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Abstract

This thesis proposes model checking for trustworthy reasoning in autonomous driving. We com-
bine closed-loop input control and model checking to plan sequences of closed loop controllers
for obstacle avoidance in real-time—the former for its superior reactivity to immediate stimuli,
and the latter for its strength in modal reasoning. In addition, as both closed-loop control and
model checking are transparent, decisions can in principle be explained. To demonstrate our
approach, we implement a bespoke model checker on low-powered autonomous robot, an addi-
tional measure to further promote resource efficient planning. We conduct two case studies. In
the first we focus simply on avoiding obstacles to investigate whether using model checking for
real-time planning and obstacle avoidance is reliable on our platform. In the second we extend
our approach to support goal-directed obstacle avoidance an again characterise its reliability.
We show that it is possible to use model checking to develop an approach to real-time obstacle

avoidance which is light on resources, transparent, and suitable for online decision-making.
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Chapter 1

Introduction

1.1 Motivation

Autonomous vehicles (AVs), also known as self-driving cars, have been touted as having the
potential to bring many benefits to society, such as reduced emissions through optimized route
planning and braking, decreased fatality rates through the elimination of human error, and in-
creased agency and autonomy for individuals with poor mobility [151]. Indeed, it has been
estimated that 94% of road accidents in the U.S. alone are due to human error [ 180]. Other ben-
efits include improved productivity and increased trade. In the U.K., for example, it has been
forecast that the annual economic benefit of AVs could grow to £51 billion by 2030 [111].
While the potential benefits of autonomous driving to society are wide ranging, they ulti-
mately cannot be realised if the public is unwilling to use the technology. This has prompted
research into strategies which promote the widespread adoption of AVs. Consequently, there
has been significant research into factors which determine public acceptance (e.g., [41, ,
, 1), though the precise variables which influence acceptance and public perceptions of
autonomous driving technology remain ambiguous and poorly understood [152]. It is widely
believed, however, that safety and trust are important determinants of adoption [41, , ].
While trust plays a key role in the adoption of AVs, it is also a safety issue in its own right.
As trust mediates decision-making in collaborations with automation [87, , , ], it is
crucial for optimal human-machine performance. In the specific context of AVs, if users do
not trust the automation, then they simply will not use it, however trusting the technology too
much could lead to over-reliance in critical situations and possibly result in fatal accidents. It is
therefore necessary to calibrate user trust to appropriately reflect the automation capability and
maintain user interest in the technology (e.g., repairing trust after an error to prevent disuse).
One approach generally considered important for calibrating user trust towards AVs is the
provision of explanations for vehicle actions [79, , , ]. However, users are not the
only stakeholders involved in autonomous driving with a need for explanations. Developers,

technicians, insurers, and regulators all require insight into AV decisions at different levels of
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granularity to support deployment and governance [ 12, 149]. As state-of-the-art AV navigation
systems are often based on deep learning, however, this is a non-trivial task. Deep learning mod-
els are inherently opaque “black-box” systems which resist straightforward explanation. Indeed,
recent progress in the development black-box artificial intelligence (Al) methods has lead regu-
lating bodies to insist on guarantees of transparency to ensure the proliferation of trustworthy Al
systems. In 2024, for example, the European Parliament signed the Artificial Intelligence Act
[46] into law, the first legislation globally aimed at regulating the use of Al-enabled technolo-
gies.

Regulatory demands for trustworthy Al systems naturally apply to autonomous driving and
transparency is a crucial aspect. However, this is problematic for many state-of-the-art AV sys-
tems. For example, one recent trend in AV navigation is the use of deep reinforcement learning
(DRL) for end-to-end planning and control [9, 38, 126] which is fundamentally a black-box sys-
tem. The main advantage of end-to-end DRL compared to explainable methods is performance,
however the lack of transparency makes oversight and validation of the system difficult. This
suggests that achieving equivalent performance using explainable methods is preferable.

While black-box Al methods often demonstrate superior performance in autonomous driv-
ing tasks, they nonetheless have important limitations. For example, end-to-end DRL for AVs
is based on learning rewards for state/action pairs using trial and error, which for obvious safety
reasons is not suitable for online decision-making. Consequently, DRL models are often pre-
trained in simulated environments, which may provide a significant number of cases for train-
ing, but ultimately results in decisions based on rigid generalisations. This ignores important
structural information from the immediate environment vital for avoiding imminent collisions.
In addition, black-box AI methods are often compute intensive, requiring expensive specialist
hardware to ensure the real-time performance of deployed algorithms, which in turn increases
the overall energy budget of the system and inflates the cost of AV development [125, ].

It would be ideal then to develop an approach to AV navigation which is light on compute
resources, explainable and suitable for online decision-making, as this is would be optimal for
promoting the development of trustworthy AV systems which are cheap to manufacture. In this
thesis, we take first steps in this direction. We focus on developing an approach to obstacle
avoidance which relies on sensor data for planning to ensure reactivity to imminent situations.
This can be achieved using closed-loop input control, which depends on active feedback from
the environment and real-time disturbance processing. As a measure to ensure our approach is
computationally lightweight, we develop our planning method on a low-powered robotic system.

Closed-loop control, however, can only react to an immediate stimulus, hence it does not
have the ability to generate complex plans. This requires the ability to acquire and interpret distal
sensor information and reason about possible future outcomes. Model checking [13] is a widely
used computer-aided technique for automatically verifying reactive systems, based on a precise

mathematical and unambiguous model of possible system behaviour. To verify that the model
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meets specified requirements (usually expressed in temporal logic) all possible executions in the
model are checked systematically. While typically used for verification of system properties, it
has also been proposed as a means of solving Al planning problems [11, 71]. In Pagojus et al.
[154], for example, the SPIN [90] model checker was used to plan overtaking manoeuvrers for a
simulated autonomous vehicle on a traffic heavy road. We draw inspiration from this approach
to develop a real-time planner for generating sequences of closed-loop controllers. As model

checking is a symbolic technique, it has the advantage of being inherently explainable.

1.2 Thesis Statement and Contributions

Thesis Statement Model checking can be used to develop a trustworthy real-time plan-
ner for generating sequences of closed-loop controllers for obstacle avoidance which is

light on computational resources, inherently explainable, and suitable for online decision-

making. We will demonstrate this by developing our approach on a low-powered robot.

We identified the following contributions:

* The advocacy of model checking, specifically techniques used in SPIN, as an explainable

approach for real-time planning in autonomous ground navigation;

* Development of a real-time planning method using model checking for collision avoid-

ance which relies on input control so makes decisions about the immediate driving context;

* Development of a bespoke real-time model checker for planning on a low-powered device.

1.3 Research Questions

We focus on two main research questions with sub-questions derived from the objectives of
the research effort, as per the thesis statement in Section 1.2. As model checking is inherently
explainable, our aim is to investigate whether model checking can be used to reliably plan se-
quences of closed-loop controllers for obstacle avoidance in manner suitable for online decision-
making on a low-powered robot. Specifically, we focus on addressing three main objectives: (i)
to evaluate the reliability of model checking for obstacle avoidance, (ii) to assess the reliability
of model checking for real-time planning, and (iii) to describe the memory usage of planning

using model checking. Sub-questions for the main research questions are derived from these.
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1.3.1 Case Study I: Evasion

In Chapter 4, we conduct an initial investigation into whether model checking can be used for

online reasoning on a low-powered robot. Consequently, we address the research question:

RQ1 How can we use a bespoke model checker to plan sequences of dis-
crete closed-loop tasks (which have an attentional focus on disturbances) for

collision avoidance on a low-powered robotic system in real-time?
The following sub-questions are derived from RQ1 and the research objectives:

RQ2 Does planning using model checking reliably generate more efficient

collision avoidance behaviours compared to a baseline method?

RQ3 Does planning using model checking reliably meet the hard real-time
deadline of 100 milliseconds for autonomous driving applications?

RQ4 What is the memory usage of planning using model checking?

1.3.2 Case Study II: Obstacle Avoidance

In Chapter 5, we extend our initial approach using model checking for real-time obstacle avoid-

ance to accommodate goal-directed behaviour and therefore address the research question:

RQS How can we extend our bespoke implementation of model checking
to plan sequences of avoidance and attraction closed-loop tasks for goal-

directed obstacle avoidance on a low-powered robotic system in real-time?
The following sub-questions are derived from RQS and the research objectives:

RQ6 Does goal-directed planning using model checking reliabily generate

efficient collision avoidance behaviour compared to a baseline method?

RQ7 Does goal-directed planning using model checking reliably meet the

real-time deadline of 100 milliseconds for autonomous driving applications?

RQ8 What is the memory usage of goal-directed planning using model
checking?

1.4 Thesis Structure

We now provide an overview of the remaining chapters:

* Background We provide background details relevant to our approach. First we discuss

social and regulatory considerations for the development of trustworthy Al, highlighting
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how this transfers to the autonomous driving domain. We also provide details on real-time
constraints, discuss challenges for achieving this in practice, and highlight the relative
merits of common approaches to AV navigation. Subsequently, we provide a discussion

of common barriers to AV adoption and model checking.

 Preliminaries We introduce definitions and concepts underpinning the use of model check-
ing for real-time planning and obstacle avoidance. We describe our low-powered robotic
research platform and motivate definition of an embodied agent able to formulate com-
plex, multi-step plans. Next we introduce the notion of a temporary closed-loop controller
as a motion primitive with discrete outcomes which we call tasks and discuss our approach
to modelling the physical environment. Last we provide necessary conceptual background

on the model checking as planning paradigm.

* Real-Time Obstacle Avoidance We describe our initial investigation into model checking
for real-time planning and obstacle avoidance by generating sequences of closed-loop
tasks. First we explain the details of our methodology. We then provide details on the
implementation of our method and summarise preliminary results. Last we provide details

on a case study of our approach and draw conclusions on its merits and limitations.

* Real-Time Goal-Directed Obstacle Avoidance We describe our investigation into ex-
tending our initial approach to support goal-directed obstacle avoidance, in which we use
model checking and recursive forward simulation to plan/replan sequences of closed-loop
tasks in real-time. We first explain the details of our methodology. We then provide de-
tails on the implementation of our method. Last we explain our case study and draw

conclusions on the merits and limitations of our approach.

* Conclusion We summarise the significance of this thesis. We discuss the value of our

approach, analyse limitations/assumptions and describe feasible avenues for future work.

Note that a glossary of variables introduced in this thesis can be found in Appendix B.

Research Artefacts

The following papers were written during my PhD. I am lead author on two of these papers

contributor on one. Research from two of these papers is included in this thesis.

* Chandler, C., Porr, B., Miller, A., Lafratta, G. (2023) Model Checking for Closed-Loop
Robot Reactive Planning, in Electronic Proceedings in Theoretical Computer Science.
395, 77-94. https://doi.org/10.4204/EPTCS.395. 6. Introduces real-time
model checking for planning sequences of closed-loop tasks for obstacle avoidance. I was

responsible for generating the idea, implementing the method, collecting/analysing data,
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and writing the paper. Chapter 4 up to and excluding Section 4.5 is derived from this

paper. Section 4.5 is directly from this paper.

 Lafratta, G. , Porr, B. , Chandler, C. and Miller, A. (2025) Closed-loop multi-step plan-
ning, in Neural Computation (Accepted for Publication). Introduces physics simulation
using a lightweight gaming engine for real-time planning of closed-loop tasks with some
learning aspects. Giulia’s research aligns closely with my own. I was involved in solidi-

fying formal aspects in the early drafts.

e Chandler, C., Porr, B., Lafratta, G., Miller, A. (2025) Real-Time Model Checking for
Closed-Loop Robot Reactive Planning, in Science of Computer Programming (Submit-
ted). Extends real-time model checking for planning and obstacle avoidance. I was re-
sponsible extending the analysis, collecting/analysing data, and writing the paper. Chapter

4 up to Section 4.5 is based on this paper. So is the evaluation in Section 4.6.
The following links provide access to code and data produced during the course of this thesis:

e Dataset available at https://doi.org/10.5525/gla.researchdata.2012
e Code available at https://doi.org/10.5281/zenodo.15830809

* Videos available at https://www.youtube.com/@ChrisDChandler
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Chapter 2
Background

In this chapter, we highlight and discuss literature relevant to the thesis. In Section 2.1, we
discuss social and regulatory considerations for the development of trustworthy Al, highlighting
how this transfers to the autonomous driving domain. In particular, we focus on the trans-
parency, safety and reliability of Al algorithms. Section 2.2 focuses on real-time constraints for
decision-making in autonomous driving and challenges related to achieving this while reducing
manufacturing costs. We discuss the relative merits of common approaches to AV navigation. In
Section 2.3, we highlight three major barriers to AV adoption related to trustworthiness. Specif-
ically, we discuss the literature on public acceptance, explainability methods and approaches to
testing and validation of AVs. We then discuss the relevance of formal methods for trustworthy

reasoning in Section 3.5, specifically model checking applied to autonomous robotic systems.

2.1 Trustworthy AI

Recent developments in Al and machine learning promise to bring significant benefits to society
and humanity. However, the prospect of human reliance on Al has stimulated concerns over
the trustworthiness of Al systems, especially as they are given greater autonomy to make high
stakes decisions. As a consequence, there has been a general trend towards promoting the devel-
opment of trustworthy Al systems from governance bodies, such as the U.S. National Institute
of Standards and Technology (NIST) [188]. Perhaps the most robust initiative in this regard has
been the publishing of a set of guidelines and principles for the development of trustworthy Al
systems from the Al High Level Expert Group (HLEG) of the European Commission [1]. Fol-
lowing on from this, in 2024 the European Parliament signed the Artificial Intelligence Act [46]
into law, the first legislation globally aimed at regulating the use of Al-enabled technologies.
The notion of “trustworthiness” in this context departs significantly from common usage of
the term. The Oxford English Dictionary defines trust as: firm belief in the reliability, truth, or
ability of someone or something; confidence or faith in a person or thing, or in an attribute of

a person or thing [153]. Trust is therefore an attitude towards a person or artefact, whereas the
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related notion of “trustworthiness” denotes a property or set of properties which promote the
attitude of trust. Conventionally, we call the trusting agent the trustor and the trusted person or
artefact the trustee. However, in the context of Al systems a more holistic, multi-dimensional
definition of trust is often favoured, incorporating specific ethical, social and legal concerns over
the potential risks associated with Al decision-making, especially in safety-critical domains.

Following Kuznietsov et al. [112], two broad categories of Al systems can be identified:
symbolic and sub-symbolic. Symbolic approaches rely on encoding information using well-
defined mathematical representations, manipulating symbols to draw conclusions based on for-
mal logic or program induction. Historically, this approach was responsible for the first wave
of successful Al applications in the form of expert systems [3 1, ]. One advantage is that a
causal chain of reasoning can be extracted, making expert systems intrinsically understandable
by human actors. However, while the manipulation of symbolic representations prima facie
mimics how human beings reason about the relations between concepts, in practice symbolic
Al methods typically require significant human expertise to build domain-relevant knowledge
bases.

In contrast, sub-symbolic Al approaches, such as methods involving Deep Neural Networks
(DNNs), transform input data to outputs mathematically via the learning of millions of model
parameters from large batches of training data [65]. The advantage of this approach is that it is
possible to learn complex non-linear functions and achieve human-level performance or better
on a variety of tasks (e.g., [30, 1). However, unlike symbolic methods, the sheer complexity
of the relationships between model parameters makes it impossible to understand how DNN-
based methods arrive at decisions [112]. Nonetheless, advances in DNNs have been at the
forefront of recent progress in Al. As greater autonomy is given to Al to make critical decisions,
it is crucial that frameworks for assessing its trustworthiness are in place.

The European Commission Al HLEG identified four ethical principles and seven require-
ments for the development of trustworthy AI [1]. The principles are: (i) respect for human au-
tonomy; (ii) prevention of harm; (iii) fairness; and (iv) explicability. From these principles the
following requirements were derived: (i) human agency and oversight; (ii) technical robustness
and safety; (iii) privacy and data governence; (iv) transparency; (v) diversity, non-discrimination
and fairness; (vi) societal and environmental well-being; and (vii) accountability. The recent
NIST risk management framework for Al [188] shows a similar range of concerns. Figure 2.1
provides an overview of the framework suggested in the Al HLEG ethical guidelines.

Trustworthy Al from the perspective of governance agencies is therefore socio-technical,
based on ethical, social and legal norms. However, while interaction with human actors is
generally covered, none of these guidelines elaborate on the specific factors influencing trust
in Al systems at the level of individual human beings. As trust mediates decision-making in
collaborations with automated systems [57, , ], it is crucial for both safe interactions with

automation/Al and optimal human-machine performance. In the literature, this is known as the
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Figure 2.1: Overview of Al HLEG guidelines [!, ]. Four guiding ethical principles from
which seven requirements for the development of trustworthy Al systems are derived.

problem of trust calibration. If users trust an automated system too much or too little, then this
can lead to misuse or disuse of the system, i.e., because user expectations (and emergent reliance
behaviours) do not match the capability of the automation [155]. In the best case scenario, this
can result in sub-optimal human-machine performance, however in safety-critical applications

(e.g., autonomous driving) poor trust calibration can have severe (possibly fatal) consequences.

2.1.1 Human Factors

While there has been significant research in the human factors literature on trust in automated
systems, the notion of trust (and related notion of trustworthiness) has been notoriously difficult
to define. In the early 2000s, Mayer et al. [137] examined the antecedents and outcomes of or-
ganizational trust, proposing the following definition: the willingness of a party to be vulnerable
to the actions of another party based on the expectation that the other will perform a particular
action important to the trustor, irrespective of the ability to monitor or control that party.

The model in [ 1 37] highlighted three antecedents of perceived trustworthiness: ability, benev-
olence and integrity. Ability refers to the trustee’s competence for a task in a given domain,
benevolence refers to the trustee’s benign motives, and integrity involves the trustor’s percep-
tion that the trustee adheres to a set of acceptable principles of conduct [137]. However, while
influential in human factors research, the model developed by Mayer et al. was focused on
human-human trust in organisations, not specifically on human trust in automated systems.

Around the same time, Lee and See [| 8] supplied a definition popular in human factors
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Figure 2.2: Factors influencing learned trust. Dotted arrows represent dynamic aspects which
can change during a single interaction. Reproduced from [87].

research characterising trust as the attitude that an agent will help achieve an individual’s goals
in a situation characterised by uncertainty and vulnerability. Here the focus was on how to
design human-machine interfaces for appropriate reliance (i.e., the emergent behaviour of trust)
on a system in supervisory control interactions, i.e., human-in-the-loop oversight of automated
system performance. However, the definition in [1 18] is too general to capture the multi-
dimensional character of trust and guide empirical research efforts. Nonetheless, it has been
influential, forming the basis of an oft-cited framework for investigation of trust in machines.

Hoff and Bashir [87] conducted a large meta-analysis and review of empirical research into
trust in automation, decomposing the concept of trust into dispositional, situational and learned
aspects. Dispositional trust denotes static attributes of individuals which vary little between
situations (e.g., gender, age, culture, etc.), situational trust refers to environmental and cognitive
factors, and learned trust comprises both background knowledge of systems and processes for
dynamic changes in trust from experience of machine performance (see Figure 2.2).

While the Hoff and Bashir model has been criticised for its lack of empirical validation,
its characterisation of the multi-dimensional nature of trust in automated systems (e.g., Al sys-
tems) has been fruitful. In the human factors literature, significant research has made use of

this framework. For example, Ingram et al. [95] investigated the effects of task difficulty on
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dynamic learned trust in an image classification task. Daronnat et al. [48] created multiple lin-
ear regression models to determine which combinations of factors led to the best predictions
of users’ trust ratings using the model in [87] to generate inclusion criteria. In a recent review
arguing for a combined empirical and ethnographic approach to trust in AVs, Raats et al. [161]
used the model to organise which aspects of trust empirical research has investigated.

Although the model in [87] captures the multi-dimensional character of trust, it is focused
on human operators as supervisors of automation and therefore much of the research it has
inspired manipulates machine level antecedents of trust to promote better calibration assuming
human oversight. However, technological advances are in general leading to new interaction
paradigms, with human operators in more peer-like relationships with automation, suggesting a
focus on bidirectional human-machine collaboration would be appropriate. In a recent review
of research into the perception of machines as teammates, Rix [168] argued along similar lines,
concluding that the creation of a team setting and social entity, along with configuration of
machine collaborative behaviours, are the main drivers of successful human-machine teams.

The Hoff and Bashir model was not aimed specifically at autonomous driving, but it has been
frequently cited in studies investigating human trust in the AV domain (e.g., [79, 83, 86, ,

]). Its relevance, however, has been challenged. In a recent study, Walker et al. [199] argued
that there is a lack of clarity regarding the relationship between situational and learned aspects,
which could lead to inconsistent use between researchers and cause confusion. To address this,
Walker et al. proposed a simpler framework with revised terminology, distinguishing between
expectations (dispositional and initial learned trust) and calibration (situational and dynamically
learned trust—all experiences related to interacting with the system across various situations).
According to this framework, trust calibration is influenced by prior knowledge and system
characteristics (e.g., transparency/feedback), but varies in a feedback cycle with experience of

AV behaviour, dynamically adjusting the user’s mental model of the AV system’s reliability.

2.1.2 Transparency

As should be clear, the notion of “trustworthiness” has no precise unilateral definition. Its in-
tended meaning varies according to the context of use and application. Furthermore, as evi-
denced by varying perspectives in human factors research, within a given domain uncertainty
over its accurate characterisation remains a persistent challenge. From the perspective of reg-
ulating bodies, such as NIST, the notion of trustworthiness is normative, hence a stipulative
definition may be sufficient. However, for empirical research into trust in automated/Al systems
which aims at objectivity, confusion over the correct notion of trustworthiness is problematic.
Nonetheless, common themes about system and performance characteristics essential for pro-
moting the trustworthiness of automated/Al systems emerge, such as system transparency.

As mentioned above, transparency is one of the key requirements of the Al HLEG guide-

lines for trustworthy AI, which implements the core ethical principle of explicability. This is
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conceived as crucial for building and maintaining users’ trust in Al systems [1]. Specifically,
the transparency requirement comprises three aspects: traceability, explainability and communi-
cation. Traceability requires developers of Al systems to document the data sets and processes
used in development of the Al to enable identification of reasons for possible erroneous deci-
sions. Explainability requires that decisions made by an Al system can be understood and traced
by human beings, hence there is some overlap with the traceability requirement. Communication
requires Al systems to make it clear to users that they are not interacting with a human.

While the concerns mentioned here are normative, encompassing general development and
deployment practices as well as Al system features, both the Hoff and Bashir model and sug-
gested simplification by Walker et al. stress the importance of system transparency and system
feedback as one factor important for the calibration of subjective human trust [87, ]. The
design of methods able to achieve this is generally the purview of the field of eXplainable Al
(XAI), though the notion of transparency endorsed is typically narrower than the transparency
requirement outlined in the Al HLEG guidelines. Indeed, in lieu of the upcoming EU Artificial
Intelligence Act, Gyevnar et al. [77] argue that, while XAl can address many of the transparency
concerns raised in the legislation, there is a “transparency gap” between legal conceptions of Al
transparency and current XAl approaches which risks leaving important aspects unaddressed.

Nonetheless, the provision of explanations for system decisions is considered important for
trust in automated/Al systems, such as AVs [112, ]. In a recent study, for example, Ha et
al. [79] showed that explanation type significantly affects trust in AVs and that the perceived
risk of driving situations significantly moderates the effects of explanation type. In an earlier
study, Koo et al. [108] found that “how” explanations (e.g, “The car is braking”) lead to poor
driving performance, whereas “why” information describing the reasons for actions (e.g, “Ob-
stacle ahead”) was preferred by drivers and lead to better driving performance. “How and why”
explanations resulted in safest performance but increased negative affect towards the vehicle.

However, end-users are not the only stakeholders with a need for transparency in autonomous
driving [149]. Al decisions in this context should in principle be explainable to all stakeholders
involved in the deployment of AV technology. For example, end-users who lack domain ex-
pertise may be satisfied with a simple explanation that requires less background knowledge to
interpret, but developers, regulators and insurers need a more detailed explanation with technical
terms that support a deeper understanding and analysis of Al decision-making [ 12, ].

Consider for example the Molly problem! described by the International Telecommunica-
tion Union (ITU), an adaptation of the Trolly problem where a young girl Molly is hit by an
unoccupied AV without any witnesses present. The accident investigation process can be aided
by explanations containing the vehicle’s observations, the road rules and traffic signs it acted
on. Hence explanations are considered necessary for both calibrating end-user trust and audit-

ing of vehicle actions. Vehicle decision-making should therefore be transparent in principle to

lhttps://www.itu.int/en/ITUfT/focusgroups/di4ad/Pages/MollyProblem.aspx
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Figure 2.3: Transparency sub-requirements from Al HLEG guidelines. Traceability includes
documentation of datasets and processes used in development of the Al and the ability to explain
decisions post-hoc to satisfy related accountability requirement (e.g., for accident analysis).

promote accountability and governance in the AV ecosystem. This is reflected in the Al HLEG
requirement for traceability which enables the related requirement of accountability. Figure 2.3

illustrates sub-requirements for transparency as detailed by the Al HLEG ethical guidelines.

2.1.3 Safety and Reliability

Transparency is therefore a broad concept which aims to promote governance and oversight of
Al-enabled technologies, generally considered important for the trustworthy integration of Al
into the fabric of modern society. This is particularly important for safety-critical application
domains where erroneous decisions could lead to physical or psychological harm. Indeed, the
desire to mitigate potentially harmful aspects of Al is reflected in the Al HLEG guidelines via
the core ethical principle of prevention of harm, implemented in part by the requirement for
technical robustness and safety [ |]. Specifically, four sub-requirements are promoted: resilience
to attack and security, fallback plan and general safety, accuracy, reliability and reproducibility.

Figure 2.4 provides an overview of the sub-requirements. Resilience to attack and secu-
rity is concerned with protecting the Al system against vulnerabilities which could be exploited
by malicious actors to influence decision-making. Fallback plan and general safety aims at (i)
mitigating harmful consequences in the event of Al system failures, and (ii) ensuring the Al
functions as intended without causing harm to human beings or the environment. This includes
processes for identifying and assessing risks associated with use of the Al. Accuracy concerns

the ability of an AI to make correct decisions based on data or models. Reliability and repro-
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Figure 2.4: Technical robustness and safety sub-requirements from Al HLEG guidelines.

ducibility concerns (i) continuity of decision-making for a range of inputs and situations, and
(i1) whether the Al exhibits the same behaviour when repeated under the same conditions.

Aspects of this requirement are echoed in human factors research into trust in automation/Al.
As indicated in Figure 2.2, the top performance factor influencing the formation of dynamic
learned trust in Hoff and Bashir [87], based on a large-scale meta-analysis of empirical research
into trust in automation, is reliability of the system. Indeed, the primacy of reliability in the
formation of human-machine trust is well documented (e.g., [57, , 1), with findings gen-
erally suggesting that higher reliability of the automated system is associated with higher levels
of trust in the automation. However, this is not observed in all instances, mediated by factors
such as the nature of the task and level of autonomy [15]. In safety-critical domains, such as
autonomous driving, characterising the reliability of the system and how this affects human-
machine trust formation is important for developing safe and trustworthy Al systems.

The technical robustness and safety requirement advanced by the Al HLEG guidelines, how-
ever, focuses more on assurance of Al-enabled systems. This is often a non-trivial task, espe-
cially for Al approaches which make inherently opaque decisions, mediated by the character-
istics of the use case. For example, Kalra and Paddock [98] demonstrated the infeasibility of
empirical validation of Al-enabled systems in autonomous driving, arguing that an AV would
have to drive hundreds of millions of miles to achieve statistical confidence in its reliability,
owing to the relative rarity of collisions over the typical lifetime of a vehicle. Other validation
methods are therefore necessary for AVs. A holistic approach to validating reliability (which
in the context of autonomous driving is a safety-critical issue) is typically advocated by gov-

ernance agencies [/, ], potentially comprising a variety of methods, such as simulation,
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scenario-based testing and empirical validation. These aspects can then be organised into some
kind of workflow which aims to accumulate multi-dimensional evidence of the vehicle’s safety.

According to the NIST risk management framework for Al [188], validity and reliability
are necessary conditions for the trustworthiness of Al systems. Major contributing factors to
validity are accuracy and robustness, where accuracy concerns the closeness of obtained results
to ground truth and robustness is effectively defined as generalisability, i.e., the ability of an Al
system to maintain adequate performance across a variety of scenarios. Reliability is conceived
as: a goal for overall correctness of Al system operation under the conditions of expected use
and over a given period of time, including the entire lifetime of the system [ 1 88]. In the context of
autonomous driving, this includes the repeated accuracy of the Al system in specific tasks (e.g.,
collision avoidance), but also the operating milieu of the system, which in addition to accuracy
includes hardware, computational and task-specific constraints. For example, an Al-enabled
system for AV navigation should be able to respond reliably to imminent events in high-speed

driving but also achieve this with minimal energy consumption to drive down costs [103, ].

2.2 Autonomous Driving

Autonomous driving has been touted has having the potential to bring many benefits to society,
such as increased safety due to the elimination of human error, better mobility for disabled
individuals, and reduced emissions through optimized route planning and braking [151]. To
completely realise these benefits, it is necessary is to achieve full autonomy, however there
are many safety-critical challenges to be overcome. Consequently, manufacturers have focused
on the incremental introduction of automated driving functions to better manage the risk. In
recognition of this, SAE International [176] classified automated driving systems (ADS) into six
levels of autonomy, broadly referred to in the AV domain and adopted by regulatory agencies
such as the U.S. National Highway Traffic Safety Administration (NHTSA). Figure 2.5 provides
an overview of the automation levels and how they relate to the dynamic driving task (DDT).
The most advanced ADS commercially available at the moment is DRIVE PILOT? installed
on the Mercedez-Benz S-Class and EQS Sedans. The technology is marketed as L3 conditional
automation, where the driver may disengage from the DDT and divert attention to a non-driving
related task, but should be ready to take over control of the vehicle when prompted by the
system, within a restricted operational driving domain (ODD). However, L5 full automation has
not yet been achieved at a scale sufficient for commercialisation. One reason is the challenge of
meeting the requirement for real-time performance while keeping manufacturing costs low.
Following Lin et al. [125] on performance constraints, the reaction time of an ADS is de-
termined by two factors: frame rate and processing latency. Frame rate determines how fast the

real-time sensor data can be fed into the process engine, while the processing latency of rec-

zhttps://www.mbusa.com/en/owners/maiuals/drivefpilot
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ognizing scenes and making operational decisions determines how fast the system can react to
the captured sensor data. The fastest recorded action by a human driver takes 100-150 millisec-
onds [148, 192] which suggests a processing latency of less than 100 milliseconds for better
than human performance. In addition, to react quickly to changing traffic conditions in real-
time, the system should update its scene understanding at a suitably high frequency, suggesting
a frame rate of 100 milliseconds as the traffic situation could change drastically between frames.

However, real-time performance in practice often requires significant compute resources.

2.2.1 Computing Systems

There are two main approaches to the development of an ADS based on the Al learning ar-
chitecture: modular and end-to-end pipelines [177]. Modular pipelines execute operations in
sequence from module-to-module to arrive at a control command, whereas end-to-end pipelines
generate control commands directly from the raw sensor data. Each approach has its advantages

and disadvantages with respect to the safety and reliability of decision-making for AV systems.
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Figure 2.6: Typical pipeline for modular ADS.
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Figure 2.6 shows the typical architecture of a modular pipeline. Modular design decouples
sensing, perception, localization, planning, etc., which has the advantage of making it easier for
teams of developers with different areas of expertise to work together and debug systems [ 104,
177, 208]. In addition, new functionality can be integrated with existing components without
modifying their inner workings, e.g., the implementation of hard-coded safety constraints on top
of the planning module. However, there are typical bottlenecks in modular AV systems (e.g.,
perception [ 123, 125]) which are a challenge for building real-time systems. Modular pipelines

are also prone to error propagation [ 1 38] which can lead to unexpected behaviours.



CHAPTER 2. BACKGROUND 18

Neural Network

G30000
000

Steering

—
—\
~~
®
Sensors (
|
Speed

Figure 2.7: Typical pipeline for end-to-end ADS.

In contrast, end-to-end pipelines do not require interaction between system components,
so error propagation is not a similar concern. Figure 2.7 shows the basic architecture of an
end-to-end pipeline. In the modular case, Al algorithms may be involved in specific tasks,
such as object detection in the perception module [126], however in end-to-end systems they
are applied to generate control commands directly from raw sensor data. In comparison to
the modular approach, the development of end-to-end pipelines requires specific expertise in
machine learning and the AV domain. However, once an Al model is trained and deployed to
an AV, it can respond within real-time constraints and has the potential to reach human-level
accuracy or better [40]. In general, the end-to-end approach streamlines data processing by

eliminating redundant calculations, thereby increasing efficiency and robustness.

2.2.2 Real-Time Challenges

Specialist hardware is often required for real-time performance using either approach [125].
One reason is the sheer volume of real-time data generated from a suite of sensors (e.g, LIDAR,
radar, camera). It has been estimated that an AV could generate 20-40 terabytes of data in a
single day, putting significant demand on the vehicle computing system. For example, one key
sensing technology implemented on AV systems is LIDAR, which can generate 10-70 MB data
per second, a massive amount of data for the computing platform to process in real-time [126,
I'77]. In practice, however, each sensor modality has its limitations, hence fusing data from
various sensors is often necessary, increasing the computational burden yet further [19, 136].
Another reason specialist hardware is often required is Al algorithms [125]. To accelerate

the performance of popular DNN-based approaches, either as components of a modular system
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(e.g., object detection) or in end-to-end systems, GPU-accelerated hardware is often necessary.
However, these computation units often consume a lot of power and generate significant heat,
consequently putting extra demand on the heat dissipation system. For example, one of the top
GPU-accelerated computing units for AVs is the NVIDIA PX2 which consumes a sizeable 80
Watts of power [19]. For electric AV systems in particular, this can mean a significant reduction
in driving capacity, which has lead some researchers to develop more efficient algorithms for AV
tasks. For example, Malawade et al. [136] developed an energy-aware adaptive sensor fusion
method, which uses approximately 60% less energy and achieves 58% lower processing latency
on the industry-standard NVIDIA PX2 platform compared to other fusion approaches.

The energy consumption of AVs is further impacted by storage requirements. While con-
sumption by the computing unit is dependent on the computing hardware architecture (e.g.,
CPU, GPU, etc.), energy demands for storage are predictable. According to Lin et al. [125],
a typical storage system consumes around 8 Watts to store every 3 terabytes of data. As GPS
technology cannot locate a vehicle with sufficient precision, state-of-the-art AV systems typi-
cally use an offline map, which for safety and reliability needs to be stored locally, as internet
connectivity cannot be guaranteed at all times. It has been estimated that a typical map of the
U.S. requires 41 terabytes of storage [ | 25], putting energy consumption at around 110 Watts. In
addition, requirements for auditability from regulators may require the storage of large amounts
of structured and unstructured real-time data for post-hoc analysis in the event of accidents.

Real-time performance constraints therefore have a direct impact on the computing hardware
architecture and energy-efficiency of an ADS, which ultimately drives up manufacturing costs.
According to Liu et al. [177], a typical non-luxury vehicle in the U.S. usually costs around
$30,000 to manufacture, whereas the cost of a prototype AV has been estimated at around
$250,000, largely due to the additional hardware requirements for AV systems. In addition,
commercial deployment may require onboard backup systems to ensure system reliability in the
event of failures. Maintenance costs (e.g., insuance, repair) are also likely to be high [177],
which could make AVs unattractive for consumers. It is therefore necessary to achieve real-time
performance while minimising energy consumption to drive down costs, otherwise widespread
commercial availability is economically infeasible for manufacturers. This will require innova-

tion in efficient hardware architectures, and efficient computational methods for AV tasks [127].

2.2.3 Navigation Methods

The most complex task is real-time planning with obstacle avoidance [ 165, ] as this requires
the seamless integration of all aspects of the system. In addition to constraints on processing
latency and energy efficiency, there are a number of characteristics of the driving environment
which add to the complexity. For example, from the perspective of an embodied agent (e.g., an
AV), the environment is partially observable, so it is impossible to have complete knowledge

of obstacles using data from sensors alone. This is especially problematic in complex urban
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environments, where vehicles and other road users could be occluded by visible objects. In
addition, the environment consists of dynamic objects (i.e., vehicles and other road users), hence
the ability to predict future actions becomes an essential component of avoiding collisions. Safe
and reliable path planning for AVs is therefore a non-trivial task with many specific challenges.

Authors often distinguish between global and local planning in the autonomous driving lit-
erature [165, ]. Global planning typically focuses on calculating a high-level optimal route
from a start location to some destination on an offline map to achieve long-term navigation goals,
whereas the focus of local planning is on real-time navigation and obstacle avoidance, i.e., re-
sponding reactively to obstacles while making progress towards a goal. Our focus in this thesis
is on local path planning and obstacle avoidance. Many approaches have been taken to address
the local planning and obstacle avoidance problem for autonomous driving (for a comprehensive

survey see [ 165]). These can be grouped into traditional planning and learning-based methods.

Traditional Planning

Some traditional methods for local path planning in autonomous driving are illustrated in Fig-
ure 2.8. One popular approach is graph-based methods, which normally partition a prior map
of the environment into a discrete representation to form a connected graph. An optimal or
near-optimal path to a goal location can then be extracted while avoiding obstacles. Dijkstra
[56] and A* [82] are two well-known graph algorithms (see Figures 2.8A and 2.8B). However,
the real-time performance of graph-based methods is limited, as there is a trade-off between
granularity of the discrete representation and real-time performance due explosion of the state
space. In addition, without modification, graph-based planners produce jerky trajectories [165],
which cannot be executed comfortably by a vehicle with non-holonomic constraints. Several
modifications of graph-based planners have been proposed in the literature to address this, often
combining algorithms such as A* with reactive obstacle avoidance (e.g., the dynamic window
approach [214]) or post-hoc trajectory optimization (e.g., conjugate gradiant smoothing [143]).
Sampling-based methods, such as Rapidly-exploring Random Trees (RRT) [116], are an-
other popular approach to local planning and obstacle avoidance. The main idea behind sampling-
based methods is to construct connections between randomly sampled points in the obstacle-free
configuration space until the goal is reached (see Figure 2.8C). As the approach is probabilis-
tically complete, given enough time, a path is guaranteed to be found [116, , ]. For
example, Feraco et al. [62] used RRT to plan local paths for a prototype racing car, generat-
ing reliable paths for unknown environments. However, due to randomness, results may not be
replicable, and optimal solutions may not be found [45]. This has been address through exten-
sions such as RRT*, however optimality is dependent on the time the planner has for sampling
the environment. While typically fast to converge on a solution, similar to graph-based methods,
the path is discrete, resulting in jerky trajectories [72]. As for graph-based approaches, several

RRT modifications have been suggested to smooth generated trajectories (e.g, [92, , D.
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Figure 2.8: A: Dijkstra graph algorithm avoiding a single obstacle [172]. B: A* graph algorithm
traversing a narrow gap [!72]. C: RRT algorithm negotiating a narrow gap [20]. D: Bézier curve
interpolation using de Casteljau’s algorithm [190] to calculate a smooth trajectory.

Interpolating curve planners are often used for smoothing the trajectory between discrete
states on a planned path, taking into consideration paramaters and constraints such as feasibility,
comfort and vehicle dynamics [72]. There are various possible techniques, each with specific
advantages and disadvantages. Figure 2.8D shows one example of a fourth degree Bézier curve
using de Casteljau’s algorithm, which generally has low computational cost, though this in-
creases with the curve degree [72]. Other methods include polynomial and clothoid curves,
however in general interpolating curve planners depend on a prior planned path and can be time
consuming when faced with immediate obstacles in real-time. Numerical optimization, which
aims to minimize or maximize a function subject to different constrained variables, is an alter-
native approach for generating smooth trajectories. The main advantage is that road and vehicle
constraints can be easily incorporated, as well as other road users. For example, control barrier
functions have been used to guarantee that generated trajectories are within a safe set [181].
However, again it relies on a prior planned path. In addition, as optimization takes place at each

continuous motion state, achieving energy-efficient real-time performance is challenging.

Learning-Based Planning

One benefit of traditional approaches is that they are easy to understand by human actors. How-
ever, to address issues with performance, in recent years there has been an increasing interest in

machine learning approaches based on DNNs, which in comparison are opaque. Traditional
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planning methods are typically deployed using a modular pipeline, however learning-based
methods can be used with either architecture. In particular, there has been surging interest in
machine learning for end-to-end AV navigation systems [165]. There are two basic approaches
to the use of machine learning: imitation learning (IL) and reinforcement learning (RL).

IL is a supervised learning approach which learns from expert demonstrations of driving
behaviour to generate a driving policy; this requires a dataset containing trajectories collected
under the expert’s driving policy, where each trajectory is a sequence of state-action pairs [38,

]. One approach is behavioural cloning [ 1 4], which, to minimise imitation loss with the expert
policy, assumes that state-action pairs are independently and identically distributed (i.i.d.), as is
typical in supervised learning. However, as outputs of the model interact with the environment,
there may be correlations between sequential predictions, violating the i.i.d. assumption and thus
limiting generalisability. Direct policy learning (e.g., [170]) is one alternative, which aims to
directly learn a driving policy, mapping inputs to actions instead of control commands. The main
drawback is that continuous access by an expert is needed during training which is expensive and
inefficient [40]. Inverse reinforcement learning aims to address this by deducing expert driving
behaviours through a reward function, extrapolating from collected example behaviours to find
the underlying reward. However, there are many drawbacks to this approach: e.g., models are
expensive to train, often unstable, and computationally demanding at runtime [38, 40].

One major issue with IL is handling cases that are out-of-distribution, given its dependence
on offline datasets of expert behaviour, which cannot cover all possible scenarios. For this rea-
son, in recent years there has been an increased interest in RL-based methods, trained on the
basis of interactions with simulated vehicle environments [40]. The goal of an RL agent is to
maximize its cumulative numerical reward through trial and error interactions with the envi-
ronment [186], often represented using a discrete grid. This is a closed-loop feedback cycle,
where feedback about an action is provided in retrospect after a training episode. RL can be for-
mulated as a Markov Decision Process, but many recent approaches in autonomous navigation
for AVs have either augmented RL with DNNs or taken a model-free approach (e.g., [35-37]).
However, while increased accuracy has been achieved, there is a “reality gap” between models
trained in simulated environments and real world applications [38, 50, 91]. Ultimately, RL mod-
els learn rigid generalisations, based on simple reward structures [38], which may lead to risky
behaviours. In addition, as mentioned above, approaches based on DNNs require accelerated

hardware for real-time performance, which increases the energy demand and cost of the system.

2.3 Barriers to Adoption

There is therefore a need for planning and obstacle avoidance methods which are resource ef-
ficient, as this will help drive down the cost of implementation and contribute towards making

fully autonomous driving commercially feasible. However, there are further barriers to the adop-
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tion of fully autonomous driving related to the trustworthy Al issues discussed in Section 2.1.

2.3.1 Public Acceptance

One issue is public acceptance of the technology. As mentioned above, autonomous driving has
been touted has having the potential to bring many benefits to society, however the benefits of
the technology can only be realised if users are willing to adopt AVs. While there has been
significant research investigating the factors determining acceptance (e.g., [1 10, , 1), the
precise drivers underlying the willingness of individuals to adopt AVs remain ambiguous [2].
Nonetheless, common themes have emerged regarding public opinion on autonomous driving.

Kyriakidis et al. [113], for example, surveyed 5000 respondents using an online question-
naire across 109 countries, which has been well-cited in the AV adoption literature. In general,
the results were mixed on opinions towards AVs, with some respondents viewing autonomous
driving as positive, and others not considering it an enjoyable experience compared to manual
driving. Respondents were primarily concerned by security, safety, legal aspects and automatic
data transmission—high income countries in particular were negative towards automatic trans-
mission of data to insurers and tax authorities [113]. Big Five [97, ] personality factors
did not have much influence, though respondents who scored high on neuroticism were slightly
more concerned about automatic data transmission, and those who scored high on agreeableness
less.

Schoettle and Sivak [174] studied public opinion on AVs in China, India, Japan, the USA,
the UK, and Australia. A survey was conducted in each country with approximately 500 respon-
dents for each survey. The majority of respondents had heard about AVs and had a positive gen-
eral opinion, except in Japan which was majority neutral (50.3%). The most positive opinions
about AVs were observed in China (87.2%) and India (84.2%) and the most negative opinions
in the U.K. (13.7%) and U.S. (16.4%). However, the major concern across all countries was
related to the safety of fully autonomous vehicles, as summarised in Table 2.1. In particular,
survey participants were concerned about using AVs where no driver controls are available at

all, especially in the U.S. where 60.1% of respondents were “very concerned” [174].

Response China India Japan U.S. UK. Australia

Very concerned 68.0 59.0 31.1 51.1 448 444
Moderately concerned 27.7 275 458 30.7 36.8 34.3
Slightly concerned 3.8 10.8  19.5 146 146 174
Not at all concerned 0.5 2.7 3.6 36 38 40

Table 2.1: Responses to concern over safety consequences of equipment/system failure for fully
autonomous vehicles according to country, reproduced from Schoettle and Sivak [174].

Indeed, concerns over the safety of fully autonomous vehicles have been a dominant theme in

the results of numerous survey studies on public attitudes towards AVs [93, , ]. Further-
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more, several survey studies have identified males and young adults as potential early adopters
of autonomous driving [4, 93, , , ], owing to a greater appetite for risk in driving
and pedestrian behaviour [89, , ]. It has also been found that respondents with higher
education and income living in densely populated urban areas are more likely to have a posi-
tive view of AV technology [16]. However, the evidence from survey studies is correlational,
hence it provides no insight into the causal factors driving public acceptance of AVs, which re-
main poorly understood. Nonetheless, it is widely believed that perceived safety and trust are
important determinants of AV adoption [105], which has been investigated using explanatory
models.

Various models of technology adoption have been proposed, however two prominent in the
literature are the Technology Acceptance Model (TAM) [49] and Unified Theory of Acceptance
and Use of Technology (UTAUT) [197]. These models are based on the notion that subjective
belief and user perception shape technology acceptance, with behavioural intention (BI) and
actual usage taken as measures of acceptance [210]. In particular, the TAM approach has in-
spired several studies (e.g., [41, , 1). Figure 2.9 shows the original TAM model by Davis,
Bagozzi, and Warshaw [49], which proposes that perceived ease of use (PEOU), perceived use-
fulness (PU) and attitude towards using (ATT) are antecedents of behavioural intention. BI is

determined by a user’s attitude towards acceptance which has two predictors, PEOU and PU.
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Figure 2.9: Original TAM proposed by Davis, Bagozzi, and Warshaw [49].

Choi and Ji [41] adapted the original TAM, extending it by incorporating two subjective
attitudinal factors, perceived risk and trust, and two driving related traits, locus of control and
sensation seeking. Based on the human factors literature, trust was decomposed into three deter-
minants: system transparency, technical competence, and situation management. An illustration
of the model is shown in Figure 2.10. To validate the model, a survey of 552 respondents was
conducted and the results were analysed using partial least squares. Results showed that PU
and trust are major determinants of the behavioural intention to use AVs, and that the identified
sub-components have a positive influence on trust formation. In addition, trust was shown to

have a negative effect on perceived risk. A similar model was proposed by Xu et al. [206] which
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also showed that perceived safety and trust were steady and direct predictors of intention to use.
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Figure 2.10: Adapted TAM proposed by Choi and Ji [41]. Solid lines represent significant
relationships between measures and dashed lines represent insignificant relationships (p < .05).

In a recent study, Zhang et al. [210] incorporated initial trust [87] and perceived risk (specif-
ically, perceived safety risk [PSR] and perceived privacy risk [PRR]) into TAM to investigate
the effect on public acceptance of autonomous vehicles. Figure 2.11 shows an illustration of
the extended TAM approach. Using structure equation modelling, Zhang et al. found strong
support for the model, with initial trust identified as the strongest predictor of user attitudes to-
wards autonomous driving. In addition, the strongest determinant of initial trust was perceived
safety risk, suggesting a possible intervention strategy for AV adoption. For example, manufac-
turers could explain the safety features activated to protect users when systems fail, and increase
transparency into AV algorithms and the data used in training. Indeed, this is reflected in the
Al HLEG ethical guidelines [1] in both the requirements for transparency and accountability.
However, while trust-building efforts by manufacturers may be useful for promoting adoption
prior to use, strategies for maintaining trust during operation (i.e., the calibration of dynamic

learned trust in the Hoff and Bashir [87] model) are needed to ensure safe and continued use.

2.3.2 Explainability

As mentioned in Section 2.1.2, the provision of explanations for vehicle actions is one strategy
considered important for maintaining trust during the operation of AVs [112, ]. In addition,
the transparency afforded by explanations is important for ensuring sufficient insight into the
reliability of the system for a range of stakeholders involved in AV deployment (e.g., users,
regulators, insurers, developers, etc.) who all have different requirements for the level of de-
tail provided by explanations. Explanations are therefore important for accountability, human
oversight and the robustness of AV systems. While several taxonomies of XAI methods have

been proposed, the field is complex and the focus varies which has resulted in a general lack of
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Figure 2.11: Adapted TAM by Zhang et al. [210]. Solid lines represent significant relationships
between measures and dashed lines represent insignificant relationships (p < .05).

consensus [77, ]. Nonetheless, common themes in XAl taxonomies can be derived [183].

One common distinction is between Al models which are inherently explainable and the
explanation of opaque models after they are trained. The former has been referred to as ante-
hoc explainability and the latter post-hoc explainability 1172, ]. As indicated in Section 2.1,
Al approaches which rely on well-defined symbolic representations and logical manipulation
are often ante-hoc explainable, as a causal chain of reasoning between represented concepts
can be formally established. Some sub-symbolic approaches can also be considered ante-hoc
explainable, e.g., linear regression models, decision trees, rule-based learners [21]. However,
if these models have many rules or parameters, it may become impossibile to comprehend the
decisions they make, hence post-hoc explainability methods may still be necessary [183].

Typically the choice of whether to use sub-symbolic ante-hoc models depends on the prob-
lem, as these models often require additional manual effort in feature engineering and often do
not achieve an accuracy comparable to opaque (i.e., “black-box”’) models, such as DNNs [183].
This is widely known as the performance-explainability trade-off, which can lead machine learn-
ing practitioners to assume that an ante-hoc explainable model is unable to achieve sufficient
performance on a problem [171, ]. As a consequence, opaque models are frequently used
by system developers, which are only amenable to post-hoc explainability methods. Post-hoc
methods can be further classified into model-agnostic and model-specific. Model-agnostic post-
hoc methods work for any type of model, whereas model-specific methods are only applicable
to specific model types, e.g., DNNs, support vector machines (SVMs) [112, ]. One final
common distinction for post-hoc methods is between local and global explanations, where the
former concerns explaining the output of a model and the latter the model as a whole.

Beyond these distinctions, taxonomies of XAl methods tend to vary depending on their spe-
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cific focus. Relevant to the present thesis, in a recent review Kuznietsov et al. [ 12] built on
these common notions to develop a taxonomy of XAl methods focused on regulatory compli-
ance for the development of safe and trustworthy autonomous driving (see Figure 2.12). Based
on [183], they categorised XAI methods according to representation, stage, mode, scope and
medium.

Representation, stage and scope have already been discussed, however in [ | 12] representa-
tion and scope are extended. In addition to symbolic and sub-symbolic representation, a mixed
representation was included to account for Al approaches which combine both aspects (e.g.,
XAI methods for neuro-symbolic Al models [211]). Scope was also extended to include cohort
based explanations, which describes explanations for the output of a model for a group of inputs.
The remaining two categories are medium and mode. Medium concerns the method of delivery

(e.g., textual, visual, etc.) but the mode category is more complex and requires some discussion.

XAl
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Figure 2.12: Taxonomy of XAI methods for safe and trustworthy autonomous driving [112].

According to Kuznietsov et al. [112], mode describes the syntactic and semantic form
of an explanation, which has four possibilities: surrogate models, example-based methods,
importance-based methods and inherent explainability. Surrogate models distil a more com-
plex model (e.g., DNN, SVM, etc.) into a interpretable model. For example, Mishra et al. [141]
used a decision tree to explain the decisions of an RL agent based on states and corresponding
actions determined by the optimal policy, using a visual explanation interface which was evalu-
ated on users. Gyevnar et al. [78] proposed CEMA based on a cognitive model of how people
select causes for actions, using simulation based on a probabilistic planner to emulate counter-
factual reasoning by an AV agent. They generated natural language explanations about causal
relationships which were validated in an online study for 200 participants against a baseline
of hand-written explanations. However, it is typically unclear how representative explanations
via surrogate models are of the original decision due to inconsistencies in feature attribution
methods [112].

Example-based methods are another post-hoc approach which use representative and coun-
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terfactual examples to provide insight into some aspects of model decisions, identifying minimal
alterations to the input of a model which can change its output [ 1 1 2]. For example, Lietal. [121]
used Shapely values [205] to rank the most influential features in decisions by a DRL model in an
autonomous driving task to generate representative counterfactual explanations, validated with a
user study which indicated an improvement in understanding model predictions. However, this
approach assumes that the user is able to understand the examples correctly.

Importance-based methods focus on highlighting which input features are most relevant to
a decision from a black-box model. For example, Cui et al. [47] combined SHapely Additive
exPlanation (SHAP) and random forests to increase the post-hoc explainability of a deep rein-
forcement learning (DRL) model for a vehicle following task. SHAP was used to determine the
important features used by the DRL algorithm in decision-making on which a random forest was
then trained to explain the decisions of the original model. Ma et al. [135] used a mean impact
value method to rank the importance of features for a neural network model in a lane change
task. Closely related features were then used as input to a binary logistic regression model for
intention prediction. While importance methods can provide transparency into opaque models,
however, care should be taken in interpretation, as provided explanations are correlational [ 1 12].

The final category is inherent explanations, provided by models which are ante-hoc explain-
able by construction. In other words, they are furnished by interpretable models which reveal
explicit causal relationships between their inputs and outputs by virtue of their design [112].
While some mixed representation methods are inherently explainable (e.g., [8]), models in this
category are often symbolic. For example, Brewitt et al. [29] proposed Goal Recognition with
Interpretable Trees (GRIT) to infer the goals of other vehicles and predict trajectories for safe
interaction. They aimed to satisfy four core objectives for AV methods of being fast, accurate,
interpretable and verifiable using decision trees trained on vehicle trajectory data. Hanna et
al. [81] introduced the interpretable Goal and Occluded Factor Inference (GOFI) to jointly in-
fer a probabilistic belief over goals and potential occluded factors, demonstrating how it could
be integrated into Monte Carlo Tree Search (MCTS) action selection. However, inherent ex-
planations can require significant Al expertise which may not be available to all stakeholders
[112]. Nonetheless, for satisfying accountability, transparency and safety requirements (e.g., as
detailed in the Al HLEG ethical guidelines [!]), symbolic approaches can provide a rigorous

characterisation of causal relationships, which may benefit future safety certification [58, ].

2.3.3 Testing and Validation

In the automotive industry, the standard ISO 26262 (Road vehicles—Functional safety) [185]
defines a staged V-model process for validating the functionality and safety of a road vehicle’s
intended use [18, ] (see Figure 2.13). The left side of the V-model represents the design
phase, whereas the right side represents the testing and validation phase. However, while such an

approach may be feasible for hardware/software in vehicles without autonomous functionality,
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the incorporation of the DDT into the system (especially in fully autonomous driving) requires
validation of decision-making and control across a range of scenarios—possibly infinite due to
high variability in driving conditions [|&]. There are three main strategies in the literature: field

operational tests (FOTs), and simulation-based X-in-the-Loop and scenario-based testing.
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Figure 2.13: V-model in ISO 26262 [162, 185]

FOTs are conducted in realistic driving conditions on public roads. One clear advantage is
the ability to test the operation of AV systems (especially decision-making and planning, which
is ultimately responsible for turning system inputs into actionable outputs) in an ecologically
valid driving environment. As mentioned in Section 2.1.3, however, demonstrating the relia-
bility of AVs through empirical road testing alone is insufficient [98] and moreover replicating
dangerous situations on real roads is infeasible for obvious safety reasons [42]. Furthermore,
there is little control over the scenarios encountered, so the replicability and completeness of real
world testing is problematic. This has prompted researchers to develop alternative approaches
for acquiring evidence of the safety and reliability of AV systems using simulation.

X-in-the-Loop (XiL) methods incorporate simulated aspects at varying levels of abstraction
from the actual system (see Figure 2.14 for a summary of XiLL methods). The most abstract
method is Model-in-the-Loop (MiL) which can be used at design time to validate system func-
tional requirements prior to the availability of concrete system artefacts. Both Software-in-the-
Loop (SiL) and MiL are time agnostic, meaning that simulations can be run repeatedly without
being limited by real-time constraints, however the results in general lack ecological validity

[98]. This typically increases as the Xil. method becomes more concrete. The most concrete
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XiLL method is Vehicle-in-the-Loop (ViL), which involves testing a complete AV system with
simulated environmental inputs. However, while this has the benefit of achieving greater eco-
logical validity, hardware aspects make it necessary to test the system in real-time, introducing

issues with scalability [ 18]. One approach to address these limitations is scenario-based testing.
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Figure 2.14: X-in-the-Loop methods, adapted from [ 18].

Due to the complexity of the driving environment and the high variability of possible sce-
narios, exhaustive validation of AV safety and reliability is impractical. Scenario-based testing
aims to address this through techniques which ensure comprehensive coverage of safety-related
cases which are relatively inexpensive and feasible within a finite period of time. One of the
main challenges is how to optimize scenario generation and improve efficiency [187]. Some ap-
proaches focus on achieving sufficient coverage of the ODD for an ADS task to systematically
demonstrate safety and reliability with minimal resources (e.g., [1 2, 69, 96]), others target unsafe
scenarios for focused validation of specific issues (e.g., [65, 1), and some methods generate
scenarios using naturalistic distributions (e.g., [51]). The ultimate aim is to provide sufficient
evidence for the certification of an ADS. However, one issue is quantifying the amount of sam-
ples required to guarantee sufficient coverage for a scenario [213]. This is particularly important

for black-box Al components, such as DNNs, due to the inductive nature of learning systems.

2.4 Mobile Robotics and Obstacle Avoidance

The barriers to adoption discussed in Section 2.3 are important challenges for the development of
fully autonomous vehicles which are trustworthy, however efficient methods for local planning

and obstacle avoidance are also necessary, as mentioned in Section 2.2.3. Obstacle avoidance has
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a long history in mobile robotics, an area of robotics concerned with autonomous ground, ariel
and underwater vehicles [146]. While this can be planned ahead in static environments where
obstacles are indicated on a prior map, this is not the case for dynamic or unknown environments.
It is therefore desirable for autonomous mobile robots to detect and avoid obstacles in real-time.

Several methods have been suggested in the literature. One family of approaches to reac-
tive obstacle avoidance is bug algorithms (BAs) [133], an efficient obstacle avoidance method
suitable for autonomous navigation in unknown environments. This is particularly useful for
small robots with limited resources in indoor environments where accurate localization via GPS
is unavailable and simultaneous localization and mapping (SLAM) techniques are too computa-
tionally intensive. While there are numerous variants, the canonical BA (e.g., Bugl and Bug2
[133]) navigates the contours of an object at a safe distance after it comes into contact until it is
possible to resume its original path. More recent BA variants have incorporated ranged sensor
data. Kamon et al. [100] introduced TangentBug based on a detectable obstacle field around the
robot, allowing it to take action before coming into direct contact with an obstacle, resulting in
more efficient trajectories. However, it has been argued that BAs tend to rely on perfect position
estimation [ 139] which is problematic for environments where GPS is unavailable or unreliable.
Consequently, mobile robots using a BA must estimate position using odometry, acquired via
noisy on-board sensors, which can lead to rapid degradation of obstacle avoidance performance.

Artificial potential field (APF) [106] methods characterise a mobile robot as a particle sus-
pended in a potential field with attractive forces generated by the target and repulsive forces
generated by obstacles in the environment. The total force applied to the robot is the sum of
repulsive and attractive forces, compelling the robot to move in a relevant direction [ 106, ].
One of the advantages of this approach is the simplicity of the basic idea making it straightfor-
ward to implement. It is also suitable for online decision-making based on immediate sensor
data. However, there are known issues with the standard formulation. Perhaps the most well-
known is the tendency for APF methods to get stuck in local minima (e.g., when negotiating
U-shaped obstacles) [109]. Other issues include difficulty in passing between objects that are
close together and unstable motion in narrow passages due to the influence of repulsive forces in
opposite directions. To reduce uncertainty due to noise from sonar sensors, an extension to APF
called a virtual force field (VFF) was introduced in [24] which used certainty grids for robust
sensing and heuristics to address issues with local minima. However, certain obstacle configura-
tions remain problematic, such as narrow hallways with repulsive forces in opposite directions,
due to the sudden reduction of the certainty grid to a force vector in a single step [146].

The vector field histogram (VFH) [25] method addresses this by breaking the problem into
two steps. First a two-dimensional certainty grid is reduced to a one-dimensional polar his-
togram indicating the density of obstacles for a set of sectors around the robot’s momentary
location. A histogram valley below a critical threshold closest to the direction of the goal is then

chosen as a candidate safe direction, the centre of which determines relevant control inputs for
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steering the robot. The oscillations observed in narrow hallways for APF and VFF methods are
not a problem, and the VFH method is robust to sensor noise due to the use of certainty grids,
making it suitable for use with sensor fusion techniques [25]. However, the robot can still get
trapped in local minima for certain obstacle configurations (e.g., U-shaped obstacles). As with
the VFF method, this can be addressed using heuristics to detect when the robot is trapped in
cyclic behaviour and generate a strategy to counteract the situation. Other issues with VFH are
trajectory oscillations for certain configurations of obstacles and possible collisions due to it be-
ing agnostic to vehicle geometry, kinematics and dynamics. These issues were later addressed
in an extension to the method VFH+ [195] though it could still get stuck in dead-ends.

One obstacle avoidance method which incorporates both vehicle kinematics and dynamics
is the dynamic window approach (DWA) [66]. This method searches in the velocity space
consisting of possible pairs of linear and angular velocities. DWA focuses only on the next
steering command and approximates trajectories using a circular curvature to reduce the search
space to two dimensions [66]. This is reduced to admissible velocities that: (i) are within the
maximum velocities of the vehicle, (ii) generate safe trajectories, and (iii) are reachable in the
next time step given vehicle accelerations [!78]. An objective function which compromises
between velocities which make progress to the goal, maximise distance from obstacle and high
speed is then used to select velocities from the remaining candidates (i.e., the dynamic window).
As the approach incorporates vehicle dynamics and optimizes for high speed, it is particularly
useful for applications which require fast autonomous navigation. However, the approach was
intended for static environments and consequently struggles with dynamic obstacles.

The ability to handle dynamic obstacles is generally a strength of heuristic methods for re-
active obstacle avoidance, such as fuzzy logic [61, , ], deep reinforcement learning [39,

, ] and convolutional neural networks [33, ], though learning based methods are com-
putationally demanding and fuzzy logic is subject to classical problems: oscillations and local
minima. In recent years there has been increased interest in hybrid planning and control meth-
ods. This combines the power of discrete methods for long horizon task planning and low level
control for execution of the continuous motion. In [ 14], for example, a motion-planning frame-
work for a hybrid system was proposed with partial safety guarantees, and in [134] a sampling-
based approach using temporal logic and RRT* was introduced. The advantage of the hybrid
approach is that low level state/action pairs do not have to be repeatedly planned from scratch
as the high level planner provides concrete input for the low level motion [75]. However, these
hybrid methods are often computationally demanding due to the increased internal complexity.

Often the discrete aspects utilise approaches that have been developed in formal methods.
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2.5 Formal Methods

The discipline of “formal methods™ describes a set of mathematical techniques for analysing
the properties of systems, typically applied to the analysis of software and hardware compo-
nents. They provide frameworks to formally specify and verify systems in a systematic manner
and achieve assurances or guarantees that a system specification satisfies desired properties [5,

]. One common application is the formal verification of software systems, especially safety-
critical systems which could lead to fatal consequences [ 107]. Given specification of the desired
behaviour of a system as a formal property, a formal proof of its correctness can be derived,
or alternatively proof that the specification is not met [5]. This can be done by constructing a
model of the system or through other methods, e.g., theorem proving [ 10, ]. Our focus in
this thesis is one type of model based formal verification, an automated technique called model

checking.

2.5.1 Model Checking

Model checking [13] is a widely used computer-aided technique for automatically verifying re-
active systems, based on a precise mathematical and unambiguous model of possible system
behaviour. To verify that the model meets specified requirements (usually expressed in temporal
logic), all possible executions are checked systematically. If an execution failing the specifi-
cation is found, the execution path which caused the violation is returned, which can inform
refinement of the model or be taken as evidence that the system violates the specification. It has
been applied to ensure the safety and reliability of safety-critical systems [84, , ] and ap-
plied to many aspects of software verification, e.g., to industrial systems and operating systems
[17, ]. The typical workflow of verification using model checking is shown in Figure 2.15.
System models for verification using model checking comprise all variables relevant for
establishing whether a system property holds. For the most part, they are expressed using finite-
state automata, which consists of a finite set of states and a set of transitions [13]. States typ-
ically comprise information about the values of system variables, whereas transitions describe
how the system evolves from one state to another over time. A system model therefore provides
semantics for a domain (e.g., a reactive system) which grounds the truth of formal properties.
One common challenge is that the state space of a model can grow exponentially with the
number of variables or events, known as state-space explosion [13]. As model checking involves
exhaustively checking all possible executions of the modelled system, the exponential growth in
the size of the state space can make verification of the model computationally infeasible. While
there are various techniques to address this, such as symmetry breaking [43] and partial order
reduction [44], one common approach is to construct an approximate model that abstracts away
unnecessary detail yet is sufficient to prove/disprove the target property [!75]. Indeed, this is

often necessary when verifying continuous aspects of a reactive system (e.g., a robot interacting
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Figure 2.15: Schematic of typical model checking workflow.

with the physical environment) as model checking is not effectively computable for infinite-
state systems. As verification involves exhaustive search of the state space, a finite and discrete
representation is required which is fine-grained enough to ensure a decision about satisfaction
of a property but coarse enough to ensure that the reachable state space can be searched within
an acceptable period of time. It is therefore desirable to keep the model both small and relevant.
As mentioned above, property specification is normally provided in some well-defined for-
mal logic, usually temporal logic as we are often interested in how the system evolves over time.
One major advantage of model checking is that it relies on symbolic representation of domain
properties, hence the approach is fundamentally ante-hoc explainable. It is therefore possible
to establish a causal chain of reasoning sufficient for a formal proof of system correctness. In
particular, as all possible execution paths in the model are considered, it is possible to reason
about complete sequences of state-action pairs. From the perspective of trustworthy Al, this is
clearly beneficial in terms of accountability, traceability, explainability, and reliability [ 1, 58].
While model checking is typically applied as an offline technique for the analysis of reactive
systems, it has also been proposed as a means of solving Al task-planning problems [ 1, 71],
due to similarities between planning and model checking problems. Indeed, experimental results
have shown that the performance of SPIN [20] and SMV [22] model checkers are comparable to
state-of-the-art planners [23]. Hoffman et al. [88] have argued that model checking languages
based on automata networks (e.g., Promela and SPIN [90]) lend themselves naturally to an
agent-based view of the world, a useful abstraction for decision-making in autonomous systems.

Autonomous robotic systems, such as AVs, are hybrid and cyber-physical. In other words,
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they combine discrete decision-making with continuous control and interact with a continu-
ous physical environment, which is often partially observed and unstructured [64, ]. This
presents unique challenges for the use of model checking for verifying robotic systems.

One approach is to use hybrid automata [85], which combines discrete decision-making and
modelling of continuous variables. However, while a relevant abstraction, reachability is only
decidable for restricted classes of hybrid automata [7] and the modelling and verification of
discrete decision-making tends to scale poorly as the complexity of the model increases [129].
Hence some research has focused on a modular approach to the verification of autonomous
systems. For example, Kamali et al. [99] represented vehicle platooning as a multi-agent system.
Discrete decision-making was verified using GWENDOLEN [57] and the Agent Java PathFinder
(AJPF) model checker [53], while real-time requirements were verified in UPAAL [115].

There are several examples of model checkers being used to generate plans for autonomous
agents. Gu et al. [73] synthesised and verified plans for autonomous agents in complex road
conditions using a GUI tool (MALTA) integrated with the UPPAAL model checker. Guo et al.
[76] investigated the use of online model checking for real-time revision of motion plans for a
robotic agent using specifications in linear temporal logic for partially observed environments.
In the context of autonomous driving, the SPIN model checker was combined with simulation in
Unity for online planning of collision-free paths for successive overtaking manoeuvrers [154].

One advantage of the approach in [154] was the ability to make discrete decisions about
actions based on immediate sensor data. From a safety and reliability perspective, this is ideal
as up-to-date information about the environment is necessary in high-speed driving contexts to
avoid imminent collisions. In addition, the decisions are explainable. In comparison, popu-
lar end-to-end planning methods using deep reinforcement learning are opaque and pre-trained
in simulated environments. While simulation produces significant amounts of data for train-
ing, ultimately model outputs are not informed by the immediate context, which could lead to
risky and unexpected behaviours. However, while [154] was a promising step towards reliable
planning for AVs, the compiltion time due to SPIN made the approach infeasible for real-time
applications (approx. 3 seconds, even though the algorithm latency was only 20 milliseconds).

Standard model checkers are not designed for real-time tasks and are generally too slow for
online verification in a dynamic continuous environment. For this reason, models are typically
verified offline prior to implementation [203, ] for real-time applications. In addition, most
research using model checking for autonomous robots has focused on validating results using
simulation (e.g., [63, 67, 80, 85, , , , ]), which cannot replicate real world con-
ditions precisely. Real world robotic systems are prone to error (e.g., sensor failures, errors in
actuation) and tolerance to this error is an important aspect of safety and reliability. While sim-
ulation environments can be useful for testing a navigation method with respect to a number of
scenarios quickly, the idealised nature of simulations means that there is no guarantee that the

assumptions of the method are robust to the uncertainty present in real world robotic systems.
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To address issues with uncertainty we work directly with error in the system to develop
robust obstacle avoidance using model checking, hence we adapt the approach in [ 154] to a real
autonomous robot operating under hard real-time constraints. Consequently, our approach is
derived from techniques in the SPIN model checker. Note that while the presence of real-time
constraints may suggest using timed automata [6], our focus is on generating safe sequences of
motion primitives where non-determinism in the choice of possible future actions is resolved by
concurrent obstacles in the immediate environment. We are therefore not interested in modelling
real-time aspects of the system directly in this thesis, only on ensuring that the processing latency
of the implementation is less than 100 milliseconds. In the interest of planning and obstacle
avoidance which is in addition low cost and energy efficient, we develop our approach on a
low-powered robotic platform. As model checking is symbolic, our is approach is ante-hoc
explainable. We validate our approach using physical experiments instead of simulations to

understand the performance of collision avoidance in the real world despite error in the system.



Chapter 3
Preliminaries

In this chapter, we introduce definitions and concepts underpinning the use of model checking
for real-time planning and obstacle avoidance. In Section 3.1, we describe our low-powered
robotic research platform, conceptual model of the sensed data and motivate our restriction to
an egocentric point of view. Section 3.2 motivates and describes our closed-loop definition of an
embodied agent able to formulate complex, multi-step plans. In Section 4.3.1, we introduce the
notion of a temporary closed-loop controller as a motion primitive with discrete outcomes which
we call tasks. We describe how these can be chained together to form plans. We briefly discuss
our action-based approach to modelling the physical environment in Section 3.4. In Section 3.5,

we provide necessary conceptual background on the model checking as planning paradigm.

3.1 Robotic Platform

As a measure to promote the development of energy-efficient real-time planning and obstacle
avoidance, our approach was developed on the low-powered robot shown in Figure 3.1, adapted
from a widely available mobile robot development platform, AlphaBot by Waveshare!. For
sensing the environment, we equipped the robot with a low cost 360 degree 2D laser scanner,
RPLiDAR A1MS8 by Slamtec?, and for actuation we used two continuous rotation servos by
Parallax®. The hardware programming interface for the robot was a Raspberry Pi 3 Model B*
running a Quad Core 1.2GHz Broadcom 64bit CPU with 1IGB RAM and wireless LAN.

3.1.1 Sensor Data

The LiDAR generates a 360 degrees 2D point cloud at a rate of ~ 5 Hz, with each scan gen-

erating 8192 data points. We use a 2D vector space to model the point cloud with the origin

lhttps://w*W.waveshare.com/alphabotfrobot.htm
2hztps:// r.slamtec.com/en/LiDAR/AL/

Shttps://www.parallax.com/product/parallax—-continuous-rotation-servo/

4https://www.raspberrypi.Com/productS/raspberryfpifSfmodeifb/
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Figure 3.1: A: our robotic platform. B: schematic showing robot dimensions.

representing a point at the centre of the LiDAR. The robot is oriented towards positive x by
convention which corresponds to the heading O radians, as shown in Figure 3.2. Rotating 90 de-
grees left or right is equivalent to headings %77: and —%7[ radians (as illustrated in Figures 3.2A
and 3.2B, respectively). The maximum heading is 7 in the left direction and —7 in the right
direction, each of which represents a 180 degrees rotation relative to a local frame of reference.

Note that in this initial investigation we restrict to rotating ﬂ:%ﬂ: radians as this simplifies our
approach for obstacle avoidance. If we used rotations of i%n radians, for example, it is more
likely that a single rotation will result in facing the same obstacle, even if it is convex. However,
if we rotate perpendicular to the obstacle, then only concave obstacles remain problematic (e.g.,
U-shaped obstacles). Rotating :I:%ir radians also makes it possible to use symmetry on the axes

of the vector space for perception which simplifies the implementation of our approach.
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Figure 3.2: A: rotating left to heading %7[ radians. B: rotating right to heading —%J'L' radians.
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When viewed from the local frame of the robot, actions change the environment state but
the robot itself remains static. Figure 3.3A shows an example of state changes from the local
perspective as the robot rotates left ~ 30 degrees. The local frame is indexed at time ¢ and
so describes the current state of the environment sensed by the LiDAR, hence t — 1, t — 2 and
t — 3 represent historical environment states as a consequence of previous actions. However, it
is also possible to simulate actions in an environment and predict states to reason about possible
future outcomes. Figure 3.3B shows simulation of the robot rotating left ~ 30 degrees. Again
the robot is indexed at the current time ¢, however in this case indices t+ 1, r+2 and t + 3
represent future environment states as a consequence of simulated actions. Actions are therefore
temporally extended, hence reasoning about robot actions requires either information about the

past or simulations of the future. The current state of the environment alone is insufficient.
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Figure 3.3: A: historical state changes from the robot perspective for the action of rotating left
~ 30 degrees. B: simulated actions and predicted state changes.

3.1.2 Frame of Reference

As should be clear, our robot is an embodied agent which necessarily has a self-referential per-
spective on its surroundings—observations of the environment are indexical to a local frame of
reference and entirely dependent on built-in sensors. This means that the environment is par-
tially observed and all knowledge of objects in the environment is relative to an egocentric point
of view. As explained in Chapter 2, an offline HD map is often used to provide a global perspec-
tive for AV navigation systems and improve observability, however the storage and maintenance
of an offline HD map is resource-intensive. In addition, it is non-trivial to precisely tack the
position of an embodied agent on a global map based on data from a local frame of reference
[119, ] and difficult to achieve in real-time, especially with limited compute. We therefore

restrict our approach to an egocentric perspective and keep the environment partially observable.
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3.2 Embodied Agent Definition

In addition to practical considerations, our restriction to an egocentric point of view is biologi-
cally realistic, as even simple organisms can respond in real-time to previously unseen situations.
The notion of a Braitenberg vehicle [28] encapsulates the simplest form of response an embod-
ied agent can have to its environment: a reflex. One possible configuration is shown in Figure
3.4. Here proximal sensors are connected directly to actuators, invoking an additive forward
motion reflex in response to an external stimulus. Upon sensing an input (see Figure 3.4A),
the agent performs an action to change its state, which is in turn sensed by the agent, and the
loop repeats until the sensor is inactive (see Figure 3.4B). This can be conceived as sensing a
disturbance to the “resting” state of the vehicle, which is returned to when the disturbance is

eliminated.

A B

......... ,
— Zn

Figure 3.4: Simple Braitenberg vehicle executing an avoidance response to an external stimulus
(i.e., an obstacle). A: right proximal sensor senses obstacle which increases forward actuation
of the right wheel. B: actuation of right wheel returns to original speed (i.e., its “resting” state).

Complex biological systems are naturally capable of more sophisticated manoeuvrers, such
as the prediction of many consecutive obstacles (i.e., disturbances) and the generation of plans
to counteract them. As a reflex can only respond to the current state of the environment, simple
closed-loop behaviour, as exemplified by a Braitenberg vehicle, is insufficient for the generation
of complex multi-step plans. To achieve this, it is necessary for an embodied agent to access and
interpret distal sensor information; this makes it possible to reason about the future outcomes of
actions. Indeed, there is cross-disciplinary evidence that biological agents have “core” knowl-
edge of physics and causality, which allows organisms to reason about their environment and
organise their behaviours in accordance with predicted outcomes [ 17, ]. In other words,
embodied agents have a mental model of the world, allowing them to simulate and evaluate
future actions. Our working definition of an embodied agent reflects this capacity for modal
reasoning.

Figure 3.5 illustrates the general closed-loop architecture of our embodied agent. As indi-

cated, we use LiDAR to provide distal sensor information about the environment. The controller
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reacts to the sensor information and if necessary sends the sensor information to an artificial
mental model of the world, which simulates actions and uses modal reasoning to generate a
complex multi-step plan, subsequently returned to the controller for execution. The output from
the controller is a signal to the actuators appropriate for the current action. The agent feedback

loop repeats at a frequency of ~ 5 Hz, i.e., timing is dependent on the speed of the LiDAR.

Controller

plan input

Mental Model

Sensors Actuators

states actions

Environment

Figure 3.5: General closed-loop architecture of embodied agent.

From a safety and reliability perspective, one of the benefits of a closed-loop agent architec-
ture is reactivity. Similar to [154], our general approach aims to make transparent hard decisions
about actions based on immediate information about the environment, which is beneficial for
avoiding imminent collisions in a high speed driving environment. To achieve this, it is neces-
sary to make online decisions in real-time based on input control. While popular RL approaches
to AV navigation are also closed-loop, they are based on output control trial and error, i.e., they
attempt an action and the outcome updates the behavioural policy of the model, which leads
to better performance after the fact. For obvious safety reasons, RL approaches are therefore
not suitable for online decision-making based on information about the immediate environment.
Hence RL models are typically pre-trained in simulated environments, which introduces further

safety and reliability issues associated with the “reality gap”, as discussed in Section 2.2.3.
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Figure 3.6: Simple Braitenberg vehicle executing an attraction response to an external stimulus
(i.e., an obstacle). A: right proximal sensor senses obstacle which increases forward actuation
of the left wheel. B: actuation of left wheel returns to original speed (i.e., its “resting” state).

3.3 Closed-Loop Tasks

While reactivity is an advantage of closed-loop input control, a single closed feedback loop can-
not form complex plans, as discussed in the previous section. The Braitenberg vehicle example
in Figure 3.4 represents the simplest notion of a closed-loop controller, where proximal sensors
are hard-wired directly to actuators, generating one behaviour in response to an external stimu-
lus, in this case avoidance. While the agent can avoid collisions, it cannot simultaneously make
progress towards a goal, as it always executes the same strategy. An alternative configuration
of the agent is shown in Figure 3.6, which in this case generates an attraction behaviour in
response to an external stimulus. Again it always executes the same strategy. In practice, suc-
cessful obstacle avoidance requires both avoiding obstacles and making progress towards a goal,
so a single closed-loop controller, which can only execute a single behaviour, is insufficient.

From the self-referential perspective of an embodied agent, however, an object in the envi-
ronment is only temporarily in view, hence a single permanent control-loop for obstacle avoid-
ance is not required. Figure 3.7A, for example, shows a simple Braitenberg-style vehicle which
by default drives in a straight line and can avoid objects, in this case perceived using LiDAR data.
As each data point has distance information, it is possible to collect data points into subsets of
observations, based on predefined geometric dimensions, which ultimately serve to restrict the
attentional focus of the robot. Each subset of data points (i.e., subsets L and R in Figure 3.7)
indicates the relative direction of objects from the robot. It is straightforward to determine if a
subset is empty or not and map this outcome onto a closed-loop action, rotate left or right.

In Figure 3.7A, an object comes into view in subset R, so it iS non-empty, meaning that
there is a discrete disturbance D which needs to be eliminated. A negative feedback loop is then
spawned (see Figure 3.7B) which eliminates the disturbance by sending a motor signal to the
actuators (i.e., rotate left) until subset R is empty, as shown in Figure 3.7A. The obstacle (i.e.,

disturbance) is now no longer in view so the control loop has no reason to exist. It can therefore
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Figure 3.7: A: a Braitenberg-style vehicle perceives a disturbance D in partition R of the environ-
ment and spawns a temporary control system to rotate left. B: temporary closed-loop controller
with an attentional focus on perceived disturbance which is destroyed when D is out of view.

be destroyed and the robot can return to the default behaviour of driving straight. Hence objects
are transient from an egocentric perspective, so a permanent control-loop is unnecessary. In
this thesis, we call such a temporary control system a fask. As a task has a finite lifetime, it has
discrete outcomes. This makes it possible to reason about task execution using discrete methods.

However, the agent in Figure 3.7A can only reason about task execution based on current
information about the environment (i.e., reflexively). To enable modal reasoning, in this case
about the future, it is necessary to reason about predicted task outcomes. For complex biological
organisms, such as human beings, this might involve imagining the execution of an action. As a
proxy for imagination, our approach is to use a combination of static geometric relationships as
a proxy for temporal aspects of task execution in the hybrid system and forward simulation to
predict the discrete outcomes of tasks in the perceived environment. This makes it possible to

ground the truth of statements about the future and reason about outcomes using discrete logic.

3.3.1 Chaining Tasks

The notion of a task as a temporary control system also makes it possible to construct sequences
of closed-loop actions for complex manoeuvres based on input control. The tree in Figure 3.8
illustrates the space of possible sequences for the Braitenberg-style example in Figure 3.7 for
two steps ahead. The task 7y is the default task of driving in a straight line, whereas the tasks
17, and Ty are closed-loop avoidance behaviours for eliminating disturbances (i.e., encountered
objects in the environment). Using simulation of task execution to predict task outcomes, our
aim is to reason about sequences of tasks which avoid obstacles and make progress towards a
goal, where a sequence of tasks selected for execution is a plan satisfying temporal constraints.

As can be seen in Figure 3.8, however, there are possible sequences which lead to the robot
doubling back on itself. This is ultimately because the abstraction used for perception of the

environment by the agent in Figure 3.7A (and mapping to closed-loop tasks) is naive. In a
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corner, for example, the robot could get trapped. In addition, the robot can only reason about
avoiding obstacles, so progress towards a goal is impossible. The semantics of task outcomes
therefore depends on the environment model, which is tightly coupled to the definition of tasks.

This in turn influences the sequences of closed-loop tasks available for formulating plans.

3.4 Action-Based Mental Models

As a hybrid system, an embodied robotic agent combines discrete decision-making with con-
tinuous control and feedback from a continuous physical environment [132]. By focusing on
closed-loop tasks, which execute based on continuous feedback from the environment, we ef-
fectively offload responsibility for continuous control to the task level. This allows us to focus
on the discrete decision-making aspect to form complex plans. Distal sensor information is pro-
vided by LiDAR, however some form of perception is required to interpret the raw sensor data
and reason about task outcomes. Perception, however, must be appropriate for the problem.
Consider the example agent in Figure 3.7A. The perception model provides information on
the relative location of objects which determines the creation of a closed-loop task. In this
case, the selected action is fully determined, however if the robot approaches a disturbance ap-
proximately straight on this could result in undesired behaviour. Figure 3.9A shows the robot
detecting a disturbance D almost directly ahead in partition L. From the perspective of an exter-
nal observer, it is clear that rotating right will result in facing another object. However, from the
egocentric perspective of the robot, there is no knowledge of this second object. It is therefore
not possible for the robot to determine that efficiently avoiding the corner requires rotating left.
Sophisticated manoeuvres, such as avoiding a corner, require the ability to perceive multiple

disturbances simultaneously (i.e., for situational analysis) and reason about consecutive actions,
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Figure 3.8: Possible sequences of tasks two steps ahead for the agent in Figure 3.7A.
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Figure 3.9: A: robot detects a disturbance D almost directly ahead in partition L. B: robot rotates
right in response to disturbance and now has to negotiate a second obstacle.

as illustrated in Figure 3.10. In other words, we need an action-based mental model of the
environment to reason effectively about predicted task outcomes. By doing this we can generate
efficient sequences of closed-loop tasks (i.e., plans) for obstacle avoidance and ensure unwanted
sequential behaviours do not arise, such as the robot doubling back on itself repeatedly. As we
restrict our approach to rotations of :l:%?‘[ radians in this thesis, then to negotiate two disturbances
in one plan, a depth of at least four is required for the tree in Figure 3.8, which represents the
Braitenberg-style example illustrated in Figure 3.7A. The robot must execute a rotation, drive
straight and then repeat this for the second disturbance, generating a plan consisting of four
tasks. We limit the size of the task tree represented by our method to four tasks as we want to

keep our model as small as possible to promote real-time performance.
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Figure 3.10: Egocentric situational analysis, reasoning about multiple disturbances.
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Model-based reasoning methods are well-suited for the development of an action-based men-
tal model which supports decision-making. Indeed, this is often the case in RL planning, where
a discrete model (e.g., Markov Decision Process) is used for learning a reward function based
on discretization of possible agent actions, typically represented by a regular grid. However,
abstraction of the environment is often from a global rather than local perspective.

As mentioned in Section 2.5.1, model checking is a model-based verification approach which
has been applied to planning problems. One useful feature of the approach is the ability to
develop models which abstract away unnecessary details then perform exhaustive reasoning on
a discrete model, typically about possible future sequences of states. Abstraction is often used
to manage state-space explosion, which is a common issue for discrete planning methods. This
suggests that model checking and abstraction could be used to develop appropriate action-based

mental models which ignore irrelevant details of the environment to efficiently generate plans.

3.5 Model Checking as Planning

We now demonstrate how an off-the-shelf model checker can be used for planning. Our ex-
amples in this section use the SPIN model checker and are inspired by Pagojus et al. [154]
(discussed in Section 2.5.1) in which SPIN was used to plan successive overtaking manoeuvres
for an autonomous vehicle on a traffic heavy road. Note that we do not use SPIN for planning in
this thesis as it is not optimised for real-time performance on a low-powered device (details of
our approach are provided in Chapters 4 and 5). Instead, we use a purpose-built model checker
in situ on our robot which is derived from model checking techniques supported by SPIN and re-
search in [154]. In this section, we introduce only the bare essentials of the SPIN model checker

and its associated modelling language Promela [70] required to explain our examples.

3.5.1 Promela basics

SPIN is a widely used open-source software verification tool. It can be used for the formal
verification of multi-threaded software applications and supports the high-level state-based de-
scription language Promela (PROcess MEta LAnguage) which is loosely based on Dijkstra’s

guarded command language [55]. The core aspects of Promela are:

* Promela specifications consist of process templates called proctypes, global message chan-

nels and other global variables.

* Inline functions define a replacement text for a symbolic name, possibly with parameters.
It does not define a new variable scope. The body of an inline function is directly pasted

into the body of a proctype at each point of invocation.
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» Each component type is declared within a proct ype structure which contains local vari-

ables and statements.
 Each proctype instantiation represents the behaviour of an individual component.

* Guards (statements which may block, like boolean statements or channel operations) and

choice statements control execution flow.

* Inter-component communication takes place via shared variables and channels. Our ex-

amples do not use this feature.

* Two choice constructs (1 f...fi and do. . .od statements) allow us to express non-

determinism in our model.
* Variable typesinclude bit,byte, short, int, array and an enumerated type mt ype.

* Initialisation information: i.e., how many and which instantiations of each proctype to
create when the program is run. Processes are either initiated via a defined init process

or via the act ive keyword.

Consider the simple Promela example shown in Figure 3.11. There are two processes, de-
fined as instances of proctypes A and B via the init process. The at omic clause here ensures
that they both start executing at the same time. We shall refer to the processes themselves as A
and B for simplicity. There is a single (global) variable, variable_1 which is incremented by
process A and decremented by process B. Even this very simple example has several associated
behaviours. Both processes are enabled in the initial state by guard ( variable_1 == 1 )
as the value of variable_1is 1. If process A executes two steps in succession (evaluating the
guard and then incrementing variable_1), process B is then blocked as its guard no longer
holds. Similarly process B can execute both of its steps and cause A to be blocked. Finally A
and B can each execute their initial steps (in either order) and then they can each execute their

remaining steps (in either order). There are thus six paths resulting from this specification.

3.5.2 SPIN verification

SPIN supports the specification and verification of properties in Linear Temporal Logic (LTL)
[159]. LTL properties consist of a finite set of atomic propositions, boolean connectives, and
temporal operators, e.g., ¢ (“eventually"), [J (“always") and U (“until”’). However, we do not
provide further details here, except to describe any property that we use in this section.

For the simple example in Figure 3.11 we might (incorrectly) assume that, for all paths,
whenever variable_1 is equal to 2 then it will eventually become equal to 1 again. This

property (which we will refer to as ¢) is stated as C)(r — () where r and t are defined as
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byte variable_1 = 1;

proctype A()({
(variable_1 == 1) —> variable_1

variable_1 + 1

}
proctype B(){

(variable_1 == 1) —-> variable_1 = variable_1 - 1
}
init{

atomic{run A(); run B()}

}

Figure 3.11: Simple Promela example, two processes and one global variable

variable_1==2 and variable_1==1, respectively. Note that universal quantification
(i.e., “for all paths" ¢) is implicit for LTL properties. It is therefore not possible to directly
express existential properties (i.e., “for some path” ¢) which identify specific paths in LTL.
When a Promela specification is compiled and run with SPIN, a global automaton consisting
of all the initiated components is constructed. This is referred to as the state-space of the model.
By searching the state-space, SPIN can capture any executions of the model that violate the
property. In practice, an automaton combining the state-space and an automaton representing
the property is checked for violating cycles, but we do not go into details of that process here.
For the simple Promela example shown in Figure 3.11 and the property ¢ described above,
SPIN would indicate an error and return the first path for which the property was violated. The

path where A executes its two steps and B is blocked would constitute such a violating path.

3.5.3 SPIN as a planner

To demonstrate how SPIN can be used as a planner, we refer to a popular puzzle known as the

River Crossing Puzzle, which can be stated as follows:

A farmer has a FOX, a GOAT, and a CABBAGE. He wants to cross a river, but
his boat will hold only one item except himself. He cannot leave the FOX with the
GOAT, or the GOAT with the CABBAGE. How can he get all THREE across?

This problem can be modelled in Promela using do . . . od statements to represent the choice
of the farmer at each step in the puzzle. To describe our Promela specification, we first list the
global variables, an mt ype declaration and an inline function, as illustrated in Figure 3.12. Note
that the d_ step construct ensures that the statements contained within it are executed in such
a way as to appear to occur simultaneously. Descriptions are provided in the comments.

An outline of the main proctype is shown in Figure 3.13 (the full proctype specification

is provided in Appendix A). For the first two choices shown in Figure 3.13 we list the whole
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/% Global variables =/

mtype = {NULL,FOX,GOAT,CABBAGE}

mtype passenger=NULL; /xidentity of passenger =/

byte foxP=0; /«position of fox, O==left_bank , I==on boat, 2==right_bank =/
byte goatP=0;

byte cabbageP=0;

byte temp;
bool goal = false; /% set to true if fox, goat and cabbage =/
/xare all at right_bank =/

/xinline statement %/
inline swap(posl ,pos2){/«swap the values of variables posl and pos2+/
temp = pos2;
d_step {
pos2=posl;
posl=temp;

}

Figure 3.12: Global variables for River Crossing puzzle specification

statement (i.e., the guard, the updates to variables, and a descriptive comment). However, for
the remaining choices we include only the comment and omit the rest of the statement.

The conditions under which the fox cannot be left alone with the goat, or the goat left alone
with the cabbage, is not encoded in the model. SPIN will therefore explore all executions in
which the fox, goat and cabbage are carried back and forth across the river and finish when all
three items are on the right bank. This will of course include illegitimate paths, however we can
filter the search to include legitimate paths only using our LTL property.

For us to plan a sequence of actions to find a (legitimate) solution, we define propositions
badFriendsl, badFriends2 and safe. We then combine the propositions into the LTL
formula propertyl. The definition of propositions and the property is shown in Figure 3.14.

A solution path is a path in which the goal is reached (i.e., the fox, goat and cabbage are
all on the right bank) and neither the fox and the goat, or the goat and the cabbage, have been
left alone together on either the left or right bank. In other words, a path in which proposition
safe is true in every state up to the point where goal is true. A solution path is therefore
one in which safe U goal is true. We can find a path satisfying this property by finding
a counterexample to the LTL property ! (safe U goal). By using Spin’s iterative search
for short trail option we can in addition find a solution path that is as short as possible. By
running a guided simulation we can then observe the trail. Indeed, by judicious embedding of

print statements in our Promela model (see Appendix A) we can easily extract the actions.

The solution to the puzzle is:

Pick up goat from left_bank

Deposit goat at right_bank

Pick up fox from left_bank

Deposit fox to right_bank and pick up goat




CHAPTER 3. PRELIMINARIES

50

active proctype puzzle ()

{

left_bank:
do
:: passenger==NULL && foxP==0 —-> passenger=FOX; foxP=1;
goto right_bank;
/xpick up fox from left_bank %/
passenger==NULL && goatP==0 —> passenger=GOAT; goatP=1;
goto right_bank;
/xpick up goat from left_bank =/
... /=pick up cabbage from left_bank =/
/«return fox to left_bank, pick up goat =/
/«return fox to left_bank, pick up cabbage =/
/xreturn fox to left bank =/
/«return goat to left_bank and pick up fox =/
/«return goat to left_bank and pick up cabbage %/
/s«return goat to left_bank %/
/«return cabbage to left_bank and pick up fox =/
/s«return cabbage to left_bank and pick up goat+/
it ... /xreturn cabbage to left_bank %/
od;

right_bank:
do
N /xpick up fox from right_bank %/

/«pick up goat from right_bank =/

/«pick up cabbage from right_bank %/

/xdeposit fox at right_bank (not finished) x/
/«deposit goat at right_bank (not finished) =/
/«deposit cabbage at right_bank (not finished) =/
/«deposit fox to right_bank and pick up goat =/
/«deposit fox to right_bank and pick up cabbage x/
/«deposit goat to right_bank and pick up fox =/
/«deposit goat to right_bank and pick up cabbage +/
/«deposit cabbage to right_bank and pick up fox =/
/«deposit cabbage to right_bank and pick up goat =/
/«deposit fox at right_bank, go to finish =/
/«deposit goat at right_bank, go to finish %/

it ... /xdeposit cabbage at right_bank, go to finish =/
od;

finish: printf("\nFINISH\n"); goal=true

}

Figure 3.13: Main proctype for River Crossing puzzle specification

#define badFriendsl (foxP==goatP && !(cabbageP==foxP))
#define badFriends2 (goatP==cabbageP && !(foxP==goatP))
#define safe (!(badFriendsl |l badFriends2))

1tl propertyl { ! ( safe U goal) }

Figure 3.14: Propositions and LTL property for River Crossing Puzzle
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Return goat to left_bank and pick up cabbage
Deposit cabbage at right_bank

Pick up goat from left_bank

Deposit goat at right_bank
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Chapter 4
Real-Time Obstacle Avoidance

In this chapter, we describe our initial investigation into model checking for real-time planning
and obstacle avoidance by generating sequences of closed-loop tasks. In Section 4.1, we moti-
vate the use of a bespoke lightweight model checker implemented in situ on a real robot. We
provide a high level conceptual overview of our approach in Section 4.2. In Section 4.3, we
explain the details of our methodology. In particular, we explain how we abstract temporal as-
pects of task execution into static geometric relationships to reason about discrete task outcomes
(from an egocentric perspective) and generate plans using model checking. Section 4.4 provides
details on the implementation of our method. We summarise preliminary results for a cul-de-sac
scenario in Section 4.5. In Section 4.6, we provide details on an in-depth case study of our
approach. We draw conclusions on the merits and limitations of our method in Section 4.7. A

glossary of variable names introduced in this chapter is available in Appendix B.

4.1 Motivation

The obstacle avoidance problem for an embodied robotic agent requires both avoiding obstacles
and making progress towards a goal. However, achieving this using model checking in real-time
is a non-trivial problem. As mentioned in Section 2.5.1, while there have been some planning
applications of model checking validated using simulation, it is normally applied offline for
system analysis, hence standard model checking tools are not optimised for real-time tasks.

Although standard model checkers may not be designed for real-time, there is reason to
believe that this is feasible. As mentioned in Section 2.5.1, the SPIN model checker was used to
plan overtaking manoeuvrers for simulation of an autonomous vehicle on rural roads in [154].
While the time delay was unacceptable (approx. 3 seconds), this was due to model compilation
in SPIN and communication between the model checker and Unity gaming engine. The model
checking algorithm itself only took around 20 milliseconds to generate plans, which is well
within the 100 milliseconds deadline for AV decision-making discussed in Section 2.2.

This suggests that putting a model checker directly on a robot and eliminating the compila-

52
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tion step may result in sufficient real-time planning performance. Although it is possible to put
a pre-built model checker, such as SPIN, on a robot this would still require a model compila-
tion step and moreover include additional functionality which is superfluous to need, consuming
limited compute resources. One way to address this is to build a stripped-down model checker
which avoids the compilation step by construction. The easiest way to do this, while optimising
for real-time, is to integrate the model checking procedure into the code from scratch (i.e., build
the model checker and model for planning directly into the robot code).

We therefore investigate the use of bespoke model checking for planning and obstacle avoid-
ance, implemented in situ on a real robot. Specifically, we investigate the use of model checking
to form sequences of closed-loop tasks by reasoning about their discrete outcomes in the context
of hybrid planning and control. To simplify the problem, we restrict attention to avoiding static

objects without making progress towards a goal. Hence we address the research question:

RQ1 How can we use a bespoke implementation of model checking to plan sequences of
discrete closed-loop tasks (which have an attentional focus on disturbances) for collision

avoidance on a low-powered robotic system in real-time?

4.2 Approach

Figure 4.1 shows the emergent behaviour of an agent which can only spawn a single closed-loop
task in response to obstacles for a corner scenario. Initially, the robot is driving in a straight line
in default task 7j until it eventually encounters an obstacle in the environment, the disturbance D.
During each iteration of the control loop, the robot scans the horizon for obstacles and continues
driving straight if none are found. This generates an error signal when sensed by the robot.

To counteract the disturbance, the agent subsequently outputs a reflex motor action to change
its state. This changes the state of the environment, which is in turn sensed by the robot and the
loop repeats until the disturbance D is no longer in view. Hence the disturbance is eliminated.
From a control theory point of view, this represents a negative feedback loop (see Section 3.3
for details). In Figure 4.1, this is the closed-loop task 7k, which has an attentional focus on
disturbance D. Once eliminated, 7 is destroyed and the robot falls back on the default task 7j.

The task feedback loop is a simple mechanism where only information about the disturbance
at the present moment can be encoded or retained. This means that a task is (i) memoryless
and (ii) produces stereotyped behaviour. As discussed in Section 3.3, a control task has no
information about whether other obstacles are present in the environment and can only generate a
simple reflex in response to obstacles it encounters. This can lead to inefficient agent behaviour.

Figure 4.2 illustrates one example of a scenario where closed-loop obstacle avoidance on
its own may produce undesirable robot motion. In both Figures 4.2A and 4.2B, the robot starts

by executing the default task 7. Through distal sensors, the robot senses that the space ahead
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Figure 4.1: Robot encountering an obstacle, the disturbance D, in its environment.

contains an obstacle (i.e., the disturbance D) which it now must counteract by performing a
control action. It can either rotate left or right, represented by tasks 77, and Ty, respectively. In
this case, the task 77 is defined as rotating %7[ radians, and task 7 as rotating —%7: radians.
There is no preference for either task, as each can achieve the control goal of eliminating the
disturbance D. In Figure 4.2A, the robot initiates task 7k to rotate right until the obstacle, the
disturbance D1, is out of sight, which can then be safely followed by the default task 7. How-
ever, the robot could have equally chosen to initiate task 77 and rotate left, as shown in Figure

4.2B. In this case, it would immediately face yet another obstacle D, after returning to the de-

Key

[ pefautt task T,
[ Avoid task T,

T.—»{T, |---p

Figure 4.2: Uncertainty in corner situation from the perspective of a closed task feedback loop.
A and B: valid options for eliminating the disturbance D; with varying consequences. C: be-
haviour tree for reasoning about multiple disturbances to form chains of closed-loop tasks.
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fault task 7p. Consequently, the robot must again perform an avoidance manoeuvre. If the robot
then initiates task 77, it would escape the corner and continue in the default task 7y undisturbed.
If the robot initiates task T, however, yet another obstacle would be encountered. Hence there
is a chance that the robot could get trapped in the corner, which is unwanted behaviour.

It is obvious to an external observer that the behaviour depicted in Figure 4.2A is more
efficient and therefore desirable. As a closed feedback loop only has information about the
present disturbance, reliably choosing the most efficient option for obstacle avoidance therefore
requires extending the scope of environment observation beyond the present task. In this initial
investigation, we use model checking to explore future system states resulting from the execution
of task sequences which satisfy a constraint for obstacle avoidance. Our aim is to reason about

possible chains of closed-loop tasks, as illustrated by the behaviour tree shown in Figure 4.2C.

4.3 Methodology

In this section, we explain the details of our approach for real-time planning using model check-
ing. We define the action space and set of control tasks for our approach in Section 4.3.1. In
Section 4.3.2 we explain how we construct a safe zone around the robot and the semantics of
task outcomes based on disturbances. In Section 4.3.3 we describe how we abstract closed-loop
sequences using spatial relationships. We describe our transition system in Section 4.3.4. In

Section 4.3.5, we explain the LTL property and how our method generates plans at runtime.

4.3.1 Action Space

We formally define the action space for our approach as the set of control tasks:

Act = {To,TS,TL,TR} 4.1)

introduced in Section 4.1. We define a second straight task 7y because there are possible situa-
tions where a straight task between two avoid tasks might be desirable for tactical manoeuvrers.
This differs from the default task 7j in that the robot expects it can only drive for a finite period.
When in the default task Tp, the robot has the expectation that it can continue driving in a straight

line for a potentially infinite period of time, i.e., until a disturbance is encountered in its path.

4.3.2 Discrete Task Outcomes

Tasks have discrete outcomes which are used for agent reasoning and planning using model
checking, as explained in Section 3.3. The outcomes of tasks provide information on the success
or failure of the real or predicted execution, which simplifies discrete reasoning while ground-

ing our approach in information about the continuous evolution of the hybrid system. This
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approach to discretization makes it possible to reason about spatial abstractions representing
task execution using distal sensor information and simple geometric notions. In the remainder
of this section, we ground the semantics of discrete task outcomes by defining partitions of the

environment which witness the satisfaction of existential conditions in first order logic.

Avoid Tasks Ty, g

We first define a safe zone, an invariant subset of the state space surrounding the robot con-
structed to respect spatial requirements for the evolution of continuous rotations over time. The
safe zone is indicated in Figure 4.3A by a dotted circle and is defined by the radius r, a distance
from the origin of the point cloud to the furthest point on the robot plus some tolerance. No

object should ever be in the safe zone so the robot can always rotate safely around the origin.

A B /2

o ocomm ° o

Figure 4.3: Construction of safe zone. A: the radius r defines dimensions of the safe zone (indi-
cated by dotted circle). B: example of the robot executing task 77 until the absolute difference
between the current and initial angle of the disturbance D is not in the partition P,,;;.

As indicated in Figure 4.3B, we define success for an avoid task 77 /z as rotating until the

absolute difference between the current and initial angle of the disturbance is not in the partition:

. 1
Puoia = {D | |D§"™" —D§"| < En} 4.2)

where Dig""" is the current relative angle to the disturbance and DZ‘” is the initial relative angle
to the disturbance. Hence the task is a failure during execution until the empty set is a witness to
the elimination of disturbance D. Table 4.1 summarises the possible outcomes for the partition.

Hence success and failure can be expressed as satisfaction of the first order existential condition:

rr ini 1
Pavoia = 3D(1DG"" —Dg"| < 5m) (4.3)
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Success Failure

Pavoid =0 Pavoid 7£ )

Table 4.1: Possible outcomes for avoid partition P,,,,;q.

Straight Task Tg

We next define success and failure criteria for the straight task 7s which has an attentional focus
on proximal disturbances to trigger the next task in a plan. Figure 4.4 shows the construction of

a partition for witnessing disturbances which ensures that the safe zone is always respected:

1
Pipieta = {0 € O | r <min(ox) < r+dspiera N |oy| < E(L—i—tol)} (4.4)

where O is the set of observations for a scan event, r and r + dg;.;4 are lower and upper bounds,
respectively, on the longitudinal dimension of observations, and the bound %(L+ tol) ensures
that the lateral dimension of the partition respects the width of the robot plus some tolerance.
Note that an observation o has two dimensions, where o, denotes the x-coordinate and o, the
y-coordinate. We use this convention for observation subscripts throughout the thesis.

y

z

Figure 4.4: Construction of partition Py;.;s for witnessing proximal disturbances.

During each scan event, we iterate the set of observations O and select the observation with

the nearest x-coordinate as our disturbance D. Table 4.2 summarises the possible outcomes.

Success Failure

Pshield =0 thield 7£ 0

Table 4.2: Possible outcomes for shield partition Pyp;e;4.
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Again success and failure can be expressed as satisfaction of a first order existential condition:
1
Pshield ’: HD(T < Dx S r+dshield/\ |Dy| S E(L+t01)) (45)

Default Task T

We can now define success and failure criteria for the default task 7 which has an attentional
focus on distal disturbances to trigger the generation of plans by model checking. Figure 4.4

shows construction of a look ahead partition for witnessing distal disturbances:

1
Pl(mk = {0 €0 | r"’dshield < min(Ox) S dlook/\ |0y| S §(L+t01)} (46)

where O is the set of observations for a scan event, r + dg0;4 and dj,r are lower and upper
bounds, respectively, on the longitudinal dimension of observations, and again the bound %(L +

tol) ensures that the lateral dimension respects the width of the robot plus some tolerance.

Figure 4.5: Construction of partition P, for witnessing distal disturbances.

During each scan event, we iterate the set of observations O and select the observation with

the nearest x-coordinate as our disturbance D. Table 4.3 summarises the possible outcomes.

Success  Failure
Plook =0 Plook 7é 0

Table 4.3: Possible outcomes for look ahead partition P,y
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Success and failure can therefore be expressed as satisfaction of the existential condition:

1
Plook ): EID(’”'i_dshield < Dx S dlook/\ |Dy| S §<L+l01)) (47)

The partition P, provides distal information on the disturbance D in the direction of travel.
Failure of the default task 7; therefore implies that a proximal disturbance will eventually be

witnessed, which can be expressed as satisfaction of the temporal existential condition:

1
Pshield }: <>E|D(I’ < Dx S r+dshield A |Dy| S §(L+l01)) (48)

As a consequence, the future path is finite, so the task now becomes the finite straight task 7.

4.3.3 Abstract Closed-Loop Sequences

The semantics developed in the previous section make it possible to reason about task outcomes
for a single disturbance during task execution. To also reason about multiple disturbances and
future task outcomes, distal information about possible future disturbances is required. We
achieve this by abstracting away the timed aspects of closed-loop tasks to represent their con-
tinuous evolution with spatial constructions, defined in relation to predicted future disturbances.
We in addition require that the robot stays in the default task Ty for as long as possible, a bias
which we operationalise by ensuring that the robot prefers selecting the shortest safe sequence.

In the remainder of this section, we explain how we reason about the safety of task execution
for two, three, and four step sequences of closed-loop tasks using geometric spatial abstractions.
It is necessary to reason about the safety of task sequences in order of increasing length, as this
allows us to limit the amount of computation required. If it is reasoned that there is a safe two
step sequence, for example, there is no need to reason about sequences of greater length, as we
have biased the robot towards selecting the shortest. Hence reasoning about safety is cumulative.
Note that we restrict our approach to a maximum of four steps to keep the model as small as
possible for efficient computation and yet expressive enough to avoid trap situations common for

many local obstacle avoidance methods, in particular cyclic behaviour on U-shaped obstacles.

Two Step Sequences

The shortest possible sequence of tasks is two steps. This represents a situation where the
robot encounters a disturbance, executes a single avoid task 77 /z then returns immediately to
the default task 7; because no additional disturbances have been detected in the lateral dimen-
sion. An example of the robot executing the sequence 7; — T after encountering a longitudinal
disturbance D, is shown Figure 4.6A. As the safe zone represents the closed-loop behaviour of
rotations, we can assume that rotations are safe, so it only remains to find a spatial representation

for the discrete outcome (i.e., success or failure) of driving straight in the lateral dimension.
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A

Y

Figure 4.6: A: closed-loop execution of the two step sequence Ty — Tp. B: spatial abstraction of
the closed-loop sequence in A which in this case witnesses no disturbances.

To do this, we construct lateral partitions of the state space, finite over-approximations of
future robot trajectories which represent driving straight in the lateral dimension, one for the
positive (i.e., left) and one for the negative (i.e, right) direction. If a lateral partition contains
no disturbance, we assume that the robot can drive straight in the associated direction for a
(potentially) infinite period of time, hence the robot can return to the default task 7,

Prior to constructing a partition, we iterate over the set of observations O and subtract a
longitudinal offset Ay = Dy — d, s, from the x-coordinates to simulate witnessing D, as a prox-
imal disturbance in the future. We can then iterate over the set of simulated observations and

construct a lateral partition. First we construct a partition for the positive direction:

P ={o€0||ox| <dsape NO < min(0y) < dipax} 4.9)

where dy,f. is a bound on the longitudinal dimension to respect the combined safe zone and
outer shield r + dgpie1q, O 1s a lower bound on the lateral dimension, and d,,,, is an upper bound
indicating a maximum lateral look ahead distance for witnessing distal disturbances. We use the
parameter d, r, instead of the radius r to approximately model the future proximal detection of
disturbances during execution of straight tasks, as this event triggers the next task in a plan. As
shown in Figure 4.6B, the partition Py+ is empty, so returning to the default task 7j is possible.
Hence executing sequence 77, — T in response to the disturbance D, is considered a success.
However, there could have been a second disturbance preventing the robot from returning to
the default task, as illustrated in Figure 4.7A where the robot instead executes the sequence of
tasks T — Tp in response to the longitudinal disturbance D,. In this case, the robot encounters
the negative lateral disturbance Dy~ so now needs to spawn another avoid task. As the geom-

etry of task execution is symmetrical to the previous sequence, we can iterate over the set of
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observations and construct a partition which is the negative lateral reflection of Equation 4.9

P ={0€ 0| lo:] < dsafe N —dmax < max(oy) < 0} (4.10)

where d,r. 18 a bound on the longitudinal dimension respecting the combined safe zone and
outer shield, 0 is an upper bound on the lateral dimension, and —d,,,, is a lower bound indicating
a maximum look ahead distance for witnessing distal disturbances in the negative direction.
As shown in Figure 4.7B, the partition P;” is not empty, meaning that the y-coordinate of a
disturbance in the negative lateral direction is greater than the parameter —d,, . It is therefore
not possible to return to the default task 7p, so the sequence Tg — Ty is considered a failure.
Table 4.5 summarises the possible future outcomes for two step sequences in terms of the

positive and negative lateral partitions defined in Equations 4.9 and 4.10, respectively.

Sequence Success Failure

T, — Ty P;:@ P;%@
TR — Ty P;:(D Pyi%@

Table 4.4: Possible outcomes for two step sequences.

As in the previous section, success or failure for either sequence (i.e., whether the robot can re-

turn to 7p) can be expressed as satisfaction of an existential condition over the relevant partition:

P = 3D(|Dx| < dsage NO < Dy < dipa) 4.11)

y
A ‘. B

safe .

Figure 4.7: A: closed-loop execution of the two step sequence Tg — 7. B: spatial abstraction
of the closed-loop sequence in A which in this case witnesses disturbance D, .
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Pyi = 3D(|Dy| < dsafe N —dmax < Dy < 0) (4.12)

The lateral partitions provide distal information on disturbances in the lateral direction. Failure
of a two step sequence therefore implies that a proximal disturbance will eventually be wit-
nessed, which can be expressed as satisfaction of the existential condition in Equation 4.8. As
the future path is finite in the relevant lateral direction, the appropriate straight task is therefore

Ts. The procedure for constructing the lateral partitions at runtime is provided in Algorithm 1.

Algorithm 1: Construct Lateral Partition
Input : Simulated observations O, parameter dy, f., parameter dy,qx, and boolean flag
positive indicating whether the partition should be negative or positive.
Output: The positive or negative lateral partition P.

1 Procedure ConstructPY (O, dyfe, dmax, positive)

2 P20
3 foro € Odo
4 if |0x| < dyqs. then
5 if positive N0 < 0y < djpqx then
/* positive partition */
6 addoto P
7 else if —positive N —dqar < 0y < 0 then
/* negative partition */
8 addoto P

9 P+ FilterNearest (P, dyax)
10 return P

11 Procedure FilterNearest (P, dyuyx)

12 P 0

13 D+ 0

14 min < dyax

15 foro e Pdo

16 if |oy| < min then
17 min < |oy|

18 L D<o

19 add D to P/
20 return P’

Three Step Sequences

The next possible sequence length is three steps, representing occasions where the robot could
become boxed in. Figure 4.8A shows the robot executing the sequence 7; — T; — Ty to turn
around and go back the way it came, because it has reasoned that it has no room to manoeuvre

in the lateral dimension. As the robot has just come from this direction, and we restrict attention
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to static environments, we can assume returning to the default task after turning around is safe.

Figure 4.8: Simulation of three step sequence. A: closed-loop execution of the sequence 7y, —
Ty, — Tp. B: the union of positive and negative lateral partitions.

Figure 4.8B shows abstraction of the closed-loop behaviour into geometric spatial relation-
ships. In this case, we use the lateral dimension to reason about whether the robot can move
distance d,;;, in either direction. As Equations 4.11 and 4.12 are both satisfied for this scenario,
the union PyJr U P;” models the conjunction. Hence Equations 4.11 and 4.12 together form inde-
pendently necessary but jointly sufficient conditions for reasoning about whether the robot has

enough room to manoeuvre. In conjunction with a further condition on the union:
PFUP; |=3D(0 < Dy —dsage < diin) AID(—din < Dy+dsqpe <0) (4.13)

it is then possible to reason if the robot can move in some lateral direction. Equation 4.13 checks
whether the robot can move at least distance d,,;, in both directions while respecting the robot
safe zone. In our example, the condition is satisfied, so we can reason that it is unsafe to drive in

either lateral direction. Hence a sequence of length three is generated to turn around and evade.

Four Step Sequences

The final possible sequence length is four steps, representing a situation where there are lateral
disturbances in both directions but Equation 4.13 is not satisfied. Hence the robot can drive
safely in some lateral direction for a while but then must counteract a second disturbance. Figure
4.9 shows the robot executing the four step sequence 7y — Ty — T — T which includes an
intermediate straight task. As we have reasoned that the robot can drive safely in the lateral
direction, we now only need to consider whether the final subsequence 7y — T is possible.

We first simulate the lateral displacement of the robot, i.e., as if it had executed the initial

subsequence 71, — Ts. We calculate the lateral offset A\ = D

v~ dyqfe to simulate the expected
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Figure 4.9: Robot executing the four step sequence 7y, — Ts — 11, — Tp.

state change while respecting the safe zone and outer shield, as shown in Figure 4.10A. As we
are reasoning about spatial abstractions, lateral translation of the state space is sufficient, so it
is unnecessary to simulate rotations. It is now possible to reason about the final subsequence
Ty, — Tp in the longitudinal dimension by constructing longitudinal partitions. The procedure is

the same whether we have simulated driving straight in either the positive or negative direction.

A | B

X, = -d

-d

safe

4

Ty, = -(L+tol/2)

~

Figure 4.10: A: simulation if lateral displacement for the subsequence 7; — Ts. B: abstraction
for longitudinal movements to check if the final subsequence 7y — T is possible.
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We iterate over the set of observations and construct the positive partition
1
Px+ = {0 €0 ’ dsafe <oy < dsafe +ﬁdsafe A ‘Oyl < E(L+t01)} (4.14)

where dy,f. is a lower bound on the longitudinal dimension which excludes the lateral partition,
dsafe + Bdsage is an upper bound with a tunable coefficient 3, and %(L +tol) is a bound on the
lateral dimension to respect the width of the robot plus some tolerance. As indicated in Figure
4.10B, the partition P witnesses a new disturbance D/, so we can conclude that driving in the
positive direction has a finite lifetime, hence we cannot return to the default task 7p.

We then iterate over the set of observations and construct the negative partition
_ 1
P. ={0€ O |—(dife+ Bdsase) < 0x < —dsafe Noy| < E(L—}—tol)} (4.15)

where —(ds, fe+ Bdy, fe) is a lower bound on the longitudinal dimension with the tunable coef-
ficient 8, —dsqfe is an upper bound which again excludes the lateral partition, and §(L+tol) is
again a bound on the lateral dimension to respect the width of the robot. As shown in Figure
4.9D, the negative longitudinal partition P, is empty, so the robot can conclude that driving
straight in the negative longitudinal direction has a (potentially) infinite lifetime. Hence it is
possible for the robot to return to the default task 7y which is the desired outcome.

Table 4.5 summarises the possible future outcomes for final subsequences in terms of the
positive and negative longitudinal partitions defined in Equations 4.14 and 4.15, respectively.
While our example has focused on the positive lateral direction, both directions are assessed for
completeness. The same procedure applies to the negative direction by a symmetrical argument.
Note that we refer to longitudinal partitions in the positive lateral direction as P1 and P2 in the

negative lateral direction, however this distinction is omitted where directionality is irrelevant.

Lateral Offset Subsequence Success Failure

A;:D;_dsafe g — Ty Pl;:@ Pl;;fé@
T — Ty Plx_:@ Plx_#@
Ay_:Dy_—l—dsafe TR — Ty P2 =0 P2x_75@
T — Ty P2F=0 P2} #0

Table 4.5: Possible outcomes for final subsequence of four step sequences

As for the lateral dimension, success for either subsequence can be expressed as satisfaction of

an existential condition in first order logic over the relevant longitudinal partition:

1
P;— ): E|D(dsafe <Dy < dsafe +Bdsafe A |Dy| < E(L+t01)) (416)

_ 1
P, ): HD(—(dmfe-l-ﬁdmfe) <D, < _dsafe/\ |Dy| < E(L-l-lol)) “4.17)
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The runtime procedure for constructing longitudinal partitions is provided in Algorithm 2.

Algorithm 2: Construct Longitudinal Partition
Input : Simulated observations O, lateral offset A,, parameter dy, ., width of the robot
plus some tolerance L +tol, boolean flag positive indicating sign of partition.
Output: The positive or negative longitudinal partition P.

1 Procedure ConstructPX (O, Ay, dy,fe, L+1t0l, positive)

2 P+
3 for o € O do
4 0y<——0y——Aw // simulate lateral displacement
5 if |o,| < %(L—Hol) then
6 if positive Ndyqfe < 0x < dsafe + Bdsase then
/* positive partition */
7 addoto P
8 else if —positive N —(dsyfe + Bdsafe) < 0x < —dsqge then
/* negative partition */
9 addoto P
10 return P

4.3.4 Disturbance-Focused Transition System

The abstraction approach discussed in the previous section motivates the construction of our
transition system. A state in our model has the from s = [x,y, 6] where x represents the longitu-
dinal dimension, y represents the lateral dimension, and 0 represents the orientation of the robot
in radians. Figure 4.12 shows relevant states for planning two step sequences. To ensure the
combined safe zone and outer shield is respected, we offset all states in the transition system
distance dyq . from either the origin or a lateral disturbance. Hence we have one initial state
in our model sy = [dy, fes 0, 0] which is offset distance dj, re from the origin of the vector space.
As our approach is egocentric, the orientation O radians is indexical to the direction the robot is
facing, hence all paths in our model start from the initial state so. The states s; = [0,dy, fer %n]
and s, = [0, —dy, fes —%n] represent transitions 77, and 7g, respectively, from sg and are fixed.
See Figure 4.11 for an illustration of the distribution of states sq, 51 and s, relative to the robot.
States s3 and s4 represent driving straight in the lateral direction from states s; and s, re-
spectively, but their valuation varies depending on the location of lateral disturbances. As shown
in Figure 4.12A, if there are none, then as the lateral partitions are empty, we assume that
53 = [0,00, 7] and 54 = [0, —o0, — 1 7], meaning that it is possible for the robot to drive in either
direction for a (potentially) infinite period of time, so the relevant transition to s3 or s4 is the
default task 7p. Hence both Equations 4.11 and 4.12 are not satisfied, meaning that a two step

sequence in either direction is possible. However, if there are lateral disturbances, both states
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Figure 4.11: Distribution of states sg, s1 and s; relative to the robot.

would have a finite valuation such that s3 = [0,D, In) and s4 = [0,Dy, —17], as shown in Fig-
ure 4.12B. As the lateral partitions are not empty, the robot can only drive for a finite amount of
time in either direction, so the relevant transition is the task 7. In this case, both Equations 4.11
and 4.12 are satisfied, meaning that a two step sequence in either direction is not possible.

If this is the case, then we consider the possibility of a three step sequence. Figure 4.13
shows the addition of two additional states for this purpose. State s13 = [—ds, fes 0, | is fixed in
our model and represents the execution of a second avoid task 77 /z from either state s; or s3.

y y
A d.t Si S— B d. V_SSI ® ]
' ‘+.. Pyzﬂ -: F)y#ﬁ
d. 1 N d BN
m LOONS | NS,
_dmm o _dmm =4
A ) A i
s, Py: 2 S, PV:I: g
Dy
d _dmax—g)
maxy S4 v v 841 v

Figure 4.12: States for two step sequences. A: lateral partitions with no distal disturbances
detected. Hence two step sequences are possible. B: lateral partitions with distal disturbances
detected, resulting in a finite valuation for states. Hence two step sequences are not possible.
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Figure 4.13: States for three step sequences.

The state s14 = [—(dsafe + Bdsafe),0, 7] represents the final transition 7y which is assumed safe
in our approach, as the robot should be able to go back the way it came in static environments
without encountering a disturbance. Starting from the initial state sq, this would result in either
the sequence Ty — Ty, — Ty or T — Tg — Ty, which is chosen non-deterministically, as either
sequence would result in the robot going back the way it came. If Equation 4.13 is satisfied,

then a three step sequence is possible, otherwise we move on to consider a four step sequence.

P1;¢ﬂ ST '{ \5*'37 P1,=0

v v

Figure 4.14: States for final subsequence of four step sequence.
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Figure 4.14 shows the distribution of states for assessing longitudinal movements, rep-
resenting the final subsequence in four step sequences, as discussed in Section 20. States
59 = [_dsafeaDy+
respectively, from state s3 in the positive lateral direction. The longitudinal dimension is fixed

—dyqfe, ) and s5 = [a’mfe,D;r — dyafe, 0] represent the transitions 7y and T,

but the lateral dimension varies relative to the location of the positive lateral disturbance Dy+. If
the longitudinal partitions are empty then s11 = [—o0, D} —dsqf., 7] and s7 = [o0, D} +dsqf.,0],
otherwise s11 = [ (dsafe + Bdsafe), Dy — dsafe, | and s7 = [dsqpe + Bdsafe, Dy — dsafe,0]. In
the former case, Equations 4.16 and 4.17 are satisfied, so we can assume the robot can drive
in either longitudinal direction for a (potentially) infinite period of time, otherwise they are not
satisfied, so driving straight in either direction is not possible. The same holds for the set of
states {s4,56,58,510,512 } in the negative lateral direction by a symmetrical argument.

The resulting transition system is depicted in Figure 4.15. Note that our transition system
is a tree structure rather than a graph as states represent unique points on the plane in relation
to the egocentric perspective of the robot. If a leaf state in the tree has an infinite dimension,
then this means that future states are unknown, as the robot then returns to driving straight for
a (potentially) infinite period of time in the default task 7y. The leaves of the tree represent a
final check to ensure that the robot can do this for at least a finite period so it has time to replan
should a disturbance be encountered thereafter. Our model only exists to reason about discrete
disturbances within a finite distance from the robot. Hence we call our model for planning using

model checking a disturbance-focused finite transition system which we define as follows.

Definition 1 (Disturbance-Focused Transition System) A disturbance-focused transition sys-
tem DTS is a tuple (S,Act,—,I,AP,L) where

o S=1{50,51,...,514} is a set of states where the orientation of the robot is fixed, the longi-
tudinal and lateral dimensions fixed for states {so,s1,52,513,514}, and for the remaining

states the longitudinal or lateral dimensions vary in relation to disturbances;

Act ={Ty,Ts, Ty, Tr} is the set of tasks defined in Section 4.3.1;

o —C SxAct xS is atransition relation where s — s’ is admissible if and only if a task can

evolve the model from state s to s';
* I ={so = [dsafe,0,0]} is the initial state;
* AP is a set of atomic propositions;

o L:S — 24P is a labelling function which determines which elements of AP are true at

each state s.

As should be clear from above, states in our model receive a valuation (labelling) at runtime

using the abstraction approach described in Section 4.3.3, based on the location of disturbances.
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Figure 4.15: Disturbance-focused transition system. Note that transitions to potential final states
{s1,52,511,57,58,512 } represent a finite period of driving in the default task 7j to ensure that the
robot has time to replan if another disturbance is encountered. However, subsequent states in
the default task 7; are not represented as they are unknown (i.e., the future path is uncertain).

4.3.5 Planning Using Model Checking

We use the disturbance-focused transition system described in the previous section to generate
plans for negotiating multiple disturbances using distal sensor information. To do this we define
an LTL property, construct a non-deterministic finite automaton (NFA) and form the product
transition system and NFA for a valuation of state properties for the sensed situation.

We implement the underlying directed graph for the finite transition system shown in Figure
4.15 and compute the product at runtime when a new planning sequence is initiated. Planning
using model checking can be reduced to a simple reachability analysis on the product, which
amounts to simply deciding which states in the graph are terminal. We do this in order of

increasing sequence length to ensure reasoning about safety accumulates for each plan length.

LTL Plan Specification

We define a regular property in LTL which is stated in terms of a set of two state properties,
horizon and safe. Before introducing the LTL property, we define these state properties.
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Definition 2 Property horizon is true at state s if and only if the valuation of either the longitu-

dinal or lateral dimension is infinite.

In Definition 2 an infinite dimension in the valuation of a state means that the robot can drive
in a straight line for a (potentially) infinite period of time, so it can return to the default task 7j.
If the future path of the robot seems infinite, then there is no known disturbance ahead, so by

definition it is deemed safe. Our definition of the state property safe is less straightforward.

Definition 3 Property safe is true at state s if one of the following conditions hold: (i) the
absolute value of one finite dimension at s is dy, ., (ii) s has a finite lateral dimension such that

the absolute offset from a lateral disturbance (i.e.,

D;r —dsafe| or |Dy +dsqpe|) is greater than

parameter d, and there is no longitudinal dimension; or (iii) proposition horizon is true at s.

In Definition 3 condition (i) ensures rotations are safe due to construction of the safe zone and
outer shield for witnessing proximal disturbances. Relevant states around the origin have one
dimension equal to dy, ., and this uniquely identifies them. Condition (ii) ensures that the robot
has space to move in the lateral direction while respecting the safe zone. The final condition (iii)
guarantees that a state is safe when the future path seems infinite. In our approach, we always
start in the initial state so and assess each state for a possible path in order of preference, hence
for any final horizon state we always know that the path leading to state s is finite.

Based on the explained semantics, we use an LTL property ¢ for planning, where

@ = —(safe U (safe A horizon)) (4.18)

which states that =(safe U (safe A horizon)) holds for every path. Note that a finite path satisfies
safe U (safe A horizon) if both safe and horizon are true at some state s in the path, and safe
is true for all states in the path leading to s. As our interest is in solution paths (see Section
3.5 for details), the property ¢ negates the desired outcome, so that what would normally be
the set of counterexamples for a run of the system, in our case becomes a set of safe future
discrete task outcomes. Consequently, the set of solution paths is the set of paths which satisfy
safeU (safehorizon). Our property and modelling approach is intentionally simple, primarily

to ensure fast computation and minimal resource usage for reliability on a low-powered device.

Checking the Product Transition System

We are interested in the set of paths that satisfy the property safe U (safe A horizon). The set
of counterexamples for ¢ constitute a language of finite words which can be recognised by an
NFA. We therefore construct the NFA /.y, = (Q,X, 8,00, F) where Q = {qo,q1} is the set of
states, ¥ = 247 is a finite alphabet, 6 : Q x ¥ — 29 is a transition relation, Qo = {qo} is the initial
state, and F' = {q } is the accepting state. Figure 4.16 shows the NFA .oZ_.
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{safe, horizon}
Qo

{safe}

Figure 4.16: NFA for the property safe U (safe A horizon).

When a new disturbance is encountered by the robot, we use the abstraction approach ex-
plained in Section 4.3.3 to assign a valuation to the set AP. We then calculate the automaton
formed as the product of 7'S and A, and generate a (finite) accepting path non-deterministically
using f-DFS. From the path we can then extract the transitions to form a plan for the sce-
nario. Figure 4.17A shows an instance of our transition system with valuation of the elements of
{horizon,safe} and Figure 4.17B the product automaton. Note that accepting (solution) paths
are those for which the NFA part of the state in Figure 4.17B is the accepting state q;.

{safe, horizon} {safe, horizon}

Figure 4.17: A: an instance of our transition system showing a valuation of the elements of
{horizon,safe}. B: product transition system and NFA resulting from the valuation in A.
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Runtime Generation of Plans

Algorithm 3 provides details on the runtime procedure for computing our abstraction and gener-
ating plans. As mentioned above, we assess possible sequences in order of length to determine a
valuation of our transition system. Note that the subroutine generatePlan() finds a solution path
by {-DFS on the product transition system and NFA. Starting from the initial state s, it then
extracts the transitions between states form a plan consisting of a sequence of associated tasks.
By default f-DFS does not return the accepting state of the product, so the final transition is not

returned. However, as the final transition in a plan is always the default task 7 this is sufficient.

4.4 Implemetation

Our approach was implemented on the low-powered robotic platform described in Section 3.1
following an event-driven paradigm using callbacks. Planning using model checking is used to
reason about future task outcomes to form plans consisting of sequences of closed-loop tasks.
We now provide an overview of the agent architecture and explain agent reasoning for current

task outcomes during the real execution, which underpins the abstraction of closed-loop tasks.

4.4.1 Agent Architecture

Figure 4.18 shows the overall agent architecture. Our focus is on planning sequences of closed-
loop control tasks in response to disturbances. The robotic agent mostly reasons reactively
about the sensed environment state while planning using model checking reasons about pre-
dicted states using distal sensor information. This separation of concerns is reflected the archi-

tecture shown in Figure 4.18. Our agent is implemented in C++ using an event-driven paradigm.

4.4.2 Reactive Agent Reasoning

Figure 4.19 illustrates control flow for the task controller, which is closed-loop and comprises
two functional components. We motive this with an example. Suppose our robot is executing the
default task 7j driving towards disturbance D which it has not seen. A new scan event from the
LiDAR calls the agent event handler at a sample rate of ~ 200 milliseconds, which immediately
passes the set of observations to the task event handler, as indicated in Figure 4.19A.

The default task 7 sends a signal to the motors and looks ahead for disturbances. As the
disturbance D is currently out of range, it seems that the robot can continue driving straight for
a (potentially) infinite period of time, so the existential condition in Equation 4.7 is not satisfied
and the loop repeats. This continues until the look ahead partition witnesses a distal disturbance
at which point the task is a failure, i.e., the existential condition in Equation 4.7 is satisfied.

Reactive reasoning then takes place by the mechanism shown in Figure 4.19B.
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Algorithm 3: Generate Plan Using Model Checking
Input : Set of observations O and disturbance D.
Output: Sequence of discrete control tasks plan.
1 Procedure GenerateNewPlan (O, D)
2 term < 0 // set of terminal states for product
3 A+ 0 // simulate proximal detection of D
4 if Ay > d,4z. then
5 L A :Dx_dsafe
6 O+ 0
7 for o € O do
8 Ox < 0y — Ay
9 L add o to O’
10 Per < ConstructPY (O, dsafe; dax, true) // asses two step sequences

1 P« ConstructPY (O, dyfe, dmax, false)
12 if P, = 0 then

13 | add s3 to rerm

14 if P = 0 then

15 L add s4 to term

16 if PyJr =0V P, =0 then

17 plan < generatePlan(term)

18 return plan // assess three step sequences

19 if D;r c Py+ < dmin \Dy € Py’ > —dpi then
20 add s14 to term

21 plan < generatePlan(term)
22 return plan
23 A; %D;_dsafe // assess four step sequences

24 Ay Dy +dsafe

25 Pl; + ConstructPX (0O, A;r, dsqfe, L+t0l, true)
26 P1; + ConstructPX (0, A;r, dsafe, L+tol, false)
27 P2 + ConstructPX (0, Ay, dsafe, L+tol, true)
28 P2, + ConstructPXx (0, Ay, dsafe, L+-tol, false)
29 | if P17 =0 then

30 L add s7 to term
31 if P1. =0 then

32 L add sq; to term
33 | if P2 =0 then

34 L add sg to term
35 if P2 = (0 then

36 L add s, to term

37 plan < generatePlan(term)
38 return plan
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Figure 4.18: Agent architecture. Red shows reasoning based on the actual environment state.
Blue shows reasoning by model checking about discrete outcomes based on predicted states.

Once the default task Ty has failed, a plan is generated using model checking. The plan is
then stored and execution of the current task continues. At this point, the robot has a finite expec-
tation for the future path, so the look ahead partition is ignored until the safe zone shield partition
witnesses a proximal disturbance, i.e., the existential condition in Equation 4.5 is satisfied. The
first task in the plan is then initiated, which in our case is the avoid task 7.

Each iteration of the control loop the task outcome interface shown in Figure 4.19A sends a
signal to the motors and checks whether the existential condition in Equation 5.3 is not satisfied.
When it evaluates true, the avoid task 77 is considered a success, at which point the mechanism

in Figure 4.19B initiates the next task, or returns to the default task 7y if the plan is empty.

4.5 Preliminary Results

Our research goal was to answer RQ1. For preliminary investigations into the feasibility of our
approach, we compared our method for real-time planning using model checking to a baseline
with a single closed feedback loop, resulting in stereotyped behaviour, as discussed in Section
4.1. We made two comparisons for a cul-de-sac scenario, in which we compared the resulting

trajectories and recorded the real-time performance of planning using model checking. We
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Figure 4.19: Reactive agent reasoning. A: interface for discrete task outcomes. B: reactive
reasoning mechanism for initiating tasks or generating a new plan based on task outcomes.

extracted the emergent trajectories from video using the optical flow method in OpenCV' for
comparison. In addition, we recorded processing latency for planning using model checking.

Our aim was to meet real-time constraints, defined specifically as less than 100 milliseconds.

Comparison 1 Results are summarised in Figure 4.20. In Figure 4.20A, the robot approaches
the cul-de-sac, senses a disturbance in the environment (i.e., a point on the wall to the left) and
generates the four step plan T — Ts — Tg — Tp using model checking, illustrated in Figure
4.20B. Algorithm 3 determines that PyJr # 0 and P;” # 0, so a two step plan is not possible.
Furthermore, the robot can drive at least d,;;;, = 0.5 meters in either lateral direction so a three
step plan is not necessary. Hence Equations 4.11 and 4.12 are satisfied and Equation 4.13 is not.

Consequently, it is necessary to construct longitudinal partitions and check if the final subse-
quence is safe for each lateral direction. In this case, Algorithm 3 determines that P1; # @ and
P1; # 0, so the robot cannot return to the default task 7y after initially driving in the positive

lateral direction. Equations 4.16 and 4.17 are therefore satisfied. However, in the negative lateral

lhttps://opencv.org/
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{safe, horizon} {safe, horizon}

Figure 4.20: Comparison 1. A: trajectory for planning using model checking (last couple of
steps cropped). B: the transition system and generated plan. C: trajectory of baseline method.

direction P27 = 0 and P2, = 0, hence Equations 4.16 and 4.17 are not satisfied, so returning to
the default task 7j is possible. Both states sg and 51, are therefore marked as terminal.

A path to one of the states is chosen non-deterministically using model checking, in this
case state s12. Execution time for planning using in situ model checking was 9.22 milliseconds.
Figure 4.20C shows the baseline, which manages to navigate out of the cul-de-sac by chance,
however the trajectory is less efficient as the robot enters the cul-de-sac first. In comparison, the

model checking approach does not enter the cul-de-sac at all, as shown in Figure 4.20A.

Comparison 2 Results are summarised in Figure 4.21. In Figure 4.21A, the robot approaches
the bottom right corner of the cul-de-sac, senses a disturbance and infers that it is boxed in and
generates the three step plan 7, — T; — Tp using model checking, illustrated in Figure 4.21B.
Algorithm 3 has determined that PyjL # () and Py’ = (), however the robot cannot drive d,;;, = 0.5
meters in either direction. Hence Equations 4.11, 4.12 and 4.13 are all satisfied.

Consequently, a three step plan is necessary. State sj4 is therefore assumed safe and one
of the two possible three step sequences generated non-deterministically using model checking.
Execution time for planning using in situ model checking was 10.87 milliseconds. Figure 4.21C
shows the baseline, which eventually navigates out of the cul-de-sac by chance, but gets trapped
between two walls for a significant period and collides with one of them. Results suggested that

model checking generates more efficient trajectories and can successfully avoid a trap situation.
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B

Figure 4.21: Comparison 2. A: trajectory for planning using model checking. B: the transition
system and generated plan. C: trajectory of baseline method showing an eventual collision.

4.5.1 Summary

Our method was implemented on the low-powered robotic system described in Section 3.1 and
combined discrete decision-making with continuous control (i.e., a hybrid system). The con-
tinuous control aspect was handled by closed-loop tasks, or motion primitives, which have an
attentional focus on disturbances (i.e., obstacles which interrupt the resting state of the robot,
the default task Tp). However, the tasks themselves have a finite lifetime and discrete outcomes,
which we modelled using abstraction of timed aspects of tasks into static geometric relation-
ships. To generate sequences of tasks, we implemented a bespoke lightweight model checker
which meets the hard real-time deadline of 100 milliseconds. As mentioned in Section 4.1, we
achieved this by integrating the model checking procedure with the robot code, as this was the
most straightforward way to optimise model checking for real-time performance. No collisions
were observed for planning using model checking and trajectories were more efficient.

We presented these results at the Formal Methods for Autonomous Systems (FMAS) work-
shop in November 2023 [34]. However, the evidence we acquired for our method was anecdotal,
so the conclusions we could draw were limited owing to the design of experiments. The sample
size was too small to make robust general claims about the reliability of planning using model
checking for obstacle avoidance in comparison to the baseline, nor did we have robust insight
into the reliability of real-time performance. In addition, we collected no data on memory usage

so could not draw any conclusions about the memory footprint of our method on the robot.
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4.6 Case Study I: Evasion

We now explain the design of a case study involving two scenarios to address shortcomings
identified in the preliminary results. Specifically, we wanted to investigate whether planning
using model checking reliably generated more efficient obstacle avoidance behaviours compared
to the baseline method, as was indicated by results in the previous section. In addition, we
wanted to gain greater insight into the reliability of real-time performance with respect to the
deadline. We also wanted to investigate the efficiency of model checking in terms of memory

usage. These specific objectives identified three additional research questions for our case study:

RQ2 Does planning using model checking reliably generate more efficient collision

avoidance behaviours compared to the baseline method?

RQ3 Does planning using model checking reliably meet the hard real-time deadline of

100 milliseconds for autonomous driving applications?

RQ4 What is the memory usage of planning using model checking?

In Section 4.6.2, we conduct a close study of a cul-de-sac scenario, which often results in
an agent becoming trapped when using reactive methods with a single control loop for obstacle
avoidance. In Section 4.6.3, we investigate a playground scenario in which we let the robot roam
free in a closed environment with one free-standing static object and a cul-de-sac. This scenario
is intended to demonstrate the versatility and generalisability of planning using model checking.

We discuss threats to validity in Section 4.6.4 and summarise our results in Section 4.6.5.

4.6.1 Artefacts

The baseline method is a simple Braitenberg-style machine [28] which can only spawn a single
control task at a time, as described at a high level in Section 4.2. When in the default task 7y and
a disturbance D is encountered, the robot uses a simple deterministic rule to decide which avoid
task to generate, either task 77 or task 7. If the angle of the disturbance is greater than the head-
ing 0 radians then the robot spawns the avoid task g, otherwise the task 77, is generated. Once
the disturbance is counteracted, it then returns to the default task 7;. The baseline can therefore
not reason about the consequences of its actions, which can lead to inefficient behaviour. As
mentioned in Section 4.2, this can result in the robot getting trapped in a corner scenario. In this

case study, we compare the baseline method to our planning approach described in Section 4.3.
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4.6.2 Scenario 1 - Cul-de-sac

We addressed all research questions for the cul-de-sac scenario. To answer RQ2 we conducted
a statistical comparison of generated trajectories between planning using model checking and
the baseline method and compared the number of collisions. We collected data on the real-time

performance of model checking to answer RQ3 and profiled memory usage to answer RQ4.

Environment Definition

We focused our attention on a cul-de-sac scenario due to the prevalence of corners and parallel
walls, as reactive controllers for obstacle avoidance based on a single control loop can easily
get trapped in such a situation. Our intention here was to recreate difficulties for the baseline

method and see if planning using model checking showed any improvement in behaviour.

Left Centre Right

Figure 4.22: A: idealised schematic of cul-de-sac scenario. B: actual cul-de-sac scenario.

Figure 4.22A shows three starting positions (“Left”, “Centre”, “Right”) and the orientation
of the robot relative to the bottom wall. For the centre position, the orientation of the x-axis is
offset 0 degrees relative to the bottom wall, but for the left and right starting positions it is offset
45 degrees. There were two main reasons for this setup: (i) we wanted to maximise the chances
of the baseline method leading the robot to get trapped, hence we used multiple starting positions
and orientations; and (ii) while from a model checking perspective planning from the left or right
position is symmetrical, pilot experiments revealed that the robot had a strong right veer when
driving straight, so we decided to balance our study to accommodate. The dashed blue line in
Figure 4.22A represents a cut-off used to prepare trajectories for analysis. We collected 15 runs

for each method and starting position, resulting in a dataset consisting of 90 runs in total.
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Analysis of RQ2

We focused on the construct of “reliability” to answer RQ2 which is concerned with efficient
obstacle avoidance behaviour. For the statistical analysis, we wanted to compare the amount
of time the agent took to navigate out of the cul-de-sac. We operationalised this measure using
trajectory length as a proxy for elapsed time, focusing only on the portion of the trajectory in
the cul-de-sac (i.e., below the trajectory cut-off in Figure 4.22A). In addition, we also compared
the number of collisions for each method. As collisions are rare events, there was a chance none

would be observed, hence we focused on both metrics to ensure we had sufficient data.

Design of Analysis Our study had a 2 x 3 between-factors design for the statistical analysis of
trajectory lengths and reporting of collisions. The method variable had two levels, “Single” and
“Multi”, representing the baseline and planning using model checking, respectively. The starting

position variable had three levels (“Left”, “Centre”, “Right”) as indicated in Figure 4.22A.

Data Collection and Preparation During data collection, we used markers to indicate the
correct placement of the robot. Runs were terminated when the robot was observed to pass the
threshold of the cul-de-sac by a visibly clear margin. We also recorded the number of collisions.

In practice, the variation in terminating runs was large, so it made sense to focus only on
the portion of the trajectory in the cul-de-sac for the analysis. For each run, we extracted the
trajectory from video using the optical flow method in OpenCV and calculated the length in

pixels. Trajectories were truncated at the entrance to the cul-de-sac as shown in Figure 4.23B.

.
Left Centre Right

“ I Discarded

Analysed

Figure 4.23: The cul-de-sac experimental setup. A: the three starting positions and placement
of the trajectory cut-off. B: example trajectory and truncation according to the cut-off.

Results First we compared each method while ignoring starting position. A non-parametric

Mann-Whitney U test was performed. As the shape and dispersion of the distributions was
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different (see Figure 4.24 for boxplots), the null hypothesis was that the mean ranks for each
method are identical, and the alternative hypothesis was that it is lower for the model checking
group, & = .025 (one-tailed). The test revealed that the mean rank for model checking was

significantly lower, U = 251, ny /ny = 45, p < .001, with a medium effect size, r = .37.
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Figure 4.24: Trajectory length grouped by method.

Next a comparison was made between starting positions. It was reasoned that this could have
an influence on the generated trajectory lengths due to differences in starting pose, specifically
angle of entry into the cul-de-sac. We performed a non-parametric Kruskal-Wallis test on start-
ing position and trajectory length for each method individually. For the baseline, the test revealed
that there was a significant effect of starting position on trajectory length H(2) = 12.17, p = .002.
Post-hoc analysis of pairwise comparisons using Dunn’s test (Bonferroni correction applied) re-
vealed that there was a significant difference between the centre starting position and both the
left (p = .026) and right (p = .002) starting positions, while the left starting position was not
significantly different from the right (p = 1.)>. The results suggest the single control task pro-
duces similar trajectory lengths when entering the cul-de-sac at an angle of ~ 45 degrees. See
Figure 4.25A for a comparison of the distributions for each starting position.

For the model checking approach, the test also revealed that there was significant effect of
starting position H(2) = 30.2, p < .001. In this case, post-hoc analysis of pairwise comparisons

revealed that there was a significant difference between the centre starting position and the right

2Rounded down from > 1. as a secondary effect of the Bonferroni correction.
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Figure 4.25: Trajectory length grouped by starting position. A: baseline, B: model checking.

(p < .001) but not the left (p = .872), while the left starting position for this method was sig-
nificantly different from the right (p < .001). The results suggest model checking generates
different trajectory lengths when entering the cul-de-sac at an angle of ~ 45 degrees from differ-
ent starting positions, whereas the centre and left starting positions generate similar trajectory
lengths. Figure 4.25B shows the distributions of trajectory lengths for each starting position.
Trajectory lengths for the right starting position were significantly shorter because the robot had
a right veer, so it would barely enter the cul-de-sac before generating a three step plan.

The number of collisions was also observed for each run. For the baseline method, 3 colli-
sions were observed and O collisions were observed for planning using model checking. Each
collision was observed for a different run of the baseline method (i.e., 3 runs in total). Table 4.6

shows collisions for the baseline grouped according to starting position.

Starting position Collisions

Centre 1
Left 2
Right 0

Table 4.6: Distribution of collisions for baseline.

Analysis of RQ3

We again focused on the construct of “reliability” to answer RQ3 which is concerned with meet-
ing the hard real-time deadline of 100 milliseconds. We operationalised this by using processing
latency as a metric, defined as the time delta from initiation of planning to completion. We aimed
to describe the mean latency and estimate confidence bounds for planning using model checking

for insight into whether our approach can consistently meet real-time constraints.

Design of Analysis We calculated the minimum, maximum and mean processing latency for

all model checking runs and estimated 95% confidence intervals using the bootstrap method.
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Data Collection and Preparation Processing latency was collected for each executed plan-

ning sequence at runtime using an in-built time and date package in C++.

Results The minimum processing latency for planning using model checking was 5.58 mil-
liseconds and the maximum was 18.76 milliseconds. The mean processing latency for all runs

was 10.1 milliseconds, with an estimated 95% confidence interval of [9.33,10.96].

Analysis of RQ4

We focused on profiling memory usage to answer RQ4 in an exploratory manner. While mem-
ory usage contributes to the overall efficiency of our approach, we had no specific target to
achieve, hence no construct was identified. We therefore focused on describing the memory
footprint. Memory usage was estimated for both model checking and the entire process. We
also estimated process memory usage for the baseline to indicate relative performance, however

no direct comparison could be made due to uncertainty in the data.

Design of Analysis We estimated the runtime memory usage of both model checking and the
entire program. Model checking memory usage was estimated by summing the compile time
memory of the stack, set and adjacency list data structures used by f-DFS and their worst case

usage at runtime, based on a state size of 4 bytes as each state is represented by an integer.

Data Collection and Preparation Process memory usage was collected using the Linux top
utility at a sampling rate of 1 millisecond. For runtime memory usage of model checking, we
instrumented the code to record the growth of the stack and set of visited states during f-DFS

execution and dumped the data to disk.

Results Maximum memory usage for model checking at runtime was estimated at 2.9 kilo-
bytes, while the maximum memory usage of the process was 4.31 megabytes. However, this
includes the amount of shared memory available to a process, not all of which is typically res-
ident to the program (i.e., includes memory which could potentially be shared with other pro-
cesses). The maximum amount of shared memory was 3.34 megabytes, hence a lower bound on
the maximum was calculated at 992 kilobytes. Maximum model checking usage was therefore
estimated to comprise 0.06% to 0.29% of maximum process memory usage.

In comparison, maximum process memory usage for baseline was 4.3 megabytes with a
maximum shared memory component of 3.28 megabytes. In this case, a lower bound on the
maximum was calculated at 1.02 megabytes. While there is uncertainty, the data suggests that

memory consumption for model checking is approximately equivalent to the baseline.
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4.6.3 Scenario 2 - Playground

We again addressed all three research questions for the playground scenario. To answer RQ2
we conducted two comparisons between the baseline and planning using model checking during
general operation, focusing on evasion of a cul-de-sac aspect and collisions. We again collected

data on real-time performance to answer RQ3 and profiled memory usage to answer RQ4.

A B

Figure 4.26: A: idealised schematic of playground scenario. B: actual playground.

Environment Definition

We let the robot roam free in a closed environment with one free-standing static object and a cul-
de-sac, as illustrated in Figure 4.26. Our aim was to study the emergent behaviour of the robot
during general operation where the robot has to counteract disturbances multiple times. We
included a cul-de-sac because we were interested in comparing the emergent behaviour for each
method when negotiating this situation in the context of normal operation. For each comparison

(two in total), we let the robot roam free in the environment for 5 minutes using each method.

Analysis of RQ2

We again used the number of collisions as a measure of reliability to answer RQ2. In addition,

we used time elapsed inside the cul-de-sac during exploration as a metric.

Design of Analysis For each run, we calculated the number of times the cul-de-sac was visited,

the time elapsed inside the cul-de-sac and summed the number of collisions.

Data Collection and Preparation We made two comparisons between the baseline and plan-
ing using model checking. For each run, we let the robot explore the playground environment
for 5 minutes and recorded the behaviour on video. We then extracted the trajectories using
optical flow in OpenCV and inspected the difference visually. Following this, we calculated the

number of times the robot visited the cul-de-sac and time elapsed inside the cul-de-sac, using the
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light on the robot as a point of reference for consistency with analysis of the previous scenario.
We also considered the cul-de-sac visited if the robot manoeuvred to evade. Following the same

protocol of the previous scenario, we recorded the number of collisions for each run.

Figure 4.27: Comparison 1. A: baseline method. B: planning using model checking.

Results Figure 4.27 shows extracted trajectories for the first comparison. It can be seen in
Figure 4.27A (baseline) that the robot spends significant time in the cul-de-sac, whereas in
Figure 4.27B (planning using model checking) the robot spends no time in the cul-de-sac. The
baseline method visited the cul-de-sac once during the run at which point it got trapped for 89
seconds. There were 4 collisions for the baseline and 0 collisions for model checking.

In Figure 4.28 trajectories for the second comparison are shown. Figure 4.27A shows that
the baseline method spends significant time in the cul-de-sac. However, in this case, the robot
visited the cul-de-sac on three separate occasions for a total elapsed time of 79 seconds. For
this comparison, planning using model checking also visited the cul-de-sac on three separate
occasions but evaded rather than enter the cul-de-sac. The total time elapsed for evasion was
12 seconds. Evasion manoeuvres are indicated by the yellow box in Figure 4.28B. On one
occasion, the robot had to execute three consecutive two step plans before a successful evasion
of the cul-de-sac, indicating the possibility that there may be scenarios where the robot can still

get trapped. There were 2 collisions for the baseline and O collisions for model checking.

Analysis of RQ3

We again used processing latency as a metric for reliability to answer RQ3. We aimed to charac-
terise the relationship between processing latency and plans of different lengths as it was found

in the previous scenario that only two step plans were generated, introducing bias to the results.
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Figure 4.28: Comparison 2. A: baseline method. B: planning using model checking (yellow box
indicates evasion manoeuvres at entrance to the cul-de-sac).

Design of Analysis We grouped processing latency by the number of steps in the plan and

calculated descriptive statistics, estimating 95% confidence intervals for each plan length.

Data Collection and Preparation Data collection and preparation was the same as in the

previous scenario (see Section 4.6.2). We also extracted the number of steps for each plan.

Results Table 4.7 shows results for processing latency across both model checking runs grouped
according to the number of steps in plans. There were 42 two step plans, 32 three step plans and

18 four step plans. Processing latency appears to increase as the length of the plan increases.

Steps(n) Min. Max. Mean CI (95%)

2 2.5 14.09 6.64 [5.92,7.44]
3 512 12,15 7.66  [7.11, 8.35]
4 545 21.61 1149 [9.6,13.83]

Table 4.7: Processing latency in milliseconds for plans consisting of 2, 3 and 4 steps.

Analysis of RQ4

We again profiled memory usage to answer RQ4 in an exploratory manner. Memory usage was
estimated for both model checking and the entire process. We again estimated process memory

usage for the baseline method to provide an indicative comparison of relative resource usage.

Design of Analysis Same as analysis in the previous scenario.
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Data Collection and Preparation Same as data collection in the previous scenario.

Results Maximum memory usage by model checking at runtime was estimated at 2.91 kilo-
bytes and maximum memory usage of the process at 4.09 megabytes. Again this includes the
amount of shared memory available to a process, which could potentially be shared with other
processes. The maximum amount of shared memory was 3.03 megabytes, hence a lower bound
on the maximum was calculated at 1088 kilobytes. Maximum model checking memory usage
was estimated to comprise 0.06% to 0.26% of maximum process memory usage.

In comparison, maximum process memory usage for the baseline was 3.83 megabytes with a
maximum shared memory component of 2.95 megabytes. A lower bound on the maximum was
calculated at 900 kilobytes. As in the previous scenario, the data suggests that process memory

consumption is approximately equivalent for each method.

4.6.4 Threats to Validity

The construct of “reliability” was motivated by the requirement for technical robustness and
safety in the Al HLEG guidelines, specifically the sub-requirement for reliability and repro-
ducibility (see Section 2.1.3). As a symbolic ante-hoc explainable Al approach for planning, we
were interested in characterising (i) the continuity of decision-making using model checking for
a range of inputs and situations, and (ii) whether model checking exhibits the same behaviour
when repeated under the same conditions. Hence we focused on investigating the continuity
of emergent behaviour for evasion of a cul-de-sac under a range of different starting conditions
and included statistical analysis of generated trajectories for repeated trials. In particular, we
focused on the real-time performance of our method with respect to a deadline relevant for the
autonomous driving (see Section 2.2) and estimated confidence bounds on the population mean.
Our exploration of memory usage was not included under the construct of “reliability” as
the data collection method (i.e., Linux top utility) did not support an accurate measure due
to uncertainty. Hence our investigation of memory usage was exploratory. As mentioned in the
analysis, some of the process memory is shared, meaning it could used by other processes which
may vary between runs, so there was no way to know precisely how much memory was used by
the process alone. Hence we estimated the memory usage of model checking and characterised
this as a percentage of process memory using minimum and maximum bounds. In addition,
there was no reliable way to truncate the generated data according to the time spent in the cul-
de-sac as we did with trajectory lengths for Scenario 1. As there was a high degree of variability
in stopping runs after exiting the cul-de-sac, the memory data generated was not comparable.
Another threat to internal validity comes from the trajectory analysis. Trajectory length was
used as a proxy for elapsed time inside the cul-de-sac on the basis that time is directly propor-
tional to distance, however this was ultimately dependent on the accuracy of the optical flow

method in OpenCV. For example, we used the light on the robot to focus tracking on the bright-
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est object in the frame, but in practice there was some variation. This was in part due to varying
light conditions during data collection, which ultimately influenced the relative brightness of
the environment. Sometimes two points were picked up. We addressed this in data prepara-
tion by visually inspecting each trajectory and manually preparing it for analysis. However, the
trajectory analysis does not generalise to general operation, limiting external validity.

One threat to the external validity of our analysis of processing latency was that only three
step plans were generated for Scenario 1, hence the results in the analysis were biased. This was
a side effect of the cul-de-sac setup. We addressed this in Scenario 2 which provided sufficient
data for all plan lengths for comparative analysis of estimated population means.

There are two major threats to the external validity of collisions as a measure of reliability.
First we relied on human observation which is prone to error. The definition of a collision for this
study was that a discrete sound had to be made by the robot colliding, at which point the collision
was recorded for the run, however inaudible collisions may have been missed, especially if there
was background noise during data collection. Second, as mentioned above, collisions are rare
events, so not a reliable form of evidence alone for the construct, and provide little information
on emergent behaviour. Indeed, a similar point was argued by Karla and Paddock [98] for the

validation of autonomous driving systems (see Section 2.1.3 for a discussion).

4.6.5 Summary

In Scenario 1 we conducted a close study of a cul-de-sac. We compared trajectory lengths
and collisions for a baseline and planning using model checking to answer RQ2. We found
evidence that model checking reliably produces more efficient trajectories for avoiding a cul-de-
sac. There were 3 collisions for the baseline method and 0 for model checking, however we had
not data on emergent behaviour under general operation of the robot. To answer RQ3, we col-
lected data on the processing latency. Processing latency was well within the 100 milliseconds
real-time deadline for decision-making in autonomous driving, however we found that the nature
of the cul-de-sac setup had side effects which restricted the generality of our conclusions—only
three step plans were generated, so we had no data on the range of plan lengths. We profiled
memory usage to answer RQ4, however there was significant uncertainty in the data.

In Scenario 2 we let the robot roam free in a playground environment. We compared time
spent in the cul-de-sac and the number of collisions for a baseline method and planning using
model checking to answer RQ2. In both comparisons, the baseline spent a significant amount
of time in the cul-de-sac, whereas model checking spent none. There were 6 collisions for
the baseline method and O for model checking. We collected data on processing latency and
grouped it according to the plan length to answer RQ3. We observed an increase in mean
processing latency associated with an increase in plan length, however the maximum latency
was 21.61 milliseconds, again well within the 100 milliseconds deadline. To answer RQ4 we

profiled memory usage which was similar to the first scenario. Hence RQs have been answered.
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Response to RQ2  Our evidence suggests that planning using model checking reliably
generates more efficient obstacle avoidance behaviour with respect to a cul-de-sac
scenario compared to the baseline method. Planning using model checking tends to

spend less time in the cul-de-sac and successfully avoids collisions.

Response to RQ3 Our data suggests that planning using model checking consistently
meets the hard real-time deadline of 100 millisecond—regardless of the length of the

plan, though it does have an impact. Our analysis suggests this holds for the population.

Response to RQ4  Our data suggests that maximum model checking memory usage is
approximately 2.9 kilobytes and that maximum process memory usage ranges between
992 kilobytes and 4.31 megabytes. For comparison maximum process memory usage for

the baseline method ranged between 900 kilobytes and 3.83 megabytes.

4.7 Discussion

In this initial investigation, we have shown that it is possible to do real-time hybrid planning
and control using model checking on a low-powered robot by chaining closed-loop tasks which
have an attentional focus on disturbances. Abstraction of the temporal evolution of the hybrid
system allows us to focus only on information relevant to collision avoidance, thereby keeping
the model small which limits the amount of computation. We have presented evidence that
compared to obstacle avoidance using a single control loop model checking is reliable with

respect to real-time constraints and obstacle avoidance behaviour. Hence RQ1 is answered.

Response to RQ1 We can can use abstraction to model the evolution of closed-loop
task sequences in terms of static geometric relationships relative to the egocentric per-
spective of the robot. It is then possible to reason about the predicted discrete outcomes
of sequences using a single LTL property and generate plans for collision avoidance in
real-time. Abstraction makes it possible to focus only on disturbances which keeps the
model small. Thus issues with state-space explosion are avoided and resource usage

minimised.

\. J

Online methods using symbolic representations, such as our approach using model check-
ing, can potentially offer a route to flexible general reasoning for partially observed, unstruc-
tured environments which is safe, reliable and explainable. However, real-time performance is
crucial, particularly for high speed driving scenarios. As discussed in Section 2.2, it has been
argued that even a lag of 100 milliseconds is unacceptable [123, ]. While real-time obsta-

cle avoidance for a robot in partially observed and unstructured environments was investigated
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in [27], the approach can only reason about the current trajectory to ensure the robot is at rest
for imminent collisions, hence no planning is involved. Real-time performance was reported
at 49 milliseconds via simulation on an average laptop. In comparison, our approach achieves
real-time planning with a processing latency less than 22 milliseconds on a low-powered robot.
Planning algorithms often assume that a robot moves in a global coordinate system in which
trajectories are generated as continuous or piecewise continuous curves. In this context, model
checking can be performed offline to synthesise a runtime monitor for the trajectory following
error and signal fatal deviations [124], effectively performing classical line following. However,
converting a local coordinate system into global coordinates from unreliable sensor data is non-
trivial [119, ] and hard to achieve in real-time without precise offline map data. In [157], for
example, a cleaned and labelled global map is used to check generated trajectories for potential
violations, and in [128] the locations of pedestrians in global coordinates are simulated. In
contrast, we take a constructivist [160] approach and keep the environment partially observable
by only working with sensory inputs that are accessible from an egocentric perspective, i.e., the
relative position of disturbances. We do not need a global perspective as we do not perform
precise line following along a globally defined trajectory. Instead, closed-loop tasks have an
attentional focus on a specific disturbance which they counteract locally in a reactive manner.
Classical real-time obstacle avoidance methods, as discussed in Section 2.4, also tend to op-
erate on local sensor data, however they do not involve discrete planning. Our approach uses
LTL to specify the desired property of a sequence of discrete control tasks, demarcated spatially
in the continuous environment by the location of disturbances (i.e., obstacles) using our abstrac-
tion. One advantage of this approach is the ability to express non-Markovian properties, such as
temporally extended goals [122]. In comparison, traditional reactive obstacle avoidance meth-
ods (e.g., APF [106] and DWA [66]) rely on predicting the next action based on the current state,
and as a consequence can often get trapped in local minima. Indeed, this was observed in our
case study for the baseline. On our approach, however, plan specification in LTL made it pos-
sible to reason strategically about obstacles and generate complex multi-step plans. While our
method could still get stuck in cyclic behaviour, this was not observed for U-shaped obstacles.
The use of model checking for hybrid planning and control has received increased attention
in recent years, due to the ability to specify complex long horizon tasks using temporal logic and
the potential to generate correct-by-construction controllers. For example, in [76] motion plans
were revised using reactive synthesis for a mobile robot in real-time under specifications for a
finite fragment of LTL in partially observable workspaces, however validation of the method was
achieved through simulation and the real-time performance was not reported. In [114] iterative
planning with partial guarantees for cosafe and safe components of LTL was proposed, and in
[134] an abstraction-free sampling-based LTL algorithm based on RRT* was proposed which
is probabilistically complete and asymptotically optimal. Again experimental validation was

achieved through simulation. In comparison, we developed our approach on a real robot where
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uncertainty in the system is unavoidable due to inaccurate sensing and actuation, a key issue in
transferring idealised guarantees to the real world [200]. Consequently, our planning approach
over-approximates the future path of the robot to guarantee that a set of possible trajectories
satisfies our LTL specification and are therefore safe. We therefore relax the typical bisimulation
property [60] requirement for guarantees in the continuous system to a simulation relation [13].

One advantage of hybrid planning using temporal logic specifications is the potential to pro-
vide causal explanations for robotic behaviour in a human interpretable form [102]. While we
do not focus on generating explanations in this thesis, our use of LTL for plan specification and
the characterisation of disturbances as the cause of a task ensures that this is possible. In [102]
an algorithmic approach for generating factual and “why” explanations from LTL specifications
over a deterministic Markov Decision Process (MDP) was proposed, and in [32] a method for
generating counterfactual explanations using LTL constraints was developed. Although this is
a non-trivial task, the interpretable nature of temporal logic specifications makes causal expla-
nations at least feasible. In contrast, methods involving opaque models, such as DNNs, are less
amenable, which undermines the trustworthiness of Al-enabled systems. As mentioned in Sec-
tion 2.1, transparency has been emphasised in guidelines from Al regulators [, ], especially
for the governance of Al in safety-critical domains such as autonomous driving [ 112, ].

An obvious limitation of our approach in this chapter is that obstacle avoidance is not target-
driven. However, any realistic task involving autonomous navigation, such as overtaking for
AVs, will require target-driven behaviour. To achieve this, some form of localisation in the
environment is required, usually through SLAM [164] which is computationally expensive—
performance of the localisation operation alone can impose a time lag in the order of hundreds
of milliseconds [26, ]. Localisation is important for a complete robotic system, however
our focus in this chapter was restricted to flexible decision making. Hence we have omitted
localisation from our initial investigation into the use of model checking for real-time obstacle

avoidance. We incorporate this in the next chapter to accommodate target-driven behaviour.



Chapter 5

Real-Time Goal-Directed Obstacle

Avoidance

In this chapter, we describe our investigation into extending the approach in Chapter 4 to support
goal-directed obstacle avoidance. In Section 5.1, we motivate the combined use of abstraction
and recursive forward simulation to plan/replan sequences of closed-loop tasks using real-time
model checking. We provide a high level conceptual overview of our approach in Section 5.2.
In Section 5.3, we explain the details of our methodology. Specifically, we explain how we use a
layered abstraction approach to characterise “situations” and simulate relevant short sequences
of tasks. We introduce two interrelated transitions systems for this purpose. In Section 5.4,
we provide details on the implementation of our method. We explain our case study in Section
5.5. In Section 5.6, we draw conclusions on the merits and limitations of our approach. See

Appendix B for a glossary of variable names introduced in this chapter.

5.1 Motivation

In Chapter 4 we showed that it is possible to plan sequences of closed-loop tasks in real-time
on a low-powered device using model checking. However, as mentioned in the conclusion, the
main limitation was that the approach was not goal-directed. Rather the focus was on reasoning
about multiple disturbances to facilitate situational analysis, the major benefit of which is the
ability to overcome common issues with closed-loop input control, in particular avoiding trap
situations. Hence we focused on a cul-de-sac scenario due to the prevalence of corners which
often lead to stereotyped behaviour from closed-loop controllers.

In this subsequent investigation into real-time model checking for planning and obstacle
avoidance, we extend our approach and focus on avoiding objects while making progress to-
wards a goal, i.e., the complete obstacle avoidance problem. This requires the strategic combina-
tion of both avoidance and attraction closed-loop behaviours to generate effective goal-directed

plans. As the emergent behaviour of closed-loop tasks varies, it is therefore necessary to rethink

93
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the approach to modelling the physical environment (which is tightly coupled to the definition
of tasks) to ensure a relevant interpretation of distal sensor information for decision-making.
Consequently, the bespoke implementation of model checking requires adjustment to ensure a
relevant distinction between closed-loop tasks which prioritise avoidance or attraction.

While our approach in Chapter 4 was capable of operating in partially observed environ-
ments, the restricted nature of the avoidance task made this somewhat irrelevant. As the only
aim was to not hit objects, information about the dimensionality of objects was unnecessary to
plan sequences of closed-loop tasks. For goal-directed behaviour, however, it becomes more of
an issue. For example, if the goal is on the other side of an object, the 2D point-cloud will only
perceive the nearest edge, so the length of the object is unknown. However, to plan a sequence
of tasks to reach a goal, prior knowledge of object dimensions is necessary, or alternatively the
method should be able to replan as new information about the environment becomes available.

Previously we developed an egocentric model of the environment which abstracted away
timed aspects of task execution into static geometric relationships in Chapter 4. This made it
possible to predict the outcomes of tasks based on the location of disturbances in the surrounding
environment. However, the additional requirement to get to a goal (which may be obscured
from view) makes a similar approach infeasible. Static geometric relationships, while a relevant
proxy for the evolution of timed aspects in the hybrid system, are too inflexible and complex
to accommodate goal-directed obstacle avoidance. A more promising approach is to combine a
model of spatial relationships with recursive forward simulation for flexible replanning.

We therefore investigate the use of bespoke model checking for planning and obstacle avoid-
ance which can (i) combine closed-loop avoidance and attraction behaviours to form goal-
directed sequences of tasks, and (ii) replan based on new information about the environment.
We aim to do this in the context of hybrid planning and control. To simplify the problem, we
continue to restrict attention to static environments and focus on a scenario similar to overtaking
but without the complication of oncoming vehicles. We aim to do this in real-time, specifically

within the real-time deadline of 100 milliseconds. Hence we address the research question:

RQS5 How can we extend our bespoke implementation of model checking to plan se-
quences of avoidance and attraction closed-loop tasks for goal-directed obstacle avoid-

ance on a low-powered robotic system in real-time?

5.2 Approach

In this section, we first extend the baseline in Chapter 4 to describe a minimal solution which
has the ability reach a goal (i.e., it can spawn avoidance or attraction tasks), but as before it can
only reason about a single disturbance at a time. However, it does have the ability to forward

plan using simulation and replan if necessary. This involves simulating execution of the straight
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task Ts (driving straight for some distance d) or rotating left or right, i.e., simulating task 77 or
task Tg. Rotations are defined the same as in Chapter 4. In addition to avoiding objects (i.e.,
disturbances represented by D), the robot also needs to eliminate error to the goal, represented
as the disturbance D¢ = [x, y] where x is the longitudinal error and y is the lateral error in meters.

Figure 5.1 shows a static obstacle avoidance scenario similar to an overtaking task for AVs.
Initially, the goal DY = [1,0] is straight ahead. The agent checks if there is a disturbance D ahead
for the current state of the environment and if the way is clear subtracts distance d from the x-
coordinates of observations in O to simulate execution of the task 7s. This process is repeated

until the disturbance D is encountered for some future predicted state of the environment.

Py

Figure 5.1: Minimal extension to baseline in Chapter 4 able to complete an overtake manoeuvrer.
The default task 7 continues executing until a disturbance is encountered or error to the goal
DY in some dimension is eliminated. Relative direction of the goal determines valid rotations.

The robot can then simulate task sequence 77, — Ts or T — Ts to counteract the disturbance
by rotating the set of observations clockwise or anti-clockwise, respectively, then simulating the
straight task. Note that either sequence is valid because the goal is straight ahead. If the goal
was to the right or left of the robot, then rotating away from the goal would not be allowed as
a measure to promote the progressive elimination of D¢. For this reason, we include the final
straight task to prevent the robot from immediately doubling back on itself. When the goal is
straight ahead, rotating left or right would put the goal on the right or left, respectively, making
it possible for an infinite loop to occur. Hence the planning procedure would not terminate.

From the perspective of an external observer, it is obvious that simulating T — Tg will result
in encountering a second disturbance D,. However, the robot can only perceive a finite portion
of the environment directly ahead, so this is unknown from the egocentric perspective of the
robot. We do not allow the longitudinal error to be increased to ensure progress towards the
goal, so the only valid sequence in response to D, is Ty — Ts. It should be clear that the robot
could get trapped here eliminating D; and D, repeatedly. Hence there is still the potential for
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the planning procedure to get stuck in an infinite loop, which is undesirable. This is a limitation
of only reasoning about a single disturbance at a time, however this is not inevitable.

An infinite loop can be avoided if sequence 7; — Ts is eventually simulated to counteract
disturbance D;. The robot then repeatedly simulates the task Ts until the disturbance D3 is
encountered, which necessarily increases lateral error to the goal. As the goal is to the right, the
only valid sequence is Tg — Ts. Again the robot repeatedly simulates task 7, this time until the
longitudinal error to the goal is eliminated DY = [0, y]. The goal is again to the right, so the only
valid sequence is Tz — Ts. The robot then simulates the repeated execution of T until the lateral
error is eliminated. Hence D = [0,0] meaning that the robot has now arrived at the goal.

The approach in Figure 5.1 represents a simple obstacle avoidance approach similar to the
baseline described in Chapter 4. As explained, however, this does not prevent the simulation of
tasks from getting stuck in trap situations when first encountering the obstacle to be overtaken,
which could potentially result in an infinite loop. In addition, it should be clear from Figure
5.1 that only spawning tasks in response to disturbances or the elimination of error does not
generate efficient trajectories, nor does it result in the correct orientation of the robot when it
reaches the goal. Furthermore, this representation of the approach is a best-case idealisation.
In practice, error in the real execution can lead to encountering unexpected disturbances, which
requires replanning. This can also lead to random trajectories which fail to get to the goal (e.g.,

because the robot never rotates exactly j:%n radians) so the approach is unreliable.

TS X Tr X
d,
dz T d4 R
5, 1B
_CD)J d, E T, X T

Figure 5.2: General overview of approach. The straight task 75 executes in a closed-loop fashion
until the control goal is achieved. This is a distance d determined by either the dimension of the
object we want to overtake or relative error to the goal D to minimally deform the path of the
robot. As with the minimal solution, relative direction of the goal determines valid rotations.

Our method therefore aims to reliably generate more efficient trajectories by reasoning about
distances for straight tasks to minimally deform the path of the robot in relation to the obstacle.

Figure 5.2 provides an overview of our general approach. In contrast to the minimal solution
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above, the straight task Ty constitutes a negative feedback loop with the control goal of driving
straight for a finite distance, determined either by the dimensions of the object we want to
overtake, or relative error to the goal DC. To do this and avoid trap situations requires distal
sensor information and the ability to reason about multiple disturbances concurrently.

To eliminate all error to the goal DG it is necessary to forward plan, which can be achieved
using recursive simulation of task execution. Figure 5.3 illustrates an example plan for the
overtake situation illustrated in Figure 5.2. As the environment is partially observable, without
an accurate offline map it is not possible to plan an accurate path to the goal from a local frame
of reference because the dimensionality of the object we want to overtake is unknown. Hence we
further require that our approach has the ability to replan the sequence of tasks if it transpires that

the appropriate task for a situation deviates from the expected next task in the planned sequence.
C2 X
T T T, 1
e = X De.
7D, LEpIl[ T[T,
d;
B> D,) Tap>
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Figure 5.3: Example plan for the overtake situation depicted in Figure 5.1 which eliminates all
error to the goal DY prior to execution using simulation of task execution to forward plan.

5.3 Methodology

In this section, we provide the details of our methodology. In Section 5.3.1, we explain the
action space, which again comprises a set of closed-loop control tasks. Specifically, we give
details on how the control goal for a closed-loop task reflects a different attentional focus which
respects the two dimensional geometry of objects. Section 5.3.2 describes the discrete outcomes
for tasks. In Section 5.3.3, we explain how we interpret the relative direction of the goal in a
discrete manner, based on continuous tracking data. Section 5.3.4 describes an extension to the
goal abstraction for reasoning about the relevant short sequence of tasks for a modelled situation.
We provide the details of two transition systems used in our approach in Sections 5.3.5 and 5.3.6.

In Section 5.3.7, we provide details on recursive model checking for goal-directed plans.
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5.3.1 Action Space

We formally define the action space for our approach as the set of closed-loop tasks:

Act = {TS,TL,TR} (5.1)

introduced in Section 5.2. In contrast with the approach developed Chapter 4, we have one
straight task 7g which has a finite lifetime and is immediately destroyed when the control goal
of eliminating a disturbance (in this case, the continuous distance d) is achieved (see Figure
5.4A for an illustration). The tasks 77 and 7 are similar to the approach in Chapter 4, however
we rotate :I:%n: radians to eliminate error between the current and desired orientation, i.e., the

required orientation for execution of the subsequent straight task (illustrated in Figure 5.4B).

A B

states actions states actions
3 Robot — ~ 2 "Robot S
Ts I TL/R I
w —_—
Environment Environment .

Figure 5.4: A: closed-loop task Ts, where the control goal is eliminating distance d. B: closed-
loop tasks 7 /g, control goal is eliminating relative error to desired orientation which is i%n’.

As we assume that the object to be avoided has dimensionality in the plane, rotating away
from a disturbance is insufficient for elimination. Instead, this requires counteracting both the
longitudinal and lateral dimension of an obstacle. Hence we refer to the task 77 ¢ as a “rotate”
instead of an “avoid” task. Whether a task is classified as avoidance/attraction is decided by
the model checking procedure at runtime, instead of designated a priori as in Chapter 4. In this

chapter, disturbance elimination is a spatially extended notion and requires sequences of tasks.

5.3.2 Discrete Task Outcomes

Consequently, discrete task outcomes have a different semantics for goal-directed obstacle avoid-
ance. As in Chapter 4, the discrete outcomes of tasks provide information on the success or
failure of the real execution, which grounds our approach in information about the continuous
evolution of the hybrid system. In the remainder of this section, we explain the semantics of

discrete success and failure criteria for the set of control tasks defined in the previous section.
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Figure 5.5: A: task Ty eliminating error |€|. B: task 77, eliminating error |€|.

Rotate Tasks Ty, /g

Similar to the approach in Chapter 4, we define a safe zone around the robot to ensure rotations
are safe (see Figure 5.5). We define success for a rotate task 77 /g as rotating until the absolute

difference between the current and initial orientation of the robot 0 is not in the partition:

1
Protate = {9 | | chrr_0| < 575} (5.2)

where 0°’" is the current orientation of the robot and O is a constant. As shown in Figure 5.5, the
initial orientation of the robot is always 0 radians and the desired orientation for our approach is

always j:%?t radians. Table 5.1 summarises the possible outcomes for the rotate partition.

Success Failure
Protate =0 Protate 7£ 0

Table 5.1: Possible outcomes for rotate partition P,y 4.

Hence success and failure can be expressed as satisfaction of the first order existential condition:

1
Protate |: 39(|9w”’_0| < 57[) (5.3)

From the perspective of an external observer, rotate tasks look the same as the avoid tasks
described in Chapter 4. However, as shown in Figure 5.5, rotate tasks have a different attentional
focus, i.e., eliminating |&| until 6" > %7: The focus is on error elimination because distur-
bance elimination is a higher order concept requiring sequences of tasks. The sole purpose of a
rotate task is to ensure that the robot is always in the correct orientation to counteract a spatially

extended disturbance. This could be an object (i.e, a disturbance D) or error to the goal D°.
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Figure 5.6: A: executing the task 7g to achieve the control goal of reaching distance d. B:
witnessing disturbance D during 75 before achieving the control goal of reaching distance d.

Straight Task Tg

We next define success and failure criteria for the straight task 7. Success is achieving the
control goal of driving straight until a distance d’'*"$¢' has been eliminated (see Figure 5.6A) and
failure is witnessing a proximal disturbance in the direction of travel during execution, meaning
that achieving the control goal is impossible (see Figure 5.6B). This means that an additional
outcome “running” is necessary to indicate that the control goal has not yet been achieved.

We define the control goal in terms of the following partition:

Pdl's[ — {d | dcurr < dlarget} (5‘4)

where d“'" is the current distance travelled by the robot and d'*8¢ is the target distance, de-
termined by our model during the planning procedure at runtime. In addition, we define the

witnessing of a proximal disturbance in terms of the partition, shown in Figure 5.6B:
1
Pyfe ={0€ 010 <oy <dsafe oy §§L+tol} (5.5)

where O is the set of observations for a scan event, d, . is the radius of the safe zone and outer
shield defined in Chapter 4, and L+ tol is the width of the robot plus some tolerance. Table 5.2
summarises possible outcomes for the straight task 7s in terms of a union of these partitions.
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Running Success Failure

Pist 7’£0/\Psafe:0 Pyist :m/\Psafe:0 Pyist %m/\Psafe#Q

Table 5.2: Possible outcomes for the union of partitions Py U Py, fe.

Success or failure of the straight task 75 can therefore be expressed as the existential condition:

1
P, UPsafe ): EldcurraD(dcurr < d'vrget o (O <D, < dsafe N |Dy| < E(L—f—tol))) (5.6)

5.3.3 Tracking the Goal

To successfully plan/replan a sequence of tasks to reach a spatial goal, it is necessary for the
robot to have up-to-date information on its coordinates. During the real execution, we update
the relative coordinates of the goal D in a closed-loop fashion using dead reckoning, however
this method is notoriously imprecise due to accumulated error in the system. In addition, the
resulting data is continuous, hence it is necessary to find some way to interpret the information
which supports discrete decision-making. We therefore construct an over-approximated abstrac-
tion which allows us to tolerate some degree of error in the continuous tracking and determine
the relative direction of the goal D® in a discrete manner. This is used to interpret the relative
direction of D¢ when initiating planning, but also during recursive simulation of task execution.

Our goal abstraction is informed by the restricted set of tasks defined in Section 5.3.1. As
indicated in Section 5.2, from the self-referential perspective of the robot, only information
about whether the goal is straight ahead, or generally in the left/right direction, is required to
navigate to the goal (e.g., to support reasoning about relevant sequences of tasks). To achieve

this, we construct egocentric, mutually exclusive partitions which witness the goal D¢ = [x, y].

Goal is Straight Ahead

We first define a partition for determining if the goal DO is straight ahead, as illustrated in Figure
5.7. The partition is indicated by the grey area and has an infinite extension to the right. It is

straightforward to decide if the partition witnesses the goal, which we define formally as:

Pgraight = {xay ’ x> dsafe A |y| < Adsafe} 5.7

where x and y are the relative coordinates of the goal, d, . 1s a parameter defining a lower bound
on the x-coordinate, consisting of the combined safe zone and outer shield, and A is a coefficient
for tuning the lateral dimension of the partition. There is no upper bound on the x-coordinate, as

this would imply an upper bound on the plan length, making our approach too restrictive.
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Figure 5.7: Partition for determining if the goal is straight ahead.

Goal is on the Left/Right

We next define partitions for determining if the goal is on the left or right, illustrated by Figures
5.8A and 5.8B, respectively. Again partitions are indicated by the shaded area in grey and are

unbounded in the direction moving away from the robot. We define the left partition as:

PG =1{x,y | (x < —dsape Ny > 0)Vy > Adgase} (5.8)

where —dj, . 18 an upper bound on the x-coordinate of the goal to exclude the area immediately
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Figure 5.8: A: partition for left direction. B: partition for right direction.
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behind the robot, 0 is a lower bound on the y-coordinate to indicate the left direction where
the x-coordinate is less than —dy, e, and Adyqf. is a lower bound on the y-coordinate where the
x-coordinate is greater than —d;,f.. Otherwise there is no bound on the coordinates in DS,

We define the right partition for witnessing the goal as:

Pr‘,?gh, ={x,y | (x < —dsafe Ny < 0)Vy < —(Adsare) (5.9)

The same interpretation of parameters holds for this partition as for Plfﬂ by a symmetrical
argument. As should be clear, they are the negative reflection of those parameters.

For the partitions in Figure 5.8 we include the area immediately behind the robot to ensure
appropriate decisions about the relative direction of the goal can be made if it is first of all
necessary to increase the lateral error when navigating around an object, as illustrated in Figure
5.9. Note that from the egocentric perspective of the robot, the longitudinal error has been
increased, hence the goal D is now behind the robot and on the right. By a symmetrical
argument, the same would apply if the robot had instead rotated right to avoid the disturbance
D. However, from the perspective of the robot the goal D¢ would have then been on the left.
The procedure for determining the relative direction of the goal is outlined in Algorithm 4. Note

that it returns an initial state in our model which will be explained in later Section 5.3.6.

Goal is on the right
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T
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SN
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D

Figure 5.9: Increasing the lateral error to navigate around an object, the disturbance D. Red
arrows indicate global perspective of an external observer. From the perspective of the robot,
the longitudinal error has been increased and the goal D is on the right using our abstraction.
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Algorithm 4: Determine Goal Direction

Input : Goal coordinates D¢ = [x,y], parameter d, re and coefficient A.
Output: Relevant initial state in model.

1 Procedure GoalDirection (DY, dsafer 1)

2 | if DY > dgupe N|DS| < Adgqype then

3 | return ss

4 | elseif DY > Adyp.V (DS < —dsup ADS > 0) then

5 | return s3

6 | elseif DY < —(Adyse) V(DY < —dsape NDS < 0) then
7 L return sy

5.3.4 Abstract Situational Analysis

The abstraction defined in the previous section provides discrete information on the general lo-
cation of the goal DY. However, the environment may also contain obstacles (i.e., disturbances)
which need to be avoided for safe navigation. The robot therefore requires the ability to interpret
distal sensor information and predict whether sequences of closed-loop tasks will be successful.
Consequently, it is necessary to extend our abstraction to interpret and reason about distur-
bances. The extension defined in this section can be viewed as a separate layer which facilitates
reasoning about obstacle avoidance when combined with the goal abstraction. In other words,
the combination makes it possible to reason about sequences of tasks in response to situations.
A situation is formally defined as a tuple .%; = (0;, DY) where O is the set of observations,
DC is error to the goal, and i is an arbitrary index indicating the order of the situation in a
sequence. As will be explained in Section 5.3.7, a plan on our approach is ultimately the con-
catenation of short sequences of tasks based on real-time simulation of task execution which
recursively generates a sequence of situations. Situational analysis is reasoning about the pre-
dicted outcomes of task sequences represented by our abstraction for a specific situation .7;.

This determines relevant inputs for the model checking procedure described in the next section.

Drive Straight

We first define a partition to predict if the robot can successfully execute the straight task Ty
and drive distance d;44; for a situation .#;. Figure 5.10A shows construction of the partition
(indicated by the grey area) in relation to the goal abstraction defined in the previous section.

For a situation .}, we iterate the set of observations O; and sort them into the partition:

1
Pstraight = {0 € 0; | dsafe <oy < adsafe/\ |0y| < §<L+ZOI)} (5.10)

where dy, . is a lower bound on the x-coordinate of observations, Qdy, . is an upper bound, and

%(L +10l) is a bound on the y-coordinate of an observation representing the width of the robot
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plus some tolerance. The distance associated with task Ts is defined as d'¥8¢ = oud, fe —dsafe-
Table 5.3 summarises the possible future outcomes for the straight task 7g, which is deter-

mined by whether an observation (i.e., a disturbance D) is witnessed in the partition Py,q;gpn; -

Success Failure

Pstraight =0 Pstraight 7& 0

Table 5.3: Possible outcomes for straight Py, 4igp-

Success and failure can therefore be expressed in terms of the first order existential condition:

1
Pstmight |: E|D(dsafe < Dx S (deafe A |Dy’ S E(L‘f‘tOl)) (51 1)

Figure 5.10A shows the robot using the partition Py,4e1 to respond to a situation .. In

this case, the goal is in partition P¢

straight and Equation 5.11 is satisfied, so it is predicted that the

robot can drive straight distance d'¥"$¢ by executing the straight task Tg. The task is therefore
simulated resulting in a new situation .%;; 1. However, while the goal is still in partition Pg raight”
Equation 5.11 is satisfied, so it is not possible to execute T and drive straight distance d"*"8¢'. Tt

is therefore necessary to increase the lateral distance to the goal to avoid the disturbance D.

Drive Left/Right

We next define partitions to predict whether the robot can successfully execute either of sequence
Ty — Ts or Tp — Ts. We generate short sequences of tasks for disturbance elimination because
objects are spatially extended in two dimensions and error to the goal DY is two dimensional.
Hence it will always be necessary for a rotation task 7; /r to be followed by a straight task T

when attempting to reach a goal on the other side of a disturbance (see Figure 5.2 for example).
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Figure 5.10: A: relevant parameters for partiton Py e, B: example of our robot simulating the
task T in response to situation .%; and witnessing a disturbance in Py, gy, for situation .7 .
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Construction of partitions for predicting the discrete outcomes of each sequence is illustrated
in Figure 5.11A, which also shows an example of the robot executing the sequence 7; — Ts in
response to disturbance D. Formal definition of the partition for sequence Ty — Ty is the same as
partition PyJr in Equation 4.9 and for sequence Tg — Ty it is the same as partition P~ in Equation
4.10. The corresponding existential conditions in Equations 4.11 and 4.12 therefore apply. In
either case, the final control task Ty is associated with the target distance d'“"8¢' = d,pu — dsq fe-

Again the procedure for constructing lateral partitions at runtime is provided in Algorithm 1.

y y
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Figure 5.11: A: lateral partitions showing distance djqr¢.s and example of robot executing se-
quence T; — Ts. B: example of the robot simulating 7; — Tg in response to situation .7;.

Figure 5.11B shows the egocentric perspective of the robot as it uses partition Py 4ign tO

respond to disturbance D for situation .;. The goal is in partition Rgmi oht”

would drive straight, however Equation 5.11 is satisfied so it is predicted that this is not possible.

so ideally the robot

As Equation 4.11 is not satisfied, the robot selects the sequence 7; — Ty illustrated in Figure
5.11A (from the perspective of an external observer) to eliminate the lateral dimension of the
disturbance D. The task is therefore simulated resulting in a new situation ., ;. The goal D is
now in partition nght and partition P;” is empty so Equation 4.12 is not satisfied. Consequently,

it is possible to generate the sequence T — Ts to continue eliminating the disturbance D.

Simulation of Tasks

As indicated by our abstraction for situational analysis, a sequence of tasks generated for a situ-
ation .%; is a tuple .7; = (T;, T;) where the final element could be null (i.e., only Ts is generated).
The procedure for simulating a generated sequence of tasks .7; is based on simple coordinate

geometry. While this may be imprecise, due to error in actuation and tracking, it is lightweight



CHAPTER 5. REAL-TIME GOAL-DIRECTED OBSTACLE AVOIDANCE 107

and therefore suitable for real-time performance on a low-powered device. Our set of tasks is
simple and the abstraction somewhat course which helps with imprecision, hence the simulation
method is sufficient for our purposes. Our use of replanning also prevents it from becoming too

problematic. The procedure for simulating sequences of tasks is outlined in Algorithm 5.

Algorithm 5: Simulate Tasks for Situation .7}

Input : Situation .%; = (O;, D) and generated sequence of tasks .7;
Output: Successor situation .%;; |

1 Procedure SimulateTasks (%}, )
x<0

y<0

Oi+1 <0

D¢, <0

¢ | if Z;[0] = Ty then

L x < getDistance(.7;[0])
8 else

9 L y < getDistance( (1))

2
3
4
5

1 | foroe 70| do

11 o' + Translate (o, x,y, 7)
12 add o' to O; 1
13 | DY, <« Translate (S[l], x5 )

4 | S =(0i1,D8,))

15 return .%;; |

16 Procedure Translate (o, x, y, .7)
17 o' 0
18 if length(.7) > 1 then

19 if .7y = T, then

/] Ty —Ts
20 O <0y —Yy
21 B 0; — —0y
22 else

/] Tp = Ty
23 O <0y —Yy
24 B 0y, < 0y
25 else

// Ts
26 O < 0y —x
/

27 | oy oy

28 return o’
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5.3.5 Task-Driven Transition System

The abstraction in the previous section underpins our transition system which models a short
sequence of tasks 7. The distribution of states for our transition system is shown in Figure
5.12A. We have one initial state so = [dyq e, 0,0] which is offset distance dy, s, from the origin
of the vector space. As the heading O is indexical to the direction the robot faces, all paths
in our model start from the state so. As in Chapter 4, the states s; = [O,dmfe, %n] and s, =
[0, —dsafes —%71:] represent transitions 77 and Ty, respectively, from state sg and are fixed. Note
that as states sp, s1 and s; are offset distance dy, . from the origin, they represent a point on the
plane in front of the robot on the edge of the safe zone. If the robot executes 77 or Tg from state
50, then from the egocentric perspective of the robot, this point remains directly ahead, but from
the perspective of an external observer it moves in an arc from state sq to either sy or sp. The

physical robot itself, however, remains at the origin and rotates left or right by %7: radians.

A

) 4
SH

Figure 5.12: A: distribution of states for transition system. B: task-driven transition system.
Note that the transition system is a tree structure because we are only interested in a finite
portion of the state space relevant for a situation .#; and the subsequent state is unknown.

States s3 and s4 again represent driving straight in the lateral direction from states s; and s,
respectively, and as in Chapter 4 their valuation varies according to the location of lateral distur-
bances. If there are no disturbances in the lateral partitions, then both Equations 4.11 and 4.12
are not satisfied, hence s3 = [0, dpqy, %7:] and s4 = [0, —dynax, —%71’], which in this case means
that the robot can drive straight distance darger = dmax — dsafe n either lateral direction. How-
ever, if there are lateral disturbances in each direction, both states would have a valuation such

that s3 = [0,Dy, 7] and s4 = 0,Dy, —17], hence both Equations 4.11 and 4.12 are satisfied,
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meaning that it is not possible to drive distance dyarger = dmax — dsafe in either direction.

The final state s5 represents driving straight in the longitudinal direction from the initial
state so. If there is no disturbance in partition Py,qen then Equation 5.11 is satisfied, hence
55 = [otdsq fes 0, 0], meaning that the robot cannot drive straight distance drarger = Odsq fe — dyqafe-
However, if there is a disturbance in partition Py4;gn; then Equation 5.11 is nor satisfied, hence
state s5 = [Dy,0,0], meaning that the robot can drive straight distance drarger = Odsqfe — dsafe-

The resulting transition system is depicted in Figure 5.12B. It is clearly simpler than the
model developed in Chapter 4, however the planning procedure is more complex, as will be
explained in the next section. While disturbances determine whether a sequence is possible in
our model, they are not the only relevant consideration. Rather our focus is on generating a
sequence of tasks .7; for a situation .;. We therefore call our model for goal-directed planning

using model checking a task-driven finite transition system which we define as follows.

Definition 4 (Task-Driven Transition System) A task-driven transition system TDTS is a tu-
ple (S,Act,—,1,AP,L) where

* S={s0,51,...,55} is a fixed set of states;

Act = {Ts, Ty, Tg} is the set of tasks defined in Section 5.3.1;

o —C SxAct xS is a transition relation where s — s' is admissible if and only if a task can

evolve the model from state s to s';
o [ ={so} is the initial state;
* AP is a set of atomic propositions;

o L:S — 24% is a labelling function which determines which elements of AP are true at

each state s.

As should be clear from above, states in our model receive a valuation (labelling) at runtime

using the abstraction approach described in Section 5.3.4, based on the location of disturbances.

5.3.6 Attract-Avoid Transition System

The TDT'S defined in the previous section is used to reason about the safety of a short sequence
of tasks .7; for a situation .#;. However, the transition system can only be used to reason about
the avoidance of disturbances using model checking. We in addition want to prioritise attraction
towards the goal as a bias to promote the minimal deformation of the robot path when negoti-
ating disturbances. To do this, we require that the robot always prefers a task sequence which

eliminates error to the goal D¢ and that an appropriate avoid sequence is chosen when this is not
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possible for a situation. We therefore need some way to resolve non-determinism in the 7DTS
which promotes an attentional focus on the two dimensional geometry of a disturbance D.

We derive a secondary transition system from the 7DT'S defined in Section 5.3.5 to further
reason about the properties of task sequences, specifically to prioritise their order. We call our

model an attract-avoid finite transition system which we define as follows.

Figure 5.13: Attract-avoid transition system.

Definition 5 (Attract-Avoid Transition System) An attract-avoid transition system AATS is a
tuple (S',Act',—' AP’ .I') derived from a TDTS where

o §" = {s5,53,54} is the set of final states in the TDTS for each possible sequence;
o Act' ={Ts,T;, — Ts, Tz — Ts} is the set of possible sequences in the TDTS;

o —/C 8 xAct' x S is a transition relation where s — s' is admissible if and only if a

sequence of tasks can evolve the TDTS from the initial state s to a state in S';
o I' = {s3,53,54} is the set of initial states;
* AP is a set of atomic propositions.

The AAT'S is shown in Figure 5.13. The initial state for a run is determined by the relative

direction of the goal DC. For example, if the goal is straight ahead (i.e., partition PC is not

straight
empty), then the initial state would be s5. We explain how we use the AAT' S in the next section.

5.3.7 Planning Using Model Checking

We use the fask-driven transition system defined in Section 5.3.5 as an initial step to reason

about the safety of possible task sequences for a situation .#; using the LTL property defined
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in Equation 4.18. To then prioritise attraction and resolve non-determinism in the model, we
use the attract-avoid transition system to impose a relevant ordering and select an appropriate
sequence of tasks for the situation. We therefore use model checking as a discrete function
f: % — Z; which maps from a situation to a safe sequence of tasks. The task sequence .7; is
then simulated using Algorithm 5 to produce a new situation .%;, | and the procedure repeats
recursively until error to the goal DY has been eliminated. Consequently, a plan is a sequence

of task sequences (.7;);cny. As our approach is best first, state-space explosion is minimised.

LTL Specification

As in Chapter 4, we use the property ¢ defined in Equation 4.18 which is stated in terms of two

state properties, horizon and safe. However, the state properties have a different interpretation.

Definition 6 Property horizon is true at state s if one of the following conditions hold: (i) the

longitudinal dimension at s is Qdg e, (ii) the absolute value of the lateral dimension at s is dpqy.

In Definition 6 condition (i) ensures that states s3 and s4 are valid horizon states in the event
that there are no lateral disturbances, and condition (ii) that state s5 is a valid horizon state when

there is no longitudinal disturbance, meaning that the robot can drive straight distance d;q ger-

Definition 7 Property safe is true at state s if one of the following conditions hold: (i) the

absolute value of one dimension at s is dy,.; (ii) proposition horizon is true at s.

In Definition 7 condition (i) ensures that rotations are safe due to construction of the safe
zone defined by the parameter dy,r.. Relevant states around the origin have one dimension
equal to dy,z., and this uniquely identifies them. Condition (ii) guarantees that a state is safe

when there are no disturbances preventing the robot from driving straight distance dyqger-

Reasoning About Safety

For a situation .%; we first use the situational analysis approach described in Section 5.3.4 to
arrive at a valuation of states and assign a valuation to the set AP. It is then possible to deter-
mine the set of paths which satisfy the negation of the property —¢ = safe U (safe A horizon)
by calculating the automaton formed as the product of TDT'S and the NFA .o/, (see Section
4.3.5). We again implement the underlying graph of the TDTS and compute the product for a
situation at runtime, which in practice simply amounts to identifying which states in the graph
are terminal.

Figure 5.14A shows one example of a situation .#; resulting in the valuation of state prop-
erties for TDT'S, illustrated in Figure 5.14B. The state property safe is always true for states
{50,51,52} by condition (i) of Definition 7. As Equation 5.11 is not satisfied, state s5 = [0tdy, e, 0, 0],

hence by condition (i) in Definition 6 state property horizon is true and state property safe
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Q {safe, horizon}

Figure 5.14: A: example situation .#;. B: valuation of state properties for situation in A.

is true by condition (ii) in Definition 7. Equation 4.12 is satisfied, so the valuation of state
§4 = [O,D; ,0], hence by Definitions 6 and 7 both state properties are false. Finally, Equation
4.11 is not satisfied, hence the valuation of state s3 = [0, d,;qx,0]. By condition (ii) in Definition
7 the state property horizon is therefore true and by condition (ii) in Definition 7 property safe

is also true. The resulting product automaton DTS ® 47- is illustrated in Figure 5.16.

Figure 5.15: Product automaton 7DT'S ® 47, for example in Figure 5.14.

Two sequences are valid for the situation in Figure 5.14A. At this point, if we simply gen-
erated a sequence using f-DFS, as in Chapter 4, there is a possibility that the sequence 7T, — Ts
could be generated due to non-determinism. From the perspective of an external observer, it is
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obvious that this is undesirable, as while the disturbance D would be avoided, the robot would
then be driving away from the goal DC. The clear option is to execute task 75 and continue doing

so until it is possible to execute Tg — Ts and move towards the goal. For this we use the AAT'S.

Prioritising Attraction to the Goal

As the AATS is formed from states in the TDT' S the same valuation of state properties applies.
In our example, we have already reasoned about which of the possible final states in the TDT'S
satisfy the property safe U (safe A horizon) and calculated the product automaton TDTS ®
4. Hence for the states §' = {s5,54,53} it is known for which states the conjunction safe A

horizon is true. The resulting valuation of state properties for the AAT'S is shown in Figure 5.16.

{safe, horizon}

{safe, horizon}

Figure 5.16: Valuation of state properties in AAT' S for example in Figure 5.14.

We are interested in returning a state that satisfies the property safe A horizon as this cor-
responds to a terminal state for a safe sequence in TDTS. We define a second property [l¢

where

¢ = —(safe A horizon) (5.12)

which states that —(safe A horizon) is an invariant condition that holds for every state. The set
of counterexamples for ¢ constitute a language of finite words which can be recognised by an
NFA. We therefore construct another NFA .7y = (Q',X,8', 0, F') where Q' = {q(),¢} } is the
set of states, ¥ = 247 is a finite alphabet, §’ : Q' x ¥ — 29" is a transition relation, 0 = {qp} is
the initial state, and F’ = {q } is the accepting state. Figure 5.17 shows the NFA &7_4.

When a valuation has been assigned to the set AP for the TDT'S, we calculate the product
automaton for AATS and 27y and generate a (finite) path using breadth-first search (BFS).

The algorithm returns a path to the first state it encounters where the property safe A horizon
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i}

Figure 5.17: NFA for the property safe A horizon.

is true. The initial state is determined by the relative location of the goal using the abstraction
defined in Section 5.3.3. Consequently, if the property safe A horizon is true at the initial state,
then a single state is returned constituting a path of length zero. However, this is sufficient as
we are only interested in the final state to indicate the relevant sequence in the TDTS. If it is
the initial state that is returned, then the selected sequence is driven by attraction to the goal DC.
Otherwise a path with a final state representing a relevant avoidance sequence is returned. We
then use the final state from the returned path as the terminal state for TDT'S to generate the
relevant sequence of tasks .7; for the situation using f-DFS. Note however that as the sequence

is fully determined at this point, a simple if-then-else algorithm would be equally sufficient.

Recursive Forward Planning

The combined T DT S/AAT S approach makes it possible to reason about the relevant sequence
of tasks .7 for a situation .#; in a way that promotes minimal deformation of the robot path
when negotiating a two dimensional object. As mentioned above, a plan is a sequence (-7;);cn
generated using forward simulation of task sequences via the procedure in Algorithm 5. Hence
a plan corresponds to a sequence of simulated situations. Planning can therefore be viewed as a
proxy for imagination in biological organisms, e.g., human beings (see Section 3.3 for details).

However, as the robot has an egocentric perspective on the environment, it only has partial
information available when generating a plan, making it necessary to replan for accurate obstacle
avoidance. When encountering an object (i.e., a disturbance D) in the path of the robot, the point
cloud provides incomplete information on the dimensionality of the object as it is mostly hidden
from view. In addition, due to error in actuation and tracking, the relevant sequence .7; for
a situation during the real execution may depart from what has been planned. One possible
strategy for replanning is to take a receding horizon approach and generate a new plan after the
execution of each task sequence. However, to minimise computation, we focus on replanning

only when the relevant sequence during execution deviates from the sequence that is expected.
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The procedure for generating plans is outlined in Algorithm 6. When checking the relevant
sequence for the current situation, only the abstraction is used so there is no recursion, indicated
by the boolean parameter reactive. Otherwise we call the procedure recursively to eliminate all
error to the goal, based on a partition for witnessing whether the error is within a bound on the
x-coordinate and y-coordinate (we define this partition in Section 5.4.2). We also include the
parameter recursionlarget as a limit on the depth of recursion for experimentation purposes, as
will be explained in Section 5.5. At each step in the recursion, a sequence .7; is generated and
added to a queue of tasks (i.e., a plan), which is then retrieved by the agent after the procedure
completes to begin execution. The procedure generateState() uses the AAT S to generate an ac-
cepting state via BFS indicating the desired sequence, which is used by the generateSequence()

procedure to generate a sequence of tasks .7; relevant for the situation .#; using f-DFS.

5.4 Implementation Details

As with the approach developed in Chapter 4, our method was implemented on the low-powered
robotic platform described in Section 3.1. Planning using model checking is applied recursively
using simulation to generate a path which eliminates error to the goal D®. If an unexpected
disturbance D is encountered during the real execution, or the robot determines that the best
sequence of tasks .7; for a situation does not match what is planned, then the robot replans a

path to the goal. We now outline the agent architecture and reactive replanning mechanism.

5.4.1 Agent Architecture

Figure 5.18 shows the agent architecture. As in Chapter 4, the agent mostly reasons reactively
about the sensed environment state. The recursive model checking procedure described in the
previous section is used to recursively plan a sequence of closed-loop tasks which negotiates any
visible disturbance D and eliminates error to the goal D®. The red aspects represent reasoning
about task outcomes based on the current state of the environment and the blue aspects represent
reasoning about the future using model checking. Reactive model checking (i.e., reasoning
about the relevant sequence of tasks .7 for the current situation) is performed after the successful

execution of a task, and if the first task in the sequence does not match, a new plan is generated.

5.4.2 Reactive Replanning

Figure 5.19 illustrates control flow for the task controller. When the robot initiates, it knows the
location of the goal DY but has no plan. A new scan event from the LiDAR calls the agent event
handler and passes the set of observations O to the current task event handler, which by default

is the straight task T, which returns a task result. As the straight task 7s has no control goal
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Algorithm 6: Generate Plan Using Model Checking

Input : Observations O, error to goal DS, boolean reactive, integer recursionlarget.

Output: Sequence of tasks .7;.

1 Procedure GeneratePlan (O, DG, D, reactive, recursionlarget)
2 T+ 0

3 term <— {ss,53,54}

4 initAATS <+ GoalDirection (DC, dsafe A)

Pstmight <0
foroc Odo
L add o to Pstraight

w N w»n

9 if initAATS = s5 then

10 if Py rqigne 7 OV D # O then

11 L remove ss from term

12 else

13 accept < generateState(term,ss)
14 J; < generateSequence(accept)

15 if plan = 0 then

16 Py+ < ConstructPY (O, dyfe, dmax, true)
17 P, <= ConstructPY (O, dsafer dmax, false)
18 if P;” # 0 then

19 L remove s3 from term

20 if P;” # 0 then

21 L remove s4 from term

22 accept <— generateState(term, initAATS)

23 J; < generateSequence(accept)

24 | if Z]0] = Ts then
2 | add diarger = Odsafe — dsage to Fi[0]

26 else
27 L add dtargel = dpax — dsq fe tO T [1]

28 if — reactive then

29 push .7; to queue

30 11 + SimulateTasks ({0,D%), )

31 recursionDepth += 1

32 if recursionDepth < recursionTarget N (|DC[0]| > dsqe N |DC[1]] > dsqs.) then
33 L return GeneratePlan (.%41[0], Z11[1], (0,0), false, recursionTarget)
34 recursionDepth = 0

35 return .7;
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Figure 5.18: Agent architecture for goal-oriented obstacle avoidance.

at this point, because there is no plan, the task result is null. The location of the goal is then
updated, which initially is the same as stipulated because the robot has not yet moved.

The robot then reasons whether it should go towards the goal. Due to imprecision in track-
ing and error in actuation, we define an egocentric partition around the robot which indicates

whether the robot has (approximately) arrived at the goal D¢ = [x,y]. This is defined as:

Pgoal = {x7y | x < dsafe Ny < dsafe} (5.13)

where the parameter dy, s, defines an upper and lower bound on the coordinates of the goal DO,
If both coordinates are in the partition, then the robot has arrived so can stop. Otherwise, the
robot reasons that it still needs to make progress towards the goal, as shown in Figure 5.19B.
Next the robot reasons whether the task was a failure, i.e., whether an unexpected disturbance
has been detected. If the task is a failure, then a new plan is generated, otherwise the robot
continues down the reasoning chain to consider if the plan is empty. When first initiated, the
task is not a failure but the plan is empty, so it generates a new plan. As the robot has not started
execution of the plan yet, it reasons that the next task in the plan should be triggered. The control
flow loop then ends, resulting in another new scan event ~ 200 milliseconds later. This process

repeats until the task is a success, at which point the robot checks the relevant task sequence
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Figure 5.19: Control flow for reactive replanning. A: interface for discrete task outcomes and
closed-loop update of goal location using dead reckoning. B: reactive reasoning chain.

for the current situation using reactive model checking (see Figure 5.18). If the first task in the
sequence does not match the next task in the plan, then a new plan is generated. Otherwise the

next task in the plan is triggered. This process continues until Py,,; 7 @ and the robot stops.
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5.5 Case Study II: Obstacle Avoidance

We describe the design of a case study used to validate our approach for an obstacle avoidance
scenario similar to an overtaking task in autonomous driving. Following on from the case study
in 4.6, we focused on reliability and memory usage. Specifically, we were interested in whether
our approach reliably produces more efficient obstacle avoidance behaviour compared to the
extended baseline described in Section 5.2. In addition, we were interested in whether our
approach was able to reliably meet the real-time deadline. As in Section 4.6, we also wanted
to profile the memory usage of both planning using model checking and the process for goal-

directed obstacle avoidance. Hence we identified the following research questions for our study:

r

RQ6 Does goal-direction planning using model checking reliabily generate more

efficient collision avoidance behaviour compare to the baseline method?

RQ7 Does goal-directed planning using model checking reliably meet the real-time

deadline of 100 milliseconds for autonomous driving applications?

RQ8 What is the memory usage of goal-directed planning using model checking?

5.5.1 Environment Definition

We focus on an overtaking task in a static bounded environment. Our aim was to mimic over-
taking in autonomous driving, though there are clear differences. Specifically, the environment
is not dynamic and there are no oncoming vehicles which simplifies the task, however as our
focus was on the efficiency of trajectories, this was considered sufficient. Figure 5.20 shows
the environment setup. The environment has one object which the robot needs to pass to arrive
at the goal D = [1,0] (distance in meters). Note that we define arrival at the goal as stopping
anywhere in the goal area, which reflects definition of the partition P, for witnessing the elim-
ination of DY, As the robot never rotates exactly :I:%Jt radians, we balanced the study to control
for any bias in the generated trajectories, with a large gap on the right for half of the runs (see

Figure 5.20A) and the same size of gap on the left for the other half of runs (see Figure 5.20B).
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Figure 5.20: Environment setup. A: large gap on right for passing the disturbance D. B: large
gap on left for passing the disturbance D. Red square represents goal area of same dimensions
as the partition Py,,;. The goal DO is 1 meter away directly in front of the robot.

5.5.2 Artefacts

The baseline was described at a high level in Section 5.2. Similar to our method using model
checking, the baseline method takes a situation .#; as input, generates a sequence of tasks .7; in
response, simulates the outcome, and repeats the process recursively until the goal is reached.
When the baseline method initiates planning to a goal, it first uses the goal abstraction in Section
5.3.3 to determine whether the goal is straight ahead, to the left, or to the right for the current
situation and generates the corresponding control task. However, if the relevant task is 75 and the
robot perceives a disturbance blocking its path, it selects either 77 or Tk, depending on whether
the angle of the disturbance is greater or less, respectively, than O radians. As mentioned in
Section 5.2, to prevent the robot from doubling back on itself, we in addition require that the
robot executes a straight task immediately after a rotate task 77 g, however the robot can only
perceive disturbances directly ahead so it can only reason about a single disturbance at a time,
unlike the model checking approach. Execution of the relevant tasks is then simulated and the
process repeats until the goal is reached, at which point the plan is executed by the robot. As the
environment is partially observed, the baseline can replan using the method in Section 5.3.7.
We compared the baseline method to goal-directed obstacle avoidance using model checking
as described in Section 5.3. While our approach has the ability to eliminate all error to the goal,
we were also interested in comparing the performance of our approach with a strict limit on
recursion depth, as it seemed reasonable to expect this adjustment would lead to an improvement
in processing latency, though generated plans would be incomplete until the goal is within range.
Hence we in addition compared the performance of a second approach using model checking

for planning and goal-directed obstacle avoidance where the recursion depth was limited to 5.
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5.5.3 Analysis

We now provide details of our analysis. We collected data for 90 runs in total, 45 runs for the
scenario shown in Figure 5.20A and 45 runs for the scenario in Figure 5.20B. For each scenario,
we collected data for 15 runs from each method: the baseline planning method, model checking
with no recursion limit, and model checking with a recursion limit of 5. Hence for each method

there were 30 runs in total for our analysis of the research questions.

Analysis of RQ6

We focused on the construct of “reliability” to answer RQ6, specifically the comparative effi-
ciency of trajectories between each method, as in Section 4.6. For the statistical analysis, we
again used trajectory length as a proxy for time, conceived as a measure of minimal path de-
formation. This is based on the fact that a straight trajectory to the goal would be optimal, so a
shorter trajectory represents a more efficient negotiation of the two dimensional disturbance D.
As in Section 4.6, we also compared the number of collisions for each method. In addition, we

compared the extent to which each method was successful in reaching the goal area.

Design of Analysis Our study had a 3 x 2 between-factors design for statistical analysis of
trajectory lengths, reporting of collisions and goal attainment. The method variable had three
levels: “Baseline” (baseline method), “No Limit” (model checking with no limit on recursion)
and “Limit” (model checking with recursion limited to depth 5). The scenario variable had two

levels: “Right” and “Left” as represented in Figures 5.20A and 5.20B, respectively.

Data Collection and Preparation During data collection, we used markers to indicate the
correct placement of the robot. Runs were either terminated when the robot determined that
it was at the goal, or if the robot drove out of the environment bounds. We also recorded the
number of collisions, which we defined as the robot making a distinct sound when colliding with
an object. In addition, we recorded whether the robot stopped in the goal area or not, marked
off with tape. To account for cases where the robot might straddle the goal area, we defined
success as the robot stopping with the centre of the LiDAR across the goal area threshold. As in
Section 4.6, for each run we extracted the trajectory from video using the optical flow method

in OpenCV and calculated the length of the trajectory in pixels prior to analysis.

Results First we compared trajectory lengths for each method while ignoring the scenario. A
Kruskal-Wallis test was performed. It was found that there was a significant effect of method on
trajectory length H(2) =29.4, p < .001. Post-hoc analysis of pairwise comparison using Dunn’s
test (Bonferroni correction applied) revealed that there was a significant difference between
the baseline method and both no limit model checking (p < .001) and limit model checking

(p < .001), while there was no statistical difference between model checking methods. As
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Figure 5.21: Box plot of trajectory lengths for each method across both scenarios.

indicated in Figure 5.21, the results suggest that the baseline method generates less efficient
trajectories than both model checking approaches, but model checking approaches are the same.
Next we analysed the influence of the scenario on the generated trajectories to investigate
the impact of asymmetries in the real execution. For each method, a non-parametric Mann-
Whitney U test was performed o = .05 (two-tailed). There was no statistical difference between
the mean ranks for the baseline method. However, there was a statistical difference for no limit
model checking U = 225,n; /ny = 15, p < .001, with a medium effect size, r = .49. There was
also a statistical difference for limit model checking U = 241,n;/np = 15, p < .001, again with
a medium effect size, r = 0.44. The result suggest that the scenario has a significant effect on the
generated trajectories for the model checking methods. The null result for the baseline method
could be due to greater variation in the generated trajectories due to randomness in planning.
Figure 5.22A shows one example of a trajectory generated by the no limit model checking
approach with a large gap for passing the disturbance on the left. In Figure 5.22B, a generated
trajectory for the baseline is shown for the same scenario. In either case, the robot successful
navigates to the goal, however it is clear that the baseline trajectory is longer. In comparison, the
model checking approach takes a shorter route which minimally deforms the path of the robot.
The number of collisions was also observed for each run. For the baseline, 14 collisions
were observed over 30 runs and no collisions were observed for either model checking method.
We also recorded successful navigation to the goal. The baseline successfully navigated to the

goal for 13 runs out of 30 and both model checking methods were successful for all 30 runs.
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Figure 5.22: Example of trajectories. A: No limit model checking. B: baseline method.

Analysis of RQ7

We focused on the construct of “reliability” to answer RQ7, operationalised for this scenario
using processing latency, as in Section 4.6. We aimed to describe the mean processing latency for
planning using model checking and estimate confidence bounds to assess whether our approach

can reliably meet the hard real-time deadline of 100 milliseconds.

Design of Analysis As in Section 4.6, we calculated the minimum, maximum and mean pro-
cessing latency for all no limit and limit model checking runs (each method 30 runs in total) and
estimated 95% confidence intervals using the bootstrap method. We also compared processing
latency for each method using significance testing, as it was expected that the processing latency

for limit model checking would be less than no limit model checking.

Data Collection and Preparation Processing latency and algorithm memory usage was col-
lected for all no limit and limit model checking runs, 30 runs each. We used a built-in package

in C++ to collect processing latency at runtime and dumped the data to a log.

Results The minimum processing latency for no limit model checking was 20.9 milliseconds
and the maximum was 120.3 milliseconds. The mean was 57.4 milliseconds with an estimated
95% confidence interval of [51.8,63.7]. For limit model checking, the minimum processing
latency was 17.3 milliseconds and the maximum was 83.7 milliseconds. The mean was 35.5
milliseconds with an estimated 95% confidence interval of [33.9,37.6]. We also compared each
method using statistical testing. A Mann Whitney U test was performed. It was hypothesised

that the mean rank of limit model checking would be lower than the mean rank of no limit model
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checking, a = .025 (one-tailed). The test revealed that the difference was indeed significant
U =2533,n; =98/ny =90, p < .001, with a small effect size, r = .21 (see Figure 5.23).
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Figure 5.23: Comparison of processing latency for no limit and limit model checking methods.

Analysis of RQS8

We focused on describing memory usage to answer RQ8. As in Section 4.6, we identified no

construct as our analysis was descriptive. We provide memory usage for all three methods.

Design of Analysis We estimated the runtime memory usage of both model checking and the
entire program. We followed the same procedure as in Section 4.6 for estimating model checking
memory usage for both no limit and limit model checking methods based on worst case usage

at runtime and a state size of 4 bytes. We also estimated process memory usage for all methods.

Data Collection and Preparation Process memory usage was collected for all runs, collected
using the Linux top utility at a sampling rate of 1 millisecond. We instrumented the code to
record the growth of relevant data structure for f-DFS and BFS and dumped the data to disk.

The data was then processed and cleaned in Python prior to analysis.

Results Maximum memory usage by no limit model checking at runtime was 2.34 kilobytes
for BFS and 2.5 kilobytes for f-DFS. Maximum memory usage of the process was 5.02 kilobytes.
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However, this includes the amount of shared memory available to a process, not all of which is
typically resident to the program. The maximum amount of shared memory was 3.12 megabytes,
hence a lower bound on the maximum was calculated at 1.94 megabytes. Maximum model
checking usage was estimated to comprise 0.04% to 0.1% of maximum process memory usage.

For limit model checking maximum memory usage was also 2.34 kilobytes for BFS and 2.5
kilobytes for f-DFS. Maximum memory usage of the process was 4.4 kilobytes. The maximum
amount of shared memory was 3.12 megabytes, hence a lower bound on the maximum was
calculated at 1.26 megabytes. Maximum model checking usage was estimated to comprise
0.05% to 0.1% of maximum process memory usage.

In comparison, maximum process memory usage for baseline was 5.7 megabytes with a
maximum shared memory component of 3.03 megabytes. In this case, a lower bound on the
maximum was calculated at 2.7 megabytes. While there is uncertainty, the data suggests that

memory consumption for model checking is less than consumption for the baseline.

5.5.4 Threats to Validity

Some of the threats to internal validity discussed in Section 4.6 apply. For example, the same
issues with OpenCV are present, though experience from the previous study helped organise
data collection to avoid some of the experienced pitfalls (e.g, inappropriate lighting conditions).
However, some issues have not been over come, such as the uncertainty in metrics provided by
the Linux top utility. Ultimately, a better method for profiling the memory usage would have
been ideal. To address this shortcoming we made conservative estimates for memory usage.
There are a couple of new threats to the internal validity. One issue that became obvious after
testing was a bug in the code from previous experimental development efforts which affected
the smoothness of model checking trajectories. For some runs, this has the effect of making
the robot perceive no lateral disturbance for some runs by adjusting the parameter of the lateral
partition. While the robot is ultimately successful in reaching the goal, the side effect is that it
executes an extra turn, notices a disturbance head on (i.e., the unseen lateral disturbance), then
replans and corrects its course. While this affects the data, it does not ultimately undermine the
result, which is achieved even though some runs produce longer trajectories than would have
otherwise occurred. Once this is addressed, the trajectories should be yet more efficient.
Another issue with internal validity was manually deciding when the robot had arrived at the
goal. There were some ambiguous cases where the centre of the LIDAR was on the edge of the
goal area, primarily for the baseline method. If this was the case, we biased towards saying that
the robot had arrived at the goal, though ultimately it was a judgement call. Ultimately, this was
a consequence of the poor tracking using dead reckoning. One possible improvement would be
to install an inertia measurement unit (IMU). Although this would not prevent error from accu-
mulating in the system, it should be more reliable and allow for more flexible experimentation

over greater distances. For example, if the tracking is sufficiently accurate, we could simply use
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distance to the goal and some minimum threshold as a measure for success.

One issue with external validity is that our study focuses on one scenario (both scenarios
are a reflection of each other). As we are interested in autonomous driving, a task similar to
overtaking is appropriate for this thesis, however additional environmental setups would help
demonstrate the generality of our approach, which in the present study is unclear. While our
baseline is sufficient for initial research, comparing our method to other well-known algorithms

for planning and obstacle avoidance, such as A*[82] or DWA[66], could strengthen our results.

5.5.5 Summary

We conducted a close study of trajectory lengths, observed collisions and recorded when the
robot was successful in reaching the goal to answer RQ6. We found evidence that both no limit
and limit model checking planning methods produce more efficient trajectories for goal-directed
obstacle avoidance than the baseline planning method. However, there was no statistical differ-
ence between model checking planning methods. Over the course of 30 runs, 14 collision were
observed for the baseline method but none were observed for either model checking method.
Both model checking methods also reliably reached the goal for all 30 runs, whereas the base-
line method only reached the goal 13 times. Hence planning using model checking had a 100%
success rate for goal attainment while the baseline method success rate was only 43%.

To answer RQ7 we collected data on processing latency. We found that mean processing
latency (and confidence bounds on the population mean) for both no limit model checking and
limit model checking were well within the 100 milliseconds deadline. We in also found a sig-
nificantly lower processing latency in limit model checking method compared to no limit.

We collected data on memory usage to answer RQ8. While the data on memory usage is
uncertain, we found some evidence that both model checking methods used less process memory
than the baseline. In addition, mean processing latency for both no limit model checking and

limit model checking was well within the 100 milliseconds deadline. RQs have been answered.
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Response to RQ6 Our evidence suggests that goal-directed planning using model
checking reliably generates more efficient obstacle avoidance behaviour than the baseline
method. Both model checking methods tend to spend less time completing the task (i.e.,
produce shorter trajectories), successfully avoid collisions, and have a 100% success
rate in reaching the goal. Results also showed that there is no significant difference in

trajectory lengths between each model checking method.

Response to RQ7 Our data indicates that both model checking methods meet the hard
real-time deadline of 100 milliseconds. In addition, it was found that processing latency
for limit model checking is significantly less than no limit model checking, though the

effect size was weak. Our analysis suggests this holds for the population.

Response to RQ8 Our data suggests that maximum model checking memory usage for
both methods was 2.35 kilobytes for BFS and 2.5 kilobytes for f-DFS. Maximum process
memory usage for no limit model checking ranged between 1.94 and 5.02 megabytes,
and for limit model checking it ranged between 1.26 and 4.4 megabytes. For comparison

maximum baseline process memory usage ranged between 2.7 and 5.7 megabytes.

5.6 Discussion

In this final investigation, we have extended the bespoke implementation of model checking
in Chapter 4 to support the planning of avoidance and attraction closed-loop tasks. A layered
abstraction was used to make discrete decisions about the relative location of the goal and reason
about predicted outcomes for sequences of tasks for a situation, using a finite transition system
and LTL property to reason about the safety of sequences. A second transition system built from
a subset of states in the original was then defined to further reason about the properties of task
sequences for a situation (i.e., whether the sequence was driven by attraction or avoidance). It
was then possible to apply this recursively using simulation of task sequences to form a best-first
approach for generating a plan to the goal. When the predicted sequence for a current situation

was not expected, the replanning mechanism was triggered to handle partial observability.



CHAPTER 5. REAL-TIME GOAL-DIRECTED OBSTACLE AVOIDANCE 128

Response to RQ4 We can use a layered abstraction approach to reason about situations
and define two interrelated transitions systems for reasoning about the types of sequences
relevant for a situation. This makes it possible to reason about the properties of task se-
quences, specifically whether they are driven by attraction or avoidance. By applying this
procedure recursively using simulation of task sequences, we can then forward plan to the
goal. To in addition handle partial observability, we can replan when the predicted se-
quence for the current situation does not match the next task in the plan, or a disturbance

is unexpectedly encountered. Hence we can replan only when necessary. This result in a

best-first approach which minimises state-space explosion, promoting efficiency.

In general, when updating plans specified using LTL to reflect environment changes in un-
certain environments, two approaches are possible: reactive synthesis or iteratively updating the
automaton. The former is computationally demanding, which is problematic for low-powered
platforms like the robot used in this thesis. Similar to [ 14] we iteratively update the automaton,
allowing us to replan as new information about the environment is received. While our approach
in this chapter limits state space explosion using a best-first approach, the solution is somewhat
convoluted due to the interaction of two automatons and untested on other scenarios. Indeed, the
approach is likely coupled to the overtaking task as a consequence of extending the approach
in Chapter 4 to accommodate goals, rather than viewing the goal-directed obstacle avoidance
problem from a fresh perspective. It is therefore unlikely that the solution would be robust in
cluttered environments. One possible alternative approach for goal-directed obstacle avoidance
is to use the iterative search for short trail approach described briefly in Section 3.5.3. As this
returns a path for successive model depths, it could be used to create a viable goal-directed ob-
stacle avoidance method based on the shortest path which has a more robust general application.

As in Chapter 4, our solution guarantees that a generated plan is safe with respect to a set of
possible continuous trajectories in the state space represented by our abstraction, and that a path
to the goal will be found if there is one. However, there is no explicit guarantee that the robot will
follow a continuous trajectory within a safe set, which we address by using over-approximation
in our abstraction. Several attempts to provide robust safety guarantees for robotics systems have
been proposed in the formal methods literature, however rigorously guaranteeing the safety of
autonomous systems is in general a non-trivial task [132]. Indeed, one persistent issue is the
“reality gap” which has lead to the use of runtime verification. In [54], for example, drones were
simulated offline, plans generated by conventional means, and runtime monitors synthesised
using model checking to ensure model properties are satisfied during execution. Both [157] and
[128] synthesised a safety monitor as an extra layer between the motion planner and trajectory
tracker to check if trajectories generated by the planner violated certain criteria. In [215] a
monitor was synthesised based on verified models of a quadcopter flight controller to trigger

corrective action (e.g., emergency landing). In contrast, we perform planning with the model
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checker itself instead of checking if an existing algorithm leads to a dangerous situation [74].
We define a robot safe zone to ensure our approach does not lead to collisions during execution.

The main motivation for this is the complexity of modelling the physical environment [132]
which is often partially observed and unstructured and therefore difficult to verify offline. While
runtime verification methods can be used to check that runtime behaviour conforms to expecta-
tion and trigger remedial action, they can only reason about a single trace at a time so cannot
be used for online planning. In comparison, our approach can reason actively about possible
future paths in an online fashion based on sensor data, which is convenient for generating plans
with guarantees of safety in unknown environments. If a plan is generated, it is because it is
safe. While a runtime monitor could be synthesised to ensure the safe zone is never violated,
this would only apply after a plan has been generated. If remedial action is then triggered, the
extra processing could negatively impact the real-time performance of online planning.

Our approach is similar to [76] which uses a Biichi automaton (BA) to revise motion plans
in real-time for uncertain environments, and in principle [101] which combines sampling-based
point-to-point navigation with the deterministic g-calculus to provide probabilistic guarantees.
However, we do not generate the automaton for model checking on-the-fly, rather we maintain a
static graph representing the structure of each transition system and update the relevant accepting
state at runtime to form the product automaton and reflect sensed changes in the environment.
This is possible because we work from an egocentric perspective using an abstraction with a
fixed structure, however the consequence is that our method is coupled to the task domain so it
will not scale. The upshot is that we do not have to compute the automaton which makes the
implementation fast. In future work, we aim to use the iterative search for short trail option and
automate construction of the automaton for more flexible plan specifications in LTL. Another

option is to investigate timed automata for more explicit assurances on real-time performance.



Chapter 6
Conclusion

In this chapter we summarise the contributions of the thesis. First we discuss the extent to which
the thesis statement has been addressed and research questions answered. We then discuss the

limitations of the research in this thesis and provide a discussion of avenues for future work.

6.1 Answering the Research Questions

The research in this thesis was directed by the statement: Model checking can be used to de-
velop a trustworthy real-time planner for generating sequences of closed-loop controllers for
obstacle avoidance which is light on computational resources, inherently explainable, and suit-
able for online decision-making. We have addressed this by developing an online method for
obstacle avoidance on a low-powered robot using model checking which is intrinsically explain-
able. Specifically, we focused on the following three objectives: (i) to evaluate the reliability
of model checking for obstacle avoidance, (ii) to assess the reliability of model checking for
real-time planning, and (iii) to describe the memory usage of planning using model checking.
We therefore do not focus explicitly on generating explanations for the actions of our robot.
Our initial focus in Chapter 4 was on RQ1: How can we use a bespoke model checker to
plan sequences of discrete closed-loop tasks (which have an attentional focus on disturbances)
for collision avoidance on a low-powered robotic system in real-time? We addressed this by
implementing a bespoke model checking algorithm integrated with the robot code which utilises
an egocentric model of the local environment. This model abstracted away the temporal aspects
of closed-loop tasks using the location of disturbances to determine discrete bounds on the low-
level continuous behaviour. It was then possible to use a specification in LTL to reason in
real-time about safe sequences of closed-loop tasks and generate temporally extended plans.
From the primary research question in Chapter 4 and research objectives we derived three sub-
questions which were addressed in the case study in Section 4.6. RQ2 and RQ3 concerned the
reliability of model checking for planning and obstacle avoidance, as per research objectives (i)

and (ii), and RQ4 was concerned with memory usage as per objective (iii). Our results indicated
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that our approach generated more reliable obstacle avoidance behaviour compared to a baseline
within a hard deadline of 100 milliseconds and used minimal memory resources.

The approach in Chapter 4 showed that it was possible to implement model checking on a
low-powered robot in situ for real-time planning. This was possible because we used abstraction
to keep the state space small by only focusing on relevant information about disturbances, and
because we integrated the mode checking procedure directly with the robot code using a static
graph so did not have to compute the product automaton. However, the main limitation was
that the approach was not goal-directed, as it could only spawn closed-loop tasks to avoid a
disturbance, whereas goal-directed behaviour requires closed-loop tasks driven by attraction.

In Chapter 5 we therefore focused on RQS: How can we extend our bespoke implementation
of model checking to plan sequences of avoidance and attraction closed-loop tasks for goal-
directed obstacle avoidance on a low-powered robotic system in real-time? We addressed this
by using a version of our previous abstraction to reason about the best short task sequence for
a local situation, which we then simulated. This procedure was repeated in a recursive fashion
until the goal was reached. To handle uncertainty in the environment, the robot replanned if the
local environment violated its expectation. As localisation was unreliable, we constructed an
abstraction to determine the general direction of the goal, and to reason whether a task sequence
is driven by attraction or avoidance we constructed a second automaton from the states of the
base automaton. From the primary research question in Chapter 5 and research objectives we
again derived three sub-questions which were addressed in the case study in Section 5.5. As
per research objectives (i) and (ii), RQ6 and RQ7 were concerned with the reliability of our ap-
proach, and RQ8 was concerned with memory usage as per research objective (iii). Our results
indicated that our method generates more reliable obstacle avoidance behaviour compared to a

baseline mostly within the hard deadline of 100 milliseconds and with a small memory footprint.

6.2 Limitations

The experimental work in this thesis lacks testing on a couple of typical edge cases known to be
problematic for reactive obstacle avoidance methods in mobile robotics, so it is unclear how our
approach generalises to other scenarios. For example, we have not tested our methods in either
Chapter 4 or Chapter 5 in narrow passage ways or cluttered environments with many obstacles.
While we have tested our approach in Chapter 4 on U-shaped obstacles, where many classical
obstacle avoidance methods typically get trapped in local minima, we have not done this for
the goal-directed method developed in Chapter 5. However, our data for real-time obstacle
avoidance in Chapter 4 suggests that our approach may prove useful for avoiding getting trapped
in corners, which could have applications in service robots (e.g., robot vacuum cleaners).
Another relevant issue in this regard is the scalability of our approach. As the method de-

veloped in Chapter 4 has a fixed maximum plan length, scalability is not problematic. We can
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expect real-time performance to remain consistent regardless of the environment configuration
as the maximum size of the state space is restricted. However, the generated plan length for our
goal-directed method in Chapter 5 is dependent on the distance to the goal—the further away
the goal, the deeper the level of recursion during the planning process. While most plans were
generated within 100 milliseconds with a goal one metre away, this was not true in all cases un-
less the maximum depth of recursion was bounded. This indicates that our goal-directed method
will not perform within real-time requirements when more steps are needed to arrive at a goal.

The implementation of our approach generally performs well regarding the real-time dead-
line of 100 milliseconds due to the direct integration of model checking into the robot code.
However, the trade-off of this approach is a lack of flexibility when developing solutions for
different navigation problems. While this was not too problematic for the obstacle avoidance
method developed in Chapter 4, this is because it had a single objective—avoid obstacles. How-
ever, manually integrating the model checking procedure into the robot code soon became an
issue for goal-directed avoidance where multiple objectives needed to be managed simultane-
ously. Ultimately, this resulted in a somewhat complicated solution. This may be because we
attempted to extend our original solution to handle multiple objectives, so it is possible that a
fresh perspective on the problem would have lead to a more straightforward (and scalable) so-
lution. However, the sensible approach would be to separate the model checking code into an
extensible library with a well-defined interface to compute relevant automata on-the-fly.

We also used a simple set of closed-loop tasks for this initial investigation, driving straight
or rotating i%n radians away from an obstacle. As mentioned in Section 3.1, this was a de-
sign choice to simplify the initial implementation of our approach, as our primary interest was
in showing that it is possible to use model checking for planning sequences of closed-loop con-
trollers (i.e., Braitenberg vehicles [28]) with an attentional focus on disturbances. One advantage
of rotating :l:%n: radians to avoid obstacles is that it guarantees we will avoid convex obstacles,
as the robot will then be perpendicular to the obstacle for subsequent straight movements. It also
conveniently makes it possible to utilise symmetry on the axes of the vector space representing
2D LiDAR data for constructing relevant abstractions of the state space. However, this is not
realistic for real-world applications. As the robot never rotates exactly i%n radians, for exam-
ple, navigation in cluttered environments with narrow gaps may not be feasible. However, more
complex motion and abstraction methods could be incorporated into the basic approach.

This would require more precise localisation, which is a non-trivial task and indeed was a
persistent issue even with the simple set of closed-loop tasks used in this thesis. Consequently,
we had to construct an abstraction to indicate the general direction of the goal as error would
quickly accumulate using dead reckoning. Without a prior map, the standard approach to lo-
calisation is to use some form of SLAM [164]. As mentioned in Section 4.7, however, this is
computationally expensive—the localisation operation alone can impose a time lag in the order

of hundreds of milliseconds [26, ]. While sensor fusion techniques may achieve more pre-
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cise localisation [209], experimental validation rarely measures the processing latency and often

utilises more powerful processors than is available on a Raspberry Pi (e.g., [158, 1.

6.3 Avenues for Future Work

There are several ways forward from the work in this thesis. Perhaps the most obvious avenue
for further work is to investigate the use of other model checking approaches for online plan-
ning on a real robotic platform. As we focus on real-time performance, for example, we could
investigate the use of timed automata [6] for planning. The research question would be whether
we can generate online plans with guarantees on real-time performance using timed automata.
Another question arising from this thesis is how to build a model checker optimised for real-time
on a low-powered device in a stand alone library which computes automata on-the-fly. Ideally,
this would be platform independent so it can work on a variety of robotic devices and support
flexible adaptation of plan specifications for different domains, as discussed in Section 6.2. This
would support investigation into applying hybrid planning and control techniques using model
checking to different areas of mobile robotics, such as ariel and underwater robots. Automated
techniques for discretizing the environment based on the properties of motion primitives would
also be an interesting research direction to help speed up iteration and development, or alterna-
tively abstraction-free approaches based on sampling methods (e.g., using RRT* [134]).

Although AVs promise to reduce road accidents through the elimination of human error, it
is unreasonable to expect accidents will never happen. Consequently, the accident investigation
process can be aided by explanations containing the vehicle’s observations, the road rules and
traffic signs it acted on, as mentioned in Section 2.1.2. While the legal context is still evolving [3,

], the ability to audit vehicle actions is useful for determining liability in insurance claims and
legal proceedings. It can also aide developers in the improvement of AV technology. Our model
checking approach in this thesis uses temporal logic for plan specification which is explainable,
however the generation of causal explanations is a non-trivial task [32, 102]. In addition, storing
actions in a data recorder and recovering them with sufficient fidelity to reconstruct events is
technically challenging [207]. In the interest of developing trustworthy methods for autonomous
driving, one research direction related to this thesis is to investigate how to store and generate
causal explanations for post-hoc analyses of plans generated using temporal logic.

We tested our approach in Chapter 4 extensively on a U-shaped obstacle, which is known
to be problematic for classical real-time obstacle avoidance methods (e.g., AFP [106] and DWA
[66]). As discussed in Section 4.7, this is because they typically predict the next action based
on the current state so cannot reason about temporally extended goals. Indeed, our baseline
method for the case study in Chapter 4 also lacked the ability to reason about extended temporal
goals and consequently often got trapped on the U-shaped obstacles in our experiments. Our

method using model checking, however, reliably did not do this which raises the question of
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how our approach would compare to traditional obstacle avoidance methods. This would be
worth pursuing in the interest of studying the role online planning using model checking can
play in overcoming classical obstacle avoidance issues in mobile robotics through rich temporal
specifications. As indicated in Section 6.2, this could have applications for small indoor service
robots which cannot rely on GPS for localisation and do not have enough resources for SLAM.

With some development, the approach may also be useful for rovers in unknown environments.

6.4 Summary

In this thesis we have shown that model checking and closed-loop control can be used for online
planning and obstacle avoidance on a low-powered robot. As model checking uses a precise
and unambiguous formalism, it is also explainable and therefore suitable for the development of
trustworthy reasoning methods in autonomous driving. Our approach demonstrates that hybrid
planning and control is feasible on a real autonomous robot with minimal resources under strict
real-time constraints, a persistent challenge in the hybrid planning community. It also demon-
strates that full model checking can be utilised as an online technique with respect to planning
for autonomous systems, whereas the majority of research in this domain focuses on offline ap-
plications using established tools, or runtime verification for online monitoring. Most real-time
obstacle avoidance approaches in the mobile robotics community are not able to plan for long
horizons. Our approach in comparison does this well within hard real-time constraints. It is our
hope that the work in this thesis is continued to benefit autonomous navigation for mobile robots

in the short term and trustworthy reasoning for autonomous driving in the long term.



Appendix A

Promela Code for River Crossing Example

Figures A.1 and A.2 show listings which include full code for the puzz1e proctype described in
Section 3.5.3. The global variables, mt ype declaration, inline function, propositions and LTL
declaration are provided in Section 3.5.3. From the command line, to run SPIN and save the
shortest path to an error file use spin -search -i puzzle.pml. To then run a guided

simulation (and output associated actions) use spin -t puzzle.pml.
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active proctype puzzle ()

{

left_bank:

do

od;

passenger==NULL && foxP==0 —> passenger=FOX; foxP=1;

printf ("\nPick_up_fox_from_left_bank\n");

goto right_bank;

/xpick up fox from left_bank %/

passenger==NULL && goatP==0 —> passenger=GOAT; goatP=1;
printf ("\nPick_up_goat_from_left_bank\n");

goto right_bank;

/xpick up goat from left_bank =/

passenger==NULL && cabbageP==0 —> passenger=CABBAGE; cabbageP=1;
printf ("\nPick_up_cabbage_from_left_bank\n");

goto right_bank;

/«pick up cabbage from left_bank %/

passenger==FOX && goatP==0 —> swap(foxP, goatP); passenger=GOAT;
printf("\nReturn_fox_to_left_bank_and_pick_up_goat\n");
goto right_bank;

/sxreturn fox to left_bank, pick up goat =/

passenger==FOX && cabbageP==0 —> swap(foxP, cabbageP);
passenger=CABBAGE;

printf ("\nReturn_fox_to_left_bank_and_pick_up_cabbage\n");
goto right_bank

/xreturn fox to left_bank, pick up cabbage =/
passenger==FOX —-> foxP==0; passenger=NULL;

printf ("\nReturn_fox_to_left_bank");

goto right_bank

/xreturn fox to left bankx/

passenger==GOAT && foxP==0 —-> swap(goatP, foxP); passenger=FOX;
printf ("\nReturn_goat_to_left_bank_and_pick_up_fox\n");
goto right_bank

/s«return goat to left_bank and pick up fox =/
passenger==GOAT && cabbageP==0 —> swap(goatP, cabbageP);
passenger=CABBAGE;

printf ("\nReturn_goat_to_left_bank_and_pick_up_cabbage\n");
goto right_bank

/xreturn goat to left_bank and pick up cabbage +/
passenger==GOAT —-> goatP=0; passenger=NULL;

printf ("\nReturn_goat_to_left_bank");

goto right_bank

/xreturn goat to left_bank %/

passenger==CABBAGE && foxP==0 —> swap(cabbageP, foxP); passenger=FOX;
printf("\nReturn_cabbage_to_left_bank_and_pick_up _fox\n");
goto right_bank

/«return cabbage to left_bank and pick up fox =/
passenger==CABBAGE && goatP==0 —> swap(cabbageP, goatP);
passenger=GOAT;

printf ("\nReturn_cabbage_to_left_bank_and_pick_up_goat\n");
goto right_bank

/«return cabbage to left_bank and pick up goat=/
passenger==CABBAGE —> cabbageP=0; passenger=NULL;
printf("\nReturn_cabbage_to_left_bank");

goto right_bank

/«return cabbage to left_bank %/

Figure A.1: Main Proctype for Crossing Puzzle
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right_bank:

do

od;

passenger==NULL && foxP==2 —-> passenger=FOX; foxP=1;

printf ("\nPick_up_fox_from_right_bank\n");

goto left_bank

/xpick up fox from right_bank =/

passenger==NULL && goatP==2 —> passenger=GOAT; goatP=1;

printf ("\nPick_up_goat_from_right_bank\n");

goto left_bank

/xpick up goat from right_bank =/

passenger==NULL && cabbageP==2 —> passenger=CABBAGE; cabbageP=1;
printf ("\nPick_up_cabbage_from_right_bank\n");

goto left_bank

/«pick up cabbage from right_bank =/

passenger==FOX && (goatP+cabbageP <4) —-> foxP=2; passenger=NULL;
printf ("\nDeposit_fox_at_right_bank\n");

goto left_bank

/xdeposit fox at right_bank =/

passenger==GOAT && (foxP+cabbageP <4) —-> goatP=2; passenger=NULL;
printf ("\nDeposit_goat_at_right_bank\n");

goto left_bank

/«deposit goat at right_bank %/

passenger==CABBAGE && (foxP+goatP <4) —> cabbageP=2; passenger=NULL;
printf("\nDeposit_cabbage_at_right_bank\n");

goto left_bank

/«deposit cabbage at right_bank =/

passenger==FOX && goatP==2 —> swap(foxP, goatP); passenger=GOAT;
printf ("\nDeposit_fox_to_right_bank_and_pick_up_goat\n");

goto left_bank

/xdeposit fox to right_bank and pick up goat =/

passenger==FOX && cabbageP==2 —-> swap(foxP, cabbageP);
passenger=CABBAGE;

printf ("\nDeposit_fox_to_right_bank_and_pick_up _cabbage\n");
goto left_bank

/«deposit fox to right_bank and pick up cabbage =/
passenger==GOAT && foxP==2 —-> swap(goatP, foxP);

passenger=FOX;

printf ("\nDeposit_goat_to_right_bank_and_pick_up_fox\n");

goto left_bank

/«deposit goat to right_bank and pick up fox =/
passenger==GOAT && cabbageP==2 —> swap(goatP, cabbageP);
passenger=CABBAGE;

printf ("\nDeposit_goat_to_right_bank_and_pick_up_cabbage\n");
goto left_bank

/«deposit goat to right_bank and pick up cabbage +/
passenger==CABBAGE && foxP==2 —-> swap(cabbageP, foxP); passenger=FOX;
printf("\nDeposit_cabbage_to_right_bank_and_pick _up_fox\n");
goto left_bank

/«deposit cabbage to right_bank and pick up fox =/
passenger==CABBAGE && goatP==2 —> swap(cabbageP, goatP);
passenger=GOAT;

printf ("\nDeposit_cabbage_to_right_bank_and_pick_up_goat\n");
goto left_bank

/«deposit cabbage to right_bank and pick up goat =/

passenger==FOX && goatP==2 && cabbageP==2 —> foxP=2; passenger=NULL;
printf("\nDeposit_fox_at_right_bank\n");
goto finish

/«deposit fox at right_bank, go to finish =/

passenger==GOAT && foxP==2 && cabbageP==2 —> goatP=2; passenger=NULL;
printf ("\nDeposit_goat_at_right_bank\n");

goto finish

/«deposit goat at right_bank, go to finish %/

passenger==CABBAGE && foxP==2 && goatP==2 —> cabbageP=2;
passenger=NULL;

printf ("\nDeposit_cabbage_at_right_bank\n");

goto finish

/«deposit cabbage at right_bank, go to finish %/

finish: printf("\nFINISH\n"); goal=true

}

Figure A.2: Main Proctype for Crossing Puzzle continued.




Appendix B

Glossary

D Disturbance representing an obstacle. 53

Tp Default straight task. 53

T; Left closed-loop avoid task. 54

Tr Right closed-loop avoid task. 53

Ts Finite straight task. 55

r Radius of the safe zone. 56

AATS Attract-Avoid Transition System. 110

DTS Disturbance-Focused Transition System. 69

DS Disturbance representing two-dimensional error to the goal. 95
D;r The y-coordinate of a disturbance in the positive lateral direction (m). 63
D)T The y-coordinate of a disturbance in the negative direction (m). 60
Dg"" The current angle to a disturbance. 56

DU The initial angle to a disturbance. 56

L The wheelbase of the robot (m). 57

O The set of observations generated by a LIDAR scan. 57

P Longitudinal partition in front of the robot. 65
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P Longitudinal partition behind the robot. 65

PyJr Lateral partition in the positive (left) direction. 60

P; Lateral partition in the negative (right) direction. 61

P,.0iq Difference between the current and initial angle to a disturbance. 56
Pyis; Partition for distance travelled by straight task. 100

Plgfz Partition for determining whether goal is to the left. 102

Pyoor Triggers generation of a plan if a disturbance is witnessed. 58

PG

right Partition for determining whether goal is to the right. 103

Pyotate Difference between the current and initial angle from the initial heading 0. 99
Py Partition for witnessing disturbances during execution of straight task.. 100
Pypiera Triggers the next task in a plan if a disturbance is witnessed. 57

PG

straight Partition for determining whether goal is straight ahead. 101

Pytraign: Partition for predicting if the robot can drive straight distance d'“'¢¢. 104
TDTS Task-Driven Transition System. 109

T g Anarbitrary avoid task. 56

A, The longitudinal offset for simulating a proximal disturbance. 60

A}T An offset to simulate driving in the positive lateral direction (m). 63

Aj An offset to simulate driving in the negative lateral direction (m). 65

#; Situation in a sequence comprising a set of observations and error to the goal. 104
7; Sequence of tasks generated for a corresponding situation. 106

0"’ Current orientation of the robot relative to initial heading 0. 99

d“"" Current distance travelled by robot when executing a straight task. 100
d'@"8¢" Target distance for straight tasks. 100

dioor Upper bound on x-coordinate for witnessing disturbance in P . 58

dmax The maximum lateral distance of the abstraction (m) . 60



dmin Minimum distance robot can travel in either lateral direction (m). 63
dgqfe The radius of the combined safe zone and outer shield (m). 60
dsphiela Upper bound on the longitudinal dimension of disturbances. 57
tol Tolerance indicating over approximation for abstraction (m). 57

|e| Absolute error to be eliminated by rotate tasks. 99
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