
 
 
 
 
 
 
 
 
Almannouny, Gaddafi Abbas (2025) Intelligent dynamic pricing and 
integrated demand response for multi-energy systems using Deep 
Reinforcement Learning. PhD thesis. 
 
 
 
 
https://theses.gla.ac.uk/85376/       
 
      
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

https://theses.gla.ac.uk/85376/
mailto:research-enlighten@glasgow.ac.uk


Intelligent Dynamic Pricing and
Integrated Demand Response for

Multi-Energy Systems
Using Deep Reinforcement Learning

Gaddafi Abbas Almannouny

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF ENGINEERING

COLLEGE OF SCIENCE AND ENGINEERING

MARCH 2025



To my parents,

Abbas Almannouny and Salma Al Gaddafi

To my wife and my son
To my brothers and sisters



Abstract

The increasing penetration of renewable energy sources (RES) and distributed energy sys-

tems (DES) presents significant challenges for the power industry, particularly in ensuring

grid stability and optimising energy market operations. This thesis investigates the integ-

ration of Dynamic Pricing Integrated Demand Response (IDR) into multi-energy systems

using Deep Reinforcement Learning (DRL) algorithms to improve efficiency, grid stability,

and stakeholder benefits in decentralised energy markets. The first study introduces a dy-

namic pricing mechanism for electricity and gas systems utilising the Deep Deterministic

Policy Gradient (DDPG) algorithm. This mechanism optimises the supply-demand bal-

ance, enhances Distribution System Operators (DSOs) profitability, and reduces end-user

costs. The second study expands this framework to manage multiple energy carriers—

electricity, gas, and heat—through energy hubs (EHs). The DDPG-based IDR strategy

promotes cost efficiency and operational flexibility while handling diverse energy demands

sustainably. The third study integrates dynamic pricing IDR within a Peer-to-Peer (P2P)

energy trading framework for microgrids, employing the Double Actors Regularized Crit-

ics (DARC) algorithm. This approach improves renewable energy utilisation, minimises

energy deficits, and boosts profitability, outperforming traditional pricing models. The

research includes case studies demonstrating the benefits of dynamic pricing and IDR,

such as reduced peak loads, increased renewable integration, and enhanced consumer en-

gagement. In conclusion, the thesis lays a foundation for intelligent energy management

solutions and suggests future research avenues, including the potential of blockchain tech-

nology for P2P trading and advanced consumer behaviour modelling.
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Chapter 1

Introduction

1.1 Background

The world is swiftly transitioning toward renewable energy sources (RES), such as solar

and wind power, to combat climate change and reduce dependence on fossil fuels. Smart

grids utilise digital technologies and advanced communication systems to modernise the

electricity grid, facilitating RES’s efficient and reliable integration.

The rising adoption of renewable energy sources, including solar and wind, alongside the

increasing need for effective energy management, has led to a growing interest in demand

response (DR) programs. This shift towards sustainable energy systems necessitates crit-

ically examining the synergies and challenges of RES and electric vehicles (EVs). These

significant challenges to traditional energy management approaches are primarily due to

the intermittency of RES and the increased complexity of grid operations [1].

DR, which involves modifying electricity consumption in response to price signals or grid

operator instructions, has emerged as a crucial mechanism for enhancing grid flexibility

and stability [2]. These programs incentivise consumers to adjust their energy consumption

patterns in response to price signals or system conditions [3]. Price-based DR programs
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1.1. Background

encourage consumers to shift their energy usage based on time-varying electricity prices.

In contrast, incentive-based DR programs offer rewards for reducing consumption during

peak demand periods [4]. DR is a strategy that enables the modification of electricity

consumption in response to price signals or directives from grid operators. This approach

has gained significance as a vital tool for enhancing the flexibility and stability of the

power grid. By actively engaging consumers in energy management, DR programs aim to

balance supply and demand effectively, especially during periods of high electricity usage.

These programs incentivise residential and commercial consumers to adjust their energy

consumption patterns based on real-time price signals or prevailing system conditions.

This flexibility not only helps manage energy costs but also supports the grid’s reliability.

There are two primary types of Demand Response programs. Price-based DR programs

encourage consumers to shift their energy usage in accordance with time-varying elec-

tricity prices. For instance, during times when electricity prices are low, consumers may

be motivated to use more electricity, while they might reduce usage during peak pricing

periods to mitigate costs.

On the other hand, incentive-based DR programs offer financial rewards or other incent-

ives to consumers who voluntarily reduce their electricity consumption during identified

peak demand periods. These periods often coincide with extreme weather or heightened

energy usage. By participating in such programs, consumers help alleviate stress on the

grid, ensuring a more stable and reliable electricity supply for all users. Overall, Demand

Response plays a crucial role in promoting energy efficiency and sustainability within the

electricity market.

2



1.1. Background

Integrated Energy Systems (IES) have gained significant attention in recent years due to

their ability to seamlessly coordinate energy management across multiple energy sectors,

specifically electricity, heat, and gas networks. By integrating these diverse energy carri-

ers, IES enhance overall system flexibility and operational efficiency, capitalising on each

energy form’s unique characteristics and strengths [5].

Multiple studies have highlighted the advantages of implementing IES in various contexts,

such as microgrids, which provide localised energy solutions, and energy hubs, which

serve as central points for energy distribution and management. These systems optimise

resource utilisation and contribute to increased reliability, reduced operational costs, and

greater resilience in the face of fluctuating energy demands and supply constraints [6].

Integrating energy systems offers a promising pathway towards a more sustainable and

efficient energy future.

Integrated Demand Response (IDR) represents a sophisticated evolution of traditional

DR methods, providing a comprehensive and optimised strategy for energy management

that addresses the complexities of modern energy demand [7].

Unlike conventional DR, which often operates in isolated segments, IDR integrates mul-

tiple demand response activities across various energy systems. This includes residential

and commercial buildings and industrial facilities [8].

By coordinating these diverse energy sectors, IDR fosters a more resilient, efficient, and

flexible energy framework. This holistic approach enhances energy efficiency and improves

grid reliability, ultimately leading to a more sustainable energy future as it effectively

accommodates energy demand and supply fluctuations. IDR can respond dynamically to

real-time energy needs using advanced technologies and data analytics, creating a more

responsive and adaptable energy ecosystem [9].

3



1.1. Background

In traditional power systems, consumers typically respond passively to electricity prices,

mainly adjusting their consumption based on price signals rather than actively engaging

in DR programs. While price fluctuations and incentives influence consumption patterns,

the level of involvement in traditional DR initiatives is often limited. However, the advent

of energy hubs (EHs) has transformed how consumers interact with the energy system.

EHs function as central nodes integrating various energy forms, including electricity, heat,

natural gas, and renewable sources [10]. This integration enables all types of energy con-

sumers, even those with historically inelastic loads, to actively participate in DR programs.

Peer-to-peer (P2P) energy trading represents a transformative shift in energy systems,

allowing individuals, including both consumers and prosumers—those who both consume

and produce energy—to engage in direct energy transactions. This innovative approach

is centred around eliminating traditional intermediaries, such as utilities and energy com-

panies, enabling participants to trade energy directly with one another [11].

The foundational principle of P2P energy trading revolves around creating a more decent-

ralised energy market that empowers users to sell excess energy generated from renewable

sources, such as solar panels or wind turbines, directly to their neighbours or the broader

community. This system enhances energy access and promotes the use of renewable re-

sources by facilitating local energy circulation.

Several key models are utilised within P2P energy trading frameworks. One prominent

model is based on dynamic supply-demand ratios, where energy prices fluctuate accord-

ing to real-time consumption and availability. Another approach involves auction-based

frameworks, which allow participants to bid on energy prices, fostering a competitive mar-

ketplace. Additionally, game-theoretic strategies are employed to understand and predict

trade interactions, enhancing efficiency and optimising transaction outcomes [12].

4



1.1. Background

Overall, P2P energy trading has the potential to create a more resilient, sustainable, and

consumer-driven energy ecosystem, aligning with broader goals of energy independence

and reduced carbon footprints.

Dynamic pricing aims to align energy costs with real-time fluctuations in demand and

supply. While it has been widely adopted in single-energy systems, its implementation

within multi-energy frameworks remains underexplored. The interaction among electricity,

gas, and heat pricing represents a critical area for further development [13].

Dynamic pricing, a key component of IDR, involves varying electricity prices in real-

time or near-real-time to reflect the actual cost of generation and grid conditions [14].

It provides economic incentives for consumers to shift their consumption to periods of

lower demand, thereby reducing peak loads, improving system efficiency, and facilitating

RES integration. However, effectively implementing dynamic pricing and managing IDR

requires sophisticated optimisation techniques that can handle the complexities of the

dynamic grid environment, diverse consumer behaviours, and the stochastic nature of

RES generation [15].

Deep Reinforcement Learning (DRL), a powerful class of machine learning algorithms that

combines deep learning with reinforcement learning, has emerged as a promising solution

for complex decision-making problems in dynamic environments [16]. DRL agents learn

optimal policies through trial-and-error interactions with an environment, making them

well-suited for optimising energy management strategies in the context of dynamic pricing

and IDR.

5



1.1. Background

DRL has become a significant and practical approach for addressing complex challenges

in energy optimisation. Various techniques within this domain, including Deep Determin-

istic Policy Gradient (DDPG), Multi-Agent Deep Deterministic Policy Gradient (MAD-

DPG), and Multi-Agent Twin Delayed Deep Deterministic Policy Gradient (MATD3),

have demonstrated considerable potential in the context of energy trading [17]. These

methods leverage advanced algorithms to facilitate decision-making in dynamic environ-

ments, enabling more efficient trading strategies.

1.2 Problem Statement

The transition to renewable energy sources and the growing adoption of smart grid tech-

nologies underscore the necessity for efficient energy management strategies to navigate

the complexities of modern energy systems. The intermittent nature of RES, combined

with the increasing integration of electric vehicles (EVs), presents challenges in maintain-

ing grid reliability and operational efficiency. While traditional DR programs have proven

effective in balancing supply and demand, they often lack the scalability and adaptability

needed to address the dynamic interactions among electricity, heat, and gas networks.

IDR and dynamic pricing present promising avenues for enhancing grid flexibility and sus-

tainability. However, implementing these approaches within a multi-energy framework re-

mains underexplored, especially in systems incorporating P2P energy trading and diverse

consumer participation via EHs. Current DR and dynamic pricing methods frequently do

not account for the interdependencies among various energy carriers or their ability to

adapt to real-time energy demand and supply fluctuations.
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1.2. Problem Statement

This research seeks to address these challenges by exploring the integration of IDR with

dynamic pricing mechanisms within a decentralised multi-energy framework. By utilising

advanced optimisation techniques, including DRL, the study aims to develop adaptive

energy management strategies that promote efficient resource allocation, enhance grid

stability, and increase consumer involvement in sustainable energy practices.

1.3 Aim of the Study

The overarching aim of this research is to develop and evaluate intelligent energy man-

agement strategies by integrating dynamic pricing with IDR for complex, decentralised

multi-energy systems. This study leverages advanced DRL algorithms to create adaptive

frameworks that can navigate the challenges posed by high renewable energy penetration

and interconnected energy markets. The goal is to demonstrate that these DRL-driven

solutions can significantly enhance system efficiency, improve grid stability, and deliver

quantifiable economic benefits for all stakeholders, from service providers to end-users,

within electricity, gas, and heat networks.

1.4 Research Objectives

The objectives of this thesis are as follows:

1. Develop a dynamic pricing strategy integrated with IDR mechanisms for a multi-

energy system.

2. Utilise a modified DRL framework to optimise energy trading strategies.

3. compares the proposed approach with traditional methods in terms of efficiency,

cost, and sustainability.
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1.5. Research Questions

1.5 Research Questions

To guide this research and address the identified gaps, the following research questions

are formulated:

• RQ1: How effective is a DRL-based dynamic pricing strategy for IDR in simultan-

eously optimising DSO profitability and reducing end-user costs within an integ-

rated electricity and gas system?

• RQ2: To what extent can a DRL-based IDR framework be extended to manage

the complexities of multi-carrier energy systems (electricity, gas, and heat) that

incorporate EHs, and what is its impact on energy source utilisation and peak

demand reduction?

• RQ3: How does an advanced DRL algorithm, specifically the modified Double-

Actor Regularised Critic (DARC), perform in optimising a P2P multi-energy trad-

ing framework compared to other DRL models and traditional pricing schemes,

particularly concerning overall system welfare, stakeholder profitability, and energy

balance?

1.6 Research Contributions

This thesis is based on three key contributions, each represented by a distinct research

paper:

1. Deep Reinforcement Learning for Integrated Demand Response Dynamic Pricing of

Electricity and Gas Systems:

8



1.6. Research Contributions

• This contribution presents a dynamic pricing mechanism based on DRL spe-

cifically designed for the integrated demand response in electricity and gas

systems. The proposed approach utilises the DDPG algorithm to effectively

address supply-demand mismatches, enhance system reliability, and optimise

benefits for both consumers and service providers.

2. Dynamic Pricing Integrated Demand Response for Multiple Energy Carriers with

Deep Reinforcement Learning:

• This work extends the dynamic pricing framework to manage interactions

among multiple energy carriers, including electricity, gas, and heating systems.

It introduces integrated energy management strategies that improve system ef-

ficiency and accommodate diverse energy demands across interconnected sys-

tems.

3. Dynamic Pricing IDR in P2P Multi-Energy Trading Systems:

• The third contribution integrates dynamic pricing IDR strategies within a P2P

energy trading framework. Using the DARC algorithm, this work optimises en-

ergy trading across residential, commercial, and industrial microgrids, enhan-

cing renewable energy utilisation, reducing deficits, and improving stakeholder

profitability.

The collective contributions presented in Table 1.1 aim to enhance the comprehension and

practical application of dynamic pricing IDR mechanisms within multi-energy systems.

By leveraging DRL-based solutions, these contributions introduce innovative frameworks

specifically designed to tackle the complexities and challenges faced by decentralised en-

ergy markets. Through a detailed exploration of various strategies and methodologies, the

findings provide valuable insights into optimising energy distribution and pricing while

accommodating consumers’ and producers’ diverse and fluctuating demands. This work

not only paves the way for more efficient energy management but also contributes to

the overall sustainability and resilience of energy systems in a rapidly evolving market

landscape.
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1.6. Research Contributions

Table 1.1: Summary of contributions from PhD research papers

Contribution Paper Title Key Features

Dynamic Pricing IDR

in Electricity and Gas

Systems

Deep Reinforcement Learning

for Integrated Demand Re-

sponse Dynamic Pricing of

Electricity and Gas Systems

• Utilises DDPG algorithm

for dynamic pricing.

• Addresses supply and de-

mand mismatches.

• Enhances reliability for

multi-energy systems.

Dynamic Pricing IDR

for Multiple Energy

Carriers

Dynamic Pricing Integrated

Demand Response for Multiple

Energy Carriers with Deep Re-

inforcement Learning

• Extends dynamic pricing

IDR to electricity, gas,

and heat.

• Promotes energy carrier

interaction by using EHs.

• Improves overall system

efficiency.

Dynamic Pricing IDR

in P2P Multi-Energy

Trading Systems

Dynamic Pricing IDR in P2P

Multi-Energy Trading Systems
• Employs DARC al-

gorithm for P2P trading.

• Optimises energy distri-

bution across residential,

commercial, and indus-

trial microgrids.

• Maximises renewable

utilisation and stake-

holder profitability.
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1.7. Thesis Structure

1.7 Thesis Structure

The rest of the thesis is organised as follows:

• Chapter 2 presents a comprehensive review of relevant literature on demand re-

sponse DR, integrated demand response IDR, P2P energy trading and Deep Rein-

forcement Learning applications in Energy Systems.

• Chapters 3, 4, and 5 are dedicated to the three papers, which collectively form

the core of this research.

• Chapter 6 provides a synthesis of findings and highlights future research directions.
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Chapter 2

Literature Review

2.1 demand response DR

The literature on DR emphasises its crucial role in contemporary energy systems, particu-

larly in improving efficiency, facilitating the integration of renewable energy, and ensuring

grid reliability. As an extension of Demand-Side Management (DSM), DR enables con-

sumers to actively engage in electricity markets by adjusting their consumption patterns

in response to price signals or incentives. Research highlights the diverse approaches to

DR, exploring its theoretical frameworks, technological implementations, and practical

effects on power systems [18] [19].

One area of the literature examines the categorisation of DR into price-based and incentive-

based programs. Price-based DR encompasses Time-of-Use (TOU) rates, Real-Time Pri-

cing (RTP), and Critical Peak Pricing (CPP), which enable consumers to modify their

electricity usage in response to varying prices [18]. On the other hand, incentive-based

DR includes programs such as direct load control and emergency demand response, where

participants receive financial compensation for adjusting their consumption during critical

periods [18] [19].
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2.1. demand response DR

Recent advancements highlight the integration of DR within microgrid systems and smart

buildings. Microgrid energy management systems utilise DR to align generation from

Distributed Energy Resources (DERs), such as solar and wind, with variable demand.

For example, optimising DER operations through DR has significantly reduced operating

costs and emissions [20] [21]. Additionally, the adoption of artificial intelligence (AI)-driven

frameworks, including Multi-Agent Reinforcement Learning (MARL), enhances adaptive

and efficient load management, effectively addressing the uncertainties associated with

renewable energy generation [22].

The role of Virtual Power Plants (VPPs) in enhancing the effectiveness of DR is a key

focus area. VPPs aggregate distributed energy resources (DERs), energy storage systems

(ESSs), and flexible loads, facilitating coordinated participation in electricity markets and

offering ancillary services such as demand-side frequency control. This aggregation enables

real-time balancing of demand and supply, thereby contributing to both grid stability and

efficiency. Nevertheless, challenges such as the uncertainty of renewable generation and

market prices highlight the need for sophisticated forecasting and optimisation techniques

[23].

Peer-to-peer (P2P) energy trading exemplifies a cutting-edge application of DR, particu-

larly within community microgrids. This decentralised model allows prosumers to engage

in direct energy trading, leveraging pricing mechanisms that encourage participation and

reduce reliance on the grid. Research indicates that P2P trading not only lowers costs but

also bolsters the resilience of local energy systems [24].

Decentralised frameworks are essential for implementing DR systems. Algorithms designed

to optimise energy consumption and generation using local data safeguard privacy and

help reduce costs and discomfort for participants. These frameworks effectively balance

supply and demand, even in the face of challenges like grid congestion and the intermit-

tency of renewable energy sources [25].
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2.1. demand response DR

Economic analyses throughout the literature consistently highlight the cost-effectiveness of

DR programs. Notably, these programs have achieved peak load reductions of up to 5.13%,

resulting in substantial cost savings and improved system reliability [20]. Nevertheless,

the effectiveness of DR initiatives hinges on consumer participation as well as the design

of incentives and pricing mechanisms that align with market dynamics. Furthermore,

integrating DR with renewable energy systems, supported by advanced technologies such

as the Internet of Things (IoT), has paved the way for smarter, more responsive grids

[23].

Future research directions highlighted include enhancing the scalability and adaptability

of DR technologies, especially in light of the growing share of renewable energy and

the electrification of sectors such as transportation. Additionally, integrating advanced

communication technologies and machine learning algorithms could significantly improve

DR systems’ predictive capabilities and operational efficiency [22] [25].

To summarise, DR continues to be a fundamental element in sustainable energy ap-

proaches, with uses ranging from conventional grid oversight to creative decentralised

market structures. Research highlights its ability to connect supply and demand, promot-

ing a more robust and efficient energy system.
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2.2. Integrated Demand Response (IDR)

2.2 Integrated Demand Response (IDR)

IDR has emerged as a transformative strategy in demand-side management (DSM), enhan-

cing the flexibility and efficiency of multi-energy systems (MESs). Unlike traditional DR

programs primarily concentrate on electricity, IDR incorporates multiple energy carriers

such as electricity, natural gas, and thermal energy. This integration facilitates dynamic

interactions across various energy systems, enabling a more holistic response to energy

demands. This literature review offers a comprehensive analysis of IDR, emphasising its

applications, modelling approaches, and implications for energy hubs and MESs.

The concept of IDR expands upon the traditional DR model by harnessing the syner-

gies among various energy carriers. IDR enables coordinated demand-side management

within energy hubs, where electricity, heating, and natural gas systems function in har-

mony. These hubs, defined by their interconnected generation, conversion, and storage

systems, play a vital role in contemporary energy infrastructure, according to Kamwa et

al. IDR programs within these energy hubs promote energy switching and demand shift-

ing, thereby optimising energy use, reducing costs, and enhancing grid reliability along

with the integration of renewable energy sources [26].

Dynamic pricing mechanisms are essential for enabling IDR. By reflecting real-time mar-

ket conditions and supply and demand dynamics, these mechanisms encourage users to

modify their energy consumption patterns. Nguyen et al. investigated optimal pricing

strategies for IDR, illustrating how dynamic tariffs can help balance load profiles and

improve economic efficiency in Microgrid Energy Systems (MESs) [15]. Likewise, Chen et

al. highlighted the importance of price elasticity in developing IDR strategies that accom-

modate a variety of consumer preferences while also reducing financial risks for energy

providers [27].
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2.2. Integrated Demand Response (IDR)

Incorporating IDR into MESs necessitates advanced modelling and optimisation tech-

niques to navigate the inherent complexities of multi-energy interactions. Mansouri et al.

introduced a multi-stage joint planning and operation model for energy hubs, utilising

stochastic programming to manage uncertainties related to renewable energy output and

demand variability [28]. Their findings underscored the potential of IDR to enhance op-

erational efficiency and reduce costs by promoting demand-side flexibility [29]. Addition-

ally, Zheng et al. proposed an incentive-based IDR model that considers the behavioural

coupling effects among consumers. This approach improves the model’s accuracy and ap-

plicability, ensuring that IDR strategies are aligned with consumer behaviour and the

constraints of the energy system [30].

Furthermore, IDR plays a crucial role in promoting energy resilience and sustainability.

By incorporating RESs into MESs, IDR improves system flexibility and decreases reliance

on fossil fuels. For example, Bahrami and Sheikhi [31] illustrated how IDR programs in

smart energy hubs could facilitate energy switching between electricity and natural gas,

optimising resource utilisation during peak demand periods and lowering greenhouse gas

emissions. Similarly, Shao et al. [32] emphasised the advantages of IDR in integrated elec-

tricity and natural gas systems, demonstrating how demand-side flexibility can alleviate

the operational constraints of interconnected energy networks.

Recent studies have broadened the understanding of IDR by applying game-theoretic

approaches to optimise energy pricing and consumption. Gao et al. [33] employed an evol-

utionary game model to analyse the participation behaviours of residential users in IDR

programs. Their results indicated that adaptive pricing strategies significantly influence

user participation and enhance overall energy efficiency. Yang et al. [34] introduced a

Stackelberg game-based pricing strategy for multiple energy providers, highlighting the

integration of IDR with home energy management systems (HEMS) to optimise multi-

energy loads and improve economic outcomes for both providers and consumers.
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2.2. Integrated Demand Response (IDR)

Advanced control and optimisation frameworks are critical for the implementation of IDR

in community-integrated energy systems (CIESs). Li et al. [35] introduced a scheduling

model that incorporates IDR alongside renewable energy uncertainties, leveraging power-

to-gas (P2G) and micro-turbine technologies to improve system flexibility and enhance

user satisfaction. Their research highlights the significance of coordinated IDR strategies

in achieving a balance between economic efficiency and system reliability.

Despite its many advantages, IDR encounters challenges regarding implementation and

scalability. The intricate nature of modelling interactions among various energy carriers,

combined with the uncertainties of renewable energy outputs, necessitates the develop-

ment of robust computational tools and methodologies. Furthermore, consumer engage-

ment is a vital aspect, as the success of IDR programs depends on active participation and

behavioural adaptation. Future research should prioritise the creation of user-centric IDR

frameworks that leverage advanced communication technologies and machine learning

algorithms for real-time decision-making.

IDR represents a notable advancement in demand-side management. It provides a compre-

hensive approach to optimising energy consumption across various carriers. By harnessing

the capabilities of energy hubs and Market Energy Systems (MESs), IDR improves sys-

tem efficiency, facilitates the integration of renewable energy, and supports sustainable

energy development. Ongoing research and innovation in this area are crucial to address-

ing current challenges and realising the full potential of IDR in contemporary energy

systems.
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2.3. Peer-to-peer (P2P) energy trading

2.3 Peer-to-peer (P2P) energy trading

P2P energy trading has emerged as a transformative model within contemporary energy

markets, presenting a decentralised and consumer-centric approach to energy exchange.

In contrast to traditional hierarchical systems dominated by centralised utilities, P2P

energy trading allows consumers and prosumers to directly participate in energy transac-

tions. This review examines the existing literature on P2P energy trading, emphasising

its technical, economic, and social aspects while also addressing the challenges and op-

portunities that arise from this innovative approach.

The foundation of P2P energy trading lies in the widespread adoption of Distributed En-

ergy Resources (DERs), including solar panels, wind turbines, and energy storage systems.

As highlighted by Zhang et al. [11], the integration of DERs has transformed energy con-

sumers into prosumers, who both generate and consume energy. P2P trading empowers

these prosumers to sell excess energy to their neighbours, thereby cultivating localised

energy markets that enhance grid resilience and optimise resource utilisation. The emer-

gence of P2P platforms, such as Elecbay, illustrates how information and communication

technologies (ICTs) can facilitate direct energy trading, reducing transmission losses and

reliance on centralised utilities.

Blockchain technology has been instrumental in overcoming the operational challenges

associated with P2P energy trading. By enabling secure, transparent, and tamper-proof

transactions, blockchain establishes trust and accountability among participants. Esmat

et al. [36] designed a decentralised P2P energy trading platform that is anchored in block-

chain, which incorporates market-clearing algorithms and smart contracts to automate

energy transactions. This system not only minimises transaction costs but also safeguards
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2.3. Peer-to-peer (P2P) energy trading

user privacy, showcasing blockchain’s potential to transform energy markets. Similarly,

Alskaif et al. [37] demonstrated how blockchain-enabled smart contracts can optimise

bilateral trading preferences, ensuring alignment between energy supply and consumer

demand while maintaining grid stability.

From an economic standpoint, P2P energy trading has been demonstrated to enhance

market efficiency by fostering competitive local energy markets. Soto et al. [38] emphasise

that P2P trading incentivises the adoption of renewable energy by providing prosumers

with the opportunity to monetise their surplus generation. This approach not only lowers

energy costs for participants but also facilitates the global transition to low-carbon energy

systems. Furthermore, Guerrero et al. [33] investigated decentralised P2P trading within

the context of network constraints, highlighting its potential to reduce grid congestion

and optimise the use of local resources.

Game theory and optimisation models have been widely utilised to develop effective P2P

energy trading mechanisms. Morstyn and McCulloch [39] proposed a multi-class energy

management framework that considers prosumer preferences, enabling differentiated pri-

cing based on factors such as energy source and location. This strategy enhances con-

sumer satisfaction and encourages market participation by customising energy trading to

individual requirements. Similarly, Paudel et al. [40] introduced a decentralised market-

clearing mechanism that takes into account power losses and network fees, thereby ensur-

ing fair and efficient energy allocation among participants.

Although P2P energy trading holds significant promise, it encounters various technical and

regulatory challenges. A primary concern is ensuring network stability while managing a

high volume of decentralised transactions. Wu et al. [41] highlighted the importance of mi-

crogrids and blockchain technology in addressing these challenges, offering a coordinated
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2.3. Peer-to-peer (P2P) energy trading

framework for energy management and market integration. Their research emphasises

that regulatory support and technological innovation are crucial for the expansion of P2P

energy trading. Furthermore, [39] pointed out the issues of privacy and the necessity for

robust data security measures to build consumer trust and encourage participation.

P2P energy trading carries significant social implications, fostering energy democracy

and enhancing community resilience. By enabling individuals to take an active role in

energy markets, P2P trading cultivates a sense of ownership and engagement in the en-

ergy transition. Case studies, such as the Brooklyn Microgrid project, demonstrate how

community-driven energy initiatives can strengthen social cohesion while addressing local

energy needs [37]. Moreover, the integration of P2P trading with demand-side manage-

ment and renewable energy sources amplifies its environmental advantages, contributing

to the achievement of sustainable development goals [42].

Future research on P2P energy trading should prioritise addressing scalability and inter-

operability challenges, particularly in the integration of diverse energy systems and market

structures. Developing standardised protocols and frameworks can facilitate cross-border

energy trading, thereby expanding the reach and impact of P2P markets. Furthermore,

advancements in artificial intelligence and machine learning can potentially enhance the

efficiency of market operations, enabling real-time optimisation and informed decision-

making [38].

P2P energy trading signifies a transformative shift within the energy sector. It promotes

a decentralised, consumer-centric model that aligns economic, environmental, and social

goals. Although challenges remain, continual technological advancements and supportive

policy measures will unlock its full potential, paving the way for a more resilient and

equitable energy future.
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2.4 DRL Applications in Energy Systems

DRL has emerged as a groundbreaking technology for optimising energy systems. It

provides innovative solutions to the complex and dynamic challenges faced by modern

energy grids. Unlike traditional model-based optimisation techniques, DRL capitalises on

the interactions between agents and their environments, enabling the creation of adaptive

and scalable strategies. This literature review examines the application of DRL in energy

systems, with a particular focus on its use in energy management, demand response, and

peer-to-peer energy trading.

One of the most significant contributions of DRL to energy systems is in energy manage-

ment for integrated energy systems (IES). Traditional energy management methods often

struggle with the stochastic nature of renewable energy sources and the multi-energy

coupling characteristics of IES. Han et al. demonstrated the efficacy of a DRL-based

framework in optimising the interaction between supply and demand in IES. The pro-

posed model effectively captured the uncertainties in renewable energy generation and

dynamic user behaviours by integrating a proximal policy optimisation (PPO) algorithm

with long short-term memory (LSTM) networks. The simulation results highlighted a

substantial reduction in operational costs and improved utilisation of renewable energy

sources [43].

The application of DRL in building energy systems (BES) represents a promising ad-

vancement. Shen et al. developed a multi-agent DRL framework utilising duelling double

deep Q-networks (D3QN) to optimise energy consumption in buildings equipped with

renewable energy sources. This framework incorporated prioritised experience replay and

value decomposition, enhancing learning efficiency while ensuring system stability. When

compared to traditional control methods, the DRL method notably decreased energy ex-

penses and unused renewable energy, emphasising its capability to enhance sustainable

building operations [44].
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In the field of electric vehicle (EV) charging, DRL has demonstrated significant effective-

ness in tackling challenges associated with dynamic pricing and load balancing. Lee and

Choi proposed a federated DRL approach for smart EV charging stations, employing soft

actor-critic algorithms to optimise charging schedules and dynamic pricing. This privacy-

preserving framework not only ensured data security but also facilitated collaborative

learning among distributed agents. As a result, the approach led to increased profitability

for charging station operators while alleviating grid stress during peak demand periods

[45].

P2P energy trading exemplifies the potential of DRL in decentralising energy systems. In

their research, Chen et al. introduced a multi-agent DRL model based on twin delayed

deep deterministic policy gradients (TD3) to manage P2P energy trading among inter-

connected multi-energy microgrids. The study illustrated how the model effectively co-

ordinated trading strategies among residential, commercial, and industrial microgrids,

reducing operational costs and improving energy efficiency. This application highlights

DRL’s capacity to navigate high-dimensional decision-making in dynamic environments

[46].

The integration of DRL with blockchain technology offers additional opportunities for

securing and automating energy trading processes. For instance, DRL-enhanced smart

contracts can enable transparent and tamper-proof transactions in decentralised energy

markets, as demonstrated in research on blockchain-based peer-to-peer trading frame-

works. This integration improves trust among participants while ensuring adherence to

system constraints [47].

Although there are benefits, implementing DRL in energy systems comes with its chal-

lenges. According to Cao et al., several primary concerns include the high computational

demands for training DRL models, the necessity for extensive datasets to achieve reliable

learning, and the potential for settling on suboptimal policies. To overcome these chal-
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lenges, improvements in algorithm development are needed, such as blending DRL with

heuristic optimisation methods [48]. Additionally, enhancing the scalability of DRL frame-

works is a vital area for investigation, especially in effectively managing the integration

of various energy systems and market stakeholders.

The sustainability implications of DRL are significant. Forootan et al. highlighted the

importance of machine learning and DRL in advancing the adoption of renewable energy

and mitigating greenhouse gas emissions. By optimising energy consumption patterns and

enabling demand-side management, DRL plays a vital role in achieving broader objectives

of energy efficiency and carbon neutrality. The adaptability of DRL algorithms to evolving

environmental and market conditions positions them as crucial tools in the transition

toward sustainable energy systems [49].

Deep reinforcement learning signifies a transformative change in how energy systems are

managed and operated. Its utilisation in energy management, demand response, and peer-

to-peer trading highlights its ability to improve efficiency, sustainability, and resilience.

Future studies should concentrate on overcoming scalability and computational issues

while investigating innovative integrations with emerging technologies such as blockchain

and Internet of Things (IoT) platforms. By harnessing these advancements, DRL can

significantly contribute to the development of intelligent and sustainable energy systems

in the future.

An essential analysis of doctoral research thesis in comparison to comprehensive literature

reviews is presented in Table 2.1.

Table 2.1: Comparison of PhD Research Papers with Literature Review

Aspect Literature Review Insights PhD Research Papers Contri-

butions
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Dynamic Pricing Widely explored in single-energy

systems. Limited focus on multi-

energy systems.

Extends dynamic pricing to multi-

energy systems including electri-

city, gas, and heat, optimising

supply-demand dynamics.
IDR Focused on electricity-only sys-

tems. Limited integration across

energy carriers.

Incorporates IDR into multi-

energy systems, enabling energy

carrier interaction and holistic en-

ergy management.
P2P Energy

Trading

Emphasises decentralised markets

with auction-based and game-

theoretic models. Limited real-

world implementation.

Develops a DARC-based P2P

trading platform tailored for in-

terconnected microgrids, enhan-

cing renewable utilisation.
DRL Demonstrated potential in en-

ergy trading and demand response

but with high computational costs

and scalability issues.

Implements DRL (DDPG and

DARC) for efficient dynamic pri-

cing IDR in multi-energy sys-

tems, addressing computational

challenges.
Energy Resilience

and Sustainabil-

ity

Explores renewable integration

but lacks emphasis on operational

reliability in complex systems.

Enhances system resilience by in-

tegrating renewable sources into

multi-energy frameworks, redu-

cing reliance on fossil fuels.
Multi-Energy

Systems (MES)

discusses the theoretical benefits

of MES but lacks practical optim-

isation models for real-time oper-

ations.

Provides a practical framework

for MES optimisation, leveraging

DRL to balance real-time opera-

tions and stakeholder benefits.
Consumer En-

gagement

Limited focus on incentive mech-

anisms and behavioural model-

ling.

Introduces dynamic pricing IDR

mechanisms that actively engage

consumers through tailored in-

centives and demand flexibility.
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2.5 Research Gap

A comprehensive review of the literature on DR, IDR, P2P trading, and DRL applications

in energy systems reveals significant advancements. However, several critical gaps persist,

which this thesis aims to address directly.

1. Limited Scope of Dynamic Pricing in Truly Multi-Energy Systems: As

discussed in the literature, dynamic pricing has been widely explored, but pre-

dominantly within single-energy (electricity-only) systems. While the concept of

multi-energy systems is acknowledged, there is a distinct lack of research that de-

velops and evaluates dynamic pricing mechanisms across tightly coupled electricity,

gas, and heat networks simultaneously. Existing models often fail to fully capture

the operational and economic synergies that can be unlocked through cross-carrier

substitution and the integrated management capabilities of EHs.

2. Insufficient Integration and Optimisation in IDR Frameworks: The evolu-

tion from DR to IDR is a key theme in recent literature. However, many proposed

IDR frameworks remain theoretical or electricity-centric in their practical applica-

tion. There is a significant gap in developing holistic IDR strategies that not only

integrate multiple energy carriers but are also optimised using advanced, adaptive

control methods. The potential for DRL to manage the high-dimensional, continu-

ous decision spaces inherent in multi-energy IDR remains largely underexplored.

3. Nascent Development of P2P Trading in Complex Multi-Energy Envir-

onments: The literature on P2P energy trading highlights its potential for de-

centralised markets, often focusing on auction-based or game-theoretic models for

electricity trading. A clear gap exists in the design and evaluation of P2P platforms

that operate within interconnected multi-energy microgrids, where participants can

trade electricity, gas, and heat. Furthermore, integrating dynamic pricing and IDR

strategies into such complex P2P frameworks to optimise overall system welfare,

rather than just individual transactions, has not been thoroughly investigated.
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4. Need for More Advanced and Adapted DRL Algorithms: While DRL is

recognised as a powerful tool for energy system optimisation, many studies apply

standard algorithms without tailoring them to the specific challenges of the problem.

As energy systems become more complex, such as in P2P multi-energy markets,

the limitations of algorithms like DDPG become more apparent. There is a need to

explore and adapt more sophisticated DRL algorithms, such as the DARC approach,

which are specifically designed to handle challenges like value overestimation and

inefficient exploration in complex, multi-faceted environments.

This thesis addresses these interconnected gaps by proposing a progressive series of DRL-

based frameworks. It begins by establishing a dynamic pricing IDR model for a dual-

carrier system, extends it to a multi-carrier system with Energy Hubs, and culminates

in an advanced DRL-driven solution for a P2P multi-energy trading market, thereby

providing a comprehensive and novel contribution to the field.
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Chapter 3

DRL for IDR: A Dynamic Pricing
Strategy for Electricity and Gas

Systems

The traditional concept of demand response has evolved into integrated demand response,

benefiting from the advanced capabilities offered by energy integration technologies. The

interdependence between critical electricity and gas systems sectors has intensified due

to the increasing reliance on natural gas for electricity generation. This chapter presents

an innovative approach to IDR within the energy sector, employing DRL to price energy

dynamically across an integrated electricity and gas system. This method optimises en-

ergy consumption patterns while considering both the profitability of Distribution System

Operators (DSOs) and the costs faced by end users. The potential advantages for the en-

ergy sector include enhanced profitability for DSOs, reduced energy costs for consumers,

a balanced supply and demand within the integrated energy market, and improved re-

liability of energy systems. Simulation results demonstrate that the proposed approach

significantly boosts the profitability of DSOs, decreases energy costs for end users, and

effectively balances supply and demand within the integrated market. Additionally, the
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algorithm enhances the reliability of the energy system and increases consumer satisfac-

tion by dynamically adapting to changing market conditions. These findings highlight

the potential of DRL-driven IDR mechanisms as a mutually beneficial strategy for both

energy providers and consumers.

3.1 Introduction and Background

In light of recent developments in energy resources, it is imperative to acknowledge the

critical necessity for a more complex, robust, efficient, and sustainable energy system.

Considering the environmental concerns along with the economic aspects [50], it is per-

tinent to note that the smart grid is being actively developed to facilitate the increased

integration of renewable generation [51], [52]. One significant advantage of the smart grid

is its ability to enhance the integration of variable and uncertain RES through diverse

energy storage solutions, in contrast to conventional energy systems where operational

sectors function independently [53]. Nonetheless, despite the advancements, the limited

capacity of smart grids continues to pose challenges, particularly with respect to renewable

energy curtailment in existing energy systems.

A recent advancement in energy systems presents a simpler and more effective approach to

enhancing grid reliability and reducing energy costs through DR. This approach leverages

modern advanced information and communication technologies within smart grid systems

to improve the capability to swiftly address supply-demand mismatches by adjusting

flexible loads on the demand side [54].
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DR can be defined as a structured program or tariff designed to provide incentive payments

that encourage reduced electricity consumption during peak demand periods, when market

prices increase, or when there is a threat to grid reliability. Furthermore, it seeks to

incentivise fluctuations in electricity pricing over time [55].

The various DR programs fall into two primary categories: price-based and incentive-based

[56]. Participants in price-based DR are encouraged to modify their energy consumption

patterns in response to fluctuating electricity prices. In contrast, incentive-based DR offers

either fixed or time-variable incentives to participants who decrease their energy usage

during periods of stress within the power system [57].

IES have emerged as a pivotal solution to address the escalating demand for coordin-

ated energy management across electricity, heat, and gas networks [58]. Mancarella [59]

provides a detailed overview of multi-energy systems, highlighting their potential to en-

hance flexibility and efficiency by leveraging the complementary properties of various

energy carriers. The integration of electricity and heat systems has been extensively stud-

ied, as evidenced by the work of Arteconi et al. [60], which demonstrates the economic

and operational benefits of coupling electric heating systems with thermal energy storage.

Similarly, Liu et al. [61] investigated distributed energy management for combined heat

and power (CHP) based microgrids, underscoring the importance of integrated electricity

and heat systems in meeting dynamic energy demands.

The interaction between electricity and gas systems has received considerable attention in

recent years. Shahidehpour et al. [62] investigated the influence of natural gas infrastruc-

ture on power systems. In contrast, He et al. [63] developed robust operational models

for integrated electricity-natural gas systems, aiming to improve reliability in uncertain

conditions. Additionally, Wang et al. [64] introduced a bilateral market framework to ana-

lyse the interdependencies between electricity and gas markets, with a particular focus on

marginal price-based trading mechanisms.
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DR has historically been limited to single energy carriers, which constrains its effectiveness

in systems characterised by diverse energy requirements. Siano [57] identified DR as an

essential tool for managing uncertainties in energy supply and demand, while Nolan and

O’Malley [65] addressed the challenges faced in implementing DR, particularly regarding

inflexible loads. IDR builds on traditional DR by incorporating multiple energy carriers,

allowing users to shift between different energy types and adjust consumption patterns

in response to price signals [66]. Zhao et al. [67] proposed a multi-energy DR model

that utilises time-of-use pricing to optimise energy consumption across electricity and gas

systems.

Reinforcement Learning (RL) is gaining traction in energy systems for its ability to op-

timise decision-making in complex situations. Researchers have explored its use in various

applications, such as demand response, battery management, and energy trading between

microgrids [68] [57] [69] [70]. These studies demonstrate RL’s potential to improve effi-

ciency, reduce costs, and enhance user satisfaction in the energy sector.

The increasing integration of renewable energy sources and the deregulation of energy

markets present new challenges [71] [72]. RL offers a promising approach to address these

challenges by enabling dynamic pricing and demand response programs that balance the

needs of consumers and service providers [73] [74] [75]. For example, RL can optimise

residential load scheduling considering factors like consumer preferences, renewable energy

availability, and costs, or determine dynamic pricing based on real-time electricity demand

and wholesale prices.

30



3.1. Introduction and Background

Despite substantial advancements, current research frequently neglects the integrated op-

eration of electricity, heat, and gas systems within a unified market framework. Fur-

thermore, the potential of RL to dynamically optimise IDR strategies remains largely

unexamined. This study seeks to bridge these gaps by proposing a tri-layer multi-energy

market model that incorporates RL-based optimisation, aiming to enhance system reli-

ability, economic efficiency, and consumer satisfaction. The primary contributions of this

chapter are as follows:

1. The tri-layer market structure comprises Independent System Operators (ISOs),

DSOs, and end-users. This framework aims to enhance coordination among energy

sources, facilitate efficient energy transactions, and optimise market operations.

2. Building on IDR concepts, this research introduces mechanisms for energy users

to shift consumption patterns and switch between energy carriers. This approach

maximises demand-side flexibility while ensuring consumer satisfaction, even for

inflexible, must-run loads.

3. Development of an IDR algorithm that employs DRL to dynamically price energy

within an integrated electricity and gas system. This algorithm takes into account

both the profitability of DSOs and the costs incurred by end-users. The DDPG

algorithm is applied to devise optimal bidding and pricing strategies in a continuous

state and action space, addressing a complex challenge in energy markets.
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3.2 Integrated Market Framework and System As-

sumptions

3.2.1 Market Settings and Assumptions

In this framework, the hierarchical energy market consists of ISOs, DSOs, and end-users.

The integrated electricity and natural gas systems are managed by a single operator, with

increasing reliance on natural gas for electricity generation, enhancing the interdependence

between these sectors. WANG et al. [64] present a model for interdependent gas and

electricity markets that includes a marginal price-based bilateral trading system. ISOs

facilitate these coupled markets, enabling bidirectional transactions and implementing

bidding strategies in the Gas-Electricity wholesale markets. Figure 3.1 depicts the tri-layer

market architecture—ISOs, DSOs and end-users—showing how the DRL agent interacts

with each layer to set dynamic prices.

End-users

Distribution system operators (DSOs) 

Independent system Operations (ISOs)

Electricity system Gas system 

Energy flow

Information flow

Offering price

LMEP 

LMGP 

Power Trading(P2G)

Gas Trading(G2P)

Figure 3.1: Hierarchical energy market model with ISOs, DSOs, and end-users.
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DSOs operate with a profit-driven approach, acquiring gas and electricity from ISOs and

selling it to end-users. They establish dynamic retail pricing policies that aim to encourage

efficient energy consumption while maximising profits. End-users are equipped with IEMS

that enable them to analyse and manage their electricity, heating, and cooling demands.

Additionally, these consumers have the opportunity to participate in dynamic pricing

programs, which help them balance their energy use and lower costs.

The DSOs are responsible for implementing IDR. They develop dispatch plans that align

with the load curtailment index, ensuring effective coordination between the end-users

and the DSO. The comprehensive interaction process of the proposed model is outlined

as follows:

• The DSO conducts a day-ahead load forecast and reports it to the ISO or submits

bids into the energy market.

• The DSO receives the load curtailment index from the ISO.

• The DSO develops the dispatch plan utilising a dynamic pricing IDR algorithm and

communicates the results to the end-users.

• If any end-users are unable to respond as directed, the DSO will modify the dispatch

plan; otherwise, the response will proceed as intended.

3.2.2 End-Users Model

This study assumes that end-users possess the flexibility to choose between gas and elec-

tricity energy carriers within specified ranges. Based on their preferences and load char-

acteristics, end-users’ energy demands are categorised into critical loads and curtailable

loads.
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Critical loads refer to the energy requirements that Distribution System Operators (DSOs)

must meet consistently and reliably to ensure uninterrupted service. These loads are

represented mathematically as:

ecritic
t,n = Ecritic

t,n (3.1)

Where t ∈ {1,2,3 . . .T} denotes time slot t. t is the final time slot of a day, considering

that the price is updated every hour, then t = 24. n ∈ {1,2,3 . . .N} represents number of

end-users n. Et,n and et,n indicate the energy demand and energy consumption of end-users

n at time slot t respectively.

Curtailable load: apart from critical loads, electricity demands such as heating, ventilation,

and air conditioning (HVAC) of end-users usually decrease as the electricity and gas prices

increase. The consumed energy of the curtailable load for end-users n at time slot t is

defined as:

ecurt
t,n = Ecurt

t,n

(
1+ξt ·

λt,n−πt

πt

)
(3.2)

subject to the constraints:

ξt < 0

λt,n ⩾ πt
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Where ξt is the elasticity coefficient at time slot t. t,λt,nrepresents the retail energy price

for end-users n are time slot t, πt denotes the ISO energy price at time slot t.

The elasticity ξt expresses the change in energy demand for a 1 % change in price. Elasti-

city is commonly negative, indicating an inverse relationship between energy demand and

energy price.

Once end-users n consumes energy ecurt
t,n at time slot t, the corresponding energy amount

ecurt
t,n of end-users load demand is satisfied and the remainder of the load demand Ecurt

t,n −

ecurt
t,n is not satisfied. This reduced energy causes dissatisfaction of end-users n at time slot

t, which is denoted by a dissatisfaction cost function:

φt,n =
αn

2
(
Ecurt

t,n − ecurt
t,n
)2

+βn
(
Ecurt

t,n − ecurt
t,n
)

(3.3)

αn > 0

βn > 0

Dmin < Ecurt
t,n − ecurt

t,n < Dmax

Where αn is customer preference value varying between different customers, it shows the

attitude of a customer with respect to energy demand reduction: a greater value of αn

indicates that the customer prefers less demand reduction to improve their satisfaction

level, and vice versa, βn is a predetermined constant, Dmin and Dmax are the ranges of

demand reduction when the retail electricity and gas prices are in effect.

From the end-users’ side, the objective function is to minimise its costs as described below:
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min
T

∑
t=1

[
λt,n ·

(
ecurt

t,n + ecritic
t,n

)
+φt,n

]
(3.4)

The cost incurred by end-users includes their dissatisfaction cost and energy payment:

CostEnd-Users =
N

∑
n=1

[
λt,n · etotal

t,n +µt,n ·gtotal
t,n +φt,n

]
(3.5)

3.2.3 DSOs Model

The DSOs participate in the wholesale electricity market, organised by the ISO. In this

market, the DSOs purchase energy at wholesale prices set by the ISO and subsequently

sell it to end-users at retail prices determined by their pricing strategies. The primary

objective of the DSOs is to implement dynamic retail pricing policies that maximise their

profit, as formulated below:

max
N

∑
n=1

T

∑
t=1

(λt,n−πt) ·
(
ecurt

t,n + ecritic
t,n

)
(3.6)

At any rate, λt,n exceeds πt ; however, it is essential to ensure that the price difference

remains reasonable. This can be viewed as a result of regulatory requirements or mutual

agreements between Distribution System Operators (DSOs) and end-users to maintain

fair pricing and safeguard their profits. Therefore, it should be constrained as follows:

K1πt,min ⩽ λt,n ⩽ K2πt,max (3.7)
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Here, K1 and K2 represent predetermined coefficients for the bounds of the retail prices.

The DSO’s profit is derived from the difference between retail and wholesale prices for

both electricity and gas:

ProfitDSO =
N

∑
n=1

[
(λt,n−πt) · etotal

t,n +(µt,n−ψt) ·gtotal
t,n

]
(3.8)

3.2.4 Energy Balances

Electricity: The total electricity supplied must equal the sum of electricity demanded,

including electricity used in gas compression (e.g., Power-to-Gas conversion)

Psupply
t = ∑

n
Pdemand

t,n +Pcompressor
t (3.9)

Gas: Similarly, the gas supply must balance with demand, including gas-fired electricity

generation:

Gsupply
t = ∑

n
Gdemand

t,n +Ggeneration
t (3.10)

3.2.5 Coupled Energy Pricing

This study employs marginal pricing to accurately represent the interdependency of the

systems:

λt =
∂L

∂Pt
, µt =

∂L

∂Gt
(3.11)
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Where λt is the locational marginal price of electricity at time t. And µt Locational

marginal price of gas at time t. L is the system’s Lagrangian function encompassing all

constraints and objectives.

Optimisation Objective: Maximise the overall system efficiency by minimising the

combined cost of electricity and gas usage:

min
T

∑
t=1

(
λtP

supply
t +µtG

supply
t

)
(3.12)

3.2.6 System Constraints

In order to ensure the feasibility and efficiency of the proposed energy trading framework,

the following constraints have been established:

Energy Balance Constraint: The total energy procured by the Distribution System

Operators (DSOs) from the wholesale market must satisfy the overall energy demand of

end-users:

N

∑
n=1

(
ecurt

t,n + ecrit
t,n
)
≤ Pt,proc (3.13)

Where Pt,proc represents the total energy acquired by the DSOs from the Independent

System Operator (ISO) at time slot t.

Price Bound Constraint: The retail prices λt,n set by the DSOs must comply with

regulatory or contractual price bounds:
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K1πt,min ≤ λt,n ≤K2πt,max (3.14)

In this equation, K1 and K2 are predefined coefficients, while πt,min and πt,max represent

the minimum and maximum wholesale prices at time slot t.

Curtailable Load Constraint: The energy consumption of curtailable loads must ad-

here to user-defined elasticity and pricing dynamics:

ecurt
t,n = Ecurt

t,n ·
(

1+ξt ·
λt,n−πt

πt

)
(3.15)

With

ξt < 0, λt,n ≥ πt (3.16)

Here, ξt denotes the elasticity coefficient at time period t.

End-user Satisfaction Constraint

End-user satisfaction must be maintained within allowable bounds for unmet curtailable

loads:

Dmin ≤ Ecurt
t,n − ecurt

t,n ≤ Dmax (3.17)

Where Dmin and Dmax define the range of tolerable unmet energy demand for curtailable

loads.

Profitability Constraint: The DSO must ensure profitability by maintaining a positive

margin between the retail and wholesale prices:
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λt,n > πt (3.18)

Capacity Constraint: The total energy supplied to end-users must not exceed the max-

imum capacity of the DSO’s infrastructure:

N

∑
n=1

(
ecurt

t,n + ecrit
t,n
)
≤CDSO (3.19)

Where CDSO represents the maximum capacity of the DSO’s system.

Operational Limits:

0≤ Pgeneration
t ≤ Pmax

t , 0≤ Ggeneration
t ≤ Gmax

t (3.20)

Dynamic Pricing Constraint: The dynamic pricing policy must reflect changes in

energy demand and supply conditions:

λt,n = f (Pt,proc,Dt ,πt) (3.21)

Where Dt is the total demand at time slot t. f represents the functional relationship

defining dynamic pricing.

Interdependency Between Electricity and Gas:

To incorporate the interdependency between electricity and gas systems, the following

coupled constraints are added:
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Psupply
t = ∑

n
Pdemand

t,n +Pcompressor
t (3.22)

Gsupply
t = ∑

n
Gdemand

t,n +Ggeneration
t (3.23)

Where Psupply
t and Gsupply

t denote electricity and gas supply, Pcompressor
t is the electricity

used for gas compression, and Ggeneration
t is the gas used for electricity generation. These

equations ensure the integrated balance of energy flows.

3.3 IDR Dynamic Pricing Framework

In this section, we provide a detailed overview of our model. We introduce the dynamical

response functions for electricity and gas prices, along with the associated pricing policies.

Next, we formulate the dynamic pricing IDR program problem encountered by the DSO

as a Markov decision process (MDP). Figure 3.2 depicts the interaction between the DSO

(acting as the agent) and the end-users (environment).

3.3.1 Dynamic Pricing Functions for Electricity and Gas

The DSO encounters the challenge of developing dynamic pricing strategies for electricity

and gas over a specified time interval t. The interaction between the DSO and end-users is

modelled through the following electricity response function Pt,n and gas response function

Gt,n:
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End-user1 End-user2 End-user3

DSO

Agent

Environment 

Retail energy price (Action )

energy information (State )

energy costs (Profit )

Figure 3.2: Interaction between the DSO agent and the end-users environment in the
dynamic pricing framework.

max
N

∑
n=1

T

∑
t=1

[
ρ(Pt,n−πt)(ecritic

t,n +Ecritic
t,n )

−(1−ρ)
(
Pt,n(ecritic

t,n +Ecritic
t,n )+φt,n

)] (3.24)

With

et,n = ecritic
t,n +Ecritic

t,n

λt,n = Pt,n

Here, ρ ∈ [0,1] is the weighting factor.

Analogously, we can articulate the gas pricing problem function as follows:
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max
N

∑
n=1

T

∑
t=1

[
ρ(Gt,n−πt)(ecritic

t,n +Ecritic
t,n )

−(1−ρ)
(
Gt,n(ecritic

t,n +Ecritic
t,n )+φt,n

)] (3.25)

With

et,n = ecritic
t,n +Ecritic

t,n

λt,n = Gt,n

3.3.2 Dynamic Pricing Policies for Electricity and Gas

The objective of the DSO is to determine dynamic pricing policies for electricity and gas

based on the available system state. These policies are expressed as:

Pt = π (It−1) (3.26)

Gt = π (It−1) (3.27)

Where It−1 denotes the information available at time t−1.

It−1 = {πt ,λt,n,ecritic
t,n ,ecurt

t,n ,Ecritic
t,n ,Ecurt

t,n } (3.28)
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3.3.3 MDP-Based Framework for Dynamic Pricing

The MDP characterises a system with a finite set of states, actions, and rewards. An MDP

comprises a state space, an action space, a reward function, and a transition probability

function that adheres to the Markov property [76]. Specifically, given the current state

and action, the next state is independent of all preceding states and actions.

In the context of the IDR price-based problem, the IDR problem is modelled as an MDP,

which comprises:

• State Space: The system state at time t represented as st = (Et,n,et,n).

• Action Space: The DSO’s actions, represented by electricity and gas prices at =

(pt ,gt), are continuous.

• Reward Function: The reward rt includes both DSO profit and end-user cost

components, ensuring holistic optimisation:

rt =ρ ·
N

∑
n=1

[
(λt,n−πt) · etotal

t,n +(µt,n−ψt) ·gtotal
t,n

]
− (1−ρ) ·

N

∑
n=1

[
λt,n · etotal

t,n +µt,n ·gtotal
t,n +φt,n

]
(3.29)

The cumulative discounted reward Rt over a horizon T is expressed as:

Rt =
T

∑
T=t

γT−trT (3.30)

Where γ ∈ [0,1] is the discount factor, and the transition between states follows the

Bellman optimality principle.

44



3.3. IDR Dynamic Pricing Framework

3.3.4 Learning Response Functions for Pricing Optimisation

Reinforcement learning (RL) is employed to efficiently learn the optimal pricing policies.

Transition samples (st ,at ,rt ,st+1) are used to approximate the Q -function, representing

the expected reward:

Q(st ,at) = E[Rt |st ,at ]. (3.31)

Using neural networks, the RL algorithm minimises the error between predicted and actual

outcomes, allowing generalisation to unseen states. Policy gradient methods are employed

to update the pricing policy parameters θ π by maximising the expected return J(π):

∇θ π J = E [∇aQ(s,a)∇θ π π(s)] . (3.32)

This formulation enables the DSO to dynamically optimise pricing strategies while con-

sidering operational profitability and end-user satisfaction.

3.4 Reinforcement Learning Approach for Dynamic

Pricing IDR

This section details the implementation of the DDPG algorithm, whose workflow is il-

lustrated in Figure 3.3. Initially proposed by Lillicrap et al. [77], the DDPG algorithm

employs an actor-critic architecture where:

• The critic network estimates the Q function, representing the expected return

for a given state-action pair.

• The actor network approximates the optimal policy for selecting actions based

on the current state.
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Neural networks are utilised to approximate both the actor and critic functions. In the

context of the IDR dynamic pricing problem, the Q-function is represented by a neural

network referred to as the critic network, parametrised by θ Q. The electricity pricing

policy is modelled by the electricity policy network parametrised by θ Pt , and the gas

pricing policy is modelled by the gas policy network, parametrised by θ gt . These two

policy networks collectively constitute the actor networks.
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Target 
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Electric 
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Figure 3.3: Deep Deterministic Policy Gradient (DDPG) algorithm workflow for Integ-
rated Demand Response (IDR) dynamic pricing.

3.4.1 Key Features of the DDPG Algorithm

3.4.1.1 Target Networks

The critic network parameters θ Q are updated to minimise the following loss function,

which ensures that the network satisfies the Bellman optimality equation:

ℓ=
1
m ∑

i

(
ri + γQ′

(
si+1,π ′ (si+1)

)
−Q(si,ai)

)2 (3.33)
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Here ri is the reward observed for the i-th transition. γ is the discount factor. Q′ and π ′

represent the target critic and actor networks, respectively.

3.4.1.2 Actor Network Update

The actor networks (electricity and gas policy networks) are updated to maximise the

expected return J(π). The update follows the direction of the action gradient, which is

approximated as follows:

∇θ π J ≈ 1
m ∑

i
∇aQ(si,π (si))∇θ π π (si) (3.34)

Here ∇aQ(si,π(si)) represents the gradient of the Q-function with respect to the action.

∇θ π π(si) is the gradient of the policy concerning its parameters.

3.4.1.3 Workflow Summary

The workflow of the DDPG algorithm is summarised in Figure 3.3. During training,

response functions replace real-time end-user interactions to reduce exploration costs. The

algorithm iteratively updates the critic and actor networks to converge toward optimal

electricity and gas pricing policies.
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Algorithm 1: DDPG-Based Dynamic Pricing IDR Program for Integrated Electricity
and Gas System
Input: Initial state s0, episodes M, steps T , replay buffer size m.
Output: Optimised electricity and gas pricing policies.
Initialize critic network Q(s,a) and actor network π(s) with weights θ Q and θ π ;
Initialize target networks Q′ and π ′ with weights θ Q′ ← θ Q and θ π ′ ← θ π ;
Initialize replay buffer ℜ;
for episode = 1, . . . ,M do

Initialize a random process ζ for price exploration;
Receive initial state s0;
for t = 0, . . . ,T −1 do

Select electricity and gas prices at = (pt ,gt): at = π(st)+ζt ;
Execute action at , observe reward rt , and transition to the next state st+1;
Store transition (st ,at ,rt ,st+1) in ℜ;
if |ℜ|> m then

Sample a mini-batch of m transitions (si,ai,ri,si+1) from ℜ;
Update the critic network by minimising the loss in Eq 3.33;
Update the actor network using the policy gradient in Eq 3.34;
Update target networks:

θ Q′ ← τθ Q +(1− τ)θ Q′

θ π ′ ← τθ π +(1− τ)θ π ′

end
end

end
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3.5 Case Studies

3.5.1 Simulation Set-up

This study simulates a DSO managing electricity and natural gas for about 150 customers.

The DSO procures energy from the ISO via designated load zones and external connec-

tions. Demand profiles and market price forecasts are sourced from established references

[78].

Parameter values in the simulation are specific to this study and may vary with different

market structures and user characteristics, yet this does not affect the validity of the

results. Over 24 hours, the DSO receives wholesale prices and load data, using these to

apply the algorithm 1 for calculating Q-values that indicate optimal retail prices. The

maximum Q-value identifies the optimal price for the next 24 hours.

The simulation employs neural networks developed with Tensorflow [79]. Hyperparamet-

ers, including two hidden layers with 256 neurons each, are optimised based on deep

learning best practices [80]. An L2 regularisation technique (0.01) mitigates overfitting,

while the ReLU activation function is used in both hidden and output layers. The Adam

optimiser, with a learning rate of 0.001, trains the network for 1500 iterations.
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3.5.2 Performance evaluation

The learning curve in Figure 3.4 highlights the Q-value convergence across episodes,

demonstrating the reinforcement learning algorithm’s effectiveness in optimising retail

energy pricing strategies. As episodes progress, the average Q-value increases and then

plateaus, indicating the system has learned an effective pricing policy. This convergence

suggests that the DSO consistently identifies optimal electricity and natural gas retail

prices, balancing profitability with customer satisfaction. The results validate the robust-

ness of the reinforcement learning framework, showing its adaptability to dynamic market

conditions and stable performance over time.
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Figure 3.4: Learning curve of the DDPG algorithm, showing convergence of the Q-value
across episodes.

3.5.3 DSO Profitability and End-User Cost Reduction Analysis

The analysis of DSO profits provides substantial insights into the effects of dynamic

pricing IDR mechanisms. By comparing the DSO profits attained under IDR conditions

with the baseline profits determined by fixed electricity and gas prices, we can assess the

effectiveness of the implemented strategies.
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The DSO profits, driven by electricity and gas markets, outpaced baseline profits, high-

lighting the effectiveness of IDR strategies in boosting DSO profitability. The ability to

adjust retail prices in response to wholesale fluctuations significantly contributed to these

gains. Figure 3.5 shows that electricity profits were a significant part of both DSO and

baseline profits, with gas profits also improving. This underscores the complementary

relationship between electricity and gas markets.
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Figure 3.5: Comparison of Distribution System Operator (DSO) profits and end-user costs
with and without Integrated Demand Response (IDR).

The evaluation of end-users’ costs per episode with and without IDR shows the significant

impact of dynamic pricing on energy expenditures. Costs under IDR were based on real-

time market-adjusted retail prices, while the baseline scenario used static prices.

The findings reveal that end-users’ costs with IDR were consistently lower than in the

baseline, highlighting the effectiveness of dynamic pricing in encouraging consumers to

optimise their energy usage and achieve substantial cost savings. Box plot visualisations

further emphasise the stark differences in cost distributions between the two scenarios,

showcasing IDR’s potential to improve economic efficiency and consumer satisfaction in

energy systems.
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3.5.4 Supply and Demand Analysis

The correlation analysis between energy prices and supply-demand dynamics in Figure

3.6 offers valuable insights into the system’s effectiveness in facilitating load shifting and

enhancing energy efficiency. A negative correlation was observed between electricity prices

and demand, suggesting that higher prices result in decreased consumption during peak

periods. This finding underscores the effectiveness of dynamic pricing in motivating con-

sumers to reduce energy usage.
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Figure 3.6: Correlation analysis between energy prices and supply-demand dynamics.
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Conversely, a positive correlation between electricity prices and supply shows that higher

prices incentivise suppliers to increase output, ensuring availability during high demand.

This alignment of supply with demand highlights the role of price signals.

Similarly, gas prices showed a negative correlation with demand, as consumers reduced

usage in response to price hikes. This demonstrates the impact of pricing on sustainable

energy practices. The positive correlation between gas prices and supply indicates that

higher prices encourage suppliers to boost output, maintaining equilibrium in the market.

These findings affirm the effectiveness of dynamic pricing mechanisms in managing energy

systems, optimising utilisation, and supporting sustainability goals. Understanding the

interplay of energy prices, demand, and supply is crucial for building resilient energy

markets.

3.5.5 Supply Constraints

This analysis explores the effects of sudden supply constraints on an integrated energy

system, specifically focusing on a 40 per cent reduction in electricity supply (such as

grid complications) and a 50 per cent reduction in gas supply (pipeline interruptions)

during designated time periods. The study assesses the system’s capacity to prioritise

critical loads while minimising dissatisfaction costs by implementing a dynamic pricing

IDR mechanism, as illustrated in Figure 3.7. The enforced reductions in electricity sup-

ply that occur between the hours of 08:00 and 16:00 demonstrate the system’s capacity

to prioritise critical loads despite facing significant constraints. To maintain operational

integrity, the system opts to curtail non-essential loads. Similarly, during gas supply re-

ductions from 12:00 to 20:00, there is a noticeable decrease in the system’s ability to

meet non-essential demand. However, critical needs are effectively prioritised within the

limitations of available resources, ensuring the continuity of essential services.
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Figure 3.7: Electricity and gas response to supply constraints.

Dynamic pricing plays a crucial role in managing supply scarcity. Retail electricity and

gas prices increase during constrained periods, discouraging non-essential consumption

and reallocating resources to critical loads. These price adjustments align with economic

principles, wherein price signals influence demand behaviour during shortages. The sys-

tem’s response underscores the effectiveness of dynamic pricing in optimising resource

allocation under stressful conditions.

Periods characterised by constrained supply observe an increase in dissatisfaction costs,

particularly for electricity during time slots 8 to 16 and gas between time slots 12 and 20.

Figure 3.8 demonstrates the End-user dissatisfaction cost. Despite these escalations, the

costs are effectively contained, reflecting the system’s efficiency in navigating the trade-off

between limited supply and user satisfaction. This containment emphasises the system’s

capacity to sustain economic and operational stability amid adverse circumstances.
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Figure 3.8: End-user’s dissatisfaction costs.

The resilience of the IDR system is emphasised by its capacity to satisfy essential energy

requirements even amidst challenging constraints. By utilising dynamic pricing, the system

effectively mitigates pressure on resources and allocates them according to the elasticity

of demand. This adaptability underscores the system’s potential for broader applicability

within the energy management domain.

The findings support the implementation of dynamic pricing mechanisms within integ-

rated energy systems. These mechanisms provide an effective approach to balancing sup-

ply limitations while ensuring that essential demands are adequately met. Policymakers

should explore the incorporation of such strategies to strengthen system resilience.

Educating end-users about demand response and price elasticity during periods of supply

constraint can encourage greater collaboration between consumers and system operators.

Increased awareness can lead to more efficient energy consumption and greater acceptance

of dynamic pricing strategies.
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3.6 Chapter Summary

This chapter presented a novel dynamic pricing framework for integrated electricity and

gas systems using the DDPG algorithm. The key contribution was demonstrating that

this DRL-based approach can simultaneously enhance DSO profitability and reduce end-

user costs. Furthermore, the model proved its resilience and adaptability by effectively

managing supply-demand imbalances during simulated supply constraints.
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Chapter 4

Dynamic Pricing IDR for Multiple
Energy Carriers with DRL

The traditional scope of demand response has evolved to encompass IDR, which leverages

advancements in energy integration technologies. In this chapter, we explore the relation-

ship between service providers (SPs) and end-users within the IDR program. The aim

of the IDR initiative is to maximise profits for natural gas and electricity utility com-

panies while simultaneously reducing customers’ consumption costs and ensuring system

stability.

We illustrate a framework of hierarchical decision-making using DRL. To tackle this chal-

lenge, we characterise the high-dimensional state and action spaces through the Deep

Deterministic Policy Gradient (DDPG) technique, which utilises deep neural networks

to estimate the state and generate actions. Service providers can adaptively adjust retail

energy pricing during the online learning process, taking into account the uncertainties in

end-user load demand profiles and the variability of wholesale energy prices.
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Experimental results indicate that our proposed approach demonstrates high performance.

The findings suggest that the IDR program can create mutual benefits for both customers

and suppliers by reducing electricity and natural gas consumption costs and lessening peak

load demand in the associated load profiles.

4.1 Introduction

Given the recent developments in energy resources, it is increasingly difficult to overlook

the urgent need for a more complex, robust, efficient, and sustainable energy system.

Environmental concerns and economic factors must be considered [50]. In this context, the

smart grid is being actively developed to facilitate the significant integration of renewable

generation [51], [52]. One of the key advantages of the smart grid is its ability to enhance

the integration of variable and uncertain RES through the use of various forms of energy

storage, especially when compared to traditional energy systems, which operate their

sectors independently of one another [53]. Nevertheless, due to the limited capacity of

smart grids, renewable energy curtailment remains a challenge in existing energy systems.

A recently developed method for energy systems is both simpler and more effective. DR

has been introduced to enhance grid reliability and reduce energy costs. It improves the

capacity to quickly respond to supply-demand mismatches by adjusting flexible loads on

the demand side, aided by modern advanced information and communication techno-

logies in smart grid systems [54]. DR can be defined as a structured program or tariff

designed to provide incentive payments that encourage reduced electricity usage during

peak times, when market prices are high, or when grid reliability is at risk. It may also

motivate changes in electricity pricing over time [55]. DR programs can be categorised
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into two main types: price-based and incentive-based [56]. In price-based DR, participants

are encouraged to alter their energy consumption habits in response to fluctuating elec-

tricity prices. In contrast, incentive-based DR offers fixed or time-varying incentives to

participants for decreasing their energy usage during periods of power system stress [57].

Recent advancements in energy co-generation and integration technologies have promp-

ted a transition from DR in smart grids to IDR within integrated energy systems [58].

The primary objective of IDR is to fully leverage the DR capabilities of all users, thereby

enhancing the economic efficiency and reliability of multi-energy systems. By particip-

ating in IDR programs, energy users can shift their energy consumption patterns and

even switch the sources of the energy they consume [66]. From the perspective of system

operators, IDR enables the maximisation of social welfare within a broader optimisa-

tion framework. Furthermore, IDR dismantles the barriers among different energy forms,

allowing users to adapt their energy sources based on varying energy prices [81]. This

flexibility facilitates the integration of significant amounts of renewable energy, enabling

the conversion of electricity into gas and thermal energy. Consequently, this approach can

lead to a substantial reduction in overall operational costs [71].

Although IDR represents a significant area of interest in the energy systems field, there

have been limited efforts to develop a well-designed pricing mechanism for the scheduling

strategies of multi-energy systems incorporating IDR. Integrated demand response often

leads to variations in multiple factors, such as load and energy prices, and these vari-

ations can yield differing outcomes. Consequently, the response of causal factors to the

market-oriented environment remains inadequately understood [52]. The deregulation of

energy markets and the active engagement of consumers add complexity to the search for

solutions that facilitate the integration of distributed energy resources [72]. As a result,

future energy markets necessitate systems capable of monitoring, forecasting, scheduling,

learning, and making real-time decisions regarding energy consumption and production.

This requirement underscores the need for more efficient and intelligent solutions, such as

deep reinforcement learning. In this paper, we demonstrate that integrating various types
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of energy resources can effectively enhance the performance of existing demand response

programs. In fact, the interconnection of different energy carriers allows customers to en-

gage in demand response not only through load shifting but also by altering their energy

source.

Reinforcement learning is a machine learning technique that has garnered significant in-

terest across various fields due to its effectiveness in tackling complex sequential decision-

making problems [76]. Notably, substantial advancements have been made by integrating

RL with deep learning, resulting in the development of deep reinforcement learning [82].

Recently, there has been a growing focus on applying DRL in power systems, prompting

numerous researchers to address a wide array of decision-making, control, and optimisa-

tion challenges within the energy sector. These challenges encompass energy management,

demand response, electricity markets, operational control, and more.

To enhance grid reliability and manage peak demand, integrated demand response sys-

tems must incorporate consumer feedback and consumption data into the control loop.

A significant advantage of DRL lies in its ability to provide an effective optimal control

approach, supported by data-driven models to tackle such issues [68], [57].

For example, Ghasemkhani and Yang proposed an optimal pricing strategy for a demand

response program utilising reinforcement learning (RL), designed to enhance the perform-

ance of a load-serving entity (LSE) by effectively balancing exploration and exploitation

during the learning process [73]. Incorporating considerations such as consumer satis-

faction, stochastic renewable energy, and associated costs, Remani et al. introduced an

RL-based optimal model for residential load scheduling [74]. Additionally, Lu et al. presen-

ted a dynamic pricing demand response framework that integrates the service provider’s

profit and customer expenses, where retail electricity prices are dynamically determined

through RL based on electricity demand and wholesale market prices [75].
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Despite the considerable potential of IDR in power systems, research exploring the full

range of its advantages remains limited. For example, the market mechanisms that govern

IDR have not been thoroughly examined. Furthermore, optimal bidding strategies for

IDR resources in both energy and ancillary service markets—particularly regarding their

role as price-takers—are not well-defined. There is also significant uncertainty about the

market equilibrium involving multiple IDR resources. The underlying mechanisms within

the energy market that could effectively address asymmetric information on the demand

side are not yet fully understood. By leveraging the complementarity of Modular Energy

Systems (MESs), the capabilities of IDR can be maximised without sacrificing consumer

comfort. As a result, IDR has emerged as a promising approach to enhance the future

interaction between demand-side resources and renewable generation.

4.2 Proposed Framework

4.2.1 Market Structure and Key Assumptions

In this model, we assume that the hierarchical energy market consists of three sectors:

energy supply, the trading centre, and energy consumption, as illustrated in Fig. 4.1. The

electricity system and natural gas system are recognised as a wholesale energy market.

The trading centre comprises an SP and a network of energy hubs. Energy consumption

is represented by a diverse group of end-users. The proposed IDR program is primarily

divided into two stages and is supported by three types of participants aimed at mitigating

supply-demand mismatches.

The framework of the proposed program can be outlined as follows:
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Figure 4.1: An illustration of the hierarchical market structure, including energy supply,
trading centres, and energy consumption sectors.

1. Energy Supply: Comprising electricity and natural gas utility companies operating

in wholesale markets. These utilities supply primary energy inputs to the system.

2. Trading Centre: Managed by the SP, this layer facilitates energy trading and

pricing. The SP interacts with energy hubs and coordinates balancing strategies.

3. Energy Consumption: Representing end-users who consume energy through EHs.

These users actively participate in the IDR program by responding to SP’s dynamic

pricing signals.

In the initial stage, as energy supply actors, the electricity and natural gas utilities assess

their projected power needs (Ein and Gin) for an upcoming short-term period. This assess-

ment includes identifying any surplus energy that cannot be spontaneously consumed by

end-users, as well as any deficits that cannot be supplied. Once this imbalance in power

is determined, the information is communicated to the trading centre.
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Upon receiving the details regarding the unbalanced power, the SP submits their bidding

strategies to the trading market, aiming to secure compensation for providing a specific

amount of balancing power within a designated time frame. Subsequently, the trading

centre discloses the outcomes of the SP’s bidding strategies. By the conclusion of the first

stage, the SP is aware of the required balancing power they need to deliver, along with

the potential revenue they could earn if they successfully meet this requirement.

The IDR program follows a two-stage process:

• Supply-Demand Balancing Utility companies predict short-term energy imbal-

ances and communicate surplus or deficit information to the SP. The SP formulates

bidding strategies for the trading market and determines balancing power require-

ments.

• Consumer Incentivising The SP sets dynamic electricity and gas prices to in-

centivise end-users. These prices are optimised to align consumer energy consump-

tion with system balancing needs, minimising incentive costs while maximising SP’s

revenue.

To achieve the necessary balancing power with minimal incentive costs, SP optimises the

dispatch factors of its EH along with the incentive prices offered to end-users. The EH

integrates electricity and natural gas infrastructures to fulfil customers’ demands for both

electricity and heating. The following section will provide a detailed explanation of the EH

mechanism. Once SP has optimised and published the incentive prices for electricity and

gas, consumers can select their actual balancing power in response to these prices, taking

into account potential reductions in their energy bills and associated dissatisfaction costs.

When SP receives highly accurate data on consumer-dependent parameters, the total

actual power supplied by consumers can align with the required balancing power that SP

must provide, considering the energy conversion capabilities of the EH.

63



4.2. Proposed Framework

4.2.2 Energy Hub Model

An energy hub can be defined as a concept that incorporates multiple energy carriers, in-

cluding electricity, gas, heat, and others, which can be stored, converted, and transmitted.

This paper examines the impact of integrating electricity and natural gas utilities within

an energy hub on the dynamic pricing program for IDR, providing end-users with electri-

city and heating services. Figure 4.2 illustrates an energy hub that integrates electricity

and natural gas infrastructures to deliver power and heating to customers.

Figure 4.2: Schematic representation of an energy hub, demonstrating the coupling
between electricity and natural gas systems for energy conversion and distribution.

Let Ein and Gin represent the input electricity and natural gas powers purchased from

utility companies, respectively. In contrast, Eout and Gout denote the output electricity

and heating powers. The converter devices include a transformer, a gas boiler, and a

micro-turbine, with their efficiencies represented by ηT , ηF , ηe
MT (the electrical efficiency

of the micro-turbine), and ηg
MT (the thermal efficiency of the micro-turbine). The dispatch

factor is indicated by α ∈ [0,1].
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The following matrix equation conveys the relationship between the inputs and outputs

of various energy carriers within an energy hub:

[
Eout

Hout

]
=

[
ηT αηe

MT

0 ηF(1−α)+αηg
MT

][
E in

Gin

]
(4.1)

In this study, we examine how utility providers are implementing the IDR program to

motivate end users in energy hubs to either reduce their energy consumption or switch to

alternative energy sources during peak hours. As depicted in Fig. 4.1, there are N energy

hubs supplied by a single electric utility and a single natural gas utility. The strategy

profile for energy hub I ∈ N is defined as:

xi = (E in
i,1, . . . ,E

in
i,T ,E

out
i,1 , . . . ,Eout

i,T ,Gin
i,1, . . . ,G

in
i,T ,H

out
i,1 , . . . ,Hout

i,T ) (4.2)

4.2.3 Service Provider Optimisation

In the proposed IDR, the SP functions as a price-maker within the IDR programs, in-

centivizing consumers to contribute to balancing power. End-users act as price-takers, de-

termining the quantity of balancing power they are willing to provide. As a profit-driven

organisation, the SP aims to maximise revenue derived from trading energy resources with

electricity and natural gas utility companies while minimising incentive payments to its

end-users.
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On the supplier side, we consider that the electricity and natural gas utility companies

are generating Etotal
t and Gtotal

t at time slot t ∈ {1,2,3, . . . ,T} to meet the demands of the

SP. The electricity and natural gas input for the EH, indexed by I ∈ N, at time t ∈ T are

represented as E in
i,t and Gin

i,t respectively.

Etotal
t = ∑

i∈N
E in

i,t (4.3a)

Gtotal
t = ∑

i∈N
Gin

i,t (4.3b)

The electricity utility company operates with a time-dependent generation cost function,

denoted as Ce(Etotal
t ). It is assumed that the primary objective of the utility company is

to maximise its profit. Given the electricity price pe(t) as a function of time t, the utility

company seeks to supply the SP with a certain amount of electricity that resolves the

following profit optimisation problem:

maximize
Etotal

t ≥0
∑
t∈T

(
Etotal

t pe(t)− ce

(
Etotal

t

))
(4.4)

The solution to this optimisation problem is given by:

c′e
(

Etotal
t

)
= pe(t) (4.5)
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In the natural gas network, prices are primarily influenced by supply and demand fun-

damentals. Additionally, natural gas prices may be linked to crude oil prices [83]. Vari-

ous pricing models can be employed, including fixed-rate pricing and real-time pricing

schemes. In this study, we assume that the gas price can be estimated as an increasing

linear function of the total gas demand Gtotal
t . Let pg(Gtotal

t ) represent the natural gas

price at time t. We can express this relationship as:

pg

(
Gtotal

t

)
= θ1Gtotal

t +θ0 (4.6)

Where θ1 and θ0 are positive coefficients of the linear function known to the natural gas

utility company.

4.2.4 End-Users Model

End-users participate actively in the IDR program by leveraging advanced energy manage-

ment strategies, including detailed monitoring and control of their energy usage patterns.

This active participation enables them to optimise their energy consumption schedules,

shift usage to off-peak times, and switch energy sources dynamically based on price sig-

nals. Through smart energy management systems integrated into Energy Hubs (EHs),

end-users can respond effectively to real-time price changes, enhancing both cost savings

and overall system efficiency. By participating in load-balancing efforts, they contribute

to a more stable and sustainable energy ecosystem.
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End-users can respond to dynamic prices by either load shifting, modifying their con-

sumption schedules, or energy switching, where they utilise energy hubs (EHs) to replace

electricity with natural gas during peak hours. These strategies effectively reduce peak

electricity demand without diminishing overall energy consumption, thereby aligning user

convenience with system objectives.

In this context, Eout
i,t and Hout

i,t represent the electrical and heating loads at the energy hub’s

output ports, respectively. Moreover, Ed
i and Hd

i denote the energy hub’s daily electricity

and heat demand, respectively. As a result, we derive:

Ed
i = ∑

t∈T
Eout

i,t (4.7a)

Hd
i = ∑

t∈T
Hout

i,t . (4.7b)

The IDR program adjusts the timing of electrical and heating demands, shifting them

to different time slots. Consequently, the total daily energy consumption for each energy

hub remains unchanged. As a result, both Ed
i and Hd

i are fixed throughout the day, as

indicated in 4.7.

As mentioned earlier, energy hubs receive pricing information for electricity and natural

gas from utility companies via the SP. This means that the SP can track the impact of

its actions on market prices. According to Equation 4.1, the input and output powers in

EH I ∈ N are proportional. By inverting the matrix presented in 4.1, we can express E in
i,t

and Gin
i,t in terms of Eout

i,t and Hout
i,t Thus:
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[
E in

i,t

Gin
i,t

]
=

[
Ai,t Bi,t

0 Ci,t

][
Eout

i,t

Hout
i,t

]
(4.8)

where

Ai,t =
1

ηT
(4.9a)

Bi,t =
−αi,tηe

MT

ηT
(
(1−αi,t)ηF +αi,tηg

MT
) (4.9b)

Ci,t =
1

(1−αi,t)ηF +αi,tηT ηg
MT

. (4.9c)

From 4.9a - 4.9c, we get

E in
i,t = Ai,tEout

i,t +Bi,tHout
i,t (4.10a)

Gin
i,t =Ci,tHout

i,t (4.10b)

0≤ αi,t ≤ 1 (4.10c)

The framework established by the deep reinforcement learning algorithm facilitates the

analysis and development of an IDR program for price forecasting SP. In this proposed

IDR algorithm, service providers act as agents. They are profit-maximising entities that

purchase gas and electrical energy from utility companies and sell these resources to end

users. Furthermore, they determine which dynamic retail pricing policies to implement,

aiming to promote more efficient energy usage while maximising profits. The objective

function of the SP is defined as follows:
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ui (xi,x−i) = ∑
t∈T

(
Ue

i
(
Eout

i,t
)
− pe(t)E in

i,t
)
+ ∑

t∈T

(
Ug

i
(
Hout

i,t
)
− pg(t)Gin

i,t
)

(4.11)

In this context, pe(t)E in
i,t and pg(t)Gin

i,t represent the electricity and gas prices that the

SP must pay to the electricity and natural gas utility companies, respectively. Moreover,

Ue
i (E

out
i,t ) and Ug

i (H
out
i,t ) denote the value received by the customer from the SP. The SP,

anticipating price fluctuations, acknowledges that electricity and natural gas prices are

computed based on equations 4.5 and 4.6. By substituting these into equation 4.11, we

derive the following optimization problem:

maximize
xi

∑
t∈T

(
Ue

i
(
Eout

i,t
)
− c′e

(
Etotal

t

)
E in

i,t

)
+ ∑

t∈T

(
Ug

i
(
Hout

i,t
)
−
(

θ1Gtotal
t +θ0

)
Gin

i,t

)
.

(4.12)

We derive the objective function by integrating equations 4.10a and 4.10b into equation

4.12.

maximize
yi

∑
t∈T

[
Ue

i
(
Eout

i,t
)
−
(
Ai,tEout

i,t +Bi,tHout
i,t
)

c′e

(
∑
i∈r

Ai,tEout
i,t +Bi,tHout

i,t

)]

+ ∑
t∈T

[
Ug

i
(
Hout

i,t
)
−Ci,tHout

i,t

(
θ1

(
∑
i∈r

Ci,tHout
i,t

)
+θ0

)]
.

(4.13)

70



4.3. Proposed DRL approach

4.3 Proposed DRL approach

IDR programs are pivotal for optimising multi-energy systems. DRL provides a promising

framework for dynamic pricing by enabling agents to make sequential decisions in complex

environments. In this context, we propose using the Deep Deterministic Policy Gradient

(DDPG) algorithm to develop optimal pricing strategies for SP. These strategies balance

cost efficiency for consumers and profitability for SP while maintaining system stability.

4.3.1 MDP Formulation for Dynamic Pricing IDR

In this study, we propose a discrete finite-horizon Markov Decision Process (MDP) to

model the dynamic retail pricing problem, which presents a decision-making challenge

in a stochastic environment. Specifically, within the context of the dynamic pricing In-

tegrated Demand Response (IDR) problem, the electricity and heat energy demand and

consumption are defined as the state st at a given time interval t. The electricity and heat

energy prices are represented as the action at for that same time interval. Consequently,

the agent’s profit, denoted as the Selling Price (SP) in our example, is represented as

the reward r Figure 4.3 depicts the interaction between the Service Provider (agent) and

end-users (environment), showcasing the reinforcement learning process within the IDR

dynamic pricing framework.

In summary, the key components of the MDP that need to be modelled in the IDR

dynamic pricing problem include:

• State: st = (E in
i,t ,E

out
i,t ,Gin

i,t ,H
out
i,t ).

• Action: at =Ue
i (E

out
i,t ),Ug

i (H
out
i,t ).

• Reward: r(st ,at) = (∆Ei,t ,Ue
i ,∆Gin

i,t ,H
out
i,t ,Ug

i ).
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Figure 4.3: Agent and Environment Interaction.

Neither the state nor the action spaces are discrete. Given st , at , and st+1 determined

by equation (4.13), the Markov property is satisfied. The IDR dynamic pricing aims to

maximise the service provider’s profit (SP). Therefore, the reward for time interval t is

defined as the SP’s profit:

rt =Ue
i (E

out
i,t )− pe(t)E in

i,t +Ug
i (H

out
i,t )− pg(t)Gin

i,t (4.14)

The agent must consider current and future returns when calculating long-term rewards,

as potential reductions may also apply to future incentives. Consequently, future rewards

are multiplied by a discount factor γ . The cumulative discounted reward for interval t can

be expressed as:

Rt =
T

∑
T=t

γT−trT (4.15)
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where γ ∈ [0,1] serves as the discount factor. As such, future rewards are scaled by this

discount factor.

ν can be used to express the policy that maps states to actions.

Qν(s,a) = E [Rt | st ,at ;ν ] (4.16)

The objective of the dynamic pricing problem is to establish an optimal policy ν∗ that

always chooses an action (energy price) that maximises the expected discounted reward.

The Q function under optimal policy ν∗ denoted by Q∗(st ,at) satisfies the Bellman optim-

ally equation:

Q∗ (st ,at) = E [rt ]+ γ
∫
S
P{st+1 | st ,at}max

a
Q∗ (st+1,a) (4.17)

Where P{st+1 | st ,at} is the probability of St +1 given st , at

4.3.2 Proposed DDPG Solutions

Once the objective problem has been formulated as an MDP, reinforcement learning

methods can be employed to identify the optimal policy. The DDPG algorithm, which

integrates an actor-critic framework with neural networks, allows for the parametrisation

of both the Q-value function and the policy [77]. The DDPG algorithm is implemented

for end-users, as illustrated in Fig. 4.4. Both the Actor and Critic networks consist of

deep neural networks (DNNs). Initially, utilising the current policy, the actor-network
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4.3. Proposed DRL approach

makes joint decisions based on the compacted state of the end users. Subsequently, the

Critic network computes the approximate Q-value, drawing input from the environment

state, the Actor’s output, and the immediate reward. These two networks are alternately

updated until the training process reaches completion.

Figure 4.4: An overview of the DDPG framework applied to the IDR dynamic pricing
problem, featuring Actor and Critic networks for policy optimisation and Q-value ap-
proximation.

The Actor and Critic networks are defined as µ(s | θ µ) and Q(s,a | θ Q), utilizing paramet-

ers θ µ and θ Q, respectively. The transition samples (st ,at ,rt ,st+1) are stored in a replay

buffer R, collected according to the current policy θ µ . Once the replay buffer reaches its

maximum capacity, the Actor and Critic networks are updated by drawing a mini-batch

of transition samples from the buffer.

Monte Carlo estimators are utilised to derive estimated values from mini-batches of state

transitions (st ,at ,rt ,st+1) of size m, sampled from R, to estimate the gradients. At each

step, the parameters θ Q can be updated by minimising the Mean Square Error (MSE)

loss:
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Lm =
1
m

m

∑
i=1

(
Q
(

si,ai | θ Q
)
− yi

)2
(4.18)

The parameters of the Actor network policy, denoted as θ µ , are updated in the direction

of the Q-value gradient as follows:

∇θ µ Jm =
1
m

m

∑
i=1

∇aQ
(

s,a | θ Q
)

s=si,a=µ(si|θ µ )
×∇θ µ µ (s | θ µ)s=si

(4.19)

Given that even a minor update to θ Q or θ µ can lead to substantial changes in the action-

value and policy, the training process employs target networks Q′(s,a | θ Q′) and µ ′(s | θ µ ′)

to provide consistent targets. The weights of these target networks are gradually updated

in response to the learning progress of the primary networks as follows:

θ Q′ ← τQθ +(1− τ)θ Q′ (4.20)

θ µ ′ ← τµθ +(1− τµ)θ µ ′ (4.21)

Since τQ≪ 1 and τµ ≪ 1, the target values change slowly. Algorithm 2 outlines a detailed

DDPG-based DRL approach for addressing dynamic pricing in the IDR context.
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4.3. Proposed DRL approach

Algorithm 2: DDPG-Based Dynamic Pricing IDR Program for multi-energy carriers
Initialization: Randomly initialize Actor µ(s | θ µ) and Critic networks Q(s,a | θ Q),
and target networks and Q′(s,a | θ Q′) and µ ′(s | θ µ ′)

Input: Replay buffer R, batch size m, number of episodes N, number of time steps
in each episode T , learning rate rQ and rµ for Critic and Actor networks,
update rate τQ and τµ for target Critic and Actor networks.

Output: The optimal action a

for episode = 1, ..., N do
Initialise a random process for action exploration;
receive initial state:
s1 = (E in

1 ,Eout
1 ,Gin

1 )

for t = 1 to T do
Select action required according to 4.13
Compute reward rt according to 4.14 and observe the next state (St +1)

Store transition (st ,at ,rt ,st +1) into replay buffer R

if Stored transition > Replay buffer capacity then
Discard the oldest transition samples

end
Sample a random batch from R of a mini-batch m

Update Critic using the gradient descent in 4.18.
Update Actor using the policy gradient descent in 4.19.
Update target networks Q′ and µ ′ in 4.20 and 4.21

end
end
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4.4 Case Studies

4.4.1 Simulation Setup

For illustrative purposes, simulations have been conducted using a single SP and three

distinct end-user groups. Additionally, three EHs are connected to the SP, with each EH

serving a specific group of end-users. An example of the load demand profiles for these

three end-user clusters at each time slot was derived from [84]. Specifically, we selected

data on electricity load (MW), gas load (kcf), electricity price (kWh/h), and gas price

(Kcf/h) spanning from January 10 to January 14, 2021, to represent the wholesale energy

market from which the SP procures energy.

4.4.2 Performance Evaluation

To showcase the performance of the proposed IDR scheme using DRL, Table 4.1 provides

a summary of the network architecture and details regarding the training process para-

meters.

Table 4.1: DDPG Algorithm Parameters

Parameter Description

Number of episodes 500

Learning Rate (Actor) 0.001

Learning Rate (Critic) 0.005

Batch Size 64

Replay Buffer Size 106

Discount Factor (γ) 0.99
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Figure 4.5 illustrates the performance and convergence of the DDPG algorithm over 500

episodes, showcasing the learning curve. On average, this curve offers a detailed overview

of the agent’s training progress. At the beginning of each episode, we reset the environment

to a new initial state, denoted as s(1). We calculate the cumulative reward and update the

model parameters for the DDPG method every 1,000 steps. In the initial five episodes,

the actor network makes the decision to collect data for the memory buffer randomly,

leading to lower rewards. After this initial phase, both the Critic and Actor networks are

updated using the transitions stored in the memory buffer. This visualisation serves as a

valuable tool for analysing the proposed model and its effectiveness in achieving optimal

performance in dynamic environments.
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Figure 4.5: Training performance of the proposed DDPG algorithm over 500 episodes,
demonstrating convergence to higher rewards and improved policy performance.
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4.4.3 Impact of the proposed IDR program on the energy mar-

ket

The SP purchases energy from suppliers based on wholesale market rates. All simulation

parameters are hypothetical and may vary due to market design and user characteristics,

but these differences won’t affect the results. The analysis spans one day with 24 samples

represented as T = [1,2,3, . . . ,24].

As shown in Fig. 4.6, there is a strong correlation between wholesale and retail electricity

prices before and after IDR implementation, indicating that SP’s pricing strategies reflect

market trends while offering stable rates to end-users. Conversely, the gas system shows

different pricing patterns, with retail prices less affected by wholesale trends, particularly

between hours 14 to 20 when higher retail gas prices are noted due to increased natural

gas purchases for electricity generation.

0 5 10 15 20
Hour of the Day

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Pr
ice

 (£
 p

er
 k

W
h)

Electricity Price Stability Analysis
Wholesale Prices (Electricity)
Retail Prices Before IDR (Electricity)
Retail Prices After IDR (Electricity)

0 5 10 15 20
Hour of the Day

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ice

 (£
 p

er
 m

^3
)

Gas Price Stability Analysis
Wholesale Prices (Gas)
Retail Prices Before IDR (Gas)
Retail Prices After IDR (Gas)

Figure 4.6: Comparison of wholesale and retail electric energy prices under the DRL policy,
illustrating trends and their implications for SP and end-user interactions.
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The IDR mechanism reduces peak electricity demand by using natural gas for power

generation. This load-shifting strategy balances grid stability and, despite higher gas costs,

leads to lower overall peak electricity costs and improved SP profitability. By integrating

electricity and gas systems, the SP enhances operational efficiency and ensures reliable

energy for end-users.

4.4.4 Profit and Cost Analysis

The figures 4.7 and 4.8 compare profit margins and consumer costs before and after

implementing IDR.
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Figure 4.7: SP Profit margins before and after implementing Dynamic Pricing IDR
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Figure 4.8: End-users Cost Analysis before and after implementing Dynamic Pricing IDR

Service provider profit margins showed a clear trend in the Figure. 4.7: before IDR, profits

peaked at £60. Still, they decreased post-IDR due to reduced energy consumption during

peak hours, a result of IDR’s load redistribution strategy. Although profit margins fell,

IDR led to a more stable energy trading environment, easing operational stress and long-

term costs for providers.

End-users’ costs also significantly improved as shown in the Figure. 4.8. Before IDR, costs

soared to nearly £200 during high-demand periods but have since dropped. Dynamic

pricing mechanisms encouraged reduced peak-hour usage, promoting a more balanced

demand distribution. Overall, IDR has made energy consumption more economical by

shifting usage patterns and leveraging alternative energy sources.
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The analysis illustrates dynamic pricing IDR’s transformative impact on the energy mar-

ket. By reducing consumer costs and promoting balanced trading, IDR emerges as a vital

tool for sustainable energy management.

4.4.5 Peak Demand and Cost Distribution Analysis

Remaining Demand

98.5%

Peak Reduction

1.5%

Peak Demand Reduction (Original: 799.83)

Figure 4.9: Illustrate the distribution of peak demand in the energy system before and
after the implementation of Dynamic Pricing IDR
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Remaining Cost

74.2%

Cost Savings

25.8%

Cost Savings (Original: £57,022.08)

Figure 4.10: Illustrate the distribution of costs in the energy system before and after the
implementation of Dynamic Pricing IDR

An analysis of the IDR program’s impact reveals significant improvements in both grid

demand and cost efficiency, as illustrated by the accompanying figures 4.9 and 4.10.

The ”Peak Demand Reduction” chart indicates that from an original peak demand of

799.83 MWh, the IDR program successfully achieved a reduction of 1.5%. While a modest

percentage, this decrease in peak consumption is crucial for enhancing grid stability and

mitigating strain on energy infrastructure during critical periods.
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The financial benefits are more pronounced. The ”Cost Savings” chart shows that from an

original total cost of £57,022.08, the IDR implementation generated substantial savings

of 25.8%. This represents a significant financial advantage, highlighting the program’s

effectiveness in optimising energy expenditure.

The data demonstrate that the IDR program is a powerful tool, effectively curbing peak

energy demand and delivering considerable cost savings for consumers and providers alike.

4.4.6 Energy Shift Analysis Based on IDR Implementation

The figure 4.11 illustrates the changes in energy source utilisation before and after the

implementation of dynamic pricing IDR mechanisms. It reveals a significant reduction in

electricity usage from 80% to 60%, demonstrating IDR’s success in reducing peak demand.

In contrast, the reliance on natural gas increased from 15% to 30%, indicating consumers

shifted to natural gas in response to dynamic pricing signals. EH usage also rose from 5%

to 10%, reflecting greater adoption of EH solutions.

These shifts imply improved load management, reducing grid strain and enhancing effi-

ciency. The increased use of natural gas and energy hubs highlights economic benefits as

consumers optimise costs, while the adoption of EH solutions supports renewable energy

integration.

The observed energy shifts validate IDR’s role in changing consumption patterns and

improving grid stability. Continued refinement and investment in related technologies are

essential for maximising the long-term impact on energy systems.
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Figure 4.11: demonstrates the shifts in energy source utilisation before and after the
implementation of Dynamic Pricing IDR

4.5 Chapter Summary

This chapter extended the DRL-based framework to a multi-energy system incorporating

electricity, gas, and heat, with energy hubs as a central enabling component. The key

contribution was demonstrating that this integrated approach, optimised by the DDPG

algorithm, facilitates significant energy source substitution and achieves notable peak

demand reductions. The findings highlight how EHs provide the necessary flexibility for

a truly integrated and efficient demand response strategy.
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Chapter 5

Dynamic Pricing IDR in P2P
Multi-Energy Trading system

The integration of Peer-to-Peer (P2P) energy trading with integrated demand response

presents an effective solution for decentralised energy systems. This chapter introduces a

new method for managing energy in interconnected multi-energy microgrids, combining

dynamic pricing with IDR strategies in a P2P trading framework. We utilise a modified

Double-Actors Regularised Critics (DARC) algorithm to optimise energy resource alloca-

tion and improve system resilience. This algorithm enables the SP to implement dynamic

pricing and IDR strategies that maximise overall welfare for both the SP and the par-

ticipants in P2P energy trading. Numerical simulations with real-world data show that

the DARC model outperforms traditional fixed pricing and other reinforcement learning

methods. It enhances renewable energy use, reduces deficits, and increases profitability

for service providers and traders. Thus, it offers a sustainable solution for energy resource

management in decentralised markets.
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5.1 Introduction

The integration of renewable energy sources and distributed energy systems has increased

interest in innovative energy management strategies. P2P energy trading and IDR are

effective methods for addressing the challenges of decentralised energy systems. [85] [86].

P2P energy trading enables direct transactions between consumers and prosumers in a

decentralised market.[87]. This approach can lower transaction costs, improve the integ-

ration of renewable energy, and empower consumers to participate actively. [88]. As the

market becomes more complex, prosumers are increasingly important.[89].

P2P energy markets can help maximise household incomes by allowing individuals and

small groups to buy and sell excess electricity generated from renewable sources. However,

the lack of clear trading strategies and intense competition may result in significant losses

if irrational behaviour occurs. [90] [91].

IDR encourages consumers to adjust their energy consumption based on price signals

and system conditions [7]. Its main goal is to improve the efficiency and reliability of

energy systems while lowering costs for consumers and utilities [8]. IDR helps reduce

peak demand, supports renewable energy integration, and aligns with real-time market

prices by utilising the interdependencies among energy sources.

Integrating P2P energy trading with dynamic pricing can greatly enhance efficiency. Dy-

namic pricing, which adjusts based on real-time demand and supply, encourages consumer

participation in P2P trading. [92] [93]. This combination can create a more flexible and

reliable energy system that is better suited to handle the variability of renewable energy

sources and diverse consumer needs. [94].
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The literature on P2P energy trading has garnered attention, leading to various proposed

pricing mechanisms. Alfaverh et al. [24] introduced a pricing model based on dynamic

supply-demand ratios to facilitate energy sharing in community microgrids. Qiu et al.

[95] developed a double auction framework for multi-energy microgrid coordination using

multi-agent reinforcement learning. Yin et al. [96] applied a Stackelberg game approach

to creating win-win scenarios in energy pricing and sharing systems.

Dynamic pricing in P2P energy systems has been explored using cooperative Stackelberg

game models [97] and evolutionary game theory to lower costs for prosumers and boost

system efficiency.[98]. Tushar et al. [97] examined a hybrid incentive approach combining

feed-in tariffs with flexible grid access to enhance P2P energy marketplace viability. Liu

et al. [94] proposed an optimal bidding strategy using a double-auction framework to

manage uncertainties in load demand and renewable energy production in P2P contexts.

IDR has been extensively researched, with various optimisation methods for multi-energy

management, including load scheduling and energy storage. [99–101]. Aghamohamadi et

al. [102] proposed a robust optimisation model for energy hub systems using a block-

coordinate-descent approach. Techniques like linear programming, mixed-integer program-

ming, and metaheuristic algorithms address complex optimisation challenges in IDR set-

tings [103–105]. Additionally, forecasting methods, such as time-series analysis and ma-

chine learning, help accurately estimate load demand and renewable generation, improving

energy resource planning and coordination. [106, 107].
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Extensive research on game theory and market mechanisms has focused on designing ef-

fective IDR frameworks, considering the interactions among stakeholders [108–111]. Tech-

niques like double-auction mechanisms and Nash bargaining solutions have been used to

create decentralised IDR models that ensure fair and efficient energy resource distribu-

tion [112–114]. Wang et al. [115] explored IDR programs that categorize consumers by

their responsiveness to incentives, proposing an incentive pricing mechanism to enhance

program efficiency.

In their paper ”Dynamic Electricity Price Adjustment in Trading Markets Using Rein-

forcement Learning,” Hu et al. [116] investigate using reinforcement learning to adjust

electricity prices in real-time. This method aims to balance supply and demand while be-

nefiting both suppliers and consumers, showcasing machine learning’s potential in complex

markets.

Zhang et al. [117] introduces a multi-objective optimisation model that integrates de-

mand response (DR) and dynamic pricing in smart integrated energy systems (IES). This

approach optimises system operations and enhances energy efficiency by considering the

demand’s spatio-temporal characteristics and stakeholder preferences.

Das et al. [118] propose a Q-learning-based dynamic pricing algorithm to optimise retail

energy prices, reducing curtailable load and enhancing power system stability, benefiting

both consumers and service providers.

Almannouny et al. [93] develop the integrated demand response field by using a deep

reinforcement learning framework, specifically the DDPG method, to optimise retail en-

ergy pricing in a dynamic multi-energy market. This approach allows service providers to

adjust energy prices in response to fluctuations in end-user demand and wholesale prices,

benefiting both utility companies and consumers through cost savings and better peak

load management.
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The existing literature has not fully explored the potential of these techniques for optimal

energy trading and demand response strategies, especially considering the dynamic nature

of renewable energy sources and diverse consumer needs. There is also a lack of clarity

on the key factors affecting model performance, including pricing schemes, energy storage

systems, and consumer responsiveness to dynamic price signals.

Despite the progress made, the combination of P2P energy trading and dynamic pricing

for IDR, especially within the framework of interconnected multi-energy microgrids, has

not been thoroughly investigated. This study intends to fill the current research voids by

introducing an innovative model incorporating dynamic pricing IDR into a P2P energy

trading system, utilising advanced optimisation methods to facilitate efficient management

of energy resources. The primary contributions of this study are summarised as follows:

• To the best of our knowledge, this is the first work to consider P2P energy trad-

ing, energy conversion, and dynamic pricing IDR together holistically. A new P2P

energy trading platform for interconnected residential, commercial, and industrial

microgrids has been established.

• Utilising the modified Double Actors Regularised Critics (DARC) Algorithm, a

sophisticated DRL approach is employed to address the complex optimisation prob-

lem of energy trading and integrated demand response in a multi-energy P2P set-

ting. DARC improves value estimation and exploration by employing double act-

ors and regularised critics, reducing biases and facilitating optimal energy trading

strategies.

The rest of this chapter is structured as follows: Section II outlines the system architecture

and develops the mathematical model for the dynamic pricing IDR. Section III introduces

the proposed method for dynamic pricing IDR within P2P multi-energy trading across

interconnected microgrids. Section IV details case studies to assess the proposed method’s

efficacy. Finally, Section V concludes the chapter.
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5.2 SYSTEM MODEL

This section outlines the proposed system model, which includes energy producers, in-

terconnected microgrids, a peer-to-peer energy trading platform, and SP. It emphasises

peer-to-peer multi-energy trading in interconnected microgrids, using a dynamic pricing

model based on DRL.

5.2.1 System Overview

The proposed model for dynamic pricing IDR)within a peer-to-peer energy trading frame-

work builds on recent studies. It adapts existing designs to incorporate demand response

mechanisms effectively. Influenced by Chen et al. (2021), which uses multi-agent deep

reinforcement learning for P2P trading and energy conversion [119], our model introduces

a dynamic pricing IDR mechanism, offering a novel contribution by integrating these

strategies into P2P energy trading for multi-energy microgrids.

In our framework, as illustrated in Fig. 5.1, energy hubs play a crucial role in overseeing

the distribution and transformation of different forms of energy within the system. Based

on the concept by Yang et al. (2022), these hubs serve as key nodes in P2P networks that

convert, store, and distribute energy from multiple sources, including renewables [120].

Each EH utilises advanced technology to handle solar, wind, and conventional energy

inputs, enhancing the microgrids’ flexibility and sustainability.

Residential microgrids (RES MG) use solar panels to generate electricity. Excess energy

is stored as hydrogen through water electrolysis. This hydrogen can be stored indefinitely

and later converted back into electricity and heat, with natural gas as a backup fuel.
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Commercial microgrids (COM MG) also harness solar energy but primarily use electric

heat pumps to heat water. They employ thermal storage systems to reserve surplus heat.

Industrial microgrids (IND MG) focus on energy efficiency. They use combined heat and

power (CHP) generators to produce electricity and heat. Wind turbines support electricity

generation, and storage systems manage energy fluctuations.

𝐄𝐇𝟏 𝐄𝐇𝟐 𝐄𝐇𝟑 𝐄𝐇𝐧…

SP

P2P trading platform 

Power gridNatural Gas

IND 
MG

COM 
MG

RES 
MG

Electric power flow 

Gas power flow 

Heat power flow 

Information flow 

Figure 5.1: representing the integration of dynamic pricing IDR into a P2P multi-energy
trading system.

The dynamic pricing IDR mechanism in our P2P platform adapts to real-time changes

in energy demand and supply, allowing for more efficient trades between consumers and

prosumers. By integrating dynamic pricing into the IDR framework, our model aligns

prices with market conditions and encourages energy-saving behaviours and optimal con-

sumption patterns.

The P2P trading platform is central to this system, enabling energy trades between hubs

based on dynamic pricing. It promotes a competitive yet cooperative environment, helping

microgrids optimise their energy portfolios for a more resilient and economically viable

network.
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This architecture, inspired by effective models, incorporates integrated dynamic pricing

IDR strategies to meet the needs of interconnected multi-energy microgrids. This integra-

tion aims to enhance system resilience, optimise resource allocation, and improve overall

efficiency.

5.2.2 Problem Formulation and System Dynamics

This subsection presents the mathematical formulation of the dynamic pricing IDR model

for P2P multi-energy trading in interconnected microgrids. The model adjusts pricing

based on changing conditions to ensure prosumers’ profitability and system stability while

accurately representing energy flow between electricity and gas systems, including energy

conversion and storage.

5.2.2.1 State Space

The state space captures the information available to agents at each time step t, repres-

ented by the vector st , which includes energy demand, supply, storage levels, renewable

output, and pricing.

st =
[
Dt ,St ,Estorage ,t ,Gstorage ,t ,Erenewable ,t ,Pelec ,t ,Pgas ,t

]
(5.1)
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5.2.2.2 Action Space (A)

At time t, the action at involves adjustments to dynamic electricity and gas prices, along

with changes in energy consumption patterns in response to IDR signals.

at =
[
Pd

elec ,t ,P
d
gas ,t , IDRadjust

t

]
(5.2)

where Pd
elec,t and Pd

gas,t represent the adjustments in electricity and gas prices, respectively,

and IDRadjust
t indicates changes in demand response actions (e.g., energy conservation or

shifting consumption to off-peak times).

5.2.2.3 Reward function

The reward function aims to maximise SP profitability while ensuring the user’s net

income. It can be mathematically represented as:

R(st ,at) = λ1 ·πSP,t +λ2 ·πp2p,i +λ3 ·UIDR−λ4 ·COp,t (5.3)

In the given equations: R(st ,at) is the reward at time t for state st and action at . πSP,t

represents the SP’s profit at time t. πi,t represents the user’s net income at time t, consid-

ering energy costs and participation incentives. COp,t represents the operational costs at

time t, including penalties for not meeting regulatory requirements.

The SP’s revenue is calculated as the difference between revenue from selling energy and

the cost of procuring/generating this energy. This can be expressed as follows:

πSP,t = Maximize ∑
t∈T

(
Pt ·Ssold ,t−Ct ·Bbought ,t

)
(5.4)
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The profit for any microgrid i participating in P2P trading during time step t can be

determined by considering both the revenue generated from selling energy to other mi-

crogrids and the costs incurred from purchasing energy. The profit πp2p,i for microgrid i

at time t can be formulated as follows:

πp2p,i = ∑
j:(i, j)∈E

Pi j,tEi j,t− ∑
k:(k,i)∈E

Pki,tEki,t (5.5)

Here, the first term represents the total revenue from selling energy to neighbouring mi-

crogrids via P2P platform j, where (i, j) ∈ E (the set of microgrids that i can trade with

directly). The second term represents the total cost of purchasing energy from neighbour-

ing microgrids through the P2P platform k.

Operational costs at time t can encompass several factors, including energy procurement

costs, maintenance, regulatory compliance penalties, and the costs associated with de-

mand response actions. This can be defined as:

COp,t =COproc ,t +COmaint ,t +COreg,t +COIDR,t (5.6)

Where: COproc ,t energy procurement costs at time t, covering expenses for purchasing

energy and production costs. COmaint ,t maintenance costs at time t, including routine

and unscheduled maintenance. COreg,t regulatory compliance costs or penalties incurred

at time t, including fines for emissions or delivery schedule deviations. COIDR,t costs for

integrated demand response actions at time t, including consumer incentives for demand

reduction or usage adjustments.
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5.2.3 Three-stage System Process

The three-stage system process includes P2P energy trading, energy conversion, and dy-

namic pricing IDR. Each stage informs the next: outcomes from P2P trading influence en-

ergy conversion decisions, and the system status post-conversion shapes pricing strategies.

This integrated approach seeks to create a more flexible, efficient, and sustainable energy

system that adapts to renewable energy fluctuations and meets diverse consumer needs.

5.2.3.1 P2P Energy Trading

Prosumers submit buying or selling bids to the P2P platform based on their energy gener-

ation and consumption forecasts. The platform matches bids, enabling direct transactions

at agreed prices. At time t, microgrid i decides on its trading actions, represented by a

vector xi
t . Therefore,

xi
t = [xi j

t ]−{1≤ j ̸= i≤ N} (5.7)

xi j
t denotes the intended amount of energy to be traded between microgrid i and microgrid

j at the time t. If xi j
t > 0, microgrid i intends to buy energy from microgrid j. And if xi j

t < 0,

microgrid i intends to sell energy from microgrid j. After negotiations, the actual energy

trading is finalised and represented by

zi
t = [zi j

t ]−{1≤ j ̸= i≤ N} (5.8)

Where zi
t denotes the actual amount of energy traded between microgrid i and microgrid j

at the time t, the actual trading may differ from the intended trading due to negotiations

and constraints.

96



5.2. SYSTEM MODEL

5.2.3.2 Energy Conversion Stage

Each energy hub h at time t decides on its energy conversion and storage actions, represen-

ted by a vector yh
t . It includes conversion technologies (Combined heat and power (CHP)

units, power-to-gas (P2G) units, electric heat pumps (EHPs)) and storage technologies

(electricity storage and gas storage). Therefore,

yh
t = Eelec,CHP(t),Egas,CHP(t),Eheat,CHP(t),Egas,P2G(t),Eheat,EHP(t),Sele(t),Sgas(t) (5.9)

Energy conversion and storage occur within each EH based on the outcomes of the P2P

trading stage zi
t and the EH actions yh

t .

5.2.3.3 Dynamic Pricing IDR Stage

In this stage, SP monitors the system state st and determines the dynamic pricing for

electricity Pele,td and Pgas,td . The SP also issue IDR signals, IDRad just, t, to influence

the energy consumption patterns of prosumers and consumers. These signals promote

energy conservation during peak demand periods, facilitate the integration of renewable

energy, and enhance overall system stability and cost-effectiveness. The adjusted demand

represented as Dadjusted ,t is a function of the original demand Dt−∆, the dynamic prices

indicated by the IDR signals.

Dadjusted ,t = Dt−∆D(Pt , IDRt) (5.10)
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The three interconnected stages influence each other. The outcomes of the P2P energy

trading stage zi
t affect the energy resources available for each microgrid during the energy

conversion stage. In turn, the energy conversion actions yh
t impact the overall system state

(st), which influences the dynamic pricing and IDR decisions made by the SP in the next

time step. Additionally, the dynamic prices Pele,td , Pgas,td and IDR signals IDRad just, t

shape the energy demand and P2P trading behaviour of prosumers and consumers in

subsequent time steps.

5.2.3.4 Objective Function

The overall system objective is to maximise the following function:

Maximize: λ1 ·πSP,t +λ2 ·πp2p,i +λ3 ·UIDR−λ4 ·COp,t (5.11)

This objective function aims to achieve a balanced and efficient energy management

strategy that benefits all P2P multi-energy trading system stakeholders.

5.2.4 Constraints

The constraints define the feasible operating region for the P2P energy trading system,

which encompasses dynamic pricing, IDR, and energy hubs. The optimisation problem

aims to identify the most effective actions, including P2P trading decisions, energy hub

operations, dynamic pricing adjustments, and IDR signals, that will maximise the system’s

overall objectives while ensuring compliance with these physical constraints.
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5.2.4.1 P2P Trading Constraints

• Trading Limits: The amount of energy traded between microgrids is subject to limit-

ations based on network capacity, generation capabilities, and demand constraints.

xi j
min ≤ xi j

t ≤ xi j
max (5.12)

Where xi j
min and xi j

max represent the minimum and maximum allowable energy trading

amounts between microgrids i and j, respectively.

• Energy Balance: The total energy bought and sold by a microgrid in the P2P market

should be balanced with its net energy production/consumption and any interac-

tions with the external grid.

∑
j ̸=i

zi j
t + zii

t = Gi
t−Di

t (5.13)

Gi
t is the net energy generation of microgrid i at time t (considering renewable generation

and energy hub output). Di
t is the total energy demand of microgrid i at time t.

5.2.4.2 Energy Hub Constraints

• Conversion Efficiency: The energy conversion processes within the energy hub are

subject to efficiency limitations.

0≤ ηconv ≤ 1 (5.14)

Where ηconv represents the conversion efficiency of a specific energy conversion tech-

nology within the energy hub.
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• Storage Capacity: The energy storage systems within the energy hub have limited

capacity.

0≤ St ≤ Smax (5.15)

Where St is the energy stored in the storage system at time t. And Smax is the

maximum storage capacity

• Storage Dynamics: The energy levels in the storage systems evolve over time based

on charging/discharging rates and self-discharge characteristics.

St+1 = St +ηch ·Ein(t)−
1

ηdisch
·Eout(t)−ηsd ·St (5.16)

Where ηch and ηdisch are the charging and discharging efficiencies, respectively. Ein(t)

and Eout(t) are the energy charged into and discharged from the storage system at

time t, respectively. ηsd is the self-discharge rate.

• Energy Balance: The energy hub must maintain the balance between the energy

inflow (from P2P trading and external grid) and the energy outflow (to meet local

demand and for storage).

∑Ein(t) = ∑Eout(t)+∑Estored(t) (5.17)

5.2.4.3 Dynamic Pricing IDR Constraints

• Price Bounds: The dynamic prices set by the ESP should lie within reasonable

bounds to avoid market distortions and ensure affordability for consumers.

Pmin ≤ Ptd ≤ Pmax (5.18)

Where Pmin and Pmax represent the minimum and maximum allowable dynamic

prices, respectively.
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• Price Adjustment: The dynamic price adjustments should be smooth and gradual

to avoid sudden price shocks and promote market stability.

|Pt
t −Pd

t−1| ≤ ∆Pmax (5.19)

Where ∆Pmax is the maximum allowable price change between two consecutive time

steps.

• IDR Signal Limits: The IDR signals issued by the SP should be within technically

feasible and acceptable ranges for the prosumers/consumers.

IDRmin ≤ IDRad just,t ≤ IDRmax (5.20)

Where IDRad just,t and IDRmax represent the minimum and maximum allowable IDR

signal levels, respectively.

5.3 Proposed Enhanced DARC Algorithm

This research presents an enhanced DARC algorithm designed to tackle the challenges

of dynamic pricing IDR in P2P energy trading across interconnected multi-energy mi-

crogrids. It incorporates double-actor networks for improved exploration and utilises reg-

ularised critic networks to increase the stability of value estimation.

The adjusted DARC algorithm acts as the SP’s decision-making framework within our

proposed system. Its primary goal is to identify the optimal dynamic pricing IDR strategies

that maximise overall system welfare, factoring in both the SP’s profit and the collective

benefits of prosumers and consumers engaged in P2P energy trading.
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An effective enhancement in our approach is regularising the critic networks, which reduces

the risk of overestimation bias that can arise from using multiple critics. The DARC

algorithm seeks to maximise the overall system objective by balancing the interests of the

SP with those of prosumers and consumers while also fostering efficient energy utilisation

and demand-side flexibility.

5.3.1 Modified DARC algorithm implementation

This research implements the DARC algorithm, which comprises two key neural networks:

the actor and critic networks. The actor network’s main function is to produce optimal

actions, specifically by adjusting dynamic pricing for electricity and gas, as well as altering

energy consumption patterns in response to IDR signals. In contrast, the critic network

assesses the value of these actions by predicting the expected future rewards linked to

them. The approach is illustrated in Figure 5.2, which shows the information flow.
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Figure 5.2: illustrates the information flow of the modified DARC algorithm.
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5.3.1.1 Double Actor Networks

The actor-network develops a policy that translates the current system state, which en-

compasses factors such as energy demand, supply levels, storage capacities, and renewable

energy output, into the most beneficial action. The network’s design captures the intric-

ate relationships among these state variables and potential actions, allowing it to make

well-informed decisions aimed at maximising overall system welfare.

The DARC algorithm enhances this decision-making process through the use of double

actors, which introduces an element of exploration and helps to mitigate biases in action

selection. Mathematically, this can be expressed as:

at = πϕ (st) = [Pd
elec,t ,P

d
gas,t , IDRad just,t ] (5.21)

Where πϕ represents the policy function learned by the actor-network.

Policy update: The actor network’s policy is updated using the policy gradient method

to maximise the expected future rewards. The gradient of the policy network is calculated

as follows:

∇ϕ J(ϕ) = Est [∇ϕ πϕ (st)∇aQθ (st ,at)|at=πϕ (st)] (5.22)

Where J(ϕ) is the objective function representing the expected future rewards. ∇ϕ πϕ (st) is

the gradient of the policy function for the network parameters ϕ . ∇aQθ (st ,at) is the gradi-

ent of the Q-value function (critic network) for the actions at . The gradient is evaluated

at the actions suggested by the actor-network itself at = πϕ (st).
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5.3. Proposed Enhanced DARC Algorithm

Double Actor Exploration: In the modified DARC algorithm, two actor networks (πϕ 1

and πϕ 2) are employed to enhance exploration. For each state st , both actor networks

propose actions, and the action leading to a higher Q-value is selected:

at = argmaxa∈{πϕ1(st),πϕ2(st)}Qθ (st ,a) (5.23)

Both actor networks are updated independently using their respective policy gradients.

∇θ J ≈ 1
N ∑∇a1Qθ1(s,a1)

∣∣
a1=πθ (s)

∇θ πθ (s)

∇ϕ J ≈ 1
N ∑∇a2Qθ2(s,a2)

∣∣
a2=πϕ (s)

∇ϕ πϕ (s)
(5.24)

5.3.1.2 Regularised Critic Networks

The Critic network functions as the evaluative counterpart to the Actor-network, employ-

ing its neural network architecture to estimate the value function. This function quantifies

the expected future rewards associated with a specific state-action pair. This estimation is

essential for guiding the Actor network’s learning and ensuring that it converges toward

an optimal policy. Furthermore, the regularisation mechanism incorporated into the Critic

network enhances the stability of the learning process and mitigates the risk of overes-

timating the value function, thereby leading to more robust and reliable performance.

Critic Network Update: The critic network, parameterised by θ , estimates the Q-value

function Qθ (st ,at), representing the expected future rewards for taking action at in state

st . The network is updated by minimising the mean squared error between its estimated

Q-values and the target values yt .

L(θ) =
1
N

N

∑
i=1

[(Qθ (si,ai)− yi)
2] (5.25)
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Where N is the batch size. yi is the target value for the i− th sample, calculated as:

yi = ri + γ(1−di)V̂ (s′i;ν) (5.26)

where ri is the immediate reward received after taking action ai in state si. γ is the discount

factor. di is a binary flag indicating whether the episode terminated after taking action ai

in state si. V̂ (s′i;ν) is the soft target value for the next state s′i, calculated using a convex

combination of the Q-values from both critics and actors.

Regularisation of Critic Networks: To mitigate the potential overestimation bias

and reduce variance in value estimation, a regularisation term is added to the critic loss

function:

L(θ1) =
1
N ∑(yi−Qθ1(si,a1i))

2 +λ (Qθ1(si,a1i)−Qθ2(si,a1i))
2

L(θ2) =
1
N ∑(yi−Qθ2(si,a2i))

2 +λ (Qθ1(si,a1i)−Qθ2(si,a2i))
2

(5.27)

Where λ is the regularisation coefficient.

5.3.1.3 Target Network Update:

The target critic and actor networks are updated slowly to stabilise the learning process

using a soft update rule with a parameter:

π ′θ1
← τ ·πθ1 +(1− τ) ·π ′θ1

π ′θ2
← τ ·πθ2 +(1− τ) ·π ′θ2

Q′θ1
← τ ·Qθ1 +(1− τ) ·Q′θ1

Q′θ2
← τ ·Qθ2 +(1− τ) ·Q′θ2

(5.28)
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5.3.2 Training Process of the Modified DARC Algorithm

The modified DARC algorithm is employed for dynamic pricing IDR in P2P energy trading

among interconnected multi-energy microgrids. The training process involves iterative

steps that optimise the policies of actor networks and the value estimations of critic

networks for effective energy management.

Training begins with initialising actor and critic networks using random parameters and

setting up a replay buffer to store experiences. This buffer is essential for agents to learn

from past interactions.

At each time interval, agents assess the system’s existing state and determine actions in

accordance with their established policies. They employ dual actor networks to optim-

ise the Q-value. These actions result in subsequent states and rewards contingent upon

performance outcomes.

The replay buffer records transitions, including the current state, selected action, reward,

next state, and an indication of whether the episode has terminated. This enables agents

to enhance their decision-making by revisiting previous experiences.

The network updates involve sampling batches of transitions from the replay buffer. The

critic networks are updated by minimising the mean squared error between their estim-

ated Q-values and the target values, with a regularisation term for consistency. The actor

networks are updated using the policy gradient method, informed by the critic networks’

value estimations. The target critic and actor networks are updated periodically to en-

sure stable learning and gradual adjustments, which help stabilise the training process.
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This process includes action selection, experience storage, and network updates and is re-

peated until convergence or a predefined stopping criterion is met. Through this, policies

and value estimations are refined to achieve an optimal solution that balances individual

microgrid objectives with user benefits.

The modified DARC algorithm employs a multi-agent framework with double actors for

improved exploration and regularised critic networks for better value estimation. By in-

corporating dynamic pricing IDR mechanisms, it effectively addresses the complexities of

P2P multi-energy trading, leading to adaptive strategies that optimise energy manage-

ment and enhance system efficiency.

Algorithm 3: Modified DARC Algorithm for Dynamic Pricing IDR in P2P Energy
Trading
Input: Initialize actor networks πϕ1 , πϕ2 with random parameters ϕ1, ϕ2

Input: Initialize critic networks Qθ1 , Qθ2 with random parameters θ1, θ2

Input: Initialize target networks π ′ϕ1
, π ′ϕ2

, Q′θ1
, Q′θ2

with parameters ϕ ′1← ϕ1,
ϕ ′2← ϕ2, θ ′1← θ1, θ ′2← θ2

Input: Initialize replay buffer D

for episode = 1 to M do
Initialise environment and state s

for t = 1 to T do
Select action a based on Eq 5.23 using current state s and both actor networks
Execute action a and observe reward r and new state s′

Store transition (s,a,r,s′) in replay buffer D

Sample a random minibatch of N transitions (si,ai,ri,s′i) from D

Compute target values yi for each transition in the minibatch using Eq 5.26
Update critic networks θ1, θ2 by minimizing the loss functions in Eq 5.27
Update actor networks ϕ1, ϕ2 using the policy gradients in Eq 5.24
Update target networks using Eq 5.28 with a soft update rate τ
s← s′

end
end
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5.3.3 Execution Steps

The DARC algorithm implementation in Algorithm 3 begins by initialising actor and critic

networks with random parameters and a replay buffer designed to store experiences. At

each time step, the algorithm evaluates the system’s state, which includes energy demand,

supply, storage levels, and renewable energy output. Actions are determined based on the

policies of both actor networks, prioritising those that yield a higher Q-value, which reflects

expected future rewards. After selecting an action, it is executed, and the resulting reward

and updated system state are observed.

This transition, comprising the current state, the action taken, the reward received, the

next state, and an episode termination indicator, is stored in the replay buffer. Batches of

transitions are then sampled from this buffer to update the critic networks by minimising

the mean squared error between the estimated Q-values and the target Q-values, with a

regularisation term added for consistency. The actor networks are updated through the

policy gradient method, guided by the value estimations from the critic networks. Fur-

thermore, the target critic and actor networks are periodically refreshed to ensure stable

learning. This iterative process continues until convergence is achieved or a predetermined

stopping criterion is met.

5.4 Numerical Simulation and Analysis

This section evaluates the DARC algorithm’s performance within a P2P multi-energy

trading framework designed for dynamic pricing and IDR in interconnected microgrids.
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5.4.1 Simulation Setup

Our simulation utilised datasets from the Open Energy Data Initiative (OEDI) [121] and

Energy Data and Research [122]. Including energy pricing, generation, demand, supply,

and renewable generation.

For the configuration of microgrids, we utilized real-world data from three different set-

tings: residential microgrids (RES MG) in Mueller, Austin, Texas [123], commercial mi-

crogrids (COM MG) also in Mueller [123], and industrial microgrids (IND MG) from a

trial site in Aachen/Cologne, Germany. Each dataset provided high-resolution (hourly)

data for components such as Photovoltaic (PV) systems, Electrical Energy Storage (EES),

Thermal Energy Storage (TES), Fuel Cells (FC), Gas Boilers (GB), and interactions with

the main grid.

5.4.2 Performance Evaluation

This study conducts a comparison between a modified DARC-based scheme and a baseline

method that employs traditional fixed pricing, as well as three DRL approaches: DDPG,

MADDPG, and MATD3. A consistent Python simulation environment has been utilised

to ensure the comparability of results, with hyperparameters for all models detailed in

Table 5.1. Each model was trained over 200 episodes, with each episode consisting of 50

steps, in order to facilitate a fair comparison.

The average hourly costs of various DRL models MDARC, DDPG, MADDPG, and

MATD3 are compared across three microgrid types: Residential, Commercial, and In-

dustrial MEMGs, as shown in Fig. 5.3.
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Table 5.1: Hyper-parameters for Different RL Models

Hyperparameter DARC DDPG MADDPG MATD3

Max Steps per Episode 50 50 50 50

Episodes 200 200 200 200

Replay Buffer Size 103 103 103 103

Batch Size 128 32 64 64

Learning Rate (Actor) 0.001 0.001 0.001 0.001

Learning Rate (Critic) 0.002 0.002 0.002 0.002

Discount Factor γ 0.99 0.99 0.99 0.99

Soft Update Rate τ 0.01 0.005 0.005 0.005

Residential MEMG: The MDARC model demonstrates the lowest and most stable

costs, reflecting effective management practices. In contrast, the MATD3 model incurs

significantly higher costs due to inefficient energy trading.

Commercial MEMG: Similarly, MDARC showcases lower average costs, while both

MATD3 and MADDPG exhibit higher and more variable costs, indicating challenges

with efficiency.

Industrial MEMG: Once again, MDARC stands out with the lowest costs, whereas

MATD3 experiences elevated costs with considerable fluctuations, underscoring difficulties

in cost control.
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Figure 5.3: Shows Comparison of Average Hourly Costs across Reinforcement Learning
Models for Residential, Commercial, and Industrial MEMGs.
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5.4.3 Profitability Analysis

The profitability analysis provides a comprehensive comparison of the financial perform-

ance of various DRL models, specifically focusing on their impacts on both SP and parti-

cipants within the P2P energy trading network. This detailed evaluation plays a crucial

role in identifying the most economically viable model that not only maximises profits

but also fosters community engagement and benefits.

Among the analysed models, the MDARC model stands out due to its exceptional capab-

ility to generate higher profits for service providers operating within various MEMGs. In

particular, this model produces substantial earnings, yielding £78,226 from the residential

micro grid, £82,621 from the Commercial micro grids, and £81,486 from the industrial

micro grids. These figures, which are visually represented in Figure 5.4, highlight the

MDARC model’s effectiveness across different sectors, underscoring its potential to en-

hance financial stability and promote sustainable energy practices within the community.
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Figure 5.4: show SP profitability analysis under MDARC across three MEMGs.
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The MDARC algorithm demonstrates superior performance in enhancing net income for

participants within P2P energy trading frameworks, as evidenced by sector-specific fin-

ancial outcomes Figure. 5.5. Residential MEMG achieve a notable net income of £4,136,

reflecting the algorithm’s capacity to optimise decentralised energy exchanges in smaller-

scale, demand-flexible environments. Commercial MEMGs exhibit even greater finan-

cial gains, with earnings reaching £10,243.08, underscoring MDARC’s effectiveness in

balancing high-energy consumption patterns with dynamic pricing incentives. Industrial

MEMGs, while slightly lower at £9,357.49, still showcase robust profitability, indicative of

the model’s adaptability to complex, high-demand operational contexts. These disparities

highlight MDARC’s ability to tailor energy allocation strategies across diverse sectors,

fostering enhanced economic viability and equitable market participation. The results

emphasise the algorithm’s role in advancing sustainable energy ecosystems by aligning

stakeholder profitability with efficient resource utilisation.
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Figure 5.5: Demonstrate total users’ net income under MADARC algorithm for parti-
cipants within peer-to-peer (P2P) energy trading frameworks
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The figure 5.6 provides a comparative analysis of profit generation across three distinct

MEMG residential, commercial, and industrial evaluated under two frameworks: Service

Provider (SP) and Peer-to-Peer (P2P) energy trading. This analysis is conducted using

four RL models: MDARC, DDPG, MADDPG, and MATD3. Profits in each microgrid are

divided into SP-driven revenues and P2P-derived earnings, offering valuable insights into

the economic viability of decentralised energy markets.

MDARC consistently outperforms the other models across all MEMGs, demonstrating a

superior ability to balance SP profitability with equitable P2P trading gains. In residential

microgrids, MDARC’s dual emphasis on dynamic pricing and demand flexibility aligns well

with lower energy requirements, resulting in stable returns for both SPs and participants.

In the commercial sector, MDARC reveals enhanced profitability, attributed to its capacity

to manage complex consumption patterns and incentivise participation from demand-side

players. Although industrial applications yield slightly lower P2P profits compared to the

commercial sector, they still showcase MDARC’s robustness in optimising high-volume,

multi-energy transactions.

The comparatively lower performance of DDPG, MADDPG, and MATD3 highlights the

challenges associated with scalability and real-time adaptability, particularly in balancing

centralised revenue goals with the dynamics of decentralised markets. These findings un-

derscore MDARC’s pivotal role in fostering sustainable energy ecosystems by harmonising

stakeholder profitability with efficient resource allocation, thereby offering a blueprint for

future advancements in intelligent energy management systems.
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Figure 5.6: (a)-(c) showcasing SP profit and P2P profit for different MEMG types (Res-
idential, Commercial, Industrial) and across RL models (MDARC, DDPG, MADDPG,
MATD3).

5.4.4 Dynamic Price IDR Effectiveness

The analysis covers the integration of dynamic pricing and IDR in a P2P multi-energy

trading system. It focuses on the flow of electricity, gas, and heat among various mi-

crogrids and highlights how energy hubs (EHs) manage energy distribution to improve

flexibility and sustainability. Compared to much lower profits under DDPG, MADDPG,

and MATD3, this showcases DARC’s ability to create a cooperative trading environment

that benefits both prosumers and consumers.

Figure 5.7 shows the impact of dynamic pricing IDR on energy demand over 24 hours

across residential, commercial, and industrial MEMGs. The bar plots present average elec-

tricity demand before and after dynamic pricing IDR implementation, while line graphs

depict percentage reductions in demand. Residential MEMGs exhibit significant reduc-

tions during peak hours due to their responsiveness to IDR signals, whereas commercial

and industrial MEMGs demonstrate more consistent demand shifts, indicating varying

operational flexibility. These results highlight the potential of IDR to optimise energy

consumption, reduce grid stress, and promote sustainability across sectors.
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Figure 5.7: Depicts Visualisation of IDR effectiveness and energy demand shifts before
and after IDR implementation across MEMG types.

Figure 5.8 also showcases the interactions between different microgrids (residential, com-

mercial, and industrial) and the main power grid as an external energy resource. It reveals

how different MEMGs depend on local versus external energy resources. The stacked bar

chart indicates that residential MEMGs rely heavily on local generation and storage. In

contrast, commercial and industrial MEMGs maintain a balance between local and ex-

ternal sources, reflecting their operational needs. This underscores the importance of local

resources for enhancing system self-sufficiency.

The impact of dynamic pricing IDR on peak shifting within MEMGs is noteworthy. This

strategy assesses the effectiveness of adjusting energy consumption during peak times.

Industrial MEMG demonstrates the highest capacity for peak shifting, followed by com-

mercial MEMG, which exhibits moderate shifts. Residential MEMG contributes smaller

but consistent shifts, playing a crucial role in stabilising peak demand, as shown in Figure

5.9.
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Figure 5.8: Depicts comparison of energy supply sources (local vs. external) across Resid-
ential, Commercial, and Industrial MEMGs. Energy shifts in electricity and heat across
MEMG types

This analysis highlights how our proposed system can enhance energy efficiency and grid

stability through effective peak demand management.
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Figure 5.9: Depicts energy shifts in electricity and heat across MEMG types

5.4.5 Energy balance

This study examines the effectiveness of diverse reinforcement learning models in man-

aging renewable energy utilisation, energy deficiencies, and energy storage systems within

residential, commercial, and industrial MEMGs. Figure 5.10 compares the average renew-

able energy generation (kWh) across MEMG types.

The findings indicate that MADARC and MATD3 consistently outperform other mod-

els in terms of renewable energy utilisation, particularly within industrial MEMGs. For

example, industrial MEMGs utilising MADARC generate approximately 20% more renew-

able energy compared to the Baseline model, showcasing their effectiveness in optimising
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Figure 5.10: Shows a comparison of the average renewable energy production (kWh)
among different MEMG types.

renewable integration. In contrast, residential MEMGs demonstrate moderate improve-

ments, while commercial MEMGs exhibit balanced performance across various models.

The Baseline model significantly underperforms, emphasising the advantages of reinforce-

ment learning-driven strategies in maximising the use of renewable resources.

Figure 5.11 presents data on electricity deficit counts, which represent instances where

demand surpasses supply. The DDPG and MADARC models exhibit the lowest counts

across all types of MEMGs, achieving reductions of approximately 40–60% when compared

to the Baseline. Notably, industrial MEMGs utilising MADARC attain the fewest deficits,

highlighting the effectiveness of their demand response coordination.

In contrast, the Baseline model, with its static control strategy, frequently encounters

deficits, particularly within commercial MEMGs. These findings underscore the vital role

of the MADARC model in enhancing the balance between electricity supply and demand

dynamics.
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Figure 5.11: Illustrate the electricity deficit counts.

Furthermore, Figure 5.12 emphasises the heat deficit counts. MADARC outperforms other

models in commercial and industrial MEMGs, reducing heat deficits by approximately

35–50% compared to the Baseline. In residential MEMGs, the differences among the

models are less pronounced; however, MATD3 demonstrates slightly superior performance.

These results underscore MADARC’s effectiveness in managing thermal energy systems,

likely attributable to its adaptive pricing mechanisms, which more effectively balance heat

generation and consumption.
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Figure 5.12: Depict the heat deficit counts.

Figure 5.13 analyses the average electricity storage levels (kWh). Both MADARC and

MATD3 achieve optimal storage capacities, with industrial MEMGs under DARC storing

approximately 25% more energy than the Baseline. This reflects effective energy buffering

aimed at mitigating supply variability. In contrast, MADDPG and DDPG exhibit mod-
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erate levels of storage utilisation, while the Baseline significantly underutilises its storage

infrastructure, resulting in inefficiencies. A higher storage capacity is associated with re-

duced deficits, which underscores the interdependence of storage and demand management

within reinforcement learning frameworks.
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Figure 5.13: Depict the heat deficit counts.

In general, these results emphasise MADARC’s reliable performance across different mi-

crogrid categories.

Residential Microgrids: MADARC consistently outperforms other methods in redu-

cing heat and electricity deficits while achieving a higher average capacity for electricity

storage. This demonstrates MADARC’s effectiveness in balancing energy demand and

supply, as well as its ability to utilise storage efficiently.

Commercial Microgrids: While all DRL methods significantly reduce heat deficits

compared to the baseline, MADARC stands out with a slight advantage in minimising

electricity deficits and maximising electricity storage. This underscores MADARC’s po-

tential to optimise energy distribution and storage in commercial settings.

Industrial Microgrids: MADARC’s performance is closely matched by MADDPG and

MATD3’s efforts to reduce electricity deficits and maximise storage. However, MADARC

clearly excels in minimising heat deficits, showcasing its adaptability to the specific energy

demands of industrial environments.
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Overall, these findings highlight MADARC’s consistent effectiveness across various mi-

crogrid types. Its capability to minimise deficits and optimise storage indicates its poten-

tial to enhance the resilience and efficiency of microgrids operating under dynamic pricing

and demand response conditions.

5.5 Chapter Summary

This chapter introduced a novel framework for P2P multi-energy trading by employing

a modified DARC algorithm. The primary contribution was demonstrating that this ad-

vanced DRL approach effectively optimises the complex interactions in a decentralised

market, outperforming other models. The results showed that the DARC-driven system

significantly enhances profitability for both the service provider and P2P participants

while minimising energy deficits and improving overall system resilience.
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Chapter 6

Conclusion and Future Work

This thesis has embarked on a systematic investigation into the application of intelligent

energy management strategies for modern, decentralised multi-energy systems. By lever-

aging advanced DRL algorithms, this research has developed and evaluated a series of

frameworks for integrating dynamic pricing with IDR. The progressive journey from a

dual-carrier system to a complex P2P multi-energy trading environment has provided a

comprehensive exploration of the challenges and opportunities in this domain. This final

chapter synthesises the key findings of the research in relation to the questions posed in

Chapter 1, consolidates the limitations of the work, and outlines promising directions for

future research.

6.1 Overall Conclusions

The research presented in this thesis successfully addressed its overarching aim and

answered the specific research questions formulated in Section 1.3. The findings collectively

demonstrate the significant potential of DRL-driven strategies to enhance the efficiency,

stability, and economic viability of multi-energy systems.
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In response to Research Question 1 (RQ1), which queried the effectiveness of a DRL-based

dynamic pricing IDR in an integrated electricity and gas system, Chapter 3 provided a

definitive answer. The DDPG framework successfully learned to optimise retail pricing,

leading to the dual benefit of increased DSO profitability and reduced end-user costs.

Furthermore, the model demonstrated robust adaptability, effectively managing supply

constraints by dynamically adjusting prices to prioritise critical loads and contain con-

sumer dissatisfaction costs. This confirmed that even in a foundational dual-carrier sys-

tem, an intelligent, model-free approach can create significant value for both providers

and consumers

Addressing Research Question 2 (RQ2), which explored the extension of the DRL frame-

work to multi-carrier systems incorporating EHs, Chapter 4 illustrated the profound im-

pact of this integration. The introduction of EHs provided the necessary physical mech-

anism for true energy substitution, a cornerstone of advanced IDR. The DDPG-based

agent learned to leverage this flexibility, resulting in significant shifts in energy source

utilisation, specifically, a reduction in peak electricity demand by encouraging the use of

natural gas for local heat and power generation. This study validated that DRL can effect-

ively manage the increased complexity of multi-carrier interactions, leading to tangible

improvements in overall system efficiency and significant peak load reductions

Finally, in answering Research Question 3 (RQ3), which investigated the performance

of an advanced DRL algorithm in a P2P multi-energy trading environment, Chapter 5

highlighted the necessity of algorithmic adaptation for complex systems. The modified

DARC algorithm was shown to be demonstrably superior to both traditional pricing and

other DRL models like DDPG in this decentralised setting. The DARC-driven framework

achieved higher profitability for both the SP and the P2P trading participants, effectively

creating a larger and more equitably distributed economic benefit. Moreover, it proved
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more effective at improving the energy balance by minimising electricity and heat deficits

and enhancing the utilisation of renewable energy resources. This confirmed that as system

complexity grows, so too does the need for more sophisticated DRL solutions capable of

robust exploration and stable value estimation.

In conclusion, this thesis makes a significant contribution by demonstrating a clear, pro-

gressive pathway for applying DRL to energy management. It establishes that DRL-driven

dynamic pricing and IDR are not only feasible but highly effective, offering scalable and

adaptive solutions that create mutual benefits for all stakeholders. The research validates

the synergy between multiple energy carriers, especially when enabled by technologies like

Energy Hubs, and provides a blueprint for designing intelligent, resilient, and economically

efficient decentralised energy markets.

6.2 Limitations of the Research

A critical reflection on this work necessitates the acknowledgement of its limitations,

which define the boundaries of its conclusions and provide context for future inquiry.

These limitations can be categorised into model simplifications, algorithmic challenges,

and the overall scope of the research.

• Model Simplifications: The frameworks developed in this thesis rely on several

key abstractions. The modelling of consumer behaviour, while incorporating price

elasticity and dissatisfaction costs, is a simplification of complex, often irrational,

human decision-making. The assumption of perfect information and instantaneous

communication networks does not capture the latencies, noise, and potential failures
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of real-world systems. Furthermore, while the economic interactions were modelled

in detail, the underlying physical network constraints of electricity grids and gas

pipelines were largely abstracted, which in reality would impose hard limits on

operational decisions.

• Algorithmic and Methodological Limitations: Deep Reinforcement Learning,

as a methodology, has inherent limitations. The algorithms used, DDPG and DARC,

can be sample-inefficient, requiring a significant number of interactions to learn op-

timal policies, a challenge for real-world, non-simulated training. The ”black box”

nature of deep neural networks also poses a challenge for interpretability, which can

be a barrier to trust and adoption by system operators. While the research demon-

strated scalability across progressively complex scenarios, applying these frameworks

to city- or nation-wide systems with millions of agents would present significant

computational and data management hurdles.

• Scope of the Research: The research was intentionally focused on operational

timescales (e.g., day-ahead and real-time decision-making). Consequently, it did not

address the equally important challenge of long-term investment and infrastructure

planning based on these operational strategies. Moreover, while the thesis explored

decentralised P2P trading, it did not delve deeply into the critical ancillary topics of

cybersecurity vulnerabilities or the data privacy implications inherent in collecting

and processing granular energy usage data.

6.3 Future Work

While this research provides a solid foundation, several avenues remain for further ex-

ploration. Future studies could concentrate on integrating emerging technologies, such as

blockchain, to enable secure and transparent peer-to-peer energy trading. Additionally,

examining the relationship between dynamic pricing in IDR and consumer behaviour

models could yield valuable insights into user engagement strategies.
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Furthermore, expanding the framework to encompass large-scale, cross-regional energy

systems could help validate its scalability and effectiveness across diverse market con-

ditions. Real-world implementation studies are also crucial for assessing the practical

challenges and benefits of deploying demand response learning DRL-driven IDR solu-

tions. Finally, utilising advanced forecasting techniques that leverage real-time data could

significantly improve the accuracy of demand-supply predictions, thereby enhancing the

efficiency and reliability of multi-energy systems.
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Appendices

This appendix provides supplementary materials to support the research presented in this

thesis. It includes a list of publications arising from this work, the pseudocode for the core

algorithms developed, and additional details regarding the simulation setups.

A Publications Arising from this Thesis

The following is a list of publications that have been accepted, submitted, or are in

preparation based on the research conducted for this thesis.

Paper from Chapter 3:

• Almannouny, G., Bu, S., & Yang, J. (2025). Deep reinforcement learning for integ-

rated demand response dynamic pricing of electricity and gas systems. [submitted

to International Symposium on POWER ELECTRONICS Ee2025].

Paper from Chapter 4:
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A. Publications Arising from this Thesis

• Almannouny, G., Bu, S., & Yang, J. (2022). Dynamic pricing integrated demand

response for multiple energy carriers with deep reinforcement learning. In 2022 IEEE

PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) (pp.

1–6). IEEE.

Paper from Chapter 5:

• Almannouny, G., Bu, S., & Yang, J. (2025). Dynamic pricing IDR in P2P multi-

energy trading systems using a modified DARC algorithm. [Under preparation for

submission to IEEE Transactions on Smart Grid].

B Supplementary Simulation Details

B.1 DDPG Hyperparameters (Chapter 3)

Table 6: DDPG Algorithm Parameters

Parameter Description

Number of episodes 1500

Learning Rate (Actor) 0.001

Learning Rate (Critic) 0.005

Batch Size 64

Replay Buffer Size 106

Discount Factor (γ) 0.99

B.2 DDPG Hyperparameters (Chapter 4)
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B. Supplementary Simulation Details

Table 7: DDPG Algorithm Parameters

Parameter Description

Number of episodes 500

Learning Rate (Actor) 0.001

Learning Rate (Critic) 0.005

Batch Size 64

Replay Buffer Size 106

Discount Factor (γ) 0.99

B.3 Comparative RL Model Hyperparameters (Chapter 5)

Table 8: Hyper-parameters for Different RL Models

Hyperparameter DARC DDPG MADDPG MATD3

Max Steps per Episode 50 50 50 50

Episodes 200 200 200 200

Replay Buffer Size 103 103 103 103

Batch Size 128 32 64 64

Learning Rate (Actor) 0.001 0.001 0.001 0.001

Learning Rate (Critic) 0.002 0.002 0.002 0.002

Discount Factor γ 0.99 0.99 0.99 0.99

Soft Update Rate τ 0.01 0.005 0.005 0.005
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