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Abstract

Statistical shape analysis is a field for which there is growing demand. One of
the major drivers for this growth is the number of practical applications which
can use statistical shape analysis to provide useful insight. An example of one
of these practical applications is investigating and comparing facial shapes. An
ever improving suite of digital imaging technology can capture data on the three-
dimensional shape of facial features from standard images. A field for which
this offers a large amount of potential analytical benefit is the reconstruction
of the facial surface of children born with a cleft lip or a cleft lip and palate.
This thesis will present two potential methods for analysing data on the facial
shape of children who were born with a cleft lip and/or palate using data from
two separate studies. One form of analysis will compare the facial shape of one
year old children born with a cleft lip and/or palate with the facial shape of
control children. The second form of analysis will look for relationships between
facial shape and psychological score for ten year old children born with a cleft lip
and/or palate. While many of the techniques in this thesis could be extended to
different applications much of the work is carried out with the express intention
of producing meaningful analysis of the cleft children studies.

Shape data can be defined as the information remaining to describe the shape
of an object after removing the effects of location, rotation and scale. There are
numerous techniques in the literature to remove the effects of location, rotation
and scale and thereby define and compare the shapes of objects. A method which
does not require the removal of the effects of location and rotation is to define
the shape according to the bending of important shape curves. This method can
naturally provide a technique for investigating facial shape. When considering a
child’s face there are a number of curves which outline the important features of
the face. Describing these feature curves gives a large amount of information on
the shape of the face.

This thesis looks to define the shape of children’s faces using functions of



bending, called curvature functions, of important feature curves. These curva-
ture functions are not only of use to define an object, they are apt for use in
the comparison of two or more objects. Methods to produce curvature functions
which provide an accurate description of the bending of face curves will be intro-
duced in this thesis. Furthermore, methods to compare the facial shape of groups
of children will be discussed. These methods will be used to compare the facial
shape of children with a cleft lip and/or palate with control children.

There is much recent literature in the area of functional regression where a
scalar response can be related to a functional predictor. A novel approach for
relating shape to a scalar response using functional regression, with curvature
functions as predictors, is discussed and illustrated by a study into the psycho-
logical state of ten year old children who were born with a cleft lip or a cleft lip
and palate. The aim of this example is to investigate whether any relationship
exists between the bending of facial features and the psychological score of the
children, and where relationships exist to describe their nature.

The thesis consists of four parts. Chapters 1 and 2 introduce the data and
give some background to the statistical techniques. Specifically, Chapter 1 briefly
introduces the idea of shape and how the shape of objects can be defined using
curvature. Furthermore, the two studies into facial shape are introduced which
form the basis of the work in this thesis. Chapter 2 gives a broad overview of some
standard shape analysis techniques, including Procrustes methods for alignment
of objects, and gives further details of methods based on curvature. Functional
data analysis techniques which are of use throughout the thesis are also discussed.

Part 2 consists of Chapters 3 to 5 which describe methods to find curvature
functions that define the shape of important curves on the face and compare
these functions to investigate differences between control children and children
born with a cleft lip and/or palate. Chapter 3 considers the issues with finding
and further analysing the curvature functions of a plane curve whilst Chapter 4
extends the methods to space curves. A method which projects a space curve onto
two perpendicular planes and then uses the techniques of Chapter 3 to calculate
curvature is introduced to facilitate anatomical interpretation. Whilst the midline
profile of a control child is used to illustrate the methods in Chapters 3 and 4,
Chapter 5 uses curvature functions to investigate differences between control
children and children born with a cleft lip and/or palate in terms of the bending
of their upper lips.

Part 3 consists of Chapters 6 and 7 which introduce functional regression
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techniques and use these to investigate potential relationships between the psy-
chological score and facial shape, defined by curvature functions, of cleft children.
Methods to both display graphically and formally analyse the regression proce-
dure are discussed in Chapter 6 whilst Chapter 7 uses these methods to provide
a systematic analysis of any relationship between psychological score and facial
shape.

The final part of the thesis presents conclusions discussing both the effective-
ness of the methods and some brief anatomical /psychological findings. There are

also suggestions of potential future work in the area.
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Chapter 1

Introduction

1.1 Shape

Much of our initial perception of objects, creatures and fellow humans is depen-
dent on their shape. The human brain is supremely efficient at analysing shape
instantly. However, to allow shape analysis to be considered as a useful research
area it is important to have systematic techniques to qualitatively describe and
compare shapes. Techniques currently used to describe shapes include placing
landmarks, curves or meshes on the shape. Landmarks can be placed on geo-
metric or anatomically important points on shapes and these can be used to
either define the shape or compare between shapes. One drawback with simply
using landmarks to define the shapes is that information between the landmarks
is lost. To overcome this loss of information, curves on the shape which may
be of interest can be defined by connecting a set of pseudo-landmarks which lie
on the curve at small increments between the anatomical landmarks. To define
the whole shape it is possible to place a mesh over the complete surface of the
shape. Often landmarks and curves are extracted from these surface meshes but
there are also techniques to analyse the shape of the whole surface through these
meshes. This thesis will solely analyse shape curves.

Much of the current shape analysis literature involves the alignment of shapes
by location, rotation and in some instances scale. Dryden and Mardia (1998)
describe a variety of methods for aligning shapes, with the popular Procrustes
methods described in Chapter 2. The methods are in the main simple to use and
make further analysis of shapes straightforward; however there are sometimes
difficulties. If there is a large number of shapes defined in high definition, align-

ment methods can prove computationally expensive. Furthermore, care must be
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taken when comparing aligned shapes to ensure that particular differences are in
fact discrepancies between the shapes and cannot be attributed to the alignment
process. Throughout this thesis shapes will be described by the bending of de-
fined shape curves. An advantage of this method is that it removes the need for

shape alignment.

1.2 Curvature

One technique for defining the shape of objects is to calculate the bending experi-
enced by shape curves. For plane curves the bending of the curve at any point is
given by a single scalar value, called curvature, whilst for space curves the bend-
ing at any point on the curve is defined by two scalar values, called curvature
and torsion (or in some literature first and second curvature). A major reason
for defining shapes in this way is that curvature is independent of the location or
rotation of the curve meaning alignment techniques are not required.

There are a number of techniques which may be used to calculate the bending
of a curve. A simple technique uses formulae which are dependent on the deriv-
atives of the position of the curve on each axis with respect to the arc length of
the curve. The bending of a plane curve (called curvature and denoted by k) is

defined by the equation

2'(s)y"(s) — " (s)y'(s)

S FTRERRW RO

where z(s) and y(s) are the z and y positions of the curve at arc length s and the
dash notation indicates derivatives with respect to the arc length of the curve.
The bending of a space curve (called curvature and torsion which are denoted by

r and T respectively) is defined by the equations

K(s) = [r'(s) xr"(s)|
((r'(s) x r"(s)) - ™" (s))

[r(s) x 1(s)|"

where 1'(s) = [2/(s),9/(s), 2/(s)] and x denotes the cross-product.

For simple shape comparison it is useful to compare the functions of curva-
ture (and torsion) against arc length of the various shapes. Also, by defining the
bending of each feature curve as functions of arc length, a large array of func-

tional data analysis techniques (Ramsay and Silverman (2006) give an overview
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of a selection of techniques) are available for further analysis. One of the major
interests in this thesis will be comparing the feature curves of different groups
using curvature functions. Interestingly, both plane curves and space curves can
be reconstructed up to location and rotation from the curvature (and torsion)
functions with relative ease. This can be useful in several settings, for example,
it enables ‘average’ feature curves to be produced from ‘average’ curvature func-
tions which can assist in anatomical visualisation of the nature of differences in
the curvature functions.

Curvature functions can be useful in extracting the position of anatomically
or geometrically important points on the shape. Points of interest will often be
associated with turning points of the curvature function. By considering the
turning points of the curvature functions information is available on the position
(in relation to the rest of the feature) and the amount of bending experienced at
important points on the shape. This thesis will investigate a number of techniques
which use the fact that curvature functions indicate anatomical points of interest,

which complement and enhance methods of group comparison.

1.3 Cleft Lip and Palate Data

The data analysed in this thesis come from two studies comparing the facial
shape of children in the Glasgow area with particular interest in comparing the
facial shapes of children with a cleft lip and/or palate to that of control chil-
dren. One study investigated children at 1 year of age while a separate study
investigated children at 10 years. In both studies three-dimensional images were
built using a sophisticated stereophotogrammetry system, which takes pictures
from two different angles and uses these to built up the three-dimensional image
much in the way two eyes build up the image in human sight. Validation studies
were carried out by Ayoub et al. (2003) and Khambay et al. (2008) on the equip-
ment used in the 1 year and 10 year studies respectively with discussion on the
variability in the three-dimensional images produced and the variability in the
manual placement of the landmarks. The three-dimensional image is transformed
into a surface mesh onto which landmarks and curves can be placed. Figure 1.1
shows an example of a one year control child with selected landmarks and curves
marked. There are data available on five facial curves; the midline profile, the
top of the upper lip, the nasal rim, the nasal base and the nasal bridge. The

curves are produced by marking important anatomical landmarks manually and
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calculating pseudo-landmarks at many small increments between landmarks to

give close to continuous curves.

cphRygephL

Figure 1.1: The names of selected landmarks and the facial curves placed on
a one year control child.

In the 1 year study there are curves available for 9 children born with a
cleft lip and 13 children born with a cleft lip and palate as well as for 71 control
children. All the cleft children underwent surgical repair between the age of 3 and
6 months. The major interest is in comparing the facial shapes of the three groups
of children, in particular comparing between the control group and both cleft
groups. It is clearly the aim of the surgery to attempt to, where possible, remove
all shape effects of the cleft, therefore it is important to investigate systematic
differences between the control group and either of the cleft groups.

In the 10 year study there are curves available for 44 children born with a
cleft lip and 51 children born with a cleft lip and palate as well as 68 control
children. Again all the cleft children underwent surgical repair between the age
of 3 and 6 months. In addition to the digital imaging all cleft children, and their
parents, were asked to fill in a set of questionnaires on their psychological state.
There were numerous aims to the study but the aim discussed in this thesis is to
investigate potential relationships between the facial shape of the cleft children,
as described by curvature functions, and their psychological score.

In general the cleft will only occur on one side of the child’s face with no

evidence of a tendency to occur more regularly on the right or the left side.



CHAPTER 1. INTRODUCTION 5

While the cleft will affect both sides of the face, clearly the side on which the
cleft occurs will be most affected. The side of the face on which the cleft occurs is
of no interest in this study. In fact it would be beneficial to have the cleft occur
on the same side of the face for each child. To facilitate this all cleft children
who have the cleft occurring on the left side of the face have the landmarks and
corresponding curves ‘reflected’ around the midline so that in the analysis the

cleft is seen on the right side of the face.

1.4 Psychological Questionnaire

Although the children completed a number of questionnaires it is a questionnaire
completed by the parents which will be used throughout this thesis. The reason
for this is that the questionnaires completed by the parents contained much fewer
missing responses allowing a larger data set to be analysed. The questionnaire
used was the Revised Rutter Scale which is a revision of the original Rutter
Parents’ and Teachers’ Scale (see Rutter (1967)). A copy of the questionnaire
can be found in Appendix A.

The questionnaire contains 50 statements (for example ‘Very restless, has
difficulty staying seated for long’ or ‘Not much liked by other children’) and the
parents were asked to select whether the statement ‘does not apply’, ‘applies
somewhat’ or ‘certainly applies’. Each statement is scored 0 for ‘does not apply’,
1 for ‘applies somewhat’ and 2 for ‘certainly applies’. By summing the scores
for certain statements a total difficulties score out of 52 is obtained with higher
scores suggesting more difficulties. Furthermore, scores for emotional difficulties,
conduct difficulties, hyperactivity/inattention and prosocial behaviour can be
obtained. Throughout this thesis the total difficulties score will be used as a
measure of psychological score.

Although there has been little review of the updated version of the question-
naire it is clearly strongly linked to the original Rutter Parents’ and Teachers’
Scale and earlier adaptations which were reviewed by Elander and Rutter (1996).
They concluded that ‘for reliability the picture is of generally positive results
that are better for antisocial than emotional behaviours and better for teachers’
than parents’ ratings.” They also show that the results from the Rutter Parents’
and Teachers’ Scales correlate well with several social competency scales and a

variety of observational studies.
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1.5 Missing Data

Both studies incur some levels of missingness for a variety of reasons. One prob-
lem is in accurately extracting curves, particularly for cleft children. Barry (2008)
briefly discusses missing data for the 1 year old study. The major reason for miss-
ing data in this study was difficulty in extraction of the curves, particularly for
the cleft group. It may be that curve extraction is more difficult for the most
severe cases so data may be missing for these severe cases. This will not be con-
sidered throughout the thesis but should be kept in mind. The numbers quoted
as part of the study in Section 1.3 are subjects for whom complete sets of curves
were available. Due to difficulties in curve extraction there is data missing for 24
(26.4%) control children and 19 (47.5%) cleft children.

The 10 year study initially contained 95 cleft subjects. However, due to
problems with curve extraction, 8 subjects were removed. Furthermore, only
subjects for which there are completed questionnaires can be included in the
analysis. When parents attended the data capture session it was requested that
they completed the questionnaire. If they refused or were reticent no pressure
was applied to ensure completion. There did not appear to be any systematic
reasoning for non-completion of questionnaires so subjects with no psychological
score available are simply removed from the analysis and no further consideration
is given to this issue. Due to missing questionnaires a further 7 subjects are
removed. This leaves 80 cleft subjects from which to investigate the relationship
between psychological score and facial shape. The decision was made to simply
analyse a single cleft group rather than the separate cleft lip and cleft lip and
palate groups as the larger size of the group allows sufficient information from

which conclusions can be drawn.

1.6 Overview of Thesis

Chapter 2 will outline some simple shape analysis techniques and discuss some
recent developments in the field. Furthermore, there will be a discussion of some
curve analysis methods along with an overview of standard functional data analy-
sis techniques. Chapter 3 will introduce methods for calculating the curvature
function of a plane curve. Techniques for producing average curvature functions,
including aligning the functions in terms of important landmarks, will also be dis-

cussed. The methods for calculating the curvature of a plane curve are extended
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to a space curve in Chapter 4 and furthermore a method to aid anatomical inter-
pretation of the curvature functions is introduced. Chapter 5 uses the methods
introduced in the previous chapters to carry out a comparison between the three
groups of 1 year old children (controls, cleft lip, cleft lip and palate) concentrat-
ing specifically on the upper lip curves. Methods to examine a relationship, both
graphically and formally, between facial shape defined using curvature functions
and psychological score are outlined in Chapter 6 with a motivating example
contained for illustration. Chapter 7 contains a systematic investigation of the
relationships between facial shape and psychological score using the data of 10
year old children. Chapter 8 provides a summary, some conclusions and potential
further work.

This thesis focuses on the practical application of analysing the cleft lip studies
by carrying out analysis which is informative in this context. The major aims

are:

e To introduce a curvature based technique to describe the facial shape of

children through the bending of important facial features.

e To produce curvature functions for the facial features which are anatomi-

cally simple to understand.

e To compare the facial shape of one year old children born with a cleft lip

and /or palate to control children using these curvature functions.

e To investigate relationships between facial shape, defined by curvature func-
tions, and psychological score for ten year old children born with a cleft lip

and/or palate.

e To introduce methods which may be useful in interpreting any significant

relationship between facial shape and psychological score.

Many of the techniques chosen throughout are driven by the aims of the thesis.



Chapter 2
Review

This chapter will provide a brief overview of the statistical shape analysis tech-
niques which will be used in this thesis. A full overview of statistical shape
analysis can be found in Dryden and Mardia (1998) and this work is the basic
reference for the first section of the chapter. Much of Section 2.1 will discuss
popular shape analysis techniques when the shapes are defined by landmarks.
Defining shapes solely by landmarks will not be the method adopted by this the-
sis; however, the methods are commonly used and useful to understand. Much of
the work in this thesis will involve analysing shapes which are defined by curves.
Section 2.2 will investigate how two- and three-dimensional curves have been
analysed in the current literature with a particular interest in the use of curves
to describe and analyse shapes. Section 2.3 will describe some commonly used
techniques to analyse functional data as much of the data to be analysed in this

thesis will be in functional form.

2.1 Statistical Shape Analysis

Dryden and Mardia (1998) define shape as ‘all the geometrical information which
remains when location, scale and rotational effects are filtered out from an object’.
It is usual for shapes to be defined by pre-specified landmarks which provide a
correspondence between and within populations. These landmarks are either
anatomical landmarks which have a specific biological meaning, such as the tip
of the nose or the edge of the upper lip, mathematical landmarks, such as points of
high curvature or turning points, or pseudo-landmarks which are used to connect
other types of landmarks.

To define a set of landmarks on an object a k x m matrix, X say, is produced
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where k is the number of landmarks and m is the number of dimensions. This
matrix is called the configuration matrix for that object.

When comparing shapes it is useful to scale each object to the same size. For
this to be possible the size of each shape must be defined. Dryden and Mardia
(1998) define a size measure g(X) as any positive real valued function of the

configuration matrix such that
9(aX) = ag(X) (2.1)

for any positive scalar a. One measure of size which satisfies (2.1) is the centroid

size. The centroid size of a shape with configuration matrix X is given by

S(X) = IEX]] = | >0 D (X - X 22

i=1 j=1

where X; = 13" X, O = I, — 11,17 and || X|| = \/tr(XTX). Equation (2.2)
effectively states that the centroid size is the square root of the sum of squared

distances of each point from the mean point in each dimension.

2.1.1 Procrustes analysis

Procrustes methods are popular techniques used to remove the effects of location,
rotation and scale for configurations with two or more dimensions. By removing
these three effects all that remains is information on the shape given by the config-
uration. Procrustes analysis is the process which matches configurations by using
least squares to minimise the Euclidean distance between them following centring
(location adjustment), rotation and scaling. There are two major methods of Pro-
crustes analysis. Full ordinary Procrustes analysis (OPA), which matches two
configurations, and full generalised Procrustes analysis (GPA), which matches n
configurations. Both methods will be outlined here.

To give an overview of full ordinary Procrustes analysis suppose there are
two configurations X; and Xy which contain information on k landmarks in m

dimensions. The first stage of the process is to centre the configurations using
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where C' is as defined above. For simplicity X; will denote X;- after the config-

urations have been centred. Now the full OPA method involves minimising
Dgpa(X1, Xa) =[| Xo — BXT — Liy" |2 (2.4)

where I' is an (m x m) rotation matrix, 5 > 0 is a scale parameter and ~y is an
(m x 1) location vector. The minimum of (2.4) is the ordinary (Procrustes) sum

of squares (0SS(X1, X3)). The parameter values are given by (¥, 3,T) where

¥y =0

r = uv”

. tr(XTXT)
ot XT X))

where U,V € SO(m) and SO(m) is the set of (m x m) orthogonal matrices,
A, where ATA = AAT = I,,. The ordinary (Procrustes) sum of squares can
be calculated as OSS(X1, X3) = || Xy ||? sin® p(X1, X3) where p(X;, X3) is the
Procrustes distance defined by Dryden and Mardia (1998). The full Procrustes
fit of Xy onto X5 is then given by

XP=px,I + 1,57 (2.5)
The residual matrix after the Procrustes matching can be defined as
R=X,—- X/

If the roles of X; and X, are reversed then the ordinary Procrustes superimpo-
sition will be different. Therefore the ordinary Procrustes fit is not reversible
ie. OSS(X1,X3) # OSS(Xy, X1) unless the objects are both of the same size.
Therefore, \/OSS(X1, Xs) cannot be used as a distance measure between the

shapes. Instead normalising the shapes to unit size gives a useful measure of

distance between the two shapes. This distance is given by \/ 0SS <”§—1”, ‘é—z“)

To give an overview of full generalised Procrustes analysis (GPA) suppose
that there are n configurations Xi,..., X, which each contain information on
k landmarks in m dimensions. Once again assume that each configuration is
centred. Full GPA can be thought of as a direct extension of full OPA such that
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the full GPA minimises the generalised (Procrustes) sum of squares

X1 X = 30 3 BT+ 10f) — (XD +1a]) [P (20

i=1 j=i+1

subject to the constraint S(X) = 1. That is, the centroid size of the average
configuration is 1 where the average configuration is X = £ 3" (3X;I'; 4+ 1:77).
The generalised (Procrustes) sum of squares is proportional to the sum of squared
norms of pairwise differences. Minimising the generalised (Procrustes) sum of
squares involves translating, rotating and rescaling each object so that all objects
are placed close to each other in a way which minimises the sum, over all pairs,

of the squared Euclidean distances. This process can be defined by

G(Xb s 7Xn) = lnf Z Z H BZX I + 1k71 ) (ﬁijFj + 17?7?) H2
Bl 1 =1 j=i+1
1 - T 2
- af“f%Z | (B:X +1m>—ﬁjzl<ﬂjxjrj+1wj> ||

The minimisation can alternatively be viewed from the perspective of estimation

of the mean shape u so

G(Xy,...,X,) = inf OSS(X;, )
wS(p)=1

= inf sin? p( X,
N pa p(Xi 1)

where p(X;, pt) is the Procrustes distance between X; and p given by Dryden and
Mardia (1998). The full Procrustes fit of each X is given by

Dryden and Mardia (1998) describe an algorithm for estimating the transforma-
tion parameters (3;, [;,7;). The full Procrustes estimate of mean shape can be

calculated by

b= arg mf Zsm p(Xi, 1)
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= arg inf d%(X;,
g#:s(“)ﬂ; #(Xi, 1)

where d%(X;, 1) is the squared full procrustes distance, as defined by Dryden
and Mardia (1998), between X; and p. It is also possible to calculate the full
Procrustes mean by calculating the arithmetic mean of each coordinate, across
cach configuration after full Procrustes matching. Therefore, X = £ 37"  X7F

where X! is the Procrustes coordinates for individual i.

2.1.2 Thin-plate splines, deformations and warping

A quantity such as Procrustes distance can give a numerical measure to compare
two shapes. However, it is often the case that the interest is more in how shapes
differ locally as opposed to simply by how much they differ. To investigate these
local differences it can be informative to map one landmark configuration onto
another. Suppose that there are two configurations, 7" and Y, both defined by
k landmarks in m dimensions such that 7' = (¢y,..., )7 and Y = (y1,..., )’
The aim is to map 7" onto Y where t;,5; € R™. This process is called a

deformation and is defined by the transformation
y=0(t) = (D1(t), Ba(t), ..., Pm(t)"

where the multivariate function ®(¢) should, where possible, be continuous, smooth,
bijective, not prone to large distortions, equivariant under the similarity trans-
formations and an interpolant i.e. y; = ®(¢;) Vj = 1,...,k. In two dimensions,
when m = 2, deformation can be carried out using a pair of thin-plate splines.
Dryden and Mardia (1998) state that ‘a bijective thin-plate spline is analogous
to a monotone cubic spline’. A pair of thin-plate splines can be given by the

bivariate function

O(t) = (D1(t), Pa(t))”
= c+ At +WTs(t)

where ¢ is a (2 x 1) vector, s(t) = (o(t —t1),...,0(t —t3))" is a (k x 1) vector
with
h|*1 h h >0
o= { 14 PRl
0, [ ]]=0
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Incorporating some necessary constraints this can be written in vector-matrix

form as
S 1, T %74
1{ 0 0 cr = 0
T 0 0 AT 0

where S;; = o(t; — t;). The inverse of the matrix I' where

S 1, T
r=|17 0 0
7 0 0

can be written, since I' is symmetric positive definite, as

1 [ o2 ]
2l 22

where T''! is (k x k). The bending energy matrix, B, is then defined as B, = T''1.

One way to explain the components of a thin-plate spline deformation is to
use principal and partial warps. These techniques were introduced by Bookstein
(1989). The idea of principal and partial warps is somewhat analogous to prin-
cipal components in a multivariate context in that each principal and partial
warp explains a separate part of the overall deformation. Suppose that T" and Y
are (k x 2) configuration matrices for different shapes and the thin-plate spline
transformation which interpolates the k points of T to Y gives a (k x k) bending
energy matrix B,. The principal warps, which construct an orthogonal basis for

re-expressing the thin-plate spline transformations, can then be defined as

By{t) = 2s(t)

for j = 1,...,k — 3 where 7,...,7v,_3 are the eigenvectors corresponding to
the non-zero eigenvalues (A\; < Ao < ... < ),_3) obtained from an eigen-
decomposition of B,. Further s(t) = (o(t—ty),...,0(t—1t;))’. Partial warps can
now be defined as

R;(t) = Y Ay Py (t)

The jth partial warp will largely show movement of landmarks which are heavily
weighted in the jth principal warp. In general as the eigenvalue which corre-

sponds to the warps increases the more local the deformation described by the



CHAPTER 2. REVIEW 14

warp becomes i.e. Pj(t) and R;(t) will typically explain an overall large scale
deformation of the shape whilst P,_3(¢t) and Ry_3(t) will explain a small scale
and localised deformation often between the two closest landmarks. The partial
warps are useful to give greater understanding of the deformation explained by

the corresponding principal warps.

2.1.3 Other shape analysis techniques

Shape analysis is a large and progressive subject in Statistics which has seen
many advances in recent years. Bowman and Bock (2006) discuss a number
of techniques to explore three-dimensional shape, including graphical displays of
longitudinal changes between groups and a permutation test to compare principal
components of groups across time, with comparing the facial shapes of control
children and children with a unilateral cleft lip and/or palate used as an example.
Further, Bock and Bowman (2006) introduce a method to measure the asymmetry
of the faces of children whilst Pazos et al. (2007) investigate the reliability of
asymmetry measures of body trunks.

Often comparisons between shapes is simpler when the original shapes can be
defined using a set of lines or elementary shapes. Shen et al. (1994) use predefined
simple shapes of various sizes to attempt to classify tumours in mammograms
while Guliato et al. (2008) find a polygonal model which best fits the outline of the
tumor to aid classification. More generally Pavlidis and Horowitz (1974) outline
a method for describing shapes using straight line segments and examine the
importance of the position of the line joints. To better represent more complex
shapes Chong et al. (1992) propose a similar method using B-spline segments
whilst the method used by Cootes et al. (1995) depends on snake segments.

An alternative way to define and compare shapes is by finding a minimum
spanning tree that fits the landmarks of the shape. An algorithm for calculat-
ing the minimum spanning tree is given by Fredman and Willard (1994) while
Steele et al. (1987) discuss the asymptotics of the number of leaves of the min-
imum spanning tree. Minimum spanning tree measures can be useful in shape
correspondence analysis. For example Munsell et al. (2008) investigate the per-
formance of a number of tests of landmark based shape correspondence, including
one based on minimum spanning trees.

Some standard methods of describing shapes make further analysis com-
plex. To make further analysis simpler Kume et al. (2007) introduce shape-space

smoothing splines to allow a smooth curve to be fitted to landmark data in
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two-dimensions. Also Dryden et al. (2008) introduce a computationally simple

framework for performing inference in three or more dimensions.

2.2 Curve Analysis

Shape analysis can be performed using landmarks, curves or surfaces defined on
the shape. This thesis will concentrate on curves defining shapes. Defining shapes
using curves can have many practical uses. For example Samir et al. (2006) show
how defining facial shapes using curves can assist in facial recognition. This
section will outline various methods for analysing shape curves.

One way to define curves is by examining the amount of bending shape curves
exhibit at various points along the curve. For a plane curve the bending at any
point on the curve can be represented using a single scalar value called curvature.

In standard geometry curvature of a plane curve at the point a is defined as

where ¢(a) is the angle between the tangent line at point a and the positive
direction of the x axis and s is arc length. Alternatively, for computational

simplicity, curvature of a plane curve can be defined as

Y (a)y/(a) - " (@)y'(@)
(@(@?+y/(ap)”

r(a) =

where x(a) and y(a) denote the x and y position of the curve and the dash nota-
tion indicates derivatives with respect to the arc length of the curve. Curvature
of a plane curve is thoroughly examined in Chapter 3 and Gray (1998) is a good
reference.

It is often computationally difficult to estimate curvature of a plane curve.
The accuracy and precision of several methods are shown to have some inaccuracy
by Worring and Smeulders (1992). Major problems are often found at extrema
and a method to deal with these problems is proposed by Craizer et al. (2005).
In spite of these difficulties curvature is a useful measure for use in shape analysis
and there are many examples in the literature. A method to represent planar
curves using curvature is given by Mokhtarian and Mackworth (1992). Small and
Le (2002) introduce a model which can be used to describe the shape of plane

curves using their curvature and propose a measurement of difference between two
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curves using curvature. Curvature is used to enhance biological shape analysis in
Costa et al. (2004) while Noriega et al. (2008) use curvature to find mutations in
Arabidopsis roots.

The bending of a three-dimensional space curve at any point is represented by
two scalar values called curvature and torsion. In standard geometry curvature
(k) and torsion (7) at the point a are defined as

dt(a
o - [as
db(a)/ds

r(a) = U

n(a)

where t(a), n(a) and b(a) are the tangent, normal and binormal vector of the

curve at point a respectively. For computational simplicity the curvature and

torsion can also be defined as

kla) = [r'(a) x r"(a)|

o)~ (@) (@) 1 a)
(@) x ()P

where r(a) = [z(a),y(a), z(a)] and 7'(a) = [2'(a),y'(a), 2'(a)] where for example
x'(a) is the first derivative of the x position of the curve with respect to arc
length and x denotes the cross-product. Curvature of a space curve will be
comprehensively discussed in Chapter 4 while Gray (1998) is once again a good
reference.

There are more difficulties when it comes to calculating curvature and torsion
in space curves. There is literature on the subject including a recent attempt
by Lewiner et al. (2005) to calculate curvature and torsion based on weighted
least squares and local arc-length approximation. Further, Rieger and van Vliet
(2002) propose a method using the gradient structure tensor which obtains the
orientation field and a description of shape locally and then computes curvature
in this tensor representation. One of the difficulties in estimating curvature and
torsion is to control the sign of torsion. Karousos et al. (2008) address this issue
by computing a domain which allows the space curve to have constant sign of
torsion. A method to match shapes using space curves represented using a wavelet
transformation is described by Tieng and Boles (1994). A potential application
of curvature and torsion in space curves is found in Hausrath and Goriely (2007)

where helical proteins are described in terms of their curvature and torsion.
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Shape curves can be represented using various techniques which enhance the
further analysis on the curves. Rosin and West (1995) represent shape curves
using a set of superellipses whilst Alkhodre et al. (2001) represent curves using
Fourier series. Srivastava and Lisle (2004) use Bézier curves to allow simple analy-
sis of fold shapes. An interesting technique which allows curves to be matched
is to represent each curve as a vector of turning angles and use some form of
dynamic programming to calculate the distance between the two vectors. This
technique is described by Niblack and Yin (1995) with discussion given to the
problem of selecting a starting point. An alternative technique for matching
curves is described by Pajdla and Van Gool (1995). This technique involves us-
ing semi-differentials to match the curves. The major issue is in finding reference
points common to the curves being matched for which two techniques, one based
on total curvature and the other based on arc-chord length ratios, are proposed.
Aykroyd and Mardia (2003) propose a technique to describe the shape change of
curves using a wavelet decomposition to construct a deformation function which
is estimated using a Markov Chain Monte Carlo approach.

Whilst curves often represent a feature on a shape it is also possible to produce
curves which show movement in space. Facial movements of cleft children are
observed and analysed by Trotman et al. (2005). Also Faraway et al. (2007) use
Bézier curves with geometrically important control points to track, analyse and
predict hand motion. A similar but alternative technique using Bayesian methods
to describe the mean and variability of human movement curves is described by
Alshabani et al. (2007). Procrustes techniques which normalise stride patterns, in
terms of time and magnitude of the stride, to allow gait patterns to be compared
are outlined by Decker et al. (2007).

2.3 Functional Data Analysis

There are many sets of data where it is natural to think of the process as func-
tional. Increased computing power in recent times has enabled the process of
producing, recording and analysing functional data to be carried out without
being overly computationally expensive. Ramsay and Silverman (1997) is a good

reference for discussing basic functional data analysis techniques.
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2.3.1 Interpolating and smoothing splines

Even when working with functional data it is unusual for the data to be available
in a completely functional form. Often the function is defined by a large number
of data points with a very small interval between neighbouring points. When this
is the case it is important to be able to join the data points to produce a function
in a smoother form than simply considering a straight line between neighbouring
points. A technique for producing a function from the data points is cubic splines.
An excellent overview of interpolating and smoothing using cubic splines is given
by Green and Silverman (1994). Much of the description in this section comes
from this work.

Suppose that there are a set of data pairs (s;,y;) on the closed interval [a, b]
where i = 1,...,n. A simple way to describe the relationship between s and y is
to fit the linear relationship

y=a+bs+e.

However it is often the case that fitting a linear relationship to the data is inap-

propriate. When this is the case a model of the form

y=g(s) +e, (2.7)

where ¢ is some function, is often a more appropriate model. The model in (2.7)
could be fitted using least squares. However if there are no constraints on the
function g it is clear that the residual sum of squares would have a minimum of
zero when g is chosen as any function which interpolates the n points. Therefore
a roughness penalty approach is taken which provides a good fit to the data but
which avoids the fluctuations caused by interpolation.

The roughness penalty approach requires some measure of the roughness of
a curve. There are numerous ways that this quantity can be measured. Green
and Silverman (1994) suggest using the integrated squared second derivative of g
ie. f; [g"(s)]?ds. Two reasons why this choice of roughness measure is attractive
are firstly that any measure of roughness should not be affected by a constant
or a linear function and secondly if a thin piece of flexible wood was bent to the
shape of g then the leading term of the strain energy is proportional to [ ¢”. The

roughness penalty approach now states that the least squares estimator of g is
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the function ¢ which minimises S(g) where

n

b
S(6) =l — gl +a [ " (s)Pds (2.9
i=1 a
The smoothing parameter « is a positive scalar which controls the trade off
between minimising the residual sum of squares and removing roughness from
the model. As « approaches zero ¢ will approach the interpolating function
while the larger a becomes the smoother the function g will become.

With this roughness penalty approach in mind the idea of cubic splines will
now be discussed. Suppose si,..., s, are real numbers in the interval [a, b] and
that a < 51 < s < ... < s, < b then a cubic spline function g can be fitted on
la,b]. The conditions for a cubic spline are that g is a cubic polynomial in each
interval (a, s1), (s1,82), ..., (Sn,b) and at each point sy, ..., s, the polynomials fit
together in such a way that g, ¢’ and ¢” are continuous on the whole interval
[a,b]. The points s; are called knots.

There are a number of ways that a cubic spline can be defined. Green and
Silverman (1994) suggest that the cubic spline should be defined by its value and
the value of its second derivative at each of the knots. Therefore the cubic spline
g is defined by

g = g(sz‘)
Vi = 9"(81)

For g to be a natural cubic spline there is a further condition that v; = ~, = 0.
Call g the n length vector (g1, . .., g,)? and v the n—2 length vector (ya, ..., Vn_1).
These vectors specify g completely although it turns out that not all possible g
and ~ define a natural cubic spline. This requires a further condition depending
on two band matrices, called () and R say, which depend on the distances between
the knots. Define the distance between knot ¢ and knot ¢ + 1 as h; = s;11 — s;
then let @) be the n x (n — 2) matrix with entries ¢;;, where i = 1,...,n and

Jj=2,...,n—1, and

_ ~1
dj-15 = hjfl
_ —1 ~1
Qi = —his—h
_ ~1
4+1,5 = hj

Gi; = 0 if  li—j]>2
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for j =2,...,n — 1. The columns of ) are numbered so that the top left entry
of @ is ¢12 and the top right entry is ¢; ,—1. Now let R be the (n —2) x (n — 2)
symmetric matrix with entries r;;, where ¢ = 2,...,n—1land j = 2,...,n — 1,

which are given by

Tii = 3(hi1 + hy)
Tii+1 = Ti410 = %hi
Tij = 0 if li—jl>2

Now Green and Silverman (1994) state that g and ~ specify a natural cubic
spline ¢ if and only if
Q'g =Ry (2.9)

If (2.9) holds then the roughness penalty satisfies

b
/ g"(s)?ds =~+"Ry =g'Kg (2.10)

where K = QR'QT.

Although it is often the case that smooth cubic splines are required there are
occasions where it is of interest to produce a smooth interpolating spline. Green
and Silverman (1994) state that if n > 2 and s; < ... < s, then given any values
Y1, - - -, Yp there is a unique natural cubic spline g with knots at s; which satisfies
g(s;) = y; for i = 1,...,n ie. there is one natural cubic spline which is an
interpolant of the n points. To find this unique natural cubic spline (2.9) must
be solved. Since @ is tridiagonal QTg can be found from g using a linear number
of operations. Green and Silverman (1994) suggest that the premultiplication by
QT can be achieved by

T gi+1 — i 9i — gi—1
(@"g)i = " - (2.11)

Now setting ¢g; = y; and using (2.11), v can be found from (2.9) since R is known
and Qg has been calculated numerically. The terms v and g now define the
smooth curve which interpolates all data points and minimises [ ¢”(s)ds. The
spline function in R uses this method to calculate the interpolating natural
cubic spline.

It is more usual that a smooth function, which is close to the original data

points but does not necessarily interpolate them, is required for analysis. Using
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the roughness penalty approach the aim is to find the function, g, which minimises
(2.8). The parameter a controls the trade off between interpolating the points
and removing all roughness from the function. Green and Silverman (1994) show
that the function which minimises (2.8) must be a natural cubic spline and that,
assuming n > 3, there is a unique natural cubic spline which results in the

minimised S(g). To show this, write the residual sum of squares as

n

D wi—glt:)’ = (Y -g)"(Y—g)

=1

and using (2.10) show that (2.8) becomes

S(g) = (Y-g)"(Y-g)+ag'Kg
= g'(I+aK)g—2Y'g+Y'Y (2.12)

The unique minimum function, g, can then be found by setting
g=(I+aK)'Y (2.13)

The vector g now defines the smooth spline function g. It is however inefficient
to use (2.13) to calculate the spline function so an algorithm given by Reinsch
(1967) is a preferable alternative.

The Reinsch algorithm for finding the smooth cubic spline function which
minimises S(g) involves setting up a system of linear equations which can be
solved to find the second derivatives at the knots (7;). The values of the function
at the knots (g;) can then be found from the second derivatives and the data
values. The algorithm uses the idea of band matrices. Green and Silverman
(1994) state that ‘a matrix is said to be a band matrix if all of its non-zero
entries are concentrated on some small number of diagonals; the number of non-
zero diagonals is called the bandwidth of the matrix.” Before setting out the
algorithm some useful formula must be derived. Firstly by replacing K with
QR'QT and rearranging (2.13) becomes

(I+aQR'QNg=Y (2.14)
This can be rearranged to give

g=Y —aQR'Q%g (2.15)
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Equation (2.9) shows that Q”'g = R~ so by replacement

g=Y —aly (2.16)

Equation (2.16) gives a means to calculate the values of the function at the knots
from the second derivatives and the data values. Now, using (2.9), this can be

rewritten as

Q"Ry = Y—aQy
Ry = Q'Y —aQ"Qy
Ry+aQ"@Qy = Q'Y
(R + aQTQ) v = Q'Y (2.17)

Since both @ and R are tridiagonal band matrices (with bandwidth 3), this
equation can be solved using band matrix techniques. It is the major equation
required for the Reinsch algorithm. It can further be shown that the matrix
(R + aQTQ) has bandwidth 5 and is symmetric and positive definite, so therefore
has the Cholesky decomposition

R+aQ"Q = LDL" (2.18)

where D is a strictly positive diagonal matrix and L is a lower triangular band
matrix with L;; = 0 when j <4 —2 and j > ¢ and where L;; = 1. Since ) and R
are band matrices the matrices L and D can be found using linear computation.
Using these equations Green and Silverman (1994) describe the algorithm as the

following four stage process.
1. Calculate QY using (2.11).

2. Find the non-zero diagonals of the band matrix R + a@Q”Q and from these
calculate L and D.

3. Using replacement rewrite (2.17) as LDLTy = QTY and use forward and
back substitution on this equation to find the second derivatives v of the

smooth function.

4. Once 7 has been found use this in (2.16) to find the values of the smooth

function at the knots g.
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Using this algorithm allows the smooth cubic spline function g to be calculated
using the data points and the smoothing parameter.

So far little has been mentioned about the choice of the smoothing parameter
a. There are various ways in which the smoothing parameter can be chosen.
Various values of the smoothing parameter may be investigated and the most
appropriate value chosen subjectively. Alternatively the smoothing parameter
can be chosen from the data using an automatic method such as cross-validation.
In this thesis the method used to choose the smoothing parameter will involve
selecting the equivalent degrees of freedom that the smooth function should have.
To explain this recall from (2.13) that

g=U+aK)'Y = +aQR'Q") 'Y
since K = QR™'QT. Therefore
g=A(Q)Y (2.19)

where A(a), which is called the hat matrix, is the matrix which maps the position
of the observed values Y; onto their position on the smooth spline function §(s;)
and is given by

Ala) = (I +aQR'Q)™ (2.20)

To introduce a measure of the number of parameters fitted for a particular value of
the smoothing parameter, suppose that the smooth curve is fitted using paramet-

ric regression where g(s) = 25:1

6,9;(s) with fixed functions g; and k parameters
6;. The hat matrix is then a projection onto a & dimensional space. By analogy,
the equivalent degrees of freedom (E'DF’) for a smoothing spline can be defined
to be

EDF =tr{A(«a)}

Therefore the smoothing parameter of a curve can be calculated by setting a
desired equivalent degrees of freedom for the curve. This is the technique used
for specifying the smoothing parameter in this thesis. Note that, throughout,
equivalent degrees of freedom will simply be referred to as degrees of freedom.
This is the technique used by the smooth.spline function in R which will be
used throughout this thesis to fit smooth cubic splines to the data. The simplest
way to roughly fit a smooth spline to three-dimensional data is equivalent to

finding a smooth curve in the xy plane and a smooth curve in the xz plane and
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combining these to give the three-dimensional smoothed fit.

2.3.2 Principal components analysis

In multivariate Statistics principal components analysis, see Jolliffe (1986) for
details, is carried out by finding the eigenvalues and eigenvectors of either the
covariance or correlation matrix. These ideas can be extended to the functional
case. Suppose that there are n functional variables z;(s) where i = 1,... n and
that £(s) is a weight function then the functional eigenequation can be written

as

[ vls. 00t = (s 2.21)
where v is the covariance function which is given by

1 n
5.0 = 3 Do)t
It is possible to think of [w(s,t)£(¢)dt as an integral transform, V say, of the
weight function with the covariance function being a kernel of the transform such

that

Ve - / o(s, DE(H)dt

Now the eigenequation can be simply rewritten as

VE=p

where £ is an eigenfunction and p is an eigenvalue. Functional principal compo-
nents analysis, see Ramsay and Silverman (1997) for details, can be thought of as
the eigenanalysis of the covariance operator V' which is defined by the covariance
function.

To carry out functional principal components analysis it is preferable to reduce
the functional eigenanalysis problem to a matrix eigenanalysis which is approxi-
mately equivalent. One such technique is to discretise the functions so that each
function is defined by m equally spaced points along the s axis. This produces
an (n x m) data matrix from which the eigenanalysis can be carried out using
standard multivariate techniques, with each function as the observation and each
point on the s axis as the variable. Using this technique, n must be greater than
m.

An alternative to discretising each function, which potentially retains more of
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the functional structure of the variables, is to express each function as a linear
combination of basis functions. To do this, suppose that each function has the
basis expansion
i(s) = cijds(s)
j=1
where ¢;(s) is the basis function j and ¢;; is the coefficient of basis function j for

the ith original function. The basis expansion can be written in the vector-matrix

form

xr=0C¢
where x is the (n x 1) matrix containing z(s), ..., z,(s), ¢ is the (k x 1) matrix
containing ¢;(s),...,¢r(s) and C is the (n x k) matrix with row i containing

the basis coefficients for original function 7. The covariance function can now be

written in matrix form as
1
v(s,t) = ﬁﬁb(S)TCT(Jcb(t)

Now define an eigenfunction for the eigenequation (2.21) using the expansion
k
E(s) =D _bioi(s)
j=1

This can also be written in matrix form as
£(s) = o(s)"
The left side of the eigenequation (2.21) can then be rewritten in matrix form as
[ongaar = [ Lorcrcsmo
= %gb(s)TC’TC’Wb

where W is the (k x k) matrix containing the entries

W, = / o), () dt
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Therefore (2.21) can be expressed as

%¢(3)TCTCWZ) = po(s)'b (2.22)

and since this must hold for all s this implies the matrix equation
L 7
—C"CWb = pb
n

Now in the basic theory of principal components analysis two constraints are
introduced. Firstly a continuous analogue to the unit sum of squares constraint
in the multivariate setting is introduced such that || £ ||[= 1. This constraint
implies that b"Wb = 1. The second constraint is that all eigenfunctions are
orthogonal i.e. [&(s) - &;(s)ds = 0. This implies that b] Wb; = 0. Now to
calculate the principal components define u = W2b and solve the eigenvalue
problem
%W;C’TC'Wéu = pu

and compute b = W~z for each eigenvector to give the coefficients of the eigen-

function.

2.3.3 Curve registration

It is often the case that a number of functions share a common pattern with
the major variation being in the position of the function on the time (or s) axis.
There is a large literature on techniques available for reducing this s variation by
aligning common features of the functions to the average s position. Note that
the discussion here will be on s variation and alignment where s is any ordered
variable which is often, but not necessarily, time. Suppose that there are n func-
tions f;(s) which are to be aligned then these can be aligned by applying warping
functions g¢;’s so that fi(g;(s)) is the aligned function for function i. Gasser et al.
(1990) and Kneip and Gasser (1992) suggest a method for aligning functions so
that common individual characteristic points are aligned to the average position.
Characteristic points, where the rth characteristic point for function ¢ is denoted
as v, can be defined as predetermined geometrically important points or as
turning points of the functions. The g;’s are calculated by setting g;(v,.;) = 7
so that f;(g:(7)) = fi(7+) and then interpolating to give continuous warping
functions. This method is relatively straightforward and simple to implement

and will be used in this thesis. There are clearly numerous alternative methods
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for aligning functions. Ramsay and Li (1998) introduce a method which finds
warping functions by minimising a penalised squared error criterion which is de-
pendent on a target function (usually a mean function) and a smoothing penalty
based on the second derivative of the warping function. They also introduce a
Procrustes fitting criterion to update estimates of the warping functions. Tang
and Miiller (2008) describe a method where pairwise warping functions are cal-
culated to align function i to all other n — 1 functions. The overall warping
function for function ¢ is then found as the average of the n — 1 pairwise warp-
ing functions. A semiparametric approach to estimating the warping functions is
provided by Gervini and Gasser (2004) where the warping functions are modelled

using B-spline component functions multiplied by scores such that
q
gi(s) = s+ > _kijo;(s)
j=1

where ¢;(s) = ¢j3(s) for a set of B-spline basis functions (3(s). The B-spline
component functions are estimated from the data so only the scores k;; have to
be individually estimated, hence the semiparametric nature of the process. The
warping functions can also be estimated nonparametrically using nonparametric
maximum likelihood methods as outlined by Rgnn (2001) and Gervini and Gasser
(2005). Another method for function alignment is based on the process of dy-
namic time warping developed in engineering originally for speech analysis. Both
Wang and Gasser (1997) and Wang and Gasser (1999) describe how dynamic
time warping can be used to align functions in the general setting. For a general
overview Ramsay and Silverman (1997) contains a chapter on the registration of
functional data which describes a variety of techniques for aligning functions.
Taking the piecewise average of the aligned function produces an average
function which gives a good representation of the average pattern of the functions
and the average value of the function at the characteristic points. Averaging of the
aligned functions is called structural averaging. Comparing structural averages

for various groups is one of the major reasons for aligning functions.

2.3.4 Selected recent literature on modelling with func-

tional data

The scope of functional data analysis is too large to make a comprehensive

overview feasible. However, since this thesis will be concerned with techniques
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which involve modelling using functional data, this section will briefly introduce
some recent literature from this area.

Ramsay and Silverman (1997) introduces functional linear models for func-
tional responses. They suggest that a functional response y;(t) can be modelled

using a functional predictor z;(s) as

yi(t) = aft) + /mi(s)ﬁ(s,t)ds + €(t)

where the regression function (3 is a function of both s and t. Cuevas et al. (2002)
investigate the convergence of the regression function and also the consistency of
the results while Cardot et al. (1999) also discuss convergence of the estimator.
A comparison of various methods to calculate the estimator of the regression
function is given by James and Silverman (2005). Rice and Silverman (1991)
treat the response as a stochastic process and attempt to estimate the mean and
covariance structure simultaneously. The mean for each response is simply the
expected value of the response whilst the kernel covariance function is dependent
on the responses. Yao et al. (2005) and Shi et al. (2007) provide alternatives to
this method with the difference in methods being that in the former the covari-
ance structure is dependent on s and is also specifically designed for sparse data
whereas in the latter the covariance structure is dependent on the z;(s). In Shi
et al. (2007) the issue of heterogeneity is not discussed and this is addressed in Shi
and Wang (2008). An F-test to investigate the relationship between a functional
response and a functional predictor is described by Yang et al. (2007). There is
also extensive literature on linear models with a functional response and scalar
predictors. Regression with variables of this form is described with an example
in Faraway (1997).

The functional modelling in this thesis will focus on the situation where there
is a scalar response and functional predictors. Ramsay and Silverman (1997)
introduce a functional linear model for a scalar response with a single functional

predictor. This is an analogue of the case with a functional response such that

Y=o+ /Jci(s)ﬁ(s)ds +€

where a functional parameter is applied to each functional predictor. As stressed

by Besse et al. (2005), estimating the functional parameter requires some form
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of discretisation. This can be done either by discretising the functional predic-
tors and making the problem a scalar multivariate problem or by representing
the functional predictors using splines. The technique of using splines for the
discretisation will be discussed further and implemented in Section 6.1.3. An
extension of the technique employed by Ramsay and Silverman (1997), which
also estimates the between curve variation as well as the within curve variation,
is employed by James (2002) while a method which accounts for variation in
the predictors when estimating the functional parameter is introduced by Cardot
et al. (2007). Miiller and Stadtmiiller (2005) introduce a generalised functional
linear model which is estimated using functional quasi-likelihood. In much of the
work in this area the major interest is in interpreting the estimate of the func-
tional parameter. Due to this Cardot and Sarda (2006) and Li and Hsing (2007)
discuss the convergence of 3(s) to 3(s) whilst Cai and Hall (2006) concentrate on
optimising the prediction of [ z;(s)3(s) or a + [, zi(s)5(s). Further Apanaso-
vich and Goldstein (2008) discuss how [(s) should be estimated to optimise the
prediction of future responses. An extension to the functional linear model is the
varying coefficient functional model proposed by Cardot and Sarda (2008) where
the functional parameter can vary according to the other scalar inputs.
Nonparametric techniques can be used to estimate an unknown scalar re-
sponse from a functional predictor using known response-functional predictor
pairs. Ferraty and Vieu (2006) give a good overview of techniques using kernel
functions and semi-metrics to predict the response. Estimating the response as
the conditional expectation of the unknown response given the functional pre-
dictor will be discussed and implemented in Chapter 6. Bias, variance, mean
square errors and asymptotic distributions for the predictor can be found in Fer-
raty et al. (2007). Methods estimating the unknown response as the median of
the cumulative distribution function of the conditional density, or as the mode of
the probability density function of the conditional density, are also described by
Ferraty and Vieu (2006). An alternative to the kernel and semi-metric estimator
is proposed by Baillo and Grané (2007) and is based on local linear regression.
Cardot and Sarda (2006) describe two tests, one which relies on the y? distri-
bution and the other which approximates the x? distribution using a Gaussian
distribution, to formally test whether the functional predictors are related to the
response while Cardot et al. (2004) introduce a computational test of no effect
using a permutation test. The regression operator found nonparametrically can

also be found using functional principal components analysis. This idea was



CHAPTER 2. REVIEW

proposed by Bosq (1991) and developed by Cardot et al. (1999).

30



Chapter 3

Analysis of Plane Curves

3.1 Characterising Plane Curves

A plane curve is a curve which is contained in a two-dimensional plane. This
section will look to describe a plane curve as a function of how much the curve
is bending at points along the curve. For a plane curve the amount of bending
experienced at each point is a scalar value called curvature. A plane curve can
be determined up to rigid transformations by its curvature.

Much of the current work on shape analysis (Dryden and Mardia (1998) give
an excellent overview of popular techniques) uses a limited number of landmarks
to describe the shape. Using only a limited number of landmarks may well result
in a large amount of useful information being lost. Furthermore, if the shapes
lie in different areas of space, Procrustes methods using landmarks (or pseudo-
landmarks) are required to align the shapes. The technique of using curvature
to analyse shapes offers an alternative to these approaches. Curvature can be
calculated over the whole curve which limits the amount of information about the
shape which is lost. Furthermore, since curvature is independent of the position
of the shape in space then analysing shapes by curvature avoids the need for any
use of Procrustes methods.

Before describing the calculation of curvature it is important to define various

terms and the way that these relate to curvature.

3.1.1 Arc length

Suppose that an arbitrarily parameterised curve r(a) = [x(a), y(a)] is represented

by n points (ai, ..., a, say) on the curve. If the coordinates of any two points ay

31
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and a. are [x(ap),y(ap)] and [z(a.), y(a.)] respectively then the distance between

these two points is

Dist(ay, ac) = /[z(ap) — z(ac)]? + [y(ap) — y(a.)]?

Now approximate the curve by the lines which successively connect the points
ai,...,a,. Then the length of the curve can be approximated as the length of

the line segments which connect the points

L= i \/[x(az’—&—l) — z(a;)]? + [y(ai1) — y(a;)]?

If the curve is rectifiable, as n increases L will approach the true length of the
curve. The distance of a point along the curve, calculated in this way, is the arc
length of the curve at this point. Therefore the arc length (s, say) at any point
a, will be given by

0= Ve #(@0P + ac) — p(aP 3.1

3.1.2 Tangent and normal vectors

Suppose there is a curve r(s) = [z(s), y(s)] which is parameterised by arc length
s as opposed to the arbitrary parameter a in Section 3.1.1. Moving along the
curve then means to move along the curve in the direction in which the arc length
increases. At each point on the curve it is possible to define a vector, called the
tangent vector, which has unit length and which points in the direction that
the curve is travelling. To calculate the tangent vector at the point r(s;) say,
consider two points 7(s;) = [x(s;),y(s;)] and r(s; + h1) = [x(s; + h1),y(si + h1)].
As hy approaches zero the line which passes through both r(s;) and r(s; + hy)
approaches the tangent line at r(s;). The tangent vector at r(s;) is a unit length
vector in the direction of the tangent line. The tangent vector at the point r(s)
will be denoted by t(s).

The normal vector is a unit vector which is perpendicular to the tangent
vector in the anti-clockwise direction. The normal vector at the point r(s) will
be denoted by n(s).
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3.1.3 Curvature and the Frenet formulae

Curvature of a plane curve is a scalar measurement of the magnitude of the
bending of the curve at a point as the point moves along the curve with constant
velocity. The curvature at the point r(s) will be denoted by x(s). Consider the
point r(s) with the tangent vector t(s) and normal vector n(s). The angle that
t(s) makes with the positive direction of the z-axis is called the turning angle of
the plane curve. The turning angle of the curve at the point r(s) will be denoted
by ¢(s). Gray (1998) shows that curvature can then be defined as the rate of
change of the turning angle with respect to the arc length. So,

K(s) = dgz;is)

Therefore it is clear that a straight line will have curvature of zero since the

(3.2)

turning angle will not change. Figure 3.1 shows the positions of t(s), n(s) and

¢(s) relative to an arbitrary point on a quadratic curve.

< -

t(s)

n(s)
ols)

Figure 3.1: The positions of t(s), n(s) and ¢(s) relative to an arbitrary red
point r(s) on a quadratic curve

The tangent vector, t(s), is a unit length vector in the direction of the slope
of the curve at the point r(s). Therefore the direction of the tangent vector can
be calculated by the first derivative of the curve with respect to arc length. To

find the tangent vector, and ensure it has unit length, the vector given by the
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first derivative of the curve with respect to arc length is normalised. However
Pressley (2001) shows that the magnitude of this vector is one. Therefore the
tangent vector at r(s) is given by

dr(s)

t(s) = s (3.3)

Since the tangent vector has unit length t(s) - t(s) = 1. Differentiating the

scalar product with respect to arc length gives
0=(t(s)-t(s)) =t'(s)-t(s) + t(s) - t'(s) = 2(t'(s) - t(s)) (3.4)

Therefore t'(s) - t(s) = 0 hence t'(s) and t(s) are mutually perpendicular.

Now consider Figure 3.1 which shows that there is a right-angled triangle
which has hypotenuse t(s) and has the turning angle ¢(s) as one of the angles in
the triangle. From, Pressley (2001), using basic trigonometry and the fact that
the tangent vector has unit length it follows that

t(s) = ([t(s)[cos(e(s)), [t(s)]sin(¢(s)))
t(s) = (cos(4(s)), sin(¢(s))) (3.5)

From this differentiation gives

dt(s)

do(s) (—sin(¢(s)), cos(¢(s)))

Once again refer to Figure 3.1. There is a right-angled triangle which has
hypotenuse n(s) and has § — ¢(s) as one of the angles in the triangle. Therefore

using basic trigonometry rules

n(s) = (=[n(s)| x cos(90 = ¢(s)), n(s) x sin(90 — ¢(s)))

n(s) = (—sin(¢(s)), cos(p(s))) (3.6)
Thus, "
dt(s _ o
A — (= sin(6(5). cos(0(5)) = ) @

This relationship holds regardless of the orientation of t(s) and n(s).
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Now from (3.2) and (3.7) it follows that

dt(s) dt(s) do(s)

ds do(s) Tds r(s)n(s)
dn(s)  dn(s) do(s)

I ds) s )

These equations give us the famous two-dimensional Frenet formulae

dtd(? — k(s)n(s) (3.9)
dr;(ss) = —r(s)t(s) (3.9)

It is clear that curvature is defined by the positions of the tangent and normal
vectors. Section 3.1.2 stated that the normal vector is perpendicular to the
tangent vector in the anti-clockwise direction. The reason for the normal vector
always being set in the anti-clockwise direction is that this makes it possible to
determine the direction the curve is turning simply by the sign of the curvature.
If the curvature is positive the curve is turning towards the normal vector (i.e.
it is turning to the left). Alternatively, if the curvature is negative the curve is

turning away from the normal vector (i.e. it is turning to the right).

3.1.4 Calculating curvature in practice

It has been shown that curvature can be calculated at any point on the curve
from the normal and tangent vectors or from the turning angles along the curve.
Using these techniques for many points on a curve would be time consuming. It
is easier to use a computationally less complex method.

Consider once again an arbitrarily parameterised (i.e. not necessarily para-
meterised by arc length) curve r(a) = (z(a),y(a)) with the arc length of each
point s(a). Recall from (3.2)

dg(a)
rla) = ds(a)
_ dp(a)  da
da  ds(a)
= d¢(a)/da (3.10)
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The denominator in (3.10) is the rate of change of arc length s with respect to
the position along the curve a. In other words this is the rate of change of the
distance travelled along the curve with respect to the position along the curve.

Now Gray (1998) shows that the arc length of a parameterised curve is

[ - ()

Therefore,

(2 ()

d:E—Wandd%—W

For simplicity from now on 1a

ds(a) 2 2
= ! ! 3.11
- \J 2t +y (3.11)

When considering the numerator a look at Figure 3.1 shows that at any point

will be represented by 2’ and 3/

respectively. So,

tan of the turning angle can be given by the rate of change of y with respect to

x. Therefore,

dy(a) _d%(a)
t _ _ _da
an(¢(a)) de(a)  dz(a)
da
y/
Now using (3.12) and the quotient rule it becomes clear that,
d x/y” _ g/:v”
Also from the identity - tan(t) = sec?(t)4L it can be seen that,
d do(a
2 tan((a)) = secX(p(a)) ZAY (3.14)

da da

Using (3.12), (3.13) and (3.14) and the identity sec?(x) = 1 + tan?(z) it can be

shown that,
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do(a) 1 d
= — (%
da sec?(¢(a)) da< an(¢())
_ 1 ‘ x’y” _ y’x”
1 + tan?®(¢(a)) x?
B 1 . x’y” o y’x”
= - .
1+ 4 !
x’y” . y’x"
= —5 (3.15)
"ty
By substituting (3.11) and (3.15) into (3.10) it follows that,
m/y//2/_y;;;//
kla) = —L— Y
/.T,Z + y/Z
B m/y// o y’x” 1
RN
I M
_ Py vy (3.16)

(ac’2 + y’2)3/2

Equation(3.16) shows that to calculate the curvature of a plane curve all that is
required is the first and second derivative of the x and y position of the curve with
respect to the position along the curve. It is both convenient and computationally

simple to reparameterise the curve using arc length.

3.1.5 Reconstructing a curve from its curvature

Gray (1998) shows that a plane curve can be reconstructed up to rigid transfor-

mations from its curvature. Equation (3.2) shows that

o(s) = /0 () du + 6(0) (3.17)

also (3.3) and (3.5) show that

dr(s)
ds

r(s)

= t(s) = (cos(¢(s)),sin(¢(s)))
_ < /0 " cos(é(u))du + a, / Ssin(qb(u))du+b) (3.18)

0
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where a and b give the starting position of the reconstructed curve and ¢(0) gives
the starting turning angle of the reconstructed curve. The curvature of the curve

and the three parameters a, b and ¢(0) give a rigid transformation of the curve.

3.2 Curvature of a Plane Curve: Midline Profile

Example

To illustrate curvature in a plane curve an example, which considers the curvature
of the midline profile of a one year old control child, is discussed. In practice most
curves will be defined by a number of points which show the shape of the curve
rather than a continuous function. Clearly the larger the number of points the
more accurate the representation of the true curve. The profile is defined by 57
data points with the lower-most point being the top of the upper lip and the
upper-most point being the point between the eyes. Movement in the y axis
corresponds to movement up and down the face while movement in the z axis
corresponds to movement into and out of the face. Figure 3.2 shows an example

profile.

-0.1 0.0 0.1 0.2 0.3
Il Il

-0.2
Il

1.0 12 14 1.6

X

Figure 3.2: An example midline profile of a one year control child.

3.2.1 Calculating curvature

Equation (3.16) gives a formula which can be used to calculate the curvature at

each point for which the value of the  and y coordinates are available. Before this
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equation can be used the curve must be reparameterised. As has been mentioned,
it is often simplest and computationally advantageous to reparameterise the curve
in terms of arc length. The ‘starting point’ of the curve is set as the bottom of
the profile (the point at the top of the upper lip) and using (3.1) the arc length
is calculated such that it increases up the face.

It is important for further analysis that the arc length of each curve is the
same. In practice this will not be the case therefore it is necessary to rescale each
curve. For simplicity it makes sense to rescale to 1; however any value can be
chosen. Of course this rescaling must be done without changing the shape of the
curve. To do this, consider the set of points on the curve (x1,y1), ..., (ZTn, Yn)
as (axy,ay), ..., (ax,, ay,) where « is an arbitrary scale parameter. Then to
change the size of the curve without changing the shape all that is required is to
change a. Setting « to the reciprocal of the arc length of the original shape will
give an arc length for each curve which runs from (0,1). The example shown in
Figure 3.2 has already been rescaled while Figure 3.3 shows plots of both the x

and y position against arc length.
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Figure 3.3: Plot of x and y position against arc length for the example profile.

Before using (3.16) to calculate the curvature at each point on the curve
a numerical method is required to calculate the first and second derivative of
both the x and the y position with respect to arc length. The method used
throughout this thesis is to fit a cubic smoothing spline to the points (using the
smooth.spline function in R, see Section 2.3.1 for details) and then use the R
function predict to calculate the first and second derivatives at each point. The

amount of smoothing applied by the spline is defined by the required degrees of

1.0




CHAPTER 3. ANALYSIS OF PLANE CURVES 40

freedom. The lower the degrees of freedom the smoother the curves of x and y
against s will be. Highly smoothed curves are often desirable for further analysis;
however, too much smoothing may result in information from the original shape
being lost. This trade-off must be made and will be discussed later.

A useful way to represent the curvature of a curve is by plotting curvature
against arc length. This illustrates how the curvature function changes along the
curve. Figure 3.4 shows the calculated curvature plotted against arc length for

the example profile using 10, 20 and 40 degrees of freedom for smoothing.

Curvature
-5

ISmoothing Degrees of Freedom|
— 40

I — 20
T — 10

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.4: Plot of curvature against arc length for the example profile using
different degrees of freedom for smoothing.

All three curvature functions in Figure 3.4 show similar trends with an area
of minimum curvature, which corresponds to the area where the profile bends at
the base of the nose, and an area of maximum curvature, which corresponds to
the tip of the nose. Figure 3.2 shows that the profile bends to the right at the
base of the nose which generates negative curvature while the profile bends to the
left at the tip of the nose which generates positive curvature. This will clearly
only be the case when the profile is oriented in the manner shown in Figure 3.2.
Other orientations (i.e. the profile being looked at from the left of the person)
may result in a different sign of curvature although the magnitude of curvature
will remain the same.

It is clear from Figure 3.4 that regardless of the smoothing used the curvature
is zero at the end points of the curve. Recall from Section 2.3.1 that a condition of
natural cubic splines is that the second derivative of the smooth function is equal

to zero at the end points. Since the functions of the z and y position against
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arc length are fitted using natural cubic splines, and considering the form of
(3.16), it can be seen that using this derivative method to calculate curvature will
always result in zero curvature at the end points. This is a somewhat undesirable
property of the method. However, the facial curves considered in the context of
this thesis are relatively stable at the end points. It is reasonable to assume that
most curvature, and particularly the curvature of interest, will occur towards the
middle of the curves and that zero curvature at the end points is not unreasonable
and certainly not of major concern.

If it were felt that allowing non-zero curvature at the end points was of sig-
nificant interest other types of splines could be used for smoothing. Eilers and
Marx (1996) introduce the idea of p-splines which are an extension of smooth-
ing splines. The major difference is that p-splines do not pre-specify the knots
but allow a form of adaptive knot selection. This gives greater flexibility when
producing a smooth fit of the data. The calculation of p-splines also does not
require the condition that the second derivative is zero at the end of the curve.
Therefore, using p-splines for the smoothing of the x and y position against arc
length would allow for non-zero curvature at the ends of the facial curve. As
mentioned this is not of primary interest in the cleft lip study so the method
used for smoothing here will continue to be natural cubic smoothing splines.

Figure 3.4 also shows the effect of changing the smoothing parameter. The
roughness of the function produced when using 40 degrees of freedom makes it
difficult to interpret and analyse further. The curves produced when using both
20 and particularly 10 degrees of freedom would be simpler to work with. However
it is important to be confident that these smoother functions still approximate the
original data well. To examine how well each of the curvature functions represent
the data it is possible (see Section 3.1.5) to use these to reconstruct the original

profile up to rigid transformations.

3.2.2 Reconstructing the profile

To check how well the curvature functions represent the original profile, a re-
construction of the profile using (3.17) and (3.18) is produced. Equation (3.17)
uses the integral of the curvature function with respect to arc length to calculate
the turning angle at each point. Equation (3.18) uses these turning angles to
calculate an x and y position for each point of the reconstructed profile.

To complete the reconstruction the initial turning angle (¢) and the starting

position (r(0)) must be specified. Since these are arbitrarily chosen it is difficult
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to compare the original and reconstructed profiles. To allow for a simple compar-
ison it makes sense to rotate and translate the reconstructed profile as close as
possible to the original profile. This can be done using ordinary Procrustes analy-
sis without scaling. The matched profiles using 5, 8 and 10 degrees of freedom

for smoothing can be found in Figure 3.5
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Figure 3.5: Reconstructed profile aligned to the original profile for curvature
when different degrees of freedom for smoothing are used.

Figure 3.5 shows that, as expected, as the degrees of freedom decrease the
reconstructed profile becomes less accurate. The reconstruction made with 5
degrees of freedom is a poor representation of the original profile and although
the reconstruction made with 8 degrees of freedom is much closer to the original
profile there are some inconsistencies, especially at the points where curvature
has high magnitude and at the ends of the profile. For these reasons, and recalling
that the curvature function using 10 degrees of freedom was relatively smooth, 10

degrees of freedom offers a suitable compromise between accuracy and simplicity.

3.2.3 Investigating a collection of curvature curves

It is often the case that interest lies not in a single plane curve but in a group of
plane curves. In many situations a set of plane curves arises from measurement
of a similar feature on different subjects and interest is in investigating this set of
curves and identifying where any differences lie. The example considered here is
an extension of the midline profile example discussed earlier in Section 3.2. Now
the data considered is 71 midline profiles of one year old control children. Each

profile is defined by 57 data points and is rescaled to have arc length 1.
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Curvature is calculated for each profile separately using 10 degrees of freedom
and the curvature functions are shown in Figure 3.6. These all appear to follow
the same pattern. For each profile there is an area of minimum curvature at the
base of the nose and an area of maximum curvature at the tip of the nose. The
major differences between the curvature functions are the positions along the s
axis of these areas of minimum and maximum curvature and the magnitude of

the minimum and maximum curvature.

Curvature

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.6: Plot of curvature against arc length for 71 one year old control
children midline profiles.

It is of interest to produce an ‘average’ curvature function for this group of
children and to use this curvature function to produce an average midline profile
using the methods in Section 3.2.2. One simple way of doing this is to take
the piecewise average of all 71 curvature functions at a number of points along
the s axis. This is done here by finding the mean of the 71 curvature values
at 57 regular points on the s axis and interpolating these mean points to give
the average curvature function shown in Figure 3.7. The reconstructed average

profile is also shown in Figure 3.7.

3.3 Warping of Plane Curves

When there is a set of functions with a common pattern any deviations from this
pattern will either be caused by some between-subject variation or random noise.

It can be useful to remove some of this between-subject variation and noise by
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Figure 3.7: Average curvature curve for the 71 profiles (left). Reconstructed
average profile (right).

aligning the curves so that features common in all (or the majority of) functions
are shifted to a common point on the s axis.

When looking at shape data it is often of interest to shift the curvature func-
tions so that anatomically or geometrically important landmarks are aligned.
Aligning in this way has certain advantages. Firstly, plotting aligned curvature
functions allows for a simple graphical display of the variation in curvature at
the important points. Also it makes it possible to produce an average curvature
function which shows the typical curvature irrespective of individual variations
in position of these landmarks. There are numerous techniques for aligning func-
tions according to corresponding important landmarks, with various advantages
and disadvantages, which range in complexity. The one outlined here is relatively
simple and uses the ideas of Gasser et al. (1990).

Once curvature functions are aligned to the average position of the important
landmarks the major differences between the functions is in amplitude. It can
be informative to investigate the amount of amplitude adjustment required to
produce the average function from each of the individual functions. The technique
which will be outlined to carry out this procedure here will involve adding an

amplitude adjustment function to the individual aligned function.
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3.3.1 Warping technique for functions

The technique of aligning functions according to important landmarks is called
(position) warping. The anatomically or geometrically important landmarks to
which all the functions are aligned are called characteristic points. These char-
acteristic points can be defined using a priori knowledge of the shape of the
functions. However, it is often safer and more informative to estimate these
characteristic points from the data, typically as stationary points. In the curva-
ture function example points of maximum or minimum curvature will clearly be
potential points of interest.

Suppose the aim is to align n functions, f;(s) where i = 1,...,n, to the
characteristic points which are to be estimated from the data as points where the
majority of functions have a maximum turning point. For each subject all local

maxima are calculated such that
max; = (mu‘, e >mp¢i)

contains the p; local maxima for curve 7. The local maxima for all the curves are

combined so that
MAX = (mll, N 7mp11’ le; LR 7mpn7l)

contains all Y""" | p; local maxima in the set of functions.

The frequency of the occurrence of all local maxima across s is computed as
a kernel probability density and is plotted. The plot of the kernel probability
density will have modes where many of the functions have a maximum turning
point at roughly the same position on the s axis and these modes indicate po-
tential characteristic points. The width of the mode provides information on the
scatter of the maximum turning point across the functions and the area indicates
in what proportion of functions it has occurred. It is not necessarily the case that
all modes indicate anatomically interesting characteristic points so it is possible a
subset of the peaks is sufficient to align all interesting anatomical points. Clearly
this process could be repeated using minima (or inflection points).

The average positions on the s axis (given by the position of the modes of the

kernel probability density) of the k (say) characteristic points are denoted as

ﬁ_}/:(fvla"'a;}/k)
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The positions on the s axis of the characteristic points of each individual function
are calculated. The position of the characteristic points for subject ¢ (say) are
denoted by

Yi = (’le’: .- -’Ylm')

For smooth functions with a common pattern it should be relatively simple to
find the positions of all turning points. If it is not possible to calculate a certain
characteristic point for a subject then this characteristic point is regarded as
missing and the warping for that subject is carried out using the remaining k£ — 1
characteristic points.

Once 74 and all 7; have been calculated the warping is relatively simple. The
idea is that the characteristic points on each individual curve are aligned to
the position of the average characteristic points. A ‘position warping function’
gi(s) can be used to transform each curve individually. This is done by setting
9i(vri) = 7 such that fi(gi(vr)) = fi(vr) where r = 1,... k, and interpolating
between these points to give a continuous warping function. This results in the
position of the characteristic points on individual curves being shifted to the
position of the average characteristic points. For simplicity ¢ will be used to
denote the warped arc length g(s).

Once position warping has removed much of the position variation, the major
difference between the functions is in the amplitude of curvature. The average
curvature function can be calculated, using piecewise averaging, from the aligned
functions. Then it is possible to produce amplitude adjustment functions which
match the individual aligned functions to the average function and give an indica-
tion of how far, in terms of amplitude, the individual function is from the average.
Given the aligned curvature function f;(g) and the average aligned function f(g)

then there is an amplitude adjustment function h;(g) such that

s
S
+
&
=
Q
S~—
I
~»

(9)
hi(9) = flg) - fi9)

The amplitude adjustment function contains the difference in amplitude between
the average function and the individual function and can be calculated by finding
the piecewise difference at regular points on the s axis and interpolating between
these differences. If the individual function is the same as the average function
then h;(g) = 0 for all g. In the areas where the amplitude of the individual

function is larger than the average h; will be negative and in the areas where
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the amplitude of the individual function is smaller than the average h; will be

positive.

3.3.2 Warping of curvature functions: Midline profile ex-

ample

Figure 3.6 in Section 3.2.3 shows the curvature functions of 71 midline profiles
belonging to one year old control children which all appear to follow a similar
pattern with turning points at the base and tip of the nose. It is useful for further
analysis, in particular to look at the variation in the magnitude of curvature at
the turning points, to align the curvature functions so that points of interest are
all at the average position. In this example potential characteristic points will be
chosen to be points where the majority of functions have either a minimum or
maximum turning point.

To calculate the position of the characteristic points all local maxima and
minima on each of the 71 individual curvature functions are pooled together,
separately for maxima and minima, and the kernel probability density of the
occurrence of both maxima and minima calculated. Figure 3.8 shows the kernel
probability density plots and histograms for the occurrence of both maxima and
minima in the curvature functions.

The kernel probability density plots in Figure 3.8 show that there are two
points where the majority of curvature functions have maximum turning points
and two points where the majority of curvature functions have minimum turning
points. The points where the majority of functions have minimum turning points
correspond to the area at the base of the nose where the profile is turning to
the right and the area between the eyes (where the profile is also turning to the
right). The points where the majority of curvature functions have maximum
turning points correspond to the point at the tip of the nose where the profile
is turning to the left and a point at the start of the profile which is where the
profile leaves the top of the upper lip. This implies that there are four potential
characteristic points. However, by considering the curvature functions it is the
minimum at the base of the nose and the maximum at the tip of the nose which
have the largest magnitude of curvature out of the four turning points. It seems
sensible then to align the curvature functions using just these two points as the
characteristic points. It would, however, also be perfectly reasonable to use all

four turning points.



CHAPTER 3. ANALYSIS OF PLANE CURVES 48

Density

Frequency

0.5 1.0 1.5 2.0

0.0

20 30 40

10

Density Plot of Maxs

-0.2 02 04 06 08 10 12

N =160 Bandwidth = 0.0884

Hist of Maxs

I T T T 1
0.0 0.2 0.4 0.6 0.8

max.vec

Density

Frequency

Density Plot of Mins

1.0 15

0.5
|

0.0

T T T T T T T
00 02 04 06 08 10 12

N =173 Bandwidth = 0.09744

Hist of Mins

40
|

30
1

20
1

1

10

I
0.2

. i m
T T 1
0.4 0.6 0.8

min.vec

Figure 3.8: Kernel probability density plots and histograms for the occur-
rence of both maximum (left) and minimum (right) turning
points.

The average position of the characteristic points, given by the corresponding

mode of the kernel probability density, are s = 0.247 for the minimum curvature

at the base of the nose and s = 0.464 for the maximum curvature at the tip of the

nose. The position of the individual characteristic points are found by extracting

the appropriate local maxima and minima.

The warping functions can be produced by setting

9:(0)
9i(m)
9i(72)
9:(1)

and using cubic spline interpolation between the four points to give a smooth

warping function. In fact any form of interpolation can be used however cubic

splines give a relatively smooth and accurate interpolation. Figure 3.9 shows the
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effect of warping on the curvature function of the example profile used in Sec-

tion 3.2 and the warping function used to produce the aligned curvature function.
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Figure 3.9: Warped example curvature function (left) and the corresponding
warping function (right).

Figure 3.9 shows that the warped curvature function is the initial curvature
function with the characteristic points shifted to the position on the s axis of
the average characteristic points. The main area of interest is to investigate the
collection of warped curvature functions for all 71 cases. A plot of the warped

curvature functions can be found in Figure 3.10.

Curvature

Figure 3.10: Aligned curvature functions for the midline profiles of 71 one
year old control children.

Considering the aligned curvature functions in Figure 3.10 it seems that the

1.0
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variation in the magnitude of the curvature at the base of the nose is larger than
the variation of curvature at the tip of the nose.

It can also be of interest to further investigate the warping functions that are
used to produce the aligned functions. If no warping is required, the warping
function is linear (i.e. it lies along the line of equality) and the more non-linear
the warping function is the more warping required for aligning. The warping
functions to align the curvature functions are shown in Figure 3.11 (left). It
is difficult to interpret much from the warping functions in this situation apart
from the expected observation that some curvature functions have required more
warping than others. To aid interpretation s is subtracted from g(s) and these
functions are plotted against arc length in Figure 3.11 (right). Deviation of
g(s) — s from zero corresponds to deviation of g(s) from the line of equality. This
perhaps shows more clearly the variation in the warping functions. Using more

characteristic points may have resulted in more interesting warping functions.

g(s)-s
0.05 0.10
1 1

0.00
1

-0.05

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Figure 3.11: Warping functions (left) and warping function minus arc length
(right), for the curvature functions for the midline profiles the
71 control children.

Figure 3.7 in Section 3.2.3 showed the average curvature function and the
average profile this curvature function produced when the average was calculated
as a piecewise average of the original curvature functions. To reduce the infor-
mation about the magnitude of curvature at the characteristic points which is
lost due to piecewise averaging of the original curvature functions, the piecewise
average of the aligned functions is taken. Averaging of this form is called struc-

tural averaging. Figure 3.12 shows a comparison between the structural average
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and the raw average for the 71 curvature functions and a comparison between
the average profiles reconstructed from these curvature functions. Note that the
average profiles using the raw and structural average are Procrustes matched

without scaling.
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Figure 3.12: Raw and structural average for the curvature functions for the
midline profiles of 71 one year old control children (left) and the
reconstructed profiles from these curvature functions (right).

The curvature functions in Figure 3.12 show that when using the structural
average the average function shows greater magnitude, and hence a better repre-
sentation of average curvature, at the two characteristic points than when using
the raw average. The average profiles show that although there were differences
between the raw and the structural average at both the characteristic points it
appears that the differences at the minimum characteristic point have the biggest
effect on the reconstructed profiles with the structural average profile appearing
more curved in the area from the bottom of the profile to the tip of the nose than
the profile constructed using the raw average.

Finding the amplitude adjustment functions required to exactly produce the
structural average curvature function from each of the individual functions gives
an indication of the variation between the aligned functions in terms of amplitude.
The amplitude adjustment functions for this example are shown in Figure 3.13.

Figure 3.13 shows little trend in the amplitude adjustment functions. There
is however an indication that the amplitude adjustment functions have larger
variation around the base of the nose than at the tip of the nose suggesting that

there is more variability between the individuals in terms of curvature at the base
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Figure 3.13: Amplitude adjustment functions to produce the structural aver-
age curvature function from the individual curvature functions
for the midline profiles of 71 one year old control children.

of the nose.

3.4 Calculating Curvature: Alternative Meth-

ods

Section 3.1.4 explained how the curvature of a plane curve can be calculated
using the first and second derivatives of the x and y position with respect to the
arc length s. This technique is both relatively straightforward and effective for
smooth plane curves. However the calculation of the second derivatives in R is
not always reliable for less smooth functions. Furthermore, when investigating
space curves in Chapter 4 third derivatives, which are even less reliably calculated
in R, are required for the derivative calculation of curvature. This section will
outline two possible alternative techniques which avoid the calculation of high
order derivatives and use the midline profile example of Section 3.2 to illustrate
them.

3.4.1 Optimisation method

Section 3.1.5 described how the original plane curve can be reconstructed up to
location and rotation from the curvature function and the arc length of each

point. It seems natural to suggest that a method for calculating the curvature
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function is to find the curvature function which gives the optimum reconstruction
of the original profile.

Consider the example profile. The arc length of each of the 57 points which
represent the profile are available; therefore, all that is required to reconstruct
the profile is the curvature at these 57 points (k(s1),...,k(s,)). Now think of
each k; where ¢+ = 1,...,n as unknown parameters. If the starting position is
set such that a = 0 and b = 0 and the starting angle is set such that ¢(0) = 0
the k;’s can then be optimised so as to minimise the ordinary Procrustes sum of

squares given by
57 X R . R
055 =% [ (A(i,z) — B(i,x))* + (A(i,y) — B(i,y))’
i=1

where A is the centered configuration of the original profile and B is the Pro-
crustes registered configuration of the reconstructed profile.

The optimisation is carried out using the optimize function in R which uses
a combination of golden section search and successive parabolic interpolation to
find the optimal parameters (see Brent (1973) for details). The disadvantage
of this method is that it can be slow. This optimisation was carried out on
the example profile and since the reconstruction function is relatively simple the
optimisation stage was relatively quick. The curvature function returned by this
method and the reconstruction calculated using this function can be found in
Figure 3.14.

It can be seen from Figure 3.14 that although the curvature calculated using
the optimisation method gives a near perfect reconstruction of the original profile
the curvature function is extremely jagged and of little use for further analysis.
To rectify this, the curvature function can be smoothed using smoothing splines;
however it is important to check that the smoothed curvature function still pro-
duces an accurate reconstruction. The smoothed curvature function from the
optimisation for the example profile and the corresponding reconstructed profile
are shown in Figure 3.15. Note that 10 degrees of freedom are used to define the
amount of smoothing.

The initial impression from Figure 3.15 is that when the curvature function
for the optimisation is smoothed problems appear at the end of the curve (or
top of the profile). Except for this issue, the curvature function of the smoothed
optimisation method is very close to the curvature function from the derivative

method apart from at the extrema where the optimisation method shows lower
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Figure 3.14: Comparison of the curvature of the example profile calculated
using the derivative and the optimisation method (left) and the
reconstruction of the profile using the curvature calculated by

the optimisation method (right).
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Figure 3.15: Comparison of the curvature of the example profile calculated
using the derivative and the smoothed optimisation method
(left) and the reconstruction of the profile using the curvature

calculated by the smoothed optimisation method (right).

magnitude of curvature. This may be due to the fact that 10 degrees of free-
dom results in over-smoothing of the curvature function. The degrees of freedom
could be adjusted, however, it appears that there is sufficient evidence to sug-
gest that the optimisation method provides a method for calculating curvature

which results in values similar to the derivative method and produces an accurate



CHAPTER 3. ANALYSIS OF PLANE CURVES 55

reconstruction of the original profile.

3.4.2 Frenet method

The Frenet formulae in Section 3.1.3 show how curvature can be calculated if
the tangent and normal vectors are known, while Section 3.1.2 showed how the
tangent and normal vectors are defined. The tangent vector can be calculated
with relative simplicity while the normal vector is simply given by the derivative
of the tangent vector with respect to arc length. Assuming the condition that
the normal vector must be of unit length there are two possible normal vectors.
The convention is that the normal is set anti-clockwise from the tangent.

The first stage of this method is to find the tangent vectors. Say that the
curve f(s) = (z(s),y(s)) parameterised by arc length is defined by n points. To
calculate the direction of the tangent vector (for a point f(s;)) it is necessary to
have a point f(s; + h;) where h; is very small. To do this a spline can be used to
define the curve so that the curve is defined by an extra [ points between each of
the n original points where [ is a large number. The distance between each of the
points between f(s;) and f(s;41) is given by d = dist(f(si), f(si1)) X 735 Now
as d — 0, which happens as [ increases, the direction given when moving from
f(si) to f(s;+d) becomes the direction of the tangent vector. The tangent vector
is then given by the unit length vector in this direction from f(s;). Clearly it is
not possible to find the point f(s, + h,). Therefore the direction of the tangent
vector is set by the direction given when moving from f(s,_p, ) to f(s,) and the
tangent vector is given by the unit length vector in this direction from f(s,).
Note that [ is only the same between each f(s;) and f(s;+1) if the original n
points were regularised (i.e. the arc length between them is, or is close to, the
same). If this is not the case the size of [ will have to differ between different
points to ensure that the distance between f(s;) and f(s;1p,) is the same for all
i. The tangent vector at point f(s;) will be denoted as t(s;).

The next stage of the method is to calculate the normal vectors. To do this
(at f(s;) say) use the fact that, since t(s;) and the normal vector (n(s;)) are
perpendicular, t(s;) -n(s;) = 0 and also that |n(s;)| = 1. This gives the following

equations

[2(t(s:)) x z(n(s:))] + [y(t(s:)) x y(n(s:))] = 0

z(n(s;))? +y(n(s))? = 1
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where the only unknowns are the x and y position of the normal vector. Simple
algebra leads to two possible positions for the normal vectors, one of which must
be chosen.

k(s) is calculated at each point using (3.9) and by differentiating n(s)-t(s) =0
with respect to s to give (as shown by Gray (1998))

n'(s) - t(s) = k(s) (3.20)

To illustrate this method the midline profile example is used. To calculate
the direction of the tangent vector [ is taken to be 9998 between each pair of
neighbouring points since the original profile is approximately regularised. The
normal vectors at each of the points are anti-clockwise perpendicular to the tan-
gent vectors. The normal vectors will therefore be pointing into the face, meaning
that if the profile is bending into the face curvature will be positive and if the
profile is bending away from the face curvature will be negative.

Curvature is calculated at each of the 57 points using (3.20) with the first
derivative of the tangent vector with respect to the arc length calculated using
a smoothing spline with 10 degrees of freedom and the predict function. The
curvature function and the reconstructed profile using this curvature function are
shown in Figure 3.16.

The curvature functions in Figure 3.16 indicate that the major difference
between the derivative method and the Frenet method for calculating curvature
is in the magnitude of curvature at the extrema. More evidence of this is given
by the fact that the reconstructed profile appears to be less curved than the
original profile at the base of the nose and the tip of the nose. This is potentially
due to 10 degrees of freedom resulting in over smoothing for the Frenet method.
The degrees of freedom could be adjusted to produce a curvature function which
provides a more accurate reconstruction of the original nose profile. However, it is

clear from Figure 3.16 that the Frenet method produces curvature functions which
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Figure 3.16: Comparison of the curvature of the example profile calculated
using the derivative and the Frenet method (left) and the re-
construction of the profile using the curvature calculated by the

Frenet method (right).

are similar to those from the derivative method and that provide a reasonable

reconstruction of the original nose profile.

3.5 Concluding Remarks on Plane Curves

This chapter has shown that the shape of a plane curve can be represented by the
curvature experienced by the curve as the arc length changes. Furthermore, it has
shown that a plane curve can be reconstructed from the curvature function up to
the similarity transformations. Three methods have been introduced to allow cur-
vature to be calculated. Of the three methods it would appear that the derivative
method is the simplest to use and the curvature values, even when the curvature
functions have been smoothed to give functions useful for further analysis, can
be used to reconstruct the original plane curve accurately. For most practical
situations it seems reasonable to use the derivative method. However there may
be situations where the other methods are preferable. For example if the interest
was in finding the curvature function which allows the most accurate reconstruc-
tion of the original curve then the optimisation method before smoothing would
be the best option. An interesting point to note is that the Frenet method only
requires the calculation of first derivatives whereas the derivative method requires

second derivatives. The numerical calculation of second derivatives is not always
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straightforward or accurate especially when the function is not smooth. In the
case of the midline profile this is not an issue as the functions of both the x
and y position against arc length were smooth. However, for other features this
may not always be the case and in these situations the Frenet method should be
considered.

This chapter has also shown the advantages of warping the curvature functions
so that characteristic points are aligned, particularly in terms of producing an
average curvature function which more accurately represents the average of the
group. The method outlined was simple; however thought should always go into
which points are chosen as characteristic points. The decision should be based on

both mathematical and anatomical reasoning to allow easily interpretable results.



Chapter 4

Analysis of Space Curves

4.1 Characterising Space Curves

A space curve is a curve which is contained in three-dimensional space. In this
chapter space curves will be investigated with the aim of representing them using
a measurement of how much the curve is bending at particular points on the
curve. The bending in a space curve at a certain point can be measured using
two scalar values called curvature and torsion. Curvature is a measure of how
much the curve bends to one side in its current plane whereas torsion is a measure
of how much the curve bends out of the plane it is currently in. Before calculating

curvature and torsion for space curves some terms must be described in detail.

4.1.1 Arc length

Calculating arc length in a space curve is simply an extension of the methods in
Section 3.1.1. Suppose the arbitrarily parameterised curve r(a) = [z(a),y(a), z(a)]
is defined by n points (ay, ..., a, say) on the curve. If the coordinates of any two
points a, and a, are [z(ap),y(ap), z(ap)] and [z(a.), y(a.), z(a.)] respectively then

the distance between these two points is

Dist(ap, ac) = v/[z(ap) — 2(ac)]? + [y(as) — y(ac)]? + [2(ap) — 2(ac)]?

Now approximate the curve as the line which connects the points a4, ..., a, then

the length of the curve can be approximated as the total distance of the line

29
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which connects the points

L= Z_: VIz(ai) — 2(a)]? + [y(air) — y(a)? + [2(ai) — 2(a;))?

If the curve is rectifiable, as n increases the total distance of the line which
connects the points will approach the true length of the curve. The total distance
a point is along the curve, calculated in this way, is the arc length of the curve

at this point. Therefore the arc length (s say) at any point ¢ will be given by

S¢ = Z V0z(aisr) — 2(a)]? + [y(ai1) — y(a))? + [2(aip1) — 2(a)2 (4.1)

4.1.2 Osculating plane

At each point on the curve there is a plane which ‘kisses’ the curve. This plane
is called the osculating plane and is defined by Frost and Wolstenholme (2001)
as ‘a plane passing through three adjacent points assuming a limiting position,
when the three points are ultimately coincident.’

To calculate the osculating plane at point ¢ (say) use the points r(a;), 7(a;n)
and r(a;1o,) where h is an arbitrary scalar value. Now let p - q = b denote
the plane which passes through the points r(a;), r(a;1p) and r(a;i2,) where p
is a generic point on the plane, q is a vector orthogonal to the plane and b is a

constant. Then the function

fla)=r(a)-q=0b

has zeros at @ = a;, a = a;1; and a = a;,9,. Now using Rolle’s theorem since
f(a;) =0, f(aisn) =0 and f(a;2,) = 0 then

f)y =0 I € (a;,ain)

fllm) = 0 m € (Qith, Qivon)

and further
ff(u)=0  we(l,m)

Therefore as h — 0 then [, m and u all tend to 7 so the limiting values for q and
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b can be obtained by

fla)) = r(a;)-q—b=0
flla;)) = (@) -q=0
f”(ai) _ r"(ai) q= 0

Thus the vectors p —r(a;), 1’(a;) and r”(a;) belong to the same plane. Therefore

the osculating plane is defined by

pe —x(ai) py —yla;) p.— z(a)
2'(a;) y'(a;) 2 (a;) =0 (4.2)
z"(a;) y"(ai) 2" (a;)

4.1.3 Tangent, normal and binormal vectors

Suppose now that there is a curve r(s) = [z(s), y(s), z(s)] which is parameterised
by arc length s. In a direct extension of the planar method in Section 3.1.2
the tangent vector t(l) is defined as the unit length vector starting at r(l) =
[z(1),y(l), 2(1)] and passing through r(I + hy) = [z(l + h1),y(l + h1), 2(l + hy)]
where h; is very small.

The (principal) normal vector n(s) is a unit vector which is perpendicular to
the tangent vector in the osculating plane. Clearly there are two potential normal
vectors which lie in the osculating plane. By convention the normal vector is set
so that the curve is turning towards the direction of the normal vector at each
point although this need not always be the case.

The binormal vector is a unit vector which is perpendicular to both the tan-
gent vector and the normal vector i.e. it is perpendicular to the osculating plane.
The binormal vector at the point r(s) will be denoted by b(s).

It is useful to think of the tangent vector, the normal vector and the binormal
vector making up a moving trihedron of the curve. From this trihedron the cur-
vature measures the rate at which the tangent vector turns and torsion measures

the rate at which the binormal vector turns.

4.1.4 Curvature, torsion and the Frenet formulae

Curvature of a space curve £(s) is a scalar measurement of the magnitude of the
bending of the curve within the osculating plane at a point as the point moves

along the curve. Torsion of a space curve 7(s) is a scalar measurement of the
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amount that the curve bends out of the osculating plane at a point as the point
moves along the curve. Alternatively torsion can be thought of as the amount
that the osculating plane changes as the point moves along the curve.

Suppose that there is a curve r(s) = [z(s),y(s), z(s)] which is parameterised
by arc length s. Gray (1998) shows that the tangent vector t(s) measures the
rate of change of the position of the curve as the point moves along the curve
(i.e. the rate of change of the position of the curve with respect to arc length).
Therefore

t(s) = (4.3)

The magnitude of the rate of change of the position of the curve with respect to
arc length will always be 1 since the change in the position of the curve and the
arc length are equivalent. Therefore, t(s) is a vector of unit length.

Section 4.1.3 has already stated that curvature measures the rate at which
the tangent vector turns i.e the rate of change of the tangent vector with respect

to the distance travelled round the curve. Therefore

dt(s)
ds

K(s) = ‘ (4.4)

Returning to (3.4) it can be seen that t'(s) is perpendicular to t(s) therefore

from Pressley (2001)
_dt(s)
n(s) = s

gives the principal normal vector (i.e. vector perpendicular to the tangent vector

in the osculating plane). However since (4.4) has shown that ‘ dtdgs) is equal to
k(s) to ensure that n(s) is unit length it is required that
1 dt(s)
= 4.5
n(s) (5) ds (4.5)

Now since t(s) and n(s) are perpendicular unit vectors in the osculating plane,

the binormal vector b(s) can be defined as

{t(s),n(s),b(s)} give the orthonormal basis of the curve.
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Now again Pressley (2001) shows that dla)l *) is parallel to n(s).
db(s) _ d(t(s) x n(s))
ds ds
o dt(s) dn(s)
= X n(s) + t(s) x 7
Using (4.5) it is clear that
dt
d(j) x n(s) = k(s) n(s) x n(s)] = 0
Therefore b(s) dn(s)
s n(s
= t(s) x 7 (4.6)

Equation 4.6 shows that %

A vector which is perpendicular to both t(s) and b(s)

is perpendicular to t(s). It is also by definition
perpendicular to b(s).

must be parallel to n(s). Therefore,

(4.7)

for a scalar 7(s). This 7(s) is the torsion at point s. Note that the minus sign is
just convention and that torsion can only be defined if curvature is non-zero. If
torsion is zero for the whole curve then the curve is a plane curve.

Finally consider the rate of change of the normal vector with respect to the

dn(s

arc length i.e. =7 ) Pressley (2001) shows that

dn(s) _ d(b(s) x t(s))
ds ds
_ dbls) dt(s)
- ds X t(s) + bls) x 3

—7(s) n(s) x

—r(s)t(s) + (4.8)

since a x b = —b x a this allows for the change of sign. Combining (4.5), (4.7)

and (4.8) leads to the three dimensional Frenet equations

dtd(ss> = k(s)n(s) (4.9)
0(s) _ _s)t(s) + 7(3)b(s) (4.10)

ds
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= —7(s)n(s) (4.11)

4.1.5 Calculating curvature and torsion in practice

Section 4.1.4 has shown that at each point the values of curvature and torsion
are affected by the positions of the tangent, normal and binormal vectors. In
practice it is often computationally difficult to manually set the Frenet frame at
each point and so it is useful to produce a simpler method for calculating the
curvature and torsion which uses the derivatives of x, y and z against s. Gray
(1998) explains how this is done for an arbitrarily parameterised curve. However
in this section, and also throughout the thesis, this will be simplified to consider
the case where the curve is parameterised by arc length.

For simplicity the first, secgnd and third derivatives of the position of the curve
with respect to s (i.e. d?;lgs) : dé’sé"”) and d;;és) ) will be denoted by 7'(s), r”(s) and
" (s) respectively where r(s) = [z(s),y(s), z(s)] and r'(s) = [2/(s),¥y(s), 2/(5)].
Section 4.1.4 shows that

r'(s) = t(s)
" o dt(3> _
r(s) = s = k(s)n(s)

Now consider the cross product of r’(s) and 7”(s). This gives

r'(s) x r"(s)

Il
[l
—~
V)
~—
X
X
—~
V)
~—
=
—~
V)
~—
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X
—~
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~—
—~
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—~
V2)
N—
X
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N—

r'(s) xr"(s) = k(s)b(s) (4.12)

Taking the magnitude of both sides of (4.12) shows that

[r'(s) x1"(s)] = |r(s)b(s)|
= k(s) [b(s)|
k(s) = |r'(s) x r"(s)] (4.13)

Therefore the curvature of a space curve parameterised by arc length can be
calculated as the magnitude of the cross product of the first and second derivative
of the position of the curve with respect to arc length.

Now consider the third derivative of the position of the curve with respect to
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arc length.
’I“/N(S) _ (/{(S)I’I(S)), — /{’(3)1’1(8) + /Q(S)Il’<3)

Using (4.10) and the fact that t(s), n(s) and b(s) are mutually perpendicular it
follows that

b(s)-r"(s) = b(s)- [+

b(s)-r"(s) = k(s)7(s) (4.14)

Using (4.12) and (4.13) this becomes

(M)-r’”(s) = k(s)7(s)

T(S) _ ((TI(S) X Tl,(‘g)) ) Tl/l(‘g)) (415)

[r(s) x r"(s)|°

Therefore the torsion of a space curve parameterised by arc length can be calcu-
lated from an equation (4.15) which uses the first, second and third derivative of

the position of the curve with respect to arc length.

4.1.6 Reconstructing a curve from curvature and torsion

Gray (1998) shows that a space curve can be reconstructed up to rigid transfor-
mations from its curvature and torsion however the process is more complex than
for plane curves. Suppose that the Frenet formulae ((4.9), (4.10) and (4.11)) and
the first derivative of the position of the curve with respect to the arc length (4.3)

are rewritten so that
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where i = (1,2,3) represents the z, y and z values of each vector. This gives
a system of 12 differential equations. The initial conditions of this system of

differential equations are

= Magn3 — M3Ns
= mgn; —mng

= Mming — Mo

where S22 m? =322 n? = Land 3.7, m;-n; = 0. The initial conditions choose
an arbitrary starting point and ensure that t(s), n(s) and b(s) are mutually per-
pendicular vectors of unit length. Since there is a system of ordinary differential
equations with initial conditions it is possible to find a unique solution. Boyce
and DiPrima (1992) show that if curvature and torsion are constant it is possible
to solve this system of differential equations. However, since curvature and tor-
sion change along the curve the differential equations must be solved numerically.
The Runge-Kutta method is both a ‘relatively simple and sufficiently accurate’
(Boyce and DiPrima (1992)) technique to solve a set of differential equations
of this kind. The Runge-Kutta formula assumes that the values of the series
of differential equations are known at a point s, and calculates the values at
Sn+1 using a weighted average of values taken at different points in the interval
Sn < 5 < 8,41. To express the method rewrite the system of ordinary differential

equations so that
Y'(si)" = B(s:) Y (s:)" (4.16)

where

Y (si) = [ti(si), ni(si), bi(si), ta(si), ma(si), ba(si), ta(si), m3(si), ba(si), m1(8i), r2(8i), 3(5:)]
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and
0 k(s) O 0 0 0 0 0 0
—K(8;) 0 7(8;) 0 0 0 0 0 0
0 —7(s;) O 0 0 0 0 0 0
0 0 0 0 K(s;) 0 0 0 0
0 0 0 —k(s;) 0 7(s;) 0 0 0
B 0 0 0 0 —7(s;) O 0 0 0
Pl =1 0 0 0 0 0 0 K(s) O
0 0 0 0 0 0  —k(s) 0 7(s;)
0 0 0 0 0 0 0 —7(si) O
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

The general Runge-Kutta formula can be found in Boyce and DiPrima (1992).

More specifically, for the reconstruction of the curve problem it becomes

h
Y(Sn+1)T = Y(Sn)T + g(knl + 2]{3”2 + ang + kn4) (417)
where

kni = ﬁ(sn)Y(sn)T

1 1
k‘ng = 6(871 + Eh)Y(Sn + ahknl)T

1 1
kns = B(s,+ §h)Y(sn + 5hk,ﬂ)T
kns = B(sn+h)Y(s, + hkns)®

and h is the distance between point n and point n + 1. The sum %(km + 2k, +
2kn3 + kna) can be interpreted as the average movement in the curve with k,;
accounting for the movement at s,,, k,» and k,3 accounting for the movement at
the midpoint between s,, and s, 1 and k,4 accounting for the movement at s, .

Using the curvature values (k(s) = [k(s1),...,k(sn)]), the torsion values
(1(s) = [7(s1),...,7(sn)]) and the arc lengths (sq,...,s,) it is possible to re-
construct a curve up to rigid transformations. The initial values of the system of
differential equations are Y(s;). Using the Runge-Kutta method it is possible to
calculate Y(sy) and then repeat until Y(s,) has been calculated. This gives the

O O O O O O O o o o o o

O O O O O O O o o o o o

O O O O O O O o o o o o
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position along with the tangent, normal and binormal vectors at all n points on

the curve.

4.2 Curvature and Torsion of a Space Curve:
Midline Profile Example

To investigate curvature and torsion in a space curve the midline profile example
from Section 3.2 will be extended from two-dimensions to three-dimensions. The
profile is defined by 57 data points with the = axis showing movement across the
face, the y axis showing movement up and down the face and the z axis showing
movement in and out of the face. To illustrate the methods an example profile
will be used. This is the same profile which was used to illustrate the methods

in Section 3.2 and is plotted in Figure 4.1 from side on and from straight on.
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Figure 4.1: Plot of the example profile from side on (left). Plot of example
profile from straight on (right).

The start of the curve is taken as the lowest point on the y axis (i.e. the
point at the top of the upper lip) and arc length increases as the curve moves
towards the top of the face. All profiles are rescaled so that the three-dimensional
arc length is equal to 1. The method for doing this is a simple extension of the
rescaling method from Section 3.2.1 with the z coordinate also included.

Chapter 3 described three methods for calculating the curvature of a plane
curve. These methods will be extended to space curves to allow calculation of

curvature and torsion. Furthermore a new method involving two perpendicular
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planes will be introduced.

4.2.1 Derivative method

Section 4.1.5 defined two formulas, (4.13) and (4.15), to calculate the curvature
and torsion of a space curve using the first, second and third derivatives of the x, y
and z position with respect to arc length. Taking each direction individually this
can be done numerically by using smoothing splines. The curvature and torsion of
the example profile are calculated using (4.13) and (4.15) and smoothing splines
with 10 degrees of freedom. The curvature and torsion functions are shown in
Figure 4.2. Note that the torsion value calculated for the first point was greater

than 600 so this is removed to aid the representation.
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Figure 4.2: Plot of curvature (left) and torsion (right) function for the ex-
ample profile.

From an initial inspection the curvature function from Figure 4.2 is close to
what would be expected with two areas of large bending corresponding to the
base of the nose and the tip of the nose. The torsion function however was
extremely large at the start of the profile and further shows a small area of very
large magnitude torsion which is unexpected considering the smoothness of the
midline profile. To check the accuracy of the curvature and torsion functions they
are used to reconstruct the profile using the methods of Section 4.1.6. The initial

values chosen (as they will be throughout the thesis) are

r(s1) = (0,0,0)

1.0
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t(s1) = (1,0,0)
n(s;) = (0,1,0)
b(s;) = (0,0,1)

This results in a reconstructed space curve which is not at all like the three-
dimensional midline profile.

It may be that the torsion function is incorrect due to higher order derivatives
not being accurately estimated using the smoothing spline technique in R. To
investigate this consider the simple curve y = 2° with —2 < x < 2 defined by
57 points. Clearly 3’ = 5z%, y" = 2023 and y"” = 6022. Figure 4.3 shows the
estimated first, second and third derivatives of y with respect to x using 10 degrees

of freedom and compares the estimates to the actual values of the derivatives.
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Figure 4.3: Plot of y = 2° and the comparison between the estimate and the
actual values of the first, second and third derivatives.

Figure 4.3 shows that, excluding a few serious problems at the start and end
of the curve, the smoothing spline technique is fairly accurate at estimating the
first and second derivatives of the simple curve. However the technique seems to
have serious problems estimating the third derivative. The difficulties experienced
here occurred when estimating the derivatives of a simple curve. In practice the

curves will be more complex. This suggests that the torsion values calculated
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using this method may be questionable. The derivative technique for calculating
curvature and torsion of a space curve runs into difficulties due to the issue of
the inaccuracy of estimating higher order derivatives using the smoothing spline
method.

There are a number of adjustments which could be made to attempt to im-
prove the process of calculating the higher order derivatives. Recall that the
smoothing of the z, y and z position against arc length has been carried out
using natural cubic splines. Considering that for torsion derivatives as high as
order three are required it would perhaps be beneficial to increase the order of
the splines. The estimate of the third derivative in Figure 4.3 illustrates the
problem. Since the order of the spline is the same as the order of the derivative
the estimate of the third derivative is constant in many areas. This illustrates
the fact that the order of the spline should at least be larger than the order of
derivative to be calculated.

In the example the same degrees of smoothing have been used when calcu-
lating the first, second and third derivatives. The calculation of the higher order
derivatives however, is less robust than the calculation of lower order derivatives.
Therefore, it would appear reasonable to apply more smoothing when calculat-
ing the higher order derivatives. Adjusting the smoothing for the different order
of derivatives would potentially stabilise the process of estimating the high or-
der derivatives and allow a more stable estimate of the curvature and torsion
functions.

Section 3.2.1 briefly introduced the idea of p-splines proposed by Eilers and
Marx (1996). P-splines allow adaptive knot selection which offers greater flex-
ibility in the smoothing process. Smoothing using p-splines is known to give a
straightforward and reliable method for estimating the derivatives of the smooth
function. Replacing natural cubic splines with p-splines may improve the estima-
tion of higher order derivatives and therefore the estimated curvature and torsion
functions.

It is clear that a number of adjustments could be made to improve the esti-
mation of the higher order derivatives. However, even allowing for these adjust-
ments, high order derivatives are difficult to calculate accurately and robustly.
Therefore, the two alternative methods introduced for plane curves in Section 3.4
are extended to space curves to remove the need for calculation of higher order

derivatives.
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4.2.2 Optimisation method

Section 4.1.6 outlined a method which can be used to reconstruct a curve from
the curvature and torsion functions. It seems natural to attempt to calculate
the curvature and torsion functions to allow the reconstruction of the original
curve with the greatest possible accuracy. Consider the example midline profile
where the curve is defined by 57 points. Since the arc length at each point is
available all that is required to produce a reconstruction, using the Runge-Kutta
method from Section 4.1.6, of the original profile is the curvature k(s1),...K(s,)
and torsion 7(s1),...7(s,) at each point. That means the aim is to find the ;’s

and 7;’s which minimise the ordinary Procrustes sum of squares given by
57 A ) ) ) ) A
055 =" | (A(i,2) = B(i,2))* + (Ali.y) - B, y)* + (4G, 2) - B(i, 2))’
i=1

where A is the centered configuration of the original profile and B is the Pro-
crustes registered configuration of the reconstructed profile and the sum is over
all 57 points which define the midline profile curve. To simplify the problem the
k;'s are not forced to be positive i.e. the normal vectors do not have to be set so
that the curve is bending towards them.

Once again the optimize function can be used to carry out this optimisation.
However optimising over 114 parameters (57 curvature values and 57 torsion
values) requires a lot of computing power and will require many iterations of the
function. This process was carried out on 5 control profiles. The results for the
example profile will be shown below but Table 4.1 shows the length of time taken

to carry out the optimisation procedure for each of the 5 control profiles.

Profile | Time Taken (hours)
1 3.06
2 2.7
3 2.95
4 3.06
5 2.85
Mean 2.93

Table 4.1: Time taken to carry out the optimisation method on 5 example
profiles.

Table 4.1 shows that on average carrying out this optimisation method on a
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control midline profile takes nearly 3 hours. Considering that in a study there
could be numerous subjects the considerable computing time required is a po-
tential drawback of this method. However, it is still of interest to investigate
how the optimisation method performs on the example profile. Figure 4.4 shows

curvature and torsion functions calculated using the optimisation method.

- Raw Curvature

- Raw Torsion
—— Smooth Curvature|
—— Smooth Torsion

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

s

Figure 4.4: Plot of both the raw and smoothed curvature and torsion func-
tions for the example profile calculated using the optimisation
method.

The raw curvature and torsion functions in Figure 4.4 are extremely rough and
are difficult to analyse. Therefore smoothing is applied to the functions with 10
degrees of freedom to produce functions which are much easier to interpret. The
smoothed curvature function seems reasonable with high magnitude curvature at
the base and tip of the nose. The smoothed torsion functions seem unrealistically
high at the tails but apart from that show only one area of high torsion just before
the base of the nose which is not unreasonable.

Using the Runge-Kutta method the original profile is reconstructed using both
the raw and smoothed curvature and torsion functions with the reconstructions
matched to the original profile, using ordinary Procrustes analysis, and shown in
Figure 4.5.

Using both the raw and the smoothed functions it appears that the original
profile is reconstructed fairly accurately. It does seem however that the recon-
structed profiles come away from the original profile at the area between the
base of the nose and the tip of the nose. Somewhat surprisingly this occurs for

the reconstruction using the raw functions as well as the smoothed functions. A
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Figure 4.5: Plot of the reconstruction of the example profile using the raw
and smooth curvature and torsion functions calculated using op-
timisation from side on (left) and front on (right).

positive aspect, however, is that the smoothed functions do not seem to perform
particularly worse in the reconstruction than the raw functions.

Calculating curvature and torsion using this optimisation method has the
clear advantage of ensuring the curvature and torsion values allow an accurate
reconstruction of the original curve. However there are two major disadvantages
of this method. Firstly it is computationally expensive and the more points that
define the curve the longer the process will take. Secondly the optimisation is
simply a numerical method to ensure an accurate reconstruction meaning the

anatomical interpretation of curvature and torsion is often unclear.

4.2.3 Frenet method

Section 4.1.5 described how the derivative formulae for curvature and torsion
came from the directions of the tangent, normal and binormal vectors (the Frenet
frame) and further recalling (4.9), (4.10) and (4.11) it is clear that if the Frenet
frame is defined at each point of the curve it is simple to calculate curvature
and torsion. The process for doing this is not as simple as using the derivative
method; however it only requires the first derivative of the normal vector and so
it should be more robust.

To calculate the Frenet frame at the point r(s;) = [x(s;),y(s:), 2(s;)] the
osculating plane must be defined. As shown in Section 4.1.2 to calculate the

osculating plane the points r(s; + h1) and r(s; + hy) must be found. To do this
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a spline can be used to interpolate the curve so that the curve is defined by an
extra [ points between each of the n original points where [ is a large number. If
[ is sufficiently large then the osculating plane can be defined by the point r(s;)
and the next two points given by the spline. For the final point in the curve the
previous two points are used. It is then simple to calculate the osculating plane
at each point as the plane which contains the point and the two neighbouring
points.

Now that there is an equation for the osculating plane it is relatively simple to
define the tangent, normal and binormal vectors using the ideas of Section 4.1.3.
The first stage is to calculate the tangent vector. The tangent vector for the point
at s; is the unit length vector which starts at r(s;) and passes through r(s; + hy).
For the final point in the curve the tangent vector is a unit length vector which
starts at r(s;) and travels in the direction defined by the vector which starts at
r(s; — hy) and passes through r(s;). The tangent vector, denoted as t(s;), will by
definition lie in the osculating plane.

Recalling that the binormal vector, denoted as b(s;), is perpendicular to the
osculating plane it is clear that the binormal vector is either the unit length
normal vector to the osculating plane or the negative of the normal vector to the
osculating plane depending on the desired interpretation of torsion.

Finally by recalling that the normal vector, denoted as n(s;), is perpendicular
to both the tangent vector and the binormal vector then the normal vector can

be calculated by the cross product of the tangent and binormal vectors
n(s;) = t(s;) x b(s;)

or

n(s;) = b(s;) x t(s;)

since the cross product of two vectors gives a vector which is mutually perpendic-
ular to both original vectors. Also since both t(s;) and b(s;) are of unit length
n(s;) will be of unit length. The choice of the normal vectors is dependent on
the desired interpretation of curvature.

Once the tangent, normal and binormal vectors have been calculated at each
point the curvature and torsion can be calculated using (4.9) and (4.11). Sec-
tion 3.4.2 equation (3.19) showed that

k(s;) = —n'(s;) - t(s;) (4.18)
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where n’(s;) represents dnd_gs) Similarly by differentiating n(s;) - b(s;) = 0 with

respect to s it can be shown that

()
(si) = —n(s;)-b'(s;)
n'(s;) - b(s;) = —n(s;) - (—=7(si)n(s;))
(s;) = 7(s; (4.19)

Therefore all that is required to calculate the curvature and torsion at each point
of the profile is to find the tangent vector, normal vector, binormal vector and
the first derivative of the normal vector with respect to arc length.

This process was used to calculate the curvature and torsion of the example
profile. The osculating planes tended to cut vertically through the face and
the binormal vectors were set to point to the left of the face whilst the normal
vectors were set to point into the face. This means that the majority of the
bending explained by the curvature value is made up of bending into and out
of the face whilst the majority of the bending explained by the torsion value
is bending across the face. However since the osculating plane twists whilst it
moves along the midline profile curvature and torsion do not exclusively have this
interpretation.

Figure 4.6 shows the curvature and torsion functions for the example pro-
file with the first derivative of the normal vector calculated using the predict
function on a smoothing spline with 10 degrees of freedom.

Figure 4.6 shows that the curvature values are in general a lot larger than
the torsion values. Since the osculating planes were mainly cutting through the
middle of the midline profile the low torsion values correspond to the fact that
there is not a lot of movement across the face and that most of the movement
into and out of the face can be accounted for by curvature which has a large
magnitude at the base and tip of the nose.

Using the Runge-Kutta method the original profile is reconstructed using
the curvature and torsion functions calculated using this Frenet method. The
reconstructed profile is matched to the original profile with the result shown in
Figure 4.7.

The reconstruction of the original profile using these curvature and torsion
functions is relatively accurate. There does however seem to be a slight error in

that when looking from side on the reconstruction shows less bending at the base
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Figure 4.6: Plot of curvature (black) and torsion (red) functions for the ex-
ample profile.

and tip of the nose. This may be due to the smoothing involved in the process.
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Figure 4.7: Plot of the reconstruction of the example profile using the cur-
vature and torsion functions calculated using the Frenet method
from side on (left) and front on (right).

The Frenet method has produced curvature and torsion functions which are
relatively smooth and can be used to give a fairly accurate reconstruction of the
original profile. However, the major disadvantage with the method would appear
to be that it is difficult to produce a clear anatomical interpretation of curvature
and torsion. For the profile it has been suggested that curvature accounts for

most of the bending into and out of the face whilst torsion accounts for most of
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the bending across the face but because the Frenet frame twists as the position

moves up the midline profile this anatomical interpretation is not definitive.

4.2.4 Perpendicular plane method

This chapter has already shown some of the difficulties of calculating curvature
and torsion in terms of requiring a large amount of computing power and also
the difficulty in practically interpreting curvature and torsion. In this section a
method is introduced to describe the amount of bending the curve experiences
using two easily interpretable curvature values.

Consider the midline profile example. It would be preferable if there was one
measure which represented the amount the curve bends into and out of the face as
the profile moves up the face and another measure which represents the amount
the curves bends across the face (i.e. from side to side) as the profile moves up
the face. In Traité de Géométrie (1799), Gaspard Monge introduced the chief
ideas of descriptive geometry; namely that a three-dimensional object or curve
can be represented by projecting onto two perpendicular planes. Therefore it
seems reasonable to project the points of the space curve onto two perpendicular
planes, one (the yz plane) which cuts through the face vertically and another (the
xy plane) which lies across the face, and treat the problem as two plane curves.
Then bending in the yz plane is curvature into and out of the face, called yz
curvature, and bending in the xy plane is curvature traversing the face, called
xy curvature. The two plane curvature values at each point are sufficient to
explain the bending experienced by the space curve. Note that to analyse some
facial features, such as the upper lip, it is necessary to define a plane (the xz
plane) which is perpendicular to the other two planes and cuts through the face
horizontally. Bending in this plane, called xz curvature, also measures curvature
into and out of the face and can be used as an alternative to yz curvature. The
curves of an example child’s face projected onto all three planes are shown in
Figure 4.8.

The major difficulty is in setting up the perpendicular planes so that the
bending in each plane is equivalent in all the profiles. One method for doing this
would be to use principal components analysis to set the planes. Consider the
plane defined by the first two principal components after carrying out a principal
components analysis on the coordinates of the profile. The first two principal
components almost completely explain the variation caused by movement up and

down the face (component one) and movement in and out of the face (component
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Figure 4.8: The curves defining the face of a child projected onto the yz (top
left), xy (top right) and xz(bottom left) planes.

two). The third principal component, which is by definition perpendicular to
the first two components, explains variation caused by movement across the face.
Then the plane defined by the first two principal components is a plane which
cuts through the face vertically and becomes the yz plane. The plane defined by
the first and third principal components traverses the face and becomes the xy
plane while the plane defined by the second and third principal components cuts
through the face horizontally and becomes the xz plane. A potential problem
with this method however is that the planes are not set using the orientation of
the face but simply calculated using principal components therefore there may
be questions over the consistency between different subjects.

A preferable alternative to either of these methods would be to set up the

0.03
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perpendicular planes using landmarks on the face. To do this a plane which
traverses the face can be calculated using three landmarks on the face. The
landmarks chosen are the corner of the left eye, the corner of the right eye and
the middle of the upper lip i.e. landmarks enL, enR and Is shown in Figure 1.1.
Since the three dimensional co-ordinates of the three landmarks are available it
is simple to calculate the plane. This plane is called the xy plane.

The yz plane can then be calculated using the normal vector to the xy plane,
to ensure that the planes are perpendicular, and a further landmark on the face.
To ensure that the yz plane cuts through the centre of the face the landmark
at the tip of the nose (prn) is chosen. The xz plane is then the plane which is
mutually perpendicular to the yz and xy plane.

The next stage of the process is to project the profile onto these three planes.
To project a point (R = (R,, Ry, R,) say) from the profile onto the yz plane
the distance between R and the closest point on the plane (@ say) must be
calculated. The vector from A, which is a point in the plane, to R is AR (=
(R, — A,, R,—A,, R, —A,)). Now clearly the direction which will give the
shortest distance between R and @ is the direction given by the normal vector, n.
Therefore the distance between R and @ is given by —n- —AR =n - AR. From
the definition of the dot product this is the projection of AR onto the direction
defined by n and therefore the shortest distance between R and (). Now the

vector R() is a vector of length n- AR in the direction of —n therefore

RQ = (n-AR) X —n
RQ = —(n-AR)xn

Therefore the position of the projected point is
Q=R—((n-AR) x n)

If this is done for all points on the profile a projection of the profile onto the yz
plane is produced. The same process can be carried out for the xy plane and xz
plane.

Now, all that is required to produce the plane projections is to define the axes
in the three dimensional space. The origin for the new set of axes is chosen as the
point at the middle of the upper lip (Is) then the axes of the xy plane are chosen
as the direction of the normal of the yz plane (call this z’) and the direction of

the cross product of the normal from the yz plane and the normal of the xy plane
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(call this y'). The final axis is defined by the normal of the xy plane (call this 2’).
To calculate the position of a point on each axis all that is required is to find the
dot product between the position and the unit length vector lying on the axis. A

plot of the example profile on both the yz and xy planes is shown in Figure 4.9.
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Figure 4.9: Plot of the yz (left) and xy (right) plane projections for the ex-
ample profile.

The curvature in both planes can be calculated using the techniques of Sec-
tion 3.1.4 for plane curves. This allows the curvature both traversing the face
and into and out of the face to be calculated. The yz and xy curvature func-
tions are calculated using 10 degrees of freedom for smoothing and are shown
in Figure 4.10. Note that the s axis is the fixed total arc length of the three-
dimensional curve and not the variable arc length of the plane curves to allow
comparison between cases.

The curvature functions in Figure 4.10 unsurprisingly show that the amount
of bending into and out of the face is much larger than the bending traversing
the face. Further the yz curvature function shows two areas of high magnitude
curvature at the base and tip of the nose. There is perhaps an indication of an
area of slightly higher xy curvature at the tip of the nose.

Section 3.1.5 outlined a technique for reconstructing a plane curve from the
curvature function and arc length. Figure 4.11 shows the curves in the perpen-
dicular planes reconstructed from the yz and xy curvature functions and aligned
to the projected original profile. Note that the arc length used for the reconstruc-
tion is the arc length of the original curve in the perpendicular plane and not the

total arc length of the space curve.
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Figure 4.10: Plot of yz and xy curvature functions for the example profile
where s is the arc length of the space curve.
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Figure 4.11: Plot of the reconstructed yz (left) and xy (right) plane projec-
tions for the example profile.

The reconstruction of the plane projections of the profile using the yz and
xy curvature functions are accurate. The difficulty here is in how to combine
the two plane reconstructions to give an accurate space reconstruction. If the
positions of the reconstructed points on the 3y’ axis are the same for both plane
reconstructions then the space reconstruction is simply given using the position
of the reconstructed points on the x’, 3/ and 2’ axes. Since the initial directions
of the plane reconstructions are given by an initial turning angle the problem

of matching the vy’ positions for each plane reconstruction, assuming the chosen

0.4
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initial position is (0,0,0), becomes the problem of finding the two appropriate
initial turning angles. In theory this problem could be solved using the system

of equations

os) = [ eos( [ s+ onis

=0

y(s) = / " sin / k(s)ds + d)ds — / " sin / (s)ds + d)ds

=0 =0

o) = [ cost [ w(opds + anyis

=0

where ¢ = 1,...,n are the n positions which define the curve and ¢, ¢, are the
initial turning angle of the yz and xy plane reconstruction respectively. How-
ever, in this set of equations there are 4n equations and 3(n — 1) + 2 unknowns
(corresponding to all the reconstructed positions excluding the defined starting
position and the two initial turning angles) therefore in general there are more
equations than unknowns and the system is over-determined.

To avoid having to solve the over-determined system a grid search can be
carried out over all possible (i.e. from 0 to 27) combinations of the two starting
angles to find the combination which minimises the sum of squared difference
between the 3 positions of the two reconstructions. The optimize function can
be used to efficiently perform this grid search and find the optimum starting
angles. For the example profile the function returns optimum starting angles of
84.53° and 89.95° with the sum of squared difference between the 1’ values of
9.93 x 107°. Using these starting angles the reconstructed space curve is given
by the 2z’ and 3 values from the yz plane reconstruction and the x’ values from
the xy plane reconstruction. Figure 4.12 shows the reconstructed curve matched
to the original profile on the cartesian axes using ordinary Procrustes analysis.

The reconstruction of the original profile in Figure 4.12 shows that combining
the plane reconstructions made using the yz and xy curvature functions calculated
by perpendicular planes produces an accurate representation of the original profile
with only minimal evidence of problems in accuracy at the base of the nose.

This perpendicular plane method produces curvature functions which appear
to give an accurate reconstruction of a space curve. The major advantage of this
method is that both yz and xy curvature have very clear anatomical meaning

which is useful for presenting results as well as further analysis.
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Figure 4.12: Plot of the reconstructed profile matched to the original profile
from side on (left) and front on (right).

4.2.5 Investigating a collection of yz and xy curvature

functions

In general, interest lies not in examining the three-dimensional bending of a single
space curve but in comparing the three-dimensional bending of a collection of
space curves. The fact that the amount of bending of the shape is explained
by two scalar values at each point as opposed to the single scalar value in the
planar case presents interesting issues for comparing a collection of curves. The
example which will be considered is an extension of the midline profile example
from Section 4.2 with data from 71 midline profiles of one year old control children
with each three-dimensional profile defined by 57 points and rescaled to have arc
length 1.

The perpendicular plane method (outlined in Section 4.2.4) will be used to
calculate the yz and xy curvature for all 71 profile curves separately. Positive yz
curvature indicates that the profile is bending towards the face whilst negative
yz curvature indicates that the profile is bending away from the face. Positive
xy curvature indicates that the profile is bending to the left when viewed from
front on while negative xy curvature indicates that the profile is bending to the
right. Figure 4.13 shows both curvatures functions, calculated using 10 degrees
of freedom for smoothing, for all profiles.

It is clear from the curvature functions in Figure 4.13 that the range of yz

curvature values is much greater than the range of xy curvature values. This
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Figure 4.13: Plot of yz and xy curvature against arc length for all 71 profiles.

is expected since it seems reasonable that in general midline profiles bend con-
siderably more into and out of the face than across the face. The yz curvature
functions all appear to have one area of minimum curvature which represents
the bending at the base of the nose and an area of maximum curvature which
represents the bending at the tip of the nose. The xy curvature functions do not
exhibit a general pattern, which is not unexpected since there would not appear
to be any anatomical reason for a midline profile to bend to the left or the right
at certain points. However any bending traversing the face appears to occur in
the area which spans from just before the base of the nose to just after the tip of
the nose.

The ‘average’ curvature functions for this group of children can be calculated
by taking the piecewise average of all functions at regular points on the s axis
and interpolating between the average curvature values. These average functions
can then be used to reconstruct the ‘average’ midline profile for this group of
children using the methods detailed in Section 4.2.4. However, the arc lengths of
the original plane curves are required to produce the reconstruction. Although
the arc lengths of the original space curves are rescaled to be of length 1, the
plane curves produced from these space curves are not the same length. To
obtain an average arc length for each of the plane curves, the mean of the arc
length at each of the 57 points which define the profile is calculated across all the
individual curves. This gives the arc lengths for each of the average plane curves
which combined with the average curvature functions can be used to reconstruct

the average feature. Figure 4.14 shows the average curvature functions for this
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group of children as well as the reconstructed profile using these functions.
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Figure 4.14: Plot of average yz and xy curvature functions for all profiles
(top left) and the corresponding reconstructed average profile
from side on (top right) and front on (bottom left).

4.3 Warping in the Space Curve Setting

Section 3.3 used the ideas of Gasser et al. (1990) to outline methods and issues
associated with aligning a collection of curvature functions calculated from the
midline profile defined as a plane curve. To extend these methods to align the
data produced from the midline profile defined as a space curve some issues must
be addressed. The difficulty here is that the bending of each profile is defined by

both the yz and xy curvature functions. To ensure consistency between the yz

0.4
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and xy curvature functions the same position warping function must be applied to
both functions. Therefore, the process is similar to the plane curve process with
the major difference being in defining characteristic points using two curvature
functions. Section 4.3.1 will outline a method to define the characteristic points.
Note that this technique could be easily altered to analyse curvature and torsion
curves from standard methodology.

Since the magnitude of the yz and xy curvature values, are to a large degree,
independent it seems reasonable to produce two amplitude adjustment functions
(for both yz and xy curvature) for each midline profile. This can be achieved

using the techniques of Section 3.3.1 without adjustment.

4.3.1 Position warping technique for yz and xy curvature

curves

The major difficulty in the warping process using two curvature functions is
how best to select characteristic points. In the plane curve setting potential
characteristic points were calculated as positions where many of the individual
curvature functions had extrema. A natural extension of this method would be to
use the two curvature functions individually to produce potential characteristic
points.

Suppose that the characteristic points are to be defined as positions where
many individual functions have maximum turning points then the local maxima

in both curvature functions can be calculated for each individual such that

maz?? = (ciiy.. ., Cpii)
mamﬁ" = (dh‘, ce )dqii)

where max?; and max?! contain the p; and ¢; local maxima for the yz and xy
curvature functions of subject i respectively. Now all local maxima for each

curvature function can be combined across all subjects such that

z
MAXY = (c11,--,Cp1:€12, - -+ s Cpun)

MAX;:y - (dll,...,dqll,dlg,...,dqnn)

The position of the modes of the kernel probability density of MAXY* and
MAX give the position of potential characteristic points calculated using the yz

and xy curvature functions respectively. Suppose that the yz curvature functions
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return d characteristic points with the average positions 7¥* = (327, ...,7”7) and
the xy curvature functions return e characteristic points with the average posi-
tions Y = (3{,...,5*) then the combined set of characteristic points is the
full ordered d + e length set 7 = (91, .., Yat+e) Where 3; < ¥,41.

The position warping process is now similar to the plane setting. The char-
acteristic points for each individual, ~;, which correspond to the average charac-
teristic points can be found from the set of local maxima. The warping function
g; is then produced by setting g;(v;;) = 7; such that fi(g;(v;:)) = fi(7yj:) where
7 =1,...,d+ e and interpolating to give a smooth warping function. If any of
the characteristic points are not present for an individual this point is considered
missing and the aligning is carried out on the remaining d + e — 1 characteris-
tic points. The fact that characteristic points calculated using both curvature
functions produce this single warping function ensures consistency between the
aligned functions.

One potential problem with this method occurs if a characteristic point is
estimated by both the yz and xy curvature functions with slight differences in
the average position. In this situation it is worth considering which of the two
curvature functions is the more natural estimator of the position of interest and
defining the position of the characteristic point using this curvature function. Al-
ternatively simply taking an average of the position estimated by each curvature
function will be sufficiently accurate.

A technique which would avoid this problem and has other appealing prop-
erties is to combine yz and xy curvature to give a global measure of bending at

each point. Korn and Korn (1968) define total curvature of a space curve as

Q= /K2, + K2, (4.20)

If the amount of bending the curve experiences at each point is defined by the total
curvature then warping could be carried out on one function as opposed to two
and the warping process would be the same as the plane curve case in Section 3.3.
Further analysis could then be carried out on the warped total curvature functions
or the warped s axis could be applied to the yz and xy curvature functions and
further analysis carried out on these two warped functions. A potential drawback
of this method is that if the local maxima are evenly spread some peaks which
define characteristic points may be missed unless the bandwidth for calculating
the kernel density is reduced.

Clearly the position warping can be calculated using yz curvature functions,
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xy curvature functions, a combination of these or total curvature functions. The
choice of which method to use is solely dependent on which is most appropriate

for the data available.

4.3.2 Warping of yz and xy curvature functions: Midline

profile example

Figure 4.13 in Section 4.2.5 shows the yz and xy curvature functions of 71 midline
profiles belonging to one year old control children. The two major turning points
of the yz curvature functions at around s = 0.2 and s = 0.4 indicate the base of
the nose and the tip of the nose. These would be the primary points of interest for
aligning the curvature functions. Thinking anatomically it is clear that both these
features and in fact any features of interest on the midline profile will be found
using yz curvature rather than xy curvature. Therefore the warping functions in
this case will be calculated using just the yz curvature functions and then applied
to both functions. The process is exactly equivalent to the plane curve warping.

Potential characteristic points will be estimated as points where the majority
of functions have either a maximum or minimum turning point. Figure 4.15
shows the kernel probability density plots and histograms for the occurrence of
both maximum and minimum turning points in the yz curvature functions.

As for the similar example on plane curves the kernel probability density plots
in Figure 4.15 show two areas, top of the upper lip and tip of the nose, where
the majority of curvature functions have maximum turning points and two areas,
the base and bridge of the nose, where the majority of curvature functions have
minimum turning points. This means that there are four potential characteristic
points to use in the warping process. However when looking at the curvature
functions (Figure 4.13) it is clear that, due to the magnitude of curvature and for
anatomical reasons, the base of the nose and the tip of the nose are the major
points of interest. Due to this it seems reasonable to carry out the warping
process by aligning the functions to the average position of these features. The
average position on the s axis of these characteristic points, calculated by the
corresponding mode of the kernel probability density, is 0.242 for the base of the
nose and 0.459 for the tip of the nose.
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Figure 4.15: Kernel probability density plots and histograms for the occur-
rence of both maximum and minimum turning points of the
curvature curves.

The warping functions can be produced by setting

g:(0) = 0
giln) = n
9i(12) = P
g:(1) =1

and using cubic spline interpolation between the four points to give a smooth
warping function. The warping function is applied to both the yz and xy cur-
vature functions so that the position of each point on the s axis is the same for
both curvature functions to allow them to be directly comparable. The effect of
applying the warping function to the yz and xy curvature functions from the ex-
ample profile and the warping function required to align the functions are shown
in Figure 4.16.

Figure 4.16 shows that the effect of warping on the yz curvature function is
that the maximum and minimum points of yz curvature (i.e. the tip and base

of the nose) have been aligned with the average position. None of the turning
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Figure 4.16: Plot of the actual and warped yz curvature functions (top left)
and actual and warped xy curvature functions (top right) for
the example one year old control children midline profile. The

warping function (bottom left).

points on the xy curvature function have been aligned to the characteristic points.
This implies that in this example the areas of high xy curvature were not at the
base of the nose or the tip of the nose. To consider the effect of warping a plot
of the aligned curvature functions and the corresponding warping functions, and
warping function minus arc length, are shown in Figure 4.17.

Considering the aligned functions in Figure 4.17 it seems that the variation
in the magnitude of curvature at the base of the nose is larger than the variation
in the magnitude of curvature at the tip of the nose. Looking at the aligned xy
curvature functions it appears that in general the profiles have highest magnitude

of xy curvature around the base of the nose and the tip of the nose. It seems
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Figure 4.17: Plot of the warped yz and xy curvature functions (top left).
The warping functions (top right), to align these functions, and
the warping function minus arc length (bottom left).

that the profiles only appear to bend to the left or the right around the area from
the base of the nose to the tip of the nose. Little can be said about the warping
functions except that the amount of warping required by different subjects is, as
expected, variable.

The structural average of the yz and xy curvature functions is calculated as
the piecewise average of these aligned functions and compared to the raw average

in Figure 4.18.
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Figure 4.18: Plot of raw and structural average yz curvature against arc
length (left) and raw and structural average xy curvature
against arc length (right).

The comparison of the raw and structural average for the yz curvature func-
tions, shown in Figure 4.18 shows that the magnitude of the curvature at the
characteristic points was greater for the structural average than the raw average.
The structural average gives a better estimate of the average yz curvature at
the characteristic points across all the profiles. The comparison of the raw and
structural average for the xy curvature functions is interesting. The structural
average follows a similar pattern to the raw average; however, the raw average
has a larger magnitude of xy curvature. Presumably this is due to the fact that
at the characteristic points the xy curvature functions had either a maximum
or minimum of xy curvature. Therefore when these maxima and minima were
aligned the positive and negative curvature values cancelled each other out in the
averaging.

The space curve representation of the midline profile is reconstructed using
the structural average curvature functions and Figure 4.19 shows the comparison
between the average profiles constructed using the raw and structural averages.

The comparison between the reconstructed profiles using both raw and struc-
tural averaging, illustrated in Figure 4.19, shows very little difference across the
face. There does appear to be a slight difference in the reconstructed profiles into
and out of the face. It appears that the structural average profile shows more
bending at the characteristic points (particularly the base of the nose) than the
raw average profile. This is due to the difference in magnitude of curvature at

the characteristic points between the raw and structural averages.
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Figure 4.19: Reconstructed average profile using the raw and structural av-
erage from side on (left) and front on (right).

It is now interesting to investigate how much amplitude adjustment is required
to exactly produce the structural average yz and xy curvature functions from the
aligned individual functions. This is done for yz and xy curvature individually

with the amplitude adjustment functions shown in Figure 4.20.
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Figure 4.20: Amplitude adjustment functions to produce the structural av-
erage yz curvature function from individual yz curvature func-
tions of the control midline profiles (left). Amplitude adjust-
ment functions to produce the structural average xy curvature
function from individual xy curvature functions of the control

midline profiles (right).

Figure 4.20 shows a slight difference in the amplitude adjustment functions
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between yz and xy curvature. Whilst there is an indication that slightly more
amplitude adjustment is required around the base and tip of the nose than the
rest of the nose for yz curvature, this phenomenon is clearer for xy curvature. In
fact, for xy curvature, there is almost no amplitude adjustment required away
from the area between the base and tip of the nose. This is due to the fact there

is almost no xy curvature away from the base and tip of the nose.

4.4 Concluding Remarks on Space Curves

This chapter has shown that describing a space curve by the amount of bending
the curve experiences requires two functions. In standard methodology these two
functions are a function of curvature and a function of torsion where curvature
describes the amount of bending at each point within the osculating plane whilst
torsion describes the amount the curve bends out of the osculating plane. Three
potential methods to calculate curvature and torsion were described; however,
the derivative method ran into problems due to the difficulties in calculating
third derivatives. The optimisation method successfully calculated curvature
and torsion; however, the computing time required was large. Another major
drawback to both the methods, as well as the Frenet method, was the difficulty in
anatomically explaining the curvature and torsion values calculated. To attempt
to remedy this problem a perpendicular plane method was introduced where
the space curve was projected onto two perpendicular planes to describe the
movement of the curve. In the midline profile example these two planes were a
plane which cut through the face vertically and a plane which traversed the face.
In general if anatomical explanation is required, or at least is of interest, from
the functions of curvature then this perpendicular plane method would appear
preferable.

Also described in this chapter were issues of warping a space curve. Clearly
since the bending of the curve is explained by two functions, as opposed to one in
the plane curve setting, this introduced some issues. However, the techniques used
were a direct extension of the techniques used for plane curves. Also introduced
was the idea of describing a space curve using the idea of total curvature. This
is simply a measure of the complete bending in all directions experienced by a
space curve and is given by the square root of the sum of squares of the two
bending values (either yz and xy curvature or curvature and torsion depending
on the method).



Chapter 5

Applications to the Cleft Lip
Problem

The work in Chapters 3 and 4 was concerned with calculating the amount of
bending experienced by the midline profiles of control children in two and three
dimensions respectively. Data are available on 9 children with a cleft lip and 13
children with a cleft lip and palate as well as the 71 control children with the
major interest in comparison between the three groups. The children are one year
old and from the Glasgow area. There are data on other anatomically important
curves as well as the midline profile. The curves which, along with the midline
profile, are marked for potential analysis are the nasal base, the nasal rim, the
upper lip and the nasal bridge. Figure 4.8 showed these curves from a control
child projected onto three perpendicular planes.

The major interest of this chapter is in investigating what differences are ap-
parent between control children and children with a cleft lip and/or palate. Tech-
niques are required to firstly determine whether there appear to be differences
between control and cleft children and secondly to describe these differences. A
number of techniques will be described and then illustrated by a case study on

the upper lip.

5.1 Techniques for Highlighting Differences Be-
tween Control and Cleft Children

The techniques used to highlight and investigate differences in shape between the

facial curves of control and cleft children will concentrate on working with the
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curvature functions of the three-dimensional features. Since the perpendicular
plane method (Section 4.2.4) calculates two curvature functions with anatom-
ically interpretable meaning this method will be used. The remainder of this
section will outline the techniques which will be used to analyse the curvature
functions to give comparisons between the control children and the children with

a cleft lip and/or palate.

5.1.1 Curvature functions and average reconstructed fea-

tures

The simplest way to compare the control and cleft children is to look for visually
obvious differences between the curvature functions for each group. If there are
clear differences this may be seen by plotting the curvature functions for each
subject; however, it may be more informative to examine the average curvature
functions for each group. The average curvature function can either be calculated
as the piecewise average of the raw curvature functions or alternatively, to give a
better indication of average curvature at anatomically or geometrically important
points, as the average of the aligned curves. Aligning each group to the average
position of the characteristic points for that group only, as opposed to the global
average, provides structural averages which give a good indication of differences
in the average position on the s axis and average curvature between the groups.

Section 3.3.2 illustrated how the curvature functions in the perpendicular
plane method can be used to accurately reconstruct the original space curve. This
can be done for the average curvature functions to give an average reconstructed
feature for each group. Section 4.2.5 described how the average arc lengths are
sufficient along with the curvature functions to produce the reconstruction. Re-
constructions for each of the groups allows for a simple visual comparison between

the shape of the average feature.

5.1.2 Position and curvature of characteristic points

Section 3.3.1 outlined the warping technique used in this thesis. The technique
involves selecting the position (in terms of arc length) of characteristic points
using turning points in the curvature functions. It is of interest to investigate
any differences between the groups in terms of the position of the characteristic
point and the magnitude of curvature at these characteristic point. This can be

done informally using plots or more formally using multiple comparisons.
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5.1.3 Warping to the average feature

Section 3.3 outlined a method to produce the average curvature function from
an individual function by position warping followed by amplitude adjustment. It
is of interest to investigate whether the amount of warping (both position and
amplitude) required to warp to the average function is the same for all groups.
It seems reasonable to use the structural average of the control functions as the
average reference function. This is because the aim of surgery on cleft children is
to reconstruct the face so that the shape is similar to that of an ‘average’ control
child. To investigate whether there is a difference between the groups in terms of
the amount of warping required it is necessary to quantify the warping applied
to each function.

When carrying out the warping procedure if a function does not need to be
shifted to align its characteristic points to the average position then the warping
function will lie on the line of equality. The greater the departure from the line
of equality the more warping has been required. It is of interest then to quantify
this departure from the line of equality.

The method for doing this is similar to that for calculating the sum of squares
in a regression context. Suppose there is a warping function g(s) where ¢g(0) = 0,
g(1) =1 and s € (0,1). The sum of the squared distance between the warping
function and the straight line (s = ¢ from s = 0 to s = 1) gives a measure of how

close to linear the warping function is. This can be calculated as

n

DP:Z(Q(Sj>_Sj)2 J=1...,n (51>

j=1

where the s;’s are n regular points along the s axis such that s; — s;_; = %

A similar method can be used to determine the amount of amplitude adjust-
ment required to produce the average control curvature function from the aligned
individual functions. If the amplitude of the individual function is the same as the
average function then the amplitude adjustment function h(g(s)) will be h = 0
at all g(s). Therefore to quantify the amount of amplitude adjustment required
the sum of squared distance between the amplitude adjustment function and the

line h = 0 is calculated as

Do =S (h(g(s))?  j=1l.....n (5.2)
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where the g(s;)’s are n regular points along the g axis.

The amount of warping (both position and amplitude) required to produce the
average control curvature function from the original function can be compared
between the groups to investigate whether the curvature of the faces of cleft
children are on average further away from the average face of a control child than
the curvature of the faces of control children. This can be done informally using

plots or more formally using multiple comparisons.

5.1.4 Principal components analysis

When a set of functions, f;(s) = (x;(s),yi(s)) where s € (0,1), are available one
of the initial interests is how the functions vary and in general where the areas
of greatest variation are. This can be investigated by carrying out a principal
components analysis on the functions. One method for this is to reduce the
problem of carrying out principal components analysis on functional data to a
standard multivariate problem which can be analysed as shown by Jolliffe (1986).
Suppose there are p functions, then this can be done by calculating the curvature

at n regular points on the s axis so that each function is described as

fi(s) = ({zi(s1), 9i(s0)}, -, {wilsn), 4i(sn) })

where s; — 5,1 = % . The multivariate case can then be set up where the
variables are the n regular points on the s axis and the items are the ¢ individual
curves. Note that p must be greater than n. This discretisation method is used
here; however, it would be equally appropriate to use the functional principal
components analysis method described in Section 2.3.2.

To informatively display the results of the principal components analysis a plot
of the effect on the mean curve (f(s) say) of adding and subtracting a multiple of
each of the first three principal components will be produced. For example, for
the first principal component, if there is an eigenvector e; and standard deviation
VA1 then to display the results a plot of the mean curve and also the curves given
by f(s) & 3v/A1e; will be produced.

This process can be carried out on the curvature functions from individual
groups or from all groups combined to give a visual representation of where most
of the variation between the functions lies. If the principal components analysis
is carried out on all groups combined there is specific interest in the component

scores. If there appears to be clustering of groups in terms of their scores for
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a particular component it may be that a certain group carries a large amount
of the weight in the variation explained by that principal component. Finding
principal components for which either of the cleft groups have particularly large
scores may show areas on the feature where that cleft group have a large variation
in curvature values but the control group do not show a large variation. Plots
of the principal component scores with different symbols for the groups may give

an indication of components which are dominated by a certain group.

5.2 Case Study: Upper Lip

Section 5.1 has outlined various techniques available to give a comparison be-
tween control children and children with a cleft lip and/or palate in terms of the
curvature of certain features. This section will use these techniques to analyse
the upper lip for differences in bending between the control and cleft children.
The analysis of the upper lip curvature functions has been chosen over the other
facial curves as this produced the most interesting results. Note that from here
children with a cleft lip only will be referred to as UCL children whilst children
with a cleft lip and palate will be referred to as UCLP children.

5.2.1 Curvature functions and average upper lip recon-

structions

The curvature of the three-dimensional upper lip can be calculated both into
and out of the face, by projecting onto the xz plane, and up and down the face,
by projecting onto the xy plane, as the upper lip travels from the left of the
face to the right of the face. Note that positive xz curvature indicates that the
upper lip is bending towards the face whilst negative curvature indicates that the
upper lip is bending away from the face. Also note that positive xy curvature
indicates that the upper lip is bending towards the top of the face whilst negative
xz curvature indicates that the upper lip is bending towards the bottom of the

face. The curvature functions for all cases are shown in Figure 5.1.
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Figure 5.1: Plot of xz (left) and xy (right) curvature functions for all upper
lips.

The curvature functions in Figure 5.1 appear much rougher than the curvature
functions for the midline profiles. This is because 20 degrees of freedom have been
used in the smoothing. It was necessary to use large degrees of freedom to detect
the sharp turn in curvature near the middle of the upper lip. Looking at the xz
curvature functions it is clear that there is an area between s = 0.4 and s = 0.6
where the upper lips bend towards the face, then either flatten off (zero curvature)
or bend away from the face (negative curvature) and then bend towards the face
again. There is also an indication that, for the control functions in particular,
there are two further areas around s = 0.2 and s = 0.8 where the curvature
functions show a maximum turning point of curvature. This corresponds to
bending towards the face between the ends and the middle of the upper lip. The
xy curvature functions show a similar but more pronounced pattern. In the area
between s = 0.4 and s = 0.6 almost all functions have an area where the upper
lip bends towards the bottom of the face, followed by an area where the upper lip
bends towards the top of the face (this is much more pronounced for the control
cases) and an area where the curve bends towards the bottom of the face. There
is also the indication of some minimum turning point in the curvature functions
between the ends and the middle of the upper lip at s = 0.2 and s = 0.8. The
area between s = 0.4 and s = 0.6 is called the Cupid’s bow which contains the
landmarks cphR, Is and cphL shown in Figure 1.1. The medical belief is that
while control children in general experience three pronounced turning points in

the Cupid’s bow cleft children even after surgery tend not to experience the
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upwards turn in the middle of the Cupid’s bow at landmark Is. The piecewise

average curvature functions for each group are shown in Figure 5.2.

S
—

Curvature

Figure 5.2: Raw average xz curvature (dashed lines) and xy curvature (solid
lines) functions for the upper lips of each group.

Considering the average xz curvature functions from Figure 5.2 there is fur-
ther evidence that for all groups there are two areas of high magnitude positive
curvature between s = 0.4 and s = 0.6 while on average the curvature approaches
zero around s = 0.5 for all groups but does not become negative. This suggests
that on average the upper lip does not turn away from the face at landmark
Is. Since the average curvature values at landmarks cphl and cphR are larger
for control children this suggests that on average control children have a more
pronounced turn towards the face at the ends of the Cupid’s bow than UCL and
UCLP children. It also appears that UCLP children on average have a wider
Cupid’s bow than control and UCL children. Looking at the xy curvature func-
tions the Cupid’s bow phenomenon is again shown in the controls by two areas of
low curvature around s = 0.4 and s = 0.6 and an area of high curvature around
s = 0.5. Interestingly the average UCL and UCLP functions do not have an area
of high positive curvature at s = 0.5 but have zero curvature at this point indi-
cating that as opposed to turning up the face at landmark Is cleft children tend
to have a flat area. Both curvature functions, in particular for controls, show
potential points of interest at around s = 0.2 and s = 0.8 although discussion
of these points will not be of primary interest and instead the Cupid’s bow area
will be the focus of much of the analysis.

It is again of interest to produce aligned curvature functions. In this example
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turning points in both xy and xz curvature functions indicate the cphR, ls and
cphL landmarks therefore these three points will be taken as the characteristic
points for aligning. To allow both curvature functions to be used in the calculation

of the position of the characteristic points the total curvature (x7) will be defined

_ /2 2
K = Iﬁxz—l-lixy

where K, and K, are the xz and xy curvature functions respectively. A plot of

as

both the raw and aligned total curvature functions is shown in Figure 5.3.
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Figure 5.3: Plot of unaligned (left) and aligned (right) total curvature against
arc length for all upper lips.

For many of the UCL and UCLP cases there is no indication of the upper
lips experiencing a turning point of the curvature function at landmark s while
one UCL case has no clear cphL landmark. In these cases the characteristic point
which cannot be found is regarded as missing and the aligning is carried out using
the remaining characteristic points.

The warping is carried out for each group individually and the aligned s axis
applied to both the xz and xy curvature functions and the structural averages
calculated as the piecewise average of these aligned curvature functions. These

structural average functions are shown in Figure 5.4.
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Figure 5.4: Structural average xz (dashed lines) and xy (solid lines) curvature
functions for the upper lips of each group.

The interpretation of the structural average functions is very similar to that of
the raw average functions with the same differences between the groups evident.
As expected the magnitude of curvature at the characteristic points is larger in
the structural average. Using the method described in Section 5.1.1 the average
upper lip for each group is calculated from these structural average functions and

the reconstruction is plotted on the xz and xy plane in Figure 5.5.
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Figure 5.5: The reconstructed average upper lip from the structural averages
of each group in the xz plane (left) and xy plane (right).

The reconstructed UCLP average upper lip shows clear differences to the

other groups in both planes. The ends of the Cupid’s bow are less rounded and
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further apart than for the average UCL or control and in the xy plane there is
no evidence of an upturn at the /s landmark. On the other hand the average
UCL upper lip, while showing slightly less rounded ends of the Cupid’s bow, is
relatively similar to the average control upper lip. However, the average UCL in

the xy plane gives little indication of any upturn at the /s landmark.

5.2.2 Investigating characteristic points

It appears that there are potential differences between all three groups in terms of
the arc length and the amount of bending experienced at the characteristic points.
Since few UCL or UCLP children had a distinguishable /s landmark it seems
reasonable to only compare the arc length and curvature of the characteristic
points at the start (cphL) and end (cphR) of the Cupid’s bow. Note that since
the cphL landmark was missing for one of the UCL cases this case is not included
in this analysis. The arc length at the start of the Cupid’s bow is plotted against
the arc length at the end of the Cupid’s bow for all children in Figure 5.6.
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Figure 5.6: Arc length at the start (left) of the Cupid’s bow plotted against
arc length at the end (right) of the Cupid’s bow.

It is interesting to note, from the plot of arc length at the characteristic points
shown in Figure 5.6, that there is a relatively tight cluster of the control points
whilst the points for the UCL and to a large extent the UCLP group are well
spread. Therefore while the control group shows little variability in the position
of the characteristic points there is a large amount of variability for the UCL and

UCLP groups. It appears that the largest difference between the groups is that
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the position of the cphR landmark occurs much further along the upper lip for the
UCL and UCLP children than for control children. Any difference in the position
of the ¢phL landmark is not so clear, although it does seem that the point occurs
earlier for the UCL and UCLP children than the control children. The fact that
the differences between the groups are clearer around the cphR landmark than
the cphL landmark is presumably due to all clefts occurring on the right side of
the face after reflection.

For formal testing the data for each group is approximately normally dis-
tributed; however, there are issues with an assumption of similar spread with
the control values having a much smaller spread than the UCL or UCLP values.
Therefore the nonparametric Kruskal-Wallis rank sum test is used to test for any
evidence of a difference between the groups. The null hypothesis is that there
is no evidence of a difference between the groups in terms of population median
arc length. The p-values for both the characteristic points are much less than
0.001 indicating strong evidence at each characteristic point of some difference
between the groups. Multiple two sample Mann Whitney tests with a Bonferroni
correction are carried out to investigate between which groups these differences
lie with the results shown in Table 5.1 (for the cphL landmark) and Table 5.2
(for the cphR landmark).

] Comparison \ Interval \ p-value ‘
UCL - Control | (-0.0364, -0.0028) | 0.023
UCLP - Control | (-0.0502, -0.0153) | <0.001
UCLP - UCL | (-0.0400, 0.0180) | 0.903

Table 5.1: Multiple comparisons of the arc length at the cphL landmark.

’ Comparison \ Interval \p—value‘

UCL - Control | (0.0134, 0.0488) | 0.003
UCLP - Control | (0.0402, 0.0762) | <0.001
UCLP - UCL | (-0.0143, 0.0723) | 0.191

Table 5.2: Multiple comparisons of the arc length at the ¢phR landmark.

Table 5.1 shows that it is highly likely that in the wider population the start

of the Cupid’s bow will in general occur further along the upper lip for control
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children than for UCL or UCLP children. There is no evidence of a difference in
the population median arc length at the start of the Cupid’s bow between the
UCL and UCLP children.

Table 5.2 shows that it is highly likely that in the wider population the end of
the Cupid’s bow will in general occur earlier on the upper lip for control children
than for UCL or UCLP children. There is no evidence of a difference in the
population median arc length at the end of the Cupid’s bow between the UCL
and UCLP children.

To investigate the differences in the curvature at the characteristic points
Figure 5.7 shows the plots of both xz and xy curvature at the start of the Cupid’s
bow against curvature at the end of the Cupid’s bow. Note that the absolute value
of curvature is taken as the interest is in the difference between the magnitude
of curvature at each characteristic point. The only result of taking the absolute

values is that the negative xy curvatures at the characteristic points become

positive.
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Figure 5.7: Curvature at the start of the Cupid’s bow against curvature at
the end of the Cupid’s bow for xz (left) and xy (right) curvature.

From Figure 5.7 it is clear that there is much greater separation between the
groups in terms of xy curvature as opposed to xz curvature. In general control
children have larger xy curvature values at both the start and end of the Cupid’s
bow than UCL or UCLP children. This implies that control children in general
have upper lips which bend more towards the bottom of the face at the start
and end of the Cupid’s bow. There does not appear to be much evidence of a
difference between control children and UCL and UCLP children in terms of xz
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curvature at the characteristic points.

For formal analysis the data for each group is approximately normally dis-
tributed; however, there are issues with an assumption of similar spread with the
control values experiencing a much larger spread than the UCL or UCLP values.
Therefore the nonparametric Kruskal-Wallis rank sum test is used to test for any
evidence of a difference between the groups in the wider population. The p-values
from the Kruskal-Wallis test can be found in Table 5.3.

’ Curvature \ Characteristic Point \ p-value

X7 cphl 0.095
X7 cphR 0.053
Xy cphlL <0.001
Xy cphR <0.001

Table 5.3: Results of Kruskal-Wallis test for difference between the groups in
terms of median population curvature at the characteristic points.

Table 5.3 shows that there is insufficient evidence of a difference between
the groups in the wider population in terms of median xz curvature at either
characteristic point. However, there is evidence of some difference between the
groups in the wider population in terms of median xy curvature both at the start
and the end of the Cupid’s bow. To investigate between which groups these
differences occur multiple two sample Mann Whitney tests with a bonferroni

correction are carried out. The results are shown in Table 5.4.

’ Characteristic Point ‘ Comparison ‘ Interval ‘ p-value ‘
cphL UCL - Control | (-10.001, -2.270) | 0.002
cphL UCLP - Control | (-10.113, -6.144) | <0.001
cphL UCLP - UCL (-6.542, 2.658) 0.554
cphR UCL - Control | (-7.67,-1.609) 0.002
cphR UCLP - Control | (-7.195, -2.059) | <0.001
cphR UCLP - UCL (-3.089, 3.617) | >0.999

Table 5.4: Multiple Mann Whitney tests of the xy curvature at both charac-
teristic points.

Table 5.4 shows that it is highly likely that the population median xy cur-
vature for control children is greater than for UCL and UCLP children at both
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characteristic points. There is no evidence of a difference between UCL and
UCLP children at either characteristic point. This confirms the fact that control
children in general have upper lips which bend more towards the bottom of the
face at the start and end of the Cupid’s bow.

5.2.3 Position warping and amplitude adjustment

The amount of warping (both position and amplitude) required to produce the
structural average of the control functions from the individual functions can give
a useful indicator of inconsistences remaining between the control children and
the UCL and UCLP children even after surgery. Figure 5.8 shows the position

warping functions for each individual curve.
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Figure 5.8: Position warping functions (left), and position warping function
minus arc length (right), to align to the position of the average
characteristic points of the upper lip of control children.

The most notable aspect of the position warping functions, and position warp-
ing minus arc length functions, (Figure 5.8) is that the UCLP group appear to
require considerably more position warping than either the UCL or control group.
The fact that the UCLP functions cross the line of equality indicates that in gen-
eral UCLP have an earlier start of the Cupid’s bow and a later end of the Cupid’s
bow than the average control child. There is also perhaps an indication that UCL
children require more position warping than control children although the dis-
tinction is not as clear as for the UCLP children.

Figure 5.9 shows the amplitude adjustment functions for both the xy and xz

curvature functions for each individual.
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Figure 5.9: Amplitude adjustment functions to produce the structural aver-
age xz curvature function from individual xz curvature functions
(left) and amplitude warping functions to produce the structural
average xy curvature function from individual xy curvature func-
tions (right).

The immediately noticeable aspect of the amplitude adjustment of the xz cur-
vature functions is the extremely large amount of amplitude adjustment required
by a UCLP case at the end of the upper lip. This is the amplitude adjustment
required by a UCLP case which had severe disfigurements at the end of the upper
lip. Away from this extreme case there is not a great deal of evidence to suggest
much difference between the groups in terms of amplitude adjustment. Consid-
ering the amplitude adjustment of the xy curvature functions there is clearly one
UCL case which requires a large amount of amplitude adjustment (both up and
down the face) at the start of the upper lip. Furthermore, it appears that in
general both UCL and, to a greater extend, UCLP children require more ampli-
tude adjustment of the xy curvature functions than control children particularly
around the area of the Cupid’s bow.

The amount of both position warping and amplitude adjustment required
to produce the structural average control function is plotted as a boxplot in
Figure 5.10.

In terms of position warping it appears, from the boxplots in Figure 5.10, that
the UCLP group in general require more position warping than the UCL group
which in turn requires more position warping than the control group. One UCLP
case requires an extremly large amount of position warping. Formal testing is

required to investigate the evidence of a difference between the groups in terms of
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Figure 5.10: Boxplot of the sum of squares difference between the position
warping function and the line of equality for the upper lips for
each group (left) and boxplot of the sum of squares difference
between the amplitude adjustment function and the z = 0 line
for each group for both xz and xy curvature functions of upper

lips (right).

the amount of position warping required. Since there appears to be a difference

in the variation of the groups, and there is evidence that the control group is not

normally distributed, the non-parametric Kruskal-Wallis test is used to test the

null hypothesis that there is no evidence of a difference between the groups in

terms of population median position warping. The p-value of the test is less than

0.001 suggesting strong evidence of a difference between the groups in terms of

the amount of position warping required. To investigate between which groups

differences lie Mann-Whitney intervals of the population median differences with

Bonferroni correction for multiple comparisons are calculated with the results

shown in Table 5.

5.

’ Comparison \ Interval \ p-value ‘
UCL - Control | (0.0326, 0.1592) | 0.001
UCLP - Control | (0.2045, 0.3214) | <0.001

UCLP - UCL | (0.0314, 0.2900) | 0.021

Table 5.5: Multiple comparisons of the position warping required to produce
the structural average control curvature function for the upper lip.

Table 5.5 shows that there is evidence of a difference between the population
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median position warping of each of the groups. It is highly likely that the popu-
lation median of the UCLP group will be larger than the population median of
the UCL which in turn will be larger than the population median of the control
group. This suggests that in general, to warp the characteristic points to the av-
erage position of control children, UCLP children will require the most position
warping whilst UCL children will also require more position warping than control
children.

Figure 5.10 shows that the amplitude adjustment required for the xy curvature
functions was in general larger than the amplitude adjustment required for the
xz curvature functions. This suggests that in general there was more variation
in the curvature up and down the face than into the face. The point with very
large amplitude adjustment of xz curvature is due to the UCLP case which had
severe disfigurement at the end of the upper lip. It seems that in general both the
UCL and UCLP group require more amplitude adjustment of the xy curvature
functions on average than the control group while there does not appear to be a
great deal of difference between the groups in terms of the amount of amplitude
adjustment required for the xz curvature functions. Again the Kruskal-Wallis test
is used to test the null hypothesis that there is no evidence of a difference between
the groups in terms of the population median amplitude adjustment required.
For the amplitude adjustment of both the xy and xz curvature functions the p-
value from the Kruskal-Wallis test is less than 0.001 suggesting clear evidence
of a difference between the groups. To investigate where these differences lie
Mann-Whitney intervals of the population median differences with Bonferroni
correction for multiple comparisons are calculated for the xy and xz curvature

functions separately with the results shown in Table 5.6.

’ Curvature \ Comparison \ Interval \ p-value ‘
X7 UCL - Control | (19.68,289.40) | 0.015
X7 UCLP - Control | (61.23, 182.30) | <0.001
X7 UCLP - UCL | (-228.49, 136.46) | >0.99
Xy UCL - Control | (238.59, 1331.71) | 0.001
Xy UCLP - Control | (552.12, 1128.01) | <0.001
Xy UCLP - UCL | (-775.23, 838.61) | >0.99

Table 5.6: Multiple comparisons of the amplitude adjustment required to
produce the structural average control curvature function for the

upper lip.
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The results from Table 5.6 show that it is highly likely that, for both xy and
xz curvature, the population median amplitude adjustment is larger for UCL
and UCLP children than control children. This indicates that in general the
amount of bending, both into and out of the face and up and down the face,
experienced along the upper lip is different for UCL and UCLP children than for
control children. These results suggest that the operation to correct the cleft lip
and palate has not ensured the upper lip of the UCL and UCLP children are in
general the same as control children in terms of three dimensional bending. There
is no evidence of a difference between the UCL and UCLP children in terms of

amplitude adjustment for either the xy or xz curvature functions.

5.2.4 Principal components analysis

To investigate how the two sets of curvature functions vary and how the variation
is affected by the different groups of children principal components analysis is
carried out on the curvature functions as outlined in Section 5.1.4. Plots showing
the effect of the first two principal components on the mean function are found
in Figure 5.11, for xz curvature unaligned and aligned, and in Figure 5.12, for xy
curvature unaligned and aligned.

The principal components analysis of the raw xz curvature functions in Fig-
ure 5.11 shows that the major source of variation, which is explained by principal
component one, appears to be the variation in the position of the start and the
end of the Cupid’s bow and the variation caused at the end of the function due
to the unusual UCLP case. The second component appears to explain the vari-
ation in the magnitude of the curvature at the ends of the Cupid’s bow along
with further variation caused by the unusual case. After aligning the curvature
functions the variation explained by the first principal component appears to be
in part variation in the curvature values just before and after the Cupid’s bow
but is dominated by the variation due to the unusual case. The second principal

component mainly explains the variation in curvature around the Cupid’s bow.
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Figure 5.11: The effect of the first two principal components on the average
curve for the unaligned (top row) and aligned (bottom row) xz
curvature functions. The solid line is the mean function, the
dashed line is mean + 3/ \;e; while the dotted line is mean —
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The principal components analysis of the unaligned xy curvature functions in
Figure 5.12 shows that the first principal component describes a global variation
between the functions along the whole upper lip. The second principal component
describes the variation in curvature, and potentially position, around the Cupid’s
bow region. Once the functions are aligned the first principal component still
shows global variation but concentrates on the magnitude of curvature at the
characteristic points. Now however, the second principal component shows only

variation away from the Cupid’s bow region.
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Figure 5.12: The effect of the first two principal components on the average
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Now that the effects of each of the principal components have been explained it
is of interest to examine the scores for each of the first two principal components
to see which, if any, of the groups dominate the variation in that component.
To do this the first and second component scores for each principal components
analysis are plotted in Figure 5.13.

Considering firstly the principal component scores for the xz curvature func-
tions it is clear that one UCLP case dominates the variation explained by both

the first and second principal components for the unaligned curvature functions.
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Figure 5.13: Upper lip first and second principal component scores for the

unaligned xz curvature functions (top left), aligned xz curvature

functions (top right), unaligned xy curvature functions (bottom
left) and the aligned xy curvature functions (bottom right).

In the rest of the data it appears that UCL and UCLP cases in general have

higher first principal component scores and lower second principal component

scores than control children. These groupings would appear to be due to the dif-

ference between control children and UCL and UCLP children in position (first

principal component) and magnitude of curvature (second principal component)

of the characteristic points. The first principal component of the aligned xz curva-

ture functions is dominated by the unusual UCLP case while the second principal

component shows no clustering of points due to group.

The principal component scores for the xy curvature functions show that for
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both unaligned and aligned functions there is a clear separation between the con-
trol group and the UCL and UCLP group in the first principal component. The
first principal component shows a general variation along the curvature function.
It would appear that a number of the UCL and UCLP cases have a large effect on
this principal component. This indicates that a number of the UCL and UCLP
curves are very different from the usual control pattern. There is little separation
between the groups in terms of the second principal component.

The shape of the upper lip for UCL and UCLP children has been compared to
the shape of the upper lip of control children using various techniques involving
curvature. From this analysis there is evidence that even after surgery UCL and
UCLP children in general have a start of a Cupid’s bow which occurs earlier on
the upper lip and an end of the Cupid’s bow which occurs later on the upper lip
than control children. There is evidence that the upper lips for UCL and UCLP
children are less rounded than control children especially up and down the face
and also that UCL and particularly UCLP children do not have an upturn in the
middle of the Cupid’s bow that almost all control children have.



Chapter 6

Regression with Functional

Predictors

The work carried out in Chapters 3, 4 and 5 involved determining the amount
of bending experienced by various facial features and using this measure of facial
shape to compare control children with children born with a cleft lip and/or
palate. In the study of one year old children the facial shapes of children born with
a cleft lip and/or palate do appear to differ from control children. It is possible
to imagine that having facial shapes which are different from control children
may potentially have a detrimental effect on the psychological state of a child.
As part of a study into ten year old children born with a cleft lip and/or palate,
facial image data, similar to the data available for the one year old children, were
produced for 68 control children, 44 children born with a unilateral cleft lip (UCL)
and 51 children born with a unilateral cleft lip and palate (UCLP). The images
were taken when the child’s mouth was closed. Furthermore, a psychological
questionnaire was administered to the parents of the children born with a cleft.
The questionnaire was the ‘Revised Rutter Scales’ which is a revision of the
original ‘Rutter Parents’ and Teachers’ Scales’ outlined by Rutter (1967) and
gives a total emotional /behavioural difficulties score ranging from 0 to 56. A low
score indicates that the child has few psychological difficulties whilst a large score
indicates that the child has more psychological difficulties.

There is interest in investigating any relationship between psychological state
and facial shape for the cleft children. The response in this setting is the scalar
value which characterises the psychological state of the child. Using the work from
Chapters 3 and 4 facial shape will be defined by curvature functions of various

features. There are curves available on five facial features (midline profile, upper
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lip, nasal base, nasal rim and nasal bridge) with the perpendicular planes method
for calculating curvature describing each feature using two curvature functions.
This results in ten potential functional predictors of the scalar response. Children
born with a unilateral cleft lip and children born with a unilateral cleft lip and
palate are combined into one group giving 95 respondents. Due to a number of
difficulties in data collection, including extracting curves from the images and
refusal /inability of participants to fill in questionnaires, only 80 subjects have a
psychological score and a full set of facial curves. Analysis will be carried out on
these 80 respondents.

The difficulty in working with functional predictors is two-fold. Firstly, it is
clear that standard regression techniques will have to be extended to deal with the
functional nature of the predictors. Secondly, displaying the data and the results
can be more complex than with scalar predictors. This chapter aims to deal with
both these issues. Section 6.1 will describe some techniques for investigating the
relationship between a scalar response and a single functional predictor, with the
relationship between the psychological score and the yz curvature (bending into
and out of the face) function of the midline profile used to illustrate the meth-
ods. Section 6.2 will describe some techniques for investigating the relationship
between a scalar response and multiple functional predictors. These methods
will be illustrated by investigating the relationship between psychological score
and four functional predictors: yz curvature of the midline profile, xy curvature
(across the face) of the midline profile, xz curvature of the nasal bridge and xy
curvature (up and down the face) of the nasal bridge. Chapter 7 will provide a
more in-depth investigation into the relationship between psychological score and

facial shape.

6.1 Scalar Response and a Single Functional Pre-

dictor

This section will describe techniques used to investigate the relationship between
a scalar response and a functional predictor. Figure 6.1 shows a boxplot of the
psychological scores and the yz curvature functions of the midline profiles of each

of the subjects.
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Figure 6.1: Boxplot of psychological scores for cleft children (left). Plot of
yz curvature against arc length for each subject. (right)

The boxplot of psychological scores in Figure 6.1 shows scores ranging from
0 to 30 with a median score of about 8. The plot of yz curvature functions
shows a similar pattern to earlier plots of yz curvature of the midline profile,
with all functions showing an area of minimum curvature corresponding to the
base of the nose and an area of maximum curvature corresponding to the tip of
the nose. The major source of variation between the functions is in the position
of, and magnitude of, these areas of minimum and maximum curvature. The
interest throughout this section will be in introducing techniques to investigate
any potential relationship between a functional predictor and a scalar response.
The data introduced here are simply for illustration and only brief interpretation

of results will be given.

6.1.1 Displaying the data

The first problem with using functional predictors is considering how best to dis-
play the data to give an indication of any relationship between the response and
predictor. Clearly in the standard regression context a plot of response against
predictor will give an indication of any relationship. However, with functional
predictors this is not possible. A major problem is that it is difficult to natu-
rally order the functions. However, if functional principal component analysis
(details given in Section 2.3.2) is carried out on the predictors, then each func-

tional predictor has a component score for each principal component. Suppose

1.0
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only the first principal component is considered then the response can be plot-
ted against the component score and any relationship between the response and
first principal component score may give an indication of potential relationships
between the response and the functional predictor. This introduces an ordering
of the predictors, allowing simpler graphical displays. Figure 6.2 shows a plot of

psychological score against the first principal score of the yz curvature functions.
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Figure 6.2: Psychological score against first principal component score.

It seems from Figure 6.2 that there may be some slight suggestion of a posi-
tive relationship between first principal component score and psychological score
suggesting there may be an indication of a relationship between psychological
score and yz curvature of the midline profile for UCLP children.

A function of the best fit of response against principal component score can
look more formally at the potential relationship. For various component scores,
it is interesting to show the estimated response from the best fit function and the
function produced by adding the effect of the principal component score to the
mean predictor. The best fit can be found using numerous techniques including
standard regression, smoothing splines or nonparametric regression. The results
can be displayed both easily and neatly in R using rpanel where a slider can
be used to control the setting of the principal component score. Two rpanel
displays are shown in Figure 6.3 for the cleft data, one for a low component score

and one for a high component score.
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Figure 6.3: The rpanel showing; the nonparametric fit of the relationship
between the first principal component score and psychological
score (top left), the yz curvature function corresponding to that
component score (top right) and the reconstructed midline profile
using that curvature function (bottom right). The left rpanel
shows a low component score whilst the right rpanel shows a

high component score.

The rpanel is very useful in investigating how both the response and the
functional predictor changes as the principal component score changes. This can
give an insight into how the functional predictor may be related to the response.
However, in the example shown in Figure 6.3, for the majority of the data there
does not appear to be much relationship between first component score and psy-
chological score. This is perhaps an indication that there is little relationship
between psychological score and yz curvature of the midline profile. The rpanel
plot is still interesting as it shows that the effect of the component score decreas-
ing is that the base of the nose and the tip of the nose occur lower on the midline
profile.

The component scores from any of the principal components can be used to
illustrate the data. However, since the first principal component explains the
largest variation between the functional predictors it is the relationship between
the response and this component which is most likely to point to a potential

relationship between the response and the functional predictor.
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6.1.2 Regression on principal component scores

As an extension of simply plotting the response against the first principal compo-
nent score it is worthwhile to look more formally at the relationship between the
response and the first principal component score and investigate whether there is
evidence of a significant relationship. Furthermore, there is no reason to limit the
predictor to just the first principal component. It makes sense to include all the
principal components which explain a reasonably large amount of the variation
in the functional predictors.

Suppose that the scalar response is denoted by y; and the functional predictor
denoted by x;(s;), where s € (0,1), for the n response-predictor pairs. Further
denote the jth principal component score of the ith predictor as a;;. Then a

standard linear regression can be produced such that
y:Oé—FZﬁjCLj—FE (61)
J

Finding the parameters o and 3; which minimise the residual sum of squares gives
the best linear relationship between the response and the principal component
scores.

This linear regression process is carried out on the cleft data set using the first
three principal component scores as scalar predictors. Plots of each component
score against psychological score are given in Figure 6.4

The p-values corresponding to the evidence of a linear relationship between
the component score predictors and the psychological score response when all

three component scores are included in the model are shown in Table 6.1.

’ Predictor \ Coeflicient \ p-value ‘
First principal component scores 0.25 0.648
Second principal component scores -2.06 0.044
Third principal component scores 0.501 0.741

Table 6.1: Significance of each principal component score as a predictor of
psychological score.

The p-values in Table 6.1 suggest that the scores for the second principal
component have a significant linear relationship with psychological score. In
general it would appear that as the second principal component score increases

the psychological score decreases. The fact that the second component score has
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Figure 6.4: Principal component score for the first three principal compo-
nents against psychological score.

a relationship with psychological score gives some indication that there may be
a relationship between the yz curvature functions and psychological score.

It is often the case that the relationship between the scalar response and
scalar predictors is not necessarily linear. Hastie and Tibshirani (1990) suggest
that the linear terms 3z, in standard linear regression can be replaced by smooth
functions to give additive models. When looking for the relationship between the
response and principal component scores an additive model can be produced by
extending (6.1) to

y=a+d Jila)+e (62

The f;s are arbitrary univariate functions, one for each principal component,
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which are assumed to be smooth. The f;’s can be estimated using the backfitting
algorithm outlined by Hastie and Tibshirani (1990).
An additive model is calculated for the cleft data using the first three prin-

cipal component scores as predictors. The smoother used in the algorithm is a

smoothing spline with 4 degrees of freedom. Figure 6.5 shows the fitted functions

for each set of principal component scores.
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component score for the first three principal components and
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ted function of component score whilst the dashed lines are the
standard errors.

The p-values corresponding to the evidence of a relationship between the com-

ponent score predictors and the psychological score response when all three sets

of component scores are included in the additive model are shown in Table 6.2.
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] Predictor \ p-value ‘
First principal component scores 0.7
Second principal component scores 0.7
Third principal component scores 0.6

Table 6.2: Significance of each smooth function of principal component score
as a predictor of psychological score.

The p-values in Table 6.2 suggest there is no evidence of a significant rela-
tionship between any of the sets of principal component scores and psychological
score when the additive model contains all three principal component scores as

predictors.

6.1.3 Functional linear model

Ramsay and Silverman (1997) suggest that standard linear regression can be
extended to allow a functional predictor by replacing the usual scalar parameter

£ with a functional parameter 3(s) such that

y=a+ /0 B(s)x(s)ds + € (6.3)

where the errors € have mean zero and are independent from the predictors. T is
the length of interval over which the functional predictors are measured.

Clearly the difficulty with the functional linear model (6.3) is how best to
estimate the functional parameter. In standard linear regression, the least squares
method is used and this can be extended to estimate the parameters in (6.3) by
minimising

SSE = Z[yl — (« +/0 B(s)zi(s))]? (6.4)

It can be shown that for any response and any functional predictor there is a
set of @ and [(s) which results in a residual sum of squares of zero. Clearly it
is not the case that any functional predictor can predict any response perfectly.
The reason for the residual sum of squares being equal to zero is that, in a sense,
there is an infinite number of parameters, since (s) is defined continuously along
s, while there are only n equations to solve. This means that, regardless of the
sample size, using least squares to find an estimate of the functional parameter

is not appropriate. Therefore the function must be regularised.
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One regularisation approach is to evaluate the predictors at specific points and
consider a multiple linear regression using these values as the predictors. Each
functional predictor x;(s;) can be evaluated at p points (z;1, ..., 2;p) at (s1,..., )

where 511 — 55 = ]ﬁ and the multiple linear regression can be written as

p
y=a+y Biu(s)+e (6.5)

j=1
Clearly the choice of p is important. If p is too small then (z;1,. .., ;) will not

give a good representation of the functional predictor. However, it is important
that the number of parameters p + 1 is less than the number of observations to
allow least squares to be used to fit the model. This illustrates one of the major
draw-backs of this regularisation method, namely the fact that when the sample
size is low only a small number of points can be chosen to define each function.
It would be preferable if the whole function could be used as the predictor rather
than a set of discrete points.

An approach which regularises the functional predictor but retains the func-
tional structure of the predictor is to express the functional predictors in terms of
basis functions. The description here will be in terms of B-spline bases but any
bases can be used to suit the problem. Note that the solution for Fourier bases
is slightly simpler (see Ramsay and Silverman (1997) for details). Suppose that

each predictor is described using m B-spline basis functions and denote these as

@1, ...,0m. Each predictor can then be written as the expansion
m
xi(s;) = Z Civhy = C (6.6)
v=1
where ¢ = ¢1,...,¢,, is the set of basis functions and ¢;, is the coefficient of

basis function v for predictor i. The functional parameter can also be expressed

in terms of these basis functions as
6(5) - Zb’u¢v - bT(b (67>
v=1

where b, is the coefficient of basis function v for the parameter. Now the aim is to
express fOT B(s)x;(s) in terms of the coefficients of the basis functions. To allow

this, since B-splines are not orthonormal, the m x m matrix J = [ ¢¢’ must be
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defined where

D= [ oens)is (6:5)

Now using an extension of the Parseval identity it follows that

j=1 v=1

/0 B(s)zi(s)ds = D> Y by (6.9)

j=1 v=1

It is perhaps simpler to think of the process in matrix form. Denote the (n x 1)
matrix of the responses as Y = (y1,...,y,)7, the ((m + 1) x 1) matrix of the
parameters as ¢ = (o, by, ..., b,)T and the (n x (m+1)) coefficient matrix of the
predictors as Z = [1 CJ] where C is the (n x m) coefficient matrix with row i
containing the B-spline coefficients for predictor 2. Now the model can be defined

by the equation

Y=2Z(+c¢ (6.10)
where € = (eg, ..., €,) and the ¢;s have mean zero. It follows then that
Y = Z¢ (6.11)

Therefore the least squares estimate of the parameter vector ( is given by

Z2'7¢ = 7'y
( = (Z"2) '\ 7Ty (6.12)

It is clear that the major interest from this analysis is the shape of the functional
parameter (3(s) to investigate the effect of the functional predictor on the response
at different points along the s axis. A potential disadvantage of using (6.12)
to calculate [(s) is that there is no smoothness constraint on the functional
parameter and a rough functional parameter may be difficult to interpret. One
way to ensure the functional parameter is smooth is to use a low number of basis
functions to define the functional predictors and in turn the functional parameter.
There are two major draw-backs to simply lowering the number of basis functions;
firstly a low number of basis functions may result in a poor representation of the
original predictors and secondly important features in the functional parameter

may be missed. To avoid reducing the number of basis functions a roughness
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penalty can be applied to (6.4). The roughness penalty suggested by Ramsay
and Silverman (1997) is to use the second derivative of the functional parameter
squared to penalise the residual sum of squares. Using this method the penalised

sum Of square error becomes
T
PENSSE = Z (o + / B(s)zi(s)]> + A / 3"(s)%ds (6.13)
0

The integral of the squared second derivative gives a measure of the roughness
of the functional parameter whilst the smoothing parameter A controls the trade
off between the roughness of the functional parameter and the accuracy of ¢ as
a predictor of y.

To write the penalised sum of squares error in vector-matrix form define the

matrix K with entries .
K= [ os)oits)ds (6.14)
0

Now the penalised sum of square error can be defined as

n

PENSSE = Z(yl —a— f:cwbvgbv)Q + )\/(i be@l(s))*ds
v=1 v=1

=1

PENSSE = |y—a—Cb|* + X" Kb (6.15)

Once again define the (n x 1) matrix of the responses as Y = (y1,...,vn)7,
the ((m + 1) x 1) matrix of the parameters as ¢ = (a,by,...,b,)T and the
(n x (m + 1)) coefficient matrix of the predictors as Z = [l CJ] where C' is
the (n x m) coefficient matrix with row ¢ containing the B-spline coefficients for
predictor . Now augment the penalty matrix K with a leading row and column

of m + 1 zeros and call this augmented matrix K i.e.

0 0
Ko = [o K] (6.16)

Now (6.15) is further simplified to
PENSSE =|y— Z¢ ||* + AT Ko (6.17)
and the minimising é is given by

(272 + \Ko), = 2y
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( = (ZTZ+\Ky) ' 2%y (6.18)

Ramsay and Silverman (2006) state that it is possible to calculate confidence

limits for the parameters o and ( using the vector-matrix equation
Var(C) = 62(Z7Z + \Ko) ' Z7Z(Z7 Z + N\Ky) ™! (6.19)

where 62 is the mean of the squared residuals.

Clearly the choice of smoothing parameter is very important. It can either
be chosen subjectively or can be estimated using cross-validation. There may
be occasions where manually setting A is useful as a certain smoothness of the
functional parameter is necessary for simple interpretation. However, the advan-
tage of the cross-validation method is that it gives an automatic way to find the
smoothing parameter which gives the ‘best’ trade off between roughness and ac-
curacy according to the observed data. The cross-validation score for a smoothing

parameter A can be define as

n

vy =Sy — (6 + / £5(5)Bs(5)ds)P? (6.20)

Jj=1

where a_; and B_j(s) are the estimates of the parameters calculated by minimis-
ing the penalised sum of square errors from (6.17) using all the data except that
from subject j.

Using (6.20) would be computationally expensive since the parameters have to
be calculated n times for each A in the cross-validation procedure. However Green

and Silverman (1994) show that the cross-validation score can be calculated from

vy =Y ( b ;{)2 (6.21)

i=1

where S is the hat-matrix for the smoothing process which maps the observed
values to their predict values for a given A such that y = Sy. Now Ramsay and
Silverman (2006) state that if there is a large number of data points and at most
there is a moderate number of basis functions then the diagonal elements of S

can be estimated from
S =2Z(Z"7 + \Ky) ' Z" (6.22)
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This method for calculating the cross-validation score is much less computation-
ally expensive.

It is of interest to formulate a test to analyse whether there is evidence that
the scalar response is related to the functional predictor. Bowman and Azzalini
(1997) suggest a test for no effect which is a test with a null hypothesis that
variability in the response is due to natural variability against an alternative
hypothesis that variability in the response can be explained to some degree by
the predictor. The work looks at the relationship between a scalar predictor and
a scalar response but this can be naturally extended to incorporate the functional
structure of the predictor.

The two models can be written as

Hy : E(y

i) =
H, : E(y) =« +/0 B(s)x;i(s)ds

As in standard model comparison the residual sum of squares is an appropriate
way of describing how much of the variability in the data is explained by each

model. The residual sum of squares can be defined for each model as

n

RSS, = Z[yi—yf
RS, = Yl (ot / B(s)z:(s)ds)]?

To quantify the difference between these residual sums of squares Bowman and

Azzalini (1997) suggest a pseudo-likelihood ratio statistic given by

o RSSy — RSS;
N RSS,

(6.23)

F* is proportional to the usual F' statistic, although no mention is made of the
degrees of freedom, with the ratio effect scaling out the error variance. Note
that a major reason for using this pseudo-likelihood statistic is that the alterna-
tive hypothesis model is not parametric and therefore not fitted using maximum
likelihood.

Now the distribution of F* under the null hypothesis must be found. To

facilitate this it is helpful to express F™* in terms of quadratic forms. So the
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residual sum of squares for each of the models can be written as

RSSy, =
RSS, =

(1
(1

LY'I-Ly=y"(I-Ly
WY1 = W)y

y' (I -
y' (I~
where L is an (n x n) matrix filled with =. T is the (n x n) weight matrix which
for the functional linear model is given by the hat matrix S. Now F* can be
expressed as
T
«_ Y By
Fr = 6.24
T Ay (6.24)
where A= (I —W)T(I —W)and B=1-L— A.

The major interest here is to calculate the significance of the F* statistic.

This can be found from the p-value
p:]P)(F* >Ft;kbs)

where F

v 1s the F™* statistic calculated from the observed data. This can be

rewritten as

T
y' By .
p=F (yTAy ~ FObS)

= P(y'Cy >0) (6.25)

where C = B — F}; A. Johnson and Kotz (1972) summarise general results
about the distribution of a quadratic form in normal variables for any symmetric
matrix (e.g. C). These results are simplest to apply when the normal variables
have mean zero. Here, y; has mean pu. It is simple to see though that due to the
differencing involved in the residual sum of squares that p is eliminated. To show

this, consider rewriting the residual sum of squares for model H, as

n

RSSy = Y [(u+e)—(n+0)

Therefore the quadratic form y? Cly is equivalent to the quadratic form @ = e Ce
and clearly the ¢;’s have mean zero. The work of Johnson and Kotz (1972) now

allow the probability to be calculated in numerical form. However, when n is



CHAPTER 6. REGRESSION WITH FUNCTIONAL PREDICTORS 133

large the calculations become awkward. Since an exact p-value is not essential
it is sufficient to provide an approximation. This can be done by replacing @)
with a more computationally convenient distribution with the same first three

moments. This works well here since the cumulants of () can be computed as
ky = 271 — Dl {(IC))

where C' is as above. Johnson and Kotz (1972) state that a shifted and scaled
chi-squared distribution often gives a good approximation of a quadratic form.

So matching the moments of a ax + b distribution to the moments of @) gives

Lk
4kq
ks

c = ki —ab

With a chi-squared distribution with b degrees of freedom, the p-value can be
estimated as 1 — ¢ where ¢ is given by the probability of lying below the point

A simple simulation study was carried out to validate this pseudo-likelihood
ratio test. In the study there were 50 responses (yi, ..., ys0) taken as a random
draw from a sequence, of length 10000, from 0 to 100 in each simulation. There
were four functional predictors tested. Two functional predictors were chosen
such that a relationship between response and predictor would be expected. The
first functional predictor (z; say) simply scaled a cubic in the range —1 < s <1
dependent on the response such that z;; = y; x s>. The second of these (x2) added
a value drawn from a random normal, with mean dependent on the response,
to the line of equality at 100 regular points along the s axis then interpolated
these 100 points i.e. xy;; = s; + 0;; where §;; is a random draw from a N(y;, 1)
distribution. Two functional predictors were chosen such that no relationship
between the response and predictor would be expected. The first of these (x3)
added a value drawn from a random normal with mean zero to the line of equality
at 100 regular points along the s axis then interpolated these 100 points while
x4 added a value from a random uniform at 100 regular points then interpolated.
In technical form x3;; = s; + d;; where ¢;; is a random draw from a N(0, 10)
distribution while z4;; = s; + 6;; where J;; is a random draw from a Un(—1,1)

distribution.
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The simulation was run 100 times for each functional predictor with functional
regression used to estimate the response. At a significance level of 95% both z
and x5 showed a significant relationship with the response on all 100 occasions.
At the same significance level x3 incorrectly showed a significant relationship on 1
occasion and x4 a significant relationship on four occasions. These results suggest
that the pseudo-likelihood ratio test is a valid test of a relationship between a
functional predictor and a scalar response.

A functional linear model was fitted to the cleft data. The functional pre-
dictors and the functional parameter were defined by B-splines with 20 basis
functions. To find the smoothing parameter a search across a variety of potential
smoothing parameters was carried out with their CV score estimated using (6.21).
Since the functional predictors are smooth, A does not need to be particularly

large. Figure 6.6 shows the CV score plotted against A.

Cross-validation score
4160 4180 4200 4220
1 1 1

4140
1

4120
1

T T T T T T T
0 5 10 15 20 25 30

Lambda

Figure 6.6: Cross-validation score function.

The grid search shows that the smoothing parameter which minimises the
cross-validation score function is close to 6 so A is set to 6 and the functional linear
model is calculated. Figure 6.7 shows the estimate of the functional parameter
and the estimated psychological score using the functional linear model against
the true psychological score.

The functional parameter in Figure 6.7 is somewhat difficult to interpret
despite the smoothing. To aid interpretation the parameter could be further
smoothed by increasing the smoothing parameter or decreasing the number of
basis functions. It is however possible to see that the area where the functional

parameter is clearly non-zero, i.e. zero is outwith the confidence bands, is around
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Figure 6.7: Functional parameter for the functional linear model with psy-
chological score as response and yz curvature function of the mid-
line profile as predictor (the red lines indicate confidence limits
for the parameter) and estimated psychological score using this
model against the true psychological score with the line of equal-

ity for reference.

s = 0.8. It is difficult to see why curvature towards the face in this area has an
effect on psychological score. Considering the curvature functions in Figure 6.1
there is a very small range of curvature values at s = 0.8 so it is unlikely that the
non-zero functional parameter will offer much in terms of predicting psychological
score. In fact considering the plot of true against predicted psychological score
it is clear that this functional linear model does not appear to be particularly
useful in predicting psychological score. To confirm this view a test of no effect
is carried out and returns a p-value of 0.126 suggesting that yz curvature of the
midline profile is not a useful predictor of psychological score. The R? value of

the model is calculated using the formula

SSerr —1_ Z(yz - gz)z

R*=1-
SStot Z(yz - @)2

and is found to be 0.14.

6.1.4 Nonparametric functional regression

If there are n subjects each with a scalar response y; and a functional predictor

x;(s) it is possible to use nonparametric statistics to estimate the response y* of

25
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a new subject with a known functional predictor z*(s). Ferraty and Vieu (2006)
give a good overview of nonparametric methods for analysing functional data and
can be taken as a reference for this section. Note that throughout this section
x;(s) and z*(s) will often simply be denoted by x; and z*.

The first stage of the method is to define how close the functions z; and x* are.
This can be done using a metric function. The properties of a metric function, d

say, are
1. d(z;,z*) >0
2. d(zs,2*) =0 z; = 2
3. d(z;, x*) = d(z*, z;)
4. d(vi, x;) < d(wi, 2%) + d(z*, )

for any functions x; and z*. A common example of a metric is the L, metric e.g.

d(z;(s),z"(s)) = \//(xl(s) — x*(s))2ds (6.26)

where z;(s) and z*(s) are functions parameterised by arc length. However, in
some cases it is overly simple to define closeness between functions by the area
between them. It may be the case that although the magnitudes of the functions
are close the path that they follow may be different. To define closeness between
functions in terms of shape rather than location a semi-metric can be used. The
semi-metric is a metric with the condition that d(z;,2*) = 0 < x; = x* relaxed.
A commonly used semi-metric function is a function which calculates the area

between the second derivatives of each function i.e.

d(a(s)."(s)) = \/ [ats) = wis)as (6.27)

where 2/ (s) and 2*"(s) are the second derivatives with respect to s of the x; and
x* functions respectively. In fact for order greater than zero the integral of the
squared difference between the derivatives of the functions gives a semi-metric.
Clearly for order zero we have the L, metric. In practice any sensible measure
of closeness between functions can be chosen when carrying out nonparametric
regression. In fact, in the examples shown throughout this thesis, it is often
useful to retain the condition d(z;,2*) = 0 < x; = z* and use the Ly metric as

the measure of closeness.
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After producing a measure of closeness between z* and the x;’s it is necessary
to weight the predictive power of the y;’s. In short the aim is to give a larger
weight to responses for which the corresponding functional predictor is close to
the functional predictor of the unknown response. Kernel local weighting is a
popular nonparametric tool to give local weights. The weighting is dependent on
a density function and a smoothing parameter (called the bandwidth).

To explain the transition from kernel weighting in the scalar case to the func-
tional case, a brief discussion of kernel weighting for multivariate data is given.
Suppose now that there is a fixed known vector a in R” and weights are required
for n random vectors by, ..., b,. The previous methods for a single scalar value
can be extended relatively simply to the multivariate case. One technique is
to produce a multivariate kernel which is a scalar combination of the kernels in
each of the p dimensions. A natural way of doing this is to define the multivari-
ate kernel, K* say, as the product of kernel functions in each dimension i.e. if

x = (21,...,x,) then
K*(x) = K(x1) X K(x2) X ... X K(x,) (6.28)

where K(x;) is the value of the kernel function for the scalar value in dimension
i and calculation of K*(x) is trivial using kernel weighting of scalar values.

Now the weights wy, . . . ,w, for each of the random vectors by, ..., b, are given

by
1 a—b,
= —K* : 6.29
w= ( . ) (6.20)

Again this weighting function assigns a weight to each b; dependent on how close

it is to a. The normalisation (hip) is given by the product of the normalisations,
1

B

in each dimension.

The problem of assigning kernel weights to functions can now be thought of as
an extension of the multivariate method. Suppose there is a fixed known function
z* and n random functions x1,...,z, all in a set £. The direct extension of the

multivariate weighting would be to set the weight for function ¢ as

L <d(x;5 xi))

where d(-,-) is a suitable semi-metric, K is an asymmetrical kernel and V' (h) is

proportional to the volume of the set in which the x;’s have non-zero weight.
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V(h) can be defined as the volume of
B(z*, h) = {x € &, d(z*, 2% < h}

which is a ball centred at z* with radius h. However, it is not possible to calculate
this quantity V'(h) since there is no available reference measure for £. Therefore
the normalisation must be carried out using another technique. Ferraty and
Vieu (2006) suggest that a way of carrying out the normalisation is by using the
probability distribution of the random functions. So the weights wq,...,w, for

each of the random functions x4,...,x, can be given by

d(z*, ;)
K (")

(x5

Using both (semi-)metrics and kernel functions Ferraty and Vieu (2006) de-

(6.30)

Wy =

scribe a method to estimate y* given its functional predictor x* and the known
response-functional predictor pairs (y;,z;). Since the functional predictor is
known it seems reasonable to use a method based on the conditional distrib-
ution of y* given z*. In fact the method which will be used here and throughout
the thesis will be based on the conditional expectation. It is also reasonable to use
the conditional median or conditional mode with further details given in Ferraty

and Vieu (2006). Define the regression operator r of y* given x* as
r(z*) = E(y|lz = x7) (6.31)

Clearly the conditional expectation can be defined as the best estimate of the

regression operator and therefore
g =r(z") (6.32)

Therefore the interest is in using nonparametric ideas to calculate a best estimate
of the conditional expectation. This can be done by defining the kernel regression

estimator as

Fa*) = Z WiYi
i=1
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k()

T Ha(E(E) "
e K=
) ;%2?:1K(d<xz’$i>) !

AP DA K(h=td(z*, ;)
)= S R ) (6:33)

where K is a suitable asymmetric kernel, d is a suitable (semi-)metric and h is
real and positive. It is relatively simple to show that this is an intuitively sensible

estimator. By setting

_ K(h™'d(z*, ;)
> K(htd(x, ;)

w; (x™)
it is possible to rewrite (6.33) as
Pat) =D i)y, (6.34)
i=1

Since >, w;(z*) is clearly 1 this indicates that the best estimate of E(y* | z =
x*) is a weighted average of the known responses with the weight given to y;
dependent on how close z; is to x*.

The bandwidth A has been discussed throughout this section with little men-
tion of its selection. Ferraty and Vieu (2006) outline various methods for selecting
the bandwidth when calculating the conditional regression predictor. The method
which will be used throughout this thesis involves a fixed choice of the number
of nearest neighbours. Specifically this means that to predict each unknown re-
sponse only k (say) responses, corresponding to the k functional predictors closest
to the predictor of the unknown response, are given non-zero weight. Recall that

there is information on the response predictor pairs (y;, €;)i=1...n. Suppose that a

particular response predictor pair, indexed by a say, is removed from the data and
the remainder of the data is used to predict the response y, given x,. The band-
width hyg, is set such that there are k functional predictors with d(x,, ;) < hya.

The estimated response is then

S e K, 3)
Yy K (e, )
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The test of no effect discussed in Section 6.1.3 can be used to analyse the
relationship between functional predictor and psychological score. Here the two

models can be written as

Hy : E(y:) =p
Hy o E(y:) = r(w(s))

where r is a functional regression operator. The residual sum of squares can be

defined for each model as
RSSy = Y [yi—9)
RSSy = > [y — #wi(s)))

and in quadratic form as

RSSy = y"(I—-L)"I—-Ly=y"(I- L)y
RSS, = y'(I-W)'(I-W)y

where W is the (n x n) weight matrix which defines the process of the regression
operator such that § = Wy where y; = 7(2;(s)). The regression operator here
will typically be the operator defined in (6.33) so W will contain the weights
given by the kernel function.

Nonparametric regression is carried out on the cleft data by estimating the
mean responses using the neighbouring response-functional predictor pairs. The
local number of neighbours method is used to give the bandwidth for each esti-
mate with the measure of closeness calculated using the L, metric. Figure 6.8
shows the p-value from the test of no effect for various numbers of nearest neigh-
bours and a plot of the estimated psychological score using nonparametric regres-
sion with 60 nearest neighbours against the true psychological score.

Figure 6.8 shows that, regardless of the number of nearest neighbours used,
yz curvature of the midline profile is not a significant predictor of psychological
score in a nonparametric regression model. The plot of predicted against true
psychological score shows that the yz curvature function has had very little effect

on the predicted psychological score.
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Figure 6.8: Plot of the p-value from the test of no effect of the nonparamet-
ric regression model using various numbers of nearest neighbours
(left) and estimated psychological score using nonparametric re-
gression with 60 nearest neighbours against the true psychologi-
cal score with the line of equality for reference (right).

6.2 Scalar Response and Multiple Functional Pre-

dictors

This section will describe techniques used to investigate the relationship between
a scalar response and multiple functional predictors. Many of the techniques will
be simple extensions of the techniques in Section 6.1. In general the techniques
will be explained for use with an arbitrary number (p say) of functional predictors.
However, the data used to illustrate the techniques will come from the 10 year old
cleft children with the psychological score as the response and the yz curvature
function of the midline profile, the xy curvature function of the midline profile,
the xz curvature function of the upper lip and the xy curvature function of the
upper lip as the functional predictors. A boxplot of the psychological scores and
a plot of the yz curvature functions was shown in Figure 6.1. Figure 6.9 shows

the remaining curvature functions.
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Figure 6.9: Curvature functions for the cleft subjects including; xy curvature
of the midline profile (top left), xz curvature of the upper (top
right) and xy curvature of the upper lip (bottom left).

6.2.1 Displaying the data

Displaying the data to subjectively investigate relationships between the func-
tional predictors and response becomes even more complex for multiple predic-
tors. Asin Section 6.1.1, to make graphical display simpler, the functional predic-
tors are represented by their component scores from the first principal component.
This means that each subject has a response and a principal component score
for each of the p predictors. It is then straightforward to produce a matrix of
scatterplots to investigate the relationship between the response and the compo-
nent score of each functional predictor. Adding a smooth best fitting line to the

points is helpful in investigating relationships between the variables.
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Figure 6.10 shows a matrix of scatterplots for the cleft data to investigate
the relationship between psychological score and the first principal component
score for each of the functional predictors. The smooth best fitting line is a
lowess smoother (see Cleveland (1979) and Cleveland (1981) for details) with a
bandwidth of 0.5.

-3 -1 1 3 -2 01 2
N T T I B | 1 1 1 1
[]

Prof.yz

1 1 1 1
0 2 4

-4

3

-3 -1 1
T N N N
c
o
Py
0095° of
©, [
0
o

o
o

o

o
1 1 T T 1
12 3 4

-1

0 1 2

Response

15 25

05

T T T T T 7T
05 15 25

Figure 6.10: Matrix of scatterplots for psychological score and first principal
component score of the four functional predictors.

In Figure 6.10 it appears that the first principal component scores of xy cur-
vature of the upper lip show most relationship with psychological score. While
this does not necessarily indicate that this functional predictor has a significant
relationship with the response, it is a useful guide.

It may be that there is interest in interactions between two of the functional
predictors and the response. When this is the case it is possible to use nonpara-
metric statistics (as shown by Bowman and Azzalini (1997)) to produce a surface
which gives a best fit of the relationship between the response and the first princi-
pal component scores for the two functional predictors. For various combinations
of component scores, it is interesting to view the best estimate of the response
given by these component scores whilst also viewing the affect of each score on
the corresponding mean functional predictor. The results can be displayed both

easily and neatly in R using rpanel where two sliders can be set (one for each
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functional predictor) to slide along the range of principal component scores.
Figure 6.11 shows the surface which gives the best fit of the relationship
between the response and the first principal component scores for xy curvature
of the midline profile and xy curvature of the upper lip with a point indicating
the position on the surface corresponding to the chosen component scores. Also
shown is the function produced by adding the effect of the component score to

the mean function for each predictor.
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Figure 6.11: The rpanel and three-dimensional plot with best surface. Func-
tion 1 corresponds to xy curvature of the midline profile, func-
tion 2 corresponds to xy curvature of the upper lip and response

corresponds to psychological score.

Although it is difficult to see the relationship in the static representation in
Figure 6.11, by rotating the three-dimensional plot this is a useful tool for inves-
tigating the relationship between the combined effect of the component scores of
two functional predictors and the response.

As explained in Section 6.1.1 it need not be the component scores from the
first principal component which are used to look for relationships in the data.
However, since the first principal component explains the largest variability in
the data it is sensible to at least start by using the first principal component

scores.

6.2.2 Regression on principal component scores

Section 6.1.2 introduced both simple linear regression and additive models for

investigating the relationship between the response and the j principal component
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scores for a single functional predictor. It is relatively simple to extend these
methods to multiple functional predictors.

Suppose that the scalar response is denoted by y; and the p functional pre-
dictors are denoted by xy;(sg;), where s € (0,1) and ¢ = 1,...,n. Further denote
the jth principal component score of the kth predictor from the ith subject as

ayi;. Then the standard linear regression can be extended from (6.1) so that
y=a+Y > Byar+e (6.35)
kg

Finding the parameters o and [3;; which minimise the residual sum of squares
gives the best linear relationship between the response and the principal compo-
nent scores of the various functional predictors.

A simple linear model is fitted with the psychological score as the response and
the first two principal component scores for each of the four functional predictors
as scalar predictors i.e. there are eight scalar predictors. The p-values found from
this full model are shown in Table 6.3.

’ Functional Predictor ‘ Component ‘ Coefficient ‘ p-value ‘
yz curvature midline profile 1 0.167 0.768
yz curvature midline profile 2 -2.57 0.015
xy curvature midline profile 1 1.45 0.047
xy curvature midline profile 2 -0.281 0.804

xz curvature upper lip 1 -2.56 0.082
xz curvature upper lip 2 1.70 0.372
xy curvature upper lip 1 -1.23 0.273
xy curvature upper lip 2 1.28 0.257

Table 6.3: Significance of the first two principal component scores of the four
curvature functions as combined linear predictors of psychological
score.

Only the second principal component score for the yz curvature of the midline
profile and first principal component score for the xy curvature of the midline
profile show a significant relationship with psychological score when all eight
scalar predictors are combined. This gives an indication that curvature of the
midline profile may be a better predictor of psychological score than curvature of
the upper lip.

Asin Section 6.1.2 it may be more informative to replace the scalar parameters
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Br; with a function. This can be done with an additive model, using component

score multiple predictors by simply extending (6.2) so that
y=a+ Z Z frj(ar;) + € (6.36)
E o J

with the backfitting algorithm used to find the f;’s.

An additive model was fitted to the cleft data with the same predictors and
response as the linear model above. The fitted functions of the predictors can be
found in Figure 6.12 while the p-values for the function of each predictor from the
full model can be found in Table 6.4. The smooth fitted functions are calculated

using smoothing splines with 4 degrees of freedom.

] Functional Predictor \ Component \ p-value ‘
yz curvature midline profile 1 0.79
yz curvature midline profile 2 0.24
xy curvature midline profile 1 0.04
xy curvature midline profile 2 0.57

xz curvature upper lip 1 0.18
xz curvature upper lip 2 0.34
xy curvature upper lip 1 0.17
xy curvature upper lip 2 0.25

Table 6.4: Significance of smooth functions of the first two principal compo-
nent scores of the four curvature functions as combined predictors
of psychological score.

Figure 6.12 seems to suggest that the principal component score of some
functions may have an effect on the value given to the prediction of psychological
score by the additive model. However, the p-values in Table 6.4 show that when
all eight functions of principal component score are used in the model only one
predictor, first principal component score of xy curvature of the midline profile,
has a significant effect. Clearly by dropping the least significant terms it would
be possible to investigate further any relationship between principal component
scores and psychological score. However, as this is primarily an explanatory
exercise this is not necessary and referring to the plots of the additive model
functions is of more interest to assess whether the combined effect of the functions

may provide a useful predictor of psychological score.
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Figure 6.12: Additive model functions for first and second principal com-
ponent score predictors of; yz curvature of the midline profile
(function 1), xy curvature of the midline profile (function 2), xz
curvature of the upper lip (function 3) and xy curvature of the
upper lip (function 4).

6.2.3 Functional linear model

Section 6.1.3 outlined a technique of using B-spline representation to regularise

a functional linear model to allow estimation of a functional parameter (3(s).
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This section will extend the technique to allow for multiple (p say) functional
predictors. The functional linear model for multiple predictors is the simple
extension of (6.3) such that

y=a+ Z/o Br(s)xr(s)ds + € (6.37)

where zx(s) (k=1,...,p) is the kth functional predictor and f(s) is the corre-
sponding functional parameter. The errors are once again independent from the
predictors with mean zero.

The first stage in estimating the functional parameters is to represent the
functional predictors using B-spline basis functions. Since all predictors are de-
fined on the same interval s € (0,1) the same set of basis functions can be used

to describe each predictor. Here m B-spline basis functions will be used and are

denoted as ¢4, ..., ¢,. Each predictor can then be written as the expansion
Tik(8) =D Ciruty = o (6.38)
v=1

where x;;(s) is the kth functional predictor for the ith subject and ¢y, is the coef-
ficient of basis function v for this predictor-subject combination. The functional

parameters are also expressed in terms of these basis functions as
Br(s) =Y brody = bi (6.39)
v=1

where by, is the coefficient of the vth basis functional for the parameter of the kth
predictor. Now the aim is to express ), fOT Br(s)zik(s)ds in terms of the spline
coefficients. For simplicity, since B-spline basis functions are not orthonormal,
recall J from (6.8) then using an extension of the Parseval identity it can be seen
that

Z/O Br(s)xi(s)ds = Z Zz%kbkv/o qﬁj(s)qﬁv(s)ds]
> /0 Br(s)zin(s)ds = chiijjvbkv] (6.40)

It is perhaps once again simpler to think of the process in matrix from. Denote the

nx 1) matrix of the responses as Y = (v1, ..., y,)". The matrix of the parameters
Y Y
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is the ([(p - m) + 1] x 1) matrix ¢ = (@, b11,b12,- -, b1m, b21, - Doy - o, bpm) T
The coefficient matrix of the predictors is the (n x [(p - m) + 1]) matrix Z =
1 CyJ CyJ --- C,J] where 1 is a column of n 1s and Cj is the (n x m)
coefficient matrix for predictor k£ with row ¢ containing the B-spline coefficients

for subject 7. Now it is clear that the model can be defined by the equation

Y =7C+c¢ (6.41)
where € = (€1,...,¢€,) and the ¢s have mean zero and are independent from the
predictors. It now follows that

Y = Z¢ (6.42)

Therefore the least squares solution of the parameter vector with multiple func-

tional predictors ( is given by

7'z = 7'y
( = (Z"2) 2Ty (6.43)

Section 6.1.3 described the advantages of penalising the sum of squares error
using a roughness penalty to force a degree of smoothness on the functional
parameter. This can be extended for use with multiple functional predictors by

extending the penalised sum of square errors shown by (6.13) to

n

PENSSE = Z [yz —(a+ Z/o Br(s)zir(s))

i=1

2 p T
+3 M / B'(s)%ds (6.44)
k=1 0

Note that each functional parameter can be assigned its own smoothness parame-
ter meaning that the parameters for some predictors can be forced to be smoother
than those for others. However, unless there is a good reason for this it seems
sensible to have a common smoothness parameter i.e. A = Ay,... \,.

To write this penalised sum of square errors for the multiple predictor model
in vector-matrix form, recall the matrix K defined in (6.14). Now the penalised

sum of square errors can be defined as

n p m p m
PENSSE - Z(yz - — Z Z Civkbvkgbv)Q + Z >‘/€ /(Z bvkng{u/(s))zd‘s
=1 k=1 v=1 k=1 v=1
p p
PENSSE = |ly—a—>Y Cib >+ \bj Kby (6.45)

k=1 k=1
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Again define the (n x 1) matrix of the responses as Y = (yi,...,y,)7, the ((p -
m)+1 x 1) matrix of parameters as ¢ = (@, bi1,b12, . ., bim, bat, -« bamy oy bpm)©
and the (n x (p-m) + 1) coefficient matrix as Z = [1 CyJ Cod --- C,J].
Further recall from (6.16) the augmented penalty matrix Ky. It is now possible
to simplify (6.45) such that

p
PENSSE =[ly—Z¢ |> + ) M K¢ (6.46)

k=1

and the minimising é is given by

p
(Z7Z+> MK = ZTy
k=1

p
¢ = (Z"Z+) MKo) ' ZTy (6.47)
k=1

Section 6.1.3 outlined a cross-validation procedure for calculating the ‘best’
smoothing parameter. This can be extended to the multiple functional prediction
setting by defining the hat matrix S which is required to calculate the CV score
using (6.21) as

p
S=2(Z2"Z+) MKo)'Z" (6.48)
k=1
This calculates the CV score for the smoothing vector A = (Aq,...,A,). Clearly
there are a huge number of permutations of the \;’s so this cross-validation
method is only of practical use if the smoothing parameters are forced to be the
same for each functional parameter i.e. A=A =X = ... = A,.

Section 6.1.3 outlined a pseudo-likelihood ratio test of no effect for a functional
predictor. Here a natural extension of this test is described to examine whether
there is significant effect of the functional predictor r in addition to the other

functional predictors. The two models for this test can be written as

Hy y=a+2/ Br(s)xr(s)ds + €

ktr 0

T
H, y:a—i—Z/ Br(s)xr(s)ds + €
— Jo

Now call W_,, the weight function given by the hat matrix, .S, from the model
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Hy and W, the weight function given by the hat matrix from the full model H;.

Then the residual sum of squares for each model can be written as

RSSy = y"(I—-W_)'(I -W_)y
RSS; = y"(I-Wp)"I-Wyy

The pseudo-likelihood ratio test statistic of (6.23) can then be expressed in the
form of (6.24) where A = (I —W;)T(I—=W;) and B = (I —W_j)" (I —W_;) — A.
The remainder of the test follows the same process as the test in Section 6.1.4.
The only difference between the tests is replacing the (n x n) matrix filled with
1/n by the weight matrix from the model Hy which changes the test from a test
of no effect to a comparison of models where Hj is nested within H;.

A functional linear model is calculated on the cleft data. The functional pre-
dictors and the functional parameters are defined using B-splines with 20 basis
functions. To select a smoothing parameter a grid search is carried out on nu-
merous potential smoothing parameters to select the value which minimises the
cross-validation score defined in (6.21). Note that this method is limited to se-
lecting the same smoothing parameter for each functional parameter. Figure 6.13

shows the cross-validation function.

Cross-validation score
4400 4600 4800 5000 5200 5400
1 1 1

4200
1

T T T T T T
0 20 40 60 80 100

Smoothing parameter

Figure 6.13: Cross-validation score function for the multiple predictor func-
tional linear model.

The grid search across numerous smoothing parameters showed that the value
which minimised the cross-validation function was close to 25 so A is set to 25 for

all four functional predictors. Figure 6.14 now shows the functional parameter
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for each of the functional predictors in the model.

Functional Parameter 1
Functional Parameter 2

-5

-10
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

10
1

Functional Parameter 3
Functional Parameter 4

-4 -2

-6
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Figure 6.14: Functional parameters for the functional linear model with psy-
chological score as response and; yz curvature function of the
midline profile (top left), xy curvature function of the midline
profile (top right), xz curvature function of the upper lip (bot-
tom left), xy curvature function of the upper lip (bottom right)
as predictors. The red lines indicate confidence limits for the

parameter.

The interpretation of the functional parameters shown in Figure 6.14 is not
entirely straightforward although it can be very useful in defining a relationship
between the functional predictors and the psychological score. The curvature
functions must be consulted during the interpretation. The parameter for yz
curvature of the midline profile is similar to that of the parameter in the single

predictor case so interpretation is similar. Looking at the xy curvature function
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of the midline profile, the functional parameter is negative around s = 0.2. This
corresponds to bending at the tip of the nose and it appears that high magni-
tude of negative curvature (bending to the right) indicates higher psychological
scores. Psychological and anatomical reasons for this are unclear. The functional
parameter for the xz curvature of the upper lip is negative at about s = 0.45
and positive at about s = 0.6. The point at s = 0.6 is the end of the Cupid’s
bow where the upper lip turns back towards the face with positive curvature.
Therefore it seems that the larger the bending towards the face at the end of the
Cupid’s bow the larger the psychological score. The negative value at s = 0.45 is
difficult to interpret but it may be influenced by a large spread of positions for
the start of the Cupid’s bow from s = 0.35 to s = 0.45 The functional parameter
for xy curvature of the upper lip is positive at s = 0.35 and s = 0.55. These are
roughly the ends of the Cupid’s bow where the upper lip turns down the face with
negative curvature. This suggests that the higher the magnitude of curvature at
these points the lower the psychological score. This may be due to subjects with
more pronounced Cupid’s bows looking more like control subjects and therefore
having lower psychological scores.

Figure 6.15 shows the psychological score estimated using the functional linear

model with the four functional predictors against the true psychological score.

Response
15

Estimate

Figure 6.15: Estimated psychological score using the functional linear model
with multiple functional predictors against the true psycholog-
ical score with the line of equality for reference.

There does appear to be a positive relationship between the true psychological

score and the estimated score using the full functional linear model. This suggests
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that there is a relationship between the combined effect of the four functional
predictors and the psychological score. To test the individual significance of each
of the functional predictors in addition to the other predictors a set of tests
comparing the full model to the model with each predictor removed are carried

out and the p-values are reported in Table 6.5.

] Functional Predictor \ p-value ‘

yz curvature midline profile | 0.169
xy curvature midline profile | 0.140
xz curvature nasal bridge 0.371
xy curvature nasal bridge 0.122

Table 6.5: Significance of each curvature function as a predictor of psycho-
logical score in addition to the other curvature functions.

Table 6.5 shows that none of the curvature functions are useful predictors of
psychological score in addition to the other predictors in the model. It would be
desirable to reduce the model until all predictors are significant. However, as this
example is simply for illustration model reduction will not be covered here. It is
interesting to note that the R? value of the model is 0.251.

6.2.4 Nonparametric functional regression

Section 6.1.4 outlined a method for predicting the scalar response for a subject
with a given functional predictor by a weighted average of known responses. The
weight given to each known response was dependent on the ‘closeness’ between
the functional predictor for the known response and the functional predictor of
the unknown response. This section will extend this method to the case where
there are multiple (p say) functional predictors for each response.

To motivate kernel weighting of the functional predictors Section 6.1.4 briefly
introduced kernel weighting of multivariate data. Equation (6.28) showed that
the multivariate kernel can be thought of as the product of the kernels in each di-
mension whilst (6.29) showed how each multivariate observation can be weighted
using the multivariate kernel. Now suppose that instead of the multivariate ob-
servations being a collection of scalar values it is in fact a collection of functions
xik(s) where i = 1,...,n denotes the subject and k = 1,...,p denotes the func-

tions. Now



CHAPTER 6. REGRESSION WITH FUNCTIONAL PREDICTORS 155

where K (d;;) is the functional kernel weighting calculated using a semi-metric d
and an asymmetric kernel as in Section 6.1.4. Now the weight given to subject ¢
can be taken as a simple extension of (6.30), which gives weight to single variate
functional kernels, so that the weight given to the multivariate functional variable
x; according to its closeness to x* is given by

x [ dX*.X;)
e (425

s ()

(6.50)

w; =

where

() () e (45 (152

The normalisation in (6.50) is carried out using the probability distribution of the
multivariate functional random variable. To remove the effect of the predictors
being on different scales, in particular to avoid functions with large measures of
closeness dominating the process, the values returned by the (semi-)metric are

normalised before the kernel weighting such that

dm'ig<x>{7 SL’ﬂ)
maxn(dorig<x>{7 xﬂl))

d(.TT, Z'ﬂ) =

Therefore these adjusted (semi-)metric values lie between 0 and 1.

Now suppose that the aim is to find an estimate of the unknown scalar re-
sponse y* which corresponds to the multivariate functional variable x*, where
x* = (27(8),...,5(s)), using the information from n known response-multivariate
functional variable combinations, where y; denotes the response for subject i
whilst x; = (z1(5),...,%i(s)) denotes the multivariate functional variable for
subject 7. Using (6.33) the expected value of y* given x* can be estimated by the

regression operator such that

g o= 7(x")
- Sy K*(hd(x*, %))
>y K (h7td(x, x;))

(6.51)

Clearly the choice of bandwidth is again extremely important. Section 6.1.4
described a method where the number of nearest neighbours (i.e. response-

predictor pairs given non-zero weight) is pre-specified and the bandwidth is set
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accordingly. In this multivariate setting, if the response for subject a is to be
estimated using the remaining n — 1 response-functional predictor pairs, for the
weight w; for subject ¢ to be non-zero d(zuk, zix) < h, ¥V k, where k = 1,...,p.
Therefore the order of neighbours from closest to x, to furthest from x, is given
by the order of the maximum d(x., ;) for each subject. The bandwidth A,
which would allow the chosen number of nearest neighbours (j say) to be given

non-zero weight is set as the bandwidth. The estimated response is then

Sy Ka(hy) d(xa, xi))
ST Koy d(xa, x:))

where hj, is the bandwidth which gives j nearest neighbours non-zero weight.
Section 6.2.3 outlined the extension of the pseudo-likelihood ratio test of no

effect for multiple functional predictors. This can be used to test the effect of

each predictor in the nonparametric regression. The two models for this test can

be written as

Hy = E(yi) =r_p(zi(s))
Hy o E(yi) = r(zi(s))

where r_; is the regression operator calculated using all functional predictors
except predictor k and ry is the regression operator calculated using all functional
predictors. Now W_j is the weight function such that 7_;(z(s)) = W_gy and W;
the weight function such that 7;(z(s)) = Wyy. The weights are returned by
the kernel function when calculating the regression operator under each model.
The method is then the same as in Section 6.2.3. It is also trivial to carry out
a test of no effect of the full non-parametric regression model. The test is the
same as outlined in Section 6.1.4 with the weight matrix W the weights returned
by the kernel function when calculating the regression operator under the non-
parametric regression model being tested.

Nonparametric regression is carried out on the cleft data by estimating the
known psychological scores using the other response-multivariate functional pre-
dictor pairs with the measure of closeness calculated using the L, metric. The
local number of neighbours method is used to set the bandwidths. Figure 6.16
shows the p-value from the test of no effect for the full nonparametric regression
model for various numbers of nearest neighbours and a plot of the estimated

psychological score using nonparametric regression with 20 nearest neighbours
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against the true psychological score.
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Figure 6.16: Plot of the p-value from the test of no effect of the nonpara-
metric regression model with four functional predictors using
various numbers of nearest neighbours (left) and estimated psy-
chological score using nonparametric regression with 20 nearest

neighbours against the true psychological score (right).

Figure 6.16 shows that regardless of the number of nearest neighbours chosen a
nonparametric regression with functional predictors midline profile yz curvature,
midline profile xy curvature, upper lip xz curvature and upper lip xy curvature,
does not provide a significant predictor of psychological score. The plot of esti-
mated against true psychological score shows that the nonparametric regression
model does not appear to be useful in estimating the true psychological score.
It would be possible to test the effect of each predictor and remove the least
significant predictor until a significant model is found but since this example is

for illustration this is not necessary here.

6.2.5 Functional additive model

Section 6.2.2 described how the relationship between the response and the func-
tional predictors could be investigated using the principal component scores of
the functional predictors. Additive models gave a model which best described
the relationship between the response and the principal component scores using
a function of each of the component scores. Hastie and Tibshirani (1990) give a
good overview of generalised additive models. In this section a variation of the

standard generalised additive model will be suggested where the standard scalar
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predictors are replaced by functional predictors.

Recall that the equation of a generalised linear model is
Yy = Q+ij(£€j) + €
J

where z; is a scalar predictor. The proposed functional additive model will have

the form

Y=o+ Z fi(z;(s)) +€ (6.52)

where the errors have mean zero and are independent from the predictors. The
basic aim of the functional additive model is to find a set of functions (the f;’s)
which, when the functional predictors are passed to them, returns the best es-
timates of the mean of y. One of the major difficulties here is the problem of
visualising the process, in particular visualisation of the f;’s is difficult. This is
in contrast with standard additive models. The major difference is that scalar
predictors are simple to order and only differ over one-dimension whereas func-
tional predictors do not have a natural ordering and can differ in many ways.
However, it is still possible to define the f;’s for the functional generalised linear
model using the back-fitting algorithm.

Suppose that a response y; and p functional predictors w;;(s) (where j =
1,...,p) are available for n subjects. Then the back-fitting algorithm will proceed

as follows:

1. Initialise the system so that o = y; and set the initial functions to zero i.e.
f; = 0 therefore y = a. So before the system starts the best estimate of

each response is simply the mean of all the responses.

2. Cycling £k =1,...,p. Calculate the partial residual for each subject where
the partial residual is the error remaining after removing the effects of «

and ., fi(xi;(s)) from the known response i.e.

PRy =y — o — ij(wij(s))
J#k
Now a fit of the partial residuals PR;, against the functional predictors
xix(s) must be produced. This is a similar problem as carrying out a re-
gression on a scalar response using a functional predictor so can be found

using a nonparametric functional regression (Section 6.1.4) with the scalar
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response replaced by the partial residuals. The estimated responses given

are the values returned by fi(zx(s)) for each subject.

3. Repeat (2) until the f;’s do not change.

The bandwidths in the nonparametric regression are chosen using the number of
nearest neighbours method.

As mentioned one difficulty with interpreting the results from this additive
model is how best to illustrate the functions of the functional predictors. This
is due to the fact that functional predictors have no natural ordering. It may be
interesting however to plot the first principal component score for each functional
predictor against the value returned by the additive model function for that
predictor. This is a relatively exploratory procedure; however it may show some
interesting relationships between component score and value of the additive model
function.

It is possible to test the significance of each functional predictor, in addition
to the other predictors, in showing a relationship with the response. A pseudo-
likelihood ratio test as outlined by Section 6.2.3 is an appropriate test. The

hypotheses can be written as

Hy y:a+2fj(xj(s))+e
Jj#k
H, y:a+ij(xj(s))+e

The only difficulty in carrying out the test is in finding the weight matrices
W_y and Wy. It is possible to keep track of these matrices (called projection
matrices as they project the responses to their fitted values) throughout the back-
fitting algorithm. Denote the projection matrix which produces the estimate
of the partial residual PRy as P, so that PARk = Py. It is then possible to
describe the back-fitting algorithm as the process which iteratively finds P, =
(I, — Py)Sk(I, — Z#k P;) cycling through k =1,...,p,1,...,p,1,.... Sy is the
smoothing matrix (which can be found from the nonparametric regression) such
that PRy = SpPRy, Py is an (n x n) matrix filled with % and I, is the order n
identity matrix. After the process converges P, ..., P, give the weight matrices
such that PR, = Py and the fitted values given by the generalised additive
model are given by y = Py where P = Z§:1 P;. The weight matrix W_j is the
projection matrix for an additive model calculated without functional predictor k

whilst the weight matrix Wy is the projection matrix for the full additive model.
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With these weight matrices the pseudo-likelihood ratio test can be carried out
as in Section 6.2.4. It is also possible to carry out a test of no effect of the full
additive model using the test outlined in Section 6.1.4 with the weight matrix W
given by the projection matrix P from the full additive model being tested.

An additive model is fitted to the cleft data using the back-fitting algorithm.
To examine the effect of the choice of the number of nearest neighbours Fig-
ure 6.17 shows p-values returned by the test of no effect for various numbers of
nearest neighbours and also shows a plot of predicted psychological score using a

generalised additive model with 25 nearest neighbours.
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Figure 6.17: Plot of the p-value from the test of no effect of the additive
model with four functional predictors using various numbers
of nearest neighbours (left) and estimated psychological score
using a generalised additive model with 25 nearest neighbours

against the true psychological score (right).

Figure 6.17 shows that regardless of the number of neighbours chosen the
additive model is not a significant predictor of psychological score. The plot
of estimated against true psychological score shows that the nonparametric re-
gression model does not appear to be related to the mean psychological score.
Table 6.6 shows the results of pseudo-likelihood ratio tests of no effect to examine
the significance of each functional predictor in addition to the other predictors in
an additive model with 25 nearest neighbours used in the modelling.

None of the p-values in Table 6.6 are close to significant. It may be that
by removing the least significant functional predictor the model would become
significant. Since this section is for illustrating methods this will not be done here.

It may however be interesting, especially for a significant model, to attempt to
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] Functional Predictor \ p-value ‘

yz curvature midline profile | 0.618
xy curvature midline profile | 0.136
xz curvature upper lip 0.246
xy curvature upper lip 0.499

Table 6.6: Significance of each function as a predictor of psychological score
in addition to the other functions in a functional additive model.

interpret the function of the predictor returned by the additive model. To do this
a plot of the first principal component score for each functional predictor against
the value returned by the additive model function for that predictor is shown in
Figure 6.18.
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Figure 6.18: Plot of first principal component score against value returned
by the additive model for predictors; yz (top left) and xy (top
right) curvature of the midline profile and xz (bottom left) and

xy (bottom right) curvature of the upper lip.
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From Figure 6.18 it appears that there may be some form of negative relation-
ship between the first principal component scores of xz curvature of the upper lip
and the value returned by the additive model for that predictor. By investigating
the effect of increasing the principal component it may be possible to draw some
inferences about any small effect of xz curvature of the upper lip on psychological

score.



Chapter 7
Applied Functional Regression

Chapter 6 outlined various techniques to investigate the relationship between a
scalar response and functional predictors. Using data from the study on ten year
old cleft children these techniques can be used to systematically analyse poten-
tial relationships between psychological score and the shape of facial feature