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Abstract

Statistical shape analysis is a field for which there is growing demand. One of

the major drivers for this growth is the number of practical applications which

can use statistical shape analysis to provide useful insight. An example of one

of these practical applications is investigating and comparing facial shapes. An

ever improving suite of digital imaging technology can capture data on the three-

dimensional shape of facial features from standard images. A field for which

this offers a large amount of potential analytical benefit is the reconstruction

of the facial surface of children born with a cleft lip or a cleft lip and palate.

This thesis will present two potential methods for analysing data on the facial

shape of children who were born with a cleft lip and/or palate using data from

two separate studies. One form of analysis will compare the facial shape of one

year old children born with a cleft lip and/or palate with the facial shape of

control children. The second form of analysis will look for relationships between

facial shape and psychological score for ten year old children born with a cleft lip

and/or palate. While many of the techniques in this thesis could be extended to

different applications much of the work is carried out with the express intention

of producing meaningful analysis of the cleft children studies.

Shape data can be defined as the information remaining to describe the shape

of an object after removing the effects of location, rotation and scale. There are

numerous techniques in the literature to remove the effects of location, rotation

and scale and thereby define and compare the shapes of objects. A method which

does not require the removal of the effects of location and rotation is to define

the shape according to the bending of important shape curves. This method can

naturally provide a technique for investigating facial shape. When considering a

child’s face there are a number of curves which outline the important features of

the face. Describing these feature curves gives a large amount of information on

the shape of the face.

This thesis looks to define the shape of children’s faces using functions of
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bending, called curvature functions, of important feature curves. These curva-

ture functions are not only of use to define an object, they are apt for use in

the comparison of two or more objects. Methods to produce curvature functions

which provide an accurate description of the bending of face curves will be intro-

duced in this thesis. Furthermore, methods to compare the facial shape of groups

of children will be discussed. These methods will be used to compare the facial

shape of children with a cleft lip and/or palate with control children.

There is much recent literature in the area of functional regression where a

scalar response can be related to a functional predictor. A novel approach for

relating shape to a scalar response using functional regression, with curvature

functions as predictors, is discussed and illustrated by a study into the psycho-

logical state of ten year old children who were born with a cleft lip or a cleft lip

and palate. The aim of this example is to investigate whether any relationship

exists between the bending of facial features and the psychological score of the

children, and where relationships exist to describe their nature.

The thesis consists of four parts. Chapters 1 and 2 introduce the data and

give some background to the statistical techniques. Specifically, Chapter 1 briefly

introduces the idea of shape and how the shape of objects can be defined using

curvature. Furthermore, the two studies into facial shape are introduced which

form the basis of the work in this thesis. Chapter 2 gives a broad overview of some

standard shape analysis techniques, including Procrustes methods for alignment

of objects, and gives further details of methods based on curvature. Functional

data analysis techniques which are of use throughout the thesis are also discussed.

Part 2 consists of Chapters 3 to 5 which describe methods to find curvature

functions that define the shape of important curves on the face and compare

these functions to investigate differences between control children and children

born with a cleft lip and/or palate. Chapter 3 considers the issues with finding

and further analysing the curvature functions of a plane curve whilst Chapter 4

extends the methods to space curves. A method which projects a space curve onto

two perpendicular planes and then uses the techniques of Chapter 3 to calculate

curvature is introduced to facilitate anatomical interpretation. Whilst the midline

profile of a control child is used to illustrate the methods in Chapters 3 and 4,

Chapter 5 uses curvature functions to investigate differences between control

children and children born with a cleft lip and/or palate in terms of the bending

of their upper lips.

Part 3 consists of Chapters 6 and 7 which introduce functional regression
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techniques and use these to investigate potential relationships between the psy-

chological score and facial shape, defined by curvature functions, of cleft children.

Methods to both display graphically and formally analyse the regression proce-

dure are discussed in Chapter 6 whilst Chapter 7 uses these methods to provide

a systematic analysis of any relationship between psychological score and facial

shape.

The final part of the thesis presents conclusions discussing both the effective-

ness of the methods and some brief anatomical/psychological findings. There are

also suggestions of potential future work in the area.
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Chapter 1

Introduction

1.1 Shape

Much of our initial perception of objects, creatures and fellow humans is depen-

dent on their shape. The human brain is supremely efficient at analysing shape

instantly. However, to allow shape analysis to be considered as a useful research

area it is important to have systematic techniques to qualitatively describe and

compare shapes. Techniques currently used to describe shapes include placing

landmarks, curves or meshes on the shape. Landmarks can be placed on geo-

metric or anatomically important points on shapes and these can be used to

either define the shape or compare between shapes. One drawback with simply

using landmarks to define the shapes is that information between the landmarks

is lost. To overcome this loss of information, curves on the shape which may

be of interest can be defined by connecting a set of pseudo-landmarks which lie

on the curve at small increments between the anatomical landmarks. To define

the whole shape it is possible to place a mesh over the complete surface of the

shape. Often landmarks and curves are extracted from these surface meshes but

there are also techniques to analyse the shape of the whole surface through these

meshes. This thesis will solely analyse shape curves.

Much of the current shape analysis literature involves the alignment of shapes

by location, rotation and in some instances scale. Dryden and Mardia (1998)

describe a variety of methods for aligning shapes, with the popular Procrustes

methods described in Chapter 2. The methods are in the main simple to use and

make further analysis of shapes straightforward; however there are sometimes

difficulties. If there is a large number of shapes defined in high definition, align-

ment methods can prove computationally expensive. Furthermore, care must be

1
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taken when comparing aligned shapes to ensure that particular differences are in

fact discrepancies between the shapes and cannot be attributed to the alignment

process. Throughout this thesis shapes will be described by the bending of de-

fined shape curves. An advantage of this method is that it removes the need for

shape alignment.

1.2 Curvature

One technique for defining the shape of objects is to calculate the bending experi-

enced by shape curves. For plane curves the bending of the curve at any point is

given by a single scalar value, called curvature, whilst for space curves the bend-

ing at any point on the curve is defined by two scalar values, called curvature

and torsion (or in some literature first and second curvature). A major reason

for defining shapes in this way is that curvature is independent of the location or

rotation of the curve meaning alignment techniques are not required.

There are a number of techniques which may be used to calculate the bending

of a curve. A simple technique uses formulae which are dependent on the deriv-

atives of the position of the curve on each axis with respect to the arc length of

the curve. The bending of a plane curve (called curvature and denoted by κ) is

defined by the equation

κ(s) =
x′(s)y′′(s)− x′′(s)y′(s)

(x′(s)2 + y′(s)2)3/2

where x(s) and y(s) are the x and y positions of the curve at arc length s and the

dash notation indicates derivatives with respect to the arc length of the curve.

The bending of a space curve (called curvature and torsion which are denoted by

κ and τ respectively) is defined by the equations

κ(s) = |r′(s)× r′′(s)|
τ(s) =

((r′(s)× r′′(s)) · r′′′(s))
|r′(s)× r′′(s)|2

where r′(s) = [x′(s), y′(s), z′(s)] and × denotes the cross-product.

For simple shape comparison it is useful to compare the functions of curva-

ture (and torsion) against arc length of the various shapes. Also, by defining the

bending of each feature curve as functions of arc length, a large array of func-

tional data analysis techniques (Ramsay and Silverman (2006) give an overview
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of a selection of techniques) are available for further analysis. One of the major

interests in this thesis will be comparing the feature curves of different groups

using curvature functions. Interestingly, both plane curves and space curves can

be reconstructed up to location and rotation from the curvature (and torsion)

functions with relative ease. This can be useful in several settings, for example,

it enables ‘average’ feature curves to be produced from ‘average’ curvature func-

tions which can assist in anatomical visualisation of the nature of differences in

the curvature functions.

Curvature functions can be useful in extracting the position of anatomically

or geometrically important points on the shape. Points of interest will often be

associated with turning points of the curvature function. By considering the

turning points of the curvature functions information is available on the position

(in relation to the rest of the feature) and the amount of bending experienced at

important points on the shape. This thesis will investigate a number of techniques

which use the fact that curvature functions indicate anatomical points of interest,

which complement and enhance methods of group comparison.

1.3 Cleft Lip and Palate Data

The data analysed in this thesis come from two studies comparing the facial

shape of children in the Glasgow area with particular interest in comparing the

facial shapes of children with a cleft lip and/or palate to that of control chil-

dren. One study investigated children at 1 year of age while a separate study

investigated children at 10 years. In both studies three-dimensional images were

built using a sophisticated stereophotogrammetry system, which takes pictures

from two different angles and uses these to built up the three-dimensional image

much in the way two eyes build up the image in human sight. Validation studies

were carried out by Ayoub et al. (2003) and Khambay et al. (2008) on the equip-

ment used in the 1 year and 10 year studies respectively with discussion on the

variability in the three-dimensional images produced and the variability in the

manual placement of the landmarks. The three-dimensional image is transformed

into a surface mesh onto which landmarks and curves can be placed. Figure 1.1

shows an example of a one year control child with selected landmarks and curves

marked. There are data available on five facial curves; the midline profile, the

top of the upper lip, the nasal rim, the nasal base and the nasal bridge. The

curves are produced by marking important anatomical landmarks manually and
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calculating pseudo-landmarks at many small increments between landmarks to

give close to continuous curves.

Figure 1.1: The names of selected landmarks and the facial curves placed on
a one year control child.

In the 1 year study there are curves available for 9 children born with a

cleft lip and 13 children born with a cleft lip and palate as well as for 71 control

children. All the cleft children underwent surgical repair between the age of 3 and

6 months. The major interest is in comparing the facial shapes of the three groups

of children, in particular comparing between the control group and both cleft

groups. It is clearly the aim of the surgery to attempt to, where possible, remove

all shape effects of the cleft, therefore it is important to investigate systematic

differences between the control group and either of the cleft groups.

In the 10 year study there are curves available for 44 children born with a

cleft lip and 51 children born with a cleft lip and palate as well as 68 control

children. Again all the cleft children underwent surgical repair between the age

of 3 and 6 months. In addition to the digital imaging all cleft children, and their

parents, were asked to fill in a set of questionnaires on their psychological state.

There were numerous aims to the study but the aim discussed in this thesis is to

investigate potential relationships between the facial shape of the cleft children,

as described by curvature functions, and their psychological score.

In general the cleft will only occur on one side of the child’s face with no

evidence of a tendency to occur more regularly on the right or the left side.
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While the cleft will affect both sides of the face, clearly the side on which the

cleft occurs will be most affected. The side of the face on which the cleft occurs is

of no interest in this study. In fact it would be beneficial to have the cleft occur

on the same side of the face for each child. To facilitate this all cleft children

who have the cleft occurring on the left side of the face have the landmarks and

corresponding curves ‘reflected’ around the midline so that in the analysis the

cleft is seen on the right side of the face.

1.4 Psychological Questionnaire

Although the children completed a number of questionnaires it is a questionnaire

completed by the parents which will be used throughout this thesis. The reason

for this is that the questionnaires completed by the parents contained much fewer

missing responses allowing a larger data set to be analysed. The questionnaire

used was the Revised Rutter Scale which is a revision of the original Rutter

Parents’ and Teachers’ Scale (see Rutter (1967)). A copy of the questionnaire

can be found in Appendix A.

The questionnaire contains 50 statements (for example ‘Very restless, has

difficulty staying seated for long’ or ‘Not much liked by other children’) and the

parents were asked to select whether the statement ‘does not apply’, ‘applies

somewhat’ or ‘certainly applies’. Each statement is scored 0 for ‘does not apply’,

1 for ‘applies somewhat’ and 2 for ‘certainly applies’. By summing the scores

for certain statements a total difficulties score out of 52 is obtained with higher

scores suggesting more difficulties. Furthermore, scores for emotional difficulties,

conduct difficulties, hyperactivity/inattention and prosocial behaviour can be

obtained. Throughout this thesis the total difficulties score will be used as a

measure of psychological score.

Although there has been little review of the updated version of the question-

naire it is clearly strongly linked to the original Rutter Parents’ and Teachers’

Scale and earlier adaptations which were reviewed by Elander and Rutter (1996).

They concluded that ‘for reliability the picture is of generally positive results

that are better for antisocial than emotional behaviours and better for teachers’

than parents’ ratings.’ They also show that the results from the Rutter Parents’

and Teachers’ Scales correlate well with several social competency scales and a

variety of observational studies.
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1.5 Missing Data

Both studies incur some levels of missingness for a variety of reasons. One prob-

lem is in accurately extracting curves, particularly for cleft children. Barry (2008)

briefly discusses missing data for the 1 year old study. The major reason for miss-

ing data in this study was difficulty in extraction of the curves, particularly for

the cleft group. It may be that curve extraction is more difficult for the most

severe cases so data may be missing for these severe cases. This will not be con-

sidered throughout the thesis but should be kept in mind. The numbers quoted

as part of the study in Section 1.3 are subjects for whom complete sets of curves

were available. Due to difficulties in curve extraction there is data missing for 24

(26.4%) control children and 19 (47.5%) cleft children.

The 10 year study initially contained 95 cleft subjects. However, due to

problems with curve extraction, 8 subjects were removed. Furthermore, only

subjects for which there are completed questionnaires can be included in the

analysis. When parents attended the data capture session it was requested that

they completed the questionnaire. If they refused or were reticent no pressure

was applied to ensure completion. There did not appear to be any systematic

reasoning for non-completion of questionnaires so subjects with no psychological

score available are simply removed from the analysis and no further consideration

is given to this issue. Due to missing questionnaires a further 7 subjects are

removed. This leaves 80 cleft subjects from which to investigate the relationship

between psychological score and facial shape. The decision was made to simply

analyse a single cleft group rather than the separate cleft lip and cleft lip and

palate groups as the larger size of the group allows sufficient information from

which conclusions can be drawn.

1.6 Overview of Thesis

Chapter 2 will outline some simple shape analysis techniques and discuss some

recent developments in the field. Furthermore, there will be a discussion of some

curve analysis methods along with an overview of standard functional data analy-

sis techniques. Chapter 3 will introduce methods for calculating the curvature

function of a plane curve. Techniques for producing average curvature functions,

including aligning the functions in terms of important landmarks, will also be dis-

cussed. The methods for calculating the curvature of a plane curve are extended
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to a space curve in Chapter 4 and furthermore a method to aid anatomical inter-

pretation of the curvature functions is introduced. Chapter 5 uses the methods

introduced in the previous chapters to carry out a comparison between the three

groups of 1 year old children (controls, cleft lip, cleft lip and palate) concentrat-

ing specifically on the upper lip curves. Methods to examine a relationship, both

graphically and formally, between facial shape defined using curvature functions

and psychological score are outlined in Chapter 6 with a motivating example

contained for illustration. Chapter 7 contains a systematic investigation of the

relationships between facial shape and psychological score using the data of 10

year old children. Chapter 8 provides a summary, some conclusions and potential

further work.

This thesis focuses on the practical application of analysing the cleft lip studies

by carrying out analysis which is informative in this context. The major aims

are:

• To introduce a curvature based technique to describe the facial shape of

children through the bending of important facial features.

• To produce curvature functions for the facial features which are anatomi-

cally simple to understand.

• To compare the facial shape of one year old children born with a cleft lip

and/or palate to control children using these curvature functions.

• To investigate relationships between facial shape, defined by curvature func-

tions, and psychological score for ten year old children born with a cleft lip

and/or palate.

• To introduce methods which may be useful in interpreting any significant

relationship between facial shape and psychological score.

Many of the techniques chosen throughout are driven by the aims of the thesis.



Chapter 2

Review

This chapter will provide a brief overview of the statistical shape analysis tech-

niques which will be used in this thesis. A full overview of statistical shape

analysis can be found in Dryden and Mardia (1998) and this work is the basic

reference for the first section of the chapter. Much of Section 2.1 will discuss

popular shape analysis techniques when the shapes are defined by landmarks.

Defining shapes solely by landmarks will not be the method adopted by this the-

sis; however, the methods are commonly used and useful to understand. Much of

the work in this thesis will involve analysing shapes which are defined by curves.

Section 2.2 will investigate how two- and three-dimensional curves have been

analysed in the current literature with a particular interest in the use of curves

to describe and analyse shapes. Section 2.3 will describe some commonly used

techniques to analyse functional data as much of the data to be analysed in this

thesis will be in functional form.

2.1 Statistical Shape Analysis

Dryden and Mardia (1998) define shape as ‘all the geometrical information which

remains when location, scale and rotational effects are filtered out from an object’.

It is usual for shapes to be defined by pre-specified landmarks which provide a

correspondence between and within populations. These landmarks are either

anatomical landmarks which have a specific biological meaning, such as the tip

of the nose or the edge of the upper lip, mathematical landmarks, such as points of

high curvature or turning points, or pseudo-landmarks which are used to connect

other types of landmarks.

To define a set of landmarks on an object a k×m matrix, X say, is produced

8
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where k is the number of landmarks and m is the number of dimensions. This

matrix is called the configuration matrix for that object.

When comparing shapes it is useful to scale each object to the same size. For

this to be possible the size of each shape must be defined. Dryden and Mardia

(1998) define a size measure g(X) as any positive real valued function of the

configuration matrix such that

g(aX) = ag(X) (2.1)

for any positive scalar a. One measure of size which satisfies (2.1) is the centroid

size. The centroid size of a shape with configuration matrix X is given by

S(X) = ||CX|| =
√√√√

k∑
i=1

m∑
j=1

(Xij − X̄j)2 (2.2)

where X̄j = 1
k

∑k
i=1 Xij, C = Ik− 1

k
1k1

T
k and ||X|| =

√
tr(XT X). Equation (2.2)

effectively states that the centroid size is the square root of the sum of squared

distances of each point from the mean point in each dimension.

2.1.1 Procrustes analysis

Procrustes methods are popular techniques used to remove the effects of location,

rotation and scale for configurations with two or more dimensions. By removing

these three effects all that remains is information on the shape given by the config-

uration. Procrustes analysis is the process which matches configurations by using

least squares to minimise the Euclidean distance between them following centring

(location adjustment), rotation and scaling. There are two major methods of Pro-

crustes analysis. Full ordinary Procrustes analysis (OPA), which matches two

configurations, and full generalised Procrustes analysis (GPA), which matches n

configurations. Both methods will be outlined here.

To give an overview of full ordinary Procrustes analysis suppose there are

two configurations X1 and X2 which contain information on k landmarks in m

dimensions. The first stage of the process is to centre the configurations using

XiC = CXi (2.3)
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where C is as defined above. For simplicity Xi will denote XiC after the config-

urations have been centred. Now the full OPA method involves minimising

D2
OPA(X1, X2) =‖ X2 − βX1Γ− 1kγ

T ‖2 (2.4)

where Γ is an (m ×m) rotation matrix, β > 0 is a scale parameter and γ is an

(m× 1) location vector. The minimum of (2.4) is the ordinary (Procrustes) sum

of squares (OSS(X1, X2)). The parameter values are given by (γ̂, β̂, Γ̂) where

γ̂ = 0

Γ̂ = UV T

β̂ =
tr(XT

2 X1Γ̂)

tr(XT
1 X1)

where U, V ∈ SO(m) and SO(m) is the set of (m × m) orthogonal matrices,

Λ, where ΛT Λ = ΛΛT = Im. The ordinary (Procrustes) sum of squares can

be calculated as OSS(X1, X2) = ‖ X2 ‖2 sin2 ρ(X1, X2) where ρ(X1, X2) is the

Procrustes distance defined by Dryden and Mardia (1998). The full Procrustes

fit of X1 onto X2 is then given by

XP
1 = β̂X1Γ̂ + 1kγ̂

T (2.5)

The residual matrix after the Procrustes matching can be defined as

R = X2 −XP
1

If the roles of X1 and X2 are reversed then the ordinary Procrustes superimpo-

sition will be different. Therefore the ordinary Procrustes fit is not reversible

i.e. OSS(X1, X2) 6= OSS(X2, X1) unless the objects are both of the same size.

Therefore,
√

OSS(X1, X2) cannot be used as a distance measure between the

shapes. Instead normalising the shapes to unit size gives a useful measure of

distance between the two shapes. This distance is given by

√
OSS

(
X1

‖X1‖ ,
X2

‖X2‖

)
.

To give an overview of full generalised Procrustes analysis (GPA) suppose

that there are n configurations X1, . . . , Xn which each contain information on

k landmarks in m dimensions. Once again assume that each configuration is

centred. Full GPA can be thought of as a direct extension of full OPA such that
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the full GPA minimises the generalised (Procrustes) sum of squares

G(X1, . . . , Xn) =
1

n

n∑
i=1

n∑
j=i+1

‖ (βiXiΓi + 1kγ
T
i )− (βjXjΓj + 1kγ

T
j ) ‖2 (2.6)

subject to the constraint S(X̄) = 1. That is, the centroid size of the average

configuration is 1 where the average configuration is X̄ = 1
n

∑n
i=1(βiXiΓi+1kγ

T
i ).

The generalised (Procrustes) sum of squares is proportional to the sum of squared

norms of pairwise differences. Minimising the generalised (Procrustes) sum of

squares involves translating, rotating and rescaling each object so that all objects

are placed close to each other in a way which minimises the sum, over all pairs,

of the squared Euclidean distances. This process can be defined by

G(X1, . . . , Xn) = inf
βi,Γi,γi

1

n

n∑
i=1

n∑
j=i+1

‖ (βiXiΓi + 1kγ
T
i )− (βjXjΓj + 1kγ

T
j ) ‖2

= inf
βi,Γi,γi

n∑
i=1

‖ (βiXiΓi + 1kγ
T
i )− 1

n

n∑
j=1

(βjXjΓj + 1kγ
T
j ) ‖2

The minimisation can alternatively be viewed from the perspective of estimation

of the mean shape µ so

G(X1, . . . , Xn) = inf
µ:S(µ)=1

n∑
i=1

OSS(Xi, µ)

= inf
µ:S(µ)=1

n∑
i=1

sin2 ρ(Xi, µ)

where ρ(Xi, µ) is the Procrustes distance between Xi and µ given by Dryden and

Mardia (1998). The full Procrustes fit of each Xi is given by

XP
i = β̂iXiΓ̂i + 1kγ̂

T
i , i = 1, . . . , n

Dryden and Mardia (1998) describe an algorithm for estimating the transforma-

tion parameters (βi, Γi, γi). The full Procrustes estimate of mean shape can be

calculated by

µ̂ = arg inf
µ:S(µ)=1

n∑
i=1

sin2 ρ(Xi, µ)
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= arg inf
µ:S(µ)=1

n∑
i=1

d2
F (Xi, µ)

where d2
F (Xi, µ) is the squared full procrustes distance, as defined by Dryden

and Mardia (1998), between Xi and µ. It is also possible to calculate the full

Procrustes mean by calculating the arithmetic mean of each coordinate, across

each configuration after full Procrustes matching. Therefore, X̄ = 1
n

∑n
i=1 XP

i

where XP
i is the Procrustes coordinates for individual i.

2.1.2 Thin-plate splines, deformations and warping

A quantity such as Procrustes distance can give a numerical measure to compare

two shapes. However, it is often the case that the interest is more in how shapes

differ locally as opposed to simply by how much they differ. To investigate these

local differences it can be informative to map one landmark configuration onto

another. Suppose that there are two configurations, T and Y , both defined by

k landmarks in m dimensions such that T = (t1, . . . , tk)
T and Y = (y1, . . . , yk)

T .

The aim is to map T onto Y where tj, yj ∈ Rm. This process is called a

deformation and is defined by the transformation

y = Φ(t) = (Φ1(t), Φ2(t), . . . , Φm(t))T

where the multivariate function Φ(t) should, where possible, be continuous, smooth,

bijective, not prone to large distortions, equivariant under the similarity trans-

formations and an interpolant i.e. yj = Φ(tj) ∀j = 1, . . . , k. In two dimensions,

when m = 2, deformation can be carried out using a pair of thin-plate splines.

Dryden and Mardia (1998) state that ‘a bijective thin-plate spline is analogous

to a monotone cubic spline’. A pair of thin-plate splines can be given by the

bivariate function

Φ(t) = (Φ1(t), Φ2(t))
T

= c + At + W T s(t)

where t is a (2 × 1) vector, s(t) = (σ(t − t1), . . . , σ(t − tk))
T is a (k × 1) vector

with

σ(h) =

{ ‖ h ‖2 log(‖ h ‖), ‖ h ‖> 0

0, ‖ h ‖= 0



CHAPTER 2. REVIEW 13

Incorporating some necessary constraints this can be written in vector-matrix

form as 


S 1k T

1T
k 0 0

T T 0 0







W

cT

AT


 =




Y

0

0




where Sij = σ(ti − tj). The inverse of the matrix Γ where

Γ =




S 1k T

1T
k 0 0

T T 0 0




can be written, since Γ is symmetric positive definite, as

Γ−1 =

[
Γ11 Γ12

Γ21 Γ22

]

where Γ11 is (k×k). The bending energy matrix, Be is then defined as Be = Γ11.

One way to explain the components of a thin-plate spline deformation is to

use principal and partial warps. These techniques were introduced by Bookstein

(1989). The idea of principal and partial warps is somewhat analogous to prin-

cipal components in a multivariate context in that each principal and partial

warp explains a separate part of the overall deformation. Suppose that T and Y

are (k × 2) configuration matrices for different shapes and the thin-plate spline

transformation which interpolates the k points of T to Y gives a (k× k) bending

energy matrix Be. The principal warps, which construct an orthogonal basis for

re-expressing the thin-plate spline transformations, can then be defined as

Pj(t) = γT
j s(t)

for j = 1, . . . , k − 3 where γ1, . . . , γk−3 are the eigenvectors corresponding to

the non-zero eigenvalues (λ1 ≤ λ2 ≤ . . . ≤ λk−3) obtained from an eigen-

decomposition of Be. Further s(t) = (σ(t− t1), . . . , σ(t− tk))
T . Partial warps can

now be defined as

Rj(t) = Y T λjγjPj(t)

The jth partial warp will largely show movement of landmarks which are heavily

weighted in the jth principal warp. In general as the eigenvalue which corre-

sponds to the warps increases the more local the deformation described by the
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warp becomes i.e. P1(t) and R1(t) will typically explain an overall large scale

deformation of the shape whilst Pk−3(t) and Rk−3(t) will explain a small scale

and localised deformation often between the two closest landmarks. The partial

warps are useful to give greater understanding of the deformation explained by

the corresponding principal warps.

2.1.3 Other shape analysis techniques

Shape analysis is a large and progressive subject in Statistics which has seen

many advances in recent years. Bowman and Bock (2006) discuss a number

of techniques to explore three-dimensional shape, including graphical displays of

longitudinal changes between groups and a permutation test to compare principal

components of groups across time, with comparing the facial shapes of control

children and children with a unilateral cleft lip and/or palate used as an example.

Further, Bock and Bowman (2006) introduce a method to measure the asymmetry

of the faces of children whilst Pazos et al. (2007) investigate the reliability of

asymmetry measures of body trunks.

Often comparisons between shapes is simpler when the original shapes can be

defined using a set of lines or elementary shapes. Shen et al. (1994) use predefined

simple shapes of various sizes to attempt to classify tumours in mammograms

while Guliato et al. (2008) find a polygonal model which best fits the outline of the

tumor to aid classification. More generally Pavlidis and Horowitz (1974) outline

a method for describing shapes using straight line segments and examine the

importance of the position of the line joints. To better represent more complex

shapes Chong et al. (1992) propose a similar method using B-spline segments

whilst the method used by Cootes et al. (1995) depends on snake segments.

An alternative way to define and compare shapes is by finding a minimum

spanning tree that fits the landmarks of the shape. An algorithm for calculat-

ing the minimum spanning tree is given by Fredman and Willard (1994) while

Steele et al. (1987) discuss the asymptotics of the number of leaves of the min-

imum spanning tree. Minimum spanning tree measures can be useful in shape

correspondence analysis. For example Munsell et al. (2008) investigate the per-

formance of a number of tests of landmark based shape correspondence, including

one based on minimum spanning trees.

Some standard methods of describing shapes make further analysis com-

plex. To make further analysis simpler Kume et al. (2007) introduce shape-space

smoothing splines to allow a smooth curve to be fitted to landmark data in
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two-dimensions. Also Dryden et al. (2008) introduce a computationally simple

framework for performing inference in three or more dimensions.

2.2 Curve Analysis

Shape analysis can be performed using landmarks, curves or surfaces defined on

the shape. This thesis will concentrate on curves defining shapes. Defining shapes

using curves can have many practical uses. For example Samir et al. (2006) show

how defining facial shapes using curves can assist in facial recognition. This

section will outline various methods for analysing shape curves.

One way to define curves is by examining the amount of bending shape curves

exhibit at various points along the curve. For a plane curve the bending at any

point on the curve can be represented using a single scalar value called curvature.

In standard geometry curvature of a plane curve at the point a is defined as

κ(s) =
dφ(a)

ds

where φ(a) is the angle between the tangent line at point a and the positive

direction of the x axis and s is arc length. Alternatively, for computational

simplicity, curvature of a plane curve can be defined as

κ(a) =
x′(a)y′′(a)− x′′(a)y′(a)

(x′(a)2 + y′(a)2)3/2

where x(a) and y(a) denote the x and y position of the curve and the dash nota-

tion indicates derivatives with respect to the arc length of the curve. Curvature

of a plane curve is thoroughly examined in Chapter 3 and Gray (1998) is a good

reference.

It is often computationally difficult to estimate curvature of a plane curve.

The accuracy and precision of several methods are shown to have some inaccuracy

by Worring and Smeulders (1992). Major problems are often found at extrema

and a method to deal with these problems is proposed by Craizer et al. (2005).

In spite of these difficulties curvature is a useful measure for use in shape analysis

and there are many examples in the literature. A method to represent planar

curves using curvature is given by Mokhtarian and Mackworth (1992). Small and

Le (2002) introduce a model which can be used to describe the shape of plane

curves using their curvature and propose a measurement of difference between two
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curves using curvature. Curvature is used to enhance biological shape analysis in

Costa et al. (2004) while Noriega et al. (2008) use curvature to find mutations in

Arabidopsis roots.

The bending of a three-dimensional space curve at any point is represented by

two scalar values called curvature and torsion. In standard geometry curvature

(κ) and torsion (τ) at the point a are defined as

κ(a) =

∣∣∣∣
dt(a)

ds

∣∣∣∣

τ(a) = −db(a)/ds

n(a)

where t(a), n(a) and b(a) are the tangent, normal and binormal vector of the

curve at point a respectively. For computational simplicity the curvature and

torsion can also be defined as

κ(a) = |r′(a)× r′′(a)|
τ(a) =

((r′(a)× r′′(a)) · r′′′(a))

|r′(a)× r′′(a)|2

where r(a) = [x(a), y(a), z(a)] and r′(a) = [x′(a), y′(a), z′(a)] where for example

x′(a) is the first derivative of the x position of the curve with respect to arc

length and × denotes the cross-product. Curvature of a space curve will be

comprehensively discussed in Chapter 4 while Gray (1998) is once again a good

reference.

There are more difficulties when it comes to calculating curvature and torsion

in space curves. There is literature on the subject including a recent attempt

by Lewiner et al. (2005) to calculate curvature and torsion based on weighted

least squares and local arc-length approximation. Further, Rieger and van Vliet

(2002) propose a method using the gradient structure tensor which obtains the

orientation field and a description of shape locally and then computes curvature

in this tensor representation. One of the difficulties in estimating curvature and

torsion is to control the sign of torsion. Karousos et al. (2008) address this issue

by computing a domain which allows the space curve to have constant sign of

torsion. A method to match shapes using space curves represented using a wavelet

transformation is described by Tieng and Boles (1994). A potential application

of curvature and torsion in space curves is found in Hausrath and Goriely (2007)

where helical proteins are described in terms of their curvature and torsion.
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Shape curves can be represented using various techniques which enhance the

further analysis on the curves. Rosin and West (1995) represent shape curves

using a set of superellipses whilst Alkhodre et al. (2001) represent curves using

Fourier series. Srivastava and Lisle (2004) use Bézier curves to allow simple analy-

sis of fold shapes. An interesting technique which allows curves to be matched

is to represent each curve as a vector of turning angles and use some form of

dynamic programming to calculate the distance between the two vectors. This

technique is described by Niblack and Yin (1995) with discussion given to the

problem of selecting a starting point. An alternative technique for matching

curves is described by Pajdla and Van Gool (1995). This technique involves us-

ing semi-differentials to match the curves. The major issue is in finding reference

points common to the curves being matched for which two techniques, one based

on total curvature and the other based on arc-chord length ratios, are proposed.

Aykroyd and Mardia (2003) propose a technique to describe the shape change of

curves using a wavelet decomposition to construct a deformation function which

is estimated using a Markov Chain Monte Carlo approach.

Whilst curves often represent a feature on a shape it is also possible to produce

curves which show movement in space. Facial movements of cleft children are

observed and analysed by Trotman et al. (2005). Also Faraway et al. (2007) use

Bézier curves with geometrically important control points to track, analyse and

predict hand motion. A similar but alternative technique using Bayesian methods

to describe the mean and variability of human movement curves is described by

Alshabani et al. (2007). Procrustes techniques which normalise stride patterns, in

terms of time and magnitude of the stride, to allow gait patterns to be compared

are outlined by Decker et al. (2007).

2.3 Functional Data Analysis

There are many sets of data where it is natural to think of the process as func-

tional. Increased computing power in recent times has enabled the process of

producing, recording and analysing functional data to be carried out without

being overly computationally expensive. Ramsay and Silverman (1997) is a good

reference for discussing basic functional data analysis techniques.
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2.3.1 Interpolating and smoothing splines

Even when working with functional data it is unusual for the data to be available

in a completely functional form. Often the function is defined by a large number

of data points with a very small interval between neighbouring points. When this

is the case it is important to be able to join the data points to produce a function

in a smoother form than simply considering a straight line between neighbouring

points. A technique for producing a function from the data points is cubic splines.

An excellent overview of interpolating and smoothing using cubic splines is given

by Green and Silverman (1994). Much of the description in this section comes

from this work.

Suppose that there are a set of data pairs (si, yi) on the closed interval [a, b]

where i = 1, . . . , n. A simple way to describe the relationship between s and y is

to fit the linear relationship

y = a + bs + ε .

However it is often the case that fitting a linear relationship to the data is inap-

propriate. When this is the case a model of the form

y = g(s) + ε , (2.7)

where g is some function, is often a more appropriate model. The model in (2.7)

could be fitted using least squares. However if there are no constraints on the

function g it is clear that the residual sum of squares would have a minimum of

zero when g is chosen as any function which interpolates the n points. Therefore

a roughness penalty approach is taken which provides a good fit to the data but

which avoids the fluctuations caused by interpolation.

The roughness penalty approach requires some measure of the roughness of

a curve. There are numerous ways that this quantity can be measured. Green

and Silverman (1994) suggest using the integrated squared second derivative of g

i.e.
∫ b

a
[g′′(s)]2ds. Two reasons why this choice of roughness measure is attractive

are firstly that any measure of roughness should not be affected by a constant

or a linear function and secondly if a thin piece of flexible wood was bent to the

shape of g then the leading term of the strain energy is proportional to
∫

g′′. The

roughness penalty approach now states that the least squares estimator of g is
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the function ĝ which minimises S(g) where

S(g) =
n∑

i=1

[yi − g(si)]
2 + α

∫ b

a

[g′′(s)]2ds (2.8)

The smoothing parameter α is a positive scalar which controls the trade off

between minimising the residual sum of squares and removing roughness from

the model. As α approaches zero ĝ will approach the interpolating function

while the larger α becomes the smoother the function g will become.

With this roughness penalty approach in mind the idea of cubic splines will

now be discussed. Suppose s1, . . . , sn are real numbers in the interval [a, b] and

that a < s1 < s2 < . . . < sn < b then a cubic spline function g can be fitted on

[a, b]. The conditions for a cubic spline are that g is a cubic polynomial in each

interval (a, s1), (s1, s2), . . . , (sn, b) and at each point s1, . . . , sn the polynomials fit

together in such a way that g, g′ and g′′ are continuous on the whole interval

[a, b]. The points si are called knots.

There are a number of ways that a cubic spline can be defined. Green and

Silverman (1994) suggest that the cubic spline should be defined by its value and

the value of its second derivative at each of the knots. Therefore the cubic spline

g is defined by

gi = g(si)

γi = g′′(si)

For g to be a natural cubic spline there is a further condition that γ1 = γn = 0.

Call g the n length vector (g1, . . . , gn)T and γ the n−2 length vector (γ2, . . . , γn−1).

These vectors specify g completely although it turns out that not all possible g

and γ define a natural cubic spline. This requires a further condition depending

on two band matrices, called Q and R say, which depend on the distances between

the knots. Define the distance between knot i and knot i + 1 as hi = si+1 − si

then let Q be the n × (n − 2) matrix with entries qij, where i = 1, . . . , n and

j = 2, . . . , n− 1, and

qj−1,j = h−1
j−1

qjj = −h−1
j−1 − h−1

j

qj+1,j = h−1
j

qij = 0 if |i− j| ≥ 2
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for j = 2, . . . , n − 1. The columns of Q are numbered so that the top left entry

of Q is q12 and the top right entry is q1,n−1. Now let R be the (n− 2)× (n− 2)

symmetric matrix with entries rij, where i = 2, . . . , n − 1 and j = 2, . . . , n − 1,

which are given by

rii = 1
3
(hi−1 + hi)

ri,i+1 = ri+1,i = 1
6
hi

rij = 0 if |i− j| ≥ 2

Now Green and Silverman (1994) state that g and γ specify a natural cubic

spline g if and only if

QTg = Rγ (2.9)

If (2.9) holds then the roughness penalty satisfies

∫ b

a

g′′(s)2ds = γT Rγ = gT Kg (2.10)

where K = QR−1QT .

Although it is often the case that smooth cubic splines are required there are

occasions where it is of interest to produce a smooth interpolating spline. Green

and Silverman (1994) state that if n ≥ 2 and s1 < . . . < sn then given any values

y1, . . . , yn there is a unique natural cubic spline g with knots at si which satisfies

g(si) = yi for i = 1, . . . , n i.e. there is one natural cubic spline which is an

interpolant of the n points. To find this unique natural cubic spline (2.9) must

be solved. Since Q is tridiagonal QTg can be found from g using a linear number

of operations. Green and Silverman (1994) suggest that the premultiplication by

QT can be achieved by

(QTg)i =
gi+1 − gi

hi

− gi − gi−1

hi−1

(2.11)

Now setting gi = yi and using (2.11), γ can be found from (2.9) since R is known

and QTg has been calculated numerically. The terms γ and g now define the

smooth curve which interpolates all data points and minimises
∫

g′′(s)ds. The

spline function in R uses this method to calculate the interpolating natural

cubic spline.

It is more usual that a smooth function, which is close to the original data

points but does not necessarily interpolate them, is required for analysis. Using
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the roughness penalty approach the aim is to find the function, g, which minimises

(2.8). The parameter α controls the trade off between interpolating the points

and removing all roughness from the function. Green and Silverman (1994) show

that the function which minimises (2.8) must be a natural cubic spline and that,

assuming n ≥ 3, there is a unique natural cubic spline which results in the

minimised S(g). To show this, write the residual sum of squares as

n∑
i=1

(yi − g(ti))
2 = (Y− g)T (Y− g)

and using (2.10) show that (2.8) becomes

S(g) = (Y− g)T (Y− g) + αgT Kg

= gT (I + αK)g− 2YTg + YTY (2.12)

The unique minimum function, g, can then be found by setting

g = (I + αK)−1Y (2.13)

The vector g now defines the smooth spline function g. It is however inefficient

to use (2.13) to calculate the spline function so an algorithm given by Reinsch

(1967) is a preferable alternative.

The Reinsch algorithm for finding the smooth cubic spline function which

minimises S(g) involves setting up a system of linear equations which can be

solved to find the second derivatives at the knots (γi). The values of the function

at the knots (gi) can then be found from the second derivatives and the data

values. The algorithm uses the idea of band matrices. Green and Silverman

(1994) state that ‘a matrix is said to be a band matrix if all of its non-zero

entries are concentrated on some small number of diagonals; the number of non-

zero diagonals is called the bandwidth of the matrix.’ Before setting out the

algorithm some useful formula must be derived. Firstly by replacing K with

QR−1QT and rearranging (2.13) becomes

(I + αQR−1QT )g = Y (2.14)

This can be rearranged to give

g = Y− αQR−1QTg (2.15)
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Equation (2.9) shows that QTg = Rγ so by replacement

g = Y− αQγ (2.16)

Equation (2.16) gives a means to calculate the values of the function at the knots

from the second derivatives and the data values. Now, using (2.9), this can be

rewritten as

Q−T Rγ = Y− αQγ

Rγ = QTY− αQT Qγ

Rγ + αQT Qγ = QTY
(
R + αQT Q

)
γ = QTY (2.17)

Since both Q and R are tridiagonal band matrices (with bandwidth 3), this

equation can be solved using band matrix techniques. It is the major equation

required for the Reinsch algorithm. It can further be shown that the matrix(
R + αQT Q

)
has bandwidth 5 and is symmetric and positive definite, so therefore

has the Cholesky decomposition

R + αQT Q = LDLT (2.18)

where D is a strictly positive diagonal matrix and L is a lower triangular band

matrix with Lij = 0 when j < i− 2 and j > i and where Lii = 1. Since Q and R

are band matrices the matrices L and D can be found using linear computation.

Using these equations Green and Silverman (1994) describe the algorithm as the

following four stage process.

1. Calculate QTY using (2.11).

2. Find the non-zero diagonals of the band matrix R + αQT Q and from these

calculate L and D.

3. Using replacement rewrite (2.17) as LDLT γ = QTY and use forward and

back substitution on this equation to find the second derivatives γ of the

smooth function.

4. Once γ has been found use this in (2.16) to find the values of the smooth

function at the knots g.
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Using this algorithm allows the smooth cubic spline function g to be calculated

using the data points and the smoothing parameter.

So far little has been mentioned about the choice of the smoothing parameter

α. There are various ways in which the smoothing parameter can be chosen.

Various values of the smoothing parameter may be investigated and the most

appropriate value chosen subjectively. Alternatively the smoothing parameter

can be chosen from the data using an automatic method such as cross-validation.

In this thesis the method used to choose the smoothing parameter will involve

selecting the equivalent degrees of freedom that the smooth function should have.

To explain this recall from (2.13) that

g = (I + αK)−1Y = (I + αQR−1QT )−1Y

since K = QR−1QT . Therefore

g = A(α)Y (2.19)

where A(α), which is called the hat matrix, is the matrix which maps the position

of the observed values Yi onto their position on the smooth spline function ĝ(si)

and is given by

A(α) = (I + αQR−1QT )−1 (2.20)

To introduce a measure of the number of parameters fitted for a particular value of

the smoothing parameter, suppose that the smooth curve is fitted using paramet-

ric regression where g(s) =
∑k

j=1 θjgj(s) with fixed functions gj and k parameters

θj. The hat matrix is then a projection onto a k dimensional space. By analogy,

the equivalent degrees of freedom (EDF ) for a smoothing spline can be defined

to be

EDF = tr{A(α)}

Therefore the smoothing parameter of a curve can be calculated by setting a

desired equivalent degrees of freedom for the curve. This is the technique used

for specifying the smoothing parameter in this thesis. Note that, throughout,

equivalent degrees of freedom will simply be referred to as degrees of freedom.

This is the technique used by the smooth.spline function in R which will be

used throughout this thesis to fit smooth cubic splines to the data. The simplest

way to roughly fit a smooth spline to three-dimensional data is equivalent to

finding a smooth curve in the xy plane and a smooth curve in the xz plane and
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combining these to give the three-dimensional smoothed fit.

2.3.2 Principal components analysis

In multivariate Statistics principal components analysis, see Jolliffe (1986) for

details, is carried out by finding the eigenvalues and eigenvectors of either the

covariance or correlation matrix. These ideas can be extended to the functional

case. Suppose that there are n functional variables xi(s) where i = 1, . . . , n and

that ξ(s) is a weight function then the functional eigenequation can be written

as ∫
v(s, t)ξ(t)dt = ρξ(s) (2.21)

where v is the covariance function which is given by

v(s, t) =
1

n

n∑
i=1

xi(s)xi(t)

It is possible to think of
∫

v(s, t)ξ(t)dt as an integral transform, V say, of the

weight function with the covariance function being a kernel of the transform such

that

V ξ =

∫
v(s, t)ξ(t)dt

Now the eigenequation can be simply rewritten as

V ξ = ρξ

where ξ is an eigenfunction and ρ is an eigenvalue. Functional principal compo-

nents analysis, see Ramsay and Silverman (1997) for details, can be thought of as

the eigenanalysis of the covariance operator V which is defined by the covariance

function.

To carry out functional principal components analysis it is preferable to reduce

the functional eigenanalysis problem to a matrix eigenanalysis which is approxi-

mately equivalent. One such technique is to discretise the functions so that each

function is defined by m equally spaced points along the s axis. This produces

an (n × m) data matrix from which the eigenanalysis can be carried out using

standard multivariate techniques, with each function as the observation and each

point on the s axis as the variable. Using this technique, n must be greater than

m.

An alternative to discretising each function, which potentially retains more of
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the functional structure of the variables, is to express each function as a linear

combination of basis functions. To do this, suppose that each function has the

basis expansion

xi(s) =
k∑

j=1

cijφj(s)

where φj(s) is the basis function j and cij is the coefficient of basis function j for

the ith original function. The basis expansion can be written in the vector-matrix

form

x = Cφ

where x is the (n× 1) matrix containing x1(s), . . . , xn(s), φ is the (k× 1) matrix

containing φ1(s), . . . , φk(s) and C is the (n × k) matrix with row i containing

the basis coefficients for original function i. The covariance function can now be

written in matrix form as

v(s, t) =
1

n
φ(s)T CT Cφ(t)

Now define an eigenfunction for the eigenequation (2.21) using the expansion

ξ(s) =
k∑

j=1

bjφj(s)

This can also be written in matrix form as

ξ(s) = φ(s)T b

The left side of the eigenequation (2.21) can then be rewritten in matrix form as

∫
v(s, t)ξ(t)dt =

∫
1

n
φ(s)T CT Cφ(t)φ(t)T b dt

=
1

n
φ(s)T CT CWb

where W is the (k × k) matrix containing the entries

Wi,j =

∫
φi(t)φj(t)dt
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Therefore (2.21) can be expressed as

1

n
φ(s)T CT CWb = ρφ(s)T b (2.22)

and since this must hold for all s this implies the matrix equation

1

n
CT CWb = ρb

Now in the basic theory of principal components analysis two constraints are

introduced. Firstly a continuous analogue to the unit sum of squares constraint

in the multivariate setting is introduced such that ‖ ξ ‖= 1. This constraint

implies that bT Wb = 1. The second constraint is that all eigenfunctions are

orthogonal i.e.
∫

ξi(s) · ξj(s)ds = 0. This implies that bT
i Wbj = 0. Now to

calculate the principal components define u = W
1
2 b and solve the eigenvalue

problem
1

n
W

1
2 CT CW

1
2 u = pu

and compute b = W− 1
2 u for each eigenvector to give the coefficients of the eigen-

function.

2.3.3 Curve registration

It is often the case that a number of functions share a common pattern with

the major variation being in the position of the function on the time (or s) axis.

There is a large literature on techniques available for reducing this s variation by

aligning common features of the functions to the average s position. Note that

the discussion here will be on s variation and alignment where s is any ordered

variable which is often, but not necessarily, time. Suppose that there are n func-

tions fi(s) which are to be aligned then these can be aligned by applying warping

functions gi’s so that fi(gi(s)) is the aligned function for function i. Gasser et al.

(1990) and Kneip and Gasser (1992) suggest a method for aligning functions so

that common individual characteristic points are aligned to the average position.

Characteristic points, where the rth characteristic point for function i is denoted

as γri, can be defined as predetermined geometrically important points or as

turning points of the functions. The gi’s are calculated by setting gi(γri) = γ̄r

so that fi(gi(γri)) = fi(γ̄r) and then interpolating to give continuous warping

functions. This method is relatively straightforward and simple to implement

and will be used in this thesis. There are clearly numerous alternative methods
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for aligning functions. Ramsay and Li (1998) introduce a method which finds

warping functions by minimising a penalised squared error criterion which is de-

pendent on a target function (usually a mean function) and a smoothing penalty

based on the second derivative of the warping function. They also introduce a

Procrustes fitting criterion to update estimates of the warping functions. Tang

and Müller (2008) describe a method where pairwise warping functions are cal-

culated to align function i to all other n − 1 functions. The overall warping

function for function i is then found as the average of the n − 1 pairwise warp-

ing functions. A semiparametric approach to estimating the warping functions is

provided by Gervini and Gasser (2004) where the warping functions are modelled

using B-spline component functions multiplied by scores such that

gi(s) = s +

q∑
j=1

kijφj(s)

where φj(s) = cT
j β(s) for a set of B-spline basis functions β(s). The B-spline

component functions are estimated from the data so only the scores kij have to

be individually estimated, hence the semiparametric nature of the process. The

warping functions can also be estimated nonparametrically using nonparametric

maximum likelihood methods as outlined by Rønn (2001) and Gervini and Gasser

(2005). Another method for function alignment is based on the process of dy-

namic time warping developed in engineering originally for speech analysis. Both

Wang and Gasser (1997) and Wang and Gasser (1999) describe how dynamic

time warping can be used to align functions in the general setting. For a general

overview Ramsay and Silverman (1997) contains a chapter on the registration of

functional data which describes a variety of techniques for aligning functions.

Taking the piecewise average of the aligned function produces an average

function which gives a good representation of the average pattern of the functions

and the average value of the function at the characteristic points. Averaging of the

aligned functions is called structural averaging. Comparing structural averages

for various groups is one of the major reasons for aligning functions.

2.3.4 Selected recent literature on modelling with func-

tional data

The scope of functional data analysis is too large to make a comprehensive

overview feasible. However, since this thesis will be concerned with techniques
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which involve modelling using functional data, this section will briefly introduce

some recent literature from this area.

Ramsay and Silverman (1997) introduces functional linear models for func-

tional responses. They suggest that a functional response yi(t) can be modelled

using a functional predictor xi(s) as

yi(t) = α(t) +

∫

s

xi(s)β(s, t)ds + εi(t)

where the regression function β is a function of both s and t. Cuevas et al. (2002)

investigate the convergence of the regression function and also the consistency of

the results while Cardot et al. (1999) also discuss convergence of the estimator.

A comparison of various methods to calculate the estimator of the regression

function is given by James and Silverman (2005). Rice and Silverman (1991)

treat the response as a stochastic process and attempt to estimate the mean and

covariance structure simultaneously. The mean for each response is simply the

expected value of the response whilst the kernel covariance function is dependent

on the responses. Yao et al. (2005) and Shi et al. (2007) provide alternatives to

this method with the difference in methods being that in the former the covari-

ance structure is dependent on s and is also specifically designed for sparse data

whereas in the latter the covariance structure is dependent on the xi(s). In Shi

et al. (2007) the issue of heterogeneity is not discussed and this is addressed in Shi

and Wang (2008). An F-test to investigate the relationship between a functional

response and a functional predictor is described by Yang et al. (2007). There is

also extensive literature on linear models with a functional response and scalar

predictors. Regression with variables of this form is described with an example

in Faraway (1997).

The functional modelling in this thesis will focus on the situation where there

is a scalar response and functional predictors. Ramsay and Silverman (1997)

introduce a functional linear model for a scalar response with a single functional

predictor. This is an analogue of the case with a functional response such that

yi = α +

∫

s

xi(s)β(s)ds + ε

where a functional parameter is applied to each functional predictor. As stressed

by Besse et al. (2005), estimating the functional parameter requires some form
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of discretisation. This can be done either by discretising the functional predic-

tors and making the problem a scalar multivariate problem or by representing

the functional predictors using splines. The technique of using splines for the

discretisation will be discussed further and implemented in Section 6.1.3. An

extension of the technique employed by Ramsay and Silverman (1997), which

also estimates the between curve variation as well as the within curve variation,

is employed by James (2002) while a method which accounts for variation in

the predictors when estimating the functional parameter is introduced by Cardot

et al. (2007). Müller and Stadtmüller (2005) introduce a generalised functional

linear model which is estimated using functional quasi-likelihood. In much of the

work in this area the major interest is in interpreting the estimate of the func-

tional parameter. Due to this Cardot and Sarda (2006) and Li and Hsing (2007)

discuss the convergence of β̂(s) to β(s) whilst Cai and Hall (2006) concentrate on

optimising the prediction of
∫

s
xi(s)β(s) or α +

∫
s
xi(s)β(s). Further Apanaso-

vich and Goldstein (2008) discuss how β(s) should be estimated to optimise the

prediction of future responses. An extension to the functional linear model is the

varying coefficient functional model proposed by Cardot and Sarda (2008) where

the functional parameter can vary according to the other scalar inputs.

Nonparametric techniques can be used to estimate an unknown scalar re-

sponse from a functional predictor using known response-functional predictor

pairs. Ferraty and Vieu (2006) give a good overview of techniques using kernel

functions and semi-metrics to predict the response. Estimating the response as

the conditional expectation of the unknown response given the functional pre-

dictor will be discussed and implemented in Chapter 6. Bias, variance, mean

square errors and asymptotic distributions for the predictor can be found in Fer-

raty et al. (2007). Methods estimating the unknown response as the median of

the cumulative distribution function of the conditional density, or as the mode of

the probability density function of the conditional density, are also described by

Ferraty and Vieu (2006). An alternative to the kernel and semi-metric estimator

is proposed by Báıllo and Grané (2007) and is based on local linear regression.

Cardot and Sarda (2006) describe two tests, one which relies on the χ2 distri-

bution and the other which approximates the χ2 distribution using a Gaussian

distribution, to formally test whether the functional predictors are related to the

response while Cardot et al. (2004) introduce a computational test of no effect

using a permutation test. The regression operator found nonparametrically can

also be found using functional principal components analysis. This idea was
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proposed by Bosq (1991) and developed by Cardot et al. (1999).



Chapter 3

Analysis of Plane Curves

3.1 Characterising Plane Curves

A plane curve is a curve which is contained in a two-dimensional plane. This

section will look to describe a plane curve as a function of how much the curve

is bending at points along the curve. For a plane curve the amount of bending

experienced at each point is a scalar value called curvature. A plane curve can

be determined up to rigid transformations by its curvature.

Much of the current work on shape analysis (Dryden and Mardia (1998) give

an excellent overview of popular techniques) uses a limited number of landmarks

to describe the shape. Using only a limited number of landmarks may well result

in a large amount of useful information being lost. Furthermore, if the shapes

lie in different areas of space, Procrustes methods using landmarks (or pseudo-

landmarks) are required to align the shapes. The technique of using curvature

to analyse shapes offers an alternative to these approaches. Curvature can be

calculated over the whole curve which limits the amount of information about the

shape which is lost. Furthermore, since curvature is independent of the position

of the shape in space then analysing shapes by curvature avoids the need for any

use of Procrustes methods.

Before describing the calculation of curvature it is important to define various

terms and the way that these relate to curvature.

3.1.1 Arc length

Suppose that an arbitrarily parameterised curve r(a) = [x(a), y(a)] is represented

by n points (a1, . . . , an say) on the curve. If the coordinates of any two points ab

31
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and ac are [x(ab), y(ab)] and [x(ac), y(ac)] respectively then the distance between

these two points is

Dist(ab, ac) =
√

[x(ab)− x(ac)]2 + [y(ab)− y(ac)]2

Now approximate the curve by the lines which successively connect the points

a1, . . . , an. Then the length of the curve can be approximated as the length of

the line segments which connect the points

L =
n−1∑
i=1

√
[x(ai+1)− x(ai)]2 + [y(ai+1)− y(ai)]2

If the curve is rectifiable, as n increases L will approach the true length of the

curve. The distance of a point along the curve, calculated in this way, is the arc

length of the curve at this point. Therefore the arc length (sq say) at any point

aq will be given by

sq =

q−1∑
i=1

√
[x(ai+1)− x(ai)]2 + [y(ai+1)− y(ai)]2 (3.1)

3.1.2 Tangent and normal vectors

Suppose there is a curve r(s) = [x(s), y(s)] which is parameterised by arc length

s as opposed to the arbitrary parameter a in Section 3.1.1. Moving along the

curve then means to move along the curve in the direction in which the arc length

increases. At each point on the curve it is possible to define a vector, called the

tangent vector, which has unit length and which points in the direction that

the curve is travelling. To calculate the tangent vector at the point r(si) say,

consider two points r(si) = [x(si), y(si)] and r(si + h1) = [x(si + h1), y(si + h1)].

As h1 approaches zero the line which passes through both r(si) and r(si + h1)

approaches the tangent line at r(si). The tangent vector at r(si) is a unit length

vector in the direction of the tangent line. The tangent vector at the point r(s)

will be denoted by t(s).

The normal vector is a unit vector which is perpendicular to the tangent

vector in the anti-clockwise direction. The normal vector at the point r(s) will

be denoted by n(s).



CHAPTER 3. ANALYSIS OF PLANE CURVES 33

3.1.3 Curvature and the Frenet formulae

Curvature of a plane curve is a scalar measurement of the magnitude of the

bending of the curve at a point as the point moves along the curve with constant

velocity. The curvature at the point r(s) will be denoted by κ(s). Consider the

point r(s) with the tangent vector t(s) and normal vector n(s). The angle that

t(s) makes with the positive direction of the x-axis is called the turning angle of

the plane curve. The turning angle of the curve at the point r(s) will be denoted

by φ(s). Gray (1998) shows that curvature can then be defined as the rate of

change of the turning angle with respect to the arc length. So,

κ(s) =
dφ(s)

ds
(3.2)

Therefore it is clear that a straight line will have curvature of zero since the

turning angle will not change. Figure 3.1 shows the positions of t(s), n(s) and

φ(s) relative to an arbitrary point on a quadratic curve.
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t(s)

n(s)

φ(s)

Figure 3.1: The positions of t(s), n(s) and φ(s) relative to an arbitrary red
point r(s) on a quadratic curve

The tangent vector, t(s), is a unit length vector in the direction of the slope

of the curve at the point r(s). Therefore the direction of the tangent vector can

be calculated by the first derivative of the curve with respect to arc length. To

find the tangent vector, and ensure it has unit length, the vector given by the
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first derivative of the curve with respect to arc length is normalised. However

Pressley (2001) shows that the magnitude of this vector is one. Therefore the

tangent vector at r(s) is given by

t(s) =
dr(s)

ds
(3.3)

Since the tangent vector has unit length t(s) · t(s) = 1. Differentiating the

scalar product with respect to arc length gives

0 = (t(s) · t(s))′ = t′(s) · t(s) + t(s) · t′(s) = 2(t′(s) · t(s)) (3.4)

Therefore t′(s) · t(s) = 0 hence t′(s) and t(s) are mutually perpendicular.

Now consider Figure 3.1 which shows that there is a right-angled triangle

which has hypotenuse t(s) and has the turning angle φ(s) as one of the angles in

the triangle. From, Pressley (2001), using basic trigonometry and the fact that

the tangent vector has unit length it follows that

t(s) = (|t(s)| cos(φ(s)), |t(s)| sin(φ(s)))

t(s) = (cos(φ(s)), sin(φ(s))) (3.5)

From this differentiation gives

dt(s)

dφ(s)
= (− sin(φ(s)), cos(φ(s)))

Once again refer to Figure 3.1. There is a right-angled triangle which has

hypotenuse n(s) and has π
2
− φ(s) as one of the angles in the triangle. Therefore

using basic trigonometry rules

n(s) = (−|n(s)| × cos(90− φ(s)), |n(s)| × sin(90− φ(s)))

n(s) = (− sin(φ(s)), cos(φ(s))) (3.6)

Thus,
dt(s)

dφ(s)
= (− sin(φ(s)), cos(φ(s))) = n(s) (3.7)

This relationship holds regardless of the orientation of t(s) and n(s).
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Now from (3.2) and (3.7) it follows that

dt(s)

ds
=

dt(s)

dφ(s)
· dφ(s)

ds
= κ(s)n(s)

dn(s)

ds
=

dn(s)

dφ(s)
· dφ(s)

ds
= −κ(s)t(s)

These equations give us the famous two-dimensional Frenet formulae

dt(s)

ds
= κ(s)n(s) (3.8)

dn(s)

ds
= −κ(s)t(s) (3.9)

It is clear that curvature is defined by the positions of the tangent and normal

vectors. Section 3.1.2 stated that the normal vector is perpendicular to the

tangent vector in the anti-clockwise direction. The reason for the normal vector

always being set in the anti-clockwise direction is that this makes it possible to

determine the direction the curve is turning simply by the sign of the curvature.

If the curvature is positive the curve is turning towards the normal vector (i.e.

it is turning to the left). Alternatively, if the curvature is negative the curve is

turning away from the normal vector (i.e. it is turning to the right).

3.1.4 Calculating curvature in practice

It has been shown that curvature can be calculated at any point on the curve

from the normal and tangent vectors or from the turning angles along the curve.

Using these techniques for many points on a curve would be time consuming. It

is easier to use a computationally less complex method.

Consider once again an arbitrarily parameterised (i.e. not necessarily para-

meterised by arc length) curve r(a) = (x(a), y(a)) with the arc length of each

point s(a). Recall from (3.2)

κ(a) =
dφ(a)

ds(a)

=
dφ(a)

da
· da

ds(a)

=
dφ(a)/da

ds(a)/da
(3.10)



CHAPTER 3. ANALYSIS OF PLANE CURVES 36

The denominator in (3.10) is the rate of change of arc length s with respect to

the position along the curve a. In other words this is the rate of change of the

distance travelled along the curve with respect to the position along the curve.

Now Gray (1998) shows that the arc length of a parameterised curve is

s =

∫ b

a

√(
dx(a)

da

)2

+

(
dy(a)

da

)2

da

Therefore,

ds(a)

da
=

√(
dx(a)

da

)2

+

(
dy(a)

da

)2

For simplicity from now on
dx(a)
da

and
dy(a)
da

will be represented by x′ and y′

respectively. So,

ds(a)

da
=

√
x′2 + y′2 (3.11)

When considering the numerator a look at Figure 3.1 shows that at any point

tan of the turning angle can be given by the rate of change of y with respect to

x. Therefore,

tan(φ(a)) =
dy(a)

dx(a)
=

dy(a)
da

dx(a)
da

=
y′

x′
(3.12)

Now using (3.12) and the quotient rule it becomes clear that,

d

da
tan(φ(a)) =

x′y′′ − y′x′′

x′2
(3.13)

Also from the identity d
dx

tan(t) = sec2(t) dt
dx

it can be seen that,

d

da
tan(φ(a)) = sec2(φ(a))

dφ(a)

da
(3.14)

Using (3.12), (3.13) and (3.14) and the identity sec2(x) = 1 + tan2(x) it can be

shown that,
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dφ(a)

da
=

1

sec2(φ(a))
· d

da
(tan(φ(a)))

=
1

1 + tan2(φ(a))
· x′y′′ − y′x′′

x′2

=
1

1 + y′2

x′2
· x′y′′ − y′x′′

x′2

=
x′y′′ − y′x′′

x′2 + y′2
(3.15)

By substituting (3.11) and (3.15) into (3.10) it follows that,

κ(a) =

x′y′′−y′x′′

x′2+y′2√
x′2 + y′2

=
x′y′′ − y′x′′

x′2 + y′2
· 1√

x′2 + y′2

=
x′y′′ − x′′y′(
x′2 + y′2

)3/2
(3.16)

Equation(3.16) shows that to calculate the curvature of a plane curve all that is

required is the first and second derivative of the x and y position of the curve with

respect to the position along the curve. It is both convenient and computationally

simple to reparameterise the curve using arc length.

3.1.5 Reconstructing a curve from its curvature

Gray (1998) shows that a plane curve can be reconstructed up to rigid transfor-

mations from its curvature. Equation (3.2) shows that

φ(s) =

∫ s

0

κ(u)du + φ(0) (3.17)

also (3.3) and (3.5) show that

dr(s)

ds
= t(s) = (cos(φ(s)), sin(φ(s)))

r(s) =

(∫ s

0

cos(φ(u))du + a,

∫ s

0

sin(φ(u))du + b

)
(3.18)
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where a and b give the starting position of the reconstructed curve and φ(0) gives

the starting turning angle of the reconstructed curve. The curvature of the curve

and the three parameters a, b and φ(0) give a rigid transformation of the curve.

3.2 Curvature of a Plane Curve: Midline Profile

Example

To illustrate curvature in a plane curve an example, which considers the curvature

of the midline profile of a one year old control child, is discussed. In practice most

curves will be defined by a number of points which show the shape of the curve

rather than a continuous function. Clearly the larger the number of points the

more accurate the representation of the true curve. The profile is defined by 57

data points with the lower-most point being the top of the upper lip and the

upper-most point being the point between the eyes. Movement in the y axis

corresponds to movement up and down the face while movement in the x axis

corresponds to movement into and out of the face. Figure 3.2 shows an example

profile.
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Figure 3.2: An example midline profile of a one year control child.

3.2.1 Calculating curvature

Equation (3.16) gives a formula which can be used to calculate the curvature at

each point for which the value of the x and y coordinates are available. Before this
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equation can be used the curve must be reparameterised. As has been mentioned,

it is often simplest and computationally advantageous to reparameterise the curve

in terms of arc length. The ‘starting point’ of the curve is set as the bottom of

the profile (the point at the top of the upper lip) and using (3.1) the arc length

is calculated such that it increases up the face.

It is important for further analysis that the arc length of each curve is the

same. In practice this will not be the case therefore it is necessary to rescale each

curve. For simplicity it makes sense to rescale to 1; however any value can be

chosen. Of course this rescaling must be done without changing the shape of the

curve. To do this, consider the set of points on the curve (x1, y1), . . . , (xn, yn)

as (αx1, αy1), . . . , (αxn, αyn) where α is an arbitrary scale parameter. Then to

change the size of the curve without changing the shape all that is required is to

change α. Setting α to the reciprocal of the arc length of the original shape will

give an arc length for each curve which runs from (0, 1). The example shown in

Figure 3.2 has already been rescaled while Figure 3.3 shows plots of both the x

and y position against arc length.
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Figure 3.3: Plot of x and y position against arc length for the example profile.

Before using (3.16) to calculate the curvature at each point on the curve

a numerical method is required to calculate the first and second derivative of

both the x and the y position with respect to arc length. The method used

throughout this thesis is to fit a cubic smoothing spline to the points (using the

smooth.spline function in R, see Section 2.3.1 for details) and then use the R

function predict to calculate the first and second derivatives at each point. The

amount of smoothing applied by the spline is defined by the required degrees of
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freedom. The lower the degrees of freedom the smoother the curves of x and y

against s will be. Highly smoothed curves are often desirable for further analysis;

however, too much smoothing may result in information from the original shape

being lost. This trade-off must be made and will be discussed later.

A useful way to represent the curvature of a curve is by plotting curvature

against arc length. This illustrates how the curvature function changes along the

curve. Figure 3.4 shows the calculated curvature plotted against arc length for

the example profile using 10, 20 and 40 degrees of freedom for smoothing.
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Figure 3.4: Plot of curvature against arc length for the example profile using
different degrees of freedom for smoothing.

All three curvature functions in Figure 3.4 show similar trends with an area

of minimum curvature, which corresponds to the area where the profile bends at

the base of the nose, and an area of maximum curvature, which corresponds to

the tip of the nose. Figure 3.2 shows that the profile bends to the right at the

base of the nose which generates negative curvature while the profile bends to the

left at the tip of the nose which generates positive curvature. This will clearly

only be the case when the profile is oriented in the manner shown in Figure 3.2.

Other orientations (i.e. the profile being looked at from the left of the person)

may result in a different sign of curvature although the magnitude of curvature

will remain the same.

It is clear from Figure 3.4 that regardless of the smoothing used the curvature

is zero at the end points of the curve. Recall from Section 2.3.1 that a condition of

natural cubic splines is that the second derivative of the smooth function is equal

to zero at the end points. Since the functions of the x and y position against



CHAPTER 3. ANALYSIS OF PLANE CURVES 41

arc length are fitted using natural cubic splines, and considering the form of

(3.16), it can be seen that using this derivative method to calculate curvature will

always result in zero curvature at the end points. This is a somewhat undesirable

property of the method. However, the facial curves considered in the context of

this thesis are relatively stable at the end points. It is reasonable to assume that

most curvature, and particularly the curvature of interest, will occur towards the

middle of the curves and that zero curvature at the end points is not unreasonable

and certainly not of major concern.

If it were felt that allowing non-zero curvature at the end points was of sig-

nificant interest other types of splines could be used for smoothing. Eilers and

Marx (1996) introduce the idea of p-splines which are an extension of smooth-

ing splines. The major difference is that p-splines do not pre-specify the knots

but allow a form of adaptive knot selection. This gives greater flexibility when

producing a smooth fit of the data. The calculation of p-splines also does not

require the condition that the second derivative is zero at the end of the curve.

Therefore, using p-splines for the smoothing of the x and y position against arc

length would allow for non-zero curvature at the ends of the facial curve. As

mentioned this is not of primary interest in the cleft lip study so the method

used for smoothing here will continue to be natural cubic smoothing splines.

Figure 3.4 also shows the effect of changing the smoothing parameter. The

roughness of the function produced when using 40 degrees of freedom makes it

difficult to interpret and analyse further. The curves produced when using both

20 and particularly 10 degrees of freedom would be simpler to work with. However

it is important to be confident that these smoother functions still approximate the

original data well. To examine how well each of the curvature functions represent

the data it is possible (see Section 3.1.5) to use these to reconstruct the original

profile up to rigid transformations.

3.2.2 Reconstructing the profile

To check how well the curvature functions represent the original profile, a re-

construction of the profile using (3.17) and (3.18) is produced. Equation (3.17)

uses the integral of the curvature function with respect to arc length to calculate

the turning angle at each point. Equation (3.18) uses these turning angles to

calculate an x and y position for each point of the reconstructed profile.

To complete the reconstruction the initial turning angle (φ0) and the starting

position (r(0)) must be specified. Since these are arbitrarily chosen it is difficult
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to compare the original and reconstructed profiles. To allow for a simple compar-

ison it makes sense to rotate and translate the reconstructed profile as close as

possible to the original profile. This can be done using ordinary Procrustes analy-

sis without scaling. The matched profiles using 5, 8 and 10 degrees of freedom

for smoothing can be found in Figure 3.5
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Figure 3.5: Reconstructed profile aligned to the original profile for curvature
when different degrees of freedom for smoothing are used.

Figure 3.5 shows that, as expected, as the degrees of freedom decrease the

reconstructed profile becomes less accurate. The reconstruction made with 5

degrees of freedom is a poor representation of the original profile and although

the reconstruction made with 8 degrees of freedom is much closer to the original

profile there are some inconsistencies, especially at the points where curvature

has high magnitude and at the ends of the profile. For these reasons, and recalling

that the curvature function using 10 degrees of freedom was relatively smooth, 10

degrees of freedom offers a suitable compromise between accuracy and simplicity.

3.2.3 Investigating a collection of curvature curves

It is often the case that interest lies not in a single plane curve but in a group of

plane curves. In many situations a set of plane curves arises from measurement

of a similar feature on different subjects and interest is in investigating this set of

curves and identifying where any differences lie. The example considered here is

an extension of the midline profile example discussed earlier in Section 3.2. Now

the data considered is 71 midline profiles of one year old control children. Each

profile is defined by 57 data points and is rescaled to have arc length 1.
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Curvature is calculated for each profile separately using 10 degrees of freedom

and the curvature functions are shown in Figure 3.6. These all appear to follow

the same pattern. For each profile there is an area of minimum curvature at the

base of the nose and an area of maximum curvature at the tip of the nose. The

major differences between the curvature functions are the positions along the s

axis of these areas of minimum and maximum curvature and the magnitude of

the minimum and maximum curvature.
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Figure 3.6: Plot of curvature against arc length for 71 one year old control
children midline profiles.

It is of interest to produce an ‘average’ curvature function for this group of

children and to use this curvature function to produce an average midline profile

using the methods in Section 3.2.2. One simple way of doing this is to take

the piecewise average of all 71 curvature functions at a number of points along

the s axis. This is done here by finding the mean of the 71 curvature values

at 57 regular points on the s axis and interpolating these mean points to give

the average curvature function shown in Figure 3.7. The reconstructed average

profile is also shown in Figure 3.7.

3.3 Warping of Plane Curves

When there is a set of functions with a common pattern any deviations from this

pattern will either be caused by some between-subject variation or random noise.

It can be useful to remove some of this between-subject variation and noise by
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Figure 3.7: Average curvature curve for the 71 profiles (left). Reconstructed
average profile (right).

aligning the curves so that features common in all (or the majority of) functions

are shifted to a common point on the s axis.

When looking at shape data it is often of interest to shift the curvature func-

tions so that anatomically or geometrically important landmarks are aligned.

Aligning in this way has certain advantages. Firstly, plotting aligned curvature

functions allows for a simple graphical display of the variation in curvature at

the important points. Also it makes it possible to produce an average curvature

function which shows the typical curvature irrespective of individual variations

in position of these landmarks. There are numerous techniques for aligning func-

tions according to corresponding important landmarks, with various advantages

and disadvantages, which range in complexity. The one outlined here is relatively

simple and uses the ideas of Gasser et al. (1990).

Once curvature functions are aligned to the average position of the important

landmarks the major differences between the functions is in amplitude. It can

be informative to investigate the amount of amplitude adjustment required to

produce the average function from each of the individual functions. The technique

which will be outlined to carry out this procedure here will involve adding an

amplitude adjustment function to the individual aligned function.
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3.3.1 Warping technique for functions

The technique of aligning functions according to important landmarks is called

(position) warping. The anatomically or geometrically important landmarks to

which all the functions are aligned are called characteristic points. These char-

acteristic points can be defined using a priori knowledge of the shape of the

functions. However, it is often safer and more informative to estimate these

characteristic points from the data, typically as stationary points. In the curva-

ture function example points of maximum or minimum curvature will clearly be

potential points of interest.

Suppose the aim is to align n functions, fi(s) where i = 1, . . . , n, to the

characteristic points which are to be estimated from the data as points where the

majority of functions have a maximum turning point. For each subject all local

maxima are calculated such that

maxi = (m1i, . . . , mpii)

contains the pi local maxima for curve i. The local maxima for all the curves are

combined so that

MAX = (m11, . . . , mp11, m12, . . . , mpnn)

contains all
∑n

i=1 pi local maxima in the set of functions.

The frequency of the occurrence of all local maxima across s is computed as

a kernel probability density and is plotted. The plot of the kernel probability

density will have modes where many of the functions have a maximum turning

point at roughly the same position on the s axis and these modes indicate po-

tential characteristic points. The width of the mode provides information on the

scatter of the maximum turning point across the functions and the area indicates

in what proportion of functions it has occurred. It is not necessarily the case that

all modes indicate anatomically interesting characteristic points so it is possible a

subset of the peaks is sufficient to align all interesting anatomical points. Clearly

this process could be repeated using minima (or inflection points).

The average positions on the s axis (given by the position of the modes of the

kernel probability density) of the k (say) characteristic points are denoted as

γ̄ = (γ̄1, . . . , γ̄k)
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The positions on the s axis of the characteristic points of each individual function

are calculated. The position of the characteristic points for subject i (say) are

denoted by

γi = (γ1i, . . . γki)

For smooth functions with a common pattern it should be relatively simple to

find the positions of all turning points. If it is not possible to calculate a certain

characteristic point for a subject then this characteristic point is regarded as

missing and the warping for that subject is carried out using the remaining k− 1

characteristic points.

Once γ̄ and all γi have been calculated the warping is relatively simple. The

idea is that the characteristic points on each individual curve are aligned to

the position of the average characteristic points. A ‘position warping function’

gi(s) can be used to transform each curve individually. This is done by setting

gi(γri) = γ̄r such that fi(gi(γri)) = fi(γri) where r = 1, . . . , k, and interpolating

between these points to give a continuous warping function. This results in the

position of the characteristic points on individual curves being shifted to the

position of the average characteristic points. For simplicity g will be used to

denote the warped arc length g(s).

Once position warping has removed much of the position variation, the major

difference between the functions is in the amplitude of curvature. The average

curvature function can be calculated, using piecewise averaging, from the aligned

functions. Then it is possible to produce amplitude adjustment functions which

match the individual aligned functions to the average function and give an indica-

tion of how far, in terms of amplitude, the individual function is from the average.

Given the aligned curvature function fi(g) and the average aligned function f̂(g)

then there is an amplitude adjustment function hi(g) such that

fi(g) + hi(g) = f̂(g)

hi(g) = f̂(g)− fi(g)

The amplitude adjustment function contains the difference in amplitude between

the average function and the individual function and can be calculated by finding

the piecewise difference at regular points on the s axis and interpolating between

these differences. If the individual function is the same as the average function

then hi(g) = 0 for all g. In the areas where the amplitude of the individual

function is larger than the average hi will be negative and in the areas where
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the amplitude of the individual function is smaller than the average hi will be

positive.

3.3.2 Warping of curvature functions: Midline profile ex-

ample

Figure 3.6 in Section 3.2.3 shows the curvature functions of 71 midline profiles

belonging to one year old control children which all appear to follow a similar

pattern with turning points at the base and tip of the nose. It is useful for further

analysis, in particular to look at the variation in the magnitude of curvature at

the turning points, to align the curvature functions so that points of interest are

all at the average position. In this example potential characteristic points will be

chosen to be points where the majority of functions have either a minimum or

maximum turning point.

To calculate the position of the characteristic points all local maxima and

minima on each of the 71 individual curvature functions are pooled together,

separately for maxima and minima, and the kernel probability density of the

occurrence of both maxima and minima calculated. Figure 3.8 shows the kernel

probability density plots and histograms for the occurrence of both maxima and

minima in the curvature functions.

The kernel probability density plots in Figure 3.8 show that there are two

points where the majority of curvature functions have maximum turning points

and two points where the majority of curvature functions have minimum turning

points. The points where the majority of functions have minimum turning points

correspond to the area at the base of the nose where the profile is turning to

the right and the area between the eyes (where the profile is also turning to the

right). The points where the majority of curvature functions have maximum

turning points correspond to the point at the tip of the nose where the profile

is turning to the left and a point at the start of the profile which is where the

profile leaves the top of the upper lip. This implies that there are four potential

characteristic points. However, by considering the curvature functions it is the

minimum at the base of the nose and the maximum at the tip of the nose which

have the largest magnitude of curvature out of the four turning points. It seems

sensible then to align the curvature functions using just these two points as the

characteristic points. It would, however, also be perfectly reasonable to use all

four turning points.
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Figure 3.8: Kernel probability density plots and histograms for the occur-
rence of both maximum (left) and minimum (right) turning

points.

The average position of the characteristic points, given by the corresponding

mode of the kernel probability density, are s = 0.247 for the minimum curvature

at the base of the nose and s = 0.464 for the maximum curvature at the tip of the

nose. The position of the individual characteristic points are found by extracting

the appropriate local maxima and minima.

The warping functions can be produced by setting

gi(0) = 0

gi(γ1) = γ̄1

gi(γ2) = γ̄2

gi(1) = 1

and using cubic spline interpolation between the four points to give a smooth

warping function. In fact any form of interpolation can be used however cubic

splines give a relatively smooth and accurate interpolation. Figure 3.9 shows the
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effect of warping on the curvature function of the example profile used in Sec-

tion 3.2 and the warping function used to produce the aligned curvature function.
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Figure 3.9: Warped example curvature function (left) and the corresponding
warping function (right).

Figure 3.9 shows that the warped curvature function is the initial curvature

function with the characteristic points shifted to the position on the s axis of

the average characteristic points. The main area of interest is to investigate the

collection of warped curvature functions for all 71 cases. A plot of the warped

curvature functions can be found in Figure 3.10.
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Figure 3.10: Aligned curvature functions for the midline profiles of 71 one
year old control children.

Considering the aligned curvature functions in Figure 3.10 it seems that the
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variation in the magnitude of the curvature at the base of the nose is larger than

the variation of curvature at the tip of the nose.

It can also be of interest to further investigate the warping functions that are

used to produce the aligned functions. If no warping is required, the warping

function is linear (i.e. it lies along the line of equality) and the more non-linear

the warping function is the more warping required for aligning. The warping

functions to align the curvature functions are shown in Figure 3.11 (left). It

is difficult to interpret much from the warping functions in this situation apart

from the expected observation that some curvature functions have required more

warping than others. To aid interpretation s is subtracted from g(s) and these

functions are plotted against arc length in Figure 3.11 (right). Deviation of

g(s)−s from zero corresponds to deviation of g(s) from the line of equality. This

perhaps shows more clearly the variation in the warping functions. Using more

characteristic points may have resulted in more interesting warping functions.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

g

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

05
0.

00
0.

05
0.

10

s

g(
s)

−
s

Figure 3.11: Warping functions (left) and warping function minus arc length
(right), for the curvature functions for the midline profiles the

71 control children.

Figure 3.7 in Section 3.2.3 showed the average curvature function and the

average profile this curvature function produced when the average was calculated

as a piecewise average of the original curvature functions. To reduce the infor-

mation about the magnitude of curvature at the characteristic points which is

lost due to piecewise averaging of the original curvature functions, the piecewise

average of the aligned functions is taken. Averaging of this form is called struc-

tural averaging. Figure 3.12 shows a comparison between the structural average
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and the raw average for the 71 curvature functions and a comparison between

the average profiles reconstructed from these curvature functions. Note that the

average profiles using the raw and structural average are Procrustes matched

without scaling.
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Figure 3.12: Raw and structural average for the curvature functions for the
midline profiles of 71 one year old control children (left) and the
reconstructed profiles from these curvature functions (right).

The curvature functions in Figure 3.12 show that when using the structural

average the average function shows greater magnitude, and hence a better repre-

sentation of average curvature, at the two characteristic points than when using

the raw average. The average profiles show that although there were differences

between the raw and the structural average at both the characteristic points it

appears that the differences at the minimum characteristic point have the biggest

effect on the reconstructed profiles with the structural average profile appearing

more curved in the area from the bottom of the profile to the tip of the nose than

the profile constructed using the raw average.

Finding the amplitude adjustment functions required to exactly produce the

structural average curvature function from each of the individual functions gives

an indication of the variation between the aligned functions in terms of amplitude.

The amplitude adjustment functions for this example are shown in Figure 3.13.

Figure 3.13 shows little trend in the amplitude adjustment functions. There

is however an indication that the amplitude adjustment functions have larger

variation around the base of the nose than at the tip of the nose suggesting that

there is more variability between the individuals in terms of curvature at the base
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Figure 3.13: Amplitude adjustment functions to produce the structural aver-
age curvature function from the individual curvature functions

for the midline profiles of 71 one year old control children.

of the nose.

3.4 Calculating Curvature: Alternative Meth-

ods

Section 3.1.4 explained how the curvature of a plane curve can be calculated

using the first and second derivatives of the x and y position with respect to the

arc length s. This technique is both relatively straightforward and effective for

smooth plane curves. However the calculation of the second derivatives in R is

not always reliable for less smooth functions. Furthermore, when investigating

space curves in Chapter 4 third derivatives, which are even less reliably calculated

in R, are required for the derivative calculation of curvature. This section will

outline two possible alternative techniques which avoid the calculation of high

order derivatives and use the midline profile example of Section 3.2 to illustrate

them.

3.4.1 Optimisation method

Section 3.1.5 described how the original plane curve can be reconstructed up to

location and rotation from the curvature function and the arc length of each

point. It seems natural to suggest that a method for calculating the curvature
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function is to find the curvature function which gives the optimum reconstruction

of the original profile.

Consider the example profile. The arc length of each of the 57 points which

represent the profile are available; therefore, all that is required to reconstruct

the profile is the curvature at these 57 points (κ(s1), . . . , κ(sn)). Now think of

each κi where i = 1, . . . , n as unknown parameters. If the starting position is

set such that a = 0 and b = 0 and the starting angle is set such that φ(0) = 0

the κi’s can then be optimised so as to minimise the ordinary Procrustes sum of

squares given by

OSS =
57∑
i=1

[
(Â(i, x)− B̂(i, x))2 + (Â(i, y)− B̂(i, y))2

]

where Â is the centered configuration of the original profile and B̂ is the Pro-

crustes registered configuration of the reconstructed profile.

The optimisation is carried out using the optimize function in R which uses

a combination of golden section search and successive parabolic interpolation to

find the optimal parameters (see Brent (1973) for details). The disadvantage

of this method is that it can be slow. This optimisation was carried out on

the example profile and since the reconstruction function is relatively simple the

optimisation stage was relatively quick. The curvature function returned by this

method and the reconstruction calculated using this function can be found in

Figure 3.14.

It can be seen from Figure 3.14 that although the curvature calculated using

the optimisation method gives a near perfect reconstruction of the original profile

the curvature function is extremely jagged and of little use for further analysis.

To rectify this, the curvature function can be smoothed using smoothing splines;

however it is important to check that the smoothed curvature function still pro-

duces an accurate reconstruction. The smoothed curvature function from the

optimisation for the example profile and the corresponding reconstructed profile

are shown in Figure 3.15. Note that 10 degrees of freedom are used to define the

amount of smoothing.

The initial impression from Figure 3.15 is that when the curvature function

for the optimisation is smoothed problems appear at the end of the curve (or

top of the profile). Except for this issue, the curvature function of the smoothed

optimisation method is very close to the curvature function from the derivative

method apart from at the extrema where the optimisation method shows lower
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Figure 3.14: Comparison of the curvature of the example profile calculated
using the derivative and the optimisation method (left) and the
reconstruction of the profile using the curvature calculated by

the optimisation method (right).
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Figure 3.15: Comparison of the curvature of the example profile calculated
using the derivative and the smoothed optimisation method
(left) and the reconstruction of the profile using the curvature

calculated by the smoothed optimisation method (right).

magnitude of curvature. This may be due to the fact that 10 degrees of free-

dom results in over-smoothing of the curvature function. The degrees of freedom

could be adjusted, however, it appears that there is sufficient evidence to sug-

gest that the optimisation method provides a method for calculating curvature

which results in values similar to the derivative method and produces an accurate
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reconstruction of the original profile.

3.4.2 Frenet method

The Frenet formulae in Section 3.1.3 show how curvature can be calculated if

the tangent and normal vectors are known, while Section 3.1.2 showed how the

tangent and normal vectors are defined. The tangent vector can be calculated

with relative simplicity while the normal vector is simply given by the derivative

of the tangent vector with respect to arc length. Assuming the condition that

the normal vector must be of unit length there are two possible normal vectors.

The convention is that the normal is set anti-clockwise from the tangent.

The first stage of this method is to find the tangent vectors. Say that the

curve f(s) = (x(s), y(s)) parameterised by arc length is defined by n points. To

calculate the direction of the tangent vector (for a point f(si)) it is necessary to

have a point f(si + hi) where hi is very small. To do this a spline can be used to

define the curve so that the curve is defined by an extra l points between each of

the n original points where l is a large number. The distance between each of the

points between f(si) and f(si+1) is given by d = dist(f(si), f(si+1))× 1
l+2

. Now

as d → 0, which happens as l increases, the direction given when moving from

f(si) to f(si+d) becomes the direction of the tangent vector. The tangent vector

is then given by the unit length vector in this direction from f(si). Clearly it is

not possible to find the point f(sn + hn). Therefore the direction of the tangent

vector is set by the direction given when moving from f(sn−hn) to f(sn) and the

tangent vector is given by the unit length vector in this direction from f(sn).

Note that l is only the same between each f(si) and f(si+1) if the original n

points were regularised (i.e. the arc length between them is, or is close to, the

same). If this is not the case the size of l will have to differ between different

points to ensure that the distance between f(si) and f(si+hi
) is the same for all

i. The tangent vector at point f(si) will be denoted as t(si).

The next stage of the method is to calculate the normal vectors. To do this

(at f(si) say) use the fact that, since t(si) and the normal vector (n(si)) are

perpendicular, t(si) ·n(si) = 0 and also that |n(si)| = 1. This gives the following

equations

[x(t(si))× x(n(si))] + [y(t(si))× y(n(si))] = 0

x(n(si))
2 + y(n(si))

2 = 1
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where the only unknowns are the x and y position of the normal vector. Simple

algebra leads to two possible positions for the normal vectors, one of which must

be chosen.

κ(s) is calculated at each point using (3.9) and by differentiating n(s)·t(s) = 0

with respect to s to give (as shown by Gray (1998))

n′(s) · t(s) + n(s) · t′(s) = 0

n′(s) · t(s) = −n(s) · t′(s)
n′(s) · t(s) = −n(s) · κ(s)n(s)

n′(s) · t(s) = −κ(s) (3.19)

Since there are two choices for the normal vector (3.19) can also be written as

n′(s) · t(s) = κ(s) (3.20)

To illustrate this method the midline profile example is used. To calculate

the direction of the tangent vector l is taken to be 9998 between each pair of

neighbouring points since the original profile is approximately regularised. The

normal vectors at each of the points are anti-clockwise perpendicular to the tan-

gent vectors. The normal vectors will therefore be pointing into the face, meaning

that if the profile is bending into the face curvature will be positive and if the

profile is bending away from the face curvature will be negative.

Curvature is calculated at each of the 57 points using (3.20) with the first

derivative of the tangent vector with respect to the arc length calculated using

a smoothing spline with 10 degrees of freedom and the predict function. The

curvature function and the reconstructed profile using this curvature function are

shown in Figure 3.16.

The curvature functions in Figure 3.16 indicate that the major difference

between the derivative method and the Frenet method for calculating curvature

is in the magnitude of curvature at the extrema. More evidence of this is given

by the fact that the reconstructed profile appears to be less curved than the

original profile at the base of the nose and the tip of the nose. This is potentially

due to 10 degrees of freedom resulting in over smoothing for the Frenet method.

The degrees of freedom could be adjusted to produce a curvature function which

provides a more accurate reconstruction of the original nose profile. However, it is

clear from Figure 3.16 that the Frenet method produces curvature functions which
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Figure 3.16: Comparison of the curvature of the example profile calculated
using the derivative and the Frenet method (left) and the re-
construction of the profile using the curvature calculated by the

Frenet method (right).

are similar to those from the derivative method and that provide a reasonable

reconstruction of the original nose profile.

3.5 Concluding Remarks on Plane Curves

This chapter has shown that the shape of a plane curve can be represented by the

curvature experienced by the curve as the arc length changes. Furthermore, it has

shown that a plane curve can be reconstructed from the curvature function up to

the similarity transformations. Three methods have been introduced to allow cur-

vature to be calculated. Of the three methods it would appear that the derivative

method is the simplest to use and the curvature values, even when the curvature

functions have been smoothed to give functions useful for further analysis, can

be used to reconstruct the original plane curve accurately. For most practical

situations it seems reasonable to use the derivative method. However there may

be situations where the other methods are preferable. For example if the interest

was in finding the curvature function which allows the most accurate reconstruc-

tion of the original curve then the optimisation method before smoothing would

be the best option. An interesting point to note is that the Frenet method only

requires the calculation of first derivatives whereas the derivative method requires

second derivatives. The numerical calculation of second derivatives is not always
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straightforward or accurate especially when the function is not smooth. In the

case of the midline profile this is not an issue as the functions of both the x

and y position against arc length were smooth. However, for other features this

may not always be the case and in these situations the Frenet method should be

considered.

This chapter has also shown the advantages of warping the curvature functions

so that characteristic points are aligned, particularly in terms of producing an

average curvature function which more accurately represents the average of the

group. The method outlined was simple; however thought should always go into

which points are chosen as characteristic points. The decision should be based on

both mathematical and anatomical reasoning to allow easily interpretable results.



Chapter 4

Analysis of Space Curves

4.1 Characterising Space Curves

A space curve is a curve which is contained in three-dimensional space. In this

chapter space curves will be investigated with the aim of representing them using

a measurement of how much the curve is bending at particular points on the

curve. The bending in a space curve at a certain point can be measured using

two scalar values called curvature and torsion. Curvature is a measure of how

much the curve bends to one side in its current plane whereas torsion is a measure

of how much the curve bends out of the plane it is currently in. Before calculating

curvature and torsion for space curves some terms must be described in detail.

4.1.1 Arc length

Calculating arc length in a space curve is simply an extension of the methods in

Section 3.1.1. Suppose the arbitrarily parameterised curve r(a) = [x(a), y(a), z(a)]

is defined by n points (a1, . . . , an say) on the curve. If the coordinates of any two

points ab and ac are [x(ab), y(ab), z(ab)] and [x(ac), y(ac), z(ac)] respectively then

the distance between these two points is

Dist(ab, ac) =
√

[x(ab)− x(ac)]2 + [y(ab)− y(ac)]2 + [z(ab)− z(ac)]2

Now approximate the curve as the line which connects the points a1, . . . , an then

the length of the curve can be approximated as the total distance of the line

59
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which connects the points

L =
n−1∑
i=1

√
[x(ai+1)− x(ai)]2 + [y(ai+1)− y(ai)]2 + [z(ai+1)− z(ai)]2

If the curve is rectifiable, as n increases the total distance of the line which

connects the points will approach the true length of the curve. The total distance

a point is along the curve, calculated in this way, is the arc length of the curve

at this point. Therefore the arc length (s say) at any point q will be given by

sq =

q−1∑
i=1

√
[x(ai+1)− x(ai)]2 + [y(ai+1)− y(ai)]2 + [z(ai+1)− z(ai)]2 (4.1)

4.1.2 Osculating plane

At each point on the curve there is a plane which ‘kisses’ the curve. This plane

is called the osculating plane and is defined by Frost and Wolstenholme (2001)

as ‘a plane passing through three adjacent points assuming a limiting position,

when the three points are ultimately coincident.’

To calculate the osculating plane at point i (say) use the points r(ai), r(ai+h)

and r(ai+2h) where h is an arbitrary scalar value. Now let p · q = b denote

the plane which passes through the points r(ai), r(ai+h) and r(ai+2h) where p

is a generic point on the plane, q is a vector orthogonal to the plane and b is a

constant. Then the function

f(a) = r(a) · q− b

has zeros at a = ai, a = ai+h and a = ai+2h. Now using Rolle’s theorem since

f(ai) = 0, f(ai+h) = 0 and f(ai+2h) = 0 then

f ′(l) = 0 l ∈ (ai, ai+h)

f ′(m) = 0 m ∈ (ai+h, ai+2h)

and further

f ′′(u) = 0 u ∈ (l,m)

Therefore as h → 0 then l, m and u all tend to i so the limiting values for q and
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b can be obtained by

f(ai) = r(ai) · q− b = 0

f ′(ai) = r′(ai) · q = 0

f ′′(ai) = r′′(ai) · q = 0

Thus the vectors p− r(ai), r′(ai) and r′′(ai) belong to the same plane. Therefore

the osculating plane is defined by

∣∣∣∣∣∣∣

px − x(ai) py − y(ai) pz − z(ai)

x′(ai) y′(ai) z′(ai)

x′′(ai) y′′(ai) z′′(ai)

∣∣∣∣∣∣∣
= 0 (4.2)

4.1.3 Tangent, normal and binormal vectors

Suppose now that there is a curve r(s) = [x(s), y(s), z(s)] which is parameterised

by arc length s. In a direct extension of the planar method in Section 3.1.2

the tangent vector t(l) is defined as the unit length vector starting at r(l) =

[x(l), y(l), z(l)] and passing through r(l + h1) = [x(l + h1), y(l + h1), z(l + h1)]

where h1 is very small.

The (principal) normal vector n(s) is a unit vector which is perpendicular to

the tangent vector in the osculating plane. Clearly there are two potential normal

vectors which lie in the osculating plane. By convention the normal vector is set

so that the curve is turning towards the direction of the normal vector at each

point although this need not always be the case.

The binormal vector is a unit vector which is perpendicular to both the tan-

gent vector and the normal vector i.e. it is perpendicular to the osculating plane.

The binormal vector at the point r(s) will be denoted by b(s).

It is useful to think of the tangent vector, the normal vector and the binormal

vector making up a moving trihedron of the curve. From this trihedron the cur-

vature measures the rate at which the tangent vector turns and torsion measures

the rate at which the binormal vector turns.

4.1.4 Curvature, torsion and the Frenet formulae

Curvature of a space curve κ(s) is a scalar measurement of the magnitude of the

bending of the curve within the osculating plane at a point as the point moves

along the curve. Torsion of a space curve τ(s) is a scalar measurement of the
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amount that the curve bends out of the osculating plane at a point as the point

moves along the curve. Alternatively torsion can be thought of as the amount

that the osculating plane changes as the point moves along the curve.

Suppose that there is a curve r(s) = [x(s), y(s), z(s)] which is parameterised

by arc length s. Gray (1998) shows that the tangent vector t(s) measures the

rate of change of the position of the curve as the point moves along the curve

(i.e. the rate of change of the position of the curve with respect to arc length).

Therefore

t(s) =
dr(s)

ds
(4.3)

The magnitude of the rate of change of the position of the curve with respect to

arc length will always be 1 since the change in the position of the curve and the

arc length are equivalent. Therefore, t(s) is a vector of unit length.

Section 4.1.3 has already stated that curvature measures the rate at which

the tangent vector turns i.e the rate of change of the tangent vector with respect

to the distance travelled round the curve. Therefore

κ(s) =

∣∣∣∣
dt(s)

ds

∣∣∣∣ (4.4)

Returning to (3.4) it can be seen that t′(s) is perpendicular to t(s) therefore

from Pressley (2001)

n(s) =
dt(s)

ds

gives the principal normal vector (i.e. vector perpendicular to the tangent vector

in the osculating plane). However since (4.4) has shown that

∣∣∣∣
dt(s)
ds

∣∣∣∣ is equal to

κ(s) to ensure that n(s) is unit length it is required that

n(s) =
1

κ(s)

dt(s)

ds
(4.5)

Now since t(s) and n(s) are perpendicular unit vectors in the osculating plane,

the binormal vector b(s) can be defined as

b(s) = t(s)× n(s)

{t(s),n(s),b(s)} give the orthonormal basis of the curve.
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Now again Pressley (2001) shows that db(s)

ds
is parallel to n(s).

db(s)

ds
=

d(t(s)× n(s))

ds

=
dt(s)

ds
× n(s) + t(s)× dn(s)

ds

Using (4.5) it is clear that

dt(s)

ds
× n(s) = κ(s) [n(s)× n(s)] = 0

Therefore
db(s)

ds
= t(s)× dn(s)

ds
(4.6)

Equation 4.6 shows that db(s)

ds
is perpendicular to t(s). It is also by definition

perpendicular to b(s). A vector which is perpendicular to both t(s) and b(s)

must be parallel to n(s). Therefore,

db(s)

ds
= −τ(s)n(s) (4.7)

for a scalar τ(s). This τ(s) is the torsion at point s. Note that the minus sign is

just convention and that torsion can only be defined if curvature is non-zero. If

torsion is zero for the whole curve then the curve is a plane curve.

Finally consider the rate of change of the normal vector with respect to the

arc length i.e. dn(s)

ds
. Pressley (2001) shows that

dn(s)

ds
=

d(b(s)× t(s))

ds

=
db(s)

ds
× t(s) + b(s)× dt(s)

ds
= −τ(s) [n(s)× t(s)] + κ(s) [b(s)× n(s)]

= −κ(s)t(s) + τ(s)b(s) (4.8)

since a × b = −b × a this allows for the change of sign. Combining (4.5), (4.7)

and (4.8) leads to the three dimensional Frenet equations

dt(s)

ds
= κ(s)n(s) (4.9)

dn(s)

ds
= −κ(s)t(s) + τ(s)b(s) (4.10)
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db(s)

ds
= −τ(s)n(s) (4.11)

4.1.5 Calculating curvature and torsion in practice

Section 4.1.4 has shown that at each point the values of curvature and torsion

are affected by the positions of the tangent, normal and binormal vectors. In

practice it is often computationally difficult to manually set the Frenet frame at

each point and so it is useful to produce a simpler method for calculating the

curvature and torsion which uses the derivatives of x, y and z against s. Gray

(1998) explains how this is done for an arbitrarily parameterised curve. However

in this section, and also throughout the thesis, this will be simplified to consider

the case where the curve is parameterised by arc length.

For simplicity the first, second and third derivatives of the position of the curve

with respect to s (i.e.
dr(s)
ds

,
d2r(s)
ds2 and

d3r(s)
ds3 ) will be denoted by r′(s), r′′(s) and

r′′′(s) respectively where r(s) = [x(s), y(s), z(s)] and r′(s) = [x′(s), y′(s), z′(s)].

Section 4.1.4 shows that

r′(s) = t(s)

r′′(s) =
dt(s)

ds
= κ(s)n(s)

Now consider the cross product of r′(s) and r′′(s). This gives

r′(s)× r′′(s) = t(s)× κ(s)n(s)

= κ(s)(t(s)× n(s))

r′(s)× r′′(s) = κ(s)b(s) (4.12)

Taking the magnitude of both sides of (4.12) shows that

|r′(s)× r′′(s)| = |κ(s)b(s)|
= κ(s) |b(s)|

κ(s) = |r′(s)× r′′(s)| (4.13)

Therefore the curvature of a space curve parameterised by arc length can be

calculated as the magnitude of the cross product of the first and second derivative

of the position of the curve with respect to arc length.

Now consider the third derivative of the position of the curve with respect to
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arc length.

r′′′(s) = (κ(s)n(s))′ = κ′(s)n(s) + κ(s)n′(s)

Using (4.10) and the fact that t(s), n(s) and b(s) are mutually perpendicular it

follows that

b(s) · r′′′(s) = b(s) · [κ′(s)n(s) + κ(s)n′(s)]

= κ′(s)[b(s) · n(s)] + κ(s)[b(s) · n′(s)]
= 0 + κ(s)[b(s) · {−κ(s)t(s) + τ(s)b(s)}]
= κ(s)[−κ(s){b(s) · t(s)}+ τ(s){b(s) · b(s)}]
= κ(s)[0 + τ(s)]

b(s) · r′′′(s) = κ(s)τ(s) (4.14)

Using (4.12) and (4.13) this becomes

(
r′(s)× r′′(s)

κ(s)

)
· r′′′(s) = κ(s)τ(s)

1

κ(s)2
((r′(s)× r′′(s)) · r′′′(s)) = τ(s)

τ(s) =
((r′(s)× r′′(s)) · r′′′(s))

|r′(s)× r′′(s)|2 (4.15)

Therefore the torsion of a space curve parameterised by arc length can be calcu-

lated from an equation (4.15) which uses the first, second and third derivative of

the position of the curve with respect to arc length.

4.1.6 Reconstructing a curve from curvature and torsion

Gray (1998) shows that a space curve can be reconstructed up to rigid transfor-

mations from its curvature and torsion however the process is more complex than

for plane curves. Suppose that the Frenet formulae ((4.9), (4.10) and (4.11)) and

the first derivative of the position of the curve with respect to the arc length (4.3)

are rewritten so that

r′i(s) = ti(s)

t′i(s) = κ(s)ni(s)

n′i(s) = −κ(s)ti(s) + τ(s)bi(s)

b′i(s) = −τ(s)ni(s)
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where i = (1, 2, 3) represents the x, y and z values of each vector. This gives

a system of 12 differential equations. The initial conditions of this system of

differential equations are

ri(s1) = li

ti(s1) = mi

ni(s1) = ni

b1(s1) = m2n3 −m3n2

b2(s1) = m3n1 −m1n3

b3(s1) = m1n2 −m2n1

where
∑3

i=1 m2
i =

∑3
i=1 n2

i = 1 and
∑3

i=1 mi ·ni = 0. The initial conditions choose

an arbitrary starting point and ensure that t(s), n(s) and b(s) are mutually per-

pendicular vectors of unit length. Since there is a system of ordinary differential

equations with initial conditions it is possible to find a unique solution. Boyce

and DiPrima (1992) show that if curvature and torsion are constant it is possible

to solve this system of differential equations. However, since curvature and tor-

sion change along the curve the differential equations must be solved numerically.

The Runge-Kutta method is both a ‘relatively simple and sufficiently accurate’

(Boyce and DiPrima (1992)) technique to solve a set of differential equations

of this kind. The Runge-Kutta formula assumes that the values of the series

of differential equations are known at a point sn and calculates the values at

sn+1 using a weighted average of values taken at different points in the interval

sn ≤ s ≤ sn+1. To express the method rewrite the system of ordinary differential

equations so that

Y′(si)
T = β(si)Y(si)

T (4.16)

where

Y(si) = [t1(si),n1(si),b1(si), t2(si),n2(si),b2(si), t3(si),n3(si),b3(si), r1(si), r2(si), r3(si)]
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and

β(si) =




0 κ(si) 0 0 0 0 0 0 0 0 0 0

−κ(si) 0 τ(si) 0 0 0 0 0 0 0 0 0

0 −τ(si) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 κ(si) 0 0 0 0 0 0 0

0 0 0 −κ(si) 0 τ(si) 0 0 0 0 0 0

0 0 0 0 −τ(si) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 κ(si) 0 0 0 0

0 0 0 0 0 0 −κ(si) 0 τ(si) 0 0 0

0 0 0 0 0 0 0 −τ(si) 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0




The general Runge-Kutta formula can be found in Boyce and DiPrima (1992).

More specifically, for the reconstruction of the curve problem it becomes

Y(sn+1)
T = Y(sn)T +

h

6
(kn1 + 2kn2 + 2kn3 + kn4) (4.17)

where

kn1 = β(sn)Y(sn)T

kn2 = β(sn +
1

2
h)Y(sn +

1

2
hkn1)

T

kn3 = β(sn +
1

2
h)Y(sn +

1

2
hkn2)

T

kn4 = β(sn + h)Y(sn + hkn3)
T

and h is the distance between point n and point n + 1. The sum 1
6
(kn1 + 2kn2 +

2kn3 + kn4) can be interpreted as the average movement in the curve with kn1

accounting for the movement at sn, kn2 and kn3 accounting for the movement at

the midpoint between sn and sn+1 and kn4 accounting for the movement at sn+1.

Using the curvature values (κ(s) = [κ(s1), . . . , κ(sn)]), the torsion values

(τ(s) = [τ(s1), . . . , τ(sn)]) and the arc lengths (s1, . . . , sn) it is possible to re-

construct a curve up to rigid transformations. The initial values of the system of

differential equations are Y(s1). Using the Runge-Kutta method it is possible to

calculate Y(s2) and then repeat until Y(sn) has been calculated. This gives the
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position along with the tangent, normal and binormal vectors at all n points on

the curve.

4.2 Curvature and Torsion of a Space Curve:

Midline Profile Example

To investigate curvature and torsion in a space curve the midline profile example

from Section 3.2 will be extended from two-dimensions to three-dimensions. The

profile is defined by 57 data points with the x axis showing movement across the

face, the y axis showing movement up and down the face and the z axis showing

movement in and out of the face. To illustrate the methods an example profile

will be used. This is the same profile which was used to illustrate the methods

in Section 3.2 and is plotted in Figure 4.1 from side on and from straight on.

1.0 1.2 1.4 1.6

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

z

y

−0.4 −0.2 0.0 0.2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

x

y

Figure 4.1: Plot of the example profile from side on (left). Plot of example
profile from straight on (right).

The start of the curve is taken as the lowest point on the y axis (i.e. the

point at the top of the upper lip) and arc length increases as the curve moves

towards the top of the face. All profiles are rescaled so that the three-dimensional

arc length is equal to 1. The method for doing this is a simple extension of the

rescaling method from Section 3.2.1 with the z coordinate also included.

Chapter 3 described three methods for calculating the curvature of a plane

curve. These methods will be extended to space curves to allow calculation of

curvature and torsion. Furthermore a new method involving two perpendicular
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planes will be introduced.

4.2.1 Derivative method

Section 4.1.5 defined two formulas, (4.13) and (4.15), to calculate the curvature

and torsion of a space curve using the first, second and third derivatives of the x, y

and z position with respect to arc length. Taking each direction individually this

can be done numerically by using smoothing splines. The curvature and torsion of

the example profile are calculated using (4.13) and (4.15) and smoothing splines

with 10 degrees of freedom. The curvature and torsion functions are shown in

Figure 4.2. Note that the torsion value calculated for the first point was greater

than 600 so this is removed to aid the representation.
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Figure 4.2: Plot of curvature (left) and torsion (right) function for the ex-
ample profile.

From an initial inspection the curvature function from Figure 4.2 is close to

what would be expected with two areas of large bending corresponding to the

base of the nose and the tip of the nose. The torsion function however was

extremely large at the start of the profile and further shows a small area of very

large magnitude torsion which is unexpected considering the smoothness of the

midline profile. To check the accuracy of the curvature and torsion functions they

are used to reconstruct the profile using the methods of Section 4.1.6. The initial

values chosen (as they will be throughout the thesis) are

r(s1) = (0, 0, 0)
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t(s1) = (1, 0, 0)

n(s1) = (0, 1, 0)

b(s1) = (0, 0, 1)

This results in a reconstructed space curve which is not at all like the three-

dimensional midline profile.

It may be that the torsion function is incorrect due to higher order derivatives

not being accurately estimated using the smoothing spline technique in R. To

investigate this consider the simple curve y = x5 with −2 ≤ x ≤ 2 defined by

57 points. Clearly y′ = 5x4, y′′ = 20x3 and y′′′ = 60x2. Figure 4.3 shows the

estimated first, second and third derivatives of y with respect to x using 10 degrees

of freedom and compares the estimates to the actual values of the derivatives.
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Figure 4.3: Plot of y = x5 and the comparison between the estimate and the
actual values of the first, second and third derivatives.

Figure 4.3 shows that, excluding a few serious problems at the start and end

of the curve, the smoothing spline technique is fairly accurate at estimating the

first and second derivatives of the simple curve. However the technique seems to

have serious problems estimating the third derivative. The difficulties experienced

here occurred when estimating the derivatives of a simple curve. In practice the

curves will be more complex. This suggests that the torsion values calculated
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using this method may be questionable. The derivative technique for calculating

curvature and torsion of a space curve runs into difficulties due to the issue of

the inaccuracy of estimating higher order derivatives using the smoothing spline

method.

There are a number of adjustments which could be made to attempt to im-

prove the process of calculating the higher order derivatives. Recall that the

smoothing of the x, y and z position against arc length has been carried out

using natural cubic splines. Considering that for torsion derivatives as high as

order three are required it would perhaps be beneficial to increase the order of

the splines. The estimate of the third derivative in Figure 4.3 illustrates the

problem. Since the order of the spline is the same as the order of the derivative

the estimate of the third derivative is constant in many areas. This illustrates

the fact that the order of the spline should at least be larger than the order of

derivative to be calculated.

In the example the same degrees of smoothing have been used when calcu-

lating the first, second and third derivatives. The calculation of the higher order

derivatives however, is less robust than the calculation of lower order derivatives.

Therefore, it would appear reasonable to apply more smoothing when calculat-

ing the higher order derivatives. Adjusting the smoothing for the different order

of derivatives would potentially stabilise the process of estimating the high or-

der derivatives and allow a more stable estimate of the curvature and torsion

functions.

Section 3.2.1 briefly introduced the idea of p-splines proposed by Eilers and

Marx (1996). P-splines allow adaptive knot selection which offers greater flex-

ibility in the smoothing process. Smoothing using p-splines is known to give a

straightforward and reliable method for estimating the derivatives of the smooth

function. Replacing natural cubic splines with p-splines may improve the estima-

tion of higher order derivatives and therefore the estimated curvature and torsion

functions.

It is clear that a number of adjustments could be made to improve the esti-

mation of the higher order derivatives. However, even allowing for these adjust-

ments, high order derivatives are difficult to calculate accurately and robustly.

Therefore, the two alternative methods introduced for plane curves in Section 3.4

are extended to space curves to remove the need for calculation of higher order

derivatives.
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4.2.2 Optimisation method

Section 4.1.6 outlined a method which can be used to reconstruct a curve from

the curvature and torsion functions. It seems natural to attempt to calculate

the curvature and torsion functions to allow the reconstruction of the original

curve with the greatest possible accuracy. Consider the example midline profile

where the curve is defined by 57 points. Since the arc length at each point is

available all that is required to produce a reconstruction, using the Runge-Kutta

method from Section 4.1.6, of the original profile is the curvature κ(s1), . . . κ(sn)

and torsion τ(s1), . . . τ(sn) at each point. That means the aim is to find the κi’s

and τi’s which minimise the ordinary Procrustes sum of squares given by

OSS =
57∑
i=1

[
(Â(i, x)− B̂(i, x))2 + (Â(i, y)− B̂(i, y))2 + (Â(i, z)− B̂(i, z))2

]

where Â is the centered configuration of the original profile and B̂ is the Pro-

crustes registered configuration of the reconstructed profile and the sum is over

all 57 points which define the midline profile curve. To simplify the problem the

κi’s are not forced to be positive i.e. the normal vectors do not have to be set so

that the curve is bending towards them.

Once again the optimize function can be used to carry out this optimisation.

However optimising over 114 parameters (57 curvature values and 57 torsion

values) requires a lot of computing power and will require many iterations of the

function. This process was carried out on 5 control profiles. The results for the

example profile will be shown below but Table 4.1 shows the length of time taken

to carry out the optimisation procedure for each of the 5 control profiles.

Profile Time Taken (hours)
1 3.06
2 2.71
3 2.95
4 3.06
5 2.85

Mean 2.93

Table 4.1: Time taken to carry out the optimisation method on 5 example
profiles.

Table 4.1 shows that on average carrying out this optimisation method on a
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control midline profile takes nearly 3 hours. Considering that in a study there

could be numerous subjects the considerable computing time required is a po-

tential drawback of this method. However, it is still of interest to investigate

how the optimisation method performs on the example profile. Figure 4.4 shows

curvature and torsion functions calculated using the optimisation method.
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Figure 4.4: Plot of both the raw and smoothed curvature and torsion func-
tions for the example profile calculated using the optimisation

method.

The raw curvature and torsion functions in Figure 4.4 are extremely rough and

are difficult to analyse. Therefore smoothing is applied to the functions with 10

degrees of freedom to produce functions which are much easier to interpret. The

smoothed curvature function seems reasonable with high magnitude curvature at

the base and tip of the nose. The smoothed torsion functions seem unrealistically

high at the tails but apart from that show only one area of high torsion just before

the base of the nose which is not unreasonable.

Using the Runge-Kutta method the original profile is reconstructed using both

the raw and smoothed curvature and torsion functions with the reconstructions

matched to the original profile, using ordinary Procrustes analysis, and shown in

Figure 4.5.

Using both the raw and the smoothed functions it appears that the original

profile is reconstructed fairly accurately. It does seem however that the recon-

structed profiles come away from the original profile at the area between the

base of the nose and the tip of the nose. Somewhat surprisingly this occurs for

the reconstruction using the raw functions as well as the smoothed functions. A
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Figure 4.5: Plot of the reconstruction of the example profile using the raw
and smooth curvature and torsion functions calculated using op-

timisation from side on (left) and front on (right).

positive aspect, however, is that the smoothed functions do not seem to perform

particularly worse in the reconstruction than the raw functions.

Calculating curvature and torsion using this optimisation method has the

clear advantage of ensuring the curvature and torsion values allow an accurate

reconstruction of the original curve. However there are two major disadvantages

of this method. Firstly it is computationally expensive and the more points that

define the curve the longer the process will take. Secondly the optimisation is

simply a numerical method to ensure an accurate reconstruction meaning the

anatomical interpretation of curvature and torsion is often unclear.

4.2.3 Frenet method

Section 4.1.5 described how the derivative formulae for curvature and torsion

came from the directions of the tangent, normal and binormal vectors (the Frenet

frame) and further recalling (4.9), (4.10) and (4.11) it is clear that if the Frenet

frame is defined at each point of the curve it is simple to calculate curvature

and torsion. The process for doing this is not as simple as using the derivative

method; however it only requires the first derivative of the normal vector and so

it should be more robust.

To calculate the Frenet frame at the point r(si) = [x(si), y(si), z(si)] the

osculating plane must be defined. As shown in Section 4.1.2 to calculate the

osculating plane the points r(si + h1) and r(si + h2) must be found. To do this



CHAPTER 4. ANALYSIS OF SPACE CURVES 75

a spline can be used to interpolate the curve so that the curve is defined by an

extra l points between each of the n original points where l is a large number. If

l is sufficiently large then the osculating plane can be defined by the point r(si)

and the next two points given by the spline. For the final point in the curve the

previous two points are used. It is then simple to calculate the osculating plane

at each point as the plane which contains the point and the two neighbouring

points.

Now that there is an equation for the osculating plane it is relatively simple to

define the tangent, normal and binormal vectors using the ideas of Section 4.1.3.

The first stage is to calculate the tangent vector. The tangent vector for the point

at si is the unit length vector which starts at r(si) and passes through r(si +h1).

For the final point in the curve the tangent vector is a unit length vector which

starts at r(si) and travels in the direction defined by the vector which starts at

r(si−h1) and passes through r(si). The tangent vector, denoted as t(si), will by

definition lie in the osculating plane.

Recalling that the binormal vector, denoted as b(si), is perpendicular to the

osculating plane it is clear that the binormal vector is either the unit length

normal vector to the osculating plane or the negative of the normal vector to the

osculating plane depending on the desired interpretation of torsion.

Finally by recalling that the normal vector, denoted as n(si), is perpendicular

to both the tangent vector and the binormal vector then the normal vector can

be calculated by the cross product of the tangent and binormal vectors

n(si) = t(si)× b(si)

or

n(si) = b(si)× t(si)

since the cross product of two vectors gives a vector which is mutually perpendic-

ular to both original vectors. Also since both t(si) and b(si) are of unit length

n(si) will be of unit length. The choice of the normal vectors is dependent on

the desired interpretation of curvature.

Once the tangent, normal and binormal vectors have been calculated at each

point the curvature and torsion can be calculated using (4.9) and (4.11). Sec-

tion 3.4.2 equation (3.19) showed that

κ(si) = −n′(si) · t(si) (4.18)
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where n′(si) represents
dn(s)

ds
. Similarly by differentiating n(si) · b(si) = 0 with

respect to s it can be shown that

n′(si) · b(si) + n(si) · b′(si) = 0

n′(si) · b(si) = −n(si) · b′(si)

n′(si) · b(si) = −n(si) · (−τ(si)n(si))

n′(si) · b(si) = τ(si) (4.19)

Therefore all that is required to calculate the curvature and torsion at each point

of the profile is to find the tangent vector, normal vector, binormal vector and

the first derivative of the normal vector with respect to arc length.

This process was used to calculate the curvature and torsion of the example

profile. The osculating planes tended to cut vertically through the face and

the binormal vectors were set to point to the left of the face whilst the normal

vectors were set to point into the face. This means that the majority of the

bending explained by the curvature value is made up of bending into and out

of the face whilst the majority of the bending explained by the torsion value

is bending across the face. However since the osculating plane twists whilst it

moves along the midline profile curvature and torsion do not exclusively have this

interpretation.

Figure 4.6 shows the curvature and torsion functions for the example pro-

file with the first derivative of the normal vector calculated using the predict

function on a smoothing spline with 10 degrees of freedom.

Figure 4.6 shows that the curvature values are in general a lot larger than

the torsion values. Since the osculating planes were mainly cutting through the

middle of the midline profile the low torsion values correspond to the fact that

there is not a lot of movement across the face and that most of the movement

into and out of the face can be accounted for by curvature which has a large

magnitude at the base and tip of the nose.

Using the Runge-Kutta method the original profile is reconstructed using

the curvature and torsion functions calculated using this Frenet method. The

reconstructed profile is matched to the original profile with the result shown in

Figure 4.7.

The reconstruction of the original profile using these curvature and torsion

functions is relatively accurate. There does however seem to be a slight error in

that when looking from side on the reconstruction shows less bending at the base
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Figure 4.6: Plot of curvature (black) and torsion (red) functions for the ex-
ample profile.

and tip of the nose. This may be due to the smoothing involved in the process.
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Figure 4.7: Plot of the reconstruction of the example profile using the cur-
vature and torsion functions calculated using the Frenet method

from side on (left) and front on (right).

The Frenet method has produced curvature and torsion functions which are

relatively smooth and can be used to give a fairly accurate reconstruction of the

original profile. However, the major disadvantage with the method would appear

to be that it is difficult to produce a clear anatomical interpretation of curvature

and torsion. For the profile it has been suggested that curvature accounts for

most of the bending into and out of the face whilst torsion accounts for most of
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the bending across the face but because the Frenet frame twists as the position

moves up the midline profile this anatomical interpretation is not definitive.

4.2.4 Perpendicular plane method

This chapter has already shown some of the difficulties of calculating curvature

and torsion in terms of requiring a large amount of computing power and also

the difficulty in practically interpreting curvature and torsion. In this section a

method is introduced to describe the amount of bending the curve experiences

using two easily interpretable curvature values.

Consider the midline profile example. It would be preferable if there was one

measure which represented the amount the curve bends into and out of the face as

the profile moves up the face and another measure which represents the amount

the curves bends across the face (i.e. from side to side) as the profile moves up

the face. In Traité de Géométrie (1799), Gaspard Monge introduced the chief

ideas of descriptive geometry; namely that a three-dimensional object or curve

can be represented by projecting onto two perpendicular planes. Therefore it

seems reasonable to project the points of the space curve onto two perpendicular

planes, one (the yz plane) which cuts through the face vertically and another (the

xy plane) which lies across the face, and treat the problem as two plane curves.

Then bending in the yz plane is curvature into and out of the face, called yz

curvature, and bending in the xy plane is curvature traversing the face, called

xy curvature. The two plane curvature values at each point are sufficient to

explain the bending experienced by the space curve. Note that to analyse some

facial features, such as the upper lip, it is necessary to define a plane (the xz

plane) which is perpendicular to the other two planes and cuts through the face

horizontally. Bending in this plane, called xz curvature, also measures curvature

into and out of the face and can be used as an alternative to yz curvature. The

curves of an example child’s face projected onto all three planes are shown in

Figure 4.8.

The major difficulty is in setting up the perpendicular planes so that the

bending in each plane is equivalent in all the profiles. One method for doing this

would be to use principal components analysis to set the planes. Consider the

plane defined by the first two principal components after carrying out a principal

components analysis on the coordinates of the profile. The first two principal

components almost completely explain the variation caused by movement up and

down the face (component one) and movement in and out of the face (component
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Figure 4.8: The curves defining the face of a child projected onto the yz (top
left), xy (top right) and xz(bottom left) planes.

two). The third principal component, which is by definition perpendicular to

the first two components, explains variation caused by movement across the face.

Then the plane defined by the first two principal components is a plane which

cuts through the face vertically and becomes the yz plane. The plane defined by

the first and third principal components traverses the face and becomes the xy

plane while the plane defined by the second and third principal components cuts

through the face horizontally and becomes the xz plane. A potential problem

with this method however is that the planes are not set using the orientation of

the face but simply calculated using principal components therefore there may

be questions over the consistency between different subjects.

A preferable alternative to either of these methods would be to set up the
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perpendicular planes using landmarks on the face. To do this a plane which

traverses the face can be calculated using three landmarks on the face. The

landmarks chosen are the corner of the left eye, the corner of the right eye and

the middle of the upper lip i.e. landmarks enL, enR and ls shown in Figure 1.1.

Since the three dimensional co-ordinates of the three landmarks are available it

is simple to calculate the plane. This plane is called the xy plane.

The yz plane can then be calculated using the normal vector to the xy plane,

to ensure that the planes are perpendicular, and a further landmark on the face.

To ensure that the yz plane cuts through the centre of the face the landmark

at the tip of the nose (prn) is chosen. The xz plane is then the plane which is

mutually perpendicular to the yz and xy plane.

The next stage of the process is to project the profile onto these three planes.

To project a point (R = (Rx, Ry, Rz) say) from the profile onto the yz plane

the distance between R and the closest point on the plane (Q say) must be

calculated. The vector from A, which is a point in the plane, to R is AR (=

(Rx − Ax, Ry − Ay, Rz − Az)). Now clearly the direction which will give the

shortest distance between R and Q is the direction given by the normal vector, n.

Therefore the distance between R and Q is given by −n · −AR = n · AR. From

the definition of the dot product this is the projection of AR onto the direction

defined by n and therefore the shortest distance between R and Q. Now the

vector RQ is a vector of length n · AR in the direction of −n therefore

RQ = (n · AR)×−n

RQ = −(n · AR)× n

Therefore the position of the projected point is

Q = R− ((n · AR)× n)

If this is done for all points on the profile a projection of the profile onto the yz

plane is produced. The same process can be carried out for the xy plane and xz

plane.

Now, all that is required to produce the plane projections is to define the axes

in the three dimensional space. The origin for the new set of axes is chosen as the

point at the middle of the upper lip (ls) then the axes of the xy plane are chosen

as the direction of the normal of the yz plane (call this x′) and the direction of

the cross product of the normal from the yz plane and the normal of the xy plane



CHAPTER 4. ANALYSIS OF SPACE CURVES 81

(call this y′). The final axis is defined by the normal of the xy plane (call this z′).

To calculate the position of a point on each axis all that is required is to find the

dot product between the position and the unit length vector lying on the axis. A

plot of the example profile on both the yz and xy planes is shown in Figure 4.9.
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Figure 4.9: Plot of the yz (left) and xy (right) plane projections for the ex-
ample profile.

The curvature in both planes can be calculated using the techniques of Sec-

tion 3.1.4 for plane curves. This allows the curvature both traversing the face

and into and out of the face to be calculated. The yz and xy curvature func-

tions are calculated using 10 degrees of freedom for smoothing and are shown

in Figure 4.10. Note that the s axis is the fixed total arc length of the three-

dimensional curve and not the variable arc length of the plane curves to allow

comparison between cases.

The curvature functions in Figure 4.10 unsurprisingly show that the amount

of bending into and out of the face is much larger than the bending traversing

the face. Further the yz curvature function shows two areas of high magnitude

curvature at the base and tip of the nose. There is perhaps an indication of an

area of slightly higher xy curvature at the tip of the nose.

Section 3.1.5 outlined a technique for reconstructing a plane curve from the

curvature function and arc length. Figure 4.11 shows the curves in the perpen-

dicular planes reconstructed from the yz and xy curvature functions and aligned

to the projected original profile. Note that the arc length used for the reconstruc-

tion is the arc length of the original curve in the perpendicular plane and not the

total arc length of the space curve.
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Figure 4.10: Plot of yz and xy curvature functions for the example profile
where s is the arc length of the space curve.
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Figure 4.11: Plot of the reconstructed yz (left) and xy (right) plane projec-
tions for the example profile.

The reconstruction of the plane projections of the profile using the yz and

xy curvature functions are accurate. The difficulty here is in how to combine

the two plane reconstructions to give an accurate space reconstruction. If the

positions of the reconstructed points on the y′ axis are the same for both plane

reconstructions then the space reconstruction is simply given using the position

of the reconstructed points on the x′, y′ and z′ axes. Since the initial directions

of the plane reconstructions are given by an initial turning angle the problem

of matching the y′ positions for each plane reconstruction, assuming the chosen
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initial position is (0, 0, 0), becomes the problem of finding the two appropriate

initial turning angles. In theory this problem could be solved using the system

of equations

x(si) =

∫ si

s=0

cos(

∫
κ(s)ds + φ1)ds

y(si) =

∫ si

s=0

sin(

∫
κ(s)ds + φ1)ds =

∫ si

s=0

sin(

∫
κ(s)ds + φ2)ds

z(si) =

∫ si

s=0

cos(

∫
κ(s)ds + φ2)ds

where i = 1, . . . , n are the n positions which define the curve and φ1, φ2 are the

initial turning angle of the yz and xy plane reconstruction respectively. How-

ever, in this set of equations there are 4n equations and 3(n − 1) + 2 unknowns

(corresponding to all the reconstructed positions excluding the defined starting

position and the two initial turning angles) therefore in general there are more

equations than unknowns and the system is over-determined.

To avoid having to solve the over-determined system a grid search can be

carried out over all possible (i.e. from 0 to 2π) combinations of the two starting

angles to find the combination which minimises the sum of squared difference

between the y′ positions of the two reconstructions. The optimize function can

be used to efficiently perform this grid search and find the optimum starting

angles. For the example profile the function returns optimum starting angles of

84.53◦ and 89.95◦ with the sum of squared difference between the y′ values of

9.93 × 10−5. Using these starting angles the reconstructed space curve is given

by the z′ and y′ values from the yz plane reconstruction and the x′ values from

the xy plane reconstruction. Figure 4.12 shows the reconstructed curve matched

to the original profile on the cartesian axes using ordinary Procrustes analysis.

The reconstruction of the original profile in Figure 4.12 shows that combining

the plane reconstructions made using the yz and xy curvature functions calculated

by perpendicular planes produces an accurate representation of the original profile

with only minimal evidence of problems in accuracy at the base of the nose.

This perpendicular plane method produces curvature functions which appear

to give an accurate reconstruction of a space curve. The major advantage of this

method is that both yz and xy curvature have very clear anatomical meaning

which is useful for presenting results as well as further analysis.
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Figure 4.12: Plot of the reconstructed profile matched to the original profile
from side on (left) and front on (right).

4.2.5 Investigating a collection of yz and xy curvature

functions

In general, interest lies not in examining the three-dimensional bending of a single

space curve but in comparing the three-dimensional bending of a collection of

space curves. The fact that the amount of bending of the shape is explained

by two scalar values at each point as opposed to the single scalar value in the

planar case presents interesting issues for comparing a collection of curves. The

example which will be considered is an extension of the midline profile example

from Section 4.2 with data from 71 midline profiles of one year old control children

with each three-dimensional profile defined by 57 points and rescaled to have arc

length 1.

The perpendicular plane method (outlined in Section 4.2.4) will be used to

calculate the yz and xy curvature for all 71 profile curves separately. Positive yz

curvature indicates that the profile is bending towards the face whilst negative

yz curvature indicates that the profile is bending away from the face. Positive

xy curvature indicates that the profile is bending to the left when viewed from

front on while negative xy curvature indicates that the profile is bending to the

right. Figure 4.13 shows both curvatures functions, calculated using 10 degrees

of freedom for smoothing, for all profiles.

It is clear from the curvature functions in Figure 4.13 that the range of yz

curvature values is much greater than the range of xy curvature values. This
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Figure 4.13: Plot of yz and xy curvature against arc length for all 71 profiles.

is expected since it seems reasonable that in general midline profiles bend con-

siderably more into and out of the face than across the face. The yz curvature

functions all appear to have one area of minimum curvature which represents

the bending at the base of the nose and an area of maximum curvature which

represents the bending at the tip of the nose. The xy curvature functions do not

exhibit a general pattern, which is not unexpected since there would not appear

to be any anatomical reason for a midline profile to bend to the left or the right

at certain points. However any bending traversing the face appears to occur in

the area which spans from just before the base of the nose to just after the tip of

the nose.

The ‘average’ curvature functions for this group of children can be calculated

by taking the piecewise average of all functions at regular points on the s axis

and interpolating between the average curvature values. These average functions

can then be used to reconstruct the ‘average’ midline profile for this group of

children using the methods detailed in Section 4.2.4. However, the arc lengths of

the original plane curves are required to produce the reconstruction. Although

the arc lengths of the original space curves are rescaled to be of length 1, the

plane curves produced from these space curves are not the same length. To

obtain an average arc length for each of the plane curves, the mean of the arc

length at each of the 57 points which define the profile is calculated across all the

individual curves. This gives the arc lengths for each of the average plane curves

which combined with the average curvature functions can be used to reconstruct

the average feature. Figure 4.14 shows the average curvature functions for this
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group of children as well as the reconstructed profile using these functions.
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Figure 4.14: Plot of average yz and xy curvature functions for all profiles
(top left) and the corresponding reconstructed average profile

from side on (top right) and front on (bottom left).

4.3 Warping in the Space Curve Setting

Section 3.3 used the ideas of Gasser et al. (1990) to outline methods and issues

associated with aligning a collection of curvature functions calculated from the

midline profile defined as a plane curve. To extend these methods to align the

data produced from the midline profile defined as a space curve some issues must

be addressed. The difficulty here is that the bending of each profile is defined by

both the yz and xy curvature functions. To ensure consistency between the yz
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and xy curvature functions the same position warping function must be applied to

both functions. Therefore, the process is similar to the plane curve process with

the major difference being in defining characteristic points using two curvature

functions. Section 4.3.1 will outline a method to define the characteristic points.

Note that this technique could be easily altered to analyse curvature and torsion

curves from standard methodology.

Since the magnitude of the yz and xy curvature values, are to a large degree,

independent it seems reasonable to produce two amplitude adjustment functions

(for both yz and xy curvature) for each midline profile. This can be achieved

using the techniques of Section 3.3.1 without adjustment.

4.3.1 Position warping technique for yz and xy curvature

curves

The major difficulty in the warping process using two curvature functions is

how best to select characteristic points. In the plane curve setting potential

characteristic points were calculated as positions where many of the individual

curvature functions had extrema. A natural extension of this method would be to

use the two curvature functions individually to produce potential characteristic

points.

Suppose that the characteristic points are to be defined as positions where

many individual functions have maximum turning points then the local maxima

in both curvature functions can be calculated for each individual such that

maxyz
κi = (c1i, . . . , cpii)

maxxy
κi = (d1i, . . . , dqii)

where maxyz
κi and maxxy

κi contain the pi and qi local maxima for the yz and xy

curvature functions of subject i respectively. Now all local maxima for each

curvature function can be combined across all subjects such that

MAXyz
κ = (c11, . . . , cp11, c12, . . . , cpnn)

MAXxy
κ = (d11, . . . , dq11, d12, . . . , dqnn)

The position of the modes of the kernel probability density of MAXyz
κ and

MAXxy
κ give the position of potential characteristic points calculated using the yz

and xy curvature functions respectively. Suppose that the yz curvature functions
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return d characteristic points with the average positions γ̄yz
κ = (γ̄yz

κ1, . . . , γ̄
yz
κd) and

the xy curvature functions return e characteristic points with the average posi-

tions γ̄xy
κ = (γ̄xy

κ1 , . . . , γ̄
xy
κe ) then the combined set of characteristic points is the

full ordered d + e length set γ̄ = (γ̄1, . . . , γ̄d+e) where γ̄j < γ̄j+1.

The position warping process is now similar to the plane setting. The char-

acteristic points for each individual, γi, which correspond to the average charac-

teristic points can be found from the set of local maxima. The warping function

gi is then produced by setting gi(γji) = γ̄j such that fi(gi(γji)) = fi(γji) where

j = 1, . . . , d + e and interpolating to give a smooth warping function. If any of

the characteristic points are not present for an individual this point is considered

missing and the aligning is carried out on the remaining d + e − 1 characteris-

tic points. The fact that characteristic points calculated using both curvature

functions produce this single warping function ensures consistency between the

aligned functions.

One potential problem with this method occurs if a characteristic point is

estimated by both the yz and xy curvature functions with slight differences in

the average position. In this situation it is worth considering which of the two

curvature functions is the more natural estimator of the position of interest and

defining the position of the characteristic point using this curvature function. Al-

ternatively simply taking an average of the position estimated by each curvature

function will be sufficiently accurate.

A technique which would avoid this problem and has other appealing prop-

erties is to combine yz and xy curvature to give a global measure of bending at

each point. Korn and Korn (1968) define total curvature of a space curve as

Ω =
√

κ2
yz + κ2

xy (4.20)

If the amount of bending the curve experiences at each point is defined by the total

curvature then warping could be carried out on one function as opposed to two

and the warping process would be the same as the plane curve case in Section 3.3.

Further analysis could then be carried out on the warped total curvature functions

or the warped s axis could be applied to the yz and xy curvature functions and

further analysis carried out on these two warped functions. A potential drawback

of this method is that if the local maxima are evenly spread some peaks which

define characteristic points may be missed unless the bandwidth for calculating

the kernel density is reduced.

Clearly the position warping can be calculated using yz curvature functions,
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xy curvature functions, a combination of these or total curvature functions. The

choice of which method to use is solely dependent on which is most appropriate

for the data available.

4.3.2 Warping of yz and xy curvature functions: Midline

profile example

Figure 4.13 in Section 4.2.5 shows the yz and xy curvature functions of 71 midline

profiles belonging to one year old control children. The two major turning points

of the yz curvature functions at around s = 0.2 and s = 0.4 indicate the base of

the nose and the tip of the nose. These would be the primary points of interest for

aligning the curvature functions. Thinking anatomically it is clear that both these

features and in fact any features of interest on the midline profile will be found

using yz curvature rather than xy curvature. Therefore the warping functions in

this case will be calculated using just the yz curvature functions and then applied

to both functions. The process is exactly equivalent to the plane curve warping.

Potential characteristic points will be estimated as points where the majority

of functions have either a maximum or minimum turning point. Figure 4.15

shows the kernel probability density plots and histograms for the occurrence of

both maximum and minimum turning points in the yz curvature functions.

As for the similar example on plane curves the kernel probability density plots

in Figure 4.15 show two areas, top of the upper lip and tip of the nose, where

the majority of curvature functions have maximum turning points and two areas,

the base and bridge of the nose, where the majority of curvature functions have

minimum turning points. This means that there are four potential characteristic

points to use in the warping process. However when looking at the curvature

functions (Figure 4.13) it is clear that, due to the magnitude of curvature and for

anatomical reasons, the base of the nose and the tip of the nose are the major

points of interest. Due to this it seems reasonable to carry out the warping

process by aligning the functions to the average position of these features. The

average position on the s axis of these characteristic points, calculated by the

corresponding mode of the kernel probability density, is 0.242 for the base of the

nose and 0.459 for the tip of the nose.
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Figure 4.15: Kernel probability density plots and histograms for the occur-
rence of both maximum and minimum turning points of the

curvature curves.

The warping functions can be produced by setting

gi(0) = 0

gi(γ1) = γ̄1

gi(γ2) = γ̄2

gi(1) = 1

and using cubic spline interpolation between the four points to give a smooth

warping function. The warping function is applied to both the yz and xy cur-

vature functions so that the position of each point on the s axis is the same for

both curvature functions to allow them to be directly comparable. The effect of

applying the warping function to the yz and xy curvature functions from the ex-

ample profile and the warping function required to align the functions are shown

in Figure 4.16.

Figure 4.16 shows that the effect of warping on the yz curvature function is

that the maximum and minimum points of yz curvature (i.e. the tip and base

of the nose) have been aligned with the average position. None of the turning
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Figure 4.16: Plot of the actual and warped yz curvature functions (top left)
and actual and warped xy curvature functions (top right) for
the example one year old control children midline profile. The

warping function (bottom left).

points on the xy curvature function have been aligned to the characteristic points.

This implies that in this example the areas of high xy curvature were not at the

base of the nose or the tip of the nose. To consider the effect of warping a plot

of the aligned curvature functions and the corresponding warping functions, and

warping function minus arc length, are shown in Figure 4.17.

Considering the aligned functions in Figure 4.17 it seems that the variation

in the magnitude of curvature at the base of the nose is larger than the variation

in the magnitude of curvature at the tip of the nose. Looking at the aligned xy

curvature functions it appears that in general the profiles have highest magnitude

of xy curvature around the base of the nose and the tip of the nose. It seems
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Figure 4.17: Plot of the warped yz and xy curvature functions (top left).
The warping functions (top right), to align these functions, and

the warping function minus arc length (bottom left).

that the profiles only appear to bend to the left or the right around the area from

the base of the nose to the tip of the nose. Little can be said about the warping

functions except that the amount of warping required by different subjects is, as

expected, variable.

The structural average of the yz and xy curvature functions is calculated as

the piecewise average of these aligned functions and compared to the raw average

in Figure 4.18.
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Figure 4.18: Plot of raw and structural average yz curvature against arc
length (left) and raw and structural average xy curvature

against arc length (right).

The comparison of the raw and structural average for the yz curvature func-

tions, shown in Figure 4.18 shows that the magnitude of the curvature at the

characteristic points was greater for the structural average than the raw average.

The structural average gives a better estimate of the average yz curvature at

the characteristic points across all the profiles. The comparison of the raw and

structural average for the xy curvature functions is interesting. The structural

average follows a similar pattern to the raw average; however, the raw average

has a larger magnitude of xy curvature. Presumably this is due to the fact that

at the characteristic points the xy curvature functions had either a maximum

or minimum of xy curvature. Therefore when these maxima and minima were

aligned the positive and negative curvature values cancelled each other out in the

averaging.

The space curve representation of the midline profile is reconstructed using

the structural average curvature functions and Figure 4.19 shows the comparison

between the average profiles constructed using the raw and structural averages.

The comparison between the reconstructed profiles using both raw and struc-

tural averaging, illustrated in Figure 4.19, shows very little difference across the

face. There does appear to be a slight difference in the reconstructed profiles into

and out of the face. It appears that the structural average profile shows more

bending at the characteristic points (particularly the base of the nose) than the

raw average profile. This is due to the difference in magnitude of curvature at

the characteristic points between the raw and structural averages.
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Figure 4.19: Reconstructed average profile using the raw and structural av-
erage from side on (left) and front on (right).

It is now interesting to investigate how much amplitude adjustment is required

to exactly produce the structural average yz and xy curvature functions from the

aligned individual functions. This is done for yz and xy curvature individually

with the amplitude adjustment functions shown in Figure 4.20.
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Figure 4.20: Amplitude adjustment functions to produce the structural av-
erage yz curvature function from individual yz curvature func-
tions of the control midline profiles (left). Amplitude adjust-
ment functions to produce the structural average xy curvature
function from individual xy curvature functions of the control

midline profiles (right).

Figure 4.20 shows a slight difference in the amplitude adjustment functions
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between yz and xy curvature. Whilst there is an indication that slightly more

amplitude adjustment is required around the base and tip of the nose than the

rest of the nose for yz curvature, this phenomenon is clearer for xy curvature. In

fact, for xy curvature, there is almost no amplitude adjustment required away

from the area between the base and tip of the nose. This is due to the fact there

is almost no xy curvature away from the base and tip of the nose.

4.4 Concluding Remarks on Space Curves

This chapter has shown that describing a space curve by the amount of bending

the curve experiences requires two functions. In standard methodology these two

functions are a function of curvature and a function of torsion where curvature

describes the amount of bending at each point within the osculating plane whilst

torsion describes the amount the curve bends out of the osculating plane. Three

potential methods to calculate curvature and torsion were described; however,

the derivative method ran into problems due to the difficulties in calculating

third derivatives. The optimisation method successfully calculated curvature

and torsion; however, the computing time required was large. Another major

drawback to both the methods, as well as the Frenet method, was the difficulty in

anatomically explaining the curvature and torsion values calculated. To attempt

to remedy this problem a perpendicular plane method was introduced where

the space curve was projected onto two perpendicular planes to describe the

movement of the curve. In the midline profile example these two planes were a

plane which cut through the face vertically and a plane which traversed the face.

In general if anatomical explanation is required, or at least is of interest, from

the functions of curvature then this perpendicular plane method would appear

preferable.

Also described in this chapter were issues of warping a space curve. Clearly

since the bending of the curve is explained by two functions, as opposed to one in

the plane curve setting, this introduced some issues. However, the techniques used

were a direct extension of the techniques used for plane curves. Also introduced

was the idea of describing a space curve using the idea of total curvature. This

is simply a measure of the complete bending in all directions experienced by a

space curve and is given by the square root of the sum of squares of the two

bending values (either yz and xy curvature or curvature and torsion depending

on the method).



Chapter 5

Applications to the Cleft Lip

Problem

The work in Chapters 3 and 4 was concerned with calculating the amount of

bending experienced by the midline profiles of control children in two and three

dimensions respectively. Data are available on 9 children with a cleft lip and 13

children with a cleft lip and palate as well as the 71 control children with the

major interest in comparison between the three groups. The children are one year

old and from the Glasgow area. There are data on other anatomically important

curves as well as the midline profile. The curves which, along with the midline

profile, are marked for potential analysis are the nasal base, the nasal rim, the

upper lip and the nasal bridge. Figure 4.8 showed these curves from a control

child projected onto three perpendicular planes.

The major interest of this chapter is in investigating what differences are ap-

parent between control children and children with a cleft lip and/or palate. Tech-

niques are required to firstly determine whether there appear to be differences

between control and cleft children and secondly to describe these differences. A

number of techniques will be described and then illustrated by a case study on

the upper lip.

5.1 Techniques for Highlighting Differences Be-

tween Control and Cleft Children

The techniques used to highlight and investigate differences in shape between the

facial curves of control and cleft children will concentrate on working with the

96
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curvature functions of the three-dimensional features. Since the perpendicular

plane method (Section 4.2.4) calculates two curvature functions with anatom-

ically interpretable meaning this method will be used. The remainder of this

section will outline the techniques which will be used to analyse the curvature

functions to give comparisons between the control children and the children with

a cleft lip and/or palate.

5.1.1 Curvature functions and average reconstructed fea-

tures

The simplest way to compare the control and cleft children is to look for visually

obvious differences between the curvature functions for each group. If there are

clear differences this may be seen by plotting the curvature functions for each

subject; however, it may be more informative to examine the average curvature

functions for each group. The average curvature function can either be calculated

as the piecewise average of the raw curvature functions or alternatively, to give a

better indication of average curvature at anatomically or geometrically important

points, as the average of the aligned curves. Aligning each group to the average

position of the characteristic points for that group only, as opposed to the global

average, provides structural averages which give a good indication of differences

in the average position on the s axis and average curvature between the groups.

Section 3.3.2 illustrated how the curvature functions in the perpendicular

plane method can be used to accurately reconstruct the original space curve. This

can be done for the average curvature functions to give an average reconstructed

feature for each group. Section 4.2.5 described how the average arc lengths are

sufficient along with the curvature functions to produce the reconstruction. Re-

constructions for each of the groups allows for a simple visual comparison between

the shape of the average feature.

5.1.2 Position and curvature of characteristic points

Section 3.3.1 outlined the warping technique used in this thesis. The technique

involves selecting the position (in terms of arc length) of characteristic points

using turning points in the curvature functions. It is of interest to investigate

any differences between the groups in terms of the position of the characteristic

point and the magnitude of curvature at these characteristic point. This can be

done informally using plots or more formally using multiple comparisons.
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5.1.3 Warping to the average feature

Section 3.3 outlined a method to produce the average curvature function from

an individual function by position warping followed by amplitude adjustment. It

is of interest to investigate whether the amount of warping (both position and

amplitude) required to warp to the average function is the same for all groups.

It seems reasonable to use the structural average of the control functions as the

average reference function. This is because the aim of surgery on cleft children is

to reconstruct the face so that the shape is similar to that of an ‘average’ control

child. To investigate whether there is a difference between the groups in terms of

the amount of warping required it is necessary to quantify the warping applied

to each function.

When carrying out the warping procedure if a function does not need to be

shifted to align its characteristic points to the average position then the warping

function will lie on the line of equality. The greater the departure from the line

of equality the more warping has been required. It is of interest then to quantify

this departure from the line of equality.

The method for doing this is similar to that for calculating the sum of squares

in a regression context. Suppose there is a warping function g(s) where g(0) = 0,

g(1) = 1 and s ∈ (0, 1). The sum of the squared distance between the warping

function and the straight line (s = g from s = 0 to s = 1) gives a measure of how

close to linear the warping function is. This can be calculated as

Dp =
n∑

j=1

(g(sj)− sj)
2 j = 1, . . . , n (5.1)

where the sj’s are n regular points along the s axis such that sj − sj−1 = 1
n
.

A similar method can be used to determine the amount of amplitude adjust-

ment required to produce the average control curvature function from the aligned

individual functions. If the amplitude of the individual function is the same as the

average function then the amplitude adjustment function h(g(s)) will be h = 0

at all g(s). Therefore to quantify the amount of amplitude adjustment required

the sum of squared distance between the amplitude adjustment function and the

line h = 0 is calculated as

Da =
n∑

j=1

(h(g(sj)))
2 j = 1, . . . , n (5.2)
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where the g(sj)’s are n regular points along the g axis.

The amount of warping (both position and amplitude) required to produce the

average control curvature function from the original function can be compared

between the groups to investigate whether the curvature of the faces of cleft

children are on average further away from the average face of a control child than

the curvature of the faces of control children. This can be done informally using

plots or more formally using multiple comparisons.

5.1.4 Principal components analysis

When a set of functions, fi(s) = (xi(s), yi(s)) where s ∈ (0, 1), are available one

of the initial interests is how the functions vary and in general where the areas

of greatest variation are. This can be investigated by carrying out a principal

components analysis on the functions. One method for this is to reduce the

problem of carrying out principal components analysis on functional data to a

standard multivariate problem which can be analysed as shown by Jolliffe (1986).

Suppose there are p functions, then this can be done by calculating the curvature

at n regular points on the s axis so that each function is described as

fi(s) = ({xi(s1), yi(s1)}, . . . , {xi(sn), yi(sn)})

where sj − sj−1 = 1
n

. The multivariate case can then be set up where the

variables are the n regular points on the s axis and the items are the i individual

curves. Note that p must be greater than n. This discretisation method is used

here; however, it would be equally appropriate to use the functional principal

components analysis method described in Section 2.3.2.

To informatively display the results of the principal components analysis a plot

of the effect on the mean curve (f̄(s) say) of adding and subtracting a multiple of

each of the first three principal components will be produced. For example, for

the first principal component, if there is an eigenvector e1 and standard deviation√
λ1 then to display the results a plot of the mean curve and also the curves given

by f̄(s)± 3
√

λ1e1 will be produced.

This process can be carried out on the curvature functions from individual

groups or from all groups combined to give a visual representation of where most

of the variation between the functions lies. If the principal components analysis

is carried out on all groups combined there is specific interest in the component

scores. If there appears to be clustering of groups in terms of their scores for
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a particular component it may be that a certain group carries a large amount

of the weight in the variation explained by that principal component. Finding

principal components for which either of the cleft groups have particularly large

scores may show areas on the feature where that cleft group have a large variation

in curvature values but the control group do not show a large variation. Plots

of the principal component scores with different symbols for the groups may give

an indication of components which are dominated by a certain group.

5.2 Case Study: Upper Lip

Section 5.1 has outlined various techniques available to give a comparison be-

tween control children and children with a cleft lip and/or palate in terms of the

curvature of certain features. This section will use these techniques to analyse

the upper lip for differences in bending between the control and cleft children.

The analysis of the upper lip curvature functions has been chosen over the other

facial curves as this produced the most interesting results. Note that from here

children with a cleft lip only will be referred to as UCL children whilst children

with a cleft lip and palate will be referred to as UCLP children.

5.2.1 Curvature functions and average upper lip recon-

structions

The curvature of the three-dimensional upper lip can be calculated both into

and out of the face, by projecting onto the xz plane, and up and down the face,

by projecting onto the xy plane, as the upper lip travels from the left of the

face to the right of the face. Note that positive xz curvature indicates that the

upper lip is bending towards the face whilst negative curvature indicates that the

upper lip is bending away from the face. Also note that positive xy curvature

indicates that the upper lip is bending towards the top of the face whilst negative

xz curvature indicates that the upper lip is bending towards the bottom of the

face. The curvature functions for all cases are shown in Figure 5.1.
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Figure 5.1: Plot of xz (left) and xy (right) curvature functions for all upper
lips.

The curvature functions in Figure 5.1 appear much rougher than the curvature

functions for the midline profiles. This is because 20 degrees of freedom have been

used in the smoothing. It was necessary to use large degrees of freedom to detect

the sharp turn in curvature near the middle of the upper lip. Looking at the xz

curvature functions it is clear that there is an area between s = 0.4 and s = 0.6

where the upper lips bend towards the face, then either flatten off (zero curvature)

or bend away from the face (negative curvature) and then bend towards the face

again. There is also an indication that, for the control functions in particular,

there are two further areas around s = 0.2 and s = 0.8 where the curvature

functions show a maximum turning point of curvature. This corresponds to

bending towards the face between the ends and the middle of the upper lip. The

xy curvature functions show a similar but more pronounced pattern. In the area

between s = 0.4 and s = 0.6 almost all functions have an area where the upper

lip bends towards the bottom of the face, followed by an area where the upper lip

bends towards the top of the face (this is much more pronounced for the control

cases) and an area where the curve bends towards the bottom of the face. There

is also the indication of some minimum turning point in the curvature functions

between the ends and the middle of the upper lip at s = 0.2 and s = 0.8. The

area between s = 0.4 and s = 0.6 is called the Cupid’s bow which contains the

landmarks cphR, ls and cphL shown in Figure 1.1. The medical belief is that

while control children in general experience three pronounced turning points in

the Cupid’s bow cleft children even after surgery tend not to experience the



CHAPTER 5. APPLICATIONS TO THE CLEFT LIP PROBLEM 102

upwards turn in the middle of the Cupid’s bow at landmark ls. The piecewise

average curvature functions for each group are shown in Figure 5.2.
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Figure 5.2: Raw average xz curvature (dashed lines) and xy curvature (solid
lines) functions for the upper lips of each group.

Considering the average xz curvature functions from Figure 5.2 there is fur-

ther evidence that for all groups there are two areas of high magnitude positive

curvature between s = 0.4 and s = 0.6 while on average the curvature approaches

zero around s = 0.5 for all groups but does not become negative. This suggests

that on average the upper lip does not turn away from the face at landmark

ls. Since the average curvature values at landmarks cphL and cphR are larger

for control children this suggests that on average control children have a more

pronounced turn towards the face at the ends of the Cupid’s bow than UCL and

UCLP children. It also appears that UCLP children on average have a wider

Cupid’s bow than control and UCL children. Looking at the xy curvature func-

tions the Cupid’s bow phenomenon is again shown in the controls by two areas of

low curvature around s = 0.4 and s = 0.6 and an area of high curvature around

s = 0.5. Interestingly the average UCL and UCLP functions do not have an area

of high positive curvature at s = 0.5 but have zero curvature at this point indi-

cating that as opposed to turning up the face at landmark ls cleft children tend

to have a flat area. Both curvature functions, in particular for controls, show

potential points of interest at around s = 0.2 and s = 0.8 although discussion

of these points will not be of primary interest and instead the Cupid’s bow area

will be the focus of much of the analysis.

It is again of interest to produce aligned curvature functions. In this example
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turning points in both xy and xz curvature functions indicate the cphR, ls and

cphL landmarks therefore these three points will be taken as the characteristic

points for aligning. To allow both curvature functions to be used in the calculation

of the position of the characteristic points the total curvature (κT ) will be defined

as

κT =
√

κ2
xz + κ2

xy

where κxz and κxy are the xz and xy curvature functions respectively. A plot of

both the raw and aligned total curvature functions is shown in Figure 5.3.

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

s

T
ot

al
 C

ur
va

tu
re

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

s

T
ot

al
 C

ur
va

tu
re

Control
UCL
UCLP

Figure 5.3: Plot of unaligned (left) and aligned (right) total curvature against
arc length for all upper lips.

For many of the UCL and UCLP cases there is no indication of the upper

lips experiencing a turning point of the curvature function at landmark ls while

one UCL case has no clear cphL landmark. In these cases the characteristic point

which cannot be found is regarded as missing and the aligning is carried out using

the remaining characteristic points.

The warping is carried out for each group individually and the aligned s axis

applied to both the xz and xy curvature functions and the structural averages

calculated as the piecewise average of these aligned curvature functions. These

structural average functions are shown in Figure 5.4.
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Figure 5.4: Structural average xz (dashed lines) and xy (solid lines) curvature
functions for the upper lips of each group.

The interpretation of the structural average functions is very similar to that of

the raw average functions with the same differences between the groups evident.

As expected the magnitude of curvature at the characteristic points is larger in

the structural average. Using the method described in Section 5.1.1 the average

upper lip for each group is calculated from these structural average functions and

the reconstruction is plotted on the xz and xy plane in Figure 5.5.
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Figure 5.5: The reconstructed average upper lip from the structural averages
of each group in the xz plane (left) and xy plane (right).

The reconstructed UCLP average upper lip shows clear differences to the

other groups in both planes. The ends of the Cupid’s bow are less rounded and
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further apart than for the average UCL or control and in the xy plane there is

no evidence of an upturn at the ls landmark. On the other hand the average

UCL upper lip, while showing slightly less rounded ends of the Cupid’s bow, is

relatively similar to the average control upper lip. However, the average UCL in

the xy plane gives little indication of any upturn at the ls landmark.

5.2.2 Investigating characteristic points

It appears that there are potential differences between all three groups in terms of

the arc length and the amount of bending experienced at the characteristic points.

Since few UCL or UCLP children had a distinguishable ls landmark it seems

reasonable to only compare the arc length and curvature of the characteristic

points at the start (cphL) and end (cphR) of the Cupid’s bow. Note that since

the cphL landmark was missing for one of the UCL cases this case is not included

in this analysis. The arc length at the start of the Cupid’s bow is plotted against

the arc length at the end of the Cupid’s bow for all children in Figure 5.6.
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Figure 5.6: Arc length at the start (left) of the Cupid’s bow plotted against
arc length at the end (right) of the Cupid’s bow.

It is interesting to note, from the plot of arc length at the characteristic points

shown in Figure 5.6, that there is a relatively tight cluster of the control points

whilst the points for the UCL and to a large extent the UCLP group are well

spread. Therefore while the control group shows little variability in the position

of the characteristic points there is a large amount of variability for the UCL and

UCLP groups. It appears that the largest difference between the groups is that
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the position of the cphR landmark occurs much further along the upper lip for the

UCL and UCLP children than for control children. Any difference in the position

of the cphL landmark is not so clear, although it does seem that the point occurs

earlier for the UCL and UCLP children than the control children. The fact that

the differences between the groups are clearer around the cphR landmark than

the cphL landmark is presumably due to all clefts occurring on the right side of

the face after reflection.

For formal testing the data for each group is approximately normally dis-

tributed; however, there are issues with an assumption of similar spread with

the control values having a much smaller spread than the UCL or UCLP values.

Therefore the nonparametric Kruskal-Wallis rank sum test is used to test for any

evidence of a difference between the groups. The null hypothesis is that there

is no evidence of a difference between the groups in terms of population median

arc length. The p-values for both the characteristic points are much less than

0.001 indicating strong evidence at each characteristic point of some difference

between the groups. Multiple two sample Mann Whitney tests with a Bonferroni

correction are carried out to investigate between which groups these differences

lie with the results shown in Table 5.1 (for the cphL landmark) and Table 5.2

(for the cphR landmark).

Comparison Interval p-value

UCL - Control (-0.0364, -0.0028) 0.023
UCLP - Control (-0.0502, -0.0153) <0.001
UCLP - UCL (-0.0400, 0.0180) 0.903

Table 5.1: Multiple comparisons of the arc length at the cphL landmark.

Comparison Interval p-value

UCL - Control (0.0134, 0.0488) 0.003
UCLP - Control (0.0402, 0.0762) <0.001
UCLP - UCL (-0.0143, 0.0723) 0.191

Table 5.2: Multiple comparisons of the arc length at the cphR landmark.

Table 5.1 shows that it is highly likely that in the wider population the start

of the Cupid’s bow will in general occur further along the upper lip for control
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children than for UCL or UCLP children. There is no evidence of a difference in

the population median arc length at the start of the Cupid’s bow between the

UCL and UCLP children.

Table 5.2 shows that it is highly likely that in the wider population the end of

the Cupid’s bow will in general occur earlier on the upper lip for control children

than for UCL or UCLP children. There is no evidence of a difference in the

population median arc length at the end of the Cupid’s bow between the UCL

and UCLP children.

To investigate the differences in the curvature at the characteristic points

Figure 5.7 shows the plots of both xz and xy curvature at the start of the Cupid’s

bow against curvature at the end of the Cupid’s bow. Note that the absolute value

of curvature is taken as the interest is in the difference between the magnitude

of curvature at each characteristic point. The only result of taking the absolute

values is that the negative xy curvatures at the characteristic points become

positive.
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Figure 5.7: Curvature at the start of the Cupid’s bow against curvature at
the end of the Cupid’s bow for xz (left) and xy (right) curvature.

From Figure 5.7 it is clear that there is much greater separation between the

groups in terms of xy curvature as opposed to xz curvature. In general control

children have larger xy curvature values at both the start and end of the Cupid’s

bow than UCL or UCLP children. This implies that control children in general

have upper lips which bend more towards the bottom of the face at the start

and end of the Cupid’s bow. There does not appear to be much evidence of a

difference between control children and UCL and UCLP children in terms of xz
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curvature at the characteristic points.

For formal analysis the data for each group is approximately normally dis-

tributed; however, there are issues with an assumption of similar spread with the

control values experiencing a much larger spread than the UCL or UCLP values.

Therefore the nonparametric Kruskal-Wallis rank sum test is used to test for any

evidence of a difference between the groups in the wider population. The p-values

from the Kruskal-Wallis test can be found in Table 5.3.

Curvature Characteristic Point p-value

xz cphL 0.095
xz cphR 0.053
xy cphL <0.001
xy cphR <0.001

Table 5.3: Results of Kruskal-Wallis test for difference between the groups in
terms of median population curvature at the characteristic points.

Table 5.3 shows that there is insufficient evidence of a difference between

the groups in the wider population in terms of median xz curvature at either

characteristic point. However, there is evidence of some difference between the

groups in the wider population in terms of median xy curvature both at the start

and the end of the Cupid’s bow. To investigate between which groups these

differences occur multiple two sample Mann Whitney tests with a bonferroni

correction are carried out. The results are shown in Table 5.4.

Characteristic Point Comparison Interval p-value

cphL UCL - Control (-10.001, -2.270) 0.002
cphL UCLP - Control (-10.113, -6.144) <0.001
cphL UCLP - UCL (-6.542, 2.658) 0.554

cphR UCL - Control (-7.67, -1.609) 0.002
cphR UCLP - Control (-7.195, -2.059) <0.001
cphR UCLP - UCL (-3.089, 3.617) >0.999

Table 5.4: Multiple Mann Whitney tests of the xy curvature at both charac-
teristic points.

Table 5.4 shows that it is highly likely that the population median xy cur-

vature for control children is greater than for UCL and UCLP children at both
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characteristic points. There is no evidence of a difference between UCL and

UCLP children at either characteristic point. This confirms the fact that control

children in general have upper lips which bend more towards the bottom of the

face at the start and end of the Cupid’s bow.

5.2.3 Position warping and amplitude adjustment

The amount of warping (both position and amplitude) required to produce the

structural average of the control functions from the individual functions can give

a useful indicator of inconsistences remaining between the control children and

the UCL and UCLP children even after surgery. Figure 5.8 shows the position

warping functions for each individual curve.
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Figure 5.8: Position warping functions (left), and position warping function
minus arc length (right), to align to the position of the average

characteristic points of the upper lip of control children.

The most notable aspect of the position warping functions, and position warp-

ing minus arc length functions, (Figure 5.8) is that the UCLP group appear to

require considerably more position warping than either the UCL or control group.

The fact that the UCLP functions cross the line of equality indicates that in gen-

eral UCLP have an earlier start of the Cupid’s bow and a later end of the Cupid’s

bow than the average control child. There is also perhaps an indication that UCL

children require more position warping than control children although the dis-

tinction is not as clear as for the UCLP children.

Figure 5.9 shows the amplitude adjustment functions for both the xy and xz

curvature functions for each individual.
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Figure 5.9: Amplitude adjustment functions to produce the structural aver-
age xz curvature function from individual xz curvature functions
(left) and amplitude warping functions to produce the structural
average xy curvature function from individual xy curvature func-

tions (right).

The immediately noticeable aspect of the amplitude adjustment of the xz cur-

vature functions is the extremely large amount of amplitude adjustment required

by a UCLP case at the end of the upper lip. This is the amplitude adjustment

required by a UCLP case which had severe disfigurements at the end of the upper

lip. Away from this extreme case there is not a great deal of evidence to suggest

much difference between the groups in terms of amplitude adjustment. Consid-

ering the amplitude adjustment of the xy curvature functions there is clearly one

UCL case which requires a large amount of amplitude adjustment (both up and

down the face) at the start of the upper lip. Furthermore, it appears that in

general both UCL and, to a greater extend, UCLP children require more ampli-

tude adjustment of the xy curvature functions than control children particularly

around the area of the Cupid’s bow.

The amount of both position warping and amplitude adjustment required

to produce the structural average control function is plotted as a boxplot in

Figure 5.10.

In terms of position warping it appears, from the boxplots in Figure 5.10, that

the UCLP group in general require more position warping than the UCL group

which in turn requires more position warping than the control group. One UCLP

case requires an extremly large amount of position warping. Formal testing is

required to investigate the evidence of a difference between the groups in terms of
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Figure 5.10: Boxplot of the sum of squares difference between the position
warping function and the line of equality for the upper lips for
each group (left) and boxplot of the sum of squares difference
between the amplitude adjustment function and the x = 0 line
for each group for both xz and xy curvature functions of upper

lips (right).

the amount of position warping required. Since there appears to be a difference

in the variation of the groups, and there is evidence that the control group is not

normally distributed, the non-parametric Kruskal-Wallis test is used to test the

null hypothesis that there is no evidence of a difference between the groups in

terms of population median position warping. The p-value of the test is less than

0.001 suggesting strong evidence of a difference between the groups in terms of

the amount of position warping required. To investigate between which groups

differences lie Mann-Whitney intervals of the population median differences with

Bonferroni correction for multiple comparisons are calculated with the results

shown in Table 5.5.

Comparison Interval p-value

UCL - Control (0.0326, 0.1592) 0.001
UCLP - Control (0.2045, 0.3214) <0.001
UCLP - UCL (0.0314, 0.2900) 0.021

Table 5.5: Multiple comparisons of the position warping required to produce
the structural average control curvature function for the upper lip.

Table 5.5 shows that there is evidence of a difference between the population
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median position warping of each of the groups. It is highly likely that the popu-

lation median of the UCLP group will be larger than the population median of

the UCL which in turn will be larger than the population median of the control

group. This suggests that in general, to warp the characteristic points to the av-

erage position of control children, UCLP children will require the most position

warping whilst UCL children will also require more position warping than control

children.

Figure 5.10 shows that the amplitude adjustment required for the xy curvature

functions was in general larger than the amplitude adjustment required for the

xz curvature functions. This suggests that in general there was more variation

in the curvature up and down the face than into the face. The point with very

large amplitude adjustment of xz curvature is due to the UCLP case which had

severe disfigurement at the end of the upper lip. It seems that in general both the

UCL and UCLP group require more amplitude adjustment of the xy curvature

functions on average than the control group while there does not appear to be a

great deal of difference between the groups in terms of the amount of amplitude

adjustment required for the xz curvature functions. Again the Kruskal-Wallis test

is used to test the null hypothesis that there is no evidence of a difference between

the groups in terms of the population median amplitude adjustment required.

For the amplitude adjustment of both the xy and xz curvature functions the p-

value from the Kruskal-Wallis test is less than 0.001 suggesting clear evidence

of a difference between the groups. To investigate where these differences lie

Mann-Whitney intervals of the population median differences with Bonferroni

correction for multiple comparisons are calculated for the xy and xz curvature

functions separately with the results shown in Table 5.6.

Curvature Comparison Interval p-value

xz UCL - Control (19.68, 289.40) 0.015
xz UCLP - Control (61.23, 182.30) <0.001
xz UCLP - UCL (-228.49, 136.46) >0.99

xy UCL - Control (238.59, 1331.71) 0.001
xy UCLP - Control (552.12, 1128.01) <0.001
xy UCLP - UCL (-775.23, 838.61) >0.99

Table 5.6: Multiple comparisons of the amplitude adjustment required to
produce the structural average control curvature function for the

upper lip.
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The results from Table 5.6 show that it is highly likely that, for both xy and

xz curvature, the population median amplitude adjustment is larger for UCL

and UCLP children than control children. This indicates that in general the

amount of bending, both into and out of the face and up and down the face,

experienced along the upper lip is different for UCL and UCLP children than for

control children. These results suggest that the operation to correct the cleft lip

and palate has not ensured the upper lip of the UCL and UCLP children are in

general the same as control children in terms of three dimensional bending. There

is no evidence of a difference between the UCL and UCLP children in terms of

amplitude adjustment for either the xy or xz curvature functions.

5.2.4 Principal components analysis

To investigate how the two sets of curvature functions vary and how the variation

is affected by the different groups of children principal components analysis is

carried out on the curvature functions as outlined in Section 5.1.4. Plots showing

the effect of the first two principal components on the mean function are found

in Figure 5.11, for xz curvature unaligned and aligned, and in Figure 5.12, for xy

curvature unaligned and aligned.

The principal components analysis of the raw xz curvature functions in Fig-

ure 5.11 shows that the major source of variation, which is explained by principal

component one, appears to be the variation in the position of the start and the

end of the Cupid’s bow and the variation caused at the end of the function due

to the unusual UCLP case. The second component appears to explain the vari-

ation in the magnitude of the curvature at the ends of the Cupid’s bow along

with further variation caused by the unusual case. After aligning the curvature

functions the variation explained by the first principal component appears to be

in part variation in the curvature values just before and after the Cupid’s bow

but is dominated by the variation due to the unusual case. The second principal

component mainly explains the variation in curvature around the Cupid’s bow.



CHAPTER 5. APPLICATIONS TO THE CLEFT LIP PROBLEM 114

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

PC 1 ( 28.5 %) of the variability

s

C
ur

va
tu

re

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

PC 2 ( 18.7 %) of the variability

s

C
ur

va
tu

re

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
15

PC 1 ( 30.1 %) of the variability

s

C
ur

va
tu

re

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
15

PC 2 ( 24.7 %) of the variability

s

C
ur

va
tu

re

Figure 5.11: The effect of the first two principal components on the average
curve for the unaligned (top row) and aligned (bottom row) xz
curvature functions. The solid line is the mean function, the
dashed line is mean + 3

√
λiei while the dotted line is mean −

3
√

λiei.

The principal components analysis of the unaligned xy curvature functions in

Figure 5.12 shows that the first principal component describes a global variation

between the functions along the whole upper lip. The second principal component

describes the variation in curvature, and potentially position, around the Cupid’s

bow region. Once the functions are aligned the first principal component still

shows global variation but concentrates on the magnitude of curvature at the

characteristic points. Now however, the second principal component shows only

variation away from the Cupid’s bow region.
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Figure 5.12: The effect of the first two principal components on the average
curve for the unaligned (top row) and aligned (bottom row) xy
curvature functions. The solid line is the mean function, the
dashed line is mean + 3

√
λiei while the dotted line is mean −

3
√

λiei.

Now that the effects of each of the principal components have been explained it

is of interest to examine the scores for each of the first two principal components

to see which, if any, of the groups dominate the variation in that component.

To do this the first and second component scores for each principal components

analysis are plotted in Figure 5.13.

Considering firstly the principal component scores for the xz curvature func-

tions it is clear that one UCLP case dominates the variation explained by both

the first and second principal components for the unaligned curvature functions.
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Figure 5.13: Upper lip first and second principal component scores for the
unaligned xz curvature functions (top left), aligned xz curvature
functions (top right), unaligned xy curvature functions (bottom

left) and the aligned xy curvature functions (bottom right).

In the rest of the data it appears that UCL and UCLP cases in general have

higher first principal component scores and lower second principal component

scores than control children. These groupings would appear to be due to the dif-

ference between control children and UCL and UCLP children in position (first

principal component) and magnitude of curvature (second principal component)

of the characteristic points. The first principal component of the aligned xz curva-

ture functions is dominated by the unusual UCLP case while the second principal

component shows no clustering of points due to group.

The principal component scores for the xy curvature functions show that for
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both unaligned and aligned functions there is a clear separation between the con-

trol group and the UCL and UCLP group in the first principal component. The

first principal component shows a general variation along the curvature function.

It would appear that a number of the UCL and UCLP cases have a large effect on

this principal component. This indicates that a number of the UCL and UCLP

curves are very different from the usual control pattern. There is little separation

between the groups in terms of the second principal component.

The shape of the upper lip for UCL and UCLP children has been compared to

the shape of the upper lip of control children using various techniques involving

curvature. From this analysis there is evidence that even after surgery UCL and

UCLP children in general have a start of a Cupid’s bow which occurs earlier on

the upper lip and an end of the Cupid’s bow which occurs later on the upper lip

than control children. There is evidence that the upper lips for UCL and UCLP

children are less rounded than control children especially up and down the face

and also that UCL and particularly UCLP children do not have an upturn in the

middle of the Cupid’s bow that almost all control children have.



Chapter 6

Regression with Functional

Predictors

The work carried out in Chapters 3, 4 and 5 involved determining the amount

of bending experienced by various facial features and using this measure of facial

shape to compare control children with children born with a cleft lip and/or

palate. In the study of one year old children the facial shapes of children born with

a cleft lip and/or palate do appear to differ from control children. It is possible

to imagine that having facial shapes which are different from control children

may potentially have a detrimental effect on the psychological state of a child.

As part of a study into ten year old children born with a cleft lip and/or palate,

facial image data, similar to the data available for the one year old children, were

produced for 68 control children, 44 children born with a unilateral cleft lip (UCL)

and 51 children born with a unilateral cleft lip and palate (UCLP). The images

were taken when the child’s mouth was closed. Furthermore, a psychological

questionnaire was administered to the parents of the children born with a cleft.

The questionnaire was the ‘Revised Rutter Scales’ which is a revision of the

original ‘Rutter Parents’ and Teachers’ Scales’ outlined by Rutter (1967) and

gives a total emotional/behavioural difficulties score ranging from 0 to 56. A low

score indicates that the child has few psychological difficulties whilst a large score

indicates that the child has more psychological difficulties.

There is interest in investigating any relationship between psychological state

and facial shape for the cleft children. The response in this setting is the scalar

value which characterises the psychological state of the child. Using the work from

Chapters 3 and 4 facial shape will be defined by curvature functions of various

features. There are curves available on five facial features (midline profile, upper

118
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lip, nasal base, nasal rim and nasal bridge) with the perpendicular planes method

for calculating curvature describing each feature using two curvature functions.

This results in ten potential functional predictors of the scalar response. Children

born with a unilateral cleft lip and children born with a unilateral cleft lip and

palate are combined into one group giving 95 respondents. Due to a number of

difficulties in data collection, including extracting curves from the images and

refusal/inability of participants to fill in questionnaires, only 80 subjects have a

psychological score and a full set of facial curves. Analysis will be carried out on

these 80 respondents.

The difficulty in working with functional predictors is two-fold. Firstly, it is

clear that standard regression techniques will have to be extended to deal with the

functional nature of the predictors. Secondly, displaying the data and the results

can be more complex than with scalar predictors. This chapter aims to deal with

both these issues. Section 6.1 will describe some techniques for investigating the

relationship between a scalar response and a single functional predictor, with the

relationship between the psychological score and the yz curvature (bending into

and out of the face) function of the midline profile used to illustrate the meth-

ods. Section 6.2 will describe some techniques for investigating the relationship

between a scalar response and multiple functional predictors. These methods

will be illustrated by investigating the relationship between psychological score

and four functional predictors: yz curvature of the midline profile, xy curvature

(across the face) of the midline profile, xz curvature of the nasal bridge and xy

curvature (up and down the face) of the nasal bridge. Chapter 7 will provide a

more in-depth investigation into the relationship between psychological score and

facial shape.

6.1 Scalar Response and a Single Functional Pre-

dictor

This section will describe techniques used to investigate the relationship between

a scalar response and a functional predictor. Figure 6.1 shows a boxplot of the

psychological scores and the yz curvature functions of the midline profiles of each

of the subjects.
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Figure 6.1: Boxplot of psychological scores for cleft children (left). Plot of

yz curvature against arc length for each subject. (right)

The boxplot of psychological scores in Figure 6.1 shows scores ranging from

0 to 30 with a median score of about 8. The plot of yz curvature functions

shows a similar pattern to earlier plots of yz curvature of the midline profile,

with all functions showing an area of minimum curvature corresponding to the

base of the nose and an area of maximum curvature corresponding to the tip of

the nose. The major source of variation between the functions is in the position

of, and magnitude of, these areas of minimum and maximum curvature. The

interest throughout this section will be in introducing techniques to investigate

any potential relationship between a functional predictor and a scalar response.

The data introduced here are simply for illustration and only brief interpretation

of results will be given.

6.1.1 Displaying the data

The first problem with using functional predictors is considering how best to dis-

play the data to give an indication of any relationship between the response and

predictor. Clearly in the standard regression context a plot of response against

predictor will give an indication of any relationship. However, with functional

predictors this is not possible. A major problem is that it is difficult to natu-

rally order the functions. However, if functional principal component analysis

(details given in Section 2.3.2) is carried out on the predictors, then each func-

tional predictor has a component score for each principal component. Suppose
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only the first principal component is considered then the response can be plot-

ted against the component score and any relationship between the response and

first principal component score may give an indication of potential relationships

between the response and the functional predictor. This introduces an ordering

of the predictors, allowing simpler graphical displays. Figure 6.2 shows a plot of

psychological score against the first principal score of the yz curvature functions.
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Figure 6.2: Psychological score against first principal component score.

It seems from Figure 6.2 that there may be some slight suggestion of a posi-

tive relationship between first principal component score and psychological score

suggesting there may be an indication of a relationship between psychological

score and yz curvature of the midline profile for UCLP children.

A function of the best fit of response against principal component score can

look more formally at the potential relationship. For various component scores,

it is interesting to show the estimated response from the best fit function and the

function produced by adding the effect of the principal component score to the

mean predictor. The best fit can be found using numerous techniques including

standard regression, smoothing splines or nonparametric regression. The results

can be displayed both easily and neatly in R using rpanel where a slider can

be used to control the setting of the principal component score. Two rpanel

displays are shown in Figure 6.3 for the cleft data, one for a low component score

and one for a high component score.
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Figure 6.3: The rpanel showing; the nonparametric fit of the relationship
between the first principal component score and psychological
score (top left), the yz curvature function corresponding to that
component score (top right) and the reconstructed midline profile
using that curvature function (bottom right). The left rpanel
shows a low component score whilst the right rpanel shows a

high component score.

The rpanel is very useful in investigating how both the response and the

functional predictor changes as the principal component score changes. This can

give an insight into how the functional predictor may be related to the response.

However, in the example shown in Figure 6.3, for the majority of the data there

does not appear to be much relationship between first component score and psy-

chological score. This is perhaps an indication that there is little relationship

between psychological score and yz curvature of the midline profile. The rpanel

plot is still interesting as it shows that the effect of the component score decreas-

ing is that the base of the nose and the tip of the nose occur lower on the midline

profile.

The component scores from any of the principal components can be used to

illustrate the data. However, since the first principal component explains the

largest variation between the functional predictors it is the relationship between

the response and this component which is most likely to point to a potential

relationship between the response and the functional predictor.
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6.1.2 Regression on principal component scores

As an extension of simply plotting the response against the first principal compo-

nent score it is worthwhile to look more formally at the relationship between the

response and the first principal component score and investigate whether there is

evidence of a significant relationship. Furthermore, there is no reason to limit the

predictor to just the first principal component. It makes sense to include all the

principal components which explain a reasonably large amount of the variation

in the functional predictors.

Suppose that the scalar response is denoted by yi and the functional predictor

denoted by xi(si), where s ∈ (0, 1), for the n response-predictor pairs. Further

denote the jth principal component score of the ith predictor as aij. Then a

standard linear regression can be produced such that

y = α +
∑

j

βjaj + ε (6.1)

Finding the parameters α and βj which minimise the residual sum of squares gives

the best linear relationship between the response and the principal component

scores.

This linear regression process is carried out on the cleft data set using the first

three principal component scores as scalar predictors. Plots of each component

score against psychological score are given in Figure 6.4

The p-values corresponding to the evidence of a linear relationship between

the component score predictors and the psychological score response when all

three component scores are included in the model are shown in Table 6.1.

Predictor Coefficient p-value

First principal component scores 0.25 0.648
Second principal component scores -2.06 0.044
Third principal component scores 0.501 0.741

Table 6.1: Significance of each principal component score as a predictor of
psychological score.

The p-values in Table 6.1 suggest that the scores for the second principal

component have a significant linear relationship with psychological score. In

general it would appear that as the second principal component score increases

the psychological score decreases. The fact that the second component score has
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Figure 6.4: Principal component score for the first three principal compo-
nents against psychological score.

a relationship with psychological score gives some indication that there may be

a relationship between the yz curvature functions and psychological score.

It is often the case that the relationship between the scalar response and

scalar predictors is not necessarily linear. Hastie and Tibshirani (1990) suggest

that the linear terms βjxj in standard linear regression can be replaced by smooth

functions to give additive models. When looking for the relationship between the

response and principal component scores an additive model can be produced by

extending (6.1) to

y = α +
∑

j

fj(aj) + ε (6.2)

The fjs are arbitrary univariate functions, one for each principal component,
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which are assumed to be smooth. The fj’s can be estimated using the backfitting

algorithm outlined by Hastie and Tibshirani (1990).

An additive model is calculated for the cleft data using the first three prin-

cipal component scores as predictors. The smoother used in the algorithm is a

smoothing spline with 4 degrees of freedom. Figure 6.5 shows the fitted functions

for each set of principal component scores.
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Figure 6.5: Additive model functions for the relationship between principal
component score for the first three principal components and
psychological score for all subjects. The solid lines are the fit-
ted function of component score whilst the dashed lines are the

standard errors.

The p-values corresponding to the evidence of a relationship between the com-

ponent score predictors and the psychological score response when all three sets

of component scores are included in the additive model are shown in Table 6.2.



CHAPTER 6. REGRESSION WITH FUNCTIONAL PREDICTORS 126

Predictor p-value

First principal component scores 0.7
Second principal component scores 0.7
Third principal component scores 0.6

Table 6.2: Significance of each smooth function of principal component score
as a predictor of psychological score.

The p-values in Table 6.2 suggest there is no evidence of a significant rela-

tionship between any of the sets of principal component scores and psychological

score when the additive model contains all three principal component scores as

predictors.

6.1.3 Functional linear model

Ramsay and Silverman (1997) suggest that standard linear regression can be

extended to allow a functional predictor by replacing the usual scalar parameter

β with a functional parameter β(s) such that

y = α +

∫ T

0

β(s)x(s)ds + ε (6.3)

where the errors ε have mean zero and are independent from the predictors. T is

the length of interval over which the functional predictors are measured.

Clearly the difficulty with the functional linear model (6.3) is how best to

estimate the functional parameter. In standard linear regression, the least squares

method is used and this can be extended to estimate the parameters in (6.3) by

minimising

SSE =
n∑

i=1

[yi − (α +

∫ T

0

β(s)xi(s))]
2 (6.4)

It can be shown that for any response and any functional predictor there is a

set of α and β(s) which results in a residual sum of squares of zero. Clearly it

is not the case that any functional predictor can predict any response perfectly.

The reason for the residual sum of squares being equal to zero is that, in a sense,

there is an infinite number of parameters, since β(s) is defined continuously along

s, while there are only n equations to solve. This means that, regardless of the

sample size, using least squares to find an estimate of the functional parameter

is not appropriate. Therefore the function must be regularised.
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One regularisation approach is to evaluate the predictors at specific points and

consider a multiple linear regression using these values as the predictors. Each

functional predictor xi(si) can be evaluated at p points (xi1, . . . , xip) at (s1, . . . , sp)

where sj+1 − sj = 1
p−1

and the multiple linear regression can be written as

y = α +

p∑
j=1

βjx(sj) + ε (6.5)

Clearly the choice of p is important. If p is too small then (xi1, . . . , xip) will not

give a good representation of the functional predictor. However, it is important

that the number of parameters p + 1 is less than the number of observations to

allow least squares to be used to fit the model. This illustrates one of the major

draw-backs of this regularisation method, namely the fact that when the sample

size is low only a small number of points can be chosen to define each function.

It would be preferable if the whole function could be used as the predictor rather

than a set of discrete points.

An approach which regularises the functional predictor but retains the func-

tional structure of the predictor is to express the functional predictors in terms of

basis functions. The description here will be in terms of B-spline bases but any

bases can be used to suit the problem. Note that the solution for Fourier bases

is slightly simpler (see Ramsay and Silverman (1997) for details). Suppose that

each predictor is described using m B-spline basis functions and denote these as

φ1, . . . , φm. Each predictor can then be written as the expansion

xi(si) =
m∑

v=1

civφv = cT
i φ (6.6)

where φ = φ1, . . . , φm is the set of basis functions and civ is the coefficient of

basis function v for predictor i. The functional parameter can also be expressed

in terms of these basis functions as

β(s) =
m∑

v=1

bvφv = bT φ (6.7)

where bv is the coefficient of basis function v for the parameter. Now the aim is to

express
∫ T

0
β(s)xi(s) in terms of the coefficients of the basis functions. To allow

this, since B-splines are not orthonormal, the m×m matrix J =
∫

φφ′ must be
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defined where

Jjk =

∫
φj(s)φk(s)ds (6.8)

Now using an extension of the Parseval identity it follows that

∫ T

0

β(s)xi(s)ds =
m∑

j=1

m∑
v=1

cijbv

∫ T

0

φj(s)φv(s)ds

∫ T

0

β(s)xi(s)ds =
m∑

j=1

m∑
v=1

cijJjvbv (6.9)

It is perhaps simpler to think of the process in matrix form. Denote the (n× 1)

matrix of the responses as Y = (y1, . . . , yn)T , the ((m + 1) × 1) matrix of the

parameters as ζ = (α, b1, . . . , bm)T and the (n× (m+1)) coefficient matrix of the

predictors as Z = [1 CJ ] where C is the (n ×m) coefficient matrix with row i

containing the B-spline coefficients for predictor i. Now the model can be defined

by the equation

Y = Zζ + ε (6.10)

where ε = (ε1, . . . , εn) and the εis have mean zero. It follows then that

Ŷ = Zζ̂ (6.11)

Therefore the least squares estimate of the parameter vector ζ is given by

ZT Zζ̂ = ZT Y

ζ̂ = (ZT Z)−1ZT Y (6.12)

It is clear that the major interest from this analysis is the shape of the functional

parameter β(s) to investigate the effect of the functional predictor on the response

at different points along the s axis. A potential disadvantage of using (6.12)

to calculate β(s) is that there is no smoothness constraint on the functional

parameter and a rough functional parameter may be difficult to interpret. One

way to ensure the functional parameter is smooth is to use a low number of basis

functions to define the functional predictors and in turn the functional parameter.

There are two major draw-backs to simply lowering the number of basis functions;

firstly a low number of basis functions may result in a poor representation of the

original predictors and secondly important features in the functional parameter

may be missed. To avoid reducing the number of basis functions a roughness
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penalty can be applied to (6.4). The roughness penalty suggested by Ramsay

and Silverman (1997) is to use the second derivative of the functional parameter

squared to penalise the residual sum of squares. Using this method the penalised

sum of square error becomes

PENSSE =
n∑

i=1

[yi − (α +

∫ T

0

β(s)xi(s))]
2 + λ

∫ T

0

β′′(s)2ds (6.13)

The integral of the squared second derivative gives a measure of the roughness

of the functional parameter whilst the smoothing parameter λ controls the trade

off between the roughness of the functional parameter and the accuracy of ŷ as

a predictor of y.

To write the penalised sum of squares error in vector-matrix form define the

matrix K with entries

Kjk =

∫ T

0

φ′′j (s)φ
′′
k(s)ds (6.14)

Now the penalised sum of square error can be defined as

PENSSE =
n∑

i=1

(yi − α−
m∑

v=1

civbvφv)
2 + λ

∫
(

m∑
v=1

bvφ
′′
v(s))

2ds

PENSSE = ‖ y − α− Cb ‖2 +λbT Kb (6.15)

Once again define the (n × 1) matrix of the responses as Y = (y1, . . . , yn)T ,

the ((m + 1) × 1) matrix of the parameters as ζ = (α, b1, . . . , bm)T and the

(n × (m + 1)) coefficient matrix of the predictors as Z = [1 CJ ] where C is

the (n×m) coefficient matrix with row i containing the B-spline coefficients for

predictor i. Now augment the penalty matrix K with a leading row and column

of m + 1 zeros and call this augmented matrix K0 i.e.

K0 =

[
0 0

0 K

]
(6.16)

Now (6.15) is further simplified to

PENSSE =‖ y − Zζ ‖2 + λζT K0ζ (6.17)

and the minimising ζ̂ is given by

(ZT Z + λK0)ζ̂ = ZT y
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ζ̂ = (ZT Z + λK0)
−1ZT y (6.18)

Ramsay and Silverman (2006) state that it is possible to calculate confidence

limits for the parameters α and β using the vector-matrix equation

V ar(ζ̂) = σ̂2
e(Z

T Z + λK0)
−1ZT Z(ZT Z + λK0)

−1 (6.19)

where σ̂2
e is the mean of the squared residuals.

Clearly the choice of smoothing parameter is very important. It can either

be chosen subjectively or can be estimated using cross-validation. There may

be occasions where manually setting λ is useful as a certain smoothness of the

functional parameter is necessary for simple interpretation. However, the advan-

tage of the cross-validation method is that it gives an automatic way to find the

smoothing parameter which gives the ‘best’ trade off between roughness and ac-

curacy according to the observed data. The cross-validation score for a smoothing

parameter λ can be define as

CV (λ) =
n∑

j=1

[yj − (α̂−j +

∫ T

0

xj(s)β−j(s)ds)]2 (6.20)

where α̂−j and β̂−j(s) are the estimates of the parameters calculated by minimis-

ing the penalised sum of square errors from (6.17) using all the data except that

from subject j.

Using (6.20) would be computationally expensive since the parameters have to

be calculated n times for each λ in the cross-validation procedure. However Green

and Silverman (1994) show that the cross-validation score can be calculated from

CV (λ) =
n∑

i=1

(
yi − ŷi

1− Sii

)2

(6.21)

where S is the hat-matrix for the smoothing process which maps the observed

values to their predict values for a given λ such that ŷ = Sy. Now Ramsay and

Silverman (2006) state that if there is a large number of data points and at most

there is a moderate number of basis functions then the diagonal elements of S

can be estimated from

S = Z(ZT Z + λK0)
−1ZT (6.22)
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This method for calculating the cross-validation score is much less computation-

ally expensive.

It is of interest to formulate a test to analyse whether there is evidence that

the scalar response is related to the functional predictor. Bowman and Azzalini

(1997) suggest a test for no effect which is a test with a null hypothesis that

variability in the response is due to natural variability against an alternative

hypothesis that variability in the response can be explained to some degree by

the predictor. The work looks at the relationship between a scalar predictor and

a scalar response but this can be naturally extended to incorporate the functional

structure of the predictor.

The two models can be written as

H0 : E(yi) = µ

H1 : E(yi) = α +

∫ T

0

β(s)xi(s)ds

As in standard model comparison the residual sum of squares is an appropriate

way of describing how much of the variability in the data is explained by each

model. The residual sum of squares can be defined for each model as

RSS0 =
n∑

i=1

[yi − ȳ]2

RSS1 =
n∑

i=1

[yi − (α +

∫ T

0

β̂(s)xi(s)ds)]2

To quantify the difference between these residual sums of squares Bowman and

Azzalini (1997) suggest a pseudo-likelihood ratio statistic given by

F ∗ =
RSS0 −RSS1

RSS1

(6.23)

F ∗ is proportional to the usual F statistic, although no mention is made of the

degrees of freedom, with the ratio effect scaling out the error variance. Note

that a major reason for using this pseudo-likelihood statistic is that the alterna-

tive hypothesis model is not parametric and therefore not fitted using maximum

likelihood.

Now the distribution of F ∗ under the null hypothesis must be found. To

facilitate this it is helpful to express F ∗ in terms of quadratic forms. So the
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residual sum of squares for each of the models can be written as

RSS0 = yT (I − L)T (I − L)y = yT (I − L)y

RSS1 = yT (I −W )T (I −W )y

where L is an (n×n) matrix filled with 1
n
. W is the (n×n) weight matrix which

for the functional linear model is given by the hat matrix S. Now F ∗ can be

expressed as

F ∗ =
yT By

yT Ay
(6.24)

where A = (I −W )T (I −W ) and B = I − L− A.

The major interest here is to calculate the significance of the F ∗ statistic.

This can be found from the p-value

p = P(F ∗ > F ∗
obs)

where F ∗
obs is the F ∗ statistic calculated from the observed data. This can be

rewritten as

p = P
(

yT By

yT Ay
> F ∗

obs

)

= P(yT Cy > 0) (6.25)

where C = B − F ∗
obsA. Johnson and Kotz (1972) summarise general results

about the distribution of a quadratic form in normal variables for any symmetric

matrix (e.g. C). These results are simplest to apply when the normal variables

have mean zero. Here, yi has mean µ. It is simple to see though that due to the

differencing involved in the residual sum of squares that µ is eliminated. To show

this, consider rewriting the residual sum of squares for model H0 as

RSS0 =
n∑

i=1

[(µ + εi)− (µ + ε̄)]2

=
n∑

i=1

(εi − ε̄)2

Therefore the quadratic form yT Cy is equivalent to the quadratic form Q = εT Cε

and clearly the εi’s have mean zero. The work of Johnson and Kotz (1972) now

allow the probability to be calculated in numerical form. However, when n is
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large the calculations become awkward. Since an exact p-value is not essential

it is sufficient to provide an approximation. This can be done by replacing Q

with a more computationally convenient distribution with the same first three

moments. This works well here since the cumulants of Q can be computed as

kj = 2j−1(j − 1)!tr{(IC)j}

where C is as above. Johnson and Kotz (1972) state that a shifted and scaled

chi-squared distribution often gives a good approximation of a quadratic form.

So matching the moments of a aχ + b distribution to the moments of Q gives

a =
| k3 |
4k2

b =
8k3

2

k2
3

c = k1 − ab

With a chi-squared distribution with b degrees of freedom, the p-value can be

estimated as 1 − q where q is given by the probability of lying below the point
−c
a

.

A simple simulation study was carried out to validate this pseudo-likelihood

ratio test. In the study there were 50 responses (y1, . . . , y50) taken as a random

draw from a sequence, of length 10000, from 0 to 100 in each simulation. There

were four functional predictors tested. Two functional predictors were chosen

such that a relationship between response and predictor would be expected. The

first functional predictor (x1 say) simply scaled a cubic in the range −1 ≤ s ≤ 1

dependent on the response such that x1i = yi×s3. The second of these (x2) added

a value drawn from a random normal, with mean dependent on the response,

to the line of equality at 100 regular points along the s axis then interpolated

these 100 points i.e. x2ij = sj + δij where δij is a random draw from a N(yi, 1)

distribution. Two functional predictors were chosen such that no relationship

between the response and predictor would be expected. The first of these (x3)

added a value drawn from a random normal with mean zero to the line of equality

at 100 regular points along the s axis then interpolated these 100 points while

x4 added a value from a random uniform at 100 regular points then interpolated.

In technical form x3ij = sj + δij where δij is a random draw from a N(0, 10)

distribution while x4ij = sj + δij where δij is a random draw from a Un(−1, 1)

distribution.
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The simulation was run 100 times for each functional predictor with functional

regression used to estimate the response. At a significance level of 95% both x1

and x2 showed a significant relationship with the response on all 100 occasions.

At the same significance level x3 incorrectly showed a significant relationship on 1

occasion and x4 a significant relationship on four occasions. These results suggest

that the pseudo-likelihood ratio test is a valid test of a relationship between a

functional predictor and a scalar response.

A functional linear model was fitted to the cleft data. The functional pre-

dictors and the functional parameter were defined by B-splines with 20 basis

functions. To find the smoothing parameter a search across a variety of potential

smoothing parameters was carried out with their CV score estimated using (6.21).

Since the functional predictors are smooth, λ does not need to be particularly

large. Figure 6.6 shows the CV score plotted against λ.
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Figure 6.6: Cross-validation score function.

The grid search shows that the smoothing parameter which minimises the

cross-validation score function is close to 6 so λ is set to 6 and the functional linear

model is calculated. Figure 6.7 shows the estimate of the functional parameter

and the estimated psychological score using the functional linear model against

the true psychological score.

The functional parameter in Figure 6.7 is somewhat difficult to interpret

despite the smoothing. To aid interpretation the parameter could be further

smoothed by increasing the smoothing parameter or decreasing the number of

basis functions. It is however possible to see that the area where the functional

parameter is clearly non-zero, i.e. zero is outwith the confidence bands, is around
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Figure 6.7: Functional parameter for the functional linear model with psy-
chological score as response and yz curvature function of the mid-
line profile as predictor (the red lines indicate confidence limits
for the parameter) and estimated psychological score using this
model against the true psychological score with the line of equal-

ity for reference.

s = 0.8. It is difficult to see why curvature towards the face in this area has an

effect on psychological score. Considering the curvature functions in Figure 6.1

there is a very small range of curvature values at s = 0.8 so it is unlikely that the

non-zero functional parameter will offer much in terms of predicting psychological

score. In fact considering the plot of true against predicted psychological score

it is clear that this functional linear model does not appear to be particularly

useful in predicting psychological score. To confirm this view a test of no effect

is carried out and returns a p-value of 0.126 suggesting that yz curvature of the

midline profile is not a useful predictor of psychological score. The R2 value of

the model is calculated using the formula

R2 = 1− sserr

sstot

= 1−
∑

(yi − ŷi)
2

∑
(yi − ȳ)2

and is found to be 0.14.

6.1.4 Nonparametric functional regression

If there are n subjects each with a scalar response yi and a functional predictor

xi(s) it is possible to use nonparametric statistics to estimate the response y∗ of
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a new subject with a known functional predictor x∗(s). Ferraty and Vieu (2006)

give a good overview of nonparametric methods for analysing functional data and

can be taken as a reference for this section. Note that throughout this section

xi(s) and x∗(s) will often simply be denoted by xi and x∗.

The first stage of the method is to define how close the functions xi and x∗ are.

This can be done using a metric function. The properties of a metric function, d

say, are

1. d(xi, x
∗) ≥ 0

2. d(xi, x
∗) = 0 ⇔ xi = x∗

3. d(xi, x
∗) = d(x∗, xi)

4. d(xi, xj) ≤ d(xi, x
∗) + d(x∗, xj)

for any functions xi and x∗. A common example of a metric is the L2 metric e.g.

d(xi(s), x
∗(s)) =

√∫
(xi(s)− x∗(s))2ds (6.26)

where xi(s) and x∗(s) are functions parameterised by arc length. However, in

some cases it is overly simple to define closeness between functions by the area

between them. It may be the case that although the magnitudes of the functions

are close the path that they follow may be different. To define closeness between

functions in terms of shape rather than location a semi-metric can be used. The

semi-metric is a metric with the condition that d(xi, x
∗) = 0 ⇔ xi = x∗ relaxed.

A commonly used semi-metric function is a function which calculates the area

between the second derivatives of each function i.e.

d(xi(s), x
∗(s)) =

√∫
(x′′i (s)− x∗′′(s))2ds (6.27)

where x′′i (s) and x∗′′(s) are the second derivatives with respect to s of the xi and

x∗ functions respectively. In fact for order greater than zero the integral of the

squared difference between the derivatives of the functions gives a semi-metric.

Clearly for order zero we have the L2 metric. In practice any sensible measure

of closeness between functions can be chosen when carrying out nonparametric

regression. In fact, in the examples shown throughout this thesis, it is often

useful to retain the condition d(xi, x
∗) = 0 ⇔ xi = x∗ and use the L2 metric as

the measure of closeness.
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After producing a measure of closeness between x∗ and the xi’s it is necessary

to weight the predictive power of the yi’s. In short the aim is to give a larger

weight to responses for which the corresponding functional predictor is close to

the functional predictor of the unknown response. Kernel local weighting is a

popular nonparametric tool to give local weights. The weighting is dependent on

a density function and a smoothing parameter (called the bandwidth).

To explain the transition from kernel weighting in the scalar case to the func-

tional case, a brief discussion of kernel weighting for multivariate data is given.

Suppose now that there is a fixed known vector a in Rp and weights are required

for n random vectors b1, . . . ,bn. The previous methods for a single scalar value

can be extended relatively simply to the multivariate case. One technique is

to produce a multivariate kernel which is a scalar combination of the kernels in

each of the p dimensions. A natural way of doing this is to define the multivari-

ate kernel, K∗ say, as the product of kernel functions in each dimension i.e. if

x = (x1, . . . , xp) then

K∗(x) = K(x1)×K(x2)× . . .×K(xp) (6.28)

where K(xi) is the value of the kernel function for the scalar value in dimension

i and calculation of K∗(x) is trivial using kernel weighting of scalar values.

Now the weights ω1, . . . , ωn for each of the random vectors b1, . . . ,bn are given

by

ωi =
1

hp
K∗

(
a− bi

h

)
(6.29)

Again this weighting function assigns a weight to each bi dependent on how close

it is to a. The normalisation ( 1
hp ) is given by the product of the normalisations,

1
h
, in each dimension.

The problem of assigning kernel weights to functions can now be thought of as

an extension of the multivariate method. Suppose there is a fixed known function

x∗ and n random functions x1, . . . , xn all in a set E . The direct extension of the

multivariate weighting would be to set the weight for function i as

1

V (h)
K

(
d(x∗, xi)

h

)

where d(·, ·) is a suitable semi-metric, K is an asymmetrical kernel and V (h) is

proportional to the volume of the set in which the xi’s have non-zero weight.
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V (h) can be defined as the volume of

B(x∗, h) =
{

x∗
′ ∈ E , d(x∗, x∗

′
) ≤ h

}

which is a ball centred at x∗ with radius h. However, it is not possible to calculate

this quantity V (h) since there is no available reference measure for E . Therefore

the normalisation must be carried out using another technique. Ferraty and

Vieu (2006) suggest that a way of carrying out the normalisation is by using the

probability distribution of the random functions. So the weights ω1, . . . , ωn for

each of the random functions x1, . . . , xn can be given by

ωi =
K

(
d(x∗,xi)

h

)

E
(
K

(
d(x∗,xi)

h

)) (6.30)

Using both (semi-)metrics and kernel functions Ferraty and Vieu (2006) de-

scribe a method to estimate y∗ given its functional predictor x∗ and the known

response-functional predictor pairs (yi, xi). Since the functional predictor is

known it seems reasonable to use a method based on the conditional distrib-

ution of y∗ given x∗. In fact the method which will be used here and throughout

the thesis will be based on the conditional expectation. It is also reasonable to use

the conditional median or conditional mode with further details given in Ferraty

and Vieu (2006). Define the regression operator r of y∗ given x∗ as

r(x∗) = E(y|x = x∗) (6.31)

Clearly the conditional expectation can be defined as the best estimate of the

regression operator and therefore

ŷ∗ = r̂(x∗) (6.32)

Therefore the interest is in using nonparametric ideas to calculate a best estimate

of the conditional expectation. This can be done by defining the kernel regression

estimator as

r̂(x∗) =
n∑

i=1

ωiyi
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=
n∑

i=1

K
(

d(x∗,xi)
h

)

E
(
K

(
d(x∗,xi)

h

)) yi

=
n∑

i=1

K
(

d(x∗,xi)
h

)

1
n

∑n
i=1 K

(
d(x∗,xi)

h

) yi

r̂(x∗) =

∑n
i=1 yi K(h−1d(x∗, xi))∑n

i=1 K(h−1d(x∗, xi))
(6.33)

where K is a suitable asymmetric kernel, d is a suitable (semi-)metric and h is

real and positive. It is relatively simple to show that this is an intuitively sensible

estimator. By setting

wi(x
∗) =

K(h−1d(x∗, xi))∑n
i=1 K(h−1d(x∗, xi))

it is possible to rewrite (6.33) as

r̂(x∗) =
n∑

i=1

wi(x
∗)yi (6.34)

Since
∑n

i=1 wi(x
∗) is clearly 1 this indicates that the best estimate of E(y∗ | x =

x∗) is a weighted average of the known responses with the weight given to yi

dependent on how close xi is to x∗.

The bandwidth h has been discussed throughout this section with little men-

tion of its selection. Ferraty and Vieu (2006) outline various methods for selecting

the bandwidth when calculating the conditional regression predictor. The method

which will be used throughout this thesis involves a fixed choice of the number

of nearest neighbours. Specifically this means that to predict each unknown re-

sponse only k (say) responses, corresponding to the k functional predictors closest

to the predictor of the unknown response, are given non-zero weight. Recall that

there is information on the response predictor pairs (yi, xi)i=1,...,n. Suppose that a

particular response predictor pair, indexed by a say, is removed from the data and

the remainder of the data is used to predict the response ya given xa. The band-

width hka is set such that there are k functional predictors with d(xa, xi) < hka.

The estimated response is then

ŷa =

∑
i(−a) yi K(h−1

ka d(xa, xi))∑
i(−a) K(h−1

ka d(xa, xi))
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The test of no effect discussed in Section 6.1.3 can be used to analyse the

relationship between functional predictor and psychological score. Here the two

models can be written as

H0 : E(yi) = µ

H1 : E(yi) = r(xi(s))

where r is a functional regression operator. The residual sum of squares can be

defined for each model as

RSS0 =
n∑

i=1

[yi − ȳ]2

RSS1 =
n∑

i=1

[yi − r̂(xi(s))]
2

and in quadratic form as

RSS0 = yT (I − L)T (I − L)y = yT (I − L)y

RSS1 = yT (I −W )T (I −W )y

where W is the (n×n) weight matrix which defines the process of the regression

operator such that ŷ = Wy where ŷi = r̂(xi(s)). The regression operator here

will typically be the operator defined in (6.33) so W will contain the weights

given by the kernel function.

Nonparametric regression is carried out on the cleft data by estimating the

mean responses using the neighbouring response-functional predictor pairs. The

local number of neighbours method is used to give the bandwidth for each esti-

mate with the measure of closeness calculated using the L2 metric. Figure 6.8

shows the p-value from the test of no effect for various numbers of nearest neigh-

bours and a plot of the estimated psychological score using nonparametric regres-

sion with 60 nearest neighbours against the true psychological score.

Figure 6.8 shows that, regardless of the number of nearest neighbours used,

yz curvature of the midline profile is not a significant predictor of psychological

score in a nonparametric regression model. The plot of predicted against true

psychological score shows that the yz curvature function has had very little effect

on the predicted psychological score.
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Figure 6.8: Plot of the p-value from the test of no effect of the nonparamet-
ric regression model using various numbers of nearest neighbours
(left) and estimated psychological score using nonparametric re-
gression with 60 nearest neighbours against the true psychologi-

cal score with the line of equality for reference (right).

6.2 Scalar Response and Multiple Functional Pre-

dictors

This section will describe techniques used to investigate the relationship between

a scalar response and multiple functional predictors. Many of the techniques will

be simple extensions of the techniques in Section 6.1. In general the techniques

will be explained for use with an arbitrary number (p say) of functional predictors.

However, the data used to illustrate the techniques will come from the 10 year old

cleft children with the psychological score as the response and the yz curvature

function of the midline profile, the xy curvature function of the midline profile,

the xz curvature function of the upper lip and the xy curvature function of the

upper lip as the functional predictors. A boxplot of the psychological scores and

a plot of the yz curvature functions was shown in Figure 6.1. Figure 6.9 shows

the remaining curvature functions.
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Figure 6.9: Curvature functions for the cleft subjects including; xy curvature
of the midline profile (top left), xz curvature of the upper (top

right) and xy curvature of the upper lip (bottom left).

6.2.1 Displaying the data

Displaying the data to subjectively investigate relationships between the func-

tional predictors and response becomes even more complex for multiple predic-

tors. As in Section 6.1.1, to make graphical display simpler, the functional predic-

tors are represented by their component scores from the first principal component.

This means that each subject has a response and a principal component score

for each of the p predictors. It is then straightforward to produce a matrix of

scatterplots to investigate the relationship between the response and the compo-

nent score of each functional predictor. Adding a smooth best fitting line to the

points is helpful in investigating relationships between the variables.
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Figure 6.10 shows a matrix of scatterplots for the cleft data to investigate

the relationship between psychological score and the first principal component

score for each of the functional predictors. The smooth best fitting line is a

lowess smoother (see Cleveland (1979) and Cleveland (1981) for details) with a

bandwidth of 0.5.
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Figure 6.10: Matrix of scatterplots for psychological score and first principal
component score of the four functional predictors.

In Figure 6.10 it appears that the first principal component scores of xy cur-

vature of the upper lip show most relationship with psychological score. While

this does not necessarily indicate that this functional predictor has a significant

relationship with the response, it is a useful guide.

It may be that there is interest in interactions between two of the functional

predictors and the response. When this is the case it is possible to use nonpara-

metric statistics (as shown by Bowman and Azzalini (1997)) to produce a surface

which gives a best fit of the relationship between the response and the first princi-

pal component scores for the two functional predictors. For various combinations

of component scores, it is interesting to view the best estimate of the response

given by these component scores whilst also viewing the affect of each score on

the corresponding mean functional predictor. The results can be displayed both

easily and neatly in R using rpanel where two sliders can be set (one for each
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functional predictor) to slide along the range of principal component scores.

Figure 6.11 shows the surface which gives the best fit of the relationship

between the response and the first principal component scores for xy curvature

of the midline profile and xy curvature of the upper lip with a point indicating

the position on the surface corresponding to the chosen component scores. Also

shown is the function produced by adding the effect of the component score to

the mean function for each predictor.

Figure 6.11: The rpanel and three-dimensional plot with best surface. Func-
tion 1 corresponds to xy curvature of the midline profile, func-
tion 2 corresponds to xy curvature of the upper lip and response

corresponds to psychological score.

Although it is difficult to see the relationship in the static representation in

Figure 6.11, by rotating the three-dimensional plot this is a useful tool for inves-

tigating the relationship between the combined effect of the component scores of

two functional predictors and the response.

As explained in Section 6.1.1 it need not be the component scores from the

first principal component which are used to look for relationships in the data.

However, since the first principal component explains the largest variability in

the data it is sensible to at least start by using the first principal component

scores.

6.2.2 Regression on principal component scores

Section 6.1.2 introduced both simple linear regression and additive models for

investigating the relationship between the response and the j principal component
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scores for a single functional predictor. It is relatively simple to extend these

methods to multiple functional predictors.

Suppose that the scalar response is denoted by yi and the p functional pre-

dictors are denoted by xki(ski), where s ∈ (0, 1) and i = 1, . . . , n. Further denote

the jth principal component score of the kth predictor from the ith subject as

akij. Then the standard linear regression can be extended from (6.1) so that

y = α +
∑

k

∑
j

βkjakj + ε (6.35)

Finding the parameters α and βkj which minimise the residual sum of squares

gives the best linear relationship between the response and the principal compo-

nent scores of the various functional predictors.

A simple linear model is fitted with the psychological score as the response and

the first two principal component scores for each of the four functional predictors

as scalar predictors i.e. there are eight scalar predictors. The p-values found from

this full model are shown in Table 6.3.

Functional Predictor Component Coefficient p-value

yz curvature midline profile 1 0.167 0.768
yz curvature midline profile 2 -2.57 0.015
xy curvature midline profile 1 1.45 0.047
xy curvature midline profile 2 -0.281 0.804

xz curvature upper lip 1 -2.56 0.082
xz curvature upper lip 2 1.70 0.372
xy curvature upper lip 1 -1.23 0.273
xy curvature upper lip 2 1.28 0.257

Table 6.3: Significance of the first two principal component scores of the four
curvature functions as combined linear predictors of psychological

score.

Only the second principal component score for the yz curvature of the midline

profile and first principal component score for the xy curvature of the midline

profile show a significant relationship with psychological score when all eight

scalar predictors are combined. This gives an indication that curvature of the

midline profile may be a better predictor of psychological score than curvature of

the upper lip.

As in Section 6.1.2 it may be more informative to replace the scalar parameters
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βkj with a function. This can be done with an additive model, using component

score multiple predictors by simply extending (6.2) so that

y = α +
∑

k

∑
j

fkj(akj) + ε (6.36)

with the backfitting algorithm used to find the fkj’s.

An additive model was fitted to the cleft data with the same predictors and

response as the linear model above. The fitted functions of the predictors can be

found in Figure 6.12 while the p-values for the function of each predictor from the

full model can be found in Table 6.4. The smooth fitted functions are calculated

using smoothing splines with 4 degrees of freedom.

Functional Predictor Component p-value

yz curvature midline profile 1 0.79
yz curvature midline profile 2 0.24
xy curvature midline profile 1 0.04
xy curvature midline profile 2 0.57

xz curvature upper lip 1 0.18
xz curvature upper lip 2 0.34
xy curvature upper lip 1 0.17
xy curvature upper lip 2 0.25

Table 6.4: Significance of smooth functions of the first two principal compo-
nent scores of the four curvature functions as combined predictors

of psychological score.

Figure 6.12 seems to suggest that the principal component score of some

functions may have an effect on the value given to the prediction of psychological

score by the additive model. However, the p-values in Table 6.4 show that when

all eight functions of principal component score are used in the model only one

predictor, first principal component score of xy curvature of the midline profile,

has a significant effect. Clearly by dropping the least significant terms it would

be possible to investigate further any relationship between principal component

scores and psychological score. However, as this is primarily an explanatory

exercise this is not necessary and referring to the plots of the additive model

functions is of more interest to assess whether the combined effect of the functions

may provide a useful predictor of psychological score.
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Figure 6.12: Additive model functions for first and second principal com-
ponent score predictors of; yz curvature of the midline profile
(function 1), xy curvature of the midline profile (function 2), xz
curvature of the upper lip (function 3) and xy curvature of the

upper lip (function 4).

6.2.3 Functional linear model

Section 6.1.3 outlined a technique of using B-spline representation to regularise

a functional linear model to allow estimation of a functional parameter β(s).
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This section will extend the technique to allow for multiple (p say) functional

predictors. The functional linear model for multiple predictors is the simple

extension of (6.3) such that

y = α +
∑

k

∫ T

0

βk(s)xk(s)ds + ε (6.37)

where xk(s) (k = 1, . . . , p) is the kth functional predictor and βk(s) is the corre-

sponding functional parameter. The errors are once again independent from the

predictors with mean zero.

The first stage in estimating the functional parameters is to represent the

functional predictors using B-spline basis functions. Since all predictors are de-

fined on the same interval s ∈ (0, 1) the same set of basis functions can be used

to describe each predictor. Here m B-spline basis functions will be used and are

denoted as φ1, . . . , φm. Each predictor can then be written as the expansion

xik(s) =
m∑

v=1

cikvφv = cT
ikφ (6.38)

where xik(s) is the kth functional predictor for the ith subject and cikv is the coef-

ficient of basis function v for this predictor-subject combination. The functional

parameters are also expressed in terms of these basis functions as

βk(s) =
m∑

v=1

bkvφv = bT
k φ (6.39)

where bkv is the coefficient of the vth basis functional for the parameter of the kth

predictor. Now the aim is to express
∑

k

∫ T

0
βk(s)xik(s)ds in terms of the spline

coefficients. For simplicity, since B-spline basis functions are not orthonormal,

recall J from (6.8) then using an extension of the Parseval identity it can be seen

that

∑

k

∫ T

0

βk(s)xik(s)ds =

p∑

k=1

[
m∑

j=1

m∑
v=1

cijkbkv

∫ T

0

φj(s)φv(s)ds

]

∑

k

∫ T

0

βk(s)xik(s)ds =

p∑

k=1

[
m∑

j=1

m∑
v=1

cijkJjvbkv

]
(6.40)

It is perhaps once again simpler to think of the process in matrix from. Denote the

(n×1) matrix of the responses as Y = (y1, . . . , yn)T . The matrix of the parameters
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is the ([(p · m) + 1] × 1) matrix ζ = (α, b11, b12, . . . , b1m, b21, . . . b2m, . . . , bpm)T .

The coefficient matrix of the predictors is the (n × [(p · m) + 1]) matrix Z =

[1 C1J C2J · · · CpJ ] where 1 is a column of n 1s and Ck is the (n × m)

coefficient matrix for predictor k with row i containing the B-spline coefficients

for subject i. Now it is clear that the model can be defined by the equation

Y = Zζ + ε (6.41)

where ε = (ε1, . . . , εn) and the εis have mean zero and are independent from the

predictors. It now follows that

Ŷ = Zζ̂ (6.42)

Therefore the least squares solution of the parameter vector with multiple func-

tional predictors ζ is given by

ZT Zζ̂ = ZT Y

ζ̂ = (ZT Z)−1ZT Y (6.43)

Section 6.1.3 described the advantages of penalising the sum of squares error

using a roughness penalty to force a degree of smoothness on the functional

parameter. This can be extended for use with multiple functional predictors by

extending the penalised sum of square errors shown by (6.13) to

PENSSE =
n∑

i=1

[
yi − (α +

p∑

k=1

∫ T

0

βk(s)xik(s))

]2

+

p∑

k=1

λk

∫ T

0

β′′k(s)2ds (6.44)

Note that each functional parameter can be assigned its own smoothness parame-

ter meaning that the parameters for some predictors can be forced to be smoother

than those for others. However, unless there is a good reason for this it seems

sensible to have a common smoothness parameter i.e. λ = λ1, . . . λp.

To write this penalised sum of square errors for the multiple predictor model

in vector-matrix form, recall the matrix K defined in (6.14). Now the penalised

sum of square errors can be defined as

PENSSE =
n∑

i=1

(yi − α−
p∑

k=1

m∑
v=1

civkbvkφv)
2 +

p∑

k=1

λk

∫
(

m∑
v=1

bvkφ
′′
v(s))

2ds

PENSSE = ‖ y − α−
p∑

k=1

Ckbk ‖2 +

p∑

k=1

λkb
T
k Kbk (6.45)
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Again define the (n × 1) matrix of the responses as Y = (y1, . . . , yn)T , the ((p ·
m)+1×1) matrix of parameters as ζ = (α, b11, b12, . . . , b1m, b21, . . . b2m, . . . , bpm)T

and the (n × (p · m) + 1) coefficient matrix as Z = [1 C1J C2J · · · CpJ ].

Further recall from (6.16) the augmented penalty matrix K0. It is now possible

to simplify (6.45) such that

PENSSE =‖ y − Zζ ‖2 +

p∑

k=1

λkζ
T K0ζ (6.46)

and the minimising ζ̂ is given by

(ZT Z +

p∑

k=1

λkK0)ζ̂ = ZT y

ζ̂ = (ZT Z +

p∑

k=1

λkK0)
−1ZT y (6.47)

Section 6.1.3 outlined a cross-validation procedure for calculating the ‘best’

smoothing parameter. This can be extended to the multiple functional prediction

setting by defining the hat matrix S which is required to calculate the CV score

using (6.21) as

S = Z(ZT Z +

p∑

k=1

λkK0)
−1ZT (6.48)

This calculates the CV score for the smoothing vector λ = (λ1, . . . , λp). Clearly

there are a huge number of permutations of the λk’s so this cross-validation

method is only of practical use if the smoothing parameters are forced to be the

same for each functional parameter i.e. λ = λ1 = λ2 = . . . = λp.

Section 6.1.3 outlined a pseudo-likelihood ratio test of no effect for a functional

predictor. Here a natural extension of this test is described to examine whether

there is significant effect of the functional predictor r in addition to the other

functional predictors. The two models for this test can be written as

H0 : y = α +
∑

k 6=r

∫ T

0

βk(s)xk(s)ds + ε

H1 : y = α +
∑

k

∫ T

0

βk(s)xk(s)ds + ε

Now call W−k the weight function given by the hat matrix, S, from the model
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H0 and Wf the weight function given by the hat matrix from the full model H1.

Then the residual sum of squares for each model can be written as

RSS0 = yT (I −W−k)
T (I −W−k)y

RSS1 = yT (I −Wf )
T (I −Wf )y

The pseudo-likelihood ratio test statistic of (6.23) can then be expressed in the

form of (6.24) where A = (I−Wf )
T (I−Wf ) and B = (I−W−k)

T (I−W−k)−A.

The remainder of the test follows the same process as the test in Section 6.1.4.

The only difference between the tests is replacing the (n× n) matrix filled with

1/n by the weight matrix from the model H0 which changes the test from a test

of no effect to a comparison of models where H0 is nested within H1.

A functional linear model is calculated on the cleft data. The functional pre-

dictors and the functional parameters are defined using B-splines with 20 basis

functions. To select a smoothing parameter a grid search is carried out on nu-

merous potential smoothing parameters to select the value which minimises the

cross-validation score defined in (6.21). Note that this method is limited to se-

lecting the same smoothing parameter for each functional parameter. Figure 6.13

shows the cross-validation function.
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Figure 6.13: Cross-validation score function for the multiple predictor func-
tional linear model.

The grid search across numerous smoothing parameters showed that the value

which minimised the cross-validation function was close to 25 so λ is set to 25 for

all four functional predictors. Figure 6.14 now shows the functional parameter
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for each of the functional predictors in the model.
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Figure 6.14: Functional parameters for the functional linear model with psy-
chological score as response and; yz curvature function of the
midline profile (top left), xy curvature function of the midline
profile (top right), xz curvature function of the upper lip (bot-
tom left), xy curvature function of the upper lip (bottom right)
as predictors. The red lines indicate confidence limits for the

parameter.

The interpretation of the functional parameters shown in Figure 6.14 is not

entirely straightforward although it can be very useful in defining a relationship

between the functional predictors and the psychological score. The curvature

functions must be consulted during the interpretation. The parameter for yz

curvature of the midline profile is similar to that of the parameter in the single

predictor case so interpretation is similar. Looking at the xy curvature function
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of the midline profile, the functional parameter is negative around s = 0.2. This

corresponds to bending at the tip of the nose and it appears that high magni-

tude of negative curvature (bending to the right) indicates higher psychological

scores. Psychological and anatomical reasons for this are unclear. The functional

parameter for the xz curvature of the upper lip is negative at about s = 0.45

and positive at about s = 0.6. The point at s = 0.6 is the end of the Cupid’s

bow where the upper lip turns back towards the face with positive curvature.

Therefore it seems that the larger the bending towards the face at the end of the

Cupid’s bow the larger the psychological score. The negative value at s = 0.45 is

difficult to interpret but it may be influenced by a large spread of positions for

the start of the Cupid’s bow from s = 0.35 to s = 0.45 The functional parameter

for xy curvature of the upper lip is positive at s = 0.35 and s = 0.55. These are

roughly the ends of the Cupid’s bow where the upper lip turns down the face with

negative curvature. This suggests that the higher the magnitude of curvature at

these points the lower the psychological score. This may be due to subjects with

more pronounced Cupid’s bows looking more like control subjects and therefore

having lower psychological scores.

Figure 6.15 shows the psychological score estimated using the functional linear

model with the four functional predictors against the true psychological score.
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Figure 6.15: Estimated psychological score using the functional linear model
with multiple functional predictors against the true psycholog-

ical score with the line of equality for reference.

There does appear to be a positive relationship between the true psychological

score and the estimated score using the full functional linear model. This suggests



CHAPTER 6. REGRESSION WITH FUNCTIONAL PREDICTORS 154

that there is a relationship between the combined effect of the four functional

predictors and the psychological score. To test the individual significance of each

of the functional predictors in addition to the other predictors a set of tests

comparing the full model to the model with each predictor removed are carried

out and the p-values are reported in Table 6.5.

Functional Predictor p-value

yz curvature midline profile 0.169
xy curvature midline profile 0.140
xz curvature nasal bridge 0.371
xy curvature nasal bridge 0.122

Table 6.5: Significance of each curvature function as a predictor of psycho-
logical score in addition to the other curvature functions.

Table 6.5 shows that none of the curvature functions are useful predictors of

psychological score in addition to the other predictors in the model. It would be

desirable to reduce the model until all predictors are significant. However, as this

example is simply for illustration model reduction will not be covered here. It is

interesting to note that the R2 value of the model is 0.251.

6.2.4 Nonparametric functional regression

Section 6.1.4 outlined a method for predicting the scalar response for a subject

with a given functional predictor by a weighted average of known responses. The

weight given to each known response was dependent on the ‘closeness’ between

the functional predictor for the known response and the functional predictor of

the unknown response. This section will extend this method to the case where

there are multiple (p say) functional predictors for each response.

To motivate kernel weighting of the functional predictors Section 6.1.4 briefly

introduced kernel weighting of multivariate data. Equation (6.28) showed that

the multivariate kernel can be thought of as the product of the kernels in each di-

mension whilst (6.29) showed how each multivariate observation can be weighted

using the multivariate kernel. Now suppose that instead of the multivariate ob-

servations being a collection of scalar values it is in fact a collection of functions

xik(s) where i = 1, . . . , n denotes the subject and k = 1, . . . , p denotes the func-

tions. Now

K∗(di) = K(di1)× . . .×K(dip) (6.49)
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where K(dik) is the functional kernel weighting calculated using a semi-metric d

and an asymmetric kernel as in Section 6.1.4. Now the weight given to subject i

can be taken as a simple extension of (6.30), which gives weight to single variate

functional kernels, so that the weight given to the multivariate functional variable

xi according to its closeness to x∗ is given by

ωi =
K∗

(
d(x∗,xi)

h

)

E
(
K∗

(
d(x∗,xi)

h

)) (6.50)

where

K∗
(

d(x∗,xi)

h

)
= K

(
d(x∗1, xi1)

h

)
×K

(
d(x∗2, xi2)

h

)
× . . .×K

(
d(x∗p, xip)

h

)

The normalisation in (6.50) is carried out using the probability distribution of the

multivariate functional random variable. To remove the effect of the predictors

being on different scales, in particular to avoid functions with large measures of

closeness dominating the process, the values returned by the (semi-)metric are

normalised before the kernel weighting such that

d(x∗1, xi1) =
dorig(x

∗
1, xi1)

maxn(dorig(x∗1, xn1))

Therefore these adjusted (semi-)metric values lie between 0 and 1.

Now suppose that the aim is to find an estimate of the unknown scalar re-

sponse y∗ which corresponds to the multivariate functional variable x∗, where

x∗ = (x∗1(s), . . . , x
∗
p(s)), using the information from n known response-multivariate

functional variable combinations, where yi denotes the response for subject i

whilst xi = (xi1(s), . . . , xip(s)) denotes the multivariate functional variable for

subject i. Using (6.33) the expected value of y∗ given x∗ can be estimated by the

regression operator such that

ŷ∗ = r̂(x∗)

ŷ∗ =

∑n
i=1 yi K∗(h−1d(x∗,xi))∑n

i=1 K∗(h−1d(x∗,xi))
(6.51)

Clearly the choice of bandwidth is again extremely important. Section 6.1.4

described a method where the number of nearest neighbours (i.e. response-

predictor pairs given non-zero weight) is pre-specified and the bandwidth is set
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accordingly. In this multivariate setting, if the response for subject a is to be

estimated using the remaining n− 1 response-functional predictor pairs, for the

weight ωi for subject i to be non-zero d(xak, xik) < h, ∀ k, where k = 1, . . . , p.

Therefore the order of neighbours from closest to xa to furthest from xa is given

by the order of the maximum d(xak, xik) for each subject. The bandwidth hja

which would allow the chosen number of nearest neighbours (j say) to be given

non-zero weight is set as the bandwidth. The estimated response is then

ŷa =

∑n−1
i=1 yi Ka(h

−1
ja d(xa,xi))∑n−1

i=1 Ka(h
−1
ja d(xa,xi))

where hja is the bandwidth which gives j nearest neighbours non-zero weight.

Section 6.2.3 outlined the extension of the pseudo-likelihood ratio test of no

effect for multiple functional predictors. This can be used to test the effect of

each predictor in the nonparametric regression. The two models for this test can

be written as

H0 : E(yi) = r−k(xi(s))

H1 : E(yi) = rf (xi(s))

where r−k is the regression operator calculated using all functional predictors

except predictor k and rf is the regression operator calculated using all functional

predictors. Now W−k is the weight function such that r̂−k(x(s)) = W−ky and Wf

the weight function such that r̂f (x(s)) = Wfy. The weights are returned by

the kernel function when calculating the regression operator under each model.

The method is then the same as in Section 6.2.3. It is also trivial to carry out

a test of no effect of the full non-parametric regression model. The test is the

same as outlined in Section 6.1.4 with the weight matrix W the weights returned

by the kernel function when calculating the regression operator under the non-

parametric regression model being tested.

Nonparametric regression is carried out on the cleft data by estimating the

known psychological scores using the other response-multivariate functional pre-

dictor pairs with the measure of closeness calculated using the L2 metric. The

local number of neighbours method is used to set the bandwidths. Figure 6.16

shows the p-value from the test of no effect for the full nonparametric regression

model for various numbers of nearest neighbours and a plot of the estimated

psychological score using nonparametric regression with 20 nearest neighbours
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against the true psychological score.
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Figure 6.16: Plot of the p-value from the test of no effect of the nonpara-
metric regression model with four functional predictors using
various numbers of nearest neighbours (left) and estimated psy-
chological score using nonparametric regression with 20 nearest

neighbours against the true psychological score (right).

Figure 6.16 shows that regardless of the number of nearest neighbours chosen a

nonparametric regression with functional predictors midline profile yz curvature,

midline profile xy curvature, upper lip xz curvature and upper lip xy curvature,

does not provide a significant predictor of psychological score. The plot of esti-

mated against true psychological score shows that the nonparametric regression

model does not appear to be useful in estimating the true psychological score.

It would be possible to test the effect of each predictor and remove the least

significant predictor until a significant model is found but since this example is

for illustration this is not necessary here.

6.2.5 Functional additive model

Section 6.2.2 described how the relationship between the response and the func-

tional predictors could be investigated using the principal component scores of

the functional predictors. Additive models gave a model which best described

the relationship between the response and the principal component scores using

a function of each of the component scores. Hastie and Tibshirani (1990) give a

good overview of generalised additive models. In this section a variation of the

standard generalised additive model will be suggested where the standard scalar
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predictors are replaced by functional predictors.

Recall that the equation of a generalised linear model is

y = α +
∑

j

fj(xj) + ε

where xj is a scalar predictor. The proposed functional additive model will have

the form

y = α +
∑

j

fj(xj(s)) + ε (6.52)

where the errors have mean zero and are independent from the predictors. The

basic aim of the functional additive model is to find a set of functions (the fj’s)

which, when the functional predictors are passed to them, returns the best es-

timates of the mean of y. One of the major difficulties here is the problem of

visualising the process, in particular visualisation of the fj’s is difficult. This is

in contrast with standard additive models. The major difference is that scalar

predictors are simple to order and only differ over one-dimension whereas func-

tional predictors do not have a natural ordering and can differ in many ways.

However, it is still possible to define the fj’s for the functional generalised linear

model using the back-fitting algorithm.

Suppose that a response yi and p functional predictors xij(s) (where j =

1, . . . , p) are available for n subjects. Then the back-fitting algorithm will proceed

as follows:

1. Initialise the system so that α = ȳi and set the initial functions to zero i.e.

fj = 0 therefore y = α. So before the system starts the best estimate of

each response is simply the mean of all the responses.

2. Cycling k = 1, . . . , p. Calculate the partial residual for each subject where

the partial residual is the error remaining after removing the effects of α

and
∑

j 6=k fj(xij(s)) from the known response i.e.

PRik = yi − α−
∑

j 6=k

fj(xij(s))

Now a fit of the partial residuals PRik against the functional predictors

xik(s) must be produced. This is a similar problem as carrying out a re-

gression on a scalar response using a functional predictor so can be found

using a nonparametric functional regression (Section 6.1.4) with the scalar
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response replaced by the partial residuals. The estimated responses given

are the values returned by fk(xk(s)) for each subject.

3. Repeat (2) until the fj’s do not change.

The bandwidths in the nonparametric regression are chosen using the number of

nearest neighbours method.

As mentioned one difficulty with interpreting the results from this additive

model is how best to illustrate the functions of the functional predictors. This

is due to the fact that functional predictors have no natural ordering. It may be

interesting however to plot the first principal component score for each functional

predictor against the value returned by the additive model function for that

predictor. This is a relatively exploratory procedure; however it may show some

interesting relationships between component score and value of the additive model

function.

It is possible to test the significance of each functional predictor, in addition

to the other predictors, in showing a relationship with the response. A pseudo-

likelihood ratio test as outlined by Section 6.2.3 is an appropriate test. The

hypotheses can be written as

H0 : y = α +
∑

j 6=k

fj(xj(s)) + ε

H1 : y = α +
∑

j

fj(xj(s)) + ε

The only difficulty in carrying out the test is in finding the weight matrices

W−k and Wf . It is possible to keep track of these matrices (called projection

matrices as they project the responses to their fitted values) throughout the back-

fitting algorithm. Denote the projection matrix which produces the estimate

of the partial residual PRk as Pk so that P̂Rk = Pky. It is then possible to

describe the back-fitting algorithm as the process which iteratively finds Pk =

(In − P0)Sk(In −
∑

j 6=k Pj) cycling through k = 1, . . . , p, 1, . . . , p, 1, . . .. Sk is the

smoothing matrix (which can be found from the nonparametric regression) such

that P̂Rk = SkPRk, P0 is an (n × n) matrix filled with 1
n

and In is the order n

identity matrix. After the process converges P1, . . . , Pp give the weight matrices

such that P̂Rk = Pky and the fitted values given by the generalised additive

model are given by ŷ = Py where P =
∑p

j=1 Pj. The weight matrix W−k is the

projection matrix for an additive model calculated without functional predictor k

whilst the weight matrix Wf is the projection matrix for the full additive model.
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With these weight matrices the pseudo-likelihood ratio test can be carried out

as in Section 6.2.4. It is also possible to carry out a test of no effect of the full

additive model using the test outlined in Section 6.1.4 with the weight matrix W

given by the projection matrix P from the full additive model being tested.

An additive model is fitted to the cleft data using the back-fitting algorithm.

To examine the effect of the choice of the number of nearest neighbours Fig-

ure 6.17 shows p-values returned by the test of no effect for various numbers of

nearest neighbours and also shows a plot of predicted psychological score using a

generalised additive model with 25 nearest neighbours.
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Figure 6.17: Plot of the p-value from the test of no effect of the additive
model with four functional predictors using various numbers
of nearest neighbours (left) and estimated psychological score
using a generalised additive model with 25 nearest neighbours

against the true psychological score (right).

Figure 6.17 shows that regardless of the number of neighbours chosen the

additive model is not a significant predictor of psychological score. The plot

of estimated against true psychological score shows that the nonparametric re-

gression model does not appear to be related to the mean psychological score.

Table 6.6 shows the results of pseudo-likelihood ratio tests of no effect to examine

the significance of each functional predictor in addition to the other predictors in

an additive model with 25 nearest neighbours used in the modelling.

None of the p-values in Table 6.6 are close to significant. It may be that

by removing the least significant functional predictor the model would become

significant. Since this section is for illustrating methods this will not be done here.

It may however be interesting, especially for a significant model, to attempt to
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Functional Predictor p-value

yz curvature midline profile 0.618
xy curvature midline profile 0.136

xz curvature upper lip 0.246
xy curvature upper lip 0.499

Table 6.6: Significance of each function as a predictor of psychological score
in addition to the other functions in a functional additive model.

interpret the function of the predictor returned by the additive model. To do this

a plot of the first principal component score for each functional predictor against

the value returned by the additive model function for that predictor is shown in

Figure 6.18.
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Figure 6.18: Plot of first principal component score against value returned
by the additive model for predictors; yz (top left) and xy (top
right) curvature of the midline profile and xz (bottom left) and

xy (bottom right) curvature of the upper lip.
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From Figure 6.18 it appears that there may be some form of negative relation-

ship between the first principal component scores of xz curvature of the upper lip

and the value returned by the additive model for that predictor. By investigating

the effect of increasing the principal component it may be possible to draw some

inferences about any small effect of xz curvature of the upper lip on psychological

score.



Chapter 7

Applied Functional Regression

Chapter 6 outlined various techniques to investigate the relationship between a

scalar response and functional predictors. Using data from the study on ten year

old cleft children these techniques can be used to systematically analyse poten-

tial relationships between psychological score and the shape of facial features.

There are five three-dimensional curves defining facial features for which data

are available. These curves run down the midline profile, along the top of the

upper lip, along the rim of the nose, along the base of the nose and along the

bridge of the nose. The shape of each curve will be defined by two curvature func-

tions calculated using the perpendicular plane method outlined in Section 4.2.4.

Therefore there are ten potential functional predictors which may be related to

the psychological score. The name of the curvature (yz, xy or xz) is dependent

on which planes the curve is projected on to. For reference Table 7.1 shows which

curves are explained by each curvature and an anatomical description of what

that curvature shows.

To give a brief insight into potential relationships both between the predictors

and the response, and between predictors, a matrix scatterplot using the first

principal component score of each functional predictor and the scalar response is

produced as described in Section 6.2.1 and plotted in Figure 7.1.

Although some of the scatterplots on the bottom row of Figure 7.1 appear

to show some relationship between the functional predictor (defined by the first

principal component) and the response none appear strong enough to confidently

expect a significant relationship. There also appears to be some relationship

between functional predictors so there is potential for concurvity, the nonpara-

metric analogue of multicollinearity, in the modelling. This will not be discussed

throughout the chapter but is worth noting.

163
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Predictor yz Curvature xy Curvature xz Curvature

Midline Profile Bending into and Bending across N/A
out of the face the face

Upper Lip N/A Bending up and Bending into and
down the face out of the face

Nasal Rim N/A Bending up and Bending into and
down the face out of the face

Nasal Base N/A Bending up and Bending into and
down the face out of the face

Nasal Bridge N/A Bending up and Bending into and
down the face out of the face

Table 7.1: Description of the two curvature functions which describe each
facial curve.
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Section 7.1 will use the techniques of Section 6.1 to investigate evidence of a

significant relationship between the psychological score and each curvature func-

tion and describe the nature of this relationship. Section 7.2 will use the tech-

niques of Section 6.2 to find the combination of curvature functions which give

the strongest relationship with the psychological score and give some insight into

this relationship.

7.1 Single Functional Predictor Analysis

Although none of the plots in Figure 7.1 suggested strong relationships between

the first principal component scores of the curvature functions and psychological

score, it may be that relationships are simply not apparent when only considering

component scores as a predictor as opposed to whole functions. This section will

use the ideas of Section 6.1 to look for significant relationships and investigate

these relationships further.

7.1.1 Functional linear model and investigating significant

relationships

Since there are ten potential functional predictors it seems reasonable to use func-

tional regression techniques to find the curvature function which is the strongest

predictor of psychological score and then investigate the relationship further. Sec-

tion 6.1.3 described how to fit and test a functional linear model. The functional

predictors and parameters are defined by B-splines with 20 basis functions. For

each predictor cross validation was carried out to find a smoothing parameter

which offered a trade-off between model accuracy and smoothness of the func-

tional parameter. The smoothing parameters returned by the cross-validation

range from 6 to 200 with a mean of around 70. To allow direct comparability the

mean smoothing parameter of 70 is used for all curvature functions. Table 7.2

shows the p-value of the test of no effect for each curvature function predictor

along with the R2 value for the significant predictors.

A functional regression, carried out using the functional linear model with

single functional predictors, suggests that it is xy curvature of the nasal base

and xz curvature of the nasal bridge which show a significant relationship with

psychological score, while xz curvature of the nasal base is close to being a signif-

icant predictor. The R2 values for both significant curvature function predictors
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Predictor p-value R2

Profile yz curvature 0.173
Profile xy curvature 0.184

Upper lip xz curvature 0.733
Upper lip xy curvature 0.252
Nasal rim xz curvature 0.768
Nasal rim xy curvature 0.109
Nasal base xz curvature 0.057

Nasal base xy curvature 0.019 0.12
Nasal bridge xz curvature 0.034 0.07

Nasal bridge xy curvature 0.071

Table 7.2: Significance of each curvature function as a predictor of psycho-
logical score using the functional linear model.

are low showing that none of the curvature functions individually explain a great

deal of the variation in psychological score. Since xy curvature of the nasal base

is the individual curvature function which has the strongest relationship with

psychological score this relationship will be investigated further.

For reference, Figure 7.2 shows the xy curvature functions of the nasal base

and the effect of the first three principal components on the mean function. Note

that s = 0 is the right end of the nasal base while s = 1 is the left end of the

nasal base.

The first principal component appears to mainly explain variation in the mag-

nitude of curvature at the end of the nasal base whilst the second principal com-

ponent mainly explains variation in curvature at the start and middle of the nasal

base. The third principal component appears to contain a global variation be-

tween the curvature functions. To attempt to explain the relationship between

psychological score and the xy curvature function for the nasal base a linear

model and an additive model are fitted to examine the relationship between the

combined effect of the first three principal component scores and the psycholog-

ical score. Table 7.3 shows the p-values for each term in the linear and additive

models whilst Figure 7.3 shows the function given by the additive model for each

principal score.
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Figure 7.2: xy curvature functions for the nasal base and the effect (+/- two
standard deviations of the principal component) of the first three

principal components on the mean curvature function.

Principal Component Linear model coefficient Linear model p-value AM p-value

First 1.23 0.078 0.3
Second 1.96 0.017 0.014
Third -1.15 0.263 0.4

Table 7.3: Significance of principal component scores for nasal base xy cur-
vature functions as combined predictors of psychological score.
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Figure 7.3: The functions of the principal components scores returned by the
additive model.

From both the p-values in Table 7.3 and the plots in Figure 7.3 it appears that

the relationship with the second principal component score may be able to give

an insight into the relationship between the curvature function and psychological

score. Interestingly, as already mentioned, the second principal component de-

scribes more general variation in the functions than the first principal component

score and only describes about 9% less variability. Considering both the linear

model coefficient and the additive model function it does appear that, in general,

as second principal component score of the curvature function increases psycho-

logical score increases. To graphically investigate the relationship and consider

how a change in second component score affects a reconstructed nasal base an

rpanel plot of the type described in Section 6.1.1 can be produced. The rpanel

is shown for low and high component scores in Figure 7.4.
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Figure 7.4: The rpanel showing; the nonparametric fit of the relationship
between the second principal component score and psychological
score (top left), the curvature function corresponding to that
component score (top right) and the reconstructed nasal base
using that curvature function (bottom right). The left rpanel
shows a low component score whilst the right rpanel shows a

high component score.

The rpanel snapshots from Figure 7.4 indicate that as the second principal

component increases the psychological score tends to increase. Furthermore the

effect of increasing the second principal component score is that xy curvature

in the middle of the nasal base tends towards zero while curvature towards the

ends of the nasal base increases. This results in a flattening out of the nasal base

in the middle with the bending occurring towards the ends. The indication is

that children with flatter areas in the middle of the nasal base may have higher

psychological scores than children with a more rounded nasal base.

To formally investigate the relationship between xy curvature of the nasal base

and psychological score the functional linear model and nonparametric model will

be investigated in more detail. Earlier it was noted that there was a large spread

in the smoothing parameters, returned by the cross-validation method, for the

functional linear model using different curvature functions. To allow the results

from all curvature functions to be directly comparable, the mean of the smoothing

parameters was taken. To analyse the model using xy curvature of the nasal base

in more detail the cross-validation process is repeated with the cross-validation

score function shown in Figure 7.5.
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Figure 7.5: Cross-validation score function for the xy curvature of the nasal
base predictor.

The cross-validation function returned a minimum cross-validation score when

the smoothing parameter was 33 therefore the functional linear model is produced

using this smoothing parameter. The p-value for a test of no effect of the model

using this smoothing parameter is 0.022 whilst the R2 value is 0.15. Figure 7.6

shows a plot of the psychological score estimated using this method against the

true psychological score and the functional parameter for this model.
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Figure 7.6: Predicted psychological score, using the functional linear model,
against true psychological score (left) and the functional para-

meter with red confidence bands (right).

The major interest in Figure 7.6 is the functional parameter. It appears that

there are two areas where the functional parameter is clearly non-zero. Near s =
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0.4 the functional parameter is negative and since the xy curvature functions are

generally positive at this point it appears that higher curvature values at s = 0.4

indicate lower psychological score. This is further evidence of the suggestion that

subjects with nasal bases which are more rounded in the middle may have lower

psychological scores. The functional parameter is positive at around s = 0.8

and since the curvature function is spread between positive and negative values

of curvature at this point it appears that children with negative curvature at

this point in general have lower psychological scores than children with positive

curvature. Since the first principal component was primarily concerned with

variation in this area of the curvature functions an rpanel plot may be useful to

give greater insight into this effect. Figure 7.7 shows the rpanel for a low and

high component score.

Figure 7.7: The rpanel showing; the nonparametric fit of the relationship
between the first principal component score and psychological
score (top left), the curvature function corresponding to that
component score (top right) and the reconstructed nasal base
using that curvature function (bottom right). The left rpanel
shows a low component score whilst the right rpanel shows a

high component score.

The rpanel snapshots show a slight trend of psychological score increasing as

first principal component score increases. The effect of increasing first principal

components score appears to be a skewing of the nasal base to the right so that

the turning point of the nasal base which would usually indicate landmark sn,

shown in Figure 1.1, occurs towards the right of the nasal base rather than at the

centre of the nasal base. Negative curvature near s = 1 suggests that the nasal
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base is turning back up the face towards the end of the nasal base after turning

down the face after landmark sn indicating that the sn landmark occurred near

the centre of the nasal base. Positive curvature near s = 1 suggests that the nasal

base is still turning down the face towards the end of the nasal base as landmark

sn occurred near the right end of the nasal base. Therefore it appears that the

positive values of the functional parameter around s = 0.8 are due to the fact

that positive curvature at this point indicates a skewed nasal base which may

result in increased psychological score whilst negative curvature values suggest a

centred nasal base resulting in lower psychological scores.

7.1.2 Nonparametric regression

Nonparametric regression offers an alternative form of functional regression to the

functional linear model. Section 6.1.4 described how nonparametric techniques

are used to estimate the response using the functional predictors and how to test

the effect of functional predictors. The semi-metric (in fact in this case metric)

used was the L2 metric. The reason for using a metric rather than a semi-metric is

that the condition appropriate for semi-metrics, namely d(xi, x
∗) = 0 ⇔ xi = x∗,

may result in curves with very different magnitudes of curvature being categorised

as ‘close’. For each response estimated the bandwidth is chosen such that 40

nearest neighbours (half the subjects) are given non-zero weight in the prediction.

Table 7.4 shows the p-value of the test of no effect for each curvature function

predictor using this nonparametric regression technique along with the R2 value

for the significant predictors.

The nonparametric regression suggests that xy curvature of the nasal base

is the individual curvature function which has the strongest relationship with

psychological score. This is consistent with the results of the functional linear

model. However, whereas the functional linear model suggests that xz curvature

of the nasal bridge is the only other curvature function which has a significant

relationship with psychological score, nonparametric regression suggests that xy

curvature of the nasal rim has a significant relationship with psychological score

but xz curvature of the nasal bridge does not. This shows that the methods are

not equivalent; although, it is reassuring that, despite the fact the R2 values are

low, both show that xy curvature of the nasal base has the strongest relationship

with psychological score.
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Predictor p-value R2

Profile yz curvature 0.687
Profile xy curvature 0.126

Upper lip xz curvature 0.185
Upper lip xy curvature 0.985
Nasal rim xz curvature 0.845

Nasal rim xy curvature 0.032 0.02
Nasal base xz curvature 0.061

Nasal base xy curvature 0.012 0.04
Nasal bridge xz curvature 0.368
Nasal bridge xy curvature 0.178

Table 7.4: Significance of each curvature function as a predictor of psycho-
logical score using nonparametric regression.

When using the nonparametric regression method to investigate relationships

between the curvature functions and psychological score a rather arbitrary num-

ber of nearest neighbours were chosen. To investigate the effect of changing the

number of nearest neighbours on the significance of the relationship between xy

curvature of the nasal base and psychological score the p-value from the test of no

effect and the R2 value returned by the nonparametric regression for all numbers

of nearest neighbours from 1 to 79 are calculated and shown in Figure 7.8.
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Figure 7.8: Plot of the p-value from the test of no effect (left) and R2 value
(right) returned from a nonparametric regression using xy curva-
ture of the nasal base and various numbers of nearest neighbours.

It appears that using a moderate number of nearest neighbours, anywhere



CHAPTER 7. APPLIED FUNCTIONAL REGRESSION 174

between 15 and 50, shows a significant relationship between xy curvature of the

nasal base and psychological score. The R2 value although small for all numbers

of nearest neighbours is largest, at 0.05, when using 30 nearest neighbours. Fig-

ure 7.9 shows a plot of known psychological score against the psychological score

estimated using a nonparametric regression with 30 nearest neighbours.
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Figure 7.9: Predicted psychological score, using nonparametric regression,
against true psychological score.

Considering the R2 values for both the functional linear model and the non-

parametric regression and the plots of predicted against true psychological score

in Figures 7.6 and 7.9 it is clear that the relationship although significant is not

particularly strong. Perhaps a model with multiple curvature functions would be

a better predictor of psychological score.

7.2 Multiple Functional Predictor Analysis

Whilst using xy curvature of the nasal base as a single functional predictor of

psychological score showed that the curvature function was a significant predictor,

the relationship was not strong. A model using more than one of the curvature

functions may be more useful as a predictor of psychological score. Section 6.2

outlines how many of the methods used for a single functional predictor can be

extended to multiple functional predictors and many of these techniques will be

used throughout this section.
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7.2.1 Functional linear model and investigating significant

relationships

Section 6.2.3 outlined how to fit and test a functional linear model with multiple

predictors. Backward stepwise methods where the least significant predictor, in

addition to the other predictors in the model, is removed until all variables have

a p-value of less than 0.05 is used to select the combination of curvature functions

which has the best significant relationship with psychological score. The results

of the stepwise process are shown in Table 7.5 with a smoothing parameter of 70

for each functional predictor.

Predictor removed p-value R2

Full model - 0.467
Nasal rim xz curvature 0.762 0.457
Upper lip xz curvature 0.385 0.446
Upper lip xy curvature 0.294 0.421

Profile yz curvature 0.282 0.397
Profile xy curvature 0.186 0.374

Nasal base xz curvature 0.176 0.352

Table 7.5: Functional linear model backward stepwise selection. The p-value
is for the removed predictor whilst the R2 value is from the model

with that predictor removed.

The final model given by the functional linear model contains the predictors

nasal rim xy curvature, nasal base xy curvature, nasal bridge xz curvature and

nasal bridge xy curvature with the model having an R2 value of 0.352. The

significance of each predictor in addition to the other predictors in the model is

shown in Table 7.6.

Predictor p-value

Nasal rim xy curvature 0.018
Nasal base xy curvature <0.001

Nasal bridge xz curvature 0.007
Nasal bridge xy curvature 0.046

Table 7.6: Significance of functional parameters in final functional linear
model.

Nasal rim xy curvature, nasal base xy curvature and nasal bridge xz curvature
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are all highly significant predictors while the p-value for nasal bridge xy curvature

is close to the significance level. Figure 7.2 has already shown the xy curvature

functions of the nasal base and the effect of the first three principal components on

the mean curvature function. Figure 7.10 shows both the xy curvature functions

of the nasal rim and the xz curvature functions of the nasal bridge and the effects

of the first two principal components on each mean curvature function. Note

that, for simplicity, nasal bridge xy curvature is not included when informally

investigating the nature of the relationships. This seems justified as the p-value

is very close to the significance level.

The xy curvature functions of the nasal rim appear to have two areas of

positive curvature where the nasal rim turns down towards the bottom of the face

just before the nasal rim connects to the face. These turning points correspond

to landmarks alo0R and alo0L shown in Figure 1.1. One function has extremely

large curvature around s = 0.8 this is due to that child having problems where the

nasal rim connects to the face due to their cleft. The first principal component

appears to explain variation in the magnitude of curvature at these points. The

second principal component appears to explain differences in position of these

points as well as further variation in magnitude of curvature. The xz curvature

functions of the nasal bridge have an area of positive curvature around s = 0.5

which indicates the area that the nasal bridge turns back towards the face between

the eyes, at landmark n. There are also areas of negative curvature around

s = 0.15 and s = 0.85 which indicate where the nasal bridge turns away from

the face just after leaving/approaching the corner of the eye. The first principal

component appears to explain variation in the magnitude of curvature at these

three turning points whilst the second principal component primarily explains

variation in curvature at the middle of the nasal bridge.
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Figure 7.10: Curvature functions and effect (+/- two standard devaitions) of
the first two principal components for xy curvature of the nasal

rim (left) and xz curvature of the nasal bridge (right).

To attempt to give insight into the relationship between psychological score

and the combined effect of nasal rim xy curvature, nasal base xy curvature and

nasal bridge xz curvature, a linear model and an additive model are fitted to

investigate the combined effects of the first two principal components of each
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functional predictor. Table 7.7 shows the p-values for each term in the linear and

additive models whilst Figure 7.11 shows the function from the additive model

for each principal component.

Functional predictor Principal Linear model Linear model AM
component coefficient p-value p-value

Nasal rim xy curvature First -0.48 0.088 0.34
Nasal rim xy curvature Second -0.62 0.112 0.03
Nasal base xy curvature First 1.59 0.016 0.04
Nasal base xy curvature Second 2.31 0.003 0.02

Nasal bridge xz curvature First -2.32 0.010 0.01
Nasal bridge xz curvature Second -2.31 0.048 0.29

Table 7.7: Significance of first two principal component scores for nasal rim
xy curvature, nasal base xy curvature and nasal bridge xz curva-

ture functions as combined predictors of psychological score.

Interestingly when looking at the p-values for the linear model of the principal

components it appears that neither principal component scores from the xy cur-

vature of the nasal rim are useful predictors in addition to the other component

scores. However, by looking at the scatterplots in Figure 7.11 it is clear that for

the nasal rim the first principal component scores, and to a greater extent the

second principal component scores, appear to have a quadratic relationship with

psychological score. Evidence that this quadratic relationship may be useful as

a predictor of psychological score is given by the fact that the second principal

component of the nasal rim xy curvature functions is a significant term in the

additive model. Further it seems that as both the first and second principal com-

ponent scores of nasal bridge xz curvature functions increase the psychological

score appears to decrease. Since Figures 7.4 and 7.7 investigated the relationship

between the principal component scores for nasal base and psychological score

the relationship between the joint effect of the second principal component for

the nasal rim functions and the first principal component for the nasal bridge

functions and psychological score will be examined.
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Figure 7.11: The functions of the principal components scores returned by
the generalised additive model for nasal rim xy curvature (top),
nasal base xy curvature (middle) and nasal bridge xz curvature

(bottom).

Section 6.2.1 discussed a method which involved finding a nonparametric fit

of a surface showing the relationship between the two sets of principal component

scores and the response then using an rpanel adjusting the values of the principal

components to visualise the effect on the response and on the individual mean
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curvature functions. Figure 7.12 shows the rpanel and corresponding position

on the fitted function for a high and a low response.

Figure 7.12: The rpanel and three-dimensional plot with best surface giving
a high psychological score (top) and a low psychological score
(bottom). Function 1 corresponds to xy curvature of the nasal
rim, function 2 corresponds to xz curvature of the nasal bridge

and response corresponds to psychological score.

According to the exploratory analysis in Figure 7.12 a subject with only two

areas of bending down the face at the ends of the nasal rim and with large

amount of bending in the nasal bridge is likely to have a large psychological

score. Interestingly it appears that a subject who only has a larger magnitude

of bending on one end of the nasal rim than the other and has a low amount of

bending on the nasal bridge is likely to have a low psychological score. It does

not seem unreasonable that a subject with a flatter, less ‘bumpy’ nasal bridge

should have lower psychological score. The results from the nasal rim seem less

intuitively sensible. As shown in Figure 7.11 the second principal component of
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xy curvature of the nasal rim is dominated by a small number of subjects who

have low psychological scores. These subjects appear to have a large amount of

variability in curvature at the ends of the nasal rim so any departure from the

mean curve, whether it be an increase or decrease in curvature, appears to show

a decrease in estimated psychological score. This exploratory analysis has given

an indication of some of the relationships between psychological score and the

curvature functions. To further explain the relationships it is useful to investigate

the functional parameters from the functional linear model.

In the stepwise selection considered earlier in this section the smoothing pa-

rameter for each functional predictor in the multiple predictor model was set as

the mean of the optimal smoothing parameter from the functional linear model

between psychological score and each of the individual functional predictors. Sec-

tion 6.2.3 outlined a cross-validation procedure to estimate the optimal smooth-

ing parameter given that the smoothing parameter for each predictor is equal.

Figure 7.13 shows the cross-validation function for the functional linear model

produced by the backward stepwise selection with functional predictors nasal rim

xy curvature, nasal base xy curvature, nasal bridge xz curvature and nasal bridge

xy curvature.
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Figure 7.13: Cross-validation score function for the final functional linear
model.

The cross-validation procedure returned an optimal smoothing parameter of

17. The functional linear model is produced with this smoothing parameter used

for each of the functional predictors. This model has an R2 value of 0.511 and

the functional parameters from the model are shown in Figure 7.14.

Anatomical interpretation of the functional parameters can become compli-

cated. To aid this interpretation the four sets of curvature functions used in the
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Figure 7.14: The functional parameters returned by the functional linear
model for xy curvature of the nasal rim (top left), xy curva-
ture of the nasal base (top right), xz curvature of the nasal
bridge (bottom left) and xy curvature of the nasal bridge (bot-

tom right).

functional linear model are shown in Figure 7.15 with the functional parameters

and their confidence limits superimposed.

Considering firstly the functional parameter for xy curvature of the nasal

rim, there are two areas where the parameter is clearly greater than zero at

around s = 0.4 and s = 0.8. At s = 0.4 the curvature functions are generally

negative though close to zero therefore the positive functional parameter suggests

that those with higher magnitude of negative curvature at this point will have

lower psychological scores. It is difficult to suggest any anatomical/psychological

reason for this. At s = 0.8 the curvature functions are positive therefore the
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Figure 7.15: The functional parameters returned by the functional linear
model superimposed on the curvature functions for xy curva-
ture of the nasal rim (top left), xy curvature of the nasal base
(top right), xz curvature of the nasal bridge (bottom left) and

xy curvature of the nasal bridge (bottom right).

positive functional parameter suggests that a large amount of bending at this

point indicates larger psychological scores. This is due to the fact that large

bending up the face at this point may result in the shape of the nasal rim being

distorted which suggests larger psychological scores.

The functional parameter for xy curvature of the nasal base is very similar to

the functional parameter from the functional linear model in Section 7.1 contain-

ing only this functional predictor therefore interpretation is similar to that given

in that section.

The functional parameter for xz curvature of the nasal bridge has an area
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around s = 0.5 where the parameter is clearly positive. The curvature functions

are also positive at this area which is the point at the centre of the nasal bridge

where it turns towards the face. The fact that both the parameter and curvature

functions are positive suggest that subjects with larger curvature in the middle

of the bridge of the nose will have larger psychological score. This is perhaps due

to larger curvature towards the face indicating a more prominent nasal bridge

which may result in larger psychological scores.

The functional parameter for xy curvature of the nasal bridge is clearly pos-

itive around s = 0.35 and around s = 0.8. Since the curvature functions are

negative around s = 0.35 this suggests that a larger magnitude of negative cur-

vature in this area suggests lower psychological score. As shown by the positive

curvature around s = 0.15 the nasal bridge turns up the face after leaving the

corner of the eye but turns back down the face when it gets to the ridge of the

nose at around 0.35. It is difficult to interpret why higher magnitude of curva-

ture in this area suggests lower psychological scores. The area around s = 0.8

where the functional parameter is positive is the transition between negative and

positive curvature where the nasal bridge turns back up the face as it approaches

the corner of the eye. The positive functional parameter suggest that subjects

whose curvature function remains negative until later on the s axis will have a

lower psychological score.

7.2.2 Nonparametric regression

As in the single predictor setting, nonparametric regression offers an alternative

form of multiple functional regression to the functional linear model. Section 6.2.4

outlined how to carry out and test a nonparametric regression with multiple pre-

dictors. A backward stepwise procedure, with 40 nearest neighbours and the L2

metric used in the nonparametric regression, is used to select the combination of

curvature functions which has the best significant relationship with psychological

score with the results shown in Table 7.8.



CHAPTER 7. APPLIED FUNCTIONAL REGRESSION 185

Predictor removed p-value R2

Full model - 0.015
Profile yz curvature 0.972 0.046

Nasal rim xz curvature 0.792 0.071
Nasal bridge xy curvature 0.536 0.076
Upper lip xy curvature 0.703 0.088
Upper lip xz curvature 0.594 0.096
Nasal base xz curvature 0.483 0.098

Table 7.8: Nonparametric regression backward stepwise selection. The p-
value is for the removed predictor whilst the R2 value is from the

model with that predictor removed.

The final model given by the nonparametric regression contains the predictors

profile xy curvature, nasal rim xy curvature, nasal base xy curvature and nasal

bridge xz curvature with the model having an R2 value of 0.098. The significance

of each predictor in addition to the other predictors in the model is shown in

Table 7.9.

Predictor p-value

Profile xy curvature 0.026
Nasal rim xy curvature 0.007
Nasal base xy curvature 0.041

Nasal bridge xz curvature 0.005

Table 7.9: Significance of functional parameters in the final nonparametric
regression model.

Interestingly, three predictors, nasal rim xy curvature, nasal base xy curva-

ture and nasal bridge xz curvature, are common to both the final functional

linear model and the final nonparametric model. This gives a stronger indication

of a significant relationship between the combined effect of these three predictors

and psychological score. Although the variables included in the final model are

similar for both the functional linear model and the nonparametric regression

there is a major difference in the R2 values of the models using the different

methods. The R2 values using the functional linear model are much larger than

those for the nonparametric regression. This suggests that the functional lin-

ear model provides a better fit of the psychological scores when using multiple
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predictors than nonparametric regression. As non-significant terms are removed

in the functional linear model the R2 value decreases; however, interestingly, as

non-significant terms are removed in the nonparametric regression the R2 value

increases. This is due to non-significant functional predictors adversely affecting

which subjects are chosen as nearest neighbours.

To investigate the effect, particularly on the R2 value, of changing the number

of nearest neighbours a nonparametric regression using the variables returned by

the stepwise selection, namely xy curvature of the midline profile, xy curvature of

the nasal rim, xy curvature of the nasal base and xz curvature of the nasal bridge,

is carried out for all possible numbers of nearest neighbours. The significance of

the model, as tested by a test of no effect, and the R2 value of the model are

shown in Figure 7.16.
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Figure 7.16: Plot of the p-value from the test of no effect (left) and R2 value
(right) returned from a nonparametric regression using xy cur-
vature of the midline profile, xy curvature of the nasal rim, xy
curvature of the nasal base and xz curvature of the nasal bridge

as predictors.

When more than 6 nearest neighbours are used in the nonparametric regres-

sion the model with the four functional variables is a significant predictor of

psychological score. The optimal R2 value is 0.111 and is found using 28 nearest

neighbours.

Recalling that the R2 value for the final functional linear model was 0.511 it

is clear that the multiple functional linear model is a more useful predictor of

psychological score than the nonparametric regression. To examine this a plot of

predicted psychological score against true psychological score is shown for both
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methods in Figure 7.17.
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Figure 7.17: Predicted psychological score against true psychological score

using nonparametric regression (left) and functional linear
model (right).

It is clear from Figure 7.17 that the functional linear model gives a more

accurate estimate of the psychological score than the nonparametric regression.

It seems that whilst the difference in the predictive power of the two methods was

not particularly large when only single functional predictors were used, there is a

large difference in the predictive power of the methods when multiple functional

predictors are used. It is however reassuring that both methods produce similar

final models.

7.2.3 Functional additive model

A functional additive model also provides an alternative to the functional lin-

ear model when there are multiple functional predictors. Section 6.2.5 outlined

how an additive model could be constructed using functional predictors. The

method required nonparametric regression with the number of nearest neigh-

bours selected. Here a backward stepwise selection method is used to select the

best functional additive model with the number of nearest neighbours set to 40.

Table 7.10 shows the result of the stepwise selection procedure.

The R2 values are extremely low for the models with a large number of pre-

dictors but increase slightly as predictors are removed from the model. It appears

that this is again due to non-significant functional predictors adversely affecting

which subjects are chosen as nearest neighbours in the nonparametric regression
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Predictor removed p-value R2

Full model - <0.001
Upper lip xy curvature 0.686 <0.001

Profile yz curvature 0.228 <0.001
Nasal rim xz curvature 0.218 <0.001
Upper lip xz curvature 0.224 <0.001
Profile xy curvature 0.149 <0.001

Nasal base xz curvature 0.105 0.030
Nasal bridge xz curvature 0.093 0.043
Nasal bridge xy curvature 0.110 0.059

Table 7.10: Additive model backward stepwise selection. The p-value is for
the removed predictor whilst the R2 value is from the model with

that predictor removed.

stage. The final model given by the additive model is one containing the xy

curvature of the nasal base and xy curvature of the nasal rim and this model has

an R2 value of 0.059. The significance of each predictor in addition to the other

predictor is shown in Table 7.11

Predictor p-value

Nasal rim xy curvature 0.038
Nasal base xy curvature 0.013

Table 7.11: Significance of functional parameters in the generalised additive
model.

To attempt to interpret the effect of the function of each predictor returned

by the model, a plot of the first principal component of each predictor against

the value returned by the model for that predictor is shown in Figure 7.18.

There does seem to be a relationship between the first component score and

the value returned by the additive model for both predictors. For xy curvature

of the nasal rim it appears that as principal component score increases the value

returned by that function decreases. The effect of increasing the first principal

component score is an increase in the amount of bending experienced at the

ends of the nasal rim therefore it appears that subjects with a lower amount of

bending at the ends of the nasal rim may have a higher psychological score. For xy

curvature of the nasal base it appears that as the first principal component score
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Figure 7.18: Plot of first principal component score against value returned
by the additive model function for predictors; xy curvature of

nasal rim (left) and xy curvature of nasal base (right).

increases the value returned by the function increases. The effect of increasing the

first principal component score is changing the curvature at the end of the nasal

base from negative to positive therefore it appears that subjects with negative

curvature at the end of the nasal base will have a lower psychological score.

When fitting the additive model an arbitrary number of nearest neighbours

were used in the nonparametric regression stage. To investigate the effect of

changing the number of nearest neighbours an additive model using xy curvature

of the nasal rim and xy curvature of the nasal base as predictors is calculated

using a range of number of nearest neighbours from 1 to 79. Figure 7.19 shows

the significance of the model, tested using a test of no effect, and the R2 value

for all nearest neighbours.

When more than 11 nearest neighbours are used the test of no effect shows that

the additive model has a significant effect on psychological score. The optimal R2

value is 0.070 and this occurs when 33 nearest neighbours are used. Figure 7.20

shows a plot of estimated psychological score using an additive model with xy

curvature of nasal rim and xy curvature of nasal base as predictors and 33 nearest

neighbours, against true psychological score.
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Figure 7.19: Plot of the p-value from the test of no effect (left) and R2 value
(right) returned from a generalised additive model using xy cur-

vature of the nasal rim and xy curvature of the nasal base.
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Figure 7.20: Estimated psychological score, using an additive model, against
true psychological score.

It is clear from both Figure 7.20 and the low R2 value that the additive model

is not a strong predictor of psychological score. However, the plots of first prin-

cipal component score against the value returned by the model for each function

do give a useful insight into how each of the functional predictors may affect

psychological score. It is also interesting to note that the significant predictors

in the functional additive model, xy curvature of nasal rim and xy curvature of

nasal base, are also significant predictors in the functional linear model and the
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nonparametric regression. This provides even further evidence that these two

curvature functions have a significant relationship with psychological score.

7.3 Concluding Remarks

This chapter has investigated potential relationships between facial shape, defined

by curvature functions of five features, and psychological score. Throughout the

chapter it appears that the features which have the strongest relationship with

psychological score are the nasal base, nasal rim and to a lesser extent the nasal

bridge. It seems entirely reasonable that bending of the nasal base and nasal rim

have a relationship with psychological score as these areas are likely to be affected

in some way by the subjects cleft. It is interesting that it is the xy curvature

(bending up and down the face) which is significant as presumably bending in

this direction is more noticeable when viewing a subject from front on.

The exact interpretation of relationships is difficult to state confidently. Tools

such as the rpanel and additive model discussed in this chapter have proved use-

ful in gaining some understanding of the relationships, although the discussion

here is only a start. The fact that the rpanel is both simple to use and to under-

stand may make it possible to enlist the help of a facial surgeon or psychologist

in interpreting the relationships.

It seems that a functional linear model with multiple functional predictors

produced the best estimates of the known psychological scores. However, it may

be that this is simply the case for this data set and it would be useful to try

the methods out on other data sets. In the nonparametric regression the area

between the functions metric was used to give a measure of closeness. This was

due to the fact that for many features it was the magnitude of curvature at certain

characteristic points which most clearly defined individual curvature functions.

Other simple semi-metrics were used to give a measure of closeness with none

improving the model but perhaps a more sophisticated (semi-)metric may have

produced better regression models.



Chapter 8

Conclusions

This thesis can be broken down into two related but distinct parts. Chapters 3, 4

and 5 used the ideas of curvature to describe and compare facial shape with data

coming from a study into 1 year old children. The major aim of this part of the

thesis is to make comparisons between control children and children with a cleft

lip and/or palate. Chapters 6 and 7 investigate potential relationships between

facial shape, defined by curvature functions encountered in previous chapters, and

psychological score with the data coming from a study into 10 year old children.

The major aim of this section is, for cleft children only, to discover and interpret

links between facial shape and psychological score. This chapter will be split

into three distinct sections. Section 8.1 will discuss the major issues with, and

conclusions drawn from, using curvature to investigate differences between shapes

while Section 8.2 will provide an overview of the techniques used and conclusions

drawn from an investigation into relationships between curvature functions and

psychological score. Section 8.3 will introduce and discuss potential future work.

8.1 Curvature

Many standard shape analysis techniques require the alignment of shapes through

translation, rotation and in some instances rescaling. While these techniques are

effective, for high-dimensional data they can be computationally expensive and

further discrepancies that are found between shapes may in part be due to the

alignment process. When analysing shape curves the necessity for alignment, and

in turn the issues that come with it, can be avoided by analysing curves using

curvature. This is due to the fact that the curvature of a curve is invariant with

respect to location and rotation. This is not to say that analysing shape curves

192
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using curvature is more or less effective than aligning the curves but it does offer

a useful alternative.

There is a large amount of literature on defining and calculating curvature

in geometry books. Many of the ideas are summarised in this thesis. For plane

curves the curvature value is dependent on the positions of the tangent and

normal vectors and also the arc length of the curve. Using some simple geometry,

an equation can be found which calculates curvature at each point on the curve

using the first and second derivatives of the x and y positions of the curve with

respect to arc length. Since this allows curvature to be calculated at all arc

lengths it is possible to produce a function which shows the curvature for all

arc lengths. Curvature functions for different curves can then be compared with

relative ease. However, to allow direct comparability, it is necessary to rescale the

arc lengths of each curve to a common value; arc length 1 was chosen throughout

this thesis, without changing the shape.

Using the derivative formula to calculate curvature is technically equivalent

but in practice some issues occur. Numerical calculation of the derivatives can

be produced in R using the predict function. For most relatively simple curves

the first derivatives are calculated with reasonable accuracy; however, for second

and particularly higher level derivatives, the calculated values are subject to some

error, especially at the ends of the curve. In practice it is shown that for second

derivatives the error is not sufficiently large to invalidate the curvature values

calculated from the derivative formula although the errors in the tails have small

undesirable effects on the calculation of curvature. Practical interpretation of the

curvature functions provides another issue. A major aim of this methodology is

to produce curvature functions which are both simple to interpret and compare.

Even when analysing relatively smooth shape curves the curvature functions pro-

duced have large amounts of roughness; therefore to aid interpretation and com-

parison the curvature functions need to be smoothed. The method for doing this

here was to smooth the functions of x and y position against arc length before

calculating the derivatives. The advantage of this method over smoothing the

final function of curvature is that the smoother the position functions the lower

the error in the calculation of derivatives.

A useful method for investigating the accuracy of the calculated curvature

function is to attempt to reproduce the original shape curve from the curvature

function. There are formulae to reproduce the shape curve up to the similarity

transformations of location and rotation and Procrustes methods can be used
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to align the original and reconstructed shape curves so that differences between

the curves are caused by errors in the curvature function. Using this method to

assess the accuracy of the derivative formula curvature functions calculated for an

example midline profile produced an accurate reconstruction of the original curve

as long as the degrees of freedom for the smoothing of the position functions were

not too low.

Comparing curvature functions is a useful way to compare the shapes of fea-

tures and in particular compare different groups. An average curvature function

for a group can be calculated by taking the piecewise average of the set of curva-

ture functions and from this average curvature function it is possible to produce

an average reconstructed shape curve. Comparing average reconstructed shape

curves is a useful way to gain understanding of the anatomical differences present

between groups. An interesting extension to simply taking a pointwise average of

the curvature functions is to firstly align curvature functions according to points

of anatomical/geometrical interest and then take the average. Averaging of this

type is called structural averaging. The anatomical/geometrical points of interest

are often shown as turning points on the curvature functions. For a collection

of curvature functions the turning points which correspond to interesting points

on the shape curve can be aligned by warping the arc length axis. Structural

averaging is useful in that it gives a better indication of the average magnitude

of curvature at points of interest than averaging the original curves.

Calculating curvature of space curves introduces extra complexity. In stan-

dard methodology the bending of a space curve is defined by two scalar values

at each point on the curve called curvature and torsion. Curvature and torsion

are dependent on a moving trihedron which contains the tangent, normal and

binormal vectors. Using geometry it is possible to produce equations to calculate

curvature, using the first and second derivatives of the x, y and z positions of

the curve with respect to arc length, and torsion, using the first second and third

derivatives of the x, y and z positions of the curve with respect to arc length.

Curvature and torsion functions can then be produced to define the shape curve.

However, due to the problems in calculating high order derivatives in R the

torsion functions are subject to a large amount of error making this method un-

reliable. Further methods were introduced to find more accurate curvature and

torsion functions. Two methods which were investigated, one which sets the

moving trihedron at various points on the curve and used formulae based on the

tangent, normal and binormal vectors to calculate curvature and torsion, and
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another which finds the curvature and torsion functions which optimise the accu-

racy of the reconstructed shape curve, produced curvature and torsion functions

which allowed accurate reconstructions of the shape curve.

An issue with defining shape curves using curvature and torsion functions is

that it is difficult to attach anatomical meaning to the functions. An alternative

method is suggested where the space curves are projected onto two perpendicu-

lar planes and the curvature of these projected curves can be found using planar

methods. The perpendicular planes are chosen so that bending in each plane

corresponds to a simply definable change in anatomical direction. This method

produces two curvature functions which are easily interpretable and define the

shape of the curve up to similarity transformations of translation and rotation.

As with plane curves reconstructing the original shape curve from the curvature

functions gives a useful indicator of the accuracy of the functions. The recon-

structed perpendicular plane curves can be combined by rotating the starting

angle of the reconstructions to find a common axis. This technique is used to

show that the perpendicular plane method produces curvature functions which

give an accurate reconstruction of the original shape curve.

As mentioned above comparing curvature functions, and in particular average

curvature functions, is a useful way to compare the shape of a feature for different

groups. Piecewise averaging of both curvature functions is again trivial and the

average curvature functions are used to produce average shape curves for simple

comparability between groups. However, aligning curvature functions to produce

structural averages is somewhat less straightforward. The major issue lies in

the fact that it is important to ensure that the aligned arc length axis on both

curvature functions for one subject correspond to the same point on the space

curve. Therefore, any warping carried out on one curvature function must be

carried out on the other curvature function. A choice must be made on whether

one, both or a combination of the curvature functions are used to define important

anatomical/geometrical points.

As a practical application, curvature functions, calculated using the perpen-

dicular planes method, offer the basis of a comparison of the shape of the upper

lip between the control children and the children with a cleft lip or cleft lip and

palate in the 1 year study. A variety of mainly exploratory techniques are used

for the comparison. The shape of average curvature functions and the average

reconstructed shape curves give a visualisation of differences between the groups

while analysis of the position and magnitude curvature at points of interest give
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a more formal analysis of differences between the groups. Principal components

analysis is shown to be a useful tool to investigate variation in the curvature

functions where component score plots can indicate if variation described by a

certain component is dominated by a certain group. In producing structural av-

erages all curves were aligned to the average position of each point of interest.

Considering that the ultimate aim of surgery is to remove all traces of the cleft,

the structural average is produced for just the control group to give a baseline

(or gold standard) curvature function and the position warping required to align

each individual function to the average of the control group is quantified. Once

all curvature functions are aligned the major difference between them is in the

magnitude of curvature thus it is interesting to quantify the amplitude adjust-

ment which would be required to produce the structural average control curvature

function from each aligned function. Comparing the magnitude of both position

warping and amplitude adjustment gives an interesting insight into which group

has curvature functions most like the gold standard.

The practical application produced some interesting results. Investigating the

upper lip, the major interest occurs in the middle of the upper lip where control

children experience a turn down the face, sharply followed by a turn up the face,

sharply followed by a turn down the face. This area is termed the Cupid’s bow.

There is evidence that the start of the Cupid’s bow occurs nearer the start of

the upper lip and the end of the Cupid’s bow occurs further along the upper lip

for children born with a cleft lip and children born with a cleft lip and palate

than for control children. Perhaps of more interest there is evidence that neither

children born with a cleft lip or those born with a cleft lip and palate have the

upturn in the middle of the Cupid’s bow and those children have lower curvature

down the face on average at the ends of the Cupid’s bow than control children.

Therefore it seems that cleft children have a flat area in the middle of the upper

lip where control children have their Cupid’s bow. The cleft children also require

more position and amplitude warping on average to produce the gold standard

curvature functions. It is clear that there is a large amount of evidence that on

average cleft children (both those born with a cleft lip and those born with a cleft

lip and palate) have very different upper lip shapes than control children.

In summary, curvature functions have been shown to be useful in describing

the shape of feature curves. A perpendicular planes method is an appropriate

way to describe space curves as the curvature functions produced offer clear

anatomical interpretation. The curvature functions are useful to compare the
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shape of feature curves across different groups. An application comparing the

upper lips of control children with children born with a cleft lip and children

born with a cleft lip and palate at 1 year of age showed clear and anatomically

interesting differences between the groups.

8.2 Functional Regression

There is a huge amount of literature on the problem of investigating relationships

between a response and a predictor. The relationship between a scalar response

and scalar predictor can be examined using standard linear regression techniques.

It is further possible to examine the relationship between a scalar response and

a functional predictor; however, this introduces some complexities. These com-

plexities do not just affect the formal regression analysis but also graphical data

description techniques.

The major issue with graphical displays is that, unlike the scalar case, there is

no natural ordering of the predictors. One method for imposing ordering on the

functional predictors is to carry out a functional principal components analysis

and order according to the first principal component scores. Informally investi-

gating the relationship between first principal component score and response may

give an indication of the relationships in the functional regression. Visualising

the effect on the mean functional predictor of changing the first principal score

further increases understanding of potential relationships. A useful application

of the rpanel tool allows a panel to be produced which investigates the effect

on the response of changing the first principal component score and in turn vi-

sualises the curvature function and the estimated reconstruction of the feature

which corresponds to that component score.

Two methods are suggested for formally applying the functional regression.

A functional linear model is a simple extension of the standard linear model

where a functional parameter is calculated for the functional predictor. Using

least squares methods to estimate the functional parameter is not trivial as the

continuous nature of the parameter allows a sum of squared error of zero. To allow

least squares methods to be used the functional predictors and the functional

parameters must be regularised. One method for doing this is to interpolate

the predictors and consider a multivariate linear regression using the value of the

function at the interpolation points as the predictors. However, this method loses

information from the functional predictors, particularly when the sample size is
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small. A preferable alternative is to regularise the functions using basis functions

(in this thesis B-spline bases are used). Some simple algebra produces a least

squares solution of the functional parameter in terms of coefficients of the basis

functions.

The major interest of the functional linear model comes from the interpreta-

tion of the functional predictor. However, using least squares often results in a

functional predictor which is too ‘rough’ to offer simple interpretation so some

form of smoothing should be applied. This can be done, somewhat artificially,

by reducing the number of bases functions used to define the functional para-

meter, however this has the undesirable effect of introducing inaccuracies in the

basis representations of the functional predictors. An alternative solution is to

penalise the residual sum of squares using a term based on the second derivative

of the functional predictor with a smoothing parameter controlling the trade-off

between smoothness of the functional parameter and accuracy of the functional

linear model. It is sufficient to manually select the value of the smoothing para-

meter; however, a cross-validation procedure can be used to find the value which

gives the ‘best’ trade off between smoothness and accuracy.

Nonparametric regression techniques can also be extended to deal with func-

tional predictors. The method estimates a response given the functional predictor

as a waited average of the known responses. The responses are weighted according

to the ‘closeness’ between their functional predictor and the functional predictor

of the unknown response. Closeness can be measured using a semi-metric or a

metric. A semi-metric is chosen if functions which differ in magnitude but are ex-

actly the same in shape are to be given high weights. Throughout this thesis the

magnitude of the functions was considered of major importance so the L2 metric

was applied to quantify closeness. Asymmetric kernels are used to give weights

to the responses depending on the measure of closeness between the functional

predictors. As usual with kernel functions the choice of bandwidth is crucial.

In this thesis the bandwidth is selected using a technique called nearest neigh-

bours where a predetermined number of responses, with the closest functional

predictors, are given non-zero weight.

Clearly it is important to have a method for formally testing the relationships

shown by the functional linear model and nonparametric regression. A simple

extension of the test of no effect proposed by Bowman and Azzalini (1997) can be

applied to test the relationships. The test is based on a pseudo-likelihood ratio

statistic which is proportional to the usual F statistic but is not dependent on
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the degrees of freedom of the two models.

The techniques used to investigate the relationship between a scalar response

and functional predictor can be extended to allow for multiple predictors with

relative ease. Ordering the functional predictors with respect to their first princi-

pal component score enables informative graphical displays of potential relation-

ships between multiple functional predictors and the response. The extension

of the functional linear model to incorporate multiple predictors is trivial. The

smoothing parameters for each of the functional predictors need not be the same.

However, unless there is reason to use different smoothing parameters, it seems

sensible to keep the smoothing parameter common across the predictors.

Extending nonparametric regression to incorporate multiple predictors is less

straightforward. Each known response is weighted according to a combination

of the closeness of all functional predictors. This weight can be found as the

product of individual kernel weights for each functional predictor. The bandwidth

is again chosen so that a pre-determined number of responses with the closest

set of functional predictors are given non-zero weight. Clearly for the product

of the individual kernel weights to be non-zero all individual weights have to be

non-zero. To avoid scale issues dominating the selection of nearest neighbours

the closeness measure for each predictor were standardised.

With multiple functional predictors it is possible to define a functional version

of an additive model. The analogue of the smoothing of the partial residuals in

a standard additive model is using the weights given by closeness between the

functions to estimate the partial residuals. A natural extension of the backfitting

algorithm can be used to find the value returned by each function in the final

model. Again the functional nature of the predictors makes the process difficult

to visualise and the effect of each predictor difficult to display. However, a plot

of first principal component score against the value returned by the function in

the additive model can be useful to investigate the effect of the function on the

response in addition to the other functional predictors.

It is important to be able to test the significance of each functional predictor

in addition to the other functional predictors in all three models; functional

linear model, nonparametric regression and additive model. A simple and natural

extension of the test of no effect for one variable gives a method for these tests.

This method can be incorporated into a stepwise selection procedure to find a

model which contains only significant functional predictors.

Functional regression techniques were applied to the data from the 10 year
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study to investigate the relationship between psychological score and facial shape,

defined by curvature functions, for cleft children. The single functional predictor

which appeared to have the strongest relationship with psychological score related

to bending up and down the face of the nasal base. The suggestion is that cleft

children who have a more rounded nasal base at landmark sn and have this

landmark occurring in the middle of the nasal base have lower psychological score

than those with a flat area and a skewed position of the sn landmark. However,

the relationship between this single functional predictor and psychological score

is not strong.

When models with multiple functional predictors were considered the func-

tions corresponding to bending up and down the face of the nasal base, bending

up and down the face of the nasal rim and bending in and out the face of the

nasal bridge were returned by the stepwise selection method for both the func-

tional linear model and nonparametric regression whilst the functional additive

model returned a model containing the functions of bending up and down the

face of the nasal base and bending up and down the face of the nasal rim. The

functional linear model also contained a function of bending up and down the

face of the nasal bridge whilst the nonparametric regression also contained a func-

tion of bending across the face of the midline profile. The multiple functional

linear model appeared to be a better predictor of psychological score than the

nonparametric regression or additive model. A further advantage of the multiple

functional linear model is that analysing the functional parameters gave a very

interesting insight into the effect of the shape of the curvature functions, and in

turn the shape of the original features, on the psychological score.

In summary, functional regression techniques are useful to investigate the

relationship between a scalar response and functional predictor. An interesting

challenge is in how best to display the data to both obtain an initial impression

and then to further analyse significant results. The technique used in this thesis

involved ordering the functional predictors according to their principal component

scores. The rpanel displays provided a very helpful means for investigating a

change of component score both on the response and the functional predictor.

Using curvature functions in the functional regression models produced some

interesting results. From the 10 year study it appears that there is evidence that

the psychological state of cleft children may be mostly related to the bending up

and down the face of the nasal base and nasal rim. The effect of these predictors

can be investigated using both rpanel and the functional parameters from the
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functional linear model. However, while suggestions of the psychological effect of

certain anatomical phenomenon were made in the thesis where possible, this is

by no means the expert opinion which is necessary.

8.3 Potential for Further Work

The work in this thesis touches the surface of two major issues. Firstly, finding

an appropriate method for defining the shape of an object and secondly using

this measure of shape to investigate relationships with a response. There is room

to build on methods used throughout this thesis and also a number of interesting

areas in which the work could move.

Barry (2008) carried out longitudinal analysis on landmarks and curves from

the faces of children. Procrustes methods were used for alignment before the

analysis. As an interesting extension it may be possible to carry out longitudinal

analysis of curvature functions as opposed to the shape curves. This could return

information on how the curvature of facial features change throughout time and

if these changes are similar for control and cleft children.

Standard practice for positioning landmarks, and therefore producing shape

curves, is for manual selection by trained operators. However, it appears that it

may be possible to extract curves from a three-dimensional image using changes

in surface curvature. Discussion of this curve extraction method is outwith the

scope of this thesis; however, if curves can be extracted automatically curvature

functions may provide a useful tool in landmarks placement. When aligning

curvature functions in the thesis it was said that turning points in the curvature

functions often correspond to landmarks of interest. It would be interesting to

select the position of landmarks using curvature functions and compare these

to the positions which are manually selected by an operator. Combined with a

curve extraction method based on surface curvature this could potentially lead

to a fully automated system for extracting curves and landmarks.

The investigation into the relationship between facial shape and psychological

score produced some interesting results. However, it may be possible to improve

and extend the analysis. It appeared that the nonparametric regression was less

effective in finding relationships than the functional linear model. This may have

been due to a rather simple metric being chosen to measure closeness between

functions. As mentioned, any suitable metric can be chosen so time may be

well spent considering and testing improved metric functions. Furthermore, it
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would be both interesting and helpful to have some method for visualising the

nonparametric regression process in the way that the functional linear model

returns informative functional parameters.

In the 10 year study both children and parents were asked to respond to

questionnaires; however, this was only requested for cleft children. It would have

been interesting to have psychological information for control children and to

analyse whether the facial shape of control children is related to psychological

score. In fact if enough data were available, comparisons in the results of a

functional regression analysis between the control group and both cleft groups

(those born with a cleft lip and those born with a cleft lip and palate) may

provide interesting insights. In the analysis in this thesis, psychological score was

measured according to the results for a questionnaire completed by the children’s

parents. It would clearly be useful and interesting to repeat the analysis using

results from questionnaires completed by the children themselves.

A major issue in the functional regression was how best to display both the

initial data and the results. The rpanel displays can be used to visualise the

effect of changing principal component scores, not only in terms of the response

but, on the effect on the mean curvature function and in turn the reconstructed

shape curve. With some work it may be possible to produce an rpanel which in-

vestigates the effect of the functional parameters from the functional linear model.

Throughout this thesis there was some difficulty in identifying clear effects of the

functional parameter but by changing the shape of the mean curvature function,

and in turn the corresponding shape curve, in directions deemed to affect the

response by the functional parameter, interpretation may become clearer. How

this would work in an rpanel requires much thought but the resulting display

would be very informative.

In the functional regression, facial shape is defined by curvature functions. It

has already been mentioned that there are a variety of methods to define facial

shape and any of these methods can be used in a regression setting. One inter-

esting analysis could be to use the work of Bowman and Bock (2006) to produce

asymmetry measures for all the landmarks of each subject. Some combination of

these asymmetry measures could form part of standard linear regression of the

psychological score. This is just one example of a number of similar regression

analyses that could be used to relate facial shape to psychological score and a

systematic comparison of the methods to define facial shape in the regression

analysis may be useful.
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In summary, there are a number of natural extensions to the work in this

thesis. Considering the relationship between facial shape and psychological score

of cleft children is an extremely worthwhile pursuit and may in future prove useful

to surgeons and psychologists. How best to define facial shape and psychological

score is certainly open to debate and whilst this thesis suggests certain methods a

systematic analysis of various techniques may in fact provide improved methods.

An improvement and extension of the methods for displaying the results of a

functional regression may be helpful in allowing access of the important results

to surgeons and psychologists who offer help to the children.
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