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Abstract 

Fatigue is an adverse subjective state occurring during demanding tasks, often 

coupled with vigilance decrements and changes in the associated brain signal 

oscillations. Surveys indicate age-related imbalances in fatigue, making older age 

groups a viable target to investigate fatigue in the healthy population. 

 

In this thesis, I examined fatigue during sustained attention decline (as reflected 

in vigilance decrements), both behaviourally and neurally, across young and older 

age groups. Electroencephalographic metrics of increases in alpha and other lower 

frequency oscillations, both pre-stimulus and in relation to the task, were of 

particular interest. These oscillations have been previously associated with 

vigilance decrements and used in neurofeedback interventions targeting fatigue 

symptoms. I also examined motivational factors potentially contributing to the 

age-related effects. Using different adaptations of the Sustained Attention to 

Response Task (SART), three empirical studies examined how fatigue manifests in 

performance and neural activity across the young and healthy older samples. 

 

Chapter 2 demonstrated that the SART can induce subjective fatigue and that this 

change relates to accuracy change. However, its key finding was a higher accuracy 

in older adults, with only limited age-specific fatigue effects. In Chapter 3, an 

extended version of the SART including extensive EEG measures additionally 

revealed neural changes over time commonly associated with fatigue (increased 

pre-stimulus alpha and task-related beta synchronization), but these were 

correlated neither to subjective fatigue nor to a performance decline. Instead, 

age again emerged as the primary drive of the behavioural and neural responses 

to the task, further showing a prospective link to motivation. In Chapter 4, I thus 

shifted focus from time-on-task to testing possible motivational effect directly. 

Young and older participants were equalised to the same accuracy level by 

titration of task difficulty. Initially, higher motivation helped older participants 

match the young group's performance. Then, following an unexpected 

motivational initiative, young participants became motivated and showed larger 

accuracy improvement compared to the older group. Fatigue had little impact on 

performance or age effects. 
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I conclude that sustaining attention over time can incur a subjective experience 

of fatigue, but an accompanying shift in neural oscillations is uncorrelated and 

likely only reflects covert changes in attentional processes. My findings thus 

challenge the assumption of a tight coupling of fatigue to performance decline 

and neural pattern changes in sustained attention. This also casts doubt on the 

efficacy of neurofeedback treatments of fatigue by targeting these patterns. 

Instead, I highlight the interplay of age and motivation as drivers of performance 

(and brain dynamics) during sustained attention and posit them as a more 

promising focus for future interventional research. 
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Chapter 1: Introduction 

General Introduction 

Background 

Our daily lives are filled with many demanding tasks. Fatigue is a key experience 

accompanying these, both in the general population and in patients with various 

clinical disorders. While current research does not unanimously agree on fatigue’s 

definition (Hockey, 2013, Chapter 1), neuroscience, in its many clinical models, 

generally understands fatigue as a prevention mechanism, modifying behaviour in 

light of demands placed on the individual (Boksem & Tops, 2008; Hockey, 2013, 

Chapter 2)1.  

 

To study fatigue, neuroscience researchers have employed tasks demanding either 

physical exertion (Baranauskiene et al., 2023; Behrens et al., 2023; Boolani & 

Manierre, 2019) or involving attentional (Reteig et al., 2019), memory (Wylie, 

Genova, et al., 2017) or other cognitive processes (Behrens et al., 2023). In 

addition to behaviour, the brain’s response to the tasks is commonly measured 

using methods such as the electroencephalogram (EEG; Berger, 1929). Findings 

from these investigations corroborate present frameworks for fatigue (Pessiglione 

et al., 2025), often derived from clinical symptomatology (Kuppuswamy, 2022), 

providing markers or even targets for possible interventions. An example of these 

is neurofeedback, a therapeutic method where patients receive a reward for 

achieving a change in their brain signal (Frederick, 2012; Othmer & Othmer, 2017). 

 

The principal aim of this introductory chapter is to review the currently proposed 

correlates of fatigue in the context of one chosen specific research paradigm -

sustained attention - and to evaluate their relevance to intervention. More 

                                         

1 This general framework echoes intuitions of pre-empiricist thinkers about the behavioural 

adversity of idleness (Aquinas, 1880, Part II-II:35; Aristotle, 1877, Sections 1100a–1101a), as 

well as the work of early empirical psychologists such as Thorndike, who described the negative 

impact of task monotony on performance quality (Hockey, 2013, Chapter 2). The fundamental 

assumption is arguably still evident in much research on fatigue. 
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specifically, there continues to be no clinically approved universal treatment for 

fatigue (Acciarresi et al., 2014; Castro‐Marrero et al., 2017), despite the strong 

demand for accessible therapies without side effects (Whitehead et al., 2016). 

The introduction establishes the need for greater scrutiny of fatigue correlates as 

a target for interventions. Specifically, it underscores the necessity for further 

neural examination of the impact of time-on-task and age on fatigue during 

sustained attention. 

  

Measurement and manipulation 

One of the crucial distinctions in fatigue research is between subjective fatigue, 

commonly measured by self-report questionnaires or qualitative report (Vries et 

al., 2003), and objective fatigue (Filippi et al., 2022; Herlambang et al., 2021; 

Hockey, 2013, Chapter 1; Völker et al., 2016a). While task performance and brain 

signals are commonly included among fatigue’s objective measures, they also 

extend to methods such as posturography, heart rate variability or eye 

pupillometry (Herlambang et al., 2021; Völker et al., 2016a). Characterising the 

relationship between subjective and objective measures underpins much of 

fatigue research and is understood to be one of its key aims (Jacquet et al., 2021). 

Yet, attempts to connect the two domains directly have so far faced mixed results 

(Pessiglione et al., 2025; Völker et al., 2016b). It is then proposed that either the 

objective element (Dantzer et al., 2014; Karshikoff et al., 2017) or the subjective 

one (Penner & Paul, 2017) is more important to the overall characterisation of 

fatigue. Here, I review findings from each respective domain and establish the 

continued need to research them in alignment. 
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Subjective fatigue 

Fatigue in the healthy population 

Research interest in the level of self-reported fatigue2 in the general population 

stretches back over at least 25 years (Watt et al., 2000) and continues until the 

present day (J.-H. Yoon et al., 2023). The definition of fatigue employed in 

populational surveys varies depending on the trait questionnaires used, and is 

commonly a derivative of clinical models of fatigue (Karshikoff et al., 2017), such 

as the multidimensional fatigue inventory (MFI; Engberg et al., 2017; Hinz et al., 

2013; Vries et al., 2003; Watt et al., 2000), a Checklist of Individual Strength (CIS; 

Vries et al., 2003) or direct administrations of symptom measures of Chronic 

Fatigue Syndrome (CFS; van’t Leven et al., 2009). 

 

Over time, surveys have gradually increased in scale, reaching a peak with the 

work of Yoon et al. (2023), who compiled data from over 600.000 participants to 

characterise fatigue at a populational level. They estimated factors predictive of 

fatigue, as well as its general prevalence. Based on their data, general fatigue 

(defined as lasting less than 6 months) was characterised as present in 24% of 

adults and 12% in minors, with prevalence up to 42% in specific occupations, with 

chronic fatigue (lasting over 6 months) present in 8% of adults, 2% of minors, and 

6% in specific occupations. Females had higher fatigue prevalence than males, 

moderate fatigue was more common than severe fatigue, unexplained fatigue was 

more prevalent than explained fatigue, and Asian populations had higher overall 

fatigue prevalence (on this as a cultural difference, see Cumming et al. (2016)). 

 

Alongside a marginal effect of gender, surveys have identified a connection 

between general fatigue and age (Watt et al., 2000) with some indicating that the 

                                         

2 Some researchers consider fatigue measured in populational surveys to be a prolonged state 

rather than a trait (Filippi et al., 2022), meaning proclivity to fatigue over a longer time period. 

In contrast, experimental probes of fatigue (Wiemers & Redick, 2019) have generally been 

targeting it as a fully dynamic state (Calderwood & Ackerman, 2011). State fatigue shifts during 

tasks and is independent of other states (Boolani et al., 2019; Lerdal et al., 2013). State and 

trait fatigue are considered to be closely intertwined (Vlietstra et al., 2019). It is reasonable 

to predict that trait fatigue suggests heightened state fatigue. (Manierre et al., 2020). 
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middle-aged have higher fatigue prevalence than those of advanced age (Galland-

Decker et al., 2019; Gilsoul et al., 2022), while others showed that younger 

individuals are more fatigued than older ones (Aggarwal et al., 2006; Engberg et 

al., 2017; Fuhrer & Wessely, 1995). Elsewhere, older individuals were the ones 

reported as experiencing higher fatigue levels (Beutel et al., 2002, 2004; Hinz et 

al., 2013; Vestergaard et al., 2009). In short, populational studies hint at a 

relevance of age in fatigue but are limited in the ability to adequately outline its 

core contributing factors due to the different tools, timescales and samples used 

(Eldadah, 2010). Overall, demographic studies underscore the timeliness of 

studying how age differences underpin fatigue. In addition, the surprising 

outcomes of lower or equal fatigue levels in the healthy older population may be 

explained by the increased prevalence of patients in the older age groups, who 

present with high fatigue levels. These patients are typically excluded from 

surveys, but if added to the general population, would make the older adults group 

the most fatigued (K. F. Cook et al., 2011).  

 

Fatigue in specific clinical populations 

As mentioned, aside from studies of fatigue in the general population, high 

prevalence of fatigue has been observed in several patient groups, typically those 

comprising older adults. Notably, fatigue in older adults was generally found 

predictive of earlier onset of multiple disorders (Avlund et al., 2002; Hardy & 

Studenski, 2008; Liao & Ferrell, 2000). Attempts have been made to synthesise 

accounts of fatigue in several of these clinical groups at once (Behrens et al., 

2023; Chaudhuri & Behan, 2004; Kuppuswamy, 2022). Nevertheless, most research 

characterises fatigue only in one clinical condition, without an overarching model. 

A short outline below summarises fatigue in key older patient groups, its known 

effects on brain function and behaviour in relation to attention and outlines some 

proposed treatments. 

 

Multiple Sclerosis (MS) is a condition with a common onset in older age (Holm et 

al., 2024). Fatigue has been richly researched in MS patients, as it is a central and 

truly debilitating symptom characterising the condition, with up to 80% prevalence 

(Giovannoni, 2006). In the context of MS, fatigue has been linked to poor 

functioning of the striato-thalamo-cortical loop underpinning attentional 
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processes (Capone et al., 2020; Román et al., 2022). Time-on-task effects 

characterising dysfunction of this particular network were detected in its 

associated neural indices, including a rise in occipital alpha power (Linnhoff et 

al., 2023). The network involved in homeostatic, motor and cognitive control has, 

in addition, shown decreased activity tied to attentional cortical and subcortical 

networks (Kalron et al., 2020; Spiteri et al., 2019).  

 

One explored intervention of MS fatigue is altering the cortisol awakening response 

(Powell et al., 2015) with modafinil. The drug utilises an N-methyl-d-aspartate as 

a receptor antagonist with amantadine thought to relieve fatigue by restoring 

balance in dopamine and cortisol levels (Ledinek et al., 2013). However, some 

researchers point to conflicting results about its efficacy (Penner & Paul, 2017), 

particularly due to comorbidity with sleep disorders. Similarly, modafinil has been 

found to have mixed effects or, alongside the use of antidepressants, no enhanced 

effects on MS fatigue (Ledinek et al., 2013). Some recent findings cast doubt on 

the connection of cortisol secretion to evoked fatigue response in MS patients, 

(Malekzadeh et al., 2020). Further study is still warranted as modafinil may have 

more substantial effect sizes than some other treatments (Cash & Kaufman, 2022). 

 

Unexplained and persistent fatigue is associated with CFS, which shows severer 

symptomatology and is more common in older adults (Jason et al., 2009; Lewis et 

al., 2013). CFS arises in the healthy population in continuity with work-related 

fatigue (Hockey, 2013, Chapter 8), and a loss of motivation to work (Penner & 

Paul, 2017). CFS is considered to be the consequence of daily exposure to fatiguing 

events in healthy individuals (Mizuno et al., 2011) and coupled with symptoms 

such as lower baseline heart rate variability, decreased adaptability (Rimes et al., 

2017), worse attentional control (Hughes et al., 2017) and lower cognitive 

performance (D. B. Cook et al., 2007). It is further reflected in brain functional 

activation changes in the cerebellum, temporal, cingulate and frontal cortices and 

negatively correlated with brain activity in the left posterior parietal cortex. CFS 

patients present with melatonin deficiency (van Heukelom et al., 2006) and 

metabolic alterations (Kujawski et al., 2021), relating CFS to a metabolic account 

of fatigue (C. Craig, 2015; Derache et al., 2013). However, a larger review of 25 

studies focusing on CFS as well as other groups with heightened fatigue (post-HIV, 

lupus, cancer) found inconsistent results in support of this account (Jason et al., 
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2009). Instead, most differences pointed to reduced levels of coenzyme Q10, 

carnitine, and oxidative phosphorylation enzymes, increased oxidative and 

nitrosative stress, and altered mitochondrial gene expression in fatigued patients 

compared to healthy controls (Filler et al., 2014).  

 

An interesting aspect of CFS is its frequent use as a framework for other fatigue-

related disorders and its screening in the general population (van’t Leven et al., 

2009). The recent post-covid fatigue is often seen as having much overlapping 

symptomatology (Araja et al., 2021; El Sayed et al., 2021). Of note are a few 

pharmacological treatments of CFS which have recently been considered. 

Oxaloacetate has been used in both CFS and long-Covid (Cash & Kaufman, 2022). 

It works on the principle of boosting energy through increasing metabolic activity. 

Yet, these early pilots are considered to require further work (Cash & Kaufman, 

2022). 

 

Fatigue is present in both nonfatal strokes and mild traumatic brain injury. Post-

stroke fatigue (PSF) and mild Traumatic Brain Injury (mTBI) fatigue closely align 

in their symptomatology, leading to a theoretical connection between their 

associated fatigue symptoms (Kuppuswamy et al., 2022). Strokes are more 

common in older adults, as their prevalence increases with age (Akyea et al., 

2021). PSF has been noted to have a long-term effect on 29-77% of stroke 

populations (Acciarresi et al., 2014) when measured using the fatigue severity 

scale (FSS). On the MFI, PSF showed a prevalence of between 50-56% (Cumming et 

al., 2016). Recovery rates differed, with a third of patients showing no recovery 

from fatigue up to 6 years after the stroke (Elf et al., 2016). 

 

Fatigue has been found in 33-44% of TBI patients (Cantor et al., 2012) with more 

prevalent hospitalisation in older adults (Thompson et al., 2006), those with prior 

cognitive impairment, emotional problems, unemployment and reduced physical 

activity prior to acquiring the injury (Visser-Keizer et al., 2015). In a systematic 

review of 22 studies, TBI-induced fatigue was found to be persistent over time and 

affected by injury severity, depression, anxiety, sleep problems, pain, cognitive 

impairment, but also coping strategies (Mollayeva et al., 2014). It was 

characterised by inter-hemispheric inhibitory disbalance (Ondobaka et al., 2022) 

and altered activation of the basal ganglia (Penner & Paul, 2017), areas associated 
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with attentional deficits. Lesion studies following penetrating TBI linked fatigue 

to altered ventromedial prefrontal cortex function (Pardini et al., 2010) TBI 

patients reported higher baseline fatigue in relation to worse performance on a 

selective attention task, showing further connections to attentional deficits 

(Belmont et al., 2009; Ziino & Ponsford, 2006).  

 

Subjective fatigue in behavioural studies 

Factors related to fatigue in observational studies contrast with findings in 

experiments where fatigue is induced in healthy individuals. Experiments 

identified an increased influence of additional factors like time of day 

(Maciejewska & Moczarska, 2023), personality (Calderwood & Ackerman, 2011), 

sleep quality (Boolani & Manierre, 2019; Lim & Dinges, 2010; Oken et al., 2006; 

Quiquempoix et al., 2022; Roach et al., 2012) and general subjectively perceived 

state of health (Boolani et al., 2019) on reported subjective fatigue. This shows 

that experimentation provides insights into fatigue beyond the contributions of 

populational surveys.  

 

Importantly, since psychological experiments are demanding tasks in themselves, 

they are commonly considered to give rise to fatigue (Behrens et al., 2023). 

Furthermore, fatigue continues to be mentioned as a general factor contributing 

to changes in participant performance over time (Cassarino et al., 2019; Vallesi 

et al., 2021; van Berkel et al., 2011). Its effects have also been elicited in effortful 

and difficult laboratory tasks (Behrens et al., 2023; Darnai et al., 2023; Massar et 

al., 2018; Wilhelm et al., 2022). There, fatigue is characterised as occurring 

whenever the response to the task is deemed ‘not proportional’ (Karshikoff et al., 

2017). In many instances, the employment of such tasks resulted in a coupled 

increase in subjective fatigue. Subjective ratings of cognitive fatigue increased in 

MS patients on a cognitive task (Claros-Salinas et al., 2013), in patients with stress-

related exhaustion after a verbal fluency task (Krabbe et al., 2017), and in healthy 

controls on a 2-back task (Wylie et al., 2019). Exposure to 30 minutes of a 

cognitively demanding Stroop task elicited mental fatigue when measured with 

the visual analogue scale (VAS; Trecroci et al., 2020). Subjective fatigue increased 

over time on a prolonged Sudoku task (Gergelyfi et al., 2015). Subjective fatigue 

increased after engaging with a brain-computer interface (BCI) device under 
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various levels of mental workload (Käthner et al., 2014). A subjective score also 

increased in an experimental rendition of a driving task (Gharagozlou et al., 2015). 

 

Interestingly, subjective fatigue tends to arise earlier than associated behavioural 

decrements. Self-reported symptoms of mental fatigue were shown to alter faster 

than behaviour in the most effortful tasks (Nieznański et al., 2020). Likewise, 

increases in fatigue alongside stable performance were detected in working 

memory experiments (Pergher et al., 2021; Wójcik & Nęcka, 2024), in a hard 

version of a divided attention task (Nakagawa et al., 2013). Subjective fatigue 

increased in a ‘heroic’ 4-hour verbal test task, while performance remained stable 

(Ackerman et al., 2010) or even slightly improved.  

 

Age differences in subjective fatigue arising during experimental tasks have mostly 

been investigated in the context of physical fatigue (Baranauskiene et al., 2023; 

Bisson et al., 2014; Mänty et al., 2015). Some findings have suggested older adults 

to be less fatigued (or de-energised) by experimental tasks (Cardini & Freund, 

2020). However, most experiments point to matched levels of subjective fatigue 

in both young and older age groups after difficult tasks (Gilsoul et al., 2022, 2024) 

or some heightened age-related fatigue following physical activity only (Jones et 

al., 2020; T. Yoon et al., 2008). A review of the available research shows that age 

is understudied in experimentally induced fatigue and that existing research is 

inconclusive. This confirms the relevance of age to the continued investigation of 

subjective fatigue also outlined earlier in the description of the populational 

studies. 

 

Objective fatigue in sustained attention 

Measurement in sustained attention 

Objective fatigue is commonly studied by inducing a measurable performance 

decline over time. Most time-on-task performance studies show increases in errors 

if tasks are sufficiently difficult, and this is commonly described as reflective of 

fatigue (Gergelyfi et al., 2015; Marcora et al., 2009; Stoll et al., 2016; Van Cutsem 

et al., 2017). It is then tempting to classify all behavioural decrements as 

objective signs of fatigue, similarly to the measurement of its subjective levels. 
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However, performance in research tasks is specific to the studied process (Behrens 

et al., 2023; Hockey, 2013, Chapter 2). For illustration, performance observed in 

attention may be affected by wholly different factors than performance in 

memory (Niogi et al., 2008) or cognition (Vallesi et al., 2014). If experimentally 

induced fatigue is compared in parallel across multiple such psychological 

processes (attention, memory, cognition, motor), it is difficult to address 

confounds specific to each of the processes. Instead, studying objective signs of 

fatigue in just one such process should allow a clearer outline of the fatigue 

mechanisms specific to that process. As was discussed, fatigue is common in 

disorders affecting attention. Therefore, the following review will consider 

sustained attention-style tasks as a tool to investigate objective fatigue. This will 

in turn refine the present investigation to fatigue specifically during sustained 

attention tasks. 

 

Sustained attention has been defined as the ability of a self-directed maintenance 

of cognitive focus and performance (Slattery et al., 2022). It has been measured 

alongside its subjective report (Seli et al., 2015) and prolifically by lapses of 

attention (Robertson et al., 1996). The specific behavioural deficiency in 

sustained attention is described as the vigilance decrement, reflected in a slowing 

of reaction times or increase in error rates (Lara et al., 2014; Oken et al., 2006; 

Pattyn et al., 2008). Commonly related to time-on-task effects (Pattyn et al., 

2008; Pershin et al., 2023), vigilance decrements have been detected in fatigued 

patients (Brosnan et al., 2022) and associated with other symptoms of fatigue and 

sleep problems (Roach et al., 2012; Walker & Trick, 2018). Mind-wandering 

(Martínez-Pérez et al., 2023) is also commonly seen as arising alongside the 

vigilance decrement (Carriere et al., 2013; Hawkins et al., 2019). 

 

Fatigue can be studied via vigilance decrements in several research paradigms, 

but the most commonly used one is the Sustained Attention to Response Task 

(SART; Robertson et al., 1997). The SART is an experimental paradigm designed 

to measure sustained attention. It involves participants pressing a key to react to 

frequent stimuli while withholding the response to rare targets. As a static probe, 

it has been used clinically to identify correlates of attentional failures such as 

coma severity and white matter damage in TBI patients (Robertson et al., 1997). 

Treatment effects in narcolepsy patients on pitolisant and modafinil have been 
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compared using the SART, with a log-transformed total error count reflecting 

narcolepsy levels (van der Heide et al., 2015). It has likewise been used as a probe 

in relation to time-on-task effects. A 70-minute intelligence test and a 40-minute 

dual task decreased vigilance, as reflected in worse performance on later SART 

probes (A. S. Smit et al., 2004). The SART has further been used to detect vigilance 

decrements and changes in task strategy (Lara et al., 2014). It has many 

adaptations, for instance, using naturalistic stimuli to increase its ecological 

validity (Cassarino et al., 2019; Smilek et al., 2010) as well as its external validity 

in the healthy population (Head & Helton, 2012).  

 

Beyond the use of the SART, there are other tasks known to induce decrements 

and behavioural changes, specific to sustained attention. A 21-minute go/nogo 

task was seen to increase commission errors (Pershin et al., 2023) and a related 

iteration showed an increase in errors, reaction times and associated fatigue 

measures (Kato et al., 2009). Reaction times during a go/nogo task also increased 

in a patient group (Claros-Salinas et al., 2013). A sustained attention task with 

rare go trials saw an increase in error and reaction time after 20-30 minutes 

(Reteig et al., 2019). Increased reaction times were found as a result of both a 

successive and simultaneous vigilance task (Gartenberg et al., 2018) and in a 

sustained attention task relying on boredom induction (Head & Helton, 2012). A 

vigilance decrement was reported in other versions of the sustained attention task 

with rare go trials (MacLean et al., 2009) or rare nogo trials (Martínez-Pérez et 

al., 2023). Errors increased over time during a colour-change detection task 

(Wascher et al., 2014). While the task is not directly described in terms of 

sustained attention, it produced related decrements in allocation and focus of 

attention. Performance deteriorated over time during driving, relying on 

constantly sustained attention (Thiffault & Bergeron, 2003). A decrease in 

vigilance reflected by lower reaction times was reported after 3 hours in a driving 

task monitoring inattention (Schmidt et al., 2009; Walker & Trick, 2018). 

 

This outline shows that most investigators agree that time-on-task affects 

sustained attention performance, yet the critical underlying processes are still 

underexplored and debated. While fatigue is considered one of the explanations, 

others have mentioned effort perception, affective valence, self-regulation and 

time perception (Krabbe et al., 2017). Individual differences in cognitive 
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vulnerability to fatigue from sleep loss and circadian misalignment, as well as 

extended work hours and shift work have been suggested to affect the offset of 

some of these effects (Shigihara et al., 2013). Others have proposed a strong link 

between these behavioural effects and motivation, instead of fatigue (Gergelyfi 

et al., 2015; Hopstaken et al., 2016). Lastly, some researchers have failed to find 

a relationship between subjective fatigue and sustained attention decline 

(MacCoon et al., 2014; Schwid et al., 2003) and some even questioned the 

connection conceptually (Gunzelmann et al., 2011). As fatigue is then only one of 

the factors affecting sustained attention performance, the subsequent section will 

cover other major influences on sustained attention performance in the general 

population to better inform the rest of the thesis. 

Impact of age on sustained attention 

A strong effect of age on performance during the SART and other related sustained 

attention paradigms has been found consistently (Vallesi et al., 2021), so age-

specific findings will now be reviewed to highlight that a sustained attention 

investigation of fatigue cannot be done without a consideration of this age effect.  

 

The primary age difference often encountered in the literature is the retained 

attentional control of older adults during sustained attention tasks (S. Hsieh et 

al., 2015; McAvinue et al., 2012), leading to an advantage in nogo accuracy, 

defined as correct response in nogo trials (alternatively termed no-go or omission 

trials; Staub et al., 2015). Older adults have shown a preserved ability to allocate 

top-down attentional resources (Madden, 2007), which is thought to help resolve 

perceptual difficulties otherwise arising from ageing (Bourisly & Shuaib, 2018; 

Zhuravleva et al., 2014). This ability has also been described as an on-task 

controlled processing mode (Brache et al., 2010; Jackson & Balota, 2012; Staub 

et al., 2015). Consequently, older participants have been conceptualised as 

equipped with a strategy to obtain greater accuracy during sustained attention 

(Robison et al., 2022; Vallesi et al., 2021). This is referred to as the behavioural 

masking effect in older age, corresponding to a performance able to match or 

outperform young controls (Cheyne et al., 2013). Concretely, older adults are 

characterised as prioritising accuracy (Carriere et al., 2010; Statsenko et al., 

2020; Staub et al., 2015) or even as showing an accuracy bias (Hübner et al., 
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2021). This has been observed in the SART (Wiemers & Redick, 2019) but also in a 

vigilance task (Brache et al., 2010). In its full extent, it is outlined in a recent 

meta-analysis by Vallesi and colleagues (2021). 

 

The findings do not suggest that higher nogo accuracy means overall behavioural 

superiority of older adults in sustained attention. Sustained attention is 

understood to decline beginning in the early 40s (Fortenbaugh et al., 2015), as 

reflected in multiple behavioural metrics. The most common one (although only 

present in some sustained attention paradigms) is slower response time (Jackson 

& Balota, 2012). Age differences in selective attentional tasks were reflected in 

slower reaction times (McLaughlin et al., 2010), and older adults also responded 

more slowly than young adults when presented with blurred objects and 

incongruent scenes (Lai et al., 2020). In a visual attention paradigm, this was 

further accompanied by a deficiency in accuracy. And despite a nogo accuracy 

advantage, older adults can still show deteriorated accuracy on attentional tasks 

probing regulation and control of attention (McLaughlin et al., 2010). Older adults 

have further been found to have worse go (also termed commission trial) accuracy 

(S. Hsieh et al., 2015; McAvinue et al., 2012), related to a generally accepted 

motor decline arising from ageing (Seidler et al., 2010). Older adults also 

performed worse in situations such as switching attention from a temporal to a 

spatial task (Huizeling et al., 2021) or trying to divide their attention (Fraser & 

Bherer, 2013). Other research also highlights more complex metrics which bespeak 

a negative age effect, such as poor dual-task performance (Vallesi, 2016), slower 

cognitive restoration (Cassarino et al., 2019) and, in some cases, difficulty re-

engaging with a task following an error (Jackson & Balota, 2012), characterised as 

post-error slowing. Other age-related adverse factors, such as old-age frailty, 

have likewise been associated with poorer sustained attention ability (O’Halloran 

et al., 2014). These findings highlight a lasting role of cognitive decline in older 

age, contrasting with the interestingly preserved ability to exhibit high nogo 

accuracy. 

 

Underpinning age differences in sustained attention with fatigue 

Almost no research has explored the role of fatigue in different age groups 

undertaking sustained attention tasks. There seem to be no direct investigations 
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into the connection, although some papers come close to making a link. Brache et 

al., (2010) successfully used a vigilance task to induce a decrement in accuracy in 

young but not older adults. They interpreted the finding as reduced arousal in the 

young participants or a switch to a less demanding speed-based task strategy. Yet, 

they did not suggest a direct link of the decrement to fatigue. The same pattern 

was later demonstrated in the SART (Staub et al., 2014). Although subjective 

fatigue was not measured, the age difference was underpinned by subjective 

differences in the perception of success, effort and frustration, which could be 

argued to be components of the subjective experience of fatigue. Manipulation of 

break length in a fatiguing Stroop task improved fatigue in the young and middle-

aged, but not older participants. While the task induced cognitive, not attentional 

fatigue, the authors connected the findings to related research on sustained 

attention (Gilsoul et al., 2024). Vallesi et al. (2021) marginally investigated 

fatigue as contributing to age differences in sustained attention. While the meta-

analysis did not detect any reliable effects, age was still proposed as a viable 

factor for future research work.  

 

Notable age differences exist in connection to mind-wandering during sustained 

attention (Fountain-Zaragoza et al., 2018). Generally, older adults are less prone 

to mind-wandering (Diede et al., 2022; Jackson & Balota, 2012). Observations of 

mind-wandering differences in older age have even been associated to the 

underlying differences in strategy during sustained attention (Diede et al., 2022) 

and to behavioural preservation in advanced age (Bailey et al., 2020; Fountain-

Zaragoza et al., 2018). Increased sustained attention accuracy in older adults has 

also been related to lower state and trait mind wandering levels (Seli et al., 2017). 

It can thus be argued that time-on-task fatigue occurs in close relation to increases 

in mind-wandering (Walker & Trick, 2018) and that mind-wandering is 

theoretically connected to fatigue in the SART (Hawkins et al., 2019). This can be 

taken as early evidence for a link between the accuracy advantage of older adults 

and their experience of fatigue. Still, research is needed to test this hypothesis 

directly.  

 

In summary, the prevalent effect of age on performance during sustained 

attention continues to attract interest in the literature. Since these differences 

exist, they may generate new findings about vigilance decrements in young and 
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older age groups, in connection to fatigue. However, there are other important 

factors to consider, notably age differences in sustained attention in terms of 

motivation. Vallesi and colleagues (2021), alongside other researchers (Jackson & 

Balota, 2012; Staub et al., 2013, 2014), favour this account. Because of this, the 

topic of motivation will now be addressed and incorporated into the present 

discussion. 

 

Underpinning age differences with motivation 

Motivation is a highly abstract construct (Rust & LeDoux, 2023) but can be defined 

as an orienting and invigorating impact of prospective reward on behaviour (Kok, 

2022). It is likely comprised of multiple factors with inter-related dynamics 

(Howard et al., 2021; R. M. Ryan & Deci, 2019). A helpful distinction is that of 

intrinsic and extrinsic motivation (Herlambang et al., 2021; Kok, 2022). Dickinson 

(1989) posits that intrinsic motivation, in particular, relates to time-on-task 

behaviour. It decreases over time due to the repetitiveness of the task, reflecting 

a re-evaluation of the task as internally unrewarding. 

 

In reviewing factors involved in fatigue, Hockey discussed motivation as an 

underlying driver of psychophysical testing of vigilance decrements (2013, Chapter 

5). He highlighted that untracked motivational distractors can impact 

performance. Researchers confirmed the effects of some of these: social 

facilitation (McCambridge et al., 2012), cognitive bias in human judgement (Neal 

et al., 2022) and even the impact of the experiment being located in the 

laboratory as opposed to a naturalistic environment (Hockey, 2013, Chapter 5; 

Rubin & Telch, 2018). Motivation has, in addition, been directly shown to affect 

time-on-task dynamics. Motivational arousal can increase with time-on-task 

(Brehm & Self, 1989), serving as feedback for assessing task goals leading to time-

on-task changes in performance (Robison & Nguyen, 2023). 

 

For some time now, researchers in the working memory domain have discussed 

the influence of motivation on older adult behaviour (Friedman & Castel, 2013; 

Hennessee et al., 2018; Sutin et al., 2024). Older adults are considered to be more 

motivated to maintain effortful behaviours (Ennis et al., 2013; Forstmeier & 

Maercker, 2008; Hess et al., 2021), and even to show smaller vigilance declines 
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(Staub et al., 2014). Interestingly, this baseline older adult performance 

advantage can be negated with an experimental removal of their underlying high 

motivation (Löckenhoff & Carstensen, 2007). A recent meta-analysis of cognitive 

control and episodic memory (Swirsky et al., 2023) also investigated this effect. 

No overall age-related difference in motivation to improve memory task 

performance were found, but there were substantial differences based on the 

type of motivators. Older adults were motivated by socioemotional rewards (such 

as curiosity, interest in research and self-relevance) more so than younger adults 

who prioritised pragmatic and financial rewards.  

 

It needs to be acknowledged that this effect of motivation on older adult 

performance was mainly highlighted in working memory paradigms (Swirsky et al., 

2023). Findings testing them in connection with sustained attention are very 

limited. So, even though motivational decrements closely correspond to the 

posited time-on-task fatigue effect, empirical work is only now beginning to 

consider this in the context of sustained attention (Strayer et al., 2024). For these 

reasons, I incorporated an exploration of motivational factors in this thesis to 

clarify their connection to age effects and fatigue. 

 

Sustained attention fatigue and brain function 

Resting-state brain activation related to fatigue 

Neuroscience research seeks to underpin psychological tasks with associated 

neural patterns (G. Li et al., 2020) across various involved brain functional 

networks3 (Benwell et al., 2018). These are commonly studied with functional 

                                         

3 An influential model proposed by Posner notably divides attention into three networks: the 

alerting, orienting and executive control network (Petersen & M. I. Posner, 2012; M. I. Posner 

& Dehaene, 1994). Together, they have a role in selecting, orienting and controlling of 

information going into the brain. Sustained attention can then be seen as a regulatory 

mechanism distributed in the networks (Demazure et al., 2021). Another network with 

involvement in sustained attention is the salience network, chiefly comprised of a cortico-

striatal-thalamic-cortical loop: cortical nodes in the dorsal anterior cingulate cortex, anterior 

insula, dorsolateral prefrontal cortex and inferior parietal lobule, as well as subcortical nodes 
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magnetic resonance imaging (fMRI) or tracking various EEG patterns (Donoghue et 

al., 2022), namely Time-Frequency (TF) oscillation patterns (Macdonald et al., 

2011). Oscillations related to fatigue can be broadly categorised into 1) global 

changes in activation in the resting state, pre- and post-task probes or raw pre-

stimulus baseline windows, or 2) occurring directly in response to a stimulus after 

baseline correction and tied to the mental processes specific to a sustained 

attention task. As both pattern categories are distinct, the present review will 

treat them separately. 

 

The predominant pre-stimulus pattern associated with fatigue is a rise in the so-

called alpha oscillations. These occur around the frequencies of 8-12Hz (Bazanova 

& Vernon, 2014) and have been ascribed several crucial functions in sustained 

attention (Clayton et al., 2018) and further been closely connected to decreases 

and increases in attention (Walz et al., 2015). 

 

Alpha oscillation increased over time in a visual Simon task, described as eliciting 

changes in the allocation of attention (Arnau et al., 2021). They increased during 

effortful attention (Talukdar et al., 2019) and have frequently been measured as 

a result of fatigue in driving (Fonseca et al., 2018; Gharagozlou et al., 2015; Lal 

& Craig, 2002; Zhao et al., 2012). Based on these results, resting state alpha has 

been suggested as a marker of fatigue (Aziezah et al., 2020). In connection to rises 

in the alpha band, oscillations in the adjacent slower theta frequency band 

(around 4-8Hz) have also been reported to increase during attentional tasks (Arnau 

et al., 2021; Maciejewska & Moczarska, 2023; Talukdar et al., 2019; Tanaka et al., 

2012; Zhao et al., 2019) and to correspond to the same underlying process as alpha 

(Arnau et al., 2021; Huizeling et al., 2021), although some consider it a distinct 

process (Maciejewska & Moczarska, 2023). Similarly, increases in the adjacent 

                                         

in the caudate nucleus, mediodorsal thalamus and dopaminergic brainstem nuclei (S. K. Peters 

et al., 2016). The network’s association with sustained attention deficits is well documented. 

For example, the loop showed reduced connectivity in clinical conditions, like obsessive-

compulsive disorder (J. Posner et al., 2014). Finally, vigilance decrements could be linked to 

the sleep-wake brain systems, comprised of the hypothalamus, the serotonin and 

norepinephrine projection systems (Oken et al., 2006). 
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beta oscillatory band (around 13-30Hz) have been detected with respect to the 

onset of fatigue in a range of tasks, including a go-nogo style task (Liu et al., 

2010). Describing this broadband increase, multiple researchers have proposed 

that the signal occurring in the lower frequencies corresponds to one 

undifferentiated cluster of a fatigue-related rise (Arnau et al., 2021; Lal & Craig, 

2002; Tran et al., 2020). Lower frequency band resting state signal increases have 

thus been previously proposed to be biomarkers of fatigue (Bazanova & Vernon, 

2014; Krigolson et al., 2021). Yet, others have challenged this account, as pre-

stimulus alpha fluctuations are notably related to many behaviours (Melcón et al., 

2024; Slagter et al., 2016; Zazio et al., 2020). 

 

The aforementioned approach to the resting-state signal analysis relies on the 

study of canonically defined frequency bands. In contrast, a newer approach has 

recently gained recognition, relying on the analysis of both periodic and aperiodic 

components of the resting state EEG signal (Donoghue, Dominguez, et al., 2020; 

Donoghue et al., 2022). There is a good basis for considering the signal this way, 

as aperiodic components have already been mapped onto some brain functions 

relevant to attention (Gao et al., 2017; Jacob et al., 2021). The newly considered 

aperiodic components are thought to broadly reflect a general balance between 

inhibitory (gabaergic) and excitatory (glutamatergic) neural activity (Ostlund et 

al., 2022) and related to attentional processes (N. Li et al., 2024; Waschke et al., 

2021). Aperiodic components have been investigated in connection with age and 

thought to isolate age differences observable in the oscillatory signal (Cellier et 

al., 2021; Merkin et al., 2023; Montemurro et al., 2024). They have been further 

noted to differ across various clinical conditions, such as developmental dyslexia 

(Turri et al., 2023) and Alzheimer’s disease (Martínez-Cañada et al., 2023), where 

their dynamics corresponded to a well-known disbalance between excitation and 

inhibition. Conversely, they show smaller spatial functional specificity than their 

periodic counterparts (Kasten et al., 2023), although certain specifics still exist, 

such as a link of occipital aperiodic components to attentional processes (Waschke 

et al., 2021). Aperiodic analysis is still in its infancy, and findings relating to 

fatigue absent. Analytical steps are currently experimental and flexible, 

especially with respect to baseline correction and identifying an ideal cut-off 

lower frequency for component computation. In this thesis, I incorporated 

aperiodic analysis to analyse resting state signal alongside the more established 
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approaches, particularly because of its relevance to ageing. This aligns with recent 

trends in the literature and provides greater sensitivity to relevant signal patterns. 

 

In addition, other dynamics occur in pre-stimulus activity during time-on-task. 

Individual Alpha Frequency (IAF), defined as the maximum alpha power detected 

in an individual (Aziezah et al., 2020), has been shown to rise over time alongside 

rises in power (Benwell et al., 2019). IAF was affected by cortical connectivity 

(Sun et al., 2014) and corresponded to general cortical excitability (Babu et al., 

2018) or engagement (Bernhardt et al., 2019). Interestingly, some findings show 

that IAF over frontal, parietal and occipital lobes indicates fatigue, but only in 

connection with time-dependent decreases in alpha power (Aziezah et al., 2020). 

Where an alpha decrease occurred (Ishii et al., 2019; Jap et al., 2009; Tanaka et 

al., 2012), it was interpreted as functionally corresponding to a focus on the 

perception of fatigue or attentiveness to fatigue (Ishii et al., 2019; Tanaka et al., 

2012). Ultimately, these findings may point to a multi-component nature of the 

alpha oscillations, possibly explaining the inconsistency between alpha increases 

and decreases and IAF stability. This cautions against a single functional 

interpretation of alpha change, even in the context of the pre-stimulus signal 

(Arnau et al., 2021; Ishii et al., 2019; Jap et al., 2009; Tanaka et al., 2012). 

 

Sustained attention and task-related brain function 

The review can now turn to task-related patterns. These are identified by locking 

averaged signal TF windows to the presentation of stimuli. This analytical 

technique elicits a diverse array of signal patterns, more specific to the mental 

processes employed in the experimental tasks. As each task presents with 

different performance metrics and parameters, these correspond to varied post-

stimulus neural dynamics. As a result, the review is constrained to patterns 

identified predominantly in connection with sustained attention and closely 

related paradigms. Notably, most research focuses on the analysis of different 

experimental conditions averaged across time rather than time-on-task changes 

in the signal (as exemplified in Sahu and Jain, 2024). Therefore, existing findings 

leave significant gaps in the understanding of time-on-task processes. In most 

cases, the decrement is not directly tested in relation to subjective fatigue 

measures.  
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Krigolson et al. (2021) found that over time, frontal theta decreased over central 

and frontal regions in an oddball task utilising attentional control (Krigolson et al., 

2021) and in a vigilance task, described as associated with cognitive effort (Byrne 

et al., 2020). Theta was also found to decrease in a smaller sample undertaking 

the SART task (Ulgen et al., 2023). Conversely, general frontal theta increases 

were detected in effortful and mental vigilance during the SART (Linnhoff et al., 

2023). Frontal theta increases were also observed in an attentional cognitive task 

(Wascher et al., 2014).  

 

Alpha increased occipitally in both healthy controls and MS patients during a 

sustained attention task (Linnhoff et al., 2023). Task-related alpha also increased 

in a go/nogo task relying on continuous attentive performance (Pershin et al., 

2023) and was seen as reflecting change in the allocation of attentional resources 

and increases in mental effort in order to maintain vigilance. However, alpha 

decreased in an attentional control task (Krigolson et al., 2021). Elsewhere, alpha 

differentiated between internal and external attention by decreases in difficult 

mental arithmetic but subsequent dramatic increases in a purely mental task 

(Magosso et al., 2019). Prolonged cognitive activity in a Simon task relying on 

maintained attention to stimuli likewise showed a lower alpha power increase and 

a decrease in upper alpha power, proposed to denote fatigue (Wascher et al., 

2014). This was linked to depletion in cognitive resources, increased effort to 

maintain performance and reduced efficiency of stimulus processing. The two 

separate alpha frequencies further point to a multi-modal account of alpha, as 

highlighted in the work of other research groups (Barzegaran et al., 2017; Benwell 

et al., 2019; Knyazeva et al., 2018). They emphasise a possible presence of several 

functionally independent mechanisms oscillating within the alpha range. 

 

The effects of time have been observed in other frequency bands, particularly in 

lower beta oscillations (14–25Hz). This signal commonly occurs in a pattern 

characterised as the post-movement beta-rebound (PMBR) which primarily 

reflects changes in motor execution (Pfurtscheller et al., 1996). The PMBR has 

been mapped to the motor cortex (Jurkiewicz et al., 2006) and its function 

researched widely in motor tasks (Heinrichs-Graham et al., 2017; Parkes et al., 

2006). Some researchers have further suggested that the pattern also follows after 
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attentional processes (Coleman et al., 2023). For example, changes in beta-band 

activity were associated with the regulation of attentional effort during time-on-

task, in addition to motor preparation (Liu et al., 2010). A related finding was also 

observed in multi-component variations of frontal beta in monkeys around 

spontaneous pauses in work (Stoll et al., 2016). The reset of beta power after the 

modulation reflected the maintenance of cognitive control. Importantly, there 

was also an influence of time-on-task on the signal, but this was noted to have an 

effect independent of cognitive control. An earlier study also observed an increase 

in beta oscillations while using the SART to measure attentional decline between 

two time points (A. S. Smit et al., 2004). Lower amplitude and longer time-to-

peak of PMBR was connected to motor fatigue (Pakenham et al., 2020) and has 

also previously been connected to task-related mental fatigue (Liu et al., 2010). 

All these findings point to a gap in what is known about beta oscillation change 

over time-on-task, but with a potential relevance to fatigue in the present study. 

 

Age differences in sustained attention brain activity 

There are several findings investigating neural age differences during sustained 

attention, driven by an interest in the known effect of age on performance. Age 

is associated with improved occipito-parietal functional connectivity and encoding 

when carrying out attentional tasks (Wiegand et al., 2014). These increases in 

control have been proposed to correspond to increased sensitivity to contextual 

information (Lai et al., 2020). This in turn has been related to stronger inhibitory 

attentional function (Doesburg et al., 2016). In an fMRI study that showed 

dedifferentiation of functional brain activity, older adults were nonetheless noted 

to compensate for cognitive decline by recruiting alternative frontal and temporal 

brain regions involved in attentional control (Angel et al., 2022). Conversely, 

younger participants were shown to have less attentional inhibition (Brache et al., 

2010). Recently, performance in the SART has been related to structural patterns 

in the ageing brain using MRI. Their cerebral white matter density contributed to 

better accuracy, with grey and white matter volumes greatly mediating the 

relationship of ageing and sustained attention (Treacy et al., 2024).  

 

Ageing also affects the resting-state power spectral density components 

associated with attention (Cesnaite et al., 2023). The key among these is the ‘1/F’ 
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component, seen to reflect that the combined noise and power in the frequency-

decomposed signal exponentially decreases with higher frequencies (Pathania et 

al., 2021). Concerning the discussed pre-stimulus signal, older adults have 

previously shown a flattened 1/F response in the right frontal lobe, alongside 

differences in IAF from young adults (Cesnaite et al., 2023; Waschke et al., 2021). 

A possible reason for this is the multi-component structure of the alpha peaks 

(higher occipito-parietal alpha and lower occipito-temporal alpha) reduced into a 

single component in older age, the so-called anterior shift in age (Knyazeva et al., 

2018). More recent developments in data analysis have enabled the clarification 

of age differences in 1/F dynamics. Merkin et al. (2023) used aperiodic analysis to 

isolate the 1/F component of the signal from the underlying periodic peaks. Older 

adults then showed lower aperiodic offset and smaller aperiodic exponent than 

younger adults (Merkin et al., 2023). Some findings showed that the difference in 

peak alpha is then partly or even fully removed by isolation of these components 

(Merkin et al., 2023) and explains age differences in alpha oscillation (Deodato & 

Melcher, 2024).  

 

Regarding task-related signals, alpha and beta differences between young and 

older groups were detected in a go-nogo task, reflective of sustained attention 

(Schmiedt-Fehr et al., 2016). Other researchers have found differences in brain 

function of areas linked to top-down attentional resources, such as differences in 

theta and alpha oscillatory activation (Huizeling et al., 2021) and in Event Related 

Potentials (ERP) associated with these oscillations (Studenova et al., 2023). These 

include the P300 (a positive potential appearing around 300 milliseconds after the 

stimulus) in incongruent trials of an attentional oddball task (Kaufman et al., 

2016) and increased components of non-target P300 (Wiegand et al., 2014), in 

response to the SART (Chan, 2001) and an increase in attentional control-related 

P300 (S. Hsieh et al., 2015). Other findings indicate differences in the beta 

oscillatory response in go/nogo tasks again in connection with age, with older 

adults displaying a weaker beta motor rebound after successful response inhibition 

(Schmiedt-Fehr et al., 2016). ERP researchers have found that reduced reaction 

time benefits from alerting cues in older participants were reflected by reductions 

in a related N1 ERP component (the first negative peak in amplitude following the 

stimulus), responsible for alerting (Kaufman et al., 2016). In the context of 

sustained attention, ageing has been noted to affect inhibitory neurotransmission 
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of cortical to subcortical regions, this is reflected in ERP research too (Bourisly & 

Shuaib, 2018; L. Li et al., 2013).  

 

My review has shown that older adults’ ability in sustained attention is known to 

be underpinned by structural and functional brain differences, reflecting ageing-

related decline and heightened attentional inhibition. In contrast to these often 

time-averaged study designs, there are practically no findings that would 

illustrate age differences in time-on-task changes in sustained attention, 

reflecting the very much under-researched behavioural domain. As previously 

shown, both fatigue and motivation may be the key underlying processes behind 

age differences in sustained attention. Despite these significant gaps in our 

understanding, neural treatments have nonetheless been used to target candidate 

fatigue markers, including studies in both older adults in the healthy general 

population as well as patient groups. 

 

Interference with fatigue through neurofeedback 

Several studies have attempted to treat fatigue symptoms by modulating neural 

activity. Neurofeedback is a tool of particular interest among these 

neuromodulation techniques since it directly utilises and targets some of the 

previously discussed fatigue-related patterns across its diverse experimental 

protocols.  

 

Older neurofeedback research has reported general improvements in fatigue 

symptoms using various protocols relying predominantly on alpha up- or down-

regulation (Luctkar-Flude & Groll, 2015) and some benefits of neurofeedback were 

found in fibromyalgia patients, as seen in a continuous performance test (Caro & 

Winter, 2011). Cognitive performance supposedly improved in older adults 

following neurofeedback training relying on a protocol targeting an adjacent 

frequency, the sensory-motor rhythm (SMR; around 12-15Hz), and theta 

oscillations. The neurofeedback resulted in increased post-training theta and 

alpha as well as performance improvements in vigilance decrements, sustained in 

a 1-month follow-up (Marlats et al., 2020). A more comprehensive test suggested 

an improvement in fatigue and quality of life in a controlled trial of patients with 

chemotherapy-induced neuropathy as a side effect of cancer treatment. After 20 
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sessions of targeting motor-related beta bursts, there was a beneficial effect for 

at least 4 months (Prinsloo et al., 2018). However, It must be acknowledged that 

many commonly used neurofeedback protocols for the treatment of fatigue 

symptoms have inherited certain methodological flaws from the application-

driven older work4. Most of these older findings are now considered to require 

methodological improvements to attain clinical standards (Ros et al., 2020; Sorger 

et al., 2019). 

 

Conversely, a systematic review of 99 fMRI neurofeedback experiments concluded 

that neurofeedback reliably modulates specific brain regions albeit with the 

difficulty of translating the effect into clinical or behavioural outcomes, including 

fatigue (Richard et al., 2018). A different narrative review reached a similar 

conclusion about the use of neurofeedback for depression, where fatigue 

commonly co-occurs as one of its symptoms (Melnikov, 2021). It was found not to 

have any specific effect over placebo in Attention Deficit Hyperactivity Disorder 

(ADHD) patients, where fatigue was included among associated symptoms, 13 

months after a post-intervention that targeted the theta-beta ratio 

(Neurofeedback Collaborative Group, 2021). A recent study attempting to 

influence fatigue in a post-Covid-19 cohort (Orendáčová et al., 2022) lead to 

improvements in some comorbid symptoms but had no effect on fatigue. A meta-

analysis of the use of neurofeedback generally targeting the alpha band to improve 

chronic pain, looking at 10 randomised and 13 non-randomised trials, found short-

term reductions in pain intensity, but with lower certainty and a risk of bias as 

well unbalanced methodology, and little improvement in fatigue symptoms 

(Hesam-Shariati et al., 2022).  

                                         

4 Neurofeedback was firstly developed in the 1950s, during a period of a cognitive shift in 

psychology. This also sparked long-lasting research interest into the ability to observe and 

regulate one’s own EEG signal (Frederick, 2012). The initial approach focused on the 

identification of high or low alpha wave states (Othmer & Othmer, 2017), but since then, 

experimental protocols have widened significantly in scope and methodology. Soon, clinical 

trials tested the effect of various theory-driven EEG oscillatory bands, including alpha and the 

SMR (Sterman et al., 1974). Various application-oriented pathways emerged around target 

patterns of uncertain utility, such as the ‘infraslow’ EEG signal (0-0.1Hz). Even recent literature 

reports the effects of these approaches (Leong et al., 2018), while still highlighting the need 

to carefully consider control conditions (Sorger et al., 2019). 
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Some more recent investigations point to the effect of neurofeedback, but they 

are mostly not specific enough for the presently discussed fatigue 

symptomatology. As an example, alpha power lateralisation feedback was 

successfully utilised to enhance covert visuospatial attention (Schneider et al., 

2020). In addition, up- and down-regulation of alpha was used in a temporal 

expectancy task to measure performance decline. This single-blind, 

counterbalanced, sham-controlled crossover design introducing both up- and 

down-regulation in each participant found that up-regulation impaired initial 

attention performance but slowed down the deterioration of attention over time, 

while successful down-regulation had no impact on attention performance 

compared to the sham condition (Nan et al., 2024). A general effect of 

neurofeedback was also seen in an intervention targeting cognitive and 

psychomotor performance in healthy adults (Dessy et al., 2020), yet not showing 

much differentiation among the targeted frequency bands (He et al., 2020). While 

these newer approaches with more robust methodology confirm an effect of 

neurofeedback, the ability of neurofeedback to give rise to general neural changes 

contrasts with its mixed behavioural efficiency (Zilverstand et al., 2017; Zotev et 

al., 2018) and lack of specificity to fatigue symptoms. One ongoing explanation 

for the general effect is the experience of social support shared among both the 

neurofeedback and placebo conditions (Neurofeedback Collaborative Group, 

2021). When factoring in adequate control conditions, investigations often 

continue to lead to null findings, such as a recent rigorous comparison of 

neurofeedback with tDCS, leading to no detected difference from placebo (Rêgo 

et al., 2022). 

 

In summary, a review of the neurofeedback interventions related to fatigue 

generally shows a dissociation between the targeted frequency bands and their 

supposed outcomes, with scant robust results for improvements in fatigue directly 

arising from the targeted fatigue-associated patterns. There is thus a continued 

need to improve experimental rigour and constrain the investigation to avoid 

‘general’ neurofeedback effects. Future works needs to adhere to more rigorous 

design practices and a more thoroughly examined link to the targeted pathology, 

in this case, fatigue. 
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Thus, the present work aims to inform future neurofeedback and other 

interventions for fatigue by clarifying the link of theoretically supported 

oscillatory patterns to fatigue. Moreover, the investigation is constrained to 

fatigue during sustained attention to isolate a reliable effect in one process. I 

hoped that the work could later be generalised to other processes and inform 

working interventions, including neurofeedback.  

 

Thesis at a glance 

In three related experiments, one for each empirical chapter, I sought to clarify 

factors underlying performance in sustained attention in the general population, 

with a specific focus on the roles of fatigue, age and motivation. In doing so, I 

hoped to inform a prospective and empirically valid neurofeedback-based fatigue 

intervention. Failing that, to warn about the limited utility of neurofeedback 

interventions relying on the modulation of EEG oscillations or other scalp signal 

markers supposedly reflective of fatigue. 

 

Chapter 2 aimed to demonstrate that sustained attention tasks are a viable means 

of eliciting fatigue-related changes. The Sustained Attention to Response Task 

(SART) was chosen and used to investigate time-on-task effects on subjective 

fatigue and performance in the general healthy population. The feasibility of 

coupling a change in performance on the task with trait fatigue and a change in 

state fatigue was tested and confirmed using an online research paradigm. A 10-

minute version of the SART in a large representational sample showed that 

accuracy was maintained at a cost of increased fatigue. However, the key finding 

was better SART accuracy in older adults, yet only limited age-specific links to 

fatigue. A direct investigation into the neural correlates of these effects was then 

attempted in Chapter 3. 

 

In Chapter 3, neural and motivational dimensions were added to investigate age-

related fatigue changes in a first-of-its-kind incarnation of the SART as a time-on-

task EEG test of fatigue. The previous chapter’s effect of inducing subjective 

fatigue by exposure to the SART was followed up with a longer, 45-minute version, 

aiming to induce stronger performance decrement effects that were absent in 

Chapter 2. Again, I found a rise in subjective fatigue change and also a change in 
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brain dynamics, but these were unfortunately neither correlated, nor 

demonstrably linked to performance decline. Concretely, the experiment showed 

change over time in two key signal patterns: a rise in pre-stimulus alpha 

synchronisation and fronto-central task-related beta synchronisation. In addition, 

a motivational manipulation elicited a separate decrease in fronto-parietal task-

related beta synchronisation. There was no overall vigilance decrement, despite 

extending time-on-task to 45 minutes. Again, age was the key factor influencing 

accuracy during the SART and now, in addition, the detected neural patterns. The 

experiment thus highlighted the limitation of interpreting neural changes as 

reflecting fatigue. Instead, the data pointed to motivation and age-related 

performance strategy, rather than fatigue, as a further factor impacting sustained 

attention, which was then tested in Chapter 4. 

 

The final empirical Chapter 4 was a behavioural experiment attempting to elicit 

changes in SART performance by investigating motivational effects. Young and 

older participants undertook a customised version of the SART, which matched 

participant accuracy levels by titration of task difficulty to remove any trace of 

baseline differences. Both groups were then given a motivational manipulation to 

perform better at the difficulty level they reached during the titration. While both 

groups responded, the young participants improved their accuracy much more. In 

addition, subjective measures revealed a higher motivation of older participants 

to perform well from the start, while young participants reported becoming 

motivated after the motivational manipulation. No decisive link of fatigue to age 

or performance was found. The experiment thus confirmed that age-driven 

performance effects in the SART are underpinned by motivation rather than 

fatigue. 

 

Overall, I conclude in Chapter 5 that the two key patterns showing change during 

sustained attention (above all the rise in pre-stimulus alpha oscillations) have only 

a tentative link to subjective fatigue and vigilance decrements or maintained 

performance in the context of sustained attention. Changes in the neural patterns 

more accurately bespeak age and motivational differences. I explain that, 

contrary to expectation, fatigue did not underpin the strong age differences I 

found in sustained attention. I then question the utility of neurofeedback as an 

effective remedy for fatigue, given the weak link of the relevant neural signals to 
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subjective fatigue. Instead, I encourage further study of motivation as a more 

apparent factor affecting performance decline and playing a potential role in 

future interventions tackling behavioural deficiency during sustained attention.  
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Chapter 2: Probing sustained attention and fatigue 

across the lifespan 

Abstract 

Trait fatigues reflects tiredness that persists throughout a prolonged period, 

whereas state fatigue is defined to be short term after ‘intense and/or prolonged 

effort’. We investigated the impact of sustained attention (using the SART) on 

both trait and state fatigue levels in the general population. A JsPsych online 

version of the SART was undertaken by 115 participants, stratified across the 

whole adult lifespan. While pre-task trait fatigue was a strong indicator of the 

initial state fatigue levels, undergoing the task itself induced an increase in 

reported subjective state fatigue, and an accompanying reduction in subjective 

energy rating. Consistent with this finding, greater subjective state fatigue levels 

were associated with reduced accuracy. In addition, age was the best predictor of 

inter-participant accuracy (the older the participants, the greater the accuracy), 

and learning (i.e., task duration reducing reaction times). Moreover, a ceiling 

effect occurred where participants with higher trait fatigue did not experience 

greater state fatigue changes relative to those with low trait scores. In summary, 

we found improved accuracy in older adults, as well as a tight coupling between 

state fatigue and SART performance decline (in an online environment). The 

findings warrant further investigation into fatigue as a dynamic, task-dependent 

state and into SART performance as an objective measure and inducer of fatigue. 
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Introduction 

Fatigue is one of the most common symptoms experienced by people with a range 

of clinical conditions, for example, PSF affects up to 50% of stroke survivors 

(Cumming et al., 2016). Fatigue has also been estimated to affect up to 17% of 

the general population (Aritake et al., 2015). In the clinical populations, 

definitions of fatigue vary and are often specific for the respective populations in 

which they occur. PSF for instance has been described as a subjective lack of 

physical or mental energy (or both) that is perceived by the individual to interfere 

with usual or desired activities with the closely related ‘chronic fatigue’ described 

as a negative whole-body sensation, not proportional to recent activity (L. Wilson 

et al., 2011). There is similar variability in defining fatigue within the general 

population. Researchers either extend the definition from a particular syndrome, 

typically chronic fatigue syndrome (van’t Leven et al., 2009) or frame fatigue 

more generally within experimental cognitive research, e.g., as a lapse in 

sustained attention (Wylie, Dobryakova, et al., 2017). One frequently adapted 

model describes fatigue as a change from baseline state in response to either 

physically or mentally challenging tasks, which induces a depletion of cognitive 

resources and lowered vigilance (Thiffault & Bergeron, 2003). Another mechanism 

of fatigue induction could be via boredom, where repetitive and unstimulating 

tasks lead to an inability to maintain sustained attention (Gergelyfi et al., 2015). 

 

Trait fatigue is measured both in clinical studies (Acciarresi et al., 2014; Mead et 

al., 2007; L. Wilson et al., 2011) and the working population (Caldwell et al., 2019; 

Engberg et al., 2017; Vries et al., 2003). It has been characterised as an innate 

tendency to exhibit fatigue (Filippi et al., 2022). Long-term trait fatigue depletes 

the ability to readily engage in moderately demanding tasks (Möckel et al., 2015). 

Alternatively, measures used for self-reported assessment of trait fatigue are 

comprised of recalled experiences of fatigue over specified time windows and 

dimensions (e.g., the multidimensional fatigue inventory, MFI (Smets et al., 

1995)). This type of recent, self-reported fatigue has also been described as 

‘prolonged state fatigue’ (Filippi et al., 2022) in order to distinguish it from an 

innate tendency to become fatigued (sometimes also described as ‘trait fatigue’). 

Short-term state fatigue, on the other hand, is a more transient mental state 

(Chen et al., 2020). It undergoes dynamic shifts throughout the day, based on 
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external factors corresponding to undertaken activities and tasks (Völker et al., 

2016b). States are prone to shift, and this is reflected in performance changes 

across tasks that require sustained focus or attention (Reteig et al., 2019). State 

fatigue can be studied subjectively through self-report measures that are designed 

to capture subjective experience at any given time. Many researchers use a 

simple, one-item measure of subjective state fatigue (Shigihara et al., 2013) to 

link reported momentary fatigue to the objective task performance (Kluger et al., 

2013; Völker et al., 2016a; Xu et al., 2018). However, measures of state fatigue 

comprising several items would offer greater construct validity (Clark & Watson, 

2019). There has been a tight coupling of state fatigue with energy, where several 

studies (Boolani & Manierre, 2019; Filippi et al., 2022; Wender et al., 2022) 

utilised combined measures of state fatigue comprised of energy and fatigue 

subscales. Although the two scales seem to be closely related, findings of 

divergent changes in both suggest that they constitute two related, unipolar 

aspects (Filippi et al., 2022). Accordingly, a more in-depth investigation of state 

fatigue benefits from inclusion of both of the two separate subscales. 

Furthermore, few studies have investigated changes of subjective state fatigue 

during effortful tasks (Guillemin et al., 2022), and it is also unclear how 

fluctuations in subjective state relate to objective changes in task performance. 

Tests of state fatigue with attentional paradigms suggest that the ability to 

concentrate for a prolonged period decreases over time (Ishii et al., 2014; Smilek 

et al., 2010). Therefore, a fatiguing task is perhaps the most immediate exogenous 

influence on state fatigue over and above the initial baseline stemming from trait 

fatigue measures. Furthermore, coupling the changes in (subjective) state fatigue 

with task performance would enable a direct link between (objective) reduced 

task performance and (subjective) fatigue measures. 

 

SART and fatigue 

It is known already that tasks that require continuous and maintained mental 

effort are likely to elicit changes in fatigue (Reteig et al., 2019). A self-directed 

maintenance of cognitive focus (Robertson & O’Connell, 2010) can be 

characterised as sustained attention, and a frequently researched task that relies 

on sustained attention is the sustained attention to response task (SART; 

Robertson et al., 1997; Vallesi et al., 2021; Weinstein, 2018). Performance on the 
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SART is typically measured in terms of response accuracy with a focus on 

commission errors (i.e., when erroneous responses are made in no-go trials), 

reaction times, and standard deviations in reaction times. The sensitivity of the 

task to fatigue lies in its tendency to provoke unintended motor response 

commission errors, with lapses in attention. Regarding trait fatigue, an initial 

comparison of the SART with the cognitive failures questionnaire (Broadbent et 

al., 1982) showed a modest negative relationship (Robertson et al., 1997). The 

questionnaire was principally developed to reflect trait predisposition to 

attentional lapses, yet investigations into larger and more diverse populations 

with alternative procedures and methods of analyses have shown limited support 

for this association (Smilek et al., 2010). However, measures relating to state 

fatigue have been easier to link to task performance, and indicated some change 

over time (van Schie et al., 2012). Thus, the SART may be a reliable means of 

measuring as well as experimentally inducing changes in state fatigue levels 

(Nieznański et al., 2020) while detecting whether these are related to trait 

fatigue. 

 

Age and the SART 

At present there is a gap in our current understanding of fatigue across the healthy 

adult life span. Somewhat counterintuitively, surveys recurrently suggest fatigue 

to reduce with advancing age (Aritake et al., 2015; Engberg et al., 2017; van’t 

Leven et al., 2009; Watt et al., 2000). Yet, ageing has also been noted to lead to 

deficits in attention (Knyazeva et al., 2018), difficulty in attentional switching 

(Fraser & Bherer, 2013) and lowered task-related attentional improvement 

(Wiegand et al., 2017). On the other hand, both McLaughlin et al. (2010) and Staub 

et al. (2015) reported higher SART retention of accuracy with more advanced age, 

and a task closely resembling the SART showed stability of commission error rates 

across different age groups (S.-S. Hsieh et al., 2016). This goes in opposition to 

older adults reporting deficits in sustained attention (Harty et al., 2013) while 

keeping lower mind-wandering levels (Nicosia & Balota, 2021; Vallesi et al., 2021) 

and occasional evidence for a gradual decline both in reaction times and accuracy 

in subsets of the ageing population in a version of the SART (Rizzo et al., 2021). 

Differences in type of fatigue assessed may reconcile these diverging findings, and 
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we thus investigated SART performance and trait and state fatigue systematically 

across the life span. 

 

Online research 

Recently, interactive behavioural experiments have been moved online to 

platforms such as Qualtrics (Bridges et al., 2020; Garaizar & Reips, 2019; Majima 

et al., 2017). While these studies were of particular interest due to the increased 

risks of conducting face-to-face laboratory experimentation during the global 

pandemic, the online implementation of cognitive experiments has been shown to 

achieve precision comparable to the laboratory environment, whilst providing 

researchers access to wider, more diverse demographic groups (Kuroki, 2021). We 

leveraged the online approach for the study of SART and fatigue (for gaining new 

insight, but also out of necessity due to the pandemic).  

 

Aims 

We hypothesised that trait fatigue could either negatively affect task performance 

directly, or that trait fatigue would predispose participants to higher levels of pre-

task state fatigue. In turn, we proposed that this pre-task state fatigue would 

cause further in-task changes to state fatigue, and consequently to performance 

on the SART. We investigated this by first recording trait fatigue measures, using 

a subjective self-report questionnaire. Participants then provided their 

momentary, pre-SART state fatigue through a subjective self-report measure, 

performed an extended version of the SART and then reported their post-SART 

state fatigue. In relation to our pre-registered protocol (available at 

https://osf.io/hzwvp), we specifically aimed to: 

1) Investigate the correlational relationship between changes in state fatigue 

and performance changes on SART over time. Specifically, that no-go 

accuracy will decrease, and reaction times will increase as a) state fatigue 

increases, and b) state energy decreases.  

2) Assess the relationship between no-go trial accuracy and reaction time on 

the SART and reported trait and state fatigue. Specifically, that no-go 

accuracy will be lower, and reaction times will be slower in participants 

with a) high trait fatigue, b) high state fatigue and c) low state energy. 

https://osf.io/hzwvp
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3) Determine the relationship between subjective trait fatigue and state 

fatigue, as well as changes in state fatigue as a result of the task. 

Specifically, that trait fatigue would be a) positively correlated with pre-

task state fatigue and b) negatively correlated with pre-task state energy. 

We also expected to observe greater SART-induced c) increase in state 

fatigue when pre-task trait fatigue was high, and d) decrease in state 

energy when pre-task trait fatigue was high.  

4) Carry out the research project online, targeting the general population 

across the whole lifespan and so test the viability of an online environment 

for general research on sustained attention. Based on previous divergent 

findings, we expected to observe difference in a) no-go accuracy and b) 

reaction times with increasing age. 
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Methods 

Participants 

We ran a power analysis on the largest anticipated test to be performed, a two-

sample independent t-test with an expected power (1 – β) of 0.80, α = 0.05 and 

an expected Cohen’s d of 0.4 (J. Cohen, 2009). As there was no prior evidence as 

to how state fatigue may relate to the other proposed measures, we powered the 

sample size calculation for a medium effect size based on a pilot study with 10 

participants (see methods section). The power analysis was conducted using the 

‘pwr’ in R (Champely et al., 2020), determining that a minimum of 100 

participants was required. Based on the pilot study (see below), we expected a 

drop-out rate of 10%, and because we wanted to recruit 6 stratified age cohorts 

of equal size, the total number of participants recruited for the study was raised 

to 120. 

 

Participants were recruited from the general adult population (age ≥ 18) through 

the online platform Prolific (http://www.prolific.com). They were recruited in 6 

equally large, stratified age cohorts (18-29, 30-39, 40-49, 50-59, 60-69, 70+) to 

compensate for overrepresentation of younger participants in the Prolific 

participant pool. All participant data was acquired within 24 hours of the study 

portal opening on 28th of March 2021 at 8am (BST). Most participants carried out 

the task within the first two hours of its publication on Prolific (84%). Participants 

were admitted to the experiment if they indicated at least moderate proficiency 

in the English language and reported an absence of any cognitive or neurological 

conditions or uncorrected vision. 

 

Measures 

The Visual Analogue Scale for Fatigue (VAS-F, (Lee et al., 1991)) was used as the 

state fatigue measure. It captures changes in subjective state fatigue through 18 

items divided into two subscales: one for fatigue (13 items) and one for energy (5 

items), with scores from 0 (no fatigue) to 100 (maximum fatigue). It has shown 

excellent reliability of α = 0.93 and α = 0.91 for the two scales, respectively (Lee 

et al., 1991). Two items of outdated language were replaced by closest possible 

http://www.prolific.com/
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synonyms: ‘worn out’ to ‘drained’, and ‘bushed’ to ‘run down’ to avoid 

repetitiveness and a poor understanding of the items. Subsequent internal 

consistency tests confirmed no impact on the measure’s reliability. 

 

The MFI was used to acquire trait fatigue measures (Smets et al., 1995). This scale 

has been used to measure fatigue in a variety of settings and age groups and is 

comprised of 5 subscales with 4 items each (20 items in total) on a 5-point Likert 

scale. It is the most comprehensive measure to date combining many aspects of 

trait fatigue in one larger scale. It has a reliability of α = .84. and shown to lack 

floor and ceiling effects as well as item redundancy (Lin et al., 2009). 

 

Task 

The SART is a task in which participants react to numerical stimuli presented in 

rapid succession in the middle of the screen. The general population has response 

times ranging from 300 to 400ms (Hawkins et al., 2019; Seli, Jonker, et al., 2013). 

We expected our data to contain time offsets of about 30ms due to the online 

nature of the task, expected from hardware (keyboard sampling, keyboard cable) 

and software (operation system, web-browser) differences (compared to a stable 

laboratory environment (Bridges et al., 2020)). In the conventional SART, the 

typical standard deviation is reaction times between 50ms to 100ms. We expected 

a greater standard deviation in response times in our online sample in comparison 

to the conventional experiments, due to possible lower accuracy and variability 

of the devices the participants could use to access the task (Bridges et al., 2020). 

Whilst a very high accuracy rate was expected on the go trials (> 90%), we 

expected no-go accuracy rate to vary greatly across participants (Seli, Jonker, et 

al., 2013; L. Wilson et al., 2011). 

 

A custom implementation of the SART using JavaScript code, relying on the jsPsych 

package (de Leeuw, 2015) hosted on an external, secure server was used to run 

the experiment. There was a practice block of 36 trials, followed by four blocks 

of 117 trials, each with a break (timed by the participants) between each block, 

502 trials in total. This number was chosen to achieve a duration of around 10 

minutes for the experimental part and around 20 minutes for the whole study 

(based on the prior piloting). Each trial consisted of a number between 1-9 
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presented in the centre of the screen at a 64-pixel size for 250ms. The number 

disappeared for 900ms before the next one was presented. Participants were 

instructed to respond to any number apart from the number 3 by pressing the 

space bar (go), whilst withholding their response for the number 3 (no-go). They 

were asked to balance speed and accuracy in their responses as both were used 

as measures of performance. For each participant, the numbers were sampled 

randomly, with each number appearing the same number of times, and all 

numbers were distributed evenly. Altogether, the no-go stimuli appeared 56 times 

in total, representing 11.11% of the presented stimuli. 

 

Procedure 

Upon receiving the notification of a new study available on Prolific, participants 

were redirected to a survey web portal on Qualtrics (2021, Provo, UT, USA). The 

platform was chosen because it follows strict ethical protocols for participation 

and provides access to a stratified participant demographic (Boas et al., 2020). 

Participants were first introduced to the experiment and asked for their consent. 

They then provided their basic demographic information, self-reported 

information about possible visual deficiencies and other conditions that would 

impact their performance in the experiment, they then filled in the MFI and VAS-

F. The Qualtrics platform then performed call-backs to a server hosting the 

JavaScript code, forming a pop-up within the Qualtrics survey in which 

participants carried out the experimental tasks. They underwent a practice 

session for the SART, completed four blocks of the SART with breaks between 

them and then provided their VAS-F again. Finally, they were debriefed. To avoid 

expectation bias in the practice block, participants were only given general 

feedback about their accuracy without specified desirable outcomes. 

 

Statistical analyses 

All data analysis was carried out in R (R Core Team, 2022) using the packages 

‘tidyverse’ (Wickham et al., 2019), ‘psych’ (Revelle, 2023) and ‘moments’ 

(Komsta & Novomestky, 2022). Further packages used for graphical depiction 

were: ‘ggpubr’ (Kassambara, 2023), ‘viridis’ (Garnier et al., 2023) and ‘Cairo’ 

(Urbanek & Horner, 2023). 
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The behavioural data was pre-processed to acquire accuracy scores both for go 

and no-go trials. Go trial responses classed as anticipation errors (< 150ms; 

Hawkins et al., 2019) were discarded. Participant reaction times were log-

transformed to normalise the distribution of the residuals of the subsequent 

models. As per the pre-registered protocol, participants with responses that fell 

into either of two anticipated deliberately erroneous approaches to completing 

the experiment were removed from further analysis: One was responding to all 

trials and withholding responses randomly at the rate of the occurrence of the no-

go stimuli (> 89% go stimuli correct and < 11% no-go stimuli correct), the other to 

randomly respond at the rate of occurrence of the no-go stimuli (< 11% go stimuli 

correct and >89% no-go stimuli correct), in any of the four experimental blocks. 

Participants who did not complete all the blocks were likewise removed from the 

analysis. Finally, participants showing more than one failure to correctly answer 

the attention check questions were excluded from the analysis also.  

 

Correlation matrices were acquired for the five subscales of the MFI and then used 

to compute the Cronbach’s alpha (Claros-Salinas et al., 2013). Cronbach’s alpha 

scores were also obtained for the pre- and post-test levels of the VAS-F. State 

fatigue change was obtained by subtracting the pre-task VAS-F score on both the 

fatigue and energy subscales from the post-task VAS-F score on both of those 

scales. Accuracy change scores were acquired by subtracting the no-go accuracy 

score in the last block from the no-go accuracy in the first block. 

 

Pilot study 

A pilot study with 10 participants was conducted to determine the viability of the 

online environment for conducting a SART experiment. These results also informed 

the power calculation and resulted in a formulation of the accuracy thresholds for 

the SART. In response to the pilot, we also implemented attention checks to 

ensure that participants fully attended to the questions. These were in the form 

of an extra item on the MFI, pre-task VAS-F and post-task VAS-F asking the 

participant to answer with a specific numeric value. In line with the platform 

recommendations, participants were excluded from data analysis and refused 

payment if they failed more than one of the three checks.  
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Results 

Exclusions 

Four participants failed more than one attention check and so were not included 

in the sample. A further 16 participants (11.4%) attempted the task but stopped 

without finishing. Further participants were recruited in their place until the 

complete sample size of 120 was achieved. For the final analysis a total of 5 

participants were excluded from the sample: Two participants experienced an 

unknown technical fault, two were removed for failing to achieve the minimum 

SART performance and one was removed for reporting a lack of sufficient English 

language knowledge. This left the total of participants at 115 (95.83% of complete 

total recruited), see Fig 2.1. 

 

 

Fig 2.1 A flowchart depicting the exclusion process in the study. 

 

Participants 

A total of 115 participants were analysed after exclusions. The sample was 

comprised of 61 women and 54 men (46.96%), with a mean age of 48.43 (SD = 

18.08) equally represented across the stratified adult age lifespan (range = 18-

81). The sample was comprised of 27 different nationalities, predominantly 
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European (n = 100, 86.96%), with the most frequent being British (n = 51, 44.35%), 

Polish (n = 12, 10.43%) and Italian (n = 7, 6.09%). The sample was socio-

economically diverse, including 26 (22.61%) individuals with no higher education, 

26 (22.61%) individuals with college-level or vocational training, 35 (30.43%) 

individuals with an undergraduate degree and 28 (24.35%) individuals with 

postgraduate and/or higher degrees. Sixty (52.17%) individuals were in some form 

of employment, whilst 13 (11.30%) comprised students and 42 (36.52%) were 

unemployed, retired, on leave or furloughed. No participants reported 

complications related to eye-conditions or cognitive difficulties which could have 

impeded performance. All European participants completed the study in the 

morning, within two hours of the study release on Prolific. Finally, 32 (27.83%) 

participants reported that they currently had, or suspected that they had had, 

Covid-19 infection. However, only 5 (4.35%) reported a definite diagnosis with 

Covid within the previous 3 months. 

 

The study was approved by the University of Glasgow College of Science and 

Engineering Ethics committee (Approval number: 300200069). Digital consent was 

obtained from all participants by completing an online checkbox form. 

 

Questionnaires 

The participants gave both their pre-task fatigue (M = 364.49, SD = 284.82) and 

energy (M = 264.06, SD = 114.01) scores as well as their post-task fatigue (M = 

415.27, SD = 325.04) and energy (M = 241.08, SD = 118.87) scores. Change scores 

were thus obtained by subtracting the pre-task score from the post-task score for 

fatigue (M = 50.78, SD=186.14) and energy (M = -22.98, SD = 91.76). As the change 

scores included post-task state fatigue levels in their calculation, we decided not 

to consider post-task scores separately, contrary to what we indicated in the pre-

registration. 

 

Pre-test fatigue scores predicted post-test fatigue scores, F(1, 113) = 234.70, p < 

.001, R2 = .680. Likewise, pre-test energy scores were predictors of post-test 

energy scores, F(1, 113) = 102.80, p < .001, R2 = .480, showing consistency within 

participants across the two time points. 
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The participants completed the MFI as a measure of trait fatigue. Subscale and 

total scores were calculated. The sample had a mean score around the midpoint 

of the scale (M = 51.43, SD = 13.82, range = 20 - 87). Even on the subscale level, 

the MFI showed a similar means for general fatigue (M = 10.77, SD = 3.43, 4-19), 

physical fatigue (M = 10.54, SD = 3.56, 4-20), mental fatigue (M = 10.12, SD = 3.59, 

4-20), reduced activity (M = 10.28, SD = 3.36, 4-20) and reduced motivation (M = 

9.71, SD = 3.15, 4-18). The results were similar to those found in other 

populational studies (Ishii et al., 2014; Völker et al., 2016b) as opposed to results 

with means above the threshold score of 60 (Purcell et al., 2010) indicative of a 

clinically fatigued population. 

 

Cronbach’s alphas of the MFI, as well as of the pre-test VAS-F and the post-test 

VAS-F, were obtained. We expected a Cronbach’s alpha of 0.8 on all the scales 

(Cronbach, 1951). We found a Cronbach alpha of 0.92 for the MFI total, 0.78 for 

general fatigue, 0.81 for physical fatigue, 0.81 for reduced activity, 0.70 for 

reduced motivation, and 0.86 for mental fatigue. The pre-task state fatigue scale 

(VAS-F) showed an alpha of 0.95, energy (VAS-E) was 0.95. Overall pre-task was 

0.96. Post-task overall was 0.97, fatigue 0.97 and energy 0.95. Except for general 

fatigue and reduced motivation, all values reached 0.8, implying that the items in 

the questionnaires were internally consistent. The VAS-F showed very high 

internal consistency. 

 

SART 

After removal of the trials with very short reaction times (< 150ms, 3.0% of data), 

and although the sample mean reaction times matched the times expected based 

on prior studies (364.47ms, SD = 5.15ms), they appeared not to be normally 

distributed (they had a heavy rightward skewness (2.02) and were leptokurtic 

(12.44)). So, the reaction times were corrected by log-transformation, leading to 

more acceptable skewness (.50) and kurtosis (4.54). The mean within-participant 

standard deviations in reaction times were 99.87ms (SD = 7.76) and normally 

distributed (skewness = .22, kurtosis = 2.69). No-go accuracy was 68.23% (SD = 

15.84%) and go accuracy was at ceiling, 98.86% (SD = 3.07%). 
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Accuracy change scores (M = -3.34%, SD = 18.82%) were acquired by subtracting 

the nogo accuracy score in the last block of the task, from the first block. This 

showed no skewness (-.19) and no kurtosis (2.96). A multiple linear regression was 

run to predict no-go accuracy change from each of the five individual subscales of 

trait fatigue, change in reaction time, change in state energy, change in state 

fatigue and interaction between change in state fatigue and change in state 

energy. The overall model was significant, F(10, 104) = 2.51 p = .010, R2 = .190 

and only fatigue change was found to be a predictor of accuracy change with a 

negative relationship between accuracy change and fatigue change, β < .001, t = 

2.82, p = .006, showing a small to medium effect size (J. Cohen, 2009): the greater 

the fatigue change, the larger the drop in accuracy across the blocks. While 

fatigue change was associated with accuracy change, energy change and the other 

variables were not significant. Fig 2.2 depicts both relationships to fatigue and 

energy. The variance inflation factor remained under 3 for all model variables. 

  

 

Fig 2.2 Linear relationship between accuracy change, fatigue change and energy change. (A) 

Relationship of accuracy change between the last and the first block and fatigue change before 

and after the task with 95% confidence intervals and (B) accuracy change between the last and 

the first block and energy change before and after the task. with 95% confidence intervals. 

 

A multiple linear regression was run to predict no-go accuracy from block number, 

age, total MFI score, pre-task state energy score, pre-task fatigue score and 

interaction of all the subjective fatigue measures. The overall model was 

significant, F(8, 451) = 9.40 p < .001, R2 = .140. Only age was found to be a 

predictor of accuracy, β = .003, t = 5.89, p < .001: the older the participants were, 
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the more accurate they were at withholding no-go responses during the SART. The 

relationship between age and accuracy is depicted in Fig 2.3. The variance 

inflation factor remained under 3 for all model variables. 

 

 

Fig 2.3 Linear relationship between participant age and overall participant no-go accuracy 

with 95% confidence intervals. Density plots indicating the distribution of the participants across 

ages 18-81, as well as the no-go accuracy distribution. 

 

A multiple linear regression was run to predict correct go-trial reaction time from 

block number, age, total MFI score, pre-task state energy score, pre-task fatigue 

score and the interaction of all the subjective fatigue measures, yielding an 

overall significant model, F(8, 451) = 11.00 p < .001, R2 = .16, and only block 

number found to be a predictor of reaction time, β = .014, t = 8.94, p < .001, with 

a reduction in RTs in relation to task block number (Fig 2.4). 
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Fig 2.4 Reaction times on the SART across time. Distribution of reaction times at trial block level 

across the four blocks including mean reaction times and standard deviations with reaction times 

within each participant across the four task blocks distinguished by colour (including the overall 

linear trend across the four blocks). 

 

A simple linear regression showed that mean reaction time did not predict no-go 

accuracy, F(1, 113) < .001, p = .970, R2 < .001. 

 

Initial state fatigue 

We expected the state fatigue change and the energy change induced by the SART 

to be predicted by the scores on the five MFI subscales. Likewise, we expected a 

relationship between the MFI subscales and the pre-task VAS-F scores. A multiple 

linear regression examined the relationship between all 5 of the MFI subscales and 

pre-task fatigue, and another examined the relationship of the 5 MFI subscales to 

pre-task energy, see Fig 2.5. 
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Fig 2.5 Trait-state fatigue relationship (including highlighted 95% confidence intervals) on all 

MFI and pre-task VAS subscales. (A) VAS fatigue and MFI physical fatigue. (B) VAS fatigue and MFI 

general fatigue. (C) VAS fatigue and MFI mental fatigue. (D) VAS fatigue and MFI reduced fatigue. 

(E) VAS fatigue and MFI reduced motivation. (F) VAS energy and MFI physical fatigue. (G) VAS 

energy and MFI general fatigue. (H) VAS energy and MFI mental fatigue. (I) VAS energy and MFI 

reduced activity. (J) VAS energy and MFI reduced motivation. 

 

The overall model predicting pre-task state fatigue was significant, F(5, 109) = 

25.10 p < .001, R2 = .535). Pre-task state fatigue was positively related to mental 

fatigue (β = 14.80, t = 2.26, p = .026), physical fatigue (β = 28.10, t = 3.05, p = 

.003) and general fatigue (β = 60.69, t = 6.75, p < .001), but was not related to 

reduced activity (β = 9.84, t = 1.10, p = .275) or reduced motivation (β = 7.94, t = 

.880, p = .380). 

 

The overall model predicting pre-task state energy was also significant, F(5, 109) 

= 29.11 p < .001, R2 = .572). Pre-task state energy was negatively related to 

general fatigue (β = 22.34, t = 6.47, p < .001) and reduced activity (β = 12.60, t = 

3.66, p < .001), whilst showing no relationship to mental fatigue (β = 2.88, t = 

1.14, p = .256), physical fatigue (β = 6.75, t = 1.90, p = .060) or reduced motivation 

(β = 3.48, t = 1.01, p = .317). 

 

State change 

However, state change only modestly corresponded to the MFI scores. The overall 

model was significant, F(5, 109) = 2.38 p = .043, R2 = .099). State fatigue change 



61 

was negatively related to reduced activity (β = 18.84, t = 2.31, p = .023), with a 

small effect size. This meant that participants who had higher reduced activity 

scores had a smaller increase in their state fatigue during the task. There were no 

other relationships between state fatigue change and any of the other 4 MFI 

subscales: mental fatigue (β = 5.67, t = .950, p = .344), physical fatigue (β = 6.74, 

t = .803, p = .424), general fatigue (β = 5.30, t = .648, p = .518) or reduced 

motivation (β = 14.78, t = 1.80, p = .074). The same model was run to predict 

state energy change from the five MFI subscales, F(5, 109) = 3.10 p = .012, R2 = 

.125. Again, reduced activity was also a positive predictor of energy change, β = 

10.30, t = 2.60, p = .01 with a small effect size. This showed that participants with 

higher reduced activity scores reported less energy loss during the task. No 

relationship was found with the other scales: mental fatigue (β = 1.17, t = .403, p 

= .688), physical fatigue (β = 3.38, t = .829, p = .409), general fatigue (β = 1.35, t 

= .341, p = .734) and reduced motivation (β = 6.16, t = 1.55, p = .124). Therefore, 

the direction of the relationship was the opposite of our pre-registered prediction. 

We predicted that we would observe more task-induced fatigue and energy loss in 

participants who started the experiment with high levels of reduced activity (see 

Fig 2.6).  

 

 

Fig 2.6 The fatigue and energy state change and trait fatigue relationship in the sample with 

highlighted 95% confidence intervals. (A) VAS fatigue change and MFI physical fatigue. (B) VAS 

fatigue change and MFI general fatigue. (C) VAS fatigue change and MFI mental fatigue. (D) VAS 

fatigue change and MFI reduced fatigue. (E) VAS fatigue change and MFI reduced motivation. (F) 

VAS energy change and MFI physical fatigue. (G) VAS energy change and MFI general fatigue. (H) 
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VAS energy change and MFI mental fatigue. (I) VAS energy change and MFI reduced activity. (J) 

VAS energy change and MFI reduced motivation. 

 

All the European sample (86.96%) completed the study in the morning, contrary 

to the pre-registration, so no analysis was conducted on the difference between 

morning and evening due to the high imbalance between the two conditions. 

Likewise, too few participants identified as having experienced Covid symptoms 3 

months prior to their participation (4.35%), and so Covid was not considered in the 

analysis. Employment was too diversified to be categorised for the analysis and so 

it was not considered either. 
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Discussion 

Fatigue and SART  

Participants reported fatigue and energy levels before and after carrying out an 

online version of SART. Levels of state fatigue were predicted by scores from the 

MFI, which was used to reflect trait fatigue, illustrating that pre-task state fatigue 

levels were initially rooted in long-term internal trait fatigue. In addition, the 

findings show that undergoing the SART does induce changes in state fatigue. 

Participants got fatigued and lost energy during the task, as demonstrated by the 

clear difference between the pre- and post-task subjective fatigue and energy 

levels. Furthermore, the change was reflected in their task performance: If 

performance on the task dropped, more fatigue and less energy were experienced. 

So, the objective measure of accuracy change between the first and final blocks 

corresponded to the change in reported subjective fatigue. In fact, state fatigue 

change as a predictor of accuracy change outperformed initial trait fatigue levels. 

This was true even though participants received no feedback and were not given 

any expectations about the desired performance. Our data thus demonstrate a 

tight coupling between drops in SART accuracy and changes in state fatigue. 

 

We detected an unexpected relationship between state fatigue change and trait 

fatigue opposite to our original prediction. Change in state fatigue was smaller 

with higher levels of trait physical fatigue and reduced activity present before the 

task. This may indicate a ceiling effect, or limited capacity for fatigue change, if 

a relatively higher fatigue state is already present: when fatigue is high prior to 

the start of the task, no further increase may be possible given the nature of the 

task. Our selection of the SART to induce fatigue was motivated by its ability to 

induce errors in the withholding of a behavioural response caused by lapses in 

sustained attention. The prolonged, and repetitive nature of this task may have 

induced a different type (or a different degree) of fatigue compared to a task 

that, for example, depletes cognitive resources due to high complexity (Botvinick 

& Braver, 2015; Gergelyfi et al., 2015) or involves high working memory load 

(Wylie et al., 2019). It may be the case that participants with high trait fatigue 

did not experience greater state fatigue changes because they had a higher 

tolerance for unstimulating, repetitive tasks, and it is possible that the use of a 
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challenging task may have produced different results in this regard, which should 

be investigated in future research. The findings parallel those of Boolani and 

colleagues (Boolani et al., 2020), who likewise detected that higher trait fatigue 

in individuals meant the inability to get further fatigued. The effect has also been 

suggested to occur due to depleted cognitive reserve on part of the participants, 

preventing any further rises in fatigue (Fuller et al., 2021). 

 

Age and learning effects 

Age proved to be the strongest predictor of overall performance over any other 

measures or variables (the older the participants the greater the accuracy), 

confirming and reproducing the outcomes of a recent meta-analysis by Vallesi and 

colleagues (2021). We propose this finding to be a robust indicator of an underlying 

age-specific difference, likely the cognitive approach to the task (see further 

elaboration under ‘future directions’). 

 

In agreement with prior findings (Nieznański et al., 2020; van Schie et al., 2012), 

participants in this large sample sped up over time. There was no speed-accuracy 

trade off, accuracy remained the same whilst reaction times reduced. This 

improvement in speed thus showed a gradual increased familiarity with the task 

and accommodation to the experimental paradigm (Reteig et al., 2019). 

Interestingly, this effect occurred regardless of age. It highlights the need to track 

performance across a larger time window (ideally 40 minutes or longer; Reteig et 

al., 2019), should future attempts aim to achieve a measurable decline in SART 

participant performance. 

 

Online environment  

The achieved go and no-go accuracy rates as well as reaction times when adjusting 

for errors caused by performing the study online (Kuroki, 2021) matched those in 

other studies carried out in the general population (Dang et al., 2018; Seli, Jonker, 

et al., 2013). Notably, the described online performance appears comparable with 

samples in the laboratory studies (Robertson et al., 1997; Seli, Jonker, et al., 

2013). Thus, the findings support the notion that online behavioural research can 

closely match the laboratory setting, whilst reaching diverse participant groups, 
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which would be harder to recruit in laboratory studies. They also demonstrate the 

feasibility of obtaining decrement effects despite reduced experimental control 

over participants than in laboratory settings, such as less influence on timing of 

breaks between blocks. To our knowledge, this is the first time that the SART has 

been implemented online, and it achieved very comparable data to laboratory 

settings. The study thus successfully shows the suitability of such efforts for future 

attempts to investigate ageing as well as the link between subjective measures of 

fatigue and SART performance change. It also provides a characteristic profile of 

fatigue and baseline fatigue rates prior to experimentation in online samples 

across the whole adult lifespan with the exception of advanced age, as well as the 

influence of fatigue levels over the course of the experiment.  

 

Limitations 

The original pre-registered models were based on concrete linear predictions 

between one predicted and one predictor variable, but we considered several 

variables within one model, not all of which were directly mentioned in the pre-

registration. Nonetheless, the models broadly reflect the anticipated pre-

registered relationships. This approach helped us to detect the unanticipated link 

between increased trait fatigue and reduced state fatigue change. It is possible 

that this particular effect was influenced by regression to the mean, driving a drop 

in ceiling state fatigue levels when re-tested at a second timepoint. Nevertheless, 

it remains a valid exploratory finding and does not exhaust the full potential of 

the available dataset. Further work may consider other analytical approaches to 

clarify this correspondence of trait to state fatigue, including a promising use of 

non-linear models already utilised elsewhere (Bolsinova & Molenaar, 2018). 

 

We are aware that other factors could have impacted state fatigue and there is 

added uncertainty in the use of an online environment, which is usually alleviated 

by more precise laboratory control over the experiment: factors pertaining to the 

sleep cycle and time of day which could impact the vigilance decrement (Lara et 

al., 2014) were not considered, and other insufficiently addressed factors include 

individual problems in nourishment (van’t Leven et al., 2009), gender, work 

exhaustion, smoking or undetected underlying health conditions which could in 

turn have contributed to the reported trait and state levels of fatigue. 
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Future directions 

It was interesting to see that age had a greater impact on overall SART 

performance than initial fatigue levels, yet this may be the case only for a 

generally healthy population (as tested here). Research into clinically fatigued 

populations is warranted to see whether fatigue becomes a significant predictor 

of SART performance, as the SART may be much more challenging for patients 

with diagnosed clinical fatigue conditions. This study highlights the significance of 

SART as an objective measure of fatigue change, and it may well prove to be a 

sensitive, objective means of assessing and monitoring fatigue in clinically 

fatigued populations. 

 

Reverting back to the age effect, the present findings provide clear evidence of a 

stable age effect in the standard implementation of the SART. The used sample 

size allowed us to treat age as a continuous variable and so show a linear 

relationship between higher accuracy and age. There are clear differences which 

occur in the attentional processes necessary to undertake this task with increasing 

age. One existing explanation is that the task is either perceived as more 

interesting and challenging, and so carried out more dutifully with advancing age. 

Thus, older participant performance hints at a motivational advantage (Vallesi et 

al., 2021) and reliance on a more accuracy-based cognitive strategy (Knyazeva et 

al., 2018). At the same time, it may paradoxically show that improved 

performance means greater difficulty and necessity to actively engage cognitive 

resources when performing the task. The task could be perceived as more routine 

and automatic by younger participants due to its relative simplicity (Vallesi et al., 

2021). They would therefore opt for a speed-based strategy. In contrast, older 

adults may experience a more innate motivational drive to excel at the task (Braun 

et al., 2015; Macdonald et al., 2011). Future work could investigate this 

phenomenon in more detail by utilising motivational manipulations and probing 

attitudes to experimentation in participants. Pairing future studies of the SART 

with neural measures tracking the employment of cognitive resources 

independent from subjective report would enable the detection of this speculated 

effect. Recent research has started to investigate oscillatory neural correlates of 

performance on the SART (Braun et al., 2015; Knyazeva et al., 2018) focusing on 

the link between the SART and brain oscillations in particular (Braun et al., 2015; 
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Macdonald et al., 2011; Majima et al., 2017). Further research could link changes 

in the oscillatory signal to this objective performance and the subjective 

experience of fatigue, and this would help to ground research on fatigue in 

clinically relevant theoretical conceptualisations (Ishii et al., 2014; Johansson & 

Rönnbäck, 2013) as well as help to better understand innate and lasting proclivity 

to fatigue. Another open avenue of research is the comparison of this attentional 

approach to other paradigms and tasks with higher cognitive demands (Jacquet et 

al., 2021; K. J. Peters et al., 2022) or using a task-switching approach (Mangin et 

al., 2022). 

 

Conclusion 

In summary, we investigated the impact of undergoing the SART in a large online 

sample comprising all adult age groups. We found that an increase in reported 

state fatigue was reflected in reduced SART performance. We also found that age, 

not trait predisposition to fatigue, was the greatest predictor of overall 

performance on the task. Pre-task trait fatigue led to a ceiling effect in state 

fatigue change only. We propose that the SART is a sensitive, objective means to 

induce and measure changes in state fatigue. 
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Chapter 3: Oscillatory markers of vigilance, task-

induced fatigue and motivation during sustained 

attention: Evidence for decoupled alpha- and beta-

signatures  

Abstract 

Reduced vigilance can be captured in measures of attentional lapses in sustained 

attention tasks, but just how these lapses relate to task-induced fatigue and 

motivation to maintain optimal performance is unclear. We used the Sustained 

Attention to Response Task (SART) to induce fatigue and manipulated motivation 

levels for the last block of the task in young and older participants (N = 34), while 

recording electroencephalography to track electrophysiological markers of 

vigilance change, motivation and fatigue. Despite significant increases in 

subjective fatigue and mind wandering over 45 minutes, no vigilance decline in 

the task was observed. However, the age groups differed markedly in their 

response strategies from the outset (adopting distinct speed-accuracy trade-off 

strategies) with faster/more erroneous responses in the younger and slower/more 

accurate responses in the older participants. Pre-stimulus alpha power increased 

over time, but although this mirrored the subjective rise in fatigue/mind 

wandering that also occurred over time, these were not correlated. Post-stimulus 

activity showed two distinguishable beta signatures: a fronto-central topography 

as a marker of response strategy and a fronto-parietal distribution modulated by 

motivation per se. We speculate that these two signatures contribute to offset 

performance declines over time. 
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Introduction 

Sustaining attention requires a constant, self-directed maintenance of vigilance 

(Robertson & Garavan, 2004) both across various daily activities (Massar et al., 

2018; Roach et al., 2012; Walker & Trick, 2018), and bespoke experimental tasks 

(Head & Helton, 2012; Reteig et al., 2019). Continuously engaging in sustained 

attention tasks can result in changes in performance (Reteig et al., 2019; Stoll et 

al., 2016) that have been characterised as the vigilance decrement (Oken et al., 

2006; Robertson & Garavan, 2004). However, the onset of a vigilance decrement 

will vary across experiments and studied populations, with some studies pointing 

to a continued ability of participants to concentrate and maintain focus during 

sustained attention tasks (Lara et al., 2014; Nakagawa et al., 2013), while others 

suggest impairments in accuracy and reaction times with increasing time-on-task 

(Pershin et al., 2023; A. S. Smit et al., 2004; van Schie et al., 2012). 

 

Differences in motivation, both between-and within- participants, may account 

for some of this variability. For instance, it has been suggested that motivation 

can be a key influence in the reappraisal of task strategies (Earle et al., 2015; 

Gilsoul et al., 2022), which can lead, through the self-regulatory mechanism of 

attentional effort (Sarter et al., 2006; Stoll et al., 2016), to improved behavioural 

measures in sustained attention tasks (Oken et al., 2006). This was tested by 

Reteig et al. (2019), who reactivated participants’ motivation after 60 minutes 

spent on a sustained attention task, by offering an additional monetary reward if 

they managed to out-perform 65% of the other participants in the final part of the 

experiment. Although Reteig et al. found that the motivational manipulation 

restored the vigilance decline to some extent, this was not reflected in the tested 

EEG measures of attentional control, except for variability in a neural theta-

response. Hence, a neural link between the effect of motivation and vigilance 

change remains tentative (see also Awh et al., 2012). In the present study, we 

sought to re-examine the role of motivation in vigilance decrements by 

manipulating motivation in the course of a sustained attention task while 

recording its EEG markers (similarly to Reteig et al., 2019). We anticipated 

motivated participants to show different performance and oscillatory patterns 

compared to the unmotivated group. 
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In addition, we sought to investigate state fatigue. Performance declines in 

sustained attention tasks are often accompanied by mental fatigue. The exact 

mechanisms driving such fatigue are still unclear (Kuppuswamy, 2022), but are 

likely caused by either a depletion of cognitive resources (Jacquet et al., 2021; 

Krigolson et al., 2021), or by monotonous tasks leading to a disengagement of the 

sustained attention networks (Richard et al., 2018). Notably, previous work 

highlights that the effect of fatigue on vigilance decrement may be decoupled 

from the effect of motivation (Gergelyfi et al., 2015) and hence taking into 

account fatigue in the study of neural markers of vigilance change, in addition to 

motivational factors, is relevant. Unlike Reteig et al., (2019), who used a 

sustained attention-style task where the goal was to detect rare targets in an 

oddball paradigm (and where the typical errors were omissions), we used the 

Sustained Attention to Response Task (SART; Robertson et al., 1997; Weinstein, 

2018) in which failures in sustained attention manifest in commission errors (false 

positives) arising from erroneously responding to infrequent no-go stimuli. 

Performance changes in the SART are influenced by response strategy and age 

(Dang et al., 2018; Lara et al., 2014; K. M. Wilson et al., 2016), can capture lapses 

into a less attentive state (Manly et al., 1999), as well as task monotony (Head & 

Helton, 2012), so the mapped effects extend well beyond the task itself (A. S. 

Smit et al., 2004). Prolonged versions of the SART therefore represent an optimal 

method for exploring the relationship between vigilance decrements and potential 

differences in strategy linked to motivation and fatigue. 

 

In terms of neural substrates and/or correlates of the vigilance decline, both the 

relevant anatomical networks and some of its potential neural markers have been 

identified. The vigilance network is responsible for sustained attention 

(Milyavskaya et al., 2021), as well as executive function (Holtzer et al., 2011), 

exerting attentional control over the incoming visual stimuli (M. I. Posner & 

Dehaene, 1994) via modulation of early visual centres and network interactions 

needed to carry out the task (Clayton et al., 2015; Corbetta et al., 2002). It has 

also been linked to task-induced fatigue (Shen et al., 2016) and brain activity 

potentially associated with this network has been observed to change over the 

course of a task (Benwell et al., 2019; G. Li et al., 2020; Macdonald et al., 2011). 

Accordingly, activity changes in the vigilance network should track its gradual 

disengagement (Ishii et al., 2014; Johansson & Rönnbäck, 2013) and thus make 
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the network a viable focus for the study of neural changes due to the vigilance 

decrement.  

 

In EEG research, activity of the vigilance network has been broadly characterised 

as occurring in the oscillatory alpha frequency band (Clayton et al., 2015; 

Sadaghiani & Kleinschmidt, 2016) extending over frontoparietal brain areas 

(Clayton et al., 2015; Corbetta & Shulman, 2011). Previous literature further 

suggests patterns of change in alpha oscillations connected to a decline in 

performance in sustained attention (Braun et al., 2015; Nan et al., 2024; Oken et 

al., 2006). There is some evidence of a connection between posterior alpha 

increase and task-induced fatigue (Barwick et al., 2012; Jacquet et al., 2021; 

Tanaka et al., 2012) as well as general fatigue levels (Maciejewska & Moczarska, 

2023), while others maintain the connection is uncertain (Huycke et al., 2021; 

Talukdar et al., 2019). Oscillatory activity related to attentional control may also 

extend beyond the alpha-band: Changes in beta-band activity have been 

associated with the regulation of attentional effort during time-on-task, in 

addition to motor preparation (characterised as beta-rebound; Z. Li et al., 2022; 

Liu et al., 2010; Stoll et al., 2016). Thus, analyses of oscillatory signals focusing 

on the alpha and beta band should contribute to a better understanding of the 

neural processes underlying vigilance changes and clarify their contribution to 

fatigue and motivation. 

 

Finally, it is well documented that there is large inter-individual variability in SART 

performance across the population (Hanzal et al., 2024b; Vallesi et al., 2021). In 

particular, different age groups tend to adopt either an accuracy (Dang et al., 

2018; Reteig et al., 2019) or speed-based (Lara et al., 2014; Statsenko et al., 2020) 

strategy. These strategies are then prone to change (for example, switching from 

an emphasis on achieving high accuracy, to responding faster) during the task (van 

Schie et al., 2012). This could reflect differences in the underlying levels of 

fatigue, as suggested by surveys of general population fatigue (Gilsoul et al., 2022; 

J.-H. Yoon et al., 2023), or instead an age difference in motivational levels (Carr 

et al., 2022; A. D. Ryan & Campbell, 2021).  

 

In brief, in this pre-registered study, we aimed to investigate the behavioural and 

EEG measures of vigilance and fatigue in young and older participants as a function 
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of time-on-task during prolonged (45 minutes) SART performance. We induced 

higher levels of motivation in half of the participants during the final experimental 

block to investigate whether motivation could improve performance and change 

EEG markers of fatigue and also tested for differences between age-groups. Our 

results reveal three dissociated frequency-specific EEG signatures of increased 

state fatigue/mind wandering with time-on-task (pre-stimulus alpha), of age 

specific response strategies (post-stimulus fronto-central beta) and of motivation 

(post-stimulus fronto-parietal beta), on the backdrop of maintained task 

performance (no vigilance decline was observed). Unexpectedly, the reported 

increase in pre-stimulus centro-parietal alpha-power was not correlated with the 

reported rise in state fatigue/mind wandering. 
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Methods 

Participants 

The hypotheses, design and analysis plan were pre-registered prior to data 

collection and can be accessed via OSF (https://osf.io/y2vgc/). A total of 41 

healthy adults aged between 18 and 87 years old were recruited from the 

University of Glasgow subject pool and the local area and were given monetary 

compensation for their time. The study was approved by the University of Glasgow 

College of Science and Engineering Ethics committee (Approval number: 

300210156). Written consent was obtained from all participants. Participants were 

balanced for gender and were asked to report any existing medical conditions, 

eye-sight correction and medications which might impact their performance. 

Seven participants were excluded due to excessive noise and artefact in the EEG 

signal. The final sample consisted of 34 participants (F = 16) split into two groups 

based on age: young (n = 18, F = 9, mean age = 22.61, SD = 1.85, range = 20-26) 

and older adults (n = 16, F = 7, mean age = 66.50, SD = 8.45 years, range = 55-87). 

Two participants were left-handed, one was a smoker and all participants 

reported low to moderate caffeine consumption (estimated mean units per day 

over the past week = 1.31, SD = 1.12, range = 0-4), corresponding to the maximum 

recommended daily dose of 400mg of caffeine (Mitchell et al., 2014). They also 

reported an average of 7.34 hours of sleep per day (SD = 0.85, range = 6-9). All 

young participants were enrolled university students and the older group had 

similar levels of tertiary education (n = 6, 37.50%) compared to the UK average 

for their age group (39.60%; OECD, 2023). 

 

All participants were screened for cognitive difficulties using the Montreal 

Cognitive Assessment test (MoCA; (Nasreddine et al., 2005)), reflecting scores 

representative of a healthy population (Borland et al., 2017) in both young (mean 

score = 28.28, SD = 1.49, range = 26-30) and older adults (mean = 25.81, SD = 2.74, 

range = 22-30). A short (3 minute) computerised visual screening assessment was 

administered at the beginning of the session to exclude potential visual 

pathologies. The task was adapted from a similar experiment investigating 

lateralised visual attention in both young and older groups (Learmonth et al., 

2017) and shortened to 32 trials. A Welch's t-test identified no between-group 

https://osf.io/y2vgc/
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differences in target detection within the visual regions where the SART stimuli 

were to be presented, t(32) = 1.45, p = 0.16.  

 

Subjective Measures 

Changes in state fatigue were assessed by the Visual Analogue Scale for Fatigue 

(VAS-F). The VAS-F measures 18 items across two subscales (fatigue = 13 items 

and energy = 5 items), with scores of 0 = low fatigue to 100 = high levels of fatigue. 

It has excellent test-retest reliability of α = 0.93 and α = 0.91 for the two scales, 

respectively (Lee et al., 1991). As in Hanzal et al., (2024b), two items on the scale 

were replaced with synonyms: ‘worn out’ was changed to ‘drained’, and ‘bushed’ 

to ‘run down’ to avoid repetitiveness and dated language. The spontaneous 

subscale from the Mind Wandering measure (Carriere et al., 2013), comprising 4 

items on a 7-point Likert scale was administered to measure changes in mind-

wandering during the experiment. 

Sustained Attention to Response task (SART) 

The study used a custom version of the SART (Robertson et al., 1997; Fig 3.1B). In 

each trial, participants were instructed to maintain fixation on a centrally 

presented cross and attend to a numeric stimulus (0-9) presented at an angular 

distance of 1° for 250ms. The fixation reappeared for a variable duration of 3000-

4000ms before progressing to the next number. The stimuli were black on a white 

background and presented using a 21-inch CRT monitor (Samsung, SyncMaster 

1100MB) with a screen resolution of 1280x1024 pixels and a refresh rate of 100 Hz. 

Participants were seated 60 cm from the screen, maintaining horizontal eye level 

with the centre of the display. Participants were instructed to click the left mouse 

button with their right index finger in response to all numbers that appeared (go 

trials), apart from 3 and 6 (no-go trials). The participants did not receive any 

feedback about their individual response times or accuracy. The stimuli were 

pseudo-randomised to ensure equal frequency and random distribution throughout 

the experiment.  
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Procedure 

 

 

Fig 3.1 (A) Outline of the SART. (B) Outline of the experimental procedure. Before the task, 

participants completed the entrance demographic information, the visual field test and were 

administered the subjective measure questionnaires assessing state fatigue and mind wandering 

(VAS-F, MW-S). For the main experiment, participants performed 8 blocks of the SART task, 

allowing tracking of vigilance over time. After completing the experiment, the participants again 

completed the subjective measure questionnaires (VAS-F, MW-S) and proceeded to the final 

motivational block of SART performance. The MoCA was administered at the end to assess potential 

presence of cognitive impairments in the sample. 

 

The experimental procedure is outlined in Fig 3.1. Participants were provided with 

an information sheet and gave written, informed consent to take part. They then 

provided basic demographic information and reported visual deficiencies, as well 

as any other relevant medical conditions. A 64 Ag/AgCl BrainCap (BrainProducts, 

Gilching, Germany) was fitted according to the international 10/20 system 

(American Electroencephalograpic Society, 1991), including two horizontal 

electro-oculographs, and impedance reduced to <25KΩ using Signa gel. 

Participants then completed the VAS-F and MW-S and a brief visual field test to 

map visual acuity. They then underwent a SART practice session of 30 trials and 

were given general feedback about their accuracy on the practice block. In the 

main experiment, participants completed eight blocks of the SART (90 trials, 72 

go, 18 no-go trials, random presentation), each lasting five minutes and 20 

seconds, with self-paced breaks between each block, followed by the VAS-F and 

MW-S to record post-task subjective states. Continuous EEG data was recorded at 

a 1000Hz sampling rate. The first eight blocks of the SART were followed by one 

further, unannounced, block of 90 trials (Block 9) to manipulate motivational 

state. Half of the participants were randomised into a motivated group and were 

instructed to try to maximise their performance on the last block (no guidance 
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was given regarding potential strategies to achieve maximal performance). They 

were informed that the participant with the best performance during this block 

would receive an additional bonus of £50. The other half were only informed that 

the experiment includes an additional block and asked to undertake the block with 

the same instructions as the previous blocks. Finally, the participants were 

screened for mild cognitive decline using the MoCA and debriefed.  

 

Analyses 

Behavioural analyses 

All behavioural analyses were carried out in R (R Core Team 2024) using the 

packages ‘tidyverse’ (Wickham et al., 2019), ‘psych’ (Revelle, 2023), ‘moments’ 

(Komsta & Novomestky, 2022), ‘readxl’ (Wickham et al., 2019), ‘broom’ (Robinson 

et al., 2024), ‘ez’ (Lawrence, 2016), ‘lmerTest’ (Kuznetsova et al., 2020), ‘lme4’ 

(Bates et al., 2015), ‘emmeans’ (Lenth et al., 2024). Further packages used for 

graphical depiction were: ‘ggpubr’ (Kassambara, 2023), ‘viridis’ (Garnier et al., 

2023) and ‘Cairo’ (Urbanek & Horner, 2023). Performance analyses of the effect 

of age-group and time on the chosen metrics relied on an examination using 

randomised block- and participant- level modelling. The lmer function of the 

'lme4' package (Bates et al., 2015) was used to construct corresponding random 

mixed effects model and to fit individual participant and block slopes and 

intercepts, with the lmerTest package (Kuznetsova et al., 2020) to estimate p-

values.  

 

Electroencephalography (EEG) analyses 

Analysis of the EEG data was undertaken using the EEGLAB (Delorme & Makeig, 

2004) and FieldTrip (Oostenveld et al., 2011) toolboxes for MATLAB. The 

continuous data was first detrended to remove drifts introduced by instrumental 

and physiological noise, alongside various baseline shifts. A Hamming-windowed 

FIR filter was then applied within the 2-45Hz frequency range, followed by re-

referencing to the average signal. Independent component analysis was then run 

using ICLabel (Pion-Tonachini et al., 2019). The following threshold criteria were 

applied to identify components for automatic rejections: 1) Components that had 

<0.05 likelihood of brain origin and 2) Components that had >0.8 likelihood to be 
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one of either an ocular artefact, muscle artefact, heart artefact, line noise or 

channel noise. All components labelled as ‘Other’ were visually inspected and 

rejected if they appeared similar to standard artefact components. This semi-

automated correction method led to the rejection of a mean of 25.97 components 

(of a total of 64 available components per person, SD = 4.25, range = 20-37). A 

further 1.18 (SD = 1.40, range = 0 -3) components were manually rejected in each 

dataset and 0.24 (SD = 0.55, range = 0-2) preserved from automatic rejection due 

to incorrect ICLabel classification. The same analytical steps were then performed 

on the raw datasets with a lower filtering threshold of 0.5 - 40Hz, the original ICA 

weights were re-applied and components removed. Upon inspection of the signal, 

known noisy electrodes were interpolated (mean per participant = 0.76, SD = 0.96, 

range 0-4). 

 

Data for analyses were selected based on the following steps: 

1. Participants with insufficient neural data as outlined in data pre-processing 

were not included in behavioural analysis. 

2. Trials with trigger information missing due to failure of transition of an 

event signal were identified and removed. 

3. Outliers in reaction times were removed. Firstly, block and group mean and 

standard deviation in reaction time was computed. Blocks were considered 

separately due to an expected time effect and age groups were considered 

separately because of an expected group difference. Then, trials rising 

above two standard deviations of the mean were removed as attention 

lapses and trials two standard deviations below the mean as anticipation 

error (Kiesel et al., 2008). 

4. Participants were also removed if they exhibited any of two identified 

erroneous strategies in any of the 8 main experimental blocks: a) 

responding to all trials at chance level (> 80% go stimuli correct and < 20% 

no-go stimuli correct), or b) withdrawing the response for all trials at 

chance level (< 20 % go stimuli correct and >80% no-go stimuli correct) in 

any of the eight experimental blocks. 

 

Trials thus rejected (based on behaviour) were also identified and removed from 

the EEG analysis. Further trials were identified for removal based on visual 

inspection of the signal, detecting artefacts not removed by ICA, leading to a 
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rejection of 4.60% of trials (SD = 2.70, range = 0.00 – 18.19%). After initial cleaning, 

the data was re-epoched for pre-stimulus and task-related analysis. Time-

frequency (TF) analysis was performed using a transformation based on 

multiplication in the frequency domain method as specified in the ft_freqanalysis 

Fieldtrip function (Oostenveld et al., 2011), and a Hanning taper was applied to 

the data. The frequency range of interest was defined as 2 to 40Hz with a 1/3Hz 

frequency step. The number of fixed cycles per wavelength was set to 6. For all 

permutation testing, spatial neighbours for each electrode were defined as those 

being approximately 5cm distant (Maris & Oostenveld, 2007). The maximum 

possible number of permutations (up to 3000) was undertaken for each test. To 

investigate whether neural patterns differed across conditions of interest, a 

permutation test was run on all channels over the whole epoch (-1500ms to 

1500ms), applying relative baseline correction and transforming the data to 

decibels.  

 

The same data cleaning procedure as in blocks 1-8 was applied separately to the 

EEG recording for block 9. This led to the selection of different participant data 

for the motivational group, leading to 33 (older adults = 13). This slight divergence 

is explained by a case-by-case basis of inclusion of participants based on the 

overall neural data quality, which fluctuated between the two parts of the 

experiment, with a final overlap of 30 participants between both parts. Table 1 

provides participant count for the between-group factors age and motivation. The 

motivational block data was notably noisier, due to a likely higher proportion of 

agitation and motion artefact introduced by the motivational manipulation. 
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Between-group factor Main blocks Motivational block 

  n % n % 

Motivated young 7 21 7 23 

Motivated older 8 24 5 17 

Non-motivated young 11 32 11 37 

Non-motivated older 8 24 7 23 

Total 34 100 30 100 

Table 1 Outline of participant count for between-group factors age and motivation in main and 

motivational task blocks.  

 

The procedure for analysing the pre-stimulus signal was guided by the recent 

decomposition of the signal into periodic and aperiodic components (Donoghue, 

Haller, et al., 2020) which have distinct associations with tasks and participant 

populations (Donoghue et al., 2022), e.g. ageing (Turner et al., 2023) and 

pathology, as in developmental dyslexia (Turri et al., 2023). This was undertaken 

using the ‘mne’ python package (Gramfort et al., 2013). The TF signal was 

examined through spectral parameterization in trial-averaged TF spectra for each 

channel and each participant in blocks 1 and 8, using an implementation of the 

aperiodic analysis through the ‘specparam’ python package (Donoghue, Haller, et 

al., 2020). The resulting aperiodic 1/f fit was removed from the power spectrum 

using subtraction. The corrected ‘periodic’ spectrum was permutation-tested 

using the permutation_cluster_1samp_test and permutation_cluster_test 

functions as implemented in the ‘mne’ python package (Gramfort et al., 2013), 

by supplying first and last block difference matrices per each participant. The t-

statistic significance threshold was manually determined using the ppf function 

from the ‘scipy’ package (Virtanen et al., 2020). The adjacency sparse matrix was 

obtained using the native easycap 64 channel layout derived from the MATLAB 

‘fieldtrip’, and extended to include N-1 and N+1 neighbours along the frequency 

dimension using the combine_adjacency function implemented in the ‘mne’ 

package.  
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Results 

SART Task Performance 

Across the two groups, the young adults had faster reaction times (mean = 

429.45ms, SD = 50.37ms, range = 328.88–577.67ms; Fig 3.2A1), but lower accuracy 

due to elevated commission errors (i.e. a failure to withhold responses; mean = 

24.46%, SD = 13.19%, range = 0%-61.11%; Fig 3.2B1), while the older group showed 

a reversed pattern, with slower reaction times (mean = 567.66ms, SD = 95.18ms, 

range = 429.99–923.98ms) but fewer commission errors (mean error = 7.72%, SD = 

7.48%, range = 0-33.33%), see the same Fig 3.2A1 and Fig 3.2B1. Omission errors 

(missed targets) showed floor effects both in young (0.21%, SD = 1.15%, range = 0–

12.5%) and older adults (mean error = 0.80%, SD = 2.03%, 0–13.89%), so they were 

not analysed any further.  

 

To track possible vigilance decrements over time, we tested the effect of time-

on-task (experimental blocks 1-8) and age group (young vs old) on commission 

errors using a random mixed effects model. The effect of time-on-task was not 

significant [t(32) = 0.43, p = 0.16] but lower error rates were confirmed in older 

participants as opposed to the young group [t(32) = 15.77, p < 0.001] with no 

interaction [t(32) = 0.36, p = 0.72]. An identical model was used to analyse 

reaction times. The effect of time-on-task was significant, indicating a slight 

reduction in reaction times across time [t(32)= 0.01, p = 0.049], likely due to 

learning effects, alongside a main effect of age group, showing faster reaction 

times in young participants as opposed to the older group [t(32) = 0.23, p < 0.001], 

with no interaction [t(32) < 0.01, p = 0.78]. 

 

We then tested the effects of the motivational manipulation using a three-way 

ANOVA with the factors block (block 8 vs 9), age group (young, old) and 

motivational group (non-motivated, motivated) separately for reaction times and 

commission errors. The motivational manipulation consisted of instructing half of 

the participants after completion of block 8 that they can earn more money if 

they outperform their fellow participants in the last block (block 9), while the 

other half were simply told that there is one final block to be completed (resulting 

in motivated vs non-motivated subgroups).  
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The analysis of the reaction times showed that there was no effect of 

experimental block [F(1, 26) = 0.37, p = 0.55, η² < 0.001] and no effect of 

motivation group [F(1, 26) = 0.18, p = 0.68, η² < 0.001], but the interaction 

between block and motivation was significant with a small to medium effect size 

[F(2, 26) = 7.74, p = 0.01, η² = 0.02]. Confirming the analysis above, the older 

group had slower reaction times than the young group [F(1, 26) = 16.17, p < 0.001, 

η² = 0.42]. Post-hoc analyses were conducted using paired sample t-tests to 

further explore the interaction of block and motivation. These revealed that in 

the non-motivated group, reaction time increased between blocks 8 and 9 [t(17) 

= -2.47, p = 0.02], while remaining stable in the motivated group [t(11) = 1.65, p 

= 0.13], hence suggesting that the motivational manipulation, albeit weakly, 

affected reaction times (See Fig 3.2A2). No other interaction was significant. 

 

The analyses of the commission errors showed that there was no effect of block 

[F(1, 26) = 1.54, p = 0.23, η² = 0.05] and no effect of motivation [F(1, 26) = 1.53, 

p = 0.23, η² = 0.04]. The results also showed that the older adults were more 

accurate than the younger group [F(1, 26) = 10.30, p = 0.004, η² = 0.24]. Unlike 

for the reaction times results, there was no interaction between block and 

motivation, hence suggesting that there was no effect of the motivational 

manipulation on commission errors. There was a significant interaction between 

age group and motivation [F(2, 26) = 4.77, p = 0.02, η² = 0.17] but this interaction 

was not further explored due to the absence of an interaction with block. This 2-

way interaction picks up on a difference between motivated vs non-motivated 

young participants independent of block that is not seen in the older participants 

and is almost certainly reflecting a chance effect. (As participants were only 

allocated to the motivation group randomly after the end of block 8, any 

differences prior to the allocation into the groups would be random variations. 

See Fig 3.2B1 for an illustration of this interaction that is seen throughout all 

blocks (and is not specific to block 9). No other interaction was significant. 

 

Finally, because the two age groups showed opposite patterns in their behavioural 

response strategies, an exploratory analysis of speed-accuracy trade-off was 

undertaken, this is documented in Appendix 1. 
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Fig 3.2 Behavioural Performance. (A1) Mean reaction time and (B1) commission errors in both 

experimental groups (older in blue, young in red) across time-on-task (experimental blocks 1-8) 

and a final experimental block (block 9) with/without motivational manipulation (motivated, non-

motivated subgroup). (A2) Difference in reaction times and (B2) commission errors induced by the 

motivational manipulation in both age groups (young, older) as inferred from comparisons between 

blocks (8, 9) in both the non-motivated group (blue) and motivated group (red). 

 

Subjective levels of fatigue and mind wandering 

Subjective fatigue levels were assessed before and after task performance (pre 

block 1 and post block 8). From the beginning, the older group (mean = 427.56, 

SD = 201.22, range = 104-755) had lower baseline fatigue scores than the young 

group (mean = 588.89, SD = 257.61, range = 118–1054) [t(32) = 2.05, p = 0.049, 

see Fig 3.3A]. Likewise, from the beginning, older adults had lower mind 

wandering scores (mean = 3.70, SD = 1.61, range = 1.25–6.50) than the younger 

group (mean = 4.07, SD = 1.71, range = 1-6) [t(32) = 2.69, p = 0.01, see Fig 3.3B]. 

Comparing pre-task with post-task subjective scores (see Figs 3.3A and 3.3B), we 

found that both the young (mean change = 217.06, SD = 182.29, range = -25-646) 

and older group (mean change = 169.31, SD = 149.58, range = 3-485) showed a rise 

in their subjective fatigue levels with time-on-task. Likewise, both the young 

(mean change = 0.53, SD = 1.00, range = -0.75–2.50) and the older group (mean 

change = 1.11, SD = 1.28, range = -0.50–4.25) had an increase in mind-wandering 

scores.  
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In a 2x2 mixed ANOVA testing the effect of time (before, after), age group (young, 

older) and their interaction on the subjective fatigue scores, we found a large 

effect of time [F(1, 32) = 45.75, p < 0.001], showing that subjective fatigue scores 

had increased by the end of the main experiment. There was also a small 

difference between the groups, indicating that the young adults had slightly higher 

fatigue scores than the older group [F(1, 32) = 5.03, p = 0.03]. However, there 

was no interaction between age group and time [F(2, 32) = 0.69, p = 0.41]. 

 

Similarly, in a 2x2 mixed ANOVA testing the effect of time (before, after), age 

group (young, older) and their interaction on mind wandering, there was a large 

effect of time, explained by higher mind wandering scores by the end of the 

experiment [F(1, 32) = 16.80, p < 0.001]. There was again a main effect of age 

group, with the young adults having higher mind wandering scores than the older 

group [F(1, 32) = 5.61, p = 0.03]. However, there was no interaction between 

group and time [F(2, 32) = 2.20, p = 0.15]. To test for a link between mind 

wandering change and subjective state fatigue change, a linear regression was 

fitted to the paired observations for each participant, but the model was not 

significant [F(1, 32) = 2.42, R2 = 0.04, beta < 0.01, p = 0.13]. 

  

 

Fig 3.3 Subjective measures over time. (A) Scores of the visual analogue scale for state fatigue 

and (B) mind wandering before and after the experiment (Pre-task, Post-task) for each group 
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(young in red and older in blue), with individual participant total scores, as well as overlaid 

boxplots with overall medians and quartile ranges. 

 

Electroencephalography (EEG) results 

The EEG analyses aimed at identifying the brain oscillation markers of the above 

performance differences and the reported subjective changes, across our 

experimental factors. Due to the absence of the vigilance decline, we first sought 

to identify the EEG-changes with time-on-task as a possible marker of increased 

fatigue/mind wandering, or alternatively, of enhanced effort to maintain stable 

task performance despite the reported subjective increase in fatigue. In a second 

step, we examined a relation with age group and the motivational manipulation. 

Finally, we tested for correlations with behavioural measures. This was to 

disentangle EEG-markers (i) of fatigue/mind wandering per se, which should show 

changes both across age-group (enhanced fatigue in the younger as compared to 

the older group) and time-on-task (increasing fatigue across blocks in each group), 

(ii) to disentangle EEG markers of the difference in response strategy in the older 

vs the younger participants (deployment of effort more towards motor 

control/accuracy versus response speed), and (iii) of the effects of the motivation 

manipulation. Our results revealed an EEG signal change in (i) pre-stimulus alpha-

oscillations over centro-parietal locations potentially reflective of disengagement 

of effort, (ii) qualitative differences in response strategy/ effort deployment in 

post-stimulus, task-related beta synchronisation/rebound over fronto-central 

sites, and (iii) of motivational manipulation in a distinct, fronto-parietal beta-

signature, as outlined below.  

 

Pre-stimulus EEG oscillations: alpha-signals increase with time-

on-task, differ by age-group and are amenable to motivational 

manipulation 

We first investigated potential oscillatory markers of time-on-task. To identify the 

effects of time-on-task on oscillatory activity, we first compared activity in the 

pre-stimulus window (-1100 to 0ms) across a broad spectrum of frequencies (3-

40Hz, including the alpha- and beta-band) between experimental blocks 1 and 8, 

whereby we decomposed the full pre-stimulus spectrum per experimental blocks 
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and group (Fig 3.4A) into its separate periodic (Fig 3.4B) and aperiodic components 

(Fig 3.4C; Donoghue, Haller, et al., 2020), and ran comparisons using cluster-based 

permutation statistics (Maris & Oostenveld, 2007). We then examined whether the 

markers of time-on-task (Fig 3.4D) co-vary with other possible contributors to task 

performance/vigilance, namely age-group and motivation (Figs 3.4E-F). 

 

 

Fig 3.4 Time-on-task related pre-stimulus activity. Spectrograms for (A) total measured power, 

(B) the periodic signal after adjustment from the aperiodic component and (C) the aperiodic 

component, represented across Time-on-task (block 1 vs 8: solid line vs dashed line) and the young 

(in red) and older group (in blue). Transparent areas represent 95% confidence intervals. Note in 

(B) that the largest periodic spectral differences are observed between age groups in the alpha-

band (left topography: alpha older < younger) and the beta-band (right topography: beta older > 

younger group). (D-E) Time-on-task of periodic alpha (8-14Hz) activity: The panels illustrate the 

alpha-increase with time-on-task in terms of (D) its topography (from block 1 to block 8) collapsed 

across age groups, and (E) its evolution across experimental blocks 1-8 for each of the age-groups 

separately (young vs old: left vs right). The plot illustrates the variability of the signal in individual 

participants, as well as the median values and quartile ranges with an overall positive linear trend 

fitted separately for each group. (F) Motivational manipulation and alpha-band activity: Plots 

denote periodic alpha-band changes from blocks 8 to 9 (with motivational manipulation), per each 

of the groups (younger: red vs. older: blue/ motivated: solid vs. non-motivated: dashed lines). The 

motivational manipulation influenced alpha-band activity by preventing further alpha-increases 

from block 8 to 9 in the motivated but not the non-motivated group, independently of age-group. 

Participant-level changes are depicted alongside median values and quartile ranges. 

 

Examining the effect of time-on-task through cluster-based statistics of the 

periodic, pre-stimulus activity in experimental blocks 1 versus 8, revealed one 
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positive cluster (cluster statistic = 3391, p = 0.007). This indicates a rise in power 

across time-on-task in the alpha frequency band (8-14Hz) over the majority of 

channels with a maximum in centro-parietal locations (see Fig 3.4D).  

 

To characterise the alpha-increase with time-on-task over all experimental blocks 

1 to 8 and to further test for possible co-variations with age-group differences and 

motivational effects, we first determined the electrode with the highest cluster 

t-statistic (CP1) based on results from blocks 1-8. Then we extracted the periodic 

alpha signal (8-14Hz band) in that electrode for the pre-stimulus epoch from 

across all blocks 1-9.  

 

Fig 3.4E illustrates the periodic alpha-changes over time-on-task (blocks 1-8) per 

age-group. Analysis of the factors time-on-task (block 1-8) and age-group (young, 

old) using a random mixed effects model (with randomised participant- and block-

level effects) revealed a significant increase in the alpha-signal across blocks 

[t(32) = 3.06, β = 0.10, p = 0.004] with the signal being elevated in the young 

group as compared to the older group [t(32) = -2.29, β = -0.14, p = 0.03], but with 

no interaction [t(32) = -0.22, β > -0.01, p = 0.83]. Note that directly examining 

the effects of age-group on the pre-stimulus, periodic component using cluster-

based statistics (older vs younger participants) confirmed the age-effect in the 

alpha-band (alpha old < young), revealing one large negative, alpha-band cluster 

(highest cluster statistic = 9546, P = 0.001; see Fig 3.4B for cluster map), alongside 

a large positive cluster (cluster statistic = 8464, P = 0.001) in the adjacent beta 

band (14-30Hz). The latter showed elevated beta-activity in the old relative to 

the young group (see Fig 3.4B, spectrograms and cluster map). 

 

Fig 3.4F illustrates the pre-stimulus alpha-signal that is sensitive to time-on-task 

(extracted from CP1) with regard to the co-variation with motivational 

manipulation, namely across block 8 and 9, separately for the motivated and non-

motivated groups. Conducting a 2x2x2 ANOVA with the factors motivation group 

(motivated, non-motivated), age group (young, older) and block (block 8, 

motivational block 9) revealed no main effects of motivation on this alpha-signal 

[F(1, 26) = 1.00, p = 0.33, η² = 0.03], but an interaction between motivation x 

block (F(1, 26) = 5.00, p = 0.03, η² = 0.02). In addition, the young group had a 

consistently higher alpha-signal than the older group confirming the analysis above 



87 

[F(1, 26) = 12.94, p = 0.001, η² = 0.31], with no difference between blocks [F(1, 

26) = 3.42, p = 0.08, η² = 0.01]. No other interaction was significant. Post-hoc 

analyses were conducted using paired t-tests to further explore the interaction of 

motivation group and block. These showed that the alpha power of the non-

motivated group continued to increase between block 8 to 9 [t(17) = 2.48, p = 

0.02], while the motivated group showed no further change in this signal [t(11) = 

0.62, p = 0.55]. 

 

Analysis of the aperiodic component (exponent and intercept) using 2x2 ANOVAs 

with the factors time-on-task (block 1 vs 8) and age-groups (young, older) revealed 

significant group-effects for both the exponent (steeper exponents in the young 

group [F(1, 32) = 13.99, p < 0.001, η² = 0.27]) and the intercept (higher intercepts 

in the young group [F(1, 32) = 8.57, p = 0.006, η² = 0.20]) but no effects of time-

on-task (exponent: [F(1, 32) = 0.46, p = 0.50, η² = 0.003], intercept: [F(1, 32) = 

0.28, p = 0.60, η² < 0.001]) nor any interaction (exponent: [F(2, 32) = 0.68, p = 

0.42, η² = 0.004], intercept: [F(2, 32) = 0.50, p = 0.49, η² = 0.001]). 

 

In summary, these results reveal that periodic, pre-stimulus alpha-band activity 

shows a similar pattern for fatigue/mind wandering levels across experimental 

factors: centro-parietal alpha-power increases over time-on-task that are 

elevated in the younger as compared to the older participants, while at the same 

time being sensitive to the motivational manipulation. Thus, the pattern likely 

reflects attentional disengagement, reversible by re-motivation.  

 

Post-stimulus (task-related) oscillatory activity: two beta-signals 

that relate distinctively to response strategy and motivational 

manipulation  

As per the analysis of the pre-stimulus activity, we analysed post-stimulus 

oscillations in terms of effects of time-on-task first. We did this by identifying 

changes between experimental blocks 1 vs 8, running cluster-based statistics on 

the baseline-corrected TF transformed data. We then examined their co-variation 

with age and the motivational manipulation. In a second step, due to the absence 

of motivational effects in the above analysis, we then tested directly for the 

effects of the motivational manipulation in the post-stimulus window (using 
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cluster-based statistics comparing block 8 versus the motivational block 9 as a 

function of motivation group).  

 

Post-stimulus beta-activity changes with time-on-task reflect qualitative 

differences in response strategy 

Cluster-based permutation statistics between blocks 1 and 8 on post-stimulus TF-

data identified a positive cluster in the lower beta frequency range (cluster 

statistic = 4899, p < 0.001) occurring in a late post-stimulus window (500-1000ms; 

Fig 3.5A). The cluster is explained by a fronto-central beta-increase over time-on-

task (detailed in Fig 3.5B).  

To examine beta-changes across all experimental blocks 1-8, we extracted this 

beta-signal (14-24Hz: late time window significant in the cluster) from the 

electrode with the most prominent cluster t-statistic (C3) per block and age-

group, over time and frequency bands as indicated in Fig 3.5D. A random mixed 

effects model with beta-power as the to-be-predicted variable confirmed its 

increase across time-on-task [t(32) = 2.98, β = 0.16, p = 0.01] and revealed a 

higher value in the young participant group [t(32) = -3.93, β = -3.06, p < 0.001], 

but no interaction [t(32) = 0.15, β = 0.01, p = 0.88]. This indicates an overall linear 

increase of task-related beta-power across time-on-task that is independent of 

age group, while showing overall group differences. An inspection of the event-

related beta-change (Fig 3.5B, line plot) provides evidence for a relationship to 

behavioural response patterns and hence response strategy across age-groups 

instead. 

 

Inspection of Fig 3.5B (line plots) reveals a prominent beta desynchronisation 

around response onset (mean reaction times were 400-500ms), followed by a beta-

rebound. The desynchronisation was much stronger in amplitude in the older than 

younger participants, whereas the beta-rebound showed an earlier latency in the 

younger compared to the older group, reflecting the differences in their reaction 

times (see above). Given this dynamic pattern and the fronto-central topography, 

we interpret this beta-signal to reflect differences in motor response strategies 

between the groups. To further inform this interpretation, we explored to what 

extent this signal could be driven by the motor response. We therefore re-

analyzed the beta-signal but taking into account correct omission trials only 
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(hence eliminating any contamination by motor execution). Given the low number 

of omission trials, we averaged the data across all blocks 1-8 (it was not possible 

to resolve blocks 1 and 8 separately). This analysis revealed the same pattern 

(comparing Figs 3.5C vs 3.5B), including in terms of age-group differences (t(25) 

= -2.20, p = 0.04), which therefore suggests that this beta-signal is more of a 

cognitive or motor control nature than linked to motor execution. Based on these 

findings, we interpret the stronger beta-desynchronization in the older as 

compared to the younger group to reflect deployment of more effort towards 

accurate motor control, while we interpret the shorter latency in beta-rebound in 

the young, as compared to the older group, to reflect the speeded response 

strategy.  

 

To test whether the time-on-task related beta-signal also co-varied with the 

motivational manipulation, this signal was extracted in the electrode with the 

highest t-statistic (C3) also for the motivational block 9 and separately for the 

motivated and non-motivated groups, for comparison with block 8 (see Fig 3.5E). 

Using a 2x2x2 ANOVA comparing motivation group (motivated, non-motivated), 

age-group (younger, older), and block (block 8 vs motivational block 9), we 

observed an effect of motivation group [F(1, 26) = 4.96, p = 0.04, η² = 0.14] 

showing that the group randomly allocated into the motivational condition had an 

overall higher beta-signal (Fig 3.5E). There was no main effect of block [F(1, 26) 

= 0.02, p = 0.89, η² < 0.001] or age group [F(1, 26) = 3.11, p = 0.09, η² = 0.09], 

nor were there any significant interactions. This therefore indicates that in 

contrast to the pre-stimulus alpha-signal, this post-stimulus beta-signal is not 

amenable to manipulation by motivation. 

 

Overall, these analyses suggest that the qualitative differences in response 

strategy (accurate vs fast) across the age-groups are reflected in a beta-signal of 

fronto-central topography, which in its rebound-component is modulated with 

time-on-task as well as reaction times (see analyses below). 
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Fig 3.5 Time-on-task related oscillatory changes in the post-stimulus period. (A) Results of the 

cluster-based permutation test showing a time-on-task-related increase in the beta-band (14-

24Hz) from block 1 to 8 in the later post-stimulus window (0.5-1s). (B) Topography of the time-on-

task beta-change, indicating a fronto-central maxima. The line graph represents beta-changes 

across time-on-task and age-group, illustrating that the positive cluster denotes an increase in 

beta-activity over time (compare solid vs dashed lines). (C) PSD comparison of young and older 

participants in the same frequency band across correct omission trial window with inferential time 

period area indicated. (D) Effect of time-on-task across all experimental blocks 1-8 per age-group 

(young, older), showing an overall positive trend independently of group, but higher beta-power 

in the younger participants. (E) No effects of motivational manipulation on the beta-signal, with 

no differential increase from block 8 to 9 between motivated and non-motivated participants, 

across the young (red) or older (blue) age group. Participant-level changes are depicted alongside 

median values and quartile ranges. 

 

Motivation effects on beta-activity 

Because we did not observe the time-on-task related beta-pattern to be altered 

by motivational manipulation (as per above), we tested for effects of motivation 

in post-stimulus (task-related) activity directly through cluster-based permutation 
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tests. We compared TF-differences between blocks 8 and 9 across the two 

motivational groups (motivated vs. non-motivated) collapsing across both age-

groups (interaction of motivation x block in TF-space). The analysis revealed a 

broad, late beta-cluster (Fig 3.6A), showing a weaker left fronto-parietal beta-

increase from block 8 to 9 in the motivated relative to the non-motivated group 

(statistic = 351.87, p = 0.002; see Fig 3.6B for topography and time course).  

 

To examine whether this signal also modulates with time-on-task and/or age-

group, we retrospectively extracted the motivational beta-signal (14-28Hz: in the 

relevant window) across all experimental blocks 1-8 and both age-groups from the 

electrode with the most prominent cluster t-statistic (AF3) in the test of 

motivation effects (Fig 3.6C). A linear model predicting this beta-power from 

across blocks and age groups showed no effect of either age [t(28) = -0.65, β = -

0.31, p = 0.52] or block [t(28) = 1.31, β = 0.06, p = 0.20], nor their interaction 

[t(28) = 0.23, β = 0.02, p = 0.82], indicating that this motivational beta-signal was 

unaffected by time-on task and age-group and hence distinct from the time-on-

task beta-effect related to response strategy. 

 

Finally, to test the beta-effects of motivation across all groups/conditions (Fig 

3.6D), we run a 2x2x2 ANOVA with the factors motivation group (motivated, non-

motivated), age-group (younger, older) and block (block 8, motivational block 9). 

The model revealed that the motivated group had higher beta-signals than the 

non-motivated group [F(1, 26) = 4.46, p = 0.045, η² = 0.12] and that there was a 

main effect of block [F(1, 26) = 21.36, p < 0.001, η² = 0.14] with a lower signal in 

block 9, but no effect of age [F(1, 26) = 1.71, p = 0.20, η² = 0.05]. The interaction 

between motivation and block was significant [F(2, 26) = 8.55, p = 0.007, η² = 

0.06] independently of age-group (non-significant 3-way interaction motivation 

group x age group x block: F(3, 26) = 2.51, p = 0.13]). Post-hoc analysis exploring 

the interaction of motivation x block using dependent sample t-tests revealed that 

while the signal of the non-motivated group did not differ between the two blocks 

[t(17) = 1.94, p = 0.07], the motivated participants’ beta synchronisation 

decreased [t(11) = 4.45, p < 0.001]. There was also a significant interaction 

between age and motivation [F(2, 26) = 5.28, p = 0.03, η² = 0.14] but this 

interaction was not further explored, as it almost certainly reflects a chance 
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finding (despite random allocation in age and motivation groups). No other 

interaction was significant.  

 

During the examination of the task-related signal, another cluster (statistic = 

4577, P < 0.001) occurred in the early time window (0ms–450ms), indicating a 

decrease in the post-stimulus alpha oscillatory band with time-on-task. Its further 

investigation in connection with the fatigue-related P300 event related potential 

(ERP) component is described in Appendix 1.  

 

 

Fig 3.6 Motivation-related beta changes. (A) Results of the cluster-based permutation statistics 

testing the interaction motivation x block in TF-space (contrast of the difference signal of block 

(8 vs 9) between motivational groups). The results show a late (0.7 -1.2s) effect of motivational 

manipulation on beta activity (14 – 28Hz). (B) Topography and temporal dynamics of the 

motivation-related beta-change in the post-stimulus window indicating a left fronto-parietal 

decrease in beta-activity between block 8 to 9 in the highly motivated (dashed lines) but not the 
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non-motivated participants (solid lines). (C) Evolution of the motivational beta-signal over time-

on-task (blocks 1-8) per age group (young, older). The plot shows that this beta-signal is stable 

over time-on-task. (D) Effects of the motivational manipulation on the beta-signal across all groups 

and relevant blocks, illustrating a larger beta-decrease from block 8 to 9 in the motivated relative 

to the non-motivated participants independent of age-group. 

 

In summary, analyses of the post-stimulus oscillatory activity revealed two 

distinguishable beta-signatures: one that had a fronto-central topography and in 

its rebound-component was modulated with time-on-task, as a likely marker of 

response strategy, and another of fronto-parietal distribution modulated by 

motivation.  

 

Relationship between EEG signals and behaviour  

To detect links between behaviour, namely measures of subjective state fatigue, 

mind wandering and reaction time, and the neural markers of time-on-task, age 

effects and motivational manipulations (see frequency bands/electrodes 

identified in the above EEG analyses), we built multiple linear regression models 

predicting subjective and RT measures by neural signals with addition of the effect 

of age and their interaction. Single electrodes with the highest t-statistic resulting 

from permutation tests were extracted and changes in signal were compared to 

changes in subjective measures.  

 

The model testing state fatigue (VAS) changes was not significant for its 

relationship to pre-stimulus alpha-changes (electrode CP1) [F(3,30) = 2.25, p = 

0.10], or task-related beta-changes (electrode C3) as extracted in blocks 1 and 8 

[F(3,30) = 0.78, p = 0.52]. Likewise, no effect was found for the relationship 

between mind wandering to pre-stimulus periodic alpha change [F(3, 30) = 1.73, 

p = 0.18], or task-related beta [F(3, 30) = 2.43, p = 0.09]. 

 

The model testing reaction time change was not significant for its relationship to 

pre-stimulus alpha-change (electrode CP1) [F (3,30) = 1.54, p = 0.22], but the 

model was significant for task-related beta-change (electrode C3) [F(3,30) = 8.84, 

p < 0.001]. There was no main effect of beta-signal (β = 0.004, t = 0.22, p = 0.82), 

but a significant interaction between beta signal change and age (β = -0.06, t = -

3.09, p = 0.004). An inspection of Fig 3.7 reveals that the relationship between 
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beta change and reaction time change was driven by the older adult group. Older 

adults who showed a greater decrease in reaction times, showed a greater 

increase in beta power. No effect was found for the relationship of error change 

to pre-stimulus periodic signal change [F(3, 30) = 0.19, p = 0.90], or task-related 

beta [F(3, 30) = 0.19, p = 0.91]. The relationship between behavioural change and 

motivational beta-signal difference between blocks 1 and 8 was not tested as the 

previous model showed no modulation of the signal with either age or time-on-

task.  

 

In summary, the post-stimulus beta-rebound was modulated with reaction times 

for older adults, giving further indication of post-stimulus beta as a likely marker 

of response strategy.  

 

 

Fig 3.7 Brain and behaviour link. Relationship between the change in reaction times and (A) the 

change in alpha power over CP1, (B) change in lower beta power over C3 across the main 

experiment over time-on-task for both age groups. 
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Discussion 

This study sought to identify neural patterns underlying vigilance, motivation and 

fatigue during sustained attention. Our results provide new evidence for two 

distinct oscillatory patterns associated with response strategy (post-stimulus 

fronto-central beta) and motivation (post-stimulus fronto-parietal beta). Contrary 

to our expectations, while the reported pre-stimulus alpha power rise mirrored 

the subjective rise in fatigue and mind wandering, we failed to find a significant 

correlation between these measures. 

 

Pre-stimulus Alpha Oscillations 

The task elicited a distinct linear increase in pre-stimulus alpha synchronisation 

over time. This time-on-task rise in alpha power reflects other research 

documenting time-related changes in EEG signal arising from experimental 

manipulations (Jacquet et al., 2021; G. Li et al., 2020; Tian et al., 2018) and adds 

to the existing body of literature highlighting detectable changes in alpha 

oscillations in relation to demanding tasks (Benwell et al., 2019; Huycke et al., 

2021; Pershin et al., 2023). Unfortunately, our findings do not directly link these 

centro-parietal alpha-power increases to the observed general rise in subjective 

fatigue and mind-wandering. On the other hand, not only was there a significant 

rise in alpha power over time (blocks 1 to 8), but we also identified a greater 

elevation of the signal in the younger compared to the older participants. The 

signal then mirrored the reported fatigue/mind wandering scores which were not 

only elevated over time, but also higher in the younger compared to the older 

participants. Finally, the trajectory of rise in alpha power was impacted by 

participant motivation: while alpha power kept rising for the unmotivated 

participants during the final block (in line with the reaction times that also 

increased from block 8 to 9 in this group, indicative of fatigue), it levelled out for 

the motivated group (who were promised a monetary incentive if they 

outperformed others). 

 

In light of the reported absence of a behavioural vigilance decrement, we propose 

that this pre-stimulus centro-parietal alpha increase during time-on-task that 

levels out with participant motivation comes short of a full link to subjective 
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fatigue and may instead reflect a waning of attention (Babu et al., 2018; Klimesch, 

2012; Macdonald et al., 2011), preceding a vigilance decrement. 

 

Post-stimulus, time-on-task modulated beta-oscillation relate to 

response strategy  

We also observed a time-on-task rise in post-stimulus fronto-central beta 

synchronisation which, in contrast to the rise in alpha power, was unaffected by 

motivational interference. This pattern followed the structure of a classic post-

motor beta desynchronisation and rebound, i.e. the neural response related to 

preparation and/or execution of a motor response (Heinrichs-Graham et al., 2017; 

Parkes et al., 2006). In the present study, the beta desynchronisation was much 

stronger in the older compared to the younger group, whereas the beta-rebound 

latency was earlier in the younger group. Given this dynamic pattern, and the 

fronto-central topography, we interpret this beta-signal to reflect age differences 

in motor response strategy. More specifically, we think that these age (strategy) 

differences are of a cognitive or motor control (rather than motor execution) 

nature because we also found the same pattern for omission trials (which lacked 

a motor execution aspect). Our thinking is further underpinned by the significant 

relationship we found between beta signal change and age: older adults who 

showed a greater decrease in reaction time over time-on task, also showed a 

greater increase in beta power. This pattern was absent in the younger group. 

Overall, these analyses suggest that, across age groups, there are qualitive 

differences in response strategy (accurate vs fast), that are reflected in a beta 

signal of fronto-central topography: we interpret the stronger beta 

desynchronisation in the older, as compared to the younger group, to reflect a 

deployment of greater effort towards accurate motor control, with the shorter 

latency in the beta-rebound in the younger group, to reflect the speeded response 

strategy. These results further emphasise contrasts in age-specific response 

strategies reported previously (Dang et al., 2018; Lara et al., 2014; Statsenko et 

al., 2020; Vallesi et al., 2021), but more importantly, we now demonstrate that 

these qualitative strategic differences are underpinned by distinct beta 

oscillations (see Xifra-Porxas et al. (2019) for similar findings on grip strength). 
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Post-stimulus ‘motivational’ beta oscillation 

In addition to the fronto-central beta-signature, we found another beta oscillation 

of fronto-parietal distribution that was independent of age-group but instead 

modulated by motivation. This signal was stable over time-on task, yet we found 

it to show a larger beta-decrease from block 8 to 9 in the motivated, relative to 

the non-motivated, participants. This decrease in beta power was coupled with a 

reaction time that levelled out in the motivated group (from block 8 to 9), while 

reaction times in the non-motivated group increased. Our findings thus show that 

the motivation manipulation was effective, similar to the results of Reteig et al. 

(2019) who showed a temporary increase in sustained attention task performance 

after an unexpected motivational manipulation. Most importantly, we show this 

motivational effect to be co-modulated with a beta decrease, whereas Reteig and 

colleagues failed to find any EEG markers linked to their motivation manipulation. 

Beta-oscillatory changes have previously been linked to motivational interventions 

(Wilhelm et al., 2022) and reactive to changes of internal state (Nickel et al., 

2020), although there have been no previous reports on attentional motivation 

manipulations in human participants. 

 

Our data thus best reflect the findings and interpretations of Stoll et al., (2016) 

who examined modulations of frontal beta in monkeys around spontaneous pauses 

in work. They found that after pauses, the beta power modulation would reset, 

and the cognitive control effect (task performance) was maintained. We report 

this signal resetting and maintenance of performance not for pauses in work, but 

instead for our motivation manipulation. In fact, in line with our data, Stoll and 

colleagues (2016) propose that frontal beta oscillations reflect multiple factors 

contributing to the regulation of cognitive control and that motivation parameters 

can act as modulators of cognitive control. 

 

Limitations and future work 

Our study reproduced many typical age related findings, including higher baseline 

mind wandering and lower reaction times (Diede et al., 2022; Fountain-Zaragoza 

et al., 2018; Learmonth et al., 2017), as well as strategy differences (Vallesi et 

al., 2021) prioritising speed over accuracy (Lara et al., 2014) in the younger over 
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the older age group. We also found typical characteristics of ageing in the pre-

stimulus oscillatory window regarding the structure of the aperiodic components 

of the signal in particular, with steeper exponents and higher intercepts for the 

younger compared to the older age groups (Cesnaite et al., 2023; Turner et al., 

2023).  

 

What was surprising was the absence of a decisive vigilance decrement, contrary 

to our hypothesis and in contrast to other work (Gartenberg et al., 2018; Kaufman 

et al., 2016; Pershin et al., 2023; Reteig et al., 2019; Walker & Trick, 2018). The 

speeding up of reaction times when taking participant-level randomised intercepts 

into account, replicates our own earlier behavioural findings (Hanzal et al., 2024b) 

with a small effect of task time on speed (blocks 1 to 8). Since the participant 

accuracy did not show a corresponding decline, this result cannot be interpreted 

as a vigilance decrement. Having consulted previous work (Reteig et al., 2019; 

Staub et al., 2014) where a decrement occurred at 20-35 minutes that continued 

being present in the following hour, we too expected a decline in our study, where 

the actual task took 45 minutes, and think that a longer experimental duration 

would have led to an eventual lapse of this maintained performance (Martínez-

Pérez et al., 2023).  

 

Unexpectedly, although the reported alpha rise over time was mirrored by a rise 

in subjective fatigue and mind-wandering (and these rises also closely reflected 

age (elevated tiredness in the younger) and motivation (reaction time rises in the 

non-motivated group (blocks 8 to 9) findings), we did not find a correlation 

between these reported alpha rises and the reported increases in fatigue and 

mind-wandering. It is possible that the subjective fatigue and mind wandering 

scales we used lacked sensitivity specific to the task and further work is needed 

here to elicit more robust participant responses, possibly a use of more frequent 

subjective probes (Weinstein, 2018).  

 

Nonetheless, our findings are a first pointer of neural changes being more sensitive 

than performance decline, but further studies are needed to further firm up what 

centro-parietal alpha-power increases reflect. Alternative methods of delivering 

the motivational manipulation and subjective tracking of motivational mood 

states could also be sought to better decouple them from fatigue-related effects.  
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Conclusion 

We report that undergoing 45 minutes of SART induced subjectively elevated 

fatigue and mind-wandering scores alongside a pre-stimulus centro-parietal alpha 

power rise. Post-stimulus activity revealed two distinguishable beta signatures: a 

fronto-central topography as a marker of behavioural strategy and a fronto-

parietal distribution modulated by motivation. We suggest that these two signals 

reflect a motivational cognitive control mechanism behind resetting a 

performance decrement. Unfortunately, although the rises in pre-stimulus alpha 

oscillation mirrored the subjective fatigue and mind-wandering rises that occurred 

over time, these measures were not correlated, so this signal warrants further 

investigation. 
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Chapter 4: Age differences in motivation drive 

performance during the sustained attention to 

response task 

Abstract 

Young and older adults prioritise speed and accuracy differently during sustained 

attention tasks. While older adults generally show a preference of accuracy over 

speed, this is not always the case. The underlying factor behind this inconsistency 

may be motivational differences, with older participants compensating for a speed 

disadvantage with increased intrinsic motivation to perform well. We investigated 

this in a pre-registered study, using the Sustained Attention to Response Task 

(SART) in young (n = 25, mean age = 19) and older adults (n = 25, mean age = 

69.5). We matched participant accuracy by titrating response window length. Both 

groups achieved similar performance and strategy during the titration, enabling a 

comparison without confounds resulting from differences in default age-specific 

strategies. All participants were then monetarily encouraged to perform better in 

terms of accuracy. Both groups responded with an adaptive strategy of slowed 

reaction times and enhanced accuracy, but the young participants improved much 

more, outperforming older adults, and reversing the speed-accuracy strategies 

that are typically observed. In addition, older participants reported higher 

baseline levels of motivation alongside a reduced motivation to alter performance 

for money. So, while the older participants could match young participant 

performance in titration due to their higher baseline motivational levels, the 

young participants improved much more than older adults in response to the 

monetary incentive. From these findings we argue that older adults are 

intrinsically motivated to do well on tasks whereas younger age groups perform 

optimally only after incentivisation. 
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Introduction 

Age effects in sustained attention 

The Sustained Attention to Response Task (SART; Robertson et al., 1997) has been 

widely used to study sustained attention in both clinical (van der Heide et al., 

2015) and healthy populations (Lara et al., 2014). It is mainly used as a short probe 

of failures in attention to reflect lapses in vigilance, but has been increasingly 

used to investigate diverse factors influencing attentional responses in the healthy 

population. This has led to the identification of age-specific behavioural patterns 

during SART performance (Hanzal et al., 2024b; Vallesi et al., 2021). Older 

participants typically show higher accuracy on nogo trials, or trials when response 

is withheld (Staub et al., 2015), and have thus been reported as prioritising 

accuracy in their response (Vallesi et al., 2021; Wiemers & Redick, 2019). 

Conversely, their longer reaction times (Jackson & Balota, 2012; Vallesi et al., 

2021) are often understood to reflect the general decline in sustained attention 

ability arising from ageing (Fortenbaugh et al., 2015). However, because this 

difference between young and older participants could simply reflect age-

dependent strategic choices in task execution (an argument put forward 

previously (Fortenbaugh et al., 2015; S. Hsieh et al., 2015)), an interpretation of 

the observed performance differences in terms of an effect of ageing on attention 

is questionable. In a recent study (Hanzal et al., 2024a), although we replicated 

the age-dependent performance strategies (high accuracy and slow responses in 

older adults, low accuracy and high response speed in young adults), we did not 

find vigilance decrements (Gartenberg et al., 2018) that we expected to observe 

from time-on-task fatiguing mechanisms (Head & Helton, 2012; Roach et al., 2012) 

in either age group. We therefore highlighted the need to identify different factors 

leading to age-dependent differences in task performance (including strategy 

choices, motivation, resilience to fatigue), to better understand the general 

effects of ageing on sustained attention. 

 

The default parameters of the SART (Robertson et al., 1997) provide the 

participant with an ambiguous choice of prioritising either speed or accuracy. The 

participant is incentivised to decide their own strategic priority, based on 

unmonitored internal processes (Blurton et al., 2023; Liesefeld & Janczyk, 2019). 
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A dichotomy in strategic response is thus enabled by a sufficiently long response 

window in the default task design. Group-specific strategies then emerge 

(Katsimpokis et al., 2020; Vallesi et al., 2021) because participants choose 

different points in the window to respond: Young participants typically react early 

in the response window, displaying faster reaction times (Staub et al., 2015). In 

contrast, older participants tend to more fully utilise the length of the window 

and in so doing, increase their accuracy (Brache et al., 2010; Jackson & Balota, 

2012). 

 

Previous studies have used modified versions of the SART to investigate various 

underlying mental processes that may influence performance (Z. Li et al., 2022; 

Rizzo et al., 2021; Seli et al., 2015) including manipulations of task complexity 

(Kool et al., 2010; Magnuson et al., 2021) to affect strategy choice. We follow this 

strand here by manipulating the speed-accuracy trade-off (Manohar et al., 2015; 

Wolf & Lappe, 2023) in the strategy choice between accuracy and reaction time. 

We achieve this by imposing a varied response window length, eliciting faster 

response times by necessity and thus reducing participant accuracy. In titrating 

(Learmonth et al., 2015; Manly et al., 1999; Martin et al., 2015) to a pre-defined 

accuracy constant we aimed to unify the strategy across both age groups and thus 

reveal underlying differences in the performance of each group. (Der & Deary, 

2006; Gorus et al., 2006; Hübner et al., 2021; Smulders et al., 1999; Tun & 

Lachman, 2008). 

 

Motivation 

Researchers have already stated an effect of age on strategy choice as 

underpinned by differences in levels of baseline motivation. Definitions of 

motivation may vary, but are commonly linked to reward (Engelmann et al., 2009). 

Intrinsic motivation is generally characterised as an interest or enjoyment in the 

task stemming from the individual (Srivastava et al., 2011). Multiple studies 

describe older adults as highly intrinsically motivated participants (Carr et al., 

2022; Hanzal et al., 2024a; A. D. Ryan & Campbell, 2021; Swirsky et al., 2023). 

Motivation has previously been noted to underlie the surprising behavioural 

advantage in older adults (Vallesi et al., 2021), biasing them towards a more 

motivationally-demanding accuracy strategy (Hübner et al., 2021). In other 



103 

related investigations, older adults were noted to opt for a more self-driven 

inhibitory strategy, again leading to the pattern of longer reaction times and 

higher accuracy (Brache et al., 2010; Jackson & Balota, 2012). Others have shown 

older adults to be less prone to shift their strategy in response to further 

motivators due to ceiling motivation levels arising from their values (A. D. Ryan & 

Campbell, 2021). They are considered to experience higher rewarding value from 

the onset of the experiment, stemming from their beliefs of a benefit to society 

and a positive contribution in participation in research (Carr et al., 2022). In 

addition, older adults have been shown to have less sensitivity to reward and 

punishment, limiting alterations to their strategy (Ennis et al., 2013; Westbrook 

et al., 2013). It is even possible that older adults may experience a paradoxical 

worsening reaction to reward initiatives (Botvinick & Braver, 2015). 

 

This increased baseline level of motivation in older adults can be contrasted with 

the bias present in a young student sample. Samples exclusively relying on a 

population of psychology students were previously criticised for low internal 

validity (Croucher et al., 2024). The monetary reward used as a means of sampling 

participants for experiments was suggested to carry a confounding effect (Hanel 

& Vione, 2016; Singer & Bossarte, 2006). Specifically, student participants have 

been noted to rely on a strategy of conservation of effort (Rodman et al., 2021), 

while also showing higher mind-wandering levels when compared to other samples 

(Staub et al., 2015). In this experiment, after titration, we introduce a surprise 

(monetary) motivational intervention to test for any resulting performance 

divergence between the age groups. 

 

Fatigue 

Fatigue is another factor considered to impede performance during sustained 

attention, with several studies reporting heightened levels of subjective fatigue 

accompanying time-on-task effects (Gartenberg et al., 2018; Kato et al., 2009; 

MacLean et al., 2009; Martínez-Pérez et al., 2023; Reteig et al., 2019; Walker & 

Trick, 2018). While some work has highlighted an effect of fatigue on behaviour, 

we failed to detect a reliable relationship with SART performance in our recent 

work (Hanzal et al., 2024a), amongst other investigators who also failed to find a 

reliable link (MacCoon et al., 2014; Schwid et al., 2003). It has been theorised 
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that motivational effects may contribute to the assumed behavioural effect of 

fatigue (Gergelyfi et al., 2015; Hopstaken et al., 2015). The present study will 

thus also include a measure of recently experienced fatigue to re-test its possible 

impact on behaviour.  

 

Study Rationale 

In previous research, the introduction of an objective reward as a motivational 

manipulation led to both an increase in speed and accuracy, yet so far this has 

been tested only in a young, student sample (Engelmann et al., 2009; Manohar et 

al., 2015; Wolf & Lappe, 2023). It thus remains unclear how different age groups 

perform in response to a motivational initiative once their underlying strategy is 

unified, or in fact whether they differ in response to a manipulation of motivation. 

The precise relationship of motivational changes to age-specific performance in 

sustained attention is thus addressed in the present experimental design: we first 

aligned young and older participants to the same (higher accuracy over reaction 

time) strategy by titration of the task difficulty and then introduced a surprise 

monetary incentive. We predicted that inherent lower motivation would elicit a 

stronger motivating effect of the surprise motivational intervention, leading to a 

greater accuracy in the motivational block. We also predicted young participants 

to have lower starting levels of motivation and that their accuracy improvement 

would be greater after the surprise motivational intervention than that of the 

older age group.  
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Methods 

Participants  

The experimental design and hypotheses were pre-registered on the Open Science 

Framework (https://osf.io/pyzn7). The study was approved by the University of 

Glasgow College of Medical and Veterinary Life Sciences Ethics committee 

(Approval number: 200230387). All participant data was acquired between the 

dates 10th of October 2024 and 21st of November 2024. A total of 56 healthy adults 

were recruited between the ages of 18 and 96 from the university subject pool 

and local area and given monetary compensation for their time. Written consent 

was acquired from all participants. Participants were balanced for gender and 

were asked to report any existing medical conditions, eye-sight correction and 

medications which might impact their performance. Six participants were 

excluded throughout data collection: One participant reported an uncorrected 

visual deficiency in the left eye, as also detected by a visual field test. One 

participant was excluded for excessive caffeine use (2 units above recommended 

dosage). A further participant was excluded for reporting poor sleep (4 hours per 

day). Two participants were excluded for low MoCA scores (<24). Finally, a 

participant was excluded due to a possible technical fault, or inaccurate 

attendance to instructions (go accuracy lower than 80% throughout multiple 

blocks). 

 

The final sample consisted of 50 participants (F = 28, M = 21, NB = 1) based on a 

power analysis of the sample needed to acquire an effect size of f = 0.2 in a 2x2 

ANOVA within-between factor interaction. The participants were divided into a 

young (M = 25, F = 16, NB = 1, mean age = 19, SD = 1.38, range = 18-23) and older 

(F = 13, M = 12, NB = 0, mean age = 69.5, SD = 6.72, range = 60-85) age group. 

Five participants were left-handed, one was a smoker, all reported low to 

moderate caffeine consumption (estimated mean units per day = 1.09, SD = 1.05, 

range = 0-4), matching the maximum recommended daily dose of 400mg of 

caffeine (Mitchell et al., 2014). They also reported an average of 7.2 hours of 

sleep per day (SD = 1.04, range = 6-12). All young participants were enrolled 

university students. The participants were screened for cognitive difficulties using 

the Montreal Cognitive Assessment test (MoCA; (Nasreddine et al., 2005)), 

https://osf.io/pyzn7
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reflecting scores representative of a healthy population (Borland et al., 2017) in 

both young (mean score = 29.2, SD = 1.7, range = 25-31) and older adults (mean 

score = 27.7, SD = 1.65, range = 24-30). A Welch’s t-test showed no difference 

between the groups in their MoCA scores, t(48) = -1.66, p = .099. Cut-offs for the 

groups were defined as 2SD below the mean (Borland et al., 2017), meaning all 

participants with MoCA below 24 were excluded. A short (4-minute) computerised 

visual screening assessment was administered at the beginning of the session to 

exclude potential visual pathologies. The task was adapted from a previous 

experiment on young and older groups (Hanzal et al., 2024a). A Welch's t-test 

identified no age-group differences in target detection within the visual regions 

where the SART stimuli were to be presented, t(48) = 1.57, p = .128. 

 

Procedure 

The experimental task and procedure are outlined in Fig 4.1. Participants provided 

basic demographic information and self-reported any known impediments to 

participation. After this, they first completed a measure of trait fatigue (MFI) and 

a brief adapted visual screening test (Hanzal et al., 2024a) targeting their central 

visual area to detect any impairments preventing them from participation. 

Participants proceeded to a brief training session to familiarise them with the 

SART. If they were unable to achieve the minimum required standard in the 

experiment during 2 mins of non-titrated SART (above chance accuracy), the 

training session was repeated. They then undertook one 5-minute baseline block 

of the SART matching our previous experiment (Hanzal et al., 2024a). The 

participants then carried out an adapted version of the task, designed for a 

titration-based investigation of performance decrements. They were instructed to 

be as accurate as possible, but to respond before the onset of the next trial. The 

difficulty levels of the task were manipulated through either an increase or 

decrease of the response window length by 50ms, based on the participant’s 

accuracy in sets of 25 trials and determined by a target criterion of 92% accuracy. 

In total, participants carried out the titration procedure for 25 minutes, divided 

into 4 blocks with short breaks in between. They were not informed how many 

blocks of the task they were expected to complete in total. This procedure aimed 

to determine the response window length (300ms – 2500ms) at which the 

participant consistently achieved an overall accuracy close to 92%.  
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Fig 4.1 Experimental Procedure. 

 

At the end of the titration, the participants were informed that the experiment 

was finished, and completed a subjective intrinsic motivation inventory (IMI; R. 

M. Ryan et al., 1983) and a brief adapted subjective measure to record specific 

motivations behind their experimentation. They then took a self-paced break. 

Then, all participants were informed about a further, unanticipated, block of the 

task presented at the same difficulty level as the last. They were likewise 

informed that if they achieved the highest improvement in accuracy, relative to 

all other participants in their age group, they would receive a prize of £50. The 

participants then carried out a final 5-minute block of the task, set to the 

difficulty level matching the average response window length of the last 125 trials 

at the end of the titration period, but with no further titration. At the end of the 

motivational block, they proceeded to fill in a single item measure (VAS-M) on 

perceived changes in their motivation as a result of the initiative. Before the end, 

they were screened for any cognitive impairments that could impact the 

experiment using the MoCA (Nasreddine et al., 2005) and then proceed to be 

debriefed. The overall duration of the experiment was 65 minutes. 

 

Task 

The participants underwent a modified version of the SART with varied levels of 

difficulty, implemented in PsychoPy, using custom Python scripts (Peirce et al., 
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2019). The task was displayed on a digital monitor (Dell Optiplex 9010), with a 

screen resolution of 1280x1024 pixels and a refresh rate of 60Hz. Participants were 

seated 60 cm from the screen, maintaining horizontal eye level with the centre of 

the display by the use of a chin rest. In each trial, the participants were instructed 

to fixate centrally on the fixation cross and attend to a stimulus presented at an 

angular distance of 1°, consisting of a number between 0-9 presented centrally 

for 150ms. The number then disappeared during the response window, which had 

a variable duration of 300-2500ms, before the next trial started. The response 

window length and the learning block response window lengths were set to 1000ms 

at the start of the experiment for all participants. The task was to respond using 

a spacebar press to all numbers that appeared (go trials), apart from the numbers 

3 or 6, whilst withholding response to the appearance of numbers 3 and 6 (nogo 

trials). The numbers were pre-generated to be distributed randomly and 

represented in equal frequency. Based on the accuracy of the participant in a set 

of 25 trials, the subsequent set of trials had their response window length 

shortened or lengthened by 50ms to eventually achieve a desired equilibrium (92% 

accuracy for each participant). If accuracy on the previous block was lower than 

92%, the subsequent block was made easier by lengthening the response window 

by 50ms. If accuracy was exactly 92%, the response window was kept constant. An 

accuracy of 92% was chosen to correspond to 60% nogo accuracy and 100% go 

accuracy (corresponding to 20% nogo trial rate), since go trial accuracy was 

expected to be at ceiling level for most participants (Hanzal et al., 2024b). An 

additional static fixation period of 6s was added between the sets of 25 trials. The 

difficulty of the motivational block was calculated to represent the average 

response window length, rounded to the nearest increment of 50ms in the last 125 

trials of the titration, to reduce the effects of random fluctuations in accuracy. 

 

Measures  

The participants were asked to report their age, gender, number of hours of sleep 

in the past week and caffeine intake on the day as well as disclose known 

impediments to participation. 

 

The Intrinsic Motivation Inventory (IMI) was used as a measure of subjective 

motivation (R. M. Ryan et al., 1983). It has been recently used for valuation of 
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motivation and cognitive task performance (Cagna et al., 2024) and continues to 

show good reliability (Cronbach alpha > .7, (Monteiro et al., 2015)). It is a 7-point 

Likert scale that contains 45 items spread across 7 subscales. The three most 

relevant subscales were used: interest (7 items; e.g. ‘I enjoyed doing this 

activity’), effort (5 items; e.g. ‘I put a lot of effort into this’) and value (7 items; 

e.g. ‘I think this was an important activity’) subscales. The experiment further 

used a motivation item question adapted from the use in our lab, probing 

participants for reasons for taking part in the experiment (8 options; e.g. ‘To help 

the researchers make new scientific discoveries’). The participants were also 

probed on a visual analogue scale for motivation (VAS-M) with values 0-100 and a 

single question on the extent they felt motivated by the motivational intervention. 

 

The Multidimensional Fatigue Inventory (MFI; Smets et al., 1995) was used to 

measure trait fatigue, and was comprised of 5 subscales with 4 items each (20 

items in total) on a 5-point Likert scale. Previous work indicated a very good 

reliability of α = .84 and showed a lack of floor and ceiling effects as well as item 

redundancy (Lin et al., 2009). 
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Results 

All analyses were carried out in R (R Core Team, 2024) using the packages 

‘tidyverse’ (Wickham et al., 2019), ‘psych’ and ‘ez’ (Lawrence, 2016). Packages 

used for graphical depiction were: ‘ggpubr’ (Kassambara, 2023), ‘viridis’ (Garnier 

et al., 2023) and ‘Cairo’ (Urbanek & Horner, 2023). Reaction times showed a heavy 

skew (1.33), and so were log-transformed for any further analysis. Any trials with 

a reaction time < 150ms were excluded from the analysis as likely to be 

representative of anticipation error (Hawkins et al., 2019). 

 

Since each participant completed the task for a fixed duration of 25 minutes, the 

total trial numbers differed among the participants due to the variable response 

window lengths. A t-test on the total number of titration period trials in young 

(mean number of trials = 758, SD = 107, range = 550-912) and older adults (mean 

number of trials = 769, SD = 102, range = 550-1005) showed no differences between 

the groups, t(48) = -.361, p = .720. A t-test was also run on the average window 

length between the young (mean seconds = .882, SD = .214, range = .654-1.40) 

and older adults (mean seconds = .830, SD = .185, range = .525 – 1.37) in the whole 

titration period, also showing no between-group differences, t(48) = .921, p = 

.362. 

 

Age-specific strategies 

We first investigated differences among the age groups in the baseline block. A 

between groups t-test showed no differences between the two age groups on nogo 

accuracy in the baseline SART block, t(48) = -.200, p = .421, depicted in Fig 4.2A. 

A between groups t-test also showed no differences between the two age groups 

on reaction time in the baseline SART block, t(48) = -.128, p = .104, reflected in 

Fig 4.2B.  

 

Additionally, to test age effects after titration, a two-sample t-test was run, 

testing the difference between young and older participants on experimental 

difficulty level (combined trial and presentation length) at the titrated window 

length. This again showed no differences between the groups, t(48) = .608, p = 

.273, as depicted in Fig 4.2C. The findings thus indicate that we did not replicate 
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age-specific strategies in our sample, but that both groups had similar 

performance levels throughout the period prior to the motivational monetary 

manipulation. 

 

 

Fig 4.2 Age differences at baseline and after titration. Young participants did not differ from 

older participants in the baseline comparison block (5 minutes) either in nogo accuracy (A) or 

reaction times (B). Additionally, age groups (young and older) did not differ in their titrated 

window lengths at the end of titration (C). 

 

Titration 

We further tested the impact of the titration procedure on participant 

performance. Participants were split based on their initial median accuracy 

(93.78%). This resulted in two groups: those who better in accuracy than the 

average at baseline (mean accuracy = 95.20%, SD = .90%) and those who were 

worse in accuracy than the average (mean accuracy = 90.8%, SD = 2.34%). Then, 

the performance of both groups across the four titration blocks was modelled on 

several behavioural metrics. 

 

A multiple linear regression [F(3, 196) = 17.98, R2 = .20, p < .001] showed that 

better performers at baseline had higher accuracy over all 4 blocks: t(46) = -6.19, 

p < .001. A main effect of titration block showed that overall accuracy decreased 

throughout the experiment, t(48) = -6.19, p < .001. There was an interaction 

between the effects of group and titration, t(48) = 5.08, p < .001. A series of post-

hoc t-tests was conducted to outline the titration blocks where the groups 

differed. A t-test found a difference between the groups in block one, t(48) = 

8.62, p < .001, but not in block two, t(48) = 1.28, p = .21, block three, t(48) = -

.61, p = .54 or block four, t(48) = -.03, p = .98. The groups were thus no longer 
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different in their overall accuracy by block two. Collectively, this indicates that 

the gap between the performers in overall accuracy decreased over time and 

disappeared, as seen in Fig 4.3A. 

 

A multiple linear regression [F(3, 196) = 15.18, R2 = .18, p < .001] showed that 

better performers had higher nogo accuracy t(46) = -5.21, p < .001. A main effect 

of titration block showed that nogo accuracy decreased throughout the 

experiment, t(46) = -3.61, p < .001. There was an interaction between the effects 

of group and titration, t(46) = 3.20, p = .002. A series of post-hoc t-tests was 

conducted to test in which titration blocks the groups differed. A t-test found a 

difference between the groups in block one, t(48) = .6.47, p < .001 and block two, 

t(48) = 2.56, p = .02. No difference was found in block three, t(48) = 1.41, p = .16 

and block four, t(48) = 1.3, p = .19. Collectively, this indicates that the gap 

between the performers in nogo accuracy decreased over time and disappeared, 

as seen in Fig 4.3B. 

 

A multiple linear regression [F(3, 196) = 3.54, R2 = .04, p = .016] showed that 

better performers had higher reaction times t(46) = -2.52, p = .012. A main effect 

of titration block showed that reaction times generally decreased throughout the 

experiment, t(46) = -2.72, p = .007. There was no interaction between the effects 

of group and titration, t(46) = 1.96, p = 0.051. Collectively, this indicates that 

better performers preserved their slower reaction times throughout the titration 

period relative to worse performers, but both groups generally reduced their 

response times, as seen in Fig 4.3C. 

 

A multiple linear regression [F(3, 196) = 34.65, R2 = .36, p < .001] showed no 

difference between the groups in their response window length: t(46) = 1.64, p = 

.10. A main effect of titration block showed that response window length 

decreased throughout the experiment, t(46) = -3.28, p = .001. There was an 

interaction between the effects of group and titration, t(46) = 2.52, p = .012. The 

interaction indicates that better performers gradually achieved more difficult 

response window lengths, with high performers reaching a relatively low response 

window length and low performers retaining a high response window length, as 

seen in Fig 4.3D. 
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Collectively, the testing of performance over time confirms that both groups of 

performers achieved an average of 92% accuracy at the end of the titration blocks. 

Good performers, in addition, reached a shorter response window length while 

matching the same accuracy level. The titration thus generally raised the 

difficulty of the task for high performers and maintained or reduced the difficulty 

for poorer performers. Alongside this, there was a limited effect on reaction 

times, with high performers preserving higher reaction times to maintain a more 

accurate strategy.  

 

 

Fig 4.3 Median-split participant performance in titration over time. Participants were split into 

better (green) and worse (orange) performance groups based on their overall accuracy in titration 

block 1. The performance of each of these groups was then plotted across all four titration blocks in 

the metrics of overall accuracy (A), nogo accuracy (B), mean reaction time (C) and titrated response 

window length (D). 
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Motivational manipulation 

The following analysis investigated the effects of the surprise motivational 

intervention. A 2x2 mixed ANOVA between age groups (young, older) and time 

points (last 125 trials of titration, whole motivational block) was run on overall 

accuracy. The resulting model showed no main effect of age, F(1, 48) = 2.50, p = 

.120, but that all participants were more accurate after the motivation, F(1, 48) 

= 48.27, p < .001. A significant interaction, F(1, 48) = 4.37, p = .042, showed that 

the young participants improved much more than the older adults, as depicted in 

Fig 4.4A. The motivational manipulation therefore worked to increase accuracy in 

both groups, but more so in the young group.  

 

In addition, a 2x2 mixed ANOVA between age groups (young, older) and time points 

(last 125 trials of titration, whole motivational block) was run only on nogo 

accuracy, showing the same pattern, only more prominently. There was no main 

effect of age, F(1, 48) = .001, p = .974, but the participants were more accurate 

after the intervention, F(1, 48) = 39.33, p < .001. A significant interaction, F(1, 

48) = 7.26, p < .001, showed that the young participants improved much more 

than older adults, as seen in Fig 4.4B. The descriptive difference in scale between 

nogo accuracy improvement and overall accuracy improvement shows that the 

difference in accuracy was driven by an improved withholding of responses in the 

nogo trials, rather than responding more accurately in the go trials.  

 

In addition, A 2x2 mixed ANOVA between age groups (young, older) and time points 

(last 125 trials of titration, whole motivational block) was run for reaction times. 

There was no main effect of age, F(1, 48) = 2.98, p = .090, but the participants 

were slower after the motivational manipulation F(1, 48) = 7.12, p = .010, with no 

significant interaction, F(1, 48) = .216, p = .643, indicating a similar pattern of 

slowing in both age groups, as Fig 4.4C indicates.  
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Fig 4.4 Performance difference after motivational manipulation. Plots comparing participant 

performance at the end of the titration period (last 125 trials of titrated block 4) with performance 

during the Motivational block. Young participants improved significantly more than older 

participants after the motivational manipulation both when measured in overall accuracy (A) and 

when focusing on nogo accuracy (B). Both groups generally increased their response time, yet no 

age differences were found (C). 

 

Motivational differences 

Next, we investigated the differences among age groups in the subjective 

perception of their motivation. 

 

A Cronbach’s alpha was calculated for each of the subjective scales. IMI - interest 

showed alpha = .841, IMI - effort alpha = .765, IMI – value alpha = .821, indicating 

good to excellent reliability of the measures. 

 

A between groups t-test was run, testing for differences between young and older 

participants on intrinsic motivation upon completion of the titration, for each of 

the three motivation sub-scales. Older participants had higher subjective 

motivation on IMI - interest, t(48) = -2.23, p = .015 (Fig 4.5A), and IMI - value, 

t(48) = -2.31, p = .013 (Fig 4.5B), but not on IMI - effort, t(48) = -.038, p = .485 

(Fig 4.5C). 
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A t-test was run between the two age groups on post-motivational block change 

in motivation measured by the visual analogue scale (VAS-M). The young group 

was significantly more motivated by the monetary incentive compared to the older 

adults, t(48) = 6.40, p < .001, seen in Fig 4.5D. 

 

A Pearson’s chi-square test assessed the difference between the young and older 

participants in the distribution of their reported reasons for taking part in the 

experiment. The test did not show any differences between age groups, X(36) = 

42, p = .227. Arguably, the findings were underpowered to adequately detect 

differences among the two age groups as out of the 8 reasons for participation, 

some cell observations in reasons for participation unexpectedly fell under 5 

(McHugh, 2013). Nevertheless, the young participants were informatively much 

more motivated by money to participate (23 young vs 5 older). 
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Fig 4.5 Age differences in motivation. Older participants had higher motivation to undertake the 

task based on IMI – Interest (A) and IMI – value (B), but not IMI – effort (C). The older participants 

were also less motivated by the intervention than younger participants (D). 

 

Connection to fatigue 

We also explored whether levels of motivation and subjective trait fatigue were 

associated with performance on the SART. 

 

Cronbach’s alpha was calculated for each of the subjective subscales of the 

multidimensional fatigue inventory. Most of the scales had good reliability: MFI - 

general fatigue had an alpha = .82, MFI - mental fatigue alpha = .843, MFI - physical 
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fatigue alpha = .813, MFI - reduced activity alpha = .757, but MFI - reduced 

motivation only showed low alpha = .578. 

 

Multiple linear regressions were run between the two age groups on subjective 

fatigue scores and titrated window length in the titration SART block, one for each 

subscale of MFI. No prediction of titrated window length or age group by fatigue 

was found for MFI scores overall, [F(3, 46) = .676, R2 = 0.042, p = .571], MFI general 

fatigue [F(3, 46) = .399, R2 = 0.025, p = .754], MFI physical fatigue [F(3, 46) = .453, 

R2 = 0.029, p = .716], MFI mental fatigue [F(3, 46) = 1.018, R2 = 0.062, p = .393], 

MFI reduced activity [F(3, 46) = .670, R2 = 0.042, p = .575] or MFI reduced 

motivation [F(3, 46) = .592, R2 = 0.037, p = .623]. 

 

A multiple linear regression tested the difference between the two age groups on 

the correlation between total subjective fatigue scores and total intrinsic 

motivation scores [F(3, 46) = 6.08, R2 = .284, p = .001]. Older adults were more 

motivated than young adults, t(46) = 3.09, p = .003, with no main effect of fatigue, 

t(46) = .669, p = .507 and with a significant interaction between age group and 

MFI total fatigue, t(46) = -2.78, p = .008. An inspection of a Fig 4.6 depicting the 

relationship shows that there was no relationship between motivation and fatigue 

in young participants, but older participants experienced more motivation if they 

also experienced being less fatigued. 
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Fig 4.6 Age differences in the relationship of fatigue to motivation. Older participant total 

scores on the Multidimensional Fatigue Inventory (MFI) were associated with lower total scores on 

the Intrinsic Motivation Inventory (IMI), with no such relationship in young participants. 
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Discussion 

This study examined how age, motivation, and fatigue influence strategy choice 

in the SART. To ensure comparable performance of both age groups, the response 

window was individually adjusted by titration to attain a shared accuracy of 92%. 

Notably, older participants reached the target accuracy without, as a group, 

requiring longer (and thus easier) response windows than the young adults. As a 

result, we did not replicate the prominent age effect of older adults being 

accurate but slower, and young adults being fast but inaccurate (Hanzal et al., 

2024b; Vallesi et al., 2021). Nevertheless, the titration procedure still ensured 

that accuracy was matched before all participants were incentivised to perform 

better. This manipulation then successfully elicited an age effect: both age groups 

slowed their reaction times but improved in accuracy at different rates. Older 

adults showed less improvement than younger participants, who became much 

more accurate. 

 

Both age groups initially reached a comparable level of task difficulty, as indicated 

by the similar response window lengths at the end of titration. During this phase, 

older adults also reported higher levels of subjective motivation, aligning with 

previous findings about their higher intrinsic motivation (Staub et al., 2014). We 

thus propose that their intrinsic higher motivation enabled this group of older 

adults to keep pace with the younger group up to the point of the motivational 

manipulation (Bourisly & Shuaib, 2018; Vallesi, 2016). Younger adults in turn were 

less motivated to do the task, which likely explains their (relatively) poorer 

performance prior to incentivisation and their greater ability to subsequently 

improve. In a related study, DeRight and Jorgensen (2015) investigated low effort 

in a sample of college students and also found a proportion of students with low 

effort, resulting in a surprising, subthreshold performance on key attentional and 

cognitive tasks. Dunn and colleagues (2019) reached a similar conclusion with a 

motivational imbalance in the student sample. The young participants in our study 

may be seen as exerting the minimum effort required to meet task demands, 

thereby adopting a strategy aimed at conserving energy (Botvinick & Braver, 2015; 

Gray et al., 2006; Shenhav et al., 2017) until there comes a point of renewed 

interest; in this case the interest is renewed by an extra monetary reward 

(Milyavskaya et al., 2021). This parsimonious strategy is arguably advantageous in 
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light of the relatively low perceived value of the experiment, which then changes 

as a result of the motivation manipulation: our young participants strategically 

limited their effort during the titration and then improved heavily once motivated. 

 

We thus highlight, for the first time in sustained attention research, motivation 

as the primary factor driving age-related differences in performance. The young 

participants reported strong reactivity to the motivational manipulation and 

showed greater improvement in accuracy than the older adults. Also, in contrast 

to some previous findings (Manohar et al., 2015; Wolf & Lappe, 2023), the young 

adults slowed in their reaction times in response to the motivation condition, but 

as a result gained a greater advantage in accuracy than the older group. In our 

experiment, the older sample did not alter their performance as much after the 

manipulation and reported a low perceived effect of the monetary initiative.  

 

In the existing literature, diverse reasons are in discussion regarding the increased 

presence of intrinsic motivation in the older participants. It has been suggested 

that older adults seek to compensate for age-related slowing and so become more 

motivated to perform well (S. Hsieh et al., 2015; Jackson & Balota, 2012). This is 

then translated into a more demanding behavioural strategy. The account is based 

on reports of strong rapport between older adults and the researcher (Kylén et 

al., 2022; A. D. Ryan & Campbell, 2021) and a strong self-reported positive 

valuation of experimental participation associated with older adults (Barber, 

2017). According to the socioemotional selectivity theory (Carstensen, 1993; A. D. 

Ryan & Campbell, 2021; Swirsky et al., 2023), older participants experience the 

positive value of participation as they are more attracted to short-term goals 

directly related to their experience during the experiment. They maximise the 

emotional well-being experienced in the present moment, gained from 

volunteering in scientific research (Wirth et al., 2023). Young participants 

conversely perceive time as a vast resource and so prioritise future-oriented goals, 

including advancing their future socio-economic status, and thus responding to 

monetary rewards. As a result, older adults may perceive participating in research 

itself as more rewarding than the financial compensation. This could further 

explain why the motivational manipulation only showed a limited improvement in 

older adults, who reported that the prospect of a future reward did not impact 

their already strong investment in the experiment. Their limited responsivity 
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likewise aligns with a report of a smaller inclination of older adults to switch to a 

different behavioural strategy, contrasting with the ability of young people to 

more readily change task strategy (Harris et al., 2012). 

 

None of these effects were connected to fatigue and there were no differences in 

trait fatigue between the groups, aside from a link between fatigue and 

motivation in the older group. We speculate that this could indicate fatigue as a 

component of motivation in the older group, but more research is needed to test 

this connection directly. Given this minimal link to fatigue, we propose that the 

motivational differences at baseline and in response to additional monetary 

manipulation underlie the observed age effect in sustained attention. 

 

Limitations 

It should be acknowledged that the study’s recruitment approach was selective, 

thus making it potentially susceptible to bias in the form of higher socioeconomic 

status, health and educational levels relative to the typically ageing population. 

This was reflected in matched high educational attainment and MoCA scores of 

both age groups. Nevertheless, the conclusions regarding the older sample are 

aimed at populations typically participating in research. Older research 

participants may also differ from the typical population in their ability to access 

university-based research, and their interest in and awareness of opportunities to 

participate (Hjortskov et al., 2023). Future research may still consider ways to 

widen engagement, for example recruiting during public engagement events 

(Turner et al., 2023) may further aid the generalisability of the present findings. 

Our findings may also be amenable to replication in an online context (see our 

previous findings about strong age effects on sustained attention (Hanzal et al., 

2024b)).  

 

Overall, the subjective measures in this study reached a Cronbach's alpha of 0.7 

only, thus not attaining the full reliability standard of 0.8 (Taber, 2018). One 

subscale of the MFI also had an unreliable score of 0.58. More rigorous testing of 

subjective motivational and fatigue states should be employed in future studies 

to consolidate the correspondence of subjective measures to behaviour. 
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Future Research 

Our study raises the wider issue of the confounding effect of motivational factors 

in student samples commonly employed in experiments measuring performance. 

The present findings indicate that the choice of response strategy in young 

participants is dynamically affected by their level of motivation. Future studies, 

particularly those investigating the capacity of participants to perform at a certain 

level, should track motivational confounds. We thus show that on the SART, older 

participants were inherently motivated to do well, with only a little accuracy gain 

after the monetary incentive. In the case of this study, the commonly used young 

participant population was shown to generate suboptimal performance up to the 

point of the extra motivational manipulation. We thus propose that older adults 

can be seen as intrinsically motivated to do well on tasks, whereas younger age 

groups perform optimally only after incentivisation. The approach of factoring 

subjective motivation into the study design may be further utilised and expanded 

by the use of more precise measurements of motivation, including follow-up 

probes of participation motives (Soule et al., 2016) or frequent probes during the 

task (Reteig et al., 2019).  

 

This experiment indirectly enriches the discussion of the theoretical underpinnings 

of vigilance decrements. Performance declines in sustained attention tasks have 

previously been associated with fatigue (Brosnan et al., 2022; Roach et al., 2012). 

Yet while vigilance decrements are sometimes known to occur after time-on-task 

(Reteig et al., 2019; A. S. Smit et al., 2004), this is not always the case (Ackerman 

et al., 2010; Ackerman & Kanfer, 2009; Dobryakova et al., 2013; Hanzal et al., 

2024a; Nakagawa et al., 2013; Nieznański et al., 2020). The present findings 

indicate that the possible reason for this inconsistency is interference from an 

untracked underlying state of motivation driving strategy fluctuations, more so 

than that of fatigue.   

 

Finally, this study showed that the effect of motivation can be studied by targeting 

different participant age groups. As age has been previously strongly associated 

with the difference in performance during sustained attention (Hanzal et al., 

2024b; Vallesi et al., 2021), this experiment then supports a motivational account 

of sustained attention performance differences (DiMenichi & Tricomi, 2015; 
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Engelmann et al., 2009). It implies that vigilance decrements can be better 

understood by incorporating the factor of motivation (Arnau et al., 2017; Boehler 

et al., 2012; Boksem & Tops, 2008). It also contributes to a possible explanation 

of the mixed efficacy of attempts to improve performance in students (Schunk & 

DiBenedetto, 2021), pointing to the role of intrinsic motivation as an explanation. 

 

Conclusion 

This study investigated the impact of motivation on age differences in 

performance during sustained attention. We showed that young participants’ 

performance in sustained attention was improved by interference with their 

motivation levels much more than in a sample of older adults. Older participants 

reported higher baseline levels of motivation alongside a reduced motivation to 

alter performance for money. So, while the older participants could match young 

participant performance in titration due to their higher baseline motivational 

levels, the young participants improved much more than older adults in response 

to the monetary incentive. From these findings, we argue that older adults are 

intrinsically motivated to do well on tasks whereas younger age groups perform 

optimally only after incentivisation. The findings show the need to track 

motivational factors in investigations into sustained attention. 
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Chapter 5: Discussion 

Summary 

In this thesis, I aimed to a) identify a link between subjective fatigue and 

behavioural and brain oscillation metrics related to the vigilance decline during 

sustained attention, and b) examine the role of age and motivation as further 

contributors. Three studies were conducted to test these connections, focusing on 

comparisons between young and older healthy participants. 

 

In the discussion, I will examine the key findings from the three studies and draw 

conclusions related to the outlined goals. Furthermore, I will evaluate the 

relevance of these findings to future research while outlining the prospects of 

using the candidate patterns in neurofeedback. I will conclude that there is only 

a tenuous link between subjective fatigue and objective fatigue markers in the 

context of sustained attention. I suggest an alternative approach for future 

research that instead builds on the thesis's insights into the interplay of age and 

motivation in sustained attention. 

 

Key findings 

Subjective fatigue arises during sustained attention 

One of the goals of the undertaken studies was to detect subjective fatigue during 

sustained attention. A rise in state subjective fatigue was then successfully found 

in both experiments in Chapter 2 and Chapter 3. An auxiliary experiment in 

Appendix 2 further illustrated that this rise was not automatic but only occurred 

in connection with tiring tasks. This way, the studies confirmed the expectation 

that subjective fatigue arises during demanding tasks (Arnau et al., 2017; Behrens 

et al., 2023; Darnai et al., 2023; Massar et al., 2018; Wilhelm et al., 2022). The 

findings thus extend the literature on this effect to sustained attention (Brosnan 

et al., 2022; Pershin et al., 2023; Reteig et al., 2019), providing the most 

comprehensive survey to date of fatigue’s presence specifically during the SART. 
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The findings further illustrated the different relationships of state and trait (or 

prolonged5) fatigue to behaviour. Chapter 2 suggested that short-term state 

fatigue was related to performance changes, more so than fatigue at the trait 

level, which, as also shown in Chapter 4, had no link to performance. 

Interestingly, state fatigue still arose without a decline in performance in Chapter 

3, linking to several studies with similar outcomes (Ackerman et al., 2010; 

Ackerman & Kanfer, 2009; Dobryakova et al., 2013; Nakagawa et al., 2013; 

Nieznański et al., 2020; Wójcik & Nęcka, 2024). The described different outcomes 

for state and trait fatigue also connect with previous work identifying their 

distinctive correlates (Möller et al., 2019; Wylie et al., 2019, 2022). The findings 

collectively best match a recent account of introspective fatigue that emerges 

during demanding tasks yet is decoupled from performance decrements 

(Pessiglione et al., 2025).  

 

Previous experimental studies have indicated age as a factor in subjective fatigue 

(Hinz et al., 2013; Vestergaard et al., 2009; Watt et al., 2000). However, the 

present investigation showed only weak age effects in reported fatigue and no 

difference in trait fatigue. If anything, older participants reported lower state 

fatigue at baseline prior to the experiment, both in Chapter 2 and Chapter 3. 

This finding should be treated cautiously as state measures best capture relative 

changes rather than stable levels. Their timescale implies a greater degree of 

fluctuation, affected by multiple untracked factors (Earle et al., 2015; 

Herlambang et al., 2021; Tran et al., 2020), leading to low test-retest reliability. 

Nevertheless, it matches other findings where older participants were reported to 

show lower fatigue (Aggarwal et al., 2006; Engberg et al., 2017; Fuhrer & Wessely, 

1995; Wylie et al., 2022). One possible explanation for the uneven levels of 

baseline state fatigue in older adults may be a sampling bias in the selection of 

healthier older participants, as discussed in Chapter 1. Additionally, older adults’ 

subjective reports in Chapter 4 showed a connection between the experiences of 

fatigue and intrinsic motivation. Motivational arousal has previously been 

suggested to arise during time-on-task (Brehm & Self, 1989), serving as feedback 

for the reassessment of task goals, possibly showing that this experience of fatigue 

                                         

5 For more information, see Footnote 2 in Chapter 1. 
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is partly driven by higher motivation in older adults (Botvinick & Braver, 2015; 

Wilhelm et al., 2022), which I will discuss later. 

 

Overall, the present investigation provides strong evidence for the onset of 

subjective fatigue during sustained attention. However, there were no substantial 

differences between levels of fatigue in different age groups. Consequently, any 

minimal age difference in fatigue was unlikely to have played the anticipated role 

in the other discussed age-related effects. 

 

Oscillations may anticipate the vigilance decrement 

The brief online experiment in Chapter 2 showed a coupling of changes in 

experienced fatigue and accuracy in the SART. The finding then led to a prediction 

of a vigilance decrement in a longer version of the task. Yet, this unexpectedly 

failed to materialise in Chapter 3, despite matching the experimental length to 

previous investigations successfully inducing a decrement both in the SART (Lara 

et al., 2014) and in related tasks (Head & Helton, 2012; Kato et al., 2009; MacLean 

et al., 2009; Martínez-Pérez et al., 2023; Pattyn et al., 2008; Pershin et al., 2023). 

The null finding particularly contrasts with a notable example from research by 

Reteig et al. (2019), who observed and described a detailed decrement during a 

sustained attention task (frequent nogo trials) peaking 30 minutes into the task. 

Interestingly, Reteig’s study found an effect in a smaller sample (n = 21), but used 

a different paradigm with frequent nogo trials, as opposed to frequent go trials in 

the SART. Also, the experiment in Chapter 2 had a much larger sample size, 

possibly contributing to the lack of effect in Chapter 3. Another likely influence 

on these results may be a possible contrast in ecological validity between online 

and in-person experimentation, a subject of debate (Bridges et al., 2020; 

Semmelmann & Weigelt, 2017) beyond the scope of this discussion. 

 

Chapter 2 informed the key prediction in this thesis, that changes in relevant 

brain oscillatory patterns would accompany an exposure to a demanding task. This 

was rooted in known associations of brain dynamics with sustained attention 

(Barwick et al., 2012; Clayton et al., 2015; Jacquet et al., 2021; Sadaghiani & 

Kleinschmidt, 2016) and early indications in related research (Benwell et al., 

2019; Reteig et al., 2019), as well as the emerging findings of Pershin et al. (2023), 
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showing time-on-task increases in alpha and adjacent lower-frequency 

oscillations. Despite the absence of a vigilance decrement, Chapter 3 still 

revealed two of the predicted brain oscillation patterns. The changes in both 

patterns further followed the expected direction of change, reflecting a 

disengagement with the task. These detected patterns were time-on-task rises in 

1) pre-stimulus alpha synchronisation and 2) task-related beta synchronisation. 

 

There is a lot of literature on the attentional role of pre-stimulus alpha oscillation 

(M. X. Cohen, 2011). Pre-stimulus alpha has been observed in anticipation of 

attentional reorienting (Bracco et al., 2018), and attentiveness to near-threshold 

visual stimuli is impacted by pre-stimulus alpha amplitude (Melcón et al., 2024). 

Pre-stimulus alpha phase predicted subjective awareness and objective 

performance in a luminance discrimination task (Benwell et al., 2017) and its 

ability to predict response probability has been used to show that it reflects the 

inhibition of attention (Zazio et al., 2020). It further reflects change from rest to 

task in the signal-affected stimulus-response processes of an auditory go-nogo task 

(Karamacoska et al., 2018). Ongoing pre-stimulus alpha oscillations trial-by-trial 

variations have also been linked to reported changes in attentional state 

(Macdonald et al., 2011). Some researchers have found changes in alpha 

oscillations to be independent of vigilance decrement: Resting-state alpha 

predicted tDCS gains on the SART, but without a link to vigilance decrements 

(Martínez-Pérez et al., 2023). Similarly, alpha decreased through a manipulation 

of attentional effort, but without a direct link to changes in reaction time (Byrne 

et al., 2020). Furthermore, manipulating motivation offset the rise in this pattern, 

highlighting a likely re-engagement with the task. Collectively, these findings 

point to an explanation of the detected rise in alpha synchronisation as a change 

in attentiveness to the task, even in the absence of any behavioural decrements. 

 

An attentional component may also be found in the time-on-task increase in task-

related beta synchronisation. Admittedly, the observed pattern follows the 

structure of the classical post-motor beta rebound (PMBR), the specific neural 

response concerned with the preparation (Darch et al., 2020; Swann et al., 2009) 

and/or execution of a motor response (Heinrichs-Graham et al., 2017; Parkes et 

al., 2006). Nonetheless, findings in rhesus monkeys (Stoll et al., 2016) highlighted 

a further role of these oscillations in cognitive or motor control. This was later 
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seen in humans, where beta oscillations reflected control processes (Lundqvist et 

al., 2024) and were also directly proposed to indicate motor control during the 

SART (Mensen et al., 2022). Supporting this view, efforts to maintain vigilance 

have been associated with increased beta oscillation activity (A. Craig et al., 2012) 

and the oscillations were also linked to top-down attention (Riddle et al., 2019). 

Alike to the findings in Chapter 3, Pershin et al (2023) observed a temporal 

dimension to the beta oscillation and described its rises as reflective of a change 

in attentiveness. Furthermore, in Chapter 3, I found a minor link of the oscillation 

to performance; older adults who showed greater reductions in reaction times also 

exhibited greater increases in this beta power synchronisation. Thus, the present 

findings provide a sufficient basis for interpreting the presently detected beta 

oscillations as reflective of either motor or cognitive control changes, in this case 

accompanying an attentional task.  

 

In summary, the two main oscillatory patterns detected in Chapter 3 are generally 

consistent with an account of disengagement during sustained attention. This then 

matches the expectation set at the end of Chapter 2. Yet, as mentioned, there 

was little association between the patterns and behaviour, beyond a minor link of 

the task-related beta to changes in reaction times and age strategies. This account 

should thus be interpreted with some caution due to the absence of actual 

behavioural effects (Krakauer et al., 2017). More importantly, an interpretation 

of the decline as an attention-related process contrasts with an ambitious and 

spurious label of fatigue markers, as will now be discussed.  

 

Elusive relation of oscillations to fatigue 

In addition to a link to sustained attention, the oscillatory patterns described in 

Chapter 3 resembled some previously identified markers of fatigue. They further 

coincided with an increase in subjective fatigue induced by time-on-task and their 

baseline levels also reflected baseline differences in state fatigue found between 

the age groups. However, correlations failed to establish a direct link between 

the patterns and the rise in subjective fatigue or performance decline. This lack 

of connection contrasts with the previous links found between fatigue and both 

pre-stimulus alpha (Aziezah et al., 2020; Bazanova & Vernon, 2014; Krigolson et 

al., 2021) and task-related beta (Krigolson et al., 2021; Pakenham et al., 2020). I 
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also failed to find changes in the theta band, considered to be a part of a 

prospective fatigue marker (Arnau et al., 2021; Bazanova & Vernon, 2014; 

Krigolson et al., 2021; Talukdar et al., 2019), with frontal theta possibly one of 

the top candidates (Pessiglione et al., 2025). 

 

Conceding that the patterns did not reflect fatigue, it may still be argued that the 

patterns indicated an onset of fatigue, since oscillations may carry multiple 

functional meanings (Beste et al., 2023; M. X. Cohen, 2011). However, my 

experiment did not provide enough evidence that fatigue was involved as a driver 

of any change in the pattern. There could be two reasons for this, namely that a) 

the pre-stimulus alpha synchronisation can only be changed by exclusively 

exogenous means and b) that the exact multi-component nature of the oscillation 

is not understood sufficiently to separate its fatigue-related component. 

 

Other experiments have induced pre-stimulus alpha oscillation by using external 

stimuli instead of inducing fatigue. These findings include a study where 

laboratory room illumination level increased parietal EEG alpha activity in a 

sustained attention task, even affecting performance on the task (Ru et al., 2019) 

and spontaneous alpha increased in response to lower luminance on a critical 

flicker frequency task (Benedetto et al., 2018). Further findings have also 

suggested that cooler colours reduce alpha and increased reaction times (Min et 

al., 2013). Auditory influences on resting state alpha have likewise been noted 

both through music stimulation (Jäncke et al., 2015) and in phasic alerting 

(Wiegand et al., 2014, 2017). Another study suggested that as little as 50mg of 

caffeine exogenously suppresses EEG alpha power within 30 minutes of ingestion 

(Ajjimaporn et al., 2022). 

 

The second reason for the unclarity about the alpha oscillatory change is that it is 

comprised of multiple, not fully understood components (Barzegaran et al., 2017). 

These include the known effects of other signals such as ERPs (Krigolson et al., 

2021; Studenova et al., 2023), in addition to a plenitude of not fully explored 

biological components (Balestrieri et al., 2025; M. X. Cohen, 2011). This is 

especially relevant for explaining any age differences in the alpha synchronisation, 

which have previously been described as reflecting an uneven age-related decline 

of the different components (Knyazeva et al., 2018). Furthermore, Benwell et al. 
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(2019) reported that time-on-task also affects these components at different 

rates. Modelling work has likewise suggested that frequentist analysis of time-on-

task effects may even introduce additional components as artefacts (Shinn, 2023). 

These reflections all suggest a presence of other components in the patterns and 

the limited understanding of their mechanisms alongside too many alternative 

explanations, preventing attributing them to fatigue. 

 

In conclusion, I caution against interpreting the existing candidate oscillation 

patterns as markers of fatigue. Chapter 3 showed that time-on-task changes in 

neural patterns do occur during demanding tasks, but their full functional meaning 

needs further investigation. Despite the co-occurrence of the candidate patterns 

with fatigue-associated events, the evidence for a strict, therapy-relevant link to 

fatigue remains inconclusive.  

The role of age and motivation in sustained attention 

The present studies found that participant motivation led to a distinct reduction 

in beta synchronisation (Chapter 3) and most notably drove the choice of task 

performance strategy (Chapter 3, Chapter 4). Concretely in Chapter 4, I showed 

that the choice of task strategy in the SART can be altered by manipulation of 

motivation both within participants through a monetary initiative and between 

participants by targeting a more motivated group (older adults). With regards to 

the older group, the chapters continued to replicate a strong age effect in 

behaviour: an advantage in accuracy (Chapter 2, Chapter 3), longer reaction 

times (Chapter 2, Chapter 3, Chapter 4 tentatively – see Appendix 3) and ability 

to improve performance (Chapter 4). In addition, Chapter 3 gave an indication 

and Chapter 4 directly showed that this effect is driven by motivational 

differences.  

 

In Chapter 3, I replicated the commonly known lower pre-stimulus alpha 

oscillation levels and the associated aperiodic components of older adults 

(Cesnaite et al., 2023; Turner et al., 2023). Likewise, I showed a beta oscillatory 

pattern, interpreted as reflective of a more committed baseline task strategy 

(Dang et al., 2018; Lara et al., 2014; Statsenko et al., 2020; Vallesi et al., 2021). 
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The account of higher intrinsic motivation in older adults provides a further 

perspective on the reasons for these oscillatory age contrasts. 

 

In fact, a motivational account of age advantages in performance was highlighted 

in a recent meta-analysis investigating age effects in memory performance 

(Swirsky et al., 2023) and also discussed in Chapter 1. More specifically, 

motivation was found to have a particularly high impact on younger compared to 

older participants when the employed initiatives were financial (Bowen et al., 

2020; Geddes et al., 2018). Older participants conversely gained more from a 

socioemotional reward (Friedman & Castel, 2013). Ryan and Campbell (2021) 

likewise suggested the nuance, discussing a partial preservation of ability in older 

age contingent on task goals. The findings of Chapter 4 matched this account since 

the older participants preferred the experiment's intrinsic value. This was 

reflected in their higher baseline motivation and performance, matching the 

young sample. They likewise showed a ceiling in motivation in their reduced 

reaction to a further monetary reward. 

 

The present findings thus point to the socioemotional selectivity theory of 

increased motivation in older adults (Carstensen, 1993). According to this view, 

healthy older adults are intrinsically motivated to participate in research, a 

tendency attributed to their pronounced sensitivity to emotionally salient stimuli 

(Carr et al., 2022). According to the theory, they consider time to be a limited 

resource and thus seek positive and meaningful experiences in order to utilise it 

effectively6. Recruiting strategies for older participants rely on their increased 

reactivity to motives such as brain health advocacy, furthering of science and even 

an ability to draw increased entertainment value from experiments and 

socialisation with the researcher (Huxhold et al., 2022). The chance of proving 

retained cognitive health was also suggested to motivate better older adult 

performance. An opinion survey of 88 ageing researchers highlighted that older 

                                         

6 Empirical findings have previously associated the salience of mortality with goal reorientation. 

Death awareness reoriented task-goals (Kosloff & Greenberg, 2009) and lead to diminished 

focus on finances in individuals with near-death experience (Kinnier et al., 2001). It incites a 

shift from the pursuit of material ends to an authentic engagement with life, as famously 

outlined in Martin Heidegger’s existentialist philosophy (Lavine, 1984, p. 232). 
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adults consistently showed higher concern with their performance and desire to 

prove their worth, explaining their increased baseline motivation levels (A. D. 

Ryan & Campbell, 2021). Older adults’ motivation to partake in research thus sets 

them apart from the young adult sample who are otherwise prolific in general 

psychological research (Henrich et al., 2010). In contrast to older samples, young 

adults in a university environment already saturated with frequent cognitive 

testing through coursework seek no additional challenge to prove their 

performance ability (A. D. Ryan & Campbell, 2021) and have shown low effort, 

leading to suboptimal performance (DeRight & and Jorgensen, 2015).  

 

In their meta-analysis, Swirsky et al. (2023) highlight that not all findings are 

consistent with the socioemotional account of age differences in motivation. 

Other proposed explanations are that high motivation may be driven by cultural 

or generational differences (Badham, 2024; Campbell et al., 2015; Van Rossem, 

2021) or a purely biological mechanism arising from the ageing processes (Bourisly 

& Shuaib, 2018; Vallesi, 2016). These alternative explanations for the age effect 

were not explored in the present thesis and may instead be tested in future 

research. 

 

While the interplay of motivation and age effects is now widely discussed in the 

working memory literature, I now highlight this role of motivation as a driver of 

the age effect in sustained attention. Based on this thesis, future research should 

consider motivation as a strong co-variate in cross-sectional studies focusing on 

young and older samples in sustained attention and other paradigms. 

 

Limitations and future directions 

Investigating motivational and age effects 

Research on sustained attention across age groups can gain from the approaches 

presented here, provided their key limitations are carefully considered. The 

approach used in the present work was a within-subject manipulation of 

motivation, leading to a robust change in both subjective and objective measures 

in Chapter 4. The design of motivational manipulations still requires careful 

consideration, though, as their effects remain inconsistent (Wójcik & Nęcka, 



134 

2024). Although Chapter 3 included a motivational manipulation with a control 

condition, which was a valuable addition, but lead to a lowered statistical power 

in return. On reflection, the design of Chapter 3 was suboptimal in incorporating 

too many variables (age, fatigue, motivation, multiple EEG analytical 

approaches). A future investigation should consider the complexity of the 

interaction of age and motivation with any additional factors in light of the 

available sample size. As a suggestion for an interesting expansion of the design, 

Ryan and Campbell (2021) have implied that extreme motivational initiatives 

would be as effective in older as in young participants. This is a promising, but 

untested feature for consideration in future work. 

 

Chapter 3 and Chapter 4 were carried out in a traditional laboratory context. 

This environment may be an exogenous influence on the perceived value of the 

experiment, as discussed in Chapter 1. Conducting naturalistic experimentation 

may help to reduce this effect. One option would be testing of participants in an 

environment lacking implicit motivational cues, such as at home or through more 

familiar tasks (Hockey, 2013, Chapter 5). Some pioneering work has suggested 

such effects when testing executive control of older adults (Campbell et al., 

2015). Recording participant data through public engagement may also be an 

option to reach more diverse samples outside of the laboratory environment 

(Turner et al., 2023). While online experiments also give access to more diverse 

samples, the preserved behavioural age effect described in Chapter 2 warns that 

online research may not reduce the motivation inherent in the testing of older 

adults. 

 

In an attempt to simulate a false end to the experiment in Chapter 3, both pre- 

and post-state measures of fatigue were administered prior to the motivational 

manipulation. Retrospectively, an additional probe of mood states after the 

manipulation would have benefited the subsequent attempt to differentiate 

between changes in motivation and fatigue, later emerging in Chapter 4. 

Capturing introspective motivation and fatigue remains a notable challenge for 

research (Pessiglione et al., 2025). Here, frequent probes were avoided due to 

their additional effects on behaviour (Seli, Carriere, et al., 2013; Wiemers & 

Redick, 2019), but relying solely on pre- and post-experimental subjective 

measures still leaves considerable room for improvement. 
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The emergence of the beta oscillatory pattern related to motivational effects in 

Chapter 3 merits follow-up in future work. However, the current approach came 

across a lot of limitations that future research should consider. Significant changes 

would need to be made to the paradigm investigating the connection of brain 

function to the motivational effect: Here the designs of the SART trials in Chapter 

3 and Chapter 4 did not align. The short trial length of the SART version in Chapter 

4 would interfere with processing EEG signal trial-by-trial. The dynamic changes 

in task parameters arising from the titration may further impede statistical power. 

The motivational section of Chapter 3 had a control condition, while the 

experiment in Chapter 4 featured the same manipulation in all participants. 

Future research should formulate a new design addressing these inconsistencies 

and so bridge the gap in knowledge about brain and behaviour links in motivated 

sustained attention performance. Future work may also consider complex, 

naturalistic conditions (Welke & Vessel, 2022) or standardised task batteries 

(Hassan et al., 2024). Another alternative would be to more concretely isolate 

brain areas associated with the pattern via the use of a combined EEG-fMRI 

approach (Y. Guo et al., 2023). 

 

Continued search for biomarkers of fatigue  

Since its conception, EEG has been recognised for its potential to monitor brain 

signal in real time and detect its disturbances (Loomis et al., 1938). On the 

individual level, EEG has been used to detect sleep pathology (Light et al., 2018; 

Putilov & Donskaya, 2015) and epileptic seizures (Alvarez & Rossetti, 2015). 

Relating to the success of these EEG applications, research efforts have focused 

on the early detection of fatigue (Correa et al., 2013; Lin et al., 2019; Sun et al., 

2014). Knowledge of reliable group-level markers of fatigue has been proposed to 

revolutionise areas such as assisted driving (Correa et al., 2013; Xu et al., 2018), 

technical work (Bernhardt et al., 2019), piloting (Roach et al., 2012) or, in the 

long term, clinical diagnosis (Othmani et al., 2023) and treatment using 

neurofeedback. 

 

Despite these hopes, the work in this thesis highlights the ongoing gap in the 

knowledge of group-level fatigue markers. The present investigation did not find 

a link between known candidate brain patterns and subjective or objective 
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measures of fatigue. While it is important to recognize the limitations of the 

thesis’s empirical chapters, they still highlight the ongoing challenge in identifying 

concrete EEG markers in neurofeedback. As I discussed in Chapter 1, research 

findings point to an effect of neurofeedback, but targeting specific frequencies 

does not commonly impact their associated processes (Hesam-Shariati et al., 

2022). Neurofeedback either only induces changes in the targeted EEG bands (He 

et al., 2020), or at times general behavioural improvements (Chiasson et al., 

2023). In contrast, only a direct link of a targeted marker to a behavioural 

outcome can lead to reliable therapeutic treatments (Barack et al., 2022). 

 

Ongoing efforts to enhance neurofeedback research standards aim to clarify its 

effect size. Suggestions for improvements include pre-registration of research 

questions, increasing sample size through open science projects, developing 

better control measures and control groups, using tightly defined protocols and 

defining clear outcome measures (Ros et al., 2020; Sorger et al., 2019; 

Taschereau-Dumouchel et al., 2022). In future research, control conditions should 

be chosen very carefully to bridge the gap between the targeted markers and the 

change in the specified mental process. To date, the ability to successfully target 

fatigue with neurofeedback remains an experimental and tentative possibility. 

Thus neurofeedback should continue to be seen as having, at best, limited effects 

in the treatment of fatigue even if targeting its commonly associated frequency 

bands. 

 

On the other hand, individually-tuned algorithms may prove to be a sounder long-

run approach to neural interventions. Existing systems reach better detection 

ability by calibration to patterns specific to each individual, as seen in the current 

use of deep learning models (H. Li et al., 2022) or BCI systems (dos Santos et al., 

2023; Karim et al., 2023; Wang et al., 2024). Notably, the features used by the 

algorithms extend far beyond canonical frequency bands. This also parallels calls 

to expand the understanding of the oscillations’ functional role beyond pre-

defined bands (Balestrieri et al., 2025). With recent developments in the 

utilisation of additional features of the signal, such as the aperiodic components 

(Donoghue et al., 2022) also analysed in this thesis, the future holds many 

interesting avenues for detecting fatigue from brain signals, beyond 

neurofeedback. 
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This invites a broader reflection on the effort to establish EEG markers of 

pathology. While oscillations are widely utilised as measurements of mental 

processes, their role as a causal condition of behaviour (Barack et al., 2022; M. X. 

Cohen, 2011) remains theoretically disputed (Barack et al., 2022; van Bree et al., 

2025). Limited advances in establishing strict causal relationships between 

oscillations and behaviour contrast with more successful findings from other areas 

of neuroscience focusing on the causal effect of single neurons (Stiefel & 

Ermentrout, 2016). These studies provide much stronger evidence that neural 

activity is a causal driver of broader biological processes (Esghaei & Daliri, 2014; 

Tremblay et al., 2015), and have led to effective interventions, as seen in highly 

localised deep brain stimulation (Meyer et al., 2024). However, the success of 

such approaches is largely confined to the level of single neurons (Haider et al., 

2016; Okun et al., 2010). Although oscillations emerge from neural activity, 

research has still not fully mapped how an oscillation scales from single-cell to 

system level (M. X. Cohen, 2017; Stiefel & Ermentrout, 2016). In turn, theorists 

disagree about the degree of generalisability of a causal claim from Local Field 

Potential (LFP) to Global Field Potential (GFP), such as EEG oscillations. Larger-

scale causal inferences from lesion studies offer valuable insights into bridging the 

gap between local and global effects, but are also limited by confounds, such as 

neuroanatomical damage (M. X. Cohen, 2011). As a result, most GFP studies are 

then constrained to proposing associative, rather than causal, links (Krakauer et 

al., 2017). Yet, establishing oscillations as causal conditions of behaviour is 

essential if they are to be considered true markers, as a marker must reliably 

indicate a change in the process it signifies. This is inconsistent with my key 

findings in Chapter 3, where the candidate signals appeared independent from 

subjective (and objective) fatigue. The present findings therefore cannot support 

more than an epiphenomenal relationship between candidate oscillatory markers 

and fatigue. Here, epiphenomenal refers to oscillations acting as passive 

reflections of core causal processes in the brain (Barack & Krakauer, 2021; H. Smit 

& Hacker, 2014). Accordingly, I encourage continued exploration of EEG signal 

dynamics as part of the broader scientific effort to map brain function (M. X. 

Cohen, 2017). 
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Covid 

The direction of this dissertation was affected by the emergence of the Covid-19 

pandemic. This had a decisive influence on data collection and diverted me from 

the originally envisioned samples. The first behavioural study had to be moved 

online due to the inability to test face-to-face. This, becoming Chapter 2, 

revealed a strong age effect, which was further utilised as a means to shift focus 

from an envisioned clinical sample (post-stroke fatigue patients) to older adult 

(control) groups. Despite this, data collection for the samples, particularly the 

older adults in Chapters 3, was still affected by additional Covid restrictions and 

the need to rebuild the School’s collapsed older adult participant pool. Despite 

this, re-focusing the thesis brought to light novel findings relating to age and 

motivation, which still allowed a discussion of the original aim of informing 

neurofeedback alongside considering the underlying impacts of motivation. 
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Conclusion 

Task performance and brain activity patterns were previously suggested as 

indicators of fatigue, leading to their use as targets in neurofeedback 

interventions. The experiments in this thesis sought to clarify the extent of this 

connection. The resulting tests failed to find a strong link during sustained 

attention. While I identified a prospective coupling of fatigue to a vigilance 

decrement in Chapter 2, I also found a strong connection to another, better-

known factor in sustained attention: age. Further testing of a prospective 

decrement over a more extended time period in Chapter 3 revealed its 

independence from patterns of brain activity typically associated with fatigue, 

namely a rise in pre-stimulus alpha synchronisation and task-related lower beta 

synchronisation. The changes instead corresponded to age and motivational 

effects during the sustained attention task, rather than to subjectively reported 

rises in fatigue. The final experiment in Chapter 4 confirmed that motivation, 

rather than fatigue, drove changes in task performance. I conclude that the 

account of fatigue as a dynamic subjective time-on-task rise coupled with readily 

available metrics is simplistic (as per Chapter 3 and Chapter 4) and requires 

further understanding and continued development of adequate research designs 

before conversion into an applicable neurofeedback intervention. The 

experiments instead highlight motivational and age-related drivers of 

performance and associated oscillatory signal change during sustained attention 

as a topic for prospective research. 
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Accompanying Material 

Appendix 1 

Additional analyses pertaining to Chapter 3. 

 

Speed-accuracy trade-off  

Analysing age and time differences in performance of both age groups revealed a 

pattern of high reaction times and low commission error in older adults, with the 

opposite pattern of low reaction times and high commission error in young 

participants. Due to their inverse nature, an exploratory analysis was undertaken 

to compare these alongside a single measure. Previous findings investigating 

speed-accuracy trade-offs between accuracy and reaction time used the metric 

of inverse efficiency to calculate a single performance metric reflective of their 

mutual relationship (Bruyer & Brysbaert, 2011; Statsenko et al., 2020). 

  

To obtain block-level inverse efficiency scores, log-transformed reaction times 

were averaged across each participant. Subsequently, these averages were 

divided by commission accuracy, determined by subtracting commission error 

from 1. 

 

A two-way ANOVA was conducted to examine the effects of block (first, last), 

group (1 = young, 2 = older) and their interaction on inverse efficiency. The results 

showed no significant main effect of block, F(1, 32) = 1.08, p = 0.307, η² = 0.011 

and newly, the main effect of group was now not significant, F(1, 32) = 2.91, p = 

0.097, η² = 0.058. The interaction between group and block was also not 

significant, F(2, 32) = 0.20, p = 0.655, η² = 0.002. Collectively, the results in 

performance alongside the original findings are depicted in Supplementary Fig 2. 

 

While the index of inverse efficiency was not pre-registered, its notable stability 

in both age groups further complements the findings about their different 

behavioural strategy. It signifies that both groups were similarly efficient, but had 

a different emphasis in their approach to the task. It also corresponds to the lack 

of group differences in subjective change, showing a similar efficiency over time. 
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Supplementary Fig 1 Mean reaction time, commission error and inverse efficiency in both 

experimental groups. (1 = young, red, 2 = older, blue) across 8 blocks with standard deviation 

bars. 

 

ERP analyses 

As a detected cluster reflected early task-related alpha desynchronisation, it was 

further investigated for its possible connection to the P300 ERP component 

(Picton, 1992; Studenova et al., 2023). Aside from oscillations, changes in the 

P300 ERP component have been associated with subjective fatigue (Krigolson et 

al., 2021), as well as time-on-task in sustained attention paradigms (Z. Guo et al., 

2016; Hart et al., 2012), and ageing (Kaufman et al., 2016). We thus mapped the 

P300 ERP-changes across the factors of interest (time-on-task, fatigue, the 

motivational manipulation), as well as age group. 

 

ERPs from the same time window of the signal coming from the highest un-

lateralised electrode, detected as significant by the cluster permutation (Fz), 

were compared in their group peak maxima. A 2x2 ANOVA was conducted to 

examine the effects of block (1, 8) and group (younger, older), and their 

interaction on the baseline-corrected signal. The resulting model was not 

significant, F(3, 56) =0.56, p = 0.65. Furthermore, the same signal was also traced 

into the motivational condition, compared in a 2x2 ANOVA collapsed across age, 

examining the effect of block (8, 9) and motivation (non-motivated, motivated). 
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The resulting model was significant F(3, 56) = 3.47, p = 0.02. There was no effect 

of block (β = -0.21, t = -0.40, p = 0.69), but the non-motivated group had a higher 

P300 amplitude (β = -1.24, t = -2.06, p = 0.04), with no interaction (β = -0.19, t = 

-0.23, p = 0.82). A test was also run to detect an effect of trial type (commission, 

omission) and age group (young, older) on the P300 amplitude. The overall model 

was significant F(3, 64) = 7.70, p < 0.001. The test revealed no effect of trial type 

(β = -0.16, t = -0.22, p = 0.83), a higher P300 amplitude in young participants (β = 

2.41, t = 3.31 p = 0.002) and no interaction (β = 0.13, t = 0.13, p = 0.90). The 

findings are presented in Supplementary Fig 1. 

 

Regarding the P300, the analysis only found a robust effect of age on P300 

amplitudes. P300 was higher in the younger compared to the older age group, as 

consistent with much ageing literature (Tsolaki et al., 2015). Yet we failed to 

detect the established task-related pattern of an occipito-parietal P300 amplitude 

decrease, associated with either effortful processing (Hart et al., 2012) or fatigue 

(Egner & Gruzelier, 2004; Hart et al., 2012; Krigolson et al., 2021; Kustubayeva et 

al., 2022).  

 

 

Supplementary Fig 2 Effect of time and group on the Fz P300 ERP across time (ms). Showing 

the difference between the first and last block (blue, red) and groups (1 = young, solid line, 2 = 

older, dashed) as well as the associated topographies. The dashed line indicates the inferentially 

tested latency. 
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Covid analysis 

The sample contained 10 participants (of 40) who reported testing positive for 

Covid-19 in the past 3 months. In keeping true to a pre-registered aim of the study, 

we tested the effect of the recent experience of Covid on the key subjective and 

behavioural measures. A Wilcoxon rank sum exact test was run due to disbalanced 

group sizes. 

 

Recent experience of Covid did not predict a difference in participant reaction 

times, W = 146, p = 0.09, participant nogo accuracy, W = 58, p = 0.07, baseline 

state fatigue, W = 73, p = 0.22 or baseline state mind wandering, W = 158, p = 

0.81. 
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Appendix 2 

Subjective mental state and fatigue, an investigation into possible paradoxical 

effects. 

Background 

In past experiments, fatigue has been induced via demanding tasks (Z. Guo et al., 

2016). Nonetheless, a change in state may still arise during experimentation, even 

in the absence of demanding tasks, if participants adjust their performance in 

response to perceived expectations, described as demand characteristics 

(McCambridge et al., 2012). Pessiglione et al. (2025) also recently underlined 

unreliable introspection of fatigue state. As a result, a concern with the 

measurement of subjective state change in our own experiment (Hanzal et al., 

2024a) led to a separate confirmation test of task-specificity of rises in subjective 

fatigue. 

 

Based on our previous data and anecdotal findings, there was some indication that 

even a non-fatiguing task will elicit a detectable change in state fatigue levels 

compared to baseline. A reliable rise in subjective state fatigue should be task-

specific (Behrens et al., 2023), as opposed to being induced by the experience of 

being experimented upon alone. We thus tested the effect of a simple task of 

watching entertaining videos in a laboratory environment on the report of fatigue. 

 

Methods 

The study was pre-registered on OSF (https://osf.io/fybc9). To achieve a minimal 

informative sample, an inclusion of 12 eligible participants was determined by a 

power calculation using the ‘pwr’ R (R Core Team, 2013) package to allow the 

detection of a large effect d = 0.8 with a one-sided hypothesis (J. Cohen, 2009). 

A large effect was based on a related pilot finding (Hanzal et al., 2023), where an 

undemanding 50-minute-long task of watching a documentary showed a difference 

between initial and final state fatigue levels greater than one standard deviation 

in overall state change.  

 

https://osf.io/fybc9
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To pick appropriate non-fatiguing stimuli, three entertaining Youtube videos 

(Wurtz, 2017; PBS Idea Channel, 2017; Vsauce, 2015) were chosen to be displayed 

to the participants, following a previous similarly conceived controlled condition 

(Hanzal et al., 2023; O’Keeffe et al., 2020). The videos totalled 50 minutes and 

28 seconds in duration. All were popular (Silvianetri et al., 2022) informative 

videos about scientific concepts meant to engage the participants. In addition, 

the participants were administered the Visual Analog Scale (VAS) for fatigue (Lee 

et al., 1991) before and after watching the videos. Then, the participants were 

partly debriefed using the following text: 

 

‘Thank you very much for your participation! In order to collect valid data, we 

could not be explicit about the focus of this study. This was unavoidable, so below 

is the information regarding the study. Please read it carefully. 

  

The experiment’s aim was to investigate “demand characteristics”, or the 

experience of taking part in an experiment and its impact on subjective mental 

states. We administered you an identical questionnaire measuring momentary 

fatigue levels before and after the experiment. The experiment was not 

particularly fatiguing, so any experienced rise in subjective fatigue levels may 

have been due to performance expectations.  

 

If you became suspicious of the nature of the experiment, you are still fully 

entitled to the payment, but we will not consider your data in the main analysis.’  

 

They were then probed by two further questions to confirm suspicion: 

 

Did you suspect this to be the case? 

 

Please describe what you thought this experiment was about: 

 

Participants then received full debrief and compensation for their participation, 

similarly to the experiment in Chapter 3. If they showed any suspicion of bias as 

detected in the answers to the follow-up questions, their data was excluded from 

the analysis. 
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Results 

16 participants in total were recruited. Later, 4 were excluded based on screening 

for demand characteristics (2 declared these, 2 based on their qualitative report), 

nevertheless, re-runs of the main tests including these participants lead to the 

same results. The VAS change scores before and after the experiment were not 

significantly different based on a Welch one sample t-test, t(22) = 0.36, p = 0.36, 

even when including participants suspicious of their own demand characteristics, 

t(30) = 0.83, p = 0.21, indicating that the experiment did not induce subjective 

fatigue change. The test is depicted in Supplementary Fig 3. 

 

A comparison of VAS change in this subjective scale sensitivity study and the VAS 

change in the participant sample from Chapter 3 showed a notable difference, 

t(50) = 8.10, p = 0.006, with participants in Chapter 3 showing much higher levels 

of VAS change. The effect was present even with the inclusion of participants 

suspicious of their own demand characteristics, t(54) = 6.58, p = 0.01. Or with the 

exclusion of older adult participants in Chapter 3 from the comparison, t(30) = 

7.6, p = 0.01. The difference between the experiments is depicted in 

Supplementary Fig 4. 
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Supplementary Fig 3 Stable pre- and post- fatigue levels in an easy task. (the comparison here 

includes all 16 participants). 
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Supplementary Fig 4 Changes in fatigue in two experimental groups. The young participants in 

the control experiment (control, red) showed practically no change, even in those with demand 

characteristics detected. In contrast, the young participants (experimental, blue) in the EEG 

experiment (Chapter 3) had a general increase in fatigue over a time window of the same length. 

 

Conclusion 

In summary, as opposed to the results regarding a rise in subjective fatigue in 

Chapter 3, a matched group of participants in a non-fatiguing task did not show a 

significant rise in subjective fatigue levels, even when controlling for the 

influence of demand characteristics. The findings help to illustrate the specificity 

of the detected rise in subjective fatigue to tasks more demanding than an easy 

control condition undertaken in a laboratory environment. 
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Appendix 3 

Exploratory analyses of non-pre-registered relationships in Chapter 4. Further 

clarified links between performance and motivation in the two age groups.  

Motivation and performance in the titration blocks 

We additionally investigated whether the achieved titrated window length at the 

end of the titration period was predicted by baseline motivation, as measured by 

the IMI subscales. A multiple linear regression showed no relationship of IMI - 

interest and age to titrated window length [F(3, 46) = .48, R2 = .043, p = .571], as 

per Supplementary Fig 5A. Likewise, a multiple linear regression showed no 

relationship of IMI - value and age to titrated window length [F(3, 46) = .824, R2 

= .051, p = .487], as per Supplementary Fig 5C. However, a multiple linear 

regression showed a relationship of IMI - effort and age to titrated window length 

[F(3, 46) = 4.37, R2 = .222, p = .009]. As indicated in a previous test, there was 

no main effect of age, t(46) = -1.625, p = .111, but a clear negative relationship 

with IMI - effort, t(46) = -3.17, p = .003, and no interaction, t(46) = 1.56, p = .126. 

This indicated that all participants who experienced more effort also achieved a 

shorter (and more difficult) titrated window length. This relationship is depicted 

in Supplementary Fig 5B. 

 

Similar effects were found with overall accuracy and nogo accuracy, but are 

omitted for brevity.  

 

Supplementary Fig 5 Relationship of age and motivational improvement during titration. 

Multiple linear regression testing the difference between age groups (young, older) in the 

relationship between the achieved titrated window length (ms) and motivational subscales. The 
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plots show no relationship for IMI – Interest (A) and IMI – Value (B), but show that both groups 

achieved faster titrated window length with higher ratings of IMI – Effort (C). 

 

Age-specific strategies during titration 

Because the age groups showed no differences at baseline, they were compared 

across the entire titration period across its four blocks to incorporate further trials 

and increase statistical power. Young adults had overall faster response reaction 

times over the titration period (mean = 406.12ms, SD = 104.78ms) than older 

adults (444.78ms, SD = 120.27ms). Nogo accuracy over the titration period of the 

young (mean = 65%, SD = 8.04%) participants was marginally lower than older 

participants (mean = 70.90%, SD = 10.10%).  

 

A multiple linear regression [F(3, 196) = 4.27, R2 = .047, p = .006] showed no 

effect of age on overall accuracy, t(46) =.82, p = .415, as well as no effect of 

time, t(46) = -1.62, p = .108 and no interaction, t(46) = -1.10, p = .275, see 

Supplementary Fig 6A. 

 

A multiple linear regression [F(3, 196) = 5.48, R2 = .078, p = .001] showed that 

older adults had higher nogo accuracy t(46) = 2.14, p = .034, but there was no 

effect of time, t(46) = -.752, p = .453 and no interaction, t(46) = -.752, p = .453, 

see Supplementary Fig 6B. 

 

A multiple linear regression [F(3, 196) = 12.12, R2 = .157, p < .001] only showed 

that older adults had higher reaction times overall, t(46) = 3.67, p < .001, but that 

there was no effect of time, t(46) = -.298, p = .766 and no interaction, t(46) = -

1.58, p = .116, see Supplementary Fig 6C. 

 

A multiple linear regression for the effect of age groups and time on response 

window length was not significant [F(3, 196) = 2.034, R2 = .030, p = .110] but Fig 

6D still descriptively suggests that participants in both age groups followed diverse 

courses over the titration period. 
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Supplementary Fig 6 Age-specific behavioural differences. Considering the titration period (25 

minutes), the two age groups (young and older) did not differ in their overall accuracy (A). But 

older participants were more accurate on nogo trials (B) and slower (C), without time-on-task 

effects (differences between blocks 1-4). The groups did not differ in their titrated window lengths 

(D), although there was high variability in the titrated window lengths. 
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