 453.0 0.009
JNano ResNet-18 94.44 358.5 0.013

INT8
RPi ResNet-18 93.65 221.4 0.007

JNano ResNet-18 93.65 201.4 0.008

STFT
FP16

RPi Inception-v3 98.41 672.4 0.004
JNano Inception-v3 98.41 516.5 0.005

INT8
RPi Inception-v3 98.41 328.6 0.002

JNano Inception-v3 98.41 308.7 0.003

An in-depth analysis of ResNet-18 with the RD domain, as illustrated in Fig. 5.7, highlights
the advantages of quantisation. The model size was significantly reduced from 130.58 MB (32-



CHAPTER 5. EDGE-OPTIMISED PRIVACY PRESERVED MACRO-ACTIVITY RECOGNITION136

bit) to 11.00 MB (INT8), while the accuracy remained remarkably stable, dropping only slightly
from 94.44% to 93.65%. Additionally, inference time is reduced by ∼50%, from 453 ms to 221
ms on RPi and from 358 ms to 201 ms on JNano, while energy consumption decreases by over
20% from 0.17 mWh to 0.13 mWh on RPi. These improvements make ResNet-18 (INT8 model)
an ideal candidate for resource-constrained edge deployment, offering a strong balance between
efficiency and accuracy.

However, a key limitation of our study is that Inception-v3 (32-bit) cannot be evaluated
on both edge devices because of its large model size, which causes both systems to become
unresponsive during inference. Consequently, we only present the results for ResNet-18 (32-
bit), as its size remained within acceptable limits for edge deployment. This highlights a critical
constraint: larger DL models may not always be feasible for direct deployment on low-power
edge devices without quantisation. The STFT with INT8 Inception-v3 on RPi demonstrated the
lowest EPR values with the highest accuracy of 98.41%, making it the best choice for real-time
macro-activity recognition using FMCW radar. This result further emphasises the importance
of radar data representation selection because STFT maps paired with efficient quantisation
strategies can deliver high-performance HAR models suitable for real-world applications.

Figure 5.7: The comparison between the reduction in communication overhead, computed as
energy estimates for different quantisation using RD as input with ResNet-18 on JNano (left)
and RPi (right).

Performance of Radar Representations on Edge Devices

The evaluation of radar domain processing on edge platforms highlights the key considerations
for battery-operated systems. As shown in Table 5.10, RD processing consistently outperformed
STFT in terms of efficiency, with ∼20% faster processing times and 16% lower energy con-
sumption on RPi, regardless of activity duration. This efficiency advantage is crucial for real-
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time applications, as RD processing for a 10 seconds activity completes in just 2.13 seconds,
consuming only 0.61 mWh, enabling thousands of inferences on a single battery charge. On the
JNano, the energy advantage of RD processing is even more pronounced, consuming 40-50%
less energy than STFT, making it the most power-efficient option for edge-based HAR deploy-
ment. Although STFT remains viable, its higher energy demand may be a limiting factor for
battery-powered devices.

Table 5.10: Computational metrics for radar domain processing on edge platforms over 20 iter-
ations.

Edge Device Data Type Activity Length Processing Time (s) Energy (mWh)

RPi
RD

10 s 2.13 ± 0.046 0.61 ± 0.05
5 s 1.10 ± 0.034 0.29 ± 0.026

STFT
10 s 2.60 ± 0.035 0.73 ± 0.094
5 s 1.40 ± 0.045 0.37 ± 0.051

JNano
RD

10 s 2.36 ± 0.027 0.97 ± 0.26
5 s 1.20 ± 0.014 0.35 ± 0.03

STFT
10 s 2.65 ± 0.024 1.60 ± 0.073
5 s 1.38 ± 0.013 0.80 ± 0.035

End-to-End Edge System Evaluation

The final evaluation of end-to-end system performance integrates both radar domain processing
and model inference, providing a complete assessment of energy efficiency and latency across
edge devices. As summarised in Table 5.11, the optimal configuration for battery-operated radar-
based HAR is a RPi running INT8 quantised ResNet-18 with RD processing, offering the lowest
total energy consumption of 0.42 mWh for 5-second activities, and 0.74 mWh for 10-second
activities, and fastest response times of 1.32 second and 2.35 second, respectively. This configu-
ration ensures real-time feasibility, as processing and inference are completed within the activity
duration. While JNano provides faster inference times, its higher energy consumption, particu-
larly for STFT data up to 1.80 mWh for 10s activities, makes it less ideal for battery-powered
applications. Notably, STFT with Inception-v3 on RPi delivers competitive performance of 0.49
mWh for 5-second activities, and 0.85 mWh for 10-second activities, but still consumes ∼16%
more energy than RD processing with ResNet-18.

5.4.3 Impact of Local Differential Privacy on Model Performance

To assess the privacy preservation trade-off in our proposed macro-activity recognition edge-
based system, we applied LDP to the top-performing INT8 quantised models of ResNet-18 for
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Table 5.11: An end-to-end edge system analysis in terms of computational cost for R-HAR.

Edge Data Activity Model Precision Total Energy Total Latency
Device Type Length (mWh) (s)

RPi

RD
10s

ResNet-18 FP16 0.78 2.58
ResNet-18 INT8 0.74 2.35

5s
ResNet-18 FP16 0.46 1.55
ResNet-18 INT8 0.42 1.32

STFT
10s

Inception-v3 FP16 0.96 3.27
Inception-v3 INT8 0.85 2.93

5s
Inception-v3 FP16 0.60 2.07
Inception-v3 INT8 0.49 1.73

JNano

RD
10s

ResNet-18 FP16 1.21 2.72
ResNet-18 INT8 1.11 2.56

5s
ResNet-18 FP16 0.59 1.56
ResNet-18 INT8 0.49 1.40

STFT
10s

Inception-v3 FP16 1.93 3.17
Inception-v3 INT8 1.80 2.96

5s
Inception-v3 FP16 1.13 1.90
Inception-v3 INT8 1.00 1.69

RD and Inception-v3 for STFT, which demonstrated high classification accuracy and energy
efficiency on edge devices. Fig. 5.8, presents two subplots: (A) RD with ResNet-18 and (B)
STFT with Inception-v3, illustrating the relationship between the privacy budget (ε), pertur-
bation probability (β ), and model accuracy, highlighting the impact of privacy preservation on
classification performance. The results show a clear trade-off between privacy protection and
model accuracy. At low ε values between 0.1–1.0, where privacy guarantees are strongest, ac-
curacy drops significantly from 19.84–26.19% for RD, and 20–26% for STFT owing to the high
level of randomisation introduced by LDP. As ε increases from 2.0 to 3.0, both β and accuracy
improve, with a notable inflection point at ε ≈ 3.0, where the accuracy rises to 82.54% for RD
and 87.30% for STFT. Beyond ε = 4.0, the accuracy for both models surpasses 89%, demon-
strating that privacy protection can be maintained without severely degrading the performance.

For RD with ResNet-18, the accuracy stabilises at 93.65% for ε ≥ 6.87, closely aligned
with its non-private performance of 93.65%. Similarly, for the STFT with Inception-v3, the
accuracy plateaus at 98.41% for ε ≥ 7.0, matching the non-privacy baseline model. This sug-
gests that choosing ε between 4.0 and 5.0 provides an optimal balance between privacy and
utility, ensuring meaningful privacy protection while preserving the classification performance.
For edge-optimised DL model deployments, setting ε = 4.79 achieves 91.27% accuracy for RD
and 96.03% for STFT, demonstrating that our energy-efficient R-HARS successfully integrates
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(a) ResNet-18 with RD map

(b) Inception-v3 with STFT map

Figure 5.8: LDP curves illustrating the relationship between privacy budget (ε), perturbation
probability (β ), and classification accuracy for INT8 quantised models.

privacy protection without significantly compromising performance, as shown in Fig. 5.8

5.5 Summary

This Chapter presents an edge-optimised, energy efficient, and privacy-preserved radar-based
macro-activity recognition system that addresses the key challenges C2 and C3, by deploying
DL models on resource-constrained edge devices using two different radar domain representa-
tion. The training efficiency analysis revealed that ResNet-18 with RD maps consumed the least
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energy at 0.007 kWh, while the same model with STFT required 0.006 kWh, both operating
at 100.74 and 94.21 watts of GPU power, respectively. Among the evaluated models, Xcep-
tion with RD maps achieved the highest RD accuracy of 95.24%, whereas Inception-v3 with
STFT achieved the highest recognition accuracy of 98.41%. However, model compression via
INT8 quantisation resulted in an approximately 90% reduction in model size, a 50% reduction
in inference time compared to FP16, and 30–50% lower energy consumption, making INT8
quantisation the most efficient approach for edge deployment. For real-time HAR on edge de-
vices, ResNet-18 INT8 with RD maps has emerged as the most practical solution in which the
inference speed is critical. It achieved fast inference times of 221 ms on RPi and 201 ms on
JNano, maintaining good accuracy of 93.65%, low energy consumption of 0.13 mWh on RPi
and 0.14 mWh on JNano, and a minimal memory footprint of 11 MB.

Conversely, Inception-v3 INT8 with STFT provided the best accuracy-oriented solution, de-
livering exceptional accuracy of 98.41% with a reasonable inference time of 329 ms on RPi, and
309 ms on JNano, low EPR values of 0.002 mWh on RPi and 0.003 mWh on JNano, and an
acceptable trade-off between energy consumption and accuracy. The end-to-end system evalua-
tion demonstrated that the RD-based ResNet-18 model could process over 35,000 activity clas-
sifications on a single 3,000 mAh (15,000 mWh) battery charge, making it the most practical
solution for long-term real-time HAR deployment. Additionally, the LDP evaluation revealed
that choosing ε between 4.0 and 5.0 preserves the accuracy above 91% while maintaining pri-
vacy guarantees. This ensures that our energy-efficient R-HARS integrates privacy protection
without significantly compromising classification performance. The successful implementation
of macro-activity recognition confirms the effectiveness of radar signal preprocessing and model
deployment strategies at the edge. However, monitoring subtle micro-movements such as respi-
ration and heartbeat introduces new challenges in radar signal sensitivity and resolution, which
are addressed in the next chapter.



Chapter 6

Conclusion and Future Work

This final chapter concludes the thesis by reflecting on the core contributions and their impact on
addressing the three central challenges of non-invasive AI-driven HAR, as outlined in Section
1.3. These challenges include optimising radar signal preprocessing and domain representations
for macro-activity recognition, enabling energy-efficient and privacy-preserving edge deploy-
ment, and achieving accurate, contactless monitoring of micro-level physiological signals. This
thesis advances radar-based sensing by leveraging the radar’s inherent ability to capture motion
across multiple scales through novel signal processing pipelines, DL frameworks, and edge-
optimised system architectures. This chapter synthesises key findings, discusses their broader
implications for healthcare and intelligent environments, and outlines promising directions for
future research.

6.1 Summary of Contributions

In Chapter 3, a R-HAR framework is developed to address the challenges C1 and C2, with
a specific focus on macro-activity recognition. This study explored the preprocessing of radar
signals into four domain representations: RT, RD, STFT, and SPWVD, to enhance activity clas-
sification. Both a baseline CNN and several DL models with a focus on TL approach, were
employed using pre-trained weights to improve feature extraction. The baseline CNN served
as a practical starting point, demonstrating that even with simpler architectures, radar-based
signal processing can yield meaningful results. However, for real-world deployment, more ac-
curate and computationally efficient solutions are essential to satisfy the latency and energy
constraints. A subject-wise data splitting strategy ensured the evaluation of unseen individuals,
directly tackling generalisation under non-IID conditions (C2). The TL models significantly out-
performed the baseline, with DenseNet-201 achieving 96.03% accuracy using STFT. Although
SPWVD yielded rich Spectro-temporal features, its 56-second preprocessing time per 5-second
event limited its suitability for real-time applications, unlike RT, RD, and STFT, which required
approximately 0.5 seconds. The fall detection performance further validated the reliability of
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the TL approach, with notable reductions in false positives compared to the baseline. Com-
putationally efficient model-domain pairs such as EfficientNet-B0 with RT and VGG-19 with
RD achieved 93.65% accuracy, offering a strong trade-off between performance and inference
cost. A decision framework was proposed to guide the selection of radar domains and models
according to the application requirements. To assess cross-frequency generalisability, two opti-
mal pairs such as RD with VGG-19 and STFT with DenseNet-201, were validated on datasets
collected at 24 and 77 GHz. Using a LOSO-CV strategy, they achieved 89.70% and 96.42%
recognition accuracy, respectively, confirming their robustness across different radar systems
and deployment environments.

In Chapter 4 addresses challenge C1 by extending the proposed HARS to micro-activity
monitoring, focusing on non-invasive estimation of vital signs such as HR and RR. This study
demonstrated that radar technology, in addition to recognising macro-activities, can reliably cap-
ture subtle physiological signals without physical contact. Two radar platforms were explored:
UWB radar for the initial validation and mmWave FMCW radar for the final deployment. Dedi-
cated signal-processing pipelines were developed for each to estimate vital signs under different
operational conditions. Initial experiments using UWB radar evaluated the effect of varying sub-
ject distances (55, 60, and 65 cm) on RR estimation accuracy. Results showed that 60 cm yielded
the most accurate readings, with an absolute error of just 1.2 Brpm compared to a medical-grade
reference sensor. At 55 cm and 65 cm, the errors increased to 3.6 and 2.4 Brpm, respectively.
In addition to continuous tracking, the system was able to distinguish between three distinct
breathing patterns: slow breathing (approximately 4.8 Brpm), normal breathing (12 Brpm), and
elevated breathing (31.2 Brpm). These classifications were validated using a respiration belt,
confirming the effectiveness of the system in identifying varied respiratory conditions.

Building on these findings, mmWave radar experiments were conducted with ten partici-
pants, and the system performance was evaluated at different installation heights, including 1 m,
chest height, and 2 m. Two signal-processing approaches were compared: FFT and peak count-
ing. The peak counting method consistently outperformed FFT, delivering lower estimation
errors across both HR and RR. It achieved an average MAE of 4.2 Bpm for HR and 4.9 Brpm
for RR, while FFT recorded higher errors. The analysis also showed that placing the radar at ap-
proximately 2 m, aligning with the subject’s standing height, produced the most reliable results.
Subject height had a minimal effect on accuracy, indicating robust performance across diverse
users. These results confirm the potential use of mmWave radar for real-time unobtrusive vital
sign monitoring. The system offers a practical and non-invasive alternative to wearable sensors,
making it suitable for applications in healthcare monitoring, especially in elderly care or scenar-
ios requiring continuous observation. Together with the macro-activity recognition covered in
earlier chapters, this study demonstrates that radar technology can serve as a unified, multi-scale
sensing platform for non-intrusive HAR and health monitoring.

Finally, Chapter 5 presents a collaborative edge-AI framework for R-HAR that operates
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independently without cloud infrastructure dependencies. This study specifically address chal-
lenges C2 and C3 by focusing on macro-activity recognition in real-world environments. Build-
ing upon the radar domain insights from Chapter 3, this study evaluated RD and STFT inputs
across different DL models. The experimental results demonstrated strong performance: RD
input paired with the Xception model achieved 95.24% recognition accuracy, whereas STFT
input combined with Inception-v3 reached 98.41% accuracy. To assess the generalisability of
the proposed framework, the study evaluated the optimal model-domain pairs on two additional
publicly available datasets collected using FMCW radar at 24 GHz and 77 GHz frequencies. For
the 24 GHz dataset, the RD-Xception combination achieved 88.22% accuracy, while the perfor-
mance on the 77 GHz dataset reached 84.17%. The STFT with Inception-v3 pairing demon-
strated superior generalisation, achieving 94.39% accuracy on the 24 GHz dataset and 92.75%
on the 77 GHz dataset. These evaluations employed the LOSO-CV strategy to address the in-
herent challenges of non-IID data and heterogeneous characteristics typical of radar datasets.

To support efficient deployment on edge devices, model compression techniques were ap-
plied using PTQ, which compresses the full 32-bit models to 16-bit and 8-bit integer formats.
The 16-bit quantised models achieved a substantial reduction in model size while maintaining
an accuracy comparable to the full 32-bit precision. The 8-bit quantised models further reduced
the memory footprint and improved the inference latency by approximately 50%, with only
minimal loss in classification accuracy. On-device evaluations showed that ResNet-18 with RD
achieved 93.65% accuracy with an EPR value of 0.007 mWh, while Inception-v3 with STFT
reached 98.41% accuracy and the lowest EPR of 0.002 mWh. These models were successfully
deployed on Raspberry Pi and Jetson Nano, confirming the framework’s capability to operate in
real-time within resource-constrained, battery-powered environments. The proposed framework
was further validated through end-to-end system integration, including radar signal acquisition,
domain transformation, compressed inference, and output generation. When deployed on a
Raspberry Pi, the system completed a full inference cycle for a 5-second activity window in
just 1.32 seconds with a total energy cost of 0.42 mWh, confirming real-time responsiveness.
These findings establish the practicality of the system for continuous HAR in smart healthcare
and AAL environments. Given the sensitive nature of human activity data, privacy preservation
is a critical aspect of system design. The study incorporated LDP at the inference stage, ensur-
ing that data remained protected on-device before any transmission. A privacy-utility trade-off
analysis revealed that even with a moderate noise level (ε = 4.79), the system retained over 91%
classification accuracy for RD and 96% for STFT. This balance between accuracy and privacy
reinforces the system’s readiness for edge deployment in healthcare and surveillance contexts.
Moreover, the inherently non-visual and non-intrusive nature of radar sensing enhances user
privacy compared to camera-based systems, making radar an ideal modality for privacy-aware
AI-driven HAR applications.
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6.2 Limitations and Future Research Direction

This thesis addressed the critical challenges for non-invasive AI-driven HAR, offering innovative
solutions for the multi-scale monitoring of radar in capturing both macro-movements for activity
recognition and micro-movements for vital sign estimation. This research advanced radar signal
processing techniques and optimised edge resource efficiency while implementing cross-subject
validation to assess model generalisability across individuals with diverse physiological and
behavioural characteristics. The practical implementations throughout this work served as proof
of concept for combining edge technologies, including the analysis of platforms capable of
storing data locally on edge devices without requiring constant internet connectivity. Despite
these significant contributions, several areas remain unexplored, creating opportunities for future
research to build upon current findings. The following section outline the limitations of the
present study and potential directions for enhancing radar-based sensing frameworks, exploring
emerging privacy-preserving techniques, and addressing new challenges. These directions aim
to refine the scalability, robustness, and applicability of radar-based sensing systems in diverse
real-world scenarios.

R-HAR studies primarily utilise publicly available datasets collected in controlled indoor
environments, which may not fully capture the complexity and variability of real-world sce-
narios. Additionally, the relatively small number of participants and limited data samples can
significantly affect the generalisation capability of the developed ML algorithms, whether clas-
sical or DL methods are employed. This limitation restricts the robustness and scalability of
the proposed system when deployed in diverse environments. Future work should focus on cre-
ating more comprehensive datasets collected with mmWave band frequency radars in outdoor
environments using robust data collection protocols. Expanding the dataset to include a wider
range of participants with diverse physical characteristics, activity patterns, and environmental
conditions would enhance the generalisation capabilities of the models. Moreover, investigating
the performance of the model across different SNRs and aspect angles would provide valuable
insights into its robustness in real-world applications where noise levels fluctuate and target
orientations vary.

Another critical limitation is related to the radar signal processing and representation ap-
proach adopted in this study. The current methodology transforms raw radar data into 2D im-
ages for DL model training, which may not fully capture the rich spatio-temporal information
present in radar signals. This dimensional reduction could potentially limit the extraction of the
complex features necessary for distinguishing subtle differences between similar activities or
vital sign patterns. Future research should investigate 3D and 4D radar representations that in-
corporate additional dimensions, such as time, Doppler, and angular information. Furthermore,
exploring fusion techniques for different radar representations could provide complementary in-
formation and enhance the overall performance of DL models. Advanced architectures, such as
multi-modal transformer models, can be incorporated to effectively capture complex relation-
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ships across diverse radar representations. These models, with their self-attention mechanisms,
have shown remarkable success in capturing dependencies in sequential data, and can signifi-
cantly improve feature extraction and classification performance in R-HAR frameworks.

Another limitation of the current framework is the absence of explainability mechanisms
that are essential for interpreting and understanding the decisions made by models. In many
real-world applications, such as healthcare, energy management, and wireless communications,
providing insights into why a model makes a specific prediction or decision is crucial for build-
ing trust and facilitating adoption. Explainability is particularly challenging in AI-driven radar
systems because of the complex nature of radar signal processing and the "black box" character-
istics of DL models. Additionally, the study did not address the model’s response to unknown
classes, which is an essential aspect of ML models deployed in dynamic environments. The abil-
ity to accurately identify or appropriately handle signals that do not belong to any of the training
categories is crucial for practical applications. Future work should focus on the development
of lightweight and privacy-preserving explainability techniques tailored for radar-based sensing
applications. These techniques include attention visualisation, feature importance analysis, and
model-agnostic interpretation methods, which provide insights into the decision-making process
without compromising privacy or computational efficiency. Moreover, investigating open-set
recognition approaches and anomaly detection mechanisms would enhance the ability of the
models to handle unknown or unseen activities in real-world deployments.

Vital sign estimation studies have several significant limitations. First, the work concentrated
primarily on scenarios in which subjects were nearly stationary, which does not reflect real-world
conditions in which individuals make random body movements that can adversely affect radar
echo signals. Current algorithms struggle to extract physiological signals when subjects are in
motion, as non-biological motions dominate radar reflections. Additionally, these studies were
not implemented in real-time environments with diverse participant populations, limiting their
immediate applicability in clinical settings. The research also did not adequately explore the
distinction between human vital signs and periodic motions generated by background sources,
such as fans or furniture, which can influence RR estimation. To achieve practical utility for vital
sign monitoring, future research should focus on comprehensive testing in real-world healthcare
settings with diverse participant cohorts, developing algorithms capable of extracting vital signs
during movement, implementing multi-scale radar systems to improve the accuracy of detecting
multiple individuals, and evaluating performance in practical circumstances, such as elderly care
facilities, where the technology could provide the most benefit.

Another critical limitation is the deployment and edge computing aspects. The current
approach uses edge devices only for inference, whereas training is conducted on server-side
GPUs. This strategy increases bandwidth usage and limits system efficiency for data transfer
and model deployment, thereby limiting the efficiency of the system in resource-constrained en-
vironments. In addition, transferring models to edge devices makes them susceptible to attacks,
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potentially compromising privacy and security. Future research should explore the implementa-
tion of federated learning environments where local model training is performed on edge devices
and only model updates are shared with the central server. This approach significantly reduces
the communication overhead, enhances privacy, and enables real-time learning. The adoption of
lightweight and energy-efficient models, such as spiking neural networks, could further optimise
edge computing performance, particularly when deployed on neuromorphic hardware designed
for low-power, event-driven processing.

Future research should focus on expanding R-HARS by integrating advanced ML models,
developing multi-modal sensor fusion frameworks, and improving real-time processing capabil-
ities. One promising direction is the incorporation of multi-modal transformer models, which
have shown exceptional success in capturing complex relationships across diverse data modal-
ities such as text, images, and time-series signals. Applying transformers in HAR can enhance
feature extraction and predictive performance, particularly in decentralised learning environ-
ments. However, the high computational cost of transformers poses challenges for edge deploy-
ment, necessitating research into optimisation techniques, such as model pruning, quantisation,
and efficient attention mechanisms. Another avenue for exploration is the enhancement of radar-
based security applications, including intruder detection, fall detection, and human identification
by integrating biometric recognition with activity analysis. Additionally, future studies should
investigate novel antenna designs and sub-terahertz frequencies to extend the sensing range of
RF systems and improve their penetration through obstacles. Exploring bio-inspired comput-
ing models, such as neuromorphic processing, can further optimise the power efficiency and
real-time adaptability. For privacy and security, emerging techniques such as homomorphic en-
cryption and quantum key distribution offer promising alternatives to LDP, potentially providing
stronger privacy guarantees without significant performance degradation. By addressing these
limitations and pursuing these future directions, radar-based sensing technology can reach its
full potential as a transformative tool for human-centric applications in healthcare, smart envi-
ronments, and security systems.
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