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Abstract

Compositional data take the form of parts of some whole, consisting of sets of non-negative

components. Compositional data can appear as proportions, percentages, general non-negative

values or counts. The inherent characteristics of compositional data, i.e. non-negativity and

the constraint to some total, pose unique challenges for traditional statistical techniques.

Compositional data arise across many real-world applications such as health, environmental,

forensic, financial and sports science. Further challenges occur when compositional data also

include other advanced data challenges such as multilevel hierarchical structure, non-smooth

time series or a spatial structure.

The main technique in the literature to overcome the complexities of compositional data

is to transform the components from the simplex (the sample space of compositional data)

into Euclidean space (the standard statistical space) using a log-ratio transformation. Once

transformed, standard statistical models can be applied. However, while this transforma-

tion is powerful, it is not always suitable in practice. There are many features commonly

found within compositional data that prohibit log-ratio transformations. For example, when

compositional data contain zeros, the log-ratios become undefined. Similarly, when the com-

ponents contain missing values, some or all of the log-ratio transformations may not pro-

duce sensible results. Lastly, when compositional data consist of counts, applying a log-ratio

transformation may discard information on how the total count may impact the variance

and the possible values the counts can take. Thus, there is a need for frameworks that can

handle compositional data containing these features, as well as addressing advanced data

challenges.
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This thesis presents novel Bayesian hierarchical frameworks designed to overcome the limit-

ations of log-ratio transformations in these instances. We apply and evaluate our proposed

frameworks to three applications of compositional data containing both a feature which

prevents log-ratio transformations and an advanced data challenge. These include: com-

positional data containing many zeros and a multilevel hierarchical structure, applied to

forensic elemental glass data; non-smooth time series containing a count structure and zero

values, applied to COVID-19 variant counts; and compositional data with a spatial pattern

containing zeros, applied to tree species proportions across a spatial grid. We assess the

performance of our frameworks through both in-sample and out-of-sample predictive exper-

iments, comparing with commonly used models. The results from the predictive experiments

demonstrate the effectiveness of our approaches, highlighting their contribution to compos-

itional data analysis and offering a robust alternative for handling real-world compositional

data.

All the code and any supplementary material produced for each of the proposed frameworks

is available on GitHub: https://github.com/catherineholland1/PhD.git. We do not have

permissions to share the data used within this thesis.
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In this chapter, we begin by introducing compositional data and the ways in which it is

challenging to model using traditional methods. We then discuss the standard approach in

dealing with compositional data and why this is not always suitable. We then introduce

various data challenges that can naturally occur in compositional data. Finally, the chapter

ends with an overview of the content of the thesis.

1.1 Motivation

Compositional data refer to multivariate sets of non-negative components, in the context

where we are primarily interested in the size of the components relative to their total and

relative to each other. Such data might be measured directly as proportions summing to

a total of one (100%), e.g. the proportions of each ingredient in a smoothie, or measured

in absolute terms with a different total, e.g. the number of votes cast for each political

candidate. Sometimes, real-world measurement of compositional data may set a total first,

e.g. collecting a total mass of soil to analyse. Other times, the components might arise in

the real world as essentially independent processes, and we construct the compositional

context and total later. For example, we could consider the number of times cars made by

different manufacturers crash per year, and then consider the relative share of the different

manufacturers in the total crashes. Compositional data arise in a wide range of fields, as

seen in forensic science (Napier et al., 2015), environmental statistics (Zuo et al., 2013) or

health data (Janssen et al., 2020).
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A classical definition of compositional data, given by Aitchison (1982), considers non-

negative vectors x with elements x1, . . . ,xD that are subject to a unit sum constraint, i.e.

∑xi = 1. The sample space for such compositional data are defined as the simplex (Aitchison,

1982):

SD = {x = (x1,x2, . . . ,xD) : xi > 0 (i = 1,2, . . . ,D),
D

∑
i=1

xi = 1}. (1.1.0.1)

The early work of compositional data analysis has been dominated by the approach of

Aitchison (1982, 1986). This has followed a relatively restrictive framework of defining com-

positional data on the simplex and guiding the methods researchers have utilised to analyse

compositional data. However, in some practical cases, compositional data do not initially

reside on the simplex, such as count data where the total varies across observations. If

required, we can transform these data onto the simplex by dividing each component by

the total sum. By adhering too strictly to the early restrictive definition of compositional

data, we risk overlooking more intuitive or practical approaches that better capture the true

nature of the data.

Given the complex characteristics of compositional data, it cannot be modelled using stand-

ard statistical techniques. Some traditional statistical methods often assume independence

between variables and do not account for the inherent constraints present in compositional

data. Applying standard techniques could lead to misleading relationships and biased results

due to the relative nature of the data. For example, changes in one component affect the

values of others, violating key assumptions of many classical statistical models. Therefore,

we require specialised methods to analyse and interpret compositional data while respecting

its underlying structure.

The main technique to deal with compositional data is to apply log-ratio transformations,

which map the data from the constrained simplex space to an unconstrained Euclidean space.

This allows standard statistical methods to be used without violating the compositional

structure. Log-ratio transformations have been proposed to deal with compositional data:
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additive log-ratio (ALR), centered log-ratio (CLR) (Aitchison, 1982) and isometric log-

ratio (ILR) (Egozcue et al., 2003). These log-ratio transformations have been widely used

across various fields. For example, ALR has been used for air pollution time series data (Al-

Dhurafi et al., 2018), CLR for modelling bacterial data (Sisk-Hackworth et al., 2020) and

ILR for modelling birth population data (Martinez et al., 2020). However, while log-ratio

transformations have been shown to be powerful tools for analysing compositional data and

are the most straightforward technique for most compositional data problems, they may not

be suitable in all cases, as compositional data can often have features that prevent their use

- this is where we will focus our work.

One such feature is the presence of zeros. There are two different types of compositional zeros:

rounded and structural. Rounded zeros represent components that fall below a detection

limit and therefore, are not true zero values. In contrast, structural zeros are considered true

zeros that can represent actual zero values or indicate that a component belongs to a different

group. As structural zeros carry an informative value, they cannot simply be ignored. In

the presence of zeros, log-ratio transformations are unsuitable as they are undefined for zero

values. A common approach to address this issue is to impute the zeros with a small value so

that a log-ratio transformation can be fitted. However, imputation contradicts the idea that

structural zeros are informative. Additionally, if we impute our zero values, this can lead to

further challenges, such as the choice of imputation value/method, potential distortion of

the covariance structure and potential violations of the principles of compositional data.

Compositional data can also often involve a count structure that make log-ratio transform-

ations less appropriate. Applying a log-ratio transformation to the compositional counts

results in discrete variables in the real space that may not be suitable for modelling using

standard methods. Thus, we likely cannot assume a smooth continuous distribution (e.g.

a Normal distribution) for modelling, unless the total is sufficiently large so that the gaps

between possible values are negligible. Additionally, it potentially discards information on
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how the total count may impact the variance and the possible values the counts could take

- for example, if the total is 10, the scaled count can only be 0, 0.1, 0.2 etc. These issues

become more problematic the smaller the total count is, increasing the likelihood of zeros

and reducing the number of unique values the compositional counts can take.

Another area of compositional data analysis where log-ratio transformations are unsuitable

is where the data include missing or unobserved values for some components. Log-ratio

transformations require complete data for all components in order to be correctly defined.

When a component value is missing, some or all of the log-ratio transformations will not

produce sensible results, as the necessary relative proportions cannot be properly computed.

Imputation methods that do not account for the compositional nature of the data may be

inappropriate as they can introduce artificial relationships and distort the true compositional

structure. A compositional imputation approach could be considered, but they would carry

risks of bias and overconfidence, particularly if missing values are not missing at random.

If certain components are more likely to be missing under specific conditions, applying

a log-ratio transformation without properly addressing these missing values could lead to

systematic biases.

In this thesis, our research scope is expanding methodology for modelling compositional data

with features that prohibit the use of log-ratio transformations. Meanwhile, compositional

structures can naturally arise in the same situations as other advanced data challenges.

One of these data challenges is when compositional data feature a multilevel (hierarchical)

grouping structure, e.g. percentage of students achieving different grade classification within

their class, within their school and within their county. In such situations, the components

are correlated in a structured way.
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Compositional data can also appear in the context of time series analysis, requiring specific

techniques to account for both the compositional nature and underlying temporal structure.

Traditional time series methods typically do not account for the compositional nature of

the data, so custom methods are required. Further challenges occur when the time series is

non-smooth, i.e. when the data exhibit abrupt changes or irregular fluctuations, rather than

following a continuous and predictable trend over time. Similarly, compositional data can

be observed over a spatial or geographical dimension, such that we likely need to account

for spatial structure/dependence when modelling the relationships between components.

As such, further pinpointing the scope of work in this thesis, we will focus on developing

solutions for situations where the data both have at least one feature that generally prohibits

a log-ratio transformation and has at least one other modelling complexity. Specifically, in

each chapter we will address the following combinations shown in Table 1.1.

Table 1.1: Compositional data situations addressed within each chapter in this thesis, in-
cluding the prohibitive feature that generally prevents a log-ratio transformation approach
and the advanced data challenge posed by the application.

Chapter
Prohibitive feature

w.r.t. log-ratio transformation Advanced data challenge

3 zeros multilevel hierarchical groupings
missing covariate prediction

4 zeros non-smooth time series
count data

5 zeros spatial structure
missing values

To address these, we will propose novel approaches combining Bayesian hierarchical models

for compositional data that are less restrictive than the log-ratio transformation approach,

with advanced modelling structures at the latent level, including latent data clustering,

hidden Markov models and spatial penalised regression splines.
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For the work in this thesis, we opt for Bayesian hierarchical frameworks as the fundamental

support for our development because we believe that they grant us the most flexibility to

account for different forms of compositional structure (e.g. counts) and to incorporate other

advanced data structures in whatever way seems fit. Bayesian inference provides several key

advantages over alternative approaches. One of the biggest strengths of Bayesian analysis

is the ability to incorporate prior knowledge into the model framework. Bayesian hierarch-

ical models also allow for flexible modelling of complex, multilevel dependencies, such as

nested or grouped data. Bayesian inference provides the ability to quantify uncertainty in

parameter estimates and predictions directly. Additionally, Bayesian models can naturally

accommodate missing data by treating missing values as unknown quantities, which are es-

timated along with the parameters of interest. Finally, Bayesian analysis facilitates thorough

model checking through posterior predictive checks, offering a powerful tool for assessing

the adequacy of the model fit.

Creating new frameworks using custom Bayesian hierarchical methods would be challen-

ging without recent developments in software. Throughout this thesis, we implement our

frameworks using the NIMBLE package (Valpine et al., 2017), which allows for flexible im-

plementation of Bayesian models. NIMBLE models are written in the BUGS language, like

JAGS (Plummer, 2003), and then compiled automatically into C++ (Stroustrup, 1986) for

fast execution. Within NIMBLE, the user can choose any combination of samplers for differ-

ent model parameters, either chosen from pre-included samplers or straightforwardly adding

their own sampling methods to the algorithm. Additionally, NIMBLE allows the user to cre-

ate and include their own functions, algorithms and probability distributions. This allows

freedom to choose different sampling algorithms and add modifications to the model. Using

NIMBLE has given us the opportunity to produce effective Bayesian hierarchical methods

that are widely applicable.
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1.2 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2: Provides an overview of compositional data concepts, along with some current

common methods. Note that the subsequent chapters offer a deeper critical review of

literature relevant to each chapter’s topic.

Chapter 3: Presents a Bayesian hierarchical model for compositional data containing a

large number of structural zeros. We develop a system for automation in the splitting

of presence and absence of elements, requiring less strenuous expert input and making

it more practical in real-world analysis. The proposed framework is examined through

an experiment to predict the classification of glass items from a forensic elemental

glass database.

Chapter 4: Explores a compositional time series, which contains counts over time and ex-

hibits non-smooth behaviour. Here, we outline a GDM-HMM framework for compos-

itional time series. We created and tested our methodology using COVID-19 variant

data consisting of weekly counts from countries worldwide for each of the COVID-

19 variants as defined by the World Health Organisation. We examine our proposed

framework against simpler common time series models including a Random Walk and

Dynamic Linear Model.

Chapter 5: Addresses compositional data that include spatial locations or coordinates. We

construct a framework for spatial compositional data using the Generalised-Dirichlet-

Multinomial distribution to model compositional counts arranged over a spatial grid,

allowing for zero counts and missing values. We design a posterior predictive experi-

ment where there are missing values in the compositions and test performance of the

proposed framework against a benchmark Generalised Additive Model approach.

Chapter 6: Summarises the work, presents concluding remarks and potential further re-

search.
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2.1 Introduction

Compositional data refer to multivariate non-negative components (x = x1, . . . ,xD), in the

context where we are primarily interested in the size of the components relative to their total

and relative to each other. Compositional data can appear as proportions, percentages,

general non-negative values (e.g. object masses), or counts, and examples appear within

many different statistical areas such as forensic science (Napier et al., 2015), geochemical

statistics (Zuo et al., 2013), geology (Qiu et al., 2024), health data (Janssen et al., 2020),

sports science (Lobo et al., 2025) and financial data (Carreras et al., 2020). Table 2.1 presents

two simple examples of compositional data. In both cases, the total count of each row is

shown in the final column.

Table 2.1: Examples of compositional data.

(a) Proportion data.

a b c Row sum
0.10 0.49 0.41 1
0.25 0.55 0.20 1
0.12 0.03 0.85 1

(b) Count data.

x y z Row sum
56 4 40 100
25 5 12 42
85 10 24 119

Compositional data analysis has largely been shaped by the approach developed by Aitchison

(1982, 1986). Here, compositional data are defined as non-negative vectors that represent

proportions of some whole that is subject to a unit sum constraint. The sample space of

these compositional proportions is the simplex, SD, and is defined as (Aitchison, 1982):

SD =

{
x= (x1,x2, . . . ,xD) : xi > 0 (i = 1,2, . . . ,D),

D

∑
i=1

xi = 1

}
, (2.1.0.1)

The simplex has a (D− 1) dimensional real space. As the x are proportions that are con-

strained to be positive and sum to one, they can be interpreted as forming a linear combin-

ation within the simplex space.
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This definition of compositional data, introduced by Aitchison (1982), builds upon the earlier

work of Pearson (1897), who first documented spurious correlation. In compositional data,

this issue arises because the components are constrained to sum to a constant (typically

one), meaning they lie within a simplex. As a result, an increase in the proportion of one

component necessarily implies a decrease in the others, inducing negative correlations among

components even when no such relationships exist in the absolute values. This dependency

is a central challenge within compositional data analysis. Recognising the problem outlined

by Pearson (1897), Tanner (1949) suggested the use of log-ratio transformations could help

overcome this. Later, Chayes (1960) formally linked Pearson’s concept to compositional data,

though no methods were introduced to remove the effect of the constraint. Chayes’s connec-

tion spurred further developments in compositional data analysis, ultimately leading to the

adoption of log-ratio transformations. These transformations are explored in Section 2.2.

However, this issue of negative correlations is not necessarily present when compositional

data reside outside this narrow definition. For example, the number of Ford car crashes

is not negatively correlated with the number of Volkswagen cars crashing. However, when

the number of crashes is expressed as proportions of the total number of crashes, a negative

correlation can emerge. This is because an increase in the proportion of Ford crashes relative

to the total would automatically reduce the proportion of Volkswagen crashes, even if the

actual number of Volkswagen crashes remains unchanged.

Aitchison developed principles for compositional data residing on the simplex within Aitchison

(1992) and Aitchison et al. (2005). The scale invariance principle means that multiplying

all components within a composition by a positive constant does not change the relative in-

formation contained within the data, i.e. the compositional ratios remain unchanged under

rescaling. A subcomposition is a subset of the full composition where the subcompositional

coherence principle states that relationships between the parts remain valid even when ana-

lysing only a subset of the components, ensuring that relationships observed within the

subcomposition remain consistent with those in the full composition. The subcompositional
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dominance principle states that if one component dominates in the full composition, it

should dominate in any subcomposition. Lastly, the permutation invariance principle states

that the order of components should not affect the analysis, reinforcing the idea that the

structure of the data - not the ordering of its parts - shapes the analysis.

Standard distance measures, such as the Euclidean distance, should not be computed dir-

ectly for compositional data residing on the simplex. Aitchison (1986) developed a distance

measure for such compositional data, defined as the Aitchison distance, to quantify the dis-

similarity between two compositions. It is defined in terms of the log-ratio transformations

of the components and satisfies the properties developed by the same author outlined above.

da(x,y) =

{
D

∑
i=1

[
log
(

xi

gm(x)

)
− log

(
yi

gm(y)

)]2
}1/2

, (2.1.0.2)

where gm(x) = (x1, . . . ,xD)
1/D and gm(y) = (y1, . . . ,yD)

1/D are the geometric means of x and

y, respectively.

Graphical visualisations of compositional data, as discussed by Aitchison (1986), are influ-

enced by Aitchison’s principles of compositional data and Aitchison’s geometry. One widely

used technique is the ternary diagram which provides a two-dimensional projection of a

three-part composition. As shown in Figure 2.1, for the data in Table 2.1 (a), the ternary

diagram represents the simplex as an equilateral triangle, where the sum of the distances

remains constant for any chosen components of x (Filzmoser et al., 2008). Since the entire

simplex must fit within the ternary diagram, its borders conceptually represent infinity, a

direct consequence of the relative scale property of compositions. Points near a vertex (e.g.

the bottom right near component c) indicate a high proportion of that component (such as

the 0.85 value in Table 2.1 (a)). Conversely, points near the centre represent compositions



CHAPTER 2: OVERVIEW OF COMPOSITIONAL DATA 13

with nearly equal proportions of all three components, as seen with the two points near

the middle of Figure 2.1. A point located directly on a vertex corresponds to a composition

where that component equals 1, while the other two components are 0. The further a point

is from a vertex, the lower its contribution is to that component.
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Figure 2.1: Ternary diagram for the example three-part composition from Table 2.1.

The main limitation of compositional graphical approaches is that data are typically visu-

alised and interpreted using Euclidean distance, whereas Aitchison distance better reflects

the compositional structure. This distinction must be considered when interpreting tern-

ary diagrams. More recently, visualisations have been extended to four-part compositions,

represented as a regular tetrahedron instead of a triangle. However, beyond four-part com-

positions, visual representation becomes increasingly challenging.

This initial, narrow definition of compositional data, which confines the data to values con-

strained to the simplex (e.g. proportions or percentages that sum to one), is too restrictive.

It assumes that compositions must be analysed through their relative rather than absolute

values. However, in practice, compositional data often originate from counts or absolute

values, such as the number of people voting for each political party. While the primary

focus is typically on the relative information between the parts, the absolute values remain

important as they influence the variance and the overall dynamics of the data. For instance,

scaling raw counts to sum to one can artificially alter correlations, sometimes transforming

a positive correlation between components into a negative one. This highlights the import-

ance of considering compositional data in its broader context. By broadening the definition,
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as discussed within Firth et al. (2023), to include raw or unscaled compositions, we gain a

deeper understanding of the underlying relationships – including correlations that may not

be apparent under the traditional definition of compositional data. Firth et al. (2023) pro-

pose modelling the compositions directly in their original scale, allowing for both absolute

and relative information to be considered. This is particularly useful when total size matters

(e.g. the total number of votes cast in an election).

Since the foundation work of Aitchison (1982), the understanding of compositional data has

largely followed a restrictive framework, with Aitchison’s principles governing the techniques

used. This has potentially prevented other alternative approaches being developed within

a compositional framework, such as directly modelling compositional counts. By adhering

too strictly to these conventions, we risk overlooking more intuitive or practical approaches

that better capture the data. Expanding beyond these constraints opens new possibilities for

analysing compositional data in ways that preserve both absolute and relative information.

In Chapters 3, 4, and 5, we will follow this rationale and motivation to expand methodology

for modelling compositional data. First, though, in the remainder of this chapter, we will

outline the current transformations proposed for compositional data in Section 2.2. Following

this, we will address the issue of zeros in compositional data and discuss methods from the

literature that have been proposed in order to handle these zeros.
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2.2 Transformations

To address the inherent constraints and produce meaningful analysis of compositional data,

various transformations have been proposed in the literature to convert compositions exist-

ing on a constrained simplex to an unconstrained Euclidean space. Using such transforma-

tions allow for standard statistical approaches to be applied to the transformed compositions

without violating the compositional structure. Once the analysis is complete, the composi-

tions can be transformed back to the simplex by applying the inverse of the chosen trans-

formation. The primary transformation developed for compositional data is the log-ratio

family of transformations, described in the next section.

2.2.1 Log-ratio Transformations

The simplest transformation is the additive log-ratio transformation (ALR) introduced

by Aitchison (1982). ALR involves taking the logarithm of the D− 1 components to the

remaining component, represented as:

ALR(x) =

(
log
(

x1

xD

)
, . . . , log

(
xD−1

xD

))
. (2.2.1.1)

This transformation uses the compositional ratios relative to one component (xD), removing

the constraint and enabling the use of standard statistical techniques, as the data are mapped

to an unbounded space. Here, any component can be chosen to be the common divisor (xD).

This means that the resulting transformation is asymmetric as it depends on the choice of
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the divisor. The results of the transformation will change depending on which component

is selected as the divisor, making it sensitive to this choice. This could be challenging if

there is not one component that is always non-zero, i.e. x1, . . . ,xD > 0, which is problematic

because there would then be no suitable component to serve as the divisor (xD).

Examples of ALR transformation used in practice include: Greenacre et al. (2021) who

apply the ALR to microbiome compositional data; Yoo et al. (2022) where the ALR is used

to transform immune cellular compositions before fitting a generalised linear model with

Dirichlet distribution; Al-Dhurafi et al. (2018) use the transformation for time series air

pollution index data prior to fitting a Vector Autoregressive (VAR) model, and Leininger

et al. (2013) who apply the ALR to land use data along with multivariate Conditional

Autoregressive (CAR) model.

The centered log-ratio transformation (CLR), developed by Aitchison (1986), addresses the

limitations of ALR by eliminating the need for a single reference component. Like ALR, CLR

transformation adheres to Aitchison’s principles of compositional data, as outlined earlier.

However, instead of singling out one component as a common divisor for the compositional

ratios, CLR transformation uses the geometric mean as the divisor, thus preserving the

dimension of x. By avoiding the selection of a specific component as the divisor, CLR treats

the composition as symmetric. CLR is given as:

CLR(x) =

(
log
(

x1

g(x)

)
, . . . , log

(
xD

g(x)

))
, (2.2.1.2)

where g(x) is the geometric mean of x.
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An advantage of CLR is that it is an isometric transformation of the simplex and can be

visualised over all the D-parts of the composition when performing exploratory analysis

of the data. However, the covariance matrix of CLR is singular due to the inherent linear

dependence among the components. Since the sum of the CLR-transformed components is

always zero, they are perfectly linearly dependent, meaning that the transformed data lies in

a (D−1)-dimensional subspace of the D-dimensional space. This linear dependence results

in a covariance matrix where the determinant is equal to zero. Consequently, the covariance

matrix is singular because all D components are involved in the transformation, but the

dependency is preserved in the transformed space. This singularity makes it challenging

to apply certain standard statistical techniques, especially in multivariate settings (e.g.

discriminant analysis).

The CLR transformation has also been applied widely in the literature: Sisk-Hackworth

et al. (2020) use the transformation to analyse bacterial data; Shang et al. (2022) apply the

CLR before fitting multivariate and multilevel functional time series methods to forecast

age-specific death counts across populations; and recently Bennett et al. (2025) employ the

CLR with a scale uncertainty/information model to comparative glycomics data containing

glycan concentrations.

The isometric log-ratio transformation (ILR), introduced by Egozcue et al. (2003), overcomes

the limitations of the previous log-ratio transformations by projecting the compositional data

into real coordinates with respect to an orthonormal basis in the simplex. This transforma-

tion ensures that the geometry of the simplex, as defined in Aitchison’s geometry (Aitchison,

1986) is preserved, creating a direct link between the angles and distances in the simplex

and also in Euclidean space. This is the most complex log-ratio transformation within the

literature as it allows the angles and distances in the simplex to be linked with angles and

distances in real space. Within Egozcue et al. (2003), the ILR transformation is given as:

ILR(x) = (y1, . . . ,yD−1), (2.2.1.3)
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where

yi =

√
i

i+1
· ln
(

g(x1, . . . ,xi)

xi+1

)
, i = 1, . . . ,D−1,

and g(x1, . . . ,xi) denotes the geometric mean of the first i components of the composition x.

The ILR transformation results in a (D−1) dimensional real space; the dimensionality of the

composition is reduced by one, as the transformation uses a combination of the components

for the divisor. The ILR avoids the arbitrariness of selecting a divisor for the ALR and the

singularity from the CLR. The relationships between the three log-ratio transformations

proposed are described in Egozcue et al. (2003). Therefore, the ILR transformation has some

conceptual advantages over the other log-ratio transformations as it preserves compositional

relationships. However, constructing the orthonormal basis in the simplex requires careful

consideration, and the resulting coordinates may be less intuitive to interpret, particularly

for large datasets.

Examples of ILR applied in the literature include: Karacan et al. (2018), who use sequential

Gaussian simulation of isometric log-ratio transformed compositions to map the chemical

properties of coal; Martinez et al. (2020), who transform birth population data using the

ILR before modelling the spatial random effect with a CAR structure; Nguyen et al. (2021),

who analyse election vote share data using a spatial autoregressive (AR) model; Oh et al.

(2024), who use the transformed compositions to produce a groundwater pollution index

from robust principal component analysis (RPCA); and Egozcue et al. (2024), who use

geochemical river compositional data to illustrate how an ILR along with compositional

techniques help explore compositions and detect patterns and outliers in the data.



CHAPTER 2: OVERVIEW OF COMPOSITIONAL DATA 19

Other transformations stemming from the log-ratio transformations that have been de-

veloped include the complementary log-log transformation (Neocleous et al., 2011). This

transformation involves taking the logarithm of the negative of the log-ratio transformed

data. Initially, we take the log-ratio transformation of the components x:

ui = log
(

xi

xD

)
, (2.2.1.4)

for i = 1, . . . ,D−1 where xD is the reference component. The complementary log-log trans-

formation is then defined as:

vi = log(−ui + c), (2.2.1.5)

for i = 1, . . . ,D−1 where c a small positive constant added to ensure that (−ui+c) remains

positive before taking the logarithm. In this case, all components must be strictly positive

in order to compute the transformation, i.e. if −ui+c ≤ 0, the logarithm becomes undefined.

An advantage of the complementary log-log transformation is that the resulting transformed

data may resemble a Normal distribution more closely, especially in cases where the log-ratio

transformed data are skewed. This transformation can help make the data more symmetric

and better suited to apply standard statistical techniques. However, this transformation is

sensitive to the choice of the positive constant c. Similarly to the ALR, the complementary

log-log transformation is asymmetric because it is dependent on the choice of the reference

component xD.

Overall, despite log-ratio transformations being the most common and straightforward ap-

proach for most compositional data problems, they may sometimes not always be the most

suitable choice. For example, if the compositions contain zero values, or there are any miss-

ing values in the compositions, the log-ratio transformations may not be directly applicable

without prior work conducted on the compositions. Furthermore, compositional data can of-
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ten include counts that sum to some total, but log-ratio transformations of count data could

fail to yield continuous data suitable for modelling with standard methods, as explained in

Chapter 1. These features motivate the development of alternative transformations for com-

positional data that do not rely on log-ratio methods.

2.2.2 Alternative transformations

This section explores alternative transformations from the literature that may be more

suitable than the log-ratio in certain instances of compositional data.

The simplest transformation to apply is taking the square root of the compositional ratios,

with a common divisor chosen (Stephens, 1982).

ui =

√
xi

xD
, (2.2.2.1)

for i = 1, . . . ,D− 1 and for the divisor component xD. The square root transformation can

handle zeros present in the data, making it computationally easier to implement as no values

need to be modified, although it does require a divisor component that does not contain any

zeros. In some applications this transformation has been shown to stabilise the variability

effectively, as in Napier (2014).

Wang et al. (2007) avoid the complication of zeros within the components by applying a

hyperspherical transformation to the compositional data. Firstly, the square root is applied

to all D-parts of a composition x:

ui = sqrt(x) = (
√

x1, . . . ,
√

xD), (2.2.2.2)
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transforming onto the surface of the (D− 1)-dimensional hypersphere. The coordinates of

ui are then mapped to their polar coordinates using a recursive relationship. The polar

coordinate system is a two-dimensional system in which each point on a plane is determined

by a distance from a reference point and an angle from a reference direction. Wang et al.

define the recursive relationship for computing for si =
√

xi is

ω1 = arccosu1,

ω2 = arccos
u2

sinω1
,

...

ωP−1 = arccos
uP−1

sinω1 sinω2 · · · sinωP−2
.

(2.2.2.3)

The dimension of the resulting transformed ω-vector is d = (D− 1) and the zeros map to

arccos0 = π/2. An advantage to using the hypersphere transformation over the log-ratio

transformations outlined above, is that it can handle zero values. Scealy et al. (2011) use

the hypersphere transformation to allow for directional data distributions - such as the Kent

distribution (Mardia et al., 2000) - to be used when modelling compositional data.

More recently, the power or α-transformation has been developed to avoid the use of log-

ratio transformations. This is given in Tsagris et al. (2011) as:

ui =

(
xiα

∑D
j=1 Dxα

j

)
. (2.2.2.4)

The use of this α-transformation allows greater flexibility by allowing a choice between the

approaches of Aitchison’s geometry (i.e. the simplex) and the Euclidean space, where the

decision is made depending on the choice of α (Tsagris et al., 2016). This allows for tailored

transformation methods depending on data characteristics. When α → 0, the transform-

ation tends to Aitchison’s geometry, whereas when α → 1, the transformation tends to

the Euclidean space. An advantage in using an α-transformation is that when α > 0 the

transformation is well-defined even when there are zero values present. However, this trans-
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formation is dependent on the value of α chosen, and may require optimisation methods

to determine the correct value of α . Additionally, this transformation could make the in-

terpretation of the original compositions more difficult, as the transformed data might lose

some of the original compositional structure.

2.3 Compositional Zeros

Handling zeros in compositional data pose unique challenges, as they can represent an

absence of a component, a measurement error or sampling limitations, and require specialised

techniques to ensure accurate analysis. In these instances, log-ratio transformations would

be problematic to apply as they lead to undefined log-ratios or potential loss of information.

Within compositional data, there are two different types of compositional zeros: rounded

and structural. Different approaches have been adopted in the literature for both types of

zeros.

2.3.1 Rounded Zeros

Rounded zeros represent values that falls below some detection limit, and therefore are not

true zero values. Addressing these zeros typically involve missing data techniques; partic-

ularly, not missing at random (NMAR) methods, since values below the detection limit

ε remain unobserved. Here, in order to be able to apply a log-ratio transformation, these

values would need to be replaced.
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The techniques to address rounded zeros include both parametric and non-parametric meth-

ods to replace the zeros with a constant value that is at or below the detection limit. To

maintain the constraint of compositional data, the non-zero components must be adjusted.

Tsilimigras et al. (2016) compare the approaches noting that while non-parametric methods

can be robust, they may lose statistical power in some cases. In contrast, parametric meth-

ods provide more accurate variance estimates for meaningful inference. However, when the

proportion of rounded zeros is small, both methods tend to yield similar results.

The simplest method to deal with rounded zeros is simple replacement (Martín-Fernández

et al., 2006). In this method, each rounded zero value is replaced with a fixed value and

then the entire composition is rescaled to maintain the constraint. As a result, the imputed

values depend not only on the chosen imputation threshold δ but also on the number of

rounded zeros in the composition x. For a D-part composition x containing rounded zeros,

the composition is replaced by a non-zero composition u using:

ud =



c
c+∑{k:xk=0} δk

δd, ifxd = 0,

c
c+∑{k:xk=0} δk

xd, ifxd > 0,

(2.3.1.1)

where c = ∑xd ensures the unit sum constraint holds, δ is a chosen replacement value below

the limit of detection ε .

Aitchison (1986) proposed an additive replacement method for handling rounded zeros. For

a D-part composition x containing Z zeros is replaced by a non-zero composition u:

ud =



δ (Z+1)(D−Z)
D2 , ifxd = 0,

xd − δ (Z+1)Z
D2 , ifxd > 0,

(2.3.1.2)
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where δ is a chosen replacement value below the limit of detection ε . A limitation of this

method is that it fails to preserve the ratios between the components in x and u. Con-

sequently, this violates Aitchison’s principle of subcompositional coherence, meaning that

relationships within subcompositions may not be consistent with the original data.

This led to the introduction of the multiplicative replacement method by Martín-Fernández

et al. (2000), who extend the simpler predecessors by ensuring that Aitchison’s principles

are preserved. After zeros are replaced with a fixed value δ , the non-zero components are

adjusted multiplicatively to preserve the original ratios between them. This adjustment does

not affect the relative nature of the data. Unlike the previous methods, this approach does

not rely on the number of components D or the number of rounded zeros Z, but only on the

threshold value δ :

ud =


δd, ifxd = 0,

xd − xd
c ∑{d:xd=0} δd, ifxd > 0,

(2.3.1.3)

where c = ∑xd is the unit sum constraint. However, the question arises which value to select

for δ as this must be lower than the detection limit ε .

A comparison of the performance of additive and multiplicative replacement methods can

be found in Martín-Fernández et al. (2003), where the multiplicative replacement method is

recommended for imputation, as it is simpler, computationally efficient, and more coherent

when handling rounded zeros.

While non-parametric methods provide a simple approach to handling rounded zeros, they

may lack efficiency and sensitivity in certain cases. This limitation has led to the develop-

ment of parametric approaches that aim to address rounded zeros more effectively. Palarea-

Albaladejo et al. (2007) propose a parametric approach to treat rounded zeros that fall

below the limits of detection. Specifically, Palarea-Albaladejo et al. (2007) use a modified
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version of the Expectation–Maximisation (EM) algorithm, allowing zero values to be treated

as missing data. This modification of the EM algorithm is implemented using ALR (Equa-

tion (2.2.1.1)) which produces suitable estimates for the values below the detection limit ε .

This process is independent of the component selected as the divisor in the transformation.

In this method, the unobserved values (i.e. rounded zeros) are replaced by small values

that are conditionally estimated based on the observed data using a probabilistic model.

Palarea-Albaladejo et al. (2007) demonstrate that the EM algorithm performs better than

the non-parametric multiplicative replacement method, particularly when the number of

zeros increases. Unlike the non-parametric methods, this parametric approach takes into

account information from the covariance structure, reducing the artificial correlation and

providing a better estimation of the variability within the composition.

2.3.2 Structural Zeros

Structural or essential zeros are zeros that are considered to be true zeros. This could repres-

ent an actual zero value or an indication that it belongs to a different group or component.

For example, when considering food group intakes, the component of meat in a vegetarian

diet would always be zero, as it is excluded from the diet. Unlike rounded zeros, which are

imputed based on assumptions, structural zeros carry significant informative value within

the component and cannot be ignored. These zeros can sometimes serve as indicators of un-

derlying patterns or structural features in the data. Many difficulties come with structural

zeros, as they are more complex and the zero value is informative and cannot be ignored. As

a result, various modelling techniques have been developed to address the complexities of

handling structural zeros correctly. When zeros are considered true values in compositional

data, the standard approach of applying a log-ratio transformation becomes problematic.

Since the log of zero is undefined, zero values in the composition must be replaced with small

positive values before applying the transformation. This undermines the assumption that

these zeros are informative and represent true values. Such limitations highlight the need
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for alternative approaches that avoid taking the logarithm of the compositional ratios, pre-

serving the integrity of the zero values while still allowing for meaningful analysis. Within

the compositional data analysis literature, less research has been conducted to deal with

structural zeros compared with rounded zeros. Below we present some of the approaches

proposed to model structural zeros.

Aitchison et al. (2003) introduce a two-stage model to handle structural zeros. The first

stage identifies where zeros occur, while the second determines how the remaining values

are distributed among non-zero components. To facilitate this, the data are first organized

into an incidence matrix, I. The first row of I represents the full D-part composition, while

the following D rows contain binary indicators (0 or 1), denoting whether each compon-

ent corresponds to a structural zero. Aitchison et al. noted that computational challenges

arise when estimating parameters via maximum likelihood estimation. While likelihood ex-

pressions exist, the complexity lies in identifying the various subcompositions within the

likelihood function. These challenges are difficult to resolve analytically and often require

computational methods such as Markov chain Monte Carlo (MCMC). Building on this

framework, Zadora et al. (2010a) also apply a two-stage model, treating the presence of

zeros with an independent binary model, as originally suggested by Aitchison et al. (2003).

Butler et al. (2008) and Leininger et al. (2013) propose modelling structural zeros using

a latent Gaussian random variable, allowing constrained data to be analysed in RD via

a Multivariate Normal distribution. This method orthogonally projects points outside the

simplex onto its faces and vertices, but it tends to assign excessive probability to vertices. As

dimensionality increases, identifying the correct projection regions becomes more complex,

affecting maximum likelihood estimation. A key limitation of the latent Gaussian model is

its violation of scale invariance and subcompositional coherence principles. However, But-

ler et al. (2008) argue that any method attempting to model zero and non-zero propor-

tions together will inevitably break these principles, as ratios become infinite along simplex

boundaries. Developing on this further, Tsagris (2018) proposes an alternative projection
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method, moving points along the line and thus connecting them to the simplex centre. This

model assumes a latent multivariate normal distribution, where zero values indicate latent

values outside the simplex. Unlike Butler et al. (2008), this approach simplifies likelihood

estimation in any dimension, but it can only handle zeros in one component, limiting its

applicability in real-world data.

To deal with the structural zeros present, another approach explored is to split the data

into subsets according to the pattern of the presence and absence of zeros. Neocleous et al.

(2011) and Napier et al. (2015) employ this prior to fitting random effects models to each

subset of the data.

Another approach in the literature uses zero-inflated models to address compositional struc-

tural zeros. Stewart (2013) explores zero-inflated distributions which are particularly useful

as they preserve the informative nature of zeros without modification and presents two zero-

inflated distributions. The Zero-Inflated Logistic-Skew Normal (ZILS) distribution (Stewart,

2013) is given as:

fSL(p) =


θ , p = 0,

(1−θ)LS(p; µ,σ2,α), 0 < p < 1.
(2.3.2.1)

The Zero-Inflated Beta (ZIB) distribution (Stewart, 2013), given as:

fB(p) =


θ , p = 0,

(1−θ)B(p; µ,ϕ) 0 < p < 1,
(2.3.2.2)

where for 0 < 0 < 1, B(p; µ,ϕ) denotes the Beta distribution and 0 < µ < 1 and ϕ > 0.

An advantage of the ZIB model is its ability to provide direct estimation without data

transformation, making it easier to implement.
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Another common approach for modelling in compositional data analysis is the Dirichlet

distribution, which naturally models proportions that sum to one, preserving the relative

nature of the components (Connor et al., 1969). However, the Dirichlet is undefined when

one or more components in the composition are zero. This is due to the behaviour of the

term xαi−1
i from the probability density function (PDF):

f (x;α) =
Γ(∑k

i=1 αi)

∏k
i=1 Γ(αi)

k

∏
i=1

xαi−1
i , (2.3.2.3)

where α= (α1, . . . ,αk) are the concentration parameters with αi > 0 and ∑k
i=1 xi = 1. Each

αi influences the mean and variance of each xi. If xi = 0, the corresponding term xαi−1
i

becomes problematic. Specifically for αi > 1, this term would tend towards 0 (i.e. 0αi−1 = 0),

but for αi ≤ 1, is undefined. To address this, Tsagris et al. (2018) propose Zero-Adjusted

Dirichlet Regression (ZADR), which modifies the log-likelihood function to link the precision

parameter ϕ to the covariates to accommodate zero values without replacing them. The

standard Dirichlet log-likelihood is defined as:

ℓ= n logΓ(ϕ)−
n

∑
j=1

D

∑
i=1

logΓ(ϕa∗
i )+

n

∑
j=1

D

∑
i=1

(ϕa∗
i −1) logyi j, (2.3.2.4)

where Γ(·) is the Gamma function, ϕ is the precision parameter and a∗
i are the transformed

regression parameters. The proposed modified log-likelihood is given as:

ℓ=
B

∑
b=1

[
nb logθb +nb logΓ(ϕb)− ∑

j∈Sb

Db

∑
i=1

logΓ(ϕba
∗
bi j)+ ∑

j∈Sb

Db

∑
i=1

(ϕba
∗
bi j −1) logybi j

]
(2.3.2.5)

where B is the number of groups with different zero patterns, nb is the number of observations

in group b, θb is the probability of an observation belonging to group b, with ∑B
b=1 θb = 1,

ϕb is the precision parameter for group b, Sb is the set of observations belonging to group

b, Db is the number of non-zero components in group b, a∗
bi j are the transformed regression

parameters and Γ(·) is the Gamma function. Here, the model adjusts for the presence of zeros

by explicitly incorporating them into the likelihood function, through creating partitions

of the dataset into subpopulations based on which components contain zero values. This
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means that, instead of assuming all compositions following a single Dirichlet distribution,

the model assumes that different groups (defined by the zero patterns) follow different

conditional Dirichlet distributions. This fitted model enables estimation of compositional

values for new predictor variables. However, predicting exact zero values remains difficult

due to the modification of the Dirichlet likelihood, which adjusts the probability of observing

a zero value rather than predicting a zero value directly. Moreover, zero inflation is arbitrary

- for example, replacing zeros with an arbitrary number (e.g. 31) in both the data and

likelihood would not alter the results. This raises concerns about the interpretability of zero-

inflated approaches, as the zero-generating process is treated separately from the continuous

distribution, which may not always align with the analysis objectives.

2.4 Summary

Compositional data can take many different forms, each with unique characteristics, and

none of the aforementioned approaches are suitable for all cases. Therefore, the next three

chapters explore alternative methods tailored to specific applications of compositional data,

where the data are non-standard – such as containing a large proportion of structural zeros,

non-smooth compositional count time series and spatial compositional data. In each chapter,

we present and critically assess novel tailored approaches for handling these types of data

that remove the need for log-ratio transformations, which are unsuitable for the unique

characteristics of each application.
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We investigate Bayesian hierarchical approaches to modelling compositional data with a

large proportion of structural zeros in the compositions and a multilevel hierarchical struc-

ture. The typical approach of applying a log-ratio transformation is unsuitable here, as

log-ratios are undefined for zeros. Additionally, we will need to ensure that we suitably

account for correlation arising from the hierarchical structure.

Here, we propose a flexible integrated clustering approach within a Bayesian hierarchical

model framework for compositional data with structural zeros; we apply the methodology

to a forensic elemental glass database that poses this challenge, where zeros are considered

to be true zeros or values below some detection limit that have been rounded down to zero.

We assess our approach and compare it to others in terms of use-type classification of glass

items, using a five-fold cross-validation approach.

3.1 Introduction

As explored in Chapter 2, compositional data are a unique type of data that requires special

consideration when conducting statistical analysis. Difficulties arise due to the constrained

nature of the data, which prevents them from being treated as independent observations

and necessitates a tailored approach to account for the underlying compositional structure.

Compositional data analysis has emerged as a powerful tool in forensic glass analysis as it

can help account for the dependencies between the chemical elements in glass. Using the

proposed methods to deal with compositional data can aid in forensic decision-making and

quantifying the strength of the accumulated glass evidence found at a crime scene.
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Previous approaches to modelling compositional data with structural zeros include model

based approaches (Zadora et al. (2010b), Neocleous et al. (2011), Napier (2014)), which

implement multivariate random effects models. These models split the data based on the

presence and absence of the compositional elements prior to fitting hierarchical mixed-effect

models. However, executing this split involves manual intervention, requiring some level of

prior and expert knowledge to decide which compositional elements the data should be split

by. This may not be practical for all settings where this approach is being utilised. Therefore,

we aim to improve upon this approach to make it more functional and applicable.

The compositional data examined in this chapter consist of forensic elemental glass measure-

ments obtained from an experimental setting. The data contain four fragments, each with

three replicate measurements, from 320 glass items giving a total of 3,840 data points. Each

of the glass items falls into one of five different use types: bulbs, car windows, headlamps,

containers and building windows. Figure 3.1 illustrates the hierarchical structure of the data

for a single glass item. The elements in the data under consideration are oxygen (O), sodium

(Na), magnesium (Mg), aluminium (Al), silicon (Si), potassium (K), calcium (Ca) and iron

(Fe). The differences in each compositional element can be explored using boxplots within

Figure 3.2 of the item-level means grouped by use type. Understanding and modelling these

compositional differences may improve the classification of new glass items.

Glass Item

Fragment 1

M1 M2 M3

Fragment 2

M1 M2 M3

Fragment 3

M1 M2 M3

Fragment 4

M1 M2 M3

Figure 3.1: Example of the hierarchical structure for a single glass item in the forensic
elemental glass dataset. Each glass item consists of four fragments and each fragment is
measured three times (M1, M2 and M3).
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Figure 3.2: Boxplots of the item means for all 320 glass items in the forensic elemental glass
data. The different coloured boxplots correspond to each of the use type groups: bulb, car
window, headlamp, container and building window.

The aim of the work presented in this chapter is to develop Bayesian hierarchical models

which build on previous work for compositional data with structural zeros, in four ways:

Aim 1: Develop a computationally efficient implementation of the framework, to allow for

practical real-world analysis.

Aim 2: Investigate alternative data-driven approaches to splitting the data based on pres-

ence or absence of different elements, that require less strenuous expert input.

Aim 3: Explore a model-based approach to classification of new items, minimising compu-

tational demands after the hierarchical model has been fitted.

Aim 4: Allow for more general versions of the framework by implementing it using flexible

Markov Chain Monte Carlo (MCMC) software.

In this chapter, we explore these aims through an application of compositional data analysis

to a forensic elemental glass database. We will develop a computationally efficient imple-

mentation of a Bayesian hierarchical model in R using NIMBLE (Valpine et al., 2017), which

is a flexible and efficient package for fitting a wide range of statistical models, particularly

those that are computationally intensive and involve complex hierarchical structures (Aim
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4). NIMBLE models are written in the BUGS language and then compiled automatically

into C++, which allows for fast execution. Using NIMBLE results in efficient Markov chain

Monte Carlo (MCMC) sampling, making the model suitable for real-world analysis (Aim

1). Furthermore, NIMBLE allows greater flexibility when applying a Bayesian hierarchical

model, as it provides a wide range of statistical modelling capabilities, allowing users to spe-

cify and customise complex hierarchical structures (including spatiotemporal structures and

penalised regression splines) and easily incorporating new functions, probability distribu-

tions, and sampling algorithms. We propose splitting the data by the presence and absence

of the compositional elements through the use of clustering algorithms that automatically

perform this task. This approach greatly alleviates the need for manual intervention, such

as in Napier (2014) (Aim 2). We investigate hierarchical clustering and k-means cluster-

ing algorithms as two alternatives to the manual approach, which act as a baseline. We

will compare all approaches in terms of performance in out-of-sample classification tasks.

Additionally, we will propose a new integrated framework where clusters are included in

the model as a latent quantity and where predictions of unknown forensic item types are

generated simultaneously with model fitting (Aims 2 & 3).

The chapter is structured with Section 3.2 exploring previous approaches to modelling com-

positional data containing many structural zeros, focusing on the one which we will extend

in this chapter. Section 3.3 gives an overview of the general methodology we adopt in

this chapter. This section presents the proposed framework and the approaches we take to

extend the current literature, including fitting our model to the full data comparing un-

transformed and square root transformed ratios, a manual approach to splitting the data,

two pre-clustering algorithms to automate splitting the data and finally our proposed integ-

rated clustering approach. Within Section 3.3.4 we describe how our proposed framework

will be implemented in practice. Section 3.4 introduces the forensic glass database used to

test the proposed approaches. In Sections 3.4.2 to 3.4.5, an overview of how we implement

our framework to each of the approaches is outlined. Section 3.4.6 presents our experiment
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to examine and compare each of the approaches outlined, through a cross-validation ex-

periment to classify each new glass item into one of the five use types. This is evaluated

in Section 3.4.7. Finally, in Section 3.5 we critically evaluate the work carried out in this

chapter and discuss potential avenues for future research on this topic.

3.2 Background

Compositional data analysis has emerged as a valuable tool for the classification of forensic

data such as the elemental compositions of glass. However, as explored in Chapter 2 Sec-

tion 2.3.2 modelling compositional data becomes challenging when structural zeros are

present, as these zeros are informative and cannot be ignored. Forensic elemental data often

contain such zeros, representing the absence of a particular component. To address this issue,

various modelling techniques have been proposed in the literature to handle structural zeros

appropriately. These approaches serve as alternatives to log-ratio transformations, which

are unsuitable in this context since the zeros carry meaningful information.

Previous modelling strategies for analysing compositional forensic glass data include Aitken

et al. (2004), Zadora et al. (2010b) and Neocleous et al. (2011), all of which explore a fre-

quentist approach to model log-ratio transformed compositional forensic data for classifica-

tion purposes. This includes random effects models that incorporate two levels of variation:

between-item and within-item. The between-item level variability is captured by a random

effect associated with individual glass items, and the within-item variability by a random

effect associated with individual fragments from the same glass item. Napier (2014) built

on the previous work of Aitken et al. (2004) and Neocleous et al. (2011) to propose a new

Bayesian approach to modelling forensic elemental glass data. This approach is outlined in

more detail below in Section 3.2.1.
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Meanwhile, Tsagris et al. (2016) apply the approach of using the α-transformation (Chapter 2,

Section 2.2.2, Equation (2.2.2.4)) to a compositional forensic glass data set. This approach

transforms the data using the α-transformation and then classifies the transformed data

via regularised discriminant analysis and the k-nearest neighbours algorithm. Within this

paper the value of α is varied, allowing a comparison between working in the standard Eu-

clidean space, the compositional data Aitchison space or a value between these competing

approaches. Tsagris et al. applied this to forensic elemental glass data that contain a large

proportion of zero values. However, poor correct classification rates are presented for each of

the approaches, with α ∈ [−1,1] providing the best correct classification. As long as α > 0,

then the transformation is well-defined for any compositions containing zeros.

The same forensic glass data was examined in Tsagris et al. (2018) using a Dirichlet re-

gression model. This approach modifies the Dirichlet distribution to accommodate a com-

positional response variable with zero values, eliminating the need for data modification.

The log-likelihood of the Dirichlet distribution is modified to account for these zero values

without the need to replace them. The modified log-likelihood is given in Chapter 2, Sec-

tion 2.3.2, Equation (2.3.2.5). Here, the model adjusts for the presence of zeros by explicitly

incorporating them into the likelihood function, through creating partitions of the data-

set into subpopulations based on which components contain zero values. This means that

instead of assuming all compositions following a single Dirichlet distribution, the model

assumes that different groups (defined by the zero patterns) follow different conditional

Dirichlet distributions. The fitted model can be used to estimate new values of the compos-

itional elements. However, any zero value will be difficult to predict because the Dirichlet

regression model inherently generates strictly positive values within the simplex and does

not naturally produce exact zeros. A further limitation is that the model does not explicitly

model when and where new zeros should occur. Additionally, a well-known drawback of the

Dirichlet distribution is that it can only produce negative covariances/correlations between

the compositional elements.
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In contrast to the previous work outlined, other literature explores the use of a log-ratio

transformation for forensic elemental glass data. Comas Cufí et al. (2016) fit a log-ratio

transformation to the forensic glass data after replacing the zeros in the data with new

values. This work centres around fitting a mixture of Normal and skew-Normal distributions

to the log-ratio coordinates of the compositional data. However, imputing the zero values

of the forensic glass data could remove the information they could have otherwise provided

in the modelling procedure.

3.2.1 Napier approach

Building on the previous work of Aitken et al. (2004) and Neocleous et al. (2011), Napier

(2014) accounts for the structural zeros in the data by modelling the presence and absence

of the compositional elements. This work utilises the forensic elemental data outlined in

Section 3.1. This relies on the manual separation of the elements that are absent, resulting

in subsets of the data called “configurations”. To illustrate this with a simple example,

consider a case with five components (A, B, C, D, E). We could manually separate these

based on the presence or absence of components B and D, as shown in Table 3.1. This results

in four configurations: one where all components are present, one where both B and D are

absent, and two where either B or D are absent.

Table 3.1: Simple example of configurations for five components: A, B, C, D, E. An entry
of 1 represents the component is present and 0 represents an absent component.

Configuration Component
A B C D E

1 1 1 1 1 1
2 1 0 1 1 1
3 1 1 1 0 1
4 1 0 1 0 1
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Napier argued that analysing the configurations separately would reduce the impact that the

large proportion of zeros may have on the data. Specifically, a high proportion of zeros can

skew statistical models, so by modelling only the resulting subsets, the absent components

are removed, leading to a more reliable analysis. Depending on how many compositional ele-

ments are present in the data, the number of possible configurations will vary. The maximum

number of configurations possible is 2p where p is the number of compositional elements in

the data with values equal to zero. Not all of the potential presence-absence combinations

will be exhibited in the data, so Napier solely modelled the configurations that are present

in the data.

In this approach, it is possible to have cases where the configuration contains a very small

number of data points. If this occurs, then Napier proposed combining these configurations

with the configuration where all elements are present. This can allow the examination of

specific elements of interest depending on the application. It is noted, the main limitation

of this approach is that it requires some manual input by the user or even expert knowledge

of which elements should be examined.

3.2.1.1 Bayesian hierarchical model

After constructing a final set of configurations, Napier (2014) proposed a Bayesian hierarch-

ical mixed-effects model to be applied to each configuration separately. Hierarchical models

can capture complex relationships in data where observations are organised in groups. In-

formation can also be shared across different levels of the hierarchy, aiding the estimates

where there may be little information for that group. This borrowing of strength can lead

to more robust and flexible statistical analysis by reducing overfitting in small groups, im-

proving parameter stability and allowing for pooling of information across groups, which is

particularly valuable in settings with imbalanced or sparse data.
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Napier applied the model to a forensic elemental glass data comprising of I glass items,

each representing a distinct source of glass (e.g. from a bulb or window). Each glass item

contains J fragments, which are pieces from each glass item I. For each fragment J, we have

K replicate measurements taken to ensure accuracy. Each item belongs to one of T glass use

types.

Then, Napier defines the compositional ratios of each element to oxygen for each glass

measurement be denoted by zti jk, corresponding to the k-th replicate from the j-th fragment

of the i-th glass item of use type t. The model for zti jk is then assumed to be the sum of a

fixed effect θt , random effects bti and cti j, and error term ϵti jk:

zti jk = θt +bti +cti j +ϵti jk. (3.2.1.1)

Here, θt is a fixed effect term capturing the mean compositional ratio values for use type

t; bti is a random effect capturing item-level variability; cti j is a random effect capturing

fragment-level variability; and ϵti jk captures measurement error for individual pieces. Each of

the random effects are assumed to have Multivariate Normal distributions, with covariance

matrices Ω−1
t , Ψ−1 and Λ−1:

bti
iid∼ Np(0,Ω

−1
t ), cti j

iid∼ Np(0,Ψ−1), ϵti jk
iid∼ Np(0,Λ−1). (3.2.1.2)

For a glass item z of use type Tz = t with JK measurements, the model (3.2.1.1) implies

that the distribution of item z is

z|Tz = t,ξ ∼ NJK p(1JK ⊗θt ,Σt), (3.2.1.3)

where ξ = {θ,Ω,Ψ,Λ} collectively combines the model parameters. The covariance matrix

Σt is given by

Σt = (1JK1
′
JK)⊗Ω−1

t +[IJ ⊗ (1K1
′
K)]⊗Ψ−1 + IJK ⊗Λ−1, (3.2.1.4)
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where 1d is a column vector of d 1’s and Id is the d ×d identity matrix.

Napier (2014) further assumes Multivariate Normal prior distributions for the fixed effects

θt :

θt
iid∼ Np(0,Φ−1), (3.2.1.5)

with θt > 0 for t = 1, . . . ,T . The non-negative restriction is imposed due to the compositional

nature of the elements which must be greater than zero. The prior for the covariance matrix,

Φ−1, of the fixed effect θt is fixed and set equal to s · Ip, where s is set equal to 1,000. This

assumes a large variance a priori for θt , to establish a weakly informative prior such that

the posterior modes of θt will be close to the corresponding sample means from the data.

Next, Napier assumed conjugate Wishart hyperpriors for each of the random effect covari-

ance matrices:

Ωt ∼Wp(d1t ,At), Ψ ∼Wp(d2,B), Λ ∼Wp(d3,C), (3.2.1.6)

where d1t ,d2 and d3 are the degrees of freedom and At ,B and C are the precision matrices.

Conjugate priors are used as they allow for efficient sampling from the posterior distribu-

tions due to the resulting distribution having the same form as the prior distribution. This

allows for closed-form solutions that can reduce the computational burden and simplify the

calculations in comparison to when non-conjugate priors are used. The degrees of freedom of

the Wishart distribution need to be greater than the data dimension minus one, so weakly

informative prior values for the degrees of freedom are set equal to p, d1t = d2 = d3 = p (De-

Groot, 2005). These values are chosen to produce a weakly informative prior that provides a

limited constraint on the parameters. The purpose of weakly informative priors is to balance

between incorporating some prior information and allowing the data to have an influence on

the posterior distribution. Using p as the degrees of freedom results in a minimally inform-

ative prior. As the degrees of freedom increase, the distribution becomes less spread out,

leading to a more concentrated shape around the mean with reduced variance. A higher
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degree of freedom results in a stronger prior that exerts more influence on the posterior.

Meanwhile, increasing the scale matrix increases the expected value of the precision matrix.

The scale matrices At ,B and C are set equal to (1/1000) ·Ip, so that the precision is expected

to be small a priori. The Wishart priors thus suggest the random effect variance could be

very large but the high prior uncertainty from setting the degrees of freedom equal to p

means that posterior inference for these matrices is largely driven by the data.

This model can be directly applied to the raw compositional ratios zti jk, but in practice,

these ratios are unlikely to have normally distributed residuals due to their constraint on

the simplex. One can instead apply the model to transformed values z′
ti jk = g(zti jk), where

g(·) is some function, e.g. square root or log. Napier found that the square root of the

compositional ratios improved the assumptions of normality and stability in the variability

of the data more than a logarithmic transformation.

3.2.1.1.1 Classification

Once the model described in Section 3.2.1.1 (proposed by Napier (2014)) has been fitted,

there is interest in classifying new glass items into the different glass types: bulbs, car

windows, headlamps, containers and building windows. This task is motivated by the forensic

setting where a glass fragment may be found and it is useful to find which glass item the

fragment may have come from. The full classification process is outlined within Napier

(2014) and summarised below.
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Denote y as the transformed elemental composition of a newly observed glass item, with

its unknown use type denoted by Ty. The elemental configuration of y is Cy = m, which is

known if y is conditioned upon. The use-type probability for a newly observed glass item y:

p(Ty = t|y,D) ∝ p(Ty = t)
αtm +Ntm

∑M
r=1(αtr +Ntr)

Eξ |Dm [p(y|Ty = t,Cy = m,ξm)], (3.2.1.7)

where αtm is the shape parameter vector of an assumed Dirichlet prior distribution for the

classification probabilities, set to 0.1 for all t, resulting in a weakly informative prior which

allows the classification probabilities to be driven by the data. Ntm defines the number of

each glass type within each configuration. ξm is the posterior distribution corresponding to

y is Cy = m. D is the reference database which is not informative about the glass use type

of a newly observed glass item, since the number of items of each type does not reflect

the prevalence of these use types in a real-world setting. Eξ |Dm denotes the expectation

with respect to the posterior distribution of ξm. This is estimated by taking the mean of

the densities of p(y|Ty = t,Cy = m,ξm) with the ξm given by the MCMC samples. Napier

found that the choice of the value of α did not seem to have that much of an effect on the

classification results for values between 0.1 and 0.5, indicating that the data itself provides

strong information for classification - so in this work αtm is set to 0.1. In this case, the

posterior classification probabilities are dominated by the likelihood. If we had a smaller

dataset, we might want to incorporate a more informative prior so that, a priori, we have

more knowledge about the type probabilities.

The glass use-type probabilities p(Ty = t|Cy =m,D) from Equation (3.2.1.7) can be computed

for the configurations of y. It could occur that within some of the configurations there could

be some absent glass use types, therefore, the use-type probability for that type would be

much lower, meaning that it is more unlikely that the glass item will be classified into that

glass use type.
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The real-world practicability of Napier’s approach is limited in the first instance by the

manual aspect of splitting the data by the presence and absence of the compositional ele-

ments. This could require prior or expert knowledge to carry out, which could be avoided

if we had a way of automating the split (Aim 2). Moreover, this model used hand-coded

MCMC algorithms in R that were not optimally efficient (e.g. compared to compiled C++

code) and could be difficult to adapt. This could be improved by utilising a flexible MCMC

software package which would reduce the computational burden and make the method more

practical for real-life applications, in particular where frequent database updates may im-

pact the model (Aim 4). Additionally, while the classification task occurs without requiring

the model to be rerun, setting up the classification use-type probabilities for each glass item

is a time-consuming process. An improvement to the method would be to introduce a new

step in the modelling that directly predicts the glass use type, making the implementation

more efficient and user-friendly (Aims 1 & 3).

3.3 Methodology

First, we detail a simple generalised version of the model given in Section 3.2.1 for a vector

of measured elemental compositions, zti jk, with nested groupings j ⊂ i ⊂ t (e.g, fragment,

item, type), and with k indexing repeated measurements. We introduce an additional index

cli, which denotes the configuration membership of the glass item. In Napier (2014), all

parameters are assumed to be independent across the configurations, and indeed, the models

are fitted independently. However, in the proposed model, this assumption will be relaxed

to allow for dependencies between configurations.

zti jk ∼ N(µti j,Σ(cli)),

µti j | βti j,cti j = Xti jβti j +cti j.
(3.3.0.1)
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Here, Xti j represents generic group-level covariates. These could be simple linear/factor

effects or more complex terms such as penalised regression spline basis functions, with

smoothing penalisation handled within the priors for βti j. Then, cti j is a structured random

effect for object ti j. This could be an additive combination of e.g. type-, item-, and fragment-

level random effects as in Equation (3.2.1.1).

The final assumption in this general framework is that the prior models for βti j and cti j may

differ fully (like in Napier (2014)) or partially (e.g. through some hierarchical structure, as

proposed later) depending on the configuration/grouping index cli.

3.3.1 Proposed framework

First, we propose an alternative hierarchical version of the random effect structure in Equa-

tion (3.2.1.1) for more efficient MCMC sampling, motivated by the forensic glass data.

Recall that Napier (2014) captured structured variability in elemental compositions at

type/item/fragment level through an additive combination of random effects:

zti jk = θt +bti +cti j +ϵti jk. (3.3.1.1)

However, this additive structure can induce substantial correlation between the random

effect terms during MCMC sampling, due to the shared modelling of variability across mul-

tiple hierarchical levels. This correlation can slow convergence, making it more challenging

for the sampler to explore efficiently the posterior distribution. In contrast, a nested for-

mulation of hierarchical random effects can be more efficient when the data are “naturally

nested” (Schielzeth et al., 2013), such as when multiple observations exist per group. In

our case, we have multiple measurements for each glass item. Using a nested structure can

account for the dependencies within the data and provide more accurate estimates of the

effects at each level (Gelman, 2007). Furthermore, in nested data structures, the interaction
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variance is combined with the main effect variance of the nested factor. This means that in

cases where separating interaction effects is not a priority, a nested formulation simplifies

the model and interpretation (Schielzeth et al., 2013). Therefore, structuring our model in a

nested way can simplify the model and improve the MCMC mixing, leading to more efficient

and faster convergence.

We therefore propose re-expressing these terms hierarchically rather than additively, as

follows:
cti j ∼ N(bti,Ψ

−1(cli)),

bti ∼ N(θt(cli),Ω−1
t (cli)),

θt(cli)∼ N(0,Φ−1(cli)).

(3.3.1.2)

It can be shown through relabelling that this is exactly the same parametric model.

We can treat model parameters (θt(cli), bti, cti j etc.) as random quantities within the

Bayesian framework, and obtain inference based on posterior distributions. Here, Bayesian

inference has multiple advantages over alternatives:

• It can easily handle the various Multivariate Normal structures in this model.

• Models can be extended and/or adapted without changing the inferential framework.

• It enables thorough model checking through posterior predictive checking.

• It provides full predictive inference for new items, allowing future classification.

Given the complexity of the model (Equation (3.2.1.3)) and the high-dimension of the set of

model effects, direct posterior inference is challenging. Instead, we can use MCMC methods

(Appendix B) to simulate samples from the joint posterior distribution.



CHAPTER 3: BAYESIAN HIERARCHICAL MODEL FOR COMPOSITIONAL DATA 46

Next, instead of assuming that the type ti of item i is a known constant, we treat it as

a random quantity that can be unknown. Here, we assume that the glass use type each

item belongs to can fall into one of t use type categories, with probabilities δt(cli). We thus

assume a categorical distribution for ti:

ti ∼ Categorical(δt(cli)). (3.3.1.3)

The categorical distribution is a multi-class generalisation of the Bernoulli distribution,

which would only allow for two possible outcomes.

Recall from Section 3.2.1.1.1, Napier assumed a Dirichlet prior for the classification prob-

abilities, reflecting a belief that, before observing any data, each glass use type is equally

likely. Specifically, the prior was set to be weakly informative, ensuring that the classifica-

tion remains primarily data-driven. Following this, we assume a Dirichlet prior for the type

probabilities δt(cli):

δt(cli)∼ Dirichlet(τt), (3.3.1.4)

where τt = 1/t for all glass use types t, placing equal weight on each possible glass use

type, reflecting a belief that a priori, each type is equally likely for each glass use type

t. This results in the same Dirichlet prior assumption as in the previous work by Napier.

The parameter δt(cli) defines the probability of each glass use type t for each glass item i,

allowing the probability of each glass use type to vary across the different configurations.

Since the presence or absence of elements defines each configuration cli, the probability of

glass use types may vary across configurations. Thus, incorporating configuration-dependent

probabilities can improve the prediction of glass use types.

Comparing this with a previous approach outlined in Section 3.2.1.1.1, we observe that

both processes follow a similar approach in determining the glass use type for each item.

In the previous approach, the probability of each glass use type was determined for each

configuration through Equation (3.2.1.7) and the glass use type is classified to the highest
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probability. In both approaches, the Dirichlet distribution is assumed as a prior for the

probabilities of each glass use type. Additionally, both approaches incorporate configuration-

specific probabilities, accounting for the fact that some glass use types may appear more

frequently in certain configurations than in others. However, our proposed framework offers

advantages in that it streamlines the steps for the classification of each item and allows

measurements from items of unknown type to be included in the model. By setting ti as “NA”

in the data, the MCMC algorithm will automatically sample it as an unknown quantity.

This framework can be used in conjunction with the manual strategy for splitting the data

into configurations so that cli are known constants in advance of modelling. We will refer to

this as the “manual configurations” approach.

In the following subsections, we detail alternatives to splitting the data into configurations

manually, including automated clustering algorithms and ultimately an integrated Bayesian

clustering approach.

3.3.2 Pre-clustering approach

Recall that Napier (2014) proposed splitting the data up by the presence and absence of

the compositional elements to reduce the impact the zero values have on the model. This is

limited by the manual and highly subjective nature of the separation process. It potentially

requires prior knowledge of which elements to use to split the data, and the manual effort

required may be impractical in operational settings.
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Here we propose alternative approaches that automate the splitting procedure. We will

investigate the use of standard clustering methods, in place of this manual separation, po-

tentially to make the method more generally applicable. We will focus on two very common

clustering methods: hierarchical clustering and k-means clustering. However, other clustering

methods could also be implemented.

As our aim is to cluster the data based on the presence and absence of the compositional

elements, we conducted our pre-clustering approaches on an indicator matrix of presence

and absence of the mean across all measurements for each glass item. We followed this

approach so that the clusters might potentially reflect similar information captured by the

configurations based on the presence and absence of the elements.

3.3.2.1 Hierarchical clustering

Hierarchical clustering is an algorithm that progressively groups or divides objects based

on a measure of similarity, resulting in a hierarchy of clusters (Nielsen, 2016). Hierarch-

ical clustering has two main approaches: agglomerative, a “bottom-up” method where each

observation starts as its own cluster and clusters are progressively merged, and divisive,

a “top-down” method where all observations start in a single cluster and are recursively

split. The choice between these methods depends on the characteristics of the data and

the specific problem, as explored in Roux (2018). This research employs the agglomerative

approach, explored in Murtagh et al. (2012), due to its computational feasibility and ease of

use. In contrast, divisive clustering is often more computationally expensive, as it requires

solving complex optimisation problems at each step.

The steps of the agglomerative algorithm (Day et al., 1984) are:
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1. Each observation is considered to be its own cluster.

2. The distances between clusters are computed.

3. The two clusters with the smallest pairwise distance are combined into a single cluster.

The distances between all clusters are then updated.

4. Steps 2 and 3 are repeated until there is only a single cluster containing all observa-

tions.

In hierarchical clustering, the distance between points is a crucial component for grouping

similar points together. The most commonly used measure to compute the distance is the

Euclidean distance. This calculates the distance between two points in a multi-dimensional

space. However, if there are solely binary values or an indicator matrix being used to cluster

upon, the Euclidean distance does not make sense to apply here. Instead, in these cases the

binary distance can be used. This calculates the dissimilarity between the binary values by

considering the presence or absence of elements. The resulting distance values range from

0 to 1, with 0 indicating complete similarity and 1 indicating complete dissimilarity. Here,

we decided to use the binary distance as we aim to cluster the presence and absence of the

elements, expressed as an indicator matrix. The indicator matrix is a I× p matrix containing

0 or 1s, where p is the number of elements.

After the distance matrix is computed, a linkage method is applied to measure the dissim-

ilarity between clusters. The linkage method calculates the distances between all objects.

Different linkage methods can lead to different clustering results, as they capture different

aspects of the relationships between clusters. The four most common linkage methods are

complete, single, average and Ward linkage. This research adopts the Ward linkage, intro-

duced in Ward Jr (1963), which merges the two clusters that minimise the total within-

cluster variance. The minimum between-cluster distance is computed, and the pair with

the smallest distance is merged, ensuring that newly formed clusters remain compact and

homogeneous (Sharma et al., 2019).
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Ward’s method offers several advantages over other hierarchical clustering techniques, as

highlighted in Sharma et al. (2019). Unlike single linkage, which often results in elongated

clusters by linking distant points, Ward’s method maintains cluster compactness by min-

imising the increase in variance. Compared to complete linkage, which can struggle when

clusters overlap, Ward’s approach ensures that within-cluster variance remains low, lead-

ing to better-defined and more evenly sized clusters. While all methods perform well when

clusters are clearly separated, Ward’s linkage consistently produces more distinct and bal-

anced groupings, making it particularly effective for identifying meaningful patterns. These

properties make Ward’s linkage especially suitable for this work, as it enables the discovery

of patterns in the presence and absence of compositional elements, while avoiding clusters

of largely dissimilar size, which could complicate statistical analysis.

3.3.2.2 k-means clustering

k-means clustering is a clustering algorithm that groups points together into k clusters in

which each observation belongs to the cluster with the nearest cluster centre or centroid (Jain,

2010). This algorithm aims to minimise the within-cluster sum-of-squares. Unlike hierarch-

ical clustering, outlined above in Section 3.3.2.1, this algorithm requires the number of

clusters, k, to be specified prior to the clustering being fitted. Here, we applied k-means

to the same I × p presence and absence indicator matrix that was used for the hierarchical

clustering.

The iterative steps carried out when using the k-means clustering method (Hartigan et al.,

1979) are:

1. Choose a k value. This is used as the initial set of k centroids.

2. Assign each data point to the cluster with the nearest centroid.
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3. Determine the new centroids of the k clusters, by computing the mean of the cluster

members.

4. Repeat step 3 until there is no change in the criterion after an iteration.

The k-means clustering algorithm is often run multiple times with different values of k to

identify the optimal number of clusters. To assist in choosing k in Step 1, methods such as

the elbow method or knowledge from the application or data can be used.

The k-means clustering algorithm is not guaranteed to find the global minimum, as it can

get stuck in a local minimum due to its dependence on the initial choice of centroids. To

mitigate this, the algorithm is typically run multiple times with different initialisations. This

increases the likelihood of finding a better local minimum and, in some cases, the global

minimum, but there is no guarantee of achieving the optimal solution (Ahmed et al., 2020).

3.3.3 Bayesian integrated clustering approach

As discussed in Section 3.3.2, although the pre-clustering approach automates the manual

splitting of the data, a key limitation is that cluster labels are fixed before modelling, since

a clustering algorithm is applied in advance.

Here, we propose a new integrated Bayesian clustering model for the compositional data,

where we explore a latent variable for the cluster of glass item i within the model. By

incorporating this into our model, we aim to reduce the burden on users of the approach to

make important subjective decisions around splitting the data based on the presence and

absence of the compositional elements, while also including clustering uncertainty into the

predictions. Meanwhile, we might also achieve a better clustering structure, as the clustering

will be more data-driven determined by its effect on the data likelihood and random effects



CHAPTER 3: BAYESIAN HIERARCHICAL MODEL FOR COMPOSITIONAL DATA 52

models, not solely with respect to presence or absence in an indicator matrix. This addresses

the original Aims 1 and 2 from Section 3.1 as our proposed framework clusters and classifies

within the model based on the input data. However, this integrated clustering approach

requires the number of clusters to be defined prior to the modelling.

To achieve this, we treat the cluster cli ∈ (1, . . . ,NCL) that item i belongs to as an unknown

latent categorical variable:

cli ∼ Categorical(ζ), (3.3.3.1)

where the probability of belonging to cluster cli is given by ζ. A Dirichlet prior is placed

upon the vector of probabilities ζ, i.e.

ζ ∼ Dirichlet(ι), (3.3.3.2)

where ιcl is set equal to 1/NCL for all clusters cl = (1, . . . ,NCL). This indicates that we believe

each cluster is equally likely for each glass item a priori. Assuming a Dirichlet prior on the

probability of belonging to each cluster means ζcl defines the prior probability of any item

belonging to each cluster cl.

Then, in addition to the Multivariate-Normal model for zti jk, we include a Bernoulli model

for the presence and absence of compositional elements:

uie ∼ Bernoulli(qcli,e), (3.3.3.3)

where e is the index for the compositional element, for e ∈ (1, . . . , p). Here, qcli,e represents

the probability of the presence and absence for each element depending on what cluster the

item is in (cli). We assume a Uniform prior on qcl,e, i.e.

qcl,e ∼ Uniform(0,1), (3.3.3.4)



CHAPTER 3: BAYESIAN HIERARCHICAL MODEL FOR COMPOSITIONAL DATA 53

independently for each cluster and element. Assuming this Uniform prior for the probability

of presence or absence of each element means that each outcome (either present or absent)

is equally likely within each cluster a priori. This allows for flexibility in updating these

probabilities based on observed data without imposing strong prior assumptions. This is a

non-informative prior as it does not favour any value within the range [0,1].

The posterior probability for the cluster cli that item i belongs to is given by

p(cli|zti jk,uie) ∝ p(zti jk|cli)p(uie|cli)p(cli), (3.3.3.5)

where p(cli|zti jk,uie) is the posterior probability of item i belonging to cluster cli given the

observed compositions. p(zti jk|cli) is the likelihood of the compositions given the cluster

cli, p(uie|cli) is the Bernoulli likelihood for the presence and absence of elements given the

cluster cli and p(cli) is the prior probability for each cluster assignment.

We could, if desired, use more informative priors to incorporate specific prior knowledge or

beliefs about the parameters. For example, the Beta distribution could be used as a more

flexible prior for qcl,e, where the shape parameters could be chosen to reflect known tend-

encies in the compositions, such as higher probabilities for certain elements being present.
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The complete definition of the proposed model is as follows:

zti jk ∼ N(cti j,Σ(cl)),

cti j ∼ N(bti,Ψ
−1(cl)),

bti ∼ N(θt(cl),Ω−1
t (cl)),

θt(cl)∼ N(0,ϕ−1(cl)),

Σ(cl)∼W (p,ξ (cl)),

Ψ(cl)∼W (p,B(cl)),

Ω(cl)∼W (p,A(cl)),

uie ∼ Bernoulli(qcli,e),

qcl,e ∼ Uniform(0,1),

ti ∼ Categorical(δt(cli)),

δt(cl)∼ Dirichlet(τ ),

cli ∼ Categorical(ζ),

ζ ∼ Dirichlet(ι),

where ξ (cl) = A(cl) = B(cl) = Ip/1000, ϕ−1(cl) = 1000 · Ip, τt = 1/t and ιcl = 1/NCL.

In this model all parameters and prior distributions pertaining to the clusters cli are equal

across the different cluster labels, leading to concerns surrounding “label-switching”. This oc-

curs when the labels of the clusters can be exchanged without altering the overall likelihood

of the model parameters, leading to ambiguity in identifying which parameters correspond

to which cluster (Stephens, 2000). Running the model across multiple chains and training

datasets can yield different cluster structures or labels, preventing a definitive cluster struc-

ture due to the symmetry in the model’s clustering structure. Since prior distributions treat

the clusters equivalently, labels such as “Cluster 1” or “Cluster 2” are arbitrary and the

model has no inherent preference for one label over another unless constraints are imposed.

However, this is not a concern in our case as our goal is to use clusters for classifying new
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glass items rather than interpreting them. If addressing label-switching is a requirement

within a different application, we can add and tailor constraints to fit the specific needs.

For example, one possible approach would be to order the clusters based on the mean of the

presence and absence of the compositional elements, i.e. mean(uie).

If the above weakly informative prior distributions are used and no label-switching con-

straints are included in modelling, the only necessary choice for the user in relation to

clustering is choosing the number of clusters. Strategies for choosing the optimal number of

clusters is not explored here but some potential avenues are discussed in Section 3.5.

3.3.4 Implementation

A successful MCMC implementation is dependent on choosing appropriate sampling meth-

ods. Coding our MCMC algorithm manually, e.g. using the R (R Core Team, 2021) statistical

programming language as in Napier (2014), gives the greatest freedom in choosing any com-

bination of MCMC sampling algorithms, e.g. Metropolis-Hastings (Hastings, 1970) or Gibbs

sampling (Casella et al., 1992). However, doing so is cumbersome in terms of the effort and

expertise required, especially when making major changes to the model or adapting it for

new applications. The computation may also be prohibitively slow for practical use if the

code is not optimised or relies on inefficient software architectures.

A more accessible option is to use a software package that automates much of the mechanics

such as assigning samplers to model parameters and running the MCMC algorithm. How-

ever, the most established packages, e.g. WinBUGS (Lunn et al., 2009) or JAGS (Plummer,

2003), offer no flexibility in choosing alternative sampling methods if the default samplers

are not working well in a given situation.
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Here, we aim to implement the model in a flexible way, both in terms of freedom to choose

different sampling algorithms and modifications to the model, while also achieving practical

computation times compared to previous work. To achieve this, we base our implementation

on the NIMBLE package (Valpine et al., 2017) which allows for flexible implementation of

Bayesian models using MCMC, among other algorithms. NIMBLE models are written in

the BUGS language, like JAGS (Plummer, 2003), and then compiled automatically into

C++ (Stroustrup, 1986) for fast execution. By default, NIMBLE uses a combination of

Metropolis-Hastings random walk sampling algorithms and multivariate random walks, or

conjugate relationships where possible, but the user can choose any combination of samplers

for different model parameters. An extensive list of samplers are pre-included in the package,

but the user can straightforwardly add their own sampling methods to the algorithm, as

part of a general feature of NIMBLE that allows user-defined functions and probability

distributions to be added. In Section 3.4.7 we will show the computational efficiency of our

models that is achieved using NIMBLE, while only relying on the default random walk,

blocked random walk and slice samplers. Moreover, modifications to the model can be made

far more easily than in manual MCMC implementations.

The R NIMBLE model code to produce the Bayesian hierarchical model for the compositional

data is given in Listing 1. The additional code required to predict the clusters for our

proposed integrated clustering approach is given in Listing 2 - added to Listing 1 within the

cluster loop in line 4. To ensure that the clusters are still based on the presence and absence

of the compositional elements we also add the code given in Listing 3 within the item loop

in line 25.
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1 model_code <- nimbleCode({
2
3 ## LOOP OVER NUMBER OF CLUSTERS ##
4 for (cl in 1:N_CL) {
5
6 # TYPE PROBABILITY #
7 delta[1:t, cl] ~ ddirch(tau[1:t])
8
9 # PRIORS #

10 xi[1:p, 1:p, cl] <- diag(p)/1000
11 Psi[1:p, 1:p, cl] ~ dwish(df = p, B[1:p, 1:p, cl])
12 Psi_inv[1:p, 1:p, cl] <- inverse(Psi[1:p, 1:p, cl])
13 Sigma[1:p, 1:p, cl] ~ dwish(df = p, xi[1:p, 1:p, cl])
14 Sigma_inv[1:p, 1:p, cl] <- inverse(Sigma[1:p, 1:p, cl])
15
16 ## LOOP OVER NUMBER OF GLASS USE TYPES ##
17 for (k in 1:t){
18 theta[1:p, k, cl] ~ dmnorm(mean = mean_zero[1:p],
19 cov = inv_phi[1:p, 1:p, cl])
20 Omega[1:p, 1:p, k, cl] ~ dwish(df = p, A[1:p, 1:p, k, cl])
21 Omega_inv[1:p, 1:p, k, cl] <- inverse(Omega[1:p, 1:p, k, cl])
22 }
23
24 ## LOOP OVER NUMBER OF ITEMS ##
25 for(i in 1:I){
26 b[i, 1:p] ~ dmnorm(theta[1:p, t[i], cl],
27 Omega[1:p, 1:p, t[i], cl])
28 ## LOOP OVER NUMBER OF PIECES ##
29 for(j in 1:J){
30 c[i, j, 1:p] ~ dmnorm(b[i, 1:p], Psi[1:p, 1:p, cl])
31 }}}
32
33 ## COMPUTE ITEM TYPE ##
34 for (i in 1:I){
35 t[i] ~ dcat(delta[1:t, cl[i]])
36 }
37
38 ## MODEL ELEMENTAL COMPOSITIONS ##
39 for(i in 1:N){
40 z[i, 1:p] ~ dmnorm(mean = c[item[i], piece[i], 1:p],
41 Sigma[1:p, 1:p, cl[i]])
42 }
43 })

Listing 1: Custom R NIMBLE model code to implement the Bayesian hierarchical model
outlined in Section 3.3 where the configurations or clusters are provided to the model.
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1 ## LOOP OVER NUMBER OF CLUSTERS ##
2 for (cl in 1:N_CL) {
3
4 ## CLUSTER PROBABILITY ##
5 zeta[1:N_CL] ~ ddirch(iota[1:N_CL])
6
7 ## COMPUTE ITEM CLUSTER ##
8 for (i in 1:I) {
9 cl[i] ~ dcat(zeta[1:N_CL])

10 }}
11
12 for (cl in 1:N_CL) {
13 for (e in 1:p){
14 ## PRIOR PROBABILITY PRESENCE / ABSENCE ##
15 q[cl, e] ~ dunif(0,1)
16 }}

Listing 2: Additional R NIMBLE code to implement the Bayesian hierarchical model outlined
in Section 3.3.3 where the clusters are modelled within the NIMBLE model. This code is
added to Listing 1 within the cluster loop at line 4.

1 for (i in 1:I) {
2 for(e in 1:p) {
3 ## MODEL ITEM'S PRESENCE / ABSENCE OF ELEMENTS ##
4 u[i, e] ~ dbern(q[cl[i], e])
5 }}

Listing 3: Additional R NIMBLE code to implement the Bayesian hierarchical model outlined
in Section 3.3.3 where the clusters are modelled within the NIMBLE model where we model
the presence and absence of each item’s elements. This code is added to Listing 1 within
the loop across items at line 25.

All computations were carried out on an Ubuntu Linux desktop computer with an Intel Core

i9-13900K processor with 24 physical cores (32 logical cores) with 128GB system memory.
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3.4 Application to Forensic Glass

In this section, we assess models using no splitting/clustering of the data, as well as using the

manual configurations, pre-clustering and Bayesian integrated clustering approaches with

respect to their application to forensic glass data, detailed in the next subsection, as a tool

for predicting (classifying) the type of new glass items.

In Section 3.4.2, we will briefly compare posterior inference from applying the Bayesian

hierarchical model fitted to the full data with square root transformed ratios to the same

data without the transformation, and discuss implications for out-of-sample performance.

In the subsections that follow, we will then present and interpret results from each different

approach to separating/clustering the data. To summarise, this section will present the

application of the following models to the forensic glass data:

1. No splitting: untransformed ratios

2. No splitting: square root transformed ratios

3. Manual configurations approach

4. Pre-clustering approach: hierarchical clustering

5. Pre-clustering approach: k-means clustering

6. Bayesian integrated clustering approach

All these models will ultimately be compared based on out-of-sample type classification

performance, through a five-fold cross-validation experiment. We explain the design of this

experiment and present results in Section 3.4.6.
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3.4.1 Data set

This chapter examines forensic elemental glass data that were introduced in Section 3.1 and

previously analysed in Napier (2014). Recall, the data contain four fragments, each with

three replicate measurements, from 320 glass items giving a total of 3,840 data points. Each

of the glass items falls into one of five different use types: bulbs, car windows, headlamps, con-

tainers and building windows. The percentage weights of each fragment are compositional,

non-negative and sum to 100%. The number of elements in a fragment’s composition can be

denoted as D with the percentage weights w= (w1, . . . ,wD), with wd ≥ 0 and ∑D
d=1 wd = 100.

In this work, to remove the sum constraint imposed by the compositional nature of the

data the composition is transformed into a (D− 1) dimensional vector of the ratios of the

(D− 1) elements to the Dth element. Dividing by one of the compositional elements helps

to remove the scale dependency and expresses the relative proportions in a meaningful way.

The transformed vector is defined as

w∗ =

(
w1

wD
, . . . ,

wD−1

wD

)
, (3.4.1.1)

where oxygen is chosen to be the divisor WD. Here, oxygen is chosen as the divisor as it is

present in all the glass items, allowing the division in the ratio.

The number of zeros in the data varies by element, with oxygen (O), sodium (Na) and silicon

(Si) containing no zero measurements, but the element iron (Fe) has mostly zero values with

79% of measurements being equal to 0. Table 3.2 presents the frequency of these zero values

within each element and their respective percentage of zeros.

Table 3.2: Frequency of zeros present in the forensic glass data by compositional element.

Element O Na Si Ca Al Mg K Fe
Frequency 0 0 0 108 205 265 1168 3036

Percentage % 0 0 0 2.8 5.3 6.9 30.4 79.1
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We can visualise this within the top row of Figure 3.3 which shows boxplots of each glass use

type for each compositional element for the untransformed compositional ratios to oxygen.

A large proportion of zeros can be identified from the plot with the median of the boxplots

close to 0, seen within iron (Fe) and potassium (K), where these boxplots exhibit a small

spread indicating that most values are around 0. If there are a large number of zeros in the

data, this could skew or distort the mean and variance leading to inaccurate conclusions if

not properly accounted for. We could transform the compositional ratios to reduce the effect

of the zero values, allowing for a clearer visualisation of the distributions among glass types.

Furthermore, applying a transformation could stabilise the variance across the different

elements. The bottom row of Figure 3.3 displays the square root transformed compositional

ratios to oxygen. Improvements can be detected through the shape of the boxplots, e.g.

the shape and spread of values is more apparent, in particular for potassium (K), showing

clearer variations and distinguishable features among glass types.
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Figure 3.3: Boxplots of the untransformed (top row) and square root transformed (bottom
row) compositional ratios, Equation (3.4.1.1), with oxygen as the divisor for all the glass
item means. The different coloured boxplots correspond to each of the use type groups: bulb,
car window, headlamp, container and building window.
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However, even when applying square root transformation to the ratios, there are still cor-

relation patterns between elements. For instance, Figure 3.4 presents a scatterplot of silicon

(Si) against calcium (Ca) where a strong positive correlation for all glass use types can be

identified.
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Figure 3.4: Scatterplot of the elements silicon (Si) and calcium (Ca) of the square root
transformed compositional ratios, Equation (3.4.1.1), with oxygen as the divisor for all the
glass item means. The different coloured boxplots correspond to each of the use type groups:
bulb, car window, headlamp, container and building window.

3.4.2 Model with no splitting

Initially, we applied the Bayesian hierarchical model outlined in Section 3.3 to the full data

for both untransformed and square root transformed compositional ratios. This comparison

allows us to assess whether applying a transformation, as shown in Figure 3.3, helps to

spread the data for each element away from zero, improving the predictive accuracy. For

each model, the untransformed and square root transformed ratios, four chains were run in

parallel, for 250,000 iterations each, with 150,000 discarded as burn-in and thinning each

chain by 100. The time taken to run each model was approximately 3 hours.
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For each version of the model that was run, the diagnostics outlined in Appendix B were

examined to assess whether the model had adequately converged. Posterior samples were

obtained for the sampled θt and the resulting traceplots indicated good convergence across

all glass use types. Each traceplot exhibited sufficient mixing, with no trends or periods

of no movement, suggesting that the chains have explored the parameter space effectively.

In addition, the multiple chains overlap indicating that they have all converged to the

same posterior distribution. We computed the Gelman diagnostic (Appendix B) for each

parameter and 96% of the PSRFs were less than or equal to 1.05, with a median of 1.00,

indicating convergence.

Figure 3.5 displays boxplots of the posterior samples of θt for the untransformed and

square root transformed compositional ratios. Ideally, we would want to see a differentiation

between each glass use type for each element. This could indicate that the model could learn

the differences between the glass use types, to inform in a better way the classification of

new items. From the top row of Figure 3.5, we can see that for the untransformed model

the associated boxplots are very narrow and similar across the glass use types. Additionally,

for a number of elements the boxplots for all glass use types are very narrow around zero.

On the other hand, from the bottom row of Figure 3.5, across each element the posterior

median of θt appears to differ for each glass use type. However, for sodium (Na) and silicon

(Si) there is a similarity within the boxplots for each glass use type. Overall, across the

elements, the glass use types of car and building windows (θ2 and θ5) are the most similar,

with the boxplots closely overlapping within each element. This is unsurprising given the

likeness of the compositional elements within these glass use types. Thus, this could make

prediction of either of these types more difficult given the close structure of each type.
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Upon comparing the models, it is evident that applying a square root transformation en-

hances modelling the compositional ratios, as the posterior median of each glass use types

differ. As a result, this could improve the prediction accuracy of new glass items. Hence,

for the remainder of this chapter, the results will be based on applying a square root trans-

formation to the compositional ratios.
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Figure 3.5: Boxplots of the posterior samples of θt for the untransformed (top row) and
square root transformed (bottom row) compositional ratios for the model with no splitting.
The different coloured boxes represent the item types: bulb, car window, headlamp, container
and building window.

3.4.3 Configuration models

Recall from Section 3.2.1, a previous approach to account for structural zeros is to split

the data according to the presence or absence of the elements; called configurations. The

zCompositions package (Palarea-Albaladejo et al., 2015) can be utilised to plot all the pos-

sible combinations of the presence and absence of the elements exhibited in the data. As

oxygen, silicon and sodium are always present, from Table 3.2, the remaining five elements

can either be present or absent, resulting in 25 = 32 possible configurations. However, only
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11 of the possible 32 are observed in the data, shown in Figure 3.6. Absence of an element

is shown by the shaded blue boxes and the percentage of zeros of each element in each

configuration is displayed in the teal bars on the top of the plot. The orange bars down the

right side represent the percentage of the number of data points within each configuration.

It can be noticed that some of these configurations contain a very small number of data

points, Table 3.3 quantifies the frequency and percentage of data points in each of the ob-

served configurations. For example, configuration 8, where solely magnesium (Mg) is absent,

contains only one data point. This could present challenges when statistical methods are

applied to each of the configurations.
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Figure 3.6: Plot of the presence and absence of the compositional elements for each observed
configuration present in the forensic glass data. Absence of an element is shown by the shaded
blue boxes in the grid and the percentage of zeros of each element in each configuration is
displayed in the teal bars on the top of the plot. The orange bars down the right side
represent the percentage of the number of data points within each observed configuration.

Table 3.3: Frequency and percentage of the number of data points within each configuration
of the forensic glass data, from Figure 3.6.

Configuration 1 2 3 4 5 6 7 8 9 10 11
Frequency 491 1952 181 746 12 131 62 1 108 108 48

Percentage (%) 12.79 50.83 4.71 19.43 0.31 3.41 1.61 0.03 2.81 2.81 1.25
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Napier (2014) overcame the issue of having a small number of data points within some of

the configurations by only examining the presence and absence of the elements potassium

(K) and iron (Fe). These elements account for the highest number of zeros in the data with

a total of 88%. By only examining this presence and absence combination, the number of

configurations to study reduces to four. Table 3.4 outlines the four configurations along with

their glass use type.

Table 3.4: Number of glass items within each configuration for the presence and absence of
the elements iron (Fe) and potassium (K) by glass use type.

Glass Type Configuration m Total

m = 1:
Fe present,
K present

m = 2:
Fe absent,
K present

m = 3:
Fe present,
K absent

m = 4:
Fe absent,
K absent

bulb 0 25 0 1 26
car window 23 40 11 20 94
headlamp 0 14 0 2 16
container 12 48 0 19 79
building window 10 52 15 28 105
Total 45 179 26 70 320

Upon examination, it was found that only eight of the 320 items have measurements that

do not match the pattern seen for the other measurements for each item, accounting for

0.9% of the zeros in the data. In these cases, if an element is absent in one measurement

but present in the others, it is recorded as a presence within the item.

Each of the configurations can be visually displayed using boxplots of the item mean com-

positional ratios to oxygen. Figure 3.7 presents this for each of the four configurations from

Table 3.4. Here, we can see the elemental differences across the configurations for each glass

use type. The absent elements within each configuration are clearly seen where the boxplot

is a thin black line at zero, e.g. in Configuration 4 for iron (Fe) and potassium (K). Not all

glass use types are present in each configuration (Table 3.4). This can be visualised where

the boxplots for these glass use types are omitted within each panel, e.g. for Configuration

3 which only contains the two window types: car and building.
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Figure 3.7: Boxplots of the square root transformed compositional ratios to oxygen for all
the glass item means for each of the manual configurations. The different coloured boxes
represent the item types: bulb, car window, headlamp, container and building window.
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To fit our model to the manual configuration approach, we ran four chains in parallel for

200,000 MCMC iterations, discarding the first 100,000 as burn-in and thinning each chain by

100. The time taken to obtain the model results was approximately 3 hours and 30 minutes.

The Gelman diagnostic for each of the θt was equal to 1.00. When considering all parameters,

the Gelman diagnostic was computed for each parameter and 90.4% of the PSRFs were less

than or equal to 1.05, with a median of 1.01, indicating adequate convergence.

We can inspect the posterior samples of θt for Configuration 2 (the largest configuration)

in Figure 3.7. The boxplots for the elements silicon (Si) across all glass use types exhibit

overlapping, which may pose challenges when classifying new glass items. Additionally, this

can be seen for sodium (Na) and calcium (Ca) for all the glass use types except bulbs which

have a lower point estimate. For these elements, the model may struggle to distinguish

between the different glass use types due to the overlap. Additionally, the wide spread

across these elements suggests greater variability in the posterior samples of θt, further

complicating classification.
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Figure 3.8: Boxplots of the posterior samples of θt for the square root transformed manual
configuration approach for Configuration 2 - K present and Fe absent. The different coloured
points represent the item types: bulb, car window, headlamp, container and building window.
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3.4.4 Pre-clustering: hierarchical clustering models

One of the main difficulties in clustering is the choice of the optimal number of clusters.

In hierarchical clustering, this decision is made after the clustering has been completed.

Several techniques have been developed to assist with this subjective choice, one of which is

the elbow method, as detailed within Humaira et al. (2020). This approach plots the total

within-cluster sum of squares as a function of the number of clusters. Since increasing the

number of clusters will naturally reduce the total within-cluster sum of squares, the optimal

number of clusters is typically identified at the “elbow” of the curve - where the rate of

decrease in the total within-cluster sum of squares levels off. However, choosing too many

clusters may lead to overfitting, capturing noise rather than meaningful structure.

Figure 3.9 presents the elbow plot of the indicator matrix of the presence and absence of each

glass item. The “elbow” of this curve occurs at around five clusters. Therefore, we make the

decision that for the hierarchical clustering algorithm using Ward linkage and the binary

distance, five clusters are used to explain the presence and absence of the compositional

elements.
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Figure 3.9: Pre-clustering hierarchical clustering elbow plot for the indicator matrix of the
presence and absence of each glass item.
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To understand what each cluster represents, the number of items of each glass use type in

each cluster is shown in Table 3.5, along with the presence and absence of each compositional

element displayed in Table 3.6. This allows for any similarities between the clusters and

configurations to be identified. Cluster 1 is the largest and only cluster containing all five

glass use types, resembling Configuration 2 as both have iron (Fe) absent. Cluster 2, the

second largest cluster, excludes headlamps and is most similar to Configuration 4, both

lacking iron (Fe) and potassium (K) and only containing one bulb. Cluster 3 represents the

portion of Configuration 2 not included in Cluster 1. It also lacks iron (Fe) but additionally

magnesium (Mg), omitting both window types.

Clusters 4 and 5 contain all elements, suggesting a subdivision of Configuration 1, com-

posed of containers, car windows and building windows. Cluster 4 retains these three types,

while Cluster 5 includes only the two window types and a single headlamp. This suggests

the algorithm distinguishes headlamps from containers and identifies a similarity between

headlamps and windows that was not apparent in manual analysis.

Overall, the hierarchical clustering algorithm aligns with previous analyses but introduces

one new presence-absence distinction - the absence of magnesium (Mg) which had not been

previously examined.

Table 3.5: Number of glass items within each hierarchical clustering cluster, for k = 5, by
glass use type.

Glass Type Cluster Total
1 2 3 4 5

bulb 16 1 9 0 0 26
car window 40 18 0 23 13 94
headlamp 5 0 10 0 1 16
container 47 17 3 12 0 79
building window 55 25 0 7 18 105
Total 163 61 22 42 32 320
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Table 3.6: Presence and absence of the compositional elements within each hierarchical
clustering cluster, for k = 5. Presence in a cluster is defined by a 1 and absence by 0, with
the total number of elements in each cluster given in the last column.

Cluster Element Total
Na Mg Alu Si K Ca Fe

Cluster 1 1 1 1 1 1 1 0 6
Cluster 2 1 1 1 1 0 1 0 5
Cluster 3 1 0 1 1 1 1 0 5
Cluster 4 1 1 1 1 1 1 1 7
Cluster 5 1 1 1 1 0 1 1 6

We ran four chains in parallel for 250,000 MCMC iterations, discarding the first 150,000 as

burn-in and thinning each chain by 100 to fit the model with hierarchical clustering. The

time taken to obtain the model results was approximately 4 hours and 20 minutes. The

Gelman diagnostic for each of the θt was equal to 1.00. When considering all parameters,

the Gelman diagnostic was computed for each parameter and 94% of the PSRFs were less

than or equal to 1.05, with a median of 1.01, indicating convergence.

We can examine the posterior samples of θt from the largest cluster, Cluster 1, in Figure 3.10.

This shows a clear separation between the glass use types across the elements. If the glass

use types have different point estimates, we can assume that this may aid the classification

of new glass items. The exception to this can be seen for sodium (Na) and calcium (Ca),

where all the boxplots for all the glass use types except for bulbs have similar point estimates.

For these boxplots we can see a narrow spread indicating that there is a smaller variability

associated with the samples of θt for these types. Within all the elements, the point estimates

for the two window types (car and building) are overlapping which could potentially impact

the classification of new glass items.

We applied the same approach using the k-means clustering algorithm instead of hierarchical

clustering. Since k must be predefined, we ran the algorithm multiple times with different

k values to determine the optimal number of clusters, including fitting the Bayesian hier-

archical model for each k. Based on this process and the elbow plot assessment, we again
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Figure 3.10: Boxplots of the posterior samples of θt for the square root transformed compos-
itional ratios for the pre-clustering hierarchical clustering Cluster 1. The different coloured
boxes represent the item types: bulb, car window, headlamp, container and building win-
dow.

arrived at five clusters which closely resembled those from hierarchical clustering. For ex-

ample, the largest cluster, Cluster 1, includes all glass use types and compositional elements

except iron (Fe), while, Cluster 5 contains all compositional elements with car windows,

containers, and building windows - which was also detected in hierarchical clustering. Ad-

ditionally, fitting the Bayesian hierarchical model to both pre-clustering approaches yielded

highly comparable results. We will present the results for both pre-clustering approaches

within Section 3.4.7.

3.4.5 Integrated clustering

For the proposed integrated clustering approach, we ran eight chains in parallel for 400,000

MCMC iterations, discarding the first 300,000 as burn-in and thinning each chain by 100.

The time taken to run this model was approximately 16 hours 40 minutes. This is signific-

antly longer than we observed within our other approaches as our new model is having to

estimate each glass item’s cluster information.
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As outlined in Section 3.3.3, we do not have definitive cluster labels for each glass item but

instead have potentially different cluster labels for each chain. Therefore, we are unable to

plot and examine the posterior samples of θt as given for the previous approaches. Further-

more, we cannot examine the Gelman diagnostic for all relevant parameters as the different

chains will not have converged to one distribution due to the differing cluster labels. Instead,

we can explore the PSRF of the types of the glass items to check they have converged to

one glass use type. We found that 94% of the PSRFs were less than or equal to 1.05 with a

median of 1.01, indicating that the chains have converged to the same glass use type for each

glass item. We can also visually inspect the parameters to see if the chains have converged

to some distribution even if that will not be the same across chains. An illustrated example

of this is given in Figure 3.11 which represents the traceplot for the prior cluster probability

for Cluster 5. It can be seen that each chain has a distinct trajectory and appears to have

converged even though this may be a different distribution to the other chains. However, as

there are multiple overlapping chains, suggesting that these chains may have converged to

the same distribution.
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Figure 3.11: Traceplot of p_cluster[5], the probability of Cluster 5 from the integrated
clustering approach. The different coloured lines correspond to each of the eight chains.

3.4.6 Experimental design

To investigate the classification performance of the different Bayesian hierarchical models

we tested and designed a five-fold cross-validation experiment. We randomly split the data

into five equal parts by item, each containing 64 glass items. One at a time, each of the

five parts is selected as the “test” data and the remaining four parts are combined to form
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the “training data”. Note that “test” data usually refers to data for which the value of the

response is treated as unknown, in this case this would be the compositions. Here, however,

the compositions can be seen by the model and the item type is the unknown quantity to

be predicted. Moreover, the five-fold design means that all 320 glass items have an unknown

glass use type to be classified exactly once.

To assess how well the different models perform at classifying the unknown types of glass

items, each glass item was classified in the model as one of the five glass use types, outlined

in Section 3.3. When we treat an item’s type as unknown (i.e. to be predicted), we choose

the type with the highest posterior probability as our “best” prediction. We obtain these by

taking the mode across all posterior samples for each glass item. Using these predictions, we

compute correct classification rates for each glass use type and modelling approach, given

in Table 3.8. The performance of the different approaches can be compared and assessed

based on their classification performance and accuracy.

We can also assess the uncertainty of each approach to compare the predictions from each

model. The Brier score (Brier, 1950) is a commonly used tool to assess and compare the

accuracy of binary predictions or prediction models, which can be thought of as a cost

function. For a set of N predictions, the Brier score measures the mean squared difference

between the predicted probability assigned to the possible outcomes for item i and the actual

outcome oi:

Brier Score = 1
N

N

∑
i=1

( fi −oi)
2, (3.4.6.1)

where fi is the predicted probability of the ith item for N predictions. Therefore, the lower

the Brier score the better the predictions are calibrated to the original values.
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Another measure of calibration we can examine is the Expected Calibration Error (ECE) (Naeini

et al., 2015). Here, calibration aims to align the predictions of the model with the true prob-

abilities to ensure that the predictions are reliable and accurate. The ECE measures how

well a model’s estimated probabilities match the true probabilities by taking a weighted

average over the absolute difference between accuracy and confidence.

ECE =
M

∑
m=1

|Bm|
n

|accuracy(Bm)− con f idence(Bm)|, (3.4.6.2)

where B represents the M equally spaced “bins” the data are split into, the accuracy(Bm)

represents proportion of correct predictions in the bin Bm and con f idence(Bm) is the average

predicted probability in the bin Bm. An ECE of 0 indicates a perfectly calibrated model with

higher ECE values suggesting that the predicted probabilities do not match actual outcomes

well.

3.4.7 Classification results

Table 3.8 displays the correct classification rates for each approach outlined. The number of

each glass item classified into each glass type for the proposed integrated clustering approach

is given in Table 3.7.

Table 3.7: Classification of each glass item into one of the five glass use types, for the
integrated clustering approach. The rows represent the observed glass use type for each
item and the columns represent the glass use type each item has been classified into.

Classification
bulb car

window
headlamp container building

window
Total

bulb 26 0 0 0 0 26
car window 0 71 1 2 20 94
headlamp 2 0 2 11 1 16
container 2 4 0 69 4 79
building window 0 21 2 6 76 105
Total 30 96 5 88 101 320
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Initially, we find that not splitting the data - i.e. fitting the model on the entire data with

untransformed ratios - results in the poorest overall correct classification rate of 38%. This

poor performance is largely due to the model failing to classify any items as headlamps.

We then find that transforming the compositional ratios using a square root transformation

improves the classification performance, to 66% overall. However, the two window types

are commonly misclassified as each other resulting in poor classification for both glass use

types, with rates of 59% and 57% for car window and building window, respectively. This

highlights the need to account for the presence and absence of the compositional elements

to improve the classification of new glass items.

Across all approaches where we split the data based on the presence and absence of the

elements, whether through manual or automated methods, the glass use type bulb has the

highest correct classification with each approach correctly classifying all 26 glass items as

bulbs.

The pre-clustering hierarchical clustering approach performs best at classifying headlamps,

the smallest glass use type consisting of only 16 glass items. This approach correctly classifies

15 of the 16 glass items, achieving a success rate of 94%. The manual configuration approach

performs second best here, classifying 13 of the glass items correctly. Although, it performs

worse than k-means with respect to only correctly classifying 11 of the 16 headlamps. How-

ever, these are far superior in comparison with the integrated clustering approach which

only results in a correct classification rate of 13%. While this result is notably poor it could

potentially be improved if there were more headlamps in the data, to enhance the number

of this glass use type the model can train on. Interestingly, within the integrated clustering

approach most of the misclassified headlamps have been classified as containers, with 11 of

the 16 classified as such.
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Among all the approaches, except the untransformed compositional ratios, the glass use

type container tends to be classified correctly, with correct classification rates of 86%, 90%,

89%, 90% and 87%, for the no split square root transformation, manual configurations, hier-

archical clustering, k-means clustering and the integrated clustering approach, respectively.

The performance is highest for the manual and pre-clustering approaches which correctly

classify over 70 of the 79 new containers.

The most commonly misclassified glass use types are car and building windows, due to their

similar elemental structure. However, the integrated clustering approach outperforms the

other methods at classifying each of the window types. For the car window, the integrated

clustering approach has a correct classification rate of 76%, which is 15% higher than the

next highest classification rate for this type. For building windows, the integrated cluster-

ing approach has a correct classification rate of 72%, which is 5% higher than the manual

and pre-clustering approaches. Despite the integrated clustering approach still misclassify-

ing each window type as the other, the frequency of such is lower compared to the other

approaches, with only about 20 glass items misclassified as the other window type.

Table 3.8: Correct classification rates for each approach examined in this section. The highest
correct classification rate for each glass use type is highlighted in green, with a 2% tolerance
applied in cases of near ties.

Approach bulb car
window

headlamp container building
window

Overall

No spilt: untransformed 26.9% 42.6% 0% 12.7% 61.9% 38.1%
No spilt: square root 76.9% 58.5% 43.8% 86.1% 57.1% 65.6%
Manual: configurations 100.0% 61.7% 81.2% 89.9% 69.5% 75.3%
Pre-clustering: hierarchical 100.0% 64.9% 93.8% 88.6% 68.6% 76.2%
Pre-clustering: k-means 100.0% 64.9% 68.8% 89.9% 68.6% 75.6%
Integrated clustering 100.0% 75.5% 12.5% 87.3% 72.4% 76.2%

In general, the overall correct classification rates are similar for all approaches that partition

the data based on the presence and absence of the elements. The highest correct classifica-

tion rate occurs for the integrated clustering approach and the hierarchical clustering with

an overall rate of 76%. However, when allowing a 2 percentage point tolerance, the manual

configuration and k-means clustering also have the highest classification rate. Therefore, des-
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pite the poor classification of the headlamps, the integrated clustering approach successfully

classified 244 of the 320 new glass items in the database. This demonstrates that applying

an automated clustering approach, either before or during the modelling, leads to a high

classification accuracy. Therefore, incorporating a fully automated clustering process into

the model, minimising user decisions prior to fitting, delivers advantageous classification

performance while being widely applicable.

We can visually examine the classification within the integrated clustering approach in

Figure 3.12, which displays the two highest posterior probabilities for each new glass item.

Each panel in this plot is the observed glass use type of each item with the shape and colour

representing the glass use type each item has been classified into. The perfect classification

of the bulb glass use type can be clearly seen with all the highest points in the bulb panel

shaped and coloured as a bulb. Additionally we can see that each bulb item has a high

posterior probability associated with it, meaning there is a strong likelihood that the item

is, in fact, a bulb.

Recall that we saw that headlamps had the poorest correct classification rate. This is evident

in the plot where the posterior probabilities for correctly classified headlamps are lower,

with the highest posterior probability for headlamps is 0.86, highlighting the uncertainty

the model has when it classifies glass items as headlamps. However, it appears that when a

headlamp has been misclassified, the second highest probability corresponds to a headlamp

- though this probability is low, less than 0.5. As shown earlier, the two window types are

commonly misclassified as each other. We can see that both the window panels exhibit

significant overlap in the points and lack a distinct structure or pattern as observed with

the other glass use types. Within both these panels, a substantial proportion of points of the

other window type are present, with some exhibiting a posterior probability greater than

0.75.
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Figure 3.12: Posterior probabilities for the classification of each glass item into one of the five
glass use types for the integrated clustering approach. The two largest posterior probabilities
are displayed for each glass item. The panels refer to the actual glass type of each item,
with the shape and colour representing the glass use type the item was classified into.
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Instead of computing the mode across all samples, we can consider calculating the correct

classification rates within each sample and summarising through the densities for each type

of glass use. Although this was conducted for all the approaches considered, we illustrate

this only for our most flexible proposed method. Figure 3.13 displays density plots of the

classification rates across all samples for each glass use type. Here, we can see how the

classification rate varies for each type across all 8,000 samples. Overall, the classification

varies across the different glass types, with some having a large spread out distribution.

For the glass use type bulb, we can detect a highly skewed distribution towards 100%,

suggesting that most bulbs across the samples are correctly classified. Both the car and

building windows exhibit a normal curve, with a peak occurring around 70%. This indicates

that there is variability in the classification accuracy across the samples for the window

types, with classification rates of 25% to 90%. The glass use type headlamp presents a

multimodal distribution, with the highest peak occurring between 0-20% suggesting very

poor classification performance. However, we can see that within some of the samples,

headlamps have been well classified, with a small peak in the classification rates at 70%

and 100%. Lastly, the glass use type container presents a left-skewed distribution with the

number of correctly classified containers greater than 50%, with a peak round 75%.

To quantify these classification densities, we can examine the mean across each density for

each glass use type, given in Table 3.9. In this case since we are averaging over the total

number of samples (8,000), the correct classification percentages have decreased, as expected

due to the increased variability with the number of samples. However, the values are still

sufficient to suggest the integrated clustering approach is performing well at classifying out-

of-sample glass items. Notably, the correct classification rate for headlamps has increased

to 28%. Therefore, when we evaluate classification within samples rather than summarising

the result across all samples, the classification accuracy for headlamps improves.
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Figure 3.13: Density plots of the correct classification rates for each glass use type across all
samples (8,000) for the Bayesian integrated clustering approach.

Table 3.9: Mean correct classification rates across all samples (8,000), represented in the
density plots from Figure 3.13, for each glass use type for the Bayesian integrated clustering
approach.

Glass Type Mean correct classification
bulb 98.1%

car window 68.6%
headlamp 28.3%
container 86.3%

building window 60.2%
Overall 68.3%
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We can quantify some measures of uncertainty as another way to compare our predictions

from each model. Table 3.10 presents the individual Brier scores for each glass use type

within each approach, in addition to an overall Brier score for each approach, and Table 3.11

displays the ECE values for each approach. Firstly, from Table 3.10 and Table 3.11, we can

see that the worst performance in both the Brier scores and ECE occurs in the no splitting

approach for both the untransformed and square root transformed compositional ratios.

This outcome is expected as the model lacks any information accounting for the presence

and absence of compositional elements, leading to more uncertainty in classifying new items.

This aligns with the poor correct classification rates associated with this approach.

Among the methods that account for the presence and absence of zeros in the data, the

manual approach and hierarchical clustering exhibit the lowest Brier score for the classi-

fication of new bulbs, at 0.002. Since this value is very close to 0, we can conclude that

the models associated with these approaches are highly certain when classifying new bulbs.

These same two approaches also have the lowest uncertainty associated with predicting

new headlamps, closely followed by the k-means clustering approach. Unsurprisingly, the

integrated clustering approach has a Brier score for headlamps 59% higher compared to the

lowest score of 0.019. Given that the integrated clustering approach performs poorly in clas-

sifying new headlamps (Table 3.7), it is expected that this approach would exhibit higher

uncertainty in these predictions. Notably, the integrated clustering approach has the lowest

Brier score for both the window types, with scores that are 6% lower for car windows and

9% lower for building windows, aligning with this approach performing best at classifying

these glass use types.

Overall, the lowest Brier score occurs for hierarchical clustering with k-means clustering,

manual and the integrated clustering approach following closely behind. Comparing this

with the ECE values in Table 3.11 presents a similar pattern. Here, the lowest ECE val-

ues occur for the manual approach and when allowing for a 2 percentage point difference

also the integrated clustering approach. This indicates that the predicted probabilities are
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well-aligned with the actual outcomes, and the model demonstrates confidence in its pre-

dictions, reflecting better overall performance. In addition to the correct classification rates

and uncertainty examined here, a number of classification performance metrics can be con-

sidered. These reflected a similar performance to that presented throughout this section and

included in the Appendix C.

Table 3.10: Brier score quantifying the classification uncertainty for each approach examined
in this section. These scores correspond to the classification results presented in Table 3.8.
The lowest (optimal) Brier Score is highlighted in green, with a 2% tolerance applied in
cases of near ties.

Brier Score
Approach bulb car

window
headlamp container building

window
Overall

n = 26 n = 94 n = 16 n = 79 n = 105 n = 320
No spilt: untransformed 0.060 0.203 0.049 0.187 0.215 0.714
No split: square root 0.035 0.163 0.034 0.069 0.170 0.472
Manual: configurations 0.002 0.140 0.019 0.043 0.157 0.361
Pre-clustering: hierarchical 0.002 0.132 0.019 0.042 0.154 0.348
Pre-clustering: k-means 0.004 0.133 0.023 0.043 0.155 0.358
Integrated clustering 0.006 0.124 0.035 0.062 0.141 0.369

Table 3.11: Expected Calibration Error (ECE) quantifying the classification uncertainty
for each approach examined in this section. These scores correspond to the classification
results presented in Table 3.8. The lowest (optimal) ECE is highlighted in green, with a 2%
tolerance applied in cases of near ties.

Approach ECE
No spilt: untransformed 0.985

No spilt: square root 0.730
Manual: configurations 0.629

Pre-clustering: hierarchical 0.683
Pre-clustering: k-means 0.682

Integrated clustering 0.631
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3.5 Summary & Discussion

In this chapter, we investigated the issue of compositional data which contain a large propor-

tion of zeros. The main challenges we identified were that the common approach of applying

a log-ratio transformation to the data are unsuitable as this would be undefined for zeros.

Previous approaches looked to tackle this issue through a manual approach to split the

data based on the presence and absence of the compositions. However, this requires expert

knowledge and user intervention to undertake.

We set out four aims to create a flexible and efficient framework requiring less input from

the user; to develop a computationally efficient framework which would be practical in

real-world analysis; investigate data-driven approaches to splitting the data based on pres-

ence and absence; explore a model-based approach for the classification of glass items; and

implementing the framework using flexible MCMC software.

To address these aims, we proposed a general Bayesian hierarchical framework for modelling

compositional data that seek to account for the presence and absence of the compositional

elements. The general framework includes a categorical distribution to predict the glass use

type of each glass item to streamline the steps for the classification. We implemented our

models using NIMBLE which results in computationally efficient frameworks which makes

for more practical application in real-world analysis. Here, modifications to the model can

be made more easily than if we had a manual MCMC implementation, adding flexibility in

the modelling structure. This enables any specific samplers or distributions to be modified

by the user to fit the specific application, showing a practical advantage over previous work.
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We included a clustering approach to automate the manual aspect of splitting the data. This

reduces the need for any expert knowledge required. Furthermore to enhance automation,

we proposed a flexible approach which includes a latent variable for the cluster of each glass

item within the Bayesian hierarchical model, automating the framework further. Due to this

addition, the method becomes more broadly applicable as it can accommodate a wide range

of applications without requiring extensive expert knowledge or manual intervention.

When examining the clusters produced during the pre-clustering approaches, we found that

clustering on the indicator matrix of presence and absence of the elements preserved much

of the key information highlighted during the manual splitting of the data. For example,

in both clustering approaches the largest cluster does not contain the element iron (Fe)

matching the largest configuration from the manual approach. Moreover, the pre-clustering

approaches offer the advantage of exploring elemental combinations that may not have

initially been considered relevant for modelling. In practice, we believe that unless there

were specific elemental combinations to be examined, the clustering approach would be an

easier method to implement. In addition, even if there were specific elemental combinations

to be examined, from expert knowledge or key aims of the modelling, it is likely that the

pre-clustering approaches would identify these. However, one thing to note is that there are

still user decisions to be made prior to fitting a pre-clustering approach, e.g. which clustering

algorithm to apply and how many clusters to use - although tools have been developed to

help with this. Furthermore, it would be important to make sure all clusters have a suitable

number of data points to ensure the model has enough information to estimate accurately

the parameters. If there is a limited number of data in a cluster when fitting the model, the

prior could have a stronger influence on the estimates rather than the data. Additionally,

the framework requires at least one component to be greater than zero to compute the

compositional ratios.
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Despite incorporating an integrated clustering variable which creates a practical framework,

we still need to define the number of clusters prior to modelling. This could be seen as a

limitation not only of this approach but of all clustering methods. For a more formal treat-

ment of the choice of the number of clusters, one could vary the number of clusters and find

an optimum based on out-of-sample performance or a general criterion, such as the Widely

Applicable Information Criterion (Watanabe et al., 2010), which can be automatically gen-

erated by NIMBLE if desired.

As highlighted earlier our integrated clustering proposed approach also does not include

any constraints to address any label-switching of the cluster labels or structures, as it is

not the focus of our analysis. This could be seen as a limitation if the goal is to determine

the optimal clustering structure for the presence and absence of the glass items. In such

cases, constraints to avoid any label-switching of the clusters could be incorporated into the

model, using NIMBLE’s “constraint” distribution function.

We evaluated different approaches within our proposed framework in their application to a

forensic elemental glass data. Our assessment involved examining the proposed integrated

clustering approach through out-of-sample classification performance via five-fold cross-

validation. We then compared this approach: to an instance where the data was not split,

containing either untransformed and square root transformed compositional ratios; to a

manual approach to splitting the data and to pre-clustering methods of hierarchical and

k-means clustering to automate the split. When we considered not splitting the data, both

the untransformed and square root transformed compositional ratios resulted in a poor per-

formance at classifying the glass items, indicating that any approach that splits the data

is potentially advantageous. All the approaches that split the data based on the presence

and absence of the compositional elements have comparable classification results. Overall,

our proposed framework yielded the best overall correct classification, this could be due to

the added potential our framework has to find more optimal clusters for modelling. Ad-

ditionally, our approach also performed best when classifying car and building windows,
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where the other approaches struggled given their close compositional elemental structure.

However, our proposed approach was less effective at classifying headlamps due to the lim-

ited number of these glass items present in the data. With further research another model

or specification could address the poor classification of the headlamps. Nevertheless, our

model performs well in our task of classifying new glass items marginally beating the other

approaches.

Additionally, a future model could be extended to include covariates which could aid in the

predictions of the classifications of each glass item. Despite only evaluating the framework

with the forensic glass data, we believe it could be applied more broadly to compositional

data beyond forensic science, particularly in cases where there are numerous structural zeros

present.
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In this chapter, we explore Bayesian approaches to modelling compositional data that evolve

over time. This requires methods that account for both the compositional structure and

temporal dependence. When the time series consists of count data, applying log-ratio trans-

formations can obscure meaningful information about the overall dynamics and variability of

the counts. This motivates an approach that can directly handle raw compositional counts,

in particular alongside a non-smooth time series.

Here, we propose a novel Bayesian hierarchical modelling framework that combines a Generalised-

Dirichlet-Multinomial (GDM) distribution for compositional counts with a latent hidden

Markov model (HMM) structure to capture non-smooth temporal dependence. We apply

the methodology to a COVID-19 variant data including non-smooth count over time con-

taining zeros. We assess our approach and compare the effectiveness to other common time

series models through a posterior predictive experiment.

4.1 Introduction

As discussed in the preceding chapters, compositional data pose distinctive challenges across

different statistical domains. The compositional structure introduces specific modelling chal-

lenges, including the requirement that the components sum to a total. As in many statist-

ical analysis contexts, compositional data can also be arranged over time, which we refer

to as compositional time series. Traditional time series methods do not typically account

for compositional structures, thus methods specifically tailored to handling compositional

time series data are likely to offer a more rigorous solution for inference and/or prediction.

Within this focus, the most appropriate methods may also depend on finer characteristics

of the data, such as the smoothness of the temporal structure, or the nature of the data

(e.g. continuous or counts).
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Within this chapter the real-world motivation is the challenge of modelling the composition

of disease cases into different variants of a virus causing infections, with a specific focus on

capturing the evolution of the compositions over time. Here, we will study data on COVID-

19 case counts by variant, in an international context.

The emergence of the novel coronavirus, SARS-CoV-2, in late 2019 marked the onset of a

global health crisis that had profound implications across all areas of life. The associated

illness, COVID-19, quickly escalated into a pandemic, leading to an unprecedented inter-

national effort to understand, control and mitigate its impact. While considerable progress

has been made in characterising the primary dynamics of the virus and developing pre-

ventative measures, the ongoing evolution of the virus through genetic variants continues

to pose an ongoing challenge. Further information about the COVID-19 pandemic can be

found in Atzrodt et al. (2020). The SARS-CoV-2 virus is an RNA virus, a type known for

extreme mutations. These genetic alterations result in the formation of distinct variants,

each carrying unique genetic signatures. The notable variants from SARS-CoV-2 are alpha,

beta, gamma, delta and omicron (Harvey et al., 2021). Each of these variants is thought to

have originated from different areas of the world where the first genetic mutation of that

variant was found. The development of each new variant led to varying degrees of severity

and concern among public health officials, prompting differing levels of interventions. Lead-

ing the classification of each new variant was the World Health Organisation (WHO) who

identified each new strain as either “variant of concern” (VOC) or “variants of interest”

(VOI). These categorisations signify variants that exhibit notable characteristics such as

increased transmissibility, severity of illness and potential impact on vaccines, all of which

warrant closer monitoring and public health responses. Through ongoing surveillance and

assessment, WHO aimed to identify and respond swiftly to emerging variants to mitigate

their potential impact globally.
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Where records of case counts with a breakdown by variant are collected over time, we can

conceptualise the resulting data as compositional time series. Figure 4.1 shows COVID-19

case counts for five VOCs (alpha, beta, gamma, delta, omicron) and an aggregated total

for the VOIs, for one example country per continent. The different variants are coloured

within each panel and the plots illustrate the emergence of new variants over the course

of the pandemic. From the plots we can see diverse dynamics (e.g. how quickly the variant

spreads) across the different variants and different countries. For instance, not all variants

are present in all countries. Meanwhile, in the evolution of the case counts over time, we

can see very sudden changes as new variant of concern emerge through mutations and take

over as dominant strain.
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Figure 4.1: Time series of the weekly COVID-19 case count attributed to each variant,
for one country per continent, from Jan 2020 to May 2021. The different coloured lines
correspond to each of the COVID-19 variants: alpha, beta, gamma, delta, omicron and
variants of interest (VOI).
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In summary, Figure 4.1 points to three main characteristics of these data which we will aim

to capture through developing a new modelling framework:

i. Compositional structure, specifically count data.

ii. Systematic differences between variants and between countries.

iii. Non-smooth temporal structure often characterised by sudden changes in the domin-

ant strain.

In this chapter, we develop a multivariate hierarchical framework for non-smooth composi-

tional time series data, combining a flexible family of distributions for compositional counts

with a hidden Markov model (HMM) for the non-smooth temporal structure. In the context

of the challenge of capturing the above three characteristics of COVID-19 variant data well,

the HMM will characterise the lifetime of a new variant as a progression through multiple

discrete states, from initial emergence through to dormancy.

The chapter is structured with Section 4.2 reviewing the previous approaches to modelling

compositional time series. Section 4.3 provides an introduction to hidden Markov models

(HMM), including examining the literature surrounding HMMs in the context of composi-

tional data and disease data applications (including COVID-19). In Section 4.4 we present

the proposed general framework, adapted for the COVID-19 variant case study seen in

Section 4.5 with the results for the proposed framework presented in Section 4.6. To test

effectiveness of the proposed compositional HMM, in Section 4.7.1 compares our HMM to

variants of the hierarchical framework using alternative time series structures, based on

posterior predictive model checking. Finally, in Section 4.8 we critically evaluate the work

carried out in this chapter and discuss potential avenues for future research on this topic.
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4.2 Compositional Time Series

Compositional time series refer to data that are both in the form of parts of some whole,

as outlined in Chapter 2, and are arranged over time, usually with an expectation of a

time-dependency structure. Compositional time series emerges in many applications, e.g. in

health data (Ravishanker et al., 2001), environmental data (Al-Dhurafi et al., 2018), and

labour markets (Brunsdon et al., 1998). Modelling compositional time series requires the

development of robust statistical methods that effectively capture the temporal evolution of

the constrained data. Such models could be developed for inference, prediction, or simulation

and, in all these cases, failure to account for the compositional nature of the data could

invalidate common modelling assumptions, e.g. independence of residuals.

4.2.1 Log-ratio transformations

Time series methods have been applied to compositional data for many years. As previously

outlined, the majority of the proposed approaches aim to address the compositional nature

of the data by applying a log-ratio transformation. The transformed data are then modelled

using standard time series methods. For example, Brunsdon et al. (1998) applied the ALR

to labour market time series data and then modelled the transformed time series using

vector autoregressive moving-average (VARMA) models, to produce forecasts and associated

measures of uncertainty. The combination of ALR transformations and VARMA models

was also applied to mortality events in Ravishanker et al. (2001). Snyder et al. (2017)

introduce a maximum likelihood approach to modelling market sales data using the ALR

and exponential smoothing methods. More recently, Al-Dhurafi et al. (2018) apply the ALR
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to air pollution index data. To account for zero values in the data (not permissible with log-

ratio approaches), the authors took a multiplicative replacement approach, adding a small

value to each zero value to eliminate any zero components, whilst maintaining the ratios of

non-zero components, before fitting a VAR model.

Compositional time series can also take the form of a total count distributed across multiple

categories. Many existing works have sought to model such data using log-ratio transform-

ations. For instance, Sisk-Hackworth et al. (2020) examine microbial data to test if CLR is

effective for analysing bacterial data. The compositional structure is addressed by taking

the relative count with respect to the sample geometric mean. However, in order to do so,

the zero values in the data had to be handled using the pseudo-counts method from the

zCompositions package (Palarea-Albaladejo et al., 2015), which replaces zero values with

a small positive number while maintaining the relationships between the components (i.e.

preserving their unit-sum constraint). This is a limitation to using CLR as the zero values

need to be altered in order to compute the transformation. Another instance of applying

CLR to compositional time series with counts is Shang et al. (2022), who present an ap-

proach for modelling age-specific death counts across multiple populations. The counts are

transformed using CLR before multivariate time series methods are applied for forecasting.

The framework was tested using data from England, Wales and Sweden and the results

were compared with several benchmarkers showing that the proposed method had superior

performance in most cases.

Despite the most common approach being to transform the data using the log-ratio trans-

formation and then apply standard statistical techniques, we argue there are at least three

ways in which generality is limited. First, log-ratio transformations are undefined for zero

values, which are often present in compositional data, including rounded and structural

zeros, as outlined in Chapter 2, Section 2.3. Second, when there are missing values in the

compositions, e.g. y = (0.1,?,0.3,?), log-ratios are usually undefined. Finally, considering

compositional count data specifically, in addition to the problem of count data naturally
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having zeros, through log-ratio transformations the count structure may translate into val-

ues which are simultaneously non-integer and non-continuous. These issues are likely to

be more problematic the smaller the total count is, increasing the likelihood of zeros and

decreasing the number of unique values the compositional counts can take.

4.2.2 Hierarchical approaches

A compelling alternative to log-ratio transformations, which can potentially overcome these

limitations, is to develop general Bayesian hierarchical frameworks. These frameworks can

feature probability distributions (e.g. Multinomial, Dirichlet, Generalised-Dirichlet) and

mixture distributions (e.g. Dirichlet-Multinomial, Generalised-Dirichlet Multinomial, Logistic-

Normal-Multinomial) that explicitly account for the compositional structure of count data.

For example, Huston et al. (2012) propose a hierarchical multivariate conditional autore-

gressive (MVCAR) model applied to a compositional response vector of multinomial counts

collected over time. The model is tailored for analysing compositional data with observed

zero counts, particularly focusing on where the composition is discrete and based on small

multinomial counts. The proposed model addresses limitations in existing approaches for

handling count data, allowing for estimation even when zeros are observed in any component

category. It also estimates a covariance matrix that the authors claim is not constrained

by the limitations of Multinomial or Dirichlet-based models. The authors outline the im-

portance of the proposed hierarchical model in reducing variance and smoothing proportion

estimates through time, while also providing flexibility in adjusting the degree of smoothing.

The proposed methods were applied to time series data on the migration patterns of salmon

in the Fraser River, including information on the number of fish sampled daily, proportions

of different stock groups and chronological day of sampling.



CHAPTER 4: METHODS FOR COMPOSITIONAL TIME SERIES 96

Meanwhile, Stoner et al. (2020c) also propose a multivariate hierarchical framework for mod-

elling compositional count time series. The authors propose a Bayesian hierarchical model,

based on the Generalised-Dirichlet–Multinomial (GDM) family of distributions, which they

apply to the proportion of people in each country using different fuels for household cooking.

The authors converted the available proportions into count data, for convenient modelling

which they validated through a simulation study. Here, smooth non-linear trends in the

use of eight of the key fuel types were captured through penalised regression splines in the

parameters of the GDM. Applying the GDM distribution ensures the sum of proportions

for all fuel types does not exceed 100%. The model has been adopted by the WHO for

tracking worldwide progress from traditional solid fuels to greater use of cleaner fuels, and

for estimating the global burden of disease from household air pollution.

Since we argue that hierarchical approaches to compositional time series have greater flexib-

ility - i.e. addressing the limitations in the log-ratio approach we discussed in Section 4.2.1,

we will not consider log-ratio approaches further beyond this point. However, the hierarchical

methods in Huston et al. (2012) and Stoner et al. (2020c), relying on conditional autore-

gressive and spline structures respectively, may not be suitable for very non-smooth time

series, such as the sudden emergence of variants in the COVID-19 case study. In the next

section, we will discuss hidden Markov models and their potential integration into general

frameworks for compositional data with non-smooth time series structure.

4.3 Hidden Markov models (HMM)

Hidden Markov models (HMMs), introduced by Rabiner et al. (1986) represent a widely

used statistical modelling technique for data arranged over regular time intervals, e.g. days

or weeks. In an HMM, we imagine that temporal dependence of an observable outcome

yt (t = 1, . . . ,N) is handled by the temporal evolution of a “hidden” (unobserved) quantity
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zt . An HMM assumes that zt transitions between a finite number of states z ∈ {1, . . . ,Z},

where state z at time t affects a conditional probabilistic model for y, yt | zt . The probability

p of zt+1 being in state j at time t + 1 depends only on the current state i at time t, i.e.

pi, j = P(zt+1 = j | zt = i). Notably, pi, j is independent of the state of z at time steps prior

to t, meaning the “memoryless” assumption of the Markov property holds. Collecting the

probabilities pi, j across all possible combinations of i and j results in a “transition matrix”.

For example, for an HMM with three states, this would look like:

p =


p1,1 p1,2 p1,2

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3

 . (4.3.0.1)

Here, each row represents the current state of z, and each column represents the possible

future states, and the entries give the probabilities of transitioning from one state to another.

For instance, pi, j = 0 means a transition from state i to state j is impossible, and the other

extreme pi, j = 1 means it is guaranteed. Given a set of observed y, we can learn about these

transition probabilities to infer how likely transitions between states are, which can be based

on prior information about the system where needed.

The conditional model for the variability of interest y, yt | zt , can be influenced by the state

of z, usually through parameters in the model for yt depending on zt . For example, we could

assume a Normal(µt ,σ) model for yt where the mean parameter µt is different depending

on which state z is in. Typically, we assume that yt are independent of one another given zt

(they are conditionally independent), i.e. we assume that all of the temporal dependence is

accounted for by the hidden quantity z.
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As an illustrative example of an HMM, consider a scenario where the probability of a person

carrying an umbrella (U) or not (N) each day depends on the weather belonging to one of

three states: sunny (S), cloudy (C), or rainy (R). The transition matrix is given below, and

the HMM is illustrated graphically in Figure 4.2.

p =


κS,S κS,C κS,R

κC,S κC,C κC,R

κR,S κR,C κR,R

 , (4.3.0.2)

Here, κi,i is the transition probability of remaining in state i when in the current state i

and κi, j is the transition probability of moving to state i when in the current state j. For

example, κC,R is the probability of transitioning from the cloudy state to the rainy state.

S

κS,S

C

κS,C

κC,S

κC,C

R

κS,R

κR,S

κC,R

κR,C

κR,R

U N
Figure 4.2: Example HMM with three weather states (sunny (S), cloudy (C), or rainy (R))
that affect the probability of whether a person carries an umbrella (U) or not (N) each day.

Here, the HMM can capture temporal structure in the umbrella-carrying behaviour through

the hidden state sequence. By fitting this HMM, we can learn about the transition probab-

ilities, infer the most likely sequence of weather states given the observed umbrella-carrying

behaviour, simulate entirely new weather state sequences, or predict beyond the end point

in time of the existing data.
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A key challenge in designing HMMs is choosing the number of distinct states (Z), which

often requires careful consideration of the problem in hand, in combination with trialling a

few different values. Nonetheless, HMMs offer a flexible framework for capturing underlying

temporal dynamics driving observed data, e.g. disease spread and seasonality, potentially

without the need to include such mechanisms explicitly in the model as covariates/inputs.

In the domain of disease modelling, HMMs have been widely employed to monitor the pro-

gression of diseases at both individual and population levels. Nkemnole et al. (2023) apply

an HMM to monitor the transmission of Lassa Fever, a viral disease in West Africa. Here,

the authors use a susceptible-infected-recovered (SIR) model to construct the transition

matrix, yielding insights into disease transmission patterns based on information from pre-

vious outbreaks. Notably, the estimated transition matrix indicated high probabilities of

transitioning to the infected state from susceptibility and sustaining infection, and more

generally the HMM approach was demonstrated to be a valuable tool for early detection

and response to Lassa fever outbreaks. Meanwhile, Watkins et al. (2009) implement an

HMM approach aiming to enhance the early detection of localised disease outbreaks. By

developing a Bayesian HMM tailored for sparse small area count data, they assessed the

performance of the HMM against established surveillance algorithms. This demonstrated

that the HMM method was particularly effective with respect to low “false alarm” rates.

More recently, with the emergence of the COVID-19 pandemic at the start of 2020, research-

ers have used HMMs to analyse spatio-temporal COVID-19 data and gain insights into the

disease’s dynamics. One such study, conducted by Zhou et al. (2021) use HMMs to capture

and model the complex dynamics of the COVID-19 pandemic over both space and time.

Through the HMM framework, the authors aimed to understand better the virus’s progres-

sion. There has also been some limited exploration of HMMs in the context of individual

COVID-19 variants. For instance, Tahir et al. (2023) conduct a comparative analysis of the

influence of COVID-19 variants, including the beta, gamma, delta, and omicron strains, on

the behaviour of SARS-CoV-2 in both vaccinated and unvaccinated individuals. The goal
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was to understand and forecast how effectively T-cells respond to the emerging COVID-19

variants in pre- and post-vaccinated individuals. The study compared a Bayesian neural net-

work with the HMM, demonstrating similar performance in the prediction and classification

of T-cell epitopes from SARS-CoV-2 among the different COVID-19 variants.

In summary, HMMs provide a versatile approach to modelling sequential data, with applic-

ations ranging from forecasting future trends to aiding decision-making in public health.

For a full detailed introduction to HMMs, see Rabiner et al. (1986).

4.3.1 Compositional applications

To date, we believe use of HMMs for compositional time series data has been under-explored

in the literature. One noteworthy exception is Fisher et al. (2022), which introduces a

Dirichlet-HMM framework for detecting and modelling shifts in a time series of continuous

proportions, measuring parts of a whole. As explored in Chapter 2, Section 2.3.2, the Di-

richlet is a commonly used family of distributions for a vector of continuous proportions

x summing to a constant, i.e. ∼ Dirichlet(α). Here, α is a vector of parameters, the same

length as x, which determines the mean and variance of x. We can reparameterise α as

α= µϕ , such that µ is the mean of x and ϕ controls the variance.

In Fisher et al. (2022), the location and scale parameters (µ and ϕ) of the Dirichlet are given

by generalised linear models with coefficients that change depending on the HMM state,

allowing for multiple regimes in the time series. This approach allows for modelling season-

ality, trends, and inclusion of covariate information, while also detecting change points (i.e.
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as characterised by HMM state transitions). The framework was assessed through simula-

tion and demonstrated success when applied to lake phytoplankton data, with the authors

suggesting that their approach has potential applications in various fields beyond ecology,

such as economics and geography.

However, this approach is held back by the limited flexibility of the assumed Dirichlet

distribution. A notable constraint of the Dirichlet is that the covariance/correlation between

any pair of compositions (yi,y j) is strictly negative (Stoner et al., 2020b). Additionally,

considering the Dirichlet expressed in terms of location and scale parameters µ and ϕ , note

that the univariate/scalar ϕ uniformly scales the variance of all components of y. This

means that the Dirichlet offers no flexibility to capture differing variances of the individual

components of y, or to capture more unusual covariance structures. This limitation motivates

a new general framework that integrates HMM structures within a more flexible family of

distributions for compositional data, which we will detail in the next section.

4.4 Proposed General Framework

The Generalised-Dirichlet-Multinomial (GDM) framework proposed in Stoner et al. (2020b)

was shown to be an effective modelling tool for compositional count data. Here, the Generalised-

Dirichlet (GD) distribution (Wong, 1998) extends the Dirichlet distribution (the limitations

of which we noted in Section 4.3.1) by replacing the univariate/scalar variance parameter

ϕ with a set of variance parameters ϕ, the length of which is one less than the number

of components in y, allowing for more flexibility to capture different covariance structures

encountered in real-world data problems.
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Let yt be some total count of interest arranged over discrete time points t = 1, . . . ,N, where

yt can be broken down into a series of V count compositions, xt,v (xt = xt,1, . . . ,xt,V ), such

that yt = ∑V
v=1 xt,v. The GD distribution is given as:

pt ∼ GD(α;β). (4.4.0.1)

Here, the GD acts as an additional source of variability, introducing more degrees of free-

dom to capture more fully the variability of the compositions. The GD distribution is con-

structed as a series of independent scaled Beta distributions, for the proportions pt,v given

pt,1, . . . pt,v−1:

pt,1 ∼ Beta(α1,β1),

pt,2

1− pt,1
| pt,1 ∼ Beta(α2,β2(1− pt,1),

...

pt,v−1

1−∑v−2
j=1 pt, j

|pt,1, . . . pt,v−1 ∼ Beta
(

αv−1,βv−1

(
v−2

∑
v=1

pt,v

))
,

pt,v = 1−
D−1

∑
v=1

pt,v,

(4.4.0.2)

where αv and βv are the shape parameters of the respective Beta distributions. The last

component here is inferred from the Beta distributions for the other components.

We define the Multinomial distribution for the compositions counts xt as:

xt |pt ,yt ∼ Multinomial(pt ,yt), (4.4.0.3)
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for the compositional proportions pt at time t and yt the total count at time t. The Multi-

nomial can be viewed as a series of conditional Binomial distributions:

xt,1|pt,1,yt ∼ Binomial(pt,1,yt),

xt,2|xt,1, pt,2,yt ∼ Binomial(pt,2,yt − xt,1),

...

xt,v|xt,v−1, pt,d,yt ∼ Binomial
(

pt,d,yt −
D−1

∑
j=1

xt, j

)
.

(4.4.0.4)

Mixing the GD with the Multinomial family of distributions yields the GDM, a flexible

family of distributions for modelling compositional count data. This introduces greater flex-

ibility for the compositional counts than a Multinomial distribution would provide alone.

The GDM framework assumes that xt arise from a Generalised-Dirichlet-Multinomial dis-

tribution, given the total yt :

xt ∼ GDM(ν,ϕ,yt), (4.4.0.5)

which can be expressed as a series of Beta-Binomial distributions. The GDM is parameterised

in terms of ν and ϕ , the mean and variance parameters for the series of conditional Beta-

Binomial models for each count composition up to and including xt,V−1 (the last count

composition xt,V is given implicitly as yt −∑V−1
v=1 xt,v), deriving directly from the GDM Stoner

et al. (2020b):

xt,1|yt ∼ Beta-Binomial(ν1,ϕ1,rt,1 = yt),

xt,2|yt ,xt,1 ∼ Beta-Binomial(ν2,ϕ2,rt,2 = yt − xt,1),

...

xt,v|yt ,xt,v ∼ Beta-Binomial
(

νv,ϕv,rt,v = yt − ∑
k<v

xt,k

)
.

(4.4.0.6)
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This is derived from the hierarchical mixture of scaled Beta distributions from the GD and

a series of conditional Binomial distributions from the Multinomial. The interpretation of

νv is the expected proportion of the remainder rt,v of yt that will be made up of xt,v once

counts before v in the order of compositions have been subtracted. These have previously

been called “relative proportions”.

Building on this, we then assume that each pair of νv and ϕv changes over time as a function

of some latent HMM state sequence z1,v, . . . ,zN,v, e.g. νt,v = γv(zt,v) and ϕt,v = ωv(zt,v). This

is the most general form of our proposed GDM-HMM and tailoring for specific applications

will occur in the design of the functions γv(·) and ωv(·), and/or in the design of the transition

matrices. For example, γv(·) could be exclusively driven by the hidden state sequence, could

include covariate effects, or could also include random effect terms.

Generally, the total counts yt can be treated as fixed inputs or modelled using another

layer of the hierarchy, for example Stoner et al. (2020b) model yt with a Negative-Binomial.

Moreover, where data are continuous compositional time series instead of counts, an equi-

valent Generalised-Dirichlet HMM model (GD-HMM) could be obtained by replacing the

Beta-Binomial conditional models in Equation (4.4.0.6) with Beta conditional models.

We will set the general framework above within the Bayesian paradigm, which allows for

complex hierarchical structures and provides rich posterior predictive inference, which is

useful in the context of potential use of the GDM-HMM for simulation or forecasting.
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4.4.1 Implementation

All code used to apply the framework was written and run using R (R Core Team, 2021)

and the model was implemented using the NIMBLE package (Valpine et al., 2017). Recall

from Chapter 3, NIMBLE is a facility for highly flexible implementation of MCMC models.

Moreover, all computations were carried out on an Apple MacBook Air laptop with an

Apple M3 chip (8 physical cores) and with 16GB system memory.

Our general framework is a model hierarchy consisting of a conditional Beta-Binomial model

for each count composition (xt,v | zt,v,yt ,xt,<v), an associated HMM for zt,v, and optionally a

further modelling layer for yt - though we do not study the case where the latter is included

here. Since zt,v is hidden/unobserved, it can be treated as an unknown quantity to be inferred.

Within an MCMC implementation, this would typically involve using a categorical sampler

to obtain posterior predictive samples of zt,v. However, an alternative is to integrate out

the unobserved zt,v. This sacrifices the opportunity to store posterior predictive samples of

zt,v, which may or may not be useful depending on the application, but often reduces the

computational complexity of fitting the overall model (Stoner et al., 2020a).

An analytical solution to integrating out the latent state sequence for HMMs is the forward

algorithm (Scott, 2002), a dynamic programming technique used in HMMs to compute mar-

ginal likelihoods efficiently. The forward algorithm operates by recursively calculating the

probability of reaching each state at each time step while taking into account the entire

sequence of observations up to that point. Beginning with the initial state probabilities

and transitioning through the model states based on transition probabilities, the algorithm

accumulates probabilities of reaching each state at each time step. Simultaneously, it in-

corporates the likelihood of each state generating the observed variable of interest (in this

case xt,v). The algorithm avoids sampling the hidden states zt , making the forward algorithm
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more efficient, particularly for longer time series or larger state spaces. Here, we adapted

software from Stoner et al. (2020a) that implements the forward algorithm within NIMBLE

into a series of functions, which taken together allow for efficient computation of marginal

likelihoods for the GDM-HMM.

The GDM-HMM is implemented within NIMBLE as a series of Beta-Binomials (one for

each variant), from Equation (4.4.0.6). For each Beta-Binomial time series (i.e. for each

composition), we compute a scalar marginal joint likelihood through the new custom func-

tion: “dhmm_betabinomial”, given in Listing 4. We give dhmm_betabinomial the following

inputs: x is the vector of count values for this composition over the entire time series (miss-

ing values are not permitted); r is the vector of count values for the remainder rt,v of yt once

counts before v in the order of compositions have been subtracted (as in Equation (4.4.0.6)),

over the time series; p0 is a vector of the initial state probabilities; p is the relevant trans-

ition matrix. Then, N is the number of time points; S is the number of states; ν and ϕ are

the mean and variance parameters for the Beta-Binomial, respectively. The final input for

any NIMBLE distribution function must always be log, which is an integer determining

whether the function should return the output at the log scale or not - here, this argument

is inoperative and the output is always returned on the log scale.

Within the dhmm_betabinomial function, dens is a matrix of probability density values,

where the rows are the time points t = 1, . . . ,N and the columns are the states s = 1, . . . ,S,

such that dens[t,s] is the probability density for xt,v for the latent HMM quantity zt,v in

state s. The values within dens are computed using the custom function “dbetabinomial”,

given in Listing 5 and obtained from Stoner et al. (2020c), which evaluates the log probability

density for the Beta-Binomial. This function is required as NIMBLE does not currently

contain built-in Beta-Binomial distribution functions.
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1 dhmm_betabinomial = nimbleFunction(
2
3 run = function(x = double(1),
4 r = double(1),
5 p0 = double(1),
6 p = double(2),
7 N = double(0),
8 S = double(0),
9 nu = double(1),

10 phi = double(1),
11 log = integer(0)) {
12
13 # Initialise likelihood matrix
14 dens = matrix(nrow = N, ncol = S)
15
16 # Loop over states
17 for(s in 1:S){
18
19 # Loop over time points
20 for (t in 1:N) {
21
22 # Compute the likelihoods
23 dens[t, j] = exp(dbetabinomial(x[t],
24 nu[s],
25 phi[s],
26 r[t],
27 log = TRUE))
28 }
29 }
30 # Declare scalar output
31 returnType(double(0))
32
33 # Run the forward algorithm
34 return(forward_alg(p0, p, N, S, dens))
35 })

Listing 4: Custom R NIMBLE code for the dhmm_betabinomial function, which evaluates the
marginal joint likelihood for the Beta-Binomial time series, integrating out the latent HMM
quantity.
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1 dbetabinomial = nimbleFunction(
2
3 run = function(x = double(0),
4 nu = double(0),
5 phi = double(0),
6 y = double(0),
7 log = integer(0)){
8
9 # return scalar

10 returnType(double(0))
11
12 # Upper limit to ensure stability in distribution
13 phi <- min(phi, 1e+04)
14
15 if(x >= 0 & x <= y){
16 return(lgamma(y + 1) +
17 lgamma(x + nu * phi) +
18 lgamma(y - x + (1 - nu) * phi) +
19 lgamma(phi) -
20 lgamma(y + phi) -
21 lgamma(nu * phi) - lgamma((1 - nu) * phi) -
22 lgamma(y - x + 1) -
23 lgamma(x + 1))
24 } else {return(-Inf)}
25 })

Listing 5: Custom R “NIMBLE function” code for the dbetabinomial function, obtained
from Stoner et al. (2020c), which computes the log probability density function for the
Beta-Binomial.

The matrix of probability density values, dens, is then passed to the forward_alg function

from Stoner et al. (2020a), given in Listing 6, which implements the forward algorithm to

compute the marginal joint likelihood for the whole time series. The inputs to forward_alg

are: the initial state probabilities p0; the transition matrix p; the number of time points

N; the number of states S; and the matrix of the probability density values dens. Here,

columnsum is a simple auxiliary function to compute the column sums of a matrix.
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1 forward_alg = nimbleFunction(
2
3 run = function(p0 = double(1),
4 p = double(2),
5 N = double(0),
6 S = double(0),
7 dens = double(2)){
8
9 c = numeric(N)

10
11 c[1] = sum(dens[1, ] * p0)
12
13 alpha = (dens[1, ] * p0) / c[1]
14
15 for(t in 2:N){
16
17 delta = dens[t, ] *
18 columnsum(matrix(rep(alpha, S), ncol = S) * p)
19 c[t] = sum(delta)
20 alpha = delta / c[t]
21
22 }
23
24 returnType(double(0))
25 return(sum(log(c)))
26 }
27 )

Listing 6: R “NIMBLE function” code for the forward_alg function from Stoner et al.
(2020c), which implements the forward algorithm.

We assessed convergence of MCMC chains for all models by following the procedure outlined

in Appendix B. In summary, this includes visual inspection of traceplots and computing the

PSRF (Gelman et al., 1992) for each parameter.
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4.5 Application of the GDM-HMM to COVID-19 Vari-

ant Data

In this section, we apply our proposed GDM-HMM to a dataset of the weekly COVID-19

disease case counts by variant. As discussed in Section 4.1, this case study serves as the

motivation for developing and evaluating new methodology for compositional time series,

in this case featuring: (i) compositional count structure; (ii) diverse patterns of spread and

mutation between variants and countries; and (iii) non-smooth temporal structure featuring

rapid emergence of new variants and replacement of existing strains.

4.5.1 Data

The data studied in this chapter was sourced from GISAID (Khare et al., 2021) and contain

COVID-19 case counts aggregated by country and week and dis-aggregated by variant.

The data include recorded counts from the first known mutation of the SARS-CoV-2 virus

onwards, and not the original strain of the virus - the L-strain (Vellingiri et al., 2020). Case

counts are given for each week of data from 09/02/20 to 21/05/23, in addition to the total

number of cases across all variants within that country that week. The dataset includes

counts from 217 countries across the globe. In the original data, as it is available to us with

posterity, we have a complete time series of counts for each variant and country, where there

have been non-zero cases recorded for that variant in that country at some point in the time

series. Where there are no recorded cases for a variant in a given country, there are instead

no counts for that variant (i.e. there are no zero counts in the data to represent the lack

of cases). In such situations, we add columns of zero counts for the variants and countries

with no recorded cases, ensuring that each country has a complete time series of counts for

all the variants.
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Throughout the pandemic, the WHO, classified certain strains as either a variant of concern

(VOC) or a variant of interest (VOI), based on a number of factors such as transmissibility

and severity of disease. The emergence of new VOCs heightened unease, often prompting

additional public health measures to be implemented at national levels. Table 4.1 outlines

the five VOCs from this dataset defined by WHO, along with the date and country of their

first detection. A more comprehensive examination of COVID-19 variants can be found

in Gong et al. (2023). Due to the low counts observed across the VOIs, we combined them

into a single aggregated VOI category.

Table 4.1: The COVID-19 variants of concern (VOC) as defined by the World Health Or-
ganisation (WHO).

WHO Name Lineage Date of first detection Country of first detection
Alpha B.1.1.7 Sep 2020 United Kingdom
Beta B.1.351 May 2020 South Africa

Gamma P.1 Nov 2020 Brazil
Delta B.1.617.2 Oct 2020 India

Omicron B.1.1.529 Nov 2021 South Africa

As an illustrative example, the first panel of Figure 4.3 shows the recorded time series

of case counts by variants for the United Kingdom. This shows that cases of the alpha

variant emerged in around late 2020, with a sharp rise around December 2020 - noting

that the alpha variant originated in the United Kingdom in September 2020. The British

Broadcasting Corporation reported that, in mid-December, it was estimated that almost 60

percent of cases in London involved alpha, highlighting its dominance (BBC News, 2020).

Following this, the variant recedes, as the virus was constantly mutating over time and

new variants were emerging. In around June 2021 it can be seen that the delta variant

became the dominant variant spreading around the United Kingdom. Trobajo-Sanmartín

et al. (2022) found that the delta variant was more transmissible than previous variants,

especially among young adults. The Guardian reported in June 2021 that the new delta

variant was causing more than 90% of all new COVID-19 cases in the United Kingdom.

This dominance lasted until around December 2021 when omicron was first detected in

the UK, with cases of omicron quickly soaring to case levels not seen previously. Omicron

quickly became the most dominant variant across the world, prompting restrictions aiming
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to curb the spread. Torjesen (2021), published in Nov 2021, stated that omicron may be

more transmissible than other variants and partly resistant to existing vaccines, leading to

the sudden domination of this variant. The decline of omicron from June 2022 onwards

is unique and interesting too. The cases seem to decrease but then continue to fluctuate

over the next 12 months. This is different from the previous three dominant variants which

decrease and disappear completely, due to being replaced by a new VOC. The lifespan of

omicron was by far the greatest of all the variants worldwide. In addition to the original

counts, we can examine the corresponding proportions of each variant, as displayed in the

second panel of Figure 4.3. Here we can clearly see that, in the UK, each new emerging

VOC eventually dominates new cases, as indicated by percentages of cases reaching 100%.

Moreover, in this case we can see a pattern of increasing duration across the alpha, delta

and omicron variants.
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Figure 4.3: Time series of the weekly COVID-19 case count and percentage of cases attrib-
uted to each variant in the United Kingdom. The different coloured lines correspond to each
of the five COVID-19 variants of concern: alpha, beta, gamma, delta and omicron; and the
aggregated variants of interest count.

This was only a descriptive analysis for one country; modelling the evolution of case counts

attributed to these variants over time and across a large number of countries could help us

understand the characteristics of these variants (e.g. how quickly they tend to dominant).

These insights could contribute to the overall understanding for the complex evolution of

this pandemic and, in doing so, offer insights for future public health policy. Achieving
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this requires a modelling framework that can capture the non-smooth temporal variation

inherent to these data, including the rapid domination of new variants of concern. Naturally,

we apply the novel GDM-HMM approach to investigate its potential as a candidate for this.

Meanwhile, the aim of understanding the average characteristics of variants across countries

motivates some level of pooling of information, which we discuss in the next subsection.

4.5.2 Clustering approach

During the pandemic, the trajectory of the different variants had unique patterns across

continents and countries. This was dependent on where the variant originated, any travel

restrictions or movement between countries and the population of the country. To pool

information across groups of similar countries, for the purpose of estimating shared HMM

parameters that capture the expected characteristics of each variant, we carried out a clus-

tering exercise prior to fitting the model. Establishing clusters also allows for the exposition

of hierarchical structures within our proposed general framework, as we will explore in Sec-

tion 4.5.3.

We aimed to cluster countries based on the evolution of the variants over time. Since we are

considering 169 time points and 6 variants per country, we have 1014 counts per country.

Hence, we have more variables than we have countries to cluster. These counts will also have

a strong correlation with nearby time points, potentially causing computational instabilities

and/or inefficiencies in the clustering algorithm.

Instead, we used Generalised Additive Models (GAMs) (Wood, 2017) to reduce the dimen-

sionality of the time series. Our approach is similar to that presented in Dejean et al. (2007)

and Iorio et al. (2016), which use a spline model combined with a clustering algorithm on

the resulting spline coefficients. By adopting this strategy, we aimed to address the com-
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putational challenges posed by the large volume of observations in the time series, while

also seeking to capture effectively underlying patterns within the data. Splines are piece-

wise polynomial functions that are smoothly joined together at specified points known as

knots. A penalised regression spline approach offers a flexible approach to fitting non-linear

covariate effects (with time being one possible example), without relying on strict assump-

tions about the degree of smoothness a priori. Here, we used the gam function from the

mgcv package (Wood, 2003) to fit a one-dimensional thin plate regression spline of time to

the log of the case counts plus 0.01, e.g. log(xt,v,m +0.01), with 10 knots, using the default

Gaussian distribution with an identity link function, separately for each variant and coun-

try. In general, the chosen number of knots (10 in this case) represents an upper limit in

the flexibility in the smooth function, and the actual degree of smoothness within this limit

is determined by the smoothing penalty parameter, seeking to find an optimal trade-off

between in-sample and out-of-sample predictive skill (Wood, 2017). We also fit spline mod-

els to the total COVID-19 case counts (the sum of all variants) for each country, with an

offset for the total population size of that country. With this offset included, the spline then

captures the change over time in the overall disease rate per capita. Each spline had nine

coefficients plus an intercept term for the seven models (each VOC, the combined VOIs,

and the total case count), resulting in 70 terms in total for each country, which we stored

in a 217 x 70 matrix.

We then applied hierarchical clustering (as outlined in Chapter 3, Section 3.3.2.1) to the

spline coefficients, using Euclidean distance and Ward linkage. Based on the elbow method

(Chapter 3, Section 3.4.4) we identified three clusters of countries: Cluster 1 with 86 coun-

tries, Cluster 2 with 40 countries, and Cluster 3 with 91 countries.
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Figure 4.4 shows the cluster each country belongs to on a world map which shows similar

patterns of countries across each cluster. For example, high income countries in Europe,

North America and Australia are clustered into Cluster 3, which contains the largest number

of countries. Cluster 1 contains a large portion of Africa, though this cluster also includes

countries from Asia such as China and India. Cluster 2 is the the smallest cluster which

has a less obvious geographic structure, combining countries from all six continents such as

Algeria, Argentina, Dominican Republic, Norway, New Zealand and Pakistan.

Cluster 1 Cluster 2 Cluster 3 No Data

Figure 4.4: World map illustrating the three clusters of the COVID-19 variant data, produced
from hierarchical clustering on the spline coefficients. The different clusters correspond to:
Cluster 1, Cluster 2 and Cluster 3. No Data displays countries where no COVID-19 variant
data are present.

To limit computational complexity whilst developing the new methodology, we decided to

only examine ten countries from each cluster, as given in Table 4.2. We selected these specific

countries to include a wide geographical range spanning multiple continents in each cluster.

The time series of COVID-19 case counts for the countries in each cluster are shown in

Figures 4.5 to 4.7 (one figure per cluster) with each of the five variants displayed showing

the progress of the disease and variant composition over time.
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Table 4.2: The 10 countries selected from each of the three clusters produced from hierarch-
ical clustering on the spline coefficients.

Cluster 1 Cluster 2 Cluster 3
Armenia Argentina Australia

Azerbaijan Bulgaria Brazil
China Dominican Republic Canada

Dominica Greece France
Estonia Jamaica Germany

Fiji Morocco Italy
India New Zealand Mexico
Kenya Pakistan South Africa
Qatar Peru Spain

United Arab Emirates Philippines United Kingdom

First, we highlight some notable features of each cluster. In Figure 4.5, we can see that all

the countries in Cluster 1 lack any recorded cases of gamma in these data, with many of

them also having no instances of the beta variant. The countries in Cluster 2 (Figure 4.6)

generally have very high omicron case levels, in relation to the other variants, persisting for

well over a year from December 2021, when it was first detected. Many of these countries

appear to have multiple peaks of the omicron variant, i.e. in Pakistan, where cases seem to

decrease then cases soar again occurring twice. A number of the countries in Cluster 2 only

have cases for four of the five VOCs recorded in the data but it is not always the same four,

with some having no beta or gamma variant cases.

Lastly, countries in Cluster 3 (Figure 4.7) also tend to have large fluctuating numbers of

omicron cases. The countries in Cluster 3 also generally had high case counts of the delta

variant shortly before omicron took over. Alpha, the variant that originated in the UK, is

also highly prevalent in most countries in Cluster 3 in the early stages of the time series. This

is to be expected given the movement of people between the United Kingdom and Europe.

Looking across the three clusters, omicron represents the majority of cases in most countries.

This is to be expected, as since 2021, the omicron variant drove weekly case numbers to

record levels worldwide, unlike any previous VOC (Taylor, 2022).
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Figure 4.5: Time series of the weekly COVID-19 case count attributed to each variant for
the 10 selected countries from Cluster 1 (Table 4.2). The different coloured lines correspond
to each of the COVID-19 variants: alpha, beta, gamma, delta and omicron.
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Figure 4.6: Time series of the weekly COVID-19 case count attributed to each variant for
the 10 selected countries from Cluster 2 (Table 4.2). The different coloured lines correspond
to each of the COVID-19 variants: alpha, beta, gamma, delta and omicron.
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Figure 4.7: Time series of the weekly COVID-19 case count attributed to each variant for
the 10 selected countries from Cluster 3 (Table 4.2). The different coloured lines correspond
to each of the COVID-19 variants: alpha, beta, gamma, delta and omicron.
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4.5.3 Model for COVID-19 Variants

Here we adapt the framework outlined in Section 4.4 into a tailored model for the COVID-

19 variants. Let yt,m be the total COVID-19 cases recorded for week t = 1, . . . ,N in country

m = 1, . . . ,M, and let xt,v,m be the corresponding case count for variant v = 1, . . . ,V from

Table 4.1 (xt,m = xt,1,m,xt,2,m,xt,3,m, . . . ,xt,V,m), such that yt,m = ∑V
k=1 xt,k,m. We assume that

the temporal structure in xt,m can be captured by a hidden Markov state sequence for each

variant up to and including V −1, z1,v,m,z2,v,m, . . . ,zN,V−1,m. Recall from Section 4.4 that the

last composition V is modelled implicitly and does not have an associated Beta-Binomial

model.

As in the general framework, we assume a GDM model for xt,m given the total COVID cases

yt,m, with the mean and variance parameters of the Beta-Binomial conditional models given

by νt,v,m and ϕt,v,m, respectively. To characterise the temporal evolution of each variant, we

designed an HMM where zt,v,m progresses sequentially through five states, given in Table 4.3.

Table 4.3: Hidden state sequence (zt) for the GDM-HMM model for COVID-19 variants.

State Description
State 1 Dormant before outbreak
State 2 Active, Increasing
State 3 Dominant
State 4 Active, Decreasing
State 5 Dormant after outbreak

The HMM is constrained such that zt,v,m can only move “forward” through the 5 states; it

cannot revert to a previous state. For example, if the variant is dominant at the current time

(State 3), it cannot return and be dormant before the outbreak as the virus is in circulation.

It can, however, move forward to the decreasing state (State 4) and onto the last state,

dormant after the outbreak (State 5), when the cases return to zero. This design is intended

to reflect the behaviour seen in the variant case counts, as shown in Figures 4.5 to 4.7.
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The constrained design of this HMM is constructed through the below transition matrix pv,c,

for variant v = 1, . . . ,V −1 and country cluster c = 1, . . . ,C, where most entries/probabilities

are equal to 0:

p =



1−κ1,2,v,c κ1,2,v,c 0 0 0

0 1−κ2,3,v,c κ2,3,v,c 0 0

0 0 1−κ3,4,v,c κ3,4,v,c 0

0 0 0 1−κ4,5,v,c κ4,5,v,c

0 0 0 0 1


,

where κi, j,v,c defines the probability of moving from state i to state j, with assumed priors

κi, j,v,c ∼ Beta(1,1). For the country cluster c, the initial state probability vector qc is given

as qc ∼ Dirchlet(35,1,1,1,35). This means that, a priori, the probability of z1,v,m (the first

week) being in each of the five states is (0.35,0.1,0.1,0.1,0.35), i.e. a priori we believe it is

more likely for the variant to be in one of the two dormant states (State 1 or 5), though

posterior inference for qc will learn from the observed data.

The HMM latent states drive changes in the GDM model through νt,v,m = γt,v,m(zt,v,m), where

γt,v,m(zt,v,m) is either fixed a priori or an unknown quantity to be inferred, depending on the

state of (zt,v,m). Using Equation (4.4.0.5) and (4.4.0.6) from Section 4.4 the extra conditions

are placed for the model for the COVID-19 variants:

γv,s,m =−10, for s = 1,5;

γv,s,m ∼ N(0,1), for s = 2, . . . ,4;

ϕv,s,c ∼ Gamma(2,0.05).

(4.5.3.1)

Constraining the first and last γv,s,m to be equal to −10 means that corresponding mean

parameters νv,s,m are very small values. The motivation for this is that when the variant is

in the first or last state and is dormant, as shown in Table 4.3, i.e. the counts are 0 and the

variant is not yet or no longer present in that country. A stronger constraint would be to set
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νv,s,m = 0 in the first and last states, but this means that the Beta-Binomial probability mass

function is equal to 0 for non-zero counts, which causes the forward algorithm (Section 4.4.1)

to return a log joint posterior value of negative infinity (since the values of the latent HMM

quantity zt,v,m are not known a priori, negative infinity log probabilities spoil the calculation

by design). For the remaining states, i.e. where the variant is generating non-zero counts,

γv,s,m can take on a value from a Normal distribution. For all states, we assume a Gamma

prior for the GDM variance parameters ϕv,s,c > 0.

A final constraint on γv,s,m is needed to ensure identifiability between the three active states

- increasing/dominant/decreasing states (States 2-4); issues with identifiability are common

in HMMs due to “label switching” (recall from Chapter 3, Section 3.3.3), where the roles

of different states swap such that the overall model doesn’t change (Stoner et al., 2020a).

Here, we address label switching through hard parametric constraints in the model, which

is straightforward in this case due to the strong physical interpretation of our proposed five

states: since State 3 is intended to capture periods where the variant is dominant, we strictly

enforce in the MCMC algorithm that samples are rejected where γv,3,m > max(γv,2,m,γv,4,m).

This means that, for a given variant and country, νv,s,m is always highest in the dominant

state (State 3). We also enforce that γv,2,m > −10 and γv,4,m > −10, to avoid conflicts with

the dominant states.

For the GDM-HMM, we ran four chains in parallel for 2,000 MCMC iterations, discarding

the first 1,000 as burn-in. The time taken to run this model was approximately 1 hour 47

minutes. We computed the PSRF for each parameter and 95% of the PSRFs were less than

or equal to 1.05, with a median of 1.00, indicating convergence.
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4.6 Results

Here we will present and discuss outputs and results from the GDM-HMM, demonstrating

how parameter inference from this model can potentially show what variant characteristics

are persistent both within and across clusters.

First, Figure 4.8 presents boxplots of the posterior samples of νv,s,m, by COVID-19 variant

and state, for a different country from each cluster (United Arab Emirates, New Zealand

and United Kingdom, respectively). By examining these boxplots, we can see how νv,s,m

varies across the different states for each variant. Overall, a higher νv,s,m value for a given

variant translates to a higher expected proportion of COVID cases due to that variant. For

simplicity, we can focus on the posterior medians (the horizontal black lines in the middle

of the box plots) as our point estimates. The spread of the boxplots relates to the posterior

uncertainty for each νv,s,m, e.g. the posterior interquartile ranges (posterior 50% credible

intervals) are indicated by the widths of the box plots.

Firstly, we can see for all clusters and variants, as outlined in Section 4.5.3, the fixed con-

straint of νv,s,m to be close to zero for States 1 and 5. As an illustrative example, we will

now present the findings shown for the two most dominant VOCs: delta and omicron.

Delta was initially detected in India, from Cluster 1. Across all clusters, we can see that delta

became highly transmissible during the dominant state (State 3) which is represented by a

high posterior medians of all three clusters which is very close to 1. This means that during

this time, the delta variant was contributing to almost all the COVID-19 cases across all

countries. During this state, each boxplot across all clusters has a very small boxplot width

indicating that there is little uncertainty in the posterior range. For Cluster 1 and 2, the

posterior median is notably higher during the active increasing state (State 2), 0.4 and 0.5,
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respectively, highlighting the transmissibility of the delta variant within these clusters from

its initial detection. However, during the decreasing state (State 4) all the point estimates

across each cluster are significantly reduced, with values of 0.16, 0.19 and 0.07 for each cluster

respectively, each with a minimal interquartile range. This indicates that the prevalence of

the delta variant decreased following its peak. This could be due to the emergence of the

next variant overlapping with the evolution of delta.

The last VOC present in the data is omicron, which was first found in South Africa, a

country in Cluster 3. Across all three clusters, a similar picture is presented where omicron

quickly contributed to most of the COVID-19 cases. The posterior medians for the active

increasing state (State 2) are 0.50, 0.49 and 0.63, respectively. This is significantly greater

than the point estimates for State 2 for any of the other four VOCs. The supremacy of

omicron is extremely evident in the dominant state (State 3) with all three clusters exhibiting

considerably high posterior medians of 0.9, 0.98 and 1, respectively. Each boxplot in this

state has a very small width signifying little uncertainty in the high values of νv,s,m. Within

the decreasing state (State 4) the posterior medians remain high, greater than 0.5, for all

three clusters. However, the posterior interquartile range is at its largest for this state in

comparison with the other VOCs, indicating that the uncertainty in the decreasing state is

much higher. This could be representing the fluctuating pattern detected from Figure 4.5

to 4.7 after the peak of omicron.

In summary, these figures highlight the variation between the evolution in each of the vari-

ants. Here, the contrasts across the clusters are evident, underlining the need to account for

the different cluster structures within the HMM.
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Figure 4.8: Boxplots of the posterior samples for the Beta-Binomial parameter νv,s,m for each
of the five HMM states for a country from each of the three clusters: United Arab Emir-
ates (Cluster 1), New Zealand (Cluster 2) and United Kingdom (Cluster 3). The different
coloured boxplots correspond to each of the COVID-19 variants: alpha, beta, gamma, delta
and omicron.
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Another model output from the GDM-HMM framework that may provide insights into

the characteristics of the different variants is inference based on the transition probabilities

κi, j,v,c. We define the persistence lengths Lv,s,m as the length of time (weeks) the HMM quant-

ity zt,v,m persists in state s before transitioning to the next state. Since persistence is based

on a series of Bernoulli trials with probability κi, j,v,c, the mean/expected persistence length

is given by E[Lv,s,m] = κ−1
i, j,v,c. Figure 4.9 shows the posterior median expected persistence

lengths for each variant in the non-dormant HMM states (States 2, 3, and 4), across the dif-

ferent clusters. Here, if a variant has a longer expected persistence in the active state (State

3), this would indicate a longer period of dominance of the COVID-19 cases. Similarly, a

longer expected persistence in the decreasing state for one variant could indicate that cases

from that variant tend to decline more slowly. We might expect that variants showing both

of these traits could have a more prolonged active period following initial emergence.

Notably, the expected persistence lengths tend to be very similar across clusters, despite

these being estimated independently with no crossover in the data or model parameters.

This provides some reassurance that we can potentially draw useful insights about the

general characteristics of the different variants in terms of their progression through the

different stages of outbreak. However, we will discuss the limitations of such conclusions

in Section 4.8, including the potential confounding effect of the persistence of one variant

being dependent on the timing of a new dominant variant emerging.

Here, we only describe in detail the characteristics presented in Figure 4.9 for the most

dominant variant. Omicron is perhaps the most distinct variant in terms of its persistence

characteristics across the states and clusters. Within the increasing state (State 2), omicron

spends significantly more time in Cluster 1 compared to the other two clusters, with a

duration of 66 weeks compared to just 3 and 4 weeks in Clusters 2 and 3, respectively.

The short expected duration in the increasing states reflect the very rapid transition to the

dominant state. The greatest difference, compared to other variants, lies in the expected

persistence lengths for the dominant state (State 3), which are 210, 264 and 149 weeks for
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each cluster respectively. These expected durations are not only much greater than those

for the dominant state of other VOCs - reflecting the extended period during which omicron

remained dominant compared to other VOCs detected since the COVID-19 outbreak in

late 2019 - but they also have greater variance between three clusters. The higher variance

between clusters can also been seen for the decreasing state (State 4), with persistence

lengths of 1, 22 and 14 weeks, respectively.

Increasing State (State 2) Dominant State (State 3) Decreasing State (State 4)

alpha beta gamma delta omicron alpha beta gamma delta omicron alpha beta gamma delta omicron

0

100

200

Cluster 1 2 3

Figure 4.9: Expected persistence length E[Lv,s,m] = κ−1
i, j,v,c (in weeks) for each variant of

concern (VOC), for the three active HMM states: State 2 (increasing), State 3 (domin-
ant), State 4 (decreasing). The different coloured shapes correspond to each of the country
clusters: Cluster 1, Cluster 2 and Cluster 3.
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4.7 Posterior predictive experiment

4.7.1 Alternative methods for comparison

To examine the effectiveness of our proposed approach with respect to capturing non-smooth

temporal variation, we chose to compare our GDM-HMM approach against two alternat-

ives. In each, the HMM is replaced with a common structure for temporal dependence, a

Random Walk and a Dynamic Linear Model, respectively. The next section explains how we

developed these in the context of the COVID-19 variant data. In both comparison models,

compositional count zeros are handled using the GDM, as described in Section 4.4; the only

difference lies in how each model captures the temporal structure.

4.7.1.1 Random Walk Model (RW)

The Random Walk (RW) model - a simple model commonly used in time series analysis

- assumes that each value in a series is a Normal random deviation from the previous

observation. The principles of a random walk were first proposed in Pearson (1905). In

general, it is defined by the equation:

λt ∼ N(λt−1,σ2), (4.7.1.1)

where λt denotes the value at time t, λt−1 is the value at the previous time t − 1, and σ2

represents a random error term. The RW model is memoryless, the range of likely values of

λt at the next time step only depends on the value at the current time and is independent

of any values prior to that.
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Random walks are commonly used to model time series directly, but they can also be

integrated within hierarchical models as random effects, to capture temporal structure at

some latent level – this is how we will use them here.

To replace the HMM within the GDM-HMM for COVID-19 variants detailed in Section 4.5.3,

we define the Beta-Binomial means as:

log
(

νt,v,m

1−νt,v,m

)
= λt,v,m; (4.7.1.2)

λt,v,m ∼ Normal(λt−1,v,m,σ2
v,m). (4.7.1.3)

We make several assumptions about the RW part of our GDM-RW, so that it is comparable

with our proposed GDM-HMM model. First, we assume that the value of the random walk at

time step 1, λ1,v,m, is a country-level random effect with cluster-level mean τv,c and standard

deviation ξv,c:

λ1,v,m ∼ Normal(τv,c,ξ 2
v,c). (4.7.1.4)

This is comparable to assuming that the initial state probabilities p0 in the GDM-HMM

model are also controlled by a cluster-level distribution, with the prior for p0 accounting

for the variation within the clusters. We assume a Normal(0,102) prior for τv,c and a Half-

Normal>0(0,1) prior (a Normal distribution truncated at 0, to ensure all values are positive)

for each ξv,c. The equivalent prior for the variance parameter ϕ is incorporated in the GDM-

RW model, ensuring comparability between the models, which vary across variants and

clusters. Furthermore, we assume a country-level standard deviation parameter, σ , into the

random-walk component of the GDM-RW model.
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For the RW model, four chains were run in parallel for 400,000 MCMC iterations, with

300,000 discarded as burn-in and storing every 100th sample. The computation time was

approximately 3 hours and 25 minutes. We computed the PSRF for each parameter and 92%

of the PSRFs were less than or equal to 1.05, with a median of 1.00, indicating convergence.

4.7.1.2 Dynamic Linear Model (DLM)

As the RW lacks a memory of any trends, either short-term or longer-term. An alternative

which has an extra layer of “memory”, are Dynamic Linear models (DLM), first denoted as

such by Petris et al. (2009), however, different terminology and notation had been developed

previously. A DLM can be a powerful framework for modelling time series data, offering

flexibility in capturing complex temporal dynamics. DLMs allow for time-varying paramet-

ers, enabling the representation of evolving trends within the data. The specific DLM we

will use here is given by:
λt ∼ N(λt−1 +αt ,σ2

λ ),

αt ∼ N(αt−1,σ2
α), (4.7.1.5)

where, as in the RW model, λt denotes the value at time t and λt−1 is the value at the

previous time t − 1. Then, the DLM introduces a trend term αt , which itself evolves as a

random walk. The expected value of λt is thus a combination of the previous value λt−1

and αt , with the latter representing the short-medium term trajectory of the latent process.

The standard deviation parameters σλ and σα determine the relative contributions of the

random noise part and the trend term, respectively. Figure 4.10 shows two illustrative time

series of simulated λt from this simple DLM, one where the relative contribution of σλ is

larger (σλ = 10, σα = 0), and one where the contribution of σα is larger (σλ = 0, σα = 10).

We can see that when the relative contribution of σλ is larger, the respective time series

has a larger variance of values, thus showing the influence that σλ has on the values of λt .
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Whereas when the relative contribution of σα is greater, the values of the time series are

more closely related with smaller value for αt affecting λt . With this in mind, note that the

DLM reduces to the RW (Equation 4.7.1.1) in the limit that σα tends to zero, such that

the additional trend term αt drops out of Equation 4.7.1.5.

1 2
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Figure 4.10: Example simulated time series from a simple DLM (Equation 4.7.1.5), where
Time Series 1 is generated using σλ = 10, σα = 0.1, and Time Series 2 corresponds to
σλ = 0.1, σα = 10.

As in the GDM-RW model, the DLM captures temporal structure in the GDM-DLM through

Equation (4.7.1.2), and then:

λt,v,m ∼ N(λ(t−1),v,m +αt,v,m,σ2
v,m,λ ), for(t = 2, . . . ,N); (4.7.1.6)

αt,v,m ∼ N(α(t−1),v,m,σ2
v,m,α), for(t = 2, . . . ,N). (4.7.1.7)

Similar to the GDM-RW model once again, we make several assumptions about the DLM

part of the GDM-DLM for comparability with our proposed GDM-HMM model. At the

initial time point t = 1, we assume that both the latent DLM quantity λ1,v,m and trend term

α1,v,m are Normal random effects:

λ1,v,m ∼ Normal(τv,c,λ ,ξ 2
v,c,λ ); (4.7.1.8)

α1,v,m ∼ Normal(τv,c,α ,ξ 2
v,c,α), (4.7.1.9)
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where we assume Normal(0,102) priors for τv,c,λ and τv,c,α , and Half-Normal>0(0,1) priors

for ξv,c,λ , ξv,c,α , σv,m,λ , and σv,m,α . As within the GDM-DLM model, the same prior is placed

upon the variance prior ϕ to ensure positivity and comparability.

For the DLM model, we ran four chains in parallel for 400,000 iterations, discarding the

first 300,000 as burn-in and storing every 100th iteration. The time taken to run this model

was approximately 6 hours and 45 minuates. Computing the PSRFs for each parameter

resulted in 91% of the PSRFs being less than or equal to 1.05, with a 1.01 median indicating

convergence.

4.7.2 Model Checking

Both the GDM-RW and GDM-DLM models offer a lot of flexibility as prior random effect

models (p(λv,m)) to capture different temporal patterns. We would generally expect them

both to be capable of capturing non-smooth or otherwise volatile patterns, learning from the

data into the posterior p(λv,m | xv,m). However, this is not a guarantee that such temporal

patterns would be reproduced when generating new random effect time series from the

posterior predictive distribution p(λ̃v,m | x). Since λv,m are intended to drive the temporal

dependency in the modelling framework, if predicted/simulated values λ̃v,m do not reflect the

temporal patterns of the original data well, then forecasted future values or new simulated

time series of xv,m are unlikely to either. Thus, we decided to compare our proposed GDM-

HMM approach to the GDM-RW and GDM-DLM alternatives through a posterior predictive

model checking exercise.
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Posterior predictive model checking involves the simulation of new data from the posterior

predictive model, e.g. in this case simulating new COVID-19 variant counts. These new

simulated data, x̃t,v,m are called “replicates” of the original xt,v,m, because they are generated

using the exact same covariate values/inputs as xt,v,m, in this case they are generated over

the same time steps. We simulate a new replicate data set x̃ of the original x once for each

set of saved MCMC samples. For instance, if we have 1,000 MCMC samples for all model

parameters, we would simulate 1,000 new replicate sets. We can then compare these to the

original data by looking at the discrepancy between either:

• Individual data points xt,v,m and the corresponding distribution of replicates x̃t,v,m, or;

• Summary statistics S(x̃) of the original data versus the distribution(s) of statistic(s)

S(x̃) from the replicates. Simple options are the sample mean and sample variance,

but S(·) could be any statistic capturing features of the data that are important to us.

Essentially, we can investigate whether individual data points or summary statistics for the

original data are an extreme value with respect to the corresponding posterior predictive

distributions, e.g. p(x̃t,v,m|xt,v,m) or p(S(x̃t,v,m)|xt,v,m). If this is the case, then the model does

not capture the data well in this respect.

For each saved MCMC iteration and for each country, the procedure for generating replicate

COVID-19 variant case counts from the GDM-HMM model is as follows:

1. Simulate a new time series of HMM latent states z̃v,m for each variant, using the

transition matrix and initial state probabilities corresponding to that MCMC iteration.

2. Simulate new case counts for the first variant from the first Beta-Binomial in Equation

4.4.0.6, using the latent states simulated in Step 1 and the samples of γ1,s,m and ϕ1,s,m

from that MCMC iteration.
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3. For the next variant, we compute the remainder counts rt,v (Equation 4.4.0.6), i.e. the

remainder of the total COVID cases yt,m not yet accounted for by simulated counts of

the previous variants in the ordering. Then, simulate new case counts for this variant

from the corresponding Beta-Binomial.

4. Repeat Step 3 until counts have been simulated from all Beta-Binomials in Equation

4.4.0.6. Compute the final count xt,V,m (in this case the aggregate count for all VOIs)

as xt,V,m = yt,m −∑V−1
k=1 xt,k,m.

Then, for each country, the procedure for generating replicates from the GDM-RW and

GDM-DLM models is the same for Steps 2 - 4 as above. In this case, Step 1 becomes:

simulate new time series of RW/DLM random effects λ̃v,m for each variant, using samples

of the parameters associated with either the GDM-RW or GDM-DLM models (e.g. those

denoted by τ , ξ , σ), from that MCMC iteration. Following these procedures resulted in 4,000

replicate time series for the GDM-HMM, GDM-RW, and GDM-DLM versions, respectively.

Here, to assess how well the replicate time series of COVID-19 variant counts imitate the non-

smooth temporal patterns seen in the original data, we summarised time series variability

using a moving window approach. This involves defining a window of length L (e.g. 15 weeks)

and continuously moving this window through the replicate time series, generating many

overlapping subsets w = 1, . . . ,W = N − L+ 1 of the data. This approach is illustrated in

Figure 4.11 where a simple time series is represented by the red line. The respective moving

windows wW of a length L are denoted by different coloured boxes for each wW . In this

specific example with N = 12 and L = 5, there are eight moving windows (w = 1, . . . ,8).
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We then calculate sample standard deviation values ωw(x) = 1/L−1 ∑w+L−1
t=w (xt − x̄w) for each

window/subset w, where x̄w is the sample mean of xw, . . . ,xw+L−1. Summarising these stand-

ard deviations with some statistic S(x) = S(ω1(x), . . . ,ωW (x)) can then quantify how vari-

able the time series are over different time scales. Here, we compute the means of the

standard deviations, which tell us something about how variable the time series are on av-

erage, and upper quartiles, which relate to more volatile periods/windows. Given the large

proportion of zero values in the data, the lower quartile did not yield informative results.

Time
w1 w2 w3 w4 w5 w6 w7 w8

Figure 4.11: Diagram illustrating the moving window approach applied. For a given example
time series shown in red, with N = 12, the overlapping moving windows (w = 1, . . . ,W =
N −L+1 = 8) are generated for a given window length L = 5.

Note that the standard deviations of the compositional case counts x within the moving

windows will in large part be determined by the scale of the total counts y (i.e. a larger

y will increase the variance of x). To regularise the variance across countries and variants,

we applied the moving window summarisation approach to replicate proportions, calculated

from the replicate counts, rather than the counts themselves, making it easier to assess how

well each model performs across countries/clusters and variants using global summaries. In

this case, we quantify how well replicates from each model capture the temporal structure

of the original data through computing the Mean Absolute Error (MAE) (Willmott et al.,

2005) of the medians and upper quartiles from the replicates, compared to the means and

upper quartiles obtained when applying the moving window summarisation to the original
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data. This is the mean magnitude of errors, i.e. 1/n ∑n
i=1 |S(x̃)−S(x)|, where n is the total

number of replicates and S(x) is either the mean or upper quartile of the standard deviations

across the windows, for the original data values x or replicate values x̃. We compute these

statistics for each variant, each country and for each of the models considered - GDM-HMM,

GDM-RW and GDM-DLM. These will tell us how close the simulated replicate values are to

the original data, on average, with respect to these statistics. A low MAE value indicates a

closer match, which in this case may mean that the non-smooth temporal structure is being

captured better.

4.7.2.1 Results

One way to visualise the distribution of the statistics of the replicate data sets is density

plots. In each case we plot the logarithm of the statistic (mean or upper quartile), allowing

for a clearer visualisation of the distributions. These are given in Figure 4.12 and 4.13,

within each the corresponding statistic for the original data are given in each plot by the

orange vertical line.

As an example, the row of Figure 4.12 corresponding to Cluster 3 shows multiple modes

in the density curve for the mean of the standard deviations of the proportions across all

variants. Overall, our proposed GDM-HMM consistently outperforms the GDM-RW and

GDM-DLM models in accurately capturing the true value of the data suggesting that the

original value of the data is not an extreme value with respect to the posterior predictive

distribution. This is evident with the orange vertical line of the original data falling within

a peak of the density curve of the GDM-HMM. An exception to this is shown in row of

Figure 4.12 for United Arab Emirates (Cluster 1), where for the gamma variant the orange

line is further left than the peaks of all three density curves. This could be due to Cluster

1 countries not having any incidences of the gamma variant.
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Figure 4.12: Density plots of the log of the mean standard deviation across the windows of
length 15 for a country from each of the three clusters: United Arab Emirates (Cluster 1),
New Zealand (Cluster 2) and United Kingdom (Cluster 3). The different coloured densities
correspond to each of the methods: GDM-HMM, GDM-RW and GDM-DLM.
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When assessing the equivalent plot for the upper quartile (Figure 4.13), it is less evident

which method performs best. This is apparent as the original data line does not always

closely correspond with the peak of a density curve for each of the methods. An example

of this is for Cluster 1 where the original data line lies further left then the peaks of the

curve for the gamma variant, as seen for the equivalent panel for the mean. However, on the

whole, again the GDM-HMM appears to perform best in comparison to the other methods in

producing replicates that closely mimic the original data and could be plausible in real-world

scenarios. This is most prominently identified for omicron across all three clusters.
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Figure 4.13: Density plots of the log of the upper quartile of the standard deviation across
the windows of length 15 for a country from each of the three clusters: United Arab Emir-
ates (Cluster 1), New Zealand (Cluster 2) and United Kingdom (Cluster 3). The different
coloured densities correspond to each of the methods: GDM-HMM, GDM-RW and GDM-
DLM.
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The density plots offer a detailed view into assessing whether the model can accurately cap-

ture the true values of the data, suggesting that the original values are plausible within the

distribution. However, it is challenging to draw broader conclusions about which method(s)

perform best across the different variants and countries. The MAE was computed for all

three models for both the mean and upper quartile of the standard deviations of the pro-

portions of the moving windows of length 15. The MAE for each country and variant can be

plotted in a barplot alongside the aggregated means across all the countries for each cluster.

Overall, for the mean of the standard deviations of the proportions across the windows, the

GDM-HMM has the lowest MAE across all three clusters. The only exception for this is in

Cluster 2 (in the second row of Figure 4.14) and the gamma variant, where the GDM-DLM

has the lowest MAE at 0.036 whereas the MAE for the GDM-HMM is 12% higher. Although,

this is still lower than seen for the GDM-RW model. This highlights that the GDM-HMM

is performing better than the other two methods for the mean of the standard deviations of

the proportions for the window length 15. A similar picture is seen for the upper quartile

of the standard deviations across the windows, with the GDM-HMM consistently having

the lowest MAE value across all variants and clusters. Thus, when evaluated using moving

windows, the GDM-HMM consistently outperforms both the GDM-RW and GDM-DLM in

terms of accurately producing realistic replicate data.

To ensure robustness, various window lengths were investigated, e.g. window lengths 5,

10, 15 and 20. We can visualise the median MAE value across each window length in

Figures 4.16 and 4.17. Overall across all window lengths, the GDM-HMM demonstrates

optimal performance in regards to minimising the MAE compared to alternative models. In

general, as the window length increases this in turn also increases the MAE for all methods.
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Figure 4.14: Barplots of the mean absolute error (MAE) of the mean standard deviation
across the windows of length 15 for the countries selected from each cluster. The different
coloured bars correspond to each of the methods: GDM-HMM, GDM-RW and GDM-DLM.
The horizontal lines corresponding to the mean value across the clusters with each line
corresponding to each of the methods: GDM-HMM, GDM-RW and GDM-DLM.
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Figure 4.15: Barplots of the mean absolute error (MAE) of the upper quartile of the standard
deviation across the windows of length 15 for the countries selected from each cluster. The
different coloured bars correspond to each of the methods: GDM-HMM, GDM-RW and
GDM-DLM. The horizontal lines corresponding to the mean value across the clusters with
each line corresponding to each of the methods: GDM-HMM, GDM-RW and GDM-DLM.
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As an illustrative example, for the mean of the standard deviation (Figure 4.16), we can

see that for the smallest window length (5) for the omicron variant, the GDM-HMM has

the highest MAE but by window length of 10 and larger, the MAE for the GDM-HMM is

consistently the lowest. Here, the slope of the GDM-HMM line is much flatter, indicating

a more gradual increase in the MAE for each increase of window length in comparison to

both the GDM-RW and GDM-DLM lines. This pattern in the slopes holds for most of the

variants in each cluster. A deviation to this is seen for the gamma variant within Cluster 2,

where the GDM-DLM produces the minimum MAE values across all window lengths. This

supports what was presented earlier for the gamma variant in Cluster 2 where the minimum

MAE value for this variant occurs for the GDM-DLM.
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Figure 4.16: Median mean absolute error (MAE) across each cluster for the mean standard
deviation across each windows length by variant. The different coloured bars correspond to
each of the methods: GDM-HMM, GDM-RW and GDM-DLM.
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On the other hand, the upper quartile of the standard deviation across the windows (Figure

4.17) has a less linear shape in comparison. This can be seen within the delta and omicron

variants where the lines for each cluster are presented in a stepwise trajectory with a series

or sharp increases or decreases. Here, the method with the lowest MAE value changes as

the window length increases. Overall, within both these variants across each cluster, the

GDM-HMM has the lowest MAE for window length 10 and larger.
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Figure 4.17: Median mean absolute error (MAE) across each cluster for the upper quartile
of the standard deviation across each window length by variant. The different coloured bars
correspond to each of the methods: GDM-HMM, GDM-RW and GDM-DLM.

In conclusion, after assessing both density curves and the MAE across each method, it can

be deduced that the GDM-HMM demonstrates superior performance compared to other

considered time series models.
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4.8 Summary & Discussion

In this chapter, we introduced compositional time series, particularly focusing on non-

smooth data. We reviewed previous methods used to address compositional time series,

which mainly involve applying a log-ratio transformation. However, a log-ratio transform-

ation is unsuitable for data which contain zeros or consists of count data, a common oc-

currence of compositional data. We also discussed other methods, including hierarchical

approaches that apply a Bayesian hierarchical framework to the data, such as the work

by Stoner et al. (2020c), who propose a multivariate hierarchical framework for modelling

compositional count time series. Nevertheless, this approach may not be suitable for very

non-smooth time series. We outlined the use of hidden Markov models (HMMs), a common

modelling technique for time series. Although previous approaches applying HMMs to com-

positional time series were reviewed, we found that work in this area is limited, especially

for non-smooth compositional time series. This gap paves the way for the work presented

in this chapter.

The proposed GDM-HMM framework for compositional time series was outlined and as-

sessed. This was developed by implementing a HMM with the flexible GDM distribution.

This model is particularly suited for non-smooth time series data which is presented as

counts. This approach addresses a notable gap in the literature for this specific type of

compositional time series.

The COVID-19 variant data from GISAID motivates our application, consisting of a non-

smooth compositional count time series. This dataset includes 169 weeks of COVID-19

counts from 217 countries worldwide. With many zero values across each country, these

data demonstrate why a log-ratio transformation is unsuitable for this time series. The

COVID-19 data was pivotal in the development and testing of the proposed GDM-HMM

framework.
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We demonstrated that treating the data as multivariate preserves information about how

the total is distributed across each variant. For example, if one variant accounts for half the

total count, the remaining variants must collectively account for the other half - something

that separate univariate models would be unable to capture. This joint modelling ensures

that compositional constraints are respected and provides a more coherent representation

of the underlying structure in the data.

We showed that the GDM-HMM framework can effectively characterise the temporal evol-

ution in the prevalence of each variant as a progression through a series of hidden states.

This revealed that each variant differs across countries, highlighting the need to model each

variant individually. Given this, we aimed to cluster countries based on the evolution of the

compositions over time to capture the expected characteristics of each variant. This enables

unique HMM parameters on a per-cluster basis. We applied a clustering approach prior to

modelling which resulted in three unique clusters of countries. We then built the HMM us-

ing a series of independent Beta-Binomial distributions from the GDM distribution for each

variant and created a transition matrix with five states to model the evolution of the vari-

ants. To ensure the HMM can only move forward through the states, we added constraints

to the transition probabilities because each variant evolves without returning to a previous

state. By implementing a HMM framework, we can gain insights into the characteristics

of the different variants through the transition probabilities. The persistence length is the

length of time (weeks) the GDM-HMM continues in that state before transitioning into

the next state. Overall, the highest posterior median expected persistence occurs with the

omicron variant in State 3 suggesting that this variant has a prolonged period of dominance

which is detected across all clusters. Whereas the other variants have a similarity in per-

sistence lengths between clusters suggesting a common transition matrix for all clusters in

the GDM-HMM framework may have been adequate, the pronounced differences observed

for omicron suggest that allowing for differences between clusters could be beneficial. A

hierarchical approach, with some information pooling between clusters, may serve as an

appropriate compromise.
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We designed a posterior predictive model checking experiment to assess the effectiveness

of the proposed framework. The GDM-HMM framework was examined by comparing it

to alternative GDM models using more standard time series structures: a Random Walk

model (RW) and a Dynamic Linear model (DLM). Model computation was fastest for our

proposed GDM-HMM model (approximately 2 hours) compared to the GDM-RW model

(approximately 3 1/2 hours) and the GDM-DLM model (approximately 7 hours). We evalu-

ated the performance of the replicate values for each method through a window summary

to examine how the replicates behave over time. This was produced for the mean, upper

and lower quartiles of the standard deviation across windows for multiple window lengths.

We visually compared the density for the summary statistic of each of the replicates with

the distribution of the same statistic of the original data. Overall, the GDM-HMM con-

sistently outperforms the GDM-RW and GDM-DLM models by accurately capturing the

corresponding statistic computed using the original data and producing replicate values that

could be plausible in real-world scenarios. The three methods were also compared using the

Mean Absolute Error (MAE) for both the mean and upper quartile of the standard devi-

ation within each moving window. Visually examining the MAE per country and aggregated

cluster means, the GDM-HMM consistently provided the lowest MAE for all three clusters.

There was only one exception to this seen within the gamma variant for Cluster 2, where the

GDM-DLM had a lower MAE for the mean of the standard deviations. When investigating

multiple window lengths to ensure robustness, the same conclusions can be reached. Across

all window lengths, the GDM-HMM demonstrates superior performance in minimising the

MAE compared to the alternative models.

In conclusion, the proposed GDM-HMM framework was evaluated against alternative time

series models using these data. The performance of the model was evaluated by carrying

out a posterior predictive model checking experiment and examining the replicates using a

moving window summary. The density plots of the GDM-HMM indicated that the GDM-

HMM was producing sensible values that were a close match to the original data, which

could explain the real-world evolution of the variants. It was found that the proposed method
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largely produced a lower MAE when compared with the other GDM models examined. The

reduced computational time required to run the GDM-HMM proves valuable alongside the

superior model fit. This highlights the effectiveness of the GDM-HMM in comparison to

alternative models for non-smooth compositional time series.

Further work could include incorporating covariates - such as vaccination rates and inter-

vention measures - into the model to better inform the transition probabilities, making

them more reflective of real-world dynamics. It should also be noted that the framework

was only applied to the COVID-19 variant data and further work would be required to test

the method within other applications.
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In this chapter, we propose an approach to modelling compositional data arranged over

a spatial domain, such that we need to account for both the compositional and spatial

structures. Furthermore, we target the additional challenges of accounting for both zero and

missing values in the spatial compositions.

Here, we propose a framework combining the Generalised-Dirichlet-Multinomial (GDM)

family of distributions with two-dimensional penalised regression splines that capture spatial

structure. We evaluate our approach through two posterior predictive experiments, one to

assess a novel variance parameter specification and another to assess how well the framework

can predict missing compositional counts.

5.1 Introduction

Spatial data are observations arranged over some spatial domain, often referring to inform-

ation that identifies the geographical location, characteristics of that location or defined

regions on the surface of the Earth.

There are three main forms of spatial data; areal, geostatistical and point-process data, each

detailed within Cressie (2015). Areal data means that a region of interest is divided into

non-overlapping areas with defined boundaries (e.g. states or counties), such that there is

one aggregated measurement per unit. Areal data include counts of infected individuals in

regions administered by different health boards. In contrast, geostatistical data are a set of

observations taken at fixed spatial locations, e.g. soil moisture or air quality measurements

made by a device installed at a single point in space – in these cases, the location of the device

is potentially informative for understanding the soil moisture or air pollution levels but not

an outcome of interest. Like geostatistical data, point process data are observations at
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points in space but where the locations are themselves an outcome of interest. For example,

the locations of crime incidents are an outcome of interest as studying them could provide

information to identify patterns such as crime hotspots or links to socioeconomic conditions.

Cressie (2015) discusses different types of spatial data in more detail.

A real-world quantity of interest arranged over a spatial dimension will often have spatial

correlation (dependence), which means observations that are closer together in space are

more likely to have similar characteristics than observations farther apart. Meanwhile, many

statistical procedures (e.g. linear regression) do not give reliable results when dependence in

the data is not accounted for. Thus, analysis of spatial quantities usually means we know of

a potential source of dependence (spatial dependence) that should be considered carefully

in our analysis and modelling. The study of methods for capturing spatial dependence and

their applications is one of the most active areas of statistical research; Schabenberger et al.

(2017) is a useful introduction to the general challenges and common approaches.

As explored in previous chapters, compositional data arise in many statistical contexts

and this includes geographic contexts; in this chapter, we study and propose methods for

compositional data observed over a spatial or geographical dimension, which we will call

spatial compositional data. Such data can arise in physical science contexts, such as in soil

compositions (Odeh et al., 2003), iron ore compositions (Tolosana-Delgado et al., 2019)

and mineral rock compositions (Zuo et al., 2013), but also within social science contexts,

including election voting (Nguyen et al., 2021) and population studies (Martinez et al.,

2020).

Methods for capturing such data will naturally need to account for both the spatial and

compositional structures, and potentially interactions between the two. Interactions between

spatial and compositional structures can arise when the spatial locations induce similarity

in the compositions, or when spatial trends in one component affect the relative proportions
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of others due to the compositional constraint. These dependencies can bias inference if not

properly accounted for. Developing these methods into models could then prove useful for

prediction at locations with missing data or for covariate inference, adjusting for spatial

dependence that might otherwise confound the covariate effects.

Many of the existing approaches for analysing spatial compositional data begin by applying

a log-ratio transformation to convert the data from a constrained space to an unconstrained

space to allow standard spatial methods or models to be applied. However, log-ratio ap-

proaches have their drawbacks, including challenges handling zeros in the data and missing

values in the compositions (as discussed in more detail in Chapter 2, Section 2.2.1). For

data without these features, log-ratio approaches may be a compelling option. However, in

line with one of the main themes of the thesis, we will focus our study on alternative frame-

works that account for the nature of compositional data without requiring transformation

to an unconstrained space, such that they are suitable for a wider variety of real-world data

problems.

5.1.1 Tree species data

A real-world example of spatial compositional data is tree species composition over a defined

geographic area of interest (AOI). The data set we will investigate was collected and compiled

by Fera Science UK, providing insight into a small mixed woodland area in North Yorkshire

that contains both natural and plantation woodland within the AOI. Each grid cell in

the data represent a 10m by 10m area on the ground, identified by its British National

Grid easting and northing coordinates. The data was collected through a combination of

drone (UAS) imagery, satellite imagery and ground survey data to classify the different

tree species within the AOI. Each grid cell contains proportional estimates of tree species

coverage, meaning that multiple tree species can be present within a single cell. The sum of
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all proportions for tree species within a given grid cell equals one. Since these observations

represent aggregated measures over defined spatial areas (each grid cell), the data are areal

in nature. However, the simple grid structure may allow the use of non-areal models for

spatial dependence. Full details of the data set and the collection methods can be found in

Frantsuzova (2021).

The tree species found in the AOI are: ash, beech, larch, oak, scots pine, silver birch, sitka

spruce, sweet chestnut, sycamore and a shadow class. The shadow class is thought to be a

real shadow detected by the measuring equipment. The 10-part compositional element of

tree species contains no missing values; however, there is a large proportion of structural zero

values, as defined in Chapter 2, Section 2.3.2, over the 2,153 grid cells. Table 5.1 displays

the mean proportion of each tree species and summarises the percentage of zero values for

each tree species with an overall percentage of structural zeros of 62%.

Table 5.1: Mean proportion and percentage of structural zeros observed for each tree species.

Tree Species Mean proportion Percentage of zeros (%)
Ash 0.021 87.7

Beech 0.049 81.1
Larch 0.186 51.5
Oak 0.189 45.2

Scots Pine 0.052 75.3
Shadow 0.145 6.3

Silver Birch 0.092 64.0
Sitka Spruce 0.068 78.3

Sweet Chestnut 0.071 70.9
Sycamore 0.126 54.3

A heatmap of each tree species can be examined to give an indication of the spatial spread

over the AOI in Figure 5.1. It can be noted that the majority of individual tree proportions

across grid cells are equal to zero, identified by the pixels coloured in dark purple. It is evident

from Figure 5.1 that there are substantial clusters of the tree species larch concentrated in

the lower right-hand portion of the AOI, as indicated by the abundance of yellow pixels. In

the same region, there is another smaller cluster of tree species of sitka spruce. The presence

of the oak tree species appears widespread across various spatial locations within the AOI,
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characterised by the diverse array of coloured points representing the proportions scattered

throughout the region. The shadow class is also distributed across the entire region, with

a lower proportion, typically between 0.25 and 0.5, as depicted by the dark teal pixels. In

the lower left-hand region of the AOI, the most prominent cluster of tree species appears

to be the beech tree, holding the highest proportion within this location. The heatmap for

ash, which exhibits the largest proportion of structural zeros, is predominantly composed

of purple pixels, indicating the absence of ash within these areas.

In general, the proportions of the tree species vary considerably across the whole AOI. Dif-

ferent species are distributed unevenly, creating distinct hotspots where certain tree species

are more concentrated. In some cases, beyond the boundaries of the hotspots the presence

of the dominant tree species drops suddenly, whereas elsewhere the proportion drops more

gradually. The spatial structure is therefore not uniform both in terms of the overall distri-

bution (since there are clear regions where specific tree species dominate) and the degree of

smoothness or lack thereof.

Shadow Silver birch Sitka spruce Sweet chesnut Sycamore

Ash Beech Larch Oak Scots pine

Proportion
0.00 0.25 0.50 0.75 1.00

Figure 5.1: Heatmaps of the estimated proportions of tree species detected within each grid
cell.
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Given that the tree species compositions include a substantial proportion of structural zeros,

common spatial compositional data techniques relying on log-ratio transformations are un-

likely to be suitable for modelling these data (Chapter 2). Therefore, we believe that this

is an interesting motivating application for developing and testing a general multivariate

framework that directly accounts for compositional structure and accounts for spatial de-

pendence through latent effects. For general applicability, we aim for our framework to allow

for zeros in the data, as well as missing values in the spatial compositions. We will assess

the latter through predictive experiments for an augmented version of the tree species data

where some of the compositions are missing, potentially reflecting hypothetical measurement

failures/gaps or unresolvable ambiguity in classifying tree species.

The chapter is structured with Section 5.2 reviewing previous approaches to modelling

spatial compositional data. In Section 5.3 we present the methodology and proposed general

framework, including exploring the spatial splines approach used. The implementation of

the framework is also outlined in this section. The general framework is applied to the

tree species data within Section 5.4. A single tree prediction experiment is carried out in

Section 5.4.1 which examines the difference between a novel polynomial variance parameter

versus a single fixed parameter. We investigate a multi-tree species prediction experiment in

Section 5.4.2 which applies the general framework to the compositional data with missing

values across the compositions. Finally, in Section 5.5 we summarise and critically evaluate

the work carried out in this chapter.
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5.2 Spatial Compositional Data

In this section, we review existing methods for modelling spatial compositional data and

broadly arrange these into two groups: those that apply log-ratio transformations to com-

positional data before applying standard spatial methods, and alternatives that directly

model the data in their original compositional form. While we have already laid out our

case for why log-ratio transformations are not always suitable, a critical review provides

useful insights, including previous successes and challenges in capturing spatial structure.

First, however, we will introduce some general notation that we will use for exposition of

existing methods and those we will propose later. In many cases, this notation will differ

from the notation used in the original cited works. Let xs = (xs,1, . . . ,xs,D) represent a set of

proportions, for D compositions, summing to a total ys, existing for some spatial location

s from the set of locations s ∈ 1, . . . ,S. In most cases reviewed, ys = 1, i.e. xs exists on the

simplex. At this stage suppose that s could refer either to areal regions or fixed points with

known coordinates.

5.2.1 Log-ratio approaches

As for other kinds of compositional data studies in previous chapters, the predominant

methods for handling spatial compositional data stem from the work of Aitchison (1982);

that apply log-ratio transformations to map the compositions xs to the unconstrained real

space, resulting in x∗
s ∈ R, so that standard methods can be used.
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A comprehensive review of log-ratio transformations for the context of spatial compositional

data is given in Pawlowsky-Glahn et al. (2016). Within this, the log-ratio approach and

the principle of working in coordinates using ILR (Chapter 2) log-ratio representation are

outlined for spatial compositional data. However, the review is limited as Pawlowsky-Glahn

et al. do not discuss instances when there are zeros in the data or whether the methods

are suitable when zeros are present. We will review a few specific examples throughout this

chapter.

Following a log-ratio transformation, standard spatial models have been applied to spatial

compositional data. Autoregressive (AR) spatial models assume that the value at a location

depends on the values at neighbouring locations. These often incorporate a spatial weight

matrix to define the dependence structure. Spatial autocorrelation is captured in this model

through the specification of how nearby locations influence each other. This is extended

to the Conditional Autoregressive (CAR) models that specify the joint spatial distribution

through conditional distributions. The value within each location is modelled as dependent

on its neighbours. CAR models are particularly useful in Bayesian spatial analysis due to

their compatibility with hierarchical modelling approaches. Leininger et al. (2013) uses a

multivariate Conditional Autoregressive (CAR) specification following the application of

ALR to analyse land use and land cover (LULC) data in the northeastern United States:

x∗
s = ALR(xs), (5.2.1.1)

x∗
s =

(
log
(

xs,1

xs,D

)
, . . . , log

(
xs,D−1

xs,D

))
(5.2.1.2)

The proportions of land use types are observed in each 3 km × 3 km grid cell. Leininger

et al. propose a spatial regression model that captures the flexible dependence among the

components at each location in addition to the dependence across locations of the simplex-

restricted measurements. The model is formulated to be able to handle a high incidence

of zero values, that are treated as random occurrences rather than structural zeros in the

compositional sense. This is conducted through a latent variable modification of an ALR,
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allowing the model to accommodate zeros while transforming the data for regression. For

the compositional data vector, x is generated from a latent multivariate Gaussian random

variable, z, where the transformation from z to x sets the dth component xd = 1 when zd ≤ 0

and xd > 0 when zd > 0.

xd =
max(0,zd)

γ

1+∑D−1
d′=1 max(0,zd′)γ

, (5.2.1.3)

where where γ > 0 is a power-scaling parameter and D the number of components. The

denominator ensures the components sum to 1, satisfying the simplex constraint. The zeros

are incorporated as part of the model by allowing for max(0,zd) which maps negative values

of the latent variable zd to zero in xd. However, this requires the data to contain at least one

component (xD) that does not contain any zeros to serve as the baseline classification for the

transformation, which in real-world situations may not always be achievable. Although the

framework can be extended to include a temporal structure, which could be advantageous

in certain circumstances, it still faces limitations in cases with a significant proportion of

zeros.

Yoshida et al. (2018) investigate the impact of spatial relationships on prediction accuracy

within spatial compositional multivariate models, focusing on Compositional Multivariate

Conditionally Autoregressive (CMCAR) models. The work is assessed using ALR trans-

formed Japanese land-use data to evaluate how variations in the spatial weight matrix

affect the model performance. The CMCAR model is given by

xi ∼ Nd(B⊤xi,ηiV ), (5.2.1.4)

where B is a (p+ 1)× (D− 1) parameter matrix, xi is a (p+ 1)× 1 explanatory variable

vector, ηi is a (D − 1)× 1 random effect vector and V is a (D − 1)× (D − 1) variance-

covariance matrix. The spatial autocorrelation is modelled by setting a prior distribution

for ηi as:

ηi|η j j ̸=i ∼ Nd

(
1
Ui

n

∑
j=1

wi jη j,
1
Ui

Σ

)
, (5.2.1.5)
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where Ui is the row sum of the ith row of the spatial weight matrix W with elements wi j

and Σ is the (D− 1)× (D− 1) variance-covariance matrix. It was found that the choice of

spatial weight matrix significantly influences the prediction accuracy of the CMCAR, hence

the choice of this would be up to the user and requires extra work to deduce the optimal

spatial weight matrix. The same spatial weight matrix was assumed for all categories, which

may not be favourable since different compositions may have different spatial structures.

Again, this adds complexity to model formulation prior to fitting the CMCAR. However,

this method does not allow for zeros in the compositions and Yoshida et al. add a small value

to all the compositional values. Therefore, this approach may not be suitable for applications

where the zero value is informative.

More examples of commonly used spatial models applied to compositional data include

Martinez et al. (2020), which use a standard CAR model to analyse ILR-transformed birth

population data, and Nguyen et al. (2021) who present a spatial autoregressive (AR) model

to analyse election vote share data which has also been transformed using ILR. Additionally,

to tackle any zero values in the data, Nguyen et al. (2021) aggregate the election vote

share parties into three blocks which leads to loss of detail, especially for the smaller / less

dominant compositions.

Another type of spatial model that has been applied to spatial compositional data is kriging.

Kriging is a standard statistical technique that estimates the values at unobserved locations

using the values at nearby locations. This is conducted through weighted averages of the

observed data. Odeh et al. (2003) apply a kriging approach to ALR transformed soil com-

positional data. The values at the unmeasured locations are then estimated through kriging

by:

Z(x0) =
S

∑
i=1

λiZ(xi), (5.2.1.6)
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where Z(x0) is the estimated value at the unknown point x0, Z(xi) is the ALR transformed

value at the ith observed location xi, λi is the weight assigned to each known value Z(xi) and

S is the number of known values. The weights λs are calculated to minimise the estimation

variance. Odeh et al. compare ALR with the case where no transformation is placed upon

the compositional data. This resulted in ALR having a far superior performance showing

the need to treat the compositional data specifically as without it the sum of the predictions

was not constant at many of the locations breaking the compositional constraint.

Cokriging extends kriging to handle multiple variables within the prediction. This method

estimates the values at unmeasured locations using the values of the other variables avail-

able at the spatial location. Then for two variables, Equation (5.2.1.6) can be extended to

estimate a location x0 for the primary variable Z1 and secondary variable Z2 as

Z1(x0) =
S1

∑
i=1

λiZ1(xi)+
S2

∑
j=1

γiZ2(xi j), (5.2.1.7)

where λi and γ j are the cokriging weights for the primary and secondary variables, respect-

ively. Z1(xi) and Z2(x j) are the log-ratio transformed values of the primary and secondary

variables at locations xi and x j. N1 and N2 are the number of observations for the primary and

secondary variables. Again in this instance, the cokriging weights are determined by solving

the following system of cokriging equations, derived from the spatial covariance structure

of the variables. Tolosana-Delgado et al. (2013) utilise ILR to transform the compositional

data before applying cokriging on the spatial data. Pawlowsky-Glahn et al. (2015b) also ap-

plied cokriging to spatial compositional data using the previous work of Pawlowsky-Glahn

et al. (2015a) which used cokriging for the compositional ILR coordinates jointly with the

coordinate of the total. This suggests that the chosen total can be included as an additional

coordinate in addition to those coming from the composition. Cokriging has also been ap-

plied by Tolosana-Delgado et al. (2013), which use the log-ratio transformed compositions

from an iron ore deposit dataset consisting of several mineralogical textural types. However,

there is no evidence within these works on how cokriging handles any zeros present.
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More recently, Clarotto et al. (2022) apply a kriging approach to land cover compositional

data. Clarotto et al. introduce a new transformation - the Isometric α-transformation

(α-IT) which combines ILR with the α-transformation (Chapter 2, Section 2.2.2, Equa-

tion (2.2.2.4)). The α-IT is defined for a compositional vector xs ∈ S0
D as:

zα-IT(xs) = α−1HDx
α
s , (5.2.1.8)

where xα
s is the component-wise power of xs, HD is the (D− 1)×D Helmert matrix, and

α > 0 allows for the presence of zeros in the compositions.

Similarly to other α-transformations, as α tends to 0, the α-IT becomes the ILR and ad-

heres to the Aitchison geometry and when α = 1 corresponds to a linear transformation of

the data, adhering to the Euclidean geometry. An advantage of this proposed transform-

ation over the original ILR, is in the transformation’s ability to accept zero values in the

compositions when α > 0. However, a downside of the transformation is that a decision

has to be made of what value α will take. An advantage of the α-IT over the traditional

α-transformation is that is provides a direct connection to the spatial covariance structure,

allowing geostatistical tools like cokriging to be applied more coherently in a compositional

setting.

Clarotto et al. propose using maximum likelihood estimation (MLE) to determine the op-

timal value of α . The results demonstrate that the transformation performs particularly well

when compositions include zeros, although a small value for α may not be optimal when

zeros are present. The authors highlight that a potential bias may be introduced when

back-transforming the predictions from the transformed space to the simplex, due to the

non-linear nature of the α-IT transformation with the differences in geometry between the

Euclidean space and the simplex. As prediction is conducted in the unbiased transformed

space, the back-transformation process does not perfectly preserve the relationships among
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the components of the compositional data, leading to potential inconsistencies in the predic-

tions. The authors state that further research is needed to develop methods for correcting

and reducing this bias, ensuring more accurate back-transformation of compositional data.

Furthermore, the authors have not addressed the problem of incomplete compositions.

Another instance of applying log-ratios to spatial compositional data is within Tjelmeland

et al. (2003). Here, the authors apply ALR to spatial compositional data of sediments in an

Arctic lake, expanding on the work of Aitchison (1982), which did not account for spatial

dependence. Tjelmeland et al. extended the logistic normal distribution by incorporating

Gaussian processes to model the spatial structure. The authors state that this could be

extended by using Gaussian Markov random fields, which was conducted in Pirzamanbein

et al. (2018) explored in the next section.

Frantsuzova (2021) focuses on advancing the classification of tree species within a spatial

region using a dataset that contains a large proportion of zero values. Note that we study

the same data set in this chapter. The goal of this analysis was to address challenges with

spatial imagery in monitoring woodlands. To address the goal, Frantsuzova performs regres-

sion analysis on ALR transformed compositional tree data, with a small number (0.005)

added to each of the structural zeros present. Frantsuzova explored the hierarchical rela-

tionships among tree species compositions in the study area using clustering techniques to

investigate whether certain tree species exhibited spatial or compositional clustering pat-

terns. To do this, the original data compositions were transformed using CLR. Following

fitting hierarchical clustering with Ward linkage, it was found that no clear pattern emerged,

meaning that the clusters created didn’t distinctly represent different tree types, suggesting

that the tree types are mixed in a way that does not form distinct, identifiable clusters or

patterns. The spatial coordinates of the compositional data were then included as predictors

in random forest (RF) regression models, which aimed to predict the proportion of different

tree species. By including the spatial coordinates as predictors, the aim was to capture any



CHAPTER 5: METHODS FOR SPATIAL COMPOSITIONAL DATA 162

spatial dependencies in tree type distributions. Frantsuzova found that the impacts of spa-

tial variables on predictive accuracy varied, suggesting the presence of spatial structure that

interacts differently across tree species. This highlights an opportunity to develop further

the understanding of spatial structure in relation to tree species.

Whilst the most common approach to handling spatial compositional data involves applying

a log-ratio transformation before using standard statistical techniques, we argue that this

method has limitations in some cases. Notably, in Chapter 2, Section 2.2.1 we argued that

log-ratio transformations can be inappropriate in cases where zeros are present in the data -

a frequent occurrence in real-world compositional datasets. Furthermore, in the presence of

any missing values log-ratio transformations are not appropriate, limiting their application

in real-world spatial compositional data. Log-ratio transformations require complete data

for all components in order to be correctly defined. When a component value is missing,

some or all of the log-ratio transformations will not produce sensible results, as the necessary

relative proportions cannot be properly computed. As outlined within this review, there is

no approach that would be suitable to apply if there are zeros present in the data or any

missing values in the compositions, providing a need to develop a methodology to tackle

this gap in the literature.

5.2.2 Alternative approaches

Less work has been conducted on examining spatial composition without applying a log-

ratio transformation. In this section, we will review these approaches and explain why they

fall short of wholly addressing our aims.
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Walvoort et al. (2001) introduce an alternative method for spatial compositional data to

the log-ratio transformation - compositional kriging. The compositional kriging method

proposed extends ordinary kriging (Equation (5.2.1.6)) by incorporating constraints ne-

cessary for compositional data, i.e. nonnegativity and the constant sum constraint. The

compositional kriging approach considers all the compositional elements simultaneously by

minimising the sum of their prediction error variances:

min
λi

D

∑
i=1

(σ2
i +λ⊤

i Ciλi −2λ⊤
i ri), (5.2.2.1)

where λi is the vector of weights for ith component, σi represents the variance of the kriging

prediction for component i, Ci is the covariance matrix for for ith component, ri is the covari-

ance vector between observed data and the prediction point xi. Equation (5.2.2.1) is subject

to: unbiasedness - Λ⊤1(n) = 1D; nonnegativity - λ⊤
i zi(xi) ≥ 0 for i = 1, . . . ,D; and constant

sum - tr(Λ⊤X) = 1, where Λ = (λ1, . . . ,λD) is the matrix of weights, X is the data matrix and

tr(·) denotes the trace of a matrix. This allows prediction of the values of the compositional

variables at unsampled locations by accounting for the spatial relationships observed in the

data. This ensures that the predictions will adhere to the compositional constraints. Unlike

traditional kriging, that could result in predictions that are negative values or do not have

a constant sum, the authors assert that compositional kriging guarantees compliance with

the constraints. Walvoort et al. optimise the kriging weights using Lagrange multipliers and

Kuhn-Tucker conditions. The authors state that this approach accounts for spatial covari-

ance structures of the data without requiring transformations, unlike other methods that

require log-ratio transformations. An advantage of the compositional kriging approach is in

its ability to handle zero compositions. Yet, this was not examined within the case studies

examined in Walvoort et al. where the zero components were few and removed for analysis.

Pawlowsky-Glahn et al. (2016) state that this approach follows the Euclidean geometry

rather than Aitchison’s geometry. This assumption suggests that compositional data carry

absolute rather than relative information, which conflicts with Aitchison’s principles that

compositions are relative measures.
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Expanding on the work of Tjelmeland et al. (2003) discussed above, Pirzamanbein et al.

(2018) constructed a Gaussian Markov random field (GMRF) within a hierarchical spatial

model. This used the Dirichlet distribution to handle the compositional nature of the data

with the log-ratio to link the GMRF to the compositional probabilities. The latent field is

represented as an Nd ×1 vector with ηall = (η⊤
all,1, . . . ,η

⊤
all,d)

⊤, where each ηall,k is a spatial

field with N locations. The latent field is then connected to the observed spatial locations

through:

η =Aηall, (5.2.2.2)

ηall =Bβ+X, (5.2.2.3)

where A extracts observed elements, B is the matrix of covariates, β represents regression

coefficients, and X is the spatially correlated multivariate field. The spatial dependence is

modelled using a Gaussian Markov Random Field (GMRF):

X ∼ N(0,Σ⊗Q−1(κ)), (5.2.2.4)

where Q(κ) is a precision matrix approximating a Matérn field (Matérn, 1960) with spatial

scale κ , and Σ captures covariances among the components. The log-ratio link function is

constructed using ALR to map between the latent field and the compositions is given as:

ηs,k = log(zs,k)− log(zs,D), (5.2.2.5)

for k = 1, . . . ,D−1 for each spatial location s.

As outlined earlier (Chapter 2, Section 2.3.2) the Dirichlet distribution is limited due to its

lack of flexibility. Specifically, as it only has one variance parameter regardless of the length

of x, it may not capture complex dependencies present in the compositional data. While

the GMRF is computationally efficient due to the sparse precision matrices, it is important

to note that real-world spatial compositional data may not always conform to Gaussian
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distributions at the latent level. This assumption could lead to misrepresentation of the

spatial dependence and potentially biased predictions. However, with large spatial grids,

the computational demands could increase, greatly reducing the computational efficiency of

the method.

Feng et al. (2017) propose a two-stage spatial mixture Dirichlet regression model to account

for the compositional nature of spatial land cover data whilst allowing for zeros in the data.

This model also allows for compositions to be missing, as certain land cover categories may

not be observed at certain sampling locations. The two-stage model is formulated with the

first stage predicting whether the response type (e.g. the land cover category) is present or

absent using a spatial multivariate probit model from the raw compositions.

P(xi j = 1) = Φ(z⊤j βi), (5.2.2.6)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution,

z j is the covariate vector and βi are regression coefficients for response type i. This accounts

for spatial dependence through a spatial latent process. The second stage then models

the proportions of the land cover categories that are present, i.e. once a composition is

predicted to be present at a location, the second stage applies a Dirichlet regression only to

the remaining non-zero values. For locations with non-zero response compositions, the data

are modelled using a Dirichlet distribution. Let Gi j ∼ Gamma(κi j,1) where

κi j = ϕ µi j, (5.2.2.7)

µi j =
exp(z⊤j ηi)

1+∑I−1
i=1 exp(z⊤j ηi)

, (5.2.2.8)

where ϕ is the precision parameter and ηi are the regression coefficients for the Dirichlet

model. The compositional response Xi j is constructed as:

xi j =
Gi j

∑I
k−1 Gk j

, (5.2.2.9)
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ensuring the response is compositional and adheres to the unit-sum constraint. Through this

two-stage model, Feng et al. hope the model captures both the presence and absence of the

land cover types and their proportional compositions across the spatial space. However, this

approach requires at least one composition to be present at all spatial locations which could

be challenging in real-world applications if some categories are rarely observed or contain

many zeros. Additionally, the spatial dependence is only modelled in the first stage of the

model so some spatial structures might not be captured when forming the compositions in

the second stage, potentially leading to loss of information. The data tested only contained

three land cover categories, therefore, when there are a greater number of categories, the

number of parameters to estimate will grow which could increase the computational burden

and complexity of the model.

Therefore, as demonstrated in this section, there is currently no established method for

handling spatial compositional data that simultaneously accounts for the general presence

of zeros and missing values, which the novel approach presented in this chapter aims to

address.

5.3 Proposed Methodology

Recall that our aim is to develop a general multivariate framework that directly accounts

for compositional structure, accounts for spatial dependence through latent effects, allows

for zeros in the data and allows for missing values in the spatial compositions.
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If xs are compositional proportions, one option that we could consider is to assume that

compositions xs come from a Generalised-Dirichlet (GD) distribution (Wong, 1998), i.e.

xs ∼ GD(α;β). (5.3.0.1)

This distribution arises from a series of Beta distributions, for xs,i given xs,1, . . .xs,i−1:

xs,i|xs,1, . . .xs,i−1 ∼ Beta(αi,βi), (5.3.0.2)

where i = 1, . . . ,D−1 and xs,D = 1−∑D−1
i=1 xs,i. Here, αi and βi are the shape parameters of

the respective Beta distributions, where for each component i are given as:

αi = λi, (5.3.0.3)

βi = (λi+1 +λi+2 + · · ·+λD), (5.3.0.4)

where λi are the parameters for the Dirichlet distribution.

For a random vector xs = xs,1, . . . ,xs,D where xs,d ∈ (0,1) and ∑D
i=1 xs,i = 1, the probability

density function (PDF) of the GD is given as:

f (x;α,β) =
D−1

∏
i=1

1
B(αi,βi)

xαi−1
i

(
1−

i

∑
j=1

x j

)βi−αi+1

, (5.3.0.5)

where B(αi,βi) is the beta function given as Γ(αi)Γ(βi)
Γ(αi+βi)

.

When βi = αi+1,∀i = 1, . . . ,k − 1, the GD distribution reduces to the standard Dirichlet

distribution (the limitations of which we noted in Chapter 2, Section 2.3.2). In all other

cases, the GD has 2(D− 1) free parameters, where D is the length of xs, compared to D

for the Dirichlet. Thus, the GD has a more general covariance structure and is very flexible

compared to the Dirichlet. Examples of the GD being applied in practice can be found
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in Ankam (2019) and Bentahar (2015). Given that the GD can be expressed as series of

conditional Beta distributions, the GD can handle missing values in the data, meaning that

in a Bayesian framework we could predict the missing values given the others. However, one

limitation of the GD which is not suitable for our aim is that it does not allow zero values

in the compositions (or xi = 1, for that matter).

Following on from this, another option we could consider is a Zero-Inflated Generalised-

Dirichlet (ZIGD) (Tang et al., 2019). The ZIGD combines the GD distribution with a zero-

inflation component to model data better when many zeros are present. For our proportions

xs = xs,1, . . . ,xs,D, each xs,d can be zero with probability πi or otherwise follows the GD

distribution. For the ZIGD, the PDF is given as

f (xs;π,α,β) =
D−1

∏
i=1

(πi ·δ (xs,i)+(1−πi) · fGD(xs,i)), (5.3.0.6)

where B(αi,βi) is the beta function. The term πi · δ (xi) introduces the probability mass

at zero allowing xi to take zero values with probability πi. The term (1 = πi) · fGD(xs,i)

ensures that the component follows the GD distribution when it is not zero. In this case,

when βi = αi+1,∀i, the GD distribution reduces to the zero-inflated Dirichlet distribution.

Tang et al. (2019) give an overview of the ZIGD along with an application to microbiome

compositional data presenting advantages of the proposed method. However within a zero-

inflated approach, the zero-generating process is separated from the continuous distribution,

which may not always suit the purpose of the analysis. In the zero-inflated model, zeros are

treated qualitatively as a distinct category and not explicitly as a value that is only slightly

smaller than the smallest non-zero values (e.g. 0.01). The inflation of zeros is arbitrary,

meaning that zeros could be replaced in both the data and likelihood by any number (e.g.

31) without changing the results. In most real-world contexts of spatial modelling, we believe

it is preferable to create a continuum where the model recognises that a data point of 0.01

is more similar to 0 than it is to 0.5.
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A third option is to convert the proportions into conceptual counts and assume a Generalised-

Dirichlet-Multinomial (GDM) distribution, as proposed by Stoner et al. (2020c). Here, we

transform the proportions xs into counts vs = vs,1, . . . ,vs,D through choosing an artificial

total count N and computing vs,d = ⌊N/yd · xs,d⌋. Note that in Stoner et al. (2020c), ys = 1

and thus it is not written in the floor function. Use of the floor function instead of rounding

ensures that the created counts do not sum to more than N. We can then assume a GDM

distribution for vs:

vs ∼ GDM(µs,ϕs,N). (5.3.0.7)

If our original xs are already compositional counts, we can leave them as they are and

simply use the totals ys in place of N. As explored in Chapter 4, the GDM (Stoner et al.,

2020b) can in general be a versatile solution for adapting to different compositional count

data structures.

Recall from Chapter 4, Section 4.4, that the GDM arises as a mixture of a Multinomial and

a GD distribution such as:

vs|xs,N ∼ Multinomial(xs,N), (5.3.0.8)

xs ∼ GD(α,β), (5.3.0.9)

for the compositional proportions xs for spatial location s. The marginal probability mass

function of the GDM is then

p(v1, . . . ,vd|α,β,n) =
Γ(n+1)
Γ(vd +1)

d−1

∏
i=1

Γ(vi +αi)Γ
(

∑d
j=i+1 vi +βi

)
B(αi,βi)Γ(vi +1)Γ

(
αi +βi +∑d

j=i v j

) . (5.3.0.10)
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The GDM has the ability to model sparse data where both zero and one outcomes occur

with complex dependencies and overdispersion. The Multinomial part contributes some

variability to vs, which can be flexibly added to through the GD component, to capture

different variance patterns in real-world data well. Additionally, the GDM can handle missing

values in the compositions.

Stoner et al. (2020c) applied the GDM to global household fuel data to estimate trends in

the use of polluting and clean fuels for cooking. It has also been applied in Stoner et al.

(2020b) to model reporting delays in time series of infectious disease counts. In the case of

Stoner et al. (2020c), the flexibility of the GDM was intended to account for variability from

non-representative household survey designs, and its generality allowed the integration of

hierarchical structures to estimate trends in the fuel usage.

With respect to the creation of artificial counts vs from continuous compositions xs, the

choice of the total count N is to some extent arbitrary - it controls the “resolution” of pre-

dictions from the model (i.e. the number of decimal places), and smaller total counts will

mean the Multinomial is contributing more variance in the model. Stoner et al. conducted

a simulation experiment which demonstrated that as N increases, the accuracy of this con-

version to counts converges to the accuracy achieved by modelling original data directly.

The experiment suggested that an N of at least 10,000 yields nearly identical parameter

inferences as using the original data. The choice of the total count here can also be seen to

be equivalent to the decision made in other works of how much of a small number to add

to any zeros in the data.
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5.3.1 General framework

Recall that our plan is to create artificial counts vs with total N from xs if they are continuous

compositions xs (or alternatively leave them as they are if they are already counts).

Our general framework assumes that the counts vs arise from a GDM distribution, given

the total N (or ys in the case where xs are already count data):

vs ∼ GDM(µs,ϕs,N). (5.3.1.1)

As outlined in Chapter 4, Section 4.4, the GDM is parameterised in terms of µs and ϕs,

which relates to the expression of the GDM as a series of conditional Beta-Binomial models

for each count composition up to and including vs,D−1 (the last count composition vs,D is

given implicitly as ys −∑D−1
i=1 vs,i):

vs,1|N ∼ Beta-Binomial(µs,1,ϕs,1,rs,1 = N),

vs,2|N,vs,1 ∼ Beta-Binomial(µs,2,ϕs,2,rs,2 = N − vs,1),

...

vs,d|N,vs,d ∼ Beta-Binomial
(

µs,d,ϕs,d,rs,d = N − ∑
l<d

vs,l

)
.

(5.3.1.2)

Here, the µs,1, . . . ,µs,D−1 are the means of the Beta-Binomials and ϕs,1, . . . ,ϕs,D−1 the variance

parameters. Each µs,d is strictly between 0 and 1 and there is no sum constraint. The

derivation of the Beta-Binomial for the GDM is given in Chapter 4, Section 4.4.
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Next, we assume that µd and ϕd vary over the spatial locations s according to general

functions fd(·) and gd(·) of spatial location, i.e.

logit(µs,d) = fd(s), (5.3.1.3)

log(ϕs,d) = gd(s). (5.3.1.4)

These functions capture spatial variation in the mean and covariance structure of the data,

respectively. Either could include, for instance: spatial covariate effects, random effects,

spatial autocorrelation models or point processes. In the next subsection, we will propose a

version of this framework based on spatial penalised regression splines.

5.3.2 Spatial penalised regression splines

Penalised regression splines are a powerful tool for smoothing and modelling complex data

structures. They extend traditional spline regression by incorporating a penalty term that

controls the smoothness of the fitted curve. This penalty helps to avoid overfitting, ensuring

that the model captures the underlying trend without being overly sensitive to noise in the

data. This approach is particularly useful in Generalised Additive Models (GAMs) to model

nonlinear effects of covariates on the response. Full details of regression splines can be found

in Hastie (2017).

A spline is a piecewise polynomial function defined over a sequence of knots, with continuity

constraints ensuring smooth transitions between segments. For example, a cubic spline can

be constructed as:

Si(x) = ai +bi(x− xi)+ ci(x− xi)
2 +di(x− xi)

3. (5.3.2.1)
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A penalty term is then added to the spline function to penalise excessive wiggliness. The

penalised least squares problem outlined in Hastie (2017) is to minimise:

n

∑
i−1

(
yi −

p

∑
j=1

f j(x ji)

)2

+
p

∑
j=1

λ j

∫
( f

′′
j (x j))

2dx j, (5.3.2.2)

where the first term measures the goodness of fit, and the second term penalises the rough-

ness of f (x). The tuning parameter λ controls the trade-off between fit and smoothness.

A small λ allows a more flexible wiggly function, whereas a large λ produces a smoother

function, closer to a linear trend. The roughness penalty measures the integrated squared

second derivative of f (x) which reflects the curvature of the function. In the context of

GAMs, the penalised regression spline approach models the additive predictor η as

η = β0 +∑
j

f j(x j), (5.3.2.3)

where each f j(x j) is a smooth function estimated using penalised splines. This framework

is extensively discussed within Wood (2017). Penalised regression splines have been widely

used for modelling spatial data such as Sangalli et al. (2013) to model irregularly shaped

spatial domains and Fahrmeir et al. (2004) who apply a penalised spline GAM to analyse

space-time regression data, incorporating both spatial and temporal effects.

A key advantage of applying this approach is in its flexibility in selecting basis functions

to accommodate different data structures and modelling needs. These include commonly

used spline bases, such as thin-plate and cubic regression splines, which assume isotropy and

smoothness over a continuous spatial domain, as well as basis functions designed specifically

for areal data, such as Gaussian Markov random field smooths.
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The Bayesian framework for penalised regression splines offers a probabilistic perspective

on smoothing by interpreting the smoothing penalty as a prior distribution over the spline

coefficients, i.e.

β ∼ N(0,λ−1K−1), (5.3.2.4)

where β represents the spline coefficients, λ is the smoothing parameter and K is the

penalty matrix. The penalty matrix K captures the complexity of the spline basis functions

and penalises higher-order derivatives to enforce smoothness. This ensures that the spline

fit is smooth by penalising large variations in the coefficients β. This approach is detailed in

Wood (2016), which provides a comprehensive Bayesian formulation for GAMs. Wood looks

at automatically and reliably generating JAGS (Plummer, 2003) model specification code

and implementing any GAMs in R (R Core Team, 2021). Generally, our function f (x,y) can

be expressed as

f (x,y) =
K

∑
j=1

β jb j(x,y), (5.3.2.5)

where the β j are the spline coefficients and the b j(x,y) are the basis functions. Here, we

assume fk(·) is a penalised regression spline of space, i.e. logit(µ) = fk(s) = Zs,r ·br, where r

represents the basis functions.

Then, we assume a polynomial relationship between the means µs,d and the variance para-

meters ϕs,d. The polynomial relationship for ϕs,d is given as

log(ϕs,d) = ψ1,d +
4

∑
j=2

ψ j,d · (µs,d − µ̄s,d)
j−1, (5.3.2.6)
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where η is the linear predictor computed using the design matrix and parametric effects from

Equation (5.3.2.7). Normal priors are assigned to (ψ1,d, . . . ,ψ4,d), for example, ψ1,d ∼N(2,22)

and ψ2,d, . . . ,ψ4,d ∼ N(0,12). We can give µs,d as a function of the design matrix Z along

with b, the coefficients of the smooth terms for the spatial effect, e.g.

µs,d = expit(ηs,d),

ηs,d = Zs,r ·br, (5.3.2.7)

for r = 1, . . . ,R which are the number of the basis used for the splines.

The main novel aspects of our proposed method can be summarised as (i) use of the GDM

as a general modelling framework for spatial compositional data, (ii) integrating penalised

regression splines of space within the GDM and (iii) designing a polynomial link between the

mean and variance parameters, for an even more flexible (yet simple in terms of the number

of parameters) mean-variance relationship to suit different data sets than would otherwise

result from the GDM with non-varying variance parameters. Whether this improves model

fit is tested later in Section 5.4.1.

In comparison to that outlined in Chapter 4, this is a general form of our proposed GDM

spatial model and can be tailored for specific applications in constructing the mean and

variance parameters of the GDM.
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5.3.3 Tree species model

For the tree species application outlined in Section 5.1.1, each tree species is modelled by

individual Beta-Binomial models. As outlined in Section 5.3 our tree species proportions (xs)

can be transformed into counts (vs) (Stoner et al., 2020c). We decided to use a total count

of 100 to transform the proportions into counts. This is intuitive as it directly represents

percentages, making it easier to understand the transformed count data.

Let N = 100 be the total count of tree species in each spatial location s = 1, . . . ,S and vs,d

represent the corresponding count for the dth tree species (d = 1, . . . ,D) at each spatial

location s. Recall from Chapter 4, Section 4.4, the last composition D is modelled implicitly

and does not have an associated Beta-Binomial model. When selecting four tree species -

larch, oak, sitka spruce and sycamore - to model within our framework (Section 5.3.1), they

are assigned to the Beta-Binomials within the GDM in that given order, with the remaining

tree species being modelled implicitly as the last composition D.

From Listing 7, it can be seen that we have implemented a penalised regression spline

(Section 5.3.2) with a thin plate regression basis function. This is produced through the

specification of the spatial coordinates of the grid cell centroids within the s(.). We also

decided to use 400 basis functions for the regression spline to balance computational ef-

ficiency and flexibility, ensuring that the spline can capture the spatial patterns. This is

defined inside the spline in Listing 7.
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5.3.4 Implementation and prior distributions

As outlined in the previous chapters, all the code used to apply the proposed framework

was written and run using R (R Core Team, 2021) and the model was implemented using

NIMBLE (Valpine et al., 2017). In addition, all computations were carried out on a MacBook

Air laptop with an Apple M3 chip (8 physical cores) and with 16GB system memory or on

an Ubuntu Linux desktop computer with an Intel Core i9-13900K processor with 24 physical

cores (32 logical cores) with 128GB system memory. It will be stated throughout the chapter

which computer was used for each task.

Here, we detail how we constructed the smooth spatial regression spline f (s) for integration

within the general GDM framework. We do this using the mgcv package for R (Wood, 2003).

Firstly, we fit a GAM (Hastie, 2017) to produce the design matrix Z for the spline basis

functions. GAMs are a powerful tool to model spatial data as they are from the family

of generalised linear models where the linear response variable depends linearly on some

unknown smooth functions of the predictor variables. The link between these generalised

linear models and the additive were originally developed by Hastie (2017) with a full overview

of applying GAMs in R found within Wood (2017). However, note that we fit a GAM for

convenience to generate Z for use in our Bayesian model, but the actual “fit” is irrelevant, Z

depends only on the covariates and the model formula and does not depend on the values

of the response variable or on the estimated coefficients.

We can fit a GAM in R using the mgcv package (Wood, 2003) using the code given in

Listing 7. The predict function generates the matrix of linear predictors (lpmatrix) which

corresponds to the smooth term enclosed in the s(.). Each row of Z corresponds to a new

observation, and each column corresponds to a different basis function used in the model.

It essentially translates the smooth term in the model into a matrix form.
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1 spatial_gam_model <- gam(count/total ~
2 s(X_coord, Y_coord, k=r),
3 family = "binomial",
4 weights = total,
5 data = spatial_data)
6
7 Z <- predict(spatial_gam_model, spatial_data, type = "lpmatrix")

Listing 7: Spatial gam model code using the Binomial distribution to predict the design
matrix Z for the GDM where X_coord, Y_coord are the spatial coordinates and r the
number of basis functions.

Next, the jagam function (from mgcv package) is run to extract the penalty matrix associ-

ated with the smooth term, S1. Unlike the gam model from Listing 7, the jagam function

does not fit any model explicitly but returns standard spatial setup information, such as

the penalty matrix. We fit the jagam using the Binomial distribution to model the counts

as follows:

1 spatial_jagam_model <- jagam(count/total ~
2 s(X_coord, Y_coord, k=r),
3 family = "binomial",
4 weights = total,
5 data = data,
6 file = "spatial_model.jags")
7
8 S1 <- spatial_jagam_model$jags.data$S1

Listing 8: Spatial jagam model code using the Binomial distribution for compositional counts
where X_coord, Y_coord are the spatial coordinates and r the number of basis functions.

However, the Binomial family is a placeholder, as the model matrix and penalty matrix only

depend on the covariate values and the right-hand side terms specified in the formula, not

the response variable values or the distribution family.
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This function also writes a JAGS (Plummer, 2003) model specification to the .jags file listed

in file argument of the function. This output file forms the basis for creating the spatial

GDM model which we translate into our NIMBLE code. Further in-depth information about

jagam can be found in Wood (2016).

We can therefore specify a NIMBLE model given in Listing 9 for the tree species composi-

tional data. Note, the log probability density function for each Beta-Binomial is computed

using the same custom “NIMBLE function” outlined in Chapter 4, Listing 5.

For the terms that account for the spatial structure in the data, λi for i = 1,2 have a

Gamma(0.05,0.005) prior placed upon them, as can be seen in Line 9 from Listing 9. Here,

λ controls the smoothness of the effects for each tree species. The parametric effects br,k

have Normal priors assigned, where b1 ∼ N(0,102) and br ∼ N((0),K1r−1,r−1) for r > 1 for

r the number of basis functions chosen for the spline. K1 is constructed from the penalty

matrix S1 and the smoothing parameters λ which represent a regularised version of the

smoothing penalty matrix that incorporates both the individual smoothing of the spline

terms and their interactions. K1 is computed in Listing 9 in Lines 17-19 with the Normal

distribution placed on b in Lines 14-15.
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1 spatial_GDM_model <- nimbleCode({
2
3 ## FOR EACH TREE SPECIES ##
4 for (d in 1:N_types) {
5
6 ## PRIORS ##
7 for (i in 1:2) {lambda[i, d] ~ dgamma(0.05, 0.005)}
8 psi[1, d] ~ dnorm(2,sd=2)
9 for(j in 2:4){psi[j, d] ~ dnorm(0,sd=1)}

10
11 ## SPATIAL LOCATIONS ##
12 K1[1:(r-1), 1:(r-1), d] <- S1[1:(r-1), 1:(r-1)] *
13 lambda[1, d] + S1[1:(r-1), r:((r-1)*2)] *
14 lambda[2, d]
15 ## PARAMETRIC EFFECT ##
16 b[1, d] ~ dnorm(0, sd = 10)
17 b[2:r, d] ~ dmnorm(zero[1:(r-1)], K1[1:(r-1), 1:(r-1), d])
18
19 ## LINEAR PREDICTOR ##
20 eta[1:S, d] <- Z[1:S, 1:r] %*% b[1:r, d]
21
22 ## MEAN PARAMETER ##
23 mu[1:S, d] <- expit(eta[1:S, d])
24 mu_mean[d] <- mean(mu[1:S, d])
25
26 ## LOOP OVER SPATIAL LOCATIONS ##
27 for (i in 1:S) {
28 ## VARIANCE PARAMETER ##
29 log(phi[i, d]) <- psi[1, d] +
30 psi[2, d]*(mu[i, d]-mu_mean[d]) +
31 psi[3, d]*(mu[i, d]-mu_mean[d])^2 +
32 psi[4, d]*(mu[i, d]-mu_mean[d])^2}
33 }
34 ## MODEL COUNTS V ##
35 for (i in 1:S) {
36 ## FIRST SPECIES ##
37 v[i, 1] ~ dbetabinomial(mu[i, 1], phi[i, 1], y[i])
38 ## LOOP OVER THE REMAINING SPECIES ##
39 for (d in 2:N_types) {
40 v[i, d] ~ dbetabinomial(mu[i, d], phi[i, d],
41 y[i] - sum(v[i, 1:(d-1)]))
42 }}
43 })

Listing 9: Custom R NIMBLE model code to fit the multivariate spatial GDM model which uses
the R “NIMBLE function” code for the dbetabinomial function from Chapter 4 Listing 5.
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Given the flexibility that using NIMBLE provides, we can select different samplers to use to

aid the convergence of the parameters. Regular slice samplers were placed on the smoothing

parameters λi for i = 1,2 which work by iteratively sampling from a region under the target

density function, ensuring efficient exploration of the parameter space without requiring

gradient information (Neal, 2003). The Automated Factor Slice Sampler (AFSS) (Tibbits

et al., 2014) is a variant of the slice sampler designed to sample efficiently from high-

dimensional and structured distributions. The AFSS breaks up the target distribution into

factors, allowing it to explore the parameter space more effectively by sampling along specific

directions that align with the structure of the distribution. The AFSS is particularly useful

for complex models with correlated parameters or hierarchical structures, where traditional

slice samplers might struggle. We used the AFSS to sample efficiently the parametric effects

b and the flexible mean-variance relationship ϕ to reduce the number of MCMC iterations

and overall computation time needed for convergence.

The convergence of MCMC chains for all models is assessed following the procedure outlined

in Appendix B. In brief, this includes visually inspecting the traceplots to confirm that all

chains are stationary and overlapping with each other, and computing the potential scale

reduction factor (Gelman et al., 1992) for each parameter; where we assume that the chains

have converged if PSRFs are less than 1.05.

5.4 Application to tree species data

In this section, we apply our proposed framework from Section 5.3 to a spatial tree species

dataset. These data contain the estimated proportions of each tree species for each spatial

location within the grid.
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We assessed our model through a combination of in-sample and out-of-sample posterior

predictive checking, using Monte Carlo simulation, in two experiments. These checks allow

us to assess how good our model is at producing data values with similar characteristics to

the original data values, some of which we remove from the model training data (i.e. we

set them to NA) to gain an insight into out-of-sample prediction. The two experiments are

detailed in the next two subsections. Before that, we will describe the posterior predictive

checking process.

We created simulation functions that use the parameter samples from each iteration of

the model to simulate a new data set for each MCMC iteration. For each sample from the

model, we run the simulation function with the specific combination of parameters (e.g. µs,d

and ϕs,d) produced by the model for that iteration. This process is repeated for the total

number of MCMC iterations, and the resulting simulated counts are referred to as replicates

or replicate data. These replicates are synthetic datasets that reflect the uncertainty in

the model’s parameter estimates. Recall, this is the same process detailed in Chapter 4,

Section 4.7.2 for posterior predictive checking. Within this instance, for each saved MCMC

iteration the procedure for generating replicate tree species counts from the GDM model is

as follows:

1. Simulate new case counts for the first tree species (larch) from the first Beta-Binomial

in Equation (5.3.1.2), using the samples of µs,1 and ϕs,1 from that MCMC iteration.

2. For the next tree species, we compute the counts of vs,d (Equation (5.3.1.2)), i.e. the

remainder of the total counts ys,d not yet accounted for by the simulated counts of

the previous tree species in the ordering. Then, we simulate new counts for this tree

species from the corresponding Beta-Binomial.

3. Repeat Step 2 until counts have been simulated for all tree species (oak, sitka spruce

and sycamore) from all Beta-Binomials in Equation (5.3.1.2).
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4. Lastly, the final count vs,D (in this case the aggregate count for the remaining tree

species) can be computed as vs,D = N −∑D−1
k=1 vs,k, where N is the total count. If the

original compositions vs,D are counts and not proportions then N = ys.

This results with the same number of replicate counts as we have MCMC iterations, i.e. if

we have 1,000 MCMC iterations we will have 1,000 replicate datasets.

After producing the replicate data, we can assess how well the replicates match the original

data by comparing their distributions. One way to do this is by computing a relevant stat-

istic (e.g. mean, median or standard deviation) for each replicate dataset and visualising the

distribution using density plots, with the corresponding statistic from the original data over-

laid. This helps determine whether the observed statistic is plausible within the distribution

of the replicates. Alternatively, we compute quantiles (from 0.01 to 0.99 in increments of

0.01) for each replicate dataset. Specifically, for each tree species within each MCMC itera-

tion, we compute the quantiles of the replicate counts resulting in one sample per quantile

per iteration. We then summarise these quantiles across all MCMC iterations by computing

the median and the lower (2.5th percentile) and upper (97.5th percentile) bounds for each

quantile level. This provides us with a comprehensive view of the distribution and spread. A

quantile-quantile plot comparing the replicate data quantiles against those from the original

data, along with 95% intervals, offers another visual assessment of the model fit. Ideally,

the quantiles of the original data should fall within the 95% interval of the replicates, while

the median posterior predictive quantiles should closely follow the original data quantiles,

aligning with the diagonal line.
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Additionally, we can compute summary statistics to quantify the point estimate (e.g. pos-

terior median) prediction accuracy for out-of-sample data. This includes computing the

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the mean across the

replicates compared to the original data values at each spatial location. Furthermore, we

calculated the MAE for the median posterior predictive quantile values with respect to the

original data quantile values. This provides an indication of how well the quantiles of the

replicates fit the original data, which is useful for comparing different model variations.

Next, we computed the uncertainty intervals for each data point and computed coverage

rates to verify these intervals. In our Bayesian modelling context, by “coverage” we refer to

the percentage of times that a posterior predictive interval with a given level of uncertainty

contains the original data value. For example, ideally, if we compute 95% uncertainty inter-

vals for all data points, 95% of them should include the original data value. If the coverage

rate is below 95%, the model is too confident. If the rate is above 95%, the model is too

uncertain. Following on, we can examine the mean width of the intervals. This is a use-

ful measure for comparing models. If two models each have appropriate coverage rates, we

prefer the model with lower mean widths as it indicates greater prediction precision while

still providing correct coverage.

5.4.1 Single tree prediction experiment

We first tested our proposed model for a single tree species, larch, as an initial step in the

development of the full multivariate model, in particular to inform a model for ϕs,d that

achieved a suitable model fit. We thus compared the model given in Section 5.3.2, where ϕs,d

are a polynomial function of µs,d (Equation 5.3.2.6), to an alternative model where ϕs,d does

not vary in space, i.e. there is a single ϕs,d for all spatial locations - ϕs,d ∼ Gamma(2,0.05).
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To compare the two models, we carried out an out-of-sample prediction experiment to assess

our model’s performance in predicting the unseen larch counts. Within our cross-validation

setup, we split the data into two approximately equal parts, this resulted in 1,077 data

points in the “train data” and 1,076 within the “test data”. The training data are used for

modelling and the test data are excluded. Heatmaps for the respective train and test data

for the tree larch are given in Figure 5.2.

Train Test

Count
0 25 50 75 100

Figure 5.2: Heatmaps of the counts of Larch within each grid cell showing the split of grid
cells by train and test.

Following fitting each model (GDM-fixed and GDM-polynomial), we can run the simulation

function provided in Listing 10, where how the function is run to produce the replicate

data shown in Lines 24-30. From the listing, the function given takes on the inputs: N, y,

µ and ϕ , where N is the number of spatial locations (a vector of length 1), y is the total

count (a vector of length N) and lastly, µ and ϕ are the outputted parameters from the

fitted model (matrices with a dimension of the number of samples × N). Lines 11-15 show

the function simulating the new counts from the Beta-Binomial distribution. The resulting

matrix produced from the function is of dimension S × number of samples which can then

be analysed to see how closely they fit the characteristics of the train and test data. This
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function can be used with both the ϕs,d specifications with the only difference seen in the

prior extraction from the model before running the function, as the two ϕs,d specifications

differ in dimension. When producing replicates for the train and test data the only difference

is seen in the number given to the function as N.

1 ### SIMULATE NEW COUNTS ####
2 simulate_tree_count <- function(S, y, mu, phi) {
3
4 # INITILISE TO STORE SIMULATION
5 simulated_data <- array(0, dim = c(S))
6
7 # SIMULATE COUNTS
8 observation <- rbinom(S, y, rbeta(S, mu*phi, (1-mu)*phi))
9

10 # SAVE SIMULATED VALUES
11 simulated_data <- observation
12
13 return(simulated_data)
14 }
15
16 ### RUN FUNCTION ####
17 simulation_replicates <- array(NA, dim = c(S, N_samples))
18 for (i in 1:N_samples){
19 simulation_replicates[, i] <- simulate_tree_count(
20 S = S,
21 y = y,
22 mu = mu_samples[i, ],
23 phi = phi_samples[i, ])
24 }

Listing 10: Custom R function code to simulate replicates from a single tree species spatial
compositional model.

For both the single tree species spatial GDM-polynomial and GDM-fixed models, (run on

an Apple MacBook Air M3), we ran four chains in parallel for 2,000 MCMC iterations, with

a burn-in of 1,000 discarded in each chain. This took approximately 2 hours per model. We

computed the PSRF for each parameter resulting in 88% of the PSRFs for both models being

less than or equal to 1.05, respectively, both with a median of 1.01, indicating convergence.
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5.4.1.1 Single tree prediction experiment results

The visual inspection of the two models fitted, GDM-polynomial and GDM-fixed, is given

in Figure 5.3, which shows the density of the distribution of both the mean and standard

deviation of the replicate values against the original data values given by the vertical dashed

lines. Overall, the GDM-polynomial outperforms the GDM-fixed for both the train and test

data in accurately capturing the overall means and standard deviations, as its peak aligns

with the original data statistics better. The only exception to this is the distribution of the

standard deviation of the replicates from the test data, where the original data line occurs

at the peak for the GDM-fixed model. However, for the GDM-polynomial model, the density

curve still includes the original data lines within the bulk of the distribution, suggesting that

the standard deviations of the original data are plausible values within the distribution.

This is supported by the quantile plots (Figure 5.4); for both the train and test data, the

original data quantiles follow the quantiles from the GDM-polynomial more closely and

remain within the 95% interval, with only a slight tail outwith this region seen for the

test. It can be noticed that for the GDM-fixed, the original data quantiles depart from the

95% interval with a clearer deviation for the test data. This indicates that, when assessing

visual comparisons, the GDM-polynomial fits the distribution of both the train and test

data significantly better for the single tree model.

To quantify what can be seen visually, we compute various summary statistics given in

Table 5.2. For the training data, the point prediction accuracy of the GDM-polynomial and

GDM-fixed models is very similar with only a 0.27 and 0.04 difference in MAE and RMSE

values, respectively, in favour of the GDM-fixed. A greater difference between the two models

is observed when comparing the MAE of the median quantile values to the original data

quantiles, with a percentage difference of 58%. This indicates that for the training data,

the GDM-polynomial quantile values more closely align with the original data quantiles,
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Figure 5.3: Density plots for the GDM-polynomial and GDM-fixed models for the posterior
predictive sample mean and standard deviation for the train and test data for Larch. The
different coloured densities correspond to each of the methods: GDM-polynomial and GDM-
fixed with the original data given by the vertical line.
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Figure 5.4: Quantile plots for the GDM-polynomial and GDM-fixed models for the train and
test data for Larch. The points represent the median posterior predictive quantile values for
each method: GDM-polynomial and GDM-fixed. The values for the original data quantiles
are indicated by the lines. The shaded areas represent the 95% intervals associated with
each quantile.
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corroborating what is seen in Figure 5.4. A similar picture is noticed for the test data,

where there are very similar MAE and RMSE values for both the GDM-polynomial and

GDM-fixed when compared to the original data values. Again, when considering the MAE

of the median quantile values, the GDM-polynomial has far superior performance with a

MAE value 53% less than the GDM-fixed. Therefore, in terms of point prediction accuracy

both models present a similar picture with the GDM-polynomial demonstrating a slight

improvement.

To assess point prediction uncertainty, we examine coverage rates for the uncertainty inter-

vals and the mean widths associated with each interval for 80%, 85%, 90%, 95% and 99%.

Coverage rates, as presented in Table 5.3, indicate the percentage of times that a posterior

predictive interval with a given level of uncertainty contains the original data value, defined

in Section 5.4. We investigate how close the coverage rate is to the associated percentage of

the uncertainty interval. Ideally this value should be similar otherwise the model could be

too confident or uncertain. It can be observed that for all the intervals for both the train

and test data, the coverage rate for both the GDM-polynomial and GDM-fixed models is far

greater than their associated uncertainty percentage, i.e. for the 95% uncertainty interval,

the coverage for the GDM-polynomial and GDM-fixed are 99.2% and 98.9%, respectively.

This could mean that our models are too uncertain. Therefore, we can examine the mean

width of each interval. It is evident that the GDM-polynomial has larger interval mean

widths than the GDM-fixed, suggesting that the GDM-polynomial may be too uncertain as

indicated by the wide intervals. However, for the two models the mean widths of the inter-

vals for smaller percentage of uncertainty are more similar. For example, the mean widths

of the 80% uncertainty interval are 34.3 and 33.1, for the GDM-polynomial and GDM-fixed

models respectively. As we examine a higher percentage of uncertainty intervals, the differ-

ence in mean widths of the intervals between the two models also increases, i.e. for the 80%

uncertainty interval for the train data, the difference in the mean widths of the intervals is
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1.2 percentage points but for the largest interval (99%) the difference is 10.6. We can identify

a similar pattern for the test coverage rates too. Overall, this implies that the GDM-fixed

model has greater prediction precision and is effectively capturing the uncertainty in the

predictions.

Table 5.2: Summary statistics quantifying the prediction accuracy for the GDM-polynomial
and GDM-fixed models.

Statistic Train Test
GDM-
polynomial

GDM-
fixed

GDM-
polynomial

GDM-
fixed

MAE 10.11 9.84 12.08 11.88
RMSE 15.29 15.25 18.37 18.64
Quantile-MAE 0.84 1.98 0.96 2.06

Table 5.3: Bayesian coverage of the uncertainty intervals and their associated mean widths
for the GDM-polynomial and GDM-fixed models.

Uncertainty Interval Train Test
GDM-
polynomial

GDM-
fixed

GDM-
polynomial

GDM-
fixed

80% coverage 95.2% 94.9% 87.3% 86.1%
mean width 34.3 33.1 33.5 31.9

85% coverage 96.3% 96.5% 91.3% 88.9%
mean width 39.9 37.7 39.1 36.4

90% coverage 97.6% 97.9% 94.2% 92.6%
mean width 47.7 43.8 46.8 42.7

95% coverage 99.2% 98.9% 97.4% 96.2%
mean width 60.7 53.8 59.6 52.8

99% coverage 99.7% 99.9% 99.7% 99.4%
mean width 83.5 72.9 82.6 72.4

After conducting a cross-validation prediction experiment to assess and compare the per-

formance of a polynomial relationship for the variance ϕs,d versus a single fixed value, it

can be concluded that both models provide similar fits both in-sample and out-of-sample.

Therefore, both setups for ϕs,d could be sensible to use in practice but we will use the

GDM-polynomial moving forward given the advantages it has by capturing the distribution

better. We will now consider the GDM-polynomial model for a multi-tree setting, with more

tree species included.
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5.4.2 Multi-tree prediction experiment

As our aim is to model spatial compositional data effectively, here we move on a multi-tree

problem, now only using the polynomial ϕs,d version of our model shown in Section 5.4.1.

To reduce the complexity of fitting the GDM to the full multivariate tree species data, we

decided to select four tree species of interest - larch, oak, sitka spruce and sycamore. We

also randomly select a reduced data set of 1,000 spatial locations from the original 2,153

locations. This resulted in a data matrix of dimension 1000×4. The four tree species have

a varied levels of counts over the whole spatial area with each having a hotspot in different

sections of the grid.

We then designed a prediction experiment to assess if the model is effective at predicting

missing values in the compositional counts. As we had no missing values in the data origin-

ally, we decided to “poke holes” in our 1,000 randomly selected spatial locations by making

some of the observed counts missing (NA). To setup this we follow these steps:

1. Randomly select 1,000 spatial locations from the original data.

2. From these 1,000 spatial locations:

• Randomly sample 200 spatial locations to introduce one missing tree species.

• From the remaining spatial locations, select another 200 spatial locations which

will have two missing tree species.

• Finally, from the remaining 600 spatial locations, randomly select another 200

to introduce three missing tree species.
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This results in a dataset with 400 spatial locations which have no missing components, then

200 spatial locations with one missing component, 200 spatial locations with two missing

components and 200 spatial locations with three missing components. The resulting data

contain 50.2%, 43.6%, 79.7% and 53.8% of zeros within each tree species larch, oak, sitka

spruce and sycamore, respectively. Additionally, as we have introduced missing components,

we have 29.1%, 30.7%, 30.7% and 29.5% of missing counts for larch, oak, sitka spruce and

sycamore, respectively. The associated heatmap for the four tree species with the missing

counts is shown in Figure 5.5 with the missing spatial locations clearly outlined by the

orange grid cells.

Sitka spruce Sycamore

Larch Oak

Count
0 25 50 75

Missing Count

Figure 5.5: Heatmaps of the counts of the tree species: Larch, Oak, Sitka spruce and Syca-
more; within each grid cell from the 1,000 randomly selected locations for the GDM. The
spatial locations which contain a missing count is shown by the orange grid cells.

Once the multivariate spatial compositional data with missing values has been created, the

GDM model can be implemented as in Section 5.3.4 with the custom R NIMBLE model code

from Listing 9. One change to the model code when the response contains missing values

is that unobserved vs,d are sampled by the MCMC algorithm using slice samplers, and we



CHAPTER 5: METHODS FOR SPATIAL COMPOSITIONAL DATA 194

save the samples generated by the algorithm. This means that we no longer need to simulate

new counts through a function (such as for the single tree experiment in Listing 10) but we

extract them from the model output instead (since those samples are posterior predictive

samples). In addition, as our data now contains NA values, the model requires additional

information to sample these missing values. In this case, code is added to the GDM to

compute initial values for vs,d where the counts are missing and assigns NA values where

data are available. When the model is compiled, it integrates the computed initial values

with the data, resulting in a complete vs,d for the GDM that will be updated with sampling.

Similarly to the single tree experiment, we assessed the fit by producing replicate values for

each tree species using the same Monte Carlo simulation method outlined in Section 5.3.3.

The adapted code for the multivariate case is given in Listing ??, it should be noted here

that the values of S and y are that of the reduced data of the randomly selected rows of the

data that the model was fitted to, i.e. S = 1000.

We ran the GDM model on a computer with Intel Core i9-13900K processor for 10,000

iterations with 5,000 discarded for burn-in, with four chains run in parallel. This took

approximately 16 hours. We computed the PSRF for each parameter resulting in 99% of the

PSRFs in the two models being less than or equal to 1.05, respectively, both with a median

of 1.00, indicating convergence.

5.4.2.1 Comparison Spatial Model

To examine the effectiveness of our proposed framework with respect to predicting missing

counts within the components, we chose to compare our GDM approach against a com-

monly used alternative which does not take into account the compositional nature: GAM

(Section 5.3.4).
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Note that the missing values in the compositions effectively rule out applying log-ratio trans-

formations to the data, which would align with other approaches reviewed in Section 5.2.2

and retain compositional information. We thus fit a series of single-tree GAMs to the counts.

These GAMs assume that the counts vs,d for tree species come from a quasi-binomial model:

vs,d ∼ Quasi-Binomial(ns, ps,d), (5.4.2.1)

where ηs,d is the inverse link function for the quasi-binomial, ns is the total number of

trials, i.e. the total count of trees in location s and ps,d is the probability of success, i.e. the

proportion of tree species d in location s. For the quasi-binomial distribution, the logit link

function is applied to ps,d:

logit(ps,d) = β0 + s1(ρs,d)+ s2(δs,d), (5.4.2.2)

where β0 is the intercept, s1 and s2 are smooth functions of the coordinates fitted using

splines with r basis functions and ρ and δ represent the x-coordinate and y-coordinate

of the spatial location s. We used the quasi-binomial family as the Beta-Binomial family

is not currently implemented in the mgcv package and the quasi-binomial also allows for

overdispersion in the counts.

After constructing the missing tree species data in the same way as for the GDM model,

the GAMs are fitted using the code in Listing 11. The predicted counts for each of the four

GAMs are produced using the predict function from the mgcv package (Wood, 2003). It

took approximately 12 minutes to run the four GAMs on an Apple MacBook Air M3 for

each tree species for 400 basis functions for the 1,000 randomly selected spatial locations.
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1 tree_gam <- gam(count / total ~ s(X_coord, Y_coord, k = r),
2 family = "quasibinomial",
3 weights = total,
4 data = missing_tree_data)

Listing 11: R GAM code to fit spatial GAMs to each of the tree species where count will
be replaced with larch, oak etc., for the count for each tree species. The GAM is produced
using the “quasibiomial” distribution with r the number of the basis functions set to 400.

By comparing the GDM model and the GAMs, we can assess the difference between a

model that accounts for the compositional nature of the data and another that does not,

with respect to predicting missing values where information (counts) for the other tree

species is available. The aim is that in addition to knowing the total count of each spatial

location, which is the case for both models, the GDM is superior as it has the information

of the counts of the tree species within that location, i.e. if the counts are (?, ?, 50, 10) the

model can see that the first two missing values cannot exceed 40. Comparison with GAMs

fitted using the mgcv package is advantageous because we can use the same basis function

for both models.

To assess which model (GDM or GAM) performs better in terms of predicting the counts

of tree species within each spatial location, we compared the counts both visually and using

summary statistics. This involved plotting the predicted counts against the observed counts

for each spatial location, and looking at how different the predicted counts for each model

were in comparison to the y= x line, which represents perfect agreement between predictions

and observations. Any points that lie on the y = x line indicate that the predicted count is

the same as the observed count. Futhermore, any over-predicting or under-predicting in the

model is given by points falling either above or below the y = x line, respectively. We also

inspected heatmaps for each model, which visually show how similar the predicted counts are

to the original heatmaps from the observed data. Additionally, we produced some numerical

comparisons to summarise which model was performing better on average: this included

computing the MAE and RMSE, as done for the single tree species model comparison in

Section 5.4.1. We also computed an R2-type quantity, ξ , that quantifies GDM prediction
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error variance relative to the baseline GAM model, using the Mean Square Error (MSE) of

both models, defined as:

ξ = 1− MSEGDM

MSEGAM
. (5.4.2.3)

This is a measure of how much better the GDM model reduces out-of-sample mean squared

prediction errors compared to the GAM. Values of ξ close to 1 indicate that the GDM

predictions reduce the MSE effectively compared to the GAM, whereas values near 0 indicate

little difference in the models. Negative values of ξ indicate that the GDM model performs

worse than the GAM.

5.4.2.2 Multi-tree prediction experiment results

Figure 5.6 presents a side-by-side visual comparison of the predicted and observed counts

for each tree species for the GAM and GDM models, with the grid on the right-hand side

illustrating the number of components missing within each species.

As an illustrative example, for the tree species larch (Figure 5.6 (a), the GDM model pro-

duces predictions that align reasonably well with the actual values, with the points within

the GDM column following the red y = x line. The GDM predicts the larch counts more

accurately when it is the only missing tree species, as shown in the top grid. However,

when the larch counts are missing alongside two other species, the model under-predicts the

counts of larch, with points deviating further from the line. When larch is not the only tree

species missing, the predictions tend to cluster around the origin, both above and below

the y = x line. In contrast to the GDM, the GAM consistently over-predicts larch counts

across all levels of missing components (1, 2 and 3), as evident from the clusters of points

concentrated in the top-left area of each plot in the figure. The largest difference between

the two models is observed in Figure 5.6 (c) for the tree species sitka spruce. This tree

species has the highest number of zero values compared to the other species, with 79.7%
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Figure 5.6: Scatterplots of the predicted counts against the observed counts for each tree
species for the GDM and GAM for the 1,000 randomly fitted grid cells. The y=x line is
given in red which indicates perfect agreement between the predicted and observed counts.
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of its values being zero. It can be seen that the GDM is doing fairly well at predicting the

counts of sitka spruce with the points lying close to the y = x red line. A vastly different

picture is displayed for the GAM which has very few points lying on or close to the identity

line, indicating that the predictions for sitka spruce do not align with the actual values in

the data, both over and under predicting the counts. Moreover, it seems that that GAM

has predicted counts close to the total value 100 over all cases where sitka spruce is missing

even when the actual count of sitka spruce is zero.

Figure 5.7 presents heatmaps of predicted counts for each model alongside observed counts

for 1,000 randomly selected spatial locations, providing clear evaluation of how effectively

each model captures the counts of each tree species. Inspecting the GDM column in the

figure reveals that overall the GDM has predicted counts that are reasonable when compared

to the observed data. Overall for all tree species, the GDM predictions closely align with

the observed data’s colour grid cells, effectively capturing each species clusters of counts

across the AOI. However, the GDM does seem to under-predict some counts, shown for

sitka spruce where the counts do not exceed 50. On the other hand, the GAMs consistently

predicts high counts (close to 100) for each tree species, as illustrated in the heatmaps where

numerous yellow grids indicate counts around 85–100 across the spatial locations, a pattern

that reflects what we identified in the GAM scatterplots. This contrasts significantly with

the heatmap of the observed counts, which shows very few yellow grid cells for any tree

species, highlighting the GAMs significant over-prediction of counts.

The summary statistics comparison in Table 5.4 further supports this, quantifying the per-

formance between the two models, presenting the MAE, RMSE and ξ (Equation (5.4.2.3))

for each model in three ways: across all levels of missing components for each tree species,

overall for each tree species and the model as a whole. The table is coloured with green cells
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Figure 5.7: Heatmaps of the observed and predicted counts for each tree species for the
GDM and GAM for the 1,000 randomly fitted grid cells which had one or more missing tree
species count.
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that represent the lowest MAE or RMSE value. A 2% tolerance has been applied, meaning

that more than one value may be coloured green in the event of a near tie. The initial

comparison will be conducted between the GDM and GAM-400 where both models have

been fitted with 400 basis functions.

A similar picture is presented across each of these measures showing that the GDM has su-

perior performance in predicting the counts of each compositional tree species. For example,

for the MAE, the largest difference between the two models is presented when larch plus

another tree species is missing, where the MAE for the GDM is 17.6 lower than the MAE

for the GAM. This was shown in Figure 5.6 (a) where the GAM over-predicted the small

values to be very high values, whereas the GDM predictions follow the trajectory of the

y = x line. Overall, based on the MAE results, the GDM predictions outperform the GAM

for the tree species larch. When not considering the number of missing components, there is

a 66% percentage difference between the MAE for the two models for larch in favour of the

GDM. The tree species oak (not considering the number of missing tree species) appears to

have the smallest difference observed between the MAE values for the two models at only

2.4 suggesting that for this tree species the models have a similar performance in predicting

the counts. Overall, the GDM model performs better with a MAE value of 11.4 compared

to the GAM MAE of 19.5, showing a 53% lower MAE for the GDM.

The RMSE also shows the largest difference between the models is for larch and the difference

is minimal for oak. Sitka spruce, which contains the highest number of zeros, shows a 20.2

lower overall RMSE for the GDM compared to the GAM. This suggests that the GAM

struggles to capture zeros in the data, as illustrated in Figure 5.7, where it tends to over-

predict counts. Again, the GDM consistently outperforms the GAM, with an RMSE that is

17.4 lower.
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Lastly, we computed ξ , an out-of-sample R2 (Equation (5.4.2.3)), to quantify any improve-

ment in out-of-sample MSE from the GDM model, relative to the GAM. Here we see from

the final column in Table 5.4 that, as all values are greater than zero, the predictions from

the GDM are closer to the actual values in comparison to the GAM. Any ξ values close to

1 indicate stronger evidence that the GDM is performing better than the GAM, which is

seen with most values of ξ greater than 0.7. The lowest ξ values are observed for the tree

species oak, particularly when there is more than one tree species missing alongside oak,

which supports the findings seen within the MAE and RMSE. When evaluating each tree

species without considering the number of missing components, the results strongly favour

the GDM, as the values exceed 0.75 for three of the tree species with the only exception

seen for oak that has an ξ of 0.5. Interestingly, sitka spruce has the highest overall ξ value

of 0.84, further indicating that when there is a large number of zeros in the component the

GDM outperforms the GAM in prediction performance.

Since the initial GAM with 400 basis functions did not adequately fit the spatial composi-

tional data, we assessed the model’s performance by fitting GAMs with 200 and 600 basis

functions to the missing tree species data. The performance of each model was quantified

using MAE and RMSE, as presented in Table 5.4. As the number of basis functions in the

GAM increases, the model tends to overfit the tree species counts, with the GAM with

600 basis functions performing less adequately than the model with 400 basis functions.

However, interestingly, the GAM with 600 basis functions performs better than the other

two models for sitka spruce, as indicated by the lowest MAE and RMSE values across all

GAMs, although this is on par with the GDM. On the other hand, the GAM with 200 basis

functions shows better performance than the GDM in some cases, for example, when larch

is missing along with two other tree species, and oak is not the only missing tree species.

For both larch and oak, the overall tree species MAE favours the GAM with 200 basis
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Table 5.4: Summary statistics quantifying the prediction accuracy of the missing composi-
tions for the GDM and GAM. Each summary statistic is given for the GAM for 200, 400
and 600 basis functions for comparison. ξ (Equation 5.4.2.3) is computed for the GDM and
GAM with 400 basis functions. The lowest Mean Absolute Error (MAE) or Root Mean
Square Error (RMSE) is highlighted in green, with a 2% tolerance applied in cases of near
ties.

Tree Species MAE RMSE ξ
missing GDM GAM GDM GAM

200 400 600 200 400 600

larch
1 7.8 9.2 18.0 18.9 13.1 17.4 35.5 35.2 0.864
2 11.4 11.6 29.0 20.8 16.6 18.2 45.4 35.1 0.867
3 14.3 12.8 23.3 22.1 20.6 20.1 38.9 36.8 0.721

oak
1 9.9 13.8 20.2 29.9 15.8 19.9 34.6 45.8 0.791
2 16.5 15.1 18.0 27.2 22.8 22.5 31.1 43.4 0.461
3 17.0 16.0 17.7 27.7 24.5 24.8 30.8 43.8 0.369

sitka
spruce

1 5.1 16.2 12.5 7.2 10.5 35.1 29.1 17.6 0.871
2 6.6 15.0 13.0 9.6 13.6 31.4 28.5 21.6 0.770
3 5.5 10.1 14.2 5.9 12.3 25.8 33.5 17.0 0.865

sycamore
1 8.5 11.4 21.6 29.6 13.8 19.7 37.9 47.9 0.867
2 12.5 12.8 21.3 20.6 18.8 20.6 36.1 35.5 0.728
3 12.4 12.3 23.5 31.6 18.3 20.4 39.7 49.6 0.788

larch 12.3 11.8 24.3 21.2 18.2 19.0 40.7 36.0 0.799
oak 15.8 15.3 18.2 27.8 22.8 23.3 31.5 43.9 0.478
sitka
spruce 5.8 12.6 13.6 7.2 12.6 30.9 32.8 19.4 0.842
sycamore 11.8 12.3 22.4 27.4 12.5 29.4 31.3 18.6 0.784
overall 11.4 13.1 19.5 20.8 18.2 23.4 35.6 37.4 0.738
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functions, suggesting that a lower number of basis functions might be a better fit for the

spatial data. However, when considering the model on the whole, the GDM performs the

best in predicting the counts of the missing compositional tree species in terms of the MAE

and RMSE.

5.5 Summary & Discussion

In this chapter, we introduced a framework to deal with spatial compositional data. We

reviewed previous methods used to address spatial compositional data, which mainly involve

applying a log-ratio transformation to the counts, percentages or proportions in the data.

However, this transformation is unsuitable when the data contain zero or missing values, a

common issue found within compositional data. We also examined other methods, including

kriging and Conditional Autoregressive (CAR) models which have frequently been used to

model spatial data. However, these approaches were applied to spatial compositional data

but did not address cases where the data contained zeros or missing values. This limitation

motivates the development of the framework presented in this chapter.

The tree species data collected and compiled by Fera Science motivated our application,

consisting of a spatial grid of compositional count data. These data include 2,153 spatial

locations which contain counts from 10 different tree species. As some tree species are

sparse over the spatial grid, a large proportion of zeros is observed, hence making the

log-ratio transformation unsuitable for this compositional data. If a small number were

added to all the zeros, to allow for a log-ratio transformation to be used, the data would be

dominated by the log of that value, thus still prohibiting the use of standard methods on the
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transformed values that assume a continuous distribution. The tree species data was vital

in the development and testing of the proposed Generalised-Dirichlet-Multinomial (GDM)

framework. The framework is implemented using the NIMBLE package in R which allows

for flexible and efficient fitting of MCMC models.

The proposed framework is advantageous over other current methods due to its ability to

directly account for the compositional structure, to account for spatial dependence through

latent effects, to allow for zeros in the data and to allow for missing values in the spatial com-

positions. This is conducted through the combination of the flexible Generalised-Dirichlet

distribution which allows each composition to have its own variance and the Multinomial

distribution which can model the compositional counts. Our approach uses penalised regres-

sion splines to model the spatial locations. This incorporates a penalty term that controls

the smoothness of the fitted curve. This penalty helps to avoid overfitting, ensuring that

the model captures the underlying trend without being overly sensitive to noise in the data.

However, other spatial models could be applied within the framework such as a CAR model

which is already specified within NIMBLE. We tested the framework using compositional

proportions transformed into counts, but it is also suitable for continuous compositions sum-

ming to something other than one, and directly suitable for compositional counts, showing

its suitability for a wide range of compositional data types and its versatility in various

contexts.

Initially, to test the performance of the GDM framework with spatial compositional data

and inform the variance parameter design, we investigated a model for a single tree spe-

cies, larch, in a out-of-sample prediction experiment. We adapted the GDM framework for a

single tree species and assessed the performance of two different variance terms, one which is

fixed in space for each tree and the other which considers a flexible mean-variance relation-

ship between µ and ϕ. We trained both the GDM models using 50% of the data locations,

and tested the model’s prediction of the withheld spatial locations. We simulated replic-

ate/predicted tree counts for the spatial grids within the test data and compared them to
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the observed counts both visually, using density and quantile plots, and numerically, using

the MAE, RMSE and assessing the Bayesian coverage of the uncertainty intervals. Both the

single tree species GDM models were computationally efficient and ran in a timely manner.

We concluded that both models have a similar fit when considering both the in-sample and

out-of-sample results. The GDM-polynomial model, containing a flexible mean-variance re-

lationship, is superior in capturing both the sample mean and standard deviation of the

original data. Likewise, for the GDM-polynomial the predicted quantiles of the replicates

are more similar to the values from the original data. Numerically, the prediction perform-

ance of both variance terms were similar but the GDM-polynomial model outperformed

the GDM-fixed when considering the MAE of the quantiles. Examination of the Bayesian

coverage for the uncertainty intervals showed that the coverage of both models exceed the

uncertainty percentage of each interval. However, when investigating the mean widths of the

uncertainty intervals, it was found that for the GDM-polynomial the intervals were consid-

erably wider, suggesting that this model could be overly uncertain. Therefore, both variance

terms could be sensible to use in practice, however, applying a flexible mean-variance rela-

tionship demonstrates a tighter fit to the distribution of the data, making it our preference

to apply.

We then extended the GDM to fit the model to multiple tree species and assessed prediction

performance in the context of counts for one or more tree species being missing from available

compositional data. To do this, we randomly removed some count values, resulting in 20%

of the locations having one, 20% having two and 20% having three tree species counts

missing, respectively. To assess how well the GDM model was able to predict these missing

counts, we compared it to an alternative spatial model, the Generalised Additive Model

(GAM). For comparison we had to compare our GDM to four individual GAMs for each tree

species. Although these ran much quicker than the GDM, the performance of the GDM is far

superior. We visually inspected the predictions of both models against the observed counts

in scatterplots which showed that the predicted counts from the GDM are much closer to
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those observed in the data. Moreover, the heatmaps produced by the GDM predictions are a

closer fit to the original counts than the GAM. This is further backed up from our numerical

comparison summary which favour the GDM predictions. Therefore, we can conclude that

the GDM is superior in predicting the compositional tree counts of the spatial data.

Here, we compared the GDM with the GAM where both were fitted with 400 basis functions

for a fair comparison. However, after further investigation, we concluded that a GAM with

a smaller number of basis functions might better fit our spatial tree data. We additionally

fitted the GAMs for 200 and 600 basis functions to inspect the impact of the number

of basis functions. We found that as the number of basis functions increased, the GAM

produced predictions that were closer to the total count (100) even for low observed counts.

Consequently, we discovered that a GAM with 200 basis functions produced more reasonable

predictions. We examined the numerical summary of these results, which showed that for

the tree species larch and oak, the GAM with 200 basis functions had a lower MAE than

the GDM model. However, for sitka spruce and sycamore, which contain over 50% zeros

in the component, the GDM demonstrated superior predictive performance. Further still,

there is potential for the GDM to increase its lead through optimising the number of basis

functions.

Avenues for future research to develop this framework further include exploring testing spa-

tial areal models, such as GMRF smooths from mgcv package or a spatial CAR within the

NIMBLE framework. Another approach could be to extend this framework by incorporat-

ing covariates into the model, allowing it to improve prediction accuracy from the added

knowledge of other factors.
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In conclusion, we have created a flexible and widely applicable framework which could

be applied to other types of spatial compositional data such as the proportions or counts

of different farming crops in different fields or disease prevalence across different spatial

locations. The superior performance of the GDM compared to the GAM can be explained

by the GDM’s ability to predict missing values with compositional constraints. Specifically,

within the GDM, if the model observes high counts of one tree species, it knows to predict

low counts for the remaining species. In contrast, the GAM lacks this knowledge, leading to

over-predictions of very high counts. Therefore, the GDM is an effective tool for modelling

spatial compositional data.
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In this thesis, we studied statistical methods for modelling compositional data, which is

so prevalent in our understanding of the world that we often overlook its uniqueness. We

sought to build an understanding of the core concepts of compositional data analysis arising

from decades of research; we then aimed to offer a fresh perspective that sets aside strict

rules in favour of practical model design that reflects our understanding of the features and

structures of the data.

In Chapter 2, we outlined the early definition of compositional data and evaluated the

main approach used, log-ratio transformations, which map the relative information of com-

positional data to an unconstrained real space for analysis using more common statistical

methods. These have been applied across many different statistical fields throughout the

literature, as reviewed in Chapter 2, as well as in Chapter 3 in the context of compositional

data with a large proportion of structural zeros, in Chapter 4 in the context of compositional

data evolving over time and in Chapter 5 in the context of compositional data arranged over

a spatial domain.

Since log-ratio approaches are so well studied, and their basic function is to bring composi-

tional data into a form that most will know how to analyse using standard methods/tools

they are familiar with, they may well be the most straightforward option for many, if not

most, real world data problems. However, we have identified data features that can at least

pose a real obstacle to using log-ratio transformations and at worst make them essentially

unsuitable. Notably, when compositional data contain zeros, the log-ratio is undefined, and

in cases where these are true zeros, we argued that we can’t simply replace them with a

small value to allow for the transformation to proceed without discarding important inform-

ation or biasing results. Another instance where we argued that log-ratio transformations

are unsuitable is when there are missing values in the compositions. Addressing missing

values explicitly is an area that is underexplored in the literature, with these compositions

typically either being removed or replaced with a small value. Furthermore, compositional

data can often involve a count structure, where the components sum to a total count. In this
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case, we argued that applying a log-ratio transformation to the counts results in discrete

variables in the real space that may not be suitable for modelling using standard methods.

This may also potentially discard information on how the total count may impact the vari-

ance and constrains the possible values the counts could take. We argued that these issues

are especially pertinent when the total count is small.

We opted to focus our efforts on such situations, where core data characteristics deter the use

of log-ratio transformations, as a fruitful ground for expanding methodology for modelling

compositional data. Here, we accounted for these prohibitive features through automated

splitting of the data in Chapter 3, and through use of the Generalised-Dirichlet-Multinomial

(GDM) model for real count data in Chapter 4 and for artificial counts derived from pro-

portion data in Chapter 5. A key advantage of using the GDM family of distributions is

the flexibility of the Generalised-Dirichlet (GD) distribution’s covariance structure between

the components, which potentially allows a good fit in a range of applications. Mixing the

GD with the Multinomial allows the GDM to model compositional count data, where the

components do not need to be independent and the total count can vary. The GDM also

has the ability to model sparse data where both zero and one outcomes occur, and using the

Beta-Binomial conditional representation of the GDM we can easily handle missing values

in the compositions.

To further strengthen our contribution, we sought out and tackled situations where compos-

itional data exhibit features that prohibit the use of log-ratio transformations and interact

with other advanced statistical challenges. Not properly accounting for these data chal-

lenges in our compositional modelling framework could have distorted the interpretation of

the results and produced misleading conclusions. In Chapter 3, we developed an approach

motivated by an application involving a large number of structural zeros and a multilevel

hierarchical structure. To address the structural zeros in the compositions, we automated

splitting the data based on the presence and absence of the components through latent

clustering within our hierarchical model, reducing the need for expert knowledge to conduct
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this split. The proposed framework was evaluated using a forensic elemental glass data, by

examining the classification of new glass items into one of the five glass use types. Here, we

found that our proposed approach performed well at correctly classifying out-of-sample glass

items. Additionally, when we examined the uncertainty of our classification predictions, our

integrated clustering approach performed well, with comparable low uncertainty for each

glass type.

In Chapter 4, we explored an approach to compositional time series data, consisting of count

data with real zeros. A further complexity we had to address was the non-smooth nature

of time series, i.e. where data exhibited abrupt changes or irregular fluctuations, rather

than following a continuous and predictable trend over time. To address these challenges,

we developed a framework to account for both the compositional count and non-smooth

temporal structure. Our proposed framework combines a GDM distribution with a latent

hidden Markov model (HMM) structure to capture the non-smooth temporal dependence.

Here, we developed and evaluated our proposed framework using compositional counts of

COVID-19 variants globally, clustering the countries to produce different HMM parameters

for each cluster and allowing specialised modelling for each variant. We found that our

proposed GDM-HMM framework outperformed other commonly used time series models in

place of the HMM in a posterior predictive experiment.

Finally, in Chapter 5, we investigated compositional data arranged over a spatial structure

with both zero and missing values in the compositions. When a component value is missing,

some or all of the log-ratio transformations will not produce sensible results. To address this

challenge, we developed a general multivariate framework that accommodates the composi-

tional structure, incorporates spatial dependence and can handle zeros and missing values in

compositions. Here, we again created a framework that implemented the GDM, in this case

with two-dimensional penalised regression splines that capture the spatial structure. Within

our framework, we proposed a novel polynomial variance parameter ϕ for the GDM instead

of a strictly fixed variance term, which we found to be superior in terms of reproducing the
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quantiles of the data. If we only had log-ratio methods at our disposal, we may have needed

to impute the zeros. As an alternative, we could keep the data as counts and fit univariate

models to each tree species, however we found that our proposed framework substantially

outperformed this benchmark approach in predicting the counts of missing tree species. In

particular, our framework performed best when a tree species had a high proportion of zero

values. We showed the framework was effective when converting compositional proportions

to counts to be able to apply the GDM distribution. This further extends the potential

use of the framework for both spatial compositional data including proportions or a count

structure.

Throughout all this work, we leaned exclusively on the Bayesian hierarchical approach to

modelling due to its ability to handle complex data structures flexibly. This was particularly

advantageous in addressing the issue of missing values in the compositions, as Bayesian mod-

els naturally accommodate missing data by treating them as unknown quantities that we

can learn about through posterior inference, along with model parameters. By implementing

Bayesian analysis, we were able to assess the success of each proposed framework through

posterior predictive model checking experiments, comparing the performance with alternat-

ive, simpler models. Without using Bayesian hierarchical frameworks, these aspects would

have been nearly impossible or significantly less reliable. However, our proposed frameworks

also presented challenges. Perhaps the greatest of these was the computational cost asso-

ciated with our complex models. MCMC sampling, while a powerful and general tool, was

computationally intensive and required careful tuning and validation to ensure convergence.

Although the comparison models often required less computational time, the superior model

fit achieved through our novel frameworks justified the additional computational cost.

Throughout the thesis we implemented all the proposed frameworks using the NIMBLE

package (Valpine et al., 2017). Without the recent development of modelling tools, such as

NIMBLE, creating frameworks that address the challenges presented throughout the thesis

would have been difficult. NIMBLE is a package that allows for flexible implementation of
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Bayesian models using MCMC. Writing models in NIMBLE is advantageous due to the flex-

ibility it adds in terms of the model specification, samplers for the model parameters and the

ability to add functions and distributions alongside the wide range of already defined func-

tions and distributions. Here, we extended NIMBLE by creating the functions to compute

the Beta-Binomial distribution (Chapters 4 and 5) and the forward algorithm (Chapter 4)

for the latent state sequence.

We highlighted several potential avenues for future research within each of the individual

Chapters 3, 4 and 5. As outlined, we only tested each proposed framework on a single data

application. Therefore, future work could include applying each framework to different ap-

plications that exhibit similar features and data challenges compared with those presented

in this thesis. Each of the proposed approaches could be extended to incorporate covariate

information. Additionally, the framework for spatial compositional data could be adap-

ted to use alternative spatial models, such as a spatial conditional autoregressive (CAR)

model. Overall, these frameworks can be tailored to meet specific application and model-

ling requirements. As we noted that computational cost of our proposed methods could be

improved upon, we could consider implementing faster inference using alternative samplers

or methods. Specifically, we could explore applying the GDM to the application presen-

ted in Chapter 3, using artificial counts derived from the proportions of the compositional

elements. Another aspect worth examining is when compositional data take the form of a

spatio-temporal structure, integrating insights from Chapters 4 and 5.

In the broader context of compositional data, we hope that this thesis has demonstrated

the value of expanding the traditional definition of compositional data, allowing more in-

novative approaches to be applied to the analysis of this unique type of data. We believe

that the proposed methods offer significant benefits across a wide range of compositional

data applications, extending beyond the specific cases examined in this thesis, making them

valuable tools for real-world analysis of compositional data.
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Future work could explore testing more intuitive or practical approaches to better capture

the data while preserving both absolute and relative information. It would also be interesting

to investigate more situations where the total is informative, highlighting the risk of discard-

ing this information by focusing solely on log-ratios and relative proportions. Additionally,

exploring the nature of compositional data where either the constraint or the component

is defined first could provide valuable insights into the construction of compositional data

analysis.



Appendices

A Initials & Acronyms

• GDM - Generalised-Dirichlet-Multinomial

• HMM - Hidden Markov Model

• GD - Generalised-Dirichlet

• GAM - Generalised Additive Model

• RW - Random Walk Model

• DLM - Dynamic Linear Model

• MCMC - Markov Chain Monte Carlo

• PSRF - Potential Scale Reduction Factor

• ALR - Additive Log-ratio

• CLR - Centered Log-ratio

• ILR - Isometric Log-ratio

• WHO - World Health Organisation

• VOC - Variant of Concern

• VOI - Variant of Interest

• ECE - Expected Calibration Error

• MAE - Mean Absolute Error

• RMSE - Root Mean Square Error
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B Bayesian Inference

B.1 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) methods can be used to simulate and draw samples

from distributions. Monte Carlo methods are used to approximate integrals and closed-form

expressions that are otherwise extremely difficult or impossible to evaluate. Therefore, the

use of MCMC methods allows samples to be collected directly from the posterior. After

reaching a state of equilibrium, this is thought of as sampling from the desired target distri-

bution. This process occurs after the chain has been run for a sufficient number of iterations,

allowing it to explore the parameter space and discard any initial bias from the starting

point. The two most commonly used MCMC algorithms are the Metropolis-Hastings al-

gorithm (Metropolis et al., 1953) and the Gibbs sampler (Casella et al., 1992). Depending

on the model, only one of these methods may need to be implemented, but a mix of both

can be employed also.

Since the sampling algorithm requires an initial number of iterations before converging to

the target, a “burn-in” period can be specified, such that a chosen number of iterations can

be discarded, with only the draws made after this period used in the analysis. This allows

the chain to reach a stationary distribution before it keeps the samples. The initial part of

the chain is discarded as it is thought that it will have been influenced by the starting point

and may not be representative of the true distribution.
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Autocorrelation in MCMC samples refers to the degree of dependence or correlation between

consecutive samples in the chain. It measures how much the one sample is related to the

previous sample in the chain. High autocorrelation indicates that the samples are highly cor-

related, resulting in slow mixing, meaning it takes more iterations for the chain to explore

the different regions of the parameter space and converge to the target distribution. Redu-

cing autocorrelation is desirable because it allows for more independent and representative

samples.

We can “thin” our chains by storing every m-th draw of the sampler, with the rest of the

draws discarded. Thinning an MCMC can be advantageous by reducing the computational

practicality of the chain as it does not store as many samples. As only a subset of the

samples are saved, it reduces the storage requirements and process power to run the full

chain. However, Link et al. (2012) argue that keeping all samples leads to more accurate

inference, where feasible.

We can run multiple chains to check the convergence of the model, which is the process

of running the MCMC multiple times from different starting points. This can allow us to

potentially get more samples from our model. As the MCMC chains are independent of one

another, they can be run in parallel across multiple CPU cores to reduce computation times.

B.2 Checking convergence and quality of samples

To assess the convergence of the model, the following MCMC diagnostics are computed for

each instance of model fit.
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MCMC convergence is usually assessed by running multiple MCMC chains from different,

sometimes randomly generated initial values. We can compute the Gelman Diagnostic (Gel-

man et al., 1992) from the resulting samples, which compares the variance between the

chains to the variance within the chains. If the two variances are similar then this typically

results in a Gelman value less than 1.05. A Gelman value of around 1.05 or less indicates

that the chains have converged to the same distribution, which is usually the posterior but

in some cases, all chains may have converged to another distribution such as the prior or the

MCMC proposal distribution. In R, we can compute this using the coda package (Plummer

et al., 2006), the gelman.diag function computes the Gelman diagnostic for each of the

parameters.

In addition, traceplots can be produced for the sampled parameters from the model. Tra-

ceplots are a visualisation tool used in Bayesian inference to assess the convergence and

mixing properties of the chains. A traceplot displays the values of the parameter of interest

against the number of iterations. The evolution of the parameter values over time can be

visually examined. If the traceplot shows a random pattern with no apparent trends or pat-

terns where the points appear scattered throughout the plot. This suggests that the chain

has explored the different regions of the parameter space and hence indicates good mixing

has been reached. The points in the traceplot should also exhibit stable and consistent vari-

ability across the iterations. The spread of points should not change dramatically over time.

Having a stable variability indicates that the chain is exploring the target distribution con-

sistently and is not getting stuck in particular areas. As multiple chains are employed in the

MCMC process, it is expected that the chains exhibit overlap and demonstrate similar mix-

ing patterns. This behaviour suggests that all chains are effectively exploring the parameter

space, including both local and global maxima. If the chains converge to similar regions of

the parameter space and display consistent sampling from these regions, it indicates that the

algorithm is adequately exploring the distribution and is not getting stuck in local maxima.

The presence of such overlap and mixing suggests that the chains are collectively converging

to the global maximum (or a good approximation thereof) of the target distribution.
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C Further Classification Checking for Chapter 3

C.1 Classification Performance

We can consider a number of classification performance metrics to further assess the clas-

sification of the glass items into one of the five glass use types, as described in Chapter 3.

Here we will compare each approach using seven performance metrics.

Goodman and Kruskal’s τ (Agresti et al., 1990) is a measure of the reduction in the expected

conditional variability in comparison to the marginal variability. Theil’s U (Agresti et al.,

1990) provides another measure of variation. These metrics measure association and exam-

ine the proportional reduction in prediction error. They examine how much the predicted

glass use types differ from the actual type. Higher values of τ and U indicate a stronger

association between predicted and actual classes. Cohen’s κ (Agresti et al., 1990) is a meas-

ure of agreement that takes into account any agreement that can occur by chance. This

measures the agreement between the classified and actual glass type. A value of κ = 0 is

equivalent to that of agreement by chance, whereas perfect agreement would have a value of

κ = 1. Matthews Correlation Coefficient (MCC) (Baldi et al., 2000) is a correlation coeffi-

cient between the observed and predicted classifications which takes all possible prediction

outcomes into account. Lastly, the F1-score combines the precision and recall of a classifier

using a confusion matrix associated with that classifier. Measures of both association and

agreement are explored as it would be possible to have an association without agreement.

For both the MCC and F1-score, higher values indicate better classification performance.

In addition, the accuracy and the percentage of misclassification are evaluated.
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Tables C1 and C2 report the classification performance metrics for each of the classification

results from the different approaches. Overall, the results within Tables C1 and C2 align

with those outlined in Section 3.4.7.

Table C1: Classification performance metrics for the classification results presented in
Chapter 3, Section 3.4.7 of the classification of glass items into one of the the five glass
use types.

Performance Measure
Approach Accuracy %

miss-
classified

τ U κ

No spilt: untransformed 0.331 66.9% 0.05 0.11 0.09
No spilt: square root 0.656 34.4% 0.39 0.53 0.45
Manual: configurations 0.756 24.4% 0.51 0.54 0.67
Pre-clustering: hierarchical 0.763 23.8% 0.53 0.56 0.68
Pre-clustering: k-means 0.753 24.7% 0.51 0.54 0.67
Integrated clustering 0.763 23.8% 0.54 0.54 0.68
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Table C2: Classification performance measures for the classification results, presented in
Chapter 3, Section 3.4.7 of the classification of glass items into one of the the five glass use
types, split by each compositional elemental. The highest F1-score or Matthew’s Correlation
Coefficient (MCC) are highlighted in green, with a 2% tolerance has been applied in cases
of near ties.

Approach Glass Use Type Performance Measure
F1-score MCC

No split:
untransformed

bulb 0.42 0.50
car window 0.43 0.19
headlamp 0 0
container 0.12 0.01
building window 0.36 0.08

No split: square
root

bulb 0.78 0.77
car window 0.50 0.29
headlamp 0.71 0.71
container 0.85 0.79
building window 0.51 0.30

Manual:
configurations

bulb 0.73 0.70
car window 0.56 0.41
headlamp 0.48 0.46
container 0.85 0.80
building window 0.53 0.37

Pre-clustering:
hierarchical

bulb 0.98 0.98
car window 0.68 0.55
headlamp 0.79 0.79
container 0.89 0.86
building window 0.68 0.52

Pre-clustering:
k-means

bulb 0.96 0.96
car window 0.68 0.55
headlamp 0.67 0.65
container 0.88 0.84
building window 0.68 0.52

Integrated
clustering

bulb 0.93 0.92
car window 0.75 0.64
headlamp 0.19 0.20
container 0.83 0.77
building window 0.74 0.61
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