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absiract

This thesis is about the interaction of structured light with atoms in the presence of
external magnetic fields. Both light and atoms can carry phase dependent struc-
tures, the expression of which often depends on the choice of quantisation axis.
The most general type of spatial structure light can have manifests as polarisation
patterns. This type of structure is quantified as the optical concurrence. Although
polarisations are usually considered to be two-dimensional, light can also carry a
longitudinal polarisation component, but it has not been directly measured before.

Atomic states can be altered by external electric and magnetic fields. These
fields don’t just alter the atom’s charge density distribution, but the very state space
that defines it. Additionally, it is possible to redefine atomic states as superpositions
of one another in order to reveal hidden structures. Previously, the best theoretical
models of structured light-matter interaction were only valid for special cases, but a
generalised model can open new opportunities for describing, understanding, and
ultimately measuring ambient electric and magnetic fields.

In this thesis, the energy shifts induced in atoms by strong magnetic fields have
been utilised to visualise an atomic transition normally unavailable in the chosen
configuration being driven by longitudinal light. At the same time, a generalised
model of the atomic state interferometer is constructed, and shown to be capable of
predicting new ways to measure magnetic fields and optical concurrence.

The atomic state interferometer requires only a single transmission image for
these measurements, and its validity means that it is possible to look for other com-
binations of electric and magnetic fields that can reveal further symmetries within the
atom. In addition to having a highly versatile and customisable device that can mea-
sure the interplay of electric and magnetic fields, this thesis demonstrates a spatially
resolved way of investigating three-dimensional polarisation states.

Having unlocked access to a new type of polarisation, the next steps are to in-
vestigate properties of strongly focused beams that have previously been confined to
the realm of theory. On the more practical side, the atomic state interferometer lends
itself to sensing applications, such as the measurement of non-classical correlations
between degrees of freedom in a beam. Currently, work is being done to build a
miniaturised research magnetometer based on the same principles.

In short, atoms provide a good interface between classical and quantum world.
Customising their available state space opens the way to a new generation of sen-
sors.
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infroduction

One of the most perplexing discoveries during the quantum revolution is that two
orthogonal states can be in a superposition of one another, and that the resulting
state is just as valid a state as its components. As a necessary consequence, this
means that projective measurements determine how the processes within the sys-
tem present - two effects thought to be distinct can turn out to be one and the same.

Any system with multiple orthogonal states can be mapped onto a state space
with one state per axis. In the same way that a coordinate rotation is valid in any
coordinate system, the geometry of a state space can be redefined to simplify the
mathematical model or highlight a certain effect. This is called a dressed state pic-
ture, and highly useful in systems that show wavelike behaviour, as a basis change
can help understand phase dependent behaviour. These states can exist in a variety
of degrees of freedom, in the case of light this could be spatial position along the
propagation axis, position in the tranverse plane, intensity, phase, or polarisation, to
name a few. Two or more degrees of freedom can be correlated in order to give the
beam a structure. The structure of light can be altered by optical elements, which
can be mathematically described by Jones or Mueller matrices. Within the beam, the
correlation of polarisation and position in the transverse plane is quantified as optical
concurrence [4]. Elusive concepts like it often require interferometric or tomograph-
ical approaches to measurement using conventional detectors. Another effect that
has gotten less attention than it deserves due to its inability to be measured directly
by conventional detectors is the existence of longitudinally polarised light [5]. It is in
situations like this that atom optics comes to shine.

Atoms provide an intuitive and natural interface between classical and quantum
mechanics, to the extent that many university courses about "quantum physics" are
specifically about semiclassical atom optics - this is how | got here. In the semiclas-
sical limit, the wave is treated as a classical wave, while the atom is treated as a fully
quantised object. This model is highly successful, and well suited for being experi-
mentally tested. In the dipole approximation, the light is modelled as an oscillating
electric field. Atoms are highly susceptible to external electric and magnetic fields
(which themselves, too, are different presentations of the same effect). It is due to all
these factors that atoms are so commonly used in detectors, such as atomic clocks
[6], accelerometers [7], gyroscopes [8], gravimeters [9], and, of course, magnetome-
ters [10]. But these are just the commercial applications, and as such only scratches
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INTRODUCTION

the surface of research in atom optics.

Sonja Franke-Arnold’s lab at the University of Glasgow has long been investi-
gating these types of properties. It was here that spatially dependent electromagnet-
ically induced transparency was first shown [11], and in 2021, a new type of atomic
magnetometer based on atom state interferometry was demonstrated [12]. Mean-
while, research was being done into the topological structure of beams [13] such as
concurrence [14].

| started my PhD in October of 2021, disorganised and naive and bright eyed
and excited to become a physicist. The project | had signed up for was to take
over the cold atom experiment on which the atomic state interferometry was being
investigated from Jinwen Wang. While the overlap period between students on this
complicated experiment is normally close to half a PhD, mine was tragically cut short
due to buerocratic reasons, and we only had time to collect a few sets of data before
he left the country. While trying to catch up with teaching myself the technical details
between lectures and progress reviews, | began work with Amy McWilliam on some
side projects, one of which resulted in a new technique for single shot measurement
of Mueller matrices homogeneous optical elements [2].

Part | of this thesis is all about structured light. In chapter 1, different nota-
tions of polarisation are introduced, alongside a discussion of each of their benefits
for different situations. In chapter 2, different structures of beam are introduced. The
transverse intensity distribution of a beam can change upon propagation, if it doesn't,
the beam is considered to be an eigenmode of propagation. Superpositions of two
or more such beams with the same polarisation can result in another eigenmode of
propagation, superpositions of such beams with different polarisations can lead to
the creation of a beam with a spatially dependent polarisation profile. If a beam is
focused by a lens, it can obtain a longitudinal component. This is the subject of chap-
ter 3, where the existence of such a component is mathematically derived. Finally, in
chapter 4, it is shown that positive operator valued measurements (POVMs) can be
applied to polarisation. The chapter culminates in my and Amy’s findings regarding
Mueller matrices using this method.

Itis very easy for me to get side tracked, and as such | took on more side projects
than | probably should have. Some of them lead nowhere, such as a proof of concept
for using rotationally invariant vector beams as a basis for quantum communication,
but others became integral parts of my research. One of these projects involved the
creation of an improved theoretical model of the atomic state interferometer.

Part Il of this thesis is about the underlying principles of the atom. Chapter 5
builds up a model of the atom starting from the definition of quantum numbers, and
chapter 6 explains how the atom is changed by an external magnetic field. From
there, a Hamiltonian operator describing the energies and hopping rates of the F' =
1 — F’ = 0 transition of the D2 line of Rb-87, and how, with the correct choice of
parameters, the atom can become locked into a single dark state.

As my understanding of the atomic state space grew, so did my skills as an ex-
perimentalist. My confidence grew, | started speaking at conferences, contributing to
papers, helped with the training of new PhD students, and took on yet another experi-
ment, one which would grow to become my main project. In a collaborative effort with
the University of Durham, we were going to use atoms in a strong magnetic field in
order to first directly measure the longitudinal component of light [3]. | remember the
day our collaborators showed up to deliver parts of the experimental setup, including
a 1.6 T permanent magnet (this reminds me, | still have to demagnetise my favourite

2



INTRODUCTION

screw driver). Once again thrown in the deep end, | was better prepared this time,
and began gathering data in such volumes that | had to cut multiple sections from
this thesis because there wasn’t enough time to properly analyse it all.

Part Ill of this thesis is dedicated to experimental atom optics. Chapter 7 is in
essence an extended method section for the cold atom experiment, going over all
the necessary key components to maintain the spontaneous force dark optical trap
(SpOT) at the centre of the setup, and how experiments are run on it. Chapter 8 is
about the data gathered using this experiment, especially in the context of the new
model. It is in this chapter that the data | gathered with Jinwen can be found, when
we measured the concurrence of a vector beam with a single transmission image [1].
However, my most important contribution to the field is found in chapter 9, where the
method and data regarding the measurement of longitudinal polarisation is located.

It is in this part of the thesis that the heart of the thesis is located. | am, at
my core, an experimental atomic physicist, and my thesis reflects that. There are
multiple purposes that my writing here is meant to fulfill: First and formost, of course,
it is intended to get me a doctorate (fingers crossed), but in the Optics group, it has
become something of a tradition to use the theses of former students as textbooks
for the next generations, so: Hi future student! | hope this work helps you.
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a redlly long preface about light






Light has been central to physical research since the beginning, when it was
still called natural philosophy. Records and archeological finds document the use of
mirrors made from polished metal as early as 1900 BCE. Many of the philosophers in
ancient Greece developed theories surrounding refraction, which they observed by
filling glass vessels with water. At the time, it was thought that people emitted light
from their eyes, and then interacted with a secondary source, such as fire or the sun,
enabling sight [15]. This time period marks the popularisation of "burning glasses”,
focusing lenses used to start fires.

The Islamic golden age saw some major advances in the study of reflection and
refraction, often with a focus on curved surfaces. One particular Scholar of note is
Abu Sa‘d al-‘Ala Ibn Sahl, whose teachings, once translated into Latin, were instru-
mental in Europe’s "rediscovery of Science" during the later middle ages, and lead to
the invention of corrective lenses. The renaissance period was, t00, a renaissance
of the sciences. It was an age defined by polymaths, most of which, like Leonardo
da Vinci, also dabbled in optics. Arguably, the biggest leap made during this time
period was the shift from geocentricism to heliocentricism. This level of astronomy
was of course made possible through the progress made in optics that enabled the
invention of the telescope, as well as the microscope. In the following century, the
law of refraction was finally centralised by W. Snell and R. Descartes. It was on the
shoulders of these giants that I. Newton first demonstrated the splitting of white light
into a spectrum of different colours [16].

Electromagnetism, previously considered entirely separate, was forever linked to
optics when M. Faraday showed the effect of magnetic fields on polarisation (spoilers
for chapter 6.1). This allowed J.C. Maxwell to centralise all behaviour of electromag-
netic forces in just four equations. The big question at the time was whether light
is a wave or a particle, with Newton being a staunch believer of the particle hypoth-
esis. The definite proof that light travels in waves came from Young’s double slit
experiment, and the medium of said wave was thought to be the luminiferous ether.
Finding out that it instead travels through space itself in the Michelson-Morley exper-
iment directly lead to the discovery of the theory of relativity. Around the same time,
the discovery of wave-particle duality lead to the birth of quantum mechanics.

Modern physics is still permeated by the study of light. Quantum optics, pho-
tonics, quantum information theory and quantum electrodynamics are all vast fields
that lead to groundbreaking revelations on a regular basis. Light enables global com-
munications, and is used in the definition of multiple Sl units, most famously in the
redefinition of the second using the caesium atomic clock.

While this thesis is primarily in the subject of atomic physics, it is clear that one
must understand light in order to understand atoms. Therefore, let us begin with the
fundamentals.






1 light as a wave

Light is famous for its wave-particle duality. It acts like a point particle when interact-
ing with non-photon particles, like being absorbed or emitted, but when it propagates
it acts like a wave and interferes with itself. A laser emits a beam of many iden-
tical photons, which preserves their wavelike nature, though interaction and there-
fore measurement are now classical as the amplitude can be reduced by arbitrary
amounts. Laser light is of a single frequency. The uncertainty principle, and the
nature of the Fourier transform, dictate that the wave extends infinitely along the
propagation direction in both space and time.

For simplicity, light is often considered to be travelling in free space, i.e. a vac-
uum free of any ambient charges. Under these circumstances, Maxwell’s equations
can be written as [17]:

V-E=0 (1.1)

V-B=0 (1.2)
- OB

VxE=-—> (1.3)
= OF

V x B —MQ&QE, (14)

where E is the electric field, B the magnetic field, and o and ¢y are the perme-
ability and permittivity of free space, respectively.

The propagation of light is a direct consequence of Maxwell’s equation. Under
the constraints mentioned earlier, the curl of equation 1.3 can be combined with
equation 1.4 to yield a solution that describes a wave in the electric field [16]:

. 18°E
F— —— = 1.
\Y 2 52 0 (1.5)
The time is t and the speed of light is ¢ = \/aiw This equation relates the tem-
poral and spatial distributions of the electric field. The wave equation for a magnetic
field strength H is derived alongside it, and very similar:

—0. (1.6)

Its interpretation shows that, like the electric field, its temporal and spatial distri-
butions are related.



CHAPTER 1. LIGHT AS A WAVE

A change in the electric field induces a magnetic field, and vice versa. An os-
cillation, a blip, a perturbation in the electric field will therefore induce a similar such
peak in its orthogonal direction, which will in turn induce an electric field in the oppo-
site direction to the first one - now the electric field, and therefore the magnetic field,
is oscillating. Due to the spatiotemporal relation, this electromagnetic wave propa-
gates in space! The solution of the above equations for a sinusoidal wave is known
as the plane wave equation:

—

E(7,t) = E(Me*™e(r) (1.7)

with the phase ¢ being defined as

G(Ft) =k -7 — wt + ¢o(7). (1.8)

In the above equations, ¥ = (x, y, z) is the three dimensional spatial coordinate.

The phase can have an offset ¢y. The parameter é defines the direction of oscillation,

or polarisation. The wave vector k depends on the wave number k = w/c = 21/\

and hence the wavelength X. It points perpendicularly to the planes of equal phase,
and w is the angular frequency. Those final two parameters are related:

i

w 2w
=23 (1.9)

For any given single optical frequency, a time independent version of the wave
equation can be derived by substituting the plain wave equation into it. This form is
known as the Helmholtz equation, and highlights the relationship of the wavevector
to the electric field’s gradient in an eigenvalue equation:

V2E(F) + K*E(F) =0 (1.10)

This becomes even simpler if the electric field is only considered in one direction,
making it a scalar rather than a vector:

(V> + k*)E(7) = 0. (1.11)

This form makes it possible to consider a beam of light with multiple frequencies
and polarisations as the sum of its parts without losing generality or other information:

E(z,t) = Z Ey;(z) expli(kz — wt + ¢o;]é;, (1.12)
J

where we are summing over the components j. Interference effects will become
apparent once this sum is calculated.

When a photon is absorbed, the transition probability does not happen with its
electric field but rather the electric field’s magnitude squared, i.e the intensity I:

I=|E). (1.13)

This is not only relevant when studying light matter interaction, but also for the
detection of the light itself - when a camera or photodiode or equivalent detects a

10



1.1. POLARISED LIGHT

photon all phase and polarisation information is lost. This needs to be taken into
account and sometimes worked around.

Orthogonal polarisations do not interfere but they do superpose. The relative
phase is highly relevant for this. Multiple different notations have been developed
in order to highlight different aspects of this. This chapter is intended to provide an
overview of these different polarisation notations, as well as an intuitive and complete
explanation of polarisation in classical optics.

1.1 polarised light

Light as described by the wave equation is transverse wave, which means its
electric field oscillates in a direction that is perpendicular to the one it travels in (an
oversimplification we will come to regret in chapter 3). This makes it a two dimen-
sional object. Space, however, is three dimensional - for every given direction of
propagation there are two possible orthogonal directions of oscillation, and all other
polarisations can be expressed as a superposition of those two base polarisation
states, and each of these states has a phase associated with it [18]. A commonly
chosen basis of states is "horizontal" and "vertical", or |H) and |V'), respectively.

The Dirac notation used throughout this thesis is borrowed from quantum me-
chanics, as all light considered here is classical. It is being used as a stand-in for the
unit vectors here, in part to highlight the superposing nature of light, and in part for
better compatibility once other, more quantum concepts are introduced.

Now, consider the wave equation for a single wavelength of light with an arbitrary
polarisation, expressed in its horizontal and vertical components at a single point in
space and time:

|E) = Eo ge®" |H) + Eyye®v |V), (1.14)
where Ey i and Ey v are the amplitudes of the horizontal and vertical polarisa-
tion states, and ¢y and ¢y are their respective phases.

The relative amplitude and phase of the components determine the final polar-
isation. If, say, Eo gy = 0 and Ey v = 1, the beam is vertically polarised. If both
components have the same amplitude, the relative phase becomes the sole deter-
mining factor: Figure 1.1 visualises that a phase difference §¢ = ¢y — ¢ = 0 leads
to diagonally polarised light (| D)) and a phase of +x leads to antidiagonally polarised
light (|A)) [19]:

1 0 1 20 —
1 20 1 T _

However, these two phases present a special case where the peaks and troughs
of both waves perfectly align. Other equal superpositions of horizontally and verti-
cally polarised light will no longer result in linear polarisations.

11



CHAPTER 1. LIGHT AS A WAVE

Figure 1.1: Three mutually unbiased sets of orthogonal polarisation basis states.
Each set can be expressed in terms of an equal superposition between any other.
This specific set of states is known as the Stokes basis states for reasons that will
become apparent in chapter 1.4

1.1.1 circular polarisations and spin

Consider the beam from equation 1.14 with equal horizontal and vertical compo-
nents, Ey y = Ey,v but with a relative phase of +7. Whenever one polarisation com-
ponent reaches its maximum/minimum, the other goes to 0. This causes the electric
and magnetic fields to take on a spiral structure as they propagate. A phase of —%
results in "right-handed" polarisation (|?)), and a phase of 7 in "left-handed"
polarisation (| L)) (see figure 1.1), so named after the curl of the fingers of the re-
spective hand if the thumb points towards the light source.

\%eio \H) + %e—”ﬂ V) = |R) (1.47)
%eio |H) + %e””/z |V)=|L). (1.18)

By definition, anything with a time dependent circular path carries angular mo-
mentum. Therefore, all circularly polarised light has an associated angular momen-
tum as an intrinsic property of its spiralling magnetic field. In contrast to extrinsic
angular momentum, which is further discussed in chapter 2.1.3, this is spin angular
momentum (SAM), which is an inherent property of the photon, and is transferred
when the photon is absorbed. Photons are bosonic, which means they carry inte-
ger spin. When projected onto the propagation axis, it is referred to as the photon’s

12



1.2. JONES CALCULUS

helicity: —# for |R) and +* for | L) [20].

Of course, the direction of rotation in real space is just as important: A right
circularly polarised beam propagating in the +2 direction is, in the lab frame, rotating
in the same direction as a left circularly polarised beam travelling in the —Z direction.
This concept is known as the photon’s chirality.

The same way circular polarisations can be formed from phase shifted super-
positions between the linear |H) and |V') basis states, superimposing equal and
orthogonal, i.e. counter rotating, circularly polarised photons, will always lead to
constructive interference along one linear axis and destructive interference along the
other. This results in a linear polarisation, but its orientation depends on the relative
phase between the circular components. Expressing all the concepts described by
this with equation 1.14 will become very long very fast, so it is time to introduce some
alternative notations.

1.2 Jones calculus

In equation 1.14, the beam is expressed in the orthogonal polarisation com-
ponents |H) and |V). The total amplitude is often externalised, as the polarisation
information is contained in the relative amplitude and phase, like in equation 1.7.
Another more compact way to express the information contained therein is by using
the 2-dimensional Jones vector:

o Eac EO;ceM)m
E = (Ey> = (Eoyei%)' (1.19)
This notation was developed in 1941 by R.C. Jones [21]. It is optimised for
describing fully polarised and coherent light, and enables changes to the field to be
written as matrix multiplications. Conventionally, the two orthogonal basis states are
horizontal and vertical polarisations, but a selection of alternative basis choices is
explored later, in chapter 1.5.1.
It is now possible to externalise global phase. This further simplifies the notation
of beam propagation by separating the time dependent phase term into a global and
relative component:

E.(t)\ Eoeilkz—wites) B E oet?= T
<Ey(t)> - (Eyoei(kz—wt+¢y) - Eyoei¢y € . (120)
Global phase is generally not measurable (definitions may vary with circum-
stances) and can be safely discarded within the context of this thesis. As we have

externalised spatiotemporal propagation effects as a global phase, this simplifies the
Jones vector:

o EO(I?
E= (Eoyem> . (1.21)

13



CHAPTER 1. LIGHT AS A WAVE

This form of the Jones vector is what will be most commonly used from this point
onward. It is now useful to revisit some concepts introduced in chapter 1.1:

To start, when calculating intensity from the Jones vector, both polarisation com-
ponents need to be taken into account, so :

* * E:c
I=(E;, Ey) <Ey> (1.22)
= |E.|* + |E, % (1.23)
In this equation we have taken E, , to be complex numbers, containing both

amplitude and relative phase. This is true regardless of basis state.
All polarisations shown earlier in figure 1.1 can be expressed in the form of a

Jones vector:
= (o) v =) (1.24)

) b o
IR) = % (_1) L) = % C) . (1.26)

Here, any overall amplitude and phase are omitted - the normalised Jones vec-
tors shown are analogous to unit vectors.

This octahedron of polarisations, three equally spaced and equally balanced
orthogonal pairs of superpositions to one another, are central to the way optics is
practised, and will come back quite a few times in this thesis - most notably in chapter
1.4, but also in chapter 2.3, when it is revealed that these states lay the basis of the
most common form of polarimetry.

1.2.1 Jones matrices

Polarisation can be altered by optical elements. This process can be simulated on
the Jones vector by the use of complex 2x2 matrices. These Jones matrices act on
the relative amplitude and phase of each polarisation component [22]:

E:v Jll J12 EzO
= . 1.27
<Ey) <J21 J22> <Ey > { )

The diagonal elements J;; and J,» conserve parts of the polarisation in each
basis state, though potentially with an added phase shift, whereas the off-diagonal
elements Jo; and Jy» partially or fully shift one of the polarisation components to the
other, also potentially with an added phase. Let’s consider a few examples.

Birefringent media have refractive indexes along different directions - the ordi-
nary refractive index n, and the extraordinary refractive index n.. The direction of
the extraordinary refractive index is called the fast axis. Light polarised along the
fast axis will emerge with a different phase shift to light along the slow axis. As all
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1.2. JONES CALCULUS

polarised light can be expressed in orthogonal linear bases, birefringent media can
alter the polarisation of a beam.

Linear wave retarders are birefringent optical devices used to alter the polarisa-
tion of a beam without affecting its shape or path. They are commonly made from
quartz, and wavelength specific (though there are broad spectrum equivalents, e.g.
Fresnel rhombs). As a general rule, these wave plates have two key parameters:
Fast axis angle, and relative phase shift. In most cases, the devices are manufac-
tured so that the phase shift corresponds to a particular fraction of the wavelength,
e.g. 3 or 3.

A quarter wave plate (QWP), sometimes also referred to as a 3-plate is a
linearly birefringent optical device that induces a phase shift of 5 between two or-
thogonal polarisation bases [23]. Its Jones matrix is

2 .. 2 s .
cos*f +isin“ 0 (1 z)sm@cos@)’ (1.28)

Jowe = ((1 —4)sinfcosf icos? 6+ sin? 6

where 6 is the angle of the fast axis. If the axis is horizontal or vertical, the
expression simplifies:

A 1 0
JQWP, horizontal = (0 ) (1 -29)

& 1 0
JQWP, vertical = (0 ) . (1 .30)

—1

A half wave plate (HWP), or 3 plate, similarly induces a phase shift of 7 be-
tween the orthogonal linear polarisation components:

A cos20  sin260
Jhwp = <sin 20 —cos 29) ’ (1.31)

This equation is significantly simpler than that of a QWP, and its solution for
different fast axis angles trivial, and therefore omitted.

However, not all optical elements are uniform: A g-plate, for example, is a liquid
crystal device that acts like a HWP with a spatially dependent fast axis in azimuthal
periodicity. It is characterised by its topological charge number m [24, 25]:

A cos(2mé sin(2mé@
Jap(m) = (sing2m9§ co(s(Qm)H)) ' (1.32)

The topological charge of the g-plate can be inverted by rotating the component
in the setup. The full effect of a g-plate on the beam is discussed in chapter 2.2.

Phase plates are by far not the only optical element that can be described by
a Jones matrix. Another commonly used optical component is the polariser, which
projects the beam into a single polarisation state. A linear polariser once again has
a rotation angle 0 which is aligned with the electric field of the linear polarisation that
can pass through [17]
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CHAPTER 1. LIGHT AS A WAVE

. 2 0
Jip = ( cos“ 6 cosﬁblnﬁ) . (1.33)

cos @ sin 6 sin? 6

Even a mirror is an optical element, and can be described by a Jones matrix.
In fact, there is quite a lot of literature about them (sources). For the purpose of this
thesis, the following approximations are made: There are only perfect mirrors, which
are perfectly vertical in the lab frame, i.e. with a tilt confined to the horizontal axis.
Such a mirror's Jones matrix is simplified to its base components:

S -1 0
Jmirror = ( 0 1) . (1-34)

Note that even a perfect mirror alters the polarisation: all superpositions of |H)
and |V') stay the same in the lab frame, and are therefore flipped in the frame of the
propagation axis, e.g. |R) becomes |L), and | D) becomes |A).

Of course, it is unrealistic to achieve perfect alignment like this, and even small
uncertainties can quickly add up. Real mirrors often also absorb small parts of the
beam, and can induce small phase shifts. The material and coating of the mirror
should be considered carefully when building an experimental setup [17].

Not all optical elements work in the linear basis, optical rotators, for example,
are circularly birefringent [23] (a concept that is discussed in detail in chapter 5.2.2)
and can be expressed as

(1.35)

—sinf cosf

jrot(9) _ ( cos sin@) '

This type of component acts on the chirality of the beam, rather than its helicity.
This means that it isn’t unitary, which makes it the basis of the Faraday isolator: if
the beam is rotated 45° from |V} to |A) and then reflected straight back, it will rotate
a further 45° to |H). If now a |V) selective polariser is placed in front of the rotator,
and one for |A) after, then all light is blocked from returning to the source. Series of
optical components like this can be described by multiplying all Jones matrices by
the initial polarisation in reverse order, making it possible to describe a larger optical
system or even an entire experiment in a single matrix:

Eout = Jndn_1...JaJ1 En. (1.36)

This section has so far ignored all global phase shifts. It is possible to induce
a global phase shift without altering the polarisation or beam path by inserting a
slide of glass or monorefringent quartz. This is sometimes used in interferometry, as
demonstrated later, in chapter 4.

Jones calculus is very useful for expressing all information relating to the po-
larisation in one small vector, but it does not relate very well to measurement. All
measurement is inherently projective (see chapter 4), which means the phase infor-
mation is lost. As will be found in chapter 2.3, full tomography can not be done with
just one set of orthogonal basis states. In order to fully reconstruct the polarisation,
additional measurements have to be performed - enough to define the polarisation
state space.
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1.3 the Poincaré sphere and the polarisation ellipse

So far in this chapter, the focus has been on three pairs of orthogonal polari-
sation states: |H) and |V'),|A) and |D),|R) and |L). Each of these pairs is a set
of mutually unbiased basis, and can be expressed as an equal superposition of any
other pair. This means any state has the same overlap with any state from another
pair. In the Jones basis in particular, it becomes intuitive to picture |A), |D), |R) and
|L) as four points on a circle of all possible equal superpositions of |H) and |V).
In fact, this can be generalised even further: for a beam of a given intensity, here
normalised to 1, the relative electric field amplitudes, too can be expressed as an
angle. In other words, any given polarisation state can be expressed as a point on
the surface of a sphere.

Another way to picture this is that the three sets of basis states form a three
dimensional coordinate system. Any polarised state can now be pictured as a vector
from the origin with a fixed radius given by the intensity. All possible angles of this
vector once again form the surface of a sphere - the Poincaré sphere [26].

It makes sense to consider the Poincaré sphere in polar spherical coordinates:
the ellipticity angle x and the orientation angle 1. Figure 1.2 shows that the equator
is formed of the linear polarisations, while the circular polarisations form the poles.
In this notation, the six Stokes basis states can be expressed like this [27]:

Eo.ir — Eo,v = Ep x sin 2y cos 2y (1.37)
Eop — Eo.a = Ep x sin 2y sin 2¢ (1.38)
E07R — EO,L = EO X COs 2X. (1 39)

This is a direct consequence of the orthogonal components sitting on opposite
axes of the Poincaré sphere. This property forms the basis of the Stokes notation
introduced in chapter 1.4, but the angles also relate to the polarisation in a much
more direct way.

1.3.1 the polarisation ellipse

When re-expressed in spherical coordinates, the position on the Poincaré sphere
directly gives information about the polarisation ellipse: We assume |H) as the initial
position for the inclination, and | R) to be the initial ellipticity.

As a general statement, any polarisation state takes the form of an ellipse, char-
acterised by orientation and ellipticity. Linear and circular polarisations are special
cases of this - in all linear polarisations have 0 ellipticity and are entirely described
by their orientation, whereas circular polarisation states are rotationally invariant, and
described entirely by their ellipticity. Figure 1.3 demonstrates that these two param-
eters directly correspond to the angles on the Poincaré sphere. The angles on the
Poincaré sphere are doubled because adding = to either angle simply results in the
same polarisation with a phase shift.
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CHAPTER 1. LIGHT AS A WAVE

Figure 1.2: The Poincaré sphere is one way to map the possible state space that
polarisation can occupy. Any polarisation can be expressed as a point on its surface
in spherical polar coordinates 2y and 2i. Linear polarisations are mapped to the
equator, while circular polarisations form the poles.
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Figure 1.3: The angles on the Poincaré sphere are good for describing any arbitrary
polarisation in more ways than one - as both circles and lines are technically special
cases of ellipses, they can be used to describe the parameters of the elliptically
varying electric fields directly. ¢ forms an angle between the horizontal plane and
the ellipse’s vertex, and x forms an angle between the line connecting the axes of

the ellipse and its tangent.
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Figure 1.4: The polarisation colour map is the Mercator projection of the Poincaré
sphere and will be used to denote polarisation from this point on. The ellipses on
the map show the ellipticity and orientation of the polarisation at the specific point,
i.e the polarisation is indicated by both colour and line.

The polarisation ellipse notation does not see very much use, but becomes very
useful in situations in which no clear basis state emerges. Such a case will be con-
sidered very closely in chapter 6.3.2. Like Jones, the polarisation ellipse notation is
incapable of describing unpolarised light. As of writing this thesis, the most common
way to describe changes to the polarisation due to optical elements is by transform-
ing the ellipse into an alternative notation and then back again.

Itis also of note that there are multiple conflicting conventions for how the angles
on the Poincaré sphere should be defined. The convention displayed in this section is
consistently used throughout this thesis, but in other works, x and ¢ may be defined
differently.

1.3.2 the polarisation colour map

The Poincaré sphere also directly relates to the colour coding of polarisation used
throughout this thesis, as well as all of the newer works carried out by and under
Professor S. Franke-Arnold [28, 29]. Shown in figure 1.4 in its Mercator projection,
each point on the Poincaré sphere relates to a unique colour, with the local intensity
dictating the colour’s brightness, with white representing zero intensity. Additionally,
the local ellipticity and orientation are indicated by a corresponding ellipse plotted
on top of the colour scheme. This colourmap efficiently displays multiple degrees
of freedom within one image. Examples of beams with spatially varying polarisation
can be found later in figure 2.6 of chapter 2.2.

1.4 Stokes vectors

WHICH INTRODUCES STOKES VECTORS AND MUELLER MATRICES AS A FORM OF
POLARISATION NOTATION, AND EXPLAINS THE SIGNIFICANCE OF THE STOKES BASIS
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As stated previously in chapter 1.2, Jones vectors are great at describing the po-
larisation in minimal terms, defined in relation to one pair of orthogonal basis states.
However, phases are not directly measurable, making Jones vectors difficult to de-
rive from experimental data. Stokes vectors, in contrast, are optimised to consist
only of real parameters that come from three sets of mutually unbiased basis states.
Two sets of vectors are considered mutually unbiased if each vector from one set can
be expressed as an equal superposition of all vectors in the other, and vice versa.

The Stokes bases, which have been used as examples in all sections so far,
are named for G.G. Stokes, as they formed the base of the polarisation notation he
invented in 1852 [30]. In this form, the polarisation is expressed in a form of a four-
dimensional vector - one element expressing the overall intensity, and the other three
containing the relative weighting of the three basis pairs:

So=Ig+Iy=Ip+Ip=1Ig+ 1 (1.40)
S =Ty —1Iy (1.41)
So =Ip — 14 (1.42)
Sy —In—1I,. (1.43)

with Sy 12,3 being the elements within the Stokes vector S. This notation has
one major benefit over the ones previously discussed: The intensity parameter S
enables it to express unpolarised or partially polarised light.

Each of the normalised Stokes basis states has the following Stokes vector:

1 1
1 -1
= | V=75 (1.44)
0 0
1 1
o o
4= | ] D)= (1.45)
0 0
1 1
o o
|R)= 0 |L) = 0 (1.46)
1 -1

Stokes vectors provide an immediate and very detailed view of the local polari-
sation structure that is legible on first sight. The Stokes basis states are used in the
most common form of polarimetry (see chapter 2.3), and hence are useful for data
interpretation. As such, Stokes notation is very popular in polarisation optics. The
downside is that the elements of the vector aren’t orthogonal, as information about
orthogonal basis states is always contained in a single parameter, and hence the
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Stokes parameters on their own aren’t really useful in equations. This, however, did
not prevent it from being used.

1.4.1 Mueller matrices

Optical elements can be represented by 4x4 Mueller matrices, the Stokes equiva-
lent to the Jones matrices introduced in chapter 1.2.1. A Mueller matrix takes the
form:

Moo Mor Moz Moz
~ | Mg My Mys M3
Msy Moy May Mo
Mso Mszz Msy Mss

(1.47)

Just like Stokes vectors are more general than Jones vectors, Mueller matrices
are more general than Jones matrices, as they can include decoherent processes or
depolarising elements.

As the Stokes vector separates the descriptors of intensity and polarisation, the
Mueller matrix does the same: components that act on the intensity work differently
from those that alter the polarisation. Any optical element that preserves the overall
intenSity will have Moy = 1, and Ml(),Mg(),MgmMOl,MgQ, and Moyz = 0. All other
elements describe the phase shifts that alter the polarisation. but some rules apply:
There is nothing inherent to the matrices that prevents a resulting Stokes vector from
describing a polarisation that doesn’t exist, e.g. a higher value in S;23 than in Sy, so
the matrices have to be configured in such a way that a matrix with a change in one
parameter also has the corresponding changes in the others.

For illustrative purposes, it makes sense to revisit the examples given for Jones
matrices in chapter 1.2.1, which begun with the QWP. Its Mueller matrix form looks
like this [17]:

1 0 0 0
- 0 cos? 26 cos20sin26  sin 20
Mawe = 0 cos26sin26 sin? 20 —cos 26 (1.48)
0 — sin 20 cos 20 0

The special cases of horizontal or vertical fast axis alignment simplify here also:

1 0 0 O
~ 01 0 O
MQWF’,horizontaI = 0 0 0 1 (1 -49)
0 0 -1 0
1 0 0 O
A 01 0 O
Mawpyerical = | o o o _1 (1.50)
0 01 0

Now it becomes visible that in these special cases, the wave plate effectively
"swaps" S2 and S3.
Like with Jones, the Mueller matrix for a HWP is more simple:
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1 0 0 0
0 cos4f  sin4d 0
0 sin4d —cos46d O
0 0 0 -1

Mywp = (1.51)

The Mueller matrix for linear polarisers highlights the removal of all circular com-
ponents:

1 cos 20 sin 26 0
e — 1 cos 20 cos? 20 cos20sin260 0
LP =9 | sin20 cos20sin 20 sin? 26 0

0 0 0 0

(1.52)

This is also the first optical element considered in this section that alters the
intensity.

When considering mirrors, the same assumptions are made as in the section
on Jones matrices: the mirror is fully vertical in the lab frame with a tilt only in the
horizontal direction, and perfect reflectivity. An ideal mirror like this has the following
Mueller matrix:

1 0 0 0

~ 01 0 O
Mmirror = 00 -1 0 (1 .53)

00 0 -1

This is another good example of the improved legibility of Stokes/Mueller calcu-
lus, as this form highlights that polarisations at an angle to the tilt axis get inverted.

The Mueller matrix for the optical rotator similarly illustrates that the effect is
confined to linear polarisations [31]:

1 0 0
0 cos20 sin26
0 —sin20 cos26
0 0 0

Myot(20) = (1.54)

_ o O O

Ss is conserved in this equation, which shows that this is an effect from circular
birefringence.

A system with multiple optical elements can be described by a series of Mueller
matrices acting on the initial Stokes vector in reverse order of propagation:

Sout = MnM,,_1...Mo N Sp. (1.55)
In this section, many comparisons have been made between the different forms
of notation, and it has been highlighted each has different strengths and weaknesses.

1.5 conversion between polarisation notations
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Throughout this chapter, three different polarisation notation, each with their
own strengths and weaknesses have been introduced. Jones notation is very sim-
ple and intuitive, as long as the interpretation is centered around linear basis states.
Polarisation ellipse notation doesn’t have this problem, as it is not based on an un-
derlying assumption of default states, but its generality and legibility do not mean it
sees much use. It has no clear convention, no standardised analog for optical com-
ponents, its obscurity makes people often choose other bases in in favour of it, and,
importantly, there is no direct way to measure it. This is the aspect where the Stokes
vector comes to shine - it relates directly to the most common method of polarime-
try (details in chapter 2.3) and is very easy to interpret at first glance. However, its
parameters aren’t orthogonal, making it difficult and unintuitive to use in theoretical
work, as its components can not be easily separated from one another. However
it is the only notation introduced so far that is capable of describing unpolarised or
partially polarised light. In other words, the optimal polarisation notation depends on
the context, and it is useful to be able to freely switch between them.

The majority of the work in this thesis concerns itself with fully polarised light
(or experimental approximations thereof). In this limit, the three notations become
interchangeable. They relate to each other as follows for a normalised beam:

So=1 = |Exl* + B, (1.56)
Sy = I'sin2x cos 2t = |E,|? — |E,|? (1.57)
So = I'sin2xsin 2y = 2Re[ExE;] (1.58)
S3 = I cos2x = —2|m[E~’zE;]. (1.59)

The transformation between the Stokes parameters and the polarisation ellipse
is no more than a change between Cartesian coordinates and spherical polar coordi-
nates. Therefore, Stokes notation and the polarisation ellipse are sometimes treated
as two versions of the same theoretical model. The code generating the colourmap
introduced in chapter 1.3.2 uses this conversion when interpreting experimental data.

Conversion between notation is not limited to polarisation vectors: Jones matri-
ces can be easily transformed into Mueller matrices [17][32]:

~ A~

M=AJgJ)A™" (1.60)
with the transformation operator A
10 0 1
A 10 0 -1
A= 01 1 o0 (1.61)
0 ¢+ — 0

The inverse transformation is often deemed impossible, as Mueller matrices can
contain depolarising elements which cannot be described by Jones matrices.
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1.5.1 alternative Jones bases

When the Jones vector was first introduced in chapter 1.2, it was mentioned that E,
and E,, are usually taken to mean Ey and Ey, though this does not have to be the
case - £, and Ey just means any linear orthogonal bases. To illustrate this, consider
the diagonal-antidiagonal basis by performing a coordinate rotation:

~ 1 ~ ~
Eis=—(Ey—-FE 1.62
A ﬂ( H V) ( )
- 1 ~ ~
Ep=—(FEyg+ Ey), 1.63
D \/5( o+ Ev) (1.63)
so the Jones vector in this new basis can now be written as:
5 E4
E = <ED) . (1.64)

This is equivalent to tilting your head, or the laser and/or camera by 45 degrees,
and hence sort of trivial.

However, it doesn’t have to be a linear basis: A beam can also be expressed in
terms of its right and left circular electric fields v, and u_ and their relative phase.
Their naming convention is different from the linear bases as a nod to atomic physics,
a context in which this basis sees much use (see chapter 6.3.1). This basis change
is calculated as follows:

1

1 - _
The Jones vector in the circular basis stats can now be written as:
E = <u> . (1.67)

There is a pattern to all of these states: as the coordinate system of the Poincaré
has orthogonal bases on opposite ends of each axis, a Jones vector has the sole
constraint that the two basis polarisations have to be on opposite sides of the Poincaré
sphere - otherwise any possible angles can be chosen. Such coordinate rotations
in state space is known in some areas of physics as a dressed state picture. The
general intent between such redefinitions of the coordinate system is to simplify the
maths, or the interpretation. Optics concerns itself with the wavelike nature of light,
so in this context this is not simply a mathematical tool, but an equally valid descrip-
tion of the electric field. As will be found later in chapter 6.3.2, this technique and
interpretation is valid for other, quantum mechanical objects too.

Though it gets even stranger: basis states don’t have to stick to a single pair
of points on the Poincaré sphere, they can be spatially dependent. In order to ex-
plore this, one needs to consider the macroscopic intensity structure of the beam,
and familiarise oneself with spatial polarisation structures. This idea will be revis-
ited in chapter 3.1 and introduce one final set of Jones bases - alongside a type of
polarisation that has gone previously undiscussed.
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2 the structure of light

Consider the plane wave introduced in equation 1.7 of the last chapter: A sine func-
tion describing an electric field, oscillating into infinity in both directions along the
propagation axis. Consider trying to focus this beam with a lens. Now, all the electric
field converges to a single point at the focus. However, a point has no area - our
beam now has infinite intensity. This can’t be right.

Such was the reasoning behind the initial disproving of ray optics, and its sub-
sequent replacement with Gaussian optics. The latter still makes some assumptions
about the beam, like the paraxial approximation (which will be dealt in later on in
this thesis) but introduces several new concepts, like the waist, which is the radius
of the beam at the focus, or the Gouy phase. It concerns itself with solutions to
the Helmholtz equation. Solutions to the Helmholtz equation keep the same trans-
verse shape as they propagate, they are known as eigenmodes of propagation, or
just modes. Higher order modes interfere with themselves. Superimposing multiple
higher order modes can lead to the creation of further modes still.

Of course, for interference to happen, the polarisation has to be the same. Su-
perimposing beams with different intensity structure and different polarisation can
cause both of them to interfere and make a beam with spatially varying polarisation.

By the end of this section, much of the groundwork for the optical work in this
thesis will have been lain. It aims to provide an overview of structured light in both
the experimental and the theoretical realm.

2.1 modes of propagation

Laser modes, or eigenmodes of propagation, are beams that do not change
shape when propagating through free space or a homogeneous medium. This is
because they are plane wave solutions to the Helmholtz equation.

The Helmholtz equation is a partial differential eigenvalue equation that de-
scribes a time independent form of the wave equation 1.7

V2A = k%A, (2.1)
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Figure 2.1: The characteristics of a Gaussian beam are its waist, its intensity distri-
bution, and its curved phase front. On the right in the orange box is the intensity dis-
tribution in the transverse plane. It is the same in all planes of propagation. Sourced
from [17]

where V2 is the divergence in two orthogonal variables, ie the Laplace operator,
k is the eigenvalue, and A = u(7)et** is the spatial wave function in question.

As discussed previously, the plane wave assumes the beam to extend infinitely
in the transverse plane. However, when interacting with the universe, this is unre-
alistic. A more applicable solution can be coaxed from the Helmholtz equation by
making the paraxial approximation, i.e. assuming that the electric field is always per-
fectly transverse to the propagation direction. This approximation is valid in systems
where all surfaces are flat or portions of a sphere [33].

In 1841 a whole field sprung up around this principle, championed by C.F. Gauss
[16]. Itis called Gaussian optics, though sometimes also called paraxial optics or first
order optics. At its centre lies one of the simplest paraxial solutions of the Helmholtz
equation: the Gaussian beam.

2.1.1 the Gaussian beam

The Gaussian beam has a Gaussian distribution of intensity in the transverse plane.
This means the electric field is still present everywhere, though it tends towards 0 as
the transverse radius » = /22 + y2 goes to infinity. To characterise its distribution,
the beam waist w is introduced. It describes the transverse radius at which the in-
tensity falls below 1/¢? of the on axis value. For now, consider the beam to propagate
through free space along the z direction [33]:

E(r,2) = EO% exp (-@) exp (—i (kz + kﬂgiz) - 1/1(2))) , (2.2)

where E(r, z) is the complex electic field at transverse radius r and distance
z from the focus, k is the wave number, E, is the amplitude, and the propagation
dependent beam waist w(z) reaches its minimum w(0) = w, at the focus. The
distance in the propagation direction from the focus is crucial to this beam in more
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Figure 2.2: Simulated HG modes with polynomial orders m and n each ranging from
0 to 3, in columns and rows, respectively. Their intensity profiles are displayed on the
left and their phase structures on the right. Note the phase changes occur at points
of 0 amplitude.

than one way, as the waist is the only place in which the beam has a flat phase
profile. Due to diffraction, its phase fronts gain curvature with distance from the
focus, as described by the Gouy phase

¥(2) = arctan <Z> , (2.3)

ZR

which in turn depends on the Rayleigh range zr = mw?/A, which also deter-
mines the radius of curvature of the wavefronts [34]:

ZR 2
R(z)z{lJr(z)]. (2.4)

One important aspect of the Gaussian beam is that its transverse intensity pro-
file remains constant regardless of position and time. This property makes it an
eigenmode of propagation.

All of these parameters are illustrated in figure 2.1, alongside its transverse in-
tensity profile. The Gaussian beam is sometimes also called TEM,, which stands
for transverse electric and magnetic. The 00 indicates the absence of nodes in the
transverse plane [33]. Of course, this notation implies the existence of a beam with
nodes in the transverse plane. Higher order solutions for the paraxial Helmholtz
equations begin to depend on the very coordinate system that is used to solve them.
In the next portion of this chapter, two different types of solution will be discussed.
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2.1.2 Hermite Gaussian mode

Solving the paraxial wave equation in a Cartesian coordinate system yields a set of
solutions dependent on a Hermite polynomial in each orthogonal spatial direction
of independent orders m and n, where m and n are positive integers. Beams of
this form are known as Hermite-Gauss (HG) modes, as their curved phase structure
mirrors that of the Gaussian beam (equations 2.2-2.4). Like the Gaussian beam, all
HG beams are eigenmodes of propagation. The complex electric field of any HG
beam is described by the following equations [17]

HG (@, 9, 2) :Em/m;(’z) « Hy, (ﬁ”;) « H, (ﬁ) (2.5)

X exp [_m:(—;)gg} X exp [—ik (z + x;};}zy;)}
x exp [i(n 4+ m + 1)¢(2)],

where H,,, and H,, are the eponymous Hermite polynomials. As shown in figure
2.2, these beams consist of a number of distinct spots of high intensity arranged in
a grid pattern, with n + 1 rows and m + 1 columns. Between any two spots there
is always a phase shift of = at the point of zero intensity, in fact, these points are
caused by the destructive interference from the phase shift. The order of the mode,
or mode number, is the sum of the polynomial orders:

N =m+n. (2.6)

Beams with the same mode number always have the same Gouy phase. Note
that if m = n = N = 0, the equation simplifies to TEMy, - the Gaussian beam.
However as mentioned previously, the available solutions depend on the coordinate
system used. Consider instead, for example, a polar coordinate system.

2.1.3 Laguerre Gaussian mode

If the paraxial wave equation is solved in a cylindrical coordinate system, another set
of solutions is derived. This time, they take the form of Laguerre polynomials, which
are characterised by the radial order p and the azimuthal order ¢. The resulting
Laguerre-Gaussian (LG) modes share the curved phase structure of Gaussian and
HG beams. Their complex amplitude is given by the following equation:

Elr ¢, 2) = 2p! Wo T\l exp| — r’ |€] 2
LGP( 7(7257 ) 7r(p—|—|€|)' X w(z) (\@’U}(Z)) p( w(z)2>Lp (U)(Z)Q)
(2.7)
7,.2
X exp <_ik2R(z)> exp(ile) expli(2p + €] + 1)(2)],
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Figure 2.3: Simulated LG modes with polynomial orders ¢ and p each ranging from
0 to 3, in columns and rows, respectively. Their intensity profiles are displayed on
the left and their phase structures on the right. The azimuthal order ¢ changes the
beam’s number of equal phase fronts. Phase changes of 7w occur at zero intensity.

d

where Lif' is the associated Laguerre polynomial. In another analogue to HG
beams, the mode number of an LG beam is:

N =2p+ |0 (2.8)

Once again, if ¢ = p = N = 0, the solution becomes a Gaussian beam. Figure
2.3 shows LG beams for a selection of £ and p values, their intensity structure taking
the form of concentric rings. While p works very similarly to m and n of the HG mode,
its value confined to positive integers. These integers dictate the number of phase
shifts of 7, and hence the number of rings = p + 1. The parameter ¢ is different to
anything discussed so far in this thesis - its effect presents in the continuous spiral
phase structure across the azimuth of the beam. The higher the magnitude of ¢, the
more often the phase pattern repeats. However, ¢ can take any integer value, and
for negative ¢, the phase structure inverts, and the phase spirals into the opposite
direction. This spiral phase structure has additional meaning.

orbital angular momentum

A spiralling phase means something is rotating. Where there is rotation, there is an-
gular momentum. In other words, the azimuthal number ¢ also describes the amount
of orbital angular momentum (OAM) contained in the beam [35].

Take a step back. What does this mean?

Light can carry two separate forms of angular momentum: Intrinsic spin was in-
troduced in chapter 1.1.1 and is carried in the rotation of the electric field of circularly
polarised light. In contrast, OAM is carried by the phase structure of the beam. It is
a global and extrinsic property, and it was not known that it could be carried by laser
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Figure 2.4: Generating a LGSEl beam via superposition of a HGy 1 and HG1.o beam.
The intensity pattern always gains the same shape, but the phase profile depends
on the relative phase between the HG components.

modes until 1992 [36]. The value of OAM per photon is ¢h, this means that ¢ takes
on the additional meaning of topological charge. Sometimes it is useful to consider
the total angular momentum A (¢ + o) of a photon [37].

OAM is not exclusive to LG modes. Other beams, such as Bessel beams [38],
can also carry helical phase fronts, though this thesis largely concerns itself with
eigenmodes of propagation.

2.1.4 conversion between modes via superposition

LG modes and HG modes are solutions to the Helmholtz equation in polar and Carte-
sian coordinate systems, respectively. An HG mode should therefore still be a solu-
tion when expressed in polar coordinates and vice versa, albeit a more complicated
one.

The way this presents is as a series of superpositions. Consider a HG( 1 mode.
It consists of two intensity lobes of opposite phase. A HG1,, mode consists of the
same two intensity lobes but at ninety degrees to the first one. If these two beams
(both of the same polarisation) are superimposed, they will interfere based on relative
amplitude and phase. The phase between the lobes matters as much as the phase
between the beams - figure 2.4 shows that the resulting intensity profile will be a
ring for a phase difference of +m/2, however the ¢ number of the resulting LG mode
depends on the phase.

This process also works the other way: LG modes can be added to yield a HG
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Figure 2.5: Generation of a HG » beam via superposition of LG modes. Interfer-
ence in the spiralling phase structures causes the lobed intensity distribution.

mode. Two LG modes with opposite ¢ will see constructive and destructive interfer-
ence along the azimuth and take on a lobed structure - the positions of which depend
on the relative phase. This highlights the arbitrary nature of the choice in xy-basis,
and provides a way of rotating the coordinate system of HG modes (though plain
superposition of flat phased HG modes should also do the trick).

There is a rule for converting the beams both ways: Any HG or LG beam with
mode number N can be created by superimposing N+1 specific beams from the
other mode family, where each must also have mode number N. Generally, this set
of beams is symmetric - the maximum m and n are the same, and for each mode
with ¢ there is one with corresponding —¢ [17, 39, 40]. Examples of such conversions
can be found in figure 2.5.

There is another family of solutions to the paraxial wave equation using Ince
polynomials and elliptical coordinates. They are known as Ince-Gaussian (IG) beams.
Ince polynomials are ruled by their ellipticity parameter ¢, and at its limits ¢ = 0 and
¢ = oo they simplify to HG and LG modes, respectively, providing an intermediate
stage between them [41].

Eigenmodes of propagation are core to the majority of the work presented in the
rest of this thesis. They are highly useful for experimental setups, as their intensity
does not change during propagation. Any superposition of higher order modes with
the same mode number has a matched Gouy phase, so it will not change either.
The following section exploits this principle to create beams with spatially varying
polarisation structure that does not change during propagation.

2.2 polarisaton structures

WHICH INTRODUCES VECTOR BEAMS, THEIR METHODS OF CREATION, AND THEIR
QUANTIFICATION VIA OPTICAL CONCURRENCE

Chapter 1.1 was about how superimposing two beams, each with a different po-
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Figure 2.6: Five different structured beams created from the superposition of eigen-
modes of propagation. Radial, azimuthal, and hybrid beams are created from beams
with mode number 1, whereas twofold and sixfold beams are made from beams with
mode number 2.

larisation leads to interference of polarisation. The result is a beam with a third po-
larisation, determined by the component polarisations, and their relative phase and
amplitude. Chapter 2.1.4 was about superimposing different eigenmodes of propa-
gation with the same polarisation but different spatial intensity and phase structures
to transform them into a different mode.

The next question is obvious: What beam results from a superposition of differ-
ent modes with different polarisations? At any given point in space the polarisations
will interfere, depending on the local amplitude and phase of both component beams.
The result is a beam with a spatially varying polarisation structure [39]. Examples
of such beams can be seen in figure 2.6. This type of polarisation structured beam
is sometimes referred to as a vector beam (the definition of which will be further
discussed in chapter 2.2.1).

Consider the previous example from chapter 2.1.4: Adding an LG} and LG;!
mode right circular polarisation results in a HGo ; mode of the same polarisation.
Adding instead a LG} |R) and LGy ' |L) beam with no phase shift between them
instead results in what is commonly referred to as a radial beam, or |g), as the
polarisation is always aligned with a vector pointing away from the propagation axis
in the transverse plane. This beam once again has a flat phase front. The same
beam can be derived from opposite HG modes also, by adding a HG; |H) and
HGy 1 |V) beam, again with no phase change:

1

o) 73

1

(LG IR) + 165 |D) =

(HG1o|H) + HGo1 V).  (2.9)

Vector modes can be orthogonal to one another. A beam that is orthogonal to
the radial beam is the azimuthal beam |©). If expressed in terms of LG modes it
is exactly the same, but with a phase difference of =. However if expressed in HG
modes, one can see that the modes (or polarisations) have swapped:

_ L

) L
LA

(LG IR - 1G5 1) = =

(HGoq1|H)+ HG10|V)). (2.10)

These beams are radially homogeneous, as their component modes all have
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Figure 2.7: A radial beam spans a grand circle on the Poincaré sphere along the
equator, correlating the polarisation angle  with the spatial angle ¢. An azimuthal
beam does too, but there is a phase shift of = between spatial and polarisation angle.
A beam consisting of LG modes with higher ¢ wraps around the Poincaré sphere
multiple times (shown here are beams generated from LG? beams). The signs
of the ¢s do not affect the polarisations featured, but change the symmetry of the
beam - note the twofold beam and sixfold beam wrap around the Poincaré sphere in
opposite directions. Hybrid beams feature spatially varying ellipticity, and so their ¢
correlates to x.

consistent radii. Their polarisation structure can be mapped onto the Poincaré sphere,
drawing a line on its surface. Beams that have intensity structure in both the az-
imuthal and radial direction will instead display as a surface area wrapping around
the Poincaré sphere. In the case of a radial or azimuthal beam, each linear polari-
sation is featured twice, so the line wraps around the equator of the Poincaré sphere
two times. Beams generated from higher order modes might wrap the Poincaré
sphere more often, in the case of equal and opposite LG modes this is proportional
to |¢|. Beams featuring elliptical or circular polarisations have trajectories other than
the equator. Some examples of this are highlighted in figure 2.7. Note that the di-
rection and starting point are as impactful to the beam structure as the polarisations
covered.

In chapter 2.1.3 it was discussed that LG modes carry OAM. If two LG modes
with equal and opposite OAM interfere, it cancels out. Because of this, all vector
beams discussed in this thesis have flat phase fronts at the focus, and a uniform
phase profile throughout. The relationship of ¢ and the circular polarisation of each
component beam also dictates the direction of the vector beam’s trajectory around
the Poincaré sphere, as seen in the second row of figure 2.7, and later in figure 2.9.
This change in symmetry has topological implications [13, 28].

Vector beams are of scientific interest for two reasons: One lies in the topology
discussed so far. Much information is to be found in how light interacts with itself,
and it is often an accessible analogue for the behaviour of other waves and particles.
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It has also been observed that the polarisation structure can affect the focal waist of
a beam [42], though focusing a beam also induces an otherwise unattainable polari-
sation state, as will be shown in chapter 3. The other reason lies in their applicability.
Structured beams can be rotationally invariant, making them useful for optical com-
munications between moving objects like satellites, and they have multiple additional
degrees of freedom to encode information. If used as a probe in an experiment, they
are capable to probe with many if not all polarisations at the same time (a theme that
will continue to come up in this thesis).

If such a beam is created from non-orthogonal modes, it will no longer span a
grand circle on the Poincaré sphere, meaning the correlation lessens. It can there-
fore be useful to define the degree of correlation between polarisation and spatial
position, if one is investigating the topological properties of the beam.

2.2.1 optical concurrence

Concurrence is a word borrowed from quantum theory, where it serves as a mea-
sure of entanglement. In optics, it takes on the meaning of classical nonseparability,
which is mathematically indistinguishable from true quantum entanglement - with the
caveat that classical concurrence relates correlation between different degrees of
freedom, whereas quantum entanglement describes the same degree of freedom
being related across multiple particles. Both can be described the following way [43]:

|U) = |1) |é1) + [th2) |€2), (2.11)

where V¥ is a generic wavefunction, 1; o are its component wavefunctions, and é
is the local polarisation vector, with é;, é; being orthogonal. Note the nonseparability
of the wavefunction and polarisation. When applied to a vector beam, concurrence
is sometimes called "vector quality factor”, as it describes the nonseparability, or
correlation between two degrees of freedom: spatial position and polarisation.

Concurrence is measured on a unitless scale from 0 to 1, where 0 describes
a uniformly polarised beam, and 1 describes any vector beam featuring orthogonal
polarisations in different areas. In addition to being a classical analogue to Bell
states, it also directly relates to the beam’s trajectory on the Poincaré sphere: A
uniformly polarised beam only occupies a single point, whereas a vector beam spans
a grand circle, as was previously seen and discussed in chapter 2.2, specifically
figure 2.7. Consider, for now, a beam consisting of two LG modes with opposite ¢
and opposite circular polarisation:

|U) = LGH|R) + LGy |L), (2.12)

where Ey i 1 is the respective amplitude of each component, LGY is the LG
mode, and 4¢ is the relative phase between the beams. It is clear how this equation
fills the form of the nonseparability condition in equation 2.11. When reexpressing
this in polarisation ellipse notation from chapter 1.3, it becomes more obvious that
this nonseparability is conditional on the relative amplitude [14]:

|W) = LGY cos x |R) + €? LG sinx |L), (2.13)
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where x is the latitudinal coordinate on the Poincaré sphere. As the superposi-
tion of LG4 |R) and LG |L) will cover all values of ¢ on the Poincaré sphere, the
concurrence becomes solely dependent on x [1]:

C = sin(2x). (2.14)

This is of course a special case, though it can be easily adapted to any other
polarisation basis.

Because optical concurrence is a mathematical analogue to quantum entangle-
ment, it can be used to investigate this concept without having to actually generate
entanglement or deal with any of the other problems that come from quantum mea-
surement, which will be touched upon in chapter 4. But to measure the concurrence
of a beam, a vector beam must first be created.

From a theoretical perspective, this has been a fairly comprehensive overview
of the generation and properties of vector beams. But this is an experimental thesis.
It is time to take this to the lab.

2.2.2 how to structure a beam

Most lasers generate a homogeneously polarised Gaussian beam. To turn it into a
vector beam, its spatial intensity and polarisation distribution need to be altered. All
methods of doing this can be loosely sorted into two camps: static devices that turn a
Gaussian beam into the desired vector beam, and dynamic, programmable devices,
which separately shape beams of orthogonal polarisations into different modes of
propagation that are then combined.

The most notable device in the former category is the g-plate [24, 25], or vortex
retarder, whose Jones matrix was shown as an example in equation 1.32 of chap-
ter 1.2. It functions like a HWP with spatially varying orientation. The periodicity is
given by the g-plate’s characteristic m number. The beam generated by the g-plate
depends on the input polarisation: an |R) or |L) polarised Gaussian mode will be-
come a LG} or LGy 1 beam after transmission through a m=1 g-plate, respectively.
Any linear polarisation is an equal superposition of |R) and |L), with the orientation
given by the relative phase. Therefore, any linearly polarised Gaussian mode must
be turned into a vector beam by the same g-plate. Vertically polarised light yields a
radial beam, and horizontally polarised light an azimuthal one. Q-plates with higher
m generate higher order LG modes, with |¢| = |m|. Reversing the g-plate inverts the
m number and therefore the relationship between circular basis and ¢ sign.

There are other devices in this category, such as the Fresnel cone [44], or meta-
surfaces [45, 46], but they will not be discussed in this thesis. The advantage of this
type of device is its ease of use and its high conversion efficiency, but it comes at the
cost of it only being able to generate a very limited selection of beams.

The latter method does not have such problems. It makes use of programmable
light shaping devices like spatial light modulators (SLM) or digital micromirror de-
vices (DMD) [47, 48]. Expanded Gaussian beams of orthogonal polarisation bases
independently interact with a multiplexed hologram on the element’s screen, which
functions as a programmable grating, and independently shapes the orthogonal com-
ponents of the beam into the shape of the desired mode. Small differences in reflec-
tion angle allow the orthogonal beams to be combined, and the vector beam to be
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Figure 2.8: Trajectories of vector beams on the Poincaré sphere. The size of the
circle directly corresponds to the correlation between azimuthal angle ¢ and polari-
sation state. Due to the choice of beams, it also correlates to the polar angle .
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Figure 2.9: Creating structured beams from circularly polarised LG modes with op-
posite OAM. Note that the relative phase between the modes matters, as well as the
sign for the OAM of each beam. The structured beams have uniform phase and no
longer carry OAM.

generated. The obvious advantage of this approach is the generality - any shape of
beam can be created, it is not even limited to the eigenmodes of propagation, but
light shaping devices are often difficult to align and incredibly lossy, with efficiencies
usually lower than 10% [49]. The best method therefore depends on the context of
its use.

Once the beam has been generated, it can be measured. Though this, too, isn’t
straightforward.

2.3 Stokes polarimetry

IN WHICH AN OVERVIEW OF THE CONCEPT AND METHODS OF THE MOST COMMON
FORM OF POLARIMETRY IS PROVIDED, ALSO MUELLER MATRIX MEASUREMENTS

So far, a lot of discussion has gone into the creation of different structures of light
beams, but nothing about their measurement. As polarisation is a phase dependent
property, a single measurement won't suffice. Instead, series of measurements will
have to be performed. The Stokes vector contains all necessary information to recre-
ate the coordinates on the Poincaré sphere, and an experimental Stokes vector can
be calculated from measurements in each of the Stokes bases. If the beam in ques-
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Figure 2.10: Experimental setup for Stokes polarimetry. The polariser is always
vertical, while the wave plates are altered. Using a camera makes it possible to
calculate a Stokes vector for each pixel.

tion is spatially structured, the measurements can be performed with a camera, and
a Stokes vector evaluated for each pixel. Stokes polarimetry can be achieved in
multiple ways:

1. Spatial splitting: The beam is split into six paths, separating the stokes bases
and measuring them with separate detectors, e.g. different photodiodes or different
areas of a camera [17, 50]. This method leads to issues at low beam intensities
but has the advantage of the measurements being simultaneous. An unconventional
approach to this is the subject of chapter 4.

2. Temporal modulation: Projective measurements into each of the stokes bases
are performed in succession, usually with the same photodetector or camera. This
approach is very common. Figure 2.10 shows the rotating wave plate approach,
which is a popular setup for achieving this - variations thereof are used in nearly
every experimental chapter of this thesis [51]. The wave plates change the bases
of the beam, so that the polariser can project the beam into every basis, using the
following fast axis alignments [17]:

[ [ 17) [r) Iv) [L) [4) D) |
QWP [ 0° 0° 0° 0° 45 45
HWP | 0° 225° 45° 675° 6/5° 225°

This approach is very good for data analysis, because the beam does not signifi-
cantly move on the camera if the waveplates are properly aligned, so a Stokes vector
can be calculated for each pixel. It is therefore the most commonly used variant of
the work in this thesis.

Other approaches encode information into other degrees of freedom, such as
wavelength, making it possible to carry out multiple stokes measurements simulta-
neously. Further methods still rely on known spatial dependence [17, 44, 52-56].

Of course, Stokes measurements measure the beam the way it arrives at the
camera. But if the initial beam is known (most lasers produce a vertically polarised
Gaussian beam), and the final beam is known, it can be possible to reconstruct how
it has been altered. Especially with the relationship between the Stokes vector and
the Mueller matrix, it is possible to gain some information about the system in the
process.

40



2.3. STOKES POLARIMETRY

H
0

[y
-

N\

Figure 2.11: Stokes bases of a selection of structured beams. From top to bottom,
the beams are: radial, azimuthal. hybrid, twofold, sixfold. On the left is the overall
polarisation structure, displayed in the polarisation colour map (bottom left). In each
column on the right is the simulated projection of the beam in the indicated polarisa-
tion basis state. The greyscale colour bar is used to visualise the spatially dependent
intensity.
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2.3.1 Mueller matrix polarimetry

An optical element is defined as anything that alters the beam’s intensity, phase,
frequency, timing, or polarisation. Any optical element can be described as a Mueller
matrix. The Mueller matrices of most commonly used optical devices are well known,
and a selection can be found in chapter 1.4.1, though if investigating the optical
properties of an unknown object such as a biological sample [57-60], the Mueller
matrix becomes what the experiment seeks to measure.

In order to fully understand how the element in question interacts with polarisa-
tion, one might think to probe it with a beam of each Stokes basis state, and then
measure how it has been altered with a Stokes measurement [42, 61]. This process
requires 32 consecutive measurements - twice as many as elements in the matrix!
So 16 measurements should suffice, theoretically.

In the process of reducing the number of measurements, one might consider
whether the sample is optically homogeneous. If it is, then it is possible to probe
it with multiple polarisations at the same time. A vector beam with spatial polari-
sation structure lends itself to this, particularly one that features every polarisation
on the Poincaré sphere [62]. In that case, the number of necessary measurements
has been reduced to a single set of Stokes measurements. The absolute minimum
of necessary camera images, however, will be discussed in chapter 4.3 - after a
necessary detour over measurement theory.
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3 longitudinal polarisation states

As mentioned in chapter 2, the plane wave does not exist. A beam does not extend
infinitely into space. To deal with this, the Gaussian beam was introduced, which
brought with it the curved phase fronts of the Gouy phase, but these just highlight
another problem: Polarisation is not confined to the xy-plane.

Consider once again a beam focussed by a lens. The propagation axis of the
beam is unaltered, but the local  vectors become spatially dependent, they now all
point towards the focus. The further from the propagation axis, the stronger the tilt.
The oscillation of the electric field is still transverse, but to the local wave vector k. If
the local polarisation is azimuthal, that is to mean transverse to the vector pointing
out radially from the propagation axis (see chapter 2.2), the electric field will continue
to be transverse. However, if the local polarisation is radial, the electric field is now
partially aligned with the propagation axis. It has gained a longitudinal component
(5]

This might not come as a surprise to some areas of optics - in some media, e.g.
optical fibres, longitudinal polarisation is the norm [63]. This, however, is longitudi-
nally polarised light in free space.

This change to the electromagnetic field distribution changes its very shape, to
the point where it alters the focussing properties of the beam [64—69], the strong lon-
gitudinal polarisation component of a previously radial beam as described in chapter
2 allows it to be focused beyond the conventional diffraction limit [youngworth2000focusing,
70]. These properties give it many applications, including superresolution imaging,
[71, 72], the generation of optical chains or needles [57, 73], as well as using them
to investigate chiral materials [74] and nano-plasmonics [75, 76].

But to understand longitudinally polarised light, one must first shift into a suitable
basis. Much theoretical work has been done surrounding three dimensional polarisa-
tion since the initial work by Richards and Wolf using vectorial diffraction theory [5],
investigating various aspects of the fields [77—-79]. It was learned that longitudinal
polarisation can lead to light acquiring SAM in the tranverse direction [80—-82], or that
a potential state space can be mapped onto a generalised Poincaré sphere, which is
also capable of describing effects like the directional emission by arbitrarily oriented
molecules [83]. The latter, while being a very detailed and complete model, requires
the use of an eight-dimensional Stokes vector analogue. For the purpose of the work
presented here, it is better to work in its Jones vector equivalent.

3.1 even more Jones vectors
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CHAPTER 3. LONGITUDINAL POLARISATION STATES

Figure 3.1: Focusing a beam with a lens tilts the phase fronts of the electric field
toward the propagation axis, leading it to gain a longitudinal component. As the
radius of the beam increases, the tilt becomes stronger. This is best expressed in
spherical polar coordinates, with the focus at the centre. Here, go and g; are the
directions of electric field (assuming an initial radially polarised beam), s; points to
the focus, 6 is the polar angle in spherical polar coordinates, with a maximum of «
which is the focusing angle of the beam, and given by the numerical aperture.
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3.1. EVEN MORE JONES VECTORS

In chapter 1.5.1, alternative Jones bases were introduced. Any set of orthogonal
polarisations can serve as a Jones basis. It is now time to reveal the final set of basis
states used in this thesis: radial and azimuthal. These bases are spatially dependent,
but orthogonal at each point in space and as a whole.

This becomes more clear when a focussed beam is considered: If the lens is
properly aligned, the propagation direction is unaltered, but the local wave vector is
not, the beam shape changes, it becomes smaller, the wave vector points towards
the focus, and the wave vector is what the polarisation is perpendicular to. Radial
and azimuthal beams have been introduced in chapter 2, and the fact that they are
orthogonal comes to fruition here. Now, the azimuthal polarisation angle matters a
great deal because if the local polarisation is azimuthal, it will remain transverse to
the propagation axis, like you'd think it would, but if the local polarisation is radial,
the electric wave will tilt inward towards the focus - it gains a longitudinal component.
Therefore it makes sense to move into an unusual basis for this consideration. Any
polarised beam can be decomposed into its radial and azimuthal components. This
can be done as follows:

E,(z) = cos psEy(z) — sin o, Ey(2) (3.1)
E,(2) = cos ps Eg(2) — sin ps Ey(2), (3.2)

where z is the propagation direction,  and y are the coordinates in the trans-
verse plane, ¢ = tan~' (y/x) is the polar azimuthal angle and so E, and E, are
the azimuthal and radial electric fields, respectively. The radius ¢ that would com-
plete the polar coordinates is omitted here, as the beam is assumed to be radially
symmetric.

When the Jones vector was initially introduced in chapter 1.2, only the trans-
verse components were considered, as this chapter was working in the plane wave
approximation. Now it is time to add the longitudinal £, back into the vector:

. (B
E=|E, (3.3)
E,
or
. (Eo
E=|E, (3.4)
E

z

Of course, in the paraxial limit, £, =~ 0, and can be safely omitted. This notation
should provide a sufficient toolkit for the next step on the path to creating longitudi-
nally polarised light.
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CHAPTER 3. LONGITUDINAL POLARISATION STATES

3.2 strongly focused light

One final parameter needs to be introduced before the beam can be put through
a lens: the unit vector g, which points radially outward from the optical axis:

Jo =cosp|H) +sing|V). (3.5)

By definition, azimuthally polarised light has an electric field in the direction §x k,
so the beam can now also be written as

—

Eo = [EQ Go + ES (50 x k). (3.6)

In their 1959 paper [5], Richards and Wolf showed that the electric field of a
focused beam can be expressed via a diffraction integral over the vector field ampli-
tude @;. To best represent this, a change of coordinate system is necessary: The
beam is now considered to sit in a spherical polar coordinate system characterised
by radius s, polar angle 6 and azimuthal angle ¢, with the origin being at the focus.
The beam can now be visualised to occupy a circular segment of a sphere, and, if the
beam is azimuthally symmetric in intensity (like an LG mode) its radius is given by a
constant 6, i.e. its area becomes smaller as it is focussed. Note that the ¢ has the
same meaning here as it did before, it describes the azimuthal angle on the beam.
See figure 3.1 for an illustration of these angles. In this configuration, the equation
for the electric field is as follows:

Ez(s) iA «a 2 .
(gy(s)> :7?/0 /0 Ey(6) sin 0V cos 0

cos 0 cos p
explik(zs cos 0 + o5 sin 6 cos(p — ps)] | cos@sing | dodo.
sin 6

(3.7)

The Cartesian components can now be transformed into the radial-azimuthal
basis using equation 3.1. As mentioned in the introduction of this chapter, the az-
imuthal component will not be affected by focusing, so it can be safely discarded for
now. Setting it to 0 is equivalent to using a radially polarised beam. Consider now
the full form of the radial and longitudinal component [84]:
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3.2. STRONGLY FOCUSED LIGHT

a 2m
7—‘4// 1o(0) sin 0+/cos 6 cos 0 cos(¢ — ¢s)

explik(zs cosf + s sin 6 cos(¢ — ¢s)]dpdl (3.8)
2w

/ / ) sin v'cos §

explik(zs cos 0 + o5 sin 6 cos(¢p — ¢s)]|dpdb. (3.9)

\. J

Various papers have analytically carried out partial integration over ¢, but so-
lutions using ¢ and 6 have to be done numerically [83]. In this thesis all theoretical
results come from numerical simulations. Of particular interest here is the effect
of beams with a spatially dependent radial component - at the focus, the intensity
distribution between longitudinal and transverse polarisation components becomes
spatially dependent. This leads to especially interesting structures when viewed in
more traditional bases, like shown in figure 3.2.

A problem with longitudinally polarised light is that despite its many applications,
it cannot be picked up by traditional cameras, or even photodetectors. All previous
attempts of measuring it relied on indirect methods, such as suppressing the forward
scattering when gold nanoparticles were illuminated by radially polarised light [85],
using the fluorescence patterns of single molecules with fixed absorption dipole mo-
ments to infer the scattering [86, 87], interaction with molecular monolayers [88], or
using Mie scattering of microscopic particles to reconstruct the 3D light field [89, 90].

The first direct measurement of the £, component can be found in chapter 9 of
this thesis.

47



CHAPTER 3. LONGITUDINAL POLARISATION STATES
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Figure 3.2: Using different bases to describe the three dimensional polarisation
structure of a strongly focused beam. On the left is the longitudinal polarisation,
the rest are orthogonal paraxial bases in pairs: horizontal and vertical, right and
left, radial ad azimuthal. The relative benefits become apparent depending on the
use case: horizontal-vertical is the most conventional and intuitive basis, while radial-
azimuthal is most visibly related to the longitudinal component, and right-left is useful
here to show that they are linearly polarised beams, but also useful later, as they are
the other eigenstates of the medium that will measure the longitudinal component in
chapter 9.
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4 POVMs: measurements and infor-
mation

Cameras and photodetectors measure transverse intensity. This throws a wrench
into any measurement of non-paraxial polarisations (so one has to result to meth-
ods like the one described in chapter 9), but it also makes it difficult to measure
paraxial polarisations. The smallest amount of parameters that can be used to de-
scribe a paraxial beam of light are its amplitude in two orthogonal directions as well
as a relative phase, so a single measurement does not suffice. In chapter 2.3, the
Stokes measurement was introduced to solve this issue: A measurement taken in
6 basis states, forming three pairs of mutually unbiased pairs of orthogonal states
(IH),|V),|A),|D),|R) and |L)) allows for full reconstruction of the Stokes vector.
But what is it that makes this kind of measurement work? And what are the alterna-
tives?

4.1 measurement theory

91

To find an answer, one must turn to quantum theory. Projective measurements
destroy the information being measured to obtain specific data - "are you one thing
or not? Do you have this characteristic?" They can only ask yes or no questions [92].
Superposition states yield probabilistic results, though in measuring many individual
particles classical behaviour can be observed once again. The process of projective
measurement can be described by an eigenvalue equation, as discovered by J. Von
Neumann in 1955 [93]:

AN = N[\, (4.1)
with the operator A being the projective operator, and the outcomes \; are eigen-
values describing the probabilities that correspond to the eigenstates |);). The prob-
ability distribution P comes from the density operator p:
P(\) = Tr(pPy) (4.2)
The density operator, or density matrix, is a nxn matrix holding the probability
distribution of a n dimensional state space. For a 2 level system, it looks like this:
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CHAPTER 4. POVMS: MEASUREMENTS AND INFORMATION

Figure 4.1: POVM states on the Poincaré sphere form a tetrahedron. Two states
are linearly polarised and sit on the equator, while the remaining two are points on
an orthogonal grand circle. these two states share an orientation but have opposite

ellipticity.
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4.1. MEASUREMENT THEORY

b= (p“ p12> . (4.3)

P21 P22

This operator is generally time and spatially dependent. Its diagonal elements
p11 and poo describe the probabilities of the object being in state 1 or 2 respectively,
and p12 = p3; the complex probability amplitude of hopping between the states. The
density operator will be revisited in chapter 6.3.2.

The probability operator from equation 4.2 can be described as a set of projec-
tors

B =) (A (4.4)

Projectors by definition need to be Hermitian, positive, complete, and orthonor-
mal [91]. The reasoning behind this is as follows: projectors represent observables,
and are therefore naturally hermitian (15,1 = P,). Probabilities are scalars and there-
fore positive, hence P, > 0. Probabilities also cannot sum to numbers greater than
one, so the set of projectors has to be complete: P, = I. A choice of orthonormal
measurement states ensures intuitive interpretability, as the the states are defined to
be mutually exclusive, so ﬁiﬁj = Piéij, where ¢;; is the Kronecker delta. Two sets,
each containing two orthogonal projectors, are considered to be a mutually unbiased
basis (MUB) if any projector can be expressed as an equal superposition of the other
pair [17].

It is easy to see that a Stokes measurement fulfils all of these criteria - the first
three emerge naturally, and each Stokes parameter is calculated from a set of MUBs.
The Poincaré sphere does not correspond to physical 3D space, instead orthogonal
basis pairs are found on the opposite ends of each axis. In this space, the six Stokes
vectors form the corners of an octahedron, more than enough to define it: A state in a
Hilbert space with d dimensions requires d? measurements to be fully reconstructed,
so in this case four should be enough [94]. Much like any two-dimensional surface
can be defined by three points on it, a three-dimensional space, or even a sphere
can be defined by four points. Four measurements should suffice. [95-97]

POVM stands for positive operator value measurement. Theoretically, it is an
umbrella term that includes projective measurements, but it is colloquially used to
refer to measurements using non orthogonal basis states. The three natural rules
of projective measurements still apply, POVMs have to be Hermitian, positive, and
complete, but of course orthonormality is no longer a condition [91]. This loosens
restrictions on the number of measurements, their minimum being the smallest num-
ber necessary to characterise the Hilbert space [92]. POVM operators are denoted
as m.

4.1.1 POVM on the Poincaré sphere

Four distinct polarisation states correspond to four points on the surface of the Poincaré
sphere. As a sphere can be defined by any four distinct points on its surface, these
polarisations could theoretically be chosen arbitrarily, but the closer they are to one
another, the more vulnerable measurements become to noise. Areas of the Poincaré
sphere with fewer states on them will always have bigger uncertainties than those
with more states in proximity, so the most general configurations sees all states with
equal distances to one another [98].
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When evenly spaced out, the four states necessary to define the Poincaré sphere
form a tetrahedron [99, 100]. Each of its corners corresponds to a polarisation, the
measurement of all four constitutes full tomography. The orientation of the tetrahe-
dron is arbitrary. To optimise for convenience and interpretability, states were chosen
that depend on the parameters a and b:

1 1 1 1
a:\/E’ b:\/;7 (4.5)

which are used to define the following states:

¢1) = a|H) +b]V) (4.6)
|¢2) = a|H) = b|V) (4.7)
|¢3) = b|H) +ia|V) (4.8)
|¢a) = b|H) —ia|V) (4.9)

Now, two of the tetrahedron’s states lie on the equator of the Poincaré sphere,
making them linear, and the other two on the grand circle crossing it at |V), i.e. they
are vertically elliptical. Figure 4.1 shows the four polarisations and the tetrahedron.
In Poincaré coordinates, the states are the following:

1) — 2x = 7/2,2p = 0.9553 (4.10)
o) — 2x = 7/2,2¢) = —0.9553 (4.11)
|p3) — 2x = 0.9553,2¢) = 7 (4.12)
|ba) — 2x = —0.9553,2¢) = 7. (4.13)

The difficulty using the POVM basis is that the experimental setup would require
projection into non-orthogonal basis states: In [101], a potential experimental setup
was proposed that uses a partially polarising beam splitter, with a 1/3 vs 2/3 distribu-
tion of states. This means that, without affecting the phase between the polarisation
states, one arm of the beam splitter transmits 1/3 of E, o and 2/3 of E, , and the
other one will do the opposite. This can be easily misunderstood, as a polarising
beam splitter placed at an angle of 60° would separate |H) and |V) along these
proportions, though it does not meet the assignment. It is important to stress here
that this is irrespective of phase, it cannot fully separate the beam in another basis;
the beam splitter must have a specific basis by which it sorts the polarisation but
not do so fully. Unfortunately, such devices are not readily available, they must be
custom made, making them very expensive. But through interferometry, everything
is possible.

4.2 non-orthogonal polarimetry using interferometry
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4.2. NON-ORTHOGONAL POLARIMETRY USING INTERFEROMETRY

100 2

In section 4.1.1 of this chapter, it was shown that any beam can be characterised
using strategic measurements of four non-orthogonal polarisation states, but that to
do so experimentally requires a § vs 2 partially polarising beam splitter (PPBS),
which is commercially unavailable.

A Mach-Zehnder interferometer can be used to yield the results of a generic
PPBS, with full control over the proportions of component polarisations. This setup
can be seen in figure 4.2A and has an output of

- _ (—FEn,insin(2a)
Eout,1 = ( FEyinsin(203) ) (4.14)
~ _ ( Egjncos(2a)
Bana = ( EpineC)). (4.15)

where « and j are the angles of the HWPs in each of the arms.

In [100], this PPBS was used as the centrepiece of a polarimeter. Afterwards,
the phase of each output was adjusted with a monorefringent quartz plate, and their
polarisations altered with a QWP and HWP respectively, which allowed the now
slightly misaligned paths to be projected into the bases from equation 4.18. A similar
setup was used by Ling et al in a previous experiment, though they only measured
homogeneous polarisations [102]. Sadly, Mach Zehnder interferometers are prone
to misalignment, the three consecutive PBSs make the system highly unstable. The
beams travel different paths, so noise such as air currents or vibrations might affect
both beams unequally.

Before more research could be done, a more stable version had to be devised:
A Sagnac interferometer with misaligned beam paths is effectively equivalent to a
Mach-Zehnder interferometer that uses the same beam splitter twice. This principle
was used to create the system in figure 4.2B. The difference in path lengths due to
the nature of the experiment is compensated by the tilted glass slides in each arm
of the interferometer. Slight change in alignment can be compensated by adjusting
the effective optical path length. This improvement of stability was investigated in the
first part of [2], in which the Sagnac setup was first used.

In both versions of the setup, readout occurs from a single camera image, al-
lowing the polarimeter to measure changes in the experimental beam in real time.
Figure 4.2C shows that each component polarisation occupies its own quadrant of
the camera screen in clockwise order. While an equivalent configuration is theoreti-
cally also possible for measurements in the Stokes bases, camera space is limited,
and the closer the beams are to each other, the larger the possibility of interference
or cross talk. From each camera image, a four element vector describing the polari-
sation can be calculated:
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Figure 4.2: POVM experimental setup. A: Mach-Zehnder interferometer acting like
a PPBS. HWP angles a and § make it possible to tune the fractions of the original
beam in each arm. B: Current experimental setup using a modified Sagnac inter-
ferometer. The colour coding here does not indicate polarisation, it is intended to
visualise the different beam paths. The glass slides have an adjustable tilt, making it
possible to dynamically optimise the path difference. After the initial Sagnac interfer-
ometer, the beams are vertically displaced with respect to one another, so that the
resulting beams can each occupy a different quadrant of the camera. C: The camera
screen is divided into four regions, from which the states can be read out clockwise.
In the orange box is an experimentally obtained image of beam |¢1). The intensity
distribution shows that I; is at its maximum, while the remaining intensities are equal
and lower, but still present.
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4.2. NON-ORTHOGONAL POLARIMETRY USING INTERFEROMETRY

= [ 2], (4.16)

~ where I, is the intensity in the relevant mode and I, is the total intensity I, =
Z;Z‘f I;. The states have significant overlap with one another, making the POVM
vector unintuitive to read, but it can be transformed into a Stokes vector via the
instrumentation matrix

1

111

il (4.17)

1

e
4

Like done with Stokes previously in section 2.3, these measurements can be
done spatially, by measuring them with a camera image and calculating the stokes
measurements pixel by pixel.

The beams for this experiment are generated by a digital micromirror device
(DMD), which was introduced in chapter 2.2.2. DMDs allow for the generation of
nearly any beam. This will be useful for creating vector modes later, but now it is
especially useful for the arbitrary control over polarisation states.

The camera image produced by the POVM setup is less intuitive to interpret
than images produced by Stokes measurements. As the POVM states are not or-
thogonal, any polarisation will have an overlap with multiple of them. A POVM state,
in particular, will produce a projection into all three other states in addition to the
maximum projection into its particular state. This causes additional challenges for
the optimisation of the system.

Before measurements, the interferometer has to be calibrated. Experimentally,
it is easier to optimise for minimum intensity rather than maximum, so the system
is probed with homogeneously polarised beams that are orthogonally polarised to
each of the POVM states:

|p1) =b|H) —alV) (4.18)
|¢2) = b|H) +al|V) (4.19)
|gs) = a|H) —ib|V) (4.20)
|ps) =a|H)+ib|V). (4.21)

Figure 4.3 shows that this removes the respective POVM state from the camera
image, if the system is properly aligned. In other words, the optical path difference
between the arms of the Sagnac interferometer needs to be adjusted until the beam
in question vanishes.

In [100], it was shown that this provides a viable single shot alternative to the
Stokes measurement, even for beams with complicated polarisation structures. But
beams rarely change on their own - if it is being altered in real time, the focus of the
research tends to be the optical element that alters the beam.
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\

orthogonal states

POVM states

Figure 4.3: Using uniformly polarised beams to calibrate the POVM setup. The
system is ready for measurements once the corresponding orthogonal projection
fully disappears. Experimental data collected by Amy McWilliam, and adapted from
[2]. Simulations of the probe beams by me.
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4.3. GENERALISED MUELLER MATRIX MEASUREMENTS

4.3 generadlised Mueller matrix measurements

Any optical element has a 16 element Mueller matrix which describes its effect
on the Stokes vector. They were first introduced in chapter 1.4.1 of this thesis as
a largely theoretical concept, but in chapter 2.3.1, it was revealed that they can be
measured using the six Stokes measurements, if the element in question is homoge-
neous. In order for this to work, the probe beam needs to feature every polarisation
on the Poincaré sphere.

All information gained from a Stokes measurement can be gained from a single
POVM image. In other words, [2] showed that it is possible to measure the Mueller
matrix of an optically homogeneous sample from a single camera image, making it
possible to monitor dynamic changes to the medium in real time.

The method for the experiment is the same that was used in chapter 4.2. The
probe beam is generated by the DMD via superposition of Laguerre-Gauss modes,
via the methods from chapter 2.2:

1
V) = — (LGY |H) + LGZ |V)) . 4.22
v) NG (LGY|H) 0 IV)) (4.22)
As the mode numbers of the component beams are the same, they have the
same Gouy phase, and so their polarisation structure stays the same during propa-
gation. Vector beams like this were previously introduced in chapter 2.

4.3.1 proof of principle and error analysis

In order to verify this method, initial measurements were taken of components with
known Mueller matrices: A QWP and a HWP. Figure 4.4 shows the experimental
beam before and after each component, with a selection of fast axis angles. Com-
parison to simulations of the beam after each component in question show that the
measured effects on the polarisation are as anticipated.

Using the spatially dependent Stokes vectors describing the initial and final po-
larisation, the Mueller matrix of each element can be calculated. Figure 4.5 shows
a graphical representation of the experimentally measured Mueller matrices plotted
as solid bars, in comparison to the translucent bars showing the theoretical Mueller
matrices from chapter 1.4.1. Their similarity validates this setup’s ability to measure
a Mueller matrix, but is it competitive?

The global error of the Mueller matrix elements can be calculated via the root
mean square of the individual errors:
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( Original After HWP (0°) After HWP (70°) After QWP (0°) After QWP (20“)\

QRO

Figure 4.4: Experimental beam before and after a HWP at different fast axis angles.
Figure taken from [2] and generated by Amy McWilliam.

Figure 4.5: Theoretically (transparent) and experimentally (opaque) determined
Mueller matrices. Each bar graph represents a Mueller matrix element J\Zfiyj. The
elements are as follows: a) HWP at 0°, b) HWP at 70°, ¢c) QWP at 0°, and d) QWP
at 20° Figure taken from [2].
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Figure 4.6: Root mean square as described in equation 4.23 of the individual er-
rors on the Mueller matrix measurements. Three methods are being compared: The
POVM Sagnac interferometer, standard Stokes polarimetry, and measurements ob-
tained by using a Stokes setup to project into the POVM states. Figure adapted from
[2], for which it was generated by Amy McWilliam.

4
> (oM (4.23)

4,J=1

Tms(éM) =

with 00 = cﬁl\E — 57\?71 being the difference between the experimentally mea-
sured and theoretical Mueller matrices. The global errors are plotted as a function of
fast axis angles in figure 4.6, and compared to equivalent results of two other meth-
ods: Conventional Stokes measurement as described in chapter 2.3, and using the
same Stokes setup to project into POVM states.

As the POVM interferometer is much more complex than a Stokes setup, which
consists of only three optical elements, it is unsurprising that there is a slight increase
in error. However, these results show that the errors of the POVM measurements are
within a factor of two of those of more conventional methods. The fact that the errors
of all techniques seems to depend on the fast axis angle of the wave plates might
suggest a slight tilt in the wave plate. This warrants further investigation.

4.3.2 nonstandard optical elements

A wave plate with a tilt has a different thickness relative to the beam axis. Wave
plates are birefringent, so this results in a change in optical path difference and
therefore phase retardance. Multi-order wave plates are designed to be used at
normal incidence, and their theoretical retardance becomes nonlinear:

2 cog2 2 gin?2
or (0, o) = ? \/ng _ necos*(6) —&;no sin”(6) sin?(a) — y/n2 —sin?(a) |, (4.24)
nO

where 6 is the angle of the wave plates fast axis, « is the angle of incidence,
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T is the thickness of the wave plate, n, and n. are the ordinary and extraordinary
refractive indices and X is the wavelength.
For a fast axis angle 6 = 0°, this equation simplifies to

or(0 = 0,a) = ? <\/ n? (1 - Si“;§“>) ~\/n2 - Sin2(a)> . (4.25)

The Mueller matrix for a wave plate with retardance § and fast axis angle 6 = 0°

is
10 0 0
0 1 0 0
M(5,0 =0) = 0 0 cosd —sind (4.26)
0 0 sind cosd

This means there are four ways to calculate the retardance from a measured
Mueller matrix:

M
61 =tan! ( Mii) (4.27)
8y = tan™ ( ﬁi) (4.28)
83 = tan~ ( Mgg) (4.29)
64 = tan~ (M44> . (4.30)

To show that the setup is capable of measuring general phase retardance, a
multi-order crystalline QWP (ThorLabs WPMQO05M-633) was mounted on a rotation
stage to measure the Mueller matrix as a function of tilt angle.

Although all four retardances should theoretically be the same, there are slight
discrepancies due to experimental errors. Their average values in dependence of tilt
angle are displayed in figure 4.7, plotted against an experimental fit. Substituting the
fitted curve back into equation 4.25, the refractive indexes of the wave plate can be
calculated:

ne = 1.54302 = 0.00032 (4.31)
ne = 1.55199 £ 0.00033 (4.32)

Thorlabs provides these values to four significant figures: n, = 1.543 and n, =
1.552. Both values lie in the expected range, validating this setups ability to measure
refractive indexes.

This chapter has demonstrated the possible benefits of using generalised mea-
surements as an alternative to Stokes measurements. They can be used to effec-
tively characterise polarisation structures and Mueller matrices of known and un-
known optical elements.
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Figure 4.7: Retardance as a function of angle of incicence in a QWP with a fast
axis at 0°. An average of the measured retardance is displayed in orange, and an
experimental fit in blue. The fit can be used to calculate the wave plate’s refractive
indexes. Figure taken from [2].

The experiment’s main benefit over other methods is that it can measure Mueller
matrices and refractive indexes of changing optical media in real time, as shown in
the supplemental material of [2] (there’s a rotating wave plate video). The stability
investigation revealed that it can be used to monitor an optical process over a longer
time span without needing further input. As such it shows promising applications for
characterising biological or chemical samples in a non invasive way - especially in
situations that require a low level of probe light, or even single photon illumination.
The interferometer is also suitable for miniaturisation into integrated optics.
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conclusion of part |

Thus concludes the part of the thesis concerned with the behaviour of light. Every-
thing said until this point is sufficient in order to understand its role in semiclassical
atom-light interaction.

A direct consequence of Maxwell’s equation are electromagnetic waves that
propagate through space at the speed of light. They are transverse waves, which
means they have polarisation, and they have an intensity profile in the transverse
plane. If the intensity profile does not change in time or space, the beam is con-
sidered to be an eigenmode of propagation. Different modes that carry different
polarisations can be combined to form a vector beam with a spatially dependent
polarisation profile. The spatial dependence of the polarisation is quantified as the
optical concurrence, a classical analogue to quantum entanglement. There are mul-
tiple ways of denoting polarisation, each suited to different applications.

Light is not transverse to the propagation axis, instead it is transverse to the
wave vector. The wave vector of any beam points to the focus, causing most beams
to have a longitudinal component. This component becomes significant when the
beam is focused by a high numerical aperture lens. Prior to the work presented in
chapter 9, it has never been directly measured.

The polarisation of light can be mapped to the surface of the Poincaré sphere.
This state space was used to demonstrate that the minimum number of measure-
ments for full tomography of polarisation is smaller than that used by conventional
Stokes measurements. A change in basis states hence enables the single shot
measurement of the polarisation of a vector beam, enabling us to measure real-time
changes in the optical activity of samples. This lends itself to many exciting appli-
cations, biomedical sciences already use polarised light to investigate living tissues,
and the system’s efficiency makes it well suited to low-light experiments.

It probably says something that even the one pure optics experiment in my the-
sis was secretly about light-matter interaction. But while wave plates are classical
elements, atoms are not. The structure of light, e.g. whether a beam is comprised
of HG or LG modes, is a matter of chosen basis. Atoms, as fully quantised particles
(or waves?) take this principle one step further.

It is time to dive into the matter of the thesis (pun intended).
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This thesis is about atoms. The atom was initially conceptualised to be the fun-
damental building block of the universe, with its name translating to "unsplittable”
(ironic, in hindsight).

The atom consists of a nucleus - which is made up of protons and neutrons,
which in turn consist of quarks - and an outer electron shell. To many, the wave-
like behaviour of a bound electron was the first introduction to the strange nature of
quantum physics. The positive charge of the nucleus provides a potential well, in
which the electrons are free to oscillate. These harmonics, or orbitals, are solutions
to the Schroedinger equation, and their discrete energy levels and three dimen-
sional harmonic wavefunctions are at the centre of entire academic disciplines, and
the reason why objects as we know them are able to exist.

The particular field that provides the wider context of this thesis is semiclassical
atom optics. The semiclassical limit assumes that a quantised atom is interacting
with a classical light field (as described in part I) rather than individual photons. While
this does not account for all effects that can be observed with its corresponding
experiments [103], it provides a detailed enough approach that it can describe all
phenomena that will be seen in the lab in part lll. This part and the next are intended
to complement each other, approaching the same phenomena from both theory and
experiment.

Because of this, the atom | mean when | say atom optics is Rubidium 87 (Rb-
87). While everything said here is intended to be general, or at least transferable, it
will be consistently used as an example in the two following chapters. It even gets its
own section in chapter 7.1.

In the coming two chapters, a comprehensive model of the atom will be con-
structed. Beginning with the quantum numbers, it will become noticeable that the
atom can carry various types of angular momentum. As this angular momentum is
carried by charged particles, there are multiple sources of magnetic fields at play.
This becomes relevant for atom-light interaction, and even more relevant in the pres-
ence of an external magnetic field - which is even capable of altering the quantum
numbers.

All this once again comes down to a choice of basis states. It will be seen that
the effects induced by an electric or magnetic field present differently when projected
onto different quantisation axes, and that this can be used to construct an atomic
state interferometer.

But to get there, one must assemble a toolkit for understanding the quantum
world (semiclassically).
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5 atomic theory

Our current model of the atom consists of a number of electrons in spherical har-
monics around the nucleus. Solutions of the Schroedinger equation provide full in-
formation about the atomic processes, however from an analytical standpoint, the
Schroedinger equation remains unsolved for all elements larger than helium. In or-
der to be understood, the atom has to behave closely enough to hydrogen or helium
that it can be approximated as a heavy version thereof.

The first column in the periodic table contains the alkali atoms. In their neutral
state, alkali atoms only have a single electron in their outermost shell. As full electron
shells destructively interfere with themselves and therefore cancel out, alkali atoms
act as though they only have one single electron. From an optical perspective, this
makes them analogues of hydrogen, but with a bigger nucleus [103].

It is possible to use Hydrogen for spectroscopic measurements, but doing so is
unusual. Hydrogen is so light (in weight) that the radiation pressure from interacting
with a photon entirely changes its trajectory. It is therefore common to do research
on atom light interaction using heavier alkali atoms, and model their electron shells
as those of Hydrogen. Most alkali species see some use [104]. Sodium saw much
popularity in early atom optics, it was used to first demonstrate optical pumping [105]
and in the discovery of dark resonances [106]. The main advantage of studying
lithium is the attractive potential caused by atom-atom interactions [107], as well as
its natural occurrence as both a bosonic and fermionic isotope [108]. Potassium,
too, has fermionic isotopes [109], and is just gaining in popularity. Due to its high
instability, francium sees little use. It is mostly used for research relating to atomic
parity non-conservation [110]. Caesium is most well known for its use in atomic
clocks, which led to the redefinition of the second [111]. Rubidium is arguably the
most popular element in atom optics, to the point where it is often seen as the default.
Chapter 7.1 is entirely dedicated to its features (as is the rest of this thesis, let’s be
honest). It is used in Bose-Einstein Condensation (BEC) [112, 113], atomic clocks
[114], Rydberg atoms [115], magnetometry [116], trapping and manipulation [117],
and of course interaction with vector light [1, 118]. Though not all atom optics is done
on alkali elements - alkali metal ions also see use [119], and some experiments use
mixtures of diffent atomic species [120].

This chapter aims to provide an overview of all concepts necessary to under-
stand atom light interaction in the semiclassical limit, in which light is understood to
be a classical wave, in order to highlight inner atomic processes in all their quantum
glory. These concepts are applied to conceptualise an atomic state interferometer in
chapter 6 which is then realised in chapter 8. Additionally, it is revealed in chapter 9
that everything discussed in this chapter is linked to the possibility of the interaction
with non-paraxial light.
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CHAPTER 5. ATOMIC THEORY

5.1 quantum numbers

There are four quantum numbers characterising the wave function of an electron
within an atom. They are n, [, m; and ms. The principal quantum number n is the
order of the outermost shell, and, for a neutral atom in its ground state, the row of
the element in the periodic table. The azimuthal quantum number [ indicates the
subshell, which corresponds to the amount of OAM present in the electron. [ ranges
from 0 to n — 1. This number is perhaps more well known from a different context: an
electron with [ = 0 is an S orbital, [ = 1 a P orbital, [ = 2 a D orbital, etc. The specific
orbital within the subshell, however, is given by the magnetic quantum number m;.
It can occupy integer values from —I to +I. It corresponds to the projection of [ along
the chosen quantisation axis. The last one is the electron spin s. As fermions,
electrons have spin of 17, and their projection onto the quantisation axis m, can
take two values: +3 or —1. Pauli’'s exclusion principle says that two electrons can
occupy the same orbital if they have opposite spin. Spin in general is very difficult to
conceptualise [103, 121].

In its neutral ground state, Rb-87 has one electron in its 5th and outermost shell.
This means it has the following quantum numbers: n = 5, 1 = 0, and hence m; = 0
and m, = —%. This makes it an s-block element, with its valence electron having a
ground state in the s subshell.

The nucleus however has spin too, it is the sum of the spin of all nucleons. This
makes it isotope specific. Rb-87 has a nuclear spin I = 3/2. The nuclear spin, too,
can be projected onto the quantisation axis, this projection m,; ranging from —I to I
in integer steps.

Now, three of these quantum numbers are angular momentum related, and three
more are the magnetic projections thereof. In an experimental setting, it is often more
useful to have the information about their composite effects rather than to consider
them individually, as they will certainly interfere with each other.

5.1.1 composite quantum numbers

A charged particle with angular momentum generates a magnetic field. Two mag-
netic fields will interfere, altering the particles generating it. The magnetic quantum
numbers introduced earlier in this chapter will therefore have an impact on each
other, in other words their angular momenta can couple to each other.

In atomic physics, a regime is characterised by its "good quantum numbers".
A quantum number is considered good if it remains constant. Depending on the
environment, atomic states characterised by some quantum numbers may couple to
other states, so they can no longer be treated as constants. Generally, good quantum
numbers are eigenvalues of operators that commute with the Hamiltonian.

Spin orbit coupling refers to the interaction between the electron’s OAM and
spin. It is the strongest of the couplings between angular momentum operators (re-
sulting in coupled quantum numbers), spanning multiple experimental regimes. It is
expressed as the total electron angular momentum j, which is calculated as the
vector sum of the spin and the azimuthal quantum number [122]:
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5.2. ATOM-LIGHT INTERACTION

j=1+s (5.1)

When projected onto the quantisation axis, its allowed values range from —j <
m; < j. This magnetic quantum number produces shifts in the atom’s energy level,
as will be explained in chapter 5.2.3. Notation for specific state configurations with
spin orbit coupling is done in the following way: n {),,, | |m,mr). Here are some
examples: 55/ |1/2,3/2) or 5P3/5(3/2,3/2).

Under some circumstances (the specifics are the subject of chapter 6) the nu-
clear spin couples to the angular momentum of the electron. This total angular
momentum F is the vector sum of its components [123]:

F=j+1I (5.2)

Specific I states can be denoted like n orbital|,,,,| "F'= F, .. 551 2F = 1. In
its ground state, Rb-87 can have two F sublevels: (j = £1/2) + (I = 3/2). lts Py,
state has four sub levels: (j = (¢ = —1,0,1) + (s = £1/2) = {£3/2,£1/2})+ (I =
3/2) = (F'=1{0,1,2,3})

The projection of the total angular momentum mg onto the quantisation axis,
too, produces energy shifts that are the subject of chapter 5.2.5, and form the basis
of all theoretical work done in chapter 6.3.2. But to get there, some groundwork must
be lain concerning the very nature of atom-light interaction.

5.2 atom-light interaction

103

Every atomic state is associated with a specific energy. Two atomic states of
different energies are separated by an energy gap. Energy can travel through the
electromagnetic field, and if it carries the precise amount of energy needed to bridge
the gap, the atom can absorb the photon and jump to the higher state. If the wave-
length is much larger than the atomic radius ag, the dipole approximation can be
made, which pictures the atom interacting with a homogeneous electric field which
oscillates at the atomic resonance frequency w, inducing an oscillating electric dipole
moment within the atom [103]. This is the only type of transition considered in this
thesis.

5.2.1 Rabi oscilations

Consider, for now, a two level atom. In the presence of a driving electric field, it will
oscillate between the ground state and the excited state. These Rabi oscillations
were first described by I. Rabi in 1945, and their angular frequency is called the
Rabi frequency, or Q. If at time ¢t = 0 the atom is in the ground state, it will be
in the excited state at Qi ¢t = 7, and return to the ground state at Qrt = 27. At all
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CHAPTER 5. ATOMIC THEORY

other points in this period, the atom is in a superposition state. The populations are
described by a set of equations:

02 Ot

|¢:1(t)|2 = Qf}%”cos( ; > (5.3)
Q% QL

a0 = g sin (). 54)

where Q) = /Q% + A2, and A is the detuning. In other words, the effective
Rabi frequency is detuning dependent - the further the light moves off resonance,
the weaker the oscillations.

Rabi oscillations are a coherent process. This means its superposition struc-
ture is collapsed by quantum measurement. It can also randomly collapse due to
spontaneous emission or other decoherent processes.

5.2.2 dispersion and absorption

The electric field changes the atom, and the atom changes it back. On resonance,
the atoms absorb the energy of the electric field, but off resonance they still interact
with its phase. Both of these effects stem from the atom’s refractive index n..

The refractive index was introduced earlier in chapter 1.2.1 in a simplified form.
In reality, it is a complex number. lts real part describes the dispersive effects that
have been seen all throughout part | of this thesis, and its imaginary part is equal
to the absorption coefficient [103]. These components are related via the Kramers-
Kronig relations [124]:

’ 2 > 1,0 X//(wl)
X' (w) = - /0 w'dw 7 — o7 (5.5)

where x” is the refractive index and w is the angular frequency. For atoms, these
effects are wavelength dependent. Figure 5.1 shows that approaching resonance,
dispersive effects grow before being overtaken by the absorption line. The sign of
the dispersive effects depends on whether the light is red or blue detuned.

In chapter 5.2.4 it will be revealed that atomic transitions are polarisation de-
pendent. Thus the refractive index does not only depend on wavelength but also
polarisation. The full effects of this are discussed in chapter 6.1.1.

For reasons beyond the scope of this thesis, every transition has depths and
widths, but all follow the Lorentzian shape and its derivative from figure 5.1. How-
ever, in chapter 6.3.2, the spatially dependent refractive index of the 55, F' =1 —
5P;,,F' = 0 transition of Rb-87 will be derived via the Master equation. But first,
some elaboration on atomic level structure.

5.2.3 fine splitting

Fine splitting refers to the energy shifts induced by spin orbit coupling. Energy levels
that would at first glance be considered to be degenerate (sharing the same energy)
now have different energies, and transitions between them require the absorption of
a photon [125].
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Figure 5.1: Simulated dispersion and absorption in terms of the natural linewidth T
near the resonant frequency of a generic two level atom. The absorption line has a
Lorentzian shape. It is related to the dispersion via Kramers-Kronig relations.

There is an additional effect that can occur on the same order of magnitude as
fine splitting: The Lamb shift induces additional changes in the effective energies of
the atomic sublevels. It is caused by vacuum effects that require an understanding
of quantum electrodynamics to explain, and will hence go undiscussed [103].

Figure 5.2 shows the fine splitting between the S,P and D levels levels for Rb-
87. j is a good quantum number here, as P is split by |m;| rather than |m;|. The
transitions between states have names: 555/2 — 5P12/2 is called the D1 line, and

58}, — 5P3, the D2 line [121]. From this point onwards, this thesis only concerns
itself with the D2 line.

5.2.4 selection rules

Angular momentum is a conserved quantity. The transition from one atomic level to
another cannot change the amount of angular momentum in the universe. Transitions
between energy levels with different amounts of angular momentum have to get the
difference in angular momentum from somewhere. In chapter 1.1.1, it was shown
that circularly polarised light carries +# of angular momentum, or 41 in natural units.
If a circularly polarised photon is absorbed, its angular momentum is transferred to
the atom.

As such, the angular momentum of an atom can be altered during atom-light
interactions, but only in units of 1. For a generic projection of angular momentum m:

Am =0, +1. (5.6)
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Figure 5.2: Fine structure of Rb-87. Energy not to scale. Spin orbit coupling causes
sublevels of the same n state to separate in energy. a) shows the simplified level
scheme from 525, /5 to 725, 5. b) zooms in on the 525 — 52 P transitions enabled by
fine splitting. The 525, — 5P , transition is often called the D1 line and can be
driven by light with a wavelength of 795 nm. The 5251/2 — 52P3/2 transition is called
the D2 line and driven by light with a wavelength of 780 nm. The work in this thesis

is done on the D2 line.
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5.2. ATOM-LIGHT INTERACTION

Transitions can change the angular momentum of the atom. Due to the conser-
vation of angular momentum, the projection of the atom’s angular momentum onto
the propagation axis may also be changed, these transitions are called 6, and 6_
transitions, depending on the sign of the change. The transition with no projected
angular momentum transfer is called the 7 transition. Any transitions that fall out-
side this range are often referred to as "forbidden transitions”. This rule applies for
l,my,5,m;,F, and mg, but the spins are of course further restricted to their previously
discussed values. Transitions always have to satisfy the selection rules for the good
quantum number in the relative regime [126].

For completeness, it should be remembered that in chapter 2.1.3 it was said that
light can not only carry spin but also orbital angular momentum. This has been used
to drive transitions with |[AL| > 1, but such transitions are no longer described by the
dipole approximation [127].

5.2.5 hypeffine splitting

In the regime in which F'is a good quantum number (see chapter 6.3 for more infor-
mation), the fine structure states are further split hyperfine sublevels.

Figure 5.3 shows this hyperfine structure for the D2 line of Rb-87. Note how the
number of hyperfine sublevels grows with the orbital angular momentum of the fine
structure state. As an S-block element, its ground state has I = 0, and so due to
F = I + s has two F sublevels, whereas the excited state has four sublevels.

There is an even finer structure: splitting can occur between the m g sublevels.
This will become relevant later in chapter 6.3, where a Hamiltonian of the 55, o F' =
1 — 5P3,,F" = 0 transition and all its sublevels is constructed. But to get to this
point, the last determining factor has to be discussed, for the determining factor of
all angular momentum coupling is the ambient magnetic field.
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Figure 5.3: Diagram of hyperfine sublevels of the D2 line. Energy gaps between
ground and exctited states not to scale. The system has two ground states and four
excited states. Figure based on data presented in [121].
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6 abreakinthe symmetry: magnetic
fields

As mentioned in chapter 5.1.1, angular momentum states can couple to one another,
as the rotating charges generate magnetic fields that interfere with each other. This
results in a change of good quantum numbers. It should come at no surprise then,
that magnetic fields generated by other sources also impact the atom. This can lead
to a multitude of related effects, depending on the strength of the magnetic field, and
its angle to the propagation axis.

As will be seen in chapter 6.2, a magnetic field of sufficient strength can couple
to the angular momenta individually, leading them to decouple from one another.
Weak magnetic fields leave the F' quantum number intact, but that is not the same as
leaving it unchanged. In chapter 1.2 the lab frame was used to provide a coordinate
system, as light has no natural bases in the transverse plane. This notion was fully
explored in chapter 1.5.1, where it was shown that any basis of states is equally
valid, and in chapter 5 the atoms were largely treated as rotationally symmetric.

This is no longer true in the presence of a magnetic field. The propagation
axis and the magnetic field direction both make their spatial direction distinguishable
from the others, introducing an anisotropy, and the geometry of the system hinges
on whether they are orthogonal or not. Chapter 6.3.2 will show that which atomic
states can exist entirely depends on the choice of quantisation axis. To get there, we
need to pay attention to the often overlooked m g sublevels.

6.1 Zeeman splitting and Larmor oscillations

A charge with angular momentum is equivalent to a current loop. A current loop
in a magnetic field is susceptible to induction. This holds true down to even individual
spins, but if the states are coupled, this effect presents itself in the modification of
"good" quantum numbers. The induction changes the energy of the sublevel in ques-
tion in proportion to its angular momentum, causing degenerate sublevels to further
split. This effect was first observed by P. Zeeman in 1896, and is named Zeeman
splitting in his honour. It can be described by the Zeeman Hamiltonian £, which
takes the following form [122]:
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Figure 6.1: Breit-Rabi diagram showing the Zeeman splitting of the 55, /» sublevels
of Rb-87. E=0 corresponds to the unshifted 5251/2 state. Note that for low magnetic
field the energies are grouped (i.e. closer together) by F' state, whereas for bigger
magnetic fields they regroup by m;. This corresponds to a shift in good quantum
numbers.

2 - . m - N
Hy = -2 (gl+ 9.5+ ==g1) - B, (6.1)
i

where m. is the mass of the electron and m,, is the mass of the proton. The
Landé g-factors g;, gs and g; characterise the magnetic moments of their respective
angular momenta. Note the presence of all angular momentum quantum numbers
from chapter 5.1, and that they are all represented individually rather than in their
composite forms. The effects of this are shown in figure 6.1 for the sublevels of
the 55, ,, and 5P;/, states of Rb-87. As the magnetic field increases, a regrouping
occurs: For a zero magnetic field, all mr sublevels are degenerate, but as magnetic
fields increase they begin to split. Once this process becomes nonlinear, F' stops
being a good quantum number, but with a further increase, the behaviour begins to
linearise again in different groups - the m; sublevels. The strength of the external
magnetic field dictates which quantum numbers are good.

These regimes have names to easily distinguish them for experimental and the-
oretical use. The realm of weak magnetic fields is called the Zeeman regime. It pro-
vides the backdrop to the theoretical work done in chapter 6.3 which is experimentally
realised in chapter 8. Strong magnetic fields shift the atom into the Paschen-Back
regime, ruled by the quantum numbers j and m;. It is elaborated upon in chapter
6.2, and used for all experiments described in chapter 9.

78



6.1. ZEEMAN SPLITTING AND LARMOR OSCILLATIONS

Depending on the reference frame, this effect can present in an additional way:
The atom is an object that is fundamentally quantum in nature. The superpositions
of its states are as valid as their pure forms, and how they project onto any given
quantisation axis depends on said quantisation axis. In the realm of atom light inter-
action, all magnetic fields can be considered to have a longitudinal component that
is aligned with the magnetic field, and a transverse component that is orthogonal to
it. As the effects of the magnetic field present differently depending on the magnetic
field angle, these components are usually considered one at a time. A system in
which the propagation axis is aligned with the magnetic field is called the Faraday
configuration, and a magnetic field that is fully orthogonal to the propagation axis
is in the Voigt configuration.

In the Faraday configuration, the absorptions affect the circular components ex-
actly as discussed above, but in the Voigt configuration, there are now two choices
of quantisation axis. Picking the propagation axis effectively misaligns the magnetic
moments of the magnetic sublevels from the magnetic field. These magnetic dipoles
are now acted upon by the Lorentz force, leading them to rotate around the axis of the
magnetic field in a process known as Larmor precessions. The angular frequency
of this is called the Larmor frequency, or Qr,, and is given by [103]:

Q=B (6.2)
2me

Of course, this is the same effect that causes Zeeman splitting [128], but it
presents differently: when projected onto the propagation axis, the atom appears
to periodically hop between degenerate(ish) states. In the Hamiltonian, this presents
as off-diagonal terms connecting the sublevels.

Whether the atom is in the Faraday or Voigt configuration affects absorption
and dispersion: In chapter 5.2.4, it was shown that from any given state, there is a
maximum of three possible dipole-allowed transitions: +1x of angular momentum,
or no angular momentum transfer. The orientation of the angular momentum states
couples to the magnetic field, so the three possible polarisations are co-rotating,
counter-rotating, and aligned with the magnetic field axis. If the magnetic field is
transverse to the propagation axis, the latter is the only paraxial polarisation, and
therefore the only transition that can be driven - no angular momentum transfer is
possible. In other words, in the Voigt configuration, the light can only be absorbed by
the atom if it is polarised along the magnetic field direction.

In the Faraday configuration, the opposite is the case. The transverse plane is
isotropic if the magnetic field is aligned with the propagation axis, and so to interact
with the atom, the polarisation needs to be rotationally symmetric - in other words, the
transitions are driven by right and left circularly polarised light. Circularly polarised
light drives the 6 transitions, which is by definition between states with different
angular momenta. These states are unequally affected by the Zeeman splitting,
which means that the energy gap is shifted. The angular momentum transitions
&_ driven by |R) are always red detuned with respect to the # transition, and 6
transitions driven by |L) are always blue detuned by the same amount.

As explained in chapter 1.5.1, any polarisation can be expressed in terms of | R)
and |L), so the third orthogonal component required to drive the 7 transition would
have to be aligned with the propagation axis. This is done for the first time in chapter
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Figure 6.2: Theoretical diagram showing the faraday effect. Red is right circular and
blue is left. The retarding effects are 1.5 as much on right as they are on left. Linearly
polarised light is rotated upon propagation, changing its orientation.

9. However, the Faraday configuration has one final secret to reveal.

6.1.1 the Faraday effect

In chapter 5.2.2, it was shown that the absorption is the imaginary part of the com-
plex refractive index. Its real part changes the phase retardance of the resonant
polarisation, rendering the atom birefringent.

In the Faraday configuration, the eigenmodes of absorption are |R) and |L) (and
|z)). The absorption lines of these two polarisations are now frequency separated.
Close to resonance of each of these lines are regions where the atom is circularly
birefringent, as the dispersion curves (see figure 5.1) shift with the absorption lines.
This turns the atomic cloud into an optical rotator, like in chapter 1.2.1. Figure 6.2
shows that a circularly birefringent medium will effectively rotate a propagating lin-
early polarised beam by changing the phase between its circular components. The
resulting change in orientation of the polarisation ellipse is called Faraday rotation
[129]. Experimentally, this effect is seen in chapter 9.4.1.

Right circularly polarised light propagating in the +z direction and left circularly
polarised light propagating in the —z direction have identical electric fields. This con-
cept, known as the photon’s chirality, was originally introduced in chapter 1.1.1, and
becomes relevant in the picture of light co or counter propagating with the magnetic
field. In other words, reversing the magnetic field is equivalent to reversing the Zee-
man splitting and therefore the direction of Faraday rotation [130].

It is also possible to create a magnetic field from polarised light via the inverse
Faraday effect [131], and it can emerge from paramagnetism [132].

The Faraday effect sees many practical applications. It is most famous for being
the key component in the most common type of optical isolator [133, 134], but in
addition it can be used for narrow band optical filtering [135], optical switching [136,
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137], constructing dichroic beamsplitters [138], magnetometry [139], and even far off-
resonance laser locking [140](see chapter 7.3.1 for an explanation of laser locking).

As the Zeeman splitting depends on the strength of the magnetic field, so does
the characteristic rotation. The way the energy levels are organised is determined
by the good quantum numbers. Not every value of magnetic field has good quantum
numbers, but a few distinct regimes with specific sets of rules have emerged. Here
are two of them.

6.2 the hyperfine Paschen-Back regime, or strong mag-
netic fields

Increasing the magnitude of the external magnetic field increases its coupling to
the angular momentum quantum numbers. The Zeeman regime is left behind when
F stops being a good quantum number, but once the field is significantly stronger
than the coupling between nuclear and electron angular momentum, the atom enters
the Paschen-Back regime. Under these conditions, the Zeeman shift is linearly
dependent on the magnetic field [122]:

AE ~ (gjmjup + grmrun)B, (6.3)

where pp is the Bohr magneton, pn the nuclear magneton, g; is the Landé g
factor for j and g; that for I. The energy shift only depends on the magnitude of the
magnetic field B, not its direction. m; and m; are good quantum numbers in this
regime [122, 141].

The hyperfine Paschen-Back regime is characterised by the Zeeman shift al-
ways exceeding the ground state hyperfine splitting (see chapter 5.2.5). For Rb-87
this effect starts at 0.24 T [142], but full resolution of all transitions is only achieved
at higher values, such as 1.6T, which is used for figure 6.3.

This diagram is called a Breit-Rabi diagram. Shown on the left are the sublevels
from figure 6.1. The Zeeman splitting in the excited state is much weaker than that
of the ground state, so while both m; and m; are used to specify the ground state,
only m; is used to distinguish between excited states. The detuning between in-
dividual transitions now lies in the GHz, and so the angular momentum transitions
are separated into different batches in frequency space. However, the states aren’t
entirely pure, though the strength of the mixtures decreases as the magnetic field is
increased. These mixtures can cause some weak crossover transitions [141].

Due to the strong frequency separation of the angular momentum transitions,
the absorption spectra look vastly different depending on the magnetic field angle.
The top half of figure 6.3 shows the spectrum in the Voigt configuration with a trans-
verse and polarisation aligned magnetic field on top, and a londitudinal magnetic
field, i.e. the Faraday configuration below it. This is the natural conclusion of chapter
6.1, in which it was said that # transitions are exclusive to the Voigt configuration, as
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Figure 6.3: Absorption spectra in the hyperfine Paschen-Back regime for a parax-
ial linearly polarised beam. The box at the bottom shows the level scheme at 1.6T,
where the flavours of transition are seperated in frequency space. The resulting
spectra are shown in the box at the top: all transitions are Doppler resolved and
grouped into packs of four. Some mixing of states remains, indicated by the lines in
the top box, but it is very weak. V and F indicate the Faraday and Voigt configuration.
o_ transitions are colour coded red, o transitions blue, and = transitions purple. In
the Faraday configuration, only o transitions are available, and in the Voigt configu-
ration only 7 transitions. Figure adapted from [3], for which it was created by Danielle
Pizzey.
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are 4. transitions to the Faraday configuration due to the paraxial nature of the light.
Though, as mentioned in chapter 3, light is never fully transverse. The implications
of this are brought to the lab in chapter 9.

Increasing the magnetic field even further will eventually once again lead to
nonlinear effects - even the spin-orbit coupling can be split. Of more interest in
this thesis, however, are the effects of magnetic fields that are weak enough to be
easily controlled in three dimensions. If the available transitions are a function of the
isotropy of its reference frame, what does this say about the atomic state space?

6.3 weak magnetic fields

The Zeeman regime spans the range of external magnetic fields that aren’t
strong enough to decouple the nuclear spin I from the electron angular momen-
tum j, and so the total angular momentum F' and its projection mpg are the good
quantum numbers. Under these conditions, the Zeeman shift is also linear, and can
be described by the following equation:

AE = upgrmrB., (6.4)

where gr is the Landé g-factor for F', and u5 is the Bohr magneton [121]. In this
regime, the energy shift depends only on the longitudinal component of the magnetic
field. The selection rules are also simplified in the Zeeman regime:

-1 <AF < +1 (6.5)
—1 <Amp < +1. (6.6)

The D2 line of Rb-87 was first introduced in chapter 5.2.3, and in chapter 5.2.5
it was shown that it has two F ground states and four F excited states. As the
number of m sublevels scales with F', the simplest configuration among them is the
5s1/2F =1 — 5pg /o F' = 0 transition.

The 5s; /o F' = 1 ground state of Rb-87 has three mr sublevels (|g_) , [g0) , and
lg+)). The 5ps,,F = 0 has only one, |e). The possible transitions between the
individual states form a lambda configuration, shown in figure 6.4. The magnetic field
induces Zeeman splitting, changing the relative energy between the my sublevels,
as well as Larmor precessions, coupling their populations.

It is this transition that concerns the majority of my theoretical work, for it can
be reconfigured into a theoretical, and later, in chapter 8, experimental atomic state
interferometer. To do this, everything discussed so far has to be brought together to
form a Hamiltonian.
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\ 70) 190) /

Figure 6.4: The F = 1 — F’ = 0 transition of the D2 line of Rb-87 forms a lambda
transition, named for its shape.
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6.3.1 constructing a Hamiltonian

The Hamiltonian H is an energy operator, that is to mean applying it to a state is the
theoretical equivalent of measuring the system’s energy. It can take the form of an
N x N matrix acting on the N-dimensional vector containing the NV possible states.
Consider a two level atom:

Hypy = (51 ‘]7521) =B |1) (1] + B2 |2) (2| + Jo1 |2) (1] + H.c. (6.7)
12 2

The diagonal terms E; and E» are the energies of the states. If part of the aim is
to explore energy shifts (like in this thesis), the unshifted energy of the state in ques-
tion is set to 0. The off-diagonal terms />, and 7,2 are complex conjugates of one
another, and describe coherent hopping rates between the states. When considering
atom light interactions, this is where Rabi oscillations and Larmor precessions are
found. Of course, for larger systems there are specific hopping terms between any
two states. This can get very complicated very fast. As will be seen in chapter 6.3.2,
a large part of modelling atomic systems is reducing or simplifying these terms as
much as possible.

As the energy operator, the Hamiltonian can describe a range of processes. A
Hamiltonian that describes multiple separate processes can be expressed as the
sum of the Hamiltonians of the individual processes. For example, the electric dipole
interaction between an atom and a photon can be described by the dipole Hamilto-
nian

H=-d-E (6.8)

where d is the induced electric dipole moment and E is the electric field. This is
where the complex refractive index comes from. Similarly, the Zeeman Hamiltonian
from equation 6.1 can describe magnetic effects between the energy levels of an
atom.

The aim of this chapter is to construct a general Hamiltonian for the 55, o F =
1 — 5P3 /o F' = 0 transition of the D2 line of Rb-87. It was shown earlier that this is a
system with four states, which can be expressed using the state vector |¥) :

vy = [ % (6.9)

as this is the Zeeman regime, there is a strong magnetic coupling between all
angular momentum quantum numbers. Therefore, the Zeeman Hamiltonian simpli-
fies:

H,=-ji-B (6.10)

where B the magnetic field and j is the induced magnetic dipole momentm
proportional to the Bohr magneton:
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f=—gruB [2(|9+> <9+| - |97> <97D
—(6-19+) (9ol + 7+ |9-) (90| +H.c.)]. (6.11)

The total Hamiltonian contains an additional term describing the energy of the
excited state:

Hiap = hwa le) (e| —d - E(7a) — - B(7a) (6.12)

where w4 is the atomic resonance frequency. The states |g;) and |g_) have
angular momentum, but |go) and|e) do not. This means that in order for the for-
mer two to hop into the excited state, they need to absorb light that carries angular
momentum.

There are four states, this means the final Hamiltonian will have 16 elements.
But what exactly those elements are depends on careful choice of parameters. The
following subsections are intended to provide a toolkit for theoretical atom optics.

As the aim of this chapter is to create a general Hamiltonian, it has to be capable of
modelling the interaction with any external magnetic field or (paraxial) radiation. The
choice of notation for the latter is inherent to the available transitions. In chapter 1.3,
the polarisation ellipse notation was introduced, which describes the polarisation in
terms of angles on the Poincaré sphere, which do not favour any specific basis. As
the atomic state vector separates the angular momentum states, it makes sense to
initially separate the electric field the same way:

u_ =cosy e "V, (6.13)
Uy = siny e™. (6.14)
where u4 are the circular polarisation components, and x and ¢ are the polar

and azimuthal angles on the Poincaré sphere, respectively. This yields the spatially
dependent electric field

E(7) = EO(ﬁL)eiwt [us(7L)64+ +u_(7L)6_] + C.C,
= Eo(7) )e™* [Sin x(7L) e, (6.15)

“+cos x(71) e_w(ﬂ)c?,] 4 G4,

which highlights the relevance to the atomic transition by using 6 and &_ rather
than |R) and |L) to denote the polarisation components.

The light considered can be considered fully transverse, and as explained in
chapter 6.1.1, this means the # transition is unavailable. The reason this initial state
was chosen over its Voigt equivalent is that it interacts with both polarisaton bases,
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whereas in the Voigt configuration only linearly polarised light aligned with the trans-
verse magnetic field can interact. While this may seem like an oversight, chapter
6.3.2 will show that the transition itself is a function of the quantisation axis.

Using these basis states, the induced electric dipole of the atom takes the form:

d = [d6 |g4) (el + 6™ |g_) (e]] /2v/3 + H.c. (6.16)

The electric dipole Hamiltonian from equation 6.8 can now be expanded to be:

—

Hp=-d-E (6.17)
Q —iw * _tw
= —% ([use™™" +u”e™!] |g1) (e]

+ [u_e ™" + ue™"] |g_) (e]) + H.c.
_
=55

+ [e7™cos x e ™" +sinx e™'] |g_) (e]) + H.c.,

—iwt

(e™ [sinye + cos x e |g4) (e]

Similarly, chapter 6.1 explained how the magnetic fields present is a matter of
perspective, i.e. chosen parameterisation. To best seperate the Faraday and Voigt
regimes, a spherical polar coordinate system is chosen:

B = B, (cosOpZz + sinfp cos ppd — sinfp sin P )

e |
— B, (cos Op% + smﬁB [e7%56_ + €i¥n &+]) : (6.18)

where g is the polar magnetic field angle, ¢ the azimuthal one, and B its
magnitude. These polar coordinates are visualised in figure 6.5. The magnetic field
is treated as fully homogeneous for the entirety of this thesis, but the model can be
easily adapted to show the effects of spatially dependent magnetic fields, as long as
they can be approximated to be homogeneous over the atomic radius. In a way, this
is similar to the dipole approximation.

Using the magnetic field as the quantisation axis, the magnetic dipole moment
from equation 6.11 can be put back into the Zeeman Hamiltonian from equation 6.10:

H;=—ji-B (6.19)
= 8y, [cos O (lg+) (941 — lg-) (9-1)
sin 8 ) )
Z (€% |g4) (gol + €77 [g_) (gol) | ,

V2

This version includes both Zeeman shifts due to longitudinal components, as
well as Larmor precessions due to transverse components

Equation 6.12 unites all of these processes and provides a complete and general
picture of the electromagnetic processes within the atom:
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Figure 6.5: Convention of magnetic field polar coordinates 65 and ¢ 5. Here, z is the
propagation direction, so 65 is the polar angle, and ¢z the azimuthal angle.
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Higp = huwa le) (e| —d - E(7a) — fi - B(7a) (6.20)
= Twa le) (e] = Bo(7L)e™" [cos x(71) eV ™)z,
+sin x(7) e” ¥ g ]—i—CC
+ R [cos O (|9+) (9+| — l9-) (9-1)

sin QB

V2 (€72 |g+) (ol + €*® |g-) (gol)
This is four lines long. Simulating this will take and hour and might melt the
computer in the process. Solving it analytically looks like a nightmare. Some simpli-
fication is direly needed.
Now, one problem that immediately stands out is that this equation is in the
lab frame, which is not the ideal setting for evaluating a travelling wave. Maybe a
coordinate change can fix our problems.

Take a step back. Consider the two level system |¥) = ¢, |g) +c. |e)) performing Rabi
oscillations driven by a plane wave. The time evolution of the complex amplitudes
cg,e Can be written as

de ei(wfwo)t + efi(erwo)t
ih—2 = c,hQ*( (6.21)
dt 2
dee. 61(w+w0)t + e*l(&}*&)o)t
) — = .22
ih o cghY( 5 (6.22)

For a system near resonance, w + wy >> w — wy. Chapter 5.2.5 showed that
Rb-87’s resonant frequency sits in the THz, a time scale near incomprehensible to a
human. In any measurement that can be detected in a lab, exp(i(w + wp)) averages
to 0, so these terms can be removed from the equation:

) ng _ . eiAt
ZTLE —CehQ ( 9 ) (623)
' dCe e—iAt
zh—dt = ¢y h8Y( 5 ), (6.24)

where A = w — wy is the detuning.
With this in mind, let’'s go back to the Hamiltonian.

Two things can be done to simplify the Hamiltonian from equation 6.20: the rotating
wave approximation can be applied, and the reference frame can be moved to co-
rotate with the electric field via the unitary transform
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A = UHOT + i%fm, (6.25)
where U = exp [iwt |e) (] = |g+) g+ + lgo) (g0l + lg-) (g_| + le) {e] ¢ In this

frame, and neglecting counter-rotating terms, the Hamiltonian is given by

A

H = (wa—w)le) (e[ + Qp cos O (|g+) (9+] = |9-) {9-)

- 2(% [u* 1g+) el + 1w |g_) (€] + H.c] (6.26)

sinfp
V2
= (wa —w) e) (e| + Qp cosbp (|g+) (9+] = 19-) (9-1)

—Q

[(e7 |g4) (gol + " |g—) (gol) + H.c.] ,

0 . L
— % [cosx €™ |gy) (e| +sinxe ™ |g_) (e| + H.c.]
— Q2 (92 lg,) (ol + 77 [g-) () + He]

The factors acting on states |i) (i| are energy terms, which include the energies
of the Zeeman shifted ¢4 states as well as the excited state. The next two lines
contain the electric and magnetic coupling effects respectively.

While this equation is already simpler than its previous form, it is still quite large,
and becomes difficult to interpret for non special cases. Instead, previous work done
by the optics group relied heavily on numerical simulation. There are multiple meth-
ods that can be used to model scenarios that can be tested in the lab, each with
their own strengths and weaknesses. But it is also possible to solve this system
analytically.

6.3.2 partially dressed states

The interaction Hamiltonian in equation 6.26 is unwieldy, and it is difficult to extract
usable information. This is solely a function of reference frame - moving into a par-
tially dressed state picture will simplify this system to the point of intuitive legibility.

A dressed state transform is equivalent to a coordinate rotation in an N-dimensional
coordinate system where N is the number of orthogonal states. In other words, if new
states are defined as superpositions of the old states, the Hamiltonian for the new
states can be simplified. Partially dressed states refers to a dressed state model that
leaves one or more of the original states untouched.

Quantum physics is often the study of quantised waves. In chapter 1.5.1 it was
shown that light has no inherent basis state, and neither do atoms. In other words,
a dressed state transform is changing the projections, but describing the atom in
a way that is equally real to the initial states. This can lead to some interesting
interpretations.

Beginning with the Hamiltonian in equation 6.26, it is easily visible that the Rabi
oscillations depend on the polarisation of the electric field. Right or left circularly
polarised light will only drive one of the 6. transitions, but a superposition thereof
will drive oscillations between the excited state and a weighted superposition of the
|g+) states. It is therefore useful to transform the |g.) ground states into a coupling
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state |1.), which is coupled to the excited state by whatever polarisation is present,
and a noncoupling state |¢,.), which is driven by the orthogonal polarisation, which
is absent:

[¢e) = = (cosx €™ |g4) +sinxe™™ |g-)) (6.27)

W}nc) =

2=zl

(sinx e |g4) —cos x e |g-)) (6.28)

where N = /|ui|? + |u_|? is a normalisation constant related to the intensity
EZN. The inverse transformation is useful for performing the substitution:

|9+) = (cosx e™™ [te) +sinxe™™ |¢nc)) /N (6.29)
l9—) = (sinx €™ [¢hc) — cos x ¥ [¢nc)) /N (6.30)

Substituting these states yields the following partially dressed Hamiltonian:

A

H=9¢ |6> <6| + Q2 cosOp [COS 2x (|wc> <wc| - W]nc> <"/)nC|) + (Sin 2x |¢C> <wnc| + HC)}

1 ; j :
— —=Qrsinfp | e " (cosx ™™ [c) (gol +sinx e [¥nc) (gol)
V2
+e7'% (sinx €™ [1he) (go| — cos x €™ [ne) (gol) + H.c
Qr
— = (| H.c), 6.31
55 (10e) (el + He) (6:31)

which uses ¢ to denote the detuning § = w4 — w. Additionally, the parameters P
and @ have been introduced:

P = (Ju_|> = |uy[?) /N? = cos2x, (6.32)

Q =2u_u, /N? =sin2y. (6.33)

These parameters are the projections on the poles or equator of the Poincaré
sphere. In other words, P describes the ellipticity and is equal to the Stokes param-

eter Sz, and @ is the polarisations "linearity". Similarly, crosstalk between the ground
states can be expressed in terms of the complex hopping rates J and J:

J = 7\/%]\7 [ei(w_‘bB)sinX + e_i(w_¢3)cosx] (6.34)
_ 1 _ .
J = W {—ez(w"”)sinx + eﬂ(w*"B)cosx} : (6.35)

These come from the physical interpretation of the dressed state transformation.
If a superposition between the two angular momentum state is driven, then the spin
of the state will present as the hopping between the superpositions.
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Figure 6.6: Visualising the partially dressed state transformation. The final system
is in a "ladder configuration", where the states are in a linear hierarchy, and can only
couple to the adjacent states.

It will become apparent that from this point onward ¢z and i only show up
in addition with the other. Part of the reason for this is that they serve the same
purpose: ¢p is the azimuthal angle of the magnetic field and ¢ is the orientation of
the polarisation ellipse, as shown in chapter 1.3.1. However, their conventions are
opposite: ¢p turns clockwise (in +z direction) and ¢ anticlockwise. Adding them in
the phase term produces real values when the angles (in real space) align, imaginary
ones when they differ.

Now the Hamiltonian can be written as

=5 |e> <6| + QL COSHBP(W’Q <7/)C| - |¢nC> <7/)HC|)
+ Qp | |¥e) (cos0pQ (nc| — sinbpJ (go|) + H.C.

+ Qp sinfp (j* W}nc> <go| + HC) (6.36)
— NQg([e) {e] + H.c)/2V/3.

But wait. This isn’t simpler at alll While the atom light interaction has become
more straightforward, the magnetic field interaction now couples all three ground
states, simply shifting the problem.

To mitigate this, another dressed state transformation is performed. Similarly
to before, |go) and |g...) are transformed into one state magnetically coupled to |g.),
and one that isn’t. This forms a ladder configuration, which is shown in figure 6.6.

The new states are called the grey state |¢,) and the dark state |i4):

[¥g) = % (cos Q™ |thne) —sinfpJ* |go)) (6.37)
[va) = % (sin@pdJ [thne) + cos05Q |g0)) , (6.38)
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where M is a normalisation parameter:

M = /cos? 65|QJ2 + sin? 6|1 (6.39)

= y/cos? 0 sin? 2 + sin? O (1 + sin 2 cos(2(pp + ¥))). (6.40)

Note the grouping of terms in equations 6.37 and 6.38. The linearity @) shows
up alongside the longitudinal component of the magnetic field, and its transverse
component is always multiplied by the hopping rate. This is related to the two sources
of coupling between states: one comes from the nature of the superposition, which
is only really a superposition in the Faraday configuration, and one comes from the
magnetic coupling in the Voigt configuration when projected onto the propagation
axis in circular basis states.

The inverted version is once again more useful for performing the transforma-
tion:

[Ve) = 7 (c0s05Q1) + sin b T* [0) (6.41)
190) = 57 (— sinBT [0 + cosOQ” [9a). (642)

This final transformation will move the system into the ladder configuration.

With it, the final Hamiltonian can be written out:

H =6 e) (e| + Ee |¢e) (e| + Eq [thg) (gl + Ealtba) (¥4l
+ jec |6> <77[}c| + jcg |1/Jc> <1//g| + jgd |1/)g> <wd| + H.c.. (643)

It is in its abbreviated form for maximum interpretability. Here is a full list of all
energy and coupling terms alongside their interpretations:

First, note the terms that are conspicuously absent: J.q = Jge = Jae = 0.
The Hamiltonian has not been diagonalised, but all terms that aren’t adjacent to the
diagonal have been removed. Therein lies the nature of the ladder system. Most of
the remaining terms also go to 0 under certain conditions.

E,. = Qp cosfpcos2y. (6.44)

The Zeeman shift depends on the quantisation axis. In order for the coupling
state to be shifted in energy, it has to be in the Faraday configuration and driven by
circularly polarised light. The total shift of the system always has to be 0. With this
in mind, here are the two remaining states:
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Eg = —% cos fp sin 4y [0052 0p sin 2y (6.45)
+ sin® 0 cos2(¢p — V)],
E; = _ cosfpsin® fp |cos 2y — 1sin4)< cos2(¢pp — V)| .
2M?2 2

Both of them include the term cos 6z sin? @5 which become 0 at all multiples of
3, i.e. Zeeman splitting can only occur if the magnetic field has both a longitudinal
and a transverse component. Additionally, |i,) can also be shifted in the Faraday
configuration, to counter the shift in the coupling state.

The hopping term between coupling and grey state has been reduced to

Teg = MQp/2 (6.46)

Q
= 7L\/COS2 65 sin? 2y + sin? O (1 + sin 2x cos(2(¢ — éB))),

which shows that as the magnetic field’s transverse component grows, its az-
imuthal angle becomes more and more relevant.

The most important term in the entire equation is 7,4, the coupling term between
grey and dark state.

Q _
Il = —ﬁé sinfpg [cos2 65 sin 2xJ + sin? GBJQﬂ . (6.47)

The thing about 7,4 is that for some specific configurations, it vanishes. Spon-
taneous decay is a decoherent process, it can happen at any time in the Rabi os-
cillations, and when it happens, the atom can decay into any state. If the ground
states are all coupled, the atom will eventually find its way back to the coupling state
and resume the Rabi oscillations. If they are not coupled, the dark state has earned
its name. The atom is locked into a state from which it can’'t be excited, becoming
transparent to the laser light.

To better illustrate, the energies and hopping rates for different x, 65, and ¢ are
plotted in figures 6.7 and 6.8, respectively.

There are multiple ways to mathematically express this. Here are two approaches.

A simple way to visualise the absorption rate as a function of 0z, ¢g, x, and ¢ is to
model the transition probability from the dark state |¢;) to the excited state |e). In its
base form, this is known as Fermi’s golden rule, but a more accurate result can be
obtained by considering all electric and magnetic effects to be weak perturbations of
the system [143].
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Figure 6.7: Energies of the partially dressed states in terms of x, g, and ¢, for ¢ =
0. Zeeman splitting only becomes orientation dependent for elliptically polarised light,
as linear polarisations don’t carry angular momentum, and circular polarisations are
rotationally symmetric. The inclination of the magnetic field dictates the modulation
of said dependence.

95



CHAPTER 6. A BREAK IN THE SYMMETRY: MAGNETIC FIELDS

¢y =0

Figure 6.8: Hopping rates of the partially dressed states in terms of x, 6z, and v, for
¢ = 0. The imaginary component of 7,4 goes to infinity for x = £n/4, g = £7/2
¥ — ¢p = +mw/2. The more linear the polarisation, the more symmetrical are the
coherences. J., can also vanish, but only if the polarisation is linear.

96



6.3. WEAK MAGNETIC FIELDS

Po_q = |{el(t))?. (6.48)

The transition probability between any two states is |a;—, ¢(¢)|>. To calculate the
probability of a system with multiple states, the state vector needs to be is decom-
posed into all the component states

[9(1)) = ac(t) [e) + ac(t) [Pc) + ag(t) [$g) + aa(t) [¢a) , (6.49)

which can then be put into the Schroedinger equation.

Applying this to the dressed states yields the probability of an atom in the dark
state transitioning to the excited state, which is directly related to the electric field
absorption:

Pise = lac(t)[*

jecjcqjgd
= ' . 6.50
(Eg — Eq —ivga)(Ec — Eq — ivca)(0 — Eq — Yea) ( )

This method can be used to determine the configurations of states necessary to
render the atom transparent: if the transition probability is equal to 0, no light can be
absorbed.

The most detailed way to model an atomic system is to use the optical Bloch equa-
tions (OBE). The optical Bloch equations describe the rate of change in each state
of the system via the commutator of the Hamiltonian and the density operator:

p:—%Pﬁﬂ. (6.51)

The density operator was first introduced in chapter 4. 1t is an NxN matrix
describing the probabilities of all states and transitions between them of an N dimen-
sional state space. The diagonal terms p;; contain the populations of the states, and
the off-diagonal terms p;; (i # j) are the coherences.

Solving the optical Bloch equations often involves finding solutions for a steady
state, i.e. p = 0. This is because time dependent processes on an atomic scale are
not really measurable, as seen in chapter 6.3.1

The optical Bloch equations only describe coherent processes. This model aims
to describe electromagnetically induced transparency, which depends on decoherent
effects [11]. This means a term describing spontaneous decays must be added.
These are described by the spontaneous process operators [123]:
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r :72\90 (gil + (v +T) [e) (e] (6.52)

A= —S"(y+Tpee) lg) gil. (6.53)

K3

&=

where I is the relaxation operator and Ais the repopulation operator. The latter
stems from the fact that, as mentioned previously, this Hamiltonian does not describe
the process for any given particular atom, but instead is for a particular point in space
which is assumed to always be occupied by an atom but not necessarily the same
one. This is in line with the Stenholm approach [144]. Here, ~ is the natural linewidth,
N, is the number of ground states. Note that I and A don’t have any off diagonal
elements. They do not describe coherent processes, so there are no coherences.

This form assumes that the atoms sit perfectly still. While this is unrealistic for
reasons explained in chapter 7.2, it is a good enough approximation for a system
where for every atom that is moved another takes its place, as all the atoms are
identical and indistinguishable. In other words, this is not a model for a specific atom
but rather a specific position. The spontaneous process operators get attached to
the optical Bloch equations like this:

(Tp+ pl) + A. (6.54)

An equation of this form goes by many names. Sometimes it is called the master
equation, sometimes the Liouville equation, sometimes something entirely different.
Despite its incredible amount of detail it is used sparingly. This is due to the high
complexity of most Hamiltonians, like the one in equation 6.20. Solving the master
equation for a system like this using all four variables is as taxing on the computer
as it is on the brain.

Once the dressed state model in equation 6.43 was completed, a numerical
simulation was written to take advantage of its efficiency. In parallel, work was begun
to analytically solve the system to discover further configurations that lead to dark
states, and to speed up simulation times.

Some of the results of the numerical simulations are presented in chapter 8
alongside experimental data, as, without the experimental realisation, the research
presented in this chapter is only half complete. The theoretical model is based on
the experiments that can be performed on the cold atom experimental setup at the
University of Glasgow. This one of a kind device probes the 55,/ F' = 1 — 5P5 o ' =
0 transition of the D2 line of ultracold Rb-87 vapours with vector light, which has
been the subject of chapter 2.2, making it possible to probe for spatially dependent
X or % in a single transmission image. And for the first two years of my PhD, the
maintenance of this experiment was my main responsibility.
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Atoms are inherently quantum. Due to their discrete energy structure, it is impos-
sible to understand them in a classical way, they have to be modeled as quantum
mechanical objects. This is why the semiclassical limit is so commonly used to intro-
duce students to quantum mechanics. As they provide a friendly interface between
the classical and the quantum world, they also provide a bridge in our minds, which
allows us to understand something that is fully unlike what most people experience.
Each atom is governed by discrete quantum numbers that describe its size, charge,
charge distribution, angular momentum, and therefore its interaction with the world -
which for the purpose of this thesis consists of oscillating electric and static magnetic
fields.

In chapter 4, it was shown that all understanding of wavelike objects is inherently
projective. Put into the context of this chapter, this means that the atom is changed
by the fields that surround it. The atom can only be as symmetrical as the space it
is defined by, and the electric field of the polarisation as well as the magnetic field
provide the quantisation axes of the atom’s state space. In other words, the atom
itself becomes an interferometer, measuring the fields interacting with it.

This was shown to present in multiple ways. Magnetic fields induce energy
changes in the atom’s angular momentum states, causing their resonant frequencies
to shift. This Zeeman splitting makes it possible to alter polarisation via dichroic
absorption or circular birefringence, which can be used to extract information about
the magnetic field [145]. If projected transversely to the magnetic field axis, the
Zeeman splitting instead presents as Larmor precessions, a hopping between the
atomic states. The strength of the magnetic field therefore alters the spectrum: Low
magnetic fields see the atom in the Zeeman regime, in which its orientation matters
more than its magnitude. Strong magnetic fields, however, can decouple the nuclear
spin from the electronic angular momentum, causing the Zeeman splitting to become
larger than both the hyperfine interaction, and, for sufficiently large fields, even the
Doppler width.

Quantum physics dictates that a superposition is a very real thing, not halfway,
but both. Superposition states are often phase dependent - just as light can be
expressed in different choices of mutually unbiased bases, two orthogonal atomic
states can be redefined as orthogonal superpositions of one another, without losing
any touch with reality the description had to begin with. In chapter 6 of this part, this
principle was used to reveal a hidden structure within the atoms, responsible for all
effects seen in chapter 8. For specific configurations of electric and magnetic fields,
it is possible to pump the atom into a dark state, rendering it transparent. The new
model makes it possible to find patterns between these states, but this research is
still in its early stages.
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CONCLUSION OF PART II

As this is a model developed specifically for an experimental system, it is impor-
tant to discuss them side by side. The final discussion of the results obtained by the
partially dressed state model will be presented in chapter 8.
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Atomic theory revolutionised our understanding of the world as we know it. In the
early 20th century, new models and forms of maths and hypotheses and technologies
were sprouting up all around the globe, and it was a great time for physics in general.

This paradigm shift was entirely guided by a series of new data, forcing scientists
to rethink concepts that had long been taken for granted. The photoelectric effect
proved the existence of discrete energy levels, the Stern-Gerlach experiment lead
to the discovery of spin, Millikan’s oil drop experiment first showed the quantisation
of charge, and variants of Young’s double slit experiment showed that wave-particle
duality does not just apply to light, but all fundamental particles. This is only to name
a few - quantum physics was born in the lab.

A theory becomes successful when proven. The scientific method is based on
the idea that knowledge about the universe comes from empirical evidence [146].
Theory and experiment are two inseparable sides of the same coin, greater than the
sum of its parts. It was experimental evidence that inspired all the theoretical work in
part Il, as well as validating all the tools used to get there. Now, it is time to return the
favour by applying the model in order to predict and show previously unseen effects.

This part of the thesis is split into three chapters. Chapter 7 is essentially an
extended method section, going through every major component of the cold atom
experiment at the University of Glasgow. This experimental setup is the largest one
within the optics group, ideally manned by two PhD students. It investigates the inter-
action of ultracold (=~ 100 uK) Rb-87 atoms with structured light under the influence
of a magnetic field, and is highly versatile in the range of things it can measure. This
is seen in chapter 8, where some of the recent data gathered with it is presented
and compared to the new theoretical model. The title of said chapter, "Phase De-
pendent Atom Optics", is a nod to the thesis of my predecessor Aline Vernier, who
was instrumental in initially setting up the experiment [147].

Chapter 9 is something entirely new. In this collaboration with Durham University
it was shown that atoms provide a unique interface for three dimensional polarisation
states which has not been directly measured before. This was alluded to in chapter
3, and goes to show that the choice of quantisation axis of the atomic state space is
uniquely suited to revealing otherwise elusive electromagnetic effects.

Lab work is gruelling sometimes, and it is almost necessary to have a podcast
or audiobook or something while you work in order to prevent going insane. Lab
work is also why | am here. Being able to actively observe with my own eyes the
evidence of the laws that govern the universe is a feeling that cannot be compared
to anything else. It is worth every second of tedious alignment work. Said grunt work
also really makes you appreciate the work of the giants you are trying to climb onto
the shoulders of. A new PhD student is scheduled to begin this year, and just one
generation after him, the next student he will hand the experiment over to will likely
be younger than the experimental setup. It is beautiful to be a part of such a large
project.
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/ to trap an atom

People often associate "harnessing the atom" with nuclear power, but this is doing
the atom a disservice. Atom optics is as versatile as it is ubiquitous. Most famously,
atomic clocks are central to the redefinition of the second [111], but atom light in-
teraction is used in quantum computing [148], accelerometry [149], rotation sensing
[150], gravimetry [151], search for exotic particles [152], and of course magnetome-
try. The building blocks of our universe are resourceful like that.

In a way, this chapter is about the groundwork behind the experimental realisa-
tion of all the work in chapter 6.3.2 (which predates my academic career by quite
a bit), but it is about more than that. When | started my PhD | took over the cold
atom experiment with minimal training. There was no formal documentation, no con-
sistent record keeping, nothing. This wasn’t anyone’s fault in particular, but it made
progress on the Optics Group’s largest experiment come to a standstill. To prevent
this from happening again | began work on a "manual”, a shared internal document
detailing the setup and functionality of all the experimental components as well as
basic procedures and troubleshooting guides. It is by no means complete.

This chapter is an abbreviated version of it, outlining the function of every com-
ponent, and how they come together to form a state of the art magnetometer. As
such, it is more intended as a guide for future students taking over the experiment
than experienced thesis reviewers (when | asked Sonja on feedback for this chapter
she called it "atom trapping for dummies"). Think of it as an extended method sec-
tion. | didn’t build any of this - in fact, | probably made it quite a bit worse - but it is
my work nonetheless.

7.1 Rubidium 87

Rubidium (Rb) is the 37th element, fifth down in the first column of the periodic
table. This makes it an alkali, and an S block element. In its neutral state it has
a single electron in its outermost shell, making it highly explosive when it comes
in contact with water. It was discovered in 1861 by Robert Bunsen and Gustav
Kirchhoff.

Rb is estimated to make up 0.05% of the earth’s crust. The majority of com-
mercially available Rb is mined from large lepidolite deposits in Canada and lItaly,
which are primarily exploited for their Aluminium, as Rb has very few uses outside
research. It is solid at room temperature, a state in which it has a silvery grey colour.
Its melting point is at 39.9°C and its boiling point at 688° C [153].
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There are two naturally occurring isotopes of Rb: Rb-85 and Rb-87. The former
accounts for 72% of the natural abundance, the latter for 28%. It has 50 neutrons,
and it is slightly radioactive, with a half life of 48.8 x 10° years. It 3-decays into Sr-87.

The name Rubidium comes from the deep red colour of its emission spectrum.
As already hinted by the previous part of this thesis, it is primarily used for research in
the field of atom light interactions. This is because the D2 line (see chapter 5.2.3) of
both isotopes is driven by light with a wavelength of 780 nm, which is the wavelength
of a DVD player diode, making it possible to cheaply build speciality lasers (see
chapter 7.3.1) [49]. It is ultimately the spacing of the absorption dips that makes
Rb-87 slightly more popular, though both are very common research atoms [121].

7.2 MOTs and SpOTs

In chapter 6.3.2, the assumption was made that the atoms sit perfectly still while
experiments are being done on them. This is not the way gases normally behave.
Thermal gases are subject to thermal noise and short decoherence times, collisions
with each other and, more commonly, the cell walls cause unpredictable changes in
momentum. This can be mitigated via things like anti-relaxation coatings [154] but is
more commonly resolved by cooling and trapping the atoms.

Light is energy is heat. Laser cooling makes use of this principle by using spon-
taneous emission to systematically remove all kinetic energy from an atomic (or
molecular) gas. It remains gaseous though the individual atoms come to a stand-
still (nearly). If all atoms are brought to a standstill at the same point, and they can
no longer move, they are considered trapped.

There are many types of traps for neutral atoms, such as the optical dipole
trap [155] and optical tweezers [156], but one of the most common methods is the
magneto-optical trap (MOT). They are capable of cooling atomic gases to tem-
peratures as low as 10 uK, and are used to prepare atomic clouds to become Bose-
Einstein condensates [112], in addition to being used in many quantum technologies,
such as atomic clocks [157], quantum sensing [158, 159] and have seen miniatur-
isations such as the grating MOT [160]. They are also the reason the cold atom
experiment at the University of Glasgow is called that.

7.2.1 MOTs

The magneto-optical trap has two components: a counter-propagating laser beam
and a quadrupole magnetic field generated by a set of anti-Helmholtz coils. This
section is going to outline how these two fields come together to trap the atoms. To
get there, consider the dynamics of atom-light interaction.

If an atom (initially at rest) absorbs a photon the conservation of momentum
dictates that the atom gains the photon’s momentum, and starts travelling in the
photon’s propagation direction. The atom is now in its excited state. When it sponta-
neously emits a photon, the same rules apply. Depending on the direction of emis-
sion, the atom will gain momentum in the opposite direction. Only if the emitted
photon’s propagation axis is the same as that of the original photon will the atom
come to a standstill.
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Figure 7.1: Left: level scheme indicating the transitions driven by the different lasers
in the MOT/SpQOT. Due to the detuning, the trapping beam (in red) can let the atom
decay into the F=1 ground state, removing it from the cyclical transition. The repump
laser (green) counteracts this process. The depump laser (blue) amplifies it. Right:
the quadrupole magnetic field generated by anti-Helmholtz coils is weakest in the
centre. It causes a Zeeman shift in the atoms that changes the effective detuning of
the trap laser as a function of distance from the magnetic field centre. Image taken
from [49] and generated by Adam Selyem.

An atom in motion will experience all light to be Doppler shifted. If it is moving to-
wards the light source, red detuned light will appear closer to the resonant frequency.
Absorbing a photon from this source reduces the atom’s momentum in this direction.
If the driven transition is cyclical, i.e. if the atom is forced to decay back to its original
state due to selection rules, this process can occur over and over again. An example
of this type of cyclical transition is the 55, o F' = 2,mp = +2 — 5P3)3F' = 3, mp =
+3 transition of Rb-87. This process is a form of Doppler-cooling, and for Rubidium,
it can cool atoms to temperatures as low as 100u K, but no spatial confinement is
happening. This is where the magnetic field comes in.

Magnetic fields cause an atom’s magnetic sublevels to experience a shift in en-
ergy. This concept was explored in detail in chapter 6.1, and is very useful for exploit-
ing the detuning dependence. Right circularly polarised light drives o transitions
where the ground and excited states have different amounts of angular momentum.
This can be exploited by having a spatially varying magnetic field. If the strength of
the Zeeman shift increases with the distance from the centre of the trap, then the
velocity of the resonant atoms also becomes spatially dependent. Such a magnetic
field can be generated by anti-Helmholtz coils, as seen in figure 7.1 (more on this
type of coil configuration in chapter 7.3.5). Most traps feature counter propagating
beams in all three spatial dimensions, in order to reduce the total velocity of the
atoms.

So now, two effects determine the resonance of the atoms with the laser light:
The spatially dependent Zeeman shift, and the Doppler shift caused by the atom’s
velocity. As the laser is red detuned, atoms moving towards the light source will be
resonant. The magnetic field Zeeman shifts the energy levels, the further from the
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centre of the field, the stronger the Zeeman shift, so to compensate the atoms must
be faster towards the outside of the trap in order to be resonant. At the cetre of the
magnetic field, where its strength is 0, amasses a blob of atoms with 0 velocity - the
atoms are trapped!

The trapped atoms experience no Zeeman shift, as there is no magnetic field at
the centre of the trap. This means they also stop interacting with the light, because
it is detuned.

However, atoms that do experience a Zeeman shift and also have a velocity can
be resonant in more than one way. It is possible for the same beam to excite the
atoms into the 5P3,, F' = 2 state (though much less likely) from where they are able
to decay into the F' = 1 ground state. The atom has now been removed from the
cyclical transition. This is a problem.

One way to solve this issue is to introduce a second beam that is aligned with
the trapping beam. It drives the 55, ,F = 1 — 5P;,, " = 1 transition, an excited
state from which decay into the F = 2 ground state is possible, from where the
cooling cycle can resume. To differentiate them, the cooling beam is often called the
Trap laser and the secondary beam the Repump laser. Figure 7.1 shows these
transitions contextualised in their level scheme.

Magneto-optical trapping is unfortunately associated with a finite Doppler tem-
perature. This in turn limits the densities that can be achieved in a MOT. Light is
energy is heat, and as such, getting the atom into an even lower energy state is the
next step for improving the trap.

7.2.2 SpOTs

Left to its own devices, the Trap laser causes a fraction of the atoms to be pumped
into the F=1 ground state. While this removes it from the cyclical transition, it also
does lower the atom’s energy, as the force of the trapping beam on an already
trapped atom only causes unneccessary perturbations. This process could be ex-
ploited to achieve the desired higher densities, but the atoms are now in a dark state.

Now, sometimes it is actually good to have the atoms in a dark state. All the
modelling of atomic state interferometry done in chapter 6.3.2 was done on the
5S81/2F = 1 — 5P3,,F’ = 0 transition. In order to test it, the atoms have to be in
the F = 1 ground state which the Repump beam makes sure they can’t stay in. This
is unhelpful.

Realistically, the Repump is only necessary at the edges of the trap. The atoms
at the centre have already been cooled. For some species of atom, the strong natural
line width of certain transitions would see them decay into the dark state almost
instantaneously in the absence of a Repump beam, but unfortunately, this isn’t the
case here. Instead, a third beam, the Depump laser could drive the atoms in the
centre along the 55, ,,F = 2 — 5P,/ = 2 transition, ensuring that the trapped
atoms are in the F' = 1 dark state, ready for the experiment.

This type of modified MOT is called a Spontaneous Force dark Optical Trap
(SpOT) [161]. The beam configuration is done via a spatial light modulator (see
chapter 7.3.3), which holographically "cuts" a hole into the Repump beam and fills it
with the Depump beam, as seen in figure 7.2.

Building and maintaining a SpOT is no trivial undertaking. Over the last 20 years,
the cold atom experimental setup has seen as many changes as it has PhD students.
The beam shaping and auxiliary equipment of just the three trapping beams nearly
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Figure 7.2: Holographic shaping and combining of the SpOT beams via a grating
on the SLM. As Repump and Depump have different incident angles on the SLM,
their different orders can be combined, so that the beam has a spatially dependent
wavelength.

fill an entire large optical table. To truly understand how this type of trap works from
an experimental perspective, a few more optical elements have to be introduced.

7.3 the real experiment

THIS SECTION GOES OVER THE SETUP AND METHOD OF THE COLD ATOM EXPERI-
MENT AT THE UNIVERSITY OF GLASGOW. |IT DRAWS HEAVILY ON ADAM SELYEM’S
THESIS [49].

The cold atom experiment was initially constructed in 2006 by Sonja Franke-
Arnold and Aline Vernier [147]. Since then, while being handed down from PhD
student to PhD student, it provided the research for four papers [1, 11, 12, 161],
three of them PRLs, and has been the inspiration for theoretical simulations [162].
As of writing, the dynamic switching between a standard MOT and a dark SpOT and
the use of the dark state as a starting point for investigations into phase dependent
effects, makes it the only experiment of its kind. Once | submit this thesis, it will fall
into the capable hands of Kuntal Samanta.

Of course the trap itself is far from the only component in the experiment - each
of the component beams of the trap, alongside any probe beams has to be gener-
ated, shaped, and tuned. The vapour pressure within the vacuum chamber has to be
maintained, the magnetic fields need to be created and controlled, and, of course,
the infrastructure to take the measurements has to exist, meaning all the previous
components have to respond to each other like clockwork in a highly precise timing
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Figure 7.3: Left: schematic of the Littrow configuration, the mechanism by which
the ECDL is tunable. The laser diode emits a broadband beam. A piezoelectric
transducer controls the angle of a grating, which reflects different frequencies at
different angles. Lasing occurs only for the narrow linewidth that is reflected back
into the diode. Right: Moglabs CEF cateye.

sequence. In order to keep this experiment functional, these tasks are best done
on a daily basis, the system is highly temperamental. This chapter provides only an
outline, and for the sake of brevity treats many of its fascinating components as black
boxes, further reading is highly encouraged.

7.3.1 external cavity diode lasers and saturated absorption spec-
troscopy

As explained in chapter 7.2.2, three laser beams of different wavelengths are nec-
essary to construct a SpOT. Each of them has to be produced by a different laser.
External cavity diode lasers (ECDLs) are a common choice in atom optics. They are
commonly built in house, though commercial models are also available. They are
tuneable, which means their frequency has to be specifically selected. Now follows
an overview of their mechanism, and how one can ensure that they are tuned to
specific hyperfine transitions.

to build an ECDL

A major component of the cold atom setup are the three ECDLs that provide the
beams. One a MOGLABS CEF cateye, two homebuilt by my predecessors [163].
Their main advantage is their tunable wavelength and narrow linewidth (=~ 100 kHz)
[49]. Here’s how they work:

A laser diode emits a fairly broad spectrum of light. A grating is placed in front
of the diode in the Littrow configuration as shown in figure 7.3. The grating’s angle of
reflection is wavelength dependent, so the physical angle of the grating determines
the wavelength reflected back into the diode. Stimulated emission now occurs in
the very narrow chosen range of the spectrum, i.e. the laser’s wavelength can be
selected by adjusting the grating angle.
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Figure 7.4: Saturated absorption spectroscopy. Left: simplified experimental setup.
Top right: Hyperfine spectra with the excited states indicated. Adapted from [49].
Bottom right: corresponding level scheme. The transitions the three lasers are locked
to are not the same as those they drive in the experiment, as the crossover peaks
are stronger. The crossover peaks that Trap, Depump, and Repump are locked to
are indicated in red, blue, and green, respectively.

This angle can be manually adjusted via screws in the horizontal and vertical
directions. Additionally, a piezoelectric transducer is used for fine control of the hori-
zontal angle of the grating electronically, allowing for temporal scanning over a small
range of frequencies. This is used to tune the wavelength of the laser to drive a
specific atomic transition.

Unfortunately, something that can be easily controlled manually can also be
easily controlled by random noise. ECDLs are often subject to frequency drift and
random fluctuations. While their temperatures are conventionally stabilised using
Peltier thermoelectric coolers, this is not enough to ensure that they stay perfectly
tuned to a single hyperfine atomic transition. A frequency reference must be used to
limit drift - and what’s a better reference than the atoms themselves?

Saturated absorption spectroscopy is a method for using the atoms as a frequency
reference for the laser. If a laser is scanned through a vapour cell (e.g. Thorlabs
GC25075-RB) of room temperature atoms, absorption will occur at resonant fre-
quencies. But since the atoms are thermal, they are moving, and the absorption dips
are Doppler broadened to 500MHz. The resulting absorption spectrum shows the
fine structure (chapter 5.2.3) of the atoms, but as the standard lab is in the Zeeman
regime (chapter 6.1), the hyperfine splitting is smaller than the Doppler width, and
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the hyperfine transitions can not be differentiated.

This problem is solved by using a pump-probe configuration. Commonly, both
are provided by the same laser; a mirror is placed at the end of the vapour cell. This
kind of setup is shown in figure 7.4. To understand the effect of this, consider an
atom with a single transition at frequency wy, and a laser at frequency w. In order to
absorb the pump laser, the atom needs to travel at velocity v; = (w — wg)/k where
k is the wave number. Note only the velocity component along the propagation axis
is considered here. Similarly, the probe beam is absorbed by atoms travelling at
vy = —(w — wp)/k = —v1. If v1 = vy = 0, then the absorption rate is reduced ac-
cording to the relative intensities, as some atoms resonant with the probe beam are
already in the excited state from the pump. The beam, after having passed through
the cell, is measured by a photodiode. If the laser is scanned through a range of fre-
quencies (often done by applying a sawtooth wave to the piezoelectric transducer),
an absorption spectrum is measured. In the Doppler broadened absorption dip will
be a spike of reduced absorption at the resonant frequency.

Most atoms have more than one transition, Rb-87 certainly does. This can cause
so-called crossover peaks. If the atom is moving at velocity 2kv = wg, — wep Where
woe and wp, are the frequencies of the two transitions, another dip in absorption
will occur, as driving transition a with the pump will prevent the probe from driving
transition b and vice versa. These crossover peaks are often stronger than those of
single transitions.

The way these spectra are used to stabilise the laser frequency is via laser
locking. The time derivative, or error signal, of the saturated absorption spectrum
crosses 0 at the apex of each peak. A device called a lock-in amplifier can control
the piezoelectric transducer using the error signal: If the signal goes above 0, the
laser is blue detuned and the grating position is adjusted. Similarly, if the signal
goes below 0, the laser is red detuned. (This is an example. Which way around it
is depends on the amplifier and can often be chosen.) Doing this is called locking
the laser. Figure 7.4 shows that all three lasers are locked to crossover peaks for
convenience. This means in order to drive their respective SpOT transitions, their
frequencies have to be altered.

7.3.2 acousto-optical modulation

So now the lasers are all locked, but they are at the wrong frequency. Luckily, it
is possible to change the frequency of a laser using an acousto-optical modulator
(AOM). AOMs have three main components: a piezoelectric transducer, a crystal,
often tellurium oxide or quartz, and an acoustic absorber. When switched on, the
piezo starts oscillating at a provided radio frequency, inducing an acoustic wave in the
crystal. Photons entering the crystal collide with the acoustic phonons and leave with
altered momentum, which presents as a change in both wavelength and direction.
This is a probabilistic process, every AOM will generate multiple orders - beams with
positive changes in frequency are deflected away from the piezo and beams with
negative changes towards it. The change in frequency of each order m is shifted by
m - f, where f is the radio frequency. However, the weighting between the orders
is not equal, a well aligned AOM can have up to 80% of the input intensity in the
desired order.

The diffraction angle depends on the frequency shift. This becomes a problem
when the wavelength needs to be dynamically detuned, like it does for the Trap beam.
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Figure 7.5: Acousto-optical modulation. Right: A single pass AOM aligned for maxi-
mum output in the -1 order. All output beams are blocked and labelled. Right: Double
pass AOM. The desired order is reflected back into the AOM, leading to a beam with
doubly changed frequency counterpropagating to the input beam.

This effect is mitigated via the use of a double-pass configuration. AOMs are usually
aligned with the focus of a beam, and the output orders are collimated by a second
lens. This standardises the beam path, allowing a mirror to reflect all orders at all
angles back into the AOM. If all but the desired order are blocked, it will be deflected
twice by the same amount, now counterpropagating with the original beam (see
figure 7.5). A QWP before the mirror makes it possible to separate the beams with a
PBS.

Unwanted orders are usually blocked, but in one case they serve a secondary
purpose: AOMs can be used to rapidly switch the beams on and off. This is central
to the timing sequence in chapter 7.3.7 in more than one way - the +1 order of the
Depump is used to trigger the the start of the eqperimental sequence via the SLM.
Speaking of which -

7.3.3 the spatial light modulator

The spatial light modulator (SLM) has a liquid crystal display that can be shaped into
a grating of choice by a LabVIEW program. It is used to dynamically switch the MOT
into a SpOT as outlined in chapter 7.2.2 by replacing the centre of the Repump beam
with the Depump beam.

The SLM can not be triggered externally with the accuracy the experiment re-
quires, and as such must be the source of synchronisation. But more on that later.

The cold atom experiment uses a liquid crystal on silicon type SLM. It is plugged
into the central lab computer as a secondary monitor, and the various LabVIEW
programs use it to dynamically display the holographic structures. Most notably is a
uniform grating, which reflects the Repump beam into the MOT, and the combination
hologram from figure 7.2, which is used to combine Repump and Depump. The
hologram is changed once the MOT is loaded, to dynamically switch from the MOT
to the SpOT.
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7.3.4 probe beam generation

There are three probe beams used in this experiment. Two are used to characterise
and optimised the SpOT and one is used for the actual experiments, which are the
subject of chapter 8.

The probes for characterising the MOT are confusingly called Probe and Re-
pump probe. They drive the same transitions as Trap and Repump (see figure 7.1),
though the Probe is only tuned by a single pass AOM, as it does not benefit from
dynamic alterations like the Trap. Each is spliced off the respective laser before the
AOM, and they are combined before passing through the centre of the MOT onto the
camera.

The experimental beam, or g-Plate beam is named for the g-plate that gives it
spatial structure. The m-number of the g-plate depends on the experiment in ques-
tion. It is spliced off the Trap laser before the AOM, and its frequency can be dynam-
ically controlled via a double pass AOM of its own.

A flip mirror controls the experimental configuration - either Probe and Repump
Probe interact with the atoms, or the g-plate beam is shone through the MOT onto
the camera.

7.3.5 magnetic fields

There are two separately controlled magnetic fields used on the cold atom experi-
ment. One is the quadrupole field used for magneto-optical trapping as described in
chapter 7.2.1, the other a homogeneous magnetic field generated by three orthogo-
nal sets of coils. It is used to cancel out background magnetic fields and also provide
the quantisation field for the experiments in chapter 8.

Coils generate a lot of heat, and the magnetic fields they produce depend on
their temperature. This is mitigated by a home built current buffer [49].

The rise time of the magnetic field generated by the coils is bigger than zero.
Therefore the magnetic fields are turned on 800us before all other components in
the timing sequence.

As mentioned previously in Chapter 7.2.1, the MOT consists of the 3D trapping beam
from 6 directions, and a quadrupole magnetic field, which is generated by a set of
anti Helmholtz coils, 8 cm in diameter and separated by 4 cm. They have 100 turns
[49]. The optimised current is 2.4 A [161], though of course the current driver sets
what the coils are actually getting. The point is to create a gradient of about 10 G/cm.
They can be rapidly switched on and off by the labview via DAQ cards, though this is
subject to the delayed rise time.

Surrounding the vacuum chamber sits a cage of vaguely cubic shape, with a set
of coils wrapped around each side to form three pairs of coils that each share an
axis, one in each spatial direction. These serve the dual purpose of cancelling out
any ambient magnetic fields, as well as generating the desired magnetic field for the
experiment. These coils are controlled via the various labview program running the
experiment.
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The dimensions of the rectangular coils are as follows: height=6.5 cm, width 1
=15 cm, width 2 = 13 cm. Each coil has 30 turns.

In order to not obstruct the view of the cameras, the cage of coils has a tilt of
25° with respect to the beam path.

The ambient magnetic field is subject to changes and fluctuations, and as such
recalibration has to occur every time before a measurement. The three sets of coils
are independently adjustable. It can be coarsely calibrated by observing the position
of the trapped atoms while lowering the trapping field, fine tuned by rapidly switching
off the trapping lasers and seeing whether the cloud of atoms dissipates evenly in
all directions, and final adjustments can be done using the measurement procedure
itself - it is a magnetometer after all.

For all measurements in chapter 8, the magnitude of the quantisation field was
set to be 1G, and only the direction was varied.

7.3.6 the vacuum chamber and auxiliary equipment

The centrepiece of the cold atom experiment is a vacuum chamber filled with low
pressure Rb-87 gas. The gas is provided by getters, a Rubidium wire that, when
heated, releases its atoms into the cell. This is only necessary when a sufficient
number of the atoms in the cell has been lost due to radioactive decay or condensa-
tion on the cell walls.

Figure 7.6 shows a simplified schematic of the equipment surrounding the vac-
uum chamber. The trapping coils are arranged vertically around the chamber, with
the quantisation coils forming a sort of cage around them. The MOT itself is imaged
by two CCDs - one from the side, one aligned to also image the probe beams during
experiments.

7.3.7 how to run an experiment

We have now gathered all major pieces of equipment. Time to run an experiment.
But before data can be taken, the system has to be optimised. This is done via
the following standard procedure:

First, all three lasers are locked to the respective peaks to check their functionality.
Then, the power of Trap and Repump post AOM are checked using a power meter.
The Trap should be around 20 mW before split into 3. The Repump should be 8-12
mW before the SLM. The beam shape just before the vacuum chamber is checked
using an infrared viewer. Its alignment in both direction is checked using 3D printed
alignment aids. The alignment of the probe beams is checked using the camera
feed.

Then, the MOT is loaded. Initial alignment optimises the shape of the atomic
cloud, the fluorescence of which can be seen on the CCDs. A dedicated Labview
program characterises the SpOT by probing the loaded SPOT twice, once with the
Probe, load it again, and then with the Repump Probe. From this data it calculates
the numbers of atoms in the F* = 1 and F' = 2 ground states [49]. The parameters
of the circle hologram, such as the radius and the Depump time are optimised at this
stage. The final step before each experiment is to adjust the background magnetic
field as outlined in chapter 7.3.5.
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Figure 7.6: Setup schematic of the immediate surroundings of the vacuum chamber.
The Trap beam interacts with the atoms from three orthogonal directions (one beam
is elevated before being vertically shone into the atoms from above and reflected
by a mirror lying flat on the optical table), Repump and Depump from two. The
anti-Helmholtz coils are both parallel to the optical table. The rectangle indicates the
alignment of the compensation coils. Two CCDs are used to monitor the fluorescence
of the MOT. One of them is also in the path of the probe beams, and hence used to
take the experimental transmission images.
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As mentioned previously, the SLM'’s internal clock can not be externally controlled.
This means that everything else has to somehow be adjusted to the SLM'’s timing,
because once the SLM switches the MOT into a SpOT, everything has to go like
clockwork for the data to be useful.

This is where the 1st order mode from the Depump AOM comes in. Until the
program is run, it is reflected off a small area at the edge of the SLM onto a photodi-
ode. The photodiode signal is sent to a Schmitt trigger, which sets of the rest of the
experimental sequence.

The process begins by imaging the g-plate beam beam to obtain its intensity 7,,,.
Then, the atoms are loaded into the MOT for 6s, and transferred into the SpOT for
250 ms. This is when the trapping beams and quadrupole field are switched off, and
the cloud is left to expand for 2-5 ms, depending on the experimental run. Two more
images are taken: one of the g-plate beam interacting with the cloud of atoms under
influence of the quantisation field, and one more of the background, for normalisation
[123].

This method has been used to show that the spatially dependent electromag-
netically induced transparency is possible [11], that the atomic cloud is itself a mag-
netometer [12], and that optical concurrence can be transferred into the atoms [1].
How the data is analysed to reveal these patterns deserves its own chapter.
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8 phase dependent atom optics

In 2016, while | was scrungling through my high school finals, my pre-pre-pre-predecessors
Tom Clark and Neal Radwell first demonstrated a novel effect: spatially dependent
electromagnetically induced transparency (SEIT) [11].

The experimental setup outlined in chapter 7.3 does its experiments on the
5251 2F = 1 — 5°Py)F’ = 0 transition along the D2 line of Rb-87, and this ex-
periment is where all this began. As discussed in chapter 6.3, the FF = 1 ground
state has 3 my sublevels, and the F' = 0 excited state only one, making it a Lambda
transition, with three possible transitions (see figure 6.4 in chapter 6). The o tran-
sitions require a change in angular momentum projection, and are hence driven by
circularly polarised light. In chapter 1.1.1 at the start of the thesis it was shown that
all linearly polarised light can be expressed as and created by superpositions of right
and left circularly polarised light, and as the transitions are orthogonal, and two of
them require right and left circularly polarised light, it was understood that the o
transitions were the only ones available.

To investigate this dependence, they shone structured beams containing every
linear polarisation into the atoms, as shown in figure 8.1. These beams were gen-
erated by g-plates, with topological charges ranging from m=1 to m=200, to demon-
strate these effects were happening on an atomic scale, and directly dependent on
the polarisation profile of the beam. In their resulting paper [11], they showed that
the local linear polarisation of a vector beam had a direct impact on whether it was
absorbed or not, in other words, the phase between right and left circularly polarised
light dictated the nature of the atom light interaction. The results of which are seen
in figure 8.1 - the absorption pattern showing a clear dependence on the topological
charge, without any losses in resolution.

The problem was that at the time it was not yet understood what caused this
phase dependence. To further investigate, they focused on improving the calibration
of the compensation coils, to fully remove all trace influences of stray magnetic fields,
but to their surprise, when they finally succeeded, the absorption pattern vanished.
The team found themselves at a conundrum - and at the edge of a discovery that
changed their view of the entire experiment.

8.1 the atomic compass

12
6.3.2
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Figure 8.1: Top left: Simplified experimental setup of the SEIT experiment. The
following g-plates are used: m = 2, 4, 6, 10, 24, and 200. Bottom left: level scheme
of the SpOT beams (see chapter 7.2) and the experimental beam. Right: Optical
density of the atoms. Figure adapted from [11, 123].

In chapter 6.3.2, a theoretical model was developed, showing that the cou-
pling between ground states disappears for specific configurations of polarisation
and magnetic field angle. If the probe beam only contains linear polarisations, then a
special case of 2y = /2 applies, which simplifies the terms of the Hamiltonian from
equation 6.43:

E.=E,=E;=0 (8.1)
MQ

jcg = D) L (82)

Tgi = 3 cos(t — om)[eos” O — isin(v — o) sin 0], (8.3)

where E.,E,, and E4 are the energies of the coupling, grey, and dark state re-
spectively, and J., and 7,4 are the hopping rates between coupling and grey or grey
and dark state. 1, is the Larmor frequency, M the normalisation term, 65 the mag-
netic field inclination, ¢z the magnetic field azimuthal angle, and ¢ the orientation of
the polarisation ellipse.

As the g-plate beam only consists of linear polarisations, the Zeeman shift dis-
appears entirely. The dependence of the hopping rates on ¢ — ¢p itself now fully
depends on the inclination angle . For angles ¢y — ¢ the coupling between grey
and dark state vanishes, so spontaneous decay causes atoms to be pumped into the
dark state, rendering them transparent to it if the magnetic field is transverse.

In other words, the modulation of the transmission pattern depends on the incli-
nation of the magnetic field, and the orientation on its azimuthal angle.
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Figure 8.2: Simplified setup for the atomic compass experiment. The twofold beam
is generated by a m=2 g-plate. The magnetic field can be freely adjusted in 3D.

8.1.1 the original paper

These are the experimental conditions from the 2021 paper "The atomic compass”
[12]. It was found that the phase dependent transparency from SEIT depended on
the transverse magnetic field angle with respect to the polarisation. In other words,
the optics group had a magnetometer on their hands.

The experimental method followed the standard method of the cold atom table
as detailed in chapter 7.3.7. A simplified version of the setup is shown in figure 8.2
The atoms were probed with a twofold beam generated by a m=2 g-plate. Two series
of measurements were carried out: At fixed azimuthal angle ¢ = 0, the inclination
0p is varied from 0 to «. In the second run, ¢z was varied from 0 to = while the
inclination was kept at 05 = 7/4.

The selective absorption due to SEIT can be calculated from a single absorption
image. All three images taken during the experimental procedure come together to
calculate the optical density, which is proportional to the absorption:

I robe — Idark
OD = [p- e —22r% 8.4
nIatoms - Idark ( )

This is evaluated pixel by pixel, and visualised in the top part of figure 8.3.

The bottom part of the figure shows another technique that is useful to visualise
the data: the "unwrapping" of an image. A ring segment of the area of maximum
intensity is selected, the same for all beams. Plotting the azimuthal angle ¢ along
the x-axis of a graph produces a stripe with little variation in the radial (or now y-
)direction. This makes it possible to reproduce graphs like the ones seen in chapter
6.3.2 from experimental data by "stacking" these stripes for varying experimental
parameters along the y-axis. As the beam has an azimuthally encoded v, the result
is a density plot with ¢ on the x-axis and the experimental magnetic field angle 05 or
¢p on the y-axis.

8.1.2 reanalysis and comparison the new states

Given the updated theoretical model, it makes sense to reconsider the data in its con-
text. Figure 8.4 shows the optical density data from [12] juxtaposed with simulations
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Figure 8.3: Processing of cold atom experimental data. Top: Example of how optical
density is calculated. Bottom: unwrapping procedure. A slice corresponding to the
area of highest intensity is taken from each image and stitched together in cartesian
coordinates to create a density plot of magnetic field inclination 65 vs polar beam
angle ¢. The spatial distribution of the optical density depends on the inclination
angle of the magnetic field. The processed data is adapted from [12, 164].
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Figure 8.4: Comparison of data from the atomic compass to the new theoretical
model. Left: Numerically simulated absorptions generated using the master equa-
tion. Right: Unwrapped experimental data adapted from [12], where ¢ was encoded
in the azimuthal beam angle ¢. The top two figures show optical density/absorption
as a function of magnetic field inclination 65, the bottom two depend on the azimuthal
magnetic field angle ¢ 5.

using master equation derived in chapter 6.3.2. In the paper, a previous version of
this model was compared to the data by matching the Fourier amplitude and phase
to the modulation of the absorption depth M:

max(Ty—e) — min(Tyg—e)

M= (8.5)

maz(Ty_e)

This metric is very useful for comparison between the different methods of sim-
ulation.

Of more interest in the context of this thesis are however its theoretical implica-
tions. This paper was the inspiration for all theoretical work in chapter 6.3. Figure
8.4 shows that the data validates the partially dressed states model.

The method by which the magnetic field is measured in this experiment is un-
conventional, to say the least. Optical magnetometry is a broad field, featuring many
different approaches [165]. Magnetometers based on cold atoms are capable of self-
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calibration [166], measuring magnetic gradients [167], and dynamically cancelling
magnetic fields in three dimensions [168]. But within the different approaches, ho-
mogeneity is found. For example, optically pumped atomic magnetometers are most
commonly based on observations of the Larmor precession of the atomic spins po-
larised by the magnetic field [169-171]. In contrast, vector magnetometers usually
employ radio-frequency modulation in order to map the vector components onto dif-
ferent harmonics [172—174]. Though it was also shown that an EIT based vector
magnetometer can detect multiple components of the magnetic field [175].

The atomic compass forms the basis of an exciting new international research
project the University of Glasgow is involved in, which is intended to lead to a mini-
tuarised magnetometer based on the same principles, with an intended application
in geophysics, though it also seems promising for biomedical applications. However,
in this section only the magnetic field parameters 65 and ¢ were discussed. This
leaves the Poincaré sphere coordinates (or polarisation ellipse parameters x and ¢
entirely undiscussed. Time to do something about that.

8.2 transfer of optical concurrence to atomic clouds

The highest modulation in the atomic compass paper occurs for magnetic field
inclinations of 85 = /2, or transverse magnetic fields. This means that this is the
configuration in which the three other factors have the biggest amount of influence
on the transparency on the atoms.

In this chapter, the influence of the spatial dependence of the beam on the
modulation or Fourier amplitude of the transparency of the atoms is explored. A
transverse magnetic field lends itself to this investigation. For the assumptions g =
m/2 and ¢p = 0, the partially dressed state model from chapter 6.3.2 simplifies, and
the terms in the Hamiltonian become:

E.,=E,=E;=0 (8.6)
TJeg = M;)L (8.7)
Tga = —QrJ(cos 2x cos(¢p) — isin(v))). (8.8)

Due to the fact that the magnetic field is now orthogonal to the propagation
axis, all Zeeman splitting has disappeared. The hopping rates between the three
ground states have significantly simplified, and the ellipticity cos 2y entirely deter-
mines whether J,4 has a real component or not. In the partially dressed state model,
¢p and 1 only ever show up in relation to one another. As only their relative phase
matters, the interaction can be simplified by setting ¢ = 0 without losing generality
in scenarios that involve every value of .

The theoretical framework from chapter 6 simulates the interaction on an atom
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to atom basis. This microscopic view is highly useful from the perspective of the atom
but runs counter to one of the main lessons from chapter 2: a beam propagates and
interacts as a whole. Each of the photons that make up a laser beams is identical
to all others and has the intensity and polarisation structure of the overall beam. In
other words, the spatial structure of the beam is reduced to the sum of its parts,
instead of the classical equivalent of quantum entanglement it is known for.

The concept of optical concurrence was first introduced in chapter 2.2.1. It
serves as a measure of the correlation of two degrees of freedom within the atom -
the polarisation and the spatial position. A twofold beam, like the ones discussed in
chapter 2.2, consists of two LG of equal and opposite circular polarisations:

1
V2

The intensity of this beam solely depends on the radius. For its polarisation, the
opposite is the case: lts polarisation is radially uniform, but it is tied to its azimuthal
angle . In other words, this beam wraps around the equator of the Poincaré sphere
four times, making it a vector beam that covers all possible values of . It has a
concurrence of 1.

All of this however changes if the component LG modes are not equally weighted.
A beam created from the same modes but with unequal intensities will still have the
same correlation between ¢ and ), but its trajectory on the Poincaré sphere will be
different: it will now wrap around a smaller circle that is parallel to the equator. It is
no longer a vector beam. Its concurrence is smaller than 1. Mathematically, this is
equivalent to introducing  into equation 8.9:

|Ws) = — [LGE |R) + LGy ? |L)] . (8.9)

|¥) = cos YLGZ |R) + sin xLGy 2 |L) . (8.10)

For a beam of this form, the concurrence becomes directly related to the polar
angle of the Poincaré sphere:

C =sin2y. (8.11)

So this is a type of beam that spatially covers all values of v for different values of
x - ideal for investigating the relationship of the polarisation structure on the spatially
dependent electromagnetically induced transparency.

8.2.1 experimental procedure

As the concept of the concurrence measurement is complementary to that of the
atomic compass, their methods are variants of one another, too. The base setup and
method follow that outlined in chapter 7.3, but with the following specifications:

The magnetic field is kept transverse in the & direction, with a fixed magnitude of
1G. The experimental probe beam is generated with a m = 2 g-plate placed after a
QWP. The QWP controls the ellipticity of the beam going into the g-plate and hence
the weighting of the component LG modes of the beam going into the atoms. The
intensity of the probe beam is 0.2uW. A simplified version of the setup is seen in
figure 8.5, alongside Stokes images of the beams used in the experiment.

As the aim of the experiment was to investigate the dependence of the absorp-
tion pattern on the beam structure, the absorption image was analysed for its spatial
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Figure 8.5: Top: Simplified setup used in the concurrence experiment. A Stokes
measurement can be performed. Bottom: experimental images of the beams used.
The QWP before the g-plate makes it possible to change the ratio of the LG modes
comprising the beam. If they are equal, the beam has a twofold structure.

dependence as a function of the probe beam’s Poincaré sphere angle x. In the pa-
per, this was compared to numerical simulations using previously existing theoretical
models. But a deeper understanding can be gleamed from the partially dressed state
model.

8.2.2 spatially dependent state space

Both simplified hopping rates in equations 8.7 and 8.8 have two terms - one that
depends on x and one that does not. However, their relationships to it are quite
different: J., is biggest for linearly polarised light, but always real and bigger than 0.
Quite the opposite is true for 7,4, where x has an influence on whether the term is
real or imaginary that is as big as that of «. In this configuration, it is possible for 7,4
to become fully imaginary.

As the beams contain all possible values of v, the range of the hopping rates is
determined by x, which is constant across the beam. Figure 8.6 shows the exper-
imental data juxtaposed with simulations done using the new dressed state model,
as well as the previous model. In order to reduce noise in the measured modulation
depth, it was extracted via a Fourier series expansion [176], as the modulation is
identical to the ¢ = 2 Fourier coefficient of the transition probability P, _,. (see chap-
ter 6.3.2). This allows the measured images to be directly compared to the curves
predicted by perturbation theory and the master equation.

The data shows that the modulation in transmitted beam intensity directly de-
pends on x, and hence the concurrence. The concurrence has changed degree
of freedom, polarisation modulation has turned into intensity modulation. This is
something the camera is able to detect, so this means it is possible to measure the
concurrence from a single absorption image.

In the context of this thesis, this data serves the dual purpose of demonstrating
the single shot measurement of optical concurrence while also experimentally vali-
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Figure 8.6: Top: measured (top row) vs simulated (bottom row) optical density of
beams with varying concurrence. The difference in overall intensity is most likely due
to a difference in normalisation procedure. The change in fringe modulation how-
ever is in agreement. Bottom: Fringe modulation as a function of concurrence. PT:
perturbation theory. OB: optical Bloch equations. C: concurrence. M: modulation.
Adapted from [1].
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dating the partially dressed state theoretical model. Qualitatively, the data perfectly
agrees with the simulations carried out using the master equation, showing that this
is a valid method for the prediction of spatial absorption patterns.

As the transparency is tied to the state occupied by the atom, the other impli-
cation of the data is that the atomic cloud itself has become spatially dependent. Its
population now carries concurrence, but not just that - its very state space depends
on the parameters of the input polarisation structure, as the partially dressed state
model’s redefinition of states is a function of the spatially varying Poincaré sphere
trajectories.

While only a specific selection of beams generated from a single set of compo-
nents was used in this setup, optical concurrence can be carried by many types of
beams. Not only can the concurrence with any beam be measured this way, but it
might also be applicable for measuring other parameters in spatial beam structure,
such as Skyrmion numbers [13].

Of course, this method is not exclusive to atoms. Similar processes have been
shown to be generalisable to systems including atomic BECs [177-179], ions [180,
181], and molecules [182]. In other words, concurrence is measurable with any
system capable of polarisation dependent atom-light interaction.

Mathematically, concurrence is the classical analogue to quantum entangle-
ment. This means that the transfer process as demonstrated in this chapter is a
simulation of the transfer of quantum entanglement into another medium with differ-
ent degrees of freedom. This effect, too, is therefore reproduceable with any of the
systems listed above. In fact, it suggests that it could be possible to create entangle-
ment between state spaces.
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9 driving an atomic transition with lon-
gitudinally polarised light

Light is not inherently paraxial. In chapter 3, it was shown that longitudinally po-
larised light can be created by focusing a beam with a radial polarisation component.
Despite this, it has been conspicuously absent from all chapters since then, being
omitted from all forms of polarimetry and models of atom light interaction.

Unless the interacting medium sits within the focal region of a strong lens, the
paraxial approximation is a reasonable one, the longitudinal component of most
beams is vanishingly small and assuming it to be zero simplifies the maths signif-
icantly. But the flip side of this is that longitudinally polarised light remains poorly
studied. Conventional detectors such as CCDs and photodiodes are not able to pick
it up, its propagation cannot be modelled the same way as transversly polarised light,
and all previous attempts of measuring it had to rely on indirect methods such as re-
constructing the full 3D field from Mie scattering off a microscopic particle [89, 90],
illuminating gold nanoparticles with radial beams and supressing the forward scat-
tering [85], inferring the presence from the fluorescence patterns of single molecules
with fixed absorption dipole moments [86, 87], interactions with molecular mono-
layers [88], or via the medium of angular momentum states of particles in optical
tweezers [183].

Thinking of light as three-dimensional recontextualises some things. In chapter
6.1, it was shown that there are three different flavours of dipole transitions available
to atoms: o transitions which alter the atoms magnetic quantum numbers, i.e. the
angular momentum projection, and = transitions, which do not. The optical polarisa-
tions driving these transitions have to be orthogonal to one another, and depend on
the angle of the external magnetic field with respect to the propagation axis. If the
system is in the Faraday configuration, i.e. if the magnetic field is aligned with the
propagation axis, the angular momentum required to drive the o transitions comes
from right and left circularly polarised light. In the paraxial limit, |R) and |L) are a
complete set of basis states, meaning the = transition is unavailable. But there is a
polarisation that is orthogonal to both circular polarisations: longitudinally polarised
light.

In the Zeeman regime, which has been introduced in chapter 6.3, and used
as the backdrop for all theoretical and experimental work done so far in this thesis,
the Zeeman shifts are (usually) smaller than the Doppler width. This makes it more
difficult to tell which transition is being driven, instead of using detuning, one has to
fall back on things like spatial encoding (as demonstrated in chapter 8) or squeezed
states. Unfortunately, this only works for light that propagates. In order to show
longitudinally polarised light exists, a medium is needed that interacts exclusively
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with it.

The hyperfine Paschen-Back regime, which was introduced in chapter 6.2, oc-
curs for magnetic fields that are sufficiently strong that the Zeeman shift exceeds the
hyperfine splitting. For Rb-87, the HPB effect emerges at magnetic fields of 0.23T
[184]. A magnetic field of 1.6T splits the spectrum so much that the individual transi-
tions are considerably further apart than the Doppler width. As a result, the spectrum
has distinct absorption dips for the different transitions that are fully resolved in fre-
guency space, and the spectrum depends on the angle of the magnetic field to the
propagation axis. The resulting spectra are shown in figure 6.3 in chapter 6.2. In
the Faraday configuration, the 7 transition is normally considered unavailable. The =
transition is driven by light polarised along the magnetic field, which is the same as
the propagation axis. The = transition can be driven by longitudinally polarised light.

9.1 the "Durham experiment”

So selection rules predict that the =-transition can be driven by longitudinally po-
larised light, which has no angular momentum. For the same reasons, this transition
is normally unavailable in the Faraday configuration (see chapter 6.1).

In order to test this hypothesis, an experimental setup was constructed. The
project is a collaboration between the Optics Group of the University of Glasgow and
the Quantum, Light & Matter Group from Durham University, where the initial version
of the experiment was conceived. After its arrival in our Atoms Lab, it took on the
nickname "the Durham experiment”, and it stuck because it makes it sound cool and
mysterious.

Figure 9.1 shows the full version of the experimental setup. It consists of the
following components:

The beam is generated by a distributed feedback (DFB) laser with a central
wavelength of 780 nm, which scans over a range of 100 GHz, enough to encompass
all transitions in the HPB regime. The scan has the shape of a triangle wave and has
a period of 10s. In order to turn the beam profile into a more Gaussian shape, the
beam is spatially filtered by a 50 um pinhole, and its vertical polarisation ensured by
a polarising beamsplitter. A small portion of the beam is spliced off using a HWP and
PBS in order to centre the scan around the absorption dips of a Rb vapour cell by
tuning the laser so the Doppler broadened absorption dips of the D2 line are centred
on the oscilloscope (not shown in the diagram).

As the radial component of the initial beam is proportional to the longitudinal
component at the focus, it can be helpful to directly control the beam’s radial and
azimuthal components. Radially and azimuthally polarised beams are generated
by an m=1 g-plate after a HWP. The angle of the HWP dictates the strength of the
radial component. Alternatively, beams with spatially varying radial and azimuthal
components can be generated by a m=2 g-plate. In this case, additional structures
can be generated by inserting a second HWP after the g-plate.
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Figure 9.1: Experimental setup of the strong focusing experiment. Top: simplified
setup schematic with all optional components. The first or second HWP can be
removed, depending on the beam generated. For measurements with the camera,
the non-polarising beam splitter (nPBS) is removed in order to reduce influence on
the polarisation. The components for Stokes measurements are only used for the
measurements in chapter 9.4.1. Bottom: photos of the actual cell holder with lenses
and mm? cell, its teflon unit, and how it is inserted into the magnet.
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The centrepiece of the experiment is a neodynium (NdFeB) magnet, a perma-
nent magnet made from an alloy of neodymium, iron, and boron [130]. It has a
borehole, at the centre of which the homogeneous magnetic field, which is parallel
to the hole, measures 1.6 T. This is where the strong focusing contraption will be
inserted. The Rb-87 atoms themselves are contained in a imm3 vacuum cell, which
sits atop a small mount which also contains two NA=0.4 lenses in a 2f configuration
[33], with the vapour cell at the focus. It has a hole for a cell heater, as the experi-
ments are performed at temperatures between 75° and 85° in order to increase the
atomic density and hence the interaction strength. The mount itself is in turn con-
tained in a Teflon/copper unit, which is mounted to alignment rods. Once the device
has been inserted into the magnets, its position can be fixed in place such that the
propagation axis is parallel to the magnetic field.

Before entering the magnet, the beam has a waist of 1.3 mm and a maximum
intensity of 2.2 nW/m2. The focal length is 7mm, making the effective numerical
aperture 0.3537. This means the beam is focused at an angle of « = 0.2382x rad, or
=42.8789°, and has a spot size of 0.1337 um at the focus.

Depending on the set of measurements, the resulting beam is either recorded by
a photodiode and displayed and processed by an oscilloscope, or spatially imaged
using a CCD. The CCD can take videos of the beam, with 304 images in a full
scan cycle. As the beams have spatially varying polarisation profiles, there is the
option for Stokes polarimetry (chapter 2.3) - using a Wollaston prism instead of a
polariser allows for the projection of orthogonal Stokes bases onto different areas of
the camera. This is invaluable for the syncing of the separate videos, as integrating
over the full frame of the camera will give the full beam intensity. The latter can then
be plotted and compared as a spectrum.

Another hurdle in the analysis of the videos are the intensity fluctuations over
the scan of the laser. The spectrum generated by integrating over each frame can
be normalised by fitting a fifth order polynomial to the slope, but excluding the tran-
sitions. Figure 9.2 shows a spectrum obtained this way and the polynomial used
to normalise it. The transitions used for data analysis are also standardised, and
chosen for optimal agreement between different videos.

In order to optimise the system it has to be ensured that the optical axis, the centre
of both lenses and cell, and the magnetic field axis, coincide. To achieve this, a
procedure with multiple steps has been devised:

The first alignment step takes place during the initial setup of the experiment,
before the lens-cell-contraption is inserted into the magnet. For this initial alignment,
two 3D-printed alignment aides, each with a hole of 3 mm, are fitted into each side
of the magnet’s bore hole. The beam is aligned through these holes.

Then, the focusing of the beam through the cell is optimised on the cell holder,
before it is inserted into the magnet. Once inside, its position is controlled and ulti-
mately fixed via the alignment rods. At this stage, alignment is optimised for beam
shape by monitoring it with the camera. Once this has been achieved, fine tuning
can begin.

Observing the absorption of longitudinal polarisation itself can be used for fine
tuning: As azimuthally polarised light carries no longitudinal component, the = tran-
sition can not be driven if the propagation axis and magnetic field are parallel, so
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Figure 9.2: Videos are normalised to account for power fluctuations in the laser by
summing over each frame and plotting the resulting spectrum (blue). Beginning and
end frame of each of the six absorption blocks are selected manually (yellow). The
off-resonant frames have a fifth-order polynomial fitted to them (orange) which is
then used to normalise all frames. Shown here is a single scan of the intensity only
video of the sixfold beam. Transitions used for later data analysis in figure 9.7 are
indicated with purple circles.
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the atomic spectrum can be monitored to minimise this transition. Alternatively, a
radial beam will generate an azimuthally uniform longitudinal component, which can
be used to view the 7 transition on the camera in order to make sure the absorption
evenly affects the outside of the beam.

Some challenges in this process are that the beam is not a perfect Gaussian
mode to begin with, and therefore the beam will not be azimuthally uniform in in-
tensity after the g-plate. In such a case, even an azimuthal beam will carry a slight
z-component. Additionally, in an early version of the cell holder, the cell was placed
with its face orthogonal to the propagation axis. This caused it to act like a cavity,
introducing unwanted resonances. To mitigate these effects, the current model of the
cell holder has the cell sitting at a slight angle to the propagation axis. This, however,
diverts the beam a slight amount, meaning if the beam is aligned with the first lens,
and said first lens is aligned with the magnet, the propagation axis will be slightly
shifted within the cell, and slightly off centre at the second lens. This effect can be
minimised with hours of careful alignment and many tears. Time to take some data.

9.2 1 transition as a function of radiality

It was shown in chapter 3 that the longitudinal polarisation component is a func-
tion of the focusing angle and the radial component. Experimentally, the radial com-
ponent is a function of the fast axis angle of the HWP before the g-plate. This sug-
gests a linear relationship between the HWP angle and the strength of the longitudi-
nal polarisation, or the depth of the = transition.

In order to verify this, a series of measurements was taken: the angle of the
HWP before the g-plate varied from 0° to 90°. The HWP after was removed for this
experiment. For each angle, the absorption spectrum was measured 10 times with
a photodiode. The resulting oscilloscope traces were averaged for each angle, and
plotted in figure 9.3. In this plot, it becomes visible that the depth of the transition
depends on the radial component. This is the first ever published image of the = tran-
sition being driven in the Faraday configuration, and direct evidence for the existence
of longitudinal polarisations.

In order to better visualise the linear dependence, a second set of traces for
identical parameters was taken, but at a slightly higher temperature, ~ 125°C. Figure
9.4 shows these spectra. All absorption dips have deepened, some even saturated.
This higher contrast lends itself to an illustration of the linear relationship between
the fraction of light intensity with radial polarisation prior to focusing and depth of the
7 transition, as seen in the inset. This is in line with the theoretical model described
by Richards and Wolf.

However, it can not go without comment that in both figures, a small amount of
the 7 transition remains even for fully azimuthal beams. This is likely due to the afore-
mentioned intensity variation across the beam’s spatial profile. An azimuthal intensity
gradient is equivalent to a rotational assymetry in the beam, and therefore capable
of generating a longitudinal component when focused. Nevertheless, the linear re-
lationship between the initial polarisation and the absorbed longitudinal component
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Figure 9.3: Experimentally measured absorption spectra measured with the photo-
diode after the atoms. The radial component of the input beam is varied using th
HWP before the g-plate, changing the amplitude of the longitudinal polarisation com-
ponent at the focus. The polarisation structures are indicated on the bottom of the
figure. Radial beams in purple, azimuthal in yellow. The orientation of the line of
each beam’s centre is random, and an artifact of the simulation. Cell temperature ~
80°C

=T =\ /5 —

= e

-

4
{{
i
(it
(i
¢
q

\w
3
(e
W

1

1 transition depth,
normalised
x

O

A/Zangle
e — N VAN /;\
& Il S I =
\\—/ ~N=" s) Q ° o

Figure 9.4: Experimentally measured absorption spectra measured with the photo-
diode after the atoms for the same selection of beams as figure 9.3. The inset shows
the normalised depth of the = transition as a function of HWP angle. Cell tempera-
ture ~125°C.
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Figure 9.5: Comparison between the two colourmaps used in this chapter for the four
beams that are spatially imaged. On the top is the Poincaré colour map from chapter
1.3.2, and on the bottom is an alternative colourmap that shows azimuthal polarisa-
tions in yellow and radial polarisations in purple. The twofold and sixfold beams gen-
erated by an m=2 g-plate have the same symmetry in the Cartesian Poincaré frame
but a different symmetry in the polar radial-azimuthal basis - hence their names.

speaks for itself - the = transition is being driven by longitudinally polarised light.

9.3 spatially dependent longitudinal polarisation

IN WHICH BEAMS WITH THREE DIMENSIONAL POLARISATION STRUCTURES ARE GEN-
ERATED AND MEASURED BY YOURS TRULY

The beams used in the previous experiments have spatial dependence, but their
radiality is azimuthally uniform. Beams can, however, feature spatially dependent ra-
diality, which suggests that their longitudinal components, too, can be spatially struc-
tured. A m=2 g-plate generally produces a twofold beam (beam with twofold polari-
sation symmetry in the radial-azimuthal basis, see chapter 2) if the input polarisation
is linear, and a HWP after it turns it into a sixfold beam. Under most circumstances,
these beams would be considered to be very similar to one another, their trajectories
on the Poincaré sphere are the same but in opposite direction. However, when con-
sidered in the radial-azimuthal basis as introduced in chapter 3.1, the cause of their
names becomes apparent: the twofold beam cycles through radial and azimuthal
polarisations twice, while the sixfold beam goes through the same process six times.

The symmetry of the beam will become three-dimensional when focused, and
therefore translate to a spatial absorption pattern within the atoms. To investigate
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this, the setup was switched to the camera configuration, and multiple scans were
measured for each of the following beams: radial, azimuthal, twofold and sixfold.
Figure 9.6 shows the unwrapped transmission patterns as a function of frequency
scan. The o1 absorptions frame the data as constant, uninterrupted lines, but the
7 transitions show a much stronger dependence on the initial polarisation: They are
uninterrupted for the radial beam, which is to be expected, and so is their (near)
absence for an azimuthal beam. The aforementioned symmetries start to become
apparent with the beams generated by the m=2 g-plate, there are two distinct patches
of absorption for the twofold beam, and six for the sixfold.

Another tool introduced in chapter 8.1 is that of optical density. Being a measure
of absorption, it lends itself to qualitative comparison between predicted polarisation
components and experimentally determined spatial absorption patterns. Figure 9.7
shows just that - and the experimental data agrees with the prediction.

The data in figure 9.7 constitutes direct evidence of the exclusive absorption of
longitudinally polarised light, something which has not been seen before in atomic
spectra. For the first time, o, , o_, and = transitions have been recorded in the same
spectrum for atoms in the Faraday configuration. This marks a milestone in optical
techniques, and leaves us with a whole new set of questions to investigate. Like,
how is the polarisation of the remaining beam affected by this?

9.4 the strong focusing faraday effect

Under the influence of a magnetic field, an atom’s angular momentum sublevels
shift, altering the detuning needed for o1 and = transitions. In chapter 5.2.2, the
complex refractive index was revealed to be the underlying property that dictates both
absorption and dispersion characteristics. As the absorption lines shift in frequency,
so do the dispersion lines shift, allowing the atom to alter the polarisation. This
causes the Faraday effect, which was introduced in chapter 6.1.

The Zeeman effect is the dominant feature of the HPB regime, its multiple adja-
cent transitions for the same circular polarisation cause the orientation of the polari-
sation ellipse to undergo a full rotation between each set of absorption dips. But how
does this type of phase retardance affect longitudinally polarised light?

Polarimetry can be performed by the experimental setup in figure 9.1 by placing
the optical components needed for Stokes measurements in front of the camera. As
mentioned previously, the Wollaston prism projects orthogonal bases onto different
areas of the camera while the wave plates are cycled through the three sets of un-
biased bases, effectively halving the number of required measurements and making
it easier for the videos to be synchronised in the analysis stage. So, in this type of
measurement, three separate videos are obtained, each featuring two projections
into orthogonal states in different areas of the camera. To synchronise the videos,
the total intensity of each frame is calculated and plotted as spectra, using the scan
cycle length of 304 frames. The start point of each video can now be adjusted, so
that the absorption dips of the three videos line up.
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Figure 9.6: Unwrapped videos showing spatially dependent absorption. The hori-
zontal axis is the scan, where each row corresponds to a frame. The vertical axis
has the sum of the intensity of the beam at azimuthal angle ¢ in the frame in ques-
tion. Note the spatially dependent absorption at the = transition in the twofold and
sixfold beams, corresponding to the beam’s symmetry.
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Figure 9.7: Optical density at different transitions in comparison to the polarisation
components at the focus. Left: Simulated electric fields of right, longitudinal, and left
polarisation components at the focus for azimuthal, radial, twofold and sixfold beams.
Right: Experimentally obtained optical density at the o, 7, and o_ transitions. The
images have been normalised to the depth of absorption in the respective transition
for a radial beam. The spatial distribution of both beams agrees with one another.
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Figure 9.8: Spectra of synced videos, each measured in a different basis. Blue: HV,
orange: AD, yellow: RL. The intensity is the sum of the intensity of each pixel for
each frame of the video. Each video consists of multiple scans, so the start point can
be adjusted so that all three videos have optimum overlap. Due to sampling error,
the videos do not necessarily all feature the same transitions, this is also taken into
consideration during synchronisation.
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Figure 9.8 shows the spectra extracted from the videos. The signal generator
that provides the triangle wave driving the laser has a lower frequency limit of 0.2 Hz,
which means that for scans featuring the full spectrum a sampling error is introduced,
and not all transitions are visible in each video. As each video features 2-4 scans,
the frames used for later data analysis can be selected to feature the majority of
the same absorption dips. Additionally, videos with a smaller scan range and hence
higher spectral resolution were taken in regions of interest.

The next step in the analysis process is to crop and centre the images. As the
orthogonal bases are on different areas of the screen, it is important to make sure
that they perfectly overlap for later analysis. The relative centres are determined by
calculating Sy by overlapping the orthogonal bases in each of the three videos, and
comparing the beam shape. If the overall intensity distribution for the unsplit beam
is the same for all three, the relative centres have been found. To perfectly centre
the crop of both beams, the beam is unwrapped for a range of centres. The optimal
centre is chosen to be that where the radial intensity distribution is the sharpest.

The absolute centre is important here, as these beams, too, are unwrapped for
analysis. A plot akin to that from figure 9.6 can be made from each of the videos, and
from them, an unwrapped Stokes image for each specific detuning can be calculated.

Figure 9.9 shows the faraday rotation and polarisation dependent absorption of
a sixfold beam as a function of frequency and azimuthal angle using the colourmap
from chapter 1.3.2. It is visible that the o_ transition is driven by right circularly
polarised light, and the o transition is driven by left circularly polarised light. A
full Faraday rotation is performed between each absorption dip. Note also that the
direction of rotation is in opposite direction for o

The = transition, however, behaves differently. On the right side of figure 9.9 are
unwrapped plots for videos with reduced scan, so only a single block of transitions
was covered. In the middle block, three such videos are stitched together, showing
the area surrounding both 7 transitions. No Faraday rotations are observed, instead
there seems to be a detuning dependence - all six areas of reduced intensity have a
slight slant to them. This preliminary result warrants deeper investigation.

9.4.1 Faraday rotation as a function of focusing angle

One simplified way of thinking about strongly focused beams is as a field of local &
vectors, all pointing towards the focus. Each of these vectors has a different direction,
and therefore a different orientation to the magnetic field [185]. The further from the
propagation axis, the stronger the tilt of the wavevector toward the focus. Due to
this tilt, a mixture between Faraday and Voigt effects is seen locally. In other words,
the Faraday rotation towards the outside of the beam is different from that near the
inside. The data displayed in figure 9.9 was reanalysed to find initial evidence of this
effect.

Figure 9.10 shows that the Faraday rotation angle depends on the beam radius.
This data is early evidence to support Zhujun Ye’s hypothesis [185], one of the many
doors to future projects that have been opened due to the research in this thesis.
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Figure 9.9: Experimental visualisation of Faraday rotation and dichroism in the hy-
perfine Paschen-Back regime for a sixfold beam. The vertical axis shows the laser
scan, each row corresponds to a frame in the video. The horizontal axis sums radi-
ally over an area of the brightest region of the beam defined by the azimuthal angle
¢. On the left is the full spectrum, but like all other data obtained with the camera it is
susceptible to sampling bias. On the right are three videos with a smaller scan range
showing (top to bottom) the outer o transition, both = transitions, and the outer o_
transition. Between each absorption dip of the o transitions, the beam undergoes
a full rotation. The 7 transition does not seem to have dispersive effects in the same
way in this configuration.
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Figure 9.10: Faraday effect as a function of beam radius. The profile is split into
three regions, as indicated by the rings at the bottom. On the right is a plot of the
polarisation as a function of frequency and azimuthal angle near the "outer" block of
sigma plus transitions. On the left are three snippets of the spectrum for the outer and
inner circle only. It is visible that the Faraday rotation is stronger on the outside than
the inside. Detunings are estimated by fitting the absorption curve to a theoretical
spectrum, which assumes a linear scan.
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In this chapter, two approaches to atom optics were discussed, each presenting a
new way to measure electromagnetic effects. The cold atom experiment has a long
and storied history and a high maintenance effort, but enables not only a novel way
to measure magnetic field, but also makes it possible to measure optical concur-
rence in a single transmission image. The Durham experiment saw the first ever
direct measurement of longitudinally polarised light. Both exploit the properties of
the selection rules, and the influence of magnetic fields on the atom’s internal states
in order to measure otherwise elusive properties.

The cold atom experiment is a one-of-a-kind atomic state interferometer. In
many ways, chapter 7.3 and 8 provide a complement to chapter 6, in the way that
the experiment provided the inspiration for the new theoretical model and the new
theoretical model makes it possible to conceptualise new measurements. As its four
key parameters can be split into two groups - polarisation and magnetic field - the
measurements in [12] and [1] each provide an insight into one of these parts. It was
shown that the modulation of the fringes depends on the transverse component of
the magnetic field as much as it does on the concurrence, and that information about
the beam’s structure can be read from the structure of the transmission pattern, as
its alignment depends on the azimuthal angle of the magnetic field (and vice versa).
The resulting spatially dependent state space not only depends on the concurrence
of the beam, but is actively transferred by it. The insights into magnetism, too, have
implications, but they are more practical. The Quantera V-Mag project aims to minia-
turise the system in order to create a portable magnetometer using the SEIT effect
for geomagnetic research.

Two optical tables over, the work uses magnetic fields that are much less com-
monly seen in nature (especially on this planet). Strongly focusing beams with a ra-
dial component creates light that is in part longitudinal. In the Faraday configuration,
the = transition is often thought to be unavailable, as the driving polarisation cannot
carry angular momentum. In chapter 9, we showed that longitudinally polarised light
is capable of driving this transition, marking the first ever direct measurement of the
longitudinal polarisation component.

As this effect has remained obscure for so long, much work is to be done still.
Chapter 9.4.1 showed some preliminary investigations into the dispersive properties
of the = transition in the Faraday configuration, and once this thesis is submitted, |
will spend some more time in the lab, in order to gain more specific data.

Both experiments utilise the willingness of atoms to adjust to their surroundings
in order to gain insight into the electromagnetic effects at play. Atoms provide a
versatile interface between the classical and quantum worlds, both theoretically due
to tools like semiclassical optics, and experimentally, due to their relative simplicity
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(compared to other fundamental physics experiments). | am excited to see where
both are going, and | hope that | will continue to be a part of this amazing research.
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There are many options for further study and application for all four projects dis-
cussed in this thesis.

POVMs were shown to be well suited for the study of optically active samples,
making it well suited for biomedical or chemical applications, where it is useful to
monitor the optical effects of a sample in real time over long periods. The improved
system lends itself to miniaturisation, and a modified interferometer could even be
adapted to integrated optics. This would make it possible to have a standardised
vector polarimeter conducting single frame measurements of Mueller matrices of
any homogeneous system, even ones that are lossy or sensitive to high intensities.

The dressed state model and the cold atom experiment are inseperable at this
point. The next step will likely feature the retaking of some preliminary data featuring
beams with spatially varying x, as well as refining the new model, and creating a reli-
able method for predicting the circumstances under which dark states form. Not only
will it be conceptually interesting to investigate the patterns that lead to transparency,
but it will also open the possibility of new measurements, which in turn will lead to
new applications. As of writing, we are in the early stages of writing a paper about
the partially dressed state model. Meanwhile, work has begun on a miniaturised
version using warm atoms. The aim is to create a vector magnetometer to be used
in geomagnetic observatories.

The strong focusing experiment was a success, and the paper will be submitted
soon after this thesis. The next steps here are to investigate the strong focussing
Faraday effect further by gathering data specifically suited to highlight the radially
dependent rotation. Additionally, the strong focusing properties of other forms of
vector or OAM beams have seen some theoretical investigation, which might be an
interesting avenue of research.
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conclusion

This thesis, like my PhD, has been quite a journey. If | have ever learned this
much in this short a period in my life, it was before | learned to make permanent
memories. The key theme of my work so far lies in the redefinition and specific
choice of state spaces in order to reveal otherwise hidden structures. The basis
dictates the effect.

Part | of this thesis was all about structured light. In the context of this thesis,
light is mostly treated as a means to an end, so after introducing polarisation nota-
tions and eigenmodes of propagation and optical concurrence and longitudinal po-
larisation states, the focus was shifted to light matter interaction in order to measure
optical elements. All optically active media can be described by a Mueller matrix,
and Mueller matrices can be characterised via their effect on a known vector beam,
and vector beams can be characterised in a single image using a modified Sagnac
interferometer that performs POVMs on the beam. This method exploits an unusual
basis to define the Poincaré sphere in fewer points, expediting the process.

The concept of such redefinitions of states is taken to its logical extreme in part
[I. Atomic state spaces are influenced by ambient electric and magnetic fields, and
this influence can be boiled down into four parameters: The magnetic field inclination
and azimuth, and the polarisation’s ellipticity and orientation. As these parameters
influence the splitting and hopping between the ground state of an atom in a A-
configuration, they influence the symmetry of the state space itself. Under specific
configurations of states, dark states are created, and spontaneous decay into these
states renders the atom transparent to otherwise resonant light. In order for this
effect to be visible in the theory, the model has to be moved into a dressed state
picture capable of highlighting the interference between the atomic sublevels. The
atom itself becomes an interferometer.

But this work is not purely theoretical: In part Ill, it is demonstrated that these ef-
fect are visible in experimentally measured absorption patterns, and in agreement
with the theoretical model. Due to their optical dependence, trajectories on the
Poincaré sphere can be mapped onto ultracold atoms, making it possible to mea-
sure optical concurrence in a single absorption image. But the sensing properties of
atoms go even further - in the Faraday configuration, the angular momentum neutral
7 transition is normally considered unavailable, as paraxially polarised light is always
co- or counter-rotating with the magnetic field. Longitudinally polarised light, how-
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ever, is not. In the hyperfine Paschen-Back regime, the Zeeman shift exceeds the
hyperfine splitting, and all available angular momentum transitions are separated in
frequency space. This makes it easily measurable which transition is being driven.
Using these effects, it was shown that the = transition can be driven in the Faraday
configuration, but only if a longitudinal polarisation component is present. This marks
the first ever direct measurement of the longitudinal polarisation component.

The full scope of the impact of the work here remains to be seen. Meanwhile,
real-time Mueller matrix measurements are of interest for fields that study optically
active samples (common in chemistry and biology), and a magnetometer using the
atomic state interferometry is currently in development. As the theoretical model is
still very young, some refinement is next in order. The paper needs to be finished
and published, and we are currently looking to potentially find analytical solutions for
the specific interplay between the terms. The study of longitudinal light, too, is only
just beginning. There is more data than was possible to analyse on time for other
effects, such as OAM beams, and there is more data to still be taken, especially
regarding the strong focussing Faraday effect.

Meanwhile, this thesis is coming to an end. It has been shown in multiple dif-
ferent ways that sometimes science is about asking the right questions. A different
perspective, a change in environment, a redefinition of state space might highlight a
solution that is otherwise obscure. This has been shown to be true for light-matter
interaction, but a dressed state model can be constructed in any state space. By
now, it is well known that wave-particle duality is a nearly universal characteristic -
depending on the reference frame, of course.
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glossary of abbreviations and variables

| wanted to provide some reference for the colourmaps and abbreviations and vari-
ables | have used in this thesis. Here you go!

abbreviations

in order of appearance.

abbreviation meaning

SAM spin angular momentum
QWP quarter wave plate

HWP half wave plate

HG Hermite Gaussian

LG Laguerre Gaussian

OAM orbital angular momentum
DMD digital micromirror device
POVM positive operator value measurement
PPBS partially polarising beam splitter
PBS polarising beam splitter
nPBS non polarising beam splitter

Rb rubidium

HPB hyperfine Paschen-Back
MOT magneto-optical trap

SpOT spontaneous force dark optical trap
ECDL external cavity diode laser
AOM acousto-optical modulator
SLM spatial light modulator

CCD charge coupled device

SEIT spatially dependent electromagnetically induced transparency
BEC Bose-Einstein condensate
DFB distributed feedback (laser)

variables

in order of appearance.

variable meaning
E electric field
c speed of light
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GLOSSARY

time
magnetic field
distance
generic phase
wave vector
wave number
wavelength
intensity
Jones vector
Jones matrix
Jones matrix element
fast axis angle
ellipticity of polarisation
orientation of polarisation
Stokes vector
Stokes parameters
Mueller matrix
Mueller matrix element
Uy left circular polarisation component
U_ right circular polarisation component
V2 Laplace operator
k eigenvalue
A spatial wavefunction
w beam waist
¥(2) Gouy phase
R(2) Rayleigh range
m,n Hermite polynomial orders
H, Hermite polynomial
Lifl Laguerre polynomial
L azimuthal LG integer
radial LG integer
Planck’s constant
reduced Planck’s constant
ellipticity of IG beam
topological charge
generic wave function
generic sub wavefunction
azimuthal angle on beam
distance from focus, or radius in spherical coordinates
polarisation unit vector
vector amplitude
polar angle (wave tilt)
projection operator
eigenvalue
eigenstate
density operator
density matrix element
projection operator
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nL

91, 91-9s

Fame Egm>§§

TI 228

probability distribution
projector into state n
identity matrix
Kronecker delta
number of degrees of freedom
POVM operator
POVM parameters
POVM states

instrumentation matrix for converting POVM vector to Stokes

phase retardance
ordinary and extraordinary refractive indexes
principal quantum number
electron orbital angular momentum
magnetic quantum number
electron spin
projection of spin
nuclear spin
projection of nuclear spin
electron angular momentum
projection of electron angular momentum
angular frequency
atomic radius
refractive index
generic angular momentum
Landé g-factors
proton mass
electron mass
Hamiltonian operator
Larmor frequency
fundamental charge
Bohr magneton
dipole moment
magnetic field magnitude
polar magnetic field angle
azimuthal magnetic field angle
normalisation factor
ellipticity
linearity
hopping rates
energy of ground state (relative to unshifted)
hopping rates between states
natural linewidth
relaxation operator
repopulation operator
number of ground states
velocity
diffraction order
intensity pattern modulation
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| OD | optical density
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GLOSSARY

(’
Intensity/amplitude
I 1
Optical density
0 -

Phase

o NN 2n

J
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Figure 9.11: Colour maps used in this thesis. Left: Poincaré colour map for denoting
polarisation. Right: Top: Greyscale colour map for intensity or electric field distri-
bution, usually normalised. Middle: optical density colour map, always normalised.

Bottom: Phase colour map for one full cycle
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