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Abstract

This thesis deals with various many-body quantum integrable Hamiltonian systems and
algebraic structures related to them. More specifically, it discusses generalisations of
Calogero-Moser—Sutherland (CMS) and Macdonald-Ruijsenaars (MR) type systems and
their connections with the theory of double affine Hecke and related algebras.

Firstly, we consider the generalised CMS operators associated with the deformed root
systems BC(l,1) and a CMS type operator associated with a planar configuration of
vectors called AG5, which is a union of the root systems A, and Go. We construct suitably-
defined (multidimensional) Baker—Akhiezer eigenfunctions for these operators, and we use
this to prove a bispectral duality for each of these generalised CMS systems. In the case
of AG5, we give two corresponding dual difference operators of rational MR type in an
explicit form, which we generalise to the trigonometric case as well by using the theory
of double affine Hecke algebras (DAHAs). In the case of BC(I, 1), the bispectral dual is a
rational difference operator introduced by Sergeev and Veselov.

Secondly, we study systems with spin degrees of freedom. Quantum integrable spin
CMS type systems with non-symmetric configurations of the singularities of the potential
appeared in the rational case in the work of Chalykh, Goncharenko, and Veselov in 1999.
In this thesis, we obtain various trigonometric spin CMS type systems by making use
of the representation theory of degenerate DAHAs. Particular cases of our construction
reproduce in the rational limit the examples discovered by Chalykh, Goncharenko, and
Veselov.

Finally, inside the DAHA of type GL,,, which depends on two parameters ¢ and 7, we
define a subalgebra Hf'"» that may be thought of as a g-analogue of the degree zero part
of the corresponding rational Cherednik algebra. We prove that the algebra H®™» is a flat
7-deformation of the crossed product of the group algebra of the symmetric group with
the image of the Drinfeld-Jimbo quantum group U,(gl,,) under the g-oscillator (Jordan—
Schwinger) representation. We find all the defining relations and an explicit PBW basis
for the algebra HS'». We describe its centre and establish a double centraliser property.
As an application, we obtain new integrable generalisations of Van Diejen’s MR system in

an external field.
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Chapter 1
Introduction

One broad aim of the study of integrability is to obtain exact information on the prop-
erties of various systems that arise within theoretical physics or are motivated by it. In-
tegrable systems often reveal important underlying mathematical structures. Among the
structures studied in this thesis are Cherednik’s double affine Hecke algebras (DAHAs,
or Cherednik algebras), which are a very active and diverse research area [35|, and their
various degenerations. On top of their numerous applications in mathematical physics,
these algebraic objects are important from the perspective of several other branches of
mathematics, having deep connections to geometry, special functions, combinatorics, and
a rich representation theory.

The goal of this thesis is to investigate certain multi-particle quantum integrable
Hamiltonian systems and related algebraic structures. The models discussed in this thesis
are connected with the so-called Calogero-Moser—Sutherland (CMS) differential operat-
ors [44] and their difference (relativistic) version, the Macdonald-Ruijsenaars (MR) op-
erators, which are related to the celebrated Macdonald polynomials [82]. In its original
form, the CMS model describes particles confined to a line or a circle interacting pairwise
via an interaction potential proportional to their inverse square distance.

The CMS models were among the earliest known examples of integrable multi-particle
systems and they represented a landmark discovery in this respect. They have since been
extensively generalised in different ways. For example, they admit generalisations associ-
ated with special collections of vectors, such as root systems of semisimple Lie algebras,
with the original systems corresponding to the root system of type A [44]. Finding further
integrable generalisations and developing algebraic tools to investigate these and similar
models has also independent value for other areas of mathematics. Systems of MR type are
intimately related to DAHAs [35], while CMS systems are connected to the degenerations
of DAHAs known as rational and trigonometric Cherednik algebras (RCAs and TCAs,
respectively). In geometry, some quantum systems of CMS type arise as radial parts of

Laplace—Beltrami operators on symmetric spaces [6,[88], and the phase spaces of classical
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CMS-type systems are interesting algebraic varieties [107]. These systems also have links
to other important equations of theoretical physics; for example, they are related to the
pole dynamics of solutions of the KdV and KP equations [1},36,(78|, and have close relations
to the Knizhnik-Zamolodchikov equations from conformal field theory (see [35]). Further,
RCAs and DAHAs have been related to Coulomb branches of certain supersymmetric
gauge field theories (see [10] and references therein).

The main outcomes of this thesis are: 1.) a novel connection between a DAHA and a
quantum group, obtained by introducing and studying a new algebra connected to both,
which led us to new difference operators related to MR systems [57];

2.) advancement of the theory of generalised CMS and MR operators associated with non-
reduced (i.e., containing collinear vectors) collections [54-56,[83|. In particular, progress
has been achieved in the theory of their special eigenfunctions and the study of systems

with spin degrees of freedom.

1.1 Overview and background

The topics in this thesis can be divided into three interrelated themes, which we introduce

respectively in Sections [1.1.1] [1.1.2] and [L.1.3| below summarising the background and

context, as well as the main results that we obtained, for each of these directions in turn.
Theme [I.1.1] corresponds to Chapters [3| and [5| and themes [1.1.2] and [1.1.3| correspond to
Chapters [4] and [0}, respectively.

1.1.1 Calogero—Moser—Sutherland and Macdonald—Ruijsenaars

systems
1.1.1.1 Calogero—Moser—Sutherland systems

The CMS models are an important example of integrable many-body Hamiltonian systems
in one spatial dimension. Their study goes back to the works of Calogero [14], Suther-
land [97], and Moser [85], who investigated systems of pairwise-interacting particles on
a line (rational case) or a circle (trigonometric case) with an inverse square distance po-
tential. After the work of Moser, an elliptic generalisation of these systems appeared as
well [15].

Olshanetsky and Perelomov observed a connection between the original CMS Hamilto-
nians and the root system A; (I € Z+(), and they generalised these Hamiltonians to the
case of arbitrary root systems of Weyl groups in [86,87] (including the non-reduced root
system B() in a way that preserves integrability (in the rational case, integrability holds
for root systems of arbitrary finite reflection groups).

There exist both classical and quantum versions of these systems. In this thesis, we
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focus on the quantum case throughout. A quantum system whose Hamiltonian is a differ-
ential operator L in an n-dimensional space is called (quantum) integrable if there exist n
pairwise-commuting algebraically independent differential operators Ly = L, Ly..., L,.
Operators that commute with L are called its quantum integrals.

In comparison, a classical system whose Hamiltonian .# is a function on a 2n-dimensional
phase space, which is a symplectic manifold, is called (Liouville) integrable if there ex-
ist n independent Poisson-commuting phase-space functions .4, = £, % ...,.%,. Moser
studied the integrability of the classical versions of Calogero’s and Sutherland’s systems
through the method of Lax pairs [85]. The study of classical CMS-type systems through the
geometric method of Hamiltonian reduction was initiated by Kazhdan, Kostant, and Stern-
berg |72]. A uniform construction of Lax pairs for the classical Olshanetsky—Perelomov
systems was provided by Bordner, Corrigan, and Sasaki [8] (see also the work [40]| by
D’Hoker and Phong).

A uniform proof of the integrability of the quantum Olshanetsky—Perelomov systems
using Dunkl operators was obtained by Heckman [62,63|, which led to a connection between
Cherednik algebras and CMS-type systems. We will discuss this connection more later.
Let us just mention here that a way to uniformly construct quantum Lax pairs by using
Dunkl operators was discovered in a recent work by Chalykh [17], and this also reproduces
the above classical Lax pairs.

Chalykh, Feigin, and Veselov showed in [21,26|104] in the quantum case that the CMS
models admit integrable generalisations related to other special configurations of vectors
that are not root systems. The examples they discovered were certain one-parametric de-
formations A(l,1) and C(l,1) of the root systems A;;; and Cj;q, respectively. Other
examples have been discovered since then. For instance, one of them is a deforma-
tion BC(l,1") of the root system BCj,y that was first considered in [94] by Sergeev and
Veselov (an elliptic version of the special case BC(I, 1) appeared earlier in [19]). Another
more recent example is a configuration called AG5, which was discovered by Fairley and
Feigin [48], and which we studied in [55,56].

Hereafter, by CMS system, we will mean the trigonometric (or, equivalently, hyper-
bolic) kind, unless specified otherwise. The generalised CMS operator associated with a
finite collection of vectors A C C™\ {0} with a multiplicity function ¢: A — C, a > ¢,

has the form

Ca(Co + 2Co0 + 1){a, @)
L=-A+ , 1.1
;4 sinh®(«, z) (L)
where & = (x1,...,2,) € C*, A = 3" 02 (9,, = 9/0x;) is the Laplacian on C",
Coq = 01if 2 ¢ A, and (-, -) denotes the C-bilinear extension of the standard Euclidean
inner product of R™. The case introduced by Olshanetsky and Perelomov corresponds to

letting A in (1.1]) be a positive half of a root system with a Weyl-invariant assignment of



CHAPTER 1. INTRODUCTION 4

multiplicities ¢,. Only for very exceptional collections A will the operator L be integrable.

1.1.1.2 Baker—Akhiezer functions

In general, the eigenfunctions of quantum integrable systems may be complicated. How-
ever, the generalised CMS operators associated with root systems admit as eigenfunctions
various special multivariable polynomials. For example, for the CMS system of type A,
they are the Jack polynomials. For its rational degeneration in the presence of an addi-
tional confining harmonic oscillator potential term, which ensures the spectrum is discrete,
there are eigenfunctions expressed via multidimensional versions of the Hermite polyno-
mials.

In the case when the multiplicity parameters have Weyl-invariant integer values, the
generalised CMS operators associated with root systems admit as (singular) eigenfunctions
so-called multidimensional Baker—Akhiezer (BA) functions, which are relatively element-

ary functions |28,/105]. They have the form
U(z,x) = P(z,x)e™,

where P is a polynomial in the spectral variables z € C™ whose coefficients depend on
the variables x in which the CMS operators act. The function P has singularities in the
variables z. In quantum mechanics, it is more usual to consider the action of a quantum
Hamiltonian on a Hilbert space and look for eigenfunctions therein. However, the BA
function is very useful for constructing quantum integrals of the system and for proving
bispectral dualities, as we will see below. Moreover, in many cases, it can be related to
orthogonal polynomial eigenfunctions and give new formulas for them, such as the BA
function in type A for Jack polynomials (see [24]).

The function 1 can be characterised by its properties as a function of the variables z.
Such an axiomatic definition of a multidimensional BA function was proposed by Chalykh,
Styrkas, and Veselov for an arbitrary finite collection of non-collinear vectors with integer
multiplicities in [105] — the case of (positive subsystems of) reduced root systems was
considered earlier in [28] — and see also [49] for a weaker version of the axiomatics. For the
(only) non-reduced root system BCj, an axiomatic definition of the BA function was given
by Chalykh and Veselov in [29] (see also [22,24]). The key properties that the function

needs to satisfy are quasi-invariance conditions of the form
Y(z + sa,x) = (2 — sa, x) (1.2)

at (a,z) = 0 for vectors « in the configuration, where s takes special integer values
depending on the multiplicities.

Such a function can exist only for very special configurations. The corresponding
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generalised CMS operators have to be algebraically integrable, that is, contained in a large
commutative ring of differential operators; more precisely, for an operator in n variables,
algebraic integrability means that it is quantum integrable and, moreover, its algebra
of quantum integrals cannot be generated by n operators [28,46] (see also [29,/105] for
a slightly stronger version of the definition of algebraic integrability for operators with
constant highest symbols, and [47] for the difference case). And if the BA function exists,
then it is a common eigenfunction for all the operators in this ring [49,(105]. In addition to
the root systems case, the previously known examples of configurations with a BA function
included the aforementioned deformations from |21,26] of the root systems of type A and C'
in the case when the multiplicity parameters are integers. The corresponding BA functions
were constructed in [24,/49], respectively. Another deformation A; s of the root system of
type A appeared in [30], and the BA function for it (satisfying the weakened axiomatics)
was given in [49)].

The generalised CMS operators associated with the configurations AG5 and BC(I, 1)
are algebraically integrable in the case when all the multiplicities are integers |16,48|, which
suggested that in this case there might exist a BA function for them. These had been
the only remaining known examples of algebraically integrable monodromy-free CMS-type
operators for which a BA function had not been written down. One of the main results
of this thesis is a construction in Chapter [3| of a suitably-defined BA function for AG,
and BC(l,1). Our construction uses a method modelled on Chalykh’s one from [24]
(see [49] for further examples where such a technique has been applied). The construction

uses certain difference operators, acting in the variables z, of rational MR type.

1.1.1.3 Macdonald—Ruijsenaars systems and bispectral dualities

Ruijsenaars and Schneider introduced a relativistic version of the CMS system of type A,,_;
in the classical case in [93|. In the quantum case, the corresponding Hamiltonian and its
quantum integrals, which are difference operators, were introduced by Ruijsenaars in [90].

His quantum Hamiltonian can be written as

n n qzifc . qu
i1 N\ T
J#i

where ¢ and ¢ are parameters, and 7; is the (additive) shift operator acting on the vari-
ables z = (21,...,2,) € C" by T;(2;) = z; + 0;5. Here 0;; is the Kronecker delta. Gen-
eralisations of the Hamiltonian (1.3) for all reduced root systems were introduced by
Macdonald [82], and for the root system BC' by Koornwinder [76], in connection with the
theory of orthogonal polynomials.

Ruijsenaars established a duality relation between the classical CMS system of type A
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and a rational degeneration of its relativistic version, where the duality essentially swaps
the action and angle variables of the two systems [91]. In the quantum case, he conjectured
a bispectral duality (bispectrality) relation between the quantum CMS system of type A
and the rational degeneration of the operator obtained by taking the ¢ — 1 limit of
its coefficients [92]. This conjecture, and its version for all root systems, was proved by

Chalykh in [24]. Namely, there exists a function ¥ of the variables x and z with
LY =)V, DU =puV, (1.4)

where L = L(x,0,) is the CMS Hamiltonian associated with any root system, or its
quantum integral, D is a rational MR operator for the same root system, acting in the
variables z, and A = A(z), u = u(x) are the respective eigenvalues. The bispectrality rela-
tions are a multidimensional differential-difference analogue of the one-dimensional
differential-differential bispectrality studied by Duistermaat and Grinbaum in [42].

In the case of integer (and Weyl-invariant) multiplicities, the function ¥ in can
be taken to be the BA function for the root system in question — and the case of non-
integer multiplicities can be handled by an analytic continuation argument [24]. Moreover,
Chalykh showed that the operator D can be used to explicitly construct the BA function
itself. The key property needed for this from the operator D is the preservation of the
space of analytic functions of z satisfying the quasi-invariance conditions .

A form of bispectrality may also be seen in terms of special families of multivariable or-
thogonal polynomials (rather than a single function ¥ depending on spectral parameters).
In the case of the root system of type A, these are the Jack polynomials, and for other root
systems they are the multivariable Jacobi polynomials, which admit Pieri-type formulas
that can be interpreted as bispectrality between the CMS Hamiltonians and difference
operators acting on the weights indexing the polynomials [24}/65,81]. The relation (|1.4])
for the root system of type A and for a different function ¥ given by a Mellin—Barnes type
integral was obtained recently by Kharchev and Khoroshkin in |73].

Let us also mention that a version of the notion of a BA function exists as well for
the rational degeneration of the CMS Hamiltonians L with sinh{c, x) in replaced
by (a,z). The rational BA function ¢ satisfies, instead of conditions (I.2)), relations of
the form 9%~ (z,xz) = 0 at {a,z) = 0, where 9, is the directional derivative in z in
the direction of the vector . When suitably normalised, the rational BA function is
symmetric under the exchange of x and z, and the rational version of L is bispectrally
self-dual [105]. BA functions for the trigonometric MR operators and their bispectrality
properties were investigated in [25].

The paper [24] proved also an analogue of the duality for the deformed root
system A(l,1) and the corresponding deformation D of the rational limit of Ruijsenaars’

operators. For the deformed root systems C(l, 1) and A, 5, this was done (in the case of in-
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€ 261
(a) BO(1,1)4 (b) AGa,+

Figure 1.1: The configurations BC(1,1) and AG,.

teger multiplicity parameters) in [49]. In Chapter [3| we prove analogues of the duality (I.4)
for the configurations AG, and BC(l,1).

1.1.1.4 Configurations AG, and BC(l,1)

The configuration AG, is a planar collection of vectors obtained as a union of the root
systems G and A,. It can be viewed as a non-reduced version of the root system G5, where
for each short root g € G, the configuration contains 25 as well. It is, however, not itself
a crystallographic root system (though, it is a trigonometric locus configuration [48|). A
positive half AG5 ;. is shown in Figure[1.1} The multiplicity of the vectors {24;: i = 1,2, 3}
coming from the root system A, is 1, and the multiplicities of the long and short roots
from the root system G5 are, respectively, m and 3m, where m € C is a parameter. The
configuration AG, is invariant under the action of the Weyl group of type Gs.

The configuration BC(l, 1) is the non-reduced collection of vectors with a positive half

BC(Z, 1)+ = {62‘, 261', €; + \/E€l+1i 1 S 1 S l} U {\/Eel+1, 2\/E€l+1}
U{e;te;:1 <i<j<l}ccH

where k € C* is a parameter, e; are the standard orthogonal unit vectors in R*!, and the
multiplicities are required to satisfy Cortvherss = L, Cejre; = Ky Cey = k‘c\/gem, and 2cge, +1 =
k(2¢y /e, + 1) With ez, s Gz, € C [19,94]. Figure |11} depicts this configuration in
the case of [ = 1. For k = 1, the configuration BC(l, 1) reduces to the root system BCj;4
with a Weyl-invariant assignment of multiplicities such that the vectors e; e; for 1 <1 <

J <1+ 1 have multiplicity 1.

1.1.1.5 Main results

To cover the configurations AGy and BC(l,1), we introduced the following extension of
the axiomatic definition of BA functions from [22}24}29,/105].
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Definition (Definition [3.1). Let R C C" be a (not necessarily reduced) finite collection
of non-isotropic vectors with a multiplicity map c¢: R — Z>( possessing a subset R, C R
such that any collinear vectors in R, are of the form a,2«a, and R = R, [[(—R:). A

function ¥ (z,z) (2,2 € C") is a BA function for R if it satisfies the conditions

1. ¥(z,7) = P(z,2)e!*® for a polynomial P in z with highest-order term [ (o, z)c;

acRy

2. Y(z+sa,x) =P(z — sa,x) at (z,a) =0for s € {1,2,...,ca} U{ca+2,¢0a+4,...,
Co + 2024} and o € Ry with %a ¢ R, where ¢y, =0 if 20 ¢ R.

If in the above definition we put Ry = AGy; or BC(l,1),, we respectively get the
notion of a BA function for AGy and BC(I,1) with Zs¢-valued multiplicities. The case
of reduced configurations from [105] corresponds to ca, being 0 for all @ in our above
definition. In the case of R = BCj, our definition coincides with that from [22,29] (cf.
also 24]).

We proved the following generalisation of analogous results given for reduced config-
urations and BCj in [22,24.29]105|.

Theorem (Propositions and B.9] and Theorem [3.7)). With notations as in the above
definition, let R be the ring of polynomials in z satisfying condition 2. If the BA func-
tion ¥ (z,x) exists then it is unique, and for any p(z) € R, there is a differential oper-
ator Ly(x,0,) such that

Lp(xv ax)¢(z> J:) = p(z)d}(za 1’)

For any p,q € R, the operators L, and L, commute, and L_,> coincides with the general-

ised CMS operator (L.1)) for A= R.,.

Let R% be the ring of all analytic functions in z satisfying condition 2 from the above
definition of the BA function. In Section [3.3] we derive sufficient conditions for a rational
difference operator of a quite general form to preserve the ring R} (Theorem under
a symmetry assumption on the configuration R.

In Section , we first explain our proof from [55] of the integrability of the generalised
CMS operator with A = AG, + for any value of the multiplicity parameter m. Then
we give a proof of the following results for the configuration AG, with m € Z>y. Denote
by T the (additive) shift operator acting on functions f(z) by T f(z) = f(z + 7).

Theorem (Theorems [3.20} |3.24} [3.26] [3.27, and [3.28)). The BA function (z,x) for R =

AG, exists. There are two independent explicit commuting planar Go-invariant difference

operators preserving the ring Riq, of the form Dy = 31 . a-(2)(Ty — 1) and Dy =
©2

rlreAGy b (2)(T — 1) for some rational functions a,(z) and b.(2) such that

Dip(z,x) = pi(x)(z, v)
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for some functions u;(x) (i =1,2).
For any polynomial p(z) € R, , there is a difference operator D,, acting in z such that
Dyp(z,x) = pp(x)(2,x) for some functions p,(z). The operators D, commute with D;

and with each other.

We also prove that the generalised CMS operator for AG5 is bispectrally dual to the
above operators D; and D, for any m € C (Theorem .

In Chapter , we derive (in Propositions and commuting trigonometric MR-
type operators related to the configuration AG, that generalise the operators D; to the
trigonometric case (Propositions and 5.8).

In Section |3.5, we prove the following results for the configuration BC'([, 1) with mul-
tiplicities belonging to Z.

Theorem (Theorems [3.35, |3.37, and [3.45). A Sergeev—Veselov rational difference oper-
ator D associated with BO(1,1) (95] preserves the ring R,y The BA function ¢(z, x)
for R = BC(l,1) exists, and Di(z,x) = p(x)(z,z) for some function p(z). For any

polynomial p(z) € R%C(l,l)’ we construct a difference operator D, acting in z such that

Dyp(z,x) = pp(z)(2z,2) for some functions p,(x). The operators D, commute with D

and with each other.

We extend the bispectral duality statement for the generalised CMS operator of BC'(I, 1)
and the above Sergeev—Veselov operator D to more general complex values of the multi-

plicities in Theorem |3.50

1.1.2 Matrix-valued generalisation of CMS systems

A matrix (spin) version of the quantum CMS model appeared in the work of Ha and
Haldane [59], who considered matrix differential operators acting on functions with values
in an n-fold tensor product of C™. The integrability of this model was established by
Minahan and Polychronakos using Polychronakos’ version of Dunkl operators in [84], and
independently at the same time by Hikami and Wadati in [67] by introducing a Lax pair.
Subsequently, Bernard, Gaudin, Haldane, and Pasquier produced additional quantum in-
tegrals for this model in [7] by using a Yangian symmetry.

A matrix version of the Olshanetsky—Perelomov operators was considered by Chered-
nik in [33]. First deformed CMS-type matrix models with non-symmetric configurations
of the singularities of the potential were introduced in the rational case by Chalykh, Gon-

charenko, and Veselov in [27|. They considered matrix differential operators of the form

LA Z CalCo — Pa)z(a, 04)7

acA <Oé, ZL‘>
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where A is a finite collection of non-zero vectors in a vector space V' 3 x, P, is a matrix
acting on the vector space U = V as a reflection with respect to the hyperplane orthogonal
to «, and ¢, is an integer scalar multiplicity. One of the examples of configurations A
that they considered is the deformed A,-type system A(n — 1,1) C R"*! depending on a
parameter m and consisting of the vectors {e; —e;: 1 <i < j<n}U{e; — /mep1: 1<
i < n} with multiplicities c,,_; = m and ¢.,_ /me,,, = 1 (see [21]). Another example
considered in [27] is the deformed C,-type configuration.

Recall that the integrability of the scalar rational CMS operators associated with root
systems was investigated with the use of Dunkl operators [43] by Heckman in [63], and
in [62] in the trigonometric case. Generalised CMS systems related to non-symmetric
configurations of vectors were investigated in the scalar rational case from the perspective
of the representation theory of RCAs by Feigin in [50] using certain invariant parabolic
submodules in the polynomial representation of RCAs. This allowed Feigin to derive many
new integrable examples of such operators.

In [50], one starts with the polynomial representation P of an RCA, realised using the
rational Dunkl operators. For special values of the parameters of the RCA, the representa-
tion P becomes reducible with a submodule Z given by polynomials vanishing on the orbit
of an intersection m C V' of Coxeter mirrors (a parabolic stratum). The allowed parabolic
strata are described in terms of generalised Coxeter numbers related to the stratum and
the multiplicity function. By restricting invariant combinations of Dunkl operators to the
space of invariants (P/Z)", one obtains generalised rational CMS systems.

Another approach to (scalar) rational generalised CMS systems using RCAs was pro-

posed recently by Berest and Chalykh in [5].

1.1.2.1 Main results

In Chapter [4, we use the representation theory of TCAs to obtain generalisations of spin
CMS operators in the trigonometric case and for more general vector spaces U than were
considered in [27].

We start with the polynomial representation P of the TCA (this is a slightly simplified
account), realised with the help of Cherednik’s commuting trigonometric Dunkl operat-
ors. For special values of the parameters, the representation P becomes reducible with
a submodule Z given by polynomials vanishing on 7. We enlarge the quotient repres-
entation P/Z by taking the tensor product with a right-module U of the Weyl group W
associated with the TCA, and make any element h of the TCA act on U ® P/Z by id ®h.
The action of W-invariant combinations of Dunkl operators on the diagonal invariants
(U @ P/T)V produces commuting matrix differential operators on 7 acting in the space
of fixed points U = U0 of the action of the parabolic subgroup Wy, C W corresponding

to the subspace 7.
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The construction from [50| can be recovered by setting U to be the trivial representation
and taking the rational limit of the resulting operators.

Let us explain our results in more detail in the case of U = V being the reflection
representation of W.

Let R C V = C" be a reduced root system with associated Weyl group W and
positive half R,. Let ¢: R — C, a — ¢, be a W-invariant function. Let P be the weight
lattice of R. Consider the TCA H' associated with R, defined by its faithful polynomial
representation on the group algebra C[P] = C[{e!*®: oo € P}]; the TCA is generated by
el®?) (o € P), W, and the trigonometric Dunkl operators

v g S 8 e, (15)

acR4

where € € V, 0: = SN (£,€))0,,, p = %Zaem cov, and s, is the orthogonal reflection
about the hyperplane orthogonal to « [31].

Let I' be the Coxeter graph of R and I'y an edge-preserving subgraph. Let I'fj be the
set of simple roots corresponding to the nodes of I'y. Let Wy = (s4: a € T'}) be the
corresponding parabolic subgroup. Define the space 7 = {x € V: (f,z) = 0, V3 € T'§}
= V"o and the parabolic stratum D = Uepw(r).
reWo C,, where Wxg is the W-orbit of ¢, and C, is the

space of V-valued germs of analytic functions defined on V near the point x € Wxzy. We

For zy € , consider Cy,, = P

explain that, for generic xg, the TCA H# can act on Cy,, and under some assumptions on
the parameters c,, the subspace Z C Cy,, of those elements that vanish when restricted to
D is preserved by H™# (Theorem |4.2)), which is a trigonometric version of |50, Theorem 1].

Assume that 7 is H™¢-invariant. Then Cy,,/Z has a diagonal (left) W-action given
by (wF)(y) = F(w™'y) -w™! for F € C,, v € Wxp, and y € V near w(z), where - denotes

the action of W on its reflection representation V. We prove the following result.

Theorem (Theorems and . If T is H™8-invariant, then the action of W -invariant

polynomials in Ve . ,Vgivg on the diagonal invariants (Cyr.,/Z)V leads to commuting
differential-reflection operators on w. Up to a gauge transformation, Zf\il(vgig)Q produces

the generalised spin CMS operator

Ca(Caq + 2¢25 + sa)(a, a)
A=Y

oh2 [ (@) ’
aeR4\{0} 4sinh (Ty)

where y = (Y1, ..., Yn) are orthonormal coordinates on w, A, = 7", 02, R, = {a:a €

R} with & being the orthogonal projection of a onto m, ¢z = Y rer, ¢y and cag = 0 when
=a
2a ¢ Ry, and we are assuming any collinear vectors in Ry \ {0} are of the form &, 2a.
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We also prove a more general statement when the above assumption on R, is not

satisfied. We call Z an invariant parabolic submodule for the TCA.

1.1.3 Special subalgebras of Cherednik algebras

DAHAs are a remarkable class of algebras associated with root systems. They have deep
connections to integrable systems, geometry, and combinatorics. They were introduced
by Cherednik as a powerful algebraic tool to solve a problem posed by Macdonald regard-
ing the combinatorial properties of Macdonald polynomials [34]. A key relation between
DAHASs and integrable systems is that the operator arises via an action on Laurent
polynomials of the commuting Cherednik elements Y; of the DAHA H,, of type GL,,, which
depends on two parameters ¢ and 7 = ¢~? [35]. DAHASs of other types lead to versions
of the operator for other root systems.

The algebra H, is generated by two commutative subalgebras of Laurent polynomials
CIXi, ..., X, C[v;*, ..., V.21, and the Hecke algebra of type A, _; with generators T},
(1 <k <n-—1). The latter satisfy the standard braid relations and the quadratic relations
(T, — 7)(Tx + ') = 0. The defining relations of H,, additionally include an action of T}
on the X and Y variables, and relations among X, Y.

RCAs, which are a degeneration of DAHAs investigated by Etingof and Ginzburg in
the seminal paper [45], are flat deformations of the crossed product of a Weyl algebra (of
differential operators with polynomial coefficients) with a finite Coxeter group W (see,
e.g., [44]).

RCAs admit a faithful representation on a space of polynomials. In this representation,
and in the case of the symmetric group W = &,,, the corresponding RCA H,, = H,
(¢ € C) of type GL,, acts on Clxy,...,z,], and it is generated by the transpositions

sij = (1,7) € &, multiplication operators x;, and the rational Dunkl operators [43]

j=1
i

Cc

(1—5’”) (3% :(‘3/8%, 2:1,,n)

fL’i—ZEj

The RCA H,, is a graded algebra, where the grading is determined by assigning degree 0
to the elements of the group &,,, degree 1 to the multiplication operators x;, and degree —1
to Dunkl operators. The degree zero subalgebra H%» = HO" is an interesting algebra in
its own right from various perspectives. It is generated by &,, and the operators z;V;
(1,7 €{1,...,n}).

The algebra H% enjoys, as the notation for it suggests, a link to Lie theory. More
precisely, it is a flat c-deformation of the crossed product of the group algebra CG,,
with a certain quotient U(gl,)/I of the universal enveloping algebra U(gl,) of the Lie
algebra gl, over a two-sided ideal I, as was established by Feigin and Hakobyan in [51].
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The quotient U(gl,)/I is the image of U(gl,) under the so-called oscillator (also known
as Jordan—Schwinger) representation pjg that maps the standard generators of gl to the
operators z;0,, .

Similarly to the RCA itself, the algebra H%» is a quadratic algebra of Poincaré-
Birkhoff-Witt (PBW) type. In contrast to the RCA, the defining relations of #%» include
relations that are not of a commutator type. The associated graded algebra is the crossed
product of CS,, with the algebra of polynomial functions on the space of n x n complex
matrices of rank at most one [51].

The centre of the RCA is trivial |13], but the RCA has a commutative subalgebra
which acts (in the polynomial representation) on symmetric polynomials as the rational
CMS operator (albeit in a different gauge) and its quantum integrals [63]. On the other
hand, the centre of the degree zero subalgebra H% is generated by the Euler operator eu,
which can be related to the rational CMS operator with an additional harmonic potential
term by an automorphism of the RCA [51]. The algebra H®» and its centre are mutual
centralisers inside the RCA, which is related to a deformation of the Howe dual pair
(gl,,,8l;). The properties of the central quotient H%" /(eu + const) (quotient by the two-
sided ideal generated by an element eu + const) and its ‘¢ = 0’ (classical) version were
studied recently in [4] in relation to deformations of symplectic singularities and nilpotent

orbits in gl,,.

1.1.3.1 Main results

In Chapter @, we generalise the main parts of the theory of H%" to the g-deformed setting
by introducing and studying a certain subalgebra H" inside the DAHA H,, of type GL,.
We note that even though the DAHA H,, has a natural grading, the subalgebra H¢"» c H,
is in general strictly smaller than the degree zero part. Another important difference with
the RCA case is that the algebra H®» contains the Y-elements of the DAHA. The main
idea behind the definition of Hf" is to replace the role of U(gl,) by the Drinfeld-Jimbo
quantum group U,(gl,,).

The algebra U, (gl,,) admits a representation p which is a g-multiplicative generalisation
of the Jordan-Schwinger map pys. We consider the image A = p(U,(gl,,)) and the algebra
A =C6, x A, where the symmetric group acts in a natural way. We then define inside
the DAHA M, a subalgebra Hf» whose generators are 7-deformations of those of A. In a
suitable ¢ — 1 limit, the algebra H®» reduces to the degree zero part H® of the RCA.

The following diagram summarises the relationships between the various algebras:

Hot 2L A= CS, x p(U,(gl,))

lqﬁl lq%l

Hg[” LO) CGn X sz<U(g[n)),
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—</2 and ¢

where in the left vertical arrow we also take the limit 7 — 1 such that 7 = ¢
does not depend on q.

We find all the defining relations of the algebra He®», establish that it is an algebra
of PBW type by explicitly constructing a PBW basis, and show that H®» is a flat 7-
deformation of the algebra A (Theorem [6.19).

We prove that the centre of HS™ is generated by a single invertible element Y (The-
orem . When ¢ — 1, the central element (1—¢)™*(1—Y) reduces to the generator eu
of the centre Z(H%™).

We also prove a double centraliser property (Theorem — related to the (gl,,, gl;)
Howe duality — that the algebra H'" satisfies inside a subalgebra 2 C H,,. The algebra 2
may be thought of as a 7-deformation of the crossed product of CS,, with the g-Weyl
algebra defined by Hayashi [61], and it is, as we explain, isomorphic to a particular cyc-
lotomic DAHA (cyclotomic DAHAs were defined by Braverman, Etingof, and Finkelberg
in [10]). The DAHA H,, contains pairwise-commuting elements D; that can be thought
of as a g-generalisation of rational Dunkl operators, and which we use to define the al-
gebra Hf%. Similar but different commuting elements appear in the definition of this
cyclotomic DAHA in [10]. We show that the algebra H® is isomorphic to the subalgebra
of degree zero elements of this cyclotomic DAHA.

. o . Il
We also consider pairwise-commuting elements D; = DZ( 1l2)

€ H,, of a more general
form than D;. The former depend on parameters ly,ly € Z>g, and a; € C (j = —1y,...,12).
In the case I, = 0, they are equivalent to certain generators of a general cyclotomic
DAHA [10]. By looking at the action of symmetric combinations of D; on the space
of symmetric Laurent polynomials, we arrive at families of new commuting ¢-difference
operators (Theorem related to the MR system with a Morse term introduced by Van
Diejen [101}103].

For example, in the case [; = [, = 1, we obtain the following integrable Hamiltonian

_az HQ t+5z H%Xa tlﬂz
z j=1 z j=1

J#i J#i

where ¢; is the g-multiplicative shift operator in the variable X; acting by ¢;(X;) = ¢ X s
and «, 3, are independent parameters.

Relations to known Hamiltonians are as follows. In the case of a = 0 (corresponding
to ly = 0 and [; = 1), the operator M appeared in the paper [3| by Baker and Forrester. A
more general version of their ¢-difference operator was found earlier by Van Diejen without
using ¢-Dunkl operators |101]. Van Diejen’s operator has a limit to the operator M with an
extra constraint on the parameters «, 3, and v [103]. Higher [y with Iy = 0 generalisations

of the Baker—Forrester operator were considered in [10], which recover as a special case
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Chalykh’s operators from [18]; see [20] for an explicit form of such a Hamiltonian for {; = 2.

Furthermore, MR operators of type A admit integrable generalisations to systems
with two types of particles [24,96]. They are related to submodules of the polynomial
representation of DAHA at special values of the parameters [53]. We generalise Van
Diejen’s operator from [101] to a Hamiltonian involving two types of particles, and we
explain how to obtain quantum integrals for it. This also leads to a generalisation of the

above operator M for two types of particles.

1.2 Structure of the thesis

Chapter [2] summarises the relevant algebraic background material. We start with the
theory of Coxeter and Weyl groups and their root systems. We then give an introduction
to Hecke algebras associated with Coxeter groups. We also discuss their (double) affine
generalisations, focusing specifically on type G L,,, which is needed for Chapter [0l Finally,
we give an overview of the rational and trigonometric degenerations of DAHASs, used in
Chapters [] and [6]

Chapters constitute the main parts of this thesis.

In Chapter [3] we study BA eigenfunctions of generalised CMS operators, we give a
construction of the BA function for the configurations AG5 and BC(l, 1), and we discuss
bispectral dualities and bispectral dual difference operators of rational MR type. This
chapter is based on our papers [55,56],83|.

In Chapter [4] we develop the theory of invariant parabolic submodules for TCAs and
utilise them to construct generalisations of spin CMS operators. We explicitly work out
numerous examples of our construction. This chapter is based on the preprint [54].

In Chapter [5] we use the theory of DAHAs to obtain two commuting trigonometric
MR-type operators related to the configuration AG, that generalise the rational difference
operators given for AGy in Chapter [3]

In Chapter [6] we define and study a subalgebra of a DAHA that realises inside the
DAHA a deformation of the crossed product of the symmetric group with the image of
the quantum group U,(gl,) under its g-oscillator representation. We also obtain new
integrable generalisations of Van Diejen’s difference version of the rational CMS operator
with a harmonic term and related systems. This chapter is based on the preprint [57].

In Chapter [7], we discuss possible questions for future further research stemming from

the work presented in this thesis.



Chapter 2

Coxeter groups, Hecke and related

algebras

We begin this chapter by summarising some relevant aspects of the theory of Coxeter
groups. We then give an introduction to Hecke algebras, followed by a discussion of
their (double) affine generalisations in type G L,,, and we end the chapter by recalling the

definition and some properties of the rational and trigonometric Cherednik algebras.

2.1 Coxeter groups

Coxeter groups are an abstraction and generalisation of groups generated by reflections.
Let E be a real Euclidean space, that is, a finite-dimensional R-vector space with a positive-
definite symmetric bilinear form (-,-). A linear transformation s € GL(E) is called a
(Euclidean, or orthogonal) reflection if there is a vector o € E'\ {0} such that s(«a) = —«
and such that s fixes pointwise the hyperplane H, = {z € E: (a,z) = 0} orthogonal
to a.. Let s, denote such s. Note that sy, = s, for any non-zero scalar X\. Explicitly, the

reflection s, is given by the formula
sq(7) =2 — (", 1),

where o = 2a/{a, ). Tt belongs to the group O(F) of orthogonal transformations of FE.

Definition 2.1. A subgroup W < O(F) is a (finite) real reflection group if (it has finite
order |W| < oo and) it is generated by reflections.

In 1934, Coxeter proved that every finite real reflection group admits a presentation of

a particularly nice form.

Theorem 2.2. [37] Let W be a finite group. If W is a real reflection group, then it has

16
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a presentation
W= (sq, (i €l): s’ =1, (saisaj)m(i’j) =1 for i # j)

for some finite set I and m(i,7) = m(j,i) € Z>s.

For a finite real reflection group W C O(F), the idea of the proof of Theorem is
to consider the set Ref(1V) of all reflections in W, and to pick a connected component (a

fundamental chamber) of the space
E* =F \ UsaeRef(W)Ha'

The walls of this chamber correspond to some of the hyperplanes H,, and thus to some
of the reflections in W, which can be taken as the generators s,, in the presentation in
Theorem [2.2) and 7/m(i, j) is the angle between H,, and H,,. These reflections s,, are
then called simple reflections.

This motivated the introduction of the following abstract definition.

Definition 2.3. Let I be a finite set and m: I x I — Z>; U {oo} be such that m(i,i) = 1
for all i € I, and m(i,j) = m(j,i) > 2 for i # j € I. The associated Coxeter group is the
group defined by the presentation

W= (s; (i €1): (s38,)™") =1if m(i,5) < o0).

One often conflates the set of generators {s;}ic; with the indexing set I itself. The
pair (W, I) is then called a Coxeter system, and the function m can be uniquely recovered
from this data, as m(4, j) is the order of s;s; in W.

The data from the definition of a Coxeter group can be depicted with a so-called

Coxeter graph, which is the labelled undirected graph with vertex set I such that
e if m(i,j) = 2, there is no edge between the vertices i and j;
e if m(i,j) = 3, there is an unlabelled edge between i and j;
e if m(i,j) > 3, there is an edge between ¢ and j with label m(3, j).

The defining relations of the Coxeter group mean, in particular, that s? = 1 foralli € I,
and consequently, the relations for s; and s; with i # j and m(7, j) < oo can be equivalently

rewritten in the form of braid relations

8i5;8iS;j = 8;8i8;S; . (2.1)
A >l

v v~
m(4,j) terms m(i,j) terms
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Theorem implies for any finite group that if it is a real reflection group then it is

a finite Coxeter group. In 1935, Coxeter proved the converse of this statement.

Theorem 2.4. [38] A finite group W is a Coxeter group if and only if it is a real reflection

group.

In other words, for finite groups, the notion of a real reflection group and Coxeter

group essentially coincide, though this is not the case for infinite groups.

Example 2.5. The symmetric group S,, (n > 2), the group of all permutations of the set
{1,...,n}, is a Coxeter group with generators s; = (i, + 1) for i« = 1,...,n — 1, which

are the simple transpositions that swap ¢ and 7 + 1, and a presentation
. 2 _ _ _ . . .
Sy = (51, +,Sn-1: 8 = 1, 8iSi118i = Sit18iSit1, 5;8; = 8;8; if i —j|l > 1).

It can be realised as a real reflection group by putting £ = R" and letting s; act as the

reflection s, where {e;} ; is the standard orthonormal basis of R". The resulting

—€if1)
faithful action of &,, on R"” is by permuting coordinates, and with respect to it, the
set Ref(&,,) consists of all transpositions (i, j) € &,, acting respectively as s.,_.;. The
corresponding Coxeter graph is the Dynkin diagram of type A,,_;. The group G,, is called

the Coxeter group of type A,_;.

Finite Coxeter groups have been classified |37,38|. They are finite direct products of the
groups corresponding to the Coxeter systems of the following irreducible types (a Coxeter
system is called irreducible if its associated Coxeter graph is connected): A, (n > 1),
B,=0C, (n>2),D, (n>4), Egs, E7, Es, Fy, Go, Hy, H3, Hy, I5(m) (m > 7). Sometimes,
the notation I5(3), I5(4), I5(5), I5(6) is used for Ay, By, Hy, and Gy, respectively. The
reason is that then Iy(m) for m > 3 are precisely the dihedral groups (the groups of
symmetries of regular m-gons).

Each of the groups of types A, ..., G is a Weyl group (of a simple complex Lie algebra),
that is, a crystallographic finite real reflection group, which are those that preserve a lattice
in the Euclidean space F (the Z-linear span of a basis of E'). Types A, B = C, and D are
called classical types, and the groups of types Fg, E7, Eg, Fy, and G5 are called exceptional

Weyl groups. The remaining types are non-crystallographic.

2.1.1 Root systems

Considering the set of lines orthogonal to the reflecting hyperplanes for the elements Ref (1)
of a finite real reflection group W leads to the notion of a root system. It turns out that W,
when acting on the Euclidean space E, permutes the set of these lines. The definition of

a root system can be axiomatised as follows (see, e.g., [69]).
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Definition 2.6. A finite set R C E'\ {0} is a (reduced) root system if the following two

conditions are satisfied for all o € R:
(i) RNRa ={+£a}
(i) so(R) = R.

The elements of R are called roots. The root system is called crystallographic if (", 3) €
Z for all o, € R, which is known as the crystallographic condition. A non-reduced
crystallographic root system is one that does not satisfy condition (i) but satisfies all the

other conditions.

Given any root system R, the group W = (s, (o € R)), generated by reflections with
respect to the roots a € R, is a finite Coxeter group, and it is a Weyl group if R is
crystallographic. It turns out that Ref(W) = {s,: a € R}. Let I C Ref(W) be a choice
of simple reflections. The root system R is called irreducible if the Coxeter system (W, I)
is irreducible.

Notice in Definition that in the case when the crystallographic condition is not
imposed, the relative lengths of roots that lie in different W -orbits do not matter.

A positive subsystem R, C R is defined by choosing a generic v € FE and letting
R, = {«a € R: (a,v) > 0}, where ‘generic’ means that (a,v) # 0 for any o € R. Note
that R = Ry [[(—R4).

Example 2.7. The root system of type A,_1 is
Api={ei—e;:1<i<n, 1<j<n,i#j} CR",

whose associated Coxeter group is the symmetric group &,,. A choice of a positive half is
A1y ={e;—ej: 1 <i<j<n}

Given any reduced root system R and a positive subsystem R, there is a unique
subset S C R, of so-called (positive) simple roots such that S forms a basis for Spang R,
the R-linear span of R in E, and such that every a € R, can be written as a linear
combination of simple roots with non-negative coefficients (see, e.g., |69, Theorem 1.3|).
The set S is called a simple subsystem, and {s,,: a; € S} gives a set of simple reflections
for the reflection group W associated with R. The cardinality of the set of simple roots is
called the rank of R.

The classification of crystallographic root systems (up to ‘isomorphism’) is analog-
ous to the classification of Weyl groups. (Two crystallographic root systems R, R’ in
Euclidean spaces E, E’, respectively, are isomorphic if there is a vector space isomorph-
ism ¢: Spang R — Spang R’ such that ¢(R) = R’ and (¢(a)",o(5)) = («¥, ) for all
a, f € R.) Reduced irreducible crystallographic root systems come in types A4, ..., G, just
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as the corresponding Weyl groups (see, e.g., [9]). The only difference is that there are

crystallographic root systems
B,={fe;: 1 <i<n}U{te;£ej:1<i<j<n}CR"

and
Cp={%x26;: 1 <i<n}U{te;xe;:1<i<j<n}CR"

that are not isomorphic if n > 2, but have the same associated Weyl group. The standard
realisations of all the reduced irreducible crystallographic root systems can be found in |9,

Plate I-IX]. The only non-reduced irreducible crystallographic root system is
BC,, = {=£e;, £2¢;: 1 <i<n}U{xe;xe;: 1 <i<j<n}CR"™

Its associated Coxeter group is the Weyl group of type B,,.

Given a crystallographic root system R, the set RY := {a": o € R} is also a crystallo-
graphic root system, called the dual root system, and its elements are called coroots. The
root systems R and RY generate the same Weyl group, but are not always isomorphic. As-
sume that R is reduced. Given a basis of simple roots aq, ..., ag, the lattice QQ = @le Loy
is called the root lattice, and @le Za is called the coroot lattice, denoted V. The weight
lattice is defined by P = {w € Spang R: (w,a") € Z, Va € R}. Its elements are called
weights. The lattice of coweights is given by {w € Spany R: (w,a) € Z, Yo € R} and is
denoted PV. Due to the crystallographic condition, we have R € @ C P and QV C PV.
The lattices @, QV, P, and PV are all preserved under the action of the Weyl group W.

The fundamental weights wy,...,wy € P are defined as the basis of Spang R dual to
{o}r_,, that is, they are defined by the condition (w;, o) = &;; for all 4, j.

A weight w € P is called minuscule if —1 < (w,a") < 1 for all @« € R. The only
reduced irreducible crystallographic root systems for which there does not exist any non-
zero minuscule weight are Eg, Fy, and G3 (see [9]). A quasiminuscule weight is an element
w € R such that —1 < (w,a”) <1 for all @ € R\ {fw}. A quasiminuscule weight exists
in all cases, including Fs, Fy, and Go (see [|9]).

2.2 Hecke algebras

Hecke algebras are certain deformations of group algebras of Coxeter groups. An altern-
ative way to think of them is as particular quotients of group algebras of braid groups.

With notations as in Section [2.1] the braid group associated with a Coxeter sys-
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tem (W, I) is the group defined by the presentation

BW = B(WJ) = <0'7; ('l S I) 0,004+ =040;05""" if m(’L,j) < OO>
(4:7) )
m(¢,7) terms m(z,j) terms

That is, its defining relations are precisely of the form of the braid relations (2.1]). Note
that o2 # 1, whereas the generators s; of the Coxeter group W satisfy s? = 1. For
example, the braid group Bg, associated with the symmetric group (the Coxeter group of
type A,_1) is the standard braid group on n strands.

An expression w = s;, - - - s;, € W is called reduced if w cannot be written as a product
of s; with fewer than £ terms, and then £ is called the length ¢(w) of w. One can show
that two reduced expressions are equal to the same element of W if and only if they are
related by a sequence of braid relations (this is Matsumoto’s theorem; see, e.g., |58|).
It follows that the definition o, = 0y, ---0;, € By does not depend on the choice of
reduced expression for w. Note that if {(s;w) > [(w), then 0,0, = 04,4,. It follows that if
{(s;w) < l(w) (= I(ss5;w)), then oy = 0 10y

Let 7: I — C*, 7 — 7; be a function such that 7, = 7; if the Coxeter generators s;
and s; are conjugate in W. The associated Hecke algebra can be defined as the quotient
of the group algebra CByy by the two-sided ideal generated by a set of quadratic relations

called Hecke relations.
Definition 2.8. The Hecke algebra associated with (W, ) and 7 is
A (W) = (W, 1) =CBy/((0; — 1) (o + 7, )i €1).
Let T; (i € I) and T, (w € W) be respectively the images of o; and o, under the quotient
map CBy — 4. (W).

The algebra s, (W) is generated as a (unital, associative) C-algebra by the elements
{T;}ic1, subject only to the braid relations and the Hecke relations (T} — 7;)(T; 4+ 7, ) = 0.

The latter relation is equivalent to

7-;'71 - 11@ + 7_7:71 - TfL'.
If the function 7 is identically equal to 1, then this Hecke relation reduces to T? = 1, and
thus s (W) = CW. The algebra s (W) for 7 # 1 is a deformation of CW.

Remark 2.9. One may consider 7; as formal commuting invertible variables, rather than
complex parameters, in which case 7. (W) is considered as an algebra over the ring C[7+!]

of Laurent polynomials in 7;.

The Hecke algebra has a representation on CW = @, ., Ce,, where e, (w € W)
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denotes a basis for CW, given by

Ti(e,) = Esiw B ?f l(s;w) > (w), (2.2)
es,w + (1o — 77 ew i L(s;w) < l(w).

See, e.g., [5§| for a proof that this is a representation.

The representation ({2.2)), which may be thought of as a deformed version of the left
regular representation of W, can be used to show the linear independence of the elements
Ty (w € W). Indeed, we have T,,(e;q) = ey, so any linear dependence between T, would
contradict the linear independence of e,. In fact, the following theorem takes place (see,
e.g., [58,69]).

Theorem 2.10. The elements T,, (w € W) form a C-linear basis for 7. (W), or if 7; are
formal variables then 5. (W) is a free C[t=]-module with this basis. In particular, (W)

is a flat deformation of CW, as it is a flat module over C[r*!].

Recall that a module M over a ring R is flat if the operation of taking the tensor
product ® g M preserves exact sequences of R-modules, and that every free module is flat.

To see in Theorem that the elements T, span JZ (W), one uses that their span
contains 1 = T}y and is stable under left multiplication by 7; (indeed, if ¢(s;w) > {(w)
then T;T,, = Ty as 0404 = 0s.4; and if {(s;w) < f(w), then oy, = o0, '0,, implying
Tow =T, 'T, = T;T,, + (1,71 — 73)Ty), and that T; generate 5 (W) as an algebra.

It follows from the preceding theorem that the representation is faithful, and that
it can be actually interpreted as an action of J# (W) on itself, coinciding with the left

regular representation of JZ (W).

Example 2.11. Let us consider as an example the type A,_; Hecke algebra J7,, =
(6, associated with the symmetric group &,. In this case, the function 7 must be

constant, so we may think of 7 as an element of C*. We have

K 2Ty, .. Ty (T, —7)(Ty+ 71 =0, TiTin Ty = Ti TiTiy,
I, = T/T i i - | > 1)

The algebra 7, . admits a faithful representation, called the polynomial representation,

on the space of Laurent polynomials C[X;™, ..., X!] given by
Tovs s+ — T (s = 1) (2.3)
7 TS; Si — 3 .
XiXih —1

where s; acts by swapping X; and X, ;. The operators (2.3 are called Demazure—Lusztig

operators (see the historical remarks in [35], p. 89]).
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2.3 Affine Hecke algebra of type GL,

The affine Hecke algebra (AHA) of type GL,, is an enlargement of the Hecke algebra /7, ,
from Example It will be convenient later to treat 7 as a formal parameter. Let C;
= C[r*!] denote the ring of Laurent polynomials in the variable 7. The AHA of type G L,
is the (unital, associative) C,-algebra c%/’zﬁ with generators Ty (1 < k < n —1), X
(1 <i < n), and the following relations 35| p. 76]:

(To =) (T +77") =0, TTwiiTe = ToiTiTisr, [Th D] =0if [k —1] > 1,
TkaTk:Xk+1, [Tanz] =Of0r@7ék,k+1,
and Laurent relations for X! (that is, X;X; ' = X;'X; =1, [X;, X;] =0, 1 <j <n),

where the bracket |-, -] denotes the commutator. The elements T}, generate a subalgebra
isomorphic to the non-affine Hecke algebra 7, ;.

Similarly to the algebra .77, ;, the AHA jE’Z,T has a faithful polynomial representation
on C,[X{, ..., X! in which T} act via the Demazure-Lusztig operators (2-3), and X;'
act by multiplication (see, e.g., [35]).

In addition, the algebra ,?7/277 admits another different faithful representation on the
same space C,[X lﬂ, ..., XF1] called Cherednik’s basic representation, defined as follows
(see [35, Lemma 1.3.12]). Let ¢ € C* be not a root of unity. The basic representation
B = B4 sends T, to the Demazure-Lusztig operators and

X B(Timr - LTI)TB(T, L - TAT,

where m( X' X5? - X)) = ¢ " X" X3t - - X2 for any a; € Z. That is, 7 acts as the
cyclic permutation (1,2,...,n) € &, followed by a scaling of the variable X; by ¢~'.

The algebra %/’;T has a linear basis of Poincaré-Birkhoff-Witt (PBW) type consisting
of the elements 7,, X" --- X" with w € &,, and m; € Z. This follows from a similar
statement about a PBW basis for DAHA of type GL,, (see Section [2.4]below) of which the
AHA is a subalgebra. Here {T,,: w € &,} is a basis of the non-affine Hecke algebra 7, ,
(see Theorem above).

The centre Z (,}/fZT) of the algebra J“%Z,T is formed by symmetric Laurent polynomi-
als in X-variables, Z(5,,) = C.[XTF',..., X% (see, e.g., |35, Lemma 1.3.12] and a

historical comment in [80]).

2.4 Double affine Hecke algebra of type GL,

The idea behind the definition of the DAHA of type GL,, is, roughly speaking, to “glue
together the polynomial and basic representations of the GL,-type AHA c%/’zﬁ along the
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generators T},”. The precise definition is as follows.

Let ¢ € C* be not a root of unity. The DAHA H,, = H,, , . of type GL,, is the (unital,
associative) C,-algebra generated by Tj, (1 <k <n —1), X;*!, and Y;*! (1 <4 < n) with
the following relations [35, p. 100]:

(T, — ) (T +771) =0, (2.4)
LT Te = Tosr Tk Thrr,  [Te, ) =0 if [k —1] > 1, (2.5)
Te X T = Xpr1, [Ty, X;] = 0 for i # k, k + 1, (2.6)
T T =Y, [TnYi]=0fori#kk+1, (2.7)
VX, =qX,Y,

Y, XX =T,

and Laurent relations for X;*! and Y *!,

where ¥ = [T-, Y:. Relations imply that Y commutes with all T}, which generate
a subalgebra isomorphic to the Hecke algebra .77, . of type A,_1. By [35, Theorem 1.4.8|,
the map X; — Yi_l, Y, — Xi_l, T}, +— T}, defines an anti-automorphism of H,,. The subal-
gebras (T1, ..., Ty, Xit .., XY and (T3, ..., T_1, Y, ..., Y1) are both isomorphic
to the AHA J“E’Z,T of type GL,, and to each other via the map T) — T}, Y; — Xi_l.

As in 35 (1.4.57)], let 7 = Y, 'T} - T,,_;. Relations imply that

Y, =TTi\-- .TnflﬂflelT;l .. .Tzf_ll (2.8)

for all 1 <7 <n (for i = 1 and 7 = n, this is to be interpreted as Y; =T} ---T,,_;7* and
Y, =a Y7t T7Y  respectively).

The element 7 can be used to give an alternative presentation for the algebra H, |35,
p. 101]. Namely, H,, is isomorphic to the algebra with abstract generators T} (1 < k <
n—1), 7% and X' (1 < i < n), and relations (2-4)-(2.6), Laurent relations for XE

and the following relations involving 7:

WXi:XiJrlﬂ', (Z:L,Tl—l)
X, = q¢ X", (t=1,...,n)
7Ty = Ty, (1 =

1
7T = Tin", (t=1,...,n—1).

It follows that 7X, = ¢ 'X 7 and 7?T,_; = Ti7%. We have 7" = y-1 [35, p. 101],
since relations imply that 7" = (Y, Ty T,_1)" = 37_15152 .-+ S,, where S; =
Tyt T YT iy Tn_1, and one can check using braid relations that Sy --- S, = 1.
It is easy to see from relations that the map X; — X;, Tj, — T}, m — 7! defines an
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anti-automorphism of H,.
The algebra H,, admits a faithful polynomial representation on the space of Laurent
polynomials C.[X, ..., X ] determined by

T—71

Xka_ng -1
TN XX XG) = XY X X (i € Z), (2.11)

Ty > Tsp + (se — 1), (2.10)

and the action of X;*' by multiplication [35, p. 101]. That is, T} act as the Demazure-
Lusztig operators, and Y; act as (X, '), where 3 is Cherednik’s basic representation from
Section 2.3

In particular, at 7 = 1, the element T} acts as s, € &,,; and by equality and
formula , the element Y; acts at 7 = 1 as the (multiplicative) g-shift operator t; =
q~i9%:  whose action is t;(X;) = ¢% X;.

The DAHA H,, has a linear basis of PBW type formed by the elements T,,X™YP
with X™ = X{™ ... X YP = Y'...YPr w € &,, and m = (my,...,m,), p =
(p1y ..., pn) € Z". The fact that they span follows easily from the defining relations of H,,
and the polynomial representation can be used to show that they are linearly independent
(cf. |35, Theorem 3.2.1(ii)], which provides a proof of an analogous statement for the
DAHA of type SL,).

The algebra H,, admits a grading with deg T}, = deg ;™" = 0 and deg X;*! = +1, for
which Y plays the role of a “grading operator”, in the sense that for an arbitrary monomial
in the PBW basis of H,,, we have

YT, XMYP = gmt-tm, xmyPy,

where ¢’s exponent my +- - - +m,, = deg(T,, X™YP). The degree zero part ]HL(%O) is generated
by the elements Ty, Y;**, and Xin_l, which can be seen by using the PBW basis.

2.5 Degenerations of Cherednik algebras

In this section, we discuss two types of algebras that can be obtained as degenerations of
Cherednik’s DAHAs. They are respectively called the rational and trigonometric Chered-
nik algebras. Their GL, type (Section below) will be used in Chapter @ For
Chapter [4, we need other types as well, and we cover them in Sections[2.5.T]and 2.5.2] Al-
though RCAs can be defined for an arbitrary finite complex reflection group [45], the case

of real reflection groups will be sufficient for our purposes. Similarly, we will not consider
TCAs in the most general possible setting, as we will only need the case corresponding to

reduced crystallographic root systems.
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2.5.1 Rational Cherednik algebras

Assume that the Euclidean space E from Section has dimension dim &/ = n, so that we
can identify it with R™. Let VV = C" be its complexification, and let the inner product (-, -)
be extended C-bilinearly to V. Let Clz] = C[xy, ..., z,] denote the algebra of polynomial
functions on V' (also denoted as C[V'] or S(V*), the latter meaning the symmetric algebra
of the dual space V*), where z; € V* form the dual basis of the standard basis {e; }I"; of V.
Let R C R™ be a (reduced, not necessarily crystallographic) root system, with associated
Coxeter group W. The latter can naturally act on V' and therefore on Clz]. Let ¢: R — C,
a +— c(a) = ¢, be a W-invariant function, called a multiplicity map. Let R, be a positive
subsystem.

The associated RCA H, = H.(W, V) can be defined by its faithful polynomial rep-
resentation on C[z]. Namely, it is the subalgebra of the endomorphism ring End¢ C[z]
generated by polynomials p € C[z] (acting by multiplication), the reflection group W, and

the rational Dunkl operators

Ve=0c— Calr &) 4, (EeV) (2.12)

acR

where 0 = Y (£, €;)0,, is the directional derivative along the vector ¢ [45]. Let us
note that one can consider a definition of the RCA with an extra parameter ¢t € C* by
replacing ¢ in (2.12)) with ¢0;. The resulting algebra is isomorphic to H,, so there is no
loss of generality in choosing t = 1, as we do. A limit ¢ — 0 gives the so-called classical
limit of the RCA.

It is well known that the Dunkl operators commute among themselves, [V, V, |
=0 for all £,n € V |43, and that they are W-equivariant, wV¢ = V,gw for all w € W.
Dunkl operators preserve polynomials as p — s,(p) is divisible by (a, x) for any p € C[z].

They satisfy the following commutation relations

Vel = (€ e — 3 cafo,€)a¥, ei)sa
a€R;
for i =1,...,n. There is an automorphism of the RCA defined by V., — z;, z; = =V,
and w — w.

The algebra H,. has a linear basis of PBW type formed by wz)" .- -z VEL. .. VPn
for w € W and m;,p; € Z>o |45]. The RCA H. is a flat c-deformation of the crossed
(equivalently, semi-direct or smash) product CW x D[V] of the group algebra CW with
the Weyl algebra D[V| = C[z][0,, - . ., Ox,] of differential operators on V' with polynomial
coefficients.

The spherical subalgebra SH, C H. is the subalgebra (with a different unit) of H,
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defined by SH. = eH.e using the idempotent symmetriser e = W[~y . w e CW.

The RCA H,. admits a grading with degz; = 1, degw = 0, and deg Ve = —1forw € W
and { € V. Its degree zero subalgebra, generated by W and z;V,, (i,j € {1,...,n}), was
studied in [51] (see also [4]).

2.5.2 Trigonometric Cherednik algebras

In this section, we continue to use the notations from Section [2.5.1 but R will now be a
reduced crystallographic root system spanning the vector space V' and W the correspond-
ing Weyl group. The TCA (also known as degenerate DAHA) H''& = H'8(R) associated
with R can be defined by its faithful action on the group algebra C[P] = C[{e!*®: a € P}]
of the weight lattice P of R. (Similarly to the RCA, one could consider a definition in-
volving an additional parameter ¢t € C, only needed to handle the classical limit.)

The algebra H'8 is the (unital, associative) algebra over C generated by W (which
preserves the weight lattice P, and hence acts naturally on C[P]), multiplication operat-

ors ¢/ (o € P), and Cherednik’s commuting trigonometric Dunkl operators

trig Ca <Oé, €> .

Ve =0 - Y r (L= sa) 4 {p.6), (2.13)
acRy

where £ € V and p = p. = %Zae R, Cal [31]. The operators (2.13) are a trigonometric

generalisation of (2.12). These trigonometric Dunkl operators commute, [V?ig, Vel =0

for all £,n € V, but they are not W-equivariant. For any simple root a; € R, they satisfy

vzrlg . Vtrlg(é)saZ _ Cal <a“ €>

Sa; .

7

A different but related definition of trigonometric Dunkl operators such that they are

W-equivariant, but do not commute, was given by Heckman in [62] — their definition is

1 Ca<0é7§><]. + e—(a,:r:)) trl
V?:8§—§Z [ ot (1—5,)=V/58— anaf

acR a€R+

Their commutators are

VEVE =3 3 cacs({o €481 — (0,1} (8,)suss

o,BERL

for all £,n € V (see, e.g., [64]).
The TCA H® has a linear basis of PBW type formed by the elements we () p(V8)
forw € W, o € P, and monomials p € Clz], with p(V*"&) = p(Viris . Viie) This PBW

property can be interpreted as a vector space isomorphism between H'& and CW** @ C[z],
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where W = W x P is an extended affine Weyl group.

The spherical subalgebra SH& C H¢ is defined similarly to the case of RCAs by
SHre = eHrige.

The degenerate AHA (also known as the graded Hecke algebra) [41,80] is the subalgebra
of H're generated by W and V?ig (£ € V). The centre of the degenerate AHA is equal to
{p(V™e&): p € C[z]"} (see, e.g., [64]), where C[z]" denotes W-invariant polynomials. In

particular, the operators p(V'e) with p € C[z]" are W-invariant.

2.5.3 Type GL,

In this section, we give an abstract definition of the RCA and TCA of type GL, by
generators and relations, as we need them in Chapter [6] Let ¢ € C be a parameter.

In the rational case, type GL,, refers to the RCA H,, = H, . = H.(S,, C") associated
with the A,_i-type root system R C E = R" (by contrast, type SL, corresponds to
choosing E to be the orthogonal complement of > "  e; in R"). Abstractly, the RCA H,,
is the (unital, associative) algebra over C generated by the simple transpositions s, =
(k,k+1) €6, (1 <k<n-—1), and elements z;, y; (1 <1i < n) subject to the following

relations [45]:

[yiayj] =0= [:C'L'aajj]a

SETESk = Thy1,  |Sk, ) =0 for i # k, k41,
SkYkSkE = Yk+1, [Sk,yi] =0 for i 7é k‘, k + 1,
1—c) ysuifi=j,
Si; = [y, ;] = e (2.14)
cs;; if @ # 7.
Here j,l € {1,...,n}, and s;; denote the transpositions (i, j) € &,,.
The algebra H,, admits a faithful polynomial representation on the space C|xy, ..., x,].

The elements s, act by swapping x; and z. 1, the elements z; act by multiplication, and y;

act as the rational Dunkl operators

c

V=0, —

j=1
i

(1—si). (2.15)

ZL’i—.Tj

The RCA H,, has a PBW-type basis formed by wz(" ---zlmyf* - yP» for w € S,
and m;, p; € Z>y.

For the A,,_i-type root system R, there exists a variation on the SL,-type TCA H&(R)
where one takes V' = C" and replaces the weight lattice P with the lattice Z" = @, Ze;

C V. This case is referred to as type GL,. Abstractly, we let the TCA HE’ = H'® of
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type G L, be the (unital, associative) algebra over C generated by sy € &, (1 <k <n-—1),

~

and elements X', 7; (1 < i < n) subject to the following relations:

0,7,]=0=[X,,X;], XX '=X"'X,=1,
5p XSk = Xpy1, 1, Xi] = 0 for i # k, k + 1,
SkUk+1 — UkSk = G, [k, 93] = 0 for i # k, k + 1,

(4 +0)Xi=Xi(1+p + -+ ),
U — X1 X1 = csq,

where 1 < 5 < n. Slightly different but equivalent sets of generators and relations are
used in [2] (see also [98, Section 3]).

The above defining relations of H™# can be obtained by taking the relations of the
DAHA H,, of type GL,, from Section and performing a trigonometric degeneration by
putting

Y,=eWi, g=¢" r=e"? T, =g (2.16)

and taking a limit A — 0 (in other words ¢ — 1). More precisely, we consider H,, as an
algebra over C[[h]] via the assignments (2.16]), and we put H'" & = H, /hH,, Similarly, the
relations of the RCA H,, given above can be obtained from those of the TCA H%*¢ through
a rational degeneration by putting X; = e and y; = hy;, expanding the relations of Ht®
around h = 0, and taking the first non-trivial relations that this imposes for s, z;, and y;.

The algebra H™¢ admits a faithful polynomial representation on the space of Laurent
polynomials C[Xi', ..., X*!]. The elements s, act by swapping X and X1, while X;*!

act by multiplication, and ¥; act as the commuting trigonometric Dunkl operators

Vi = Xk, = ) (1 s) me sy = XVE =Y sy (217)
=1 J<i j=1 Jj=1
i j>i J>i

where V¥ is formally identical to the rational Dunkl operator V; from above but
with x relabeled to X! To compare formula to the formula for trigonometric Dunkl
operators given in , one needs to put here X; = e+ (the reindexing is just due
to a different convention in for the choice of Dunkl operators), and then the oper-
ator (2.17)) is equal (up to a constant) to the operator (2.13)) with R = A,,_; and £ = e,,_;11.
Finally, note that in the rational degeneration, described in the preceding paragraph, where
we put X; = €', we have lim,_,o iV:"¢ = V,, as expected.

The TCA H" has a PBW-type basis formed by w X" - - - X7t ... P forw € &,
m; € Z, and p; € Z>.

From the respective polynomial representations of the RCA H,, and the TCA H™ of
type GL,, and in particular formula that relates v;rig and V¥, one sees that there
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is an algebra embedding of H,, into H™8 given as follows |98, Proposition 4.1(i)]:

Sk > Sk, ZTi = Xi;
A n B R (2.18)
yi — X ! Y + CZ sij | = X, 1(5i5i+1 S 1)Un(Sn—1 - - Sip18i)-
o

The relationship between y; and ¥, follows from the fact that Y; =T;--- T, 1Y, T,,_1 - - - T;
in the DAHA H,,.

On the other hand, the degenerate AHA of type GL,,, which is the subalgebra of H"
generated by &,, and C[y, . .., Y], embeds into H,, via si — Sk, Ui — ;Y — czj>i sij |45,
Proposition 4.3(ii)] as follows from relation ([2.17).

The algebras H,, and H'"® both admit a grading, which will be discussed in Section
and where we will see that the form of the embedding (in particular, the presence
of X; ! in the image of ;) is natural in view of these gradings.

The following diagram summarises the relationships between the (finite-type, affine,
and double affine) Hecke algebras and their degenerations, in type G L,,, introduced in this
chapter:

Py q—1 tri
Hor C Iy CHygr —— HYS —— Hye

The following table summarises the notations for the generators (and their images in the
respective polynomial representations, if denoted differently) of the DAHA, RCA, and
TCA of type GL,.

Algebra Generators

Hgr T, 1<k<n-1), X, Y™ (1<i<n)
His sk (1<k<n-1), X, 7 (or V") (1<i<n)
Hie sk (1<k<n-—1), z;, y (orV;) (1<i<n)

Table 2.1: Notations for generators of DAHA, TCA, and RCA of type GL,,.



Chapter 3

Bispectrality of generalised

Calogero—Moser—Sutherland systems

In this chapter, we extend the axiomatic definition of multidimensional BA functions
from [22,24,28,|29,|105| to the case of configurations where arbitrary collinear vectors are
allowed as long as all subsets of collinear vectors are of the form {a, 2}, and we construct
such a function for (the positive halves of) the configurations AGy and BC(l,1). This
leads to bispectral duality statements for the corresponding generalised CMS quantum
Hamiltonians associated with AG5 and BC(l, 1), respectively. In the case of AG,, we
present two corresponding dual difference operators of rational MR type in an explicit
form. In the case of BC(I,1), we use a difference operator defined by Sergeev and Veselov.
This chapter is based on our papers [55,/56,83] (the initial parts of |[56] were done in [106]).

The structure of this chapter is as follows. In Section [3.1], we recall the definition of
generalised CMS operators associated with finite collections of vectors with prescribed
multiplicities. In Section [3.2] we discuss their BA functions. In Section [3.3] we give an
ansatz for a dual MR-type difference operator with rational coefficients of a particular
form, and we find sufficient conditions for it to preserve a space of quasi-invariant analytic
functions. We apply this machinery in Section where we present an account of our
construction from [56] of the BA function for the configuration AG5 and the proof that
it leads to a bispectral duality for the generalised CMS operator associated with AG,.
We studied the integrability of this operator in [55], and Section includes a summary
of the results of that paper. In Section we give a construction of the BA function
for the configuration BC(l,1) and prove a bispectral duality for the generalised CMS
system of type BC(l,1), following our paper [83]. By an analytic continuation argument,
we generalise in Section the above two eigenfunctions from the case of non-negative
integer values of the multiplicity parameters to more general complex values. In the case

of AGs, this further extends the investigations done in [56].

31
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3.1 Generalised CMS Hamiltonians

Consider a finite set A C C™\ {0} and a multiplicity function ¢: A — C that assigns
to each vector a € A a complex number ¢, called its multiplicity. In most parts of this
chapter, we will be specifically interested in the case where the multiplicities are contained
in Z>o.

The generalised CMS Hamiltonian associated with the collection of vectors A with

prescribed multiplicities is the Schrodinger operator of the form

CalCa + 2024 + 1){a, )
L=—-A+ g , 3.1
= sinh?(av, z) (3:1)

where © = (21,...,2,) € C*, A=3"" 02 (9,, = 0/9x;) is the Laplace operator on C",
and ¢y, = 0 if 2a ¢ A. The convention of writing the couplings in the operator (3.1)) as
Ca(Co + 2¢90 + 1){, @) comes from the theory of symmetric spaces (see, e.g., [94]).

The above generalised CMS system is said to be of trigonometric (or, equivalently,
hyperbolic) type. The rational version of these operators is obtained by replacing the
function sinh{a, z) in formula by (a,z). It can be obtained as a limit of the oper-
ator by introducing a scaling parameter w > 0, replacing each a € A by wa, with the
same multiplicity, and taking the limit w — 0. There exists also an elliptic generalisation
of CMS systems, which is the most general case, where the potential is expressed in terms
of the Weierstrass g function on an elliptic curve, but we will not deal with the elliptic case
in this thesis. By CMS operators, we will mean the trigonometric type unless specified

otherwise.

3.2 Baker—Akhiezer functions

In this section, we consider the axiomatic definition of BA functions proposed in [56].
We formulated the definition in such a way that it naturally extends the case of reduced
configurations 28,105, as well as the case of the root systems BC,, covered in |22}24}29).
We show that if a function satisfying this definition exists for some configuration of vectors,
then it is an eigenfunction for the corresponding generalised CMS operator (3.1).

Let R C C" be a finite collection of non-isotropic vectors. We assume there is a subset
R, C R such that any collinear vectors in R, are of the form «a, 2a, and R = Ry [[(—R4).
Let R = {a € R: 3o ¢ R} and R}, = R"N R,;. Let ¢: R — Zx be a multiplicity map,
and extend it to ¢c: RU2R — Z>( by putting ¢y, = 0 if 2a ¢ R for some o € R. Without
loss of generality, let us assume in this section that ¢(R") C Z-,. For any o € R!, we
define the set

Ao ={1,2,...;cat U{ca +2,ca +4,...,c0a + 202}
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Definition 3.1. We call a function ¢(z,z) (z,2 € C") a BA function for R if

1. ¥(z,7) = P(z,x)e!*® for a polynomial P in z with highest-order term [Tocr, (@, 2)%

2. P(z+sa,x) =P(z — sa,x) at (z,a) =0 for all s € A, and o € R,

For a € C", we denote by d, the operator that acts on functions f(z,z) by

dof(z,2) = flz+a,2) — f(z — a,z).

The second condition in Definition admits the following equivalent characterisation.
Lemma 3.2. Let o € C" be non-isotropic, ¢, € Z~q, and cao € Z>o. A function ¥ (z, x)

(z,2 € C") analytic in z satisfies P(z + sa, x) = Y(z — sa, ) at (z,a) =0 for all s € A,
if and only if

s—1
((5ao < L ) dat(z,2) =0 at (z,a) =0, s=1,...,¢q, (3.2)

and

t ca—1
(62a o ;) o (éa o L > dot(z,2) =0 at (z,a) =0, t =1,...,¢c2. (3.3)
(z,q)

: (z,q)

The proof of the preceding lemma follows from the one-dimensional statement in
Lemma below, whose proof can be found in our paper [56] (see also [105], where
the corresponding statement in the case ¢y, = 0 was stated). Let d, (r € Zsg) be the
difference operator that acts on functions F'(k) (k € C) by 6, F (k) = F(k+7r) — F(k—r).
Write 6 = §; for short.

Lemma 3.3. The following two properties are equivalent for any analytic function F (k)
(k€ C) and any n € Z~oy, m € Z>y.

1. Foralls=1,...,n,

and for allt =1,...,m,

(52 o %)t o (5 o %)n_léF(ls)

2. F(s)=F(=s) forallse {1,2,...,n}U{n+2,n+4,...,n+2m}.

=0.
k=0

The next lemma is a generalisation of [49, Lemma 1| (see also [105, Proposition 1]),
and its proof can be found in our paper [56]. This lemma is used to prove the uniqueness

of the BA function when such a function exists.
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Lemma 3.4. Let ¢)(z,7) = P(z,2)e!*® (2,2 € C"), where P(z,z) is a polynomial in z.
Suppose that ¢ satisfies conditions (3.2) and (3.3)) for some non-zero a € C", ¢, € Zy,
Coa € Z>g. Then (o, z)°T divides the highest-order term Py(z,z) of P(z,x).

Lemma has the following consequence.

Lemma 3.5. Let ¢(z, ) = P(z,2)e!*® (2,2 € C") satisfy condition 2 in Deﬁm’tz’on
where P(z,x) is a polynomial in z with highest-order term Py(z,z). Then [] (v, z)c

divides Py(z, ).

acER

Indeed, Lemma gives that FPy(z, ) is divisible by (z, a)¢*= for all &« € R',. This
is a constant multiple of (z, &) (z,2a)%>. The statement of Lemma [3.5| follows, since we
are assuming that collinear vectors in R, are only of the form «, 2a.

Lemma leads to the following uniqueness statement analogous to |105, Proposi-

tion 1] (cf. also [49, Proposition 1|) with an analogous proof.
Proposition 3.6. [56/ If a BA function satisfying Deﬁm’tion exists, then it is unique.

The next theorem generalises [105, Theorem 1] to the present context, and it is proved
analogously to how that result is proved. It states that if the BA function satisfying
Definition exists, then it is a joint eigenfunction of a commutative ring of differential
operators in the variables z. Let us first define an isomorphic ring of polynomials.

Let R be the ring of polynomials p(z) € C|zy, ..., 2,] satisfying
p(z + sa) = p(z — sa) at (z,a) =0

for all s € A, and a € R’ (notice the similarity with condition 2 in Definition .
We have 22 = (z,2) € R. Indeed, for any v € C" and s € Z-,, we have (z &+ s7)? =
2% 4 2s(z,7) + s*y* = 22 + s*9% at (z,7) = 0. For any vector v, we write v* for (v,~)
whenever convenient to save space.

For a polynomial p(z) = p(z1,...,2,), by p(0,) we will mean p(0,,,...,0,,). For
example, if p(z) = 22 = 22 + - - + 22, then p(d,) = A is the Laplacian.

The following statement takes place.

Theorem 3.7. [56] If the BA function i(z,x) satisfying Definition exists, then for
any p(z) € R there is a differential operator L,(x,0,) with highest-order term p(0y) such
that

Ly(z, 0:)9(2,2) = p(2)¥(2, 7).
For any p,q € R, the operators L, and L, commute.

The next lemma is used in the proof that the differential operator L.,» from The-

orem corresponding to the polynomial 2?2 € R coincides with the generalised CMS
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Hamiltonian (3.1) associated with the configuration A = R, . This lemma is a generalisa-

tion of [49, Lemma 2| (see also [105]), and its proof can be found in our paper [56].

Lemma 3.8. Suppose V(z,x) = P(z,1)e%*® satisfies Definition . Let N = Za€R+ Ca-
Write P(z,x) = Z?;OPi(z,x) where Fy(z,2) = [],ecp, (a,2) and F; are polynomials
homogeneous in z with deg P, = N —i. Then

Pi(z,xz) B Z Ca(Co + 2¢o0 + 1) (, @)

Poen) a2 coth(a, ). (3.4)

a€ERy

The following proposition has a completely analogous proof to [49, Proposition 2|, it
just uses Lemma [3.8]in place of [49, Lemma 2| (see also [105]).

Proposition 3.9. [56/ With notations and assumptions as in Theorem the polynomial
p(z) = 22 € R corresponds to the differential operator

2 1
LazA_ Z CalCo + 2Co0 + 1){a, @)

sinh*(av, z) ’

aER4
which coincides (up to sign) with the generalised CMS operator (3.1) for A= R,.

This then implies quantum integrability of the Hamiltonian L.z, as it provides a
quantum integral L, with highest term po(0,) for each p(z) € R, where py is the highest
homogeneous term of p, and R contains Q(2) [locpr, sea, ({a, 2)? — s*(a, @)?) for any
polynomial Q(z). Taking Q(z) to be z; for i = 1,...,n gives n algebraically independent

operators.

3.3 Ansatz for dual difference operators

In Section [3.4] we use a method for explicit construction of BA functions that was pro-
posed by Chalykh [24] (see also [49] for further examples where this method is applied,
and [26] for the differential case). The construction uses certain difference operators of
rational MR type. The key element of the method is the preservation of a space of quasi-
invariant analytic functions under the action of the difference operators. In this section,
we find sufficient conditions for a (for our purposes) sufficiently general invariant difference
operator to preserve such a ring of quasi-invariants.

We continue to use the notations from Section [3.2] Let W = (s,: a € R), where s,
is the orthogonal reflection about the hyperplane (a,x) = 0. We assume now that the
collection R is W-invariant, that is, w(R) = R for all w € W, and that the multiplicity
map is W-invariant, too. Let u" = 2u/(u,u) for any v € C" such that (u,u) # 0.
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Let R® be the ring of analytic functions p(z) such that
p(z +ta) = p(z —ta) at (a,z) =0 for t € A,

for all o € R, where A, C Z specifies the axiomatics that one wants to consider. For
instance, it can be A, = {1,2,...,cafU{ca+2,ca+4, ..., ca+2co} as before. We assume
that A}, = A forallw € W, o € R, where |wa| = wa if wa € R, and |wa| = —wa if
wa € (—R). Fora € R, welet sgna =1ifa € Ry, and we let sgnawv = —1if o € (—R).

Let S € C*\ {0} be a W-invariant finite collection of vectors. Let z € C", and
for any o € C", let T, be the (additive) shift operator that acts on functions f(z) by
Tof(2) = f(z + «). We are interested in difference operators D of the form

D=Y ()T - 1). (3.5)

TES

where a, are rational functions with the following three properties:
(D) dega, =0.

(D2) a,(z) has a simple pole at (a, z) = ca? for some a € R, and ¢ € C if and only if
A =584(7) —2ca € SU{0} and

(T +ca,a)/a? =c+(1,(2a)") € A, U (—Ay).

There are no other singularities in a,. Denote the set of all such pairs («,c) for
this 7 by 5.

(D3) wa, = a,, for all w € W.

Condition implies that if a, has a singularity («, z) = ca?, then for any such z the
vectors z + 7 and z 4+ A are of the form z +7 = 2+ ta and 2+ A\ = Z — ta for some 2z with
(a,Z)y =0 and t = c+ (7, (2a")) € A, U (—A,). We note also that X\ # 7 since 0 ¢ A,
Note that if a, has a singularity (@, z) = ca? and the corresponding A\ # 0, then
condition implies that ay(z) necessarily also has a singularity at (a, z) = ca?, since
Sa(A) —2ca =71 € S and (A +ca, o) = (54(7 + ca), ) = —(7 4+ ca, ). In other words, by
condition [(Dy)| we have (a,c) € S, if and only if (a, ¢) € Sy for A = s,(7) — 2ca provided
that both 7, A\ # 0. We additionally observe the following.
Lemma 3.10. For any w € W, (a,c) € S; if and only if (|lwa|,sgn(wa)c) € Sy
Proof. Let € = sgn(wa). Since Sjya| = wsqw ™
2eclwa| = w(sq(7) — 2ca) belongs to S U {0} if and only if s,(7) — 2ca € S U {0}, due

to W-invariance of S. Furthermore, (wr + eclwal, |wal)/|lwal* = £(7 + ca, a)/a?, and

and e|lwa| = wa, we get that sj,q(wr) —

Ay = Ajyal, by assumption. The statement follows. ]



CHAPTER 3. BISPECTRALITY OF GENERALISED CMS SYSTEMS 37

More explicitly, we are looking at operators of the form

D=Y"P@) | J] (on2)—ca®)™" | (T, 1)

TES (o,c)eSs

for some polynomials P, (z) of degree |S;|, ensuring that dega, = 0, and such that con-
dition holds. We want to find some sufficient conditions that would ensure that D

preserves the ring R®.

Theorem 3.11. Suppose the operator (3.5)) satisfies conditions|(Ds )| and|(Ds). Then for
any o € R, and arbitrary p(z) € R®, we have the following two properties.

1. Dp(z) is non-singular at (o, z) = 0. Moreover, for any ¢ # 0, provided that for all
T € S such that (o, c) € S; and such that A = s,(7) — 2ca # 0 we have

1€S(q 2)=ca2(@r + ay) = 0,

then Dp(2) is non-singular at {«, z) = ca®, where res denotes residue.

2. Suppose, in addition to assumptions of part 1, that for all 7 € S and any t € A,,
the following is satisfied whenever t + (1, (2a))¥) ¢ Ay U (—As) U{0}:
(a) a.(z+ta) =0 at (a, z) =0 (equivalently, P,(z) has a factor of {a, z) — ta?),
or

(b) letting A = so(7)—2ta, we have A € S and a)(z+ta) = a.(z+ta) at (o, z) = 0.
Then Dp(z + ta) = Dp(z — ta) at (a,z) =0 for all t € A,.

Proof. 1. Let ¢ € C. We want to show that the residue at (o, z) = ca? of Dp(z) is zero.
Take any 7 € S such that (a,c) € S;. Write 7 + ca = ta + 7, where (y,a) = 0 and
t = (T +ca,a)/a®. Let X = so(7) — 2ca. Then A + ca = so(7 + ca) = —ta + . At

(o, z) = ca?, we have
p(z+7) =p((z —ca+7) +ta) = p((z — ca+7) — ta) = p(z + A)

since p(z) € R*, (z —ca+v,a) =0, and t € A, U (—A,) by assumption (D). So, if
A = 0 then the simple pole at (o, z) = ca? present in a,(z) is cancelled by (T, — 1)[p(z)] =
p(z+7) — p(z). And if XA # 0, then the sum

a-(2)(p(z +7) = p(2)) + ax(2)(p(z + A) = p(2))

contributes zero to the residue provided that the residue of a, + ay is zero. For ¢ # 0,

the latter is satisfied by assumption. In the case of ¢ = 0, we have A = s,(7), hence
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a-(84(2)) = ax(z) by the symmetry of the operator, thus we get

li T = 1l ) S T\ P =— i ) ;
m, Sl 2)ar(2) i @ sa(2))ar(sa(2)) S S z)ar(z)
that is, the residue of a,(z) at (a, z) = 0 is minus that of a,(z), as needed.
2. Fixt € A,. By the symmetry of the operator, we have that a,(z + sa) =
s, (u) (2 — sa) for all generic s € C and generic z € C" with (a,2) = 0, p € S. By using
that s,(S) = S, we can thus write Dp(z + ta)) — Dp(z — ta) at («, z) =0 as

18111%2 a,(z + sa) (p(z +sa+p) —p(z — sa+ sq(p)) — p(z + sa) + p(z — sa)). (3.6)
HES

Firstly, let us consider any 7 € S for which a,(z 4 t«) is non-singular at (a, z) = 0 (for

generic z). Then the corresponding = 7 term in the sum (3.6) can be simplified to
a-(z +ta) (p(z +ta+7) —p(z — ta + s4(7)) (3.7)

by using that p(z) € R® Let 7 = ba + §, where (§,a) = 0 and b = (7, (2a)"). Then
So(7) = —ba+ 9, and thus

plz+ta+7)—plz —ta+s.(7) =p(z+0+ (t+b)a) —p(z+ 6 — (t+ b)), (3.8)

where (a,z +d) = 0. Hence, if t +b € A, U (—A,) U {0}, then equals zero, and
the whole term vanishes. Else, we have by assumption two possibilities (cases (a)
and (b)). If a,(z +ta) = 0 at (o, z) = 0, then vanishes; and if a,(z + ta) # 0, then
case (b) must apply, and so A = s,(7) —2ta € S\ {7} and a)(z +ta) = a,(z +ta). (Note
that the fact that t +b ¢ A, U (—A,) U {0} implies that A # 7, and due to also
that ay(z + ta) is well-defined at («, z) = 0 for generic z). In the latter case, the term
corresponding to 4 = A in the sum can be simplified to

a)(z +ta) (p(z +ta+ N) — p(z — ta + s4(N))
=a.(z +ta) (p(z —ta+ s,(17)) —p(z +ta+ 1)),

which is the negative of , hence the terms corresponding to = 7 and = X in (3.6)
cancel out.

Secondly, let us consider any 7 € S for which a,(z + ta) is singular at (a,z) = 0.
Equivalently, a.(%) is singular at (a,Z) = ta®. Hence (a,t) € S, by assumption [(Ds)]
in particular, A € SU{0} and t +b € A, U (—A,). From the latter, it follows that the
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expression (|3.8)) vanishes. We can restate this as
p(z+sa+7)—plz —sa+ s4(1)) = (s —t)q(s)

for some analytic function ¢(s) (s € C). Similarly, the property p(z + ta) = p(z — ta) at

(o, z) = 0 can be restated as
p(z + sa) —p(z — sa) = (s — t)r(s) (3.9)
for some analytic function r(s). Moreover, we also have

p(ztsa+A)—p(z—sa+s.(N)) = p(z—(2t—s)a+s, (7)) —p(z+(2t—s)a+7) = (s—t)q(2t—s).

(3.10)
Suppose firstly that A # 0. Then in the sum , the two terms corresponding to p =7
and p = A cancel out. Indeed, they equal

lim <a7(2 + sa)(s —t)(q(s) — r(s)) + ax(z + sa)(s — t)(q(2t — s) — r(s)))

s—t

= (q(t) — r(t)) res(zay=ta2(ar + ax) =0

because res . ay—ta2(@r + ax) = 0 by the assumptions of part 1 with ¢ = ¢t. Suppose now
that A = 0, then r(s) = ¢(2t — s) by equalities and (3.10). Therefore, the term
corresponding to x4 = 7 in the sum (3.6)) is lims_; a- (2 + sa)(s — t) (q(s) — q(2t — s)) = 0.

It follows that the sum vanishes, as required. [ |

It follows that if conditions , , and the assumptions of both parts 1 and 2
of Theorem are satisfied for all o € R, then D preserves the ring R*, that is,
Dp(z) € R* for any p(z) € R*.

Additionally, we can use the symmetry assumption to reduce the number of
conditions that we have to check to apply Theorem The following statements take

place.

Lemma 3.12. Suppose that condition holds. If a; + ay has zero residue at (o, z) =

ca?, then Gy, + aywy has zero residue at (wa, z2) = ca® for any w € W.

Proof. By the property [(D3)}, we have a,,(2) + awr(2) = a,(w™z) + ay(w™'z), therefore

T€S(wa,z)=ca2 (Quwr (2) + awr(2)) = < li>m 2(<wa, 2) — ca®)(awr(2) + awr(2))
wa,z)—ca

= lim (o, w '2) — ca®)(a-(w2) + axy(w'2))
(yw—1z)—ca?

= I'€S(q 3)=ca? (CLT(E) + a,\(E)) =0. [ |
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By combining Lemmas [3.10] [3.12, and Theorem [3.11], we obtain the following.

Corollary 3.13. Suppose the operator (3.5) satisfies conditions and |(Ds). If the
assumptions of part 1 of Theorem are satisfied for some o € R, then Dp(z) is

non-singular at (wa, z) = ca? for allw € W and all ¢ € C.

Proof. By Theorem [3.11|part 1, it suffices to check that for any 7 € S and ¢ # 0 such that
(lwal, sgn(wa)c) € Sz and such that X = Sjwa|(T) — 2cwar # 0, we have that the residue

2 is zero. Since S is W-invariant, we can write 7 = w7 for some

of az + a5 at (wa, z) = ca
7 € S. Lemma m then gives (a,c) € S;. Note that A = w for A = s,(7) — 2ca (in
particular, A # 0 as A # 0). By assumption, part 1 of Theorem holds for this (a, c),

that is, res(y y=ca2 (@ + ay) = 0. Lemma now gives what we need. [ |

Lemma 3.14. Suppose the operator (3.5)) satisfies conditions |(Ds ) and|(Ds ). If the as-
sumptions of parts 1 and 2 of Theorem are satisfied for some o € R, then the

assumptions of part 2 are also satisfied for wa for all w € W such that wo € RI..

Proof. Note that A,, = A,. Thus we need to prove that whenever for some ¢t € A, and
7 € S we have t + (7, 2wa)) ¢ A, U (—A,) U {0}, then either az(z + twa) = 0 at
(wa, z) = 0, or else X = s, (7) — 2twa satisfies X € S and a5 (2 + twa) = az(z + twa) at
(wa, z) = 0.

Suppose that t + (7, Qwa)Y) ¢ A, U (—A,) U {0}. Since S is invariant, we can write
7 = wr for some 7 € S. Note that then A = w(sa(7) — 2ta) = wA. Note also that
(2wa)Y = w(2a)¥. Therefore t + (1, (2a)Y) =t + (7, 2wa)") ¢ A, U (—A,) U{0}. By
assumption, part 2 of Theorem holds for this a. Suppose firstly (case (a)) that
a-(z +ta) = 0 at (o, z) = 0. By the symmetry at (wa, z) = 0 (or, equivalently,
(a,w™2) = 0) we thus get az(z + twa) = a,(w™'z + ta) = 0, as required. Otherwise
(case (b)), we have A € S, hence A = wA € S by invariance, and at (wa,z) = 0 we get

a;(z + twa) — az(z + twa) = ay(w™ 'z + ta) — a-(w 'z + ta) = 0, as required. [

Remark 3.15. Let € R!.. Suppose w € W satisfies wa = a. Then, for any 7 € S, in
part 2 of Theorem [3.11]it suffices to check the stated conditions for either 7 or wr, as one
implies the other. Indeed, we have t + (wr, (2a))¥) =t + (7, (2)¥). Also, so(wT) — 2t =
w, and at {(a,z) = 0, using the symmetry , we have a,.(z + ta) = a, (w2 + ta)

and, in case (b), a,\(z + ta) = ax(w™z + ta), where (o, w™'z) = 0.

3.4 Configuration AG,

In this section, we consider the generalised CMS operator L associated with the planar
configuration of vectors called AG5, which is a union of the root systems A, and G5. We

explain how to prove the integrability of L by means of an intertwining relation between L
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Figure 3.1: A positive half of the configuration AG,.

and the CMS Hamiltonian for the root system G5, giving an explicit quantum integral
for L of order 6. We also establish the existence of a BA function for the operator L,
give two constructions of this function, and show that L has a bispectrality property. We
provide two corresponding dual difference operators of rational MR type in an explicit
form.

The configuration AGs is a non-reduced collection of vectors in R?. A positive half AG;
= Gy U Ay is shown in Figure , where Go 4 = {a, fi: i = 1,2,3} and Asy =
{2p;: i =1,2,3}. The indices of a;’s are assigned in such a way that (o, ;) = 0 for all
t = 1,2,3. The multiplicities assigned to the vectors «;, (;, and 28; are m, 3m, and 1,
respectively, where m € C is a parameter.

We adopt a coordinate system where the vectors take the form

alzw(o,\/g), a2:w(_%’\/7§>’ a3:w<%7\/7§>’ (3 11)
v .
)

Blzw(lao)a 52:("](%7\/75)? 53:("-}(_%7
for some scaling w € C*. These vectors satisty 81 + B3 = (2, as + a3 = g,

Bi =20 —a1 =1 — 203 = a3z — P2 = B3 — g,

3 1 3 1 1 1 1 1
ap = 502+ 500 = 503 + a3, and By = 50 — 502 = —5 03 + ja3.

The configuration AG, is contained in the two-dimensional lattice ZS; & Zas. It is
invariant under the Weyl group of type G, but it is not a crystallographic root system
because, for example, the vectors 8 and 283, have 2(81,208,)/(282,208:) = 5 ¢ Z, so the
crystallographic condition is not satisfied.

The structure of this section is as follows. We explain below in Section [3.4.1] that the
corresponding generalised CMS quantum Hamiltonian (3.1) with A = AGs; is quantum
integrable for any value of the parameter m € C, as we established in |55]. Moreover, by
virtue of AG5 being a locus configuration [48], the operator is algebraically integrable for
m € Zsg, as follows from the general results presented in [16] (see also [55]). We then dis-

cuss the generalised CMS system for AG in the special case of m € Z>( further. Namely,
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we give in Section [3.4.2] a difference operator D; related to the configuration AG, that
satisfies the conditions from Section 3.3} We use this operator to prove in Section [3.4.3
that the BA function for the configuration AG, exists, and we express this function by
iterated action of the operator. We show that the BA function is an eigenfunction of D,
which establishes a bispectral duality. In Section [3.4.4, we present another dual oper-
ator Dy for the configuration AG,, and we establish the corresponding statements for this
operator analogous to the ones for D;. The operators D; and D, commute. Finally, we
consider in Section the operator D; at m = 0, which gives an MR operator for the
root system A, with multiplicity 1. We show that a version of this operator for the root
system A; can be decomposed into a sum of two non-symmetric commuting difference
operators, which we relate with the standard MR operator for the minuscule weight of the

root system Aj.

3.4.1 Integrability of the AG, generalised CMS system

Let Lo be the CMS Hamiltonian for the root system (G5 with multiplicities m and 3m for
the long and short roots, respectively. Let L be the Hamiltonian of the generalised CMS

system associated with the above configuration AG,. More precisely,

:_A+Z vi(7) + W(x)), (3.12)

where A = 82 + 0?

xg’

= (z1,19) € C%,

m(m + 1){ay, a;)
sinh®(a;, x)
3m(3m + 1) (5, 51
sinh?(;, x) ’

vi(x) =

Y

ui(r) = (3.13)

and

Im(m +1)(8;, Bi) n 8(Bi, Bi)

wlw) = sinh?(3;, x) sinh?(2;, )
_ Bm+1)@m+2){5,5) 26, 5)
sinh?(5;, x) cosh?(B3;, )

We present below an intertwining relation between L and the integrable Hamilto-
nian Lg. This relation is valid for any value of the parameter m, including non-integer

ones. This leads to integrability of L for all m, thus generalising integrability for integer m
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known from [16,48|. The corresponding intertwining operator & has order 3. This, in turn,
leads to a quantum integral for L of order 6. We note that the direct application of the
results of [16] in the case of integer m leads to a higher-order intertwiner and a higher-
order integral of L. The degree 6 for the integral of L is expected to be minimal possible.
Indeed, for generic m, it follows from [99] that an independent integral for the rational
version of L with constant highest term has to be of degree at least 6, since such highest
term should be Ga-invariant.

The intertwining operator ¥ has the form

9 = aﬂ1aﬂ2aﬁs Z f (1)850(2)850(3) + Zglaﬁz (3'14>

oc€As

where A3 = {id, (1,2,3), (1,3,2)} is the alternating group on 3 elements,
fi = (Bm +1)(B;, Bi) coth(B;, x) + (B;, Bi) tanh(B;, x),

az; az> v <Bza /BZ> E

_ Hfj ];éz 05175J> ' H];ﬁz<ﬁl7ﬂj>

for v =1,2,3, and

3 3
B B (gl Bi) 1B Bi) ) I1,.(8: 8)) |

. 3m(3m + 1)(By, B1)? N 4(3m + 1){B1, B1)?
sinh (3, z) sinh(fBy, z) sinh (B3, ) = sinh(26;, ) sinh(2f5,, x) sinh(283, z)

The following theorem takes place. The proof is by a direct computation.

Theorem 3.16. [55] The differential operator (3.14) satisfies
LD = DLy, (3.15)

The quantum integrability of L and a quantum integral for it are obtained as a direct
corollary by making use of a general statement from [23]. Let us recall the notion of the
formal adjoint A* of a differential operator A. It can be defined by the relations 9;, = —d,,,
f* = [ for any function f, and (AB)* = B*A* for any differential operators A, B.

Theorem 3.17. [55] Let 9 be given by (3.14), and let Z* be the formal adjoint of 2.
Let I be any differential operator such that the commutator [I,Lo] = 0. Then Z19*

commutes with L. In particular, [22*, L] =0

Indeed, taking the formal adjoint of the relation (3.15)) gives *L = LqZ*. Hence

LIID = PLyID = DILT" = DPID°L.
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Note that for integer m the operator L is algebraically integrable [105]. The above gives
an alternative way to see algebraic integrability of the operator L for integer m. Indeed, it
follows from the results of [105] that the operator L for integer m admits an intertwiner %,
such that Lo%Zy = Po(—A). Theorem implies that LZ2%y = 2%,(—A), hence L is
exactly solvable in the sense of |16, Definition 3.1], and so it is algebraically integrable
by [16, Theorem 4.3]. The definition of algebraic integrability used in [16], based on |11], is
that the space of common eigenfunctions for generic eigenvalues of the quantum integrals
of the system is one-dimensional.

We also note that in the rational limit, the operator 4 Z* reduces to a quantum integral
for the rational CMS system associated with the root system Gy with multiplicities m and

3m + 1 for the long and short roots, respectively [55].

Remark 3.18. An alternative proof of the integrability of the operator L follows from
Section 4.4.1.2| below, which uses an invariant parabolic submodule for a TCA.

An interesting question is whether the classical analogue of this system is integrable.
In the case of the root system (5, Lax pairs for the corresponding CMS model were
constructed in [40] (see also [8]), which may be a starting point for approaching a classical
AGy CMS system. Another approach could be to investigate a classical version of the
quantum integral 22*. On the other hand, if we consider the operator h?L and take the
limit A — 0, m — oo such that Am — const, then it is easy to see that the resulting
classical Hamiltonian is the ordinary GG Hamiltonian. This suggests that the classical

analogue of L with a potential as in the quantum case might not be integrable.

3.4.2 Dual difference operator

Assume that m € Z~. In this section, we give a difference operator D; satisfying the con-
ditions from Theorem for the configuration R = AG,. The corresponding axiomatics
is determined by the sets

A, =A{1,2,....c,} U{c, + 2co} (3.16)
for v € G . We define a difference operator acting in the variables z € C? of the form

Di= > a(2)(T-—1). (3.17)

T: %TEGQ
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Let W be the Weyl group of the root system G,. For 7 = 2cqj, € € {£1}, j € {1, 2,3},

we define

R | R (e (e (e v )

YEW B1
(2e05,(27)V)=3

(2e0,(27)¥)=1

(3.18)

For 7 = 2¢3;, we define

YEW B
(2¢85,(27)V)=1

< I (=25 (-TEP) 0 mat)

yeWagq
<285j 7(27)V>:1

(3.19)

The following lemma shows that the functions a,(z) have Gy symmetry.

Lemma 3.19. Let a,(z) be defined as in (3.18)) and (3.19). Then for allw € W, we have

WAy = Qyyr-

Proof. For any w € W, we have w(Way) = Way, w(Wpy) = Wpi, and (wr, wy) = (1,7)
for all v, 7 € C%. The statement follows. |

Define the ring R, of analytic functions p(z) satisfying the conditions

p(z + sa;) = p(z — sa;) at (aj,2) =0, s=1,2,...,m,

(3.20)
p(z+sp;) =p(z—sB;) at (Bj,2) =0, s=1,2,...,3m,3m+ 2

for all j =1,2,3.
Theorem 3.20. The operator (3.17)) preserves the ring RYq, .

Proof. One can check that this operator has property from Section for S = 2G,.
Let p(z) € RYq, be arbitrary. Without loss of generality, we put w = V2. We introduce
new coordinates (A, B) on C? given by A = (a4, z) and B = (3, 2).

If B = 4 (equivalently, (81,2) = 28%), then (3y,2) = 2 + %A, (B3,2) = =2+ %A,
(a9, z) = =643 A, and (3, z) = 6+3A. The only terms singular at B = 4 are a_sg,, G244,
A28y, and asgq,. Note that s, (—2f8) — 401 = —2a3, and we compute that resp_4(a_2s,) =

—resp_4(a_24,) equals

—3m(3m +2)(3m +4)(A —12)" YA - 4)TAB(A+4) (A +12)7H (A - 12 — 12m)
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x (A+6m)(A—4+12m)(A+12m)(A + 4+ 12m)(A + 12 + 12m)>.

Since o, (—202) = 205 and s,, (—2a3) = 2as, by Lemma with w = s,, we get that
A28, + G24, has zero residue at B = 4, too. By Theorem part 1, there is thus no
singularity at B = 4 in Dyp(z).

If B = 2 (equivalently, (81,2z) = £7), then (fs,2) = 1+ 1A, (83,2) = —1 + 34,
(ag,2) = =3+ 3A, and (a3,2) = 3+ 1A. The only 7 € 2G, for which a, is singular at
B = 2 and for which the corresponding A = sg, (7) —28; # 0 are 7 = 2[5, 2a9, —203, —20us.

Note that sg, (262) —201 = 2as, and we compute that resp_s(azs,) = — resp_s(a24,) equals

6(m+1)Bm—1)Bm+1)(A-6)""(A-2)rA (A +2)(A+6)3(A 10— 12m)
X (A—6—12m)(A —2—12m)(A+6 — 12m)*(A — 6m)(A + 6 + 12m).

Since sS4, (202) = —205 and s,,(20) = —2ag, by Lemma we get that a_sg, + a_20,4
has zero residue at B = 2, too. By Theorem [3.11] part 1, there is thus no singularity at
B =2 in Dyp(z), nor at B = 0.

It follows from the above analysis and from the form of the coefficient functions
and that there are no singularities in Dip(z) at B = ¢ for all ¢ > 0. By Corol-
lary [3.13] there is also no singularity in Dip(z) at (8;,z) = c for all i = 1,2,3 and all
ceC.

The only singularity at A = const > 0 present in the coefficients a, for some 7 is at
A = 6 (equivalently, (ay, z) = a?) when 7 = —2«;. This singularity cancels in Dyp(z) by
Theoremmpart 1, since the corresponding A = s, (—2a1) —2a3 = 0. By Corollary ,
there is also no singularity in Dip(z) at (a;, z) = ¢ for all ¢ = 1,2,3 and for all ¢ € C.
This completes the proof that D;p(z) is analytic.

Let us now show D;p(z) satisfies the axiomatics of RY,. We have Ag, = {1,2,3,...,3m,
3m + 2} and A,, = {1,2,...,m} (i = 1,2,3). Let us show firstly that Dip(z + t5;) =
Dip(z — tpy) at (B1,2z) = 0 for all ¢ € Ag. To do so, we will check condition 2 in
Theorem [3.11| with a = (1 for all 7 € 2Gs.

Note that (26;)" = 18,. Let 7 = 26;. Then |t + (7, (261)")| = t + 2, which does not

2
belong to Az, U {0} if and only if ¢ = 3m — 1 or t = 3m + 2. But

asp, (2 + (3m+2)B1) = agp, (2 + (3m —1)51) =0 at (fy,2) =0

(3m+2)5f )( 3mﬁ% )

because agg, (z) contains the factors (1 — o) — e

Let now 7 = —25;. Then [t + (7,(261)")] = |t — 2| € Ap, U{0} for all t € Ag,, as
needed.
Let now 7 = 2f5. Then |t + (7, (261)")| = t + 1, which does not belong to Ag, U {0} if
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and only if t = 3m or t = 3m + 2. But

asga(z + (3m + 2)B1) = azs, (= + 3mBy) = 0 at (51, 2) = 0

. 3m+2) 82 3m—1)p3
because asg,(z) contains the factors (1 — Bmi2)5 <ﬂ17Z1 L)(1— 261@_)5%)-

Let now 7 = —2f,. Then [t + (7, (261)")| = t — 1 which does not belong to Az U {0}
if and only if t = 3m + 2. But a_ss,(z + (3m + 2)5;) = 0 at (f1,2) = 0 because a_s,
contains the factor (1 + —(,B?mz—ﬁzﬁf) Since $q, (1) = P1, by Remark [3.15 there is nothing
to check for 7 = £283 = s,,(F20s).

For 7 = £2a;, we get |t + (7,(261)Y)| =t € Ap,, as needed. Similarly for 7 = 2ax,
[t + (7, (261)")| = |t — 3| € Ag, U{0} for all t € Ap,, as needed.

Finally, let 7 = —2as. Then |t+(7, (251)")| = t+3 ¢ Az, U{0} if and only if t = 3m+2,
t =3mort=3m—2 but a_s,,(z+1t5) =0 at ($1,z) = 0 for those ¢t because a_sq,
contains the factors (1 — (3%?3&%)(1 - %)(1 - %) By Remark |3.15] there is
nothing to check for 7 = £2a3 = s,, (F22).

Let us show next that Dyp(z + tay) = Dip(z — tay) at (aq,2) =0 for all t € A,,. For
that, we will check condition 2 in Theorem with o = « for all 7 € 2G,s.

Let 7 = 4+20;. Then |t + (7, (201)")| =t € A,,, as needed.

Let now 7 = 2f3,. Note that (2a;)" = goy. Then [t + (7, (201)Y)| =t +1 ¢ A,, U {0}
if and only if t = m. But ags,(2+may) = 0 at (o, 2) = 0 because agp, contains the factor
(- &%)

Let now 7 = —205. Then [t + (7, (201)V)| =t —1 € A,, U{0} for all t € A,,, as needed.
Since sg, (aq) = a1, by Remark there is nothing to check for 7 = £20; = s, (£252).

Let now 7 = 2a;. Then |t + (7, (2a1)Y)| =t + 2 ¢ A,, U{0} if and only if ¢ = m or
t =m —1. But as,, (2 + tay) = 0 at (aq,z) = 0 for those ¢ because as,, contains the
factors (1 — gﬁ;)(l — <a$ﬁa%).

Let now 7 = —2ay. Then [t + (1, (2a1)Y)| = |t — 2| € Ay, U{0} for all t € A,,, as
needed.

Let now 7 = 2as. Then [t + (7, (204)Y)| =t + 1 ¢ A,, U{0} if and only if ¢ = m. But

m&%
<alvz> ) ’

Finally, for 7 = —2as, we get |t + (7, (2a1)Y)| =t —1 € A,, U{0} for all t € A,,, as
needed. By Remark there is nothing to check for 7 = +2a3 = sg, (£2a3).
Since all the vectors «y, §; are in the W-orbit of {a;} U {S;}, the statement follows by

Lemma [3.141 [ ]

20, (2 + mayg) = 0 at (aq, z) = 0 because as,, contains the factor (1 —

Let us now look at the expansion of the operator (3.17) as w — 0. It produces the
rational CMS operator in the potential-free gauge for the root system of type G5 with
multiplicity m for the long roots and multiplicity 3m + 1 for the short roots, as the

next proposition shows. Let BJ = w !B and a; = wlay (j = 1,2,3) with the same
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multiplicities as 3; and «, respectively, and let Cop, = Co; = L, cag; = C2q; = 0.

Proposition 3.21. We have

. Dy 2(cy + c2v)
gz =2 2 T
'Ye{ﬁi,&i: i=1,2,3}

where A = 92 +02, and 0, is the directional derivative in z in the direction of the vector .

Proof. We have Tlap, — 1 = w05 + %wzﬁga_ +. .., and similarly for the other shifts. The
- J

terms at order w in the expansion around w = 0 of the operator D; vanish. The terms

that are of second order in derivatives in the coefficient at w? in the expansion w — 0 of

the operator D; are

3 3
2 2
3) 0Oy + ) 05 =36A.
j=1 j=1

Let us now consider the terms that are first-order in derivatives in the coefficient at w?.

It is easy to see that such terms containing <El, z)~! are
—6(3m+ 1) (28251 +0y3, — Oy, + Doy — 82a2> — —72(cp, + €20,)0,-

Altogether, the term at w? in the expansion of the operator D; is as required. [

3.4.3 Construction of the BA function for AG,

In this section, we employ a technique from [24] to construct the BA function for the config-
uration AG,. Its BA function will be an eigenfunction for the difference operator D; from
Section [3.4.2] which establishes bispectrality of the AG; generalised CMS Hamiltonian.

The following lemma gives a useful way of expanding the functions a, in the oper-
ator (3.17)).

Lemma 3.22. Let a,(z) be defined as in (3.18) and (3.19)). Then

&) =r—r, 3 AT wé?; @) 4 R (2) (3.21)

v€G2 +
where Ki2g, = 3 and Kt2a; = 1, and R.(2) is a rational function with deg R, < —2.

Proof. For the factors in a, that have shifted singularities at (7, z) + ¢ = 0 with ¢ # 0, we

can use that
1 1 c

(va)+e (2 ((ha)+o(r2)]
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! only by a rational function of degree —2 which cannot affect

which differs from (v, z)~
the coefficient at (7, 2z)~!. The relation (3.21]) is then obtained by multiplying out all the

factors in each of the a,. |

The next lemma is proved by a direct computation using Lemma [3.22 We will apply
it in the proof of Theorem below.

Lemma 3.23. For vy € Gy 4, let n, € Z>o be arbitrary. Let N = n.. Let

7€G2,+

pa) = S e — 1), (3.22)

T: %TEGQ

where k. are as in Lemma|3.24. Let A(z) = cq, (7, 2)" Write (D1 — p)[A(2)e*")] =
R(z,1)e%*® for some rational function R(z,z) in z, which has degree less than or equal
to N. Then

Rizo)= 3 (—c—e) | 3 melmm)e™ | AE)(r,2) " + S(z,2)

v€G2 + T: %TEGQ

for some rational function S(z,x) in z of degree less than or equal to N — 2.
In particular, for any polynomial B(z, ) in z, we have that (D — p)[B(z,x)e%*®)] =
U(z,x)e*® for a rational function U(z,z) in z with degU(z,z) < deg B(z,7) — 1.

Proof. Making use of the expression for a,(z) given in Lemma |3.22, we get

DiA(2)e* ] = ) ar(2)(Tr = D[A(2)e""]

T %TEGQ

= S0 (@ IT () + (o)) - 4G)

T: %TGGZ v€G2 +

= A(z)e®® Z ke | 1— Z (1,7)(cy + c2,){7,2) "t + Lo.t.

T %’TEGQ vEG2,+

x | elm® (1 + Z n (T, ) {7y, 2) "t + l.o.t.) -1

v€G2 +

= A(2)e"®® | p(x) + Z (ny — ¢y — C2y) Z kr (T, 7)™ | (7, 2) 7 F Lot |

v€G2,+ T: %T€G2

Lo.t. denoting terms of lower degree in z, where we used that > .1 o k. (7,7) = 0 for
T2

all v € Go 4, since if %T € (G5 then also —%7’ € Gyand Kk, = K_;. [ |

We are now ready to give the main result of this section.
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Theorem 3.24. Let M =3 _,q, ¢, =12m+ 3. Let

Cytcay

b(z) = M?' H Z kor (T, ) el : (3.23)

1€G2,+ \7: LreGy

Define the polynomial

Q)= [[ ((v.2)*=s(1,7)?), (3.24)

v€G2, +
SEA,

where A, is given by (3.16)). Then the function

U(z,2) = b(a) " (Dr = p(2))M[Q(2)e"], (3.25)

where p(x) is given by (3.22)), is the BA function for AGy. Moreover, ¥ is also an eigen-
function of the operator Dy with D1ty = u(x)v, thus bispectrality holds — the operator Dy
is bispectrally dual to the AGy generalised CMS Hamiltonian.

Proof. The operator D; preserves the ring R, by Theorem m The function Q(z)e(w>
is contained in RY, as it is analytic and satisfies conditions (3.20)), since Q(z + s7) =
Q(z —sy) = 0at (y,2) = 0 for s € A, v € Gy . Since D preserves R, , so does
Dy — p, hence ¢(z, z) given by belongs to R, Its analyticity and the form of the
functions a, imply that it equals b= (z)P(z, z)e®*® for some polynomial P(z, ) in z. To
prove that i(z,z) satisfies the definition of the BA function, it thus suffices to calculate
the highest-degree term in P(z,x).

The highest-degree term in Q(z) is Q(2) = HveGM(% z)2erten) and deg Qp = 2M.
For k € Z~( with k < M, an analogous argument as above gives that (D; — u)*[Q(2)e%*)]
belongs to R%c, and is of the form Q™ (z,z)e** for some polynomial Q™ (z,z) in .
Let the highest-degree homogeneous component of Q) (z, x) be Q(()k)(z,x). Lemma m
allows to compute Q(()k)(z, x).

Lemma m gives that after the first application of D; — y onto Q(2)e!*® we get

Q=D (v te) | D mm ™ | (3,2) 7 Qo(2).

vEG2,+ T irEG

The second application gives

2

Q(()Q) - Z (Cv + CQW)(CW + Coy — 1) Z ’f7<7-; 7>6<T7$> <r77 Z>_2Q0(2)

vE€G2,+ T: %T€G2
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+ Z (¢y + cay)(cs + Cas) Z Kor (T, ) el

7756562,—0— T: %TGGQ
Y

X Z kor (7,000 | (7, 2) 716, 2) 2 Qo (2).

T: %TGGQ

By repeatedly applying Lemma [3.23, we get

F =3 fa@)Qo(z) T (o2)™

v€G2,+

where n = (n,) eq, . for n, € Z>q such that n, add up to k, and where f,(z) is non-zero
only if n, < ¢y 4 co, for all 7. It follows that deg P < M and that the highest-degree term
of P(z,x) is
1
cy+c _ c
d(z) [ (v.2)t = gd@) II .2
veG2,+ YEAG2, +
for some function d(z). It also implies that the polynomial part of (D; — )M [Q(2)et*®)]
has degree less than M, hence vanishes as a consequence of Lemma (3.5} giving D11 = .
So, to complete the proof, we just need to verify that b(z) given by (8.23)) equals d(x).
To arrive at HveGM(’y, z)erter starting from Qo(z), we need to reduce the power of
each of the factors (v, z) by ¢, + ca,, and we do this by reducing the power of one of them
by one at each step. The total number of possible orderings of doing that corresponds to
the number of words of length M in the alphabet Go_ such that v appears in the word

Cy + Cp4 times for each v € G 4. This gives

M!
H’YGGZ,Jr (C'Y + 627)!

possibilities, and for each of them the total proportionality factor that we pick up equals

Cyte2y
H (cy + c24)! Z kor (T, ) el
veG2 + T: %TEGQ
by Lemma [3.23] It follows that b(x) has the required form. [

3.4.4 Another dual operator

In this section, we present another difference operator that preserves the ring of quasi-

invariants R%,. We also give the corresponding second construction of the BA function

for AG2
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We define a difference operator acting in the variables z € C? of the form

Dy= Y  a(2)(T- - 1) (3.26)

T: %TEAGQ

We now specify the functions a,(z). Let A, be defined in terms of the multiplicity function
of AG5 by
1
)\7_ = ZC%T(C%T + 2¢, + 1)7’2.

This means Ays, = 867, Aacp, = IMm(m + 1)57, and Ageq, = m(m + 1)o7 (j = 1,2,3,

7o J
e € {£1}, m € Z~). For 7 = 2eq;, we define

YEW B
(2eaj,(27)V)=3

S O I I O )

YEW B1 YeEWay
(25aj,(2w)v>:0 (25aj7(2’7)v>:1
ma? ma?
(eqyj, 2) (e, 2) + aF

For 7 = 4¢3;, we define

aies, (2) = Maes, | ] (1 B g—i)) (1 - WZ;—W‘Q“YQ)

yeWay
(456]' 7(27)\/):2

<l (1 - (3772722))72) (1 N (7?;1,572)

YEW B1
<45ﬁj7(27)v>:2

SYCRRCIIEC T oY RN S YORRNC TR PR
(€B;, 2) (eB,2) + B3 (eBj, 2) + 27 (eBj,2) +367 )

(3.28)

For 7 = 2¢3;, we define

wo@=ho, I (1-pi=) I (-72%)

yeEW a1 yeWay
(25/8j7(27)v>:0 <2Eﬁj7(2’7)v>:1

SR G (G = [ =)

YEW B
(2e5,(27)V)=1
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y (1 B (3m + 2),@?) (1 B 3mﬁ]2 ) (1 N ZJL,BJ2 ) (1 B 4@2 )
<€ﬁj7z> <€ﬁj72> +ﬁ]2 <€/8j72> +3632 <€5j72> _BJZ '

(3.29)

The next lemma shows that the functions a,(z) have Gy symmetry.

Lemma 3.25. Let a,(z) be defined as in (3.27)—(3.29). Then for all w € W, we have

Wy = Gy -

Proof. For any w € W, A\, = A, for all 7 with %7’ € AG,, as the multiplicities are
W-invariant. The statement follows as in the proof of Lemma [3.19] |

Theorem 3.26. The operator (3.26) preserves the ring R, .

Proof. One can check that the operator satisfies condition from Section for S =
2AG,. Let p(z) € RYg, be arbitrary. Without loss of generality, we put w = V2. We use
the coordinates (A, B) on C? given by A = (aq, z) and B = (1, 2).

It follows from the form of the coefficient functions f and Theorem m
that there are no singularities in Dyp(z) at B = ¢ for ¢ > 0 except possibly for B = 2,4, 6.
Let us consider each of these cases in turn.

If B = 6 (equivalently, (31,2) = 3067), then (B, 2) = 3+ A, (83,2) = =3 + 34,
(ag,z) = =9+ 1A, and (a3, z) = 9+ 1A. The only terms singular at B = 6 are a_us,
and a_sp,. Note that sg (—451) — 681 = —2f;, and we compute that resp_g(a_s3,) =

—resp_g(a_2p,) equals

48m(m +1)(3m +2)(3m + 5)(A —18) (A —6)2(A —-2) (A +2) " H(A+6)*(A+18)!
X (A—=2—-12m)(A—6—12m)(A — 14 — 12m)(A — 18 — 12m)(A + 2 + 12m)
X (A+6+12m)(A+ 14 + 12m)(A + 18 + 12m).

Therefore, by Theorem part 1, there is no singularity at B = 6 in Dyp(z).

If B = 4 (equivalently, (81,z) = 23%), then (f;,2) = 2 + %A, (B3, z) = =2+ %A,
(ag,z) = =6+ 1A, and (a3, 2) = 6 + L A. The only 7 € 2AG, for which a, is singular at
B = 4 and for which the corresponding A = sg, (1) —48; # 0 are 7 = =25, =203, 23, 2.
Note that sg, (—282) — 451 = —2a3, and we compute that resp_4(a_o25,) = —resp_4(a_24s)

equals

—18m*(m + 1)(3m +2)(3m +4)(A - 12) H (A -8) M (A - 4) A A+ 4) (A +12)!
x (A —32)(A+24)(A— 12— 12m)(A + 6m)(A — 4 + 12m)(A + 12m)
x (A44+12m)(A+ 12 + 12m)%

Since Sq,(—202) = 203 and s,, (—2a3) = 2as, by Lemma the residue of asp, + a2a,
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at B = 4 is also zero. Thus, by Theorem [3.11] part 1, there is no singularity at B = 4
in Dop(2).

If B = 2 (equivalently, (31, z) = 8%), then (5, z) = 1—1—%14, (B3, 2) = —1—}—%14, (g, 2) =
—3+3A, and (a3, z) = 3+3A. The only 7 € 2AG, for which a- is singular at B = 2 and for
which the corresponding A = sg, (1) —20; # 0 are 7 = —401, 201, —402, 405, £2a1, 252, 209,
—2f5, and —2a3. Note that sg, (—451) — 201 = 261, and we compute that resp_s(a_sp,) =

—resp_a(ags, ) equals

144m(m 4+ 1)(3m — 2)(3m + 1)(A — 6)"2(A —2) (A +2) (A +6) " 2(A+6 — 12m)
X (A4+2—-12m)(A—6 —12m)(A— 10 — 12m)(A — 6 + 12m)(A — 2 + 12m)
X (A4 6+ 12m)(A+ 10+ 12m).

Similarly, sg, (—4/82) —261 = —2a;, and we compute that resp_s(a_43,) = —resp_a(a_2q,)

equals

288m(m + 1)(A —10)" 1A - 6)"*(A - 2)2A (A +2)" H(A+6)"'(A—6+6m)
X (A+6m)(A—10+12m)(A — 6 + 12m)*(A — 2+ 12m) (A + 2 + 12m)
X (A4 6+ 12m)*(A+ 10 + 12m).

Since sq, (—402) = 463 and s,, (—2a1) = 2a4, it follows by Lemma that the residue of
a4p, + a20, at B = 2 is also zero. Next, note that sg, (252) — 251 = 2as, and we compute

that resp_s(asp,) = —resp_s(as,,) equals

36m(m +1)*(3m — 1)(3m + 1)(A —6)" (A - 2)2A (A +2)" (A +6)*(A - 26)(A + 30)
x (A—10—12m)(A — 6 — 12m)(A — 2 — 12m)(A + 6 — 12m)*(A — 6m)(A + 6 + 12m).

Since Sq, (262) = =285 and s,, (2a2) = —2as, it follows by Lemma [3.12) that the residue of
a_2p, + a_2q, at B = 2 is also zero. Thus, by Theorem m part 1, there is no singularity
at B =2 in Dyp(z).

Let us now consider possible singularities in Dyp(z) at A = ¢ > 0. By Theorem [3.1]]
part 1 and the form of the coefficients —, it is sufficient to consider the case
A = 6 (equivalently, (a1,2z) = of). In this case (82,2) = 1B+ 3, (f3,2) = —2B + 3,
(ag,2z) = =3B + 3, and (a3,z) = 3B + 3. The only 7 € 2AG, for which a. is singular
at A = 6 and for which the corresponding A\ = s,,(7) — 2a; # 0 are 7 = —40, —403,
and £205;. Note that s,,(—4082) — 20y = —20;, and we compute that ress_g(a_4s,) =

—ress—g(a_qp, ) equals

96m(m +1)(B—6)"*(B—-2)"*B YB+2)%(B+6)"(B—14—12m)(B — 2 — 12m)
X (B—=244m)(B+2+4m)(B—2+6m)(B+4+6m)(B -6+ 12m)(B + 2+ 12m)
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X (B+6+12m)(B + 14 + 12m).

Since s, (—402) = —403 and sg,(—2/3;) = 2/, it follows by Lemma [3.12] that the residue
of a_4p, +agp, at A = 6 is also zero. By Theorem m part 1, there is thus no singularity
at A =6 in Dyp(z).

By Corollary [3.13] it follows that Dop(z) has no singularities. The proof that Dop(z)
satisfies the axiomatics of R, can be completed in an analogous way to how it was done
for the operator in the proof of Theorem m [

We now give a second construction of the BA function for AG5. The proof of the next

theorem is similar to the proof of Theorem [3.24]

Theorem 3.27. Let M =3 ., ¢, =12m+3. Let

ix) = > (e —1), (3.30)

T: %TGAGQ

and let

Cyteay

'E(x):M?! 11 > A(m el : (3.31)

vEG2,+ \r: %TEAGQ
Then the function
U(z,2) = b~ (2)(Da — ()M [Q(2)e"], (3.32)

where the polynomial Q(z) is given by (3.24), is the BA function for AGs. Moreover, 1)
is also an eigenfunction of the operator Dy with Dty = ju(x)y. Thus, the operator Dy is
bispectrally dual to the AGy generalised CMS Hamiltonian.

We can extend the above bispectral duality statement as follows, in the spirit of ana-
logous results from [24,/49] for other configurations. By Theorem [3.7, the BA function
of AG4 is a common eigenfunction for a large commutative ring of differential operators

in x, and the following theorem states that a similar situation occurs in the variables z.

Theorem 3.28. Let p(z) € RYq, be a polynomial, and let py be its highest-degree homo-

geneous term. Then the difference operator D, acting in z given by

1
D. — degp<z/?\),

» = (degp)! P

where D is the operator of multiplication by p(z) and ad’y is the r-th iteration of the oper-
ation ads(B) = AB — BA, satisfies

DP¢<27 l’) = MP(I)¢(Z, I)
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for the function p,(x) obtained by substituting O, (w) in place of z; (i =1,2) into po(z).
The operators Dy and Dy commute, and the operators D, commute with D; (i =1,2)

and with each other.

Proof. By Theorem [3.7] there is a differential operator L,(z, d,) satisfying Lyi) = p(2)¢
with highest term pg(9;). By Theorem [3.24) we have Djyp = puip. The fact that ¢ is an
eigenfunction of the operators D,, follows by a standard argument about bispectral systems

(see, e.g., the proof of |24, Theorem 4.1|) which gives that

(1)t ad®ee? (L, )o).

Dot = Geg 1 2

Here adiegp (L,) = adl‘iegp (po(0:)) is a zeroth-order operator (that is, an ordinary function
of z), since each application of ad,, decreases the order of a linear differential operator and
L, = po(0;)+ lower terms. Explicitly, adiegp(po(ﬁx)) = (—1)%eP(deg p)! po (O, (11), Ouy (1)),
which can be proven by induction on the degree of py (and note that it is enough to con-
sider py that are monomial). Indeed, it holds if deg py = 1; and assuming that it holds for
some degree A =a; +az — 1> 1 (ay,a2 € Z>), we get
ad; t1 (051 052) = ady) ([n, 051052]) = ady, (ar[p, 0,105 71052 + az[p, 0,051 0327)
= —a10y, (p) ad;; (95,7'032) — a20s, (n) ady; (9510527
= ()" THA+ 1)1 00y ()™ Doy (1)

as required, where we used the Leibniz rule, that [u, 0,,] = —0,, (1) is just a function, that
adﬁl annihilates any operator of order less than A, and the induction hypothesis. This
implies that yu,(x) is as stated.

From formulas — for D, and for p, it is clear that the BA func-

tion (3.25]) can be expanded as

vE2ZB1®2ZLas

for some polynomials b, (z), where only finitely-many b, are non-zero. From there, it can
be seen easily that if a finite difference operator Dinz (with, say, rational coefficients) is
such that lND@D = 0 identically, then D = 0. It follows that the operators D,, D;, and D,

commute pairwise as 1 is their common eigenfunction. [

Remark 3.29. An alternative proof that the operators D; and Dy commute is that they
are the rational limit of certain trigonometric difference operators which we derive in
Chapter 5| below and whose commutativity follows from the theory of DAHAs.

Remark 3.30. Using ideas similar to those in [24, Theorem 6.9], one can show that
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the AG4 generalised CMS Hamiltonian is bispectrally dual to the operators D; and D, for
non-integer values of the multiplicities as well, as we explain in Section below.

3.4.5 Relation with A, and A; MR operators

In the case when m = 0, the configuration AG5 reduces to the root system Ay = {£205;: i =
1,2, 3} with multiplicity 1 for all vectors. In this limit, the operator (3.26)) reduces to the
quasi-minuscule operator for (twice) this root system. Let us now consider the m = 0
limit of the operator . After a rescaling, this gives an operator of the form

Do=> ar0(2)(Tr = 1) = =24+ Y a0(2)T-, (3.33)

T€G2 T€Gs
where for 7 = ¢f3;, ¢ € {£1}, and j = 1,2, 3, we have
ao(x)=3 ] (1——%72 ) I1 (1— ) )
™ (v,2) — 37* (v,2) )"

YEW By
<77(2’Y)v>:% (1,(27)V)=1

YEW 1
(r,(27)V)=2

Proposition 3.31. The operator (3.33)) preserves the ring of analytic functions p(z) such
that p(z + 5;) = p(z — B;) at (Bi,z) =0 for alli=1,2,3.

The proof is parallel to the proof of Theorem In this case, though, condition 2(b)
of Theorem [3.11] is needed while it does not play a role in the proofs of Theorems [3.20)
and .26

Let us rewrite the operator Dy for the more standard realisation of the root system A,

given by Ay ={e; —e;: 1 <i#j <3} C R3, where e; are the standard basis vectors.

Proposition 3.32. Define the set S = S; U Ss, where
S1={3e;:i=1,2,3}U{2¢+2¢; —e,: 1 <i<j#k<3,i#k},

52:{261+6j1§17£j§3}
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Then the operator acting in the variables z = (21, 22, 23) € C3 given by

Do=3% | I <1_#) 1 (l_zf%‘) "

TES? < i#j) ) < i#] =2
Tei—€j)= Tei—€j)=
(3.34)
Sl (-——) |z
- Zi — Zj +1
TEST %]

(Tei—e;)=3

preserves the ring of analytic functions p(z) satisfying p(z + e; — e;) = p(z — e; + €;) at
2 = zj foralli,j=1,2,3.

Notice that S} = {r € S: |(r,e; —¢;)| € {0,3} for all 7,7 = 1,2,3} and that Sy, =
{reS:|(r,e; —e;)| € {0,1,2} for all i, j = 1,2,3}.

Let us now consider a version of the operator for the root system A;. Let ~
denote equality of operators when acting on functions constant along the direction normal

to the hyperplane z; + 2o = 0.

Proposition 3.33. Let S| = {3e1,3ea} and S5 = {2e1+eq,e1+2e2}. Then formula (3.34))
after replacement of S; with S}, i = 1,2, gives an operator 130 acting in the variable
z = (21,2) € C? that preserves the ring RY, of analytic functions p(z) satisfying that
p(z+e1—es) = p(z—ej+es) at z1 = zo. Moreover, if we split the operator as lA?O = D1+ D>,

where . 5
Di=3(1—-—— )T+ (1 - ————— | T3,
! ( 22—21—1> 12 +( 21—22—|—1> 3

1 3
Dy =31————— | Toe, e, = ———— | Tsey,
2 ( 21—22—1) et +( 22—21+1) 3

then D;(R%,) € RY, fori=1,2. The operators D; satisfy the commutativity relations

and

[D17D2] = [DthSl] = [D27Dm5l] =0,

where D™ is the operator for the minuscule weight 2e, of the root system 2A; with

multiplicity 1 given by

2 2
DMt = (1 — ) Toe, + (1 — ) The,.
21— %9 22—z

We also have 13(2) ~ (D™ 4 2)3 and Dy Dy ~ 3D9™ 416 ~ 3(D™")? + 4, where
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2 2
1— 1—— = )\ (Ty, —1
+( 22—21>< 22—21+2>(42 )

is the operator for the quasi-minuscule weight 4ey of the root system 2A;.

We note that the operators D; and D, are not symmetric under the swap of the

variables z; and 2. The operator D™ is symmetric, and all three operators commute.

3.5 Deformed root system BC(l,1)

In this section, we show that a difference operator of rational MR type introduced by
Sergeev and Veselov in [95] for the deformed root system BC(I,1) preserves a ring of
quasi-invariants in the case of non-negative integer values of the multiplicity parameters.
We prove that in this case the operator admits a BA eigenfunction that, as a function of
the spectral variables, is an eigenfunction for the generalised CMS Hamiltonian associated
with BC(l,1). By an analytic continuation argument, we generalise this eigenfunction
later in Section also to the case of more general complex values of the multiplicities.

This leads to a bispectral duality statement for the corresponding generalised CMS
system of type BC(l,1). In particular, for special integer values of the multiplicities, one
recovers the results from [49| for the configuration C(l,1). Another bispectrality property
of the generalised CMS operator for BC(l,1) (as well as for BC(l,1’)) in terms of super-
Jacobi polynomials was proved in [95].

Let us now describe the configuration BC(l,1) in more detail. Recall that the root
system BCj;; has a positive half

BC[+17+:{€Z‘, 2611§Z§l+1}U{61i€j1§Z<j§l+1},

where ¢; denote the standard orthogonal unit vectors in R, Tts deformation BC(I, 1)

has a positive half

BC(1,1)4 = {e;, 2e;, e; £ Ve : 1 <i <1} U{Vkery, 2Vker 1}
Ufe;tej:1<i<j<lIi}cC™

where k is a non-zero complex parameter [19,94]. Let BC(I,1)" denote the reduced version

of this system with a positive half

BC(1,1)} = {a € BC(l,1);: la ¢ BO(1,1)}
= {es eit Ve 1<i <IBU{Vkea}U{ei e 1<i<j<I}

The set BC(I,1)4 has its multiplicity map given by c., = m, ¢g., = n, Cortvhers = by



CHAPTER 3. BISPECTRALITY OF GENERALISED CMS SYSTEMS 60

Cejre; = K, Chers = P and Covheryy = T for complex parameters m,n,p,r, subject to
the constraint that m = kp and 2n + 1 = k(2r + 1). For m = p = 0, the configuration
BC(l,1) reduces to the configuration C'(, 1), which was considered in [49]. For k = 1, the
configuration BC(I, 1) reduces to the root system BCj,; with a Weyl-invariant assignment
of multiplicities such that the vectors e; £ ¢; for 1 <14 < j <[4 1 have multiplicity 1.
In Sections [3.5.1] and [3.5.2] below, we assume that m,n, p,r € Z>o, and if [ > 1 then also
that k € Z~,.

If one puts A = BC(l,1); in the formula (3.1), one obtains the generalised CMS
operator associated with the configuration BC(I, 1) [94].

3.5.1 Sergeev—Veselov difference operator for BC(l, 1)

In this section, we recall the rational difference operator introduced by Sergeev and Veselov
for the deformed root system BC'(l,1) |95|, which deforms the rational version of Koorn-
winder’s operator and also generalises an operator associated with C'(l,1) from [49]. We
prove that, when all the multiplicity parameters are non-negative integers, the oper-
ator preserves the ring of quasi-invariants R%C(l’l) consisting of those analytic functions
f: C*! — C such that

flz+sa)=f(z—sa)at(z,a) =0 (3.35)

for all « € BC([,1)}, and s € A, = {1,2,...,ca} U{ca+2,ca +4,...,ca + 22}
Let 2 = (21,...,241) € C*1 The difference operator for BC(I,1) introduced in [95]

has the form

D =) (ase(2)(Toe, = 1) + ae,(2)(T2¢, — 1))

— (3.36)

1

+ a’2\/Eel+1 (Z) (TZ\/EeHl - 1) + a—2\/Eel+1 (Z) (T—Q\/EeHl - ]-)a

m+ 2n m 2k 2k
()= (1 1 1 1
O22e.(2) < i Zi )( ]inﬂﬂ) ( ]in—zj)( $Zﬂrzj)

2 2
x |1 1 7
<:in+\/EZl+1j:(1_k3) (]in—\/Elei(l—k))

1 k 2 k
G (2) = & 1]F\/—(P+ r) 1+ VEp
l“ k 2141 Z2i1 £ VEk

where

=

S

],
J

Sl
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!
2k 2k
X L¥ ) (13F )
,-11 ( Vi +zi £ (k1) Vkz — 2z £ (k—1)

Let us now assume that m,n,p,r € Z>q, and if [ > 1 then also that k € Z-(. In order
to prove below in Theorem Wthat the operator D in this case preserves the ring R%C(z 1)

we first establish the following lemma.
Lemma 3.34. Let f € R Then D f s analytic.

Proof. Based on the form of the functions a4, and a,, N/ the only possible singular-
ities of D f are potential simple poles at z; = 0 for 1 < i <[+ 1, as well as 2,1 = +Vk,
zi ==*1, 2z = j:\/EzHl +k—1,and z; = i\/Ele +1—kforl<i</ and also z; = *z;
for 1 <1 < j <. The strategy is to show that at each of the possible poles, D f has zero
residue. It will follow that Df is analytic everywhere. We describe the computation of
the residue for most of the cases, the procedure for the remaining ones being analogous.
Let us denote, as before, the residue of a function f at a simple pole z; = a € C by

res,,—q(f) = lim (z; — a) f(2).

Zi—a

We may assume, for simplicity, that m # 0 # p, as the case m = p = 0 was covered
in [49]. Let us first compute the residue of Df(z) at z; = 0 for 1 <7 <. We note that

(ge,(2) = @2, (5e:(2)), (3.37)

which implies
res,,—o(oe,) = — r€8,,-0(a_2; ).
Also, if m # 1 then
TZeif(Z)’zi=0 = T*2€if(z)

2;=0>

where we use that f € R ,). Note that if m = 1 then res; —o(ai2,) = 0. It follows
that for any m € Z- the residue of Df(2) at z; = 0 is zero. Its residue at z.; = 0 can
be shown to vanish in an analogous way.

Next, we consider z; = —1. The only coefficient function in D that has a pole there

is ag,,, and so the property res,.—_1(Df) = 0 follows from the fact that

(Toe, f(2) = f(2) =1 = 0,

where we again used that f € Ry, ;). Similarly, the residues of D f (z) at z; = 1 and
2141 = £Vk are zero.
Let now 1 <4 < j <[, and let us compute the residue of Df(z) at z; = z;. We note
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that
ai?ei(z) = aiZej (867;—6]' (Z))a (338)

which implies

2;=2j i) — T i=Zj i/t
res,,—.. (atoc,) res,,—., (G+ae,)

Also, for any u € C and ¢ = u + 1, we have

TQeif(Z>

Zi=zj=u — f(Z +e — ej) zZi=zj=q — f(Z —e + €j> zi=zj=q — T2€]'f(Z)

Zi=Z5=Uy

where in the penultimate equality we used that f € REcan) Similarly, T o, f(2) =
T o, f(2) at z; = z;. It follows that the residue of Df(z) at z; = z; is zero. The case of
2; = —z; is similar.

Finally, we consider z; = —Vkz41 +k — 1 for 1 < i < 1. We calculate the following

residues:

m 4+ 2n m
TeS, — VEa g +h1(02:) = b Vkzp +1- H m
l
2k 2k
1+ ,
( \/_Zl+1)H< \/Ezl-i-l‘i-zj—i-l—k?)( \/EZH-l—Zj—i-l—k?)

=

oL,
N

VE(p + 2r) Vkp
* Rl+1 ) (1 " 241 — \/E>

I
k 2k 2k
x 1+ ) 1+ 1+ .
< Vkz+1—k H( \/Ezl+1+2j+1_k>< \/Ezl+1_zj+1_k>

J#i

reszi:—\/gzz.u-l—k—l(a—Z\/EeH-l) =2 <1

In order to compare them, we observe that

\/Ep o m
Rl+1 — \/E \/%ZlJrl —k

since m = kp; moreover, since 2n + 1 = k(2r + 1), we also have

<1 " %) (1 " \/Ezz+1k+ 1— k)

B VEzg+m+2n+1—k Vikz+1
VEzi VEz+1—k

_<1+ m+ 2n )(1+ 1 >
Vkz +1—k VEz)
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Therefore,
reszi:—\/gzl_‘_l-f—k—l(agei) = = reszi:—\/ﬁzl+1+k}—l(a—2\/Eel+1)'

Also, for any v € C and ¢ = —u + vk, we have

T2€if(z)

= f(z - el - \/Eel‘i’l)lzl:\/gq, Zl+1=—4 = T—Q\/Eel_;,_lf(z)’zi:—\/Eu—i—k—l,zl_;,_l:u’

Zi:*\/E’lL+k*1,Zl+1=u = f(Z + el + \/Eel-‘rl)

zi=Vkq, z141=—q

where in the penultimate equality we used that f € R%C(l,l)' It follows that the residue
of Df(2) at z; = —Vkz1 + k — 1 is zero. The cases z; = —Vkzy1 +1 —k and 2 =
Vkz 41 £ (1 — k) are similar. This completes the proof. [

Theorem 3.35. Let f € Ry ). Then Df € Ryp -

Proof. By Lemma [3.34] Df is analytic, so it only remains to show that Df satisfies the
functional identities (3.3%)). Let o € BC(I,1)", and s € A,.

Suppose o = ¢; for 1 <+ <[. Then at («, z) = 0, we have ag, (z + sa) = a_z,(z — sa)
by equality (3.37). And for all j # i, it is straightforward to see that aio.,(z + sa) =
atae, (2 — sa) and apy ., (2 + s) = ayy g, (2 — sa) at (a,z) = 0. For s # 1, we have
A_9¢, (2 + sa) = ag,(z — sa) at (a,z) = 0 by equality (for s = 1, the functions
a_9¢,(z + sa) and as, (2 — sa) are singular at («, z) = 0 and we will deal with this case
separately).

Now observe that for s # m — 1, m + 2n, we have s +2 € A., and then since f €
Rca) we have Toe, f(2 + se;)|s—0 = Tooe, f(z — S€;)|:,=0. On the other hand, if s €
{m—1,m+2n} then as., (2 + s€;)|z=0 = 0 = a_gc,(z — 5€;)|,=0. Also, since (z=%2e;,¢e;) =
(z£2Vke 11, €;) = 2;, we have for any s € A, that Thoe, f(245€;)] ;=0 = Teoe, f(2—56;)
and Ty /g, (2 + s€)|:i=0 = Toope,,, [ (2 — 5€i)|z=0. And for s # 1, we have s — 2 €
A., U {0} and hence T o, f(2 + s€;)|s,—0 = Toe, f(z — se;)
the previous paragraph that the identities are satisfied for Df for a = e; for any
se A, \ {1}

Let us now deal with the case s = 1. The property that

z;=0

»—0- 1t follows from this and

(f(z—e) = fz+e))

2;=0 — 0

can be restated as f(z —e;) — f(z + e;) = 2;9(z) for some analytic function g(z). Thus,

we have

lim a—2€i<z + €i>(T—2€i - 1)f(2 + ei) = g(z>|zz:0 11{11)0 ZiA—2¢; (Z + ei)

Zi—r

13-37)

= —g(2)

s—0 UM zia0., (2 — €;) = lim ag,,(z — €;)(The, — 1) f(2 — ;).
Z,‘*}O Zi~>0
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It follows from this and the previous two paragraphs that the identity for D f holds
for &« = e; also when s = 1. The case of o = \/Eelﬂ can be dealt with in an analogous
way.

Next, suppose @ = ¢; —¢; for 1 <4 < j <. Then g, (2 + 50) = a9, (2 — 50) at
(a,z) = 0 for 5 € {£s} by equality (3.38). If s # k then s + 1 € A,,_., and then for any
u € C and ¢ =u+ 1, we have

Toe, f(2 + s(e;i — €))

simey=u = [(2 + (s + 1)(ei — ¢)))
= f(z = (s+1)(e; —¢5))

zi=2j=q

Zi=zj=q — T2e]-f(z - S(Qi - €j>)

Zi=Zj=U>

where we used that f € R,y and similarly Too f(z + sa) = Tl f(z — sa) at
(o, z) = 0. On the other hand, if s = k then ag, (2 +sa) = 0 = a_y, (2 +5a) at (a,z) = 0.
Moreover, for any s € A, _,, we have s — 1 € A,,_., U {0}, which can be used to see that
T oe, f(2+sa) =T o, f(z — sa) and To,, f(z + sa) = Ty, f(2 — sa) at (o, z) = 0.

For all ¢t # 4,j and (a,z) = 0, it is straightforward to see that ais.,(z + sa) =
Aire (2 — sa) and aiy g, (2 + sa) = agy g, (2 — sa); and that Tho, f(z + sa) =
Thoe, f(z — sa) and Ty g, f(z + sa) = Ty g, f(z = sa) since f € Ryq,) and
(z £ 2, a) = (24 2Vkey, a) = 0.

It follows from the above two paragraphs that the identities are satisfied for D f
for = e; — e;. The case of a = e; + ¢; is analogous.

Finally, suppose a = e; + Vkerq for 1 < i < [. Note that AoV, =1{1},sos=1
For ¢ € {£1},

a2€€i(z + 5(61 + \/Eel+1))’zl:—\/ﬁzl+1 = 0 = GQEx/EeH_l (Z + 5(61 + \/Eel‘Fl))lZZ:—\/EZH_l
We also have

a/fzsei (Z + 6(62 + \/EelJrl))‘zl:—\/EzH_l = a25\/Eel+1 (Z - 8(671 _'_ \/EelJrl))’zZ:—\/EzH_l

The latter can be seen upon rewriting m and n in terms of p and r, and using, in particular,
that

(1_5(m+2n))(1_ 5 )_\/Ezlﬂ—sk—z—:k(p—k%)
\/EZZ-H — £ \/EZZ-H \/EZIH

B 1_5\/E(p+27“) 1_5\/%
B 2141 — 5\/% 2141 '

Moreover, we have

<T72se¢ - 1)f("7’ + g(ei + \/Eel+1))|zi:—\/ﬁzl+1
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= (f(z = les = Vier) = £z +2(es + VEer) ) |- vea,
= (T26\/Eel+1 - 1)f(Z - 5(6i + \/Eel*Fl))’zi:—\/EzHl?

where we used that f € Rcu:
For j # i and z; = —\/_le, we have ag, (z + e; + \/Eelﬂ) = age, (2 — € — \/Eelﬂ),
which can be seen by using that

1 2k 1 2k 1 2
Zj —f- \/EZIH — 1 Zj — \/Ezl-i—l + 1 Zj —f- \/Ezl-i-l —|— 1

2 (Zj + \/EZIJFI —-1- 2]6)(2] — \/EZ[Jrl —1- 2k‘>
x| 1— =
—Vkz +1-2k (z; — Vkas + 1) (2 + V21 + 1)

_ (4 2k ] 2k ] 2
zj + Vkzp + 1 zj — VEkzp —1 zj + Vkzp +1—2k

2
x[1-— .
( Zj—\/EZH_l—{—l)

A similar calculation shows that a_g., (z—i—eZ +Vker 1) = a_ 2e; (2 — i—V'key1). Moreover,
Toce, f(z+ i + \/_€l+1) Tee, ( \/_€l+1) at z; = \/_zlﬂ since f € RBC(M).

It follows that the identities are satisfied for D f for a = ¢; + \/Eelﬂ. The case
of a =¢; — \/Eelﬂ is analogous. This completes the proof. [ |

3.5.2 Construction of the BA function for BC(l,1)

Even though the configuration BC(l,1), is non-reduced, all of its subsets of collinear
vectors are of the form {«, 2a}. Thus, we can apply Definition to get the following
notion of a BA function for BC(I, 1).

Definition 3.36. A function ¢: C'*! x C*! — C is a BA function for the configura-

tion BC(I, 1) with non-negative integer multiplicities if it satisfies the following conditions:

1. ¥(z,7) = P(z,2)e*® for some polynomial P in z whose highest-order term is

[acncan. (o Z>C“7
2. Y(z+sa,x) =P(z — sa,x) at (z,a) =0 for all « € BC(I,1)", and s € A,.

Note that condition 2 in Definition is similar to the functional identities
satisfied by the elements of the ring R, ), and indeed, for any z € C™"! for which P(z, )
is non-singular, the function v, : z — ¥(z, x) belongs to RBeq)-

It follows from the general results presented in Section that if a function ¢ sat-

isfying Definition [3.36] exists then it is unique, and it is a joint eigenfunction for a large
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commutative ring of differential operators in x. By Proposition [3.9] this ring contains the
Hamiltonian for A = BC(l,1) with the non-negative integer values of the multipli-
city parameters. Moreover, this ring also contains a complete set of quantum integrals for
this Hamiltonian, as well as extra integrals that correspond to the algebraic integrability of
this system. Namely, for every polynomial p(z) € RBo1y, there is a differential operator
in x that commutes with the Hamiltonian and whose highest symbol is py(0,), where pg
is the highest homogeneous term of p.

The following theorem gives an explicit construction of the BA function for BC(I, 1)
using the Sergeev—Veselov difference operator D from Section [3.5.1 The BA function will
be an eigenfunction for the operator D, which shows bispectrality of the generalised CMS
Hamiltonian of BC(I, 1) for non-negative integer values of the multiplicity parameters (the

case of non-integer multiplicities will be considered in the next section).

Theorem 3.37. Let M = 3 pcgy), Ca = m+n+ ({1 —1k+2)+p+r, and let
S = {+2e;, +2Vkei1: 1 < i <1}. For x € C*1, let

ple) = 37 (el — 1),

TES

and

CatC2a
M' T,T
b(v) = gy 11 (Z kor (T, )€l >> : (3.39)

a€BCO(L1), \T1€S

where Kk, = k™' if T = £2Vkeys1, and ky = 1 otherwise. For z € C, let Q(z) be the

polynomial in R%C(l 1) given by

Then the function
U(z,2) = b(a) ™" (D — p()" [Q(2)e'>"] (3.40)

is the BA function for BC(l,1). Moreover, ¥ is an eigenfunction of the operator D with
Di(z,2) = pla)(z, ).

The proof is analogous to the case of AGy in Theorem [3.24] it just uses the following
two lemmas in place of Lemmas [3.22] and [3.23] respectively.

Lemma 3.38. For all 7 € S = {+2¢;, £2Vke;y1: 1 < i < 1}, the coefficient function a.
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in the operator D can be expanded as

ar(2) = Kr = Ky Z = Oé><<o(i)i;>r ) + R (2),
a€BC(,1)7

where Kk, are as i Theorem |3.37, and R. is a rational function with deg R, < —2.

The above way of expanding the coefficients of the operator D can be used to prove

the following lemma (in a completely analogous way to how Lemma is proved using
Lemma [3.22)).

Lemma 3.39. For a € BC(l,1)", let n, € Zxq be arbitrary. Let N = ZaeBC(l,l)g Ny
Let p(x) be as in Theorem and let A(z) = HaeBC(l’l)Q(a, z)" . Then we have

(D — w)[A(2)e!*™] = R(z,2)e%*®) for a rational function R(z,z) in z of the form

R(z,z) = Z (Mo — Ca — C2a) (Z K (T, a>e<m>> A(2) e, 2) 7+ S(z, 1),
)

aeBC(l,1 TES

where S(z,x) is a rational function in z of degree less than or equal to N — 2.
In particular, for any polynomial B(z,) in z, we have that (D — u)[B(z,z)e*®] =
U(z,7)e*® for a rational function U(z,z) in z with degU(z,z) < deg B(z,7) — 1.

Proof of Theorem[3.37. The idea of the proof is as follows. We have Q(z)e*® € Recan
because Q(z + sa) = Q(z — sa) = 0 at (z,«) = 0 for all @ € BC(l,1)", and s € A,.
The property that (D — )M [Q(2)e!*)] satisfies condition 2 in Definition thus follows
from Theorem . Moreover, each repeated application of D — y on Q(2)e!*® gives a
function of the form R(z,z)e’*® with R(z,z) a polynomial in z, which follows from the
form of the operator D and Theorem [3.35] More specifically, for all b € Z-,, we have
that (D — p)’[Q(2)e®*®] = Ry(z,2)e!*™ where Ry(z, ) is a polynomial in z of degree at
most 2M — b whose highest-order homogeneous component can be kept track of by using
Lemmam (similarly to how this is done in the case of AG5 in the proof of Theorem m
by using Lemma . This makes it possible to see that (D — p)™[Q(2)e!*)] essentially
satisfies also condition 1 in Definition [3.36] except that the highest-order term of its
polynomial part has an extra factor of b(x) given by formula . It follows that ¥
defined by the expression is the BA function. At the next application of D — p,
we get (D — p)M*[Q(2)e*™] = 0 as a consequence of Lemma which implies that

Dy = . u

In Section we will need some further properties of the BA function ([3.40]), which
we record in Propositions and below (cf. [24, Propositions 6.5 and 6.6], respect-
ively). The following two lemmas will be useful for the proof of Proposition [3.42] Let o

denote proportionality by a constant factor.
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Lemma 3.40. The function b(x) defined by formula (3.39)) satisfies

b(z) H sinh® ¥ (2a, ).
aeBC(l,1)".

Proof. Using formula ((3.39), we compute

l
b(&?)(@zﬂle . 6*2\/EIZ+1)*P*7" H(€2xi . 672mi)fmfn x

=1
H (62:ci — e 2mi + 625\/Ea:l+1 _ 6—25\/Ea:l+1) H (62xi — 2 + e2eri e—anj)k
1<i<l 1<i<j<l
ee{x1} ee{£1}

— H (ewi+€\/E$l+1 + 6—.1’1'—6\/%3:‘14_1)(6331"1'6\/%3:1_._1 _ e—xi—&‘\/EZ‘H_l)

1<4i<1
ee{£1}

% H (e:lfi+5$]’ + e—xi—ezj)k(exq;-‘rsxj - e—l‘i—c“x]')k’

1<i<j<l
ec{£1}

where we used the identity A>— A2+ B?*— B 2= (AB'+ A'B)(AB— A"'B™'). Then

by using the difference of two squares formula, we get

b(x) o H (e<2a’x> — e’<2a””>)c&+02a o H sinh®* (2, x),

a€BC(L,1)}, a€BC(L,1)7}
as required. [

Let us consider the function

Sx)= [ (2sinh(a,z))™. (3.41)

a€BC(L,1)+
The next lemma relates d(z) to the function b(x).

Lemma 3.41. We have

b(x) < d(x) H cosh® (o, x).

aeBC(l,1)1,

Proof. Note that

d(z) H sinh®* (o, 1) cosh® (a, ). (3.42)
aeBC(1,1)".

The proof is thus completed by making use of Lemma [3.40} |
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The proof of the next proposition is based on the ideas of the proof of |24, Proposi-
tion 6.5]. Let us define the lattice

L=LKk)=27e & ®2%e & 2VEkZer, 1. (3.43)

Let £, be the semigroup of v = (v,..., 1, Vkvi1) € £ that have non-negative partial

sums of v;, that is
T I+1
Lo={v=n, ..,u,VEu)eLl: X vy, >0forr=1,....1+1} =B Zpa;,

where ay = 2(e; —€3), ..., a1 = 2(e;-1 —€1), oy = 2(e; — \/E@Hl), and a1 = 2Vkey 1.
We note that 2« € £, for all « € BC(1,1)5.

Proposition 3.42. The function ¢ defined by formula (3.40) can be expanded in the form

¥ =0(@) e 3 ey z)el (3.44)

vely

for some polynomials c,(z), where

p= Z Col¥ (3.45)

a€BC(1,1)4

and §(x) is defined by formula (3.41)).

Proof. By Theorem and Proposition [3.9, the function ¢ satisfies the eigenfunction
equation L1 = —z?1 for the operator L given by formula (3.1)) with A = BC(l,1),. This

operator can be rearranged as follows

L=-A+ Y (Ca + C20)(Ca + C2a + 1){e, ) 3 C2a(C2a + 1){, @)

sinh*(av, z) - cosh?(av, z)

a€BC(L,1)7} a€BCO(L1)T,

This form of the operator L makes it possible to see, by Laurent expanding the eigen-
function ¢ in x around suitable hyperplanes, that 1) must have either a pole of order
Ca + Coq OF a zero of order ¢, + co, + 1 along each of the hyperplanes sinh(a, z) = 0 for
a € BC(l,1)7; and similarly a pole of order ¢y, or a zero of order ¢, + 1 along the hy-
perplanes cosh(c, z) = 0 for o € BC(1,1)",. The expression for b(x) given in Lemma [3.40]
suggests that the order of the poles of 1 at cosh(«, ) = 0 might be higher than ¢y, but the
local expansion of 1) and the eigenvalue equation L) = —2z2%¢ imply that this cannot hap-
pen. It follows from the form of b(x) that ¢ cannot have any additional other singularities
either. Hence §(z)¢ is analytic (in both x and z variables) due to the property (3.42).
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By construction, 1(z, ) = b(x)'®(z, x) for the quasi-polynomial in z function

©(2,2) = (D — p(2))M[Q(2)e).

From the fomulas for D and u, it is clear that ® is analytic in x and that it can be

expanded as
P = el Z b, (z)e"® (3.46)

veLl

for some polynomials b, (z).
In view of Lemma [3.41] the analyticity of §(x)y implies that the trigonometric poly-
nomial in z given by (3.46) must be divisible by

H cosh™ (o, ) oc el H (e7 X 4 1)0 = elp) Z d, e, (3.47)

a€BC(L,1)7, a€BC(L,1)T, vel

where d, € R and

pr= Z Caly,

a€BC(l,1)7

and we used that 2o € £ for all @ € BC((,1)".. The quotient of the function (3.46|) by its
divisor ([3.47)) will still be a trigonometric polynomial in x, and we get that

1/} = 5<I)—1€<Z—p,x) Z CV(Z)€<V7I>
vel

for some polynomials ¢, (z). Let P = {v € L: ¢, # 0}. We need to show that P C L.

Let y; = e!*®) for i = 1,...,1+1. The potential in the Hamiltonian L can be written as

Z 4eg(Ca + 2090 + 1){a, a)elo

(62(a,x) _ 1)2 (348>

a€BC(1,1)4

By using that 2a € £, = @ii Zsooy; for any a € BC(l,1)4, we can rewrite the po-
tential (3.48) in terms of the variables y; and expand it (for small y;, that is for = in
{x € C"*: Re(ay, ) <0, i=1,...,1+1}) into a Taylor series in y;, which will have no

constant term, and thus obtain

N
peL\{0}

for some constants g,,. Similarly, one can expand the function

5(3,;)*1 — elp) H (e<2a7w> — 1) = elp:) (_1)t + Z hne<’7’x> :

aeBC(l,1)4+ nely\{0}
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where h,, are constants and ¢t = [(m + n) + p + r. Thus, the eigenfunction equation
(L + 2%)1p = 0 gives that

ZCV(Z)€<’/7Z> < (22 - (Z + V)Q) (_1)1& + Z hn (22 o (Z +u+ 77)2) e(n,$>

veP neLi\{0}

+ Z (_1>t9ue<u7w> + Z guhn€<”+n7x>) = 0.

pel\{0} nn€L\{0}

(3.49)

Since the set P is finite, it contains (one or several) minimal elements vy, with respect to
the partial order on £ defined by a > f if and only if @ — 5 € £, \ {0} for o, 5 € L. The
term e{min®) appears only once in the left-hand side of equality (3.49)), and its coefficient

2 = 22 for generic z, and it follows that v, = 0.

must hence vanish. We get that (z+ Vi, )
Suppose that there is some v € P\ L,. Then v # 0, so it cannot be minimal in P, hence
there must be some v, € P\ L, with v > 15. By iterating this argument, we get an
infinite chain v > vy > v3 > ... of elements in P, contradicting the finiteness of this set.

It follows that P C L., as required. [ |

Remark 3.43. By adapting the argument in the last paragraph of the proof of |24,
Proposition 6.5|, one could show that the set P from the proof of Proposition is
contained in the subset of £, given by {2 ZQGBC(M)Jr to: to € Z, 0 <ty < cu}.

The proof of the following proposition is based on the ideas of the proof of [24, Pro-
position 6.6 (2)].

Proposition 3.44. The polynomial cq in the expansion (3.44) is given by

co(z) = (=1)ftmtmiwtr gintr T ((a,2) + s(a, a)).

a€BCO(L1)T,
s€EA

Proof. The BA function (3.44) must satisfy condition 2 in Definition m This gives that

Z (2 + sa)elvTson) — Z (2 — sa)el’3) (3.50)

vely vely

at (z,a) = 0 for a € BC(I,1)", and s € A,. Since —sa ¢ 3L, while v + sa € 3L,

(sa,x

for all v € L, we get that the term e~ **) does not appear in the left-hand side of
equality (3.50)). Hence, it cannot appear in the right-hand side either, which means that

co(z — sa) =0 at (z,a) = 0. In other words, the polynomial ¢(z) must be divisible by

I We2) +siaa)). (3.51)

a€BC(L,1)",
SeAa
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The quotient of ¢y(z) by the product (3.51]) can only be some constant A since the polyno-
mial part of the function ¢ is, by condition 1 in Definition [3.36] of the same degree in z as
the polynomial (3.51)). Moreover, the highest-degree term of the polynomial part of 1) is
by definition [[,¢ goqy), (@, 2) = 27 [laenc@y, sea, (@ 2). Thus, denoting by & the
highest-degree term of ¢,, equality (3.44)) implies

2t 5 () H <a,z>:/\e_<p’$> H (oz,z)—l—e_(p’x) Z cg(z)e<”’$>.

a€BC(1,1)7} a€BC(1,1)7 vel\{0}
SEAL SEA,

By calculating the coefficient of e~»*) in §(x), we get A = 27+" HQGBC(M)Q(—DC“C?“,
and the statement of the proposition follows. [ ]

We end this section with the following statement, whose proof is analogous to that of
Theorem [3.28]

Theorem 3.45. Let p(z) € R%C(l 1 be a polynomial, and let py be its highest-degree

homogeneous term. Then there is a difference operator D, acting in z such that

Dpip(z, z) = pp(2)¥(z, ),

D, = @ ad(li)egpq?\)a
where 1 is the BA function of BC(l,1) and D is the Sergeev—Veselov operator .
The eigenvalue pi,(x) is obtained by substituting 4sinh(2z;) in place of z; (1 <i <1) and
4(VE) " sinh(2VExy41) in place of 2141 into po(2). The operators D, commute with D and

with each other.

3.6 Bispectrality for non-integer multiplicities

3.6.1 Case of BC(l,1)

In this section, we carry out an analytic continuation in the parameters of the BA func-
tion in order to extend to more general complex values of the parameters the
statement proved in Section [3.5.2] about the bispectrality of the Sergeev—Veselov operat-
ors for BC(l,1). We do this by adapting to our present setting the approach developed
in |24, Section VI.C|. The corresponding generalisation of the function ¢ (z,z) will be a
deformation of a Heckman-Opdam multidimensional hypergeometric function [65].

We begin with a few preliminary results on the properties of the generalised CMS
operator L for A = BC(l,1);, where we are now no longer assuming that the
parameters ¢, are integers. The next lemma gives a potential-free gauge-equivalent form

of this operator. It is stated in [94]. We include a proof below for completeness.
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Lemma 3.46. (9] Consider the differential operator

H=A- Z 2¢, coth{a, x)0,, (3.52)
aeBC(l,1)+

where 9, = 11 (v, €,)0,, is the directional derivative along a € C'. The operator H is

gauge-equivalent to the operator L from above:
H+p*=—§(x)oLod(x) ™,

where p is giwen by formula (3.45) and 6(x) by formula (3.41)).

Proof. We have

On [6(2) "] = =6(x)™" D o coth(a, x),

aeBC(I,1)4
2 [8(x) " =6 Y ea((ea+Dsinh*a,x) + o) (al)?
aeBC(I,1)4
+6(x)7" Y cacpa B coth(a, x) coth(B, z)
a,B€BC(1,1) 4
o

foralli =1,...,014+ 1, where a = (aW,... o) and g = (BD,..., B¢+Y). Therefore,

we get

—§(r)oLod(x) = — Z 24 Co0 (e, a) sinh ™ (a, x) + Z c{a,a)

OéEBC(l,l)+ aEBC(Z,1)+

+ Z cacpla, B) coth(a, x) coth(B, x) — Z 2¢, coth(a, )0, + A.

a,BeBC(L,1) 4 a€BC(L,1) 4
a#B
(3.53)

By using that coth(u) coth(2u) = % (sinh™*(u) + 2) for any u € C\ 1Zmi, we have

Z caCpla, ) coth(a, x) coth(, z)

a,BeBC(1,1) 4

aFfB
= Z cacpla, B) coth(a, x) coth(B, z) + Z 20 Caa (0, ) (sinh™2(a, ) + 2).
Oé,,BEBC(l,l)+ aEBC(l,1)+

ag{B,28,58}
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By substituting this into equality ([3.53]), we obtain that —d(x) o L o 6(z)~! equals

H+ Z cacplay, B) coth(a, x) coth(B, z)
a,BeBC(,1)4
ad{B,28,58}

+ Z 4enCon(r, ) + Z {a,a).

a€BC(1,1) a€BC(,1) 4

Since we can write
P’ = Z o, a) + Z degConla, ) + Z cacsla, B),
a€BC(I,1)4 a€BC(L,1) 4 a,BEBC(L,1) 4

ag{B,28,58}

the proof is completed with the help of the following lemma.
Lemma 3.47. (94, Equality (12)] We have

Z cacpla, B) coth{a, z) coth(f, z) = Z cacpla, B). (3.54)
a,BeBC(,1)+ a,BeBC(,1)+
ad{B,28,58} ad{B,28,58}

Proof. We first indicate how to prove that the left-hand side of is non-singular.
One can show that singularities at sinh{a,z) = 0 for a € {e;,2¢;: 1 < i < [} U
{(Vkeri1,2Vker 1} U{e; £e: 1 < i < j < 1} cancel by using symmetry — namely
that those « satisfy s,(BC(l,1)) = BC(l,1) — and using also that for those a we have
2(a, B){a, )™t € Z for all § € BO(l,1).

It remains to show that there are no singularities at sinh{a, z) = 0 for & = ¢; & Ve
(1 < i < 1) either. Let a = ¢; + Vkeyy. Then sinh(a,z) = 0 if and only if z; =
iwd — kx4 for some d € Z. We will show that the terms multiplying coth(a, z) in (3.54)

go to 0 when x; — imd — Vkx;1. The terms in question are (up to a factor of 2) equal to

m coth(x;) + 2n coth(2z;) + kp coth(Vka41)

+ 2kr coth(2Vka41) + (1 — k) coth(z; — V1)
!
+ Z k ( coth(z; + x;) + coth(x; — x;) + coth(x; + Vkx) — coth(z; — \/Exlﬂ)) :
=1
=
(3.55)

By using im-periodicity of coth, the expression (3.55) simplifies at z; = ind — Vkzs1 to

(kp — m) coth(VEkxr1) + (2kr — 2n + k — 1) coth(2vVkxy 1) = 0,
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as required, where we used that m = kp and 2n+1 = k(2r+1). The case of a = ei—\/EelH
can be handled similarly.

This completes the proof that the left-hand side of is non-singular, and from its
form, it is then clear that it can be rewritten in exponential variables w; = €** (1 <7 <)
and w1 = e2Vkzie1 g5 g non-singular rational function with zero degree, which therefore
must be constant.

To calculate the constant, let us put z = ((I 4+ 1)N,IN, ..., 2N, N/Vk), and take the
limit N — oo by using that (a,z) — oo as N — oo for all « € BC(l,1); and that
cothu — 1 when u — co. This gives the right-hand side of equality . ] |

When x belongs to the region
B = B(k) = {z € C'""": Re(a, ) <0 for all « € BC(I,1),},

the operator (3.52)) can be expanded into a series as

1+ 62(04,95) = 2j{o,x)
H = A+ Z QCamaa = A+ Z 2Ca 1+2216 J 8a. (356)
J:

a€BC(1,1)+ aeBC(1,1)+

Let ¢ = (2, ) be a solution of the equation

Hyp = (2* = p*)p, (3.57)

which is by Lemma equivalent to the function §(z) !¢ being an eigenfunction of the
Hamiltonian L with eigenvalue —z%. In particular, if all ¢, € Zso then 6(z)1(z, z), where
1 is the BA function (3.40)), satisfies equation (3.57)).

Assume that there is a solution ¢ of the equation (3.57)) of the particular form

o= 3 g (2)el) (3.58)

vely
for some functions ¢,(z) with qo(z) = 1. If all ¢, € Z>( then by Proposition the
function 0(x)1(z, x) is of the form (3.58]); it is just normalised differently since co(z) =
lntr HaeBC(l,l)g,seAa<_<O‘v z) — s{a,a)) # 1 by Proposition |3.44,
By substituting the series into equation (3.57)), using the expansion for

the operator H, and requiring that the respective coefficients of the terms e vanish for

all v € L, we get recurrence equations for the functions ¢,. Namely, we get

<V7 v+ 22>Ql/<z) + Z 4ca Z<a7 Z=ptVv—= 2ja>QV—2ja(z) = 07 (359)
aeBC(1,1)+ Jj=1
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subject to the constraint that gy = 1, where we put g,_9j, = 0 if v — 2ja ¢ L., meaning
that the above sum over j is finite. For generic z, equations (3.59)) (together with the
normalisation choice ¢g = 1) determine all g, uniquely. Indeed, one can solve for them
recursively by height of v € £, = @z 1 Zi>o0u;, since the above v —2ja has a strictly lower
height than v, where for v = ZlH v@Way, its height is defined by h(v) = Zlﬂ v, We
note that all g, (z) are rational functions of z, and their dependence on m,n,p, r, and Vk
is also rational.

For k with Rek > 0, the next lemma below, applied with = replaced by x/2, can
be used to show that the resulting series converges absolutely in the region B.
Moreover, since it is a power series in y; = e/*»® (i = 1,...,1+ 1), it converges uniformly
in the open sets {z € B: Re{w;,x) <e<0,i=1,...,0+ 1} for any € < 0, and so ¢ is
analytic in « on B. In the case of root systems, an analogue of the next lemma is proved
in [66, Lemma 5.3].

Lemma 3.48. Assume Rek > 0. Forv e £, \{0}, let X, = {z € C': (v, +22) = 0}.
Suppose z € C* does not lie on any of the hyperplanes ¥, and let v € B. Then there

exists a constant K = K(z,z) € R (depending on z and x but not on v) such that
g(2)e| < K

forallve L.
Proof. Let v = Ziﬂ vWa; € £, and a € BO(l,1); be arbitrary. We have

I+1

(v —p+za) <[z =pa)| + Y v )] < M (h(v) + 1), (3.60)

i=1

where we let A\; = A\1(z) > 0 be the maximum (depending on z but not on v nor «) of the

finite set

{1tz = p, B)|: B € BC(, 1)} U{|{ei, B)]: B € BC(,1)s, i=1,...,1+1}.

Further, we have
I+1

= > VO @, a;) = |7 (3.61)
3,0=1
forv=>".", frl D&, where &; € R'*! are obtained from «; by replacing vk with vRe k € R.
Here ||-|| denotes the usual (real) Euclidean norm. Since @; form a basis of R, the
expression ([3.61)) is a positive-definite (real) quadratic form in the variables v*) with asso-
ciated symmetric matrix A = ({(@;, aj))iél 1~ By Sylvester’s criterion, all leading principal
minors M; of A are positive, M; = det A;, where A; is the top left 7 x ¢ corner of A. For
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any ¢ € R, the expression Re(v, ) — ch(v)? is also a quadratic form in the variables v(*)
with associated matrix A° = ((o, ;) — c)ﬁngzl By the matrix determinant lemma, the
leading principal minors M¢ of A¢ are (1 — c(u;, A, u))M;, where u; = (1,...,1) € R%.
Since M; are positive, M are positive for ¢ = min{2*(u;, A, 'uy) " tri=1,...,1+1} >0,

and then Sylvester’s criterion implies
|(v, )| > Re(v,v) > ch(v)?.

We also have
I1+1

(v, 2)] < ZV”I(%ZM < Mh(v),

where we let M = M(z) = max{|[{a;,2)|: i =1,...,14+ 1} > 0. Whenever h(v) > 4M/c,
it follows that |(v, z)| < ch(v)?/4, and then by the reverse triangle inequality

(v, v+ 22)| > [[{v, )] = 2w, 2)|| > ch(v)?/2.

Letting Ay = A2(z) > 0 be the minimum of ¢/2 and the finitely-many, positive values
(Vv +22)|/h(v))? for v/ € £, \{0} with h(2') < 4M/c (here we are using the assumption
that z ¢ ¥,/), we thus get that

(v, v+ 22)| > Xoh(v)? (3.62)

for any v € L.
By using inequalities (3.60)), (3.62)), and the recurrence relation (3.59)), we get for all
ve L\ {0} that

0, ()] < 4NATR) T Y feal D lavjal2)], (3.63)
a€BC(1,1)+ Jj=1
since h(v — 2ja) < h(v) — 1. Let A = 4\ A%
Since x € B and the geometric series is absolutely convergent on the open unit disk
in C, there is Ny € Z~q such that

A>T el D[P < N (3.64)
a€BC(1,1)+ J=1

Let K be such that
]qn(z)e<’7’x>] <K (3.65)

for those (finitely many) n € £, which have h(n) < Ny. One can prove that (3.65)) holds
for all n € £, by induction on h(n). Indeed, assume that (3.65) holds for those n with
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h(n) < N for some integer N > Ny. Then for v € £, with h(r) = N, we have by
inequalities (3.63)), (3.64]), and the induction hypothesis that

l7,(2)] < AN! Z ol ZK‘6—<V—2J'&J>| < KNON_1‘6_<"’””>| < K|€—<V,x)|’

aEBC(l,1)+ 7j=1
which completes the proof by induction. [

As a corollary of Lemma [3.48], we have the following statement.

Proposition 3.49. The series (3.58) defines an analytic function in z, x, and k on an

open subset of C+3.

Proof. Let ky € C with Re kg > 0. Since Re{ay, ) is continuous in x and k, there exists an
open ball By centred at ko and an open ball By C C'*! such that Rek > 0 and By C B(k)
for all k € Bg. Take any zp € C™™ \ Uyer (ko). \{0yXv. Consider the constant ¢ = c(ko)
from the proof of Lemma for k = ky. Note that (ui,Ai_luifl is continuous in k
at ko. Consider also the constant M = M (z, ko) defined as in the proof of Lemma m
Note that |{«;, z)| is continuous in z and k at (zg, ky). Therefore, there exists an open
ball B, C By centred at ky and an open ball B; C CH1 centred at z, such that for all
(z,k) € By x Bj; we have c(k) > c(ko)/2 and M(z, k) < 2M (20, ko).

Since |(v(ko),v(ko) + 220)| > 0 for all v(ko) € L(ko)+ \ {0}, and [(v(k),v(k) + 22)]
is continuous in k and z, there exists an open ball Bf C B and an open ball B C Bs
such that for the finitely-many v = v(k) € L(k)4 \ {0} with h(v) < 16M (20, ko)/c(ko) we
have |(v,v + 2z)| > 0 for all k € B and z € B5. On the other hand, for those v with
h(v) > 16M (2o, ko)/c(ko), we have by the definition of the constants c(k) and M(z, k)
that [(v,v)| > c(k)h(v)* > c(ko)h(v)?/2 and |(v,2)| < M(z,k)h(v) < 2M (29, ko)h(v) <
c(ko)h(v)?/8, and so by the reverse triangle inequality

(v, v+ 22)| > |[(v, )] = 2/(v, 2)|| > c(ko)h(v)?/4 > 0.

In other words, for any (z,2,k) € U = B x Bx x Bj, we have Rek > 0, z €
C\ Uperky,\ oy 2wy and © € B(k). Then the sum ¢(z,z) of the series is well-
defined by the discussion preceding Lemma , and ¢(z,z) is on U the pointwise limit
of a sequence of functions (the partial sums) that are analytic jointly in all the variables z,
z, and k. As a consequence of (the multivariable version of) Osgood’s Theorem |77,
Theorem 8], there exists an open dense subset V' C U on which ¢(z, x) is analytic (jointly)
in the variables z, z, and k, and on which the convergence is locally uniform (for the

original, single-variable case of Osgood’s Theorem, see [89, Theorem IIJ). |

If all ¢, € Z>, then by the uniqueness of the solution of the system (3.59)), we must have
that d(x)Y(z,x) is proportional to ¢(z,x) with the factor of proportionality being co(z),
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that is
Y(z,x) =2"6(x) Moz ) [ (e 2) = s{a,a)).

a€BC(L,1)",
SEAa

For the case when ¢, are not necessarily in Z>(, but rather we have any k£, m,n,p,r € C
with Rek > 0, m = kp, and 2n 4+ 1 = k(2r + 1), let us define the following function

where we take any branch of §(z), and where we defined the function

Clz) = 11 (-

ae{\/EeH_l, e;: 1<i<l}

I (—(a, 2) (o, ) T (=3 (e, 2) (o, @)~ = 3ca)

a, 2) (o, )t = co) T (=2, 2) (o, @)1 = Len — 2a)

" [ (—{a, 2){a, a)71) sy 1
H ['(—({a, 2){a,a)~t — k) H (=la,z) =1=k).

afe;te;: 1<i<j<i} ae{eitvher 1 1<i<l}

Here I'(u) is the classical gamma-function. Then LY = —2?¥, since C'(z) does not depend
on z and ¢ solves equation by construction. Moreover, W(z, x) coincides (up to a
constant factor) with ¢(z, z) if all ¢, € Zsy, since then C(z) o ¢o(2) as I'(u)/T'(u — N) =
[T, (u—1i) foru € C, N € Zs.

With that, the proof of the next theorem is then essentially the same as that of |24,
Theorem 6.9]. It just uses Theorem in place of |24, Theorem 6.2].

Theorem 3.50. For any k,m,n,p,r € C with Rek > 0, m = kp, and 2n+1 = k(2r+1),
the function V(z,x) satisfies

LV = —2%V,
DV = p(x)V. (3.66)

Proof. 1t only remains to show equality (3.66). If all ¢, € Zso, it follows from The-
orem . More generally, equation (3.66|) is equivalent to ¢ satisfying ﬁgp = up for the

difference operator

D=C(2)""oDoC(z) = ZaT(z) (Cx) ' Clz+1)T — 1),

TES

where S = {£2¢;, £2V/ke;41: 1 <i < 1}, since D was of the form D = 3" _¢a.(2)(T, —1).
For any 7 € S, the function a,(z) is rational in z,m,n,p,r,Vk, and so is the func-
tion C(2)7*C(z + 7), since (o, 7){a, )™t € Z for o € {Vkery1, ¢,: 1 < i < I} and
(a, T (a,a) P €Zforae{e; e 1<i<j<I}

By substituting the series (3.58) into the equation Dy = g, the latter reduces (by
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looking at the coefficient of e for each v € £ D S) to an infinite number of identities,
each involving a finite number of the coefficients ¢, (z) and only involving rational functions

of z, m,n,p,r,Vk. Explicitly, these identities are

> (k= ar(2))au(2) + > (a-(2)C(2) ' C(z + 7)gu(z + 7) = Frgu(2)) = 0

TES (W,T)ELLXS: p+T=V

for v € L, where we put ¢, = 0 if v ¢ L£,. Theorem implies that these identities
hold in the case when all ¢, € Z>(, and then it follows that they hold in general. This
completes the proof. [ |

By analyticity, the bispectrality property of Theorem holds in a bigger domain of
analyticity of the function ¢. To be more precise, by Proposition [3.49 we have on an open
set V' an analytic function ¢ that satisfies equation and by the proof of Theorem m
also 15@ = u(z)yp. Suppose (z,z,k) € CH1 x C*1 x C is such that ¢ can be analytically
extended to a function ¢(z, z, k) on some neighbourhood W of (z, x, k) containing V. The
function Hp — (22 — p?)@ is analytic in z, z, k away from the singularities of coth(a, x) for
a € BC(l,1)4, and on V it is identically zero. Thus, it must be zero on all of its domain
of analyticity. Similarly, ﬁ@ — u(x)p is analytic in z,x, k away from the union P of the
poles of the functions a,(z) and C(z + 7)C(z)~!, and it vanishes on the open set V '\ P.
Hence D@ = p(2)@ on W\ P. In terms of the function ¥ := C'3/§, this means that the

following bispectrality relation is satisfied:

LV = —ZQ\TI,
DV = p(z)V.

3.6.2 Case of AG»

Our bispectral duality statements for AG, in Theorems and can also be extended
to the case of non-integer values of the multiplicities using ideas analogous to those in |24,
Section VI.C|. Since we did the case of BC(I, 1) in detail above, we just explain here those
steps of the argument for AG, that differ from what we wrote for BC(l, 1), and we state
the results.

In the notations of Section , let £ = 27,8, @ 2Zas (the root lattice of 2G5) and
L = 27501 ® 2Z>p0;. We note that 2y € L for all v € AGy . We define

S(x)= [ (@sinh(y,z))* o ] sinh™** (y,x)cosh® (y,z). (3.67)

’YEAGQ)Jr ’Y€G27+

In contrast to the case of BC(I,1), the function b(x) (3.23) does not seem to fully
factorise in a nice way (though, it is divisible by &(x) []._, cosh®™(5;, z), as can be checked),
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but it does not affect the proof of the next proposition.

Proposition 3.51. The BA function v defined by formula (3.25)) can be expanded as

Y = 6(z) telEmPm Z cy(2)e® (3.68)

vely

for some polynomials c,(z), where

p= Y en (3.69)

YEAG2,+

and §(x) is defined by formula (3.67).

Proof. Local analysis of the singularity structure of the function 1 imposed by the
eigenfunction equation Li) = —z21), where L is the generalised CMS operator for
A = AG, ¢, gives that 0(z)1 is analytic in = (and z) variables.

By construction, ¢(z,z) = b(z)'®(z, ) for

®(z,2) = (D1 — p(2))[Q(2)e*]

and the function b(x) given by (3.23]), which can be expanded as

b(x) =Y fe” (3.70)

veL

for some f, € R, where we used that 2y € L for any v € G5. Also, from formulas (3.17))—
(3-19) for Dy and (3.22)) for p, it is clear that & is analytic in z and can be expanded as

O = ey b, (2)e (3.71)

veLl

for some polynomials b,(z).
The analyticity of 6(x)ty implies that b(z) must divide

§(2)® =e o [ (207 — 1) =0y " d, (2)e™ (3.72)

YEAGa + vel
where d,(z) are polynomials, and where we used equality (3.71) and that 2y € L for
all v € AG, . The quotient of the function (3.72) by its divisor (3.70]) will still be a

trigonometric polynomial in x, and we get that

Y = 6(z) telFmPm Z ¢y (2)e®

veL
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for some polynomials ¢, (z). The proof that {v € L: ¢, # 0} C L, is completely analogous
to the case of BC(l,1) in the proof of Proposition (the variables y; should here be
replaced by y; = €2%1:%) and y, = e?(@2)), [ ]

By a completely analogous proof to that of Proposition [3.44], we get the following.

Proposition 3.52. The polynomial cq in the expansion (3.68) is given by

co(z)==8 [ ((v.2) +s(7.7),

v€Ga, +
SEA,

Let us now consider the multiplicity parameter m € C not necessarily being an integer.
The next lemma states a potential-free gauge-equivalent form of the generalised CMS
Hamiltonian of AGs.

Lemma 3.53. The differential operator

H=A- Z 2¢,, coth(y, z)0, (3.73)

YEAG2, +

is gauge-equivalent to the operator L defined by formula (3.1) with A= AGs 4 :
H+p*=—§(x)oLod(x) ™,

where p is giwen by formula (3.69) and d(z) by formula (3.67)).

In particular, this means that AG- satisfies the analogue of Lemma [3.47with BC(I, 1),
replaced by AGs 4. Lemma will follow from (the scalar case of ) Theorems and ,
Remark [£.6] and the discussions in Section below, so we skip the proof here.

When zx belongs to the region

B ={z€C? Re(y,z) <0forall ye AG,,}
= {(z1,73) € C?: Re(z1) < 0, Re(z2) < V3Re(x1)},

the operator (3.73|) can be expanded like in (3.56)), just with BC'(I, 1), replaced by AGs 4.
In complete analogy with the case of BC(I,1) in Section [3.6.1} let us formally define a

function
@ = elF7ra) Z g (2)e"® (3.74)

vely

by the equation Hp = (22 — p?)p and the normalisation condition gy(z) = 1. It follows
that ¢,(z) are rational in z and m. The next lemma can be used to show that the

series (3.74) converges absolutely on B similarly to the case of BC(I,1) above.
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Lemma 3.54. Forv e £, \ {0}, let ¥, = {2z € C*: (v,v + 22) = 0}. Suppose
7€ C*\ Uyer,\(0} 5o
and x € B. Then there exists a constant K = K(z,z) € R independent of v such that
|0 (2)e" | < K

forallv e L,.

The proof is essentially the same as that of Lemma (but the configuration does
not depend on any deformation parameter k this time, so the proof can be simplified in
an obvious way).

When m € Zso, then by using the uniqueness of the solution ¢, Lemma [3.53, and
Propositions [3.51] and [3.52) we get that the BA eigenfunction (3.25)) of the operator L

satisfies

U(z,2) = co(2)d(a)o(z,0) = —88(x) To(z,2) [T (v, 2) +s(v,9)).

v€Ga +
S€A,

For the case when m € C is not necessarily in Z>, let us generalise the function 9 to
U(z,2) = C(2)d(x) (2, 2), (3.75)

where we define

C(Z) — H F(<77Z><’777>_1 +c + 1) H(<ﬁl72> + <3m + 2)<BZ7BZ>)

F({v,2) (v, +1) 25

’YGGQ’-'» 7

The function ¥(z, z) coincides (up to a constant factor) with ¥ (z, x) if m € Zs, since
then C(z) o co(z). Now the proof of the next theorem is essentially the same as that
of Theorem [3.50} it uses Theorems [3.24] and [3.27) and that C(2)~'C(z + 7) is rational
in z and m for all 7 € 2AG,, since (7,7)(y,7)"' € Z for all v € G (since Gy is a

crystallographic root system).

Theorem 3.55. For any m € C, the function V(z,x) defined by formula (3.75)) satisfies

LU = —2%U,
D1V = p(x)¥,
DyU = Ji(x) U,

where L is the generalised CMS operator (3.1)) for A = AGs 1, the function p(x) is defined
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by (8.22) and i(z) by (B-30), and D; (i = 1,2) are the operators (3.17) - (3.19) and (B.26)
- (3.29), respectively.



Chapter 4

Spin Calogero—Moser—Sutherland type

systems

In this chapter, we make use of the representation theory of TCAs to construct gener-
alisations of (trigonometric) spin CMS operators. This work constitutes one part of our
paper in preparation [54]. That paper also includes the details of the rational version of
this construction, including the case with an extra harmonic term in the potential. This
is a generalisation of the work done in [50] by Feigin.

The structure of this chapter is as follows. In Section [4.1] we review the construction
of scalar rational generalised CMS systems from [50]. Namely, we recall the definition
of parabolic strata for finite Coxeter groups and the conditions that the strata have to
satisfy for the ideal of polynomials vanishing on them to be invariant under the associated
RCA. Then we recall how parabolic strata defining invariant ideals can be used to obtain
operators of rational CMS type and quantum integrals for them. In Sections and [4.3]
we develop a similar construction for TCAs associated with reduced crystallographic root
systems. We do this directly in the more general matrix case. This leads to generalised
trigonometric spin CMS operators related to projections of these root systems. We apply
this construction in Section for exceptional root systems to derive several interesting
explicit new examples of such operators. A systematic account of the case of projections
of classical root systems and also of the non-reduced root system BC,, will appear in [54].
In Section [4.5], we list cases where the projection of a root system is itself a root system,
as this allows one to obtain new examples of spin CMS operators associated with root
systems.

Let us note that in |54, we additionally provide in deformed type A also extra quantum
integrals for the corresponding deformed spin CMS operator by exploiting a Yangian

symmetry.

85
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4.1 Review of the scalar rational case

Let W be a finite real reflection group acting by orthogonal transformations in the com-
plexified reflection representation V = C¥. Let R and I' be the corresponding (reduced)
root system and Coxeter graph, respectively. Let ¢: R — C, a — ¢, be a W-invariant
multiplicity function. Let H. be the associated RCA acting faithfully on the space of poly-
nomials C[z] = Clzy,...,zy]. We assume that a positive subsystem R, C R is chosen
so that the vertices of I' are identified with simple roots. Let Iy C I' be a subgraph of
the Coxeter graph, and let I'j denote the set of simple roots corresponding to the vertices
of I'y. We denote by W, C W the parabolic subgroup generated by the reflections with
respect to the roots I'j.

Suppose [’y is obtained by specifying some of the vertices of I' and preserving all the

edges between them. The vertices of 'y determine the subspace
T=mr,={zeV:(B,x)=0, V3 eIg}.

The associated parabolic stratum is defined as

weWw

Let the corresponding parabolic ideal I, be the set of polynomials vanishing on the
stratum, Ir, = {p € Clz]: p|p,, = 0}. The following theorem, proved by Feigin, gives
necessary and sufficient conditions for this ideal to be a submodule of the polynomial

representation of the RCA.

Theorem 4.1. [50/ Let Ty = L[i:l I'; be the decomposition of the subgraph Ty into
connected components. Then the parabolic ideal Iy, is invariant under the RCA H. if and

only if the following relation is satisfied for all i =1,...,1:

Z Colar, u) (e, v)

o.0) = (u,v)

ac€RNV;
for all u,v € V;, where V; is the vector space spanned by the roots I'}.

We now explain how H -invariant ideals I, lead to generalised rational CMS operators
and quantum integrals for them.

Suppose I, is an invariant parabolic ideal as above. Let us define the quotient module
M = Clx]/Ir,. Let {e;} Y, be the standard orthonormal basis of V', and consider the Dunkl
operators V; = V., defined by formula with & = e;. Any polynomial function of

V; can act on the module M. Moreover, W-invariant polynomials of Dunkl operators
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preserve the space of invariants M". Consider the operators
H, =Resp(V)

for W-invariant polynomials p € Clz]", p(V) = p(V4,...,Vy), where Res denotes re-
striction to MW. Let us note that M" is, more generally, preserved by the centraliser
HY = Cy, (CW) of the group algebra CW of the Coxeter group inside the RCA. In
particular, it is a module for the spherical subalgebra SH. C HY, SH. = eH.e with
e= WY eww.

To write down the operators H, explicitly in local coordinates on , it is convenient to
consider action of p(V) on W-invariant (formal) sums of germs of analytic functions on
W-orbits of small neighbourhoods on Dr, of a generic point of 7 (see |50, Section 3] for
the details), rather than on global functions. This way the operator H, takes the form of

a differential operator on 7, which we denote Res, p(V). In particular, by using that

Svoy- Y o Y St

a€ERy acR L

one obtains the generalised rational CMS Hamiltonian in radial gauge

N
Res, <Z vf) -2,- Y éiy)aa,
i=1 ’

acER
a#0
where y = (y1,...,yn) are orthonormal coordinates on the space 7, A, = 851 + -+ 8§n
is the Laplacian on 7, and @ is the orthogonal projection of « onto w. The operators

Res, p(V) for p € C[z]" give quantum integrals for this Hamiltonian.

4.2 Invariant parabolic submodules for TCAs

In this section, we will continue to use notations introduced in Section [4.1], but R will now
be a reduced crystallographic root system, W its Weyl group, and P its weight lattice.
Let H'8 be the associated TCA. Let U be any complex vector space that is a right
W-module and denote the action of w € W on v € U by v - w.

Let xy be a generic point of m, meaning that if e/*¥) = 1 for some o € R then
a € SpanT'y. Let Wzg = Uyeww(zo) be the W-orbit of zg. Define the space

CW$0(U> CWzo DFO) @ C DFoa )

where C,(Dr,, U) is the space of germs of analytic functions defined on Dr, near the point
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x € Wxo with values in U. Note that Cyy,(U) = U @ Cwy, (C). We would like to define
an action of H on Cyy,, (U).

Note that H' can act on the space Cyay(V,U) = @, cyya, Co(V, U) of (formal) sums
of U-valued analytic germs defined on V near the points Wzy. The elements of the
Weyl group w € W act by moving the germs at one point to another one. Namely,
w: Co(V,U) = Cop(ay(V, U) for any @ € Wy, with the action given by (wF)(y) = F(w™'y)
for y € V near w(x) and F € C,(V,U). The elements ¢/** € H¥® (o € P) act by
multiplication. The trigonometric Dunkl operators act on a given sum of germs by for-
mula with each reflection s, € W acting as defined above. Note that the well-
definedness of this action of V?ig relies on the genericity of .

The next theorem gives the conditions under which this H&-module Cy,,(V,U) has
a submodule Zr, consisting of those elements that vanish when restricted to Dr, (note
that the form of these conditions is the same as in the case of RCAs and U being the
trivial representation from [50]). We call Zr, a parabolic submodule, in analogy with the
parabolic ideal 1, from Section 4.1|

Theorem 4.2. Let 'y = H§=1 ['; be the decomposition of the subgraph I'y into connected
components. Then Ir, is invariant under the TCA H™® if and only if the following relation
15 satisfied for alli=1,...,1:

Z Colcv, u){a, v)

oy = (u,v)

a€ERNV;
for all u,v € V; = SpanT?y.

Proof. Notice that it is sufficient to prove this statement in the case when U = C, and it
is enough to consider the elements Vzrig € H'"e. Let Vo = SpanT§ and f € Zp,. We are

going to comnsider first the condition that (V?igfﬂ7r = 0. Since f|, =0, it can be written

for x € V close to xg € w as
f=2 (8,2)fs(x)
BeTy
for some analytic germs f € C;,,(V,C). For a € R, since (sof)|r = flsor = 0as fpy, =0,
we have that (1—e (@) =1(1—5,) f|, = 0if e/*® £ 1, which by genericity of z is satisfied

if « ¢ Vj and x is sufficiently close to z5. We then write

Vi - Z( D0cfs(a) + B0 = 3 T (15.0) (1)~ fo(ou)

e
ery aERLNV)

4 2e) <Oz,$>f,8(3ax))> - Y R+ s

(o) P e
a¢Vy
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Note that for « € R, NV and x € 7 close to x,

f5(x) = f5(5a)

1 — e o)

is non-singular, (3,z) vanishes, and (1 — e~{**))~a, z) fs(sox) becomes fz(x) since

lim, o(1 — e *)"'u = 1. Therefore, we get

<vgrigf>|ﬂ=2<<ﬂ,5>— 3 Qcamffo"@)m.

BeTy aERL NV o, a)

This is zero for all f € Zr, if and only if

(1, ) = Z 2¢q (v, u) (e, v) (4.1)

a€RL NV < ! Oé)

for all w,v € Vj. Similarly to the proof of |50, Theorem 1], the proof is then completed by
using that Vo = @'_, V; and that the conditions (V?ig F)lw) = 0 for w # id are equivalent
to (4.1)). [ |

If Zr, is H"-invariant, then the space Cyy,,(U) can be identified with the quotient
module Cy,,(V,U)/Zr, (cf. |50, Section 3| in the case of RCAs and U being the trivial
representation), and thus becomes a H&-module. In other words, for an arbitrary element
[ € Cway (U), it follows from the H™¢-invariance of Zr, that for any a € H™' and analytic
extension f € Cyy,(V,U) of f to a W-invariant union of small neighbourhoods in the
ambient space V of the points Wz, the result of the restriction (af)| pr,, does not depend

on the choice of the extension f but only on f itself. Thus, we have a well-defined action
of H™8 on Cyy,, (U).

4.3 Restricted spin CMS operators

Let Cyy,,(U) be the subset of those elements of Cyy,,(U) that are fixed by the diagonal
(left) action of W determined by (wF)(y) = F(w™'y)-w™! for F € C,(Dr,,U) and y € Dr,
near w(z), © € Waxo. Then any element of Cly/, (U) is uniquely determined by the germ
near the point zo. In other words, Cyy, (U) = C}°(Dr,, U) = U0 ® C, (Dr,, C) as vector
spaces, where U"? is the subspace of vectors in U fixed under the action of W, C W.
Let (H™8)" be the centraliser of the group algebra CIW inside the TCA. Assume
that Zr, is an invariant parabolic submodule for the TCA. Then in view of the discussions
in Section it follows that Cyy, (U) is an (HZ*¢)"-module. Thus, we can also treat
Cy°(Dr,,U) as an (H¢)"-module. We denote the action of an element a € (H®)" on

this module by E/{e\/swa.
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Let V{"® = Ve Note that for p € C[z]"V, we have p(V"8) = p(V{™,... , V¥ €
(HT8)W by [33] (see also [64]). We define the generalised spin CMS Hamiltonians

N
Hy = Res, (Z(v?igf) .
i=1
They can be computed explicitly by using that
N

Z(V?ig)Q = ﬁ:@; — Z o coth ((a;c)) O + Z %(1 — 8a) + (p, p)-

c 1.2 [ {a,x
i1 acR, acRr, 4sinh (T

We get the following theorem, where we use the same notations as in Section [£.1]

Theorem 4.3. Assume that the stratum Dy, defines an invariant parabolic submodule Iy,
for H™¢. Then the operator Y1 (V)2 restricted to CYo(Dr,,U) has the generalised spin
CMS form

Hy=A, — g Cq cOth (%) Oa + E %(1 —P.)+{p,p), (4.3)
OCER+ OZGR+ 481nh (%)
a0 a0

where P, denotes the action of the reflection s, € W on the vector space U. Moreover,
for any p € Clx]V, the operators Res,p(V™8) pairwise commute for different choices of

invariant polynomials, and in particular, all of them commute with the operator (4.3)).

Proof. The result follows immediately from equality (4.2) by similar arguments as in the
proof of [50, Theorem 5. |

We now rewrite the operator (1.3) in the potential gauge. Let R, = {@: o € R, }.

Theorem 4.4. Define the generalised coupling constants

/C\a: E Cr.

YERY
=&

The operator (4.3) has the potential-gauge form

A~ /A~

ca(a,a)Ps

_ Z Z —acgfa ) coth ((&éy>> coth <<B’Ty>> + A,

aeR,\{0} EEIE+\{0}
NG
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where ~ denotes proportionality of vectors and

= 11 (sinh (<a2y>))A

626}§+ BEE+
B
S 1
Caba =%+ == Y (1P = 1) (4.4)
(@ a)
1ERE
y=a
Proof. We compute that
co({a, @) + (o, ) (P, — 1
ol ssinn? (522)
a#0
1 ~ D a? Y <B\7 Yy
_Z§:§:%%wﬂMMhCQ>)mm<_7l + (o)
aERy BERL
a#0 B0

Next, we simplify the last sum in (4.5). We will use a trigonometric analogue of |50,
Equality (10)]. Namely, we claim for all « € R, that

> ¢s(@, B) coth (@Tw) = (4.6)

BER+
Brd
for y € m with (@, y) = 2irk for k € Z, which can be seen as follows.
Let W, = (W, s,) be the group generated by s, and the reflections about the roots
in I'§. Let S C R be the set of the roots 8 € R such that B is not proportional to a.
Decompose S into W,-orbits S = O1[[---[] O,. We will show that

Z cpla, 3} coth <<A’Ty>> =0 (4.7)

BeO;

for all 7. Let 81,52 € O;. Then coth(@z’w) = Coth(<g22’y>). Indeed, this is evident if

61 = SOBQ for Sp € Wo, and if ﬂl = Saﬁg, then

mm<éﬁiﬂ>:“m<§£z@):mm(@gﬁ@>

2 2 2
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— coth <<B\2’y> — W@kM> = coth <<B\2—’y>) )
2 (a, o) 2

where we used that <5 20) ¢ 7. Now let b; = Zﬂeo (. It satisfies the relations sob; = b;
for s¢ € WO and s,b; = b This translates into b; = b; and 0 = (a, b;) = <a,3i>, which

implies (4.7) and hence (4.6)).
Relation (4.6) implies that the expression

> Y cacsl@ Coth<<a2y>> th(<ﬁ2y>>

acRy BER,
B

has no poles; thus it is an entire bounded function that is constant due to Liouville’s
theorem. The constant can be calculated to be 4(p, p) —4\ by a limit at infinity in a suitable
chamber such that coth(@,y) — 1 for all @. Using this fact to simplify expression (4.5),
the proof is then completed by using and the definition of ¢5. [

Remark 4.5. Let us note that the elements

Sa = Z ey (7,7)s, € CW

YERY
F=a

lie in the centraliser of CW inside the group algebra CW. Indeed, let 8 € I'y, then

53, S, E (7, 7) 3,8757 E : CV(’Y/Y)(SSB(W) - 37)56 =0,
1Rt 1ERY
Y=« Y=«

where the last equality is obtained by changing the index of summation in the first term to
7 = sg(7), which is possible due to the fact that the multiplicity function ¢, is W-invariant
and 3 € I'g.

Remark 4.6. Let us assume that any collinear vectors in R, \ {0} are of the form @,
2a.. This is the case for the projections of all classical root systems. Then the operator

f~'Hyf from Theorem [4.4] becomes (up to a constant, namely, (p, p) — (p, p)) equal to

Z Ca(Ca + 2055 + P2) (@, Q) (4.8)

L = A — )
4 sinh? (%)

, -
aeR;\{0}

where Co5 = 0 when 2a ¢ EJF. However, the above assumption may fail for exceptional

root systems, for example, for GG, and F} in some cases.

In the particular case where U = V is the reflection representation of the Weyl
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group W, then ﬁa coincides with the reflection in the space 7 with respect to the projected

root @, as we prove in the next proposition.

Proposition 4.7. Let U =V be the reflection representation of the Weyl group W. For
a € Ry \ {0}, the operator

~ 1

Pa = 1 + Aa<a’a> Z C'Y(V?V)(P'Y - 1)
VERY
y=a

preserves the space w, and when acting on , it is equal to the reflection with respect to Q.

Proof. Let us define
P; = Z (7, 7) Py

YER4
y=a

For any y € m, we have

Pa(y) = D) es(rny—2 ) (v (4.9)

VR VR

F=a y=a
To prove that the vector (4.9) belongs to the subspace 7, we need to simplify the second
sum in (4.9). We claim that

> () =@ y)a. (4.10)

1Rt

J=a
Indeed, the set S, = {c,(v,y)v: v € Ry, ¥ = @} is Wy-invariant, where we use that W
is generated by reflections about simple roots I'j. Thus, the sum in the left-hand side
of is fixed by W, hence belongs to the subspace 7, and relation follows.
Now, by using equalities and , we get that the action of ﬁa on T is

y=a
which is the formula for the reflection on 7 with respect to a. |

Particular cases of the operator (4.8) for R of type A and B are in the rational limit
equivalent to the matrix Hamiltonians found in [27]. More details about this are given
in [54].
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Figure 4.1: Projection of F; corresponding to a Coxeter subgraph of type A?.

4.4 Examples from exceptional root systems

In this section, we consider all two-dimensional projections of the exceptional root systems
of types E and F}j, and we write down explicitly various corresponding new examples of

generalised spin CMS Hamiltonians.

4.4.1 Type F}
4.4.1.1 <F4,A1 X A1>

The Dynkin diagram of the root system Fy C R* is

with the simple roots of Fj being

1
1 = €9 — €3, (g = €3 — €4, O3 = €4, 04425(61—62—63—64),

where {e; }1_, is the standard orthonormal basis in R*. The red vertices indicate the chosen

subgraph 'y ~ A2. The corresponding plane 7 is given by the equations

To = 13, T4 =0,

1
29
corresponding projected system is shown in Figure [4.1] where the coordinates are in the

and we require the multiplicities to be ¢; = ¢ = 3, where ¢; = ¢,, and ¢y = ¢,,. The

basis formed by e; and €; = \/Li(eg + e3). The multiplicities of the positive half are
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~ ~ 3 ~ I ~
ce = 2, celzé, Cz, =3, c\/gg2:§, celegQ:c%1jE

=1.

s
sk

By formula (4.8]), the corresponding generalised spin CMS Hamiltonian is

5+ Py 9+ 6P,
L= 82 "‘852 - : h2 Zl - . h2 ;1
8sin (Z) 16 sin (7)
12 + 3P€22 1 + 2?\562 3 + 3Pfq\f+62
Ty Si(%) SR+ )
3+3P@ 3+3P61+f52 3+3ﬁﬂ
— 2 . 5

$sinh*(% — 22)  16sinh’(% + ;%)  16sinh®(4 — &)

where y; = z1 and y, = \%(mz + z3). This operator is a trigonometric version with spin of
the potential-gauge form of the operator [50, Formula (28)| for m = %, n=0,and a = V2.
Other choices of a subgraph I’y ~ A? in the Dynkin diagram of Fj lead to equivalent

projected configurations.

4.4.1.2 (F;,Ay)

As another example, let us choose a subgraph As in the Dynkin diagram of F} as indicated

by the red vertices and edges in the following picture

with multiplicity ¢; = % and ¢y being a free parameter. The corresponding plane 7 is

defined by the equations

To = T3 = X4.

The corresponding projected system is shown in Figure £.2] where the coordinates are in
the basis e; and ey = \%(62 +e3+e4). These vectors and their multiplicities coincide with
those of the configuration AGj.

By formula , the corresponding generalised spin CMS Hamiltonian is

I — 62 L9 — CQ(CZ —i—Pel) B <02+ 71+\/;€2) - <02 + o \/?2)
T As(E) sind®( ) dsin®( - )
02(3024-2—1-?52) 62(3C2+2+ﬁ61+52> 62<302+2+A51_g2>
V3 . 2 23 B ., e
4smh2(€_[) 4sinh® (% + ) 4sinh?(% — =
14 P2€2 1+ ﬁ o 14 p .
— \/§ . (31—\/3
351nh2(y7) 3Slnh2(? + %) 3Sinh2(% _ 2@,_23)7
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Figure 4.2: Projection of Fj corresponding to a Coxeter subgraph of type A,.

where y; = z; and y, = \/ig(xg +AI3 +x4). The scalar version of this operator, obtained by
replacing all the occurrences of P by the identity, reproduces (up to rescaling and rotating
the configuration of vectors) the operator with m = ¢y. Thus, by using Theorem
with U = C being the trivial representation, we get an alternative proof of the integrability
of the operator . Theorem leads to a quantum integral of order 6 in this case,
since the Weyl group of type Fj has a basic invariant of degree 6.

The other possible choice of a subgraph I'j ~ A, in the Dynkin diagram of F} leads
to G with multiplicities 3¢; + 1 and ¢; for the short and long roots, respectively. The
subgraph I'y >~ B, leads to B(C, with multiplicities 4co, 4¢1 + ¢9, and ¢; for the vectors e;,

e; = e;, and 2e;, respectively, where 2(¢; + ¢2) = 1.

4.4.2 Type E
4.4.2.1 (Eg, Ag X Ag)
The root system Eg C R® has simple roots

1
041:5(61—62—63—64—65—66—€7+68>, a2:€1+62,

Q3 = €2 — €1, (g = €3 — €3, (5 = €4 — €3, (g = €5 — €4,

(4.11)

Q7 = €¢ — €5, (g = €7 — €g,

where {e;}%_, is the standard orthonormal basis in R®. Tts Dynkin diagram is

(&%)
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G e

Figure 4.3: Projection of Fg corresponding to a Coxeter subgraph of type A2.

where the red vertices and edges indicate the chosen subgraph I'y ~ A%. The corresponding

plane 7 is defined by the equations
Ty =29 =23 =0, x4 =25 =26 = X7,

and the multiplicity must be ¢ = %. The projected system is shown in Figure where
the coordinates are in the basis formed by e; = %(64 +e5+eg+ e7) and e; = eg. The

multiplicities of the positive half are

Cg; :6, Cgi:§, Ci%l_,’_g 24, Cia—&-% :1, Ci%-ﬁ-gz = 1.

ol
Wl

By formula (4.8]), the corresponding generalised spin CMS Hamiltonian is

2 27 —|— 3ﬁi 9 6ﬁ~ 4 + ﬁ€2—€1
L= ajl + 852 - h2 yf + + 2 8;1- 9 ainh2 y22—y1
— | 8sinh”(%)  16sinh”(¥%) 2sinh” (%)
4+ﬁal+52 5—1—5?52 _ 5+5ﬁ~ &
_ 2 _ 3 4 . €1t
2sinh®(LH2)  16sinh®(224)  16sinh®(2LE2)
5-}-5sz_%1 5+5P%1+€2

 16sinh?(22) 16 sinh?(2E2e)’

where y; = %(x4 + x5+ w6+ 27) and yo = xg. This operator is a trigonometric version with
spin of the potential-gauge form of the operator |50, Formula (28)] with m = %, n = 4,
and o = (vV2n+ 1+ /2(m+n+1))/vV2m+1=2.

The other possible choice of a subgraph I'y >~ A2 in the Dynkin diagram of Eg leads to
an equivalent projected configuration.
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1

() ()
Figure 4.4: Projection of Eg corresponding to a Coxeter subgraph of type Asg.
4.4.2.2 (FEg, Ag)

As another example, let us choose a subgraph Ag in the Dynkin diagram of Fy as indicated

by the red vertices and edges in the following picture

@ 4 4 4 4 @
a7 Qg3 Qy (€7 (67 0% ag

D)

The corresponding plane 7 is defined by the equations
Ty =Ty = =X,

with multiplicity ¢ = % The corresponding projected system is shown in Figure where
the coordinates are in the basis formed by ¢, = %(61 +---+e7) and €5 = es.

This configuration resembles the configurations G and AG,, but it has exactly one
line ¢ containing collinear vectors, and the configuration is scaled in the orthogonal direc-
tion to ¢ compared to Gy and AG5. The multiplicities are given by

Cey 58, :C~ii=1, Ce & =0, Cs3g

- = e = C25y :37 Cyie; &g =
2 o7 2 2V7

N4 7 T3

ey
+3

4
S
3

By formula (4.8]), the corresponding generalised spin CMS Hamiltonian is

35+5ﬁﬁ52*51 2"‘2?,527&
L=0 +02, — T Vi
" * 14sinh? (@Lf;yl) 7 sinh?( \ﬁzy\Z/;yl )
2+ 2ﬁi+~ 2+ 2P\ﬁ52*551 9+ 3?2@1
VT2 Wi 1

7sinh2(%) 7Sinh2(ﬁ?f—\%5yl) Tsinh?( =)

Sk
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1+ 7ﬁ\ﬁ‘é1+€2 9+ 3P3€1+\ﬁ52
o 2 . 2V7
98 sinh”(YIut2)  7ginh?(2byie)

where y; = %ﬁ(xl + -+ x7) and Yy = xs.

Other choices of a subgraph I'y >~ Ag in the Dynkin diagram of Fg lead to equivalent
projected configurations. The subgraph I'y ~ Fj leads to G2 as in table [50, p. 272] (the
multiplicity % should be %) And T'y ~ Dg leads to BCy with multiplicities %, g, and 1—10
for the vectors e;, e; + e;, and 2e;, respectively (cf. [50, p. 272]).

4.4.2.3 (E;, Dy)

The Dynkin diagram of the root system FE7 is

(%)

with the simple roots being the first seven roots of (4.11)). In this example, we choose
a subgraph I'g >~ Ds5 as shown above. The corresponding subspace 7 is given by the
equations

T1 =29 =23 =24 =5 =0,

with multiplicity ¢ = %. The corresponding projected system is shown in Figure where
the coordinates are with respect to ¢; = eg and ey = \%(68 — e7). The multiplicities are

given by
—~ 5 1
Ce; = ZI’ Cy2e, = §7 Cii%l =2

These vectors are as in a deformed C5 configuration except for their multiplicities.
By formula (4.8]), the corresponding generalised spin CMS Hamiltonian is

20 + 20?@1 6+ 3P51+;/§€2

L=0 +0;, — N
Y1 2 64 sinhz(%l) 8 sinh%%)
B 6+3P@ B 1—1—816\/5’52
8sinh2(@) 128 sinh2(\y/—2§)7

where y; = xg and y, = \/Li(l'g — 7).
The scalar version of this operator coincides with the trigonometric degeneration (where
the Weierstrass o function is replaced by sinh™2) of the operator from [100, Theorem 1.4]

for a = v/2.

The other possible choice of a subgraph I'y >~ Ds in the Dynkin diagram of E7 leads to
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0.2}

11 11

) {3

1,0 (1.0}

1 1 1 1

Hs) G5

fo.-42)

Figure 4.5: Projection of E; corresponding to a Coxeter subgraph of type Ds.

an equivalent projected configuration. Other allowed two-dimensional projections of E7

are as in table [50, p. 273|, except that here (E7, As); leads to the deformed BCy with

. 4 . P 10 1 5
deformation parameter £ = 3 and multiplicities 3, 7, 3,

\/Eeg, 2\/%62, and e; \/Eeg, respectively.

0, and 1 for the vectors ey, 2eq,

4.4.2.4 (Eg, Ay)

The Dynkin diagram of the root system Fjg is

[ 4 . 4 4 ®
(03] Q3 QY (073 (0775

%)

with the simple roots being the first six roots of (4.11)). Here we chose a subgraph I'y ~ A,.

The corresponding subspace 7 is given by the equations
Ty = T2 = T3 = Ty = Ts,

with multiplicity ¢ = % The corresponding projected system is shown in Figure where
the coordinates are with respect to e; = \/ig(eg — ey —eg) and €3 = \/ig(el +---+e5). The
multiplicities are given by

Iy ~ A |
Cozy = Cysey | & = 2, C\/§2€1+\/5252 R C\/Féel 3\@‘} =1L
2vV5

)

S
N—l—
S

These vectors are as in a deformed C'y configuration except for their multiplicities.
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Figure 4.6: Projection of Fjg corresponding to a Coxeter subgraph of type Aj.

By formula (4.8]), the corresponding generalised spin CMS Hamiltonian is

3 + Bﬁ\/ﬁgl_g,gQ 4 + 2?2%2
L = 82 + a2 . 25 . V5
1 Y2 10 SiIlh2 ( \/ﬁf\l/%glﬂ ) 5 Sinhz(y—%)
4 + 2P\/ﬁ€1+€2 1 + 5ﬁ\/§gl+\/gg2
B 25 ——
bsinh?(Y12ut2) 50 sinh? (YRt

where y; = \/%:(xg —x7 — xg) and Yy = \/Lg(asl + -+ x5).

The scalar version of this operator coincides with the trigonometric degeneration of
the operator from [100, Theorem 1.4] for a = 4/3/5.

Other choices of a subgraph I'y ~ A, in the Dynkin diagram of Fjs lead to equivalent
projected configurations. All other allowed two-dimensional projections of Fg are as in

table |50, p. 273].

Remark 4.8. With a view towards generalising the above two operators L corresponding
to the restrictions (E7, D) and (Eg, As), a natural question is whether there exists a spin
version of the one-parametric family of integrable operators from [100, Theorem 1.4|. In

the trigonometric limit, the Hamiltonian should have the form

(3 —a?) (3 —a?+ 4a2]5€1> (3a% — 1) (3@2 —1+ 4]5€2>
4a? sinh?(2ax,) a 4 sinh®(2x5)
2(a® +1) (2 + ﬁae1+62> 2(a® +1) (2 + ]S—aeﬁ—ez)

sinh?(ax; + x5) sinh?(—az, + )

L=02 +02 —
(4.12)

for some matrices P. Note that in the cases a = v/2 and a = \/3/5 seen above, the
operator (4.12)) has a degree 6 quantum integral since the Weyl groups of type E; and Eg
have basic invariants of degree 6. Note also that the scalar version of the operator (4.12))
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has a quantum integral of degree 6 for any a by [100].

4.5 Projections that give root systems

Table 4.1} lists cases where the projected configuration is a root system. For the exceptional
root systems, we only list their projections of rank at least 2. In each case, the list of
multiplicities is ordered by the length of the vectors (in increasing order). We denote the
multiplicity of the roots e; = e; in types B, C, and F' by c;, and we denote by cy the
multiplicity of e; in types B and F', and the multiplicity of 2e; in type C.

Formula gives the Hamiltonian corresponding to each of these projections with
multiplicities ¢ as given in Table and with the matrices I/D\a defined in terms of a
representation of the Weyl group corresponding to I' by using formula .

In the rational case, there is additionally the stratum (Hy, I5(5)) leading to a pro-
jected root system of type I5(10), and the corresponding generalised rational spin CMS

Hamiltonian can be obtained by using the general results in [54].

Example 4.9. Let a positive half of the root system By be By = {e; £ ej: 1 < i <
J< N} U{e;:i=1,...,N}. Let By denote the associated Weyl group. Let us consider
the case (Bs, By) from Table 1.1l In the notations of the table, m = 2, k = 1, and

[ =1, so we impose ¢y = 3, and ¢; is a free parameter. Let U be the two-dimensional

1
2

irreducible representation of B3 with basis 22 — 23 and x3 — z3, with the natural action

of B3 on polynomials. Then U"° = U as Wy = (s.,), and the projected configuration is

R\ {0} = Bs . By formula (4.8), the corresponding restricted Hamiltonian is

2 ~ ~ A~ A~
L=98 +0* — Z Cei(cei + Pei) _ Z C1(61 + Pe1+862)
T To

— 4sinh*(%) cerzl) 2 sinh?(£ter2) ’

where ¢, = 2¢; + %, and

P\ o 1—4c —8cy ﬁ 1 dep + 1 0
e1 4e1+1 —8¢; 1— 4 ! €2 4e1+1 8¢ 1—12¢ 7

5 _ (-1
61:t€2_ 0 1 .

This Hamiltonian L has a 4th-order quantum integral Res, (3%, (V'™)4), where V" are

=1 i

)

trigonometric Dunkl operators for the root system Bs.

We note that for generic ¢, there is no representation ¢ of By on C? and multiplicities
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m,n € C such that the above L would coincide with the standard spin By CMS operator

T SR CR B I UR CVES)

4sinh2(%) ez} QSinhQ(—‘“J’;”) '
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(', Ty) Projection Multiplicities
(Amkfla A?—l)? m, k € ZZQ Amfl k
(Bmk—&-l;AZL_l X Bl)> m, ke Z217 l e ZZO ch (2011 + Cg)k’, Clk’z, L]

(Conkert, Ay X Cy), myk € Zis1, 1 € Lo

(Dmprt, ARy X Dp), m € Lz, k € Lxy,
le,orkisevenandlzg—i—l

(Digt, Dr), m € Zis1, 1 € Ly
(F4, AQ) Wlth FS = {@3, 044}

(Fy, Bs)

(Es, A3)

(E6, D)

(E7, A?) with T = {ag, as, ar}

(E7, Dy)

(Er, As) with T'f = {aw, au, as, ag, a7}
(Es, Ds)

(Es, Ds)

(Es, Es)

BC,,

BC,,

Go
Ap
Fy
Cs

Go

BCs

Go

I

Ifl>0,02:%—01(l

andif k > 1, ¢ =

1),

=

2e1kl, c1k? B2 + ook
If I >0, 02:l—cl(l—1),

2

andifk‘>1,01:%.

2, k, k1

2

l 1

-1’

2(1—-1)
3c1+1,

402, 461 +CQ, C1
with 2(¢; +¢2) =1

1
3, 3
4
3
1
2, 1
41
37 6
501
27 6
41
37 6
16 6 1
5?7 57 10
27 1
127 12

Table 4.1: Pairs (I',T'y) for which the projected configuration is a root system.
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Chapter 5

Macdonald—Ruijsenaars type system

for AG-

In this chapter, we recall a construction of generalised MR operators from [102] in the case
of the root system Fy. We then apply a restriction procedure from [53| to obtain a pair

of planar commuting difference operators related to the configuration AG4 such that their

rational degeneration reproduces the difference operators from Sections [3.4.2] and [3.4.4]

The restriction procedure from [53] is a g-difference (DAHA) version of the construction

from [50] and of the scalar case of our construction in Section above.

5.1 A pair of commuting F) operators

Let us recall the operator, which we will denote E;, given by formula (3.2a) in [102] in the

case of the root system

R=15=(2F)" ={#e;: 1 <i<4}U{Ei(e;te;): 1 <i<j<4}
U{i%(eli@iegim)} cct

and the small weight wy = 2(e; + e2) of S¥. We will also need the Macdonald operator Es
for the quasi-minuscule weight wy = 2e; of SY [82].

Let t: R — C, a — t(a) = t, be a function invariant under the Weyl group W
associated with R. Let va(2) = ta/*(1 —ta2)/(1—2). Let ¢ € (0,1). Let A = {&2¢;: 1 <
i <4} U{de; £ ey +e3+eq}. The operator Fy has the form

By =Y V,(T, - 1), (5.1)

vEA

105
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where

V,=Vo(z)= ][ wald™) [] vald™?™), (5.2)

aER a€R
(a,v)>0 (a,v)=2

z € C*. Note that the second product in ((5.2)) contains a single term for all v € A.
Let R, = {a € R: (a,v) = 0} for v € C*. The generalised MR operator from [102]

has the form

- E 2 2 E v
El - ‘/Qaiei+2aj6jT2£iei+2£jej + VI/ U25i€i+25jejTV

1<i<j<4e;e;e{£1} €1,62,€3,e4€{£+1} 1<i<j<4
V:Zi:1 Ekek

4 4 (5.3)
22 Ve D D Ukiliase Tt ) Uy
=1 ee{%1} j];i se{£1} neEWwy

where

vr =y = I vela®) T wala7), 5.
aER, a€R,
<01777>>0 <0<777>=2

Remark 5.1. The operator is invariant under the Weyl group W of type F; (see
[102]). It has shifts in the direction of the elements of the weight lattice of RY = 2F}, and
the denominators of its coefficients have the form 1 —r¢'®* with a € R and r € {1,¢*!'}.
Since the operator commutes with the quasi-minuscule operator E, (see [102]), it
follows from |79] that E; is a restriction to W-invariants of a W-invariant element of the
DAHA H associated with the pair of root systems (R, RY) (case a. in [79]).

By the construction of difference operators as restrictions of W-invariant elements
of a DAHA (see, e.g., [79]), it follows that these operators map the space of functions
independent of z to itself. Hence, it follows by Remark that the operator El is equal

up to an additive constant to the following operator Fi:

Z Z ‘/251'51""25]'3]' (T25i€i+2€j€j - 1) + Z VV Z Uéjeiei—&-ere]- (TV - 1)

1<i<j<d g;,e;e{£1} £1,62,63,e4€{£1} 1<i<j<4
v=3"%—1 ke

4
P Y Gl Y U (T - )
=1 ec{%1} Jj=1 e{x1}
i
(5.5)
Let us introduce parameters ¢, € C such that t, = ¢~ , where t, depends on ¢ so

that ¢, does not. Then in the rational limit ¢ — 1, we have

Ca

(@, 2)

Ca
(a,2) +1°

Ua(q(a,z)) 1= : Ua<q:t((a,z>+1)) 1 T

Let m = ¢, and n = c1(., ). The operators Ey and E; can be simplified in the rational
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limit as the next proposition below demonstrates. Firstly, we need the following lemma.

Lemma 5.2. Let Uy" be the rational limit of the function U} given by (5.4)). Forv = 4-2e;,
define ©, = {v + 20e;: 6 € {*1},j # i}. Forv = 3,_ ener (e € {£1}), define
O, = {2ee; + 2¢je;: 1 <i < j <4}, Then for all v € W(2ey), we have

vr _ m(m+1) 2n m(m + 1)
2 U= 2n(n + 1) 11 (1 (o, 2) — 1) ~ 2n(n+1) +6, (5.6)

neo, aeWeiNR,

where m = ¢, and n = €1 yc)-
2

Proof. By W-invariance of the operator , it is enough to consider the case v = 2e;.
Since the left-hand side of equality is invariant under the group Bs C W that
stabilises e;, we get that this sum cannot have first-order poles at hyperplanes passing
through the origin, hence it is non-singular at all such mirrors. It follows from the structure
of the second product in formula that the only possible singularities of U;" are at
the affine hyperplanes z; = +1, where 2 < i < 4.

Observe that for z; = 2n + 1, the left-hand side of is non-singular. Indeed, let us
consider a possible singularity at z; = &1, j # 1,4. Note that the term in the rational limit
of the first product of formula (5.4) with o = %(ei F e;) vanishes at z; = £1. Similarly,
for z; = —(2n+1), the term with o = —3(e; £ ¢;) vanishes at z; = %1, hence there is also
no singularity at z; = —(2n + 1).

Observe that each summand U} is a degree 0 rational function in the variables
29,23, 24. Moreover, specialisation to z; = +(2n + 1) gives a degree 0 rational func-
tion as well, and hence the specialisation of the left-hand side of is such a function,
too. Since it has no singularities, it follows that it is equal to some constant AF € C.
By invariance of the operator , it follows that all these constants are equal to some
constant A € C.

Let us consider the function ) = E%@
with simple poles at z; = +1. By the above, it has zeros at z; = +(2n + 1). It follows
that Q@ = B[]y 2220 for some B € C. By considering the residue at z, = 1 and

z;i+1
the behaviour at infinity, we see that the constants A and B match formula (5.6)). |

U,"—A. This is a rational function of degree 0

In the limit ¢ — 1, the quasi-minuscule operator Es tends to the operator £ given by

= > 71 ( >) I1 (uﬁ)m—n. (5.7)

veW(2e1) a€R aER
<V a)>0 (v,a)=2
It appears that a suitable linear combination of the rational limits ET, EY of the operators
Ey, E5 has coefficients which can be factorised explicitly. More precisely, the following

statement holds.
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Proposition 5.3. The linear combination 2n(n+1)E]+(m(m+1)—12n(n+1))E} equals

S a ()T, - 1),

V€2F4
where for v € W(2ey + 2e3), we have

a(z)=2n(n+1) ] (1—<;fz>) g (1-@’:’#), (5.8)

aER
<1/,0£>>0 <y,o¢>:2

and for v € W(2e;1), we have

we=mm+ T (1-5=) 1T (1-5%5) 1T (-55+)

aeWeiNR,
(v,0)>0 (v,0)=2
(5.9)
Proof. The rational limit of the operator E; has the form
c
E] = 11— (T, -1
L2 T eeay) O (-age)e
veW (2e1+2e2) OéER a6132
e = (5.10)
¢ c
Uw 1 - & 11— — T, —1
F 3 yor I (-a5) I (- agm) o0
veEW (2e1) n€O, <Va§>}io <Va§>1i2

where ©, is defined as in Lemma [5.2] The statement follows by using formula (5.7) and
Lemma [5.2 [

5.2 Two-dimensional restriction

The process of restriction of operators from the DAHA to special planes was developed
in |53]. It corresponds to the action of the operators in a quotient of the polynomial
representation. This quotient exists for special values of the parameters of the DAHA. Let

us apply this construction in the case of the DAHA H from Section the plane

W:{Z:(217227z3;24)6@412’2_23:2:3_2425}’

1
3-
Let us consider a W-invariant operator

and the parameter n = c1, .,) =

D=> aT, (5.11)

vey
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where ¥V C C*, and a, are some functions. Let my be the linear plane parallel to T,
o = {z € C*: 25 = 23 = z;}. For any v € C*, let ¥ be its orthogonal projection to 7.

Let us define the following operator D on 7y:

D = Zfl//Tll/7 (512>

v'ey

where f,/(2) = > vev au(z +9), 2 € m, and § = (0, 2,0,—%) is the normal vector to the
plane my whose enla:pyoint belongs to the plane 7.

Suppose that two operators Dy, Dy of the form commute and are obtained as
restrictions to W-invariants of W-invariant elements of the DAHA H. Then it follows
from [53] that their restrictions D; also commute.

We are going to compute the restricted operators for the pair of commuting operat-
ors Ey and Es from Section [5.1] Firstly, we observe that these restricted operators have
certain invariance properties.

Let P be the parabolic subgroup of W that fixes mg pointwise. Let us consider the
normaliser Np of this subgroup in W. It has the form Np = G P, where G is the subgroup
of W of type Gy [|68]. The group Np consists of those elements of W that preserve o,
and the root system R of the group G is a subset in my. We can assume that the root

system R¢ contains the vectors te;, £5(e1 + (e2 + €3 + e4)) € R.

Proposition 5.4. Suppose an operator D of the form 1s W -invariant. Suppose also
that its coefficients a, are generically well-defined on w, and hence the restricted operator D
given by is generically well-defined on my. Then the operator D is invariant under
the group G.

Proof. Let us consider an element o € RN Rg and the corresponding reflection s, € G C
W. For a shift vector v in the operator D, if we have s,(v) = v, then we also have for
the projection v/ € my that s,(v/) = /. Since s,(a,) = a, and s,(6) = J, we get that the
term a,(z + 8)T,, in D is s,-invariant.

The other terms a, T, in the operator D split into pairs a,,7),, a,,T,, such that s, (1) =
V. Since for the projections we have s,(v]) = 14, we get that the corresponding sum
ay, (2 + 0)T + ayy (2 +6)T, in D is s,-invariant.

The group G is generated by the reflections s, with & € RN R and the transformation
j = —id. We are left to prove the invariance of the operator D under the map j. Let us
first consider pairs of terms a,,T),,, a,,T,, in D such that s, o j(u1) = po for v = ey — ey.
By the W-invariance of the operator D, we have s, o j(a,,) = a,,. This relation implies

for any z € 7y that

j(aul(z +9)) = au1<_z +9) = a/n(Sw(_Z) +9) = au1<37 0j(z+0)) = aw(z +9).
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Since pj = —pih, we get that the combination a,, (2+0)T, +a,,(2406)T,; in the operator D
is invariant under j.

Let us also consider the terms in D of the form a,7),, such that s, o j(x) = p. Then
sy 0 j(a,) = a, and p/ = 0. This implies that j(a,(z +)) = a,(z+ ) for any z € 7, and

hence the corresponding term a,(z + 0)7} is also invariant under the map j. |

We introduce coordinates on my by choosing the orthonormal basis f; = \/Lg(eg +
es + e4), fo = e;. We consider the configuration AGy C my given in the basis fi, fo by
the coordinates (3.11]), where we fix w = \/ig In this realisation, a; = (0,1) = f and
B = \%(1, 0) = %fl. We also have ay = %(el —ey—e3—ey) and az = %(61 +este3tey).
The orthogonal projection of a vector v = Z?Zl v;e; onto Ty is U = \/Lg(vg +ustvy) f1+v1fo.

Let us now find the restricted operators F; and E5 explicitly. The following statements

take place.

Proposition 5.5. The restriction Fy of the quasi-minuscule operator Es has the form

_2 = Z Z (a28aj (TZaaj - 1) + A2eB; (TQaﬁj - 1)) ) (513)

Jj=1 ee{£1}
where
. 1— sq <7éz>_% 1— sq <véz> 1— sq <’yéz>+%
a2€aj (Z) =dqs H (v,2) ('y,z)+l (w,z)+2
ve@ap)y N 1—q 1—qg 55/ \1— g5 +3
e (5.14)
H (1 — Sq<7)z>> (1 — 3q<5ajfz>> (1 — Sq(‘gajﬂ'z)‘i'l)
X —— | X
— g2 — gleaj,2) _ leaj,z)+1 )7
~e(200n)Y 1—¢q 1 —qgle 1 — gt
(2eaj,v)=1
1 —sq s A Sq_(v;)_% 1 —sq {2
a28/8j (Z) = (1 + q1/3 + q2/3)(]1/33—5 H ( (v,2) ) ( _ {22 ) ( (v,2) 1
je@agyy N 1@ l—q 575/ \l—gq 5 s
<25l8]'17>:1
D) G ()
vE(2Gan)Y B - L — g™ s
<2€ﬁj,’y>:1
(5.15)

and s =t.,, 2 € .

Proof. Tt is easy to see that A consists of the vectors +2a, £25;. Let us firstly establish
formula (5.14). We have 2e; = 2a;, and it is easy to see that no other vector from A is
projected to 2a;. By formula ((5.2)), we have

‘/261(3):U61(q<8172>+1) H Uv(q<%z>)

YER
<7761>>0
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= s (00 (00, (0 g (0 T (),
yeC1UC2

where

C1 = {3(e1—e2), 3(e1—e3), 5(e1—e4), 5(e1+ea—e3—es), 2 (e1—eatez—es), 5(e1—ea—e3teq)}
and

Cy = {3(e1te2), 3(e1+es), 2(e1tes), 3(e1teates—es), 5(e1+ea—estes), 3(e1—eates+eq)}.
Recall that t1(, _,) = ¢ /3. For z € 7, we have

ol — g P

Lle1—ea,2) Lle1—e3,z2) Lle1—ey,2)
v%(€1*€2)(q2 b )U%(GI*SS)<q2 o )v%(61*€4)(q2 s ) 1-— q2/3q%(z1—z2) ’
and hence
1/24-3/2(1 _ L(z1—22)+1 1— L(z1—22)+3 1— Lz —29)-1
T (gt = T2 2 U s 20— m 20 e
eC) (1 _ qE(ZI—ZQ)'i‘g)(l _ qi<z1_z2)+1)(1 _ q5(21—22)+§)
Similarly,
1 1 1 1 1
H . (q(%z>) _ q1/28—3/2(1 _ ng(z1+z2)*1)(1 _ 8q5(21+z2)f§>(1 _ ng(z1+zz)+§) (5 17)
<o (1— P (1 — gsCar)¥s)(1 — g3t =)
Let now z = (21, 29, 22, 22) € mp. Then z + § € 7, and by equality (5.16]), we get
I g/2s3/2(1 — Sq%(zl—ZQ)"r%)(l _ Sq%(21—22))(1 _ Sq%(zl—zg)—%)
H U’Y(q v ) = 1 1 1 2 1 .
fote! (1 _ qg(z1—z2)+§)(1 _ q5(21_22)+§)(1 _ qi(zl_'z?))
The vector B3 € my has the form (3 = _ﬁgfl + %fg = %el - %(62 + e3 + €4), hence
(263)Y = %el — %(62 + e3 + e4), and so %((2B3)V, z)y = %(zl — 23). Therefore, we have
1((285)V 2)4 2 1 v, 1 Vy_2
[T o) = 2725750 = s V31— sgh )1 g2
ec, K (1 — q3(@89)Y203) (1 — ¢3((2B3) 20+ 5) (1 — ¢3((265)"2)) '

Similarly, (5.17)) gives

[T v(a=) =

veCa (1

1251 — sqhtrt=)(1 = sqhCre)(1 — sgbtad)
_ q%(z1+22)+%)<1 _ q%(21+22)+§)(1 _ q%(zl-i-ZQ))

)
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and $((2/32)Y, z) = 2(z1 + 22). Hence, altogether, we have

1 sq <73,Z)_§ 1 sq <73,Z) 1 th;)_‘—%
<,Z+6> — -3 _ _ —
[ war=er 11 ( e )( <W>+;)( ng)‘

yeC1UC2 vE(2GB1)V 1— q 3
(2a1,7)=3

To complete the proof of equality (5.14) for j = 1 and € = 1, we note that (2a2)Y =

and (2a3)" = as, therefore
3
. 1— Sq(al,z) 1— Sq(al,z)Jrl
(a1,24+0)+1 (ai,z40)\ _ —2
(% (q ! )H'Uai(q ) =S ( 1— q<a1,z> ) ( 1— q<a1,z>+1

=1
]_ — 8q<77z>
< 11 ( 1= q02 )
~ve(2Gar)V
(2a1,7)=1

as required. Equality (5.14)) in general follows from the G-invariance of the operator Fy
established in Proposition [5.4]

Let us now prove formula (5.15). We have 2e; = 2e3 = 2e4 = 2031, and no other vector
from A is projected to 2/3;. For z € 7, we have Vi, (2) = 0 since U%(EQ_QS)((]%<€2_63’Z>) =0,
and we have Va,,(z) = 0 since v%(egfa)(q%@?”e‘*@) = 0. By formula (5.2)), we have

Vaey(2) = ve, (¢ [ oa(g™)

YER
(v,4)>0

= Ve, (q<e4,z)+1)v_a2 (q*(az,z))vag (q(ag,,z)) H U,Y(qh”z))?
~yECTUCLUCLUCY

where
Ci = {%(64 —e1), %(64 —e1 —ex+e3), %(64 —e1+ey—e3),5(ea+er —ex—e3)},

1
3
Ch={i(es+e1), S(eater—eate3), S(eat+er+es—e3), S(es—er—es—e3)l},
1
2

Cy = {eu, %(64 + e3), %(64 +e3)}, and Cj={3(es—e2),(ea —e3)}.
Let now z = (21, 29, 22, 22) € mp. Then we have

g0 732 (1 — 52275 ) (1 — 522 2)) (1 — sq2172)73)
2

(1 — qztm2)75)(1 — g2(2m20)(1 — gz(a1722)73)

[ vrta™) =

veCi
q1/6373/2(1 — Sq_%«z/jB)vaZ)_%)(l — Sq_%<(2/83)vvz>)(1 — Sq%<(263)vv‘z>_§)
(1 — ¢ 3(@8).20=5)(1 — ¢~ 3(20)7:2)) (1 — ¢3((20)".2)=35) '

(5.18)

Similarly, for the product over v € C4, we get expression ((5.18) with 5 replaced by —fs,
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and therefore

1 sq <“r3@> 7% 1 sq (w;) 7% 1 sq (w;)
(v,246)\ __ 1/3_—-3 — — -
| | vy (q" >) =q°’s | | ( (1.2) ) ( e ) ( G2 )

YEC,UC), ve(2GB1)Y
(261,7)=1

Further, we have

[T (@™ = ¢ 21+ ¢'% + ¢*).
veC)

Next, we have

€4,z z - SqZ2+%
g =) T wnfg=) = 55 )

_ +3
veC) (1 ng

where we used that the vector 3 € my has the form 5, = \/Lgfl = %(62 + e3 + e4), hence
(B1, z) = z5. To complete the proof of equality ([5.15) for j =1 and € = 1, we note that

—{ag,z s,z - 1— Sq<%z>
V_ay(q toa, +6>)Ua3(q< . +§>) =5 H ( >’

1 — q<77z>
’YG(QGOQ)V
<251a7>:1

as required. Equality (5.15)) in general follows from Proposition on the G-invariance
of the operator E. [ |

Proposition 5.6. The restriction E; of the operator (5.5)) satisfies
3
Ei+cBy =Y > (asp,(Tics, — 1) + a2ea, (Trea, — 1) + a2, (Toc, — 1)), (5.19)
J=1 ee{£1}

where

7/3 1/31_5—8/3 1_55/3 1 — sa3)(1 = sa?
028—1(1+q1/3+q2/3> q /3(‘1 ( q*°)( q )+( q°)( Q))

1—(]7 1_q8/3 1_q2

and the functions auep,, Aea;, and asp; are given by
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B 1 — s¢ir? 1 — sgtratl
agep; (2) =(1+ g + q2/3)q8 i H ( 1— ¢ 1 — glra)tl

v€(2Gar)Y
<4€Bj7'7>:2
(v,2) 2 (v,2) ;1
1—sq¢ s 3\ [1—sqg s t3
Coqp (e o
veeapy N 1—a7 L—gs s
<4€Bj7'7>:2

1 i Sq<€ﬁj’z>_§ 1 — Sq<818juz>+% 1 — Sq<aﬁjvz> 1 J— Sq<aﬁjvz>+1
X . 1 2 . Y
( 1— q(a,@,z) ) ( 1— q<e,3j,z)+§ ) (1 _ q<eﬁj,z>+3) ( 1— q(sb’g,z>+l )

1 — Sq(eozj,z) 1 — Sq<80éj,2>+1 1 — Sq(%z>
A2eq; (Z) - d( 1— q<goéj7z> 1— q<5a]—,z>+1 H 1_—q<%2>

vE(2Ga1)V
(2eaj,y)=1
1— th“iz}*% 1— Sq(w;) 1— sq (W32)+§ 1— qh3z>7%

X H ) &) 1 Gl 2 H a1 )
1E(2GB)Y l—gs =g L—g="s YE(2GB1)Y =g 73
(26(1]',')/):3 <2€aj,'y>:0

(5.21)
with

s —sg (1)
(=g (A=) (1= g B+ ¢?3)

and

asep, (2) = (1 + ¢ + ¢*%)g /357>

2

(r2) 2 vz 2 (v,2)
1—5s¢73 73 1—sqg 73 73 1—sq73
X ”
(7,2) _{va) 2 ez 1
1—qgs 1—q 75 73 1—q 3

(AJ

vE(2GBL)Y
(2eB5,7)=1
o (]_ — Sq<55j7z>_§) (]_ — Sq<5ﬁj7z>+é) H <1 — Sq(’Y:Z))
— leBj:z) R —_ alr2)
1 — q'¢P 1 — q<€ﬁ] )+3 e @Con) 1—q\
(2e85.7)=1

1 1 — Sq<galfz> 1 — Sq_<ga1’z>_1 1 — q<g/827Z>7% 1 — q7<953:z>+%
% {C T ( 1 — gwors) ) ( 1= g (gara)-1 ) (1 — gloBaar ;) ( 1 — g (95s2) >
1 — gg—{921,2) _ golgai,z)—1 _ 4 (9Bs,2)—1% _ 4(9B2,2)+2
P q 1 —sq l—¢q l—¢q
1 — g{91,2) 1 — glgorz)—1 1 — q—(gﬁg,z) +3 1 — ¢l9P22)
1 _1/3 1 1 — Sq<95172>7% 1 — Sq7<g/gl’z>7% 1 — q<9527z>+% 1 — q <963’ >
g s ( T ) ( = ) (1 - q<gﬁz,z>+§) <1 — o)
1
3

2
3
+1
3
+ (1 + q71/3)571 ]_ — 8q<gﬁhz> ]_ _ 8q7<gﬁlyz>71 1 _ q_<gﬁ2az>+ q(gﬁ&z)‘f’
1— q<g,6’1,Z>+§ 1 — g (9br2)-1 1 — g—(9P22) 1 — ¢(9Ps2) ’
5.22)
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where g = g(e,j) € G is (either one of the two elements of G) such that gfy = €f;, s = t.,,

Z € Ty.

Proof. Any linear combination of the operators Ei, Es given by formulas (5.5, (5.1 can
contain shifts only along the vectors from RY. It is easy to see that the non-zero vectors

in RV are +2a;, +23;, £43;. Let us firstly establish formula ([5.20)).
We have 2e5 + 2e3 = 2e9 4+ 2¢4 = 2e3 4+ 2e4, = 451, and none of the other vectors

from RY project to 45;. For z € m, we have Vi, 12.,(2) = 0 since U%(e3_64)(q%<e3’e4’z>) =0,
and Vae,12¢,(2) = 0 since v%(62_63)(q%<62_6372>) = 0. By formula (5.2)), we have

Vaet2e(2) = H v, (v, (¢4 H v, () H v (g9,

ve{—az,a3} YEBoUB1UB2UDB3 vEB{UBLUBY

where

By = {5(ea — €2), 5(e3 — e2)},

By ={es, eq,3(es+es)}, Bi=BjU{3(ea+e3),2(e2+eq)}

By ={3(e1 —eat+es+eq)}, By=ByU{5(e1+es),5(e1+ea)},
By={5(-e1 —exs+ezs+es)}, and Bz=ByU{z(es—e1) z(ea—e1)}.

Let now z = (21, 29, 22, 22) € mp. Then
1/3 -1 Lz 422)+4 L(2+20)—2
q'Ps7H1 — s TE)HE) (1 — sqz' 172207 3)

(v,2+6) (v,2+0)+1y
H vy(q ) H vy(q ) (1— q%(z1+z2)>(1 _ q%(m—i—zz)—%)

YE B2 YEB]

¢/3s71(1 — Sq%<(252)v,z>+%)<1 — 5qul(282)".2)-3)
(1 — g5(@8)V20) (1 — ¢5(2B2) 20+ '

(5.23)

Similarly, for the products over v € By and v € B}, we get expression (5.23) with [,
replaced by —f3, and therefore

1 . Sq<’y3,z>7§ 1 — sq (’Yéz>+%
H Uw(q(%z-i-é)) H vv(q<v,z+6>+1) - q2/33—2 H ( = ) ( 12 4 1
1—g¢q l—q 573

yEB2UB3 YEBLUBY ye(2GB1)Y
(4B1,7)=2

For the product over By, we have

1/2 .—1 1 — sag?2)(1 — 22,%
2 q'-s 5q Sq
[T o) - L2 o

— (5.24)
JeB, (1—¢=)(1—q*"s)

)
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and for the product over Bj, we have

q1/6871(1 o qug—&-%)(l o Sq,ZQ+l)

(12 H0)+1y

vs(q ) = 5 (5.25)

ng (1 _ qzz+3)(1 _ qz2+1)

Since (01, z) = 29, the product of expressions ([5.24) and (5.25) is

2/3872 ]_ — Sq<5l7z>_% ]_ — Sq(ﬁl@’)‘f’% 1 — Sq<’81’z> 1 — Sq<ﬁlvz>+1
a 1= ¢Ba) 1= gy J\1 = gmasd J\ 1= g@as )
Next, we have

H Uv(q<%z+6>> _ q_1/3(1 4 q1/3 X q2/3). (5.26)

YEBo

To complete the proof of equality ((5.20) for j = 1 and € = 1, we note that

B 1 — s¢ir 1 — sgr=tt
(7,2) (r,2)+1y _ 2

ve{—az,a3} ve(2Ga)V
(461,7)=2

as required. Equality in general follows from the G-invariance of the operators E;
and [, established in Proposition .

Let us now prove formula ((5.21). We have 2e; = 20y, and no other vector from RV
is projected to 2. By formulas (5.1)) and , the coefficient at T, in the operator
Ei1+ cEsy is \

Vo, (c+ >y U§:;+25€j). (5.27)

J=2 se{£1}
For z € mg, Vae, (2+0) is given by the right-hand side of formula (5.14). Let us compute the
second factor of the expression (5.27). For z € m, by formula (5.4), we have U3, (2) =
Uyt yse,(2) = 0 since v%(62_63)(q%<62’63’z>) = 0; and Uy ,,,(2) = Uselip,,(2) = 0 since

2e1—2ey
1
v%(eg_%)(qﬂ%_e‘*@)) = 0. Furthermore,

e €2,2)— z - 1 - SQZQ?l z
Usel_3e,(2) = v-ey (¢ ) | | v, (7)) = 5712 1 —qg=-1 | | v, ("), (5.28)
yE€BpUC1 yE€BoUC1

where C} = {—1(e2+e3), —1(es +e4), —€2} and, recall, By = {3(es —e€2), 3(e3 —e2)}. Let

now z = (21, 29, 22, 22) € my. Then we have

. Ll — s
H Ufy(q<% +5>) — q1/3$ 1/2ﬁ- (529)
veCi q
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Therefore, we get from relations ((5.26]), (5.28)), and (5.29)) that

(1 — g P275) (1 — sq~P2)75)
1 .
3

U, (24 0) = s 71 (1 + ¢ + ¢¥°
S ( ) (1—¢273) (1 — ¢~ (Br2)

2e1—2es

Similarly, we compute

(1 — sqtPra=3)(1 — sqPr2)=3)
(1— g Bra=3)(1 — glBr=))

Use sae, (2 +0) = 57 (1 + 4% + %)
Observe that the sum Us'_,, (2 +6) + U3l ,., (2 + 0) is not singular at g%+ = 1, and

4 7 7
1 —_ q<ﬁl7z>7§ 1 — q7<ﬁlvz>7§
2eq _—1.5
e+ D Uil =7 d(1 _gBra-i ) \1 = B3

J=2 de{£1}

(v,2)

7
1—q3*§

—15
=q's’d ] <ﬁ)

veaa)y L@
(2a1,77)=0

which completes the proof of for j = 1 and € = 1. Equality in general follows
from the G-invariance of the operators F; and F, established in Proposition

Let us now prove formula (5.22). We have 2e; = 2e3 = 2e4 = 2031, and no other vector
from RY is projected to 2;. For z € m, we have V3, (z) = 0 since v%(ereg)(q%@?_e?“z)) =0,
and we have Vs, (2) = 0 since v%(83_64)(q%<63’64’2>) =0, so the coefficients at Ty, and Th,,
in the operator F; + cFEy are both zero. By formulas and , the coefficient at T,
in the operator Fy + cEs is

3
Vae, (c+Z > Uiffmej) (5.30)

Jj=1 de{£1}

For z € mo, Vae,(2+0) is given by the right-hand side of formula (5.15). Let us compute the
second factor of (5.30). For z € m, by formula (5.4)), we have Usc* ,, () = Use*, s, (2) =0

2eq4—2e3

since v%(ereg)(q%@g—eg,z)) = 0. We have

Ut e, (2) = Vo (¢ g, (¢2) T v4(¢77),
yECUCs

where Co = {i(e1 + €2),3(e1 + e3)} and C3 = {3(e1 — €2),3(e1 — €3)}. Let now z =

(21, 22, 29, 22) € mo. Then

1— q%(zlJrZQ)* 13 1 — q<52,2>

1 — g{B22t:

= w\»—t

%
IT v (a"=+) = ¢ r=4 (5.31)

<o 1 — q%(zl-i-Zz)—l-
v 2
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Similarly,
1 _ q<5372>7%

(v,24+6)\ _ 1/3
H U’Y(q ) =q 1 — C]<’83’Z> :
v€C3

Finally,

—(e1,210)— a1,z (1= sq<°‘1’2> 1— Sq—(oq,z)—l
Ual(q < 1, +5> 1)Ua1(Q( 1, +5>) = S 1( 1 _ q(al,z> *<a17z>71 .

Therefore,
1 — gglon?) 1 — gg—{ea,2)—1 1 — g{B2:2)—3 1 — (B2 3
U223614+2e4 (Z+5) _ qQ/SS—l sq sq q ? q 3 .
1 — glenz) 1 — g—(anz)-1 1— q(ﬁg,z>+§ 1 — g(Bs:2)
Similarly, we compute

—(a1,z a1,z)— 2)+2 2+1
U2 (oyd) = g 2t (LTS (Lo sg @ (1= PR (1 g
2e4—2e1 1— q7<a1,z) 1— q(al,z>fl 1 — qwg,z) 1— C]<B3’Z>_% )

]_ —_ Sq</817z>_% 1 — Sq_</8172>_% ]_ —_ q<627z>+%
2eq _ 1/3\ —1
U264*2€2 (Z + 5) (1 +a )8 < 1— q<f31,2>*% —(B1,2)— ) %

1 — Sq<ﬂ172> 1 — Sq_<'81’z>_1 1 — q<ﬁ272>7%
2e4 _ 1/3) —1
U263+2€4(Z + 5) (1 + q )S (1 — q<61’z>+% 1 — q*<517z>71 1— q(ﬁQ,z)
1 — o{Bs2)+3
N S
< 1— q<5312> >
This completes the proof of (5.22) for j = 1 and € = 1. Equality (5.22) in general follows
from the G-invariance of the operators E; and Ej established in Proposition [

In the rational limit, we recover the operators from Sections [3.4.2] and [3.4.4].

Proposition 5.7. In the rational limit ¢ — 1, the operator (5.13|) tends to the oper-

ator (3.17)).

Proof. Recall that s =t., = ¢~™, where m is independent of ¢q. Hence,

limgs™® =1 and lin} (1+ g+ q2/3)q1/35*5 — 3.
q—

q—1
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The functions (5.14]) tend to

(-850 emm) (e

v€(2GB1)Y
(2eaj,y)=3

I (as) () ()

ve(2Ga)V
(2eaj,v)=1

which equals the corresponding functions (3.18)), where in the last two terms we use that
oF = 1 here. Similarly, the functions (5.15) tend to

o I 0-5) (0 ) 0 05)

vE(2GB1)Y
(2¢B5,7)=1
m m+ 2 m
X 1— )x(l— 3)(1——),
<2£ﬁj77>:1

which equals the corresponding functions (3.19)), where in the last two terms we use that
BJQ = % here. ]

Proposition 5.8. In the rational limit ¢ — 1, the operator (5.19) tends to a scalar
multiple of the operator (3.26)).

Proof. We have s =t., = ¢~™, where m is independent of q. Hence,

lim (14 ¢"/* + ¢**)qs™® = lim (1 + ¢'/* + ¢*/*)¢"/*s > = 3,
q—1 q—1

lime = $m(m+ 1) — 6, and
q—1

i =9
(lzl_rgd = sm(m +1).
The functions (5.20]) tend to

1l (“Jz>)(“#> 11 (1‘32,;2)(1‘@,?;%)

ve(2Ga1)V ~e(2GB1)Y
(4eB;,7v)=2 (4eBj,y)=2

(-5 (- mi) - (i)

which is % times the corresponding functions (3.28]), where we used that ﬁ]? = % here.
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The functions (5.21]) tend to

(2eaj,y)=1

< I 0T 025 6an)

7E(2GB1)Y
(2eaj,v)=3

< I 0eam)

v€(2GB1)
(2ea,v)=0

which is g times the corresponding functions (3.27)), where we used that 04]2- =1 here.

Assume € = j = 1 (the general case will follow by G-invariance of the operators). Then

the function ([5.22) tends to

L0 I ()0 )

2Gp1)
(281,7)=1 (281,7)=1

(-5 (i)

<[pmnen o+ (- 55) (i) () ()
(a0 m) () ()
(i) (min) () ()
~(-m) (w5 () ()}

which can be shown to be % times the corresponding functions (3.29) (where we are using,

in particular, that 7 = % and o? = 1). Indeed, the expression in the square brackets

above can be shown to equal

o (53 () (s U ma )

as required. [

Corollary 5.9. The operators (3.17) and (3.26) commute.



Chapter 6

A subalgebra of DAHA and Van

Diejen’s operators

Inside the DAHA H,, = H,, ,, of type GL,, from Section , we define a subalgebra HS'
that may be thought of as a g-analogue of the degree zero part of the corresponding
RCA. We prove that the algebra H® is a flat 7-deformation of the crossed product of the
group algebra of the symmetric group &,, with the image of the Drinfeld—Jimbo quantum
group U,(gl,) under the g-oscillator (Jordan-Schwinger) representation. We find all the de-
fining relations and an explicit PBW basis for the algebra H". We describe its centre and
establish a double centraliser property that H®» satisfies as a subalgebra of a cyclotomic
DAHA. As an application, we also obtain new generalisations of certain Hamiltonians
introduced by Van Diejen. This chapter follows our paper [57].

The structure of this chapter is as follows. In Section [6.1, we recall the properties
of the degree zero subalgebra of the RCA of type GL,. In Section [6.2] we recall the
definition of the quantum group U,(gl,), its Jordan-Schwinger representation p, and we
study the properties of the algebras A = p(U,(gl,)) and CS,, x A. In Section we
define the algebra H®». In Section we study the properties of certain commuting
elements D; € H,,, which are used in the definition of H®". In Section m, which is the
most technical part of this chapter, we give all the defining relations of H®» and a linear
basis for it. In Section we give its centre and the double centraliser property. In

Section [6.4] we derive new generalisations of Van Diejen’s and related systems.

6.1 Degree zero part of an RCA

The RCA H,, of type GL,, (see Section [2.5.3)) admits a grading in which degs; = 0,
degz; = 1, and degy; = —1. The subalgebra H% = 9 of those elements that have

degree zero was studied in [51]. It is generated by the elements s, and the products

121
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Ei; = xy; (i, € {1,...,n}) with relations

SkEij = Esi (i), () Sk
Ei;Ey — EyEy; = EySjk — Ei; S, (6.1)

Here S;; is defined by formula (2.14]). Equivalently, the third set of relations could be

replaced by the commutator-type relations
(Eij, Ewi) = EqSjk — SuEkj + S, Eijl.

Note that S;; is symmetric in ¢ and j, it has degree 0, and it c-deforms the Kronecker
delta ¢;;, so the above commutator relation c-deforms the relations of the standard gener-
ators of the Lie algebra gl,,.

The algebra H®» admits a filtration determined by assigning degree 1 to the gener-
ators E;; and degree 0 to s;. The associated graded algebra is gr H%» = CGS,, x C[M],
where

M ={M € Mat,(C): rank M < 1},

that is, M is the space of n X n complex matrices of rank at most one.

The algebra H®» admits a PBW-type basis consisting of the monomials

k1 k.,
whily - Bl
Wherew€6mr€ZZO, kuEZ>0,1§i1§"'§iT§n, and1§j1§§

g < n with 4, = iy11 = ju < jur1. The algebra H is a flat c-deformation of CS,, x
pss(U(gl,)), where pys is the oscillator (also known as Jordan—Schwinger) representation of
the universal enveloping algebra U(gl,,) mapping the standard basis of the Lie algebra gl,,
to the operators x;0,; (i,j € {1,...,n}). The algebra H% is an example of a non-
homogeneous quadratic algebra over C&,, of PBW type (cf. [12]).

The element eu = Y37 z;y; — ¢y, ;si; (which in the polynomial representation
of the RCA is up to a constant equal to the Euler operator Y . | z;0,,) generates the
centre Z(H).

The TCA H™& of type GL,, (see Section also has a grading, given by deg s, =
degy; = 0 and deg X;** = +1 [10]. The embedding preserves the respective grad-

(0)

ings. The degree zero part Hy® O g generated by the elements si, 7;, and X; X i 1. The

algebra H%' = HY embeds into HY® ) via a restriction of the mapping ([2.18]).
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6.2 Quantum group U,(gl,)

Let ¢ € C* be not a root of unity. The quantum group U,(gl,,) is the (unital, associative)
algebra over C generated by ¢! (1 <4 < n) and e, fr (1 <k < n — 1) subject to the
following relations |75, p. 163-164] (cf. [70]):

glg;l = g;lgl = 17 [gwg]] = 07
giekg;1 = q(sikiéi’kﬂek, gz‘fkgfl = qfsz‘,lwrl*&kfk7
-1 1
Ik9k+1 — I k+1
ek, fi] = 02— qfl ,

lex,er) = 0= [fi, fi] if |[E—1] >1,
eiel — (g + q_l)ekelek + elei =0if |k -1 =1,
fifi—g+a Ofufife + fiff =0if |k -1 =1,

(1<1i,j<n,1<kl<n-—1). It follows from these relations that [[_, g; lies in the
centre Z(U,(gl,,)) of this algebra, and |70, Proposition 4| provides some further central
elements.

In this section, we recall a representation of U, (gl,,) on the space of Laurent polynomials
CIX{', ..., X*]. Let us firstly set up some notations. Let t; = ¢*%% be the g-shift
operator which acts on functions f by (t;f)(X1,...,Xn) = f(X1,...,¢X;, ..., X,). Let
us also consider the following operator
XNt —t7h)

dl: 2 7

= (6.3)

In the ¢ — 1 limit, it satisfies d; — Ox;.
The next lemma collects some properties of d; and ¢;, which can be checked by a direct

computation. We use the notation [a, b], for A € C to mean ab — Aba.
Lemma 6.1. For alli,j € {1,...,n}, we have

(1) [ti, Xj] 55 =0,

(2) |di, d;] = 0 = [ti, 1],

(3) 1di; tj] 55 = 0,

(4) diXi=(q—q ") Mat: — ¢ '), and [di, X;] 5, = 517"

In terms of d;, t;, and the multiplication operators X;, one can write down a repres-
entation of U,(gl,) on C[X{",..., XF1] as follows. It is called the Jordan-Schwinger or

g-oscillator representation.
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Proposition 6.2. [01] There is a representation p of U,(gl,,) given on the generators by
p: gt 7 e = Xidyrr, and fi — Xprrdy.

In fact, this representation p has a submodule C[X7, ..., X,,], which we revisit later in
Section [6.3.3]
Let us consider the algebra A = p(U,(gl,)), the image of U,(gl,,) under the represent-
ation p:
A= (1<i<n), Xpdprr, Xpndy, (1<k<n—1)).

By the isomorphism theorems, A is isomorphic to U,(gl,)/1, for I, = ker(p). We next
describe the algebra A abstractly by (a different set of) generators and relations.

Let BY = Xid; (i,j € {1,...,n}). Then E} = (¢ —q¢")'(t; —t;') € A The
operators £, for |i — j| > 1 are related to Jimbo’s analogue of the non-simple root
vectors of the Lie algebra gl,, from [70, Proposition 1]. The following formulas hold for all
1<i<j<n-—1]139 (3.3)]:

Eg,jﬂ =p ([ez’, [€i+1, te [ejfla ej]q e ']q]q 9i+19i+2 - 'gj) )
Ej(']—&—l,i =p ([fj7 [fj*la T [fz’+1> fz‘]q—l o ‘]q—l]q—lg;_h 9;_4-12 o '9;1) .

It follows that Ej; € A for all i, j, and that A = () E; (i # j)) as an algebra.

In the ¢ — 1 limit, the representation p recovers the oscillator representation of the
universal enveloping algebra U(gl,,), since lim,,; E; = X;0x; for all i, j.

The next two propositions describe relations satisfied by the generators Efj and t;. Let

us introduce the notation

(q+ 1)~ (gt +t71) if i = j,

S =l Xjl=q "
0if 2 # j,

where we used Lemma (4). Note that ng is symmetric in ¢ and 7, and at ¢ = 1, it
reduces to ¢;;. The following proposition is a straightforward consequence of the definitions
and the commutativity of the operators d;. (It will also follow from the 7 = 1 limit of the

more general discussions presented in the next section.)
Proposition 6.3. For alli,j,k,l € {1,...,n},

q 19 q 19 __ q9Qd _ 19 Q94
EijEkl - EilEkj - EilSjk EijSlk7

' nl q 19 q 19 q g (6-4)
EijEkl - EkjEil = SjkEil - SjiEkl‘

Notice that the form of the relations (6.4) is exactly the same as that of relations (6. 1)
and (6.2)). The following statement holds as a result of Lemma|6.1| (1) and (3).
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Proposition 6.4. For alli,j,k € {1,...,n},
LBt = ¢ B (6.5)

The preceding two propositions lead to a PBW-type basis and a presentation for the
algebra A.

Proposition 6.5. The algebra A has a linear basis formed by elements

(EL ) (BL) Ht (6.6)

where v € Z>o, ky € Zso, mi € 2,1 <43 < -+ <, <n, 1 < g5 <o < g < nowith
by = tur1l = Ju < Jur1, and none of the indices i, equal any of the indices j,.

The algebra A has a presentation by generators t, EY; (i # j) and relations (6.4)
with i # j and k # 1, with j # k, and the Laurent relations for t!
tit;t =ttt =1 and [t;, t;] = () for all i, j.

=, namely

Proof. 1t follows from relations (6.4) and (6.5)) that any element of A can be written as
a linear combination of elements of the form 7 thus they span A. We now show that
they are linearly independent over C as operators on C[X{, ... XF1].

For any k € Z~( and i # j, we get by using Lemma [6.1] that

k—1
(ELF = (¢— ¢ )*XEX [ (@'t — d'7).
=0

More generally, for elements of the form (6.6) we have

(Bf;)"

111

Htmlochl XPXG R X R t’“THt

Z]T

where . .. denotes terms in which the overall sum of the exponents on the ¢;’s is lower than
in the above leading term, and o denotes proportionality by a non-zero factor, which may
depend on gq.

Assume a non-trivial linear dependence of some terms of the form (6.6)). This implies
a non-trivial linear dependence of their corresponding leading (with highest degree in ¢;’s)

terms

Xz'kll .. .XikT:‘TXj_lkl . rk’“tkl . tk’“ Ht . (67>

By the assumptions on the indices of the monomials , their leading terms (/6.7)) are
different, and since [[;_, X" [[\-, ;" (m,n} € Z) are linearly independent over C as

operators on C[X:F ... X*!] (we are using here that ¢ is not a root of unity), we get a
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contradiction. The statement follows. [ |
The above basis can be used to give the following proof of what the centre of A is.

Proposition 6.6. The centre Z(A) is generated by (I}, t:)*".

Proof. For the monomial (6.6)), if i1 =iy =+ =47 < 71 < -++ < i, then

(Efm) ' W’“ (Ht )t - k1+k2+'"+k (Elqlh) ' zryr Ht

Together with our assumption that ¢ is not a root of unity, this implies for any f € Z(A)
that its expansion in the PBW basis from Proposition[6.5 cannot involve any basis elements
for which r > 0.

Similarly, since we have for all 1 < k <n — 1 that

<Ht ) kk+1 =q"" mkHElZ K41 Ht;m
=1

my

we get that the expansion of f can only contain terms of the form [[,_, ¢;" where all my

are equal. Conversely, all such terms do belong to the centre. The statement follows. WM

Additionally, let us consider the crossed product algebra A := CS,, x A. As a vector
space, A =2 CS,, ® A, and its algebra structure is defined by the natural action of the

symmetric group &,, on A given by
+1 4l a _ 1a
Skti = tsk(i)sk’ SkEij = Esk(i),sk(j)sk’ (68)

1 <k <n-—1, where sy = (k,k+ 1) € &,,. This action is well-defined as it preserves

the defining relations of A given in Proposition [6.5] The algebra A has a presentation

analogous to that of A, just with the extra generators s, and the extra relations

along with the Coxeter relations among s, that hold in &,,. The algebra 4 has a basis of

PBW type consisting of the elements
w(EL, )"

111

B! ) Ht (we&,) (6.9)

with the same restrictions on the indices as above in Proposition [6.5

Proposition 6.7. The centre of A satisfies Z(A) = Z(A) = ([T, t:)*").

=1

Proof. Since all elements of Z(A), described in Proposition , are G,,-invariant, we have
that Z(A) C Z(A). Since A C A, we have Z(A)NA C Z(A). It is now sufficient to show
that Z(A) C A.
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Denote the elements of the basis schematically as wET where

E = (E!

1171

o (B )

ir]Jr

and T = [[,_, t;"". We have t,wET o wETt,-1(;, where the proportionality factor is a
power of ¢. For any f € Z(A), let us group in its expansion in the basis the terms
that have the same w and E parts. Each such group has the form wE ), a,T®) | where
ar, € Cand T® =TT, t"*. Any t; has to commute individually with each of the groups.
Suppose w # id. Take i, j such that j = w™'(i) # i. We have t;E = ¢“FEt; for some a.

Commutativity requires

wkE Z a,T®t, = t,wE Z a,T®) = ¢ wk Z akT(k)tj,
k k k

or equivalently, wFE/(q* — titj_l) S o T®) =0, which forces Y, aT® = 0.
This showed for any f € Z(.A) that its expansion in the basis cannot involve any
basis elements for which w = id. This completes the proof. [ |

In the next section, we define inside the DAHA of type GL,, a subalgebra that deforms

the algebra A in a natural way.

6.3 Subalgebra H¢"

In this section, we describe a subalgebra, which we denote H8'", of the DAHA H,,. As we
explain, this subalgebra is a g-deformation of the degree zero part H® of the RCA of type
GL,, and it is a 7-deformation of the algebra A = C&,, x (U,(gl,)/I,) from Section [6.2]

We will use throughout the following shorthand notations

Tl - Ty it i < j,

+ —

Y 1ifi > j,

_ Ty Ty it i > g,
Ty = e

1if i < g,
(1)1 jr I(T )
et . i=1,j+17

(REY =

1ifi < j,

We write R for R' and T for T". We note that (R°);;(R°);; = 1 = T,;(T~");;

Ty T i <,
Lifi>j,
T2y - T if > g,
1ife < g,

with e € {1,—1}.

;i- Notice

that (R°)%, when thought of as elements of the braid group, belong to (and generate) the

AR

pure braid group, which is the kernel of the quotient map Bg, — &,,.
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Let D, = (¢ —q¢ ") ' X, (Y, = Y,/ 1), and let

Di T‘zn lD Tn 1,0 — (q - q_l)_lXi_l(T_ ) (Y Y )T

n—1,2

(6.10)

,m—1

for 1 < ¢ < n—1. With the assignments , upon performing the trigonometric
degeneration ¢ — 1, we get D; — vy;, where we implicitly use the embedding .
At 7 = 1, the elements D; act in the polynomial representation of the DAHA as the
operators d; from Section [6.2]

Let e;; = X;D; (i,j € {1,...,n}). We now define the main object of this chapter.
Inside H,,, we define He» = Hgf’; as the following subalgebra:

H = (T, Y e 1<k <n—1,1<4,j<n,i+#j)CH,.
Note that, by equality (6.10]), we have

= (= ¢ ) (T ) (Yo = Y DTy, € H™

n—1

At 7 = 1, the generators T}, Y=, and e;; of H9' act (in the polynomial representation)
respectively as sy, tlﬂ, and Ef], which generate the algebra A from Section . In the
trigonometric limit ¢ — 1, we get Ty — s, ¥;=' — 1, and e;j — x;y; for all 7, j, which are
the generators of H%, where we implicitly use the embedding .

We note that H® C H%O), where H'” is the degree zero subalgebra of H,, (see Sec-
tion ; however, H» H for n > 2. Indeed, in the limit ¢ — 1, we do not get, for
example, the elements X; X" Ufor i # 7.

In the next remark, we explain that the algebra Hf'" is isomorphic to a subalgebra of

a cyclotomic DAHA introduced in [10].

Remark 6.8. Elements similar to but different from D; appear in the definition of the
cyclotomic DAHA HH., [(Z,q ') for 1 =2, Zy = 1, Zy = —1, Z = (Zy, Zs) |10, Section 3.6],
where we assume that ¢ is a formal parameter and ¢ is numerical. Let us make the relation

more precise. The following elements DPEF = D?) were considered in [10]:
DZBEF = (Tﬁl);—l,lel(yf - 1)(T71>1+,i—1' (6'11>

The DAHA HH,,;(q) considered in [10] is isomorphic to the DAHA H,, considered in this
thesis via an isomorphism ¢g: HH, ;(q) — H,, given by

9(T) =Ty, g(Xi) =Y, gY)=Xi, g(t)=r,

where ¢ = t2, and the parameter ¢ from [10] corresponds to our ¢q. According to [10], there
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is an isomorphism ¢: HH, ,(¢~') — HH, (q) given by

o(Th) =T, o(X) =Y oY) =X ot)=t"

()

Also, it is straightforward to check that the DAHA Hl, has an automorphism h given by
WTi) = Toor, MX) =X 10, h(Y)) =Y, h(r)=1.

By combining these morphisms and applying them to DFFF, € HH? ,((1,—1),q7"), we
get

(hogo)(DRE,) =T X, ' (Y, 2 = DT,

in—1<*n n—1,2

= (¢ ' =D 'TH T,

in—1"n—15"

(6.12)

Equivalently, D; = (¢! —¢q)"}(hogo 90)(DEEFH)(T_l);,rn—1YnT7:—1,i-
that (¢~' o g~ o h)(D;) € HH?,((1,—1),¢""). This implies that H is isomorphic to a
subalgebra of HH? ,((1,—1),¢q~") C HH, ,(1,q"). Recall that a general cyclotomic DAHA
HH), [(Z,q) for Z = (Zy,..., 7)) € C' and | € Z>, was defined in [10] as the subalgebra of

HH, (q) generated by T, (1 <k <n—1), X;, Y7, and

(2

It follows from this

DY = (T_l)i__171X1_1(Y1 —Z1)--- (V1 — Zl)(T_l)qu (1<i<n).

7

The choice (6.10)) of the elements D; is needed in order to be able to make the connection
of the subalgebra H®» with the quantum group U,(gl,,). We now derive some properties

of D; for later use.

6.3.1 Properties of D;

We begin by some technical preliminaries. The following lemma and its corollary record

some braid group identities.

Lemma 6.9. Foralln—1>k>j>i>1 ande € {+1}, we have

T¢

T =TTy, TaTh, =TT

ki~ j+1

Proof. Using the braid relations (and their versions with some of the generators inverted),

we get
Tj8+1Tz'Jig = 7}3711;§+17}7}+17;12,k = Eb—lnn+17}§7}t2,k = Tz‘JIQTg‘Ev
as required. Similarly for the other relation. [

The following is a straightforward corollary of the preceding lemma.
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Corollary 6.10. For alln > j >1i>1 and ¢ € {£1}, we have

(1) (T%)} Ty = T (T9) )1 o
(ii) (1), 1JTz+n 1= ,I'z—tz 1(Ts>;—2,j—1:

(iti) T,y (1) 1y = (T%) 21 Tur s

(iv) T, 3 i (T9) 0 = (T9)) 10T

Jn—1 J—1ln—2"n—-1;"

The next lemma gives some identities for (Ra) in the Hecke algebra.

%

Lemma 6.11. For alln>j>i>1 and e € {£1}, we have

(Ra)giz = (T )’L_] 2Ttl:2 (TE)] 2,4
Proof. Let ¢ = —1. The claim trivially holds if 7 =7+ 1, so let j > ¢+ 1. We want to
show for § € {£1} that

TXTh, T

+ +
i+1,j—-1"4,5—2 — T’Hrl] 1T

1,7—2

T, (6.13)
Since T?° =1+ 6(1 — 7 1)T?, the left-hand side of equality (6.13) equals

Tf«LH] 1Tj o+ 0(T—7" )Téﬂilj 1TJr

©,j—2"

(6.14)
By the braid relations, for any n > j > 1 >4 > 1, we have
(Tﬁ T 1T DI = Tl(Tu 1T6le;13 1)

(proved similarly to Lemma. which upon repeated application (for l =i+1,...,j—1)
gives that TT}%,  \T;% , =T, T;5; ,T? . Hence the expression (6.14) equals

5 s
T T g +0(r—17 )T:ru T o1 =T T 2T2 1
as required. The case when € = 1 can be proved similarly. [ |

The next lemma is an analogue of relations (2.6) and ({2.7]) for T} and D;.
Lemma 6.12. We have [T}, D;] = 0 for i # k,k+ 1, and T;, ' DyT;,' = Dy

Proof. The fact that T}, ' Dy, = Dy, is clear from the definition. If i # k, k + 1, then
either i > k + 2, in which case [T, D;] = 0 because T}, commutes with X! Y*! and
with both T, _; and T),_, ;; =T Te—y and Ty T,

T. .. T by Lemma. and so [T}, D;] = 0 follows, as [T_1, X,,'| = [T}_1, Y,F!] = 0. I

n—1,2

ori < k, in which case T}, T,

iwn—1
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The next lemma is a 7-deformed version of Lemma [6.1]
Lemma 6.13. The following relations are satisfied.

(1) (Relations between Y; and X;) Forn >i# j>1,n>1>1, we have

giti

Y X, = qﬂﬁz—ng—l,lemj}il,lT;rJ—l'

(2) [D;, D] =0 for alli,j.

(3) (Relations between Y; and D;) Forn >i#j>1,n>1>1, we have

Y:D; = (R)/:D;YiR

(YR

nz}:171T;_J—1Dl = q_lDl(T_l)zJ,rn—1(T_l);—l,lyl'
(4) (Relations between X; and D;) For n > 1> 1, we have

XiDy=(q—q ) (T (Y =Y )T, (6.15)
DX = (q— q_l)_l(T_l)f—1,1(q3/1 - q_lyfl)Tfr,l_l- (6.16)

Forn >7j>1>1, we have

-1 _

[Dja Xi] = q—q ! (T 1)1—",—n71(T_1)j_72,1(qY1 + Yn_l)Tn_fl,jTl—’,—ifh (6.17)
T T 1+ —1y—1 + e
[D;, Xj] = q—q-1 (T )i—l,l(T )j,n—l(q Yi+ Yn)Tl,j—2Tn—1,i‘ (6.18)

The trigonometric degeneration ¢ — 1 of relations (6.15])—(6.18) recovers the commut-
ator relation (2.14) that holds in the RCA H,,. We now proceed to prove each part of

Lemma [6.13]in turn. Another proof of the commutativity of D; will follow from the proof

of Proposition below. The important thing for us about the form of relations (/6.15])—
(6.18]) will be that their right-hand sides depend only on the generators 7" and Y.

Proof of Lemma(6.13 (1). This follows from [35, (1.4.64) and (1.4.68)] and the duality
between X and Y described in |35, Theorem 1.4.8|. [

Proof of Lemma[6.15 (2). As Y,—1X, = X, T,* Y, by part (1), we have

Y, =Y, L X, =T, Y, X, =T, Y, T X!
=T, X, (Y, =Y, ). (6.19)
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Next, we have
(Y =Y ) (Y, =Y, 1), T,4] = 0. (6.20)

Indeed, this follows from the fact that [T,,_1, (V,,Y,,_1)*!] = 0 and that

T (Y, Y+ Y, Y =Y T Y, + (= )Y, Y YT, Y
=Y, Y, T (=YY Y Y Y AT = (Y Y Y Y DT,

where we used several times that 7', = T, + (7 — 771).
Using relations (6.19)), (6.20)), and that D, 1 =T, 1D, T,,_1, we get

(q - q_1>2[Dn—17 D'rl] - [Tn—an_l(Yn - Yn_l)Tn—la erl(yn - Yn_1>]
@19 3 - B
XX Yo =Y, DY =Y,
B X’ZlX;—llT;—ll(Yn—l - Yn_—ll)(Yn - Yn_l)Tn—l 0.

For 1 <i<n—2,since [Dy, T}, o] = [Dn, T, ;] = 0, we get

[Dia Dn] = [7};7219 lT_ 21,7D ] = 7}272[Dn—17Dn]Tn:2,i = 0.
Forn—1>j>i>1,[D;,T;, | =[D;,T, ;] =0 by Lemma|6.12] hence
[Di?Dj] = [DiﬂT‘j—j_nle Tn 1]] T’]—i_n 1[DZ7D ]Tn 1,5 — = 0.
This completes the proof. [ |
Proof of Lemma[6.13 (3). Let n > j >4 > 1. Firstly, using equality (6.10), Lemma[6.13] (1),
and that [Y;, (T}, ] = [Vi, T, ;] = 0, we get
(q_q_l)Y;D] :}/;Xj_l(T )]n l(Y Yn )Tn 1,5
= (R_l)j_zX] IY;(T )]n 1(Y Yn )Tn 1,7

= (¢—q¢ YR DY,

as required. Secondly, by using equality (6.10]), Lemmas (1) and and that

YT Ty (T = (T, Yo, we got

2,j—2 Jn—1 i,n—1

(q_q_l)YjD' :Y‘X'_I(T l)zn (Ve =Y )Tn_ 1,
= XY (T T (T ) (Yo = YT
=X (T )ln (Yo =Y )Y}—lT;l,z
=(¢—q ) DT )i Yi Ty

= (q—q " )DY;(T™ )}, T\ Ty, = (q—q ")D;Y;RY,

jio

Jn—1
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as required. Thirdly, by a similar calculation

(q—q_l)YlTl;JTfr,zlel :%ﬂ:l,lTl—',_llel_l(T )ln 1(Y Y, )Tn_ 1,1
= X ()L (T YT ) (Y = Y DT
:qile_l(T )ln (Y =Y, )(T );—UYE
=q (q—q ")D(T~ )ln I(T’l);_UY},

as required. [

Proof of Lemma6.15 (4). Relation (6.15) follows from equality (6.10)).
Next, using Lemma [6.13] (1) with [ = n, we compute

(=g DXy =T, X, (Ve = Y, D X(T7Y),0,
= TlJ,rn—1 (qY T, Tl -1 qfl(Tﬁl);—1,1<T71)1+,n—1Yn71) <T71>7;—1,1
= qufnflynTnim - qil(T l)inflynil(Til);fl,l = qY] — qilyfla (6-21>

which proves relation (6.16)) for [ = 1. For 2 <1 < n, we have
DX, = (Tﬁl)lf—le(Til)iqul = (T71>17—1,1D1X1T1+,1—17

which combined with equality (6.21)) completes the proof of relation (6.16)).
Next, using Lemma/|6.13((1) with i = n, j = 1, and that R\ } = 1+(r—7" )T, (T3, 1,

we get

(¢ — ¢ )[Dn, Xa] = X, ' Yo = Y, !, X4
= Xn_l (Yn(l - R:,l)Xl +(1-— R+ )XlY_l)
- (771 - T>X7:1 (YnTni—l,l(Ti )Zn X+ T, (Tﬁl){n_leynfl) ) (6.22)

Here T, | ((T7")5,1X1 = Xo(T™Y),_11(T7")3,_1, and we apply Lemma m (1) with
[ = n to get that the expression (6.22]) equals

(7'_1 - T)(anTn_—m(T_ )2n (T )n 1 I(T_l);—,n—lyn_l)
=(r ' - 7—)(T_l);—l,l(T_l)Q,n—l(q}/l +Y, . (6.23)

We then note that, for n > 7 > i > 1, we have

[D;, X, = [T, DT

Jmn—1 n—1,5

T':1,1X1T1+,i71] = Tz:mT

Jn—1

[Dy, X3|T,

n—1,7

Tfrl 15 (6.24)

since [D,,,Ty] = 0if k < n —2, and [X1,T}] = 0 if £ > 2. Relation (6.17) then follows
from (6.23)), (6.24), and the fact that (T7'); | (T"){, 1 = (T7"){, 1, (T7"); 4, For
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the latter, we use the inverse of one of the relations in Lemma [6.9] to move successively
... ,T | to the right of (T"){,, ;.

It now only remains to prove relation (|6.18)).

By Corollary (i) and (iii) (with ¢ = 1, j = 2), we respectively get (T}, ,)* =
Ty 2 T7, 5Tr y and (T, ,)* = 17\ T, 5, T, 1, We will additionally use that 7,7, =
1+ (1 — 77 Yoy, that [D,, T, 5] = 0 = [D,,T},_,], and that [X;, T, ,,] = 0 =
[X1,T5,_1]. We also apply Corollary [6.10] (ii), (iv), relations (6.23), (with [ = 1),

and (6.21]). We get

[Dl,Xn] = [Tf,rn—anTn_—l,laTJ—1,1X1T1J,Fn—1]
= Tf,Ln—1DnT3—1Tn_—2,1Tn_—1,2X1T1J,rn—1 -1, 1X1T2n 1T1 n— 2T2 D’ﬂTn_—l,l
= Tn_—l,QTl—t_n—l[Dm Xl]T_—l,lTQ—t—n—l

n

+ (7'*1 —7) (Tfrn—lTr:—2 1 X1Dy — DleT;—LlT?T”—l)

7_71

= (q’lY + Y )T, 1T, (6.25)

We then note that, for n > 7 > i > 1, we have

[DivXj] = [(T )1, 11D1(T )11 1>(T_1)J'r Xn(T_l);fl,j]

7,n—1

(T )iy (T ) [Dr, X (T (T, (6.26)

n—1,j

as [D1, (T)f,,] = (D, (T7);_,,) = 0 by Lemma [13}, and [X;, (T)7,,] = 0 =
(X5, (T7"){,_4]. Relation (6.18) then follows from (6.25) and (6.26) because we have
To.To ., = Tffdeg_Ll, which is seen by using a relation from Lemma to move
successively Ty, ..., Tj 1 to the left of T, ;. |

6.3.2 A presentation of H®» and a basis

We begin this section by describing relations among the generators of H®». We write them
in a form that makes it apparent that they 7-deform the relations of the algebra A from
Section [6.21

Define ST, = [D;, X;]. Explicit formulas for S7; follow from Lemma m (4). In
particular, one can see that S7; € He". The following statement is a consequence of the
commutativity of the elements D;. These relations in the special case of 7 = 1 were given
earlier in Proposition [6.3] The relations below look formally the same as those in ((6.4)
just with E}; replaced by e;; and Sj; by S7.

Proposition 6.14. For all1 <i# j<n, 1 <k #1<n, we have

T T
€ij€kl — €il€kj = €Sy — €ij Sk,
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€ij€kl — €j€i = Sjp€i — Si;Ckl.
Proof. The second relation is proved similarly to the first. For the first one, we have
eijer = €ij (DiXy, — S),) = euD;j Xy — e, S], = eq (ekj + S;k) — €S} |

Further relations are as follows. One can move T} to the left through Y;*' thanks
to relations ([2.7)) of the DAHA H,,. The relations that enable us to move T} to the left
through e;; (i # j) are given in the next proposition. These relations at 7 = 1 coincide
with those from between s, and Ef]

Proposition 6.15. Fori,j,k € {1,...,n} withi #n, j #i,i+ 1, and k # j,i,i + 1, we

have

Tiei i1l = €ip1,; + (T_l - T)(q - q_l)_l(T_l)zH n— 1(Y -Y, )Tn 1,00

Tiei; T = eit1j, Tiej i1 1; = ejs;, ejrli = Tiejp.
Proof. For 1 <¢<n—1, we have
Tie; i1 T; = TXT'D; = Xi1D; + (r7! - 7)1, X;D;,

and the first relation follows. For j € {1,...,n}\ {4,741}, Lemmal6.12 gives [D;, T}] = 0,
and so Tie;1; = T; X T;D; = X;11Dj = €41, as required. The third relation is proved
similarly, since [X;,T;] = 0 and T;D;41T; = D;. If also k € {1,...,n} \ {i,7 + 1}, then
lejk, T;] = 0 as [Dy, T;] = 0, too. |

The relations that enable us to move Y= to the right through e;; (j # k) can be

split into three cases: Y;*' with e;j for i # j; YA with e;i for i # j; and YA with ek
for © # j # k # i. We have the following statement, which at 7 = 1 reproduces (parts
of) Proposition . The only thing that we will use about the form of the expressions ('

and Cy below is that they only depend on the generators T and Y, not their precise form.

Proposition 6.16. (1) Forn >i+# j > 1, we have

Yiez‘j(Til);—m(Tﬁl)fi—lyfl = quJ:@ 11y iCij T (q— q71>71(7' - 7'71)017

where
Cl _ jltl I(T_ )j Q'L(Y’ﬂ Yn 1)T7:—1,j lfj > ia
T‘z—t@ 1(T_l)j_fl,l(T_l>In—2Yn_—ll(Yn2 - 1>Tn_ 13(T l)n 1,3 if o> j
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(2) Forn >i+# j > 1, we have

Eﬂil,lTl—i_,ifleti;_l = q_leji(T_l)z_nfl(T_1>r_zfl,i + (¢ — q_l)_l(T_l —7)C%,

where

q_l(T_ )]n 1(Y Y )T‘z—z Z(T_l)n 1,2 lf] > Z
+

T’z+n 1<T71>j,n—1Y7Z—1(1 - Yn )TJ—Q,ITl—t_j—l(Til)

Cy

n1z1f@>]

(3) For alli,j, k€ {1,...,n} withi# j # k # i, we have
YR} Leik R Y, ! (Rfl)ziejk(Rfl);i.
Throughout the proof of Proposition [6.16], we freely use Lemmas and [6.13]

Proof of Proposition[6.16 (1). For n > j > 1 > 1, we have

Yéeij(Til);—Ll(Til)fi 1Y' ! =YX (T )z 11(T71>;ri 1D‘Y‘71

= qTiJ;z—lTn 11X Y,D;Y;” t= qTZJZz 1L 1ZX (R_l)jt‘Dj

= qz}ﬁz—lTn—l,i@ij +q(r — )thz 11 ZX (T_l)j_—17i+1TiJ,;'—1D‘ (6.27)
where we used that (R™"); =1+ (1 —7 ") (T7"); ;1 Ti;_,. Now,
Tn_—l 7,X1<T_ )j 12—&-1717,] 1D Tn 12(T_ )] 17,+1XD (T )zg 1
=T, 11(T_1)j_71,i+1(T )zn 1XnDn T~ 1,j — (T )] 21X D, T, 1,5 (6-28)

since T, 1 (T7"); 1,01 = (T7"); 9,1, 1, by using a relation from Lemma [6.9) to move

successively Tj:ll, ..., T} to the left of T | ;. Relations (6.27) and (6.28) imply the claim

) i+
of Proposition [6.16] (1) for j > i.

Let us now establish the claim for i = n, j = n — 1. We compute

Yot (T (T, Y, (6.29)
= XY T T o T D (T 7)oy (T Y

:anYﬂTnlenTnlen +(T 71>X D Y(T )n 21(T71);rn 1Y*1

where we used that T2 | = 1+ (7 — 77 1)T,,_1, and then this is equal to

anYnanlTrlenil + (7'_7'71)<T71)7;2,1(T )1n 9 Xn Dy, YT Y, !

= qXn Do+ (T =7 )T ) o (T o X DY, Y, AT, (6.30)
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from which the claim for ¢ = n, j = n — 1 follows.
Then forall 1 <j<n-—1,

Y, enj(T_l); 1,1<T_1)i‘—,nflyn_1

=Y, X Tgn 2Dn—1Tn_—2,j(T_1);—1,1(T_l);rn IYn_l
_Tj+n oYy emn—l(T_l);—l,l(T_l)f—n Y, 1Tn_ 2,57 (6.31)

where we used that T’_ij commutes with ("), (T7"){,_, as a consequence of Co-
rollary [6.10] (i), (iv). Now we use the form (6.30)) for the expression (6.29) to rearrange
expression ([6.31)) as

qenj + (7 — Tﬁl)(Til)ji—m(T )1 n— 9 XnDnYn Y v

n—1,5

which completes the proof of the claim for i = n.
For n >4 > j5 > 1, we have

(T )n leelJ(T )2 1,1(T_1)1’—,i71Y T

i,n—1

= Ynenj(T_l)r_L—l,l(T_l)ii_,n—lyn_l‘ (632)

The proof is completed by combining equality (6.32)) with the claim for ¢ = n, and using
that enj(T_1>E—1 i = Lo €i5- u

Proof of Propositz’on (2). Forn > j > i > 1, we have

YT'_l 1T1+i 1€jz‘Y'_1 = EXjE:l,lei—lDiY;_l = Xj(R )]zYzT le 1D Y_
= ¢ ' X;(RY DT ) (T = q teu(T D], (T‘l)‘
+q ' = )X (T T DA(TTYE (T, (6.33)

,n—1 n—1,2 ,n—1 n—1,2
Jj—1lpti+1,5—-1 i,n—1 n—1,7?

where we used that (R™1). =1+ (77! = 7)(T71)

ji T4, 1. We also have

Jj—1,

XJ(T )] 1 21—’1—:’1] ID (T_l)zn 1= T -1 7,7_;—:1.7 lX D; (T )’L n—1
- T lzjjzj—lg 1<T )zn lX D (T )]n lX D 113 29 (634>
since Tj%, ;1 (T71)5 1 = (T7);,_1T;;_5 by using the inverse of a relation in Lemma .

to move successively T;_1, ... EH to the right of (T7");,_,. Relations and ([6.34)
imply the claim of Proposition [6.16 (2) for j > i.

Let us now establish the claim for i =n, j = n — 1. We compute

ilnn Yy =Y T X T, T, T DY (6.35)
= n_lYnTn:L Tt T DY, = X YT, (T, DY,
+ (77 =) X VT, T DY, !
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where we used that 7', = T,,_; + 77" — 7, and then this is equal to

¢ X1 Dy + (77 = 1) X T, Yo A DY, T T
=q ten1nt+ (T = )T, X DY 1Y, T T, (6.36)

from which the claim for i = n, j = n — 1 follows.
Then forall 1 <j<n-—1,

YnT{—1,1T1J,rn—1@ann_1
= Y T T (T o Xt (T )5 DY

J,n—2
= (T_l)g n—2 Yl 1T1+n 16n— 1nY_1(T_1)7;2,j (6.37)
since (T")},_, commutes with 7, , T}, | as a consequence of Corollary (i) and (iv).

Now we use the form ([6.36] for the left—hand side of equality (6.35)) to rearrange expres-
sion (6.37)) as

qilejn+(7'71_7')(T )]n 1 XnDnYn 1Y, 1TJ21T1J 1

which completes the proof of the claim for ¢ = n.

For n >4 > j > 1, we have

iwn—1 " n

(T )n leT 11Tu 1655 T YnT*—l,lTlJ,rn—leannil' (6.38)

The proof is completed by combining equality (6.38]) with the claim for ¢ = n, and using
that 7% _jejn = e;(THF 4. |

i,n—1 i,n—1

Proof of Proposition[6.16 (3). For j > i, k > i, j # k, we have

Yiej Vb= X;(R7Y YDy, = Xj(R—l);i(R—l),;Dk. (6.39)

Jit?

By Lemma applied to (R™1);

5oand (R7Yf, if & > j then the right-hand side of
equality (6.39)) equals

XTZJS 2T Tg+k 2Tk 1(T )1; 2ka
:1};72Tk—1(T 1)k 2] ( ) z
:7—;’;727—}3—1(7—‘ 1)k 2,j— 1XT (T )] 2,i Dy,
:7};—2T13—1(T 1)k 25— 1€JkT (T ) —2,

(T

:jji;—QTl?fl r- ! 2zejk z] 2 ( >j 2,1 :( 1)Ziejk(7zil)jii’
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as required. Similarly if j > k, the right-hand side of equality (6.39) equals

X; T;; 2T_21 (T_l)g:z,ka—l (T_l);;z,ka:

- X'Tz‘k 1D/€—1Tl:_j 2T'_2 (T_l)'_

.]72’1

_Xj—;—i;ﬂ 2Tk 1DkTIj 1,j— 217]_21(T71)j_—2,i
T:?c 2Tk2 1€Jka 15— o1 ( )g 2,

:E;—QTL:A(T )I;—Z,iejkT 1= (T );—Q,i:(Rilmejk(Ril);w

9,7—2

as required. Next, for i > 7, i > k, j # k, we have
YiRY e Ry Y, "= X;V,Dy R, Y, = e YiRARLY, ! = e,
as required. Next, for k > ¢ > j, we have
ViRLenY, ' = X;ViDyY, ! = X;(R™Y)EDe = (R4,
since [X;, (R™1);;] = 0, as required. Finally, for j > > k, we have

Ve Ry Y, = X;(R7)YiDWR,Y, ™ = X;(R7Y) ;D = ejn(R7Y);;

i

since [Dy, (R71);

;i) = 0, as required. This covered all the possibilities. [

In Proposition [6.16] the relations in cases
(1);(2) for i = 1; and (3) for j > (6.40)

have the elements Y; in the left-hand side placed immediately before the corresponding
elements e;;,. On the other hand, the relations in cases (2) when i # 1, and (3) for ¢ > j
have Hecke algebra elements 7; in between the Y; and e, in the left-hand side.

In order to be able to move an arbitrary Y; to the right through an arbitrary directly
adjacent ej;, we thus also need the following Lemma . Whenever we encounter Y;
directly adjacent to some ej; with their indices not falling into one of the cases ,
we can expand such a monomial into a sum of terms each of which can be handled, in
the sense of moving Y’s to the right. The case Yjej; with ¢ > j and j # k # ¢ can
be dealt with by Lemma [6.17] (ii) and Proposition [6.16] (1), (3). The case Yje; with
j > 1> 2 can be dealt with by Lemma [6.17] (i) and Proposition [6.16] (2), (3). The final
case to consider is Yje;; with ¢ > j. The first step is to apply Lemma m (i). Then
by applying Proposition m (2), we are left to consider terms Yie;; with & < i. For
the terms with & < j, we apply Proposition (3); for the term with &k = j, we apply
Proposition [6.16] (1), and we deal with the terms with & > j by applying Lemma [6.17] (ii)
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and Proposition (1), (3).
Lemma 6.17. (i) Forn >i> 1, we have

i—1

Y, = YT llle 1+ z 1k k+12 1Yk

k:l
(i) Forn >i>j > 1, we have

Y= YRS+ (= n)(TY);

i—1,5

(T )Y

Proof. (i) The claim is trivial for ¢ = 1, so suppose i > 1. By using 7% = 1+ (1 — 7 1)T1,

we get

Yin-1,1ﬂz =Y T 2,i—1 + (7 — 71)ET¢:1,1T2T¢—1
= YT,y + (r = (T T e (6.41)

If © = 2, the desired relation follows by rearranging equality (6.41]) for Y,TZ:LQT;’r i1 =Y.
Assume ¢ > 2, then we iterate i — 2 times the manipulation in (6.41]). Thus, at the next
step, we use T3 = 14 (7 — 77 )T} to get that Y;T,_, , T}, ; equals

YT~ T 3i-1 T (r—71" )YT T 3i-1 T (r—1 1)(T_1);71,1T2J,riflyl
2
= YT 3T+ (7 —771) Z(Tﬁ it Do i1 Y
k=1
and so forth until we obtain the desired relation.
(ii) By using 77 = 1+ (7 — 77 1)1, we get
Y;Rz—; =Y+ (17— T_l)YiTi_—l,j (T_l);_-i-l,i—l
=Y+ (r—7 )T -(T_1>;_+17i71}/j,

1—1,7
and the desired relation follows. [ |

In order to be able to move Y;’l to the right past ej;, we use the relations from
Proposition multiplied by Y;™' from the left and rearranged to find an expression
for the first term in the right-hand side. We also need the next lemma that serves an
analogous purpose as Lemma m (proved similarly, too) to deal with the cases where we

end up with Hecke algebra elements T} in between the Y;”! and C;k-
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Lemma 6.18. (i) Forn >i> 1, we have
n—i—1

Yi_l = Y;_lT;—,tzflTn_fl,i + (7_1 - T) Z (T_l):nfkflTn_fkflz'Yn_flk'

k=

]

(i1) Forn >k >i>1, we have
YV '=Y (RYG+ (= T)(T71)I;—l,i—i-l(Til)z‘fk—lYkil'

In view of the relations presented above, we arrive at a C,-basis for the algebra He'".
It may be thought of as a PBW-type basis. At 7 = 1, it reduces to the one given by
formula for the algebra A. The following theorem also implies that H®» is a flat

T-deformation of the algebra A from Section [6.2

Theorem 6.19. The algebra H® has a free basis over C, consisting of the monomials

n

Tueyy, ey [ 1Y (6.42)
=1
where w € &, t € Z>o, ks € Loy, my €2, 1 <43 <--- <3, <n, 1 <5< <5< n
with iy = 1511 = Js < Js+1, and none of the indices i, equal any of the indices j5. Here T,
(w € &,,) is the standard basis of the Hecke algebra of type A, ;.
The algebra H has a presentation by generators Tj, (1 < k < n—1), Y, e;

(1 <i#j<n)and relations 2.4), 2.5), .7), Laurent relations for Y=, and relations
from Propositions . Further, H® /(7 — 1)H" = A.

Proof. Consider any monomial in the generators Ty, Y;*', e;; (j # [). In step one, we

apply the relations from Proposition and Lemmas and to move Y;*! to the
right past any directly adjacent ej;. All of those relations are linear in e’s, so this does not

increase the number of e¢’s in any single term. In step two, we move all T}’s completely
to the left end of each term by using Proposition and relations . This does not
increase in any single term the number of e’s, and in those terms where the number of e’s
stayed the same, this did not increase the number of Y’s. We then repeat steps one and
two until all Y’s are to the right of any e’s and all T”’s are at the left end of each monomial
term. We achieve this in finitely many steps. Since T, (w € &,,) form a basis of the Hecke
algebra of type A,_; (see Theorem , we can now assume that all monomial terms
take the form T, (product of e’s) [T, ¥;™.

Next, we use the relations from Proposition for the product of e’s to order them
in accordance with the conditions on the indices as in . We can handle by induction
the terms where the number of e’s has decreased after an application of a relation from

Proposition [6.14] so we care only about the quadratic terms in e in those relations, and
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these do not introduce any new Y’s nor 7”s. This proves that the monomials span
the algebra H®.

It remains to show that these monomials are linearly independent over C.. It suffices
to show that for 7 = 1 they are linearly independent over C. This holds because at 7 =1
they coincide with the PBW basis for the algebra A from Section (see formula (6.9)).

It is straightforward to see that under the correspondence T <+ sj, Y71 <> tfl,

)

e;; <> EL, the defining relations of H®» are just deformations of those of the algebra A

5
(relations from Proposition together with relations and the Coxeter relations),

and reduce to them when 7 = 1. The last part of the statement follows. |

Remark 6.20. One may also consider a non-formal version of the algebra H®» where
T =\ € C*, that is, we consider the C-algebra

Hg[n/(T — )\)Hgln =~ Ho'» @¢. C,

where we use the ring homomorphism ¢: C, — C given by ¢(7) = . Then, it follows
from Theorem that (the coset representatives of) the elements (6.42)) give a C-basis
of this algebra.

6.3.3 Centre and a double centraliser property

In this section, we consider the DAHA H,, and its subalgebra H®» defined in an analogous
way as in Sections and , respectively, but over the field C(7) of rational functions in
the variable 7 instead of C,. An analogous proof shows that this version of Hf satisfies
the direct analogue of Theorem[6.19] We now study some further properties of this algebra.

Proposition 6.21. The element Y = [T, Y; belongs to the centre Z(HO™).

Proof. From the defining relations of H,,, it follows that Y commutes with all Y= and Ty,
Also, YX; = qXﬂN/, hence [EN/, XZ»X]-_I] =0, and it follows that ¥ commutes with all

eij = (q — qil)ilXinil(Til);fna(Yn - Ynil)Tni—l,j'

Thus, Y commutes with all the generators of Hf as required. [ |

Remark 6.22. We have

which is the generator of the centre Z(H») from Section [6.1]
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Take any element 0 # f € Z(H®). We can expand f in the C(7)-basis of monomials
from Theorem [6.19] That is, there exist finitely many monomials M, Ms, ..., My of the

form (6.42)), and some Ay (7),...,An(7) € C(7) \ {0} such that
f)ZZAl(T)A41+""+‘AN(T)A4N.

We can assume that \; do not have a pole at 7 = 1 and that X;(1) # 0 for some i. We

have
n n

MM 4+ Ay (M € Z(A) = ([t [T,

i=1 =1

where we used that the centre of the algebra A was given in Proposition . Here M]=!
are the monomials M; with Y; replaced by t;, T;, by w, and e;; by E;.]l.

Thanks to the PBW basis of monomials for the algebra A, we can conclude that

in the expansion of f, the monomials M; for which A\;(1) # 0 must have the form ym

(m € Z). By subtracting those terms from f and repeating the above argument, we arrive

at the following theorem.
Theorem 6.23. The centre Z(H®) is generated by Y+,

Let us now consider the subalgebra 2 of H,, generated by
ClXy,..., X, C[Dy,...,D,], ClY, ... Y,

and Ti,...,T, ;. We note that H®» C 2. In the limit 7 = 1, those generators of A that
are not Ty reduce to the generators of the ¢-Weyl algebra considered by Hayashi in [61].
The algebra 21 can be thought of also as a g-analogue of the RCA H,,. Indeed, in the
trigonometric limit ¢ — 1 given by , the algebra 2 reduces to H,, C H™.

Remark 6.24. By |10, Section 3.7|, the cyclotomic DAHA HHg,t(Z, gt for Z=(1,-1)
is the subalgebra of the DAHA HH,, ;(q~") generated by T (1 <k <n—1), X;, Y, and
DPEF (1 <4 < n) given by (6.11). By using the isomorphism ho go¢: HH,,(¢7') — H,
from Remark , we get that this subalgebra HH?2 ,(Z,q™') C HH,(q™") is isomorphic

n,t

to the subalgebra of H,, generated by T, X;, Y !, and

7

DY, 'Th T

i,n—1"n—1,
(see equality (6.12))), which coincides with the algebra 2. That is, A = HH? ,((1,—1),¢7").

We need the following basis of the algebra 2. Another basis of A = HH ,((1,-1),¢")

was considered in [10] (see paragraph above Proposition 3.32 therein).



CHAPTER 6. A SUBALGEBRA OF DAHA AND VAN DIEJEN’S OPERATORS 144
Proposition 6.25. The algebra A has a C(7)-basis consisting of the monomials
TwMxMpMy, (6.43)

where w € S,,, Mx is a monomial in X;, My a monomial in Y;ﬂ, and Mp a monomial

in D; such that for all i, Mx does not contain X; or Mp does not contain D;.

Proof. Consider any monomial M in the generators Ty, X;, D;, Y;=!. Firstly, we will show
that we can write M as a linear combination of terms of the form . We will proceed
recursively based on the total power of X’s that appear in M. We apply the following
procedure to M.

In step one, we use relations from Lemma [6.13] (1) and (3), and Lemmas and
to move Y;-il to the right past any directly adjacent X; or D;. In step two, we move
all T},’s completely to the left end of each term by using Lemma and relations
and . We then repeat steps one and two until in each monomial term all Y’s are to
the right of any X’s and D’s, and all T”s are at each term’s left end. We achieve this in
finitely many steps. At the end, all the monomial terms that were produced have the same
total power of X’s (and of D’s) as the original monomial M, and we can assume each of
the terms to be of the form T, (product of X’s and D’s)My for some (not necessarily the
same) T,, and My.

We now apply Lemma m (4). Tt gives that ST, = [D;, Xj] can be expressed in
terms of Y and T variables, hence we can commute D with X up to a term with a
lower total power of X’s (which we can handle by recursion). Furthermore, whenever we
encounter X;D;, we can replace it with an expression containing Y and 7T only. It follows
that the monomials span the algebra 2.

It remains to show that these monomials are linearly independent over C(7). It suffices
to show that for 7 = 1 they are linearly independent over C. We will work with the faithful
polynomial representation of the DAHA. Recall that at 7 = 1, the elements D; act as the
operators d; from Section , while T}, and Y;ﬂ act as s and t;tl, respectively. Therefore,

for any a;,b; € Z>¢ and ¢; € Z, we have

T, ﬁ X ﬁ DY ﬁ Y
=1 =1 1

1=

ccw [[XP " [+ .. (6.44)
=1 i=1 i=1
where . .. denotes terms in which the overall sum of the exponents on the ¢;’s is lower than
in the above leading term, and o denotes proportionality by a non-zero factor, which may
depend on gq.
Assume a non-trivial linear dependence of some monomials at 7 = 1. This
implies a non-trivial linear dependence of their corresponding leading (with highest degree
in t;) terms, whose form is shown in the right-hand side of . By the assumptions
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on the monomials (6.43)), either a; = 0 or b; = 0, hence different monomials ) lead
to distinct leading terms. However, operators w [ [, X" [\, t; " for dlfferent n;,n; € Z
and w € &,, are linearly independent as operators on C[X{™, ..., XF']. We arrived at a

contradiction, which completes the proof. [ |
Lemma 6.26. Any monomial (6.43)) with deg Mx = deg Mp belongs to H"™.

Proof. We permute the elements X; and D; in such a monomial so as to pair them up
into a product of elements e;;. This can be done up to a combination of terms of lower
degree in X with equal degree in D, since S7; = [D;, Xj] can be expressed in terms of Y
and T' by Lemma [6.13] By re-expressing these lower degree terms via the basis , the
statement follows inductively by degree in X. |

Remark enables us to prove the following proposition.

Proposition 6.27. The algebra 2 has an irreducible representation 1 on the space of

polynomials C(7)[ X7, ..., X,] given by

(1 =71 Xk

¢(Tk) = TS +

P(X) =Xi, Y1) =T, (6.45)
YY) =71"" ¢(thb 1) _1¢<<T_1>T,i—1)7
V(D)= (qg—q )X (T (Y =Y DT 5)

where 771 = (n,...,2, )ty =t,(n,...,2,1) (see formula (2.11))).

Proof. By Remark the algebra 2l is isomorphic via ¢~ 'og~toh to HH}, ,((1,—-1),q7").
The latter has by [10, Proposition 3.6] an action on C(t)[X7, ..., X, via pger = p defined
in |10, Proposition 3.3] (with ¢ replaced by ¢~!). Let ¢’ = pggro @ tog~!oh, which then
gives an action of A on C(t)[X},...,X,]. We have

(t_l — t)Xn_k
T.) = T =t ls,_p+
¢ ( k) pBEF( ) Xn—k‘-i—l - Xn—k
¢/(Xz) - Xn—i+17 W(T) = t_17

V'(Y;) = peer(Y, 1) = ' " peer (T ), ;) (Lo n)twpser (T, y 0 i),

W(Di) = (q— ) 1Xn ﬂmﬂ (( )1n 1(Y Y, )Tn_ 11)'

(Sn—k - 1)’

The representation of 2 is obtained from the module C(t)[Xy,...,X,] by rela-
belling t to 77 and X; to X,,_;1.

The proof of irreducibility is similar to that of |61, Proposition 2.1]. Let V' be a non-
trivial submodule, and choose in it a non-zero element v = > amX{™" --- X", where

m = (my,...,my,) € Z%, and ay, € C(7). We can assume that those ay, with maximal
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> iy m; among {m € Z%;: am # 0} do not have a pole at 7 = 1, and that at least one of
them is non-zero at 7 = 1, say for m’ = (m/,...,m},). Since the action of ¢(D;) reduces
the degree of a polynomial, we get that w(DTll <Dy /")v € C(7) and is well-defined at
7 = 1. Moreover, it must be a non-zero element of C(7) because at 7 = 1 it equals

dy" - din (0) = ame (L)[mi]l - [ )l

which belongs to C* as ¢ is not a root of unity. Here we use for m € Zx, the notation

qr—q "

[m]ly = [m]g[m — 1]q - - [2][1]q, [m], = q—q!

and the operators d; are given by formula (6.3). It follows that 1 € V', and by acting on 1
by combinations of ¢(X;), we get that V = C(7)[ Xy, ..., X,]. |

Corollary 6.28. The subalgebra H®» C 2 acts on C(7)[X1, ..., X,]. Moreover, this action
preserves for all k € Zsq the subspace C(7)[ X1, ..., X,]® of homogeneous polynomials of

degree k, and this is an irreducible H®-module.

Proof. Trreducibility is proved similarly to the proof of Proposition [6.27, Using the
same notation, this time we have "  m} = k. An arbitrary monomial X7*--- X €
C(7)[X1,...,X,]® can be obtained as

P(eX™ - -X;';"DTII - DMy

for suitable ¢ € C(7) \ {0}, where Xj*-- -Xg”D;n/l .. D™ ¢ H% by Lemma since
Do ai=k=37 m o

The preceding corollary generalises the fact that the polynomial representation of the
algebra H®» preserves the space C[X1,..., X,]*®), which is an irreducible module for it,

and that this space is also preserved by the algebra A from Section (for 7 = 1,
cf. also [61, Theorem 4.1(A)]).

Remark 6.29. The assignments almost coincide with those of the polynomial
representation of the DAHA H,, given in Section above, except that the image of Y;
in has an extra factor of 7! (the action of Y; in the polynomial representation can
be deduced from relations ) A way to think about this is that the operators from
the polynomial representation on C(7)[X;™, ..., X*!] in Section [2.4| formally preserve also

the space
n log, 1
(H Xi> C(n)X{, ..., XT,
i=1
which induces another action of H,, on C(7)[X™", ..., X;*'] under which the subalgebra 2

preserves the subspace C(7)[X1,..., X, and acts as given in Proposition [6.27
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We are now going to show that

HE = Co(Y),

oo (6.46)
Cy(H") = (Y, Y1),

where C4(B) = {a € A: [a,b] =0, Vb € B} denotes the centraliser. This statement is a
g-generalisation of the property that

HOn = Cyy, (eu),
Cxu, (’Hg[”) = (eu).

The first of the latter equalities follows from the fact that the RCA H, has a natural
grading such that its faithful polynomial representation is a graded one. The element eu
acts (up to a constant) as the grading operator >, z;0,,, hence it only commutes with
the degree zero part of H,,, which is precisely H%». The second equality follows from the
fact that degeu = 0, hence eu € H%, so the previous sentence implies that Cy, (H) =
Z(H%"), which equals (eu) by [51].

The fact that eu is essentially the grading operator has a g-counterpart in the following
property of Y. Since Y = 7" [35, p. 101], we get by using formula that

V(X{PX52 - X0) = g2 X Xg2 . X0, (6.47)

That is, Y acts in the polynomial representation as a grading operator.

Let us now provide a proof of relations . From Theorem m, it follows that
H9% C Cy(Y). We now prove the reverse inclusion. Let f € Cy(Y). Since YD; = ¢~ DY,
we have

YT, MxMpMy = ¢ieeMx—deeMpp rro VoMY .

This implies that the expansion of f in the basis of 2 given in Proposition [6.25|can contain
only those monomials where deg Mx = deg Mp, as ¢ is not a root of unity. Hence, f € HS"
by Lemma . We have proved that He%» = Cy(Y).

Suppose now that f € Co(H®). Then it must, in particular, commute with ¥ € He.
Thus, by the same argument as above, we get f € H®». Therefore, Cy(H) = Z(H") =
(Y,Y ') by Theorem as required.

Thus, we have established the following theorem.

Theorem 6.30. We have Co(Y) = Ho% and Cy(Ho) = (Y, V).

This theorem implies that H®» coincides with the degree zero part of the algebra A,
where the grading on 2 is inherited from the DAHA.
Related to the previous considerations, let g = (Y,Y 1) = C(7)[z*]. We have
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g C H C A. From Corollary [6.28] it follows that V = C(7)[X1,..., X,] is a (g, H)-
bimodule, which by Proposition is an irreducible A-module. It admits the decompos-
ition

V= @ Ur @c(r) Wk,
k=0

where W, = C(7)[X1, ..., X,]®, which by Corollary is an irreducible module of H",
and Uy, = C(7) is the irreducible (one-dimensional) module of g determined by Y — ¢*
(this is by formula (6.47)) the action of Y on Wy). It k # 1 € Zso, then Wy, 22 W), because

their dimensions as vector spaces differ, and Uy 22 U, since ¢ is not a root of unity.

6.4 Related integrable systems

In Section|6.3.1] we considered a family of pairwise-commuting elements D;. We now intro-
(I1,l2

duce certain pairwise-commuting D, ) of a more general form depending on additional
parameters ly,ly € Z>g, a; € C (j = —ly,...,l3). The action of symmetric combinations
of D) on the space of symmetric Laurent polynomials C.[ X7, ..., X*'|%" will lead to
families of commuting ¢-difference operators related to operators of MR and Van Diejen
types. We will assume a_;, # 0 # a;,. We recover D; = (q — q*l)*lpf’” for a_; = —1,

agp =0, and a; = 1.

We define l
2
D, =D = X1 Y aY,
Jj=—l1
and for 1 <i <n — 1, we define
D; = Dz(llh) = Tz‘,tz—lpnTg—l,i
l2
= Xi_l(T_l);,_nfl ( Z aquf) T, 1 (6.48)
Jj==h

We have T, "DyT;, " = Dyy1, and [T}, D;] = 0 for i # k, k + 1 by an analogous proof as
for Lemma In Proposition below, we prove that D; pairwise commute. Let us
first develop some tools to be used in the proof.

Let H, be the (unital, associative) C, -algebra generated by T}, (1 < k < n — 1) and
C.Zy,. .., Z,), C,[Y{™', ..., Y1 subject to the following relations:

(Th —7) (T + 71 =0, TThiiTp = TorTiThsr, [Th, ] =0if [k —1] > 1,

T Zk T = Zya, [Ty, Z;] = 0 for i # k, k + 1, (6.49)
T, T = Y, [Ty, Y;] =0 for i # k, k + 1,

YZ;=q'ZY, (6.50)
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YoZy = Z,Y>T2, (6.51)

where Y = [, Y
There is an algebra homomorphism ¢: H — H, given by

OT) =Te, &(Zi) =X (Vi) =V,

whose image contains the elements D;.

The next proposition gives a family of endomorphisms of the algebra H .

Proposition 6.31. Let f(z) € Clz,27'| be an arbitrary single-variable Laurent poly-
nomial. There is an algebra endomorphism 0 = 0 of H., determined by 6(T;) = T,
0(Y;) =Y, and

H(Z) 77;1 1Z f( ) n—1,2 (:Zl< )zn 1f( ) nlz)'
Proof. 1t suffices to check that 6 preserves relations (6.49)—(6.51)). Firstly,

H(Tk_lszk_ ) Tl;:ln 1Z f(Yn)T_fl,kJrl = Q(Zk-i-l)a

n

as required. Suppose now that ¢ # k, k+ 1. Then either ¢ > k + 1, in which case it is easy
to see that 6(7)) commutes with 6(Z;). Or i < k, in which case using Lemma [6.9] twice
and that [Ty_1, Z,] = 0 = [Ty—1, f(Ys)], we get

‘9<TkZ'>:Tsz+n 1Zf( )nlz thz 1Tk 1Zf( )nlz
—Tz+ 1 nf< )Tk lTi zn 1Zf( )nuTk—e(ZTk)

n—

This completes the proof that € preserves relations ((6.49)).

Secondly, we have

O Z) =T, Y Zuf (Vo) Ty = ¢ T Za (V)T Y = ¢ 0(Z:Y),

i,n—1

hence 6 preserves relations .
Finally, since 0(7;) = Zl( N f(YR)T, 1, we see due to relation ) that it

will follow that (Y, 'Z,Ys) = 0(Z, T, ?) if we show that

Ty (T (V)T Yo = (T3 f (V)T 0T

The left-hand side of the latter equality can be rearranged as

Yi_l( )2n lf( ) n— 11}/2 ( >2n 1f( )Tn_ 12Y_1T1Yé
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= (T_1)In—1f(yn)T7:—1,2T1_1»
as required. Thus, @ preserves the relation (6.51]) as well. [

The next proposition proves that the elements D; € H,, defined by (/6.48) commute.

Proposition 6.32. We have [D;, D;] = 0 for alli,j (for fived values of the parameters [y,

lo, and ay).

Proof. Let f(z) = 222:_[1 a;z!. The pairwise-commuting elements Z; € H satisfy Z; =

Tiﬁz—lznTr:—ua and
la
0p(Zn) = Z Y a;Y;] € H,,
Jj=—b

Remark 6.33. Commutativity of D; in the special case of [ = 0 was proved in |10,
Corollary 3.22 (i)] by a different method. Indeed, the elements Dgl) considered in that
paper satisfy (hogo @)(Dgi)iﬂ) = a:ZIIDi for [ = 0 and Z; expressed in terms of a;. Here,
h, g, and ¢ are the isomorphisms from Remark [6.8]

Remark 6.34. The algebra H®» is the subalgebra of H, generated by 7}, Yiil, and
XD; (i # j)forly =1l =1, and ay = —1, ap = 0, a; = 1, since in that case
D, =X 'Y, -Y )= (¢ —q)D,. It would be interesting to see if the subalgebra of
H,, generated by Ty, Yiil, and X;D; (i # j) for more general [y, l5, and a; — equivalently,

the degree zero subalgebra of a general cyclotomic DAHA — has good properties as well.

1. mentioned in Sec-

tion in which the element 7~1 acts according to formula (2.11) as (n,...,1)t; =

Recall the polynomial representation of H,, on C.[X{', ..., X!

tn(n,...,1), the action of Xii1 is by multiplication, and the Hecke generators T} act ac-
cording to formula (2.10)) as
r—771 T X — X5 (1 — 77 ) Xes1
TS+ (s —1) = Sk
XX — 1( ) X1 — X X1 — X

It follows that the elements 7} V=T, 4+ 71— 7 act as

T 1 X1 — 7X (r—77HX,
Sp 4+ ~——————.
Xen—Xi " Xppr — Xi

By combining relations (6.48) and ({2.8]), we get

(6.52)

Iy ' I '
D; = Xi_l <Z a; ((T_l):n—lﬁ_l<T_l)Ii—l)] + Z a—; (72'_—1,17TT71_—17¢)] + GO) . (6.53)

j=1 =1
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We now prove that the action of symmetric combinations of D; preserves the subspace
C.[XF', ..., X% Let C[Dy,...,D,]®" denote the set of all symmetric combinations

of D;, where &,, acts by permuting the indices. We will make use of the following lemma.
Lemma 6.35. We have [T}, D] = 0 for any D € C[Dy, ..., D,]®" and for all k.

Proof. The subalgebra (T%,..., T, 1, Y{, ..., Y F) € H, is a GL,-type AHA, whose
centre contains C[Y7,...,Y,]®". We have [D;, D;] = 0 by Proposition ; also, recall
that T}, 'DyT, ' = Dy.q and [Ty, D;] = 0 for i # k,k + 1. Thus, there is an epimorphism
from the subalgebra (T1,...,T,_1,Y1,...,Y,) to the subalgebra (T}, ..., T,_1, D1,...,Dy)
given by Tj — Ty, Y; — D;. The claim follows since T}, commute with any element of
C[Yy,...,Y,]®". [

Proposition 6.36. Let D € C[Dy,...,D,|". Then the action of D on C,[X;™, ... X!

preserves the space of invariants C,[Xi", ..., X1,

Proof. From formula (2.10)), it follows that p € C,[X{",..., XF!] is &,-invariant if and
only if Ty.(p) = 7p for all k. The claim thus follows from the fact that D commutes with
all T, by Lemma |6.35] [

Let f be any operator on C,[X7!,..., X*!] of the form

f= Z gi,j,wtzw, Gijw € Co(Xq, ..., X,).

ie{l,...,n}

JEL, wES,
For instance, the action of any D € C[Dy,...,D,]®" can be written in this form. The
operator Res(f) is defined by

Thus, Res(f) is a g-difference operator with rational coefficients. On the elements of the
space C,[XF!,..., X it acts identically to f. In particular, if the latter preserves
this space then so does Res(f).

We note that the elements D are not invariant with regard to the action of the sym-

metric group &,,, but the operators Res(D) are.

Theorem 6.37. The operators Res(D) for D € C[Dy, ..., D,|%" are pairwise-commuting,
S, -invariant, and preserve the space C, [Xlil, o, XENSn - Burthermore, an algebraic basis

P10 € C[X1,. .., X,]% givesn algebraically independent operators Res p;(Dy, ..., D,).

Proof. Preservation of C,[X{, ..., X;7]% follows from Proposition [6.36]
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Let D,D € C[Dy,...,D,]% and p € C,[X;!, ..., X*!]% By using Proposition m,
we get Res(D) Res(D)p = DDp = DDp = Res(D) Res(D)p. Thus, Res(D) and Res(D)
commute when restricted to C.[X, ..., X% which implies the commutativity of
Res(D) and Res(D) (for the statement see [74, Theorem 4.5|, [34, Theorem 3.3], for a
proof see |71, Proposition 3.2|, and for the additive case [32, Lemma 3.7]).

For any w € &, we have wRes(D)w 'p = Dp thanks to Proposition . Thus
w Res(D)w™" and Res(D) are equal as operators on C.[Xi ..., X% As in the pre-
ceding paragraph, it follows that w Res(D)w™! = Res(D).

The final claim follows by specialisation to 7 = 1, which reduces D; to an operator in
the variable Xj;. |

Explicitly, for {1 = I, = 1, and for the symmetric combination ) ., D; of degree one,

we get the following formula for the corresponding integrable Hamiltonian.

Proposition 6.38. With a = ay, b =a_1, and c = agy, we have

Ma,b,c ‘— Res (i Dl(l,l)) _ aTl—n i Xi ﬁ T;XZ _XXJ ¢,
i . i — X

i=1 i=1 7j=1
JF#

1| X TX 1
1-n - ¢ J -1 -
pr Y T |+ ey
=1 ];l =1
J#i

(6.54)

The proof will follow from the next lemma. Let

D;l— — X»_l(T_l)+ 7T_1<T_1)+

7 ,m—1 1,:—1

— —1m— —
D X; Tz‘—1,17"Tn—1,z‘a

i =

so that by relation (6.53) we have
n n n n 1
Res DY | = aRes D | + bRes D |+c) —.
Then the following statement holds.

Lemma 6.39 (cf. [3, Lemma 5.3]). For allm € {1,...,n}, let

n

Ef =7 i XiAi,mti, where A, ,, = H
i=m g j=m

J#

TZXZ‘—X'

J

X, —X;
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Then
( Df) (6.55)
Furthermore,
(ZD > (6.56)
=1
where
— 1 X — X
— _ _n—2m+1 ) -1 ) _ 3 J
E =T Z ZBZ’mti ,  where B, = Jl_[l X, X,
J#i

The proof is analogous to that of |3, Lemma 5.3|. For convenience, we indicate here

how to adapt that proof in our context.

Proof. We give the proof of equality ((6.56), since (6.55)) works similarly. By using formu-
las (2.10) and (2.11)), we get

Res(D; ) = 7" " Res(X; ‘T~ thl_l) = 7" Res ((T—l);_MX;lt;l) .

In particular, Res(D;) = 7" 'X; ;! , from which equality (6.56) for m = 1 follows.

Thus, it now suffices to show that we have for all m =1,...,n — 1 that
Res(D,,.1) =E,,.1 — E,.. (6.57)

For 7 # m + 1, we have

o X T Xen p X TN (A=) X
i,m+1 Xz — Xm+1 ey Xz — Xj Xl — Xm+1 im-
i

Hence, relation (6.57)) is equivalent to

n—2m—1 m Tn72m71(1 . 7_2)

Boiimiityy + Bimt; . 6.58
+1,m+1m+1 ; X, _Xm+1 s ( )

T

Xm+1

Res(Dy,44) =

Let the right-hand side of equality - 6.58)) be the definition of R, form =0,1,...,n—1.
We trivially have Ry = Res(D; ). We note that

Res(D;,.,) = Res(T,,' D, T,;') = 7' Res(T,,' D;,).

Thus, to prove equality (6.58)) for all m = 1,...,n—1, it suffices to prove that Res(T,' R,,) =
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TR, 1. Indeed, we will then get that
Res(Dy) = 7' Res(Ty D7) = 7' Res(Ty ' Res(Dy ) = 77 ' Res(T] ' Ry) = Ry,
as required; and sumlarly for Res(Dy ), etc.
By using formula ((6.52)) for the action of T, we compute

Tanm . ,7_n72m(1 _ ,7_2)
Bnsvmirtmin + 55—

m m—+1

Res(T,,'R,,) =

-1
B mt,
m—+1
m—1

7772 (1 — 72) (X1 — 72 X)
(Xig1 — X ) (X — Xons1)

-1
Bim-1t;
=1

m—1

= 2m(1 T2)2X

— (K1 = X)) (Xi = Xo)

-1
Bim—1t; .

The proof that Res(7,'R,,) = 7 Ry,+1 is completed by using in the preceding equality that

1 Xpy1 — 72X, (1-712)X, B
X1 — Xon \ Xi = Xl Xi—X, ) "
X, — X 1
= ! T m Bi,m—l = < Bi,m
(X = Xpur) (X; — X,) X, — Xomi1
for ¢ # m. This completes the proof of the lemma. [ |

Remark 6.40. The operator M, . given by for a special choice of the parameters
a, b, c can be related to a particular limit of the operator (3.13a) from [103] as follows. In the
latter operator, let us make a translation of the center-of-mass of the form ¢% — xk='¢%
(j = 1,...,n) for a constant s, make the change of variables X; = ¢~® (in particular,
the additive shift operators Tj, Tj_1 become respectively tj_l, t; in our notation), put
t = 72, and multiply the whole operator by x. Then in the limit x — 0, one obtains the
operator fora = —T”_ltAo, b= —Tl_”tAl, and ¢ = fo+1;. Further specialisation of this
operator at ¢; = 0 appeared in |10, Example 3.24]. The operator M, o is gauge-equivalent
to the standard MR operator with an extra term proportional to 1, X; ' (see [10]).

For more general values of ; and [, and the degree one symmetric combination ., D;,

the following proposition takes place.

Proposition 6.41. We have

n lo—1 n

SO S e bigi =

i=1 kOjl
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I lhi—1 n QTX] y
+ 7l )a—1z HH _qu A+
J?él

=1

7115]] such that —l; <

k; <y for all j. Moreover, in each term, either all k; are non-negative with ijl k; <y,

where ... denotes “non-leading terms”, that is, terms with shifts [’

or all k; are non-positive with 2721 k; > —1;.

The proof is similar to the calculation of the leading term of a general Macdonald

operator, polynomial in Y variables of the DAHA, from |34, Proposition 3.4].

Proof. By using equality (6.53)), we get
es(ngh»M) Res (ZX Za] Vot DT
+ Z X Z ay (Tt (1 )T ) + ao inl) .
i=1
From there, we see due to formula (6.52)) that the term containing tlf can only come from

Res (al2X1_1 ((T_l)fn_ﬁn(”a ceey 1))12 )

Hence, using formula (|6.52)), we can compute this tlf term to be

1 (2 X — X \"
l2(17n) - 1 ]t
. alzXl(jr_[g—Xl_X )
lo—1 n k_92
_ _ly(1-n) T X1 — I
= 72 al2X1(HH le >t12

We can use &,-invariance (see Theorem to deduce the coefficient at ¢ for any i.

i and then use &,-invariance

Similarly, one can compute explicitly the coefficient at ",

again to complete the proof of the proposition. [ |

For example, for [y =1 and I, = 2, we get the following integrable Hamiltonian

n n no2 2
(1,2) ) _ _2(1-n) 1 (T°Xi = Xj) (g7 Xi — Xj) | »
es D, =T a -~ t;
(Z ) 2 |-

J#
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n

20-n)g, 3 (7? = D(* — ¢)(X; + Xj) 11 (T°X; = X)) (X, — X))

+qT .
S, (@ = X5)(eX; — X5) (X - X)X - X)) i
I#4,3
n 1 n 72X — X. n 1 n X, — 72X, n 1
1-n z : 7 j 1—n i J .
o alilei Jl_[l Xi— Xj o alz‘ZlXi gl_[l Xi—Xj ' +a0i:1Xi
s J#i

which is a generalisation of the operator [20, (5.18)] to which it reduces for a_; = 0.

6.4.1 Differential limits

Let us explain the relationship of the operator M, . (6.54) to various differential operators.

6.4.1.1 Relation to type A CMS operator in an external field

1

The operator M,;. with a = 7°7'¢"%/2 and b = 0 can be gauged by the function

exp(>_1, (13%0:22) (see [10]) to the operator

which is the standard MR operator with an additional > | X; ! term. If we put X; = €%,

q=¢" 7 =e"? c= \h?/2, and expand around i = 0, we get

| me®ih m?e® h? M2
M = 1— o(n’* I+ =) e
J#i
where T = 1+ hd,, + 38?02 + O(h?) is the (additive) shift operator defined by z; —

xj + 0;;h. Thus, the expansion of the operator M in powers of h gives

M:n—i—h(Z@xi—W)
i=1

h? 2m - . . mP(2n—n(n—1) 3

— 6
1<)
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The term at h?/2 is, up to an additive constant, equal to

A—choth(@)( i — O, —|—)\Ze “—m(n—l)i:&“, (6.59)
i=1

which is related to the standard CMS operator with an additional y . ; e™ term (this
corresponds to Block 2 in [101}, Figure 1] with g; = g» = g3 = 0 and a = 3). Note that
the term Y | J;, (which does not commute with the operator unless A = 0) can
be removed from by conjugating the operator by exp(%m(n - 1> x).
In the rational limit — obtained by putting z; = wy;, A = yw ™3, multiplying the

operator (6.59)) by w?, subtracting ynw=*

Zai >

1<j

, and taking the limit w — 0 —, we get

= (0, VZyz,

Yi —Yj

which is the standard rational CMS operator in radial gauge with an additional .,y
term (this corresponds to Block 4 in [101} Figure 1] with ¢1 = go = g3 = 0).

6.4.1.2 Relation to type B rational CMS operator

Let us consider the operator M, ;. (6.54) with X; = €%, ¢ = €", 7 = e~m/2 g = g,
b=7""15, and ¢ = Mi?/2 + m(n — 1)3h — a — 3. Then the expansion of M, . around
h =0 (similar to Section [6.4.1.1)) gives

& —x; h2 - — Qma
Ko — ) Ze Ont+ ((a +B)) ek =) o (On, = O))

i=1 i<j

5 2B (g, — 0, ) 4 (A4 m(n — 1)) S e—wi> O,
i=1

The term at order i (which does not commute with the term at order ?) can be removed
by choosing o = . Letting z; = 22;, X; = €%, and v = 4(A + m?(n — 1)?8)(a + B) 7!, the

term at order h? is proportional to

n

Z 1 (X@X) —Z4m&(a+ﬁ)_l(XiaXi_Xjan)

X7 X2 _ X2
=1 i<y E J
4m6 a—i—ﬁ - B noy
> — X? (X?Xz' x, = XIX'0x) ) X2
' i=1 “i
n "1 + 4m(n — 1)6(04 4 5)—1 om
= 2.9 Ox, — »  ———(0x, — 0x,
2'2:1: Xi+iZ:1: X; X; ;Xi_Xj( X, x;)
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2m "1
— ——(0x, + Ox. —

i<j

which is gauge-equivalent to a type B rational CMS operator.

6.4.2 MR system with two types of particles in an external field

In this subsection, we obtain a generalisation of the MR system with a Morse term [103|
(2.1)] (a particular limit of which, [103, (3.13a)|, was mentioned in Remark above).
This system was introduced by Van Diejen in [101] and studied further by Van Diejen and
Emsiz in [103]. Our generalisation introduces into the system a second, different set of
particles interacting with each other and also with the original set of particles. In the case
of MR systems, such two-types-of-particles generalisations were considered in [24}96].

To obtain such a generalisation, we take the following approach. The operator [103,
(2.1)] can be obtained from the Koornwinder operator (i.e., the operator of MR type for
the root system BC,) by a limit in which the centre of mass is sent to infinity [101].
We now take the generalised Koornwinder operator [53, (5.12)] introduced by Feigin and
Silantyev, and apply to it an analogous centre-of-mass-to-infinity limit. As a by-product,
we also get a generalisation of the operators |103} (3.13a)] and M, (for particular

a, b, ¢) to the case of two types of particles. Another way to obtain the latter would be to
(1,1)

7

make use of the representation theory of the DAHA of type GL, and the elements D
defined in Section [6.4] (see Remark below).

In the operator |53} (5.12)], let us make the substitutions z; — z; + R, y; — v; + R +
log(gs™'), a — aef, b — be?, ¢ — ce™f, d — de™f, and then let R — co. In order to make
connection with the notations used in [103] (recall that ¢ = €2 and s = €2 in [53]), let
us in the resulting limit make the replacements ¢ — ¢~/2, s = '/2 (so that now ¢ = ™"
andt =ef), a=1t,b=1ty, c=1ty', d=1t3", v; — hx;, and y; — hy; (so that the shift
operators 7" and T:¢ for ¢ € {£1} become T and Ty 218 /18(@) eghectively). Then

we get the following Hamiltonian

M M 1 g% N2 q—q=iYi
i = 3 (1= tia™) (1= og™) | [T 5= el Ay
i=1 j=1 j=1
i
Ny Ny s No s
t1to ) ) t— qm2 T t — ql"z Yj .
+ 1- toq% 1- ti‘lqzZ T . Y Ti—u. 7;: —1
dtots ;( ! | JHl L—qn® ]Hl =g )T =
J#

1— q N2 ¢ _ qyi,gcj
_ Yi _ Yi
M= Zil(l ha")(1 = ta") (H 1—qui )
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N L
2 g — quiYi — log(t)/ log(q)
< T[]+ | (7T, -

ey 1— qYi—Ys
J#i
—1y M2 Ny _1 R
tth(l - q 1) . . q — qyz J
_ 1 — totgV ™)(1 — tytq¥it!
" qtots(1 —t) Z::< ofg” ) ") e q it — gyt
Noo -1 Yi—Y;j
4 Z 97 7| (qios®)/ log(a)
< | 11 = (T —1). (6.60)
j=1
J#1

For Ny = 0 and N; = n, the operator reduces to the Van Diejen—Emsiz oper-
ator |103} (2.1)] up to a factor of /qtots/(t1t2). Also, if in we put n = Ny + No,
Yi = Tn,4i, and t = ¢! (that is, € = h), then we get the operator [103, (2.1)] with ¢t = ¢~ .

By applying the same limiting procedure to the set of quantum integrals of the gener-
alised Koornwinder operator found in [53, Proposition 5.6], we get quantum integrals for

the Hamiltonian .

We also obtain a generalisation to the case of two types of particles of the Hamilto-
nian [103, (3.13a)|. Indeed, if in we put t3 = 1, define ¢; (1=0,1,2) by to = g ts,
t1 = tota, and to = fot; following [103} (3.12b)], and then take the limit sy — 0, we get

M PR N 1 qmi—xj No q— qfﬂi—yj
=3 (0 =the™) | [T5— = | Tl =y ) T D)
=1 j=1 q j=1 q
J#i
Ny N1 o No o
. v t — q:m T t — qxl Yj B
2 x4 I 1 _
+to Z(l —4q ) H 1 — g%i—%j H t — gTi~Yi <7;l 1)
=1 j;l q 7j=1 q q
JFT
Ny N1 -1 P No s
1—q T t g q—g"" (6.61)
+ 1 Z(l — tot1g%") (H 1 — qui—=i H 1 — Ui
=1 7j=1 7=1
J#
< (T,, log(t)/log(q) _ 1)
Na N1 1 R -1
h*(1—q™") yitl g —gv g g
+ 1 —t Zl(l - tq ) - q—lt—l _ qyi—rj H 1 — qyz Yj
1= Jj=
J#l

% (7;1_0g(t)/10g(q) _ 1),

For N, = 0 and Ny = n, this reduces to the operator [103, (3.13a)| up to a factor of %.
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Let us now consider an analogous limit of the operator (6.61]) as the limit described
in Remark [6.40], just additionally making also the change ¢¥ — x !¢¥ and introducing
the variables Y; = ¢ Y. Let us denote a ¢g-multiplicative shift operator in the variable X;

ilog( )/ log(q)

by t% and analogously for Y; (so that Tﬂ and become respectively tg;l

and t{,j ). Then, in this limit, we obtain the multiplicative operator

Na o
_ 72X, — X; 72X, - Y]
= - - @ J s —J tq
iy = Z I._Il X — X; @_11 qr2X; — Yj> Xi

Nfi

a(l—q) Y, - X, -1y, — Y o
+#Z (H _q17_2y X> Hq by,

N
O X X X Y - 6.62

=1 7=1
i#i
b(1—q>§: 1 ﬁr—% X ﬁqm Yi | e
1-72 &y \ 14 Y- X Y-y |
J#

N1 ~ Na

~ 1  ¢1—-gq) 1
+C,~:1 X, + [ Z Y
where a = —tAOZ, b= —tAotAl, and ¢ = tAg(tAo + tAl), and where we twice used the following

polynomial identity (which generalises to two types of particles the identity from the top
of [103, p. 1621]):

N Ny
tz; — z; Swj — z;
> =11 11
2i — 2 w; — 2
i=1 j=1 77 vt =1 Y v
J#i
N2 N1 N2 Nl N2
1—s tz; — wy Swj — w; 1—s
2w 11 11 =D At 2w
— 1 < oz —wy w; — w; — 1 <
=1 j=1 =1 =1

We used it once with z; = X; ', w; = Y;7!', t = 772 s = ¢, and the second time with
zi=X; wi=qr?Y; Lt =72 and s = ¢!

The operator (6.62) generalises the Hamiltonian M, ;. given by , for special
values of a,b, ¢, to a Hamiltonian of a system containing two types of particles. Indeed,

if we put Ny = 0, Ny = n in (6.62), we recover M. with a = —7"" %% b = —7'""14t,,
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and ¢ = tAO(tAO +%\1)

Remark 6.42. An alternative way to arrive at the operator (6.62)) and also a version of

it with arbitrary parameters a, b, ¢ is to apply to the Hamiltonian (6.54) a restriction
procedure, similar to those considered in [53], for a suitable submodule of the polynomial

representation of the GL,-type DAHA. Moreover, this approach should lead to integrable
(I1,l2)

generalisations of the Hamiltonians Res (2?21 D, ) for general [y, [5 to the case of two

types of particles.



Chapter 7
Concluding remarks

Let us describe a few possible directions for further research related to the present work.
Omne broad direction is about investigating (and obtaining further new) MR-type sys-
tems through representation-theoretic methods and the lens of dualities, and the study
of their eigenfunctions. Another is to construct and investigate natural analogues of the
algebra H®» from Chapter @ that would establish an intriguing interplay between quantum
groups and DAHAs. The resulting algebraic structures would be expected to lead to novel
integrable difference operators of MR flavour and to have connections to the geometry of
symplectic singularities. More specifically, some possible research problems are as follows.

It would be interesting to extend our construction from Chapter [ to the ¢-difference
setting, in other words, to devise a spin generalisation of the construction of MR-type
operators developed in [53] that uses special submodules in the polynomial representation
of DAHAs. Another important problem is to construct eigenfunctions for any new integ-
rable operators thus obtained, which could lead to interesting new special functions. For
example, the standard MR operator of type A is diagonalised by the Macdonald polyno-
mials, and its generalisation associated with a deformation of the A-type root system has
the super-Macdonald polynomials as eigenfunctions [96|. Further, it would be interesting
to extend the constructions from [50] and Chapter |4] to systems of elliptic type in the
differential, ¢-difference, and matrix-valued settings. This could, in particular, lead to an
integrable elliptic version of the generalised CMS operator for AG, studied in Chapter
(cf. [52]).

We would also like to extend the techniques from the paper [25] to study the bis-
pectrality properties of the generalised MR operators associated with AG5 introduced in
Chapter [p| as well as the trigonometric generalisation of the Sergeev—Veselov difference
operator for BC(l,1), due to Feigin and Silantyev [53]. In particular, this would yield
compact formulas for BA eigenfunctions for these generalised MR, operators.

In addition to the algebra H% discussed in Chapter @, the paper [51] introduced and
studied also an so,, version H*" — the Dunkl angular momenta algebra (DAMA). From
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an integrability perspective, the DAMA is the natural algebraic structure for studying the
angular part of the rational CMS operator. The angular part admits many quantum integ-
rals which can be realised inside the spherical subalgebra of the DAMA. The algebra H®*"
has a link to the Lie algebra so,, analogous to the link of H%= to gl,. In type A, it is the
subalgebra of the RCA H,, generated by C&,, and deformations — by means of Dunkl
operators — of the quantum angular momentum generators :132-81,.7. — 20, (1<i#j<n)
defining the Jordan—Schwinger representation of so,,. The DAMA is a flat c-deformation
of the crossed product of C&,, with the image of U(so,) under this Jordan-Schwinger
map. It was recently shown in [4] that H*" coincides with the subalgebra of the RCA
invariant under an action of SLy(C). Geometrically, H*" is conjecturally related to a
deformation of a symplectic singularity given as the quotient by &,, of the closure of the
minimal special nilpotent orbit of so,,. For the symplectic Lie algebra sp,,, Hakobyan
constructed in [60] an analogous algebra — the Dunkl symplectic algebra (DSA). It would
be natural and interesting to try to construct and study g-deformed generalisations of the
DAMA and DSA inside a DAHA, similarly to how the algebra H®» C H, in Chapter @
is a g-analogue of H%. They are expected to be related to suitable quantum algebras
for s0,, and sp,,,, respectively, and they might potentially lead to new integrable difference

operators.
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