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Abstract

This thesis deals with various many-body quantum integrable Hamiltonian systems and
algebraic structures related to them. More specifically, it discusses generalisations of
Calogero–Moser–Sutherland (CMS) and Macdonald–Ruijsenaars (MR) type systems and
their connections with the theory of double affine Hecke and related algebras.

Firstly, we consider the generalised CMS operators associated with the deformed root
systems BC(l, 1) and a CMS type operator associated with a planar configuration of
vectors called AG2, which is a union of the root systems A2 and G2. We construct suitably-
defined (multidimensional) Baker–Akhiezer eigenfunctions for these operators, and we use
this to prove a bispectral duality for each of these generalised CMS systems. In the case
of AG2, we give two corresponding dual difference operators of rational MR type in an
explicit form, which we generalise to the trigonometric case as well by using the theory
of double affine Hecke algebras (DAHAs). In the case of BC(l, 1), the bispectral dual is a
rational difference operator introduced by Sergeev and Veselov.

Secondly, we study systems with spin degrees of freedom. Quantum integrable spin
CMS type systems with non-symmetric configurations of the singularities of the potential
appeared in the rational case in the work of Chalykh, Goncharenko, and Veselov in 1999.
In this thesis, we obtain various trigonometric spin CMS type systems by making use
of the representation theory of degenerate DAHAs. Particular cases of our construction
reproduce in the rational limit the examples discovered by Chalykh, Goncharenko, and
Veselov.

Finally, inside the DAHA of type GLn, which depends on two parameters q and τ , we
define a subalgebra Hgln that may be thought of as a q-analogue of the degree zero part
of the corresponding rational Cherednik algebra. We prove that the algebra Hgln is a flat
τ -deformation of the crossed product of the group algebra of the symmetric group with
the image of the Drinfeld–Jimbo quantum group Uq(gln) under the q-oscillator (Jordan–
Schwinger) representation. We find all the defining relations and an explicit PBW basis
for the algebra Hgln . We describe its centre and establish a double centraliser property.
As an application, we obtain new integrable generalisations of Van Diejen’s MR system in
an external field.
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Chapter 1

Introduction

One broad aim of the study of integrability is to obtain exact information on the prop-
erties of various systems that arise within theoretical physics or are motivated by it. In-
tegrable systems often reveal important underlying mathematical structures. Among the
structures studied in this thesis are Cherednik’s double affine Hecke algebras (DAHAs,
or Cherednik algebras), which are a very active and diverse research area [35], and their
various degenerations. On top of their numerous applications in mathematical physics,
these algebraic objects are important from the perspective of several other branches of
mathematics, having deep connections to geometry, special functions, combinatorics, and
a rich representation theory.

The goal of this thesis is to investigate certain multi-particle quantum integrable
Hamiltonian systems and related algebraic structures. The models discussed in this thesis
are connected with the so-called Calogero–Moser–Sutherland (CMS) differential operat-
ors [44] and their difference (relativistic) version, the Macdonald–Ruijsenaars (MR) op-
erators, which are related to the celebrated Macdonald polynomials [82]. In its original
form, the CMS model describes particles confined to a line or a circle interacting pairwise
via an interaction potential proportional to their inverse square distance.

The CMS models were among the earliest known examples of integrable multi-particle
systems and they represented a landmark discovery in this respect. They have since been
extensively generalised in different ways. For example, they admit generalisations associ-
ated with special collections of vectors, such as root systems of semisimple Lie algebras,
with the original systems corresponding to the root system of type A [44]. Finding further
integrable generalisations and developing algebraic tools to investigate these and similar
models has also independent value for other areas of mathematics. Systems of MR type are
intimately related to DAHAs [35], while CMS systems are connected to the degenerations
of DAHAs known as rational and trigonometric Cherednik algebras (RCAs and TCAs,
respectively). In geometry, some quantum systems of CMS type arise as radial parts of
Laplace–Beltrami operators on symmetric spaces [6, 88], and the phase spaces of classical

1
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CMS-type systems are interesting algebraic varieties [107]. These systems also have links
to other important equations of theoretical physics; for example, they are related to the
pole dynamics of solutions of the KdV and KP equations [1,36,78], and have close relations
to the Knizhnik–Zamolodchikov equations from conformal field theory (see [35]). Further,
RCAs and DAHAs have been related to Coulomb branches of certain supersymmetric
gauge field theories (see [10] and references therein).

The main outcomes of this thesis are: 1.) a novel connection between a DAHA and a
quantum group, obtained by introducing and studying a new algebra connected to both,
which led us to new difference operators related to MR systems [57];
2.) advancement of the theory of generalised CMS and MR operators associated with non-
reduced (i.e., containing collinear vectors) collections [54–56, 83]. In particular, progress
has been achieved in the theory of their special eigenfunctions and the study of systems
with spin degrees of freedom.

1.1 Overview and background

The topics in this thesis can be divided into three interrelated themes, which we introduce
respectively in Sections 1.1.1, 1.1.2, and 1.1.3 below summarising the background and
context, as well as the main results that we obtained, for each of these directions in turn.
Theme 1.1.1 corresponds to Chapters 3 and 5, and themes 1.1.2 and 1.1.3 correspond to
Chapters 4 and 6, respectively.

1.1.1 Calogero–Moser–Sutherland and Macdonald–Ruijsenaars

systems

1.1.1.1 Calogero–Moser–Sutherland systems

The CMS models are an important example of integrable many-body Hamiltonian systems
in one spatial dimension. Their study goes back to the works of Calogero [14], Suther-
land [97], and Moser [85], who investigated systems of pairwise-interacting particles on
a line (rational case) or a circle (trigonometric case) with an inverse square distance po-
tential. After the work of Moser, an elliptic generalisation of these systems appeared as
well [15].

Olshanetsky and Perelomov observed a connection between the original CMS Hamilto-
nians and the root system Al (l ∈ Z>0), and they generalised these Hamiltonians to the
case of arbitrary root systems of Weyl groups in [86, 87] (including the non-reduced root
system BCl) in a way that preserves integrability (in the rational case, integrability holds
for root systems of arbitrary finite reflection groups).

There exist both classical and quantum versions of these systems. In this thesis, we
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focus on the quantum case throughout. A quantum system whose Hamiltonian is a differ-
ential operator L in an n-dimensional space is called (quantum) integrable if there exist n
pairwise-commuting algebraically independent differential operators L1 = L, L2 . . . , Ln.
Operators that commute with L are called its quantum integrals.

In comparison, a classical system whose Hamiltonian L is a function on a 2n-dimensional
phase space, which is a symplectic manifold, is called (Liouville) integrable if there ex-
ist n independent Poisson-commuting phase-space functions L1 = L ,L2 . . . ,Ln. Moser
studied the integrability of the classical versions of Calogero’s and Sutherland’s systems
through the method of Lax pairs [85]. The study of classical CMS-type systems through the
geometric method of Hamiltonian reduction was initiated by Kazhdan, Kostant, and Stern-
berg [72]. A uniform construction of Lax pairs for the classical Olshanetsky–Perelomov
systems was provided by Bordner, Corrigan, and Sasaki [8] (see also the work [40] by
D’Hoker and Phong).

A uniform proof of the integrability of the quantum Olshanetsky–Perelomov systems
using Dunkl operators was obtained by Heckman [62,63], which led to a connection between
Cherednik algebras and CMS-type systems. We will discuss this connection more later.
Let us just mention here that a way to uniformly construct quantum Lax pairs by using
Dunkl operators was discovered in a recent work by Chalykh [17], and this also reproduces
the above classical Lax pairs.

Chalykh, Feigin, and Veselov showed in [21,26,104] in the quantum case that the CMS
models admit integrable generalisations related to other special configurations of vectors
that are not root systems. The examples they discovered were certain one-parametric de-
formations A(l, 1) and C(l, 1) of the root systems Al+1 and Cl+1, respectively. Other
examples have been discovered since then. For instance, one of them is a deforma-
tion BC(l, l′) of the root system BCl+l′ that was first considered in [94] by Sergeev and
Veselov (an elliptic version of the special case BC(l, 1) appeared earlier in [19]). Another
more recent example is a configuration called AG2, which was discovered by Fairley and
Feigin [48], and which we studied in [55,56].

Hereafter, by CMS system, we will mean the trigonometric (or, equivalently, hyper-
bolic) kind, unless specified otherwise. The generalised CMS operator associated with a
finite collection of vectors A ⊂ Cn \ {0} with a multiplicity function c : A → C, α 7→ cα

has the form
L = −∆+

∑
α∈A

cα(cα + 2c2α + 1)⟨α, α⟩
sinh2⟨α, x⟩

, (1.1)

where x = (x1, . . . , xn) ∈ Cn, ∆ =
∑n

i=1 ∂
2
xi

(∂xi
= ∂/∂xi) is the Laplacian on Cn,

c2α := 0 if 2α /∈ A, and ⟨·, ·⟩ denotes the C-bilinear extension of the standard Euclidean
inner product of Rn. The case introduced by Olshanetsky and Perelomov corresponds to
letting A in (1.1) be a positive half of a root system with a Weyl-invariant assignment of
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multiplicities cα. Only for very exceptional collections A will the operator L be integrable.

1.1.1.2 Baker–Akhiezer functions

In general, the eigenfunctions of quantum integrable systems may be complicated. How-
ever, the generalised CMS operators associated with root systems admit as eigenfunctions
various special multivariable polynomials. For example, for the CMS system of type A,
they are the Jack polynomials. For its rational degeneration in the presence of an addi-
tional confining harmonic oscillator potential term, which ensures the spectrum is discrete,
there are eigenfunctions expressed via multidimensional versions of the Hermite polyno-
mials.

In the case when the multiplicity parameters have Weyl-invariant integer values, the
generalised CMS operators associated with root systems admit as (singular) eigenfunctions
so-called multidimensional Baker–Akhiezer (BA) functions, which are relatively element-
ary functions [28,105]. They have the form

ψ(z, x) = P (z, x)e⟨z,x⟩,

where P is a polynomial in the spectral variables z ∈ Cn whose coefficients depend on
the variables x in which the CMS operators act. The function P has singularities in the
variables x. In quantum mechanics, it is more usual to consider the action of a quantum
Hamiltonian on a Hilbert space and look for eigenfunctions therein. However, the BA
function is very useful for constructing quantum integrals of the system and for proving
bispectral dualities, as we will see below. Moreover, in many cases, it can be related to
orthogonal polynomial eigenfunctions and give new formulas for them, such as the BA
function in type A for Jack polynomials (see [24]).

The function ψ can be characterised by its properties as a function of the variables z.
Such an axiomatic definition of a multidimensional BA function was proposed by Chalykh,
Styrkas, and Veselov for an arbitrary finite collection of non-collinear vectors with integer
multiplicities in [105] — the case of (positive subsystems of) reduced root systems was
considered earlier in [28] — and see also [49] for a weaker version of the axiomatics. For the
(only) non-reduced root system BCl, an axiomatic definition of the BA function was given
by Chalykh and Veselov in [29] (see also [22, 24]). The key properties that the function
needs to satisfy are quasi-invariance conditions of the form

ψ(z + sα, x) = ψ(z − sα, x) (1.2)

at ⟨α, z⟩ = 0 for vectors α in the configuration, where s takes special integer values
depending on the multiplicities.

Such a function can exist only for very special configurations. The corresponding
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generalised CMS operators have to be algebraically integrable, that is, contained in a large
commutative ring of differential operators; more precisely, for an operator in n variables,
algebraic integrability means that it is quantum integrable and, moreover, its algebra
of quantum integrals cannot be generated by n operators [28, 46] (see also [29, 105] for
a slightly stronger version of the definition of algebraic integrability for operators with
constant highest symbols, and [47] for the difference case). And if the BA function exists,
then it is a common eigenfunction for all the operators in this ring [49,105]. In addition to
the root systems case, the previously known examples of configurations with a BA function
included the aforementioned deformations from [21,26] of the root systems of type A and C
in the case when the multiplicity parameters are integers. The corresponding BA functions
were constructed in [24, 49], respectively. Another deformation Al,2 of the root system of
type A appeared in [30], and the BA function for it (satisfying the weakened axiomatics)
was given in [49].

The generalised CMS operators associated with the configurations AG2 and BC(l, 1)

are algebraically integrable in the case when all the multiplicities are integers [16,48], which
suggested that in this case there might exist a BA function for them. These had been
the only remaining known examples of algebraically integrable monodromy-free CMS-type
operators for which a BA function had not been written down. One of the main results
of this thesis is a construction in Chapter 3 of a suitably-defined BA function for AG2

and BC(l, 1). Our construction uses a method modelled on Chalykh’s one from [24]
(see [49] for further examples where such a technique has been applied). The construction
uses certain difference operators, acting in the variables z, of rational MR type.

1.1.1.3 Macdonald–Ruijsenaars systems and bispectral dualities

Ruijsenaars and Schneider introduced a relativistic version of the CMS system of type An−1

in the classical case in [93]. In the quantum case, the corresponding Hamiltonian and its
quantum integrals, which are difference operators, were introduced by Ruijsenaars in [90].
His quantum Hamiltonian can be written as

DR =
n∑

i=1

( n∏
j=1
j ̸=i

qzi−c − qzj

qzi − qzj

)
Ti, (1.3)

where q and c are parameters, and Ti is the (additive) shift operator acting on the vari-
ables z = (z1, . . . , zn) ∈ Cn by Ti(zj) = zj + δij. Here δij is the Kronecker delta. Gen-
eralisations of the Hamiltonian (1.3) for all reduced root systems were introduced by
Macdonald [82], and for the root system BC by Koornwinder [76], in connection with the
theory of orthogonal polynomials.

Ruijsenaars established a duality relation between the classical CMS system of type A
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and a rational degeneration of its relativistic version, where the duality essentially swaps
the action and angle variables of the two systems [91]. In the quantum case, he conjectured
a bispectral duality (bispectrality) relation between the quantum CMS system of type A
and the rational degeneration of the operator (1.3) obtained by taking the q → 1 limit of
its coefficients [92]. This conjecture, and its version for all root systems, was proved by
Chalykh in [24]. Namely, there exists a function Ψ of the variables x and z with

LΨ = λΨ, DΨ = µΨ, (1.4)

where L = L(x, ∂x) is the CMS Hamiltonian associated with any root system, or its
quantum integral, D is a rational MR operator for the same root system, acting in the
variables z, and λ = λ(z), µ = µ(x) are the respective eigenvalues. The bispectrality rela-
tions (1.4) are a multidimensional differential-difference analogue of the one-dimensional
differential-differential bispectrality studied by Duistermaat and Grünbaum in [42].

In the case of integer (and Weyl-invariant) multiplicities, the function Ψ in (1.4) can
be taken to be the BA function for the root system in question — and the case of non-
integer multiplicities can be handled by an analytic continuation argument [24]. Moreover,
Chalykh showed that the operator D can be used to explicitly construct the BA function
itself. The key property needed for this from the operator D is the preservation of the
space of analytic functions of z satisfying the quasi-invariance conditions (1.2).

A form of bispectrality may also be seen in terms of special families of multivariable or-
thogonal polynomials (rather than a single function Ψ depending on spectral parameters).
In the case of the root system of type A, these are the Jack polynomials, and for other root
systems they are the multivariable Jacobi polynomials, which admit Pieri-type formulas
that can be interpreted as bispectrality between the CMS Hamiltonians and difference
operators acting on the weights indexing the polynomials [24, 65, 81]. The relation (1.4)
for the root system of type A and for a different function Ψ given by a Mellin–Barnes type
integral was obtained recently by Kharchev and Khoroshkin in [73].

Let us also mention that a version of the notion of a BA function exists as well for
the rational degeneration of the CMS Hamiltonians L with sinh⟨α, x⟩ in (1.1) replaced
by ⟨α, x⟩. The rational BA function ψ satisfies, instead of conditions (1.2), relations of
the form ∂2s−1

α ψ(z, x) = 0 at ⟨α, z⟩ = 0, where ∂α is the directional derivative in z in
the direction of the vector α. When suitably normalised, the rational BA function is
symmetric under the exchange of x and z, and the rational version of L is bispectrally
self-dual [105]. BA functions for the trigonometric MR operators and their bispectrality
properties were investigated in [25].

The paper [24] proved also an analogue of the duality (1.4) for the deformed root
system A(l, 1) and the corresponding deformation D of the rational limit of Ruijsenaars’
operators. For the deformed root systems C(l, 1) and Al,2, this was done (in the case of in-
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e1
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(a) BC(1, 1)+ (b) AG2,+

Figure 1.1: The configurations BC(1, 1) and AG2.

teger multiplicity parameters) in [49]. In Chapter 3, we prove analogues of the duality (1.4)
for the configurations AG2 and BC(l, 1).

1.1.1.4 Configurations AG2 and BC(l, 1)

The configuration AG2 is a planar collection of vectors obtained as a union of the root
systems G2 and A2. It can be viewed as a non-reduced version of the root system G2, where
for each short root β ∈ G2, the configuration contains 2β as well. It is, however, not itself
a crystallographic root system (though, it is a trigonometric locus configuration [48]). A
positive half AG2,+ is shown in Figure 1.1. The multiplicity of the vectors {2βi : i = 1, 2, 3}
coming from the root system A2 is 1, and the multiplicities of the long and short roots
from the root system G2 are, respectively, m and 3m, where m ∈ C is a parameter. The
configuration AG2 is invariant under the action of the Weyl group of type G2.

The configuration BC(l, 1) is the non-reduced collection of vectors with a positive half

BC(l, 1)+ = {ei, 2ei, ei ±
√
kel+1 : 1 ≤ i ≤ l} ∪ {

√
kel+1, 2

√
kel+1}

∪ {ei ± ej : 1 ≤ i < j ≤ l} ⊂ Cl+1,

where k ∈ C× is a parameter, ei are the standard orthogonal unit vectors in Rl+1, and the
multiplicities are required to satisfy cei±

√
kel+1

= 1, cei±ej = k, cei = kc√kel+1
, and 2c2ei+1 =

k(2c2
√
kel+1

+ 1) with c√kel+1
, c2

√
kel+1

∈ C [19, 94]. Figure 1.1 depicts this configuration in
the case of l = 1. For k = 1, the configuration BC(l, 1) reduces to the root system BCl+1

with a Weyl-invariant assignment of multiplicities such that the vectors ei± ej for 1 ≤ i <

j ≤ l + 1 have multiplicity 1.

1.1.1.5 Main results

To cover the configurations AG2 and BC(l, 1), we introduced the following extension of
the axiomatic definition of BA functions from [22,24,29,105].
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Definition (Definition 3.1). Let R ⊂ Cn be a (not necessarily reduced) finite collection
of non-isotropic vectors with a multiplicity map c : R → Z≥0 possessing a subset R+ ⊂ R

such that any collinear vectors in R+ are of the form α, 2α, and R = R+

∐
(−R+). A

function ψ(z, x) (z, x ∈ Cn) is a BA function for R if it satisfies the conditions

1. ψ(z, x) = P (z, x)e⟨z,x⟩ for a polynomial P in z with highest-order term
∏

α∈R+
⟨α, z⟩cα ;

2. ψ(z + sα, x) = ψ(z − sα, x) at ⟨z, α⟩ = 0 for s ∈ {1, 2, . . . , cα} ∪ {cα + 2, cα + 4, . . . ,

cα + 2c2α} and α ∈ R+ with 1
2
α /∈ R, where c2α := 0 if 2α /∈ R.

If in the above definition we put R+ = AG2,+ or BC(l, 1)+, we respectively get the
notion of a BA function for AG2 and BC(l, 1) with Z≥0-valued multiplicities. The case
of reduced configurations from [105] corresponds to c2α being 0 for all α in our above
definition. In the case of R = BCl, our definition coincides with that from [22, 29] (cf.
also [24]).

We proved the following generalisation of analogous results given for reduced config-
urations and BCl in [22, 24,29,105].

Theorem (Propositions 3.6 and 3.9, and Theorem 3.7). With notations as in the above
definition, let R be the ring of polynomials in z satisfying condition 2. If the BA func-
tion ψ(z, x) exists then it is unique, and for any p(z) ∈ R, there is a differential oper-
ator Lp(x, ∂x) such that

Lp(x, ∂x)ψ(z, x) = p(z)ψ(z, x).

For any p, q ∈ R, the operators Lp and Lq commute, and L−z2 coincides with the general-
ised CMS operator (1.1) for A = R+.

Let Ra
R be the ring of all analytic functions in z satisfying condition 2 from the above

definition of the BA function. In Section 3.3, we derive sufficient conditions for a rational
difference operator of a quite general form to preserve the ring Ra

R (Theorem 3.11) under
a symmetry assumption on the configuration R.

In Section 3.4, we first explain our proof from [55] of the integrability of the generalised
CMS operator (1.1) with A = AG2,+ for any value of the multiplicity parameter m. Then
we give a proof of the following results for the configuration AG2 with m ∈ Z≥0. Denote
by Tτ the (additive) shift operator acting on functions f(z) by Tτf(z) = f(z + τ).

Theorem (Theorems 3.20, 3.24, 3.26, 3.27, and 3.28). The BA function ψ(z, x) for R =

AG2 exists. There are two independent explicit commuting planar G2-invariant difference
operators preserving the ring Ra

AG2
of the form D1 =

∑
τ : 1

2
τ∈G2

aτ (z)(Tτ − 1) and D2 =∑
τ : 1

2
τ∈AG2

bτ (z)(Tτ − 1) for some rational functions aτ (z) and bτ (z) such that

Diψ(z, x) = µi(x)ψ(z, x)
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for some functions µi(x) (i = 1, 2).
For any polynomial p(z) ∈ Ra

AG2
, there is a difference operator Dp acting in z such that

Dpψ(z, x) = µp(x)ψ(z, x) for some functions µp(x). The operators Dp commute with Di

and with each other.

We also prove that the generalised CMS operator for AG2 is bispectrally dual to the
above operators D1 and D2 for any m ∈ C (Theorem 3.55).

In Chapter 5, we derive (in Propositions 5.5 and 5.6) commuting trigonometric MR-
type operators related to the configuration AG2 that generalise the operators Di to the
trigonometric case (Propositions 5.7 and 5.8).

In Section 3.5, we prove the following results for the configuration BC(l, 1) with mul-
tiplicities belonging to Z≥0.

Theorem (Theorems 3.35, 3.37, and 3.45). A Sergeev–Veselov rational difference oper-
ator D associated with BC(l, 1) [95] preserves the ring Ra

BC(l,1). The BA function ψ(z, x)
for R = BC(l, 1) exists, and Dψ(z, x) = µ(x)ψ(z, x) for some function µ(x). For any
polynomial p(z) ∈ Ra

BC(l,1), we construct a difference operator Dp acting in z such that
Dpψ(z, x) = µp(x)ψ(z, x) for some functions µp(x). The operators Dp commute with D

and with each other.

We extend the bispectral duality statement for the generalised CMS operator ofBC(l, 1)
and the above Sergeev–Veselov operator D to more general complex values of the multi-
plicities in Theorem 3.50.

1.1.2 Matrix-valued generalisation of CMS systems

A matrix (spin) version of the quantum CMS model appeared in the work of Ha and
Haldane [59], who considered matrix differential operators acting on functions with values
in an n-fold tensor product of Cm. The integrability of this model was established by
Minahan and Polychronakos using Polychronakos’ version of Dunkl operators in [84], and
independently at the same time by Hikami and Wadati in [67] by introducing a Lax pair.
Subsequently, Bernard, Gaudin, Haldane, and Pasquier produced additional quantum in-
tegrals for this model in [7] by using a Yangian symmetry.

A matrix version of the Olshanetsky–Perelomov operators was considered by Chered-
nik in [33]. First deformed CMS-type matrix models with non-symmetric configurations
of the singularities of the potential were introduced in the rational case by Chalykh, Gon-
charenko, and Veselov in [27]. They considered matrix differential operators of the form

L = ∆−
∑
α∈A

cα(cα − Pα)⟨α, α⟩
⟨α, x⟩2

,
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where A is a finite collection of non-zero vectors in a vector space V ∋ x, Pα is a matrix
acting on the vector space U ∼= V as a reflection with respect to the hyperplane orthogonal
to α, and cα is an integer scalar multiplicity. One of the examples of configurations A
that they considered is the deformed An-type system A(n− 1, 1) ⊂ Rn+1 depending on a
parameter m and consisting of the vectors {ei − ej : 1 ≤ i < j ≤ n} ∪ {ei −

√
men+1 : 1 ≤

i ≤ n} with multiplicities cei−ej = m and cei−
√
men+1

= 1 (see [21]). Another example
considered in [27] is the deformed Cn-type configuration.

Recall that the integrability of the scalar rational CMS operators associated with root
systems was investigated with the use of Dunkl operators [43] by Heckman in [63], and
in [62] in the trigonometric case. Generalised CMS systems related to non-symmetric
configurations of vectors were investigated in the scalar rational case from the perspective
of the representation theory of RCAs by Feigin in [50] using certain invariant parabolic
submodules in the polynomial representation of RCAs. This allowed Feigin to derive many
new integrable examples of such operators.

In [50], one starts with the polynomial representation P of an RCA, realised using the
rational Dunkl operators. For special values of the parameters of the RCA, the representa-
tion P becomes reducible with a submodule I given by polynomials vanishing on the orbit
of an intersection π ⊂ V of Coxeter mirrors (a parabolic stratum). The allowed parabolic
strata are described in terms of generalised Coxeter numbers related to the stratum and
the multiplicity function. By restricting invariant combinations of Dunkl operators to the
space of invariants (P/I)W , one obtains generalised rational CMS systems.

Another approach to (scalar) rational generalised CMS systems using RCAs was pro-
posed recently by Berest and Chalykh in [5].

1.1.2.1 Main results

In Chapter 4, we use the representation theory of TCAs to obtain generalisations of spin
CMS operators in the trigonometric case and for more general vector spaces U than were
considered in [27].

We start with the polynomial representation P of the TCA (this is a slightly simplified
account), realised with the help of Cherednik’s commuting trigonometric Dunkl operat-
ors. For special values of the parameters, the representation P becomes reducible with
a submodule I given by polynomials vanishing on π. We enlarge the quotient repres-
entation P/I by taking the tensor product with a right-module U of the Weyl group W

associated with the TCA, and make any element h of the TCA act on U ⊗P/I by id⊗h.
The action of W -invariant combinations of Dunkl operators on the diagonal invariants
(U ⊗ P/I)W produces commuting matrix differential operators on π acting in the space
of fixed points U = UW0 of the action of the parabolic subgroup W0 ⊂ W corresponding
to the subspace π.
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The construction from [50] can be recovered by setting U to be the trivial representation
and taking the rational limit of the resulting operators.

Let us explain our results in more detail in the case of U = V being the reflection
representation of W .

Let R ⊂ V = CN be a reduced root system with associated Weyl group W and
positive half R+. Let c : R → C, α 7→ cα be a W -invariant function. Let P be the weight
lattice of R. Consider the TCA Htrig

c associated with R, defined by its faithful polynomial
representation on the group algebra C[P ] = C[{e⟨α,x⟩ : α ∈ P}]; the TCA is generated by
e⟨α,x⟩ (α ∈ P ), W , and the trigonometric Dunkl operators

∇trig
ξ = ∂ξ −

∑
α∈R+

cα⟨α, ξ⟩
1− e−⟨α,x⟩ (1− sα) + ⟨ρ, ξ⟩, (1.5)

where ξ ∈ V , ∂ξ =
∑N

i=1⟨ξ, ei⟩∂xi
, ρ = 1

2

∑
α∈R+

cαα, and sα is the orthogonal reflection
about the hyperplane orthogonal to α [31].

Let Γ be the Coxeter graph of R and Γ0 an edge-preserving subgraph. Let Γv
0 be the

set of simple roots corresponding to the nodes of Γ0. Let W0 = ⟨sα : α ∈ Γv
0⟩ be the

corresponding parabolic subgroup. Define the space π = {x ∈ V : ⟨β, x⟩ = 0, ∀β ∈ Γv
0}

= V W0 and the parabolic stratum D = ∪w∈Ww(π).
For x0 ∈ π, consider CWx0 =

⊕
x∈Wx0

Cx, where Wx0 is the W -orbit of x0, and Cx is the
space of V -valued germs of analytic functions defined on V near the point x ∈ Wx0. We
explain that, for generic x0, the TCA Htrig

c can act on CWx0 , and under some assumptions on
the parameters cα, the subspace I ⊂ CWx0 of those elements that vanish when restricted to
D is preserved by Htrig

c (Theorem 4.2), which is a trigonometric version of [50, Theorem 1].
Assume that I is Htrig

c -invariant. Then CWx0/I has a diagonal (left) W -action given
by (wF )(y) = F (w−1y) ·w−1 for F ∈ Cx, x ∈ Wx0, and y ∈ V near w(x), where · denotes
the action of W on its reflection representation V . We prove the following result.

Theorem (Theorems 4.3 and 4.4). If I is Htrig
c -invariant, then the action of W -invariant

polynomials in ∇trig
e1
, . . . ,∇trig

eN
on the diagonal invariants (CWx0/I)W leads to commuting

differential-reflection operators on π. Up to a gauge transformation,
∑N

i=1(∇trig
ei

)2 produces
the generalised spin CMS operator

∆y −
∑

α̂∈R̂+\{0}

ĉα̂(ĉα̂ + 2ĉ2α̂ + sα̂)⟨α̂, α̂⟩

4 sinh2
(

⟨α̂,y⟩
2

) ,

where y = (y1, . . . , yn) are orthonormal coordinates on π, ∆y =
∑n

i=1 ∂
2
yi
, R̂+ = {α̂ : α ∈

R+} with α̂ being the orthogonal projection of α onto π, ĉα̂ =
∑

γ∈R+

γ̂=α̂

cγ and ĉ2α̂ = 0 when

2α̂ /∈ R̂+, and we are assuming any collinear vectors in R̂+ \ {0} are of the form α̂, 2α̂.
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We also prove a more general statement when the above assumption on R̂+ is not
satisfied. We call I an invariant parabolic submodule for the TCA.

1.1.3 Special subalgebras of Cherednik algebras

DAHAs are a remarkable class of algebras associated with root systems. They have deep
connections to integrable systems, geometry, and combinatorics. They were introduced
by Cherednik as a powerful algebraic tool to solve a problem posed by Macdonald regard-
ing the combinatorial properties of Macdonald polynomials [34]. A key relation between
DAHAs and integrable systems is that the operator (1.3) arises via an action on Laurent
polynomials of the commuting Cherednik elements Yi of the DAHA Hn of type GLn, which
depends on two parameters q and τ = q−c/2 [35]. DAHAs of other types lead to versions
of the operator (1.3) for other root systems.

The algebra Hn is generated by two commutative subalgebras of Laurent polynomials
C[X±1

1 , . . . , X±1
n ], C[Y ±1

1 , . . . , Y ±1
n ], and the Hecke algebra of type An−1 with generators Tk

(1 ≤ k ≤ n−1). The latter satisfy the standard braid relations and the quadratic relations
(Tk − τ)(Tk + τ−1) = 0. The defining relations of Hn additionally include an action of Tk
on the X and Y variables, and relations among X, Y .

RCAs, which are a degeneration of DAHAs investigated by Etingof and Ginzburg in
the seminal paper [45], are flat deformations of the crossed product of a Weyl algebra (of
differential operators with polynomial coefficients) with a finite Coxeter group W (see,
e.g., [44]).

RCAs admit a faithful representation on a space of polynomials. In this representation,
and in the case of the symmetric group W = Sn, the corresponding RCA Hn = Hn,c

(c ∈ C) of type GLn acts on C[x1, . . . , xn], and it is generated by the transpositions
sij = (i, j) ∈ Sn, multiplication operators xi, and the rational Dunkl operators [43]

∇i = ∂xi
−

n∑
j=1
j ̸=i

c

xi − xj
(1− sij) (∂xi

= ∂/∂xi, i = 1, . . . , n).

The RCA Hn is a graded algebra, where the grading is determined by assigning degree 0
to the elements of the group Sn, degree 1 to the multiplication operators xi, and degree −1

to Dunkl operators. The degree zero subalgebra Hgln = Hgln
c is an interesting algebra in

its own right from various perspectives. It is generated by Sn and the operators xi∇j

(i, j ∈ {1, . . . , n}).
The algebra Hgln enjoys, as the notation for it suggests, a link to Lie theory. More

precisely, it is a flat c-deformation of the crossed product of the group algebra CSn

with a certain quotient U(gln)/I of the universal enveloping algebra U(gln) of the Lie
algebra gln over a two-sided ideal I, as was established by Feigin and Hakobyan in [51].
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The quotient U(gln)/I is the image of U(gln) under the so-called oscillator (also known
as Jordan–Schwinger) representation ρJS that maps the standard generators of gln to the
operators xi∂xj

.
Similarly to the RCA itself, the algebra Hgln is a quadratic algebra of Poincaré–

Birkhoff–Witt (PBW) type. In contrast to the RCA, the defining relations of Hgln include
relations that are not of a commutator type. The associated graded algebra is the crossed
product of CSn with the algebra of polynomial functions on the space of n × n complex
matrices of rank at most one [51].

The centre of the RCA is trivial [13], but the RCA has a commutative subalgebra
which acts (in the polynomial representation) on symmetric polynomials as the rational
CMS operator (albeit in a different gauge) and its quantum integrals [63]. On the other
hand, the centre of the degree zero subalgebra Hgln is generated by the Euler operator eu,
which can be related to the rational CMS operator with an additional harmonic potential
term by an automorphism of the RCA [51]. The algebra Hgln and its centre are mutual
centralisers inside the RCA, which is related to a deformation of the Howe dual pair
(gln, gl1). The properties of the central quotient Hgln/(eu+ const) (quotient by the two-
sided ideal generated by an element eu + const) and its ‘t = 0’ (classical) version were
studied recently in [4] in relation to deformations of symplectic singularities and nilpotent
orbits in gln.

1.1.3.1 Main results

In Chapter 6, we generalise the main parts of the theory of Hgln to the q-deformed setting
by introducing and studying a certain subalgebra Hgln inside the DAHA Hn of type GLn.
We note that even though the DAHA Hn has a natural grading, the subalgebra Hgln ⊂ Hn

is in general strictly smaller than the degree zero part. Another important difference with
the RCA case is that the algebra Hgln contains the Y -elements of the DAHA. The main
idea behind the definition of Hgln is to replace the role of U(gln) by the Drinfeld–Jimbo
quantum group Uq(gln).

The algebra Uq(gln) admits a representation ρ which is a q-multiplicative generalisation
of the Jordan–Schwinger map ρJS. We consider the image A = ρ(Uq(gln)) and the algebra
A = CSn ⋉ A, where the symmetric group acts in a natural way. We then define inside
the DAHA Hn a subalgebra Hgln whose generators are τ -deformations of those of A. In a
suitable q → 1 limit, the algebra Hgln reduces to the degree zero part Hgln of the RCA.
The following diagram summarises the relationships between the various algebras:

Hgln A = CSn ⋉ ρ(Uq(gln))

Hgln CSn ⋉ ρJS(U(gln)),

q→1

τ→1

q→1

c→0
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where in the left vertical arrow we also take the limit τ → 1 such that τ = q−c/2 and c

does not depend on q.
We find all the defining relations of the algebra Hgln , establish that it is an algebra

of PBW type by explicitly constructing a PBW basis, and show that Hgln is a flat τ -
deformation of the algebra A (Theorem 6.19).

We prove that the centre of Hgln is generated by a single invertible element Ỹ (The-
orem 6.23). When q → 1, the central element (1− q)−1(1− Ỹ ) reduces to the generator eu
of the centre Z(Hgln).

We also prove a double centraliser property (Theorem 6.30) — related to the (gln, gl1)

Howe duality — that the algebra Hgln satisfies inside a subalgebra A ⊂ Hn. The algebra A

may be thought of as a τ -deformation of the crossed product of CSn with the q-Weyl
algebra defined by Hayashi [61], and it is, as we explain, isomorphic to a particular cyc-
lotomic DAHA (cyclotomic DAHAs were defined by Braverman, Etingof, and Finkelberg
in [10]). The DAHA Hn contains pairwise-commuting elements Di that can be thought
of as a q-generalisation of rational Dunkl operators, and which we use to define the al-
gebra Hgln . Similar but different commuting elements appear in the definition of this
cyclotomic DAHA in [10]. We show that the algebra Hgln is isomorphic to the subalgebra
of degree zero elements of this cyclotomic DAHA.

We also consider pairwise-commuting elements Di = D(l1,l2)
i ∈ Hn of a more general

form than Di. The former depend on parameters l1, l2 ∈ Z≥0, and aj ∈ C (j = −l1, . . . , l2).
In the case l2 = 0, they are equivalent to certain generators of a general cyclotomic
DAHA [10]. By looking at the action of symmetric combinations of Di on the space
of symmetric Laurent polynomials, we arrive at families of new commuting q-difference
operators (Theorem 6.37) related to the MR system with a Morse term introduced by Van
Diejen [101,103].

For example, in the case l1 = l2 = 1, we obtain the following integrable Hamiltonian

M = α
n∑

i=1

1

Xi

 n∏
j=1
j ̸=i

τ 2Xi −Xj

Xi −Xj

 ti + β

n∑
i=1

1

Xi

 n∏
j=1
j ̸=i

Xi − τ 2Xj

Xi −Xj

 t−1
i + γ

n∑
i=1

1

Xi

,

where ti is the q-multiplicative shift operator in the variable Xi acting by ti(Xj) = qδijXj,
and α, β, γ are independent parameters.

Relations to known Hamiltonians are as follows. In the case of α = 0 (corresponding
to l2 = 0 and l1 = 1), the operator M appeared in the paper [3] by Baker and Forrester. A
more general version of their q-difference operator was found earlier by Van Diejen without
using q-Dunkl operators [101]. Van Diejen’s operator has a limit to the operatorM with an
extra constraint on the parameters α, β, and γ [103]. Higher l1 with l2 = 0 generalisations
of the Baker–Forrester operator were considered in [10], which recover as a special case
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Chalykh’s operators from [18]; see [20] for an explicit form of such a Hamiltonian for l1 = 2.
Furthermore, MR operators of type A admit integrable generalisations to systems

with two types of particles [24, 96]. They are related to submodules of the polynomial
representation of DAHA at special values of the parameters [53]. We generalise Van
Diejen’s operator from [101] to a Hamiltonian involving two types of particles, and we
explain how to obtain quantum integrals for it. This also leads to a generalisation of the
above operator M for two types of particles.

1.2 Structure of the thesis

Chapter 2 summarises the relevant algebraic background material. We start with the
theory of Coxeter and Weyl groups and their root systems. We then give an introduction
to Hecke algebras associated with Coxeter groups. We also discuss their (double) affine
generalisations, focusing specifically on type GLn, which is needed for Chapter 6. Finally,
we give an overview of the rational and trigonometric degenerations of DAHAs, used in
Chapters 4 and 6.

Chapters 3–6 constitute the main parts of this thesis.
In Chapter 3, we study BA eigenfunctions of generalised CMS operators, we give a

construction of the BA function for the configurations AG2 and BC(l, 1), and we discuss
bispectral dualities and bispectral dual difference operators of rational MR type. This
chapter is based on our papers [55,56,83].

In Chapter 4, we develop the theory of invariant parabolic submodules for TCAs and
utilise them to construct generalisations of spin CMS operators. We explicitly work out
numerous examples of our construction. This chapter is based on the preprint [54].

In Chapter 5, we use the theory of DAHAs to obtain two commuting trigonometric
MR-type operators related to the configuration AG2 that generalise the rational difference
operators given for AG2 in Chapter 3.

In Chapter 6, we define and study a subalgebra of a DAHA that realises inside the
DAHA a deformation of the crossed product of the symmetric group with the image of
the quantum group Uq(gln) under its q-oscillator representation. We also obtain new
integrable generalisations of Van Diejen’s difference version of the rational CMS operator
with a harmonic term and related systems. This chapter is based on the preprint [57].

In Chapter 7, we discuss possible questions for future further research stemming from
the work presented in this thesis.



Chapter 2

Coxeter groups, Hecke and related
algebras

We begin this chapter by summarising some relevant aspects of the theory of Coxeter
groups. We then give an introduction to Hecke algebras, followed by a discussion of
their (double) affine generalisations in type GLn, and we end the chapter by recalling the
definition and some properties of the rational and trigonometric Cherednik algebras.

2.1 Coxeter groups

Coxeter groups are an abstraction and generalisation of groups generated by reflections.
Let E be a real Euclidean space, that is, a finite-dimensional R-vector space with a positive-
definite symmetric bilinear form ⟨·, ·⟩. A linear transformation s ∈ GL(E) is called a
(Euclidean, or orthogonal) reflection if there is a vector α ∈ E \ {0} such that s(α) = −α
and such that s fixes pointwise the hyperplane Hα = {x ∈ E : ⟨α, x⟩ = 0} orthogonal
to α. Let sα denote such s. Note that sλα = sα for any non-zero scalar λ. Explicitly, the
reflection sα is given by the formula

sα(x) = x− ⟨α∨, x⟩α,

where α∨ = 2α/⟨α, α⟩. It belongs to the group O(E) of orthogonal transformations of E.

Definition 2.1. A subgroup W ≤ O(E) is a (finite) real reflection group if (it has finite
order |W | <∞ and) it is generated by reflections.

In 1934, Coxeter proved that every finite real reflection group admits a presentation of
a particularly nice form.

Theorem 2.2. [37] Let W be a finite group. If W is a real reflection group, then it has

16
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a presentation

W = ⟨sαi
(i ∈ I) : s2αi

= 1, (sαi
sαj

)m(i,j) = 1 for i ̸= j⟩

for some finite set I and m(i, j) = m(j, i) ∈ Z≥2.

For a finite real reflection group W ⊂ O(E), the idea of the proof of Theorem 2.2 is
to consider the set Ref(W ) of all reflections in W , and to pick a connected component (a
fundamental chamber) of the space

Ereg = E \ ∪sα∈Ref(W )Hα.

The walls of this chamber correspond to some of the hyperplanes Hα, and thus to some
of the reflections in W , which can be taken as the generators sαi

in the presentation in
Theorem 2.2, and π/m(i, j) is the angle between Hαi

and Hαj
. These reflections sαi

are
then called simple reflections.

This motivated the introduction of the following abstract definition.

Definition 2.3. Let I be a finite set and m : I × I → Z≥1 ∪{∞} be such that m(i, i) = 1

for all i ∈ I, and m(i, j) = m(j, i) ≥ 2 for i ̸= j ∈ I. The associated Coxeter group is the
group defined by the presentation

W = ⟨si (i ∈ I) : (sisj)
m(i,j) = 1 if m(i, j) <∞⟩.

One often conflates the set of generators {si}i∈I with the indexing set I itself. The
pair (W, I) is then called a Coxeter system, and the function m can be uniquely recovered
from this data, as m(i, j) is the order of sisj in W .

The data from the definition of a Coxeter group can be depicted with a so-called
Coxeter graph, which is the labelled undirected graph with vertex set I such that

• if m(i, j) = 2, there is no edge between the vertices i and j;

• if m(i, j) = 3, there is an unlabelled edge between i and j;

• if m(i, j) > 3, there is an edge between i and j with label m(i, j).

The defining relations of the Coxeter group mean, in particular, that s2i = 1 for all i ∈ I,
and consequently, the relations for si and sj with i ̸= j andm(i, j) <∞ can be equivalently
rewritten in the form of braid relations

sisjsisj · · ·︸ ︷︷ ︸
m(i,j) terms

= sjsisjsi · · ·︸ ︷︷ ︸
m(i,j) terms

. (2.1)
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Theorem 2.2 implies for any finite group that if it is a real reflection group then it is
a finite Coxeter group. In 1935, Coxeter proved the converse of this statement.

Theorem 2.4. [38] A finite group W is a Coxeter group if and only if it is a real reflection
group.

In other words, for finite groups, the notion of a real reflection group and Coxeter
group essentially coincide, though this is not the case for infinite groups.

Example 2.5. The symmetric group Sn (n ≥ 2), the group of all permutations of the set
{1, . . . , n}, is a Coxeter group with generators si = (i, i + 1) for i = 1, . . . , n − 1, which
are the simple transpositions that swap i and i+ 1, and a presentation

Sn = ⟨s1, . . . , sn−1 : s
2
i = 1, sisi+1si = si+1sisi+1, sisj = sjsi if |i− j| > 1⟩.

It can be realised as a real reflection group by putting E = Rn and letting si act as the
reflection sei−ei+1

, where {ei}ni=1 is the standard orthonormal basis of Rn. The resulting
faithful action of Sn on Rn is by permuting coordinates, and with respect to it, the
set Ref(Sn) consists of all transpositions (i, j) ∈ Sn, acting respectively as sei−ej . The
corresponding Coxeter graph is the Dynkin diagram of type An−1. The group Sn is called
the Coxeter group of type An−1.

Finite Coxeter groups have been classified [37,38]. They are finite direct products of the
groups corresponding to the Coxeter systems of the following irreducible types (a Coxeter
system is called irreducible if its associated Coxeter graph is connected): An (n ≥ 1),
Bn = Cn (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, F4, G2, H2, H3, H4, I2(m) (m ≥ 7). Sometimes,
the notation I2(3), I2(4), I2(5), I2(6) is used for A2, B2, H2, and G2, respectively. The
reason is that then I2(m) for m ≥ 3 are precisely the dihedral groups (the groups of
symmetries of regular m-gons).

Each of the groups of types A, . . . , G is a Weyl group (of a simple complex Lie algebra),
that is, a crystallographic finite real reflection group, which are those that preserve a lattice
in the Euclidean space E (the Z-linear span of a basis of E). Types A, B = C, and D are
called classical types, and the groups of types E6, E7, E8, F4, and G2 are called exceptional
Weyl groups. The remaining types are non-crystallographic.

2.1.1 Root systems

Considering the set of lines orthogonal to the reflecting hyperplanes for the elements Ref(W )

of a finite real reflection group W leads to the notion of a root system. It turns out that W ,
when acting on the Euclidean space E, permutes the set of these lines. The definition of
a root system can be axiomatised as follows (see, e.g., [69]).
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Definition 2.6. A finite set R ⊂ E \ {0} is a (reduced) root system if the following two
conditions are satisfied for all α ∈ R:

(i) R ∩ Rα = {±α}

(ii) sα(R) = R.

The elements of R are called roots. The root system is called crystallographic if ⟨α∨, β⟩ ∈
Z for all α, β ∈ R, which is known as the crystallographic condition. A non-reduced
crystallographic root system is one that does not satisfy condition (i) but satisfies all the
other conditions.

Given any root system R, the group W = ⟨sα (α ∈ R)⟩, generated by reflections with
respect to the roots α ∈ R, is a finite Coxeter group, and it is a Weyl group if R is
crystallographic. It turns out that Ref(W ) = {sα : α ∈ R}. Let I ⊆ Ref(W ) be a choice
of simple reflections. The root system R is called irreducible if the Coxeter system (W, I)

is irreducible.
Notice in Definition 2.6 that in the case when the crystallographic condition is not

imposed, the relative lengths of roots that lie in different W -orbits do not matter.
A positive subsystem R+ ⊂ R is defined by choosing a generic v ∈ E and letting

R+ = {α ∈ R : ⟨α, v⟩ > 0}, where ‘generic’ means that ⟨α, v⟩ ≠ 0 for any α ∈ R. Note
that R = R+

∐
(−R+).

Example 2.7. The root system of type An−1 is

An−1 = {ei − ej : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j} ⊂ Rn,

whose associated Coxeter group is the symmetric group Sn. A choice of a positive half is
An−1,+ = {ei − ej : 1 ≤ i < j ≤ n}.

Given any reduced root system R and a positive subsystem R+, there is a unique
subset S ⊆ R+ of so-called (positive) simple roots such that S forms a basis for SpanRR,
the R-linear span of R in E, and such that every α ∈ R+ can be written as a linear
combination of simple roots with non-negative coefficients (see, e.g., [69, Theorem 1.3]).
The set S is called a simple subsystem, and {sαi

: αi ∈ S} gives a set of simple reflections
for the reflection group W associated with R. The cardinality of the set of simple roots is
called the rank of R.

The classification of crystallographic root systems (up to ‘isomorphism’) is analog-
ous to the classification of Weyl groups. (Two crystallographic root systems R, R′ in
Euclidean spaces E, E ′, respectively, are isomorphic if there is a vector space isomorph-
ism ϕ : SpanRR → SpanRR

′ such that ϕ(R) = R′ and ⟨ϕ(α)∨, ϕ(β)⟩ = ⟨α∨, β⟩ for all
α, β ∈ R.) Reduced irreducible crystallographic root systems come in types A, . . . , G, just
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as the corresponding Weyl groups (see, e.g., [9]). The only difference is that there are
crystallographic root systems

Bn = {±ei : 1 ≤ i ≤ n} ∪ {±ei ± ej : 1 ≤ i < j ≤ n} ⊂ Rn

and
Cn = {±2ei : 1 ≤ i ≤ n} ∪ {±ei ± ej : 1 ≤ i < j ≤ n} ⊂ Rn

that are not isomorphic if n > 2, but have the same associated Weyl group. The standard
realisations of all the reduced irreducible crystallographic root systems can be found in [9,
Plate I–IX]. The only non-reduced irreducible crystallographic root system is

BCn = {±ei, ±2ei : 1 ≤ i ≤ n} ∪ {±ei ± ej : 1 ≤ i < j ≤ n} ⊂ Rn.

Its associated Coxeter group is the Weyl group of type Bn.
Given a crystallographic root system R, the set R∨ := {α∨ : α ∈ R} is also a crystallo-

graphic root system, called the dual root system, and its elements are called coroots. The
root systems R and R∨ generate the same Weyl group, but are not always isomorphic. As-
sume that R is reduced. Given a basis of simple roots α1, . . . , αk, the lattice Q =

⊕k
i=1 Zαi

is called the root lattice, and
⊕k

i=1 Zα∨
i is called the coroot lattice, denotedQ∨. The weight

lattice is defined by P = {ω ∈ SpanRR : ⟨ω, α∨⟩ ∈ Z, ∀α ∈ R}. Its elements are called
weights. The lattice of coweights is given by {ω ∈ SpanRR : ⟨ω, α⟩ ∈ Z, ∀α ∈ R} and is
denoted P∨. Due to the crystallographic condition, we have R ⊂ Q ⊆ P and Q∨ ⊆ P∨.
The lattices Q, Q∨, P , and P∨ are all preserved under the action of the Weyl group W .

The fundamental weights ω1, . . . , ωk ∈ P are defined as the basis of SpanRR dual to
{α∨

i }ki=1, that is, they are defined by the condition ⟨ωi, α
∨
j ⟩ = δij for all i, j.

A weight ω ∈ P is called minuscule if −1 ≤ ⟨ω, α∨⟩ ≤ 1 for all α ∈ R. The only
reduced irreducible crystallographic root systems for which there does not exist any non-
zero minuscule weight are E8, F4, and G2 (see [9]). A quasiminuscule weight is an element
ω ∈ R such that −1 ≤ ⟨ω, α∨⟩ ≤ 1 for all α ∈ R \ {±ω}. A quasiminuscule weight exists
in all cases, including E8, F4, and G2 (see [9]).

2.2 Hecke algebras

Hecke algebras are certain deformations of group algebras of Coxeter groups. An altern-
ative way to think of them is as particular quotients of group algebras of braid groups.

With notations as in Section 2.1, the braid group associated with a Coxeter sys-



CHAPTER 2. COXETER GROUPS, HECKE AND RELATED ALGEBRAS 21

tem (W, I) is the group defined by the presentation

BW = B(W,I) = ⟨σi (i ∈ I) : σiσjσi · · ·︸ ︷︷ ︸
m(i,j) terms

= σjσiσj · · ·︸ ︷︷ ︸
m(i,j) terms

if m(i, j) <∞⟩.

That is, its defining relations are precisely of the form of the braid relations (2.1). Note
that σ2

i ̸= 1, whereas the generators si of the Coxeter group W satisfy s2i = 1. For
example, the braid group BSn associated with the symmetric group (the Coxeter group of
type An−1) is the standard braid group on n strands.

An expression w = si1 · · · sik ∈ W is called reduced if w cannot be written as a product
of si with fewer than k terms, and then k is called the length ℓ(w) of w. One can show
that two reduced expressions are equal to the same element of W if and only if they are
related by a sequence of braid relations (this is Matsumoto’s theorem; see, e.g., [58]).
It follows that the definition σw := σi1 · · ·σik ∈ BW does not depend on the choice of
reduced expression for w. Note that if ℓ(siw) > l(w), then σiσw = σsiw. It follows that if
ℓ(siw) < l(w) (= l(sisiw)), then σsiw = σ−1

i σw.
Let τ : I → C×, i 7→ τi be a function such that τi = τj if the Coxeter generators si

and sj are conjugate in W . The associated Hecke algebra can be defined as the quotient
of the group algebra CBW by the two-sided ideal generated by a set of quadratic relations
called Hecke relations.

Definition 2.8. The Hecke algebra associated with (W, I) and τ is

Hτ (W ) = Hτ (W, I) = CBW/((σi − τi)(σi + τ−1
i ) : i ∈ I).

Let Ti (i ∈ I) and Tw (w ∈ W ) be respectively the images of σi and σw under the quotient
map CBW → Hτ (W ).

The algebra Hτ (W ) is generated as a (unital, associative) C-algebra by the elements
{Ti}i∈I , subject only to the braid relations and the Hecke relations (Ti− τi)(Ti+ τ

−1
i ) = 0.

The latter relation is equivalent to

T−1
i = Ti + τ−1

i − τi.

If the function τ is identically equal to 1, then this Hecke relation reduces to T 2
i = 1, and

thus H1(W ) ∼= CW . The algebra Hτ (W ) for τ ̸= 1 is a deformation of CW .

Remark 2.9. One may consider τi as formal commuting invertible variables, rather than
complex parameters, in which case Hτ (W ) is considered as an algebra over the ring C[τ±1]

of Laurent polynomials in τi.

The Hecke algebra has a representation on CW =
⊕

w∈W Cew, where ew (w ∈ W )
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denotes a basis for CW , given by

Ti(ew) =

esiw if ℓ(siw) > ℓ(w),

esiw + (τi − τ−1
i )ew if ℓ(siw) < ℓ(w).

(2.2)

See, e.g., [58] for a proof that this is a representation.
The representation (2.2), which may be thought of as a deformed version of the left

regular representation of W , can be used to show the linear independence of the elements
Tw (w ∈ W ). Indeed, we have Tw(eid) = ew, so any linear dependence between Tw would
contradict the linear independence of ew. In fact, the following theorem takes place (see,
e.g., [58, 69]).

Theorem 2.10. The elements Tw (w ∈ W ) form a C-linear basis for Hτ (W ), or if τi are
formal variables then Hτ (W ) is a free C[τ±1]-module with this basis. In particular, Hτ (W )

is a flat deformation of CW , as it is a flat module over C[τ±1].

Recall that a module M over a ring R is flat if the operation of taking the tensor
product ⊗RM preserves exact sequences of R-modules, and that every free module is flat.

To see in Theorem 2.10 that the elements Tw span Hτ (W ), one uses that their span
contains 1 = Tid and is stable under left multiplication by Ti (indeed, if ℓ(siw) > ℓ(w)

then TiTw = Tsiw as σiσw = σsiw; and if ℓ(siw) < ℓ(w), then σsiw = σ−1
i σw, implying

Tsiw = T−1
i Tw = TiTw + (τ−1

i − τi)Tw), and that Ti generate Hτ (W ) as an algebra.
It follows from the preceding theorem that the representation (2.2) is faithful, and that

it can be actually interpreted as an action of Hτ (W ) on itself, coinciding with the left
regular representation of Hτ (W ).

Example 2.11. Let us consider as an example the type An−1 Hecke algebra Hn,τ =

Hτ (Sn) associated with the symmetric group Sn. In this case, the function τ must be
constant, so we may think of τ as an element of C×. We have

Hn,τ
∼= ⟨T1, . . . , Tn−1 : (Ti − τ)(Ti + τ−1) = 0, TiTi+1Ti = Ti+1TiTi+1,

TiTj = TjTi if |i− j| > 1⟩.

The algebra Hn,τ admits a faithful representation, called the polynomial representation,
on the space of Laurent polynomials C[X±1

1 , . . . , X±1
n ] given by

Ti 7→ τsi +
τ − τ−1

XiX
−1
i+1 − 1

(si − 1), (2.3)

where si acts by swapping Xi and Xi+1. The operators (2.3) are called Demazure–Lusztig
operators (see the historical remarks in [35, p. 89]).
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2.3 Affine Hecke algebra of type GLn

The affine Hecke algebra (AHA) of type GLn is an enlargement of the Hecke algebra Hn,τ

from Example 2.11. It will be convenient later to treat τ as a formal parameter. Let Cτ

= C[τ±1] denote the ring of Laurent polynomials in the variable τ . The AHA of type GLn

is the (unital, associative) Cτ -algebra Ĥn,τ with generators Tk (1 ≤ k ≤ n − 1), X±1
i

(1 ≤ i ≤ n), and the following relations [35, p. 76]:

(Tk − τ)(Tk + τ−1) = 0, TkTk+1Tk = Tk+1TkTk+1, [Tk, Tl] = 0 if |k − l| > 1,

TkXkTk = Xk+1, [Tk, Xi] = 0 for i ̸= k, k + 1,

and Laurent relations for X±1
i (that is, XiX

−1
i = X−1

i Xi = 1, [Xi, Xj] = 0, 1 ≤ j ≤ n),

where the bracket [·, ·] denotes the commutator. The elements Tk generate a subalgebra
isomorphic to the non-affine Hecke algebra Hn,τ .

Similarly to the algebra Hn,τ , the AHA Ĥn,τ has a faithful polynomial representation
on Cτ [X

±1
1 , . . . , X±1

n ] in which Tk act via the Demazure–Lusztig operators (2.3), and X±1
i

act by multiplication (see, e.g., [35]).
In addition, the algebra Ĥn,τ admits another different faithful representation on the

same space Cτ [X
±1
1 , . . . , X±1

n ], called Cherednik’s basic representation, defined as follows
(see [35, Lemma 1.3.12]). Let q ∈ C× be not a root of unity. The basic representation
β = βq sends Tk to the Demazure–Lusztig operators (2.3) and

Xi 7→ β(Ti−1 · · ·T2T1)πβ(T−1
n−1 · · ·T−1

i+1T
−1
i ),

where π(Xa1
1 X

a2
2 · · ·Xan

n ) = q−anXan
1 Xa1

2 · · ·Xan−1
n for any ai ∈ Z. That is, π acts as the

cyclic permutation (1, 2, . . . , n) ∈ Sn followed by a scaling of the variable X1 by q−1.
The algebra Ĥn,τ has a linear basis of Poincaré–Birkhoff–Witt (PBW) type consisting

of the elements TwXm1
1 · · ·Xmn

n with w ∈ Sn and mi ∈ Z. This follows from a similar
statement about a PBW basis for DAHA of type GLn (see Section 2.4 below) of which the
AHA is a subalgebra. Here {Tw : w ∈ Sn} is a basis of the non-affine Hecke algebra Hn,τ

(see Theorem 2.10 above).
The centre Z(Ĥn,τ ) of the algebra Ĥn,τ is formed by symmetric Laurent polynomi-

als in X-variables, Z(Ĥn,τ ) = Cτ [X
±1
1 , . . . , X±1

n ]Sn (see, e.g., [35, Lemma 1.3.12] and a
historical comment in [80]).

2.4 Double affine Hecke algebra of type GLn

The idea behind the definition of the DAHA of type GLn is, roughly speaking, to “glue
together the polynomial and basic representations of the GLn-type AHA Ĥn,τ along the
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generators Tk”. The precise definition is as follows.
Let q ∈ C× be not a root of unity. The DAHA Hn = Hn,q,τ of type GLn is the (unital,

associative) Cτ -algebra generated by Tk (1 ≤ k ≤ n− 1), X±1
i , and Y ±1

i (1 ≤ i ≤ n) with
the following relations [35, p. 100]:

(Tk − τ)(Tk + τ−1) = 0, (2.4)

TkTk+1Tk = Tk+1TkTk+1, [Tk, Tl] = 0 if |k − l| > 1, (2.5)

TkXkTk = Xk+1, [Tk, Xi] = 0 for i ̸= k, k + 1, (2.6)

T−1
k YkT

−1
k = Yk+1, [Tk, Yi] = 0 for i ̸= k, k + 1, (2.7)

Ỹ Xi = qXiỸ ,

Y −1
2 X1Y2X

−1
1 = T 2

1 ,

and Laurent relations for X±1
i and Y ±1

i ,

where Ỹ =
∏n

i=1 Yi. Relations (2.7) imply that Ỹ commutes with all Tk, which generate
a subalgebra isomorphic to the Hecke algebra Hn,τ of type An−1. By [35, Theorem 1.4.8],
the map Xi 7→ Y −1

i , Yi 7→ X−1
i , Tk 7→ Tk defines an anti-automorphism of Hn. The subal-

gebras ⟨T1, . . . , Tn−1, X
±1
1 , . . . , X±1

n ⟩ and ⟨T1, . . . , Tn−1, Y
±1
1 , . . . , Y ±1

n ⟩ are both isomorphic
to the AHA Ĥn,τ of type GLn, and to each other via the map Tk 7→ Tk, Yi 7→ X−1

i .
As in [35, (1.4.57)], let π = Y −1

1 T1 · · ·Tn−1. Relations (2.7) imply that

Yi = TiTi+1 · · ·Tn−1π
−1T−1

1 T−1
2 · · ·T−1

i−1 (2.8)

for all 1 ≤ i ≤ n (for i = 1 and i = n, this is to be interpreted as Y1 = T1 · · ·Tn−1π
−1 and

Yn = π−1T−1
1 · · ·T−1

n−1, respectively).
The element π can be used to give an alternative presentation for the algebra Hn [35,

p. 101]. Namely, Hn is isomorphic to the algebra with abstract generators Tk (1 ≤ k ≤
n − 1), π±1, and X±1

i (1 ≤ i ≤ n), and relations (2.4)–(2.6), Laurent relations for X±1
i ,

and the following relations involving π:

πXi = Xi+1π, (i = 1, . . . , n− 1)

πnXi = q−1Xiπ
n, (i = 1, . . . , n)

πTi = Ti+1π, (i = 1, . . . , n− 2)

πnTi = Tiπ
n, (i = 1, . . . , n− 1).

(2.9)

It follows that πXn = q−1X1π and π2Tn−1 = T1π
2. We have πn = Ỹ −1 [35, p. 101],

since relations (2.7) imply that πn = (Y −1
1 T1 · · ·Tn−1)

n = Ỹ −1S1S2 · · ·Sn, where Si =

T−1
1 T−1

2 · · ·T−1
n−iTn−i+1 · · ·Tn−1, and one can check using braid relations that S1 · · ·Sn = 1.

It is easy to see from relations (2.9) that the map Xi 7→ Xi, Tk 7→ Tk, π 7→ π−1 defines an
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anti-automorphism of Hn.
The algebra Hn admits a faithful polynomial representation on the space of Laurent

polynomials Cτ [X
±1
1 , . . . , X±1

n ] determined by

Tk 7→ τsk +
τ − τ−1

XkX
−1
k+1 − 1

(sk − 1), (2.10)

π−1(Xa1
1 X

a2
2 · · ·Xan

n ) = qa1Xa2
1 · · ·Xan

n−1X
a1
n (ai ∈ Z), (2.11)

and the action of X±1
i by multiplication [35, p. 101]. That is, Tk act as the Demazure–

Lusztig operators, and Yi act as β(X−1
i ), where β is Cherednik’s basic representation from

Section 2.3.
In particular, at τ = 1, the element Tk acts as sk ∈ Sn; and by equality (2.8) and

formula (2.11), the element Yi acts at τ = 1 as the (multiplicative) q-shift operator ti =
qXi∂Xi , whose action is ti(Xj) = qδijXj.

The DAHA Hn has a linear basis of PBW type formed by the elements TwXmY p

with Xm = Xm1
1 · · ·Xmn

n , Y p = Y p1
1 · · ·Y pn

n , w ∈ Sn, and m = (m1, . . . ,mn), p =

(p1, . . . , pn) ∈ Zn. The fact that they span follows easily from the defining relations of Hn,
and the polynomial representation can be used to show that they are linearly independent
(cf. [35, Theorem 3.2.1(ii)], which provides a proof of an analogous statement for the
DAHA of type SLn).

The algebra Hn admits a grading with deg Tk = deg Y ±1
i = 0 and degX±1

i = ±1, for
which Ỹ plays the role of a “grading operator”, in the sense that for an arbitrary monomial
in the PBW basis of Hn, we have

Ỹ TwX
mY p = qm1+···+mnTwX

mY pỸ ,

where q’s exponent m1+· · ·+mn = deg(TwX
mY p). The degree zero part H(0)

n is generated
by the elements Tk, Y ±1

i , and XiX
−1
j , which can be seen by using the PBW basis.

2.5 Degenerations of Cherednik algebras

In this section, we discuss two types of algebras that can be obtained as degenerations of
Cherednik’s DAHAs. They are respectively called the rational and trigonometric Chered-
nik algebras. Their GLn type (Section 2.5.3 below) will be used in Chapter 6. For
Chapter 4, we need other types as well, and we cover them in Sections 2.5.1 and 2.5.2. Al-
though RCAs can be defined for an arbitrary finite complex reflection group [45], the case
of real reflection groups will be sufficient for our purposes. Similarly, we will not consider
TCAs in the most general possible setting, as we will only need the case corresponding to
reduced crystallographic root systems.
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2.5.1 Rational Cherednik algebras

Assume that the Euclidean space E from Section 2.1 has dimension dimE = n, so that we
can identify it with Rn. Let V = Cn be its complexification, and let the inner product ⟨·, ·⟩
be extended C-bilinearly to V . Let C[x] = C[x1, . . . , xn] denote the algebra of polynomial
functions on V (also denoted as C[V ] or S(V ∗), the latter meaning the symmetric algebra
of the dual space V ∗), where xi ∈ V ∗ form the dual basis of the standard basis {ei}ni=1 of V .
Let R ⊂ Rn be a (reduced, not necessarily crystallographic) root system, with associated
Coxeter group W . The latter can naturally act on V and therefore on C[x]. Let c : R → C,
α 7→ c(α) = cα be a W -invariant function, called a multiplicity map. Let R+ be a positive
subsystem.

The associated RCA Hc = Hc(W,V ) can be defined by its faithful polynomial rep-
resentation on C[x]. Namely, it is the subalgebra of the endomorphism ring EndC C[x]
generated by polynomials p ∈ C[x] (acting by multiplication), the reflection group W , and
the rational Dunkl operators

∇ξ = ∂ξ −
∑
α∈R+

cα⟨α, ξ⟩
⟨α, x⟩

(1− sα), (ξ ∈ V ) (2.12)

where ∂ξ =
∑n

i=1⟨ξ, ei⟩∂xi
is the directional derivative along the vector ξ [45]. Let us

note that one can consider a definition of the RCA with an extra parameter t ∈ C× by
replacing ∂ξ in (2.12) with t∂ξ. The resulting algebra is isomorphic to Hc/t, so there is no
loss of generality in choosing t = 1, as we do. A limit t → 0 gives the so-called classical
limit of the RCA.

It is well known that the Dunkl operators (2.12) commute among themselves, [∇ξ,∇η]

= 0 for all ξ, η ∈ V [43], and that they are W -equivariant, w∇ξ = ∇w(ξ)w for all w ∈ W .
Dunkl operators preserve polynomials as p− sα(p) is divisible by ⟨α, x⟩ for any p ∈ C[x].
They satisfy the following commutation relations

[∇ξ, xi] = ⟨ξ, ei⟩ −
∑
α∈R+

cα⟨α, ξ⟩⟨α∨, ei⟩sα

for i = 1, . . . , n. There is an automorphism of the RCA defined by ∇ei 7→ xi, xi 7→ −∇ei ,
and w 7→ w.

The algebra Hc has a linear basis of PBW type formed by wxm1
1 · · ·xmn

n ∇p1
e1
· · · ∇pn

en

for w ∈ W and mi, pi ∈ Z≥0 [45]. The RCA Hc is a flat c-deformation of the crossed
(equivalently, semi-direct or smash) product CW ⋉ D[V ] of the group algebra CW with
the Weyl algebra D[V ] = C[x][∂x1 , . . . , ∂xn ] of differential operators on V with polynomial
coefficients.

The spherical subalgebra SHc ⊂ Hc is the subalgebra (with a different unit) of Hc
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defined by SHc = eHce using the idempotent symmetriser e = |W |−1
∑

w∈W w ∈ CW .
The RCA Hc admits a grading with deg xi = 1, degw = 0, and deg∇ξ = −1 for w ∈ W

and ξ ∈ V . Its degree zero subalgebra, generated by W and xi∇ej (i, j ∈ {1, . . . , n}), was
studied in [51] (see also [4]).

2.5.2 Trigonometric Cherednik algebras

In this section, we continue to use the notations from Section 2.5.1, but R will now be a
reduced crystallographic root system spanning the vector space V and W the correspond-
ing Weyl group. The TCA (also known as degenerate DAHA) Htrig

c = Htrig
c (R) associated

with R can be defined by its faithful action on the group algebra C[P ] = C[{e⟨α,x⟩ : α ∈ P}]
of the weight lattice P of R. (Similarly to the RCA, one could consider a definition in-
volving an additional parameter t ∈ C, only needed to handle the classical limit.)

The algebra Htrig
c is the (unital, associative) algebra over C generated by W (which

preserves the weight lattice P , and hence acts naturally on C[P ]), multiplication operat-
ors e⟨α,x⟩ (α ∈ P ), and Cherednik’s commuting trigonometric Dunkl operators

∇trig
ξ = ∂ξ −

∑
α∈R+

cα⟨α, ξ⟩
1− e−⟨α,x⟩ (1− sα) + ⟨ρ, ξ⟩, (2.13)

where ξ ∈ V and ρ = ρc = 1
2

∑
α∈R+

cαα [31]. The operators (2.13) are a trigonometric
generalisation of (2.12). These trigonometric Dunkl operators commute, [∇trig

ξ ,∇trig
η ] = 0

for all ξ, η ∈ V , but they are not W -equivariant. For any simple root αi ∈ R+, they satisfy

sαi
∇trig

ξ −∇trig
sαi (ξ)

sαi
= cαi

⟨αi, ξ⟩.

A different but related definition of trigonometric Dunkl operators such that they are
W -equivariant, but do not commute, was given by Heckman in [62] — their definition is

∇H
ξ = ∂ξ −

1

2

∑
α∈R+

cα⟨α, ξ⟩(1 + e−⟨α,x⟩)

1− e−⟨α,x⟩ (1− sα) = ∇trig
ξ − 1

2

∑
α∈R+

cα⟨α, ξ⟩sα.

Their commutators are

[∇H
ξ ,∇H

η ] = −1

4

∑
α,β∈R+

cαcβ
(
⟨α, ξ⟩⟨β, η⟩ − ⟨α, η⟩⟨β, ξ⟩

)
sαsβ

for all ξ, η ∈ V (see, e.g., [64]).
The TCA Htrig

c has a linear basis of PBW type formed by the elements we⟨α,x⟩p(∇trig)

for w ∈ W , α ∈ P , and monomials p ∈ C[x], with p(∇trig) = p(∇trig
e1
, . . . ,∇trig

en ). This PBW
property can be interpreted as a vector space isomorphism between Htrig

c and CW ea⊗C[x],
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where W ea = W ⋉ P is an extended affine Weyl group.
The spherical subalgebra SHtrig

c ⊂ Htrig
c is defined similarly to the case of RCAs by

SHtrig
c = eHtrig

c e.
The degenerate AHA (also known as the graded Hecke algebra) [41,80] is the subalgebra

of Htrig
c generated by W and ∇trig

ξ (ξ ∈ V ). The centre of the degenerate AHA is equal to
{p(∇trig) : p ∈ C[x]W} (see, e.g., [64]), where C[x]W denotes W -invariant polynomials. In
particular, the operators p(∇trig) with p ∈ C[x]W are W -invariant.

2.5.3 Type GLn

In this section, we give an abstract definition of the RCA and TCA of type GLn by
generators and relations, as we need them in Chapter 6. Let c ∈ C be a parameter.

In the rational case, type GLn refers to the RCA Hn = Hn,c = Hc(Sn,Cn) associated
with the An−1-type root system R ⊂ E = Rn (by contrast, type SLn corresponds to
choosing E to be the orthogonal complement of

∑n
i=1 ei in Rn). Abstractly, the RCA Hn

is the (unital, associative) algebra over C generated by the simple transpositions sk =

(k, k + 1) ∈ Sn (1 ≤ k ≤ n− 1), and elements xi, yi (1 ≤ i ≤ n) subject to the following
relations [45]:

[yi, yj] = 0 = [xi, xj],

skxksk = xk+1, [sk, xi] = 0 for i ̸= k, k + 1,

skyksk = yk+1, [sk, yi] = 0 for i ̸= k, k + 1,

Sij := [yi, xj] =

1− c
∑

l ̸=i sil if i = j,

csij if i ̸= j.
(2.14)

Here j, l ∈ {1, . . . , n}, and sij denote the transpositions (i, j) ∈ Sn.
The algebra Hn admits a faithful polynomial representation on the space C[x1, . . . , xn].

The elements sk act by swapping xk and xk+1, the elements xi act by multiplication, and yi
act as the rational Dunkl operators

∇i = ∂xi
−

n∑
j=1
j ̸=i

c

xi − xj
(1− sij). (2.15)

The RCA Hn has a PBW-type basis formed by wxm1
1 · · ·xmn

n yp11 · · · ypnn for w ∈ Sn,
and mi, pi ∈ Z≥0.

For theAn−1-type root systemR, there exists a variation on the SLn-type TCA Htrig
c (R)

where one takes V = Cn and replaces the weight lattice P with the lattice Zn =
⊕n

i=1 Zei
⊂ V . This case is referred to as type GLn. Abstractly, we let the TCA Htrig

n = Htrig
n,c of
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type GLn be the (unital, associative) algebra over C generated by sk ∈ Sn (1 ≤ k ≤ n−1),
and elements X±1

i , ŷi (1 ≤ i ≤ n) subject to the following relations:

[ŷi, ŷj] = 0 = [Xi, Xj], XiX
−1
i = X−1

i Xi = 1,

skXksk = Xk+1, [sk, Xi] = 0 for i ̸= k, k + 1,

skŷk+1 − ŷksk = c, [sk, ŷi] = 0 for i ̸= k, k + 1,

(ŷ1 + · · ·+ ŷn)Xi = Xi(1 + ŷ1 + · · ·+ ŷn),

ŷ2 −X1ŷ2X
−1
1 = cs1,

where 1 ≤ j ≤ n. Slightly different but equivalent sets of generators and relations are
used in [2] (see also [98, Section 3]).

The above defining relations of Htrig
n can be obtained by taking the relations of the

DAHA Hn of type GLn from Section 2.4 and performing a trigonometric degeneration by
putting

Yi = eℏŷi , q = eℏ, τ = e−ℏc/2, Tk = ske
−ℏcsk/2 (2.16)

and taking a limit ℏ → 0 (in other words q → 1). More precisely, we consider Hn as an
algebra over C[[ℏ]] via the assignments (2.16), and we put Htrig

n = Hn/ℏHn Similarly, the
relations of the RCA Hn given above can be obtained from those of the TCA Htrig

n through
a rational degeneration by putting Xi = eℏxi and yi = ℏŷi, expanding the relations of Htrig

n

around ℏ = 0, and taking the first non-trivial relations that this imposes for sk, xi, and yi.
The algebra Htrig

n admits a faithful polynomial representation on the space of Laurent
polynomials C[X±1

1 , . . . , X±1
n ]. The elements sk act by swapping Xk and Xk+1, while X±1

i

act by multiplication, and ŷi act as the commuting trigonometric Dunkl operators

∇trig
i = Xi∂Xi

−
n∑

j=1
j ̸=i

c

1−XjX
−1
i

(1− sij)− c
n∑

j=1
j>i

sij = Xi∇X
i − c

n∑
j=1
j>i

sij, (2.17)

where ∇X
i is formally identical to the rational Dunkl operator ∇i (2.15) from above but

with x relabeled to X! To compare formula (2.17) to the formula for trigonometric Dunkl
operators given in (2.13), one needs to put here Xi = exn−i+1 (the reindexing is just due
to a different convention in (2.13) for the choice of Dunkl operators), and then the oper-
ator (2.17) is equal (up to a constant) to the operator (2.13) with R = An−1 and ξ = en−i+1.
Finally, note that in the rational degeneration, described in the preceding paragraph, where
we put Xi = eℏxi , we have limℏ→0 ℏ∇trig

i = ∇i, as expected.
The TCA Htrig

n has a PBW-type basis formed by wXm1
1 · · ·Xmn

n ŷ1
p1 · · · ŷnpn for w ∈ Sn,

mi ∈ Z, and pi ∈ Z≥0.
From the respective polynomial representations of the RCA Hn and the TCA Htrig

n of
type GLn, and in particular formula (2.17) that relates ∇trig

i and ∇X
i , one sees that there
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is an algebra embedding of Hn into Htrig
n given as follows [98, Proposition 4.1(i)]:

sk 7→ sk, xi 7→ Xi,

yi 7→ X−1
i

ŷi + c

n∑
j=1
j>i

sij

 = X−1
i (sisi+1 · · · sn−1)ŷn(sn−1 · · · si+1si).

(2.18)

The relationship between ŷi and ŷn follows from the fact that Yi = Ti · · ·Tn−1YnTn−1 · · ·Ti
in the DAHA Hn.

On the other hand, the degenerate AHA of type GLn, which is the subalgebra of Htrig
n

generated by Sn and C[ŷ1, . . . , ŷn], embeds into Hn via sk 7→ sk, ŷi 7→ xiyi−c
∑

j>i sij [45,
Proposition 4.3(ii)] as follows from relation (2.17).

The algebras Hn and Htrig
n both admit a grading, which will be discussed in Section 6.1

and where we will see that the form of the embedding (2.18) (in particular, the presence
of X−1

i in the image of yi) is natural in view of these gradings.
The following diagram summarises the relationships between the (finite-type, affine,

and double affine) Hecke algebras and their degenerations, in type GLn, introduced in this
chapter:

Hn,τ ⊂ Ĥn,τ ⊂ Hn,q,τ Htrig
n,c Hn,c

q→1

The following table summarises the notations for the generators (and their images in the
respective polynomial representations, if denoted differently) of the DAHA, RCA, and
TCA of type GLn.

Algebra Generators

Hn,q,τ Tk (1 ≤ k ≤ n− 1), X±1
i , Y ±1

i (1 ≤ i ≤ n)

Htrig
n,c sk (1 ≤ k ≤ n− 1), X±1

i , ŷi (or ∇trig
i ) (1 ≤ i ≤ n)

Hn,c sk (1 ≤ k ≤ n− 1), xi, yi (or ∇i) (1 ≤ i ≤ n)

Table 2.1: Notations for generators of DAHA, TCA, and RCA of type GLn.



Chapter 3

Bispectrality of generalised
Calogero–Moser–Sutherland systems

In this chapter, we extend the axiomatic definition of multidimensional BA functions
from [22, 24, 28, 29, 105] to the case of configurations where arbitrary collinear vectors are
allowed as long as all subsets of collinear vectors are of the form {α, 2α}, and we construct
such a function for (the positive halves of) the configurations AG2 and BC(l, 1). This
leads to bispectral duality statements for the corresponding generalised CMS quantum
Hamiltonians associated with AG2 and BC(l, 1), respectively. In the case of AG2, we
present two corresponding dual difference operators of rational MR type in an explicit
form. In the case of BC(l, 1), we use a difference operator defined by Sergeev and Veselov.
This chapter is based on our papers [55,56,83] (the initial parts of [56] were done in [106]).

The structure of this chapter is as follows. In Section 3.1, we recall the definition of
generalised CMS operators associated with finite collections of vectors with prescribed
multiplicities. In Section 3.2, we discuss their BA functions. In Section 3.3, we give an
ansatz for a dual MR-type difference operator with rational coefficients of a particular
form, and we find sufficient conditions for it to preserve a space of quasi-invariant analytic
functions. We apply this machinery in Section 3.4, where we present an account of our
construction from [56] of the BA function for the configuration AG2 and the proof that
it leads to a bispectral duality for the generalised CMS operator associated with AG2.
We studied the integrability of this operator in [55], and Section 3.4 includes a summary
of the results of that paper. In Section 3.5, we give a construction of the BA function
for the configuration BC(l, 1) and prove a bispectral duality for the generalised CMS
system of type BC(l, 1), following our paper [83]. By an analytic continuation argument,
we generalise in Section 3.6 the above two eigenfunctions from the case of non-negative
integer values of the multiplicity parameters to more general complex values. In the case
of AG2, this further extends the investigations done in [56].

31
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3.1 Generalised CMS Hamiltonians

Consider a finite set A ⊂ Cn \ {0} and a multiplicity function c : A → C that assigns
to each vector α ∈ A a complex number cα called its multiplicity. In most parts of this
chapter, we will be specifically interested in the case where the multiplicities are contained
in Z≥0.

The generalised CMS Hamiltonian associated with the collection of vectors A with
prescribed multiplicities is the Schrödinger operator of the form

L = −∆+
∑
α∈A

cα(cα + 2c2α + 1)⟨α, α⟩
sinh2⟨α, x⟩

, (3.1)

where x = (x1, . . . , xn) ∈ Cn, ∆ =
∑n

i=1 ∂
2
xi

(∂xi
= ∂/∂xi) is the Laplace operator on Cn,

and c2α := 0 if 2α /∈ A. The convention of writing the couplings in the operator (3.1) as
cα(cα + 2c2α + 1)⟨α, α⟩ comes from the theory of symmetric spaces (see, e.g., [94]).

The above generalised CMS system is said to be of trigonometric (or, equivalently,
hyperbolic) type. The rational version of these operators is obtained by replacing the
function sinh⟨α, x⟩ in formula (3.1) by ⟨α, x⟩. It can be obtained as a limit of the oper-
ator (3.1) by introducing a scaling parameter ω > 0, replacing each α ∈ A by ωα, with the
same multiplicity, and taking the limit ω → 0. There exists also an elliptic generalisation
of CMS systems, which is the most general case, where the potential is expressed in terms
of the Weierstrass ℘ function on an elliptic curve, but we will not deal with the elliptic case
in this thesis. By CMS operators, we will mean the trigonometric type unless specified
otherwise.

3.2 Baker–Akhiezer functions

In this section, we consider the axiomatic definition of BA functions proposed in [56].
We formulated the definition in such a way that it naturally extends the case of reduced
configurations [28,105], as well as the case of the root systems BCn covered in [22,24,29].
We show that if a function satisfying this definition exists for some configuration of vectors,
then it is an eigenfunction for the corresponding generalised CMS operator (3.1).

Let R ⊂ Cn be a finite collection of non-isotropic vectors. We assume there is a subset
R+ ⊂ R such that any collinear vectors in R+ are of the form α, 2α, and R = R+

∐
(−R+).

Let Rr = {α ∈ R : 1
2
α /∈ R} and Rr

+ = Rr ∩ R+. Let c : R → Z≥0 be a multiplicity map,
and extend it to c : R∪ 2R → Z≥0 by putting c2α = 0 if 2α /∈ R for some α ∈ R. Without
loss of generality, let us assume in this section that c(Rr) ⊂ Z>0. For any α ∈ Rr

+, we
define the set

Aα := {1, 2, . . . , cα} ∪ {cα + 2, cα + 4, . . . , cα + 2c2α}.
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Definition 3.1. We call a function ψ(z, x) (z, x ∈ Cn) a BA function for R if

1. ψ(z, x) = P (z, x)e⟨z,x⟩ for a polynomial P in z with highest-order term
∏

α∈R+
⟨α, z⟩cα ;

2. ψ(z + sα, x) = ψ(z − sα, x) at ⟨z, α⟩ = 0 for all s ∈ Aα and α ∈ Rr
+.

For α ∈ Cn, we denote by δα the operator that acts on functions f(z, x) by

δαf(z, x) = f(z + α, x)− f(z − α, x).

The second condition in Definition 3.1 admits the following equivalent characterisation.

Lemma 3.2. Let α ∈ Cn be non-isotropic, cα ∈ Z>0, and c2α ∈ Z≥0. A function ψ(z, x)

(z, x ∈ Cn) analytic in z satisfies ψ(z + sα, x) = ψ(z − sα, x) at ⟨z, α⟩ = 0 for all s ∈ Aα

if and only if (
δα ◦ 1

⟨z, α⟩

)s−1

δαψ(z, x) = 0 at ⟨z, α⟩ = 0, s = 1, . . . , cα, (3.2)

and(
δ2α ◦ 1

⟨z, α⟩

)t

◦
(
δα ◦ 1

⟨z, α⟩

)cα−1

δαψ(z, x) = 0 at ⟨z, α⟩ = 0, t = 1, . . . , c2α. (3.3)

The proof of the preceding lemma follows from the one-dimensional statement in
Lemma 3.3 below, whose proof can be found in our paper [56] (see also [105], where
the corresponding statement in the case c2α = 0 was stated). Let δr (r ∈ Z>0) be the
difference operator that acts on functions F (k) (k ∈ C) by δrF (k) = F (k+ r)−F (k− r).
Write δ = δ1 for short.

Lemma 3.3. The following two properties are equivalent for any analytic function F (k)

(k ∈ C) and any n ∈ Z>0, m ∈ Z≥0.

1. For all s = 1, . . . , n, (
δ ◦ 1

k

)s−1

δF (k)

∣∣∣∣
k=0

= 0,

and for all t = 1, . . . ,m,(
δ2 ◦

1

k

)t

◦
(
δ ◦ 1

k

)n−1

δF (k)

∣∣∣∣
k=0

= 0.

2. F (s) = F (−s) for all s ∈ {1, 2, . . . , n} ∪ {n+ 2, n+ 4, . . . , n+ 2m}.

The next lemma is a generalisation of [49, Lemma 1] (see also [105, Proposition 1]),
and its proof can be found in our paper [56]. This lemma is used to prove the uniqueness
of the BA function when such a function exists.
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Lemma 3.4. Let ψ(z, x) = P (z, x)e⟨z,x⟩ (z, x ∈ Cn), where P (z, x) is a polynomial in z.
Suppose that ψ satisfies conditions (3.2) and (3.3) for some non-zero α ∈ Cn, cα ∈ Z>0,
c2α ∈ Z≥0. Then ⟨α, z⟩cα+c2α divides the highest-order term P0(z, x) of P (z, x).

Lemma 3.4 has the following consequence.

Lemma 3.5. Let ψ(z, x) = P (z, x)e⟨z,x⟩ (z, x ∈ Cn) satisfy condition 2 in Definition 3.1,
where P (z, x) is a polynomial in z with highest-order term P0(z, x). Then

∏
α∈R+

⟨α, z⟩cα

divides P0(z, x).

Indeed, Lemma 3.4 gives that P0(z, x) is divisible by ⟨z, α⟩cα+c2α for all α ∈ Rr
+. This

is a constant multiple of ⟨z, α⟩cα⟨z, 2α⟩c2α . The statement of Lemma 3.5 follows, since we
are assuming that collinear vectors in R+ are only of the form α, 2α.

Lemma 3.5 leads to the following uniqueness statement analogous to [105, Proposi-
tion 1] (cf. also [49, Proposition 1]) with an analogous proof.

Proposition 3.6. [56] If a BA function satisfying Definition 3.1 exists, then it is unique.

The next theorem generalises [105, Theorem 1] to the present context, and it is proved
analogously to how that result is proved. It states that if the BA function satisfying
Definition 3.1 exists, then it is a joint eigenfunction of a commutative ring of differential
operators in the variables x. Let us first define an isomorphic ring of polynomials.

Let R be the ring of polynomials p(z) ∈ C[z1, . . . , zn] satisfying

p(z + sα) = p(z − sα) at ⟨z, α⟩ = 0

for all s ∈ Aα and α ∈ Rr
+ (notice the similarity with condition 2 in Definition 3.1).

We have z2 = ⟨z, z⟩ ∈ R. Indeed, for any γ ∈ Cn and s ∈ Z>0, we have (z ± sγ)2 =

z2 ± 2s⟨z, γ⟩ + s2γ2 = z2 + s2γ2 at ⟨z, γ⟩ = 0. For any vector γ, we write γ2 for ⟨γ, γ⟩
whenever convenient to save space.

For a polynomial p(z) = p(z1, . . . , zn), by p(∂x) we will mean p(∂x1 , . . . , ∂xn). For
example, if p(z) = z2 = z21 + · · ·+ z2n, then p(∂x) = ∆ is the Laplacian.

The following statement takes place.

Theorem 3.7. [56] If the BA function ψ(z, x) satisfying Definition 3.1 exists, then for
any p(z) ∈ R there is a differential operator Lp(x, ∂x) with highest-order term p(∂x) such
that

Lp(x, ∂x)ψ(z, x) = p(z)ψ(z, x).

For any p, q ∈ R, the operators Lp and Lq commute.

The next lemma is used in the proof that the differential operator Lz2 from The-
orem 3.7 corresponding to the polynomial z2 ∈ R coincides with the generalised CMS
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Hamiltonian (3.1) associated with the configuration A = R+. This lemma is a generalisa-
tion of [49, Lemma 2] (see also [105]), and its proof can be found in our paper [56].

Lemma 3.8. Suppose ψ(z, x) = P (z, x)e⟨z,x⟩ satisfies Definition 3.1. Let N =
∑

α∈R+
cα.

Write P (z, x) =
∑N

i=0 Pi(z, x) where P0(z, x) =
∏

α∈R+
⟨α, z⟩cα and Pi are polynomials

homogeneous in z with degPi = N − i. Then

P1(z, x)

P0(z, x)
= −

∑
α∈R+

cα(cα + 2c2α + 1)⟨α, α⟩
2⟨α, z⟩

coth⟨α, x⟩. (3.4)

The following proposition has a completely analogous proof to [49, Proposition 2], it
just uses Lemma 3.8 in place of [49, Lemma 2] (see also [105]).

Proposition 3.9. [56] With notations and assumptions as in Theorem 3.7, the polynomial
p(z) = z2 ∈ R corresponds to the differential operator

Lz2 = ∆−
∑
α∈R+

cα(cα + 2c2α + 1)⟨α, α⟩
sinh2⟨α, x⟩

,

which coincides (up to sign) with the generalised CMS operator (3.1) for A = R+.

This then implies quantum integrability of the Hamiltonian Lz2 , as it provides a
quantum integral Lp with highest term p0(∂x) for each p(z) ∈ R, where p0 is the highest
homogeneous term of p, and R contains Q(z)

∏
α∈Rr

+, s∈Aα
(⟨α, z⟩2 − s2⟨α, α⟩2) for any

polynomial Q(z). Taking Q(z) to be zi for i = 1, . . . , n gives n algebraically independent
operators.

3.3 Ansatz for dual difference operators

In Section 3.4, we use a method for explicit construction of BA functions that was pro-
posed by Chalykh [24] (see also [49] for further examples where this method is applied,
and [26] for the differential case). The construction uses certain difference operators of
rational MR type. The key element of the method is the preservation of a space of quasi-
invariant analytic functions under the action of the difference operators. In this section,
we find sufficient conditions for a (for our purposes) sufficiently general invariant difference
operator to preserve such a ring of quasi-invariants.

We continue to use the notations from Section 3.2. Let W = ⟨sα : α ∈ R⟩, where sα
is the orthogonal reflection about the hyperplane ⟨α, x⟩ = 0. We assume now that the
collection R is W -invariant, that is, w(R) = R for all w ∈ W , and that the multiplicity
map is W -invariant, too. Let u∨ = 2u/⟨u, u⟩ for any u ∈ Cn such that ⟨u, u⟩ ≠ 0.
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Let Ra be the ring of analytic functions p(z) such that

p(z + tα) = p(z − tα) at ⟨α, z⟩ = 0 for t ∈ Aα

for all α ∈ Rr
+, where Aα ⊂ Z>0 specifies the axiomatics that one wants to consider. For

instance, it can be Aα = {1, 2, . . . , cα}∪{cα+2, cα+4, . . . , cα+2c2α} as before. We assume
that A|wα| = Aα for all w ∈ W , α ∈ Rr

+, where |wα| := wα if wα ∈ Rr
+ and |wα| := −wα if

wα ∈ (−Rr
+). For α ∈ R, we let sgnα = 1 if α ∈ R+, and we let sgnα = −1 if α ∈ (−R+).

Let S ⊂ Cn \ {0} be a W -invariant finite collection of vectors. Let z ∈ Cn, and
for any α ∈ Cn, let Tα be the (additive) shift operator that acts on functions f(z) by
Tαf(z) = f(z + α). We are interested in difference operators D of the form

D =
∑
τ∈S

aτ (z)(Tτ − 1), (3.5)

where aτ are rational functions with the following three properties:

(D1) deg aτ = 0.

(D2) aτ (z) has a simple pole at ⟨α, z⟩ = cα2 for some α ∈ Rr
+ and c ∈ C if and only if

λ = sα(τ)− 2cα ∈ S ∪ {0} and

⟨τ + cα, α⟩/α2 = c+ ⟨τ, (2α)∨⟩ ∈ Aα ∪ (−Aα).

There are no other singularities in aτ . Denote the set of all such pairs (α, c) for
this τ by Sτ .

(D3) waτ = awτ for all w ∈ W .

Condition (D2) implies that if aτ has a singularity ⟨α, z⟩ = cα2, then for any such z the
vectors z+ τ and z+ λ are of the form z+ τ = z̃+ tα and z+ λ = z̃− tα for some z̃ with
⟨α, z̃⟩ = 0 and t = c+ ⟨τ, (2α∨)⟩ ∈ Aα ∪ (−Aα). We note also that λ ̸= τ since 0 /∈ Aα.

Note that if aτ has a singularity ⟨α, z⟩ = cα2 and the corresponding λ ̸= 0, then
condition (D2) implies that aλ(z) necessarily also has a singularity at ⟨α, z⟩ = cα2, since
sα(λ)− 2cα = τ ∈ S and ⟨λ+ cα, α⟩ = ⟨sα(τ + cα), α⟩ = −⟨τ + cα, α⟩. In other words, by
condition (D2), we have (α, c) ∈ Sτ if and only if (α, c) ∈ Sλ for λ = sα(τ)− 2cα provided
that both τ, λ ̸= 0. We additionally observe the following.

Lemma 3.10. For any w ∈ W , (α, c) ∈ Sτ if and only if (|wα|, sgn(wα)c) ∈ Swτ .

Proof. Let ε = sgn(wα). Since s|wα| = wsαw
−1 and ε|wα| = wα, we get that s|wα|(wτ)−

2εc|wα| = w(sα(τ) − 2cα) belongs to S ∪ {0} if and only if sα(τ) − 2cα ∈ S ∪ {0}, due
to W -invariance of S. Furthermore, ⟨wτ + εc|wα|, |wα|⟩/|wα|2 = ±⟨τ + cα, α⟩/α2, and
Aα = A|wα|, by assumption. The statement follows. ■
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More explicitly, we are looking at operators of the form

D =
∑
τ∈S

Pτ (z)

 ∏
(α,c)∈Sτ

(
⟨α, z⟩ − cα2

)−1

 (Tτ − 1)

for some polynomials Pτ (z) of degree |Sτ |, ensuring that deg aτ = 0, and such that con-
dition (D3) holds. We want to find some sufficient conditions that would ensure that D
preserves the ring Ra.

Theorem 3.11. Suppose the operator (3.5) satisfies conditions (D2) and (D3). Then for
any α ∈ Rr

+ and arbitrary p(z) ∈ Ra, we have the following two properties.

1. Dp(z) is non-singular at ⟨α, z⟩ = 0. Moreover, for any c ̸= 0, provided that for all
τ ∈ S such that (α, c) ∈ Sτ and such that λ = sα(τ)− 2cα ̸= 0 we have

res⟨α,z⟩=cα2(aτ + aλ) = 0,

then Dp(z) is non-singular at ⟨α, z⟩ = cα2, where res denotes residue.

2. Suppose, in addition to assumptions of part 1, that for all τ ∈ S and any t ∈ Aα,
the following is satisfied whenever t+ ⟨τ, (2α)∨⟩ /∈ Aα ∪ (−Aα) ∪ {0}:

(a) aτ (z + tα) = 0 at ⟨α, z⟩ = 0 (equivalently, Pτ (z) has a factor of ⟨α, z⟩ − tα2),

or

(b) letting λ = sα(τ)−2tα, we have λ ∈ S and aλ(z+tα) = aτ (z+tα) at ⟨α, z⟩ = 0.

Then Dp(z + tα) = Dp(z − tα) at ⟨α, z⟩ = 0 for all t ∈ Aα.

Proof. 1. Let c ∈ C. We want to show that the residue at ⟨α, z⟩ = cα2 of Dp(z) is zero.
Take any τ ∈ S such that (α, c) ∈ Sτ . Write τ + cα = tα + γ, where ⟨γ, α⟩ = 0 and
t = ⟨τ + cα, α⟩/α2. Let λ = sα(τ) − 2cα. Then λ + cα = sα(τ + cα) = −tα + γ. At
⟨α, z⟩ = cα2, we have

p(z + τ) = p((z − cα + γ) + tα) = p((z − cα + γ)− tα) = p(z + λ)

since p(z) ∈ Ra, ⟨z − cα + γ, α⟩ = 0, and t ∈ Aα ∪ (−Aα) by assumption (D2). So, if
λ = 0 then the simple pole at ⟨α, z⟩ = cα2 present in aτ (z) is cancelled by (Tτ −1)[p(z)] =

p(z + τ)− p(z). And if λ ̸= 0, then the sum

aτ (z)(p(z + τ)− p(z)) + aλ(z)(p(z + λ)− p(z))

contributes zero to the residue provided that the residue of aτ + aλ is zero. For c ̸= 0,
the latter is satisfied by assumption. In the case of c = 0, we have λ = sα(τ), hence
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aτ (sα(z)) = aλ(z) by the symmetry (D3) of the operator, thus we get

lim
⟨α,z⟩→0

⟨α, z⟩aτ (z) = lim
⟨α,z⟩→0

⟨α, sα(z)⟩aτ (sα(z)) = − lim
⟨α,z⟩→0

⟨α, z⟩aλ(z);

that is, the residue of aτ (z) at ⟨α, z⟩ = 0 is minus that of aλ(z), as needed.
2. Fix t ∈ Aα. By the symmetry (D3) of the operator, we have that aµ(z + sα) =

asα(µ)(z − sα) for all generic s ∈ C and generic z ∈ Cn with ⟨α, z⟩ = 0, µ ∈ S. By using
that sα(S) = S, we can thus write Dp(z + tα)−Dp(z − tα) at ⟨α, z⟩ = 0 as

lim
s→t

∑
µ∈S

aµ(z + sα)

(
p(z + sα + µ)− p(z − sα + sα(µ))− p(z + sα) + p(z − sα)

)
. (3.6)

Firstly, let us consider any τ ∈ S for which aτ (z+ tα) is non-singular at ⟨α, z⟩ = 0 (for
generic z). Then the corresponding µ = τ term in the sum (3.6) can be simplified to

aτ (z + tα) (p(z + tα + τ)− p(z − tα + sα(τ)) (3.7)

by using that p(z) ∈ Ra. Let τ = bα + δ, where ⟨δ, α⟩ = 0 and b = ⟨τ, (2α)∨⟩. Then
sα(τ) = −bα + δ, and thus

p(z + tα + τ)− p(z − tα + sα(τ)) = p(z + δ + (t+ b)α)− p(z + δ − (t+ b)α), (3.8)

where ⟨α, z + δ⟩ = 0. Hence, if t + b ∈ Aα ∪ (−Aα) ∪ {0}, then (3.8) equals zero, and
the whole term (3.7) vanishes. Else, we have by assumption two possibilities (cases (a)
and (b)). If aτ (z + tα) = 0 at ⟨α, z⟩ = 0, then (3.7) vanishes; and if aτ (z + tα) ̸= 0, then
case (b) must apply, and so λ := sα(τ)− 2tα ∈ S \{τ} and aλ(z+ tα) = aτ (z+ tα). (Note
that the fact that t + b /∈ Aα ∪ (−Aα) ∪ {0} implies that λ ̸= τ , and due to (D2) also
that aλ(z + tα) is well-defined at ⟨α, z⟩ = 0 for generic z). In the latter case, the term
corresponding to µ = λ in the sum (3.6) can be simplified to

aλ(z + tα) (p(z + tα + λ)− p(z − tα + sα(λ))

= aτ (z + tα) (p(z − tα + sα(τ))− p(z + tα + τ)) ,

which is the negative of (3.7), hence the terms corresponding to µ = τ and µ = λ in (3.6)
cancel out.

Secondly, let us consider any τ ∈ S for which aτ (z + tα) is singular at ⟨α, z⟩ = 0.
Equivalently, aτ (z̃) is singular at ⟨α, z̃⟩ = tα2. Hence (α, t) ∈ Sτ by assumption (D2),
in particular, λ ∈ S ∪ {0} and t + b ∈ Aα ∪ (−Aα). From the latter, it follows that the
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expression (3.8) vanishes. We can restate this as

p(z + sα + τ)− p(z − sα + sα(τ)) = (s− t)q(s)

for some analytic function q(s) (s ∈ C). Similarly, the property p(z + tα) = p(z − tα) at
⟨α, z⟩ = 0 can be restated as

p(z + sα)− p(z − sα) = (s− t)r(s) (3.9)

for some analytic function r(s). Moreover, we also have

p(z+sα+λ)−p(z−sα+sα(λ)) = p(z−(2t−s)α+sα(τ))−p(z+(2t−s)α+τ) = (s−t)q(2t−s).
(3.10)

Suppose firstly that λ ̸= 0. Then in the sum (3.6), the two terms corresponding to µ = τ

and µ = λ cancel out. Indeed, they equal

lim
s→t

(
aτ (z + sα)(s− t)(q(s)− r(s)) + aλ(z + sα)(s− t)(q(2t− s)− r(s))

)
= (q(t)− r(t)) res⟨z,α⟩=tα2(aτ + aλ) = 0

because res⟨z,α⟩=tα2(aτ + aλ) = 0 by the assumptions of part 1 with c = t. Suppose now
that λ = 0, then r(s) = q(2t − s) by equalities (3.9) and (3.10). Therefore, the term
corresponding to µ = τ in the sum (3.6) is lims→t aτ (z + sα)(s− t) (q(s)− q(2t− s)) = 0.

It follows that the sum (3.6) vanishes, as required. ■

It follows that if conditions (D2), (D3), and the assumptions of both parts 1 and 2
of Theorem 3.11 are satisfied for all α ∈ Rr

+, then D preserves the ring Ra, that is,
Dp(z) ∈ Ra for any p(z) ∈ Ra.

Additionally, we can use the symmetry assumption (D3) to reduce the number of
conditions that we have to check to apply Theorem 3.11. The following statements take
place.

Lemma 3.12. Suppose that condition (D3) holds. If aτ + aλ has zero residue at ⟨α, z⟩ =
cα2, then awτ + awλ has zero residue at ⟨wα, z⟩ = cα2 for any w ∈ W .

Proof. By the property (D3), we have awτ (z) + awλ(z) = aτ (w
−1z) + aλ(w

−1z), therefore

res⟨wα,z⟩=cα2(awτ (z) + awλ(z)) = lim
⟨wα,z⟩→cα2

(⟨wα, z⟩ − cα2)(awτ (z) + awλ(z))

= lim
⟨α,w−1z⟩→cα2

(⟨α,w−1z⟩ − cα2)(aτ (w
−1z) + aλ(w

−1z))

= res⟨α,z̃⟩=cα2(aτ (z̃) + aλ(z̃)) = 0. ■
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By combining Lemmas 3.10, 3.12, and Theorem 3.11, we obtain the following.

Corollary 3.13. Suppose the operator (3.5) satisfies conditions (D2) and (D3). If the
assumptions of part 1 of Theorem 3.11 are satisfied for some α ∈ Rr

+, then Dp(z) is
non-singular at ⟨wα, z⟩ = cα2 for all w ∈ W and all c ∈ C.

Proof. By Theorem 3.11 part 1, it suffices to check that for any τ̃ ∈ S and c ̸= 0 such that
(|wα|, sgn(wα)c) ∈ Sτ̃ and such that λ̃ = s|wα|(τ̃) − 2cwα ̸= 0, we have that the residue
of aτ̃ + a

λ̃
at ⟨wα, z⟩ = cα2 is zero. Since S is W -invariant, we can write τ̃ = wτ for some

τ ∈ S. Lemma 3.10 then gives (α, c) ∈ Sτ . Note that λ̃ = wλ for λ = sα(τ) − 2cα (in
particular, λ ̸= 0 as λ̃ ̸= 0). By assumption, part 1 of Theorem 3.11 holds for this (α, c),
that is, res⟨α,z⟩=cα2(aτ + aλ) = 0. Lemma 3.12 now gives what we need. ■

Lemma 3.14. Suppose the operator (3.5) satisfies conditions (D2) and (D3). If the as-
sumptions of parts 1 and 2 of Theorem 3.11 are satisfied for some α ∈ Rr

+, then the
assumptions of part 2 are also satisfied for wα for all w ∈ W such that wα ∈ Rr

+.

Proof. Note that Awα = Aα. Thus we need to prove that whenever for some t ∈ Aα and
τ̃ ∈ S we have t + ⟨τ̃ , (2wα)∨⟩ /∈ Aα ∪ (−Aα) ∪ {0}, then either aτ̃ (z + twα) = 0 at
⟨wα, z⟩ = 0, or else λ̃ := swα(τ̃)− 2twα satisfies λ̃ ∈ S and aλ̃(z + twα) = aτ̃ (z + twα) at
⟨wα, z⟩ = 0.

Suppose that t + ⟨τ̃ , (2wα)∨⟩ /∈ Aα ∪ (−Aα) ∪ {0}. Since S is invariant, we can write
τ̃ = wτ for some τ ∈ S. Note that then λ̃ = w(sα(τ) − 2tα) = wλ. Note also that
(2wα)∨ = w(2α)∨. Therefore t + ⟨τ, (2α)∨⟩ = t + ⟨τ̃ , (2wα)∨⟩ /∈ Aα ∪ (−Aα) ∪ {0}. By
assumption, part 2 of Theorem 3.11 holds for this α. Suppose firstly (case (a)) that
aτ (z̃ + tα) = 0 at ⟨α, z̃⟩ = 0. By the symmetry (D3), at ⟨wα, z⟩ = 0 (or, equivalently,
⟨α,w−1z⟩ = 0) we thus get aτ̃ (z + twα) = aτ (w

−1z + tα) = 0, as required. Otherwise
(case (b)), we have λ ∈ S, hence λ̃ = wλ ∈ S by invariance, and at ⟨wα, z⟩ = 0 we get
aλ̃(z + twα)− aτ̃ (z + twα) = aλ(w

−1z + tα)− aτ (w
−1z + tα) = 0, as required. ■

Remark 3.15. Let α ∈ Rr
+. Suppose w ∈ W satisfies wα = α. Then, for any τ ∈ S, in

part 2 of Theorem 3.11 it suffices to check the stated conditions for either τ or wτ , as one
implies the other. Indeed, we have t+ ⟨wτ, (2α)∨⟩ = t+ ⟨τ, (2α)∨⟩. Also, sα(wτ)− 2tα =

wλ, and at ⟨α, z⟩ = 0, using the symmetry (D3), we have awτ (z + tα) = aτ (w
−1z + tα)

and, in case (b), awλ(z + tα) = aλ(w
−1z + tα), where ⟨α,w−1z⟩ = 0.

3.4 Configuration AG2

In this section, we consider the generalised CMS operator L associated with the planar
configuration of vectors called AG2, which is a union of the root systems A2 and G2. We
explain how to prove the integrability of L by means of an intertwining relation between L
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Figure 3.1: A positive half of the configuration AG2.

and the CMS Hamiltonian for the root system G2, giving an explicit quantum integral
for L of order 6. We also establish the existence of a BA function for the operator L,
give two constructions of this function, and show that L has a bispectrality property. We
provide two corresponding dual difference operators of rational MR type in an explicit
form.

The configurationAG2 is a non-reduced collection of vectors in R2. A positive halfAG2,+

= G2,+ ∪ A2,+ is shown in Figure 3.1, where G2,+ = {αi, βi : i = 1, 2, 3} and A2,+ =

{2βi : i = 1, 2, 3}. The indices of αi’s are assigned in such a way that ⟨αi, βi⟩ = 0 for all
i = 1, 2, 3. The multiplicities assigned to the vectors αi, βi, and 2βi are m, 3m, and 1,
respectively, where m ∈ C is a parameter.

We adopt a coordinate system where the vectors take the form

α1 = ω
(
0,
√
3
)
, α2 = ω

(
−3

2
,
√
3
2

)
, α3 = ω

(
3
2
,
√
3
2

)
,

β1 = ω
(
1, 0
)
, β2 = ω

(
1
2
,
√
3
2

)
, β3 = ω

(
−1

2
,
√
3
2

) (3.11)

for some scaling ω ∈ C×. These vectors satisfy β1 + β3 = β2, α2 + α3 = α1,

β1 = 2β2 − α1 = α1 − 2β3 = α3 − β2 = β3 − α2,

α1 =
3
2
β2 +

1
2
α2 =

3
2
β3 +

1
2
α3, and β1 = 1

2
β2 − 1

2
α2 = −1

2
β3 +

1
2
α3.

The configuration AG2 is contained in the two-dimensional lattice Zβ1 ⊕ Zα2. It is
invariant under the Weyl group of type G2, but it is not a crystallographic root system
because, for example, the vectors β1 and 2β2 have 2⟨β1, 2β2⟩/⟨2β2, 2β2⟩ = 1

2
/∈ Z, so the

crystallographic condition is not satisfied.
The structure of this section is as follows. We explain below in Section 3.4.1 that the

corresponding generalised CMS quantum Hamiltonian (3.1) with A = AG2,+ is quantum
integrable for any value of the parameter m ∈ C, as we established in [55]. Moreover, by
virtue of AG2 being a locus configuration [48], the operator is algebraically integrable for
m ∈ Z≥0, as follows from the general results presented in [16] (see also [55]). We then dis-
cuss the generalised CMS system for AG2 in the special case of m ∈ Z≥0 further. Namely,
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we give in Section 3.4.2 a difference operator D1 related to the configuration AG2 that
satisfies the conditions from Section 3.3. We use this operator to prove in Section 3.4.3
that the BA function for the configuration AG2 exists, and we express this function by
iterated action of the operator. We show that the BA function is an eigenfunction of D1,
which establishes a bispectral duality. In Section 3.4.4, we present another dual oper-
ator D2 for the configuration AG2, and we establish the corresponding statements for this
operator analogous to the ones for D1. The operators D1 and D2 commute. Finally, we
consider in Section 3.4.5 the operator D1 at m = 0, which gives an MR operator for the
root system A2 with multiplicity 1. We show that a version of this operator for the root
system A1 can be decomposed into a sum of two non-symmetric commuting difference
operators, which we relate with the standard MR operator for the minuscule weight of the
root system A1.

3.4.1 Integrability of the AG2 generalised CMS system

Let L0 be the CMS Hamiltonian for the root system G2 with multiplicities m and 3m for
the long and short roots, respectively. Let L be the Hamiltonian of the generalised CMS
system associated with the above configuration AG2. More precisely,

L0 = −∆+
3∑

i=1

(
vi(x) + ui(x)

)
,

L = −∆+
3∑

i=1

(
vi(x) + ũi(x)

)
, (3.12)

where ∆ = ∂2x1
+ ∂2x2

, x = (x1, x2) ∈ C2,

vi(x) =
m(m+ 1)⟨αi, αi⟩

sinh2⟨αi, x⟩
,

ui(x) =
3m(3m+ 1)⟨βi, βi⟩

sinh2⟨βi, x⟩
, (3.13)

and

ũi(x) =
9m(m+ 1)⟨βi, βi⟩

sinh2⟨βi, x⟩
+

8⟨βi, βi⟩
sinh2⟨2βi, x⟩

=
(3m+ 1)(3m+ 2)⟨βi, βi⟩

sinh2⟨βi, x⟩
− 2⟨βi, βi⟩

cosh2⟨βi, x⟩
.

We present below an intertwining relation between L and the integrable Hamilto-
nian L0. This relation is valid for any value of the parameter m, including non-integer
ones. This leads to integrability of L for all m, thus generalising integrability for integer m
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known from [16,48]. The corresponding intertwining operator D has order 3. This, in turn,
leads to a quantum integral for L of order 6. We note that the direct application of the
results of [16] in the case of integer m leads to a higher-order intertwiner and a higher-
order integral of L. The degree 6 for the integral of L is expected to be minimal possible.
Indeed, for generic m, it follows from [99] that an independent integral for the rational
version of L with constant highest term has to be of degree at least 6, since such highest
term should be G2-invariant.

The intertwining operator D has the form

D = ∂β1∂β2∂β3 −
∑
σ∈A3

f
σ(1)
∂βσ(2)

∂βσ(3)
+

3∑
i=1

gi∂βi
− h, (3.14)

where A3 = {id, (1, 2, 3), (1, 3, 2)} is the alternating group on 3 elements,

fi = (3m+ 1)⟨βi, βi⟩ coth⟨βi, x⟩+ ⟨βi, βi⟩ tanh⟨βi, x⟩,

gi =
∏
j ̸=i

fj −
∏

j ̸=i⟨αi, βj⟩
⟨αi, αi⟩

vi −
∏

j ̸=i⟨βi, βj⟩
⟨βi, βi⟩

ui

for i = 1, 2, 3, and

h = f1f2f3 −
3∑

i=1

fi

(∏
j ̸=i⟨αi, βj⟩
⟨αi, αi⟩

vi +

∏
j ̸=i⟨βi, βj⟩
⟨βi, βi⟩

ui

)
+

3∑
i=1

∏
j ̸=i⟨βi, βj⟩
⟨βi, βi⟩

∂βi
(ui)

+
3m(3m+ 1)⟨β1, β1⟩3

sinh⟨β1, x⟩ sinh⟨β2, x⟩ sinh⟨β3, x⟩
+

4(3m+ 1)⟨β1, β1⟩3

sinh⟨2β1, x⟩ sinh⟨2β2, x⟩ sinh⟨2β3, x⟩
.

The following theorem takes place. The proof is by a direct computation.

Theorem 3.16. [55] The differential operator (3.14) satisfies

LD = DL0. (3.15)

The quantum integrability of L and a quantum integral for it are obtained as a direct
corollary by making use of a general statement from [23]. Let us recall the notion of the
formal adjoint A∗ of a differential operator A. It can be defined by the relations ∂∗xi

= −∂xi
,

f ∗ = f for any function f , and (AB)∗ = B∗A∗ for any differential operators A,B.

Theorem 3.17. [55] Let D be given by (3.14), and let D∗ be the formal adjoint of D .
Let I be any differential operator such that the commutator [I, L0] = 0. Then DID∗

commutes with L. In particular, [DD∗, L] = 0.

Indeed, taking the formal adjoint of the relation (3.15) gives D∗L = L0D∗. Hence

LDID∗ = DL0ID
∗ = DIL0D

∗ = DID∗L.
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Note that for integer m the operator L0 is algebraically integrable [105]. The above gives
an alternative way to see algebraic integrability of the operator L for integer m. Indeed, it
follows from the results of [105] that the operator L0 for integerm admits an intertwiner D0

such that L0D0 = D0(−∆). Theorem 3.16 implies that LDD0 = DD0(−∆), hence L is
exactly solvable in the sense of [16, Definition 3.1], and so it is algebraically integrable
by [16, Theorem 4.3]. The definition of algebraic integrability used in [16], based on [11], is
that the space of common eigenfunctions for generic eigenvalues of the quantum integrals
of the system is one-dimensional.

We also note that in the rational limit, the operator DD∗ reduces to a quantum integral
for the rational CMS system associated with the root system G2 with multiplicities m and
3m+ 1 for the long and short roots, respectively [55].

Remark 3.18. An alternative proof of the integrability of the operator L follows from
Section 4.4.1.2 below, which uses an invariant parabolic submodule for a TCA.

An interesting question is whether the classical analogue of this system is integrable.
In the case of the root system G2, Lax pairs for the corresponding CMS model were
constructed in [40] (see also [8]), which may be a starting point for approaching a classical
AG2 CMS system. Another approach could be to investigate a classical version of the
quantum integral DD∗. On the other hand, if we consider the operator ℏ2L and take the
limit ℏ → 0, m → ∞ such that ℏm → const, then it is easy to see that the resulting
classical Hamiltonian is the ordinary G2 Hamiltonian. This suggests that the classical
analogue of L with a potential as in the quantum case might not be integrable.

3.4.2 Dual difference operator

Assume that m ∈ Z>0. In this section, we give a difference operator D1 satisfying the con-
ditions from Theorem 3.11 for the configuration R = AG2. The corresponding axiomatics
is determined by the sets

Aγ = {1, 2, . . . , cγ} ∪ {cγ + 2c2γ} (3.16)

for γ ∈ G2,+. We define a difference operator acting in the variables z ∈ C2 of the form

D1 =
∑

τ : 1
2
τ∈G2

aτ (z)(Tτ − 1). (3.17)
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Let W be the Weyl group of the root system G2. For τ = 2εαj, ε ∈ {±1}, j ∈ {1, 2, 3},
we define

a2εαj
(z) =

∏
γ∈Wβ1

⟨2εαj ,(2γ)
∨⟩=3

(
1− (3m+ 2)γ2

⟨γ, z⟩

)(
1− (3m+ 1)γ2

⟨γ, z⟩+ γ2

)(
1− 3mγ2

⟨γ, z⟩+ 2γ2

)

×
∏

γ∈Wα1

⟨2εαj ,(2γ)
∨⟩=1

(
1− mγ2

⟨γ, z⟩

)
×
(
1−

mα2
j

⟨εαj, z⟩

)(
1−

mα2
j

⟨εαj, z⟩+ α2
j

)
.

(3.18)

For τ = 2εβj, we define

a2εβj
(z) = 3

∏
γ∈Wβ1

⟨2εβj ,(2γ)
∨⟩=1

(
1− (3m+ 2)γ2

⟨γ, z⟩

)(
1 +

3mγ2

⟨γ, z⟩+ 2γ2

)(
1− (3m− 1)γ2

⟨γ, z⟩ − γ2

)

×
∏

γ∈Wα1

⟨2εβj ,(2γ)
∨⟩=1

(
1− mγ2

⟨γ, z⟩

)
×
(
1−

(3m+ 2)β2
j

⟨εβj, z⟩

)(
1−

3mβ2
j

⟨εβj, z⟩+ β2
j

)
.

(3.19)
The following lemma shows that the functions aτ (z) have G2 symmetry.

Lemma 3.19. Let aτ (z) be defined as in (3.18) and (3.19). Then for all w ∈ W , we have
waτ = awτ .

Proof. For any w ∈ W , we have w(Wα1) = Wα1, w(Wβ1) = Wβ1, and ⟨wτ,wγ⟩ = ⟨τ, γ⟩
for all γ, τ ∈ C2. The statement follows. ■

Define the ring Ra
AG2

of analytic functions p(z) satisfying the conditions

p(z + sαj) = p(z − sαj) at ⟨αj, z⟩ = 0, s = 1, 2, . . . ,m,

p(z + sβj) = p(z − sβj) at ⟨βj, z⟩ = 0, s = 1, 2, . . . , 3m, 3m+ 2
(3.20)

for all j = 1, 2, 3.

Theorem 3.20. The operator (3.17) preserves the ring Ra
AG2

.

Proof. One can check that this operator has property (D2) from Section 3.3 for S = 2G2.
Let p(z) ∈ Ra

AG2
be arbitrary. Without loss of generality, we put ω =

√
2. We introduce

new coordinates (A,B) on C2 given by A = ⟨α1, z⟩ and B = ⟨β1, z⟩.
If B = 4 (equivalently, ⟨β1, z⟩ = 2β2

1), then ⟨β2, z⟩ = 2 + 1
2
A, ⟨β3, z⟩ = −2 + 1

2
A,

⟨α2, z⟩ = −6+ 1
2
A, and ⟨α3, z⟩ = 6+ 1

2
A. The only terms singular at B = 4 are a−2β2 , a−2α3 ,

a2β3 , and a2α2 . Note that sβ1(−2β2)− 4β1 = −2α3, and we compute that resB=4(a−2β2) =

− resB=4(a−2α3) equals

−3m(3m+ 2)(3m+ 4)(A− 12)−1(A− 4)−1A−3(A+ 4)−1(A+ 12)−1(A− 12− 12m)
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× (A+ 6m)(A− 4 + 12m)(A+ 12m)(A+ 4 + 12m)(A+ 12 + 12m)2.

Since sα1(−2β2) = 2β3 and sα1(−2α3) = 2α2, by Lemma 3.12 with w = sα1 we get that
a2β3 + a2α2 has zero residue at B = 4, too. By Theorem 3.11 part 1, there is thus no
singularity at B = 4 in D1p(z).

If B = 2 (equivalently, ⟨β1, z⟩ = β2
1), then ⟨β2, z⟩ = 1 + 1

2
A, ⟨β3, z⟩ = −1 + 1

2
A,

⟨α2, z⟩ = −3 + 1
2
A, and ⟨α3, z⟩ = 3 + 1

2
A. The only τ ∈ 2G2 for which aτ is singular at

B = 2 and for which the corresponding λ = sβ1(τ)−2β1 ̸= 0 are τ = 2β2, 2α2,−2β3,−2α3.
Note that sβ1(2β2)−2β1 = 2α2, and we compute that resB=2(a2β2) = − resB=2(a2α2) equals

6(m+ 1)(3m− 1)(3m+ 1)(A− 6)−1(A− 2)−1A−1(A+ 2)−1(A+ 6)−3(A− 10− 12m)

× (A− 6− 12m)(A− 2− 12m)(A+ 6− 12m)2(A− 6m)(A+ 6 + 12m).

Since sα1(2β2) = −2β3 and sα1(2α2) = −2α3, by Lemma 3.12 we get that a−2β3 + a−2α3

has zero residue at B = 2, too. By Theorem 3.11 part 1, there is thus no singularity at
B = 2 in D1p(z), nor at B = 0.

It follows from the above analysis and from the form of the coefficient functions (3.18)
and (3.19) that there are no singularities in D1p(z) at B = c for all c ≥ 0. By Corol-
lary 3.13, there is also no singularity in D1p(z) at ⟨βi, z⟩ = c for all i = 1, 2, 3 and all
c ∈ C.

The only singularity at A = const > 0 present in the coefficients aτ for some τ is at
A = 6 (equivalently, ⟨α1, z⟩ = α2

1) when τ = −2α1. This singularity cancels in D1p(z) by
Theorem 3.11 part 1, since the corresponding λ = sα1(−2α1)−2α1 = 0. By Corollary 3.13,
there is also no singularity in D1p(z) at ⟨αi, z⟩ = c for all i = 1, 2, 3 and for all c ∈ C.
This completes the proof that D1p(z) is analytic.

Let us now show D1p(z) satisfies the axiomatics of Ra
AG2

. We haveAβi
= {1, 2, 3, . . . , 3m,

3m + 2} and Aαi
= {1, 2, . . . ,m} (i = 1, 2, 3). Let us show firstly that D1p(z + tβ1) =

D1p(z − tβ1) at ⟨β1, z⟩ = 0 for all t ∈ Aβ1 . To do so, we will check condition 2 in
Theorem 3.11 with α = β1 for all τ ∈ 2G2.

Note that (2β1)
∨ = 1

2
β1. Let τ = 2β1. Then |t + ⟨τ, (2β1)∨⟩| = t + 2, which does not

belong to Aβ1 ∪ {0} if and only if t = 3m− 1 or t = 3m+ 2. But

a2β1(z + (3m+ 2)β1) = a2β1(z + (3m− 1)β1) = 0 at ⟨β1, z⟩ = 0

because a2β1(z) contains the factors (1− (3m+2)β2
1

⟨β1,z⟩ )(1− 3mβ2
1

⟨β1,z⟩+β2
1
).

Let now τ = −2β1. Then |t + ⟨τ, (2β1)∨⟩| = |t − 2| ∈ Aβ1 ∪ {0} for all t ∈ Aβ1 , as
needed.

Let now τ = 2β2. Then |t+ ⟨τ, (2β1)∨⟩| = t+ 1, which does not belong to Aβ1 ∪ {0} if
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and only if t = 3m or t = 3m+ 2. But

a2β2(z + (3m+ 2)β1) = a2β2(z + 3mβ1) = 0 at ⟨β1, z⟩ = 0

because a2β2(z) contains the factors (1− (3m+2)β2
1

⟨β1,z⟩ )(1− (3m−1)β2
1

⟨β1,z⟩−β2
1
).

Let now τ = −2β2. Then |t+ ⟨τ, (2β1)∨⟩| = t− 1 which does not belong to Aβ1 ∪ {0}
if and only if t = 3m + 2. But a−2β2(z + (3m + 2)β1) = 0 at ⟨β1, z⟩ = 0 because a−2β2

contains the factor (1 +
3mβ2

1

−⟨β1,z⟩+2β2
1
). Since sα1(β1) = β1, by Remark 3.15 there is nothing

to check for τ = ±2β3 = sα1(∓2β2).
For τ = ±2α1, we get |t + ⟨τ, (2β1)∨⟩| = t ∈ Aβ1 , as needed. Similarly for τ = 2α2,

|t+ ⟨τ, (2β1)∨⟩| = |t− 3| ∈ Aβ1 ∪ {0} for all t ∈ Aβ1 , as needed.
Finally, let τ = −2α2. Then |t+⟨τ, (2β1)∨⟩| = t+3 /∈ Aβ1∪{0} if and only if t = 3m+2,

t = 3m or t = 3m − 2, but a−2α2(z + tβ1) = 0 at ⟨β1, z⟩ = 0 for those t because a−2α2

contains the factors (1− (3m+2)β2
1

⟨β1,z⟩ )(1− (3m+1)β2
1

⟨β1,z⟩+β2
1
)(1− 3mβ2

1

⟨β1,z⟩+2β2
1
). By Remark 3.15, there is

nothing to check for τ = ±2α3 = sα1(∓2α2).
Let us show next that D1p(z + tα1) = D1p(z − tα1) at ⟨α1, z⟩ = 0 for all t ∈ Aα1 . For

that, we will check condition 2 in Theorem 3.11 with α = α1 for all τ ∈ 2G2.
Let τ = ±2β1. Then |t+ ⟨τ, (2α1)

∨⟩| = t ∈ Aα1 , as needed.
Let now τ = 2β2. Note that (2α1)

∨ = 1
6
α1. Then |t+ ⟨τ, (2α1)

∨⟩| = t+ 1 /∈ Aα1 ∪ {0}
if and only if t = m. But a2β2(z+mα1) = 0 at ⟨α1, z⟩ = 0 because a2β2 contains the factor
(1− mα2

1

⟨α1,z⟩).
Let now τ = −2β2. Then |t+⟨τ, (2α1)

∨⟩| = t−1 ∈ Aα1 ∪{0} for all t ∈ Aα1 , as needed.
Since sβ1(α1) = α1, by Remark 3.15 there is nothing to check for τ = ±2β3 = sβ1(±2β2).

Let now τ = 2α1. Then |t + ⟨τ, (2α1)
∨⟩| = t + 2 /∈ Aα1 ∪ {0} if and only if t = m or

t = m − 1. But a2α1(z + tα1) = 0 at ⟨α1, z⟩ = 0 for those t because a2α1 contains the
factors (1− mα2

1

⟨α1,z⟩)(1−
mα2

1

⟨α1,z⟩+α2
1
).

Let now τ = −2α1. Then |t + ⟨τ, (2α1)
∨⟩| = |t − 2| ∈ Aα1 ∪ {0} for all t ∈ Aα1 , as

needed.
Let now τ = 2α2. Then |t+ ⟨τ, (2α1)

∨⟩| = t+ 1 /∈ Aα1 ∪ {0} if and only if t = m. But
a2α2(z +mα1) = 0 at ⟨α1, z⟩ = 0 because a2α2 contains the factor (1− mα2

1

⟨α1,z⟩).
Finally, for τ = −2α2, we get |t + ⟨τ, (2α1)

∨⟩| = t − 1 ∈ Aα1 ∪ {0} for all t ∈ Aα1 , as
needed. By Remark 3.15 there is nothing to check for τ = ±2α3 = sβ1(±2α2).

Since all the vectors αi, βi are in the W -orbit of {α1} ∪ {β1}, the statement follows by
Lemma 3.14. ■

Let us now look at the expansion of the operator (3.17) as ω → 0. It produces the
rational CMS operator in the potential-free gauge for the root system of type G2 with
multiplicity m for the long roots and multiplicity 3m + 1 for the short roots, as the
next proposition shows. Let β̃j = ω−1βj and α̃j = ω−1αj (j = 1, 2, 3) with the same
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multiplicities as βj and αj, respectively, and let c2β̃j
= c2βj

= 1, c2α̃j
= c2αj

= 0.

Proposition 3.21. We have

lim
ω→0

D1

36ω2
= ∆−

∑
γ∈{β̃i, α̃i : i=1,2,3}

2(cγ + c2γ)

⟨γ, z⟩
∂γ,

where ∆ = ∂2z1+∂
2
z2

and ∂γ is the directional derivative in z in the direction of the vector γ.

Proof. We have T±2βj
−1 = ±ω∂2β̃j

+ 1
2
ω2∂2

2β̃j
+ . . . , and similarly for the other shifts. The

terms at order ω in the expansion around ω = 0 of the operator D1 vanish. The terms
that are of second order in derivatives in the coefficient at ω2 in the expansion ω → 0 of
the operator D1 are

3
3∑

j=1

∂2
2β̃j

+
3∑

j=1

∂22α̃j
= 36∆.

Let us now consider the terms that are first-order in derivatives in the coefficient at ω2.
It is easy to see that such terms containing ⟨β̃1, z⟩−1 are

− 6(3m+ 1)
(
2∂2β̃1

+ ∂2β̃2
− ∂2β̃3

+ ∂2α̃3 − ∂2α̃2

)
= −72(cβ1 + c2β1)∂β̃1

.

Altogether, the term at ω2 in the expansion of the operator D1 is as required. ■

3.4.3 Construction of the BA function for AG2

In this section, we employ a technique from [24] to construct the BA function for the config-
uration AG2. Its BA function will be an eigenfunction for the difference operator D1 from
Section 3.4.2, which establishes bispectrality of the AG2 generalised CMS Hamiltonian.

The following lemma gives a useful way of expanding the functions aτ in the oper-
ator (3.17).

Lemma 3.22. Let aτ (z) be defined as in (3.18) and (3.19). Then

aτ (z) = κτ − κτ
∑

γ∈G2,+

⟨τ, γ⟩(cγ + c2γ)

⟨γ, z⟩
+Rτ (z), (3.21)

where κ±2βj
= 3 and κ±2αj

= 1, and Rτ (z) is a rational function with degRτ ≤ −2.

Proof. For the factors in aτ that have shifted singularities at ⟨γ, z⟩+ c = 0 with c ̸= 0, we
can use that

1

⟨γ, z⟩+ c
=

1

⟨γ, z⟩
− c

(⟨γ, z⟩+ c)⟨γ, z⟩
,
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which differs from ⟨γ, z⟩−1 only by a rational function of degree −2 which cannot affect
the coefficient at ⟨γ, z⟩−1. The relation (3.21) is then obtained by multiplying out all the
factors in each of the aτ . ■

The next lemma is proved by a direct computation using Lemma 3.22. We will apply
it in the proof of Theorem 3.24 below.

Lemma 3.23. For γ ∈ G2,+, let nγ ∈ Z≥0 be arbitrary. Let N =
∑

γ∈G2,+
nγ. Let

µ(x) =
∑

τ : 1
2
τ∈G2

κτ (e
⟨τ,x⟩ − 1), (3.22)

where κτ are as in Lemma 3.22. Let A(z) =
∏

γ∈G2,+
⟨γ, z⟩nγ . Write (D1−µ)[A(z)e⟨z,x⟩] =

R(z, x)e⟨z,x⟩ for some rational function R(z, x) in z, which has degree less than or equal
to N . Then

R(z, x) =
∑

γ∈G2,+

(nγ − cγ − c2γ)

 ∑
τ : 1

2
τ∈G2

κτ ⟨τ, γ⟩e⟨τ,x⟩
A(z)⟨γ, z⟩−1 + S(z, x)

for some rational function S(z, x) in z of degree less than or equal to N − 2.
In particular, for any polynomial B(z, x) in z, we have that (D1 − µ)[B(z, x)e⟨z,x⟩] =

U(z, x)e⟨z,x⟩ for a rational function U(z, x) in z with degU(z, x) ≤ degB(z, x)− 1.

Proof. Making use of the expression for aτ (z) given in Lemma 3.22, we get

D1[A(z)e
⟨z,x⟩] =

∑
τ : 1

2
τ∈G2

aτ (z)(Tτ − 1)[A(z)e⟨z,x⟩]

= e⟨z,x⟩
∑

τ : 1
2
τ∈G2

aτ (z)

(
e⟨τ,x⟩

∏
γ∈G2,+

(⟨γ, z⟩+ ⟨τ, γ⟩)nγ − A(z)

)

= A(z)e⟨z,x⟩
∑

τ : 1
2
τ∈G2

κτ

1−
∑

γ∈G2,+

⟨τ, γ⟩(cγ + c2γ)⟨γ, z⟩−1 + l.o.t.


×

e⟨τ,x⟩(1 + ∑
γ∈G2,+

nγ⟨τ, γ⟩⟨γ, z⟩−1 + l.o.t.
)
− 1


= A(z)e⟨z,x⟩

µ(x) + ∑
γ∈G2,+

(nγ − cγ − c2γ
) ∑

τ : 1
2
τ∈G2

κτ ⟨τ, γ⟩e⟨τ,x⟩
 ⟨γ, z⟩−1 + l.o.t.

 ,

l.o.t. denoting terms of lower degree in z, where we used that
∑

τ : 1
2
τ∈G2

κτ ⟨τ, γ⟩ = 0 for
all γ ∈ G2,+, since if 1

2
τ ∈ G2 then also −1

2
τ ∈ G2 and κτ = κ−τ . ■

We are now ready to give the main result of this section.
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Theorem 3.24. Let M =
∑

γ∈AG2,+
cγ = 12m+ 3. Let

b(x) =
M !

8

∏
γ∈G2,+

 ∑
τ : 1

2
τ∈G2

κτ ⟨τ, γ⟩e⟨τ,x⟩
cγ+c2γ

. (3.23)

Define the polynomial
Q(z) =

∏
γ∈G2,+

s∈Aγ

(
⟨γ, z⟩2 − s2⟨γ, γ⟩2

)
, (3.24)

where Aγ is given by (3.16). Then the function

ψ(z, x) = b(x)−1(D1 − µ(x))M [Q(z)e⟨z,x⟩], (3.25)

where µ(x) is given by (3.22), is the BA function for AG2. Moreover, ψ is also an eigen-
function of the operator D1 with D1ψ = µ(x)ψ, thus bispectrality holds — the operator D1

is bispectrally dual to the AG2 generalised CMS Hamiltonian.

Proof. The operator D1 preserves the ring Ra
AG2

by Theorem 3.20. The function Q(z)e⟨z,x⟩

is contained in Ra
AG2

as it is analytic and satisfies conditions (3.20), since Q(z + sγ) =

Q(z − sγ) = 0 at ⟨γ, z⟩ = 0 for s ∈ Aγ, γ ∈ G2,+. Since D1 preserves Ra
AG2

, so does
D1−µ, hence ψ(z, x) given by (3.25) belongs to Ra

AG2
. Its analyticity and the form of the

functions aτ imply that it equals b−1(x)P (z, x)e⟨z,x⟩ for some polynomial P (z, x) in z. To
prove that ψ(z, x) satisfies the definition of the BA function, it thus suffices to calculate
the highest-degree term in P (z, x).

The highest-degree term in Q(z) is Q0(z) =
∏

γ∈G2,+
⟨γ, z⟩2(cγ+c2γ) and degQ0 = 2M .

For k ∈ Z>0 with k ≤M , an analogous argument as above gives that (D1−µ)k[Q(z)e⟨z,x⟩]

belongs to Ra
AG2

and is of the form Q(k)(z, x)e⟨z,x⟩ for some polynomial Q(k)(z, x) in z.
Let the highest-degree homogeneous component of Q(k)(z, x) be Q(k)

0 (z, x). Lemma 3.23
allows to compute Q(k)

0 (z, x).
Lemma 3.23 gives that after the first application of D1 − µ onto Q(z)e⟨z,x⟩ we get

Q
(1)
0 =

∑
γ∈G2,+

(cγ + c2γ)

 ∑
τ : 1

2
τ∈G2

κτ ⟨τ, γ⟩e⟨τ,x⟩
 ⟨γ, z⟩−1Q0(z).

The second application gives

Q
(2)
0 =

∑
γ∈G2,+

(cγ + c2γ)(cγ + c2γ − 1)

 ∑
τ : 1

2
τ∈G2

κτ ⟨τ, γ⟩e⟨τ,x⟩
2

⟨γ, z⟩−2Q0(z)
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+
∑

γ,δ∈G2,+

γ ̸=δ

(cγ + c2γ)(cδ + c2δ)

 ∑
τ : 1

2
τ∈G2

κτ ⟨τ, γ⟩e⟨τ,x⟩


×

 ∑
τ : 1

2
τ∈G2

κτ ⟨τ, δ⟩e⟨δ,x⟩
 ⟨γ, z⟩−1⟨δ, z⟩−1Q0(z).

By repeatedly applying Lemma 3.23, we get

Q
(k)
0 =

∑
n

fn(x)Q0(z)
∏

γ∈G2,+

⟨γ, z⟩−nγ

where n = (nγ)γ∈G2,+ for nγ ∈ Z≥0 such that nγ add up to k, and where fn(x) is non-zero
only if nγ ≤ cγ + c2γ for all γ. It follows that degP ≤M and that the highest-degree term
of P (z, x) is

d(x)
∏

γ∈G2,+

⟨γ, z⟩cγ+c2γ =
1

8
d(x)

∏
γ∈AG2,+

⟨γ, z⟩cγ

for some function d(x). It also implies that the polynomial part of (D1−µ)M+1[Q(z)e⟨z,x⟩]

has degree less than M , hence vanishes as a consequence of Lemma 3.5, giving D1ψ = µψ.
So, to complete the proof, we just need to verify that b(x) given by (3.23) equals 1

8
d(x).

To arrive at
∏

γ∈G2,+
⟨γ, z⟩cγ+c2γ starting from Q0(z), we need to reduce the power of

each of the factors ⟨γ, z⟩ by cγ + c2γ, and we do this by reducing the power of one of them
by one at each step. The total number of possible orderings of doing that corresponds to
the number of words of length M in the alphabet G2,+ such that γ appears in the word
cγ + c2γ times for each γ ∈ G2,+. This gives

M !∏
γ∈G2,+

(cγ + c2γ)!

possibilities, and for each of them the total proportionality factor that we pick up equals

∏
γ∈G2,+

(cγ + c2γ)!

 ∑
τ : 1

2
τ∈G2

κτ ⟨τ, γ⟩e⟨τ,x⟩
cγ+c2γ

by Lemma 3.23. It follows that b(x) has the required form. ■

3.4.4 Another dual operator

In this section, we present another difference operator that preserves the ring of quasi-
invariants Ra

AG2
. We also give the corresponding second construction of the BA function

for AG2.
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We define a difference operator acting in the variables z ∈ C2 of the form

D2 =
∑

τ : 1
2
τ∈AG2

aτ (z)(Tτ − 1). (3.26)

We now specify the functions aτ (z). Let λτ be defined in terms of the multiplicity function
of AG2 by

λτ =
1

4
c 1

2
τ (c 1

2
τ + 2cτ + 1)τ 2.

This means λ4εβj
= 8β2

j , λ2εβj
= 9m(m + 1)β2

j , and λ2εαj
= m(m + 1)α2

j (j = 1, 2, 3,
ε ∈ {±1}, m ∈ Z>0). For τ = 2εαj, we define

a2εαj
(z) = λ2εαj

∏
γ∈Wβ1

⟨2εαj ,(2γ)
∨⟩=3

(
1− (3m+ 2)γ2

⟨γ, z⟩

)(
1− (3m+ 1)γ2

⟨γ, z⟩+ γ2

)(
1− 3mγ2

⟨γ, z⟩+ 2γ2

)

×
∏

γ∈Wβ1

⟨2εαj ,(2γ)
∨⟩=0

(
1− 6γ2

⟨γ, z⟩ − γ2

) ∏
γ∈Wα1

⟨2εαj ,(2γ)
∨⟩=1

(
1− mγ2

⟨γ, z⟩

)

×
(
1−

mα2
j

⟨εαj, z⟩

)(
1−

mα2
j

⟨εαj, z⟩+ α2
j

)
. (3.27)

For τ = 4εβj, we define

a4εβj
(z) = λ4εβj

∏
γ∈Wα1

⟨4εβj ,(2γ)
∨⟩=2

(
1− mγ2

⟨γ, z⟩

)(
1− mγ2

⟨γ, z⟩+ γ2

)

×
∏

γ∈Wβ1

⟨4εβj ,(2γ)
∨⟩=2

(
1− (3m+ 2)γ2

⟨γ, z⟩

)(
1− 3mγ2

⟨γ, z⟩+ γ2

)

×
(
1−

(3m+ 2)β2
j

⟨εβj, z⟩

)(
1−

3mβ2
j

⟨εβj, z⟩+ β2
j

)(
1−

(3m+ 2)β2
j

⟨εβj, z⟩+ 2β2
j

)(
1−

3mβ2
j

⟨εβj, z⟩+ 3β2
j

)
.

(3.28)

For τ = 2εβj, we define

a2εβj
(z) = λ2εβj

∏
γ∈Wα1

⟨2εβj ,(2γ)
∨⟩=0

(
1−

2
3
γ2

⟨γ, z⟩ − γ2

) ∏
γ∈Wα1

⟨2εβj ,(2γ)
∨⟩=1

(
1− mγ2

⟨γ, z⟩

)

×
∏

γ∈Wβ1

⟨2εβj ,(2γ)
∨⟩=1

(
1− (3m+ 2)γ2

⟨γ, z⟩

)(
1 +

3mγ2

⟨γ, z⟩+ 2γ2

)(
1− (3m− 1)γ2

⟨γ, z⟩ − γ2

)
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×
(
1−

(3m+ 2)β2
j

⟨εβj, z⟩

)(
1−

3mβ2
j

⟨εβj, z⟩+ β2
j

)(
1 +

4β2
j

⟨εβj, z⟩+ 3β2
j

)(
1−

4β2
j

⟨εβj, z⟩ − β2
j

)
.

(3.29)

The next lemma shows that the functions aτ (z) have G2 symmetry.

Lemma 3.25. Let aτ (z) be defined as in (3.27)–(3.29). Then for all w ∈ W , we have
waτ = awτ .

Proof. For any w ∈ W , λwτ = λτ for all τ with 1
2
τ ∈ AG2, as the multiplicities are

W -invariant. The statement follows as in the proof of Lemma 3.19. ■

Theorem 3.26. The operator (3.26) preserves the ring Ra
AG2

.

Proof. One can check that the operator satisfies condition (D2) from Section 3.3 for S =

2AG2. Let p(z) ∈ Ra
AG2

be arbitrary. Without loss of generality, we put ω =
√
2. We use

the coordinates (A,B) on C2 given by A = ⟨α1, z⟩ and B = ⟨β1, z⟩.
It follows from the form of the coefficient functions (3.27)–(3.29) and Theorem 3.11

that there are no singularities in D2p(z) at B = c for c ≥ 0 except possibly for B = 2, 4, 6.
Let us consider each of these cases in turn.

If B = 6 (equivalently, ⟨β1, z⟩ = 3β2
1), then ⟨β2, z⟩ = 3 + 1

2
A, ⟨β3, z⟩ = −3 + 1

2
A,

⟨α2, z⟩ = −9 + 1
2
A, and ⟨α3, z⟩ = 9 + 1

2
A. The only terms singular at B = 6 are a−4β1

and a−2β1 . Note that sβ1(−4β1) − 6β1 = −2β1, and we compute that resB=6(a−4β1) =

− resB=6(a−2β1) equals

48m(m+ 1)(3m+ 2)(3m+ 5)(A− 18)−1(A− 6)−2(A− 2)−1(A+ 2)−1(A+ 6)−2(A+ 18)−1

× (A− 2− 12m)(A− 6− 12m)(A− 14− 12m)(A− 18− 12m)(A+ 2 + 12m)

× (A+ 6 + 12m)(A+ 14 + 12m)(A+ 18 + 12m).

Therefore, by Theorem 3.11 part 1, there is no singularity at B = 6 in D2p(z).
If B = 4 (equivalently, ⟨β1, z⟩ = 2β2

1), then ⟨β2, z⟩ = 2 + 1
2
A, ⟨β3, z⟩ = −2 + 1

2
A,

⟨α2, z⟩ = −6 + 1
2
A, and ⟨α3, z⟩ = 6 + 1

2
A. The only τ ∈ 2AG2 for which aτ is singular at

B = 4 and for which the corresponding λ = sβ1(τ)−4β1 ̸= 0 are τ = −2β2,−2α3, 2β3, 2α2.
Note that sβ1(−2β2)−4β1 = −2α3, and we compute that resB=4(a−2β2) = − resB=4(a−2α3)

equals

−18m2(m+ 1)(3m+ 2)(3m+ 4)(A− 12)−1(A− 8)−1(A− 4)−1A−4(A+ 4)−1(A+ 12)−1

× (A− 32)(A+ 24)(A− 12− 12m)(A+ 6m)(A− 4 + 12m)(A+ 12m)

× (A+ 4 + 12m)(A+ 12 + 12m)2.

Since sα1(−2β2) = 2β3 and sα1(−2α3) = 2α2, by Lemma 3.12 the residue of a2β3 + a2α2
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at B = 4 is also zero. Thus, by Theorem 3.11 part 1, there is no singularity at B = 4

in D2p(z).
If B = 2 (equivalently, ⟨β1, z⟩ = β2

1), then ⟨β2, z⟩ = 1+ 1
2
A, ⟨β3, z⟩ = −1+ 1

2
A, ⟨α2, z⟩ =

−3+ 1
2
A, and ⟨α3, z⟩ = 3+ 1

2
A. The only τ ∈ 2AG2 for which aτ is singular at B = 2 and for

which the corresponding λ = sβ1(τ)−2β1 ̸= 0 are τ = −4β1, 2β1,−4β2, 4β3,±2α1, 2β2, 2α2,

−2β3, and −2α3. Note that sβ1(−4β1)− 2β1 = 2β1, and we compute that resB=2(a−4β1) =

− resB=2(a2β1) equals

144m(m+ 1)(3m− 2)(3m+ 1)(A− 6)−2(A− 2)−2(A+ 2)−2(A+ 6)−2(A+ 6− 12m)

× (A+ 2− 12m)(A− 6− 12m)(A− 10− 12m)(A− 6 + 12m)(A− 2 + 12m)

× (A+ 6 + 12m)(A+ 10 + 12m).

Similarly, sβ1(−4β2)−2β1 = −2α1, and we compute that resB=2(a−4β2) = − resB=2(a−2α1)

equals

288m(m+ 1)(A− 10)−1(A− 6)−4(A− 2)−2A−1(A+ 2)−1(A+ 6)−1(A− 6 + 6m)

× (A+ 6m)(A− 10 + 12m)(A− 6 + 12m)2(A− 2 + 12m)(A+ 2 + 12m)

× (A+ 6 + 12m)2(A+ 10 + 12m).

Since sα1(−4β2) = 4β3 and sα1(−2α1) = 2α1, it follows by Lemma 3.12 that the residue of
a4β3 + a2α1 at B = 2 is also zero. Next, note that sβ1(2β2)− 2β1 = 2α2, and we compute
that resB=2(a2β2) = − resB=2(a2α2) equals

36m(m+ 1)2(3m− 1)(3m+ 1)(A− 6)−1(A− 2)−2A−1(A+ 2)−1(A+ 6)−4(A− 26)(A+ 30)

× (A− 10− 12m)(A− 6− 12m)(A− 2− 12m)(A+ 6− 12m)2(A− 6m)(A+ 6 + 12m).

Since sα1(2β2) = −2β3 and sα1(2α2) = −2α3, it follows by Lemma 3.12 that the residue of
a−2β3 + a−2α3 at B = 2 is also zero. Thus, by Theorem 3.11 part 1, there is no singularity
at B = 2 in D2p(z).

Let us now consider possible singularities in D2p(z) at A = c ≥ 0. By Theorem 3.11
part 1 and the form of the coefficients (3.27)–(3.29), it is sufficient to consider the case
A = 6 (equivalently, ⟨α1, z⟩ = α2

1). In this case ⟨β2, z⟩ = 1
2
B + 3, ⟨β3, z⟩ = −1

2
B + 3,

⟨α2, z⟩ = −3
2
B + 3, and ⟨α3, z⟩ = 3

2
B + 3. The only τ ∈ 2AG2 for which aτ is singular

at A = 6 and for which the corresponding λ = sα1(τ) − 2α1 ̸= 0 are τ = −4β2,−4β3,
and ±2β1. Note that sα1(−4β2) − 2α1 = −2β1, and we compute that resA=6(a−4β2) =

− resA=6(a−2β1) equals

96m(m+ 1)(B − 6)−2(B − 2)−4B−1(B + 2)−2(B + 6)−1(B − 14− 12m)(B − 2− 12m)

× (B − 2 + 4m)(B + 2 + 4m)(B − 2 + 6m)(B + 4 + 6m)(B − 6 + 12m)(B + 2 + 12m)
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× (B + 6 + 12m)(B + 14 + 12m).

Since sβ1(−4β2) = −4β3 and sβ1(−2β1) = 2β1, it follows by Lemma 3.12 that the residue
of a−4β3 + a2β1 at A = 6 is also zero. By Theorem 3.11 part 1, there is thus no singularity
at A = 6 in D2p(z).

By Corollary 3.13, it follows that D2p(z) has no singularities. The proof that D2p(z)

satisfies the axiomatics of Ra
AG2

can be completed in an analogous way to how it was done
for the operator (3.17) in the proof of Theorem 3.20. ■

We now give a second construction of the BA function for AG2. The proof of the next
theorem is similar to the proof of Theorem 3.24.

Theorem 3.27. Let M =
∑

γ∈AG2,+
cγ = 12m+ 3. Let

µ̃(x) =
∑

τ : 1
2
τ∈AG2

λτ (e
⟨τ,x⟩ − 1), (3.30)

and let

b̃(x) =
M !

8

∏
γ∈G2,+

 ∑
τ : 1

2
τ∈AG2

λτ ⟨τ, γ⟩e⟨τ,x⟩
cγ+c2γ

. (3.31)

Then the function
ψ(z, x) = b̃−1(x)(D2 − µ̃(x))M [Q(z)e⟨z,x⟩], (3.32)

where the polynomial Q(z) is given by (3.24), is the BA function for AG2. Moreover, ψ
is also an eigenfunction of the operator D2 with D2ψ = µ̃(x)ψ. Thus, the operator D2 is
bispectrally dual to the AG2 generalised CMS Hamiltonian.

We can extend the above bispectral duality statement as follows, in the spirit of ana-
logous results from [24, 49] for other configurations. By Theorem 3.7, the BA function
of AG2 is a common eigenfunction for a large commutative ring of differential operators
in x, and the following theorem states that a similar situation occurs in the variables z.

Theorem 3.28. Let p(z) ∈ Ra
AG2

be a polynomial, and let p0 be its highest-degree homo-
geneous term. Then the difference operator Dp acting in z given by

Dp =
1

(deg p)!
addeg p

D1
(p̂),

where p̂ is the operator of multiplication by p(z) and adr
A is the r-th iteration of the oper-

ation adA(B) = AB −BA, satisfies

Dpψ(z, x) = µp(x)ψ(z, x)
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for the function µp(x) obtained by substituting ∂xi
(µ) in place of zi (i = 1, 2) into p0(z).

The operators D1 and D2 commute, and the operators Dp commute with Di (i = 1, 2)
and with each other.

Proof. By Theorem 3.7, there is a differential operator Lp(x, ∂x) satisfying Lpψ = p(z)ψ

with highest term p0(∂x). By Theorem 3.24, we have D1ψ = µψ. The fact that ψ is an
eigenfunction of the operators Dp follows by a standard argument about bispectral systems
(see, e.g., the proof of [24, Theorem 4.1]) which gives that

Dpψ =
(−1)deg p

(deg p)!
addeg p

µ (Lp)ψ.

Here addeg p
µ (Lp) = addeg p

µ (p0(∂x)) is a zeroth-order operator (that is, an ordinary function
of x), since each application of adµ decreases the order of a linear differential operator and
Lp = p0(∂x)+ lower terms. Explicitly, addeg p

µ (p0(∂x)) = (−1)deg p(deg p)! p0(∂x1(µ), ∂x2(µ)),
which can be proven by induction on the degree of p0 (and note that it is enough to con-
sider p0 that are monomial). Indeed, it holds if deg p0 = 1; and assuming that it holds for
some degree A = a1 + a2 − 1 ≥ 1 (a1, a2 ∈ Z≥0), we get

adA+1
µ (∂a1x1

∂a2x2
) = adA

µ

(
[µ, ∂a1x1

∂a2x2
]
)
= adA

µ

(
a1[µ, ∂x1 ]∂

a1−1
x1

∂a2x2
+ a2[µ, ∂x2 ]∂

a1
x1
∂a2−1
x2

)
= −a1∂x1(µ) ad

A
µ

(
∂a1−1
x1

∂a2x2

)
− a2∂x2(µ) ad

A
µ

(
∂a1x1

∂a2−1
x2

)
= (−1)A+1(A+ 1)! ∂x1(µ)

a1∂x2(µ)
a2 ,

as required, where we used the Leibniz rule, that [µ, ∂xi
] = −∂xi

(µ) is just a function, that
adA

µ annihilates any operator of order less than A, and the induction hypothesis. This
implies that µp(x) is as stated.

From formulas (3.17)–(3.19) for D1 and (3.22) for µ, it is clear that the BA func-
tion (3.25) can be expanded as

ψ = b(x)−1e⟨z,x⟩
∑

ν∈2Zβ1⊕2Zα2

bν(z)e
⟨ν,x⟩

for some polynomials bν(z), where only finitely-many bν are non-zero. From there, it can
be seen easily that if a finite difference operator D̃ in z (with, say, rational coefficients) is
such that D̃ψ = 0 identically, then D̃ = 0. It follows that the operators Dp, D1, and D2

commute pairwise as ψ is their common eigenfunction. ■

Remark 3.29. An alternative proof that the operators D1 and D2 commute is that they
are the rational limit of certain trigonometric difference operators which we derive in
Chapter 5 below and whose commutativity follows from the theory of DAHAs.

Remark 3.30. Using ideas similar to those in [24, Theorem 6.9], one can show that
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the AG2 generalised CMS Hamiltonian is bispectrally dual to the operators D1 and D2 for
non-integer values of the multiplicities as well, as we explain in Section 3.6.2 below.

3.4.5 Relation with A2 and A1 MR operators

In the case whenm = 0, the configuration AG2 reduces to the root system A2 = {±2βi : i =

1, 2, 3} with multiplicity 1 for all vectors. In this limit, the operator (3.26) reduces to the
quasi-minuscule operator for (twice) this root system. Let us now consider the m = 0

limit of the operator (3.17). After a rescaling, this gives an operator of the form

D0 =
∑
τ∈G2

aτ,0(z)(Tτ − 1) = −24 +
∑
τ∈G2

aτ,0(z)Tτ , (3.33)

where for τ = εβj, ε ∈ {±1}, and j = 1, 2, 3, we have

aτ,0(z) = 3
∏

γ∈Wβ1

⟨τ,(2γ)∨⟩= 1
2

(
1−

1
2
γ2

⟨γ, z⟩ − 1
2
γ2

) ∏
γ∈Wβ1

⟨τ,(2γ)∨⟩=1

(
1− γ2

⟨γ, z⟩

)
,

and for τ = εαj, we have

aτ,0(z) =
∏

γ∈Wβ1

⟨τ,(2γ)∨⟩= 3
2

(
1−

3
2
γ2

⟨γ, z⟩+ 1
2
γ2

)
.

Proposition 3.31. The operator (3.33) preserves the ring of analytic functions p(z) such
that p(z + βi) = p(z − βi) at ⟨βi, z⟩ = 0 for all i = 1, 2, 3.

The proof is parallel to the proof of Theorem 3.20. In this case, though, condition 2(b)
of Theorem 3.11 is needed while it does not play a role in the proofs of Theorems 3.20
and 3.26.

Let us rewrite the operator D0 for the more standard realisation of the root system A2

given by A2 = {ei − ej : 1 ≤ i ̸= j ≤ 3} ⊂ R3, where ei are the standard basis vectors.

Proposition 3.32. Define the set S = S1 ∪ S2, where

S1 = {3ei : i = 1, 2, 3} ∪ {2ei + 2ej − ek : 1 ≤ i < j ̸= k ≤ 3, i ̸= k},

S2 = {2ei + ej : 1 ≤ i ̸= j ≤ 3}.
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Then the operator acting in the variables z = (z1, z2, z3) ∈ C3 given by

D̃0 = 3
∑
τ∈S2

 ∏
i ̸=j

⟨τ,ei−ej⟩=1

(
1− 1

zi − zj − 1

) ∏
i ̸=j

⟨τ,ei−ej⟩=2

(
1− 2

zi − zj

)Tτ

+
∑
τ∈S1

 ∏
i ̸=j

⟨τ,ei−ej⟩=3

(
1− 3

zi − zj + 1

)Tτ .

(3.34)

preserves the ring of analytic functions p(z) satisfying p(z + ei − ej) = p(z − ei + ej) at
zi = zj for all i, j = 1, 2, 3.

Notice that S1 = {τ ∈ S : |⟨τ, ei − ej⟩| ∈ {0, 3} for all i, j = 1, 2, 3} and that S2 =

{τ ∈ S : |⟨τ, ei − ej⟩| ∈ {0, 1, 2} for all i, j = 1, 2, 3}.
Let us now consider a version of the operator (3.34) for the root system A1. Let ∼

denote equality of operators when acting on functions constant along the direction normal
to the hyperplane z1 + z2 = 0.

Proposition 3.33. Let S ′
1 = {3e1, 3e2} and S ′

2 = {2e1+e2, e1+2e2}. Then formula (3.34)
after replacement of Si with S ′

i, i = 1, 2, gives an operator D̂0 acting in the variable
z = (z1, z2) ∈ C2 that preserves the ring Ra

A1
of analytic functions p(z) satisfying that

p(z+e1−e2) = p(z−e1+e2) at z1 = z2. Moreover, if we split the operator as D̂0 = D1+D2,
where

D1 = 3

(
1− 1

z2 − z1 − 1

)
Te1+2e2 +

(
1− 3

z1 − z2 + 1

)
T3e1

and
D2 = 3

(
1− 1

z1 − z2 − 1

)
T2e1+e2 +

(
1− 3

z2 − z1 + 1

)
T3e2 ,

then Di(Ra
A1
) ⊆ Ra

A1
for i = 1, 2. The operators Di satisfy the commutativity relations

[D1, D2] = [D1, D
msl] = [D2, D

msl] = 0,

where Dmsl is the operator for the minuscule weight 2e1 of the root system 2A1 with
multiplicity 1 given by

Dmsl =

(
1− 2

z1 − z2

)
T2e1 +

(
1− 2

z2 − z1

)
T2e2 .

We also have D̂2
0 ∼ (Dmsl + 2)3, and D1D2 ∼ 3Dqm + 16 ∼ 3(Dmsl)2 + 4, where

Dqm =

(
1− 2

z1 − z2

)(
1− 2

z1 − z2 + 2

)
(T4e1 − 1)
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+

(
1− 2

z2 − z1

)(
1− 2

z2 − z1 + 2

)
(T4e2 − 1)

is the operator for the quasi-minuscule weight 4e1 of the root system 2A1.

We note that the operators D1 and D2 are not symmetric under the swap of the
variables z1 and z2. The operator Dmsl is symmetric, and all three operators commute.

3.5 Deformed root system BC(l, 1)

In this section, we show that a difference operator of rational MR type introduced by
Sergeev and Veselov in [95] for the deformed root system BC(l, 1) preserves a ring of
quasi-invariants in the case of non-negative integer values of the multiplicity parameters.
We prove that in this case the operator admits a BA eigenfunction that, as a function of
the spectral variables, is an eigenfunction for the generalised CMS Hamiltonian associated
with BC(l, 1). By an analytic continuation argument, we generalise this eigenfunction
later in Section 3.6.1 also to the case of more general complex values of the multiplicities.

This leads to a bispectral duality statement for the corresponding generalised CMS
system of type BC(l, 1). In particular, for special integer values of the multiplicities, one
recovers the results from [49] for the configuration C(l, 1). Another bispectrality property
of the generalised CMS operator for BC(l, 1) (as well as for BC(l, l′)) in terms of super-
Jacobi polynomials was proved in [95].

Let us now describe the configuration BC(l, 1) in more detail. Recall that the root
system BCl+1 has a positive half

BCl+1,+ = {ei, 2ei : 1 ≤ i ≤ l + 1} ∪ {ei ± ej : 1 ≤ i < j ≤ l + 1},

where ei denote the standard orthogonal unit vectors in Rl+1. Its deformation BC(l, 1)

has a positive half

BC(l, 1)+ = {ei, 2ei, ei ±
√
kel+1 : 1 ≤ i ≤ l} ∪ {

√
kel+1, 2

√
kel+1}

∪ {ei ± ej : 1 ≤ i < j ≤ l} ⊂ Cl+1,

where k is a non-zero complex parameter [19,94]. Let BC(l, 1)r denote the reduced version
of this system with a positive half

BC(l, 1)r+ = {α ∈ BC(l, 1)+ :
1
2
α /∈ BC(l, 1)}

= {ei, ei ±
√
kel+1 : 1 ≤ i ≤ l} ∪ {

√
kel+1} ∪ {ei ± ej : 1 ≤ i < j ≤ l}.

The set BC(l, 1)+ has its multiplicity map given by cei = m, c2ei = n, cei±
√
kel+1

= 1,
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cei±ej = k, c√kel+1
= p, and c2

√
kel+1

= r for complex parameters m,n, p, r, subject to
the constraint that m = kp and 2n + 1 = k(2r + 1). For m = p = 0, the configuration
BC(l, 1) reduces to the configuration C(l, 1), which was considered in [49]. For k = 1, the
configuration BC(l, 1) reduces to the root system BCl+1 with a Weyl-invariant assignment
of multiplicities such that the vectors ei ± ej for 1 ≤ i < j ≤ l + 1 have multiplicity 1.
In Sections 3.5.1 and 3.5.2 below, we assume that m,n, p, r ∈ Z≥0, and if l > 1 then also
that k ∈ Z>0.

If one puts A = BC(l, 1)+ in the formula (3.1), one obtains the generalised CMS
operator associated with the configuration BC(l, 1) [94].

3.5.1 Sergeev–Veselov difference operator for BC(l, 1)

In this section, we recall the rational difference operator introduced by Sergeev and Veselov
for the deformed root system BC(l, 1) [95], which deforms the rational version of Koorn-
winder’s operator and also generalises an operator associated with C(l, 1) from [49]. We
prove that, when all the multiplicity parameters are non-negative integers, the oper-
ator preserves the ring of quasi-invariants Ra

BC(l,1) consisting of those analytic functions
f : Cl+1 → C such that

f(z + sα) = f(z − sα) at ⟨z, α⟩ = 0 (3.35)

for all α ∈ BC(l, 1)r+ and s ∈ Aα = {1, 2, . . . , cα} ∪ {cα + 2, cα + 4, . . . , cα + 2c2α}.
Let z = (z1, . . . , zl+1) ∈ Cl+1. The difference operator for BC(l, 1) introduced in [95]

has the form

D =
l∑

i=1

(
a2ei(z)(T2ei − 1) + a−2ei(z)(T−2ei − 1)

)
+ a2

√
kel+1

(z)
(
T2

√
kel+1

− 1
)
+ a−2

√
kel+1

(z)
(
T−2

√
kel+1

− 1
)
,

(3.36)

where

a±2ei(z) =

(
1∓ m+ 2n

zi

)(
1∓ m

zi ± 1

) l∏
j=1
j ̸=i

(
1∓ 2k

zi − zj

)(
1∓ 2k

zi + zj

)

×
(
1∓ 2

zi +
√
kzl+1 ± (1− k)

)(
1∓ 2

zi −
√
kzl+1 ± (1− k)

)
,

a±2
√
kel+1

(z) =
1

k

(
1∓

√
k(p+ 2r)

zl+1

)(
1∓

√
kp

zl+1 ±
√
k

)
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×
l∏

i=1

(
1∓ 2k√

kzl+1 + zi ± (k − 1)

)(
1∓ 2k√

kzl+1 − zi ± (k − 1)

)
.

Let us now assume that m,n, p, r ∈ Z≥0, and if l > 1 then also that k ∈ Z>0. In order
to prove below in Theorem 3.35 that the operator D in this case preserves the ring Ra

BC(l,1),
we first establish the following lemma.

Lemma 3.34. Let f ∈ Ra
BC(l,1). Then Df is analytic.

Proof. Based on the form of the functions a±2ei and a±2
√
kel+1

, the only possible singular-
ities of Df are potential simple poles at zi = 0 for 1 ≤ i ≤ l + 1, as well as zl+1 = ±

√
k,

zi = ±1, zi = ±
√
kzl+1 + k− 1, and zi = ±

√
kzl+1 +1− k for 1 ≤ i ≤ l, and also zi = ±zj

for 1 ≤ i < j ≤ l. The strategy is to show that at each of the possible poles, Df has zero
residue. It will follow that Df is analytic everywhere. We describe the computation of
the residue for most of the cases, the procedure for the remaining ones being analogous.
Let us denote, as before, the residue of a function f at a simple pole zi = a ∈ C by

reszi=a(f) = lim
zi→a

(zi − a)f(z).

We may assume, for simplicity, that m ̸= 0 ̸= p, as the case m = p = 0 was covered
in [49]. Let us first compute the residue of Df(z) at zi = 0 for 1 ≤ i ≤ l. We note that

a2ei(z) = a−2ei(sei(z)), (3.37)

which implies
reszi=0(a2ei) = − reszi=0(a−2ei).

Also, if m ̸= 1 then
T2eif(z)|zi=0 = T−2eif(z)|zi=0,

where we use that f ∈ Ra
BC(l,1). Note that if m = 1 then reszi=0(a±2ei) = 0. It follows

that for any m ∈ Z>0 the residue of Df(z) at zi = 0 is zero. Its residue at zl+1 = 0 can
be shown to vanish in an analogous way.

Next, we consider zi = −1. The only coefficient function in D that has a pole there
is a2ei , and so the property reszi=−1(Df) = 0 follows from the fact that

(T2eif(z)− f(z))|zi=−1 = 0,

where we again used that f ∈ Ra
BC(l,1). Similarly, the residues of Df(z) at zi = 1 and

zl+1 = ±
√
k are zero.

Let now 1 ≤ i < j ≤ l, and let us compute the residue of Df(z) at zi = zj. We note
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that
a±2ei(z) = a±2ej(sei−ej(z)), (3.38)

which implies
reszi=zj(a±2ei) = − reszi=zj(a±2ej).

Also, for any u ∈ C and q = u+ 1, we have

T2eif(z)|zi=zj=u = f(z + ei − ej)|zi=zj=q = f(z − ei + ej)|zi=zj=q = T2ejf(z)|zi=zj=u,

where in the penultimate equality we used that f ∈ Ra
BC(l,1). Similarly, T−2eif(z) =

T−2ejf(z) at zi = zj. It follows that the residue of Df(z) at zi = zj is zero. The case of
zi = −zj is similar.

Finally, we consider zi = −
√
kzl+1 + k − 1 for 1 ≤ i ≤ l. We calculate the following

residues:

reszi=−
√
kzl+1+k−1(a2ei) = −2

(
1 +

m+ 2n√
kzl+1 + 1− k

)(
1 +

m√
kzl+1 − k

)
×
(
1 +

1√
kzl+1

) l∏
j=1
j ̸=i

(
1 +

2k√
kzl+1 + zj + 1− k

)(
1 +

2k√
kzl+1 − zj + 1− k

)
,

reszi=−
√
kzl+1+k−1(a−2

√
kel+1

) = 2

(
1 +

√
k(p+ 2r)

zl+1

)(
1 +

√
kp

zl+1 −
√
k

)

×
(
1 +

k√
kzl+1 + 1− k

) l∏
j=1
j ̸=i

(
1 +

2k√
kzl+1 + zj + 1− k

)(
1 +

2k√
kzl+1 − zj + 1− k

)
.

In order to compare them, we observe that

√
kp

zl+1 −
√
k
=

m√
kzl+1 − k

,

since m = kp; moreover, since 2n+ 1 = k(2r + 1), we also have(
1 +

√
k(p+ 2r)

zl+1

)(
1 +

k√
kzl+1 + 1− k

)

=

(√
kzl+1 +m+ 2n+ 1− k√

kzl+1

)( √
kzl+1 + 1√

kzl+1 + 1− k

)

=

(
1 +

m+ 2n√
kzl+1 + 1− k

)(
1 +

1√
kzl+1

)
.
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Therefore,
reszi=−

√
kzl+1+k−1(a2ei) = − reszi=−

√
kzl+1+k−1(a−2

√
kel+1

).

Also, for any u ∈ C and q = −u+
√
k, we have

T2eif(z)|zi=−
√
ku+k−1, zl+1=u = f(z + ei +

√
kel+1)|zi=√

kq, zl+1=−q

= f(z − ei −
√
kel+1)|zi=√

kq, zl+1=−q = T−2
√
kel+1

f(z)|zi=−
√
ku+k−1, zl+1=u,

where in the penultimate equality we used that f ∈ Ra
BC(l,1). It follows that the residue

of Df(z) at zi = −
√
kzl+1 + k − 1 is zero. The cases zi = −

√
kzl+1 + 1 − k and zi =√

kzl+1 ± (1− k) are similar. This completes the proof. ■

Theorem 3.35. Let f ∈ Ra
BC(l,1). Then Df ∈ Ra

BC(l,1).

Proof. By Lemma 3.34, Df is analytic, so it only remains to show that Df satisfies the
functional identities (3.35). Let α ∈ BC(l, 1)r+ and s ∈ Aα.

Suppose α = ei for 1 ≤ i ≤ l. Then at ⟨α, z⟩ = 0, we have a2ei(z+ sα) = a−2ei(z− sα)

by equality (3.37). And for all j ̸= i, it is straightforward to see that a±2ej(z + sα) =

a±2ej(z − sα) and a±2
√
kel+1

(z + sα) = a±2
√
kel+1

(z − sα) at ⟨α, z⟩ = 0. For s ̸= 1, we have
a−2ei(z + sα) = a2ei(z − sα) at ⟨α, z⟩ = 0 by equality (3.37) (for s = 1, the functions
a−2ei(z + sα) and a2ei(z − sα) are singular at ⟨α, z⟩ = 0 and we will deal with this case
separately).

Now observe that for s ̸= m − 1, m + 2n, we have s + 2 ∈ Aei and then since f ∈
Ra

BC(l,1), we have T2eif(z + sei)|zi=0 = T−2eif(z − sei)|zi=0. On the other hand, if s ∈
{m− 1,m+2n} then a2ei(z+ sei)|zi=0 = 0 = a−2ei(z− sei)|zi=0. Also, since ⟨z± 2ej, ei⟩ =
⟨z±2

√
kel+1, ei⟩ = zi, we have for any s ∈ Aei that T±2ejf(z+sei)|zi=0 = T±2ejf(z−sei)|zi=0

and T±2
√
kel+1

f(z + sei)|zi=0 = T±2
√
kel+1

f(z − sei)|zi=0. And for s ̸= 1, we have s − 2 ∈
Aei ∪ {0} and hence T−2eif(z + sei)|zi=0 = T2eif(z − sei)|zi=0. It follows from this and
the previous paragraph that the identities (3.35) are satisfied for Df for α = ei for any
s ∈ Aei \ {1}.

Let us now deal with the case s = 1. The property that

(f(z − ei)− f(z + ei)) |zi=0 = 0

can be restated as f(z − ei) − f(z + ei) = zig(z) for some analytic function g(z). Thus,
we have

lim
zi→0

a−2ei(z + ei)(T−2ei − 1)f(z + ei) = g(z)|zi=0 lim
zi→0

zia−2ei(z + ei)

(3.37)
= −g(z)|zi=0 lim

zi→0
zia2ei(z − ei) = lim

zi→0
a2ei(z − ei)(T2ei − 1)f(z − ei).
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It follows from this and the previous two paragraphs that the identity (3.35) for Df holds
for α = ei also when s = 1. The case of α =

√
kel+1 can be dealt with in an analogous

way.
Next, suppose α = ei − ej for 1 ≤ i < j ≤ l. Then a±2ei(z + s̃α) = a±2ej(z − s̃α) at

⟨α, z⟩ = 0 for s̃ ∈ {±s} by equality (3.38). If s ̸= k then s + 1 ∈ Aei−ej and then for any
u ∈ C and q = u+ 1, we have

T2eif(z + s(ei − ej))|zi=zj=u = f(z + (s+ 1)(ei − ej))|zi=zj=q

= f(z − (s+ 1)(ei − ej))|zi=zj=q = T2ejf(z − s(ei − ej))|zi=zj=u,

where we used that f ∈ Ra
BC(l,1); and similarly T−2ejf(z + sα) = T−2eif(z − sα) at

⟨α, z⟩ = 0. On the other hand, if s = k then a2ei(z+sα) = 0 = a−2ej(z+sα) at ⟨α, z⟩ = 0.
Moreover, for any s ∈ Aei−ej , we have s− 1 ∈ Aei−ej ∪ {0}, which can be used to see that
T−2eif(z + sα) = T−2ejf(z − sα) and T2ejf(z + sα) = T2eif(z − sα) at ⟨α, z⟩ = 0.

For all t ̸= i, j and ⟨α, z⟩ = 0, it is straightforward to see that a±2et(z + sα) =

a±2et(z − sα) and a±2
√
kel+1

(z + sα) = a±2
√
kel+1

(z − sα); and that T±2etf(z + sα) =

T±2etf(z − sα) and T±2
√
kel+1

f(z + sα) = T±2
√
kel+1

f(z − sα) since f ∈ Ra
BC(l,1) and

⟨z ± 2et, α⟩ = ⟨z ± 2
√
kel+1, α⟩ = 0.

It follows from the above two paragraphs that the identities (3.35) are satisfied for Df
for α = ei − ej. The case of α = ei + ej is analogous.

Finally, suppose α = ei +
√
kel+1 for 1 ≤ i ≤ l. Note that Aei+

√
kel+1

= {1}, so s = 1.
For ε ∈ {±1},

a2εei(z + ε(ei +
√
kel+1))|zi=−

√
kzl+1

= 0 = a2ε
√
kel+1

(z + ε(ei +
√
kel+1))|zi=−

√
kzl+1

.

We also have

a−2εei(z + ε(ei +
√
kel+1))|zi=−

√
kzl+1

= a2ε
√
kel+1

(z − ε(ei +
√
kel+1))|zi=−

√
kzl+1

.

The latter can be seen upon rewriting m and n in terms of p and r, and using, in particular,
that (

1− ε(m+ 2n)√
kzl+1 − ε

)(
1− ε√

kzl+1

)
=

√
kzl+1 − εk − εk (p+ 2r)√

kzl+1

=

(
1− ε

√
k (p+ 2r)

zl+1 − ε
√
k

)(
1− ε

√
k

zl+1

)
.

Moreover, we have

(T−2εei − 1)f(z + ε(ei +
√
kel+1))|zi=−

√
kzl+1
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=
(
f(z − ε(ei −

√
kel+1))− f(z + ε(ei +

√
kel+1))

)
|zi=−

√
kzl+1

= (T2ε
√
kel+1

− 1)f(z − ε(ei +
√
kel+1))|zi=−

√
kzl+1

,

where we used that f ∈ Ra
BC(l,1).

For j ̸= i and zi = −
√
kzl+1, we have a2ej(z + ei +

√
kel+1) = a2ej(z − ei −

√
kel+1),

which can be seen by using that(
1− 2k

zj +
√
kzl+1 − 1

)(
1− 2k

zj −
√
kzl+1 + 1

)(
1− 2

zj +
√
kzl+1 + 1

)

×

(
1− 2

zj −
√
kzl+1 + 1− 2k

)
=

(zj +
√
kzl+1 − 1− 2k)(zj −

√
kzl+1 − 1− 2k)

(zj −
√
kzl+1 + 1)(zj +

√
kzl+1 + 1)

=

(
1− 2k

zj +
√
kzl+1 + 1

)(
1− 2k

zj −
√
kzl+1 − 1

)(
1− 2

zj +
√
kzl+1 + 1− 2k

)

×

(
1− 2

zj −
√
kzl+1 + 1

)
.

A similar calculation shows that a−2ej(z+ei+
√
kel+1) = a−2ej(z−ei−

√
kel+1). Moreover,

T2εejf(z + ei +
√
kel+1) = T2εejf(z − ei −

√
kel+1) at zi = −

√
kzl+1 since f ∈ Ra

BC(l,1).
It follows that the identities (3.35) are satisfied for Df for α = ei +

√
kel+1. The case

of α = ei −
√
kel+1 is analogous. This completes the proof. ■

3.5.2 Construction of the BA function for BC(l, 1)

Even though the configuration BC(l, 1)+ is non-reduced, all of its subsets of collinear
vectors are of the form {α, 2α}. Thus, we can apply Definition 3.1 to get the following
notion of a BA function for BC(l, 1).

Definition 3.36. A function ψ : Cl+1 × Cl+1 → C is a BA function for the configura-
tion BC(l, 1) with non-negative integer multiplicities if it satisfies the following conditions:

1. ψ(z, x) = P (z, x)e⟨z,x⟩ for some polynomial P in z whose highest-order term is∏
α∈BC(l,1)+

⟨α, z⟩cα ,

2. ψ(z + sα, x) = ψ(z − sα, x) at ⟨z, α⟩ = 0 for all α ∈ BC(l, 1)r+ and s ∈ Aα.

Note that condition 2 in Definition 3.36 is similar to the functional identities (3.35)
satisfied by the elements of the ring Ra

BC(l,1), and indeed, for any x ∈ Cl+1 for which P (z, x)
is non-singular, the function ψx : z 7→ ψ(z, x) belongs to Ra

BC(l,1).

It follows from the general results presented in Section 3.2 that if a function ψ sat-
isfying Definition 3.36 exists then it is unique, and it is a joint eigenfunction for a large



CHAPTER 3. BISPECTRALITY OF GENERALISED CMS SYSTEMS 66

commutative ring of differential operators in x. By Proposition 3.9, this ring contains the
Hamiltonian (3.1) for A = BC(l, 1)+ with the non-negative integer values of the multipli-
city parameters. Moreover, this ring also contains a complete set of quantum integrals for
this Hamiltonian, as well as extra integrals that correspond to the algebraic integrability of
this system. Namely, for every polynomial p(z) ∈ Ra

BC(l,1), there is a differential operator
in x that commutes with the Hamiltonian and whose highest symbol is p0(∂x), where p0
is the highest homogeneous term of p.

The following theorem gives an explicit construction of the BA function for BC(l, 1)
using the Sergeev–Veselov difference operator D from Section 3.5.1. The BA function will
be an eigenfunction for the operator D, which shows bispectrality of the generalised CMS
Hamiltonian of BC(l, 1) for non-negative integer values of the multiplicity parameters (the
case of non-integer multiplicities will be considered in the next section).

Theorem 3.37. Let M =
∑

α∈BC(l,1)+
cα = l(m + n + (l − 1)k + 2) + p + r, and let

S = {±2ei,±2
√
kel+1 : 1 ≤ i ≤ l}. For x ∈ Cl+1, let

µ(x) =
∑
τ∈S

κτ (e
⟨τ,x⟩ − 1),

and

b(x) =
M !

2ln+r

∏
α∈BC(l,1)r+

(∑
τ∈S

κτ ⟨τ, α⟩e⟨τ,x⟩
)cα+c2α

, (3.39)

where κτ = k−1 if τ = ±2
√
kel+1, and κτ = 1 otherwise. For z ∈ Cl+1, let Q(z) be the

polynomial in Ra
BC(l,1) given by

Q(z) =
∏

α∈BC(l,1)r+
s∈Aα

(
⟨α, z⟩2 − s2⟨α, α⟩2

)
.

Then the function
ψ(z, x) = b(x)−1 (D − µ(x))M [Q(z)e⟨z,x⟩] (3.40)

is the BA function for BC(l, 1). Moreover, ψ is an eigenfunction of the operator D with

Dψ(z, x) = µ(x)ψ(z, x).

The proof is analogous to the case of AG2 in Theorem 3.24, it just uses the following
two lemmas in place of Lemmas 3.22 and 3.23, respectively.

Lemma 3.38. For all τ ∈ S = {±2ei,±2
√
kel+1 : 1 ≤ i ≤ l}, the coefficient function aτ
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in the operator D can be expanded as

aτ (z) = κτ − κτ
∑

α∈BC(l,1)r+

⟨τ, α⟩(cα + c2α)

⟨α, z⟩
+Rτ (z),

where κτ are as in Theorem 3.37, and Rτ is a rational function with degRτ ≤ −2.

The above way of expanding the coefficients of the operator D can be used to prove
the following lemma (in a completely analogous way to how Lemma 3.23 is proved using
Lemma 3.22).

Lemma 3.39. For α ∈ BC(l, 1)r+, let nα ∈ Z≥0 be arbitrary. Let N =
∑

α∈BC(l,1)r+
nα.

Let µ(x) be as in Theorem 3.37, and let A(z) =
∏

α∈BC(l,1)r+
⟨α, z⟩nα. Then we have

(D − µ)[A(z)e⟨z,x⟩] = R(z, x)e⟨z,x⟩ for a rational function R(z, x) in z of the form

R(z, x) =
∑

α∈BC(l,1)r+

(nα − cα − c2α)

(∑
τ∈S

κτ ⟨τ, α⟩e⟨τ,x⟩
)
A(z)⟨α, z⟩−1 + S(z, x),

where S(z, x) is a rational function in z of degree less than or equal to N − 2.
In particular, for any polynomial B(z, x) in z, we have that (D − µ)[B(z, x)e⟨z,x⟩] =

U(z, x)e⟨z,x⟩ for a rational function U(z, x) in z with degU(z, x) ≤ degB(z, x)− 1.

Proof of Theorem 3.37. The idea of the proof is as follows. We have Q(z)e⟨z,x⟩ ∈ Ra
BC(l,1)

because Q(z + sα) = Q(z − sα) = 0 at ⟨z, α⟩ = 0 for all α ∈ BC(l, 1)r+ and s ∈ Aα.
The property that (D−µ)M [Q(z)e⟨z,x⟩] satisfies condition 2 in Definition 3.36 thus follows
from Theorem 3.35. Moreover, each repeated application of D − µ on Q(z)e⟨z,x⟩ gives a
function of the form R(z, x)e⟨z,x⟩ with R(z, x) a polynomial in z, which follows from the
form of the operator D and Theorem 3.35. More specifically, for all b ∈ Z>0, we have
that (D − µ)b[Q(z)e⟨z,x⟩] = Rb(z, x)e

⟨z,x⟩ where Rb(z, x) is a polynomial in z of degree at
most 2M − b whose highest-order homogeneous component can be kept track of by using
Lemma 3.39 (similarly to how this is done in the case of AG2 in the proof of Theorem 3.24
by using Lemma 3.23). This makes it possible to see that (D− µ)M [Q(z)e⟨z,x⟩] essentially
satisfies also condition 1 in Definition 3.36, except that the highest-order term of its
polynomial part has an extra factor of b(x) given by formula (3.39). It follows that ψ
defined by the expression (3.40) is the BA function. At the next application of D − µ,
we get (D − µ)M+1[Q(z)e⟨z,x⟩] = 0 as a consequence of Lemma 3.5, which implies that
Dψ = µψ. ■

In Section 3.6.1, we will need some further properties of the BA function (3.40), which
we record in Propositions 3.42 and 3.44 below (cf. [24, Propositions 6.5 and 6.6], respect-
ively). The following two lemmas will be useful for the proof of Proposition 3.42. Let ∝
denote proportionality by a constant factor.
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Lemma 3.40. The function b(x) defined by formula (3.39) satisfies

b(x) ∝
∏

α∈BC(l,1)r+

sinhcα+c2α⟨2α, x⟩.

Proof. Using formula (3.39), we compute

b(x)(e2
√
kxl+1 − e−2

√
kxl+1)−p−r

l∏
i=1

(e2xi − e−2xi)−m−n ∝∏
1≤i≤l
ε∈{±1}

(e2xi − e−2xi + e2ε
√
kxl+1 − e−2ε

√
kxl+1)

∏
1≤i<j≤l
ε∈{±1}

(e2xi − e−2xi + e2εxj − e−2εxj)k

=
∏
1≤i≤l
ε∈{±1}

(exi+ε
√
kxl+1 + e−xi−ε

√
kxl+1)(exi+ε

√
kxl+1 − e−xi−ε

√
kxl+1)

×
∏

1≤i<j≤l
ε∈{±1}

(exi+εxj + e−xi−εxj)k(exi+εxj − e−xi−εxj)k,

where we used the identity A2−A−2+B2−B−2 = (AB−1+A−1B)(AB−A−1B−1). Then
by using the difference of two squares formula, we get

b(x) ∝
∏

α∈BC(l,1)r+

(e⟨2α,x⟩ − e−⟨2α,x⟩)cα+c2α ∝
∏

α∈BC(l,1)r+

sinhcα+c2α⟨2α, x⟩,

as required. ■

Let us consider the function

δ(x) =
∏

α∈BC(l,1)+

(2 sinh⟨α, x⟩)cα . (3.41)

The next lemma relates δ(x) to the function b(x).

Lemma 3.41. We have

b(x) ∝ δ(x)
∏

α∈BC(l,1)r+

coshcα⟨α, x⟩.

Proof. Note that

δ(x) ∝
∏

α∈BC(l,1)r+

sinhcα+c2α⟨α, x⟩ coshc2α⟨α, x⟩. (3.42)

The proof is thus completed by making use of Lemma 3.40. ■
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The proof of the next proposition is based on the ideas of the proof of [24, Proposi-
tion 6.5]. Let us define the lattice

L = L(k) = 2Ze1 ⊕ · · · ⊕ 2Zel ⊕ 2
√
kZel+1. (3.43)

Let L+ be the semigroup of ν = (ν1, . . . , νl,
√
kνl+1) ∈ L that have non-negative partial

sums of νi, that is

L+ = {ν = (ν1, . . . , νl,
√
kνl+1) ∈ L :

∑r
i=1 νi ≥ 0 for r = 1, . . . , l + 1} =

⊕l+1
i=1 Z≥0αi,

where α1 = 2(e1 − e2), . . . , αl−1 = 2(el−1 − el), αl = 2(el −
√
kel+1), and αl+1 = 2

√
kel+1.

We note that 2α ∈ L+ for all α ∈ BC(l, 1)+.

Proposition 3.42. The function ψ defined by formula (3.40) can be expanded in the form

ψ = δ(x)−1e⟨z−ρ,x⟩
∑
ν∈L+

cν(z)e
⟨ν,x⟩ (3.44)

for some polynomials cν(z), where

ρ =
∑

α∈BC(l,1)+

cαα (3.45)

and δ(x) is defined by formula (3.41).

Proof. By Theorem 3.7 and Proposition 3.9, the function ψ satisfies the eigenfunction
equation Lψ = −z2ψ for the operator L given by formula (3.1) with A = BC(l, 1)+. This
operator can be rearranged as follows

L = −∆+
∑

α∈BC(l,1)r+

(cα + c2α)(cα + c2α + 1)⟨α, α⟩
sinh2⟨α, x⟩

−
∑

α∈BC(l,1)r+

c2α(c2α + 1)⟨α, α⟩
cosh2⟨α, x⟩

.

This form of the operator L makes it possible to see, by Laurent expanding the eigen-
function ψ in x around suitable hyperplanes, that ψ must have either a pole of order
cα + c2α or a zero of order cα + c2α + 1 along each of the hyperplanes sinh⟨α, x⟩ = 0 for
α ∈ BC(l, 1)r+; and similarly a pole of order c2α or a zero of order c2α + 1 along the hy-
perplanes cosh⟨α, x⟩ = 0 for α ∈ BC(l, 1)r+. The expression for b(x) given in Lemma 3.40
suggests that the order of the poles of ψ at cosh⟨α, x⟩ = 0 might be higher than c2α, but the
local expansion of ψ and the eigenvalue equation Lψ = −z2ψ imply that this cannot hap-
pen. It follows from the form of b(x) that ψ cannot have any additional other singularities
either. Hence δ(x)ψ is analytic (in both x and z variables) due to the property (3.42).
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By construction, ψ(z, x) = b(x)−1Φ(z, x) for the quasi-polynomial in z function

Φ(z, x) = (D − µ(x))M [Q(z)e⟨z,x⟩].

From the fomulas for D and µ, it is clear that Φ is analytic in x and that it can be
expanded as

Φ = e⟨z,x⟩
∑
ν∈L

bν(z)e
⟨ν,x⟩ (3.46)

for some polynomials bν(z).
In view of Lemma 3.41, the analyticity of δ(x)ψ implies that the trigonometric poly-

nomial in x given by (3.46) must be divisible by∏
α∈BC(l,1)r+

coshcα⟨α, x⟩ ∝ e⟨ρ
r,x⟩

∏
α∈BC(l,1)r+

(e−2⟨α,x⟩ + 1)cα = e⟨ρ,x⟩
∑
ν∈L

dνe
⟨ν,x⟩, (3.47)

where dν ∈ R and
ρr :=

∑
α∈BC(l,1)r+

cαα,

and we used that 2α ∈ L for all α ∈ BC(l, 1)r+. The quotient of the function (3.46) by its
divisor (3.47) will still be a trigonometric polynomial in x, and we get that

ψ = δ(x)−1e⟨z−ρ,x⟩
∑
ν∈L

cν(z)e
⟨ν,x⟩

for some polynomials cν(z). Let P = {ν ∈ L : cν ̸= 0}. We need to show that P ⊂ L+.
Let yi = e⟨αi,x⟩ for i = 1, . . . , l+1. The potential in the Hamiltonian L can be written as

∑
α∈BC(l,1)+

4cα(cα + 2c2α + 1)⟨α, α⟩e2⟨α,x⟩

(e2⟨α,x⟩ − 1)2
. (3.48)

By using that 2α ∈ L+ =
⊕l+1

i=1 Z≥0αi for any α ∈ BC(l, 1)+, we can rewrite the po-
tential (3.48) in terms of the variables yi and expand it (for small yi, that is for x in
{x ∈ Cl+1 : Re⟨αi, x⟩ < 0, i = 1, . . . , l + 1}) into a Taylor series in yi, which will have no
constant term, and thus obtain

L = −∆+
∑

µ∈L+\{0}

gµe
⟨µ,x⟩

for some constants gµ. Similarly, one can expand the function

δ(x)−1 = e⟨ρ,x⟩
∏

α∈BC(l,1)+

(e⟨2α,x⟩ − 1)−cα = e⟨ρ,x⟩

(−1)t +
∑

η∈L+\{0}

hηe
⟨η,x⟩

 ,
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where hη are constants and t = l(m + n) + p + r. Thus, the eigenfunction equation
(L+ z2)ψ = 0 gives that

∑
ν∈P

cν(z)e
⟨ν,x⟩
((

z2 − (z + ν)2
)
(−1)t +

∑
η∈L+\{0}

hη
(
z2 − (z + ν + η)2

)
e⟨η,x⟩

+
∑

µ∈L+\{0}

(−1)tgµe
⟨µ,x⟩ +

∑
µ,η∈L+\{0}

gµhηe
⟨µ+η,x⟩

)
= 0.

(3.49)

Since the set P is finite, it contains (one or several) minimal elements νmin with respect to
the partial order on L defined by α > β if and only if α− β ∈ L+ \ {0} for α, β ∈ L. The
term e⟨νmin,x⟩ appears only once in the left-hand side of equality (3.49), and its coefficient
must hence vanish. We get that (z+νmin)

2 = z2 for generic z, and it follows that νmin = 0.
Suppose that there is some ν ∈ P \ L+. Then ν ̸= 0, so it cannot be minimal in P , hence
there must be some ν2 ∈ P \ L+ with ν > ν2. By iterating this argument, we get an
infinite chain ν > ν2 > ν3 > . . . of elements in P , contradicting the finiteness of this set.
It follows that P ⊂ L+, as required. ■

Remark 3.43. By adapting the argument in the last paragraph of the proof of [24,
Proposition 6.5], one could show that the set P from the proof of Proposition 3.42 is
contained in the subset of L+ given by {2

∑
α∈BC(l,1)+

tαα : tα ∈ Z, 0 ≤ tα ≤ cα}.

The proof of the following proposition is based on the ideas of the proof of [24, Pro-
position 6.6 (2)].

Proposition 3.44. The polynomial c0 in the expansion (3.44) is given by

c0(z) = (−1)l(m+n)+p+r 2ln+r
∏

α∈BC(l,1)r+
s∈Aα

(⟨α, z⟩+ s⟨α, α⟩).

Proof. The BA function (3.44) must satisfy condition 2 in Definition 3.36. This gives that∑
ν∈L+

cν(z + sα)e⟨ν+sα,x⟩ =
∑
ν∈L+

cν(z − sα)e⟨ν−sα,x⟩ (3.50)

at ⟨z, α⟩ = 0 for α ∈ BC(l, 1)r+ and s ∈ Aα. Since −sα /∈ 1
2
L+, while ν + sα ∈ 1

2
L+

for all ν ∈ L+, we get that the term e−⟨sα,x⟩ does not appear in the left-hand side of
equality (3.50). Hence, it cannot appear in the right-hand side either, which means that
c0(z − sα) = 0 at ⟨z, α⟩ = 0. In other words, the polynomial c0(z) must be divisible by∏

α∈BC(l,1)r+
s∈Aα

(⟨α, z⟩+ s⟨α, α⟩). (3.51)
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The quotient of c0(z) by the product (3.51) can only be some constant λ since the polyno-
mial part of the function ψ is, by condition 1 in Definition 3.36, of the same degree in z as
the polynomial (3.51). Moreover, the highest-degree term of the polynomial part of ψ is
by definition

∏
α∈BC(l,1)+

⟨α, z⟩cα = 2ln+r
∏

α∈BC(l,1)r+, s∈Aα
⟨α, z⟩. Thus, denoting by c0ν the

highest-degree term of cν , equality (3.44) implies

2ln+rδ(x)
∏

α∈BC(l,1)r+
s∈Aα

⟨α, z⟩ = λe−⟨ρ,x⟩
∏

α∈BC(l,1)r+
s∈Aα

⟨α, z⟩+ e−⟨ρ,x⟩
∑

ν∈L+\{0}

c0ν(z)e
⟨ν,x⟩.

By calculating the coefficient of e−⟨ρ,x⟩ in δ(x), we get λ = 2ln+r
∏

α∈BC(l,1)r+
(−1)cα+c2α ,

and the statement of the proposition follows. ■

We end this section with the following statement, whose proof is analogous to that of
Theorem 3.28.

Theorem 3.45. Let p(z) ∈ Ra
BC(l,1) be a polynomial, and let p0 be its highest-degree

homogeneous term. Then there is a difference operator Dp acting in z such that

Dpψ(z, x) = µp(x)ψ(z, x),

Dp =
1

(deg p)!
addeg p

D (p̂),

where ψ is the BA function (3.40) of BC(l, 1) and D is the Sergeev–Veselov operator (3.36).
The eigenvalue µp(x) is obtained by substituting 4 sinh(2xi) in place of zi (1 ≤ i ≤ l) and
4(
√
k)−1 sinh(2

√
kxl+1) in place of zl+1 into p0(z). The operators Dp commute with D and

with each other.

3.6 Bispectrality for non-integer multiplicities

3.6.1 Case of BC(l, 1)

In this section, we carry out an analytic continuation in the parameters of the BA func-
tion (3.40) in order to extend to more general complex values of the parameters the
statement proved in Section 3.5.2 about the bispectrality of the Sergeev–Veselov operat-
ors for BC(l, 1). We do this by adapting to our present setting the approach developed
in [24, Section VI.C]. The corresponding generalisation of the function ψ(z, x) will be a
deformation of a Heckman–Opdam multidimensional hypergeometric function [65].

We begin with a few preliminary results on the properties of the generalised CMS
operator L (3.1) for A = BC(l, 1)+, where we are now no longer assuming that the
parameters cα are integers. The next lemma gives a potential-free gauge-equivalent form
of this operator. It is stated in [94]. We include a proof below for completeness.
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Lemma 3.46. [94] Consider the differential operator

H = ∆−
∑

α∈BC(l,1)+

2cα coth⟨α, x⟩∂α, (3.52)

where ∂α =
∑l+1

i=1⟨α, ei⟩∂xi
is the directional derivative along α ∈ Cl+1. The operator H is

gauge-equivalent to the operator L from above:

H + ρ2 = −δ(x) ◦ L ◦ δ(x)−1,

where ρ is given by formula (3.45) and δ(x) by formula (3.41).

Proof. We have

∂xi
[δ(x)−1] = −δ(x)−1

∑
α∈BC(l,1)+

cαα
(i) coth⟨α, x⟩,

∂2xi
[δ(x)−1] = δ(x)−1

∑
α∈BC(l,1)+

cα
(
(cα + 1) sinh−2⟨α, x⟩+ cα

)
(α(i))2

+ δ(x)−1
∑

α,β∈BC(l,1)+
α ̸=β

cαcβα
(i)β(i) coth⟨α, x⟩ coth⟨β, x⟩

for all i = 1, . . . , l + 1, where α = (α(1), . . . , α(l+1)) and β = (β(1), . . . , β(l+1)). Therefore,
we get

− δ(x) ◦ L ◦ δ(x)−1 = −
∑

α∈BC(l,1)+

2cαc2α⟨α, α⟩ sinh−2⟨α, x⟩+
∑

α∈BC(l,1)+

c2α⟨α, α⟩

+
∑

α,β∈BC(l,1)+
α ̸=β

cαcβ⟨α, β⟩ coth⟨α, x⟩ coth⟨β, x⟩ −
∑

α∈BC(l,1)+

2cα coth⟨α, x⟩∂α +∆.

(3.53)
By using that coth(u) coth(2u) = 1

2
(sinh−2(u) + 2) for any u ∈ C \ 1

2
Zπi, we have∑

α,β∈BC(l,1)+
α ̸=β

cαcβ⟨α, β⟩ coth⟨α, x⟩ coth⟨β, x⟩

=
∑

α,β∈BC(l,1)+
α/∈{β,2β, 1

2
β}

cαcβ⟨α, β⟩ coth⟨α, x⟩ coth⟨β, x⟩+
∑

α∈BC(l,1)+

2cαc2α⟨α, α⟩(sinh−2⟨α, x⟩+ 2).
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By substituting this into equality (3.53), we obtain that −δ(x) ◦ L ◦ δ(x)−1 equals

H +
∑

α,β∈BC(l,1)+
α/∈{β,2β, 1

2
β}

cαcβ⟨α, β⟩ coth⟨α, x⟩ coth⟨β, x⟩

+
∑

α∈BC(l,1)+

4cαc2α⟨α, α⟩+
∑

α∈BC(l,1)+

c2α⟨α, α⟩.

Since we can write

ρ2 =
∑

α∈BC(l,1)+

c2α⟨α, α⟩+
∑

α∈BC(l,1)+

4cαc2α⟨α, α⟩+
∑

α,β∈BC(l,1)+
α/∈{β,2β, 1

2
β}

cαcβ⟨α, β⟩,

the proof is completed with the help of the following lemma.

Lemma 3.47. [94, Equality (12)] We have∑
α,β∈BC(l,1)+
α/∈{β,2β, 1

2
β}

cαcβ⟨α, β⟩ coth⟨α, x⟩ coth⟨β, x⟩ =
∑

α,β∈BC(l,1)+
α/∈{β,2β, 1

2
β}

cαcβ⟨α, β⟩. (3.54)

Proof. We first indicate how to prove that the left-hand side of (3.54) is non-singular.
One can show that singularities at sinh⟨α, x⟩ = 0 for α ∈ {ei, 2ei : 1 ≤ i ≤ l} ∪
{
√
kel+1, 2

√
kel+1} ∪ {ei ± ej : 1 ≤ i < j ≤ l} cancel by using symmetry — namely

that those α satisfy sα(BC(l, 1)) = BC(l, 1) — and using also that for those α we have
2⟨α, β⟩⟨α, α⟩−1 ∈ Z for all β ∈ BC(l, 1).

It remains to show that there are no singularities at sinh⟨α, x⟩ = 0 for α = ei±
√
kel+1

(1 ≤ i ≤ l) either. Let α = ei +
√
kel+1. Then sinh⟨α, x⟩ = 0 if and only if xi =

iπd−
√
kxl+1 for some d ∈ Z. We will show that the terms multiplying coth⟨α, x⟩ in (3.54)

go to 0 when xi → iπd−
√
kxl+1. The terms in question are (up to a factor of 2) equal to

m coth(xi) + 2n coth(2xi) + kp coth(
√
kxl+1)

+ 2kr coth(2
√
kxl+1) + (1− k) coth(xi −

√
kxl+1)

+
l∑

j=1
j ̸=i

k

(
coth(xi + xj) + coth(xi − xj) + coth(xj +

√
kxl+1)− coth(xj −

√
kxl+1)

)
.

(3.55)

By using iπ-periodicity of coth, the expression (3.55) simplifies at xi = iπd−
√
kxl+1 to

(kp−m) coth(
√
kxl+1) + (2kr − 2n+ k − 1) coth(2

√
kxl+1) = 0,
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as required, where we used thatm = kp and 2n+1 = k(2r+1). The case of α = ei−
√
kel+1

can be handled similarly.
This completes the proof that the left-hand side of (3.54) is non-singular, and from its

form, it is then clear that it can be rewritten in exponential variables wi = e2xi (1 ≤ i ≤ l)
and wl+1 = e2

√
kxl+1 as a non-singular rational function with zero degree, which therefore

must be constant.
To calculate the constant, let us put x = ((l + 1)N, lN, . . . , 2N,N/

√
k), and take the

limit N → ∞ by using that ⟨α, x⟩ → ∞ as N → ∞ for all α ∈ BC(l, 1)+ and that
cothu→ 1 when u→ ∞. This gives the right-hand side of equality (3.54). ■■

When x belongs to the region

B = B(k) = {x ∈ Cl+1 : Re⟨α, x⟩ < 0 for all α ∈ BC(l, 1)+},

the operator (3.52) can be expanded into a series as

H = ∆+
∑

α∈BC(l,1)+

2cα
1 + e2⟨α,x⟩

1− e2⟨α,x⟩
∂α = ∆+

∑
α∈BC(l,1)+

2cα

(
1 + 2

∞∑
j=1

e2j⟨α,x⟩

)
∂α. (3.56)

Let φ = φ(z, x) be a solution of the equation

Hφ = (z2 − ρ2)φ, (3.57)

which is by Lemma 3.46 equivalent to the function δ(x)−1φ being an eigenfunction of the
Hamiltonian L with eigenvalue −z2. In particular, if all cα ∈ Z≥0 then δ(x)ψ(z, x), where
ψ is the BA function (3.40), satisfies equation (3.57).

Assume that there is a solution φ of the equation (3.57) of the particular form

φ = e⟨z−ρ,x⟩
∑
ν∈L+

qν(z)e
⟨ν,x⟩ (3.58)

for some functions qν(z) with q0(z) = 1. If all cα ∈ Z≥0 then by Proposition 3.42 the
function δ(x)ψ(z, x) is of the form (3.58); it is just normalised differently since c0(z) =

2ln+r
∏

α∈BC(l,1)r+, s∈Aα
(−⟨α, z⟩ − s⟨α, α⟩) ̸= 1 by Proposition 3.44.

By substituting the series (3.58) into equation (3.57), using the expansion (3.56) for
the operator H, and requiring that the respective coefficients of the terms e⟨ν,x⟩ vanish for
all ν ∈ L+, we get recurrence equations for the functions qν . Namely, we get

⟨ν, ν + 2z⟩qν(z) +
∑

α∈BC(l,1)+

4cα

∞∑
j=1

⟨α, z − ρ+ ν − 2jα⟩qν−2jα(z) = 0, (3.59)
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subject to the constraint that q0 = 1, where we put qν−2jα = 0 if ν − 2jα /∈ L+, meaning
that the above sum over j is finite. For generic z, equations (3.59) (together with the
normalisation choice q0 = 1) determine all qν uniquely. Indeed, one can solve for them
recursively by height of ν ∈ L+ =

⊕l+1
i=1 Z≥0αi, since the above ν−2jα has a strictly lower

height than ν, where for ν =
∑l+1

i=1 ν
(i)αi, its height is defined by h(ν) =

∑l+1
i=1 ν

(i). We
note that all qν(z) are rational functions of z, and their dependence on m,n, p, r, and

√
k

is also rational.
For k with Re k > 0, the next lemma below, applied with x replaced by x/2, can

be used to show that the resulting series (3.58) converges absolutely in the region B.
Moreover, since it is a power series in yi = e⟨αi,x⟩ (i = 1, . . . , l+ 1), it converges uniformly
in the open sets {x ∈ B : Re⟨αi, x⟩ < ε < 0, i = 1, . . . , l + 1} for any ε < 0, and so φ is
analytic in x on B. In the case of root systems, an analogue of the next lemma is proved
in [66, Lemma 5.3].

Lemma 3.48. Assume Re k > 0. For ν ∈ L+ \ {0}, let Σν = {z ∈ Cl+1 : ⟨ν, ν +2z⟩ = 0}.
Suppose z ∈ Cl+1 does not lie on any of the hyperplanes Σν, and let x ∈ B. Then there
exists a constant K = K(z, x) ∈ R (depending on z and x but not on ν) such that

|qν(z)e⟨ν,x⟩| ≤ K

for all ν ∈ L+.

Proof. Let ν =
∑l+1

i=1 ν
(i)αi ∈ L+ and α ∈ BC(l, 1)+ be arbitrary. We have

|⟨ν − ρ+ z, α⟩| ≤ |⟨z − ρ, α⟩|+
l+1∑
i=1

ν(i)|⟨αi, α⟩| ≤ λ1(h(ν) + 1), (3.60)

where we let λ1 = λ1(z) > 0 be the maximum (depending on z but not on ν nor α) of the
finite set

{|⟨z − ρ, β⟩| : β ∈ BC(l, 1)+} ∪ {|⟨αi, β⟩| : β ∈ BC(l, 1)+, i = 1, . . . , l + 1}.

Further, we have

Re⟨ν, ν⟩ =
l+1∑
i,j=1

ν(i)ν(j)⟨α̃i, α̃j⟩ = ∥ν̃∥2 (3.61)

for ν̃ =
∑l+1

i=1 ν
(i)α̃i, where α̃i ∈ Rl+1 are obtained from αi by replacing

√
k with

√
Re k ∈ R.

Here ∥·∥ denotes the usual (real) Euclidean norm. Since α̃i form a basis of Rl+1, the
expression (3.61) is a positive-definite (real) quadratic form in the variables ν(i) with asso-
ciated symmetric matrix A = (⟨α̃i, α̃j⟩)l+1

i,j=1. By Sylvester’s criterion, all leading principal
minors Mi of A are positive, Mi = detAi, where Ai is the top left i × i corner of A. For
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any c ∈ R, the expression Re⟨ν, ν⟩ − ch(ν)2 is also a quadratic form in the variables ν(i)

with associated matrix Ac = (⟨α̃i, α̃j⟩ − c)l+1
i,j=1. By the matrix determinant lemma, the

leading principal minors M c
i of Ac are (1 − c⟨ui, A−1

i ui⟩)Mi, where ui = (1, . . . , 1) ∈ Ri.
Since Mi are positive, M c

i are positive for c = min{2−1⟨ui, A−1
i ui⟩−1 : i = 1, . . . , l+1} > 0,

and then Sylvester’s criterion implies

|⟨ν, ν⟩| ≥ Re⟨ν, ν⟩ ≥ ch(ν)2.

We also have

|⟨ν, z⟩| ≤
l+1∑
i=1

ν(i)|⟨αi, z⟩| ≤Mh(ν),

where we let M = M(z) = max{|⟨αi, z⟩| : i = 1, . . . , l + 1} > 0. Whenever h(ν) ≥ 4M/c,
it follows that |⟨ν, z⟩| ≤ ch(ν)2/4, and then by the reverse triangle inequality

|⟨ν, ν + 2z⟩| ≥
∣∣|⟨ν, ν⟩| − 2|⟨ν, z⟩|

∣∣ ≥ ch(ν)2/2.

Letting λ2 = λ2(z) > 0 be the minimum of c/2 and the finitely-many, positive values
|⟨ν ′, ν ′+2z⟩|/h(ν ′)2 for ν ′ ∈ L+\{0} with h(ν ′) < 4M/c (here we are using the assumption
that z /∈ Σν′), we thus get that

|⟨ν, ν + 2z⟩| ≥ λ2h(ν)
2 (3.62)

for any ν ∈ L+.
By using inequalities (3.60), (3.62), and the recurrence relation (3.59), we get for all

ν ∈ L+ \ {0} that

|qν(z)| ≤ 4λ1λ
−1
2 h(ν)−1

∑
α∈BC(l,1)+

|cα|
∞∑
j=1

|qν−2jα(z)|, (3.63)

since h(ν − 2jα) ≤ h(ν)− 1. Let λ = 4λ1λ
−1
2 .

Since x ∈ B and the geometric series is absolutely convergent on the open unit disk
in C, there is N0 ∈ Z>0 such that

λ
∑

α∈BC(l,1)+

|cα|
∞∑
j=1

|e2j⟨α,x⟩| ≤ N0. (3.64)

Let K be such that
|qη(z)e⟨η,x⟩| ≤ K (3.65)

for those (finitely many) η ∈ L+ which have h(η) ≤ N0. One can prove that (3.65) holds
for all η ∈ L+ by induction on h(η). Indeed, assume that (3.65) holds for those η with
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h(η) < N for some integer N > N0. Then for ν ∈ L+ with h(ν) = N , we have by
inequalities (3.63), (3.64), and the induction hypothesis that

|qν(z)| ≤ λN−1
∑

α∈BC(l,1)+

|cα|
∞∑
j=1

K|e−⟨ν−2jα,x⟩| ≤ KN0N
−1|e−⟨ν,x⟩| < K|e−⟨ν,x⟩|,

which completes the proof by induction. ■

As a corollary of Lemma 3.48, we have the following statement.

Proposition 3.49. The series (3.58) defines an analytic function in z, x, and k on an
open subset of C2l+3.

Proof. Let k0 ∈ C with Re k0 > 0. Since Re⟨αi, x⟩ is continuous in x and k, there exists an
open ball BK centred at k0 and an open ball BX ⊂ Cl+1 such that Re k > 0 and BX ⊂ B(k)

for all k ∈ BK. Take any z0 ∈ Cl+1 \ ∪ν∈L(k0)+\{0}Σν . Consider the constant c = c(k0)

from the proof of Lemma 3.48 for k = k0. Note that ⟨ui, A−1
i ui⟩−1 is continuous in k

at k0. Consider also the constant M = M(z0, k0) defined as in the proof of Lemma 3.48.
Note that |⟨αi, z⟩| is continuous in z and k at (z0, k0). Therefore, there exists an open
ball B′

K ⊆ BK centred at k0 and an open ball BZ ⊂ Cl+1 centred at z0 such that for all
(z, k) ∈ BZ × B′

K we have c(k) > c(k0)/2 and M(z, k) < 2M(z0, k0).
Since |⟨ν(k0), ν(k0) + 2z0⟩| > 0 for all ν(k0) ∈ L(k0)+ \ {0}, and |⟨ν(k), ν(k) + 2z⟩|

is continuous in k and z, there exists an open ball B′′
K ⊆ B′

K and an open ball B′
Z ⊆ BZ

such that for the finitely-many ν = ν(k) ∈ L(k)+ \ {0} with h(ν) ≤ 16M(z0, k0)/c(k0) we
have |⟨ν, ν + 2z⟩| > 0 for all k ∈ B′′

K and z ∈ B′
Z. On the other hand, for those ν with

h(ν) > 16M(z0, k0)/c(k0), we have by the definition of the constants c(k) and M(z, k)

that |⟨ν, ν⟩| ≥ c(k)h(ν)2 > c(k0)h(ν)
2/2 and |⟨ν, z⟩| ≤ M(z, k)h(ν) < 2M(z0, k0)h(ν) <

c(k0)h(ν)
2/8, and so by the reverse triangle inequality

|⟨ν, ν + 2z⟩| ≥
∣∣|⟨ν, ν⟩| − 2|⟨ν, z⟩|

∣∣ > c(k0)h(ν)
2/4 > 0.

In other words, for any (z, x, k) ∈ U := B′
Z × BX × B′′

K, we have Re k > 0, z ∈
Cl+1 \ ∪ν∈L(k)+\{0}Σν , and x ∈ B(k). Then the sum φ(z, x) of the series (3.58) is well-
defined by the discussion preceding Lemma 3.48, and φ(z, x) is on U the pointwise limit
of a sequence of functions (the partial sums) that are analytic jointly in all the variables z,
x, and k. As a consequence of (the multivariable version of) Osgood’s Theorem [77,
Theorem 8], there exists an open dense subset V ⊆ U on which φ(z, x) is analytic (jointly)
in the variables z, x, and k, and on which the convergence is locally uniform (for the
original, single-variable case of Osgood’s Theorem, see [89, Theorem II]). ■

If all cα ∈ Z≥0, then by the uniqueness of the solution of the system (3.59), we must have
that δ(x)ψ(z, x) is proportional to φ(z, x) with the factor of proportionality being c0(z),
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that is
ψ(z, x) = 2ln+rδ(x)−1φ(z, x)

∏
α∈BC(l,1)r+

s∈Aα

(−⟨α, z⟩ − s⟨α, α⟩).

For the case when cα are not necessarily in Z≥0, but rather we have any k,m, n, p, r ∈ C
with Re k > 0, m = kp, and 2n+ 1 = k(2r + 1), let us define the following function

Ψ(z, x) = C(z)δ(x)−1φ(z, x),

where we take any branch of δ(x), and where we defined the function

C(z) =
∏

α∈{
√
kel+1, ei : 1≤i≤l}

Γ (−⟨α, z⟩⟨α, α⟩−1) Γ
(
−1

2
⟨α, z⟩⟨α, α⟩−1 − 1

2
cα
)

Γ (−⟨α, z⟩⟨α, α⟩−1 − cα) Γ
(
−1

2
⟨α, z⟩⟨α, α⟩−1 − 1

2
cα − c2α

)
×

∏
α∈{ei±ej : 1≤i<j≤l}

Γ (−⟨α, z⟩⟨α, α⟩−1)

Γ (−⟨α, z⟩⟨α, α⟩−1 − k)

∏
α∈{ei±

√
kel+1 : 1≤i≤l}

(−⟨α, z⟩ − 1− k).

Here Γ(u) is the classical gamma-function. Then LΨ = −z2Ψ, since C(z) does not depend
on x and φ solves equation (3.57) by construction. Moreover, Ψ(z, x) coincides (up to a
constant factor) with ψ(z, x) if all cα ∈ Z≥0, since then C(z) ∝ c0(z) as Γ(u)/Γ(u−N) =∏N

i=1(u− i) for u ∈ C, N ∈ Z≥0.
With that, the proof of the next theorem is then essentially the same as that of [24,

Theorem 6.9]. It just uses Theorem 3.37 in place of [24, Theorem 6.2].

Theorem 3.50. For any k,m, n, p, r ∈ C with Re k > 0, m = kp, and 2n+1 = k(2r+1),
the function Ψ(z, x) satisfies

LΨ = −z2Ψ,

DΨ = µ(x)Ψ. (3.66)

Proof. It only remains to show equality (3.66). If all cα ∈ Z≥0, it follows from The-
orem 3.37. More generally, equation (3.66) is equivalent to φ satisfying D̃φ = µφ for the
difference operator

D̃ = C(z)−1 ◦D ◦ C(z) =
∑
τ∈S

aτ (z)
(
C(z)−1C(z + τ)Tτ − 1

)
,

where S = {±2ei,±2
√
kel+1 : 1 ≤ i ≤ l}, since D was of the form D =

∑
τ∈S aτ (z)(Tτ −1).

For any τ ∈ S, the function aτ (z) is rational in z,m, n, p, r,
√
k, and so is the func-

tion C(z)−1C(z + τ), since 1
2
⟨α, τ⟩⟨α, α⟩−1 ∈ Z for α ∈ {

√
kel+1, ei : 1 ≤ i ≤ l} and

⟨α, τ⟩⟨α, α⟩−1 ∈ Z for α ∈ {ei ± ej : 1 ≤ i < j ≤ l}.
By substituting the series (3.58) into the equation D̃φ = µφ, the latter reduces (by
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looking at the coefficient of e⟨ν,x⟩ for each ν ∈ L ⊃ S) to an infinite number of identities,
each involving a finite number of the coefficients qν(z) and only involving rational functions
of z, m,n, p, r,

√
k. Explicitly, these identities are∑

τ∈S

(κτ − aτ (z))qν(z) +
∑

(µ,τ)∈L+×S : µ+τ=ν

(
aτ (z)C(z)

−1C(z + τ)qµ(z + τ)− κτqµ(z)
)
= 0

for ν ∈ L, where we put qν = 0 if ν /∈ L+. Theorem 3.37 implies that these identities
hold in the case when all cα ∈ Z≥0, and then it follows that they hold in general. This
completes the proof. ■

By analyticity, the bispectrality property of Theorem 3.50 holds in a bigger domain of
analyticity of the function φ. To be more precise, by Proposition 3.49 we have on an open
set V an analytic function φ that satisfies equation (3.57) and by the proof of Theorem 3.50
also D̃φ = µ(x)φ. Suppose (z, x, k) ∈ Cl+1 × Cl+1 × C is such that φ can be analytically
extended to a function φ̃(z, x, k) on some neighbourhood W of (z, x, k) containing V . The
function Hφ̃− (z2− ρ2)φ̃ is analytic in z, x, k away from the singularities of coth⟨α, x⟩ for
α ∈ BC(l, 1)+, and on V it is identically zero. Thus, it must be zero on all of its domain
of analyticity. Similarly, D̃φ̃ − µ(x)φ̃ is analytic in z, x, k away from the union P of the
poles of the functions aτ (z) and C(z + τ)C(z)−1, and it vanishes on the open set V \ P .
Hence D̃φ̃ = µ(x)φ̃ on W \ P . In terms of the function Ψ̃ := Cφ̃/δ, this means that the
following bispectrality relation is satisfied:

LΨ̃ = −z2Ψ̃,

DΨ̃ = µ(x)Ψ̃.

3.6.2 Case of AG2

Our bispectral duality statements for AG2 in Theorems 3.24 and 3.27 can also be extended
to the case of non-integer values of the multiplicities using ideas analogous to those in [24,
Section VI.C]. Since we did the case of BC(l, 1) in detail above, we just explain here those
steps of the argument for AG2 that differ from what we wrote for BC(l, 1), and we state
the results.

In the notations of Section 3.4, let L = 2Zβ1 ⊕ 2Zα2 (the root lattice of 2G2) and
L+ = 2Z≥0β1 ⊕ 2Z≥0α2. We note that 2γ ∈ L+ for all γ ∈ AG2,+. We define

δ(x) =
∏

γ∈AG2,+

(2 sinh⟨γ, x⟩)cγ ∝
∏

γ∈G2,+

sinhcγ+c2γ⟨γ, x⟩ coshc2γ⟨γ, x⟩. (3.67)

In contrast to the case of BC(l, 1), the function b(x) (3.23) does not seem to fully
factorise in a nice way (though, it is divisible by δ(x)

∏3
i=1 cosh

3m⟨βi, x⟩, as can be checked),
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but it does not affect the proof of the next proposition.

Proposition 3.51. The BA function ψ defined by formula (3.25) can be expanded as

ψ = δ(x)−1e⟨z−ρ,x⟩
∑
ν∈L+

cν(z)e
⟨ν,x⟩ (3.68)

for some polynomials cν(z), where

ρ =
∑

γ∈AG2,+

cγγ (3.69)

and δ(x) is defined by formula (3.67).

Proof. Local analysis of the singularity structure of the function ψ (3.25) imposed by the
eigenfunction equation Lψ = −z2ψ, where L is the generalised CMS operator (3.1) for
A = AG2,+, gives that δ(x)ψ is analytic in x (and z) variables.

By construction, ψ(z, x) = b(x)−1Φ(z, x) for

Φ(z, x) = (D1 − µ(x))M [Q(z)e⟨z,x⟩]

and the function b(x) given by (3.23), which can be expanded as

b(x) =
∑
ν∈L

fνe
⟨ν,x⟩ (3.70)

for some fν ∈ R, where we used that 2γ ∈ L for any γ ∈ G2. Also, from formulas (3.17)–
(3.19) for D1 and (3.22) for µ, it is clear that Φ is analytic in x and can be expanded as

Φ = e⟨z,x⟩
∑
ν∈L

bν(z)e
⟨ν,x⟩ (3.71)

for some polynomials bν(z).
The analyticity of δ(x)ψ implies that b(x) must divide

δ(x)Φ = e−⟨ρ,x⟩Φ
∏

γ∈AG2,+

(e2⟨γ,x⟩ − 1)cγ = e⟨z−ρ,x⟩
∑
ν∈L

dν(z)e
⟨ν,x⟩ (3.72)

where dν(z) are polynomials, and where we used equality (3.71) and that 2γ ∈ L for
all γ ∈ AG2,+. The quotient of the function (3.72) by its divisor (3.70) will still be a
trigonometric polynomial in x, and we get that

ψ = δ(x)−1e⟨z−ρ,x⟩
∑
ν∈L

cν(z)e
⟨ν,x⟩
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for some polynomials cν(z). The proof that {ν ∈ L : cν ̸= 0} ⊂ L+ is completely analogous
to the case of BC(l, 1) in the proof of Proposition 3.42 (the variables yi should here be
replaced by y1 = e2⟨β1,x⟩ and y2 = e2⟨α2,x⟩). ■

By a completely analogous proof to that of Proposition 3.44, we get the following.

Proposition 3.52. The polynomial c0 in the expansion (3.68) is given by

c0(z) = −8
∏

γ∈G2,+

s∈Aγ

(⟨γ, z⟩+ s⟨γ, γ⟩).

Let us now consider the multiplicity parameter m ∈ C not necessarily being an integer.
The next lemma states a potential-free gauge-equivalent form of the generalised CMS
Hamiltonian of AG2.

Lemma 3.53. The differential operator

H = ∆−
∑

γ∈AG2,+

2cγ coth⟨γ, x⟩∂γ (3.73)

is gauge-equivalent to the operator L defined by formula (3.1) with A = AG2,+:

H + ρ2 = −δ(x) ◦ L ◦ δ(x)−1,

where ρ is given by formula (3.69) and δ(x) by formula (3.67).

In particular, this means that AG2 satisfies the analogue of Lemma 3.47 with BC(l, 1)+
replaced by AG2,+. Lemma 3.53 will follow from (the scalar case of) Theorems 4.3 and 4.4,
Remark 4.6, and the discussions in Section 4.4.1.2 below, so we skip the proof here.

When x belongs to the region

B = {x ∈ C2 : Re⟨γ, x⟩ < 0 for all γ ∈ AG2,+}

= {(x1, x2) ∈ C2 : Re(x1) < 0, Re(x2) <
√
3Re(x1)},

the operator (3.73) can be expanded like in (3.56), just with BC(l, 1)+ replaced by AG2,+.
In complete analogy with the case of BC(l, 1) in Section 3.6.1, let us formally define a
function

φ = e⟨z−ρ,x⟩
∑
ν∈L+

qν(z)e
⟨ν,x⟩ (3.74)

by the equation Hφ = (z2 − ρ2)φ and the normalisation condition q0(z) = 1. It follows
that qν(z) are rational in z and m. The next lemma can be used to show that the
series (3.74) converges absolutely on B similarly to the case of BC(l, 1) above.
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Lemma 3.54. For ν ∈ L+ \ {0}, let Σν = {z ∈ C2 : ⟨ν, ν + 2z⟩ = 0}. Suppose

z ∈ C2 \ ∪ν∈L+\{0}Σν

and x ∈ B. Then there exists a constant K = K(z, x) ∈ R independent of ν such that

|qν(z)e⟨ν,x⟩| ≤ K

for all ν ∈ L+.

The proof is essentially the same as that of Lemma 3.48 (but the configuration does
not depend on any deformation parameter k this time, so the proof can be simplified in
an obvious way).

When m ∈ Z≥0, then by using the uniqueness of the solution φ, Lemma 3.53, and
Propositions 3.51 and 3.52, we get that the BA eigenfunction (3.25) of the operator L
satisfies

ψ(z, x) = c0(z)δ(x)
−1φ(z, x) = −8δ(x)−1φ(z, x)

∏
γ∈G2,+

s∈Aγ

(⟨γ, z⟩+ s⟨γ, γ⟩).

For the case when m ∈ C is not necessarily in Z≥0, let us generalise the function ψ to

Ψ(z, x) = C(z)δ(x)−1φ(z, x), (3.75)

where we define

C(z) =
∏

γ∈G2,+

Γ(⟨γ, z⟩⟨γ, γ⟩−1 + cγ + 1)

Γ(⟨γ, z⟩⟨γ, γ⟩−1 + 1)

3∏
i=1

(⟨βi, z⟩+ (3m+ 2)⟨βi, βi⟩).

The function Ψ(z, x) coincides (up to a constant factor) with ψ(z, x) if m ∈ Z≥0, since
then C(z) ∝ c0(z). Now the proof of the next theorem is essentially the same as that
of Theorem 3.50; it uses Theorems 3.24 and 3.27 and that C(z)−1C(z + τ) is rational
in z and m for all τ ∈ 2AG2, since ⟨γ, τ⟩⟨γ, γ⟩−1 ∈ Z for all γ ∈ G2,+ (since G2 is a
crystallographic root system).

Theorem 3.55. For any m ∈ C, the function Ψ(z, x) defined by formula (3.75) satisfies

LΨ = −z2Ψ,

D1Ψ = µ(x)Ψ,

D2Ψ = µ̃(x)Ψ,

where L is the generalised CMS operator (3.1) for A = AG2,+, the function µ(x) is defined
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by (3.22) and µ̃(x) by (3.30), and Di (i = 1, 2) are the operators (3.17) – (3.19) and (3.26)
– (3.29), respectively.



Chapter 4

Spin Calogero–Moser–Sutherland type
systems

In this chapter, we make use of the representation theory of TCAs to construct gener-
alisations of (trigonometric) spin CMS operators. This work constitutes one part of our
paper in preparation [54]. That paper also includes the details of the rational version of
this construction, including the case with an extra harmonic term in the potential. This
is a generalisation of the work done in [50] by Feigin.

The structure of this chapter is as follows. In Section 4.1, we review the construction
of scalar rational generalised CMS systems from [50]. Namely, we recall the definition
of parabolic strata for finite Coxeter groups and the conditions that the strata have to
satisfy for the ideal of polynomials vanishing on them to be invariant under the associated
RCA. Then we recall how parabolic strata defining invariant ideals can be used to obtain
operators of rational CMS type and quantum integrals for them. In Sections 4.2 and 4.3,
we develop a similar construction for TCAs associated with reduced crystallographic root
systems. We do this directly in the more general matrix case. This leads to generalised
trigonometric spin CMS operators related to projections of these root systems. We apply
this construction in Section 4.4 for exceptional root systems to derive several interesting
explicit new examples of such operators. A systematic account of the case of projections
of classical root systems and also of the non-reduced root system BCn will appear in [54].
In Section 4.5, we list cases where the projection of a root system is itself a root system,
as this allows one to obtain new examples of spin CMS operators associated with root
systems.

Let us note that in [54], we additionally provide in deformed type A also extra quantum
integrals for the corresponding deformed spin CMS operator by exploiting a Yangian
symmetry.

85
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4.1 Review of the scalar rational case

Let W be a finite real reflection group acting by orthogonal transformations in the com-
plexified reflection representation V = CN . Let R and Γ be the corresponding (reduced)
root system and Coxeter graph, respectively. Let c : R → C, α 7→ cα be a W -invariant
multiplicity function. Let Hc be the associated RCA acting faithfully on the space of poly-
nomials C[x] = C[x1, . . . , xN ]. We assume that a positive subsystem R+ ⊂ R is chosen
so that the vertices of Γ are identified with simple roots. Let Γ0 ⊂ Γ be a subgraph of
the Coxeter graph, and let Γv

0 denote the set of simple roots corresponding to the vertices
of Γ0. We denote by W0 ⊂ W the parabolic subgroup generated by the reflections with
respect to the roots Γv

0.
Suppose Γ0 is obtained by specifying some of the vertices of Γ and preserving all the

edges between them. The vertices of Γ0 determine the subspace

π = πΓ0 = {x ∈ V : ⟨β, x⟩ = 0, ∀β ∈ Γv
0}.

The associated parabolic stratum is defined as

DΓ0 =
⋃
w∈W

w(π).

Let the corresponding parabolic ideal IΓ0 be the set of polynomials vanishing on the
stratum, IΓ0 = {p ∈ C[x] : p|DΓ0

= 0}. The following theorem, proved by Feigin, gives
necessary and sufficient conditions for this ideal to be a submodule of the polynomial
representation of the RCA.

Theorem 4.1. [50] Let Γ0 =
∐l

i=1 Γi be the decomposition of the subgraph Γ0 into
connected components. Then the parabolic ideal IΓ0 is invariant under the RCA Hc if and
only if the following relation is satisfied for all i = 1, . . . , l:

∑
α∈R∩Vi

cα⟨α, u⟩⟨α, v⟩
⟨α, α⟩

= ⟨u, v⟩

for all u, v ∈ Vi, where Vi is the vector space spanned by the roots Γv
i .

We now explain how Hc-invariant ideals IΓ0 lead to generalised rational CMS operators
and quantum integrals for them.

Suppose IΓ0 is an invariant parabolic ideal as above. Let us define the quotient module
M = C[x]/IΓ0 . Let {ei}Ni=1 be the standard orthonormal basis of V , and consider the Dunkl
operators ∇i = ∇ei defined by formula (2.12) with ξ = ei. Any polynomial function of
∇i can act on the module M . Moreover, W -invariant polynomials of Dunkl operators
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preserve the space of invariants MW . Consider the operators

Hp = Res p(∇)

for W -invariant polynomials p ∈ C[x]W , p(∇) = p(∇1, . . . ,∇N), where Res denotes re-
striction to MW . Let us note that MW is, more generally, preserved by the centraliser
HW

c = CHc(CW ) of the group algebra CW of the Coxeter group inside the RCA. In
particular, it is a module for the spherical subalgebra SHc ⊂ HW

c , SHc = eHce with
e = |W |−1

∑
w∈W w.

To write down the operators Hp explicitly in local coordinates on π, it is convenient to
consider action of p(∇) on W -invariant (formal) sums of germs of analytic functions on
W -orbits of small neighbourhoods on DΓ0 of a generic point of π (see [50, Section 3] for
the details), rather than on global functions. This way the operator Hp takes the form of
a differential operator on π, which we denote Resπ p(∇). In particular, by using that

N∑
i=1

∇2
i =

N∑
i=1

∂2xi
−
∑
α∈R+

2cα
⟨α, x⟩

∂α +
∑
α∈R+

cα⟨α, α⟩
⟨α, x⟩2

(1− sα),

one obtains the generalised rational CMS Hamiltonian in radial gauge

Resπ

(
N∑
i=1

∇2
i

)
= ∆y −

∑
α∈R+

α̂ ̸=0

2cα
⟨α̂, y⟩

∂α̂,

where y = (y1, . . . , yn) are orthonormal coordinates on the space π, ∆y = ∂2y1 + · · · + ∂2yn
is the Laplacian on π, and α̂ is the orthogonal projection of α onto π. The operators
Resπ p(∇) for p ∈ C[x]W give quantum integrals for this Hamiltonian.

4.2 Invariant parabolic submodules for TCAs

In this section, we will continue to use notations introduced in Section 4.1, but R will now
be a reduced crystallographic root system, W its Weyl group, and P its weight lattice.
Let Htrig

c be the associated TCA. Let U be any complex vector space that is a right
W -module and denote the action of w ∈ W on v ∈ U by v · w.

Let x0 be a generic point of π, meaning that if e⟨α,x0⟩ = 1 for some α ∈ R then
α ∈ SpanΓv

0. Let Wx0 = ∪w∈Ww(x0) be the W -orbit of x0. Define the space

CWx0(U) = CWx0(DΓ0 , U) =
⊕

x∈Wx0

Cx(DΓ0 , U),

where Cx(DΓ0 , U) is the space of germs of analytic functions defined on DΓ0 near the point
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x ∈ Wx0 with values in U . Note that CWx0(U)
∼= U ⊗ CWx0(C). We would like to define

an action of Htrig
c on CWx0(U).

Note that Htrig
c can act on the space CWx0(V, U) =

⊕
x∈Wx0

Cx(V, U) of (formal) sums
of U -valued analytic germs defined on V near the points Wx0. The elements of the
Weyl group w ∈ W act by moving the germs at one point to another one. Namely,
w : Cx(V, U) → Cw(x)(V, U) for any x ∈ Wx0, with the action given by (wF )(y) = F (w−1y)

for y ∈ V near w(x) and F ∈ Cx(V, U). The elements e⟨α,x⟩ ∈ Htrig
c (α ∈ P ) act by

multiplication. The trigonometric Dunkl operators act on a given sum of germs by for-
mula (2.13) with each reflection sα ∈ W acting as defined above. Note that the well-
definedness of this action of ∇trig

ξ relies on the genericity of x0.
The next theorem gives the conditions under which this Htrig

c -module CWx0(V, U) has
a submodule IΓ0 consisting of those elements that vanish when restricted to DΓ0 (note
that the form of these conditions is the same as in the case of RCAs and U being the
trivial representation from [50]). We call IΓ0 a parabolic submodule, in analogy with the
parabolic ideal IΓ0 from Section 4.1.

Theorem 4.2. Let Γ0 =
∐l

i=1 Γi be the decomposition of the subgraph Γ0 into connected
components. Then IΓ0 is invariant under the TCA Htrig

c if and only if the following relation
is satisfied for all i = 1, . . . , l:

∑
α∈R∩Vi

cα⟨α, u⟩⟨α, v⟩
⟨α, α⟩

= ⟨u, v⟩

for all u, v ∈ Vi = SpanΓv
i .

Proof. Notice that it is sufficient to prove this statement in the case when U = C, and it
is enough to consider the elements ∇trig

ξ ∈ Htrig
c . Let V0 = SpanΓv

0 and f ∈ IΓ0 . We are
going to consider first the condition that (∇trig

ξ f)|π = 0. Since f |π = 0, it can be written
for x ∈ V close to x0 ∈ π as

f =
∑
β∈Γv

0

⟨β, x⟩fβ(x)

for some analytic germs fβ ∈ Cx0(V,C). For α ∈ R, since (sαf)|π = f |sαπ = 0 as f |DΓ0
= 0,

we have that (1−e−⟨α,x⟩)−1(1−sα)f |π = 0 if e⟨α,x⟩ ̸= 1, which by genericity of x0 is satisfied
if α /∈ V0 and x is sufficiently close to x0. We then write

∇trig
ξ f =

∑
β∈Γv

0

(
⟨β, x⟩∂ξfβ(x) + ⟨β, ξ⟩fβ(x)−

∑
α∈R+∩V0

cα⟨α, ξ⟩
1− e−⟨α,x⟩

(
⟨β, x⟩

(
fβ(x)− fβ(sαx)

)
+

2⟨α, β⟩
⟨α, α⟩

⟨α, x⟩fβ(sαx)
))

−
∑
α∈R+

α/∈V0

cα⟨α, ξ⟩
1− e−⟨α,x⟩ (1− sα)f + ⟨ρ, ξ⟩f.
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Note that for α ∈ R+ ∩ V0 and x ∈ π close to x0,

fβ(x)− fβ(sαx)

1− e−⟨α,x⟩

is non-singular, ⟨β, x⟩ vanishes, and (1 − e−⟨α,x⟩)−1⟨α, x⟩fβ(sαx) becomes fβ(x) since
limu→0(1− e−u)−1u = 1. Therefore, we get

(∇trig
ξ f)|π =

∑
β∈Γv

0

(
⟨β, ξ⟩ −

∑
α∈R+∩V0

2cα⟨α, β⟩⟨α, ξ⟩
⟨α, α⟩

)
fβ|π.

This is zero for all f ∈ IΓ0 if and only if

⟨u, v⟩ =
∑

α∈R+∩V0

2cα⟨α, u⟩⟨α, v⟩
⟨α, α⟩

(4.1)

for all u, v ∈ V0. Similarly to the proof of [50, Theorem 1], the proof is then completed by
using that V0 =

⊕l
i=1 Vi and that the conditions (∇trig

ξ f)|w(π) = 0 for w ̸= id are equivalent
to (4.1). ■

If IΓ0 is Htrig
c -invariant, then the space CWx0(U) can be identified with the quotient

module CWx0(V, U)/IΓ0 (cf. [50, Section 3] in the case of RCAs and U being the trivial
representation), and thus becomes a Htrig

c -module. In other words, for an arbitrary element
f ∈ CWx0(U), it follows from the Htrig

c -invariance of IΓ0 that for any a ∈ Htrig
c and analytic

extension f ∈ CWx0(V, U) of f to a W -invariant union of small neighbourhoods in the
ambient space V of the points Wx0, the result of the restriction (af)|DΓ0

does not depend
on the choice of the extension f but only on f itself. Thus, we have a well-defined action
of Htrig

c on CWx0(U).

4.3 Restricted spin CMS operators

Let CW
Wx0

(U) be the subset of those elements of CWx0(U) that are fixed by the diagonal
(left) action of W determined by (wF )(y) = F (w−1y)·w−1 for F ∈ Cx(DΓ0 , U) and y ∈ DΓ0

near w(x), x ∈ Wx0. Then any element of CW
Wx0

(U) is uniquely determined by the germ
near the point x0. In other words, CW

Wx0
(U) ∼= CW0

x0
(DΓ0 , U)

∼= UW0 ⊗Cx0(DΓ0 ,C) as vector
spaces, where UW0 is the subspace of vectors in U fixed under the action of W0 ⊂ W .

Let (Htrig
c )W be the centraliser of the group algebra CW inside the TCA. Assume

that IΓ0 is an invariant parabolic submodule for the TCA. Then in view of the discussions
in Section 4.2, it follows that CW

Wx0
(U) is an (Htrig

c )W -module. Thus, we can also treat
CW0
x0

(DΓ0 , U) as an (Htrig
c )W -module. We denote the action of an element a ∈ (Htrig

c )W on
this module by R̃esπa.
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Let ∇trig
i = ∇trig

ei
. Note that for p ∈ C[x]W , we have p(∇trig) = p(∇trig

1 , . . . ,∇trig
N ) ∈

(Htrig
c )W by [33] (see also [64]). We define the generalised spin CMS Hamiltonians

H2 = R̃esπ

(
N∑
i=1

(∇trig
i )2

)
.

They can be computed explicitly by using that

N∑
i=1

(∇trig
i )2 =

N∑
i=1

∂2xi
−
∑
α∈R+

cα coth

(
⟨α, x⟩
2

)
∂α +

∑
α∈R+

cα⟨α, α⟩

4 sinh2
(

⟨α,x⟩
2

)(1− sα) + ⟨ρ, ρ⟩.

(4.2)
We get the following theorem, where we use the same notations as in Section 4.1.

Theorem 4.3. Assume that the stratum DΓ0 defines an invariant parabolic submodule IΓ0

for Htrig
c . Then the operator

∑N
i=1(∇

trig
i )2 restricted to CW0

x0
(DΓ0 , U) has the generalised spin

CMS form

H2 = ∆y −
∑
α∈R+

α̂ ̸=0

cα coth

(
⟨α̂, y⟩
2

)
∂α̂ +

∑
α∈R+

α̂ ̸=0

cα⟨α, α⟩

4 sinh2
(

⟨α̂,y⟩
2

)(1− Pα) + ⟨ρ, ρ⟩, (4.3)

where Pα denotes the action of the reflection sα ∈ W on the vector space U . Moreover,
for any p ∈ C[x]W , the operators R̃esπp(∇trig) pairwise commute for different choices of
invariant polynomials, and in particular, all of them commute with the operator (4.3).

Proof. The result follows immediately from equality (4.2) by similar arguments as in the
proof of [50, Theorem 5]. ■

We now rewrite the operator (4.3) in the potential gauge. Let R̂+ = {α̂ : α ∈ R+}.

Theorem 4.4. Define the generalised coupling constants

ĉα̂ =
∑
γ∈R+

γ̂=α̂

cγ.

The operator (4.3) has the potential-gauge form

f−1H2f = ∆y −
∑

α̂∈R̂+\{0}

ĉα̂⟨α̂, α̂⟩P̂α̂

4 sinh2
(

⟨α̂,y⟩
2

)
−

∑
α̂∈R̂+\{0}

∑
β̂∈R̂+\{0}

β̂∼α̂

ĉα̂ĉβ̂⟨α̂, β̂⟩
4

coth

(
⟨α̂, y⟩
2

)
coth

(
⟨β̂, y⟩
2

)
+ λ,
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where ∼ denotes proportionality of vectors and

f =
∏

α̂∈R̂+\{0}

(
sinh

(
⟨α̂, y⟩
2

))ĉα̂

,

λ = ⟨ρ, ρ⟩ − 1

4

∑
α̂∈R̂+

∑
β̂∈R̂+

β̂≁α̂

ĉα̂ĉβ̂⟨α̂, β̂⟩,

ĉα̂P̂α̂ = ĉα̂ +
1

⟨α̂, α̂⟩
∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩(Pγ − 1). (4.4)

Proof. We compute that

f−1H2f = ∆y −
∑
α∈R+

α̸̂=0

cα
(
⟨α̂, α̂⟩+ ⟨α, α⟩(Pα − 1)

)
4 sinh2

(
⟨α̂,y⟩
2

) (4.5)

− 1

4

∑
α∈R+

α̂ ̸=0

∑
β∈R+

β̂ ̸=0

cαcβ⟨α̂, β̂⟩ coth
(
⟨α̂, y⟩
2

)
coth

(
⟨β̂, y⟩
2

)
+ ⟨ρ, ρ⟩.

Next, we simplify the last sum in (4.5). We will use a trigonometric analogue of [50,
Equality (10)]. Namely, we claim for all α ∈ R+ that

∑
β∈R+

β̂≁α̂

cβ⟨α̂, β̂⟩ coth

(
⟨β̂, y⟩
2

)
= 0 (4.6)

for y ∈ π with ⟨α̂, y⟩ = 2iπk for k ∈ Z, which can be seen as follows.
Let Wα = ⟨W0, sα⟩ be the group generated by sα and the reflections about the roots

in Γv
0. Let S ⊂ R be the set of the roots β ∈ R such that β̂ is not proportional to α̂.

Decompose S into Wα-orbits S = O1

∐
· · ·
∐

Or. We will show that

∑
β∈Oi

cβ⟨α̂, β̂⟩ coth

(
⟨β̂, y⟩
2

)
= 0 (4.7)

for all i. Let β1, β2 ∈ Oi. Then coth( ⟨β̂1,y⟩
2

) = coth( ⟨β̂2,y⟩
2

). Indeed, this is evident if
β1 = s0β2 for s0 ∈ W0; and if β1 = sαβ2, then

coth

(
⟨ŝαβ2, y⟩

2

)
= coth

(
⟨sαβ2, y⟩

2

)
= coth

(
⟨β2, sαy⟩

2

)
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= coth

(
⟨β̂2, y⟩

2
− πik

2⟨β2, α⟩
⟨α, α⟩

)
= coth

(
⟨β̂2, y⟩

2

)
,

where we used that 2⟨β2,α⟩
⟨α,α⟩ ∈ Z. Now let bi =

∑
β∈Oi

β. It satisfies the relations s0bi = bi

for s0 ∈ W0 and sαbi = bi. This translates into b̂i = bi and 0 = ⟨α, bi⟩ = ⟨α̂, b̂i⟩, which
implies (4.7) and hence (4.6).

Relation (4.6) implies that the expression

∑
α∈R+

∑
β∈R+

β̂≁α̂

cαcβ⟨α̂, β̂⟩ coth
(
⟨α̂, y⟩
2

)
coth

(
⟨β̂, y⟩
2

)

has no poles; thus it is an entire bounded function that is constant due to Liouville’s
theorem. The constant can be calculated to be 4⟨ρ, ρ⟩−4λ by a limit at infinity in a suitable
chamber such that coth⟨α̂, y⟩ → 1 for all α̂. Using this fact to simplify expression (4.5),
the proof is then completed by using (4.4) and the definition of ĉα̂. ■

Remark 4.5. Let us note that the elements

Sα̂ =
∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩sγ ∈ CW

lie in the centraliser of CW0 inside the group algebra CW . Indeed, let β ∈ Γv
0, then

[sβ, Sα̂] =
∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩[sβ, sγ] =
∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩(ssβ(γ) − sγ)sβ = 0,

where the last equality is obtained by changing the index of summation in the first term to
γ̃ = sβ(γ), which is possible due to the fact that the multiplicity function cγ is W -invariant
and β ∈ Γv

0.

Remark 4.6. Let us assume that any collinear vectors in R̂+ \ {0} are of the form α̂,
2α̂. This is the case for the projections of all classical root systems. Then the operator
f−1H2f from Theorem 4.4 becomes (up to a constant, namely, ⟨ρ, ρ⟩ − ⟨ρ̂, ρ̂⟩) equal to

L := ∆y −
∑

α̂∈R̂+\{0}

ĉα̂(ĉα̂ + 2ĉ2α̂ + P̂α̂)⟨α̂, α̂⟩

4 sinh2
(

⟨α̂,y⟩
2

) , (4.8)

where ĉ2α̂ := 0 when 2α̂ /∈ R̂+. However, the above assumption may fail for exceptional
root systems, for example, for G2 and F4 in some cases.

In the particular case where U = V is the reflection representation of the Weyl
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group W , then P̂α̂ coincides with the reflection in the space π with respect to the projected
root α̂, as we prove in the next proposition.

Proposition 4.7. Let U = V be the reflection representation of the Weyl group W . For
α̂ ∈ R̂+ \ {0}, the operator

P̂α̂ = 1 +
1

ĉα̂⟨α̂, α̂⟩
∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩(Pγ − 1)

preserves the space π, and when acting on π, it is equal to the reflection with respect to α̂.

Proof. Let us define
P̃α̂ =

∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩Pγ.

For any y ∈ π, we have

P̃α̂(y) =
∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩y − 2
∑
γ∈R+

γ̂=α̂

cγ⟨γ, y⟩γ. (4.9)

To prove that the vector (4.9) belongs to the subspace π, we need to simplify the second
sum in (4.9). We claim that ∑

γ∈R+

γ̂=α̂

cγ⟨γ, y⟩γ = ĉα̂⟨α̂, y⟩α̂. (4.10)

Indeed, the set Sy = {cγ⟨γ, y⟩γ : γ ∈ R+, γ̂ = α̂} is W0-invariant, where we use that W0

is generated by reflections about simple roots Γv
0. Thus, the sum in the left-hand side

of (4.10) is fixed by W0, hence belongs to the subspace π, and relation (4.10) follows.
Now, by using equalities (4.9) and (4.10), we get that the action of P̂α̂ on π is

P̂α̂(y) = y +
1

ĉα̂⟨α̂, α̂⟩

(
P̃α̂(y)−

∑
γ∈R+

γ̂=α̂

cγ⟨γ, γ⟩y
)

= y − 2⟨α̂, y⟩
⟨α̂, α̂⟩

α̂,

which is the formula for the reflection on π with respect to α̂. ■

Particular cases of the operator (4.8) for R of type A and B are in the rational limit
equivalent to the matrix Hamiltonians found in [27]. More details about this are given
in [54].



CHAPTER 4. SPIN CALOGERO–MOSER–SUTHERLAND TYPE SYSTEMS 94

{-1, 0}

-1, -
1

2


-1,
1

2


-
1

2
, 0

-
1

2
, -

1

2


-
1

2
,
1

2


0, -
1

2


0,
1

2


0, - 2 

0, 2 


1

2
, 0


1

2
, -

1

2



1

2
,
1

2


{1, 0}

1, -
1

2


1,
1

2


Figure 4.1: Projection of F4 corresponding to a Coxeter subgraph of type A2
1.

4.4 Examples from exceptional root systems

In this section, we consider all two-dimensional projections of the exceptional root systems
of types E and F4, and we write down explicitly various corresponding new examples of
generalised spin CMS Hamiltonians.

4.4.1 Type F4

4.4.1.1 (F4, A1 × A1)

The Dynkin diagram of the root system F4 ⊂ R4 is

α3α2α1 α4

with the simple roots of F4 being

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 =
1

2
(e1 − e2 − e3 − e4),

where {ei}4i=1 is the standard orthonormal basis in R4. The red vertices indicate the chosen
subgraph Γ0 ≃ A2

1. The corresponding plane π is given by the equations

x2 = x3, x4 = 0,

and we require the multiplicities to be c1 = c2 = 1
2
, where c1 = cα1 and c2 = cα3 . The

corresponding projected system is shown in Figure 4.1, where the coordinates are in the
basis formed by e1 and ẽ2 = 1√

2
(e2 + e3). The multiplicities of the positive half are
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ĉ e1
2
= 2, ĉe1 =

3

2
, ĉ ẽ2√

2

= 3, ĉ√2ẽ2
=

1

2
, ĉ

e1± ẽ2√
2

= ĉ e1
2
± ẽ2√

2

= 1.

By formula (4.8), the corresponding generalised spin CMS Hamiltonian is

L = ∂2y1 + ∂2y2 −
5 + P̂ e1

2

8 sinh2(y1
4
)
− 9 + 6P̂e1

16 sinh2(y1
2
)

−
12 + 3P̂ ẽ2√

2

8 sinh2( y2
2
√
2
)
−

1 + 2P̂√
2ẽ2

8 sinh2( y2√
2
)
−

3 + 3P̂√
2e1+ẽ2√

2

8 sinh2(y1
2
+ y2

2
√
2
)

−
3 + 3P̂√

2e1−ẽ2√
2

8 sinh2(y1
2
− y2

2
√
2
)
−

3 + 3P̂ e1+
√
2ẽ2

2

16 sinh2(y1
4
+ y2

2
√
2
)
−

3 + 3P̂ e1−
√
2ẽ2

2

16 sinh2(y1
4
− y2

2
√
2
)
,

where y1 = x1 and y2 = 1√
2
(x2+x3). This operator is a trigonometric version with spin of

the potential-gauge form of the operator [50, Formula (28)] for m = 7
2
, n = 0, and α =

√
2.

Other choices of a subgraph Γ0 ≃ A2
1 in the Dynkin diagram of F4 lead to equivalent

projected configurations.

4.4.1.2 (F4, A2)

As another example, let us choose a subgraph A2 in the Dynkin diagram of F4 as indicated
by the red vertices and edges in the following picture

α3α2α1 α4

with multiplicity c1 = 1
3

and c2 being a free parameter. The corresponding plane π is
defined by the equations

x2 = x3 = x4.

The corresponding projected system is shown in Figure 4.2, where the coordinates are in
the basis e1 and ẽ2 = 1√

3
(e2+ e3+ e4). These vectors and their multiplicities coincide with

those of the configuration AG2.
By formula (4.8), the corresponding generalised spin CMS Hamiltonian is

L = ∂2y1 + ∂2y2 −
c2(c2 + P̂e1)

4 sinh2(y1
2
)
−
c2

(
c2 + P̂ e1

2
+

√
3ẽ2
2

)
4 sinh2(y1

4
+

√
3y2
4

)
−
c2

(
c2 + P̂ e1

2
−

√
3ẽ2
2

)
4 sinh2(y1

4
−

√
3y2
4

)

−
c2

(
3c2 + 2 + P̂ ẽ2√

3

)
4 sinh2( y2

2
√
3
)

−
c2

(
3c2 + 2 + P̂ e1

2
+

ẽ2
2
√
3

)
4 sinh2(y1

4
+ y2

4
√
3
)

−
c2

(
3c2 + 2 + P̂ e1

2
− ẽ2

2
√
3

)
4 sinh2(y1

4
− y2

4
√
3
)

−
1 + P̂ 2ẽ2√

3

3 sinh2( y2√
3
)
−

1 + P̂
e1+

ẽ2√
3

3 sinh2(y1
2
+ y2

2
√
3
)
−

1 + P̂
e1− ẽ2√

3

3 sinh2(y1
2
− y2

2
√
3
)
,
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Figure 4.2: Projection of F4 corresponding to a Coxeter subgraph of type A2.

where y1 = x1 and y2 = 1√
3
(x2+x3+x4). The scalar version of this operator, obtained by

replacing all the occurrences of P̂ by the identity, reproduces (up to rescaling and rotating
the configuration of vectors) the operator (3.12) with m = c2. Thus, by using Theorem 4.3
with U = C being the trivial representation, we get an alternative proof of the integrability
of the operator (3.12). Theorem 4.3 leads to a quantum integral of order 6 in this case,
since the Weyl group of type F4 has a basic invariant of degree 6.

The other possible choice of a subgraph Γ0 ≃ A2 in the Dynkin diagram of F4 leads
to G2 with multiplicities 3c1 + 1 and c1 for the short and long roots, respectively. The
subgraph Γ0 ≃ B2 leads to BC2 with multiplicities 4c2, 4c1 + c2, and c1 for the vectors ei,
ei ± ej, and 2ei, respectively, where 2(c1 + c2) = 1.

4.4.2 Type E

4.4.2.1 (E8, A3 × A3)

The root system E8 ⊂ R8 has simple roots

α1 =
1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2,

α3 = e2 − e1, α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4,

α7 = e6 − e5, α8 = e7 − e6,

(4.11)

where {ei}8i=1 is the standard orthonormal basis in R8. Its Dynkin diagram is

α4α3α1 α5 α6

α2

α7 α8
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Figure 4.3: Projection of E8 corresponding to a Coxeter subgraph of type A2
3.

where the red vertices and edges indicate the chosen subgraph Γ0 ≃ A2
3. The corresponding

plane π is defined by the equations

x1 = x2 = x3 = 0, x4 = x5 = x6 = x7,

and the multiplicity must be c = 1
4
. The projected system is shown in Figure 4.3, where

the coordinates are in the basis formed by ẽ1 = 1
2
(e4 + e5 + e6 + e7) and ẽ2 = e8. The

multiplicities of the positive half are

ĉ ẽi
2

= 6, ĉẽi =
3

2
, ĉ± ẽ1

2
+

ẽ2
2

= 4, ĉ±ẽ1+
ẽ2
2

= 1, ĉ± ẽ1
2
+ẽ2

= 1.

By formula (4.8), the corresponding generalised spin CMS Hamiltonian is

L = ∂2y1 + ∂2y2 −
2∑

i=1

 27 + 3P̂ ẽi
2

8 sinh2(yi
4
)
+

9 + 6P̂ẽi

16 sinh2(yi
2
)

−
4 + P̂ ẽ2−ẽ1

2

2 sinh2(y2−y1
4

)

−
4 + P̂ ẽ1+ẽ2

2

2 sinh2(y1+y2
4

)
−

5 + 5P̂ ẽ2
2
−ẽ1

16 sinh2(y2−2y1
4

)
−

5 + 5P̂
ẽ1+

ẽ2
2

16 sinh2(2y1+y2
4

)

−
5 + 5P̂

ẽ2− ẽ1
2

16 sinh2(2y2−y1
4

)
−

5 + 5P̂ ẽ1
2
+ẽ2

16 sinh2(y1+2y2
4

)
,

where y1 = 1
2
(x4+x5+x6+x7) and y2 = x8. This operator is a trigonometric version with

spin of the potential-gauge form of the operator [50, Formula (28)] with m = 15
2
, n = 4,

and α = (
√
2n+ 1 +

√
2(m+ n+ 1))/

√
2m+ 1 = 2.

The other possible choice of a subgraph Γ0 ≃ A2
3 in the Dynkin diagram of E8 leads to

an equivalent projected configuration.
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Figure 4.4: Projection of E8 corresponding to a Coxeter subgraph of type A6.

4.4.2.2 (E8, A6)

As another example, let us choose a subgraph A6 in the Dynkin diagram of E8 as indicated
by the red vertices and edges in the following picture

α4α3α1 α5 α6

α2

α7 α8

The corresponding plane π is defined by the equations

x1 = x2 = · · · = x7,

with multiplicity c = 1
7
. The corresponding projected system is shown in Figure 4.4, where

the coordinates are in the basis formed by ẽ1 = 1√
7
(e1 + · · ·+ e7) and ẽ2 = e8.

This configuration resembles the configurations G2 and AG2, but it has exactly one
line ℓ containing collinear vectors, and the configuration is scaled in the orthogonal direc-
tion to ℓ compared to G2 and AG2. The multiplicities are given by

ĉ ẽ2
2
− 5ẽ1

2
√

7

= ĉ
ẽ2± ẽ1√

7

= 1, ĉ ẽ2
2
− ẽ1

2
√
7

= 5, ĉ 3ẽ1
2
√
7
+

ẽ2
2

= ĉ 2ẽ1√
7

= 3, ĉ√
7ẽ1
2

+
ẽ2
2

=
1

7
.

By formula (4.8), the corresponding generalised spin CMS Hamiltonian is

L = ∂2y1 + ∂2y2 −
35 + 5P̂√

7ẽ2−ẽ1
2
√
7

14 sinh2(
√
7y2−y1
4
√
7

)
−

2 + 2P̂
ẽ2− ẽ1√

7

7 sinh2(
√
7y2−y1
2
√
7

)

−
2 + 2P̂ ẽ1√

7
+ẽ2

7 sinh2(y1+
√
7y2

2
√
7

)
−

2 + 2P̂√
7ẽ2−5ẽ1
2
√
7

7 sinh2(
√
7y2−5y1
4
√
7

)
−

9 + 3P̂ 2ẽ1√
7

7 sinh2( y1√
7
)



CHAPTER 4. SPIN CALOGERO–MOSER–SUTHERLAND TYPE SYSTEMS 99

−
1 + 7P̂√

7ẽ1+ẽ2
2

98 sinh2(
√
7y1+y2

4
)
−

9 + 3P̂ 3ẽ1+
√
7ẽ2

2
√
7

7 sinh2(3y1+
√
7y2

4
√
7

)
,

where y1 = 1√
7
(x1 + · · ·+ x7) and y2 = x8.

Other choices of a subgraph Γ0 ≃ A6 in the Dynkin diagram of E8 lead to equivalent
projected configurations. The subgraph Γ0 ≃ E6 leads to G2 as in table [50, p. 272] (the
multiplicity 23

12
should be 27

12
). And Γ0 ≃ D6 leads to BC2 with multiplicities 16

5
, 6

5
, and 1

10

for the vectors ei, ei ± ej, and 2ei, respectively (cf. [50, p. 272]).

4.4.2.3 (E7, D5)

The Dynkin diagram of the root system E7 is

α4α3α1 α5 α6

α2

α7

with the simple roots being the first seven roots of (4.11). In this example, we choose
a subgraph Γ0 ≃ D5 as shown above. The corresponding subspace π is given by the
equations

x1 = x2 = x3 = x4 = x5 = 0,

with multiplicity c = 1
8
. The corresponding projected system is shown in Figure 4.5, where

the coordinates are with respect to ẽ1 = e6 and ẽ2 = 1√
2
(e8 − e7). The multiplicities are

given by

ĉẽ1 =
5

4
, ĉ√2ẽ2

=
1

8
, ĉ ẽ2√

2
± ẽ1

2

= 2.

These vectors are as in a deformed C2 configuration except for their multiplicities.
By formula (4.8), the corresponding generalised spin CMS Hamiltonian is

L = ∂2y1 + ∂2y2 −
25 + 20P̂ẽ1

64 sinh2(y1
2
)
−

6 + 3P̂ ẽ1+
√

2ẽ2
2

8 sinh2(y1+
√
2y2

4
)

−
6 + 3P̂√

2ẽ2−ẽ1
2

8 sinh2(
√
2y2−y1

4
)
−

1 + 8P̂√
2ẽ2

128 sinh2( y2√
2
)
,

where y1 = x6 and y2 = 1√
2
(x8 − x7).

The scalar version of this operator coincides with the trigonometric degeneration (where
the Weierstrass ℘ function is replaced by sinh−2) of the operator from [100, Theorem 1.4]
for a =

√
2.

The other possible choice of a subgraph Γ0 ≃ D5 in the Dynkin diagram of E7 leads to
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Figure 4.5: Projection of E7 corresponding to a Coxeter subgraph of type D5.

an equivalent projected configuration. Other allowed two-dimensional projections of E7

are as in table [50, p. 273], except that here (E7, A5)1 leads to the deformed BC2 with
deformation parameter k = 4

3
and multiplicities 10

3
, 1

6
, 5

2
, 0, and 1 for the vectors e1, 2e1,√

ke2, 2
√
ke2, and e1 ±

√
ke2, respectively.

4.4.2.4 (E6, A4)

The Dynkin diagram of the root system E6 is

α4α3α1 α5 α6

α2

with the simple roots being the first six roots of (4.11). Here we chose a subgraph Γ0 ≃ A4.
The corresponding subspace π is given by the equations

x1 = x2 = x3 = x4 = x5,

with multiplicity c = 1
5
. The corresponding projected system is shown in Figure 4.6, where

the coordinates are with respect to ẽ1 = 1√
3
(e8 − e7 − e6) and ẽ2 = 1√

5
(e1 + · · ·+ e5). The

multiplicities are given by

ĉ 2ẽ2√
5

= ĉ√
3ẽ1
2

+
ẽ2
2
√
5

= 2, ĉ√
3ẽ1
2

+
√
5ẽ2
2

=
1

5
, ĉ√

3ẽ1
2

− 3ẽ2
2
√
5

= 1.

These vectors are as in a deformed C2 configuration except for their multiplicities.
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Figure 4.6: Projection of E6 corresponding to a Coxeter subgraph of type A4.

By formula (4.8), the corresponding generalised spin CMS Hamiltonian is

L = ∂2y1 + ∂2y2 −
3 + 3P̂√

15ẽ1−3ẽ2
2
√
5

10 sinh2(
√
15y1−3y2
4
√
5

)
−

4 + 2P̂ 2ẽ2√
5

5 sinh2( y2√
5
)

−
4 + 2P̂√

15ẽ1+ẽ2
2
√
5

5 sinh2(
√
15y1+y2
4
√
5

)
−

1 + 5P̂√
3ẽ1+

√
5ẽ2

2

50 sinh2(
√
3y1+

√
5y2

4
)
,

where y1 = 1√
3
(x8 − x7 − x6) and y2 = 1√

5
(x1 + · · ·+ x5).

The scalar version of this operator coincides with the trigonometric degeneration of
the operator from [100, Theorem 1.4] for a =

√
3/5.

Other choices of a subgraph Γ0 ≃ A4 in the Dynkin diagram of E6 lead to equivalent
projected configurations. All other allowed two-dimensional projections of E6 are as in
table [50, p. 273].

Remark 4.8. With a view towards generalising the above two operators L corresponding
to the restrictions (E7, D5) and (E6, A4), a natural question is whether there exists a spin
version of the one-parametric family of integrable operators from [100, Theorem 1.4]. In
the trigonometric limit, the Hamiltonian should have the form

L = ∂2x1
+ ∂2x2

−
(3− a2)

(
3− a2 + 4a2P̃e1

)
4a2 sinh2(2ax1)

−
(3a2 − 1)

(
3a2 − 1 + 4P̃e2

)
4 sinh2(2x2)

−
2(a2 + 1)

(
2 + P̃ae1+e2

)
sinh2(ax1 + x2)

−
2(a2 + 1)

(
2 + P̃−ae1+e2

)
sinh2(−ax1 + x2)

(4.12)

for some matrices P̃ . Note that in the cases a =
√
2 and a =

√
3/5 seen above, the

operator (4.12) has a degree 6 quantum integral since the Weyl groups of type E7 and E6

have basic invariants of degree 6. Note also that the scalar version of the operator (4.12)
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has a quantum integral of degree 6 for any a by [100].

4.5 Projections that give root systems

Table 4.1 lists cases where the projected configuration is a root system. For the exceptional
root systems, we only list their projections of rank at least 2. In each case, the list of
multiplicities is ordered by the length of the vectors (in increasing order). We denote the
multiplicity of the roots ei ± ej in types B, C, and F by c1, and we denote by c2 the
multiplicity of ei in types B and F , and the multiplicity of 2ei in type C.

Formula (4.8) gives the Hamiltonian corresponding to each of these projections with
multiplicities ĉ as given in Table 4.1 and with the matrices P̂α defined in terms of a
representation of the Weyl group corresponding to Γ by using formula (4.4).

In the rational case, there is additionally the stratum (H4, I2(5)) leading to a pro-
jected root system of type I2(10), and the corresponding generalised rational spin CMS
Hamiltonian can be obtained by using the general results in [54].

Example 4.9. Let a positive half of the root system BN be BN,+ = {ei ± ej : 1 ≤ i <

j ≤ N} ∪ {ei : i = 1, . . . , N}. Let BN denote the associated Weyl group. Let us consider
the case (B3, B1) from Table 4.1. In the notations of the table, m = 2, k = 1, and
l = 1, so we impose c2 = 1

2
, and c1 is a free parameter. Let U be the two-dimensional

irreducible representation of B3 with basis x21 − x22 and x22 − x23, with the natural action
of B3 on polynomials. Then UW0 = U as W0 = ⟨se3⟩, and the projected configuration is
R̂+ \ {0} = B2,+. By formula (4.8), the corresponding restricted Hamiltonian is

L = ∂2x1
+ ∂2x2

−
2∑

i=1

ĉei(ĉei + P̂ei)

4 sinh2(xi

2
)

−
∑

ε∈{±1}

c1(c1 + P̂e1+εe2)

2 sinh2(x1+εx2

2
)
,

where ĉei = 2c1 +
1
2
, and

P̂e1 =
1

4c1+1

(
1− 4c1 −8c1

−8c1 1− 4c1

)
, P̂e2 =

1
4c1+1

(
4c1 + 1 0

8c1 1− 12c1

)
,

P̂e1±e2 =

(
−1 1

0 1

)
.

This Hamiltonian L has a 4th-order quantum integral R̃esπ(
∑3

i=1(∇
trig
i )4), where ∇trig

i are
trigonometric Dunkl operators for the root system B3.

We note that for generic c1, there is no representation φ of B2 on C2 and multiplicities
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m,n ∈ C such that the above L would coincide with the standard spin B2 CMS operator

∂2x1
+ ∂2x2

−
2∑

i=1

m(m+ φ(sei))

4 sinh2(xi

2
)

−
∑

ε∈{±1}

n(n+ φ(se1+εe2))

2 sinh2(x1+εx2

2
)
.
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(Γ,Γ0) Projection Multiplicities

(Amk−1, A
m
k−1), m, k ∈ Z≥2 Am−1 k

(Bmk+l, A
m
k−1 ×Bl), m, k ∈ Z≥1, l ∈ Z≥0 BCm (2c1l + c2)k, c1k

2, k−1
2

If l > 0, c2 = 1
2
− c1(l − 1),

and if k > 1, c1 = 1
k
.

(Cmk+l, A
m
k−1 × Cl), m, k ∈ Z≥1, l ∈ Z≥0 BCm 2c1kl, c1k

2, k−1
2

+ c2k
If l > 0, c2 = 1

2
− c1(l − 1),

and if k > 1, c1 = 1
k
.

(Dmk+l, A
m
k−1 ×Dl), m ∈ Z≥1, k ∈ Z≥2, BCm 2l, k, k−1

2

l = 0, or k is even and l = k
2
+ 1

(Dm+l, Dl), m ∈ Z≥1, l ∈ Z≥2 Bm
l

l−1
, 1

2(l−1)

(F4, A2) with Γv
0 = {α3, α4} G2 3c1 + 1, c1

(F4, B2) BC2 4c2, 4c1 + c2, c1
with 2(c1 + c2) = 1

(E6, A
2
2) G2 3, 1

3

(E6, D4) A2
4
3

(E7, A
3
1) with Γv

0 = {α2, α5, α7} F4 2, 1
2

(E7, D4) C3
4
3
, 1

6

(E7, A5) with Γv
0 = {α2, α4, α5, α6, α7} G2

5
2
, 1

6

(E8, D4) F4
4
3
, 1

6

(E8, D6) BC2
16
5
, 6

5
, 1

10

(E8, E6) G2
27
12

, 1
12

Table 4.1: Pairs (Γ,Γ0) for which the projected configuration is a root system.



Chapter 5

Macdonald–Ruijsenaars type system
for AG2

In this chapter, we recall a construction of generalised MR operators from [102] in the case
of the root system F4. We then apply a restriction procedure from [53] to obtain a pair
of planar commuting difference operators related to the configuration AG2 such that their
rational degeneration reproduces the difference operators from Sections 3.4.2 and 3.4.4.
The restriction procedure from [53] is a q-difference (DAHA) version of the construction
from [50] and of the scalar case of our construction in Section 4.3 above.

5.1 A pair of commuting F4 operators

Let us recall the operator, which we will denote Ẽ1, given by formula (3.2a) in [102] in the
case of the root system

R = S = (2F4)
∨ = {±ei : 1 ≤ i ≤ 4} ∪

{
±1

2
(ei ± ej) : 1 ≤ i < j ≤ 4

}
∪
{
±1

2
(e1 ± e2 ± e3 ± e4)

}
⊂ C4

and the small weight ω1 = 2(e1 + e2) of S∨. We will also need the Macdonald operator E2

for the quasi-minuscule weight ω2 = 2e1 of S∨ [82].
Let t : R → C, α 7→ t(α) = tα be a function invariant under the Weyl group W

associated with R. Let vα(z) = t
−1/2
α (1− tαz)/(1− z). Let q ∈ (0, 1). Let Λ = {±2ei : 1 ≤

i ≤ 4} ∪ {±e1 ± e2 ± e3 ± e4}. The operator E2 has the form

E2 =
∑
ν∈Λ

Vν(Tν − 1), (5.1)

105
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where
Vν = Vν(z) =

∏
α∈R

⟨α,ν⟩>0

vα(q
⟨α,z⟩)

∏
α∈R

⟨α,ν⟩=2

vα(q
⟨α,z⟩+1), (5.2)

z ∈ C4. Note that the second product in (5.2) contains a single term for all ν ∈ Λ.
Let Rν = {α ∈ R : ⟨α, ν⟩ = 0} for ν ∈ C4. The generalised MR operator from [102]

has the form

Ẽ1 =
∑

1≤i<j≤4

∑
εi,εj∈{±1}

V2εiei+2εjejT2εiei+2εjej +
∑

ε1,ε2,ε3,ε4∈{±1}
ν=

∑4
k=1 εkek

Vν
∑

1≤i<j≤4

Uν
2εiei+2εjej

Tν

+
4∑

i=1

∑
ε∈{±1}

V2εei

4∑
j=1
j ̸=i

∑
δ∈{±1}

U2εei
2εei+2δej

T2εei +
∑

η∈Wω1

U0
η ,

(5.3)

where
Uν
η = Uν

η (z) =
∏
α∈Rν
⟨α,η⟩>0

vα(q
⟨α,z⟩)

∏
α∈Rν
⟨α,η⟩=2

vα(q
−⟨α,z⟩−1). (5.4)

Remark 5.1. The operator (5.3) is invariant under the Weyl group W of type F4 (see
[102]). It has shifts in the direction of the elements of the weight lattice of R∨ = 2F4, and
the denominators of its coefficients have the form 1− rq⟨α,z⟩ with α ∈ R and r ∈ {1, q±1}.
Since the operator (5.3) commutes with the quasi-minuscule operator E2 (see [102]), it
follows from [79] that Ẽ1 is a restriction to W -invariants of a W -invariant element of the
DAHA H associated with the pair of root systems (R,R∨) (case a. in [79]).

By the construction of difference operators as restrictions of W -invariant elements
of a DAHA (see, e.g., [79]), it follows that these operators map the space of functions
independent of z to itself. Hence, it follows by Remark 5.1 that the operator Ẽ1 is equal
up to an additive constant to the following operator E1:

E1 =
∑

1≤i<j≤4

∑
εi,εj∈{±1}

V2εiei+2εjej(T2εiei+2εjej − 1) +
∑

ε1,ε2,ε3,ε4∈{±1}
ν=

∑4
k=1 εkek

Vν
∑

1≤i<j≤4

Uν
2εiei+2εjej

(Tν − 1)

+
4∑

i=1

∑
ε∈{±1}

V2εei

4∑
j=1
j ̸=i

∑
δ∈{±1}

U2εei
2εei+2δej

(T2εei − 1).

(5.5)
Let us introduce parameters cα ∈ C such that tα = q−cα , where tα depends on q so

that cα does not. Then in the rational limit q → 1, we have

vα(q
⟨α,z⟩) → 1− cα

⟨α, z⟩
, vα(q

±(⟨α,z⟩+1)) → 1∓ cα
⟨α, z⟩+ 1

.

Let m = cei and n = c 1
2
(ei±ej)

. The operators E1 and E2 can be simplified in the rational
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limit as the next proposition below demonstrates. Firstly, we need the following lemma.

Lemma 5.2. Let Uν,r
η be the rational limit of the function Uν

η given by (5.4). For ν = ±2ei,
define Θν = {ν + 2δej : δ ∈ {±1}, j ̸= i}. For ν =

∑4
k=1 εkek (εk ∈ {±1}), define

Θν = {2εiei + 2εjej : 1 ≤ i < j ≤ 4}. Then for all ν ∈ W (2e1), we have

∑
η∈Θν

U ν,r
η =

m(m+ 1)

2n(n+ 1)

∏
α∈We1∩Rν

(
1− 2n

⟨α, z⟩ − 1

)
− m(m+ 1)

2n(n+ 1)
+ 6, (5.6)

where m = cei and n = c 1
2
(ei±ej)

.

Proof. By W -invariance of the operator (5.3), it is enough to consider the case ν = 2e1.
Since the left-hand side of equality (5.6) is invariant under the group B3 ⊂ W that
stabilises e1, we get that this sum cannot have first-order poles at hyperplanes passing
through the origin, hence it is non-singular at all such mirrors. It follows from the structure
of the second product in formula (5.4) that the only possible singularities of Uν,r

η are at
the affine hyperplanes zi = ±1, where 2 ≤ i ≤ 4.

Observe that for zi = 2n+ 1, the left-hand side of (5.6) is non-singular. Indeed, let us
consider a possible singularity at zj = ±1, j ̸= 1, i. Note that the term in the rational limit
of the first product of formula (5.4) with α = 1

2
(ei ∓ ej) vanishes at zj = ±1. Similarly,

for zi = −(2n+1), the term with α = −1
2
(ei± ej) vanishes at zj = ±1, hence there is also

no singularity at zi = −(2n+ 1).
Observe that each summand Uν,r

η is a degree 0 rational function in the variables
z2, z3, z4. Moreover, specialisation to zi = ±(2n + 1) gives a degree 0 rational func-
tion as well, and hence the specialisation of the left-hand side of (5.6) is such a function,
too. Since it has no singularities, it follows that it is equal to some constant A±

i ∈ C.
By invariance of the operator (5.3), it follows that all these constants are equal to some
constant A ∈ C.

Let us consider the function Q =
∑

η∈Θν
Uν,r
η −A. This is a rational function of degree 0

with simple poles at zi = ±1. By the above, it has zeros at zi = ±(2n + 1). It follows
that Q = B

∏
2≤i≤4

zi±(2n+1)
zi±1

for some B ∈ C. By considering the residue at z2 = 1 and
the behaviour at infinity, we see that the constants A and B match formula (5.6). ■

In the limit q → 1, the quasi-minuscule operator E2 tends to the operator Er
2 given by

Er
2 =

∑
ν∈W (2e1)

∏
α∈R

⟨ν,α⟩>0

(
1− cα

⟨α, z⟩

) ∏
α∈R

⟨ν,α⟩=2

(
1− cα

⟨α, z⟩+ 1

)
(Tν − 1). (5.7)

It appears that a suitable linear combination of the rational limits Er
1 , Er

2 of the operators
E1, E2 has coefficients which can be factorised explicitly. More precisely, the following
statement holds.
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Proposition 5.3. The linear combination 2n(n+1)Er
1+(m(m+1)−12n(n+1))Er

2 equals∑
ν∈2F4

aν(z)(Tν − 1),

where for ν ∈ W (2e1 + 2e2), we have

aν(z) = 2n(n+ 1)
∏
α∈R

⟨ν,α⟩>0

(
1− cα

⟨α, z⟩

) ∏
α∈R

⟨ν,α⟩=2

(
1− cα

⟨α, z⟩+ 1

)
, (5.8)

and for ν ∈ W (2e1), we have

aν(z) = m(m+ 1)
∏

α∈We1∩Rν

(
1− 2n

⟨α, z⟩ − 1

) ∏
α∈R

⟨ν,α⟩>0

(
1− cα

⟨α, z⟩

) ∏
α∈R

⟨ν,α⟩=2

(
1− cα

⟨α, z⟩+ 1

)
.

(5.9)

Proof. The rational limit of the operator E1 has the form

Er
1 =

∑
ν∈W (2e1+2e2)

∏
α∈R

⟨ν,α⟩>0

(
1− cα

⟨α, z⟩

) ∏
α∈R

⟨ν,α⟩=2

(
1− cα

⟨α, z⟩+ 1

)
(Tν − 1)

+
∑

ν∈W (2e1)

∑
η∈Θν

Uν,r
η

∏
α∈R

⟨ν,α⟩>0

(
1− cα

⟨α, z⟩

) ∏
α∈R

⟨ν,α⟩=2

(
1− cα

⟨α, z⟩+ 1

)
(Tν − 1),

(5.10)

where Θν is defined as in Lemma 5.2. The statement follows by using formula (5.7) and
Lemma 5.2. ■

5.2 Two-dimensional restriction

The process of restriction of operators from the DAHA to special planes was developed
in [53]. It corresponds to the action of the operators in a quotient of the polynomial
representation. This quotient exists for special values of the parameters of the DAHA. Let
us apply this construction in the case of the DAHA H from Section 5.1, the plane

π =
{
z = (z1, z2, z3, z4) ∈ C4 : z2 − z3 = z3 − z4 =

2
3

}
,

and the parameter n = c 1
2
(e1−e2)

= 1
3
.

Let us consider a W -invariant operator

D =
∑
ν∈V

aνTν , (5.11)
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where V ⊂ C4, and aν are some functions. Let π0 be the linear plane parallel to π,
π0 = {z ∈ C4 : z2 = z3 = z4}. For any ν ∈ C4, let ν be its orthogonal projection to π0.
Let us define the following operator D on π0:

D =
∑
ν′∈V

fν′Tν′ , (5.12)

where fν′(z) =
∑

ν∈V
ν=ν′

aν(z + δ), z ∈ π0, and δ = (0, 2
3
, 0,−2

3
) is the normal vector to the

plane π0 whose endpoint belongs to the plane π.
Suppose that two operators D1, D2 of the form (5.11) commute and are obtained as

restrictions to W -invariants of W -invariant elements of the DAHA H. Then it follows
from [53] that their restrictions Di also commute.

We are going to compute the restricted operators for the pair of commuting operat-
ors E1 and E2 from Section 5.1. Firstly, we observe that these restricted operators have
certain invariance properties.

Let P be the parabolic subgroup of W that fixes π0 pointwise. Let us consider the
normaliser NP of this subgroup in W . It has the form NP = GP , where G is the subgroup
of W of type G2 [68]. The group NP consists of those elements of W that preserve π0,
and the root system RG of the group G is a subset in π0. We can assume that the root
system RG contains the vectors ±e1,±1

2
(e1 ± (e2 + e3 + e4)) ∈ R.

Proposition 5.4. Suppose an operator D of the form (5.11) is W -invariant. Suppose also
that its coefficients aν are generically well-defined on π, and hence the restricted operator D
given by (5.12) is generically well-defined on π0. Then the operator D is invariant under
the group G.

Proof. Let us consider an element α ∈ R∩RG and the corresponding reflection sα ∈ G ⊂
W . For a shift vector ν in the operator D, if we have sα(ν) = ν, then we also have for
the projection ν ′ ∈ π0 that sα(ν ′) = ν ′. Since sα(aν) = aν and sα(δ) = δ, we get that the
term aν(z + δ)Tν′ in D is sα-invariant.

The other terms aνTν in the operatorD split into pairs aν1Tν1 , aν2Tν2 such that sα(ν1) =
ν2. Since for the projections we have sα(ν ′1) = ν ′2, we get that the corresponding sum
aν1(z + δ)Tν′1 + aν2(z + δ)Tν′2 in D is sα-invariant.

The group G is generated by the reflections sα with α ∈ R∩RG and the transformation
j = − id. We are left to prove the invariance of the operator D under the map j. Let us
first consider pairs of terms aµ1Tµ1 , aµ2Tµ2 in D such that sγ ◦ j(µ1) = µ2 for γ = e2 − e4.
By the W -invariance of the operator D, we have sγ ◦ j(aµ1) = aµ2 . This relation implies
for any z ∈ π0 that

j(aµ1(z + δ)) = aµ1(−z + δ) = aµ1(sγ(−z) + δ) = aµ1(sγ ◦ j(z + δ)) = aµ2(z + δ).
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Since µ′
1 = −µ′

2, we get that the combination aµ1(z+δ)Tµ′
1
+aµ2(z+δ)Tµ′

2
in the operator D

is invariant under j.
Let us also consider the terms in D of the form aµTµ such that sγ ◦ j(µ) = µ. Then

sγ ◦ j(aµ) = aµ and µ′ = 0. This implies that j(aµ(z + δ)) = aµ(z + δ) for any z ∈ π0, and
hence the corresponding term aµ(z + δ)T0 is also invariant under the map j. ■

We introduce coordinates on π0 by choosing the orthonormal basis f1 = 1√
3
(e2 +

e3 + e4), f2 = e1. We consider the configuration AG2 ⊂ π0 given in the basis f1, f2 by
the coordinates (3.11), where we fix ω = 1√

3
. In this realisation, α1 = (0, 1) = f2 and

β1 =
1√
3
(1, 0) = 1√

3
f1. We also have α2 =

1
2
(e1−e2−e3−e4) and α3 =

1
2
(e1+e2+e3+e4).

The orthogonal projection of a vector v =
∑4

i=1 viei onto π0 is v = 1√
3
(v2+v3+v4)f1+v1f2.

Let us now find the restricted operators E1 and E2 explicitly. The following statements
take place.

Proposition 5.5. The restriction E2 of the quasi-minuscule operator E2 has the form

E2 =
3∑

j=1

∑
ε∈{±1}

(
a2εαj

(T2εαj
− 1) + a2εβj

(T2εβj
− 1)

)
, (5.13)

where

a2εαj
(z) = qs−5

∏
γ∈(2Gβ1)∨

⟨2εαj ,γ⟩=3

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq

⟨γ,z⟩
3

1− q
⟨γ,z⟩

3
+ 1

3

)(
1− sq

⟨γ,z⟩
3

+ 2
3

1− q
⟨γ,z⟩

3
+ 2

3

)

×
∏

γ∈(2Gα1)∨

⟨2εαj ,γ⟩=1

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)
×
(
1− sq⟨εαj ,z⟩

1− q⟨εαj ,z⟩

)(
1− sq⟨εαj ,z⟩+1

1− q⟨εαj ,z⟩+1

)
,

(5.14)

a2εβj
(z) = (1 + q1/3 + q2/3)q1/3s−5

∏
γ∈(2Gβ1)∨

⟨2εβj ,γ⟩=1

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq−

⟨γ,z⟩
3

− 2
3

1− q−
⟨γ,z⟩

3
− 2

3

)(
1− sq

⟨γ,z⟩
3

1− q
⟨γ,z⟩

3
− 1

3

)

×
∏

γ∈(2Gα1)∨

⟨2εβj ,γ⟩=1

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)
×
(
1− sq⟨εβj ,z⟩− 2

3

1− q⟨εβj ,z⟩

)(
1− sq⟨εβj ,z⟩+ 1

3

1− q⟨εβj ,z⟩+ 1
3

)
,

(5.15)
and s = te1, z ∈ π0.

Proof. It is easy to see that Λ consists of the vectors ±2αj,±2βj. Let us firstly establish
formula (5.14). We have 2e1 = 2α1, and it is easy to see that no other vector from Λ is
projected to 2α1. By formula (5.2), we have

V2e1(z) = ve1(q
⟨e1,z⟩+1)

∏
γ∈R

⟨γ,e1⟩>0

vγ(q
⟨γ,z⟩)
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= vα1(q
⟨α1,z⟩+1)vα1(q

⟨α1,z⟩)vα2(q
⟨α2,z⟩)vα3(q

⟨α3,z⟩)
∏

γ∈C1∪C2

vγ(q
⟨γ,z⟩),

where

C1 = {1
2
(e1−e2), 12(e1−e3),

1
2
(e1−e4), 12(e1+e2−e3−e4),

1
2
(e1−e2+e3−e4), 12(e1−e2−e3+e4)}

and

C2 = {1
2
(e1+e2),

1
2
(e1+e3),

1
2
(e1+e4),

1
2
(e1+e2+e3−e4), 12(e1+e2−e3+e4),

1
2
(e1−e2+e3+e4)}.

Recall that t 1
2
(e1−e2)

= q−1/3. For z ∈ π, we have

v 1
2
(e1−e2)

(q
1
2
⟨e1−e2,z⟩)v 1

2
(e1−e3)

(q
1
2
⟨e1−e3,z⟩)v 1

2
(e1−e4)

(q
1
2
⟨e1−e4,z⟩) = q1/2

1− q−1/3q
1
2
(z1−z2)

1− q2/3q
1
2
(z1−z2)

,

and hence

∏
γ∈C1

vγ(q
⟨γ,z⟩) =

q1/2s−3/2(1− sq
1
2
(z1−z2)+1)(1− sq

1
2
(z1−z2)+

1
3 )(1− sq

1
2
(z1−z2)− 1

3 )

(1− q
1
2
(z1−z2)+

2
3 )(1− q

1
2
(z1−z2)+1)(1− q

1
2
(z1−z2)+

1
3 )

. (5.16)

Similarly,

∏
γ∈C2

vγ(q
⟨γ,z⟩) =

q1/2s−3/2(1− sq
1
2
(z1+z2)−1)(1− sq

1
2
(z1+z2)− 1

3 )(1− sq
1
2
(z1+z2)+

1
3 )

(1− q
1
2
(z1+z2))(1− q

1
2
(z1+z2)+

1
3 )(1− q

1
2
(z1+z2)− 1

3 )
. (5.17)

Let now z = (z1, z2, z2, z2) ∈ π0. Then z + δ ∈ π, and by equality (5.16), we get

∏
γ∈C1

vγ(q
⟨γ,z+δ⟩) =

q1/2s−3/2(1− sq
1
2
(z1−z2)+

2
3 )(1− sq

1
2
(z1−z2))(1− sq

1
2
(z1−z2)− 2

3 )

(1− q
1
2
(z1−z2)+

1
3 )(1− q

1
2
(z1−z2)+

2
3 )(1− q

1
2
(z1−z2))

.

The vector β3 ∈ π0 has the form β3 = − 1
2
√
3
f1 +

1
2
f2 = 1

2
e1 − 1

6
(e2 + e3 + e4), hence

(2β3)
∨ = 3

2
e1 − 1

2
(e2 + e3 + e4), and so 1

3
⟨(2β3)∨, z⟩ = 1

2
(z1 − z2). Therefore, we have

∏
γ∈C1

vγ(q
⟨γ,z+δ⟩) =

q1/2s−3/2(1− sq
1
3
⟨(2β3)∨,z⟩+ 2

3 )(1− sq
1
3
⟨(2β3)∨,z⟩)(1− sq

1
3
⟨(2β3)∨,z⟩− 2

3 )

(1− q
1
3
⟨(2β3)∨,z⟩+ 1

3 )(1− q
1
3
⟨(2β3)∨,z⟩+ 2

3 )(1− q
1
3
⟨(2β3)∨,z⟩)

.

Similarly, (5.17) gives

∏
γ∈C2

vγ(q
⟨γ,z+δ⟩) =

q1/2s−3/2(1− sq
1
2
(z1+z2)− 2

3 )(1− sq
1
2
(z1+z2))(1− sq

1
2
(z1+z2)+

2
3 )

(1− q
1
2
(z1+z2)+

1
3 )(1− q

1
2
(z1+z2)+

2
3 )(1− q

1
2
(z1+z2))

,
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and 1
3
⟨(2β2)∨, z⟩ = 1

2
(z1 + z2). Hence, altogether, we have

∏
γ∈C1∪C2

vγ(q
⟨γ,z+δ⟩) = qs−3

∏
γ∈(2Gβ1)∨

⟨2α1,γ⟩=3

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq

⟨γ,z⟩
3

1− q
⟨γ,z⟩

3
+ 1

3

)(
1− sq

⟨γ,z⟩
3

+ 2
3

1− q
⟨γ,z⟩

3
+ 2

3

)
.

To complete the proof of equality (5.14) for j = 1 and ε = 1, we note that (2α2)
∨ = α2

and (2α3)
∨ = α3, therefore

vα1(q
⟨α1,z+δ⟩+1)

3∏
i=1

vαi
(q⟨αi,z+δ⟩) = s−2

(
1− sq⟨α1,z⟩

1− q⟨α1,z⟩

)(
1− sq⟨α1,z⟩+1

1− q⟨α1,z⟩+1

)
×

∏
γ∈(2Gα1)∨

⟨2α1,γ⟩=1

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)
,

as required. Equality (5.14) in general follows from the G-invariance of the operator E2

established in Proposition 5.4.
Let us now prove formula (5.15). We have 2e2 = 2e3 = 2e4 = 2β1, and no other vector

from Λ is projected to 2β1. For z ∈ π, we have V2e2(z) = 0 since v 1
2
(e2−e3)

(q
1
2
⟨e2−e3,z⟩) = 0,

and we have V2e3(z) = 0 since v 1
2
(e3−e4)

(q
1
2
⟨e3−e4,z⟩) = 0. By formula (5.2), we have

V2e4(z) = ve4(q
⟨e4,z⟩+1)

∏
γ∈R

⟨γ,e4⟩>0

vγ(q
⟨γ,z⟩)

= ve4(q
⟨e4,z⟩+1)v−α2(q

−⟨α2,z⟩)vα3(q
⟨α3,z⟩)

∏
γ∈C′

1∪C′
2∪C′

3∪C′
4

vγ(q
⟨γ,z⟩),

where

C ′
1 = {1

2
(e4 − e1),

1
2
(e4 − e1 − e2 + e3),

1
2
(e4 − e1 + e2 − e3),

1
2
(e4 + e1 − e2 − e3)},

C ′
2 = {1

2
(e4 + e1),

1
2
(e4 + e1 − e2 + e3),

1
2
(e4 + e1 + e2 − e3),

1
2
(e4 − e1 − e2 − e3)},

C ′
3 = {e4, 12(e4 + e2),

1
2
(e4 + e3)}, and C ′

4 = {1
2
(e4 − e2),

1
2
(e4 − e3)}.

Let now z = (z1, z2, z2, z2) ∈ π0. Then we have

∏
γ∈C′

1

vγ(q
⟨γ,z+δ⟩) =

q1/6s−3/2(1− sq
1
2
(z2−z1)− 2

3 )(1− sq
1
2
(z2−z1))(1− sq

1
2
(z1−z2)− 2

3 )

(1− q
1
2
(z2−z1)− 1

3 )(1− q
1
2
(z2−z1))(1− q

1
2
(z1−z2)− 2

3 )

=
q1/6s−3/2(1− sq−

1
3
⟨(2β3)∨,z⟩− 2

3 )(1− sq−
1
3
⟨(2β3)∨,z⟩)(1− sq

1
3
⟨(2β3)∨,z⟩− 2

3 )

(1− q−
1
3
⟨(2β3)∨,z⟩− 1

3 )(1− q−
1
3
⟨(2β3)∨,z⟩)(1− q

1
3
⟨(2β3)∨,z⟩− 2

3 )
.

(5.18)

Similarly, for the product over γ ∈ C ′
2, we get expression (5.18) with β3 replaced by −β2,
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and therefore

∏
γ∈C′

1∪C′
2

vγ(q
⟨γ,z+δ⟩) = q1/3s−3

∏
γ∈(2Gβ1)∨

⟨2β1,γ⟩=1

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq−

⟨γ,z⟩
3

− 2
3

1− q−
⟨γ,z⟩

3
− 2

3

)(
1− sq

⟨γ,z⟩
3

1− q
⟨γ,z⟩

3
− 1

3

)
.

Further, we have ∏
γ∈C′

4

vγ(q
⟨γ,z+δ⟩) = q−1/3(1 + q1/3 + q2/3).

Next, we have

ve4(q
⟨e4,z+δ⟩+1)

∏
γ∈C′

3

vγ(q
⟨γ,z+δ⟩) = q1/3s−1 (1− sqz2+

1
3 )(1− sqz2−

2
3 )

(1− qz2+
1
3 )(1− qz2)

= q1/3s−1

(
1− sq⟨β1,z⟩− 2

3

1− q⟨β1,z⟩

)(
1− sq⟨β1,z⟩+ 1

3

1− q⟨β1,z⟩+ 1
3

)
,

where we used that the vector β1 ∈ π0 has the form β1 = 1√
3
f1 = 1

3
(e2 + e3 + e4), hence

⟨β1, z⟩ = z2. To complete the proof of equality (5.15) for j = 1 and ε = 1, we note that

v−α2(q
−⟨α2,z+δ⟩)vα3(q

⟨α3,z+δ⟩) = s−1
∏

γ∈(2Gα1)∨

⟨2β1,γ⟩=1

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)
,

as required. Equality (5.15) in general follows from Proposition 5.4 on the G-invariance
of the operator E2. ■

Proposition 5.6. The restriction E1 of the operator (5.5) satisfies

E1 + cE2 =
3∑

j=1

∑
ε∈{±1}

(
a4εβj

(T4εβj
− 1) + a2εαj

(T2εαj
− 1) + a2εβj

(T2εβj
− 1)

)
, (5.19)

where

c = s−1(1 + q1/3 + q2/3)
q7/3

1− q7/3

(
q1/3(1− sq−8/3)(1− sq5/3)

1− q8/3
+

(1− sq−3)(1− sq2)

1− q2

)
,

and the functions a4εβj
, a2εαj

, and a2εβj
are given by
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a4εβj
(z) =(1 + q1/3 + q2/3)qs−6

∏
γ∈(2Gα1)∨

⟨4εβj ,γ⟩=2

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)(
1− sq⟨γ,z⟩+1

1− q⟨γ,z⟩+1

)

×
∏

γ∈(2Gβ1)∨

⟨4εβj ,γ⟩=2

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq

⟨γ,z⟩
3

+ 1
3

1− q
⟨γ,z⟩

3
+ 1

3

)

×
(
1− sq⟨εβj ,z⟩− 2

3

1− q⟨εβj ,z⟩

)(
1− sq⟨εβj ,z⟩+ 1

3

1− q⟨εβj ,z⟩+ 1
3

)(
1− sq⟨εβj ,z⟩

1− q⟨εβj ,z⟩+ 2
3

)(
1− sq⟨εβj ,z⟩+1

1− q⟨εβj ,z⟩+1

)
,

(5.20)

a2εαj
(z) = d

(
1− sq⟨εαj ,z⟩

1− q⟨εαj ,z⟩

)(
1− sq⟨εαj ,z⟩+1

1− q⟨εαj ,z⟩+1

) ∏
γ∈(2Gα1)∨

⟨2εαj ,γ⟩=1

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)

×
∏

γ∈(2Gβ1)∨

⟨2εαj ,γ⟩=3

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq

⟨γ,z⟩
3

1− q
⟨γ,z⟩

3
+ 1

3

)(
1− sq

⟨γ,z⟩
3

+ 2
3

1− q
⟨γ,z⟩

3
+ 2

3

) ∏
γ∈(2Gβ1)∨

⟨2εαj ,γ⟩=0

(
1− q

⟨γ,z⟩
3

− 7
3

1− q
⟨γ,z⟩

3
− 1

3

)
,

(5.21)
with

d =
q16/3s−6(1− sq−1)(1− s)

(1− q1/3)(1− q8/3)(1− q1/3 + q2/3)
,

and

a2εβj
(z) = (1 + q1/3 + q2/3)q1/3s−5

×
∏

γ∈(2Gβ1)∨

⟨2εβj ,γ⟩=1

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq−

⟨γ,z⟩
3

− 2
3

1− q−
⟨γ,z⟩

3
− 2

3

)(
1− sq

⟨γ,z⟩
3

1− q
⟨γ,z⟩

3
− 1

3

)

×
(
1− sq⟨εβj ,z⟩− 2

3

1− q⟨εβj ,z⟩

)(
1− sq⟨εβj ,z⟩+ 1

3

1− q⟨εβj ,z⟩+ 1
3

) ∏
γ∈(2Gα1)∨

⟨2εβj ,γ⟩=1

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)

×
[
c+ s−1

(
1− sq⟨gα1,z⟩

1− q⟨gα1,z⟩

)(
1− sq−⟨gα1,z⟩−1

1− q−⟨gα1,z⟩−1

)(
1− q⟨gβ2,z⟩− 1

3

1− q⟨gβ2,z⟩+ 1
3

)(
1− q−⟨gβ3,z⟩+ 2

3

1− q−⟨gβ3,z⟩

)
+ s−1

(
1− sq−⟨gα1,z⟩

1− q−⟨gα1,z⟩

)(
1− sq⟨gα1,z⟩−1

1− q⟨gα1,z⟩−1

)(
1− q−⟨gβ3,z⟩− 1

3

1− q−⟨gβ3,z⟩+ 1
3

)(
1− q⟨gβ2,z⟩+ 2

3

1− q⟨gβ2,z⟩

)
+(1 + q−1/3)s−1

(
1− sq⟨gβ1,z⟩− 1

3

1− q⟨gβ1,z⟩− 1
3

)(
1− sq−⟨gβ1,z⟩− 2

3

1− q−⟨gβ1,z⟩− 1
3

)(
1− q⟨gβ2,z⟩+ 2

3

1− q⟨gβ2,z⟩+ 1
3

)(
1− q−⟨gβ3,z⟩+ 2

3

1− q−⟨gβ3,z⟩+ 1
3

)
+(1 + q−1/3)s−1

(
1− sq⟨gβ1,z⟩

1− q⟨gβ1,z⟩+ 1
3

)(
1− sq−⟨gβ1,z⟩−1

1− q−⟨gβ1,z⟩−1

)(
1− q−⟨gβ2,z⟩+ 1

3

1− q−⟨gβ2,z⟩

)(
1− q⟨gβ3,z⟩+ 1

3

1− q⟨gβ3,z⟩

)]
,

(5.22)
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where g = g(ε, j) ∈ G is (either one of the two elements of G) such that gβ1 = εβj, s = te1,
z ∈ π0.

Proof. Any linear combination of the operators E1, E2 given by formulas (5.5), (5.1) can
contain shifts only along the vectors from R∨. It is easy to see that the non-zero vectors
in R∨ are ±2αj,±2βj,±4βj. Let us firstly establish formula (5.20).

We have 2e2 + 2e3 = 2e2 + 2e4 = 2e3 + 2e4 = 4β1, and none of the other vectors
from R∨ project to 4β1. For z ∈ π, we have V2e2+2e3(z) = 0 since v 1

2
(e3−e4)

(q
1
2
⟨e3−e4,z⟩) = 0,

and V2e2+2e4(z) = 0 since v 1
2
(e2−e3)

(q
1
2
⟨e2−e3,z⟩) = 0. By formula (5.2), we have

V2e3+2e4(z) =
∏

γ∈{−α2,α3}

vγ(q
⟨γ,z⟩)vγ(q

⟨γ,z⟩+1)
∏

γ∈B0∪B1∪B2∪B3

vγ(q
⟨γ,z⟩)

∏
γ∈B′

1∪B′
2∪B′

3

vγ(q
⟨γ,z⟩+1),

where

B0 = {1
2
(e4 − e2),

1
2
(e3 − e2)},

B′
1 = {e3, e4, 12(e3 + e4)}, B1 = B′

1 ∪ {1
2
(e2 + e3),

1
2
(e2 + e4)}

B′
2 = {1

2
(e1 − e2 + e3 + e4)}, B2 = B′

2 ∪ {1
2
(e1 + e3),

1
2
(e1 + e4)},

B′
3 = {1

2
(−e1 − e2 + e3 + e4)}, and B3 = B′

3 ∪ {1
2
(e3 − e1),

1
2
(e4 − e1)}.

Let now z = (z1, z2, z2, z2) ∈ π0. Then

∏
γ∈B2

vγ(q
⟨γ,z+δ⟩)

∏
γ∈B′

2

vγ(q
⟨γ,z+δ⟩+1) =

q1/3s−1(1− sq
1
2
(z1+z2)+

1
3 )(1− sq

1
2
(z1+z2)− 2

3 )

(1− q
1
2
(z1+z2))(1− q

1
2
(z1+z2)+

1
3 )

=
q1/3s−1(1− sq

1
3
⟨(2β2)∨,z⟩+ 1

3 )(1− sq
1
3
⟨(2β2)∨,z⟩− 2

3 )

(1− q
1
3
⟨(2β2)∨,z⟩)(1− q

1
3
⟨(2β2)∨,z⟩+ 1

3 )
.

(5.23)

Similarly, for the products over γ ∈ B3 and γ ∈ B′
3, we get expression (5.23) with β2

replaced by −β3, and therefore

∏
γ∈B2∪B3

vγ(q
⟨γ,z+δ⟩)

∏
γ∈B′

2∪B′
3

vγ(q
⟨γ,z+δ⟩+1) = q2/3s−2

∏
γ∈(2Gβ1)∨

⟨4β1,γ⟩=2

(
1− sq

⟨γ,z⟩
3

− 2
3

1− q
⟨γ,z⟩

3

)(
1− sq

⟨γ,z⟩
3

+ 1
3

1− q
⟨γ,z⟩

3
+ 1

3

)
.

For the product over B1, we have

∏
γ∈B1

vγ(q
⟨γ,z+δ⟩) =

q1/2s−1(1− sqz2)(1− sqz2−
2
3 )

(1− qz2)(1− qz2+
1
3 )

, (5.24)
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and for the product over B′
1, we have

∏
γ∈B′

1

vγ(q
⟨γ,z+δ⟩+1) =

q1/6s−1(1− sqz2+
1
3 )(1− sqz2+1)

(1− qz2+
2
3 )(1− qz2+1)

. (5.25)

Since ⟨β1, z⟩ = z2, the product of expressions (5.24) and (5.25) is

q2/3s−2

(
1− sq⟨β1,z⟩− 2

3

1− q⟨β1,z⟩

)(
1− sq⟨β1,z⟩+ 1

3

1− q⟨β1,z⟩+ 1
3

)(
1− sq⟨β1,z⟩

1− q⟨β1,z⟩+ 2
3

)(
1− sq⟨β1,z⟩+1

1− q⟨β1,z⟩+1

)
.

Next, we have ∏
γ∈B0

vγ(q
⟨γ,z+δ⟩) = q−1/3(1 + q1/3 + q2/3). (5.26)

To complete the proof of equality (5.20) for j = 1 and ε = 1, we note that

∏
γ∈{−α2,α3}

vγ(q
⟨γ,z⟩)vγ(q

⟨γ,z⟩+1) = s−2
∏

γ∈(2Gα1)∨

⟨4β1,γ⟩=2

(
1− sq⟨γ,z⟩

1− q⟨γ,z⟩

)(
1− sq⟨γ,z⟩+1

1− q⟨γ,z⟩+1

)
,

as required. Equality (5.20) in general follows from the G-invariance of the operators E1

and E2 established in Proposition 5.4.
Let us now prove formula (5.21). We have 2e1 = 2α1, and no other vector from R∨

is projected to 2α1. By formulas (5.1) and (5.5), the coefficient at T2e1 in the operator
E1 + cE2 is

V2e1

(
c+

4∑
j=2

∑
δ∈{±1}

U2e1
2e1+2δej

)
. (5.27)

For z ∈ π0, V2e1(z+δ) is given by the right-hand side of formula (5.14). Let us compute the
second factor of the expression (5.27). For z ∈ π, by formula (5.4), we have U2e1

2e1−2e3
(z) =

U2e1
2e1+2e2

(z) = 0 since v 1
2
(e2−e3)

(q
1
2
⟨e2−e3,z⟩) = 0; and U2e1

2e1−2e4
(z) = U2e1

2e1+2e3
(z) = 0 since

v 1
2
(e3−e4)

(q
1
2
⟨e3−e4,z⟩) = 0. Furthermore,

U2e1
2e1−2e2

(z) = v−e2(q
⟨e2,z⟩−1)

∏
γ∈B0∪C1

vγ(q
⟨γ,z⟩) = s−1/21− sqz2−1

1− qz2−1

∏
γ∈B0∪C1

vγ(q
⟨γ,z⟩), (5.28)

where C1 = {−1
2
(e2 + e3),−1

2
(e2 + e4),−e2} and, recall, B0 = {1

2
(e4 − e2),

1
2
(e3 − e2)}. Let

now z = (z1, z2, z2, z2) ∈ π0. Then we have

∏
γ∈C1

vγ(q
⟨γ,z+δ⟩) = q1/3s−1/21− sq−z2− 2

3

1− q−z2
. (5.29)
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Therefore, we get from relations (5.26), (5.28), and (5.29) that

U2e1
2e1−2e2

(z + δ) = s−1(1 + q1/3 + q2/3)
(1− sq⟨β1,z⟩− 1

3 )(1− sq−⟨β1,z⟩− 2
3 )

(1− q⟨β1,z⟩− 1
3 )(1− q−⟨β1,z⟩)

.

Similarly, we compute

U2e1
2e1+2e4

(z + δ) = s−1(1 + q1/3 + q2/3)
(1− sq⟨β1,z⟩− 2

3 )(1− sq−⟨β1,z⟩− 1
3 )

(1− q−⟨β1,z⟩− 1
3 )(1− q⟨β1,z⟩)

.

Observe that the sum U2e1
2e1−2e2

(z + δ) + U2e1
2e1+2e4

(z + δ) is not singular at q⟨β1,z⟩ = 1, and

c+
4∑

j=2

∑
δ∈{±1}

U2e1
2e1+2δej

= q−1s5d

(
1− q⟨β1,z⟩− 7

3

1− q⟨β1,z⟩− 1
3

)(
1− q−⟨β1,z⟩− 7

3

1− q−⟨β1,z⟩− 1
3

)

= q−1s5d
∏

γ∈(2Gβ1)∨

⟨2α1,γ⟩=0

(
1− q

⟨γ,z⟩
3

− 7
3

1− q
⟨γ,z⟩

3
− 1

3

)
,

which completes the proof of (5.21) for j = 1 and ε = 1. Equality (5.21) in general follows
from the G-invariance of the operators E1 and E2 established in Proposition 5.4.

Let us now prove formula (5.22). We have 2e2 = 2e3 = 2e4 = 2β1, and no other vector
from R∨ is projected to 2β1. For z ∈ π, we have V2e2(z) = 0 since v 1

2
(e2−e3)

(q
1
2
⟨e2−e3,z⟩) = 0,

and we have V2e3(z) = 0 since v 1
2
(e3−e4)

(q
1
2
⟨e3−e4,z⟩) = 0, so the coefficients at T2e2 and T2e3

in the operator E1+ cE2 are both zero. By formulas (5.1) and (5.5), the coefficient at T2e4
in the operator E1 + cE2 is

V2e4

(
c+

3∑
j=1

∑
δ∈{±1}

U2e4
2e4+2δej

)
. (5.30)

For z ∈ π0, V2e4(z+δ) is given by the right-hand side of formula (5.15). Let us compute the
second factor of (5.30). For z ∈ π, by formula (5.4), we have U2e4

2e4−2e3
(z) = U2e4

2e2+2e4
(z) = 0

since v 1
2
(e2−e3)

(q
1
2
⟨e2−e3,z⟩) = 0. We have

U2e4
2e1+2e4

(z) = vα1(q
−⟨α1,z⟩−1)vα1(q

⟨α1,z⟩)
∏

γ∈C2∪C3

vγ(q
⟨γ,z⟩),

where C2 = {1
2
(e1 + e2),

1
2
(e1 + e3)} and C3 = {1

2
(e1 − e2),

1
2
(e1 − e3)}. Let now z =

(z1, z2, z2, z2) ∈ π0. Then

∏
γ∈C2

vγ(q
⟨γ,z+δ⟩) = q1/3

1− q
1
2
(z1+z2)− 1

3

1− q
1
2
(z1+z2)+

1
3

= q1/3
1− q⟨β2,z⟩− 1

3

1− q⟨β2,z⟩+ 1
3

. (5.31)
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Similarly, ∏
γ∈C3

vγ(q
⟨γ,z+δ⟩) = q1/3

1− q⟨β3,z⟩− 2
3

1− q⟨β3,z⟩
.

Finally,

vα1(q
−⟨α1,z+δ⟩−1)vα1(q

⟨α1,z+δ⟩) = s−1

(
1− sq⟨α1,z⟩

1− q⟨α1,z⟩

)(
1− sq−⟨α1,z⟩−1

1− q−⟨α1,z⟩−1

)
.

Therefore,

U2e4
2e1+2e4

(z+δ) = q2/3s−1

(
1− sq⟨α1,z⟩

1− q⟨α1,z⟩

)(
1− sq−⟨α1,z⟩−1

1− q−⟨α1,z⟩−1

)(
1− q⟨β2,z⟩− 1

3

1− q⟨β2,z⟩+ 1
3

)(
1− q⟨β3,z⟩− 2

3

1− q⟨β3,z⟩

)
.

Similarly, we compute

U2e4
2e4−2e1

(z+δ) = q−2/3s−1

(
1− sq−⟨α1,z⟩

1− q−⟨α1,z⟩

)(
1− sq⟨α1,z⟩−1

1− q⟨α1,z⟩−1

)(
1− q⟨β2,z⟩+ 2

3

1− q⟨β2,z⟩

)(
1− q⟨β3,z⟩+ 1

3

1− q⟨β3,z⟩− 1
3

)
,

U2e4
2e4−2e2

(z + δ) = (1 + q1/3)s−1

(
1− sq⟨β1,z⟩− 1

3

1− q⟨β1,z⟩− 1
3

)(
1− sq−⟨β1,z⟩− 2

3

1− q−⟨β1,z⟩− 1
3

)(
1− q⟨β2,z⟩+ 2

3

1− q⟨β2,z⟩+ 1
3

)
×
(
1− q⟨β3,z⟩− 2

3

1− q⟨β3,z⟩− 1
3

)
,

U2e4
2e3+2e4

(z + δ) = (1 + q1/3)s−1

(
1− sq⟨β1,z⟩

1− q⟨β1,z⟩+ 1
3

)(
1− sq−⟨β1,z⟩−1

1− q−⟨β1,z⟩−1

)(
1− q⟨β2,z⟩− 1

3

1− q⟨β2,z⟩

)
×
(
1− q⟨β3,z⟩+ 1

3

1− q⟨β3,z⟩

)
.

This completes the proof of (5.22) for j = 1 and ε = 1. Equality (5.22) in general follows
from the G-invariance of the operators E1 and E2 established in Proposition 5.4. ■

In the rational limit, we recover the operators from Sections 3.4.2 and 3.4.4.

Proposition 5.7. In the rational limit q → 1, the operator (5.13) tends to the oper-
ator (3.17).

Proof. Recall that s = te1 = q−m, where m is independent of q. Hence,

lim
q→1

qs−5 = 1 and lim
q→1

(1 + q1/3 + q2/3)q1/3s−5 = 3.
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The functions (5.14) tend to

∏
γ∈(2Gβ1)∨

⟨2εαj ,γ⟩=3

(
1− 3m+ 2

⟨γ, z⟩

)(
1− 3m+ 1

⟨γ, z⟩+ 1

)(
1− 3m

⟨γ, z⟩+ 2

)

×
∏

γ∈(2Gα1)∨

⟨2εαj ,γ⟩=1

(
1− m

⟨γ, z⟩

)
×
(
1− m

⟨εαj, z⟩

)(
1− m

⟨εαj, z⟩+ 1

)
,

which equals the corresponding functions (3.18), where in the last two terms we use that
α2
j = 1 here. Similarly, the functions (5.15) tend to

3
∏

γ∈(2Gβ1)∨

⟨2εβj ,γ⟩=1

(
1− 3m+ 2

⟨γ, z⟩

)(
1 +

3m

⟨γ, z⟩+ 2

)(
1− 3m− 1

⟨γ, z⟩ − 1

)

×
∏

γ∈(2Gα1)∨

⟨2εβj ,γ⟩=1

(
1− m

⟨γ, z⟩

)
×
(
1−

m+ 2
3

⟨εβj, z⟩

)(
1− m

⟨εβj, z⟩+ 1
3

)
,

which equals the corresponding functions (3.19), where in the last two terms we use that
β2
j = 1

3
here. ■

Proposition 5.8. In the rational limit q → 1, the operator (5.19) tends to a scalar
multiple of the operator (3.26).

Proof. We have s = te1 = q−m, where m is independent of q. Hence,

lim
q→1

(1 + q1/3 + q2/3)qs−6 = lim
q→1

(1 + q1/3 + q2/3)q1/3s−5 = 3,

lim
q→1

c = 9
8
m(m+ 1)− 6, and

lim
q→1

d = 9
8
m(m+ 1).

The functions (5.20) tend to

3
∏

γ∈(2Gα1)∨

⟨4εβj ,γ⟩=2

(
1− m

⟨γ, z⟩

)(
1− m

⟨γ, z⟩+ 1

) ∏
γ∈(2Gβ1)∨

⟨4εβj ,γ⟩=2

(
1− 3m+ 2

⟨γ, z⟩

)(
1− 3m

⟨γ, z⟩+ 1

)

×
(
1−

m+ 2
3

⟨εβj, z⟩

)(
1− m

⟨εβj, z⟩+ 1
3

)(
1−

m+ 2
3

⟨εβj, z⟩+ 2
3

)(
1− m

⟨εβj, z⟩+ 1

)
,

which is 9
8

times the corresponding functions (3.28), where we used that β2
j = 1

3
here.
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The functions (5.21) tend to

9

8
m(m+ 1)

∏
γ∈(2Gα1)∨

⟨2εαj ,γ⟩=1

(
1− m

⟨γ, z⟩

)
×
(
1− m

⟨εαj, z⟩

)(
1− m

⟨εαj, z⟩+ 1

)

×
∏

γ∈(2Gβ1)∨

⟨2εαj ,γ⟩=3

(
1− 3m+ 2

⟨γ, z⟩

)(
1− 3m+ 1

⟨γ, z⟩+ 1

)(
1− 3m

⟨γ, z⟩+ 2

)

×
∏

γ∈(2Gβ1)∨

⟨2εαj ,γ⟩=0

(
1− 6

⟨γ, z⟩ − 1

)
,

which is 9
8

times the corresponding functions (3.27), where we used that α2
j = 1 here.

Assume ε = j = 1 (the general case will follow by G-invariance of the operators). Then
the function (5.22) tends to

3
∏

γ∈(2Gα1)∨

⟨2β1,γ⟩=1

(
1− m

⟨γ, z⟩

) ∏
γ∈(2Gβ1)∨

⟨2β1,γ⟩=1

(
1− 3m+ 2

⟨γ, z⟩

)(
1 +

3m

⟨γ, z⟩+ 2

)(
1− 3m− 1

⟨γ, z⟩ − 1

)

×
(
1−

m+ 2
3

⟨β1, z⟩

)(
1− m

⟨β1, z⟩+ 1
3

)
×
[
9
8
m(m+ 1)− 6 +

(
1− m

⟨α1, z⟩

)(
1 +

m

⟨α1, z⟩+ 1

)(
1− 2

3⟨β2, z⟩+ 1

)(
1− 2

3⟨β3, z⟩

)
+

(
1 +

m

⟨α1, z⟩

)(
1− m

⟨α1, z⟩ − 1

)(
1 +

2

3⟨β2, z⟩

)(
1 +

2

3⟨β3, z⟩ − 1

)
+ 2

(
1− m

⟨β1, z⟩ − 1
3

)(
1 +

m+ 1
3

⟨β1, z⟩+ 1
3

)(
1 +

1

3⟨β2, z⟩+ 1

)(
1− 1

3⟨β3, z⟩ − 1

)
+ 2

(
1−

m+ 1
3

⟨β1, z⟩+ 1
3

)(
1 +

m

⟨β1, z⟩+ 1

)(
1− 1

3⟨β2, z⟩

)(
1 +

1

3⟨β3, z⟩

)]
,

which can be shown to be 9
8

times the corresponding functions (3.29) (where we are using,
in particular, that β2

1 = 1
3

and α2
1 = 1). Indeed, the expression in the square brackets

above can be shown to equal

9

8
m(m+ 1)

(
1− 2/3

⟨α1, z⟩ − 1

)(
1 +

2/3

⟨α1, z⟩+ 1

)(
1− 4

3⟨β1, z⟩ − 1

)(
1 +

4/3

⟨β1, z⟩+ 1

)
,

as required. ■

Corollary 5.9. The operators (3.17) and (3.26) commute.



Chapter 6

A subalgebra of DAHA and Van
Diejen’s operators

Inside the DAHA Hn = Hn,q,τ of type GLn from Section 2.4, we define a subalgebra Hgln

that may be thought of as a q-analogue of the degree zero part of the corresponding
RCA. We prove that the algebra Hgln is a flat τ -deformation of the crossed product of the
group algebra of the symmetric group Sn with the image of the Drinfeld–Jimbo quantum
group Uq(gln) under the q-oscillator (Jordan–Schwinger) representation. We find all the de-
fining relations and an explicit PBW basis for the algebra Hgln . We describe its centre and
establish a double centraliser property that Hgln satisfies as a subalgebra of a cyclotomic
DAHA. As an application, we also obtain new generalisations of certain Hamiltonians
introduced by Van Diejen. This chapter follows our paper [57].

The structure of this chapter is as follows. In Section 6.1, we recall the properties
of the degree zero subalgebra of the RCA of type GLn. In Section 6.2, we recall the
definition of the quantum group Uq(gln), its Jordan–Schwinger representation ρ, and we
study the properties of the algebras A = ρ(Uq(gln)) and CSn ⋉ A. In Section 6.3, we
define the algebra Hgln . In Section 6.3.1, we study the properties of certain commuting
elements Di ∈ Hn, which are used in the definition of Hgln . In Section 6.3.2, which is the
most technical part of this chapter, we give all the defining relations of Hgln and a linear
basis for it. In Section 6.3.3, we give its centre and the double centraliser property. In
Section 6.4, we derive new generalisations of Van Diejen’s and related systems.

6.1 Degree zero part of an RCA

The RCA Hn of type GLn (see Section 2.5.3) admits a grading in which deg sk = 0,
deg xi = 1, and deg yi = −1. The subalgebra Hgln = H(0)

n of those elements that have
degree zero was studied in [51]. It is generated by the elements sk and the products

121
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Eij := xiyj (i, j ∈ {1, . . . , n}) with relations

skEij = Esk(i),sk(j)sk,

EijEkl − EilEkj = EilSjk − EijSlk, (6.1)

EijEkl − EkjEil = SjkEil − SjiEkl. (6.2)

Here Sij is defined by formula (2.14). Equivalently, the third set of relations could be
replaced by the commutator-type relations

[Eij, Ekl] = EilSjk − SilEkj + [Skl, Eij].

Note that Sij is symmetric in i and j, it has degree 0, and it c-deforms the Kronecker
delta δij, so the above commutator relation c-deforms the relations of the standard gener-
ators of the Lie algebra gln.

The algebra Hgln admits a filtration determined by assigning degree 1 to the gener-
ators Eij and degree 0 to sk. The associated graded algebra is grHgln = CSn ⋉ C[M],
where

M = {M ∈ Matn(C) : rankM ≤ 1},

that is, M is the space of n× n complex matrices of rank at most one.
The algebra Hgln admits a PBW-type basis consisting of the monomials

wEk1
i1j1

· · ·Ekr
irjr
,

where w ∈ Sn, r ∈ Z≥0, ku ∈ Z>0, 1 ≤ i1 ≤ · · · ≤ ir ≤ n, and 1 ≤ j1 ≤ · · · ≤
jr ≤ n with iu = iu+1 ⇒ ju < ju+1. The algebra Hgln is a flat c-deformation of CSn ⋉
ρJS(U(gln)), where ρJS is the oscillator (also known as Jordan–Schwinger) representation of
the universal enveloping algebra U(gln) mapping the standard basis of the Lie algebra gln

to the operators xi∂xj
(i, j ∈ {1, . . . , n}). The algebra Hgln is an example of a non-

homogeneous quadratic algebra over CSn of PBW type (cf. [12]).
The element eu =

∑n
i=1 xiyi − c

∑
i<j sij (which in the polynomial representation

of the RCA is up to a constant equal to the Euler operator
∑n

i=1 xi∂xi
) generates the

centre Z(Hgln).
The TCA Htrig

n of type GLn (see Section 2.5.3) also has a grading, given by deg sk =

deg ŷi = 0 and degX±1
i = ±1 [10]. The embedding (2.18) preserves the respective grad-

ings. The degree zero part Htrig, (0)
n is generated by the elements sk, ŷi, and XiX

−1
j . The

algebra Hgln = H(0)
n embeds into Htrig, (0)

n via a restriction of the mapping (2.18).
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6.2 Quantum group Uq(gln)

Let q ∈ C× be not a root of unity. The quantum group Uq(gln) is the (unital, associative)
algebra over C generated by g±1

i (1 ≤ i ≤ n) and ek, fk (1 ≤ k ≤ n − 1) subject to the
following relations [75, p. 163–164] (cf. [70]):

gig
−1
i = g−1

i gi = 1, [gi, gj] = 0,

giekg
−1
i = qδik−δi,k+1ek, gifkg

−1
i = qδi,k+1−δikfk,

[ek, fl] = δkl
gkg

−1
k+1 − g−1

k gk+1

q − q−1
,

[ek, el] = 0 = [fk, fl] if |k − l| > 1,

e2kel − (q + q−1)ekelek + ele
2
k = 0 if |k − l| = 1,

f 2
kfl − (q + q−1)fkflfk + flf

2
k = 0 if |k − l| = 1,

(1 ≤ i, j ≤ n, 1 ≤ k, l ≤ n − 1). It follows from these relations that
∏n

i=1 gi lies in the
centre Z(Uq(gln)) of this algebra, and [70, Proposition 4] provides some further central
elements.

In this section, we recall a representation of Uq(gln) on the space of Laurent polynomials
C[X±1

1 , . . . , X±1
n ]. Let us firstly set up some notations. Let ti = qXi∂Xi be the q-shift

operator which acts on functions f by (tif)(X1, . . . , Xn) = f(X1, . . . , qXi, . . . , Xn). Let
us also consider the following operator

di =
X−1

i (ti − t−1
i )

q − q−1
. (6.3)

In the q → 1 limit, it satisfies di → ∂Xi
.

The next lemma collects some properties of di and ti, which can be checked by a direct
computation. We use the notation [a, b]λ for λ ∈ C to mean ab− λba.

Lemma 6.1. For all i, j ∈ {1, . . . , n}, we have

(1) [ti, Xj]qδij = 0,

(2) [di, dj] = 0 = [ti, tj],

(3) [di, tj]qδij = 0,

(4) diXi = (q − q−1)−1(qti − q−1t−1
i ), and [di, Xj]q±δij = δijt

∓1
i .

In terms of di, ti, and the multiplication operators Xi, one can write down a repres-
entation of Uq(gln) on C[X±1

1 , . . . , X±1
n ] as follows. It is called the Jordan–Schwinger or

q-oscillator representation.
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Proposition 6.2. [61] There is a representation ρ of Uq(gln) given on the generators by
ρ : g±1

i 7→ t±1
i , ek 7→ Xkdk+1, and fk 7→ Xk+1dk.

In fact, this representation ρ has a submodule C[X1, . . . , Xn], which we revisit later in
Section 6.3.3.

Let us consider the algebra A = ρ(Uq(gln)), the image of Uq(gln) under the represent-
ation ρ:

A = ⟨t±1
i (1 ≤ i ≤ n), Xkdk+1, Xk+1dk (1 ≤ k ≤ n− 1)⟩.

By the isomorphism theorems, A is isomorphic to Uq(gln)/Iq for Iq = ker(ρ). We next
describe the algebra A abstractly by (a different set of) generators and relations.

Let Eq
ij = Xidj (i, j ∈ {1, . . . , n}). Then Eq

ii = (q − q−1)−1(ti − t−1
i ) ∈ A. The

operators Eq
ij for |i − j| > 1 are related to Jimbo’s analogue of the non-simple root

vectors of the Lie algebra gln from [70, Proposition 1]. The following formulas hold for all
1 ≤ i < j ≤ n− 1 [39, (3.3)]:

Eq
i,j+1 = ρ ([ei, [ei+1, · · · [ej−1, ej]q · · · ]q]q gi+1gi+2 · · · gj) ,

Eq
j+1,i = ρ

(
[fj, [fj−1, · · · [fi+1, fi]q−1 · · · ]q−1 ]q−1g−1

i+1 g
−1
i+2 · · · g−1

j

)
.

It follows that Eq
ij ∈ A for all i, j, and that A = ⟨t±1

i , Eq
ij (i ̸= j)⟩ as an algebra.

In the q → 1 limit, the representation ρ recovers the oscillator representation of the
universal enveloping algebra U(gln), since limq→1E

q
ij = Xi∂Xj

for all i, j.
The next two propositions describe relations satisfied by the generators Eq

ij and ti. Let
us introduce the notation

Sq
ij := [di, Xj] =

(q + 1)−1
(
qti + t−1

i

)
if i = j,

0 if i ̸= j,

where we used Lemma 6.1 (4). Note that Sq
ij is symmetric in i and j, and at q = 1, it

reduces to δij. The following proposition is a straightforward consequence of the definitions
and the commutativity of the operators di. (It will also follow from the τ = 1 limit of the
more general discussions presented in the next section.)

Proposition 6.3. For all i, j, k, l ∈ {1, . . . , n},

Eq
ijE

q
kl − Eq

ilE
q
kj = Eq

ilS
q
jk − Eq

ijS
q
lk,

Eq
ijE

q
kl − Eq

kjE
q
il = Sq

jkE
q
il − Sq

jiE
q
kl.

(6.4)

Notice that the form of the relations (6.4) is exactly the same as that of relations (6.1)
and (6.2). The following statement holds as a result of Lemma 6.1 (1) and (3).
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Proposition 6.4. For all i, j, k ∈ {1, . . . , n},

tiE
q
jkt

−1
i = qδij−δikEq

jk. (6.5)

The preceding two propositions lead to a PBW-type basis and a presentation for the
algebra A.

Proposition 6.5. The algebra A has a linear basis formed by elements

(Eq
i1j1

)k1 · · · (Eq
irjr

)kr
n∏

l=1

tml
l , (6.6)

where r ∈ Z≥0, ku ∈ Z>0, ml ∈ Z, 1 ≤ i1 ≤ · · · ≤ ir ≤ n, 1 ≤ j1 ≤ · · · ≤ jr ≤ n with
iu = iu+1 ⇒ ju < ju+1, and none of the indices iu equal any of the indices jv.

The algebra A has a presentation by generators t±1
i , Eq

ij (i ̸= j) and relations (6.4)
with i ̸= j and k ̸= l, (6.5) with j ̸= k, and the Laurent relations for t±1

i , namely
tit

−1
i = t−1

i ti = 1 and [ti, tj] = 0 for all i, j.

Proof. It follows from relations (6.4) and (6.5) that any element of A can be written as
a linear combination of elements of the form (6.6), thus they span A. We now show that
they are linearly independent over C as operators on C[X±1

1 , . . . , X±1
n ].

For any k ∈ Z>0 and i ̸= j, we get by using Lemma 6.1 that

(Eq
ij)

k = (q − q−1)−kXk
i X

−k
j

k−1∏
l=0

(q−ltj − qlt−1
j ).

More generally, for elements of the form (6.6) we have

(Eq
i1j1

)k1 · · · (Eq
irjr

)kr
n∏

l=1

tml
l ∝ Xk1

i1
· · ·Xkr

ir
X−k1

j1
· · ·X−kr

jr
tk1j1 · · · t

kr
jr

n∏
l=1

tml
l + . . . ,

where . . . denotes terms in which the overall sum of the exponents on the ti’s is lower than
in the above leading term, and ∝ denotes proportionality by a non-zero factor, which may
depend on q.

Assume a non-trivial linear dependence of some terms of the form (6.6). This implies
a non-trivial linear dependence of their corresponding leading (with highest degree in ti’s)
terms

Xk1
i1

· · ·Xkr
ir
X−k1

j1
· · ·X−kr

jr
tk1j1 · · · t

kr
jr

n∏
l=1

tml
l . (6.7)

By the assumptions on the indices of the monomials (6.6), their leading terms (6.7) are
different, and since

∏n
l=1X

nl
l

∏n
l=1 t

n′
l

l (nl, n
′
l ∈ Z) are linearly independent over C as

operators on C[X±1
1 , . . . , X±1

n ] (we are using here that q is not a root of unity), we get a
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contradiction. The statement follows. ■

The above basis can be used to give the following proof of what the centre of A is.

Proposition 6.6. The centre Z(A) is generated by (
∏n

i=1 ti)
±1.

Proof. For the monomial (6.6), if i1 = i2 = · · · = ir̃ < ir̃+1 ≤ · · · ≤ ir then

ti1(E
q
i1j1

)k1 · · · (Eq
irjr

)kr

(
n∏

l=1

tml
l

)
t−1
i1

= qk1+k2+···+kr̃(Eq
i1j1

)k1 · · · (Eq
irjr

)kr
n∏

l=1

tml
l .

Together with our assumption that q is not a root of unity, this implies for any f ∈ Z(A)

that its expansion in the PBW basis from Proposition 6.5 cannot involve any basis elements
for which r > 0.

Similarly, since we have for all 1 ≤ k ≤ n− 1 that(
n∏

l=1

tml
l

)
Eq

k,k+1 = qmk−mk+1Eq
k,k+1

n∏
l=1

tml
l ,

we get that the expansion of f can only contain terms of the form
∏n

l=1 t
ml
l where all ml

are equal. Conversely, all such terms do belong to the centre. The statement follows. ■

Additionally, let us consider the crossed product algebra A := CSn ⋉ A. As a vector
space, A ∼= CSn ⊗ A, and its algebra structure is defined by the natural action of the
symmetric group Sn on A given by

skt
±1
i = t±1

sk(i)
sk, skE

q
ij = Eq

sk(i),sk(j)
sk, (6.8)

1 ≤ k ≤ n − 1, where sk = (k, k + 1) ∈ Sn. This action is well-defined as it preserves
the defining relations of A given in Proposition 6.5. The algebra A has a presentation
analogous to that of A, just with the extra generators sk and the extra relations (6.8)
along with the Coxeter relations among sk that hold in Sn. The algebra A has a basis of
PBW type consisting of the elements

w(Eq
i1j1

)k1 · · · (Eq
irjr

)kr
n∏

l=1

tml
l (w ∈ Sn) (6.9)

with the same restrictions on the indices as above in Proposition 6.5.

Proposition 6.7. The centre of A satisfies Z(A) = Z(A) = ⟨(
∏n

i=1 ti)
±1⟩.

Proof. Since all elements of Z(A), described in Proposition 6.6, are Sn-invariant, we have
that Z(A) ⊆ Z(A). Since A ⊂ A, we have Z(A)∩A ⊆ Z(A). It is now sufficient to show
that Z(A) ⊆ A.
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Denote the elements of the basis (6.9) schematically as wET where

E = (Eq
i1j1

)k1 · · · (Eq
irjr

)kr

and T =
∏n

l=1 t
ml
l . We have tiwET ∝ wETtw−1(i), where the proportionality factor is a

power of q. For any f ∈ Z(A), let us group in its expansion in the basis (6.9) the terms
that have the same w and E parts. Each such group has the form wE

∑
k αkT

(k), where
αk ∈ C and T (k) =

∏n
l=1 t

mkl
l . Any ti has to commute individually with each of the groups.

Suppose w ̸= id. Take i, j such that j = w−1(i) ̸= i. We have tjE = qaEtj for some a.
Commutativity requires

wE
∑
k

αkT
(k)ti = tiwE

∑
k

αkT
(k) = qawE

∑
k

αkT
(k)tj,

or equivalently, wE(qa − tit
−1
j )
∑

k αkT
(k) = 0, which forces

∑
k αkT

(k) = 0.
This showed for any f ∈ Z(A) that its expansion in the basis (6.9) cannot involve any

basis elements for which w ̸= id. This completes the proof. ■

In the next section, we define inside the DAHA of type GLn a subalgebra that deforms
the algebra A in a natural way.

6.3 Subalgebra Hgln

In this section, we describe a subalgebra, which we denote Hgln , of the DAHA Hn. As we
explain, this subalgebra is a q-deformation of the degree zero part Hgln of the RCA of type
GLn, and it is a τ -deformation of the algebra A ∼= CSn ⋉ (Uq(gln)/Iq) from Section 6.2.

We will use throughout the following shorthand notations

T+
ij =

TiTi+1 · · ·Tj if i ≤ j,

1 if i > j,
(T−1)+ij =

T−1
i T−1

i+1 · · ·T−1
j if i ≤ j,

1 if i > j,

T−
ij =

TiTi−1 · · ·Tj if i ≥ j,

1 if i < j,
(T−1)−ij =

T−1
i T−1

i−1 · · ·T−1
j if i ≥ j,

1 if i < j,

(Rε)±ij :=

(T ε)−i−1,j+1T
±2
j (T−ε)+j+1,i−1 if i > j,

1 if i ≤ j,
with ε ∈ {1,−1}.

We write R for R1 and T for T 1. We note that (Rε)−ij(Rε)+ij = 1 = T+
ij (T

−1)−ji. Notice
that (Rε)±ij, when thought of as elements of the braid group, belong to (and generate) the
pure braid group, which is the kernel of the quotient map BSn → Sn.
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Let Dn = (q − q−1)−1X−1
n (Yn − Y −1

n ), and let

Di = T+
i,n−1DnT

−
n−1,i = (q − q−1)−1X−1

i (T−1)+i,n−1(Yn − Y −1
n )T−

n−1,i (6.10)

for 1 ≤ i ≤ n − 1. With the assignments (2.16), upon performing the trigonometric
degeneration q → 1, we get Di → yi, where we implicitly use the embedding (2.18).
At τ = 1, the elements Di act in the polynomial representation of the DAHA as the
operators di from Section 6.2.

Let eij = XiDj (i, j ∈ {1, . . . , n}). We now define the main object of this chapter.
Inside Hn, we define Hgln = Hgln

q,τ as the following subalgebra:

Hgln = ⟨Tk, Y ±1
i , eij : 1 ≤ k ≤ n− 1, 1 ≤ i, j ≤ n, i ̸= j⟩ ⊂ Hn.

Note that, by equality (6.10), we have

eii = (q − q−1)−1(T−1)+i,n−1(Yn − Y −1
n )T−

n−1,i ∈ Hgln .

At τ = 1, the generators Tk, Y ±1
i , and eij of Hgln act (in the polynomial representation)

respectively as sk, t±1
i , and Eq

ij, which generate the algebra A from Section 6.2. In the
trigonometric limit q → 1, we get Tk → sk, Y ±1

i → 1, and eij → xiyj for all i, j, which are
the generators of Hgln , where we implicitly use the embedding (2.18).

We note that Hgln ⊂ H(0)
n , where H(0)

n is the degree zero subalgebra of Hn (see Sec-
tion 2.4); however, Hgln ̸= H(0)

n for n ≥ 2. Indeed, in the limit q → 1, we do not get, for
example, the elements XiX

−1
j for i ̸= j.

In the next remark, we explain that the algebra Hgln is isomorphic to a subalgebra of
a cyclotomic DAHA introduced in [10].

Remark 6.8. Elements similar to but different from Di appear in the definition of the
cyclotomic DAHA HH l

n,t(Z, q
−1) for l = 2, Z1 = 1, Z2 = −1, Z = (Z1, Z2) [10, Section 3.6],

where we assume that t is a formal parameter and q is numerical. Let us make the relation
more precise. The following elements DBEF

i ≡ D
(2)
i were considered in [10]:

DBEF
i = (T−1)−i−1,1X

−1
1 (Y 2

1 − 1)(T−1)+1,i−1. (6.11)

The DAHA HHn,t(q) considered in [10] is isomorphic to the DAHA Hn considered in this
thesis via an isomorphism g : HHn,t(q) → Hn given by

g(Tk) = Tk, g(Xi) = Y −1
i , g(Yi) = Xi, g(t) = τ,

where t = t2, and the parameter q from [10] corresponds to our q. According to [10], there
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is an isomorphism φ : HHn,t(q
−1) → HHn,t(q) given by

φ(Tk) = T−1
k , φ(Xi) = Y −1

i , φ(Yi) = X−1
i , φ(t) = t−1.

Also, it is straightforward to check that the DAHA Hn has an automorphism h given by

h(Tk) = Tn−k, h(Xi) = X−1
n−i+1, h(Yi) = Y −1

n−i+1, h(τ) = τ.

By combining these morphisms and applying them to DBEF
n−i+1 ∈ HH2

n,t((1,−1), q−1), we
get

(h ◦ g ◦ φ)(DBEF
n−i+1) = T+

i,n−1X
−1
n (Y −2

n − 1)T−
n−1,i

= (q−1 − q)DiY
−1
i T+

i,n−1T
−
n−1,i. (6.12)

Equivalently, Di = (q−1 − q)−1(h ◦ g ◦ φ)(DBEF
n−i+1)(T

−1)+i,n−1YnT
−
n−1,i. It follows from this

that (φ−1 ◦ g−1 ◦ h)(Di) ∈ HH2
n,t((1,−1), q−1). This implies that Hgln is isomorphic to a

subalgebra of HH2
n,t((1,−1), q−1) ⊂ HH1

n,t(1, q
−1). Recall that a general cyclotomic DAHA

HH l
n,t(Z, q) for Z = (Z1, . . . , Zl) ∈ Cl and l ∈ Z≥1 was defined in [10] as the subalgebra of

HHn,t(q) generated by Tk (1 ≤ k ≤ n− 1), Xi, Y ±1
i , and

D
(l)
i = (T−1)−i−1,1X

−1
1 (Y1 − Z1) · · · (Y1 − Zl)(T

−1)+1,i−1 (1 ≤ i ≤ n).

The choice (6.10) of the elementsDi is needed in order to be able to make the connection
of the subalgebra Hgln with the quantum group Uq(gln). We now derive some properties
of Di for later use.

6.3.1 Properties of Di

We begin by some technical preliminaries. The following lemma and its corollary record
some braid group identities.

Lemma 6.9. For all n− 1 ≥ k > j ≥ i ≥ 1 and ε ∈ {±1}, we have

T ε
j+1T

+
ik = T+

ikT
ε
j , T−

kiT
ε
j+1 = T ε

j T
−
ki .

Proof. Using the braid relations (and their versions with some of the generators inverted),
we get

T ε
j+1T

+
ik = T+

i,j−1T
ε
j+1TjTj+1T

+
j+2,k = T+

i,j−1TjTj+1T
ε
j T

+
j+2,k = T+

ikT
ε
j ,

as required. Similarly for the other relation. ■

The following is a straightforward corollary of the preceding lemma.
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Corollary 6.10. For all n ≥ j > i ≥ 1 and ε ∈ {±1}, we have

(i) (T ε)+j,n−1T
+
i,n−1 = T+

i,n−1(T
ε)+j−1,n−2,

(ii) (T ε)−n−1,jT
+
i,n−1 = T+

i,n−1(T
ε)−n−2,j−1,

(iii) T−
n−1,i(T

ε)−n−1,j = (T ε)−n−2,j−1T
−
n−1,i,

(iv) T−
n−1,i(T

ε)+j,n−1 = (T ε)+j−1,n−2T
−
n−1,i.

The next lemma gives some identities for (Rε)±ji in the Hecke algebra.

Lemma 6.11. For all n ≥ j > i ≥ 1 and ε ∈ {±1}, we have

(Rε)±ji = (T−ε)+i,j−2T
±2
j−1(T

ε)−j−2,i.

Proof. Let ε = −1. The claim trivially holds if j = i + 1, so let j > i + 1. We want to
show for δ ∈ {±1} that

T 2δ
i T

+
i+1,j−1T

+
i,j−2 = T+

i+1,j−1T
+
i,j−2T

2δ
j−1. (6.13)

Since T 2δ
i = 1 + δ(τ − τ−1)T δ

i , the left-hand side of equality (6.13) equals

T+
i+1,j−1T

+
i,j−2 + δ(τ − τ−1)T δ

i T
+
i+1,j−1T

+
i,j−2. (6.14)

By the braid relations, for any n ≥ j > l > i ≥ 1, we have

(T+
i,l−2T

δ
l−1T

+
l,j−1)Tl−1 = Tl(T

+
i,l−1T

δ
l T

+
l+1,j−1)

(proved similarly to Lemma 6.9), which upon repeated application (for l = i+1, . . . , j−1)
gives that T δ

i T
+
i+1,j−1T

+
i,j−2 = T+

i+1,j−1T
+
i,j−2T

δ
j−1. Hence the expression (6.14) equals

T+
i+1,j−1T

+
i,j−2 + δ(τ − τ−1)T+

i+1,j−1T
+
i,j−2T

δ
j−1 = T+

i+1,j−1T
+
i,j−2T

2δ
j−1,

as required. The case when ε = 1 can be proved similarly. ■

The next lemma is an analogue of relations (2.6) and (2.7) for Tk and Di.

Lemma 6.12. We have [Tk, Di] = 0 for i ̸= k, k + 1, and T−1
k DkT

−1
k = Dk+1.

Proof. The fact that T−1
k DkT

−1
k = Dk+1 is clear from the definition. If i ̸= k, k + 1, then

either i ≥ k + 2, in which case [Tk, Di] = 0 because Tk commutes with X−1
n , Y ±1

n , and
with both T+

i,n−1 and T−
n−1,i; or i < k, in which case TkT+

i,n−1 = T+
i,n−1Tk−1 and Tk−1T

−
n−1,i =

T−
n−1,iTk by Lemma 6.9, and so [Tk, Di] = 0 follows, as [Tk−1, X

−1
n ] = [Tk−1, Y

±1
n ] = 0. ■
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The next lemma is a τ -deformed version of Lemma 6.1.

Lemma 6.13. The following relations are satisfied.

(1) (Relations between Yi and Xj) For n ≥ i ̸= j ≥ 1, n ≥ l ≥ 1, we have

YiR+
ijXj = Xj(R−1)−jiYi,

YlXl = qT+
l,n−1T

−
n−1,lXlYlT

−
l−1,1T

+
1,l−1.

(2) [Di, Dj] = 0 for all i, j.

(3) (Relations between Yi and Dj) For n ≥ i ̸= j ≥ 1, n ≥ l ≥ 1, we have

YiDj = (R−1)+jiDjYiR+
ij,

YlT
−
l−1,1T

+
1,l−1Dl = q−1Dl(T

−1)+l,n−1(T
−1)−n−1,lYl.

(4) (Relations between Xi and Dj) For n ≥ l ≥ 1, we have

XlDl = (q − q−1)−1(T−1)+l,n−1(Yn − Y −1
n )T−

n−1,l, (6.15)

DlXl = (q − q−1)−1(T−1)−l−1,1(qY1 − q−1Y −1
1 )T+

1,l−1. (6.16)

For n ≥ j > i ≥ 1, we have

[Dj, Xi] =
τ−1 − τ

q − q−1
(T−1)+i,n−1(T

−1)−j−2,1(qY1 + Y −1
n )T−

n−1,jT
+
1,i−1, (6.17)

[Di, Xj] =
τ−1 − τ

q − q−1
(T−1)−i−1,1(T

−1)+j,n−1(q
−1Y −1

1 + Yn)T
+
1,j−2T

−
n−1,i. (6.18)

The trigonometric degeneration q → 1 of relations (6.15)–(6.18) recovers the commut-
ator relation (2.14) that holds in the RCA Hn. We now proceed to prove each part of
Lemma 6.13 in turn. Another proof of the commutativity of Di will follow from the proof
of Proposition 6.32 below. The important thing for us about the form of relations (6.15)–
(6.18) will be that their right-hand sides depend only on the generators T and Y .

Proof of Lemma 6.13 (1). This follows from [35, (1.4.64) and (1.4.68)] and the duality
between X and Y described in [35, Theorem 1.4.8]. ■

Proof of Lemma 6.13 (2). As Yn−1Xn = XnT
−2
n−1Yn−1 by part (1), we have

(Yn − Y −1
n )Tn−1X

−1
n = T−1

n−1Yn−1X
−1
n − Tn−1Y

−1
n−1T

2
n−1X

−1
n

= Tn−1X
−1
n (Yn−1 − Y −1

n−1). (6.19)
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Next, we have
[(Yn−1 − Y −1

n−1)(Yn − Y −1
n ), Tn−1] = 0. (6.20)

Indeed, this follows from the fact that [Tn−1, (YnYn−1)
±1] = 0 and that

Tn−1(Y
−1
n−1Yn + Yn−1Y

−1
n ) = Y −1

n T−1
n−1Yn + (τ − τ−1)Yn−1Y

−1
n + YnTn−1Y

−1
n

= Y −1
n Yn−1T

−1
n−1 + (τ − τ−1)Yn−1Y

−1
n + YnY

−1
n−1Tn−1 = (Y −1

n−1Yn + Yn−1Y
−1
n )Tn−1,

where we used several times that T±1
n−1 = T∓1

n−1 ± (τ − τ−1).
Using relations (6.19), (6.20), and that Dn−1 = Tn−1DnTn−1, we get

(q − q−1)2[Dn−1, Dn] = [Tn−1X
−1
n (Yn − Y −1

n )Tn−1, X
−1
n (Yn − Y −1

n )]

(6.19)
= X−1

n−1X
−1
n (Yn−1 − Y −1

n−1)(Yn − Y −1
n )

−X−1
n X−1

n−1T
−1
n−1(Yn−1 − Y −1

n−1)(Yn − Y −1
n )Tn−1

(6.20)
= 0.

For 1 ≤ i ≤ n− 2, since [Dn, T
+
i,n−2] = [Dn, T

−
n−2,i] = 0, we get

[Di, Dn] = [T+
i,n−2Dn−1T

−
n−2,i, Dn] = T+

i,n−2[Dn−1, Dn]T
−
n−2,i = 0.

For n− 1 ≥ j > i ≥ 1, [Di, T
+
j,n−1] = [Di, T

−
n−1,j] = 0 by Lemma 6.12, hence

[Di, Dj] = [Di, T
+
j,n−1DnT

−
n−1,j] = T+

j,n−1[Di, Dn]T
−
n−1,j = 0.

This completes the proof. ■

Proof of Lemma 6.13 (3). Let n ≥ j > i ≥ 1. Firstly, using equality (6.10), Lemma 6.13 (1),
and that [Yi, (T

−1)+j,n−1] = [Yi, T
−
n−1,j] = 0, we get

(q − q−1)YiDj = YiX
−1
j (T−1)+j,n−1(Yn − Y −1

n )T−
n−1,j

= (R−1)+jiX
−1
j Yi(T

−1)+j,n−1(Yn − Y −1
n )T−

n−1,j

= (q − q−1)(R−1)+jiDjYi,

as required. Secondly, by using equality (6.10), Lemmas 6.13 (1) and 6.11, and that
Yj(T

−1)+i,j−2Tj−1(T
−1)+j,n−1 = (T−1)+i,n−1Yj−1, we get

(q − q−1)YjDi = YjX
−1
i (T−1)+i,n−1(Yn − Y −1

n )T−
n−1,i

= X−1
i Yj(T

−1)+i,j−2Tj−1(T
−1)+j,n−1(Yn − Y −1

n )T−
n−1,i

= X−1
i (T−1)+i,n−1(Yn − Y −1

n )Yj−1T
−
n−1,i

= (q − q−1)Di(T
−1)+i,n−1Yj−1T

−
n−1,i

= (q − q−1)DiYj(T
−1)+i,j−2T

2
j−1T

−
j−2,i = (q − q−1)DiYjR+

ji,
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as required. Thirdly, by a similar calculation

(q − q−1)YlT
−
l−1,1T

+
1,l−1Dl = YlT

−
l−1,1T

+
1,l−1X

−1
l (T−1)+l,n−1(Yn − Y −1

n )T−
n−1,l

= q−1X−1
l (T−1)+l,n−1(T

−1)−n−1,lYl(T
−1)+l,n−1(Yn − Y −1

n )T−
n−1,l

= q−1X−1
l (T−1)+l,n−1(Yn − Y −1

n )(T−1)−n−1,lYl

= q−1(q − q−1)Dl(T
−1)+l,n−1(T

−1)−n−1,lYl,

as required. ■

Proof of Lemma 6.13 (4). Relation (6.15) follows from equality (6.10).
Next, using Lemma 6.13 (1) with l = n, we compute

(q − q−1)D1X1 = T+
1,n−1X

−1
n (Yn − Y −1

n )Xn(T
−1)−n−1,1

= T+
1,n−1

(
qYnT

−
n−1,1T

+
1,n−1 − q−1(T−1)−n−1,1(T

−1)+1,n−1Y
−1
n

)
(T−1)−n−1,1

= qT+
1,n−1YnT

−
n−1,1 − q−1(T−1)+1,n−1Y

−1
n (T−1)−n−1,1 = qY1 − q−1Y −1

1 , (6.21)

which proves relation (6.16) for l = 1. For 2 ≤ l ≤ n, we have

DlXl = (T−1)−l−1,1D1(T
−1)+1,l−1Xl = (T−1)−l−1,1D1X1T

+
1,l−1,

which combined with equality (6.21) completes the proof of relation (6.16).
Next, using Lemma 6.13 (1) with i = n, j = 1, and that R+

n,1 = 1+(τ−τ−1)T−
n−1,1(T

−1)+2,n−1,
we get

(q − q−1)[Dn, X1] = X−1
n [Yn − Y −1

n , X1]

= X−1
n

(
Yn(1−R+

n,1)X1 + (1−R+
n,1)X1Y

−1
n

)
= (τ−1 − τ)X−1

n

(
YnT

−
n−1,1(T

−1)+2,n−1X1 + T−
n−1,1(T

−1)+2,n−1X1Y
−1
n

)
. (6.22)

Here T−
n−1,1(T

−1)+2,n−1X1 = Xn(T
−1)−n−1,1(T

−1)+2,n−1, and we apply Lemma 6.13 (1) with
l = n to get that the expression (6.22) equals

(τ−1 − τ)(qYnT
−
n−1,1(T

−1)+2,n−1 + (T−1)−n−1,1(T
−1)+2,n−1Y

−1
n )

= (τ−1 − τ)(T−1)−n−1,1(T
−1)+2,n−1(qY1 + Y −1

n ). (6.23)

We then note that, for n ≥ j > i ≥ 1, we have

[Dj, Xi] = [T+
j,n−1DnT

−
n−1,j, T

−
i−1,1X1T

+
1,i−1] = T−

i−1,1T
+
j,n−1[Dn, X1]T

−
n−1,jT

+
1,i−1, (6.24)

since [Dn, Tk] = 0 if k ≤ n − 2, and [X1, Tk] = 0 if k ≥ 2. Relation (6.17) then follows
from (6.23), (6.24), and the fact that (T−1)−j−1,2(T

−1)+1,n−1 = (T−1)+1,n−1(T
−1)−j−2,1. For
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the latter, we use the inverse of one of the relations in Lemma 6.9 to move successively
T−1
2 , . . . , T−1

j−1 to the right of (T−1)+1,n−1.
It now only remains to prove relation (6.18).
By Corollary 6.10 (i) and (iii) (with i = 1, j = 2), we respectively get (T+

1,n−1)
2 =

T+
2,n−1T

+
1,n−2T

2
n−1 and (T−

n−1,1)
2 = T 2

n−1T
−
n−2,1T

−
n−1,2. We will additionally use that T 2

n−1 =

1 + (τ − τ−1)Tn−1, that [Dn, T
−
n−2,1] = 0 = [Dn, T

+
1,n−2], and that [X1, T

−
n−1,2] = 0 =

[X1, T
+
2,n−1]. We also apply Corollary 6.10 (ii), (iv), relations (6.23), (6.15) (with l = 1),

and (6.21). We get

[D1, Xn] = [T+
1,n−1DnT

−
n−1,1, T

−
n−1,1X1T

+
1,n−1]

= T+
1,n−1DnT

2
n−1T

−
n−2,1T

−
n−1,2X1T

+
1,n−1 − T−

n−1,1X1T
+
2,n−1T

+
1,n−2T

2
n−1DnT

−
n−1,1

= T−
n−1,2T

+
1,n−1[Dn, X1]T

−
n−1,1T

+
2,n−1

+ (τ−1 − τ)
(
T+
1,n−1T

−
n−2,1X1D1 −D1X1T

−
n−1,1T

+
2,n−1

)
=
τ−1 − τ

q − q−1
(q−1Y −1

1 + Yn)T
−
n−1,1T

+
2,n−1. (6.25)

We then note that, for n ≥ j > i ≥ 1, we have

[Di, Xj] = [(T−1)−i−1,1D1(T
−1)+1,i−1, (T

−1)+j,n−1Xn(T
−1)−n−1,j]

= (T−1)−i−1,1(T
−1)+j,n−1[D1, Xn](T

−1)−n−1,j(T
−1)+1,i−1, (6.26)

as [D1, (T
−1)+j,n−1] = [D1, (T

−1)−n−1,j] = 0 by Lemma 6.12, and [Xj, (T
−1)−i−1,1] = 0 =

[Xj, (T
−1)+1,i−1]. Relation (6.18) then follows from (6.25) and (6.26) because we have

T−
n−1,1T

+
2,j−1 = T+

1,j−2T
−
n−1,1, which is seen by using a relation from Lemma 6.9 to move

successively T2, . . . , Tj−1 to the left of T−
n−1,1. ■

6.3.2 A presentation of Hgln and a basis

We begin this section by describing relations among the generators of Hgln . We write them
in a form that makes it apparent that they τ -deform the relations of the algebra A from
Section 6.2.

Define Sτ
ij := [Di, Xj]. Explicit formulas for Sτ

ij follow from Lemma 6.13 (4). In
particular, one can see that Sτ

ij ∈ Hgln . The following statement is a consequence of the
commutativity of the elements Di. These relations in the special case of τ = 1 were given
earlier in Proposition 6.3. The relations below look formally the same as those in (6.4)
just with Eq

ij replaced by eij and Sq
ij by Sτ

ij.

Proposition 6.14. For all 1 ≤ i ̸= j ≤ n, 1 ≤ k ̸= l ≤ n, we have

eijekl − eilekj = eilS
τ
jk − eijS

τ
lk,
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eijekl − ekjeil = Sτ
jkeil − Sτ

jiekl.

Proof. The second relation is proved similarly to the first. For the first one, we have

eijekl = eij (DlXk − Sτ
lk) = eilDjXk − eijS

τ
lk = eil

(
ekj + Sτ

jk

)
− eijS

τ
lk. ■

Further relations are as follows. One can move Tk to the left through Y ±1
i thanks

to relations (2.7) of the DAHA Hn. The relations that enable us to move Tk to the left
through eij (i ̸= j) are given in the next proposition. These relations at τ = 1 coincide
with those from (6.8) between sk and Eq

ij.

Proposition 6.15. For i, j, k ∈ {1, . . . , n} with i ̸= n, j ̸= i, i+ 1, and k ̸= j, i, i+ 1, we
have

Tiei,i+1Ti = ei+1,i + (τ−1 − τ)(q − q−1)−1(T−1)+i+1,n−1(Yn − Y −1
n )T−

n−1,i,

TieijTi = ei+1,j, Tiej,i+1Ti = eji, ejkTi = Tiejk.

Proof. For 1 ≤ i ≤ n− 1, we have

Tiei,i+1Ti = TiXiT
−1
i Di = Xi+1Di + (τ−1 − τ)TiXiDi,

and the first relation follows. For j ∈ {1, . . . , n}\{i, i+1}, Lemma 6.12 gives [Dj, Ti] = 0,
and so TieijTi = TiXiTiDj = Xi+1Dj = ei+1,j, as required. The third relation is proved
similarly, since [Xj, Ti] = 0 and TiDi+1Ti = Di. If also k ∈ {1, . . . , n} \ {i, i + 1}, then
[ejk, Ti] = 0 as [Dk, Ti] = 0, too. ■

The relations that enable us to move Y ±1
i to the right through ejk (j ̸= k) can be

split into three cases: Y ±1
i with eij for i ̸= j; Y ±1

i with eji for i ̸= j; and Y ±1
i with ejk

for i ̸= j ̸= k ̸= i. We have the following statement, which at τ = 1 reproduces (parts
of) Proposition 6.4. The only thing that we will use about the form of the expressions C1

and C2 below is that they only depend on the generators T and Y , not their precise form.

Proposition 6.16. (1) For n ≥ i ̸= j ≥ 1, we have

Yieij(T
−1)−i−1,1(T

−1)+1,i−1Y
−1
i = qT+

i,n−1T
−
n−1,ieij + (q − q−1)−1(τ − τ−1)C1,

where

C1 =

qT+
i,n−1(T

−1)−j−2,i(Yn − Y −1
n )T−

n−1,j if j > i,

T+
i,n−1(T

−1)−j−1,1(T
−1)+1,n−2Y

−1
n−1(Y

2
n − 1)T−

n−1,j(T
−1)−n−1,i if i > j.
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(2) For n ≥ i ̸= j ≥ 1, we have

YiT
−
i−1,1T

+
1,i−1ejiY

−1
i = q−1eji(T

−1)+i,n−1(T
−1)−n−1,i + (q − q−1)−1(τ−1 − τ)C2,

where

C2 =

q−1(T−1)+j,n−1(Yn − Y −1
n )T+

i,j−2(T
−1)−n−1,i if j > i,

T+
i,n−1(T

−1)+j,n−1Yn−1(1− Y −2
n )T−

n−2,1T
+
1,j−1(T

−1)−n−1,i if i > j.

(3) For all i, j, k ∈ {1, . . . , n} with i ̸= j ̸= k ̸= i, we have

YiR+
ijejkR−

ikY
−1
i = (R−1)+kiejk(R

−1)−ji.

Throughout the proof of Proposition 6.16, we freely use Lemmas 6.12 and 6.13.

Proof of Proposition 6.16 (1). For n ≥ j > i ≥ 1, we have

Yieij(T
−1)−i−1,1(T

−1)+1,i−1Y
−1
i = YiXi(T

−1)−i−1,1(T
−1)+1,i−1DjY

−1
i

= qT+
i,n−1T

−
n−1,iXiYiDjY

−1
i = qT+

i,n−1T
−
n−1,iXi(R−1)+jiDj

= qT+
i,n−1T

−
n−1,ieij + q(τ − τ−1)T+

i,n−1T
−
n−1,iXi(T

−1)−j−1,i+1T
+
i,j−1Dj, (6.27)

where we used that (R−1)+ji = 1 + (τ − τ−1)(T−1)−j−1,i+1T
+
i,j−1. Now,

T−
n−1,iXi(T

−1)−j−1,i+1T
+
i,j−1Dj = T−

n−1,i(T
−1)−j−1,i+1XiDi(T

−1)+i,j−1

= T−
n−1,i(T

−1)−j−1,i+1(T
−1)+i,n−1XnDnT

−
n−1,j = (T−1)−j−2,iXnDnT

−
n−1,j, (6.28)

since T−
n−1,i(T

−1)−j−1,i+1 = (T−1)−j−2,iT
−
n−1,i by using a relation from Lemma 6.9 to move

successively T−1
j−1, . . . , T

−1
i+1 to the left of T−

n−1,i. Relations (6.27) and (6.28) imply the claim
of Proposition 6.16 (1) for j > i.

Let us now establish the claim for i = n, j = n− 1. We compute

Ynen,n−1(T
−1)−n−1,1(T

−1)+1,n−1Y
−1
n (6.29)

= qXnYnT
−
n−1,1T

+
1,n−2T

2
n−1Dn(T

−1)−n−2,1(T
−1)+1,n−1Y

−1
n

= qXnYnTn−1DnT
−1
n−1Y

−1
n + (τ − τ−1)XnDnYn(T

−1)−n−2,1(T
−1)+1,n−1Y

−1
n ,

where we used that T 2
n−1 = 1 + (τ − τ−1)Tn−1, and then this is equal to

qXnYnDn−1T
−2
n−1Y

−1
n + (τ − τ−1)(T−1)−n−2,1(T

−1)+1,n−2XnDnYnT
−1
n−1Y

−1
n

= qXnDn−1 + (τ − τ−1)(T−1)−n−2,1(T
−1)+1,n−2XnDnYnY

−1
n−1Tn−1, (6.30)
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from which the claim for i = n, j = n− 1 follows.
Then for all 1 ≤ j ≤ n− 1,

Ynenj(T
−1)−n−1,1(T

−1)+1,n−1Y
−1
n

= YnXnT
+
j,n−2Dn−1T

−
n−2,j(T

−1)−n−1,1(T
−1)+1,n−1Y

−1
n

= T+
j,n−2Ynen,n−1(T

−1)−n−1,1(T
−1)+1,n−1Y

−1
n T−

n−2,j, (6.31)

where we used that T−
n−2,j commutes with (T−1)−n−1,1(T

−1)+1,n−1 as a consequence of Co-
rollary 6.10 (i), (iv). Now we use the form (6.30) for the expression (6.29) to rearrange
expression (6.31) as

qenj + (τ − τ−1)(T−1)−j−1,1(T
−1)+1,n−2XnDnYnY

−1
n−1T

−
n−1,j,

which completes the proof of the claim for i = n.
For n ≥ i > j ≥ 1, we have

(T−1)−n−1,iYieij(T
−1)−i−1,1(T

−1)+1,i−1Y
−1
i T+

i,n−1 = Ynenj(T
−1)−n−1,1(T

−1)+1,n−1Y
−1
n . (6.32)

The proof is completed by combining equality (6.32) with the claim for i = n, and using
that enj(T−1)−n−1,i = T−

n−1,ieij. ■

Proof of Proposition 6.16 (2). For n ≥ j > i ≥ 1, we have

YiT
−
i−1,1T

+
1,i−1ejiY

−1
i = YiXjT

−
i−1,1T

+
1,i−1DiY

−1
i = Xj(R−1)−jiYiT

−
i−1,1T

+
1,i−1DiY

−1
i

= q−1Xj(R−1)−jiDi(T
−1)+i,n−1(T

−1)−n−1,i = q−1eji(T
−1)+i,n−1(T

−1)−n−1,i

+ q−1(τ−1 − τ)Xj(T
−1)−j−1,iT

+
i+1,j−1Di(T

−1)+i,n−1(T
−1)−n−1,i, (6.33)

where we used that (R−1)−ji = 1 + (τ−1 − τ)(T−1)−j−1,iT
+
i+1,j−1. We also have

Xj(T
−1)−j−1,iT

+
i+1,j−1Di(T

−1)+i,n−1 = T−
j−1,iT

+
i+1,j−1XiDi(T

−1)+i,n−1

= T−
j−1,iT

+
i+1,j−1(T

−1)+i,n−1XnDn = (T−1)+j,n−1XnDnT
+
i,j−2, (6.34)

since T+
i+1,j−1(T

−1)+i,n−1 = (T−1)+i,n−1T
+
i,j−2 by using the inverse of a relation in Lemma 6.9

to move successively Tj−1, . . . , Ti+1 to the right of (T−1)+i,n−1. Relations (6.33) and (6.34)
imply the claim of Proposition 6.16 (2) for j > i.

Let us now establish the claim for i = n, j = n− 1. We compute

YnT
−
n−1,1T

+
1,n−1en−1,nY

−1
n = YnT

2
n−1Xn−1T

−
n−1,1T

+
1,n−2T

−1
n−1DnY

−1
n (6.35)

= Xn−1YnT
−
n−1,1T

+
1,n−2T

−1
n−1DnY

−1
n = Xn−1YnT

−
n−1,1T

+
1,n−1DnY

−1
n

+ (τ−1 − τ)Xn−1YnT
−
n−1,1T

+
1,n−2DnY

−1
n
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where we used that T−1
n−1 = Tn−1 + τ−1 − τ , and then this is equal to

q−1Xn−1Dn + (τ−1 − τ)Xn−1T
−1
n−1Yn−1DnY

−1
n T−

n−2,1T
+
1,n−2

= q−1en−1,n + (τ−1 − τ)T−1
n−1XnDnYn−1Y

−1
n T−

n−2,1T
+
1,n−2, (6.36)

from which the claim for i = n, j = n− 1 follows.
Then for all 1 ≤ j ≤ n− 1,

YnT
−
n−1,1T

+
1,n−1ejnY

−1
n

= YnT
−
n−1,1T

+
1,n−1(T

−1)+j,n−2Xn−1(T
−1)−n−2,jDnY

−1
n

= (T−1)+j,n−2YnT
−
n−1,1T

+
1,n−1en−1,nY

−1
n (T−1)−n−2,j (6.37)

since (T−1)+j,n−2 commutes with T−
n−1,1T

+
1,n−1 as a consequence of Corollary 6.10 (i) and (iv).

Now we use the form (6.36) for the left-hand side of equality (6.35) to rearrange expres-
sion (6.37) as

q−1ejn + (τ−1 − τ)(T−1)+j,n−1XnDnYn−1Y
−1
n T−

n−2,1T
+
1,j−1,

which completes the proof of the claim for i = n.
For n ≥ i > j ≥ 1, we have

(T−1)−n−1,iYiT
−
i−1,1T

+
1,i−1ejiY

−1
i T+

i,n−1 = YnT
−
n−1,1T

+
1,n−1ejnY

−1
n . (6.38)

The proof is completed by combining equality (6.38) with the claim for i = n, and using
that T+

i,n−1ejn = eji(T
−1)+i,n−1. ■

Proof of Proposition 6.16 (3). For j > i, k > i, j ̸= k, we have

YiejkY
−1
i = Xj(R−1)−jiYiDkY

−1
i = Xj(R−1)−ji(R−1)+kiDk. (6.39)

By Lemma 6.11 applied to (R−1)−ji and (R−1)+ki, if k > j then the right-hand side of
equality (6.39) equals

XjT
+
i,j−2T

−1
j−1T

+
j,k−2T

2
k−1(T

−1)−k−2,iDk

= T+
i,k−2T

2
k−1(T

−1)−k−2,jXj−1(T
−1)−j−1,iDk

= T+
i,k−2T

2
k−1(T

−1)−k−2,j−1XjT
−2
j−1(T

−1)−j−2,iDk

= T+
i,k−2T

2
k−1(T

−1)−k−2,j−1ejkT
−2
j−1(T

−1)−j−2,i

= T+
i,k−2T

2
k−1(T

−1)−k−2,iejkT
+
i,j−2T

−2
j−1(T

−1)−j−2,i = (R−1)+kiejk(R
−1)−ji,
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as required. Similarly if j > k, the right-hand side of equality (6.39) equals

XjT
+
i,j−2T

−2
j−1(T

−1)−j−2,kTk−1(T
−1)−k−2,iDk

= XjT
+
i,k−1Dk−1T

+
k,j−2T

−2
j−1(T

−1)−j−2,i

= XjT
+
i,k−2T

2
k−1DkT

+
k−1,j−2T

−2
j−1(T

−1)−j−2,i

= T+
i,k−2T

2
k−1ejkT

+
k−1,j−2T

−2
j−1(T

−1)−j−2,i

= T+
i,k−2T

2
k−1(T

−1)−k−2,iejkT
+
i,j−2T

−2
j−1(T

−1)−j−2,i = (R−1)+kiejk(R
−1)−ji,

as required. Next, for i > j, i > k, j ̸= k, we have

YiR+
ijejkR−

ikY
−1
i = XjYiDkR−

ikY
−1
i = ejkYiR+

ikR
−
ikY

−1
i = ejk,

as required. Next, for k > i > j, we have

YiR+
ijejkY

−1
i = XjYiDkY

−1
i = Xj(R−1)+kiDk = (R−1)+kiejk,

since [Xj, (R−1)+ki] = 0, as required. Finally, for j > i > k, we have

YiejkR−
ikY

−1
i = Xj(R−1)−jiYiDkR−

ikY
−1
i = Xj(R−1)−jiDk = ejk(R−1)−ji,

since [Dk, (R−1)−ji] = 0, as required. This covered all the possibilities. ■

In Proposition 6.16, the relations in cases

(1); (2) for i = 1; and (3) for j > i (6.40)

have the elements Yi in the left-hand side placed immediately before the corresponding
elements ejk. On the other hand, the relations in cases (2) when i ̸= 1, and (3) for i > j

have Hecke algebra elements Tl in between the Yi and ejk in the left-hand side.
In order to be able to move an arbitrary Yi to the right through an arbitrary directly

adjacent ejk, we thus also need the following Lemma 6.17. Whenever we encounter Yi
directly adjacent to some ejk with their indices not falling into one of the cases (6.40),
we can expand such a monomial into a sum of terms each of which can be handled, in
the sense of moving Y ’s to the right. The case Yiejk with i > j and j ̸= k ̸= i can
be dealt with by Lemma 6.17 (ii) and Proposition 6.16 (1), (3). The case Yieji with
j > i ≥ 2 can be dealt with by Lemma 6.17 (i) and Proposition 6.16 (2), (3). The final
case to consider is Yieji with i > j. The first step is to apply Lemma 6.17 (i). Then
by applying Proposition 6.16 (2), we are left to consider terms Ykeji with k < i. For
the terms with k < j, we apply Proposition 6.16 (3); for the term with k = j, we apply
Proposition 6.16 (1), and we deal with the terms with k > j by applying Lemma 6.17 (ii)
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and Proposition 6.16 (1), (3).

Lemma 6.17. (i) For n ≥ i ≥ 1, we have

Yi = YiT
−
i−1,1T

+
1,i−1 + (τ−1 − τ)

i−1∑
k=1

(T−1)−i−1,kT
+
k+1,i−1Yk.

(ii) For n ≥ i > j ≥ 1, we have

Yi = YiR+
ij + (τ−1 − τ)(T−1)−i−1,j(T

−1)+j+1,i−1Yj.

Proof. (i) The claim is trivial for i = 1, so suppose i > 1. By using T 2
1 = 1+ (τ − τ−1)T1,

we get

YiT
−
i−1,1T

+
1,i−1 = YiT

−
i−1,2T

+
2,i−1 + (τ − τ−1)YiT

−
i−1,1T

+
2,i−1

= YiT
−
i−1,2T

+
2,i−1 + (τ − τ−1)(T−1)−i−1,1T

+
2,i−1Y1. (6.41)

If i = 2, the desired relation follows by rearranging equality (6.41) for YiT−
i−1,2T

+
2,i−1 = Yi.

Assume i > 2, then we iterate i − 2 times the manipulation in (6.41). Thus, at the next
step, we use T 2

2 = 1 + (τ − τ−1)T2 to get that YiT−
i−1,1T

+
1,i−1 equals

YiT
−
i−1,3T

+
3,i−1 + (τ − τ−1)YiT

−
i−1,2T

+
3,i−1 + (τ − τ−1)(T−1)−i−1,1T

+
2,i−1Y1

= YiT
−
i−1,3T

+
3,i−1 + (τ − τ−1)

2∑
k=1

(T−1)−i−1,kT
+
k+1,i−1Yk,

and so forth until we obtain the desired relation.
(ii) By using T 2

j = 1 + (τ − τ−1)Tj, we get

YiR+
ij = Yi + (τ − τ−1)YiT

−
i−1,j(T

−1)+j+1,i−1

= Yi + (τ − τ−1)(T−1)−i−1,j(T
−1)+j+1,i−1Yj,

and the desired relation follows. ■

In order to be able to move Y −1
i to the right past ejk, we use the relations from

Proposition 6.16 multiplied by Y −1
i from the left and rearranged to find an expression

for the first term in the right-hand side. We also need the next lemma that serves an
analogous purpose as Lemma 6.17 (proved similarly, too) to deal with the cases where we
end up with Hecke algebra elements Tl in between the Y −1

i and ejk.
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Lemma 6.18. (i) For n ≥ i ≥ 1, we have

Y −1
i = Y −1

i T+
i,n−1T

−
n−1,i + (τ−1 − τ)

n−i−1∑
k=0

(T−1)+i,n−k−1T
−
n−k−2,iY

−1
n−k.

(ii) For n ≥ k > i ≥ 1, we have

Y −1
i = Y −1

i (R−1)+ki + (τ−1 − τ)(T−1)−k−1,i+1(T
−1)+i,k−1Y

−1
k .

In view of the relations presented above, we arrive at a Cτ -basis for the algebra Hgln .
It may be thought of as a PBW-type basis. At τ = 1, it reduces to the one given by
formula (6.9) for the algebra A. The following theorem also implies that Hgln is a flat
τ -deformation of the algebra A from Section 6.2.

Theorem 6.19. The algebra Hgln has a free basis over Cτ consisting of the monomials

Twe
k1
i1j1

· · · ektitjt
n∏

l=1

Y ml
l , (6.42)

where w ∈ Sn, t ∈ Z≥0, ks ∈ Z>0, ml ∈ Z, 1 ≤ i1 ≤ · · · ≤ it ≤ n, 1 ≤ j1 ≤ · · · ≤ jt ≤ n

with is = is+1 ⇒ js < js+1, and none of the indices ir equal any of the indices js. Here Tw
(w ∈ Sn) is the standard basis of the Hecke algebra of type An−1.

The algebra Hgln has a presentation by generators Tk (1 ≤ k ≤ n − 1), Y ±1
i , eij

(1 ≤ i ̸= j ≤ n) and relations (2.4), (2.5), (2.7), Laurent relations for Y ±1
i , and relations

from Propositions 6.14–6.16. Further, Hgln/(τ − 1)Hgln ∼= A.

Proof. Consider any monomial in the generators Tk, Y ±1
i , ejl (j ̸= l). In step one, we

apply the relations from Proposition 6.16 and Lemmas 6.17 and 6.18 to move Y ±1
i to the

right past any directly adjacent ejl. All of those relations are linear in e’s, so this does not
increase the number of e’s in any single term. In step two, we move all Tk’s completely
to the left end of each term by using Proposition 6.15 and relations (2.7). This does not
increase in any single term the number of e’s, and in those terms where the number of e’s
stayed the same, this did not increase the number of Y ’s. We then repeat steps one and
two until all Y ’s are to the right of any e’s and all T ’s are at the left end of each monomial
term. We achieve this in finitely many steps. Since Tw (w ∈ Sn) form a basis of the Hecke
algebra of type An−1 (see Theorem 2.10), we can now assume that all monomial terms
take the form Tw(product of e’s)

∏n
l=1 Y

ml
l .

Next, we use the relations from Proposition 6.14 for the product of e’s to order them
in accordance with the conditions on the indices as in (6.42). We can handle by induction
the terms where the number of e’s has decreased after an application of a relation from
Proposition 6.14, so we care only about the quadratic terms in e in those relations, and
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these do not introduce any new Y ’s nor T ’s. This proves that the monomials (6.42) span
the algebra Hgln .

It remains to show that these monomials are linearly independent over Cτ . It suffices
to show that for τ = 1 they are linearly independent over C. This holds because at τ = 1

they coincide with the PBW basis for the algebra A from Section 6.2 (see formula (6.9)).
It is straightforward to see that under the correspondence Tk ↔ sk, Y ±1

i ↔ t±1
i ,

eij ↔ Eq
ij, the defining relations of Hgln are just deformations of those of the algebra A

(relations from Proposition 6.5 together with relations (6.8) and the Coxeter relations),
and reduce to them when τ = 1. The last part of the statement follows. ■

Remark 6.20. One may also consider a non-formal version of the algebra Hgln where
τ = λ ∈ C×, that is, we consider the C-algebra

Hgln/(τ − λ)Hgln ∼= Hgln ⊗Cτ C,

where we use the ring homomorphism φ : Cτ → C given by φ(τ) = λ. Then, it follows
from Theorem 6.19 that (the coset representatives of) the elements (6.42) give a C-basis
of this algebra.

6.3.3 Centre and a double centraliser property

In this section, we consider the DAHA Hn and its subalgebra Hgln defined in an analogous
way as in Sections 2.4 and 6.3, respectively, but over the field C(τ) of rational functions in
the variable τ instead of Cτ . An analogous proof shows that this version of Hgln satisfies
the direct analogue of Theorem 6.19. We now study some further properties of this algebra.

Proposition 6.21. The element Ỹ =
∏n

i=1 Yi belongs to the centre Z(Hgln).

Proof. From the defining relations of Hn, it follows that Ỹ commutes with all Y ±1
i and Tk.

Also, Ỹ Xi = qXiỸ , hence [Ỹ , XiX
−1
j ] = 0, and it follows that Ỹ commutes with all

eij = (q − q−1)−1XiX
−1
j (T−1)+j,n−1(Yn − Y −1

n )T−
n−1,j.

Thus, Ỹ commutes with all the generators of Hgln , as required. ■

Remark 6.22. We have

lim
q→1

1− Ỹ

1− q
=

n∑
i=1

xiyi − c
∑
i<j

sij = eu,

which is the generator of the centre Z(Hgln) from Section 6.1.
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Take any element 0 ̸= f ∈ Z(Hgln). We can expand f in the C(τ)-basis of monomials
from Theorem 6.19. That is, there exist finitely many monomials M1,M2, . . . ,MN of the
form (6.42), and some λ1(τ), . . . , λN(τ) ∈ C(τ) \ {0} such that

f = λ1(τ)M1 + · · ·+ λN(τ)MN .

We can assume that λi do not have a pole at τ = 1 and that λi(1) ̸= 0 for some i. We
have

λ1(1)M
τ=1
1 + · · ·+ λN(1)M

τ=1
N ∈ Z(A) = ⟨

n∏
i=1

ti,

n∏
i=1

t−1
i ⟩,

where we used that the centre of the algebra A was given in Proposition 6.7. Here M τ=1
i

are the monomials Mi with Yl replaced by tl, Tw by w, and ejl by Eq
jl.

Thanks to the PBW basis of monomials (6.9) for the algebra A, we can conclude that
in the expansion of f , the monomials Mi for which λi(1) ̸= 0 must have the form Ỹ m

(m ∈ Z). By subtracting those terms from f and repeating the above argument, we arrive
at the following theorem.

Theorem 6.23. The centre Z(Hgln) is generated by Ỹ ±1.

Let us now consider the subalgebra A of Hn generated by

C[X1, . . . , Xn], C[D1, . . . , Dn], C[Y ±1
1 , . . . , Y ±1

n ],

and T1, . . . , Tn−1. We note that Hgln ⊂ A. In the limit τ = 1, those generators of A that
are not Tk reduce to the generators of the q-Weyl algebra considered by Hayashi in [61].
The algebra A can be thought of also as a q-analogue of the RCA Hn. Indeed, in the
trigonometric limit q → 1 given by (2.16), the algebra A reduces to Hn ⊂ Htrig

n .

Remark 6.24. By [10, Section 3.7], the cyclotomic DAHA HH2
n,t(Z, q

−1) for Z = (1,−1)

is the subalgebra of the DAHA HHn,t(q
−1) generated by Tk (1 ≤ k ≤ n− 1), Xi, Y ±1

i , and
DBEF

i (1 ≤ i ≤ n) given by (6.11). By using the isomorphism h ◦ g ◦ φ : HHn,t(q
−1) → Hn

from Remark 6.8, we get that this subalgebra HH2
n,t(Z, q

−1) ⊂ HHn,t(q
−1) is isomorphic

to the subalgebra of Hn generated by Tk, Xi, Y ±1
i , and

DiY
−1
i T+

i,n−1T
−
n−1,i

(see equality (6.12)), which coincides with the algebra A. That is, A ∼= HH2
n,t((1,−1), q−1).

We need the following basis of the algebra A. Another basis of A ∼= HH2
n,t((1,−1), q−1)

was considered in [10] (see paragraph above Proposition 3.32 therein).
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Proposition 6.25. The algebra A has a C(τ)-basis consisting of the monomials

TwMXMDMY , (6.43)

where w ∈ Sn, MX is a monomial in Xi, MY a monomial in Y ±1
i , and MD a monomial

in Di such that for all i, MX does not contain Xi or MD does not contain Di.

Proof. Consider any monomial M in the generators Tk, Xi, Di, Y ±1
i . Firstly, we will show

that we can write M as a linear combination of terms of the form (6.43). We will proceed
recursively based on the total power of X’s that appear in M . We apply the following
procedure to M .

In step one, we use relations from Lemma 6.13 (1) and (3), and Lemmas 6.17 and 6.18
to move Y ±1

i to the right past any directly adjacent Xj or Dj. In step two, we move
all Tk’s completely to the left end of each term by using Lemma 6.12 and relations (2.6)
and (2.7). We then repeat steps one and two until in each monomial term all Y ’s are to
the right of any X’s and D’s, and all T ’s are at each term’s left end. We achieve this in
finitely many steps. At the end, all the monomial terms that were produced have the same
total power of X’s (and of D’s) as the original monomial M , and we can assume each of
the terms to be of the form Tw(product of X’s and D’s)MY for some (not necessarily the
same) Tw and MY .

We now apply Lemma 6.13 (4). It gives that Sτ
ij = [Di, Xj] can be expressed in

terms of Y and T variables, hence we can commute D with X up to a term with a
lower total power of X’s (which we can handle by recursion). Furthermore, whenever we
encounter XiDi, we can replace it with an expression containing Y and T only. It follows
that the monomials (6.43) span the algebra A.

It remains to show that these monomials are linearly independent over C(τ). It suffices
to show that for τ = 1 they are linearly independent over C. We will work with the faithful
polynomial representation of the DAHA. Recall that at τ = 1, the elements Di act as the
operators di from Section 6.2, while Tk and Y ±1

i act as sk and t±1
i , respectively. Therefore,

for any ai, bi ∈ Z≥0 and ci ∈ Z, we have

Tw

n∏
i=1

Xai
i

n∏
i=1

Dbi
i

n∏
i=1

Y ci
i

∣∣∣∣
τ=1

∝ w
n∏

i=1

Xai−bi
i

n∏
i=1

tbi+ci
i + . . . , (6.44)

where . . . denotes terms in which the overall sum of the exponents on the ti’s is lower than
in the above leading term, and ∝ denotes proportionality by a non-zero factor, which may
depend on q.

Assume a non-trivial linear dependence of some monomials (6.43) at τ = 1. This
implies a non-trivial linear dependence of their corresponding leading (with highest degree
in ti) terms, whose form is shown in the right-hand side of (6.44). By the assumptions
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on the monomials (6.43), either ai = 0 or bi = 0, hence different monomials (6.43) lead
to distinct leading terms. However, operators w

∏n
i=1X

ni
i

∏n
i=1 t

n′
i

i for different ni, n
′
i ∈ Z

and w ∈ Sn are linearly independent as operators on C[X±1
1 , . . . , X±1

n ]. We arrived at a
contradiction, which completes the proof. ■

Lemma 6.26. Any monomial (6.43) with degMX = degMD belongs to Hgln.

Proof. We permute the elements Xi and Dj in such a monomial so as to pair them up
into a product of elements eij. This can be done up to a combination of terms of lower
degree in X with equal degree in D, since Sτ

ij = [Di, Xj] can be expressed in terms of Y
and T by Lemma 6.13. By re-expressing these lower degree terms via the basis (6.43), the
statement follows inductively by degree in X. ■

Remark 6.24 enables us to prove the following proposition.

Proposition 6.27. The algebra A has an irreducible representation ψ on the space of
polynomials C(τ)[X1, . . . , Xn] given by

ψ(Tk) = τsk +
(τ − τ−1)Xk+1

Xk −Xk+1

(sk − 1),

ψ(Xi) = Xi, ψ(τ) = τ,

ψ(Yi) = τn−1ψ(T+
i,n−1)π

−1ψ((T−1)+1,i−1),

ψ(Di) = (q − q−1)−1X−1
i ψ

(
(T−1)+i,n−1(Yn − Y −1

n )T−
n−1,i

)
,

(6.45)

where π−1 = (n, . . . , 2, 1)t1 = tn(n, . . . , 2, 1) (see formula (2.11)).

Proof. By Remark 6.24, the algebra A is isomorphic via φ−1◦g−1◦h to HH2
n,t((1,−1), q−1).

The latter has by [10, Proposition 3.6] an action on C(t)[X1, . . . , Xn] via ρBEF ≡ ρ defined
in [10, Proposition 3.3] (with q replaced by q−1). Let ψ′ = ρBEF ◦φ−1 ◦ g−1 ◦h, which then
gives an action of A on C(t)[X1, . . . , Xn]. We have

ψ′(Tk) = ρBEF(T
−1
n−k) = t−1sn−k +

(t−1 − t)Xn−k

Xn−k+1 −Xn−k

(sn−k − 1),

ψ′(Xi) = Xn−i+1, ψ′(τ) = t−1,

ψ′(Yi) = ρBEF(Y
−1
n−i+1) = t1−nρBEF((T

−1)−n−i,1)(1, . . . , n)tnρBEF(T
−
n−1,n−i+1),

ψ′(Di) = (q − q−1)−1X−1
n−i+1ψ

′ ((T−1)+i,n−1(Yn − Y −1
n )T−

n−1,i

)
.

The representation (6.45) of A is obtained from the module C(t)[X1, . . . , Xn] by rela-
belling t to τ−1 and Xi to Xn−i+1.

The proof of irreducibility is similar to that of [61, Proposition 2.1]. Let V be a non-
trivial submodule, and choose in it a non-zero element v =

∑
m amX

m1
1 · · ·Xmn

n , where
m = (m1, . . . ,mn) ∈ Zn

≥0 and am ∈ C(τ). We can assume that those am with maximal



CHAPTER 6. A SUBALGEBRA OF DAHA AND VAN DIEJEN’S OPERATORS 146

∑n
i=1mi among {m ∈ Zn

≥0 : am ̸= 0} do not have a pole at τ = 1, and that at least one of
them is non-zero at τ = 1, say for m′ = (m′

1, . . . ,m
′
n). Since the action of ψ(Di) reduces

the degree of a polynomial, we get that ψ(Dm′
1

1 · · ·Dm′
n

n )v ∈ C(τ) and is well-defined at
τ = 1. Moreover, it must be a non-zero element of C(τ) because at τ = 1 it equals

d
m′

1
1 · · · dm′

n
n (v) = am′(1)[m′

1]!q · · · [m′
n]!q,

which belongs to C× as q is not a root of unity. Here we use for m ∈ Z≥0 the notation

[m]!q = [m]q[m− 1]q · · · [2]q[1]q, [m]q =
qm − q−m

q − q−1
,

and the operators di are given by formula (6.3). It follows that 1 ∈ V , and by acting on 1

by combinations of ψ(Xi), we get that V = C(τ)[X1, . . . , Xn]. ■

Corollary 6.28. The subalgebra Hgln ⊂ A acts on C(τ)[X1, . . . , Xn]. Moreover, this action
preserves for all k ∈ Z≥0 the subspace C(τ)[X1, . . . , Xn]

(k) of homogeneous polynomials of
degree k, and this is an irreducible Hgln-module.

Proof. Irreducibility is proved similarly to the proof of Proposition 6.27. Using the
same notation, this time we have

∑n
i=1m

′
i = k. An arbitrary monomial Xa1

1 · · ·Xan
n ∈

C(τ)[X1, . . . , Xn]
(k) can be obtained as

ψ(cXa1
1 · · ·Xan

n D
m′

1
1 · · ·Dm′

n
n )v

for suitable c ∈ C(τ) \ {0}, where Xa1
1 · · ·Xan

n D
m′

1
1 · · ·Dm′

n
n ∈ Hgln by Lemma 6.26 since∑n

i=1 ai = k =
∑n

i=1m
′
i. ■

The preceding corollary generalises the fact that the polynomial representation of the
algebra Hgln preserves the space C[X1, . . . , Xn]

(k), which is an irreducible module for it,
and that this space is also preserved by the algebra A from Section 6.2 (for τ = 1,
cf. also [61, Theorem 4.1(A)]).

Remark 6.29. The assignments (6.45) almost coincide with those of the polynomial
representation of the DAHA Hn given in Section 2.4 above, except that the image of Yi
in (6.45) has an extra factor of τn−1 (the action of Yi in the polynomial representation can
be deduced from relations (2.8)). A way to think about this is that the operators from
the polynomial representation on C(τ)[X±1

1 , . . . , X±1
n ] in Section 2.4 formally preserve also

the space (
n∏

i=1

Xi

)logq τ
n−1

C(τ)[X±1
1 , . . . , X±1

n ],

which induces another action of Hn on C(τ)[X±1
1 , . . . , X±1

n ] under which the subalgebra A

preserves the subspace C(τ)[X1, . . . , Xn] and acts as given in Proposition 6.27.
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We are now going to show that

Hgln = CA(Ỹ ),

CA(Hgln) = ⟨Ỹ , Ỹ −1⟩,
(6.46)

where CA(B) = {a ∈ A : [a, b] = 0, ∀b ∈ B} denotes the centraliser. This statement is a
q-generalisation of the property that

Hgln = CHn(eu),

CHn(Hgln) = ⟨eu⟩.

The first of the latter equalities follows from the fact that the RCA Hn has a natural
grading such that its faithful polynomial representation is a graded one. The element eu
acts (up to a constant) as the grading operator

∑n
i=1 xi∂xi

, hence it only commutes with
the degree zero part of Hn, which is precisely Hgln . The second equality follows from the
fact that deg eu = 0, hence eu ∈ Hgln , so the previous sentence implies that CHn(Hgln) =

Z(Hgln), which equals ⟨eu⟩ by [51].
The fact that eu is essentially the grading operator has a q-counterpart in the following

property of Ỹ . Since Ỹ = π−n [35, p. 101], we get by using formula (2.11) that

Ỹ (Xa1
1 X

a2
2 · · ·Xan

n ) = q
∑n

i=1 aiXa1
1 X

a2
2 · · ·Xan

n . (6.47)

That is, Ỹ acts in the polynomial representation as a grading operator.
Let us now provide a proof of relations (6.46). From Theorem 6.23, it follows that

Hgln ⊆ CA(Ỹ ). We now prove the reverse inclusion. Let f ∈ CA(Ỹ ). Since Ỹ Di = q−1DiỸ ,
we have

Ỹ TwMXMDMY = qdegMX−degMDTwMXMDMY Ỹ .

This implies that the expansion of f in the basis of A given in Proposition 6.25 can contain
only those monomials where degMX = degMD, as q is not a root of unity. Hence, f ∈ Hgln

by Lemma 6.26. We have proved that Hgln = CA(Ỹ ).
Suppose now that f ∈ CA(Hgln). Then it must, in particular, commute with Ỹ ∈ Hgln .

Thus, by the same argument as above, we get f ∈ Hgln . Therefore, CA(Hgln) = Z(Hgln) =

⟨Ỹ , Ỹ −1⟩ by Theorem 6.23, as required.
Thus, we have established the following theorem.

Theorem 6.30. We have CA(Ỹ ) = Hgln and CA(Hgln) = ⟨Ỹ , Ỹ −1⟩.

This theorem implies that Hgln coincides with the degree zero part of the algebra A,
where the grading on A is inherited from the DAHA.

Related to the previous considerations, let g = ⟨Ỹ , Ỹ −1⟩ ∼= C(τ)[x±1]. We have
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g ⊂ Hgln ⊂ A. From Corollary 6.28, it follows that V = C(τ)[X1, . . . , Xn] is a (g,Hgln)-
bimodule, which by Proposition 6.27 is an irreducible A-module. It admits the decompos-
ition

V =
∞⊕
k=0

Uk ⊗C(τ) Wk,

where Wk = C(τ)[X1, . . . , Xn]
(k), which by Corollary 6.28 is an irreducible module of Hgln ,

and Uk = C(τ) is the irreducible (one-dimensional) module of g determined by Ỹ 7→ qk

(this is by formula (6.47) the action of Ỹ on Wk). If k ̸= l ∈ Z≥0, then Wk ≇ Wl, because
their dimensions as vector spaces differ, and Uk ≇ Ul since q is not a root of unity.

6.4 Related integrable systems

In Section 6.3.1, we considered a family of pairwise-commuting elementsDi. We now intro-
duce certain pairwise-commuting D(l1,l2)

i of a more general form depending on additional
parameters l1, l2 ∈ Z≥0, aj ∈ C (j = −l1, . . . , l2). The action of symmetric combinations
of D(l1,l2)

i on the space of symmetric Laurent polynomials Cτ [X
±1
1 , . . . , X±1

n ]Sn will lead to
families of commuting q-difference operators related to operators of MR and Van Diejen
types. We will assume a−l1 ̸= 0 ̸= al2 . We recover Di = (q − q−1)−1D(1,1)

i for a−1 = −1,
a0 = 0, and a1 = 1.

We define

Dn = D(l1,l2)
n = X−1

n

l2∑
j=−l1

ajY
j
n ,

and for 1 ≤ i ≤ n− 1, we define

Di = D(l1,l2)
i = T+

i,n−1DnT
−
n−1,i

= X−1
i (T−1)+i,n−1

(
l2∑

j=−l1

ajY
j
n

)
T−
n−1,i. (6.48)

We have T−1
k DkT

−1
k = Dk+1, and [Tk,Di] = 0 for i ̸= k, k+ 1 by an analogous proof as

for Lemma 6.12. In Proposition 6.32 below, we prove that Di pairwise commute. Let us
first develop some tools to be used in the proof.

Let H−
n be the (unital, associative) Cτ -algebra generated by Tk (1 ≤ k ≤ n − 1) and

Cτ [Z1, . . . , Zn], Cτ [Y
±1
1 , . . . , Y ±1

n ] subject to the following relations:

(Tk − τ)(Tk + τ−1) = 0, TkTk+1Tk = Tk+1TkTk+1, [Tk, Tl] = 0 if |k − l| > 1,

T−1
k ZkT

−1
k = Zk+1, [Tk, Zi] = 0 for i ̸= k, k + 1, (6.49)

T−1
k YkT

−1
k = Yk+1, [Tk, Yi] = 0 for i ̸= k, k + 1,

Ỹ Zi = q−1ZiỸ , (6.50)
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Y2Z1 = Z1Y2T
2
1 , (6.51)

where Ỹ =
∏n

i=1 Yi.
There is an algebra homomorphism ϕ : H−

n → Hn given by

ϕ(Tk) = Tk, ϕ(Zi) = X−1
i , ϕ(Y ±1

i ) = Y ±1
i ,

whose image contains the elements Di.
The next proposition gives a family of endomorphisms of the algebra H−

n .

Proposition 6.31. Let f(z) ∈ C[z, z−1] be an arbitrary single-variable Laurent poly-
nomial. There is an algebra endomorphism θ = θf of H−

n determined by θ(Tk) = Tk,
θ(Yi) = Yi, and

θ(Zi) = T+
i,n−1Znf(Yn)T

−
n−1,i

(
= Zi(T

−1)+i,n−1f(Yn)T
−
n−1,i

)
.

Proof. It suffices to check that θ preserves relations (6.49)–(6.51). Firstly,

θ(T−1
k ZkT

−1
k ) = T+

k+1,n−1Znf(Yn)T
−
n−1,k+1 = θ(Zk+1),

as required. Suppose now that i ̸= k, k+1. Then either i > k+1, in which case it is easy
to see that θ(Tk) commutes with θ(Zi). Or i < k, in which case using Lemma 6.9 twice
and that [Tk−1, Zn] = 0 = [Tk−1, f(Yn)], we get

θ(TkZi) = TkT
+
i,n−1Znf(Yn)T

−
n−1,i = T+

i,n−1Tk−1Znf(Yn)T
−
n−1,i

= T+
i,n−1Znf(Yn)Tk−1T

−
n−1,i = T+

i,n−1Znf(Yn)T
−
n−1,iTk = θ(ZiTk).

This completes the proof that θ preserves relations (6.49).
Secondly, we have

θ(Ỹ Zi) = T+
i,n−1Ỹ Znf(Yn)T

−
n−1,i = q−1T+

i,n−1Znf(Yn)T
−
n−1,iỸ = q−1θ(ZiỸ ),

hence θ preserves relations (6.50).
Finally, since θ(Z1) = Z1(T

−1)+1,n−1f(Yn)T
−
n−1,1, we see due to relation (6.51) that it

will follow that θ(Y −1
2 Z1Y2) = θ(Z1T

−2
1 ) if we show that

T−1
1 Y −1

2 (T−1)+1,n−1f(Yn)T
−
n−1,1Y2 = (T−1)+2,n−1f(Yn)T

−
n−1,2T

−1
1 .

The left-hand side of the latter equality can be rearranged as

Y −1
1 (T−1)+2,n−1f(Yn)T

−
n−1,1Y2 = (T−1)+2,n−1f(Yn)T

−
n−1,2Y

−1
1 T1Y2
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= (T−1)+2,n−1f(Yn)T
−
n−1,2T

−1
1 ,

as required. Thus, θ preserves the relation (6.51) as well. ■

The next proposition proves that the elements Di ∈ Hn defined by (6.48) commute.

Proposition 6.32. We have [Di,Dj] = 0 for all i, j (for fixed values of the parameters l1,
l2, and ak).

Proof. Let f(z) =
∑l2

j=−l1
ajz

j. The pairwise-commuting elements Zi ∈ H−
n satisfy Zi =

T+
i,n−1ZnT

−
n−1,i, and

θf (Zn) = Zn

l2∑
j=−l1

ajY
j
n ∈ H−

n ,

hence (ϕ ◦ θf ) (Zi) = Di. It follows that [Di,Dj] = (ϕ ◦ θf ) ([Zi, Zj]) = 0. ■

Remark 6.33. Commutativity of Di in the special case of l2 = 0 was proved in [10,
Corollary 3.22 (i)] by a different method. Indeed, the elements D(l)

i considered in that
paper satisfy (h◦ g ◦φ)(D(l1)

n−i+1) = a−1
−l1

Di for l2 = 0 and Zi expressed in terms of ai. Here,
h, g, and φ are the isomorphisms from Remark 6.8.

Remark 6.34. The algebra Hgln is the subalgebra of Hn generated by Tk, Y ±1
i , and

XiDj (i ̸= j) for l1 = l2 = 1, and a−1 = −1, a0 = 0, a1 = 1, since in that case
Dn = X−1

n (Yn − Y −1
n ) = (q − q−1)Dn. It would be interesting to see if the subalgebra of

Hn generated by Tk, Y ±1
i , and XiDj (i ̸= j) for more general l1, l2, and aj — equivalently,

the degree zero subalgebra of a general cyclotomic DAHA — has good properties as well.

Recall the polynomial representation of Hn on Cτ [X
±1
1 , . . . , X±1

n ], mentioned in Sec-
tion 2.4, in which the element π−1 acts according to formula (2.11) as (n, . . . , 1)t1 =

tn(n, . . . , 1), the action of X±1
i is by multiplication, and the Hecke generators Tk act ac-

cording to formula (2.10) as

τsk +
τ − τ−1

XkX
−1
k+1 − 1

(sk − 1) =
τ−1Xk+1 − τXk

Xk+1 −Xk

sk +
(τ − τ−1)Xk+1

Xk+1 −Xk

.

It follows that the elements T−1
k = Tk + τ−1 − τ act as

τ−1Xk+1 − τXk

Xk+1 −Xk

sk +
(τ − τ−1)Xk

Xk+1 −Xk

. (6.52)

By combining relations (6.48) and (2.8), we get

Di = X−1
i

(
l2∑

j=1

aj
(
(T−1)+i,n−1π

−1(T−1)+1,i−1

)j
+

l1∑
j=1

a−j

(
T−
i−1,1πT

−
n−1,i

)j
+ a0

)
. (6.53)
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We now prove that the action of symmetric combinations of Di preserves the subspace
Cτ [X

±1
1 , . . . , X±1

n ]Sn . Let C[D1, . . . ,Dn]
Sn denote the set of all symmetric combinations

of Di, where Sn acts by permuting the indices. We will make use of the following lemma.

Lemma 6.35. We have [Tk, D] = 0 for any D ∈ C[D1, . . . ,Dn]
Sn and for all k.

Proof. The subalgebra ⟨T1, . . . , Tn−1, Y
±1
1 , . . . , Y ±1

n ⟩ ⊂ Hn is a GLn-type AHA, whose
centre contains C[Y1, . . . , Yn]Sn . We have [Di,Dj] = 0 by Proposition 6.32; also, recall
that T−1

k DkT
−1
k = Dk+1 and [Tk,Di] = 0 for i ̸= k, k + 1. Thus, there is an epimorphism

from the subalgebra ⟨T1, . . . , Tn−1, Y1, . . . , Yn⟩ to the subalgebra ⟨T1, . . . , Tn−1, D1, . . . ,Dn⟩
given by Tk 7→ Tk, Yi 7→ Di. The claim follows since Tk commute with any element of
C[Y1, . . . , Yn]Sn . ■

Proposition 6.36. Let D ∈ C[D1, . . . ,Dn]
Sn. Then the action of D on Cτ [X

±1
1 , . . . , X±1

n ]

preserves the space of invariants Cτ [X
±1
1 , . . . , X±1

n ]Sn.

Proof. From formula (2.10), it follows that p ∈ Cτ [X
±1
1 , . . . , X±1

n ] is Sn-invariant if and
only if Tk(p) = τp for all k. The claim thus follows from the fact that D commutes with
all Tk by Lemma 6.35. ■

Let f be any operator on Cτ [X
±1
1 , . . . , X±1

n ] of the form

f =
∑

i∈{1,...,n}
j∈Z, w∈Sn

gi,j,wt
j
iw, gi,j,w ∈ Cτ (X1, . . . , Xn).

For instance, the action of any D ∈ C[D1, . . . ,Dn]
Sn can be written in this form. The

operator Res(f) is defined by

Res(f) :=
∑

i∈{1,...,n}
j∈Z, w∈Sn

gi,j,wt
j
i .

Thus, Res(f) is a q-difference operator with rational coefficients. On the elements of the
space Cτ [X

±1
1 , . . . , X±1

n ]Sn , it acts identically to f . In particular, if the latter preserves
this space then so does Res(f).

We note that the elements D are not invariant with regard to the action of the sym-
metric group Sn, but the operators Res(D) are.

Theorem 6.37. The operators Res(D) for D ∈ C[D1, . . . ,Dn]
Sn are pairwise-commuting,

Sn-invariant, and preserve the space Cτ [X
±1
1 , . . . , X±1

n ]Sn. Furthermore, an algebraic basis
p1, . . . , pn ∈ C[X1, . . . , Xn]

Sn gives n algebraically independent operators Res pi(D1, . . . ,Dn).

Proof. Preservation of Cτ [X
±1
1 , . . . , X±1

n ]Sn follows from Proposition 6.36.
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Let D, D̃ ∈ C[D1, . . . ,Dn]
Sn and p ∈ Cτ [X

±1
1 , . . . , X±1

n ]Sn . By using Proposition 6.32,
we get Res(D) Res(D̃)p = DD̃p = D̃Dp = Res(D̃) Res(D)p. Thus, Res(D) and Res(D̃)

commute when restricted to Cτ [X
±1
1 , . . . , X±1

n ]Sn , which implies the commutativity of
Res(D) and Res(D̃) (for the statement see [74, Theorem 4.5], [34, Theorem 3.3], for a
proof see [71, Proposition 3.2], and for the additive case [32, Lemma 3.7]).

For any w ∈ Sn, we have wRes(D)w−1p = Dp thanks to Proposition 6.36. Thus
wRes(D)w−1 and Res(D) are equal as operators on Cτ [X

±1
1 , . . . , X±1

n ]Sn . As in the pre-
ceding paragraph, it follows that wRes(D)w−1 = Res(D).

The final claim follows by specialisation to τ = 1, which reduces Di to an operator in
the variable Xi. ■

Explicitly, for l1 = l2 = 1, and for the symmetric combination
∑n

i=1 Di of degree one,
we get the following formula for the corresponding integrable Hamiltonian.

Proposition 6.38. With a = a1, b = a−1, and c = a0, we have

Ma,b,c := Res

(
n∑

i=1

D(1,1)
i

)
= aτ 1−n

n∑
i=1

1

Xi

 n∏
j=1
j ̸=i

τ 2Xi −Xj

Xi −Xj

 ti

+ bτ 1−n

n∑
i=1

1

Xi

 n∏
j=1
j ̸=i

Xi − τ 2Xj

Xi −Xj

 t−1
i + c

n∑
i=1

1

Xi

.

(6.54)

The proof will follow from the next lemma. Let

D+
i = X−1

i (T−1)+i,n−1π
−1(T−1)+1,i−1,

D−
i = X−1

i T−
i−1,1πT

−
n−1,i,

so that by relation (6.53) we have

Res

(
n∑

i=1

D(1,1)
i

)
= aRes

(
n∑

i=1

D+
i

)
+ bRes

(
n∑

i=1

D−
i

)
+ c

n∑
i=1

1

Xi

.

Then the following statement holds.

Lemma 6.39 (cf. [3, Lemma 5.3]). For all m ∈ {1, . . . , n}, let

E+
m = τ 1−n

n∑
i=m

1

Xi

Ai,mti, where Ai,m =
n∏

j=m
j ̸=i

τ 2Xi −Xj

Xi −Xj

.
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Then

Res

(
n∑

i=m

D+
i

)
= E+

m. (6.55)

Furthermore,

Res

(
m∑
i=1

D−
i

)
= E−

m, (6.56)

where

E−
m = τn−2m+1

m∑
i=1

1

Xi

Bi,mt
−1
i , where Bi,m =

m∏
j=1
j ̸=i

Xi − τ 2Xj

Xi −Xj

.

The proof is analogous to that of [3, Lemma 5.3]. For convenience, we indicate here
how to adapt that proof in our context.

Proof. We give the proof of equality (6.56), since (6.55) works similarly. By using formu-
las (2.10) and (2.11), we get

Res(D−
i ) = τn−iRes(X−1

i T−
i−1,1t

−1
1 ) = τn−i Res

(
(T−1)−i−1,1X

−1
1 t−1

1

)
.

In particular, Res(D−
1 ) = τn−1X−1

1 t−1
1 , from which equality (6.56) for m = 1 follows.

Thus, it now suffices to show that we have for all m = 1, . . . , n− 1 that

Res(D−
m+1) = E−

m+1 − E−
m. (6.57)

For i ̸= m+ 1, we have

Bi,m+1 =
Xi − τ 2Xm+1

Xi −Xm+1

m∏
j=1
j ̸=i

Xi − τ 2Xj

Xi −Xj

=

(
1 +

(1− τ 2)Xm+1

Xi −Xm+1

)
Bi,m.

Hence, relation (6.57) is equivalent to

Res(D−
m+1) =

τn−2m−1

Xm+1

Bm+1,m+1t
−1
m+1 +

m∑
i=1

τn−2m−1(1− τ 2)

Xi −Xm+1

Bi,mt
−1
i . (6.58)

Let the right-hand side of equality (6.58) be the definition of Rm+1 for m = 0, 1, . . . , n−1.
We trivially have R1 = Res(D−

1 ). We note that

Res(D−
m+1) = Res(T−1

m D−
mT

−1
m ) = τ−1Res(T−1

m D−
m).

Thus, to prove equality (6.58) for allm = 1, . . . , n−1, it suffices to prove that Res(T−1
m Rm) =
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τRm+1. Indeed, we will then get that

Res(D−
2 ) = τ−1Res(T−1

1 D−
1 ) = τ−1Res(T−1

1 Res(D−
1 )) = τ−1Res(T−1

1 R1) = R2,

as required; and similarly for Res(D−
3 ), etc.

By using formula (6.52) for the action of T−1
m , we compute

Res(T−1
m Rm) =

τn−2m

Xm+1

Bm+1,m+1t
−1
m+1 +

τn−2m(1− τ 2)

Xm −Xm+1

Bm,mt
−1
m

+
m−1∑
i=1

τn−2m(1− τ 2)(Xm+1 − τ 2Xm)

(Xm+1 −Xm)(Xi −Xm+1)
Bi,m−1t

−1
i

−
m−1∑
i=1

τn−2m(1− τ 2)2Xm

(Xm+1 −Xm)(Xi −Xm)
Bi,m−1t

−1
i .

The proof that Res(T−1
m Rm) = τRm+1 is completed by using in the preceding equality that

1

Xm+1 −Xm

(
Xm+1 − τ 2Xm

Xi −Xm+1

− (1− τ 2)Xm

Xi −Xm

)
Bi,m−1

=
Xi − τ 2Xm

(Xi −Xm+1)(Xi −Xm)
Bi,m−1 =

1

Xi −Xm+1

Bi,m

for i ̸= m. This completes the proof of the lemma. ■

Remark 6.40. The operator Ma,b,c given by (6.54) for a special choice of the parameters
a, b, c can be related to a particular limit of the operator (3.13a) from [103] as follows. In the
latter operator, let us make a translation of the center-of-mass of the form qxj → κ−1qxj

(j = 1, ..., n) for a constant κ, make the change of variables Xj = q−xj (in particular,
the additive shift operators Tj, T−1

j become respectively t−1
j , tj in our notation), put

t = τ 2, and multiply the whole operator by κ. Then in the limit κ → 0, one obtains the
operator (6.54) for a = −τn−1t̂0, b = −τ 1−nt̂1, and c = t̂0+t̂1. Further specialisation of this
operator at t̂1 = 0 appeared in [10, Example 3.24]. The operator Ma,0,c is gauge-equivalent
to the standard MR operator with an extra term proportional to

∑n
i=1X

−1
i (see [10]).

For more general values of l1 and l2, and the degree one symmetric combination
∑n

i=1Di,
the following proposition takes place.

Proposition 6.41. We have

Res

(
n∑

i=1

D(l1,l2)
i

)
= τ l2(1−n)al2

n∑
i=1

1

Xi

l2−1∏
k=0

n∏
j=1
j ̸=i

qkτ 2Xi −Xj

qkXi −Xj

 tl2i
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+ τ l1(1−n)a−l1

n∑
i=1

1

Xi

l1−1∏
k=0

n∏
j=1
j ̸=i

Xi − qkτ 2Xj

Xi − qkXj

 t−l1
i + . . . ,

where . . . denotes “non-leading terms”, that is, terms with shifts
∏n

j=1 t
kj
j such that −l1 <

kj < l2 for all j. Moreover, in each term, either all kj are non-negative with
∑n

j=1 kj ≤ l2,
or all kj are non-positive with

∑n
j=1 kj ≥ −l1.

The proof is similar to the calculation of the leading term of a general Macdonald
operator, polynomial in Y variables of the DAHA, from [34, Proposition 3.4].

Proof. By using equality (6.53), we get

Res

( n∑
i=1

D(l1,l2)
i

)
= Res

( n∑
i=1

X−1
i

l2∑
j=1

aj
(
(T−1)+i,n−1tn(n, . . . , 1)(T

−1)+1,i−1

)j
+

n∑
i=1

X−1
i

l1∑
j=1

a−j

(
T−
i−1,1t

−1
1 (1, . . . , n)T−

n−1,i

)j
+ a0

n∑
i=1

X−1
i

)
.

From there, we see due to formula (6.52) that the term containing tl21 can only come from

Res

(
al2X

−1
1

(
(T−1)+1,n−1tn(n, . . . , 1)

)l2 ).
Hence, using formula (6.52), we can compute this tl21 term to be

τ l2(1−n)al2
1

X1

( n∏
j=2

τ 2X1 −Xj

X1 −Xj

t1

)l2

= τ l2(1−n)al2
1

X1

( l2−1∏
k=0

n∏
j=2

qkτ 2X1 −Xj

qkX1 −Xj

)
tl21 .

We can use Sn-invariance (see Theorem 6.37) to deduce the coefficient at tl2i for any i.
Similarly, one can compute explicitly the coefficient at t−l1

n , and then use Sn-invariance
again to complete the proof of the proposition. ■

For example, for l1 = 1 and l2 = 2, we get the following integrable Hamiltonian

Res

(
n∑

i=1

D(1,2)
i

)
= τ 2(1−n)a2

n∑
i=1

1

Xi

 n∏
j=1
j ̸=i

(τ 2Xi −Xj)(qτ
2Xi −Xj)

(Xi −Xj)(qXi −Xj)

 t2i
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+ qτ 2(1−n)a2
∑

1≤i<j≤n

(τ 2 − 1)(τ 2 − q)(Xi +Xj)

(qXi −Xj)(qXj −Xi)

 n∏
l=1
l ̸=i,j

(τ 2Xi −Xl)(τ
2Xj −Xl)

(Xi −Xl)(Xj −Xl)

 titj

+ τ 1−na1

n∑
i=1

1

Xi

 n∏
j=1
j ̸=i

τ 2Xi −Xj

Xi −Xj

 ti + τ 1−na−1

n∑
i=1

1

Xi

 n∏
j=1
j ̸=i

Xi − τ 2Xj

Xi −Xj

 t−1
i + a0

n∑
i=1

1

Xi

which is a generalisation of the operator [20, (5.18)] to which it reduces for a−1 = 0.

6.4.1 Differential limits

Let us explain the relationship of the operatorMa,b,c (6.54) to various differential operators.

6.4.1.1 Relation to type A CMS operator in an external field

The operator Ma,b,c with a = τn−1q−1/2 and b = 0 can be gauged by the function
exp(

∑n
i=1

(logXi)
2

2 log q
) (see [10]) to the operator

M =
n∑

i=1

 n∏
j=1
j ̸=i

τ 2Xi −Xj

Xi −Xj

 ti + c
n∑

i=1

1

Xi

,

which is the standard MR operator with an additional
∑n

i=1X
−1
i term. If we put Xi = exi ,

q = eℏ, τ = e−ℏm/2, c = λℏ2/2, and expand around ℏ = 0, we get

M =
n∑

i=1

 n∏
j=1
j ̸=i

(
1− mexiℏ

exi − exj
+

m2exiℏ2

2(exi − exj)
+O(ℏ3)

) T ℏ
xi
+
λℏ2

2

n∑
i=1

e−xi ,

where T ℏ
xi

= 1 + ℏ∂xi
+ 1

2
ℏ2∂2xi

+ O(ℏ3) is the (additive) shift operator defined by xj 7→
xj + δijℏ. Thus, the expansion of the operator M in powers of ℏ gives

M = n+ ℏ

(
n∑

i=1

∂xi
− mn(n− 1)

2

)

+
ℏ2

2

(
∆−

∑
i<j

2m

exi − exj
(exi∂xi

− exj∂xj
) + λ

n∑
i=1

e−xi +
m2(2n− 1)n(n− 1)

6

)
+O(ℏ3).
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The term at ℏ2/2 is, up to an additive constant, equal to

∆−
∑
i<j

m coth

(
xi − xj

2

)
(∂xi

− ∂xj
) + λ

n∑
i=1

e−xi −m(n− 1)
n∑

i=1

∂xi
, (6.59)

which is related to the standard CMS operator with an additional
∑n

i=1 e
−xi term (this

corresponds to Block 2 in [101, Figure 1] with g1 = g2 = g3 = 0 and α = 1
2
). Note that

the term
∑n

i=1 ∂xi
(which does not commute with the operator (6.59) unless λ = 0) can

be removed from (6.59) by conjugating the operator (6.59) by exp(1
2
m(n− 1)

∑n
i=1 xi).

In the rational limit — obtained by putting xi = ωyi, λ = γω−3, multiplying the
operator (6.59) by ω2, subtracting γnω−1, and taking the limit ω → 0 —, we get

n∑
i=1

∂2yi −
∑
i<j

2m

yi − yj
(∂yi − ∂yj)− γ

n∑
i=1

yi,

which is the standard rational CMS operator in radial gauge with an additional
∑n

i=1 yi

term (this corresponds to Block 4 in [101, Figure 1] with g1 = g2 = g3 = 0).

6.4.1.2 Relation to type B rational CMS operator

Let us consider the operator Ma,b,c (6.54) with Xi = exi , q = eℏ, τ = e−ℏm/2, a = τn−1α,
b = τn−1β, and c = λℏ2/2 +m(n − 1)βℏ − α − β. Then the expansion of Ma,b,c around
ℏ = 0 (similar to Section 6.4.1.1) gives

ℏ(α− β)
n∑

i=1

e−xi∂xi
+

ℏ2

2

(
(α + β)

n∑
i=1

e−xi∂2xi
−
∑
i<j

2mα

exi − exj
(∂xi

− ∂xj
)

−
∑
i<j

2mβ

exi − exj
(exj−xi∂xi

− exi−xj∂xj
) +

(
λ+m2(n− 1)2β

) n∑
i=1

e−xi

)
+O(ℏ3).

The term at order ℏ (which does not commute with the term at order ℏ2) can be removed
by choosing α = β. Letting xi = 2zi, Xi = ezi , and γ = 4(λ+m2(n− 1)2β)(α+ β)−1, the
term at order ℏ2 is proportional to

n∑
i=1

1

X2
i

(Xi∂Xi
)2 −

∑
i<j

4mα(α + β)−1

X2
i −X2

j

(Xi∂Xi
−Xj∂Xj

)

−
∑
i<j

4mβ(α + β)−1

X2
i −X2

j

(X2
jX

−1
i ∂Xi

−X2
iX

−1
j ∂Xj

) + γ
n∑

i=1

1

X2
i

=
n∑

i=1

∂2Xi
+

n∑
i=1

1 + 4m(n− 1)β(α + β)−1

Xi

∂Xi
−
∑
i<j

2m

Xi −Xj

(∂Xi
− ∂Xj

)
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−
∑
i<j

2m

Xi +Xj

(∂Xi
+ ∂Xj

) + γ
n∑

i=1

1

X2
i

,

which is gauge-equivalent to a type B rational CMS operator.

6.4.2 MR system with two types of particles in an external field

In this subsection, we obtain a generalisation of the MR system with a Morse term [103,
(2.1)] (a particular limit of which, [103, (3.13a)], was mentioned in Remark 6.40 above).
This system was introduced by Van Diejen in [101] and studied further by Van Diejen and
Emsiz in [103]. Our generalisation introduces into the system a second, different set of
particles interacting with each other and also with the original set of particles. In the case
of MR systems, such two-types-of-particles generalisations were considered in [24,96].

To obtain such a generalisation, we take the following approach. The operator [103,
(2.1)] can be obtained from the Koornwinder operator (i.e., the operator of MR type for
the root system BCn) by a limit in which the centre of mass is sent to infinity [101].
We now take the generalised Koornwinder operator [53, (5.12)] introduced by Feigin and
Silantyev, and apply to it an analogous centre-of-mass-to-infinity limit. As a by-product,
we also get a generalisation of the operators [103, (3.13a)] and Ma,b,c (6.54) (for particular
a, b, c) to the case of two types of particles. Another way to obtain the latter would be to
make use of the representation theory of the DAHA of type GLn and the elements D(1,1)

i

defined in Section 6.4 (see Remark 6.42 below).
In the operator [53, (5.12)], let us make the substitutions xi → xi + R, yi → yi + R +

log(qs−1), a→ aeR, b→ beR, c→ ce−R, d→ de−R, and then let R → ∞. In order to make
connection with the notations used in [103] (recall that q = eℏ/2 and s = eξ/2 in [53]), let
us in the resulting limit make the replacements q → q−1/2, s = t1/2 (so that now q = e−ℏ

and t = eξ), a = t1, b = t2, c = t−1
0 , d = t−1

3 , xi → ℏxi, and yi → ℏyi (so that the shift
operators T εℏ

xi
and T εξ

yi
for ε ∈ {±1} become T ε

xi
and T −ε log(t)/ log(q)

yi , respectively). Then
we get the following Hamiltonian

Ht0,t1,t2,t3 =

N1∑
i=1

(1− t1q
xi)(1− t2q

xi)

 N1∏
j=1
j ̸=i

t−1 − qxi−xj

1− qxi−xj


(

N2∏
j=1

q − qxi−yj

1− qxi−yj

)
(Txi

− 1)

+
t1t2
qt0t3

N1∑
i=1

(1− t0q
xi)(1− t3q

xi)

 N1∏
j=1
j ̸=i

t− qxi−xj

1− qxi−xj


(

N2∏
j=1

t− qxi−yj

qt− qxi−yj

)
(T −1

xi
− 1)

+
1− q

1− t−1

N2∑
i=1

(1− t1q
yi)(1− t2q

yi)

(
N1∏
j=1

t−1 − qyi−xj

1− qyi−xj

)
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×

 N2∏
j=1
j ̸=i

q − qyi−yj

1− qyi−yj

 (T − log(t)/ log(q)
yi

− 1)

+
t1t2(1− q−1)

qt0t3(1− t)

N2∑
i=1

(1− t0tq
yi+1)(1− t3tq

yi+1)

(
N1∏
j=1

q−1 − qyi−xj

q−1t−1 − qyi−xj

)

×

 N2∏
j=1
j ̸=i

q−1 − qyi−yj

1− qyi−yj

 (T log(t)/ log(q)
yi

− 1). (6.60)

For N2 = 0 and N1 = n, the operator (6.60) reduces to the Van Diejen–Emsiz oper-
ator [103, (2.1)] up to a factor of

√
qt0t3/(t1t2). Also, if in (6.60) we put n = N1 + N2,

yi = xN1+i, and t = q−1 (that is, ξ = ℏ), then we get the operator [103, (2.1)] with t = q−1.
By applying the same limiting procedure to the set of quantum integrals of the gener-

alised Koornwinder operator found in [53, Proposition 5.6], we get quantum integrals for
the Hamiltonian (6.60).

We also obtain a generalisation to the case of two types of particles of the Hamilto-
nian [103, (3.13a)]. Indeed, if in (6.60) we put t3 = 1, define t̂i (i = 0, 1, 2) by t0 = q−1t̂1t̂2,
t1 = t̂0t̂2, and t2 = t̂0t̂1 following [103, (3.12b)], and then take the limit t̂2 → 0, we get

Ht̂0,t̂1
=

N1∑
i=1

(1− t̂0t̂1q
xi)

 N1∏
j=1
j ̸=i

t−1 − qxi−xj

1− qxi−xj


(

N2∏
j=1

q − qxi−yj

1− qxi−yj

)
(Txi

− 1)

+ t̂0
2

N1∑
i=1

(1− qxi)

 N1∏
j=1
j ̸=i

t− qxi−xj

1− qxi−xj


(

N2∏
j=1

t− qxi−yj

qt− qxi−yj

)
(T −1

xi
− 1)

+
1− q

1− t−1

N2∑
i=1

(1− t̂0t̂1q
yi)

(
N1∏
j=1

t−1 − qyi−xj

1− qyi−xj

) N2∏
j=1
j ̸=i

q − qyi−yj

1− qyi−yj


× (T − log(t)/ log(q)

yi
− 1)

+
t̂0

2(1− q−1)

1− t

N2∑
i=1

(1− tqyi+1)

(
N1∏
j=1

q−1 − qyi−xj

q−1t−1 − qyi−xj

) N2∏
j=1
j ̸=i

q−1 − qyi−yj

1− qyi−yj


× (T log(t)/ log(q)

yi
− 1).

(6.61)

For N2 = 0 and N1 = n, this reduces to the operator [103, (3.13a)] up to a factor of t̂0.
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Let us now consider an analogous limit of the operator (6.61) as the limit described
in Remark 6.40, just additionally making also the change qyi → κ−1qyi and introducing
the variables Yi = q−yi . Let us denote a q-multiplicative shift operator in the variable Xi

by tqXi
and analogously for Yi (so that T ±1

xi
and T ± log(t)/ log(q)

yi become respectively tq
∓1

Xi

and tτ∓2

Yi
). Then, in this limit, we obtain the multiplicative operator

H̃t̂0,t̂1
= ã

N1∑
i=1

1

Xi

 N1∏
j=1
j ̸=i

τ 2Xi −Xj

Xi −Xj


(

N2∏
j=1

τ 2Xi − Yj
qτ 2Xi − Yj

)
tqXi

+
ã(1− q)

1− τ−2

N2∑
i=1

1

Yi

(
N1∏
j=1

q−1Yi −Xj

q−1τ−2Yi −Xj

) N2∏
j=1
j ̸=i

q−1Yi − Yj
Yi − Yj

 tτ
−2

Yi

+ b̃

N1∑
i=1

1

Xi

 N1∏
j=1
j ̸=i

τ−2Xi −Xj

Xi −Xj


(

N2∏
j=1

qXi − Yj
Xi − Yj

)
tq

−1

Xi

+
b̃(1− q)

1− τ−2

N2∑
i=1

1

Yi

(
N1∏
j=1

τ−2Yi −Xj

Yi −Xj

) N2∏
j=1
j ̸=i

qYi − Yj
Yi − Yj

 tτ
2

Yi

+ c̃

N1∑
i=1

1

Xi

+
c̃(1− q)

1− τ−2

N2∑
i=1

1

Yi
,

(6.62)

where ã = −t̂02, b̃ = −t̂0t̂1, and c̃ = t̂0(t̂0 + t̂1), and where we twice used the following
polynomial identity (which generalises to two types of particles the identity from the top
of [103, p. 1621]):

N1∑
i=1

zi

 N1∏
j=1
j ̸=i

tzj − zi
zj − zi

 N2∏
j=1

swj − zi
wj − zi

+
1− s

1− t

N2∑
i=1

wi

(
N1∏
j=1

tzj − wi

zj − wi

)
N2∏
j=1
j ̸=i

swj − wi

wj − wi

=

N1∑
i=1

zi +
1− s

1− t

N2∑
i=1

wi.

We used it once with zi = X−1
i , wi = Y −1

i , t = τ−2, s = q, and the second time with
zi = X−1

i , wi = qτ 2Y −1
i , t = τ 2, and s = q−1.

The operator (6.62) generalises the Hamiltonian Ma,b,c given by (6.54), for special
values of a, b, c, to a Hamiltonian of a system containing two types of particles. Indeed,
if we put N2 = 0, N1 = n in (6.62), we recover Ma,b,c with a = −τn−1t̂0

2, b = −τ 1−nt̂0t̂1,
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and c = t̂0(t̂0 + t̂1).

Remark 6.42. An alternative way to arrive at the operator (6.62) and also a version of
it with arbitrary parameters ã, b̃, c̃ is to apply to the Hamiltonian (6.54) a restriction
procedure, similar to those considered in [53], for a suitable submodule of the polynomial
representation of the GLn-type DAHA. Moreover, this approach should lead to integrable
generalisations of the Hamiltonians Res

(∑n
i=1D

(l1,l2)
i

)
for general l1, l2 to the case of two

types of particles.



Chapter 7

Concluding remarks

Let us describe a few possible directions for further research related to the present work.
One broad direction is about investigating (and obtaining further new) MR-type sys-
tems through representation-theoretic methods and the lens of dualities, and the study
of their eigenfunctions. Another is to construct and investigate natural analogues of the
algebra Hgln from Chapter 6 that would establish an intriguing interplay between quantum
groups and DAHAs. The resulting algebraic structures would be expected to lead to novel
integrable difference operators of MR flavour and to have connections to the geometry of
symplectic singularities. More specifically, some possible research problems are as follows.

It would be interesting to extend our construction from Chapter 4 to the q-difference
setting, in other words, to devise a spin generalisation of the construction of MR-type
operators developed in [53] that uses special submodules in the polynomial representation
of DAHAs. Another important problem is to construct eigenfunctions for any new integ-
rable operators thus obtained, which could lead to interesting new special functions. For
example, the standard MR operator of type A is diagonalised by the Macdonald polyno-
mials, and its generalisation associated with a deformation of the A-type root system has
the super-Macdonald polynomials as eigenfunctions [96]. Further, it would be interesting
to extend the constructions from [50] and Chapter 4 to systems of elliptic type in the
differential, q-difference, and matrix-valued settings. This could, in particular, lead to an
integrable elliptic version of the generalised CMS operator for AG2 studied in Chapter 3
(cf. [52]).

We would also like to extend the techniques from the paper [25] to study the bis-
pectrality properties of the generalised MR operators associated with AG2 introduced in
Chapter 5 as well as the trigonometric generalisation of the Sergeev–Veselov difference
operator for BC(l, 1), due to Feigin and Silantyev [53]. In particular, this would yield
compact formulas for BA eigenfunctions for these generalised MR operators.

In addition to the algebra Hgln discussed in Chapter 6, the paper [51] introduced and
studied also an son version Hson — the Dunkl angular momenta algebra (DAMA). From
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an integrability perspective, the DAMA is the natural algebraic structure for studying the
angular part of the rational CMS operator. The angular part admits many quantum integ-
rals which can be realised inside the spherical subalgebra of the DAMA. The algebra Hson

has a link to the Lie algebra son analogous to the link of Hgln to gln. In type A, it is the
subalgebra of the RCA Hn generated by CSn and deformations — by means of Dunkl
operators — of the quantum angular momentum generators xi∂xj

− xj∂xi
(1 ≤ i ̸= j ≤ n)

defining the Jordan–Schwinger representation of son. The DAMA is a flat c-deformation
of the crossed product of CSn with the image of U(son) under this Jordan–Schwinger
map. It was recently shown in [4] that Hson coincides with the subalgebra of the RCA
invariant under an action of SL2(C). Geometrically, Hson is conjecturally related to a
deformation of a symplectic singularity given as the quotient by Sn of the closure of the
minimal special nilpotent orbit of son. For the symplectic Lie algebra sp2n, Hakobyan
constructed in [60] an analogous algebra — the Dunkl symplectic algebra (DSA). It would
be natural and interesting to try to construct and study q-deformed generalisations of the
DAMA and DSA inside a DAHA, similarly to how the algebra Hgln ⊂ Hn in Chapter 6
is a q-analogue of Hgln . They are expected to be related to suitable quantum algebras
for son and sp2n, respectively, and they might potentially lead to new integrable difference
operators.
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