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Abstract

As intelligent systems increasingly rely on distributed data generated at the edge, traditional
centralized machine learning paradigms face critical limitations related to data privacy, band-
width constraints, and vulnerability to single points of failure. Federated Learning (FL) has
emerged as a promising distributed alternative that enables collaborative model training across
devices without sharing raw data, preserving privacy while leveraging collective intelligence. In
smart energy systems, Short-Term Load Forecasting (STLF) exemplifies a critical application
where FL’s privacy-preserving capabilities offer significant advantages, supporting efficient grid
operation. However, deploying FL in dynamic and heterogeneous environments poses unique
challenges, including security vulnerabilities from untrusted participants, communication bot-
tlenecks in low-bandwidth networks, and managing data heterogeneity across clients. This re-
search systematically addresses these hurdles by targeting four key challenges to advance the
practical deployment of FL in energy-centric applications. The first challenge (C1) involves
model attacks, where adversarial clients attempt to compromise the global model. Existing
attacks do not fully exploit FL’s vulnerabilities and can be captured with current defence frame-
works. This necessitates the development of stealth attack strategies. This research introduces
novel stealth model poisoning techniques, including the Federated Communication Round
Attack (Fed-CRA), which increases communication rounds without degrading model perfor-
mance but at the cost of higher resource consumption. These vulnerabilities highlight the need
for stronger defense mechanisms, driving the development of more robust frameworks. The sec-
ond challenge (C2) focuses on robust aggregation, as traditional FL methods often struggle to
filter out adversarial updates effectively. To address this challenge, we introduce four innovative
frameworks: (a). Federated Random Layer Aggregation (FedRLA), which enhances secu-
rity by aggregating only a randomly selected layer during each round, which reduces the attack
surface as attack can only attack single layer of local model thereby mitigating the impact of ad-
versarial updates; (b). Layer-Based Anomaly Aware Federated Averaging (LBAAFedAvg),
which detects and isolates compromised layers while ensuring that valid updates are preserved
with the help novel clustering criteria to identify good and back clients, improving the overall
integrity of the aggregation process; (c). Federated Incentivized Averaging (Fed-InA), specif-
ically designed for Fed-CRA, which is based on game theory, it incentivizes honest clients by
rewarding them and penalizes malicious ones, promoting a healthier collaborative environment;
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and Decentralized Federated Learning (DFL), which distributes the aggregation process across
multiple clients, minimizing the risk of single points of failure and eliminate the need of server.
Furthermore, (d). Decentralized Federated Random Layer Aggregation (DRLA) combines
DFL with FedRLA to significantly enhance robustness against adversarial attacks by aggregat-
ing a single layer in peer to peer communication manner. The third challenge (C3) concerns
communication and computational efficiency, as FL’s iterative updates can strain bandwidth and
processing resources, especially in energy-constrained environments. The proposed frameworks
optimize efficiency by minimizing transmitted data and computational overhead. FedRLA sig-
nificantly reduces communication costs by limiting shared model information, while Adaptive
Single Layer Aggregation (ASLA) leverages quantization and adaptive stopping criteria to en-
sure minimal resource usage. Other robust frameworks, LBAA-FedAvg, Fed-InA, and DFL, are
designed to require minimal resources for model training. The fourth challenge (C4) addresses
data heterogeneity, a fundamental issue in energy networks where clients possess diverse con-
sumption patterns. Two frameworks tackle this problem: (a). FedBranched, which clusters
clients based on data similarity to enhance local model convergence, and (b). ASLA, which
selectively aggregates the most effective layer across clients, improving generalization across
varied datasets. Through addressing these interconnected challenges, this research enhances the
robustness of the model, communication and computational efficiency and fixes the issue of data
heterogeneity between different clients, paving the way for more resilient and privacy-preserving
intelligent systems.
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Chapter 1

Introduction

The rise of IoT (Internet of Things) devices has dramatically transformed the way people, busi-
nesses, and systems interact with technology, fostering a new era of connectivity and automa-
tion. While IoT encompasses a vast network of interconnected devices, sensors, and systems
that communicate and exchange data over the internet with minimal human intervention [1],
this increased connectivity introduces significant challenges related to data privacy, security,
and the need for robust anomaly detection. The proliferation of IoT devices, including smart
home appliances, wearable health monitors, industrial sensors, and autonomous vehicles, has
led to the generation of massive amounts of sensitive data. This data often contains personal or
proprietary information, making it a target for potential breaches and cyberattacks. Addition-
ally, the distributed nature of IoT systems requires efficient and reliable mechanisms to detect
and respond to anomalies in real-time, ensuring the integrity and reliability of these systems.
As a result, the focus of this thesis is on developing advanced federated learning frameworks
that address these critical concerns, particularly in the context of smart energy networks where
privacy, security, and anomaly detection are paramount.

Despite the transformative potential of the IoT in domains such as energy management,
healthcare delivery, and the development of smart cities, several critical challenges hinder its
effective integration with machine learning systems:

1. Data Privacy and Security Risks: IoT devices frequently collect sensitive and high-
frequency data, such as detailed energy consumption patterns and personal health metrics.
This centralised accumulation of data poses significant risks, as it can become a target for
cyberattacks, leading to potential breaches of privacy and violations of regulatory frame-
works like GDPR. Moreover, the diversity of data sources exacerbates the complexity of
implementing robust security measures, making it imperative for organizations to priori-
tize data encryption and secure transmission protocols to safeguard user information [2].

2. Bandwidth and Resource Constraints: The need for frequent model updates in central-
ized learning approaches leads to excessive communication overhead, particularly chal-

1
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lenging for low-power and bandwidth-limited edge devices. For instance, transmitting
large volumes of data for model training can strain network resources and result in la-
tency issues that are detrimental to real-time applications, such as health monitoring or
smart grid management. Therefore, developing lightweight algorithms that require mini-
mal data transmission while maintaining predictive accuracy is critical for the viability of
IoT systems [3].

3. Data Heterogeneity: IoT deployments often involve a wide array of devices that gener-
ate diverse, non-IID (Independent and Identically Distributed) data. Variations in usage
patterns, sensor specifications, and environmental conditions contribute to this hetero-
geneity, complicating the process of training globally consistent machine learning models.
The challenge lies in effectively aggregating and harmonizing data from these disparate
sources to ensure that the models can learn from a comprehensive dataset while account-
ing for the unique characteristics of each data stream [4].

4. Distributed Models and Aggregation: Aggregating models in a distributed IoT environ-
ment introduces unique challenges. The need to combine model updates from numerous
heterogeneous devices requires robust aggregation mechanisms that can handle non-IID
data distributions and potential adversarial updates. Traditional aggregation methods like
simple averaging may not be effective in such settings, as they can lead to model drift or
poor generalization. Developing efficient and secure aggregation techniques that can op-
erate under communication constraints while preserving model integrity is crucial. These
techniques must also balance the trade-off between communication efficiency and model
accuracy, ensuring that the aggregated model performs well across all participating de-
vices despite their diversity.

Despite these drawbacks, the IoT landscape continues to expand, driven by innovations in
AI, 5G technology, and edge computing. Addressing these challenges through robust security
frameworks, standardized protocols, sustainable practices, and ethical guidelines will be essen-
tial to realising the full potential of IoT in creating a more connected and intelligent world.

The challenges faced by IoT devices, such as data privacy concerns, cybersecurity risks, and
the need for personalised ML, highlight the limitations of traditional, centralised approaches to
managing and analysing data. One application of IoT devices can be found in energy networks,
where they monitor and optimize energy consumption, manage distributed generation, and fa-
cilitate demand response. However, these applications raise significant data privacy concerns,
as sensitive information about energy usage patterns may be exposed.

Cybersecurity risks are particularly pronounced in energy networks, where interconnected
IoT devices can create vulnerabilities; a breach in one device can compromise the entire system.
Additionally, the need for personalised ML is critical to tailoring energy solutions to the unique
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requirements of different consumers and environments. Traditional, centralised approaches of-
ten fall short in addressing these challenges, as they rely on aggregating large volumes of sensi-
tive data in a single location, increasing the risk of breaches and limiting the ability to develop
personalized models.

A promising solution to address these issues lies in federated learning (FL), a distributed
approach that enables IoT devices to collaboratively train ML models without sharing raw data.
By keeping data localized and transmitting only aggregated model updates, FL significantly
enhances privacy and reduces the risk of breaches. It also supports the development of person-
alized models tailored to specific IoT environments while maintaining scalability and efficiency.
Additionally, this approach fosters interoperability by allowing diverse devices to contribute to a
shared, cohesive learning process, paving the way for a more secure and adaptive IoT ecosystem.

1.1 Motivation

Centralised ML has achieved impressive results across domains such as healthcare, finance,
and energy, but it is increasingly challenged by concerns over data privacy, communication
costs, and systemic vulnerabilities. These limitations are particularly evident in IoT applications,
where vast amounts of distributed data are generated by edge devices with limited bandwidth,
storage, and processing capabilities. Centralised training paradigms typically require raw data
transmission to a central server, violating privacy constraints and creating single points of failure
[5]. Recent attacks, such as those on Colonial Pipeline in 2021 [6], Indian State Load Dispatch
Centres (SLDCs) in 2022 [7], a DDoS attack on a Lithuanian Energy Company in 2022 [8],
and a ransomware attack on Encino Energy in 2022 [9], have exposed the vulnerabilities of
centralised systems. The impact of these incidents would likely have been minimized with a
distributed approach. For instance, the X-Force Threat Intelligence Index for 2023 reported that
the energy sector experienced a notable increase in cyberattacks in 2022, accounting for 10.7%
of all recorded incidents and making it the fourth most targeted industry [10].

FL has emerged as a promising alternative. It enables collaborative training across decen-
tralized data sources without sharing raw data, thereby preserving privacy, improving scalabil-
ity, and reducing network congestion [11]. However, FL also introduces new challenges such as
vulnerability to adversarial attacks, communication bottlenecks, and difficulty handling non-IID
data that must be addressed to ensure secure and reliable deployment.

To explore and address these challenges, this thesis applies FL to short-term load forecasting
(STLF) in smart energy networks, a domain characterized by non-uniform data distributions,
stringent privacy requirements, and adversarial threat exposure. STLF is essential for efficient
energy resource planning, renewable integration, and grid stability [12]. Energy is a fundamental
driver of economies and societies, but it also significantly contributes to global warming, being
responsible for nearly two-thirds of greenhouse gas emissions [13]. Various nations and organi-
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zations have established ambitious targets to address this pressing environmental concern, such
as the European Union’s aim to reduce emissions by 40% and improve energy efficiency by 27%
by 2030 [14]. Despite these efforts, the growing demand for energy highlights the importance
of effective energy management.

The implementation of advanced metering infrastructure and the widespread deployment of
smart meters enable utility companies to collect and record energy usage data at intervals as short
as one hour, covering individual buildings and households. For example, in the United Kingdom,
over 15 million smart meters are currently in operation in residential and commercial properties
[15]. Recent research has focused on predicting the short-term load of individual buildings to
facilitate decentralized monitoring and control of power systems, driven by the integration of
intermittent renewable energy sources [16]. This approach is particularly important given the
dispersed nature of these resources. However, forecasting individual household load presents
challenges due to the unpredictable behaviors of residents [17]. The need for customized ML
models for each meter has increased computational demands, making this task more challenging
and often impractical.

By demonstrating the effectiveness of novel FL-based security frameworks within this do-
main, the thesis aims to establish both the generalizability and practicality of the proposed solu-
tions in real-world, high-stakes environments.

1.2 Problem Statement

ML systems deployed in large-scale IoT environments encounter a myriad of escalating chal-
lenges, particularly concerning data privacy, communication bottlenecks, and vulnerabilities to
security breaches. These issues are critically pronounced in domains where sensitive and dis-
tributed data is generated at the edge, such as smart homes, healthcare, and industrial appli-
cations. FL has emerged as a promising privacy-preserving solution, enabling edge devices to
collaboratively train ML models without the need to share raw data, thus mitigating privacy
risks.

Despite its advantages, FL introduces several technical challenges that must be addressed to
ensure its effective deployment:

Challenge C1: Need of new Adversarial Attacks. FL is susceptible to adversarial participants who may
engage in model poisoning or stealth attacks. These malicious actions can manipulate the
training process, leading to a gradual degradation of model performance without imme-
diate detection. Most of the available attacks in the literature only damage the accuracy
of the system; there is a lack of new types of attacks that can challenge FL systems in
innovative ways.

Challenge C2: Need for Lightweight Aggregation Mechanisms. The design of robust and lightweight
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aggregation algorithms is crucial, especially in edge environments where computational
resources are limited. Efficient aggregation methods must balance the need for accurate
model updates with the constraints imposed by the hardware capabilities of edge devices.

Challenge C3: Increased Communication and Computational Costs. Frequent synchronization among
devices in a federated setting can lead to significant increases in communication and com-
putational costs. This strain on network bandwidth and device energy budgets can hinder
the scalability of FL systems, particularly in resource-constrained environments. Strate-
gies to minimize communication overhead while maintaining model accuracy are essen-
tial.

Challenge C4: Data Heterogeneity Across Clients. The variability in data distribution among clients
stemming from differences in usage patterns, device capabilities, and environmental con-
ditions poses a fundamental challenge to achieving model convergence and fairness. Ad-
dressing data heterogeneity is vital to ensure that the federated model can generalize well
across diverse user scenarios.

To tackle these challenges, this thesis delves into the foundational issues surrounding FL,
with a keen focus on enhancing security, efficiency, and robustness in both adversarial and
resource-constrained settings. The proposed methodologies are implemented and evaluated on
STLF applications within smart energy networks. This domain exemplifies the critical need for
FL’s privacy and efficiency benefits, yet it remains highly susceptible to the aforementioned chal-
lenges. The overarching goal is to devise robust, communication-efficient FL frameworks that
ensure consistent accuracy and scalability for IoT-based load forecasting applications, thereby
advancing the field and contributing to secure and efficient energy management solutions.

1.2.1 C1: Model Attacks

FL enhances privacy by keeping data on local devices; however, it remains vulnerable to adver-
sarial attacks, such as data poisoning and model poisoning. Malicious participants can subtly
manipulate their local updates to corrupt the global model without detection [18]. Unlike tra-
ditional centralized learning, where anomaly detection techniques can monitor incoming data
centrally, FL operates in a decentralized manner, making it difficult to track and mitigate such
stealth attacks.

Stealth attacks can take multiple forms, including model poisoning and backdoor attacks.
In model poisoning, adversaries introduce imperceptible modifications to their updates, causing
the global model’s accuracy to degrade gradually over time. Backdoor attacks allow adversaries
to embed specific vulnerabilities that remain dormant until triggered by certain inputs, which is
particularly concerning in high-stakes applications like healthcare and energy, where even minor
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model deviations can lead to catastrophic failures. Chapter 3 presents five different model at-
tacks, four of which are non-stealthy and one stealthy in nature, used to test the robustness of dis-
tributed STLF. Addressing these stealth attacks requires the development of adversary-resistant
aggregation techniques, secure multiparty computation, and differential privacy mechanisms to
detect and mitigate threats without compromising efficiency.

1.2.2 C2: Robust Aggregation

To counteract adversarial manipulation and unreliable updates, robust aggregation techniques
are essential in FL. Traditional aggregation methods, such as FedAvg, assume that all partici-
pating clients provide honest and high-quality updates, an assumption that does not hold in real-
world deployments [19]. The presence of adversarial clients necessitates aggregation strategies
that can filter out anomalous updates while maintaining model convergence.

Current approaches to robust aggregation include trimmed mean, Krum, and adaptive fed-
erated averaging, which focus on detecting and excluding malicious updates [20]. However,
these methods often introduce additional computational overhead, making them less suitable for
resource-constrained IoT environments. Additionally, they may struggle against sophisticated
adversaries who craft updates to bypass anomaly detection techniques. More advanced solu-
tions, such as clustering-based aggregation, reputation-based weighting, and blockchain-enabled
FL, are being explored to strike a balance between robustness and efficiency. These techniques
need to be optimized to handle both Byzantine adversaries and system failures while ensuring
fair participation from all clients. Chapter 4 presents three novel robust aggregation frameworks,
Federated Random Layer Aggregation (FedRLA), Layer Based Anomaly Aware Federated Av-
eraging (LBAA-FedAvg) and Federated Incentivised Averaging (Fed-InA) designed for different
situations, depending upon the type of attack in distributed STLF.

1.2.3 3: Communication and Computational Efficiency

Despite reducing raw data transmission, FL still incurs significant communication costs due to
frequent model updates between edge devices and the central server. This overhead is partic-
ularly problematic in resource-constrained IoT environments where bandwidth is limited [21].
Unlike traditional centralized learning, where all computation happens on a powerful server, FL
requires edge devices to perform local training, which may exceed their computational capabil-
ities. The cost of transmitting high-dimensional model updates can lead to network congestion,
increased latency, and higher energy consumption.

Several techniques have been proposed to improve communication efficiency, including
model compression, quantization, update sparsification, and local update accumulation [22].
However, these approaches introduce trade-offs: while reducing communication overhead, they
may lead to loss of precision, slower convergence, or increased vulnerability to adversarial at-
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tacks. Similarly, computational efficiency is a challenge since many IoT devices have limited
processing power. Lightweight models, knowledge distillation, and edge-cloud hybrid FL archi-
tectures are promising solutions, but further optimization is needed to balance accuracy, latency,
and resource consumption effectively.

In this work, two different frameworks, FedRLA (Chapter 4) and Adaptive Single Layer
Aggregation (ASLA) (Chapter 5), were specifically designed for resource-constrained IoT en-
vironments where communication bandwidth and computational resources are limited. These
frameworks aim to address the unique challenges faced in such scenarios, particularly in the
context of short-term load forecasting (STLF) for smart energy networks. FedRLA reduces
communication overhead by aggregating only a single randomly selected layer of the neural
network during each communication round, making it suitable for environments with restricted
bandwidth and high communication costs. ASLA further enhances efficiency by selectively ag-
gregating a single layer based on client capabilities and incorporating quantization techniques
to minimize data transmission sizes. Both frameworks are optimized to operate within the con-
straints of edge devices with limited processing power and memory, ensuring that they can be
effectively deployed in real-world IoT settings for energy forecasting and management.

1.2.4 C4: Data Heterogeneity

IoT devices generate diverse, non-identically distributed (non-IID) data, posing a major chal-
lenge to FL. Unlike centralized ML, where data is pooled to create uniform training distribu-
tions, FL relies on local training with varying data distributions [23]. This heterogeneity can
lead to biased models and uneven performance across devices [24]. Some clients may con-
tribute disproportionately to model updates, while others may fail to generalize effectively. Data
heterogeneity in FL can be attributed to several factors, including differences in sensor hard-
ware, environmental conditions, and user behavior. Standard FL approaches assume IID data
distributions, causing models to generalize poorly when trained on non-IID datasets. To ad-
dress this issue, AI techniques such as federated multi-task learning, clustering-based FL, and
personalized FL have been proposed. These methods leverage AI to adapt models to local
data characteristics while maintaining global model performance. However, these AI-driven ap-
proaches introduce new challenges, including increased computation, storage, and coordination
overhead. Moreover, fairness concerns arise when certain clients benefit more than others due
to differences in data quality and quantity. Achieving fairness while maintaining overall model
accuracy remains an open research problem. In Chapter 5, two AI-enhanced frameworks, Fed-
Branched and ASLA, are presented to efficiently tackle the heterogeneous data in distributed
STLF. These frameworks utilize advanced AI techniques to mitigate the impact of non-IID data
distributions and improve model fairness and accuracy across all clients.
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1.3 Aims and Objectives

In light of the above discussion, the aims and objectives are as follows:

1. Develop a Robust and Lightweight Defense Framework: Develop anomaly detection
and mitigation techniques capable of identifying malicious or erratic clients in FL en-
vironments. The framework should ensure minimal computational overhead and enable
deployment on resource-constrained IoT devices.

2. Construct an Energy and Communication-Efficient FL Framework: Develop a FL
architecture that maximizes resource efficiency by reducing energy usage and commu-
nication overhead. This encompasses the implementation of techniques such as model
quantization, layer-wise aggregation, and early stopping criteria to improve the overall
training process efficiency.

3. Design a Lightweight Framework for Heterogenous Clients: Create an adaptive and
scalable FL framework that maintains reliable performance across non-IID datasets and
heterogeneous clients. This includes developing personalized aggregation schemes and
flexible model update protocols

1.4 Contributions

This thesis contributes to the field of secure FL through the design, implementation, and evalu-
ation of multiple adversarial attack and defence frameworks. These contributions are validated
within the context of privacy-conscious STLF in smart energy networks, a domain that exempli-
fies the challenges of data heterogeneity, constrained communication, and adversarial risk. The
key contributions of this work are structured into the following categories.

1.4.1 Adversarial Attacks

This thesis presents a series of model poisoning strategies, including the Federated Communica-
tion Round Attack (Fed-CRA), aimed at inflating communication costs while evading traditional
anomaly detection systems. These attacks expose previously overlooked vulnerabilities in FL
systems, allowing adversaries to degrade efficiency without compromising model accuracy. To
thoroughly evaluate the robustness of the FL framework, five distinct adversarial attacks were
employed. These attacks target the training process, resulting in degraded model performance
and compromised accuracy, and were generated at the client level to simulate real-world scenar-
ios where malicious clients may seek to undermine the learning process.

Among these five attacks, four focus on reducing the efficiency of the machine learning
model and are categorized as follows:
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• Partially Random Attack (PRA): Randomly alters a subset of model parameters, intro-
ducing noise that diminishes the model’s predictive capability.

• Completely Random Attack (CRA): Introduces random values across the entire model,
significantly disrupting the training process.

• Model Flipping Attack (MFA): Flips the gradients sent by clients, effectively reversing
the learning direction and leading to poor model performance.

• Perturbed Attack (PA): Adds small perturbations to model updates, which can accumu-
late over multiple rounds, resulting in substantial degradation of model performance.

The fifth attack, the Fed-CRA, is particularly innovative and strategic. Its objective is to
increase the number of communication rounds between the server and clients while maintaining
model accuracy. By manipulating communication frequency, this attack creates inefficiencies in
the learning process, revealing vulnerabilities in communication protocols.

These attacks were implemented within a distributed energy network context, specifically
for STLF. This setting not only illustrates the practical implications of the attacks but also offers
insights into how FL can be enhanced to withstand such adversarial scenarios.

1.4.2 Defence Frameworks

The defense frameworks are designed to increase the robustness and resilience of the ML model
trained under adversarial attacks, particularly when one or more clients are compromised. The
following defense frameworks were developed to address various attack scenarios effectively:

1. Federated Random Layer Aggregation (FedRLA): In this framework, a novel aggrega-
tion method is introduced to mitigate the adversarial effects of anomalous clients. Instead
of aggregating all layers of the model, this approach randomly selects only a single layer
at each communication round for aggregation. This strategy not only reduces the impact
of adversarial attacks by limiting the influence of potentially corrupted data but also im-
proves communication efficiency by minimizing the amount of data transmitted during
each round. By focusing on a single layer, the framework allows for quicker convergence
and reduces the overall resource consumption during training.

2. Layer-Based Anomaly Aware Federated Averaging (LBAAFedAvg): This aggrega-
tion framework is specifically designed to address partial adversarial attacks, where only
certain layers of a model may be compromised. It employs advanced ML techniques to
detect which layers of the neural networks are being targeted by adversarial clients during
the aggregation process. By identifying and isolating attacked layers, LBAAFedAvg can
preserve the integrity of the overall model. The resource utilization of the LBAAFedAvg
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framework is comparable to traditional frameworks that do not implement anomaly de-
tection, thus ensuring that performance is not significantly compromised while enhancing
security.

3. Federated Incentivized Averaging (Fed-InA): This framework targets stealth attacks in
distributed systems, which are insidious as they do not create overt disturbances during
training. If left undetected, these attacks can lead to significant degradation in model
performance over time. Fed-InA introduces a novel scoring mechanism that evaluates
clients based on their contribution to the model’s accuracy and reliability. Good clients are
rewarded, while bad clients are penalized and eventually removed from the aggregation
process. This incentivization encourages clients to act honestly and contributes to the
overall integrity and performance of the FL system.

1.4.3 Data Heterogeneity

Data heterogeneity in distributed systems refers to the variations in data distributions across dif-
ferent clients, which can significantly hinder the convergence of ML models during the training
process. This issue arises because clients may possess data that is non-IID (Independent and
Identically Distributed), leading to challenges in achieving a consensus model that accurately
generalizes across diverse data sets. To mitigate the negative effects of data heterogeneity, the
following two frameworks were presented:

1. FedBranced: This framework monitors the convergence of the trained model by assessing
the performance metrics at each iteration. If the model is found to be not converging, Fed-
Branced employs advanced ML techniques to categorize clients into two distinct branches
based on their data characteristics. This allows for the training of two different mod-
els concurrently, tailored to the specific data distributions of each branch. If the models
still do not converge after a predetermined number of iterations, the process is repeated,
continuously adapting the branches until all models achieve convergence. This iterative
approach ensures that the framework can effectively handle diverse data distributions, ul-
timately improving model performance and robustness.

2. Adaptive Single Layer Aggregation: This framework simplifies the aggregation process
by utilizing only a single layer of neural networks for local clients. The selection of this
layer is performed in an adaptive manner, taking into account the current performance
of each layer across the clients. By focusing on a single layer, the framework reduces
the complexity of model updates and accelerates the training process. Additionally, it
incorporates quantization techniques to minimize the size of data transmitted, alongside
stopping criteria that allow the system to halt training when certain performance thresh-
olds are met. These features collectively enhance energy efficiency and reduce commu-
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nication overhead, making the framework particularly suitable for resource-constrained
environments.

1.4.4 Communication Efficiency

Communication efficiency is crucial in distributed ML systems, as it directly impacts the speed
and resource consumption of the training process. Achieving communication efficiency is
mainly accomplished by sending fewer parameters and limiting the number of iterations dur-
ing model training. Two novel approaches were presented to effectively reduce communication
costs:

1. FedRLA: In this framework, only a single layer of the neural network is aggregated from
each client, and this layer is changed in each iteration. By restricting the communication
to just one layer, FedRLA significantly reduces the number of parameters sent during the
training process, minimizing bandwidth usage and communication latency. This method is
particularly advantageous in scenarios where clients have limited connectivity or operate
in environments with constrained resources. FedRLA has been shown to be 3.56 times
more communication efficient than traditional methods that utilize all layers of the neural
network, while still maintaining model accuracy and convergence speeds.

2. ASLA: The Adaptive Single Layer Aggregation (ASLA) framework utilizes only a single
layer of the local model, which remains unchanged throughout the aggregation process.
This stability allows for consistent updates and reduces the variability in communica-
tion overhead. Additionally, ASLA employs quantization techniques to decrease the size
of the transmitted data and incorporates stopping criteria that enable the system to halt
training when specific performance thresholds are met. This proactive approach further
enhances efficiency by preventing unnecessary communication. ASLA has demonstrated
to be 829.2 times more communication efficient than traditional methods, making it an
ideal choice for resource-constrained environments and applications requiring rapid con-
vergence.

1.4.5 Adversarial Attack Mitigation with Decentralized FL

Decentralized federated learning (DFL) leverages various peer-to-peer (P2P) communication
topologies to train MLmodels without relying on a central server. This approach enhances pri-
vacy and reduces potential bottlenecks associated with centralized systems. In this framework,
P2P topologies such as line, bus, and ring have shown distinct advantages when faced with ad-
versarial attacks. Research indicates that these topologies limit the impact of attacks to only
the clients directly involved, thereby isolating the threat. As the model transitions from line to
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bus to ring configurations, the adversarial impact is significantly reduced. This progressive im-
provement highlights the resilience of decentralized systems compared to centralized FL, where
adversarial attacks can compromise all clients simultaneously.

Moreover, further reduction in adversarial effects was achieved through the implementation
of Decentralized Random Layer Aggregation (DRAL). This innovative method applies the prin-
ciples of FedRLA in a decentralized manner, allowing for more robust aggregation of model
updates while maintaining client confidentiality. By distributing the aggregation process across
multiple clients, DRAL mitigates the risks associated with single points of failure and enhances
the overall security of the learning process. The combination of P2P topologies and DRAL not
only improves the model’s resistance to adversarial attacks but also promotes a more efficient
use of resources, making decentralized FL a compelling alternative for various applications in
sensitive environments.

1.5 Thesis Organization

The rest of the thesis is organized into several chapters, each addressing a specific aspect of the
research on securing intelligent networks using FL approaches for privacy-conscious anomaly
detection. The following provides a brief overview of the structure and content of each chapter.

1. Chapter 2: Literature Survey This chapter provides a comprehensive review of the ex-
isting literature on FL, including its training process, categories, applications, limitations,
and defence frameworks. It also discusses the specific challenges and opportunities in the
context of load forecasting and highlights gaps in current research.

2. Chapter 3: Attack Strategies in Distributed Systems This chapter explores various at-
tack strategies that can compromise FL systems, focusing on model poisoning attacks.
It introduces several types of attacks, including Completely Random Attack (CRA), Par-
tially Random Attack (PRA), Model Flipping Attack (MFA), Perturbed Attack (PA), and
Federated Communication Round Attack (Fed-CRA). The chapter presents experimental
results demonstrating the impact of these attacks on model performance.

3. Chapter 4: Novel Attack Resolution Frameworks This chapter proposes and evalu-
ates several defense frameworks designed to mitigate the impact of adversarial attacks in
FL systems. The frameworks include Federated Random Layer Aggregation (FedRLA),
Layer-Based Anomaly Aware Federated Averaging (LBAAFedAvg), and Federated In-
centivized Averaging (Fed-InA). The chapter presents experimental results demonstrating
the effectiveness of these frameworks in enhancing security and model performance.

4. Chapter 5: Novel Framework for Data Heterogeneity in FL This chapter addresses
the challenge of data heterogeneity in FL systems, particularly in the context of energy
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networks. It proposes two frameworks, FedBranched and Adaptive Single Layer Aggre-
gation (ASLA), to improve model convergence and performance by effectively handling
diverse data distributions and optimizing communication efficiency. The chapter presents
experimental results highlighting the effectiveness of these frameworks.

5. Chapter 6: DRLA: A Decentralised Defence Framework for Robust and Efficient
FL This chapter explores the use of Decentralized FL (DFL) to mitigate adversarial at-
tacks and enhance communication efficiency in FL systems. It compares DFL with tradi-
tional Centralized FL (CFL) and introduces the Decentralized Random Layer Aggregation
(DRLA) framework. The chapter presents experimental results demonstrating the robust-
ness and efficiency of DFL in various communication topologies.

6. Chapter 7: Conclusion and Future Work This chapter summarizes the key findings and
contributions of the research. It discusses the implications of the proposed frameworks and
methods for enhancing the security and efficiency of FL systems. The chapter concludes
with suggestions for future work, including advanced anomaly detection techniques, dy-
namic data heterogeneity management, enhanced communication efficiency, and scalable
decentralized FL.



Chapter 2

Literature Survey

FL has emerged as a transformative paradigm in machine learning, enabling collaborative model
training while preserving data privacy. This chapter provides a comprehensive exploration of FL,
detailing training processes, diverse applications, inherent challenges, and defense mechanisms.
Through structured analysis, the potential of FL across various domains is highlighted, along
with critical barriers to successful implementation. The contributions of this chapter are as
follows:

1. The chapter begins with a comprehensive overview of the FL training pipeline in Sec-
tion 2.1, which consists of five key phases: global model initialization, client selection
and model distribution, local model training, layer-wise aggregation of local updates, and
global model updates with convergence validation. The various categories of FL are dis-
cussed in Section 2.2, based on data partitioning (horizontal, vertical, transfer), system
architecture (centralized, decentralized), and operational strategies (cross-device, cross-
silo). These classifications highlight FL’s adaptability across diverse deployment scenar-
ios.

2. The applications of FL are extensive and particularly relevant to privacy-sensitive do-
mains. Beyond healthcare, finance, and the Internet of Things (IoT), this chapter em-
phasizes FL’s potential in energy systems, particularly for load forecasting, as discussed
in Section 2.3. FL enables utilities to develop accurate load forecasting models without
compromising consumer privacy, thereby addressing challenges in smart grid manage-
ment and renewable energy integration. By collaboratively training models across dis-
tributed datasets, FL contributes to creating more responsive and efficient energy systems
while maintaining data confidentiality.

3. Despite its advantages, FL faces several implementation challenges. Data heterogene-
ity (non-IID distributions) can introduce model bias, which is discussed in Section 2.8,
targeting challenge C4. Additionally, the communication overhead from frequent model

14



CHAPTER 2. LITERATURE SURVEY 15

updates increases bandwidth consumption. Limitations of edge devices, including com-
putational power, memory, and energy constraints, further complicate deployment, as dis-
cussed in Section 2.7, targeting challenge C3. Privacy-security trade-offs remain a critical
concern, with potential inference attacks threatening data integrity, as discussed in Section
2.5, targeting challenges C1 and C2. Balancing global model convergence with local per-
sonalization in non-IID settings presents additional complexities, as does managing client
dynamics with transient connectivity and inconsistent participation patterns. Regulatory
compliance and interoperability requirements also pose significant barriers to widespread
adoption.

4. At the end, performance metrics are discussed in 2.9, which includes loss functions, en-
ergy consumption, communication cost, and Levene’s test for data heterogeneity.

2.1 Model Training Process of FL

The FL training process involves the following five steps [18]: This process is graphically pre-
sented in Fig. 2.1

Figure 2.1: Overview of FL.
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1. Initialize Global Model:
The server initializes the global model w0 with random weights or pre-trained values ob-
tained from a similar task. This model serves as the starting point for all clients and will be
updated iteratively through the aggregation of local model updates from each participating
client in subsequent rounds.

w0 = InitializeModel() (2.1)

2. Client Selection and Model Distribution:
In each training round t, the server randomly selects a subset of clients (e.g., 10% of
the total) to participate in training. This selection process aims to ensure diversity and
representativeness in the training data. The global model wt is sent to each selected client,
initializing their local training process.

3. Local Model Training:
Each selected client trains the global model locally on its own dataset for a predetermined
number of epochs. This training is done using local data, which ensures data privacy. Let
wt

k represent the local model weights after training on client k. This training step can be
mathematically represented as:

wt
k = wt−η∇Fk(wt) (2.2)

where η is the learning rate, controlling the step size in the weight update, and ∇Fk(wt)

is the gradient of the local objective function at client k with respect to the global model
weights wt . This local training allows clients to adapt the global model to their unique
data distributions.

4. Layer-by-Layer Aggregation of Local Updates:
After local training is completed, each client sends the weights of each layer L of its
model, denoted by wt

k,L, back to the server. The server performs a layer-wise aggregation
of these weights, building the global model’s layers. For a global model with m layers, the
layer-by-layer aggregation at round t +1 for each layer L is represented as:

wt+1
L =

K

∑
k=1

nk

n
wt

k,L (2.3)

where:

• wt+1
L is the aggregated weight for layer L in the global model at round t +1,

• wt
k,L represents the weights for layer L of client k after local training,
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• nk and n are the number of samples at client k and the total number of samples
across selected clients, respectively. This weighted aggregation ensures that clients
with more data have a greater influence on the updated model.

Each layer L is aggregated across clients independently, allowing the server to construct
each layer of the global model:

wt+1 = [wt+1
1 ,wt+1

2 , . . . ,wt+1
m ] (2.4)

5. Global Model Update and Convergence Check:
The server updates the global model with the aggregated weights and performs a conver-
gence check based on a predefined criterion (e.g., accuracy threshold or maximum number
of rounds). If the convergence criterion is satisfied, the training process terminates; other-
wise, it proceeds to the next training round. This step ensures that the model progressively
improves and ultimately meets performance objectives.

wt+1 = Aggregate(wt
1,w

t
2, . . . ,w

t
K) (2.5)

This iterative process continues until the global model achieves the desired performance
metrics, ensuring that the FL setup maintains data privacy while producing a robust and accurate
global model. This training process is graphically illustrated in Fig. 2.1.

2.2 Categories of FL

There are various types of FL configurations, classified based on data distribution, communica-
tion architecture, and device connectivity. Here’s an overview of each type, as depicted in Fig.
2.2:

2.2.1 Data partitioning based categories

These categories define how data is distributed across devices or organizations:

• Horizontal FL (HFL)
HFL, also referred to as sample-based FL, is applicable when participant datasets have
different samples but the same feature space. Each participant has data with the same
features but unique instances [25–28]. Because it enables participants to train models col-
laboratively without sharing their raw data, this method is especially helpful in situations
where privacy is an issue.
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Use Case: Banks in different regions train a model using customer transaction data, where
each bank has data on different customers but similar features. This enables the
banks to develop a robust financial model while keeping sensitive customer data se-
cure.

• Vertical FL (VFL)
When participants have distinct characteristics but share the same sample space (i.e., the
same people), VFL is employed. This setup enables learning from complementary data
attributes across parties [29]. VFL is particularly advantageous in situations where data
privacy regulations prevent data sharing, but organizations still want to gain insights from
their combined datasets.

Use Case: A bank and an e-commerce company collaborating on customer data where
each has different features (e.g., purchase history vs. financial transactions). By
leveraging VFL, both entities can enhance their predictive models without violating
customer privacy.

• Transfer FL (Transfer FL)
Transfer FL addresses scenarios where both sample and feature spaces have minimal over-
lap. It enables knowledge transfer between tasks to improve model performance across
domains with limited shared data [30]. This approach is beneficial in situations where data
collection is expensive or impractical, allowing for improved model training by utilizing
insights from related tasks.

Use Case: Medical institutions with non-overlapping datasets for different diseases shar-
ing insights to improve prediction accuracy in related healthcare tasks. For exam-
ple, knowledge gained from predicting outcomes for one disease could enhance the
model’s performance for another, even if the datasets are distinct.

2.2.2 System Architecture Based Categories

These categories define the communication and coordination setup in FL:

• Centralized FL
A central server oversees the coordination and aggregation of models in centralized FL.
The central server receives model updates from clients and compiles them into a global
model. This configuration is widely used because it is simple to set up, but it depends on
the central server for security and privacy. By serving as a coordinator, the central server
makes sure that updates from different clients are gathered and combined into a single
model. However, because the server manages sensitive data, this design may give rise to
privacy issues and a single point of failure.
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Figure 2.2: Types of FL.

Use Case: Smartphones updating a central server for predictive text input, where the cen-
tral server aggregates updates from multiple devices. This allows for improved text
prediction algorithms while keeping individual user data private, as only model up-
dates rather than raw data are transmitted.

• Decentralized FL
Decentralized FL uses P2P communication amongst clients in place of a central server.
This setup provides enhanced privacy and resilience against central failures [31, 32]. In
this approach, clients exchange model changes directly with one another, distributing the
computing load and lowering latency. It is appropriate for applications where privacy is
crucial since the lack of a central server reduces privacy threats and improves robustness.

Use Case: Smart home devices developing energy-saving models through local commu-
nication without involving a central server. By sharing insights locally, these devices
can learn from each other while maintaining user privacy and reducing reliance on
external infrastructure.

2.2.3 Operation Strategies Based Categories

These categories define the scale and type of devices or entities involved in FL, as well as
strategies for handling data heterogeneity:
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• Cross-Device FL
Inter-device FL generally uses smaller, frequently heterogeneous datasets and a large num-
ber of edge devices, such as smartphones and Internet of Things sensors. To support low-
power devices, this type places an emphasis on scalability, effective communication, and
lightweight processing. [33, 34]. The architecture is perfect for applications where user
data is diverse and decentralized since it is made to handle the diversity in data quantity
and quality across various devices.

Use Case: Training language models across smartphones for keyboard suggestions, where
each device only contributes small amounts of data but is part of a vast network. This
technique guarantees that private user information stays on the device while enabling
tailored recommendations.

• Cross-Silo FL (Cross-Organization FL)
Less people participate in cross-silo FL; these participants are usually institutions or or-
ganizations with bigger, more reliable datasets. Cross-silo FL is suited for collaboration
among enterprises, research institutes, or hospitals, where data consistency is crucial, and
models are developed collaboratively [35]. This approach facilitates the sharing of in-
sights and resources while maintaining data privacy and security, enabling organizations
to benefit from each other’s datasets without compromising sensitive information.

Use Case: Hospitals collaborating on a disease prediction model, where each institution
has substantial patient data, facilitating robust and reliable model training. This col-
laboration can lead to improved diagnostic capabilities and better patient outcomes
while adhering to privacy regulations.

2.3 Applications of FL

FL is widely applied across various domains. In healthcare, FL facilitates collaborative medical
image analysis, disease prediction, and drug discovery while preserving patient confidential-
ity. Hospitals and research institutions can jointly train models on brain tumor detection [36],
diabetic retinopathy classification [37], and COVID-19 diagnosis without exposing sensitive
patient data [38]. Similarly, in wearable healthcare devices [39], FL enables personalized pre-
dictive analytics for heart rate monitoring, sleep pattern analysis, and early disease detection. FL
also enhances hospital management systems by improving patient flow predictions, optimizing
resource allocation, and supporting real-time decision-making for personalized treatments.

In the financial sector, FL is employed for fraud detection [40], credit risk assessment [41],
and anti-money laundering by enabling banks and financial institutions to collaboratively train
models on distributed transactional data [42]. This approach ensures compliance with strict
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privacy regulations while improving the accuracy of fraud detection systems. Additionally, FL
assists in algorithmic trading [43], where different financial institutions can refine their trading
strategies based on shared insights without exposing proprietary information.

FL is also revolutionizing edge computing and IoT. Smart devices, including autonomous
vehicles [44], industrial sensors [45], and smart home appliances [46], leverage FL to enhance
predictive maintenance, intrusion detection, and personalized user experiences. Autonomous ve-
hicles, for instance, use FL to improve self-driving algorithms without centralizing vast amounts
of sensor data, reducing latency and security risks. Industrial IoT benefits from FL in predic-
tive maintenance for manufacturing systems, minimizing downtime and increasing operational
efficiency.

In mobile devices, FL enables on-device learning for applications such as predictive text,
speech recognition, and image processing while ensuring user privacy [47]. Virtual assis-
tants [48] and recommendation systems benefit from FL by adapting to individual user pref-
erences without requiring centralized data storage [49]. FL also supports federated analytics for
mobile networks, allowing telecommunications providers to enhance service quality by optimiz-
ing network performance based on distributed data from users.

FL is also transforming smart cities by enhancing traffic management, environmental moni-
toring, and public safety [50]. By enabling collaborative learning across distributed sensors and
infrastructure, FL facilitates real-time decision-making while preserving data privacy. Intelli-
gent transportation systems leverage FL for congestion prediction, while energy-efficient urban
planning benefits from FL-based analytics [51]. FL is used in smart surveillance systems to
enhance security while ensuring compliance with data privacy regulations [52].

FL is also increasingly used in the defense and aerospace industries, where it facilitates se-
cure intelligence analysis, predictive maintenance for aircraft, and coordination of unmanned
aerial vehicles (UAVs) without exposing sensitive military data [53]. Similarly, in supply chain
and logistics, FL optimizes inventory management, demand forecasting, and delivery route op-
timization while preserving confidentiality across different stakeholders [54].

In energy networks, FL is playing a critical role in demand-side management [55], energy
load forecasting [56], and grid anomaly detection [57]. By leveraging FL, utilities can optimize
energy distribution, enhance grid resilience, and improve fault detection while maintaining data
privacy. Smart grids benefit from FL by enabling decentralized energy trading and demand re-
sponse optimization. FL supports distributed renewable energy management by allowing solar
and wind energy producers to collaboratively predict energy generation patterns without reveal-
ing sensitive operational data. Additionally, FL enhances cybersecurity in energy networks by
detecting and mitigating cyber threats through collaborative anomaly detection models trained
across multiple grid operators.

In my research, the key application area is the utilization of FL in energy networks, partic-
ularly for short-term load forecasting (STLF). I evaluate the effectiveness of FL in enhancing
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forecasting accuracy while preserving data privacy and reducing communication overhead. My
work focuses on developing robust aggregation mechanisms and addressing data heterogeneity
to improve model performance in realistic energy forecasting scenarios. Experimental evalu-
ations are performed in simulated energy network environments with multiple clients, where
the proposed FL frameworks are compared against traditional centralized approaches. The re-
sults demonstrate the superiority of FL in terms of forecasting accuracy, privacy preservation,
and communication efficiency, highlighting its potential for practical implementation in energy
management systems.

The upcoming section will explore the need for FL in energy networks and identify existing
research gaps in this domain.

2.3.1 FL Assisted Load Forecasting

STLF is essential for ensuring the stability and operational efficiency of modern power systems.
It enables utility companies to enhance the integration of renewable energy sources, optimize
generation scheduling, and improve demand-side management strategies. The complexities of
today’s electricity market, marked by deregulation, competition among various stakeholders,
and the integration of advanced metering infrastructure (AMI), have rendered accurate STLF
even more critical [56, 58]. A variety of STLF techniques have been created for both macro-
scale (substation/grid level) and micro-scale (household level) forecasting [59–61]. Traditional
statistical methods, such as linear regression, auto-regressive moving average (ARMA), and
auto-regressive integrated moving average (ARIMA), have been widely used [62]. However,
the rise of big data and artificial intelligence (AI) has propelled the adoption of deep learning
(DL) models, which are particularly adept at recognizing complex, non-linear patterns in load
data [63]. Despite their considerable potential, these models often require large amounts of his-
torical data for training. This necessity typically leads to centralized data aggregation, creating
challenges related to data privacy, high communication costs, and limited access to secure data
repositories [60]. For instance, residential energy data collected at the micro-scale is highly
sensitive and could be exploited to infer user behaviors, raising security concerns [64]. Simi-
larly, utility providers at the macro-scale level often hesitate to share data due to competitive and
privacy issues. FL is increasingly applied for residential-level STLF, where smart meter data is
inherently diverse and exhibits significant variations among households. Numerous studies have
employed FL on residential data using clustering techniques to tackle data heterogeneity and cat-
egorize clients based on their consumption behaviors. These clustering-based methods generate
multiple federated models tailored for different groups, as demonstrated by Singh et al. [65],
who combined FL and transfer learning to enhance forecasting accuracy by grouping house-
holds with similar electricity usage patterns. Although effective, the accuracy of these models
heavily relies on the quality of the clustering and is sensitive to data anomalies, which can nega-
tively impact model stability. Other clustering-based FL models for STLF have utilized various
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data attributes. For example, researchers have developed federated LSTM models that apply
socioeconomic clustering to classify users based on their load characteristics [66]. Addition-
ally, studies such as [5] have explored non-clustered LSTM training for individual households
but faced challenges related to data variability affecting model stability. Likewise, methods
combining bidirectional LSTM models with optics-based clustering have been created to group
users by region and heating type [67]. While clustering can help mitigate data diversity by orga-
nizing clients into more homogeneous groups, it has its limitations. Static, predefined clusters
often fail to capture dynamic changes in data, leading to increased communication and com-
putational overhead. Furthermore, clustering frameworks may exclude clients exhibiting differ-
ent behaviors, disrupting the collaborative process. Despite advancements in clustering-based
FL for residential STLF, research on applying FL at the substation level remains limited, even
though this level exhibits greater stability and consistency compared to residential smart meter
data. Consumption patterns at the substation level are aggregated and less affected by individual
behavioral variations. Consequently, the need for clustering is diminished, making alternative
strategies for addressing data heterogeneity more appropriate. Additionally, current studies of-
ten overlook the importance of effective aggregation methods capable of managing diverse data
without relying on clustering. Utilizing clustering-based approaches for substation-level data
can result in unnecessary segmentation and increased complexity, where a single, unified model
would be sufficient.

2.4 Limitations and Implementation Challenges in FL

Despite its advantages in privacy preservation and decentralized learning, FL faces significant
limitations and challenges that hinder its practical adoption. These issues span technical, regu-
latory, and operational domains, as outlined below.

1. Data Heterogeneity and Quality
FL systems must handle non-IID data distributions across clients, including feature/label
skew [68], data quality imbalances [69], and class imbalance [70]. Extreme heterogeneity
can degrade global model convergence and generalization, particularly when combined
with quantity skew [71,72]. Prototype-based methods [73] and clustering techniques [74]
partially address this but struggle with dynamic data evolution and multi-dimensional
skew.

2. Communication Overhead
Frequent model updates between resource-constrained edge devices and servers create
bandwidth bottlenecks [75], exacerbated by inefficient protocols and large model sizes.
While compression techniques [76] and adaptive communication strategies [77] help mit-
igate costs, they often trade off update granularity against convergence speed [78].
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3. Resource Constraints
Edge devices face inherent limitations in computation, memory, and energy [79]. Het-
erogeneous hardware capabilities compound these challenges, requiring adaptive algo-
rithms [80] to prevent resource exhaustion during training. This heterogeneity also com-
plicates client selection strategies, as dropout-prone devices [81] may destabilize model
convergence.

4. Privacy-Security Trade-offs
While FL avoids raw data sharing, model updates remain vulnerable to inference at-
tacks [82] and poisoning [83]. Defense mechanisms like differential privacy [18] and
homomorphic encryption increase computational overhead, creating tension between se-
curity and performance. Real-time adaptation to evolving threats remains an open chal-
lenge [84].

5. Model Convergence and Personalization
Non-IID data distributions lead to client model divergence [24], requiring careful balance
between global consistency and local personalization [85]. Parameter decoupling methods
[86] demand manual tuning of shared/personalized components, limiting scalability for
clients with sparse data.

6. Client Dynamics
Transient connectivity and inconsistent participation patterns create partial updates and
training delays. Current client selection strategies [87] often assume static availability,
performing poorly in real-world scenarios with unpredictable dropout rates [81].

7. Regulatory and Interoperability Barriers
Conflicting data privacy regulations (e.g., GDPR) complicate cross-border FL deploy-
ments [88]. Lack of standardized protocols [77] hinders integration across diverse hard-
ware/software ecosystems, increasing deployment complexity.

8. Scalability and Usability
Current FL frameworks require significant technical expertise for configuration, limiting
accessibility [79]. Scaling defense mechanisms [83] and prototype-based methods [89]
to large client populations remains challenging, with most approaches assuming ideal
network conditions.

2.5 Security and Privacy Risks

FL is intrinsically susceptible to a variety of assaults that could jeopardize model confidential-
ity, integrity, and overall performance. Data FL attacks, Model FL Attacks, and Privacy FL
Attacks are the three basic categories into which these assaults can be generally divided. Each
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category poses unique challenges and risks to the FL process, impacting not only the immediate
functionality of the system but also its broader implications for security and trustworthiness.
The cascading effects of these attacks can lead to significant disruptions within the entire fed-
erated framework, particularly in load forecasting applications where accurate energy demand
prediction is critical for grid stability and operational planning.

1. Data FL Attacks

2. Model FL Attacks

3. Privacy FL Attacks

The type of attack an adversary can do, depends on the capabilities of that adversary. These
capabilities can be explained by threat modelling.

2.5.1 Threat Modelling in Distributed Systems

Threat modelling is a methodical technique that involves closely analysing a system’s essential
elements and operational procedures in order to detect and evaluate any threats and vulnera-
bilities [90, 91]. This methodology involves a comprehensive analysis of potential adversaries,
including their objectives, the attack vectors they may exploit, and the potential repercussions
on system security, particularly in terms of confidentiality, integrity, and availability. Within FL
systems deployed in the real world, three primary categories of attacks exist: data poisoning,
where malicious data inputs compromise model performance [92]; model poisoning, which in-
troduces adversarial alterations directly into model updates [93, 94]; and privacy attacks, which
aim to extract sensitive information from model parameters [95]. Previous research has demon-
strated the resilience of FL to data poisoning attacks in energy forecasting applications [96].

Attacker’s Objective: In FL, adversaries typically pursue three primary goals, each shaping
the nature of the attack. First, compromising system security may affect either the integrity or
availability of the model. Integrity breaches target the accuracy and reliability of the model’s out-
puts, whereas availability attacks attempt to disrupt model functionality or cause system down-
time. Second, attackers may choose either discriminatory or indiscriminate targeting. Discrimi-
natory attacks focus on specific aspects of the model or specific classes within the data, aiming
to manipulate the model’s performance selectively. Indiscriminate attacks, in contrast, do not
target specific components but instead aim to degrade overall model performance. Finally, the
type of error introduced can be either specific or general. Specific errors attempt to manipulate
predictions in a certain direction, such as favouring particular outcomes, while general errors
lead to a broader degradation in accuracy and model reliability.

Attacker’s Knowledge: The knowledge of an attacker in FL can be roughly divided into
three categories: white-box, grey-box, and black-box scenarios. Each of these scenarios has
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varying degrees of access to system data and models. The parameters, structure, and prediction
outputs of the model are all fully accessible to attackers in a white-box scenario. With this thor-
ough understanding, complex model poisoning attacks can be carried out, precisely modifying
weights or gradients to cause a particular harmful impact on the global model [97]. In a grey-box
scenario, attackers have partial knowledge, such as access to some but not all model parameters,
or limited visibility into the data or model structure. This level of access enables targeted at-
tacks, where adversaries may not know the complete architecture but can still conduct effective
poisoning by leveraging known aspects of the model to influence specific behaviors [98]. In
contrast, black-box attackers have minimal information about the model and lack access to its
internal parameters, thus relying on observed model outputs or general system behavior to craft
attacks. This scenario limits the attacker’s control but still allows for certain types of malicious
activity, such as inference attacks that infer information about the training data without direct
access [99]. Moreover, the attacker’s knowledge about data distribution can vary, as they may
possess complete or limited knowledge about the dataset, further influencing attack strategies.

Attacker’s Capabilities: In FL, attackers exhibit a range of capabilities that can be cat-
egorized into passive and active roles, each entailing distinct methods and impacts on the FL
environment [100]. Passive attacks involve adversaries who monitor communication channels
between clients and the server, collecting information on model updates or data exchange pat-
terns without interfering. Such passive attacks often include eavesdropping, which enables at-
tackers to observe system behavior covertly. While these attacks do not disrupt the system, they
may lead to privacy violations, as attackers gather insights about model updates or training data,
which can compromise confidentiality. Active assaults, on the other hand, entail direct contact
with the model or data, whereby attackers change model parameters or manipulate training data
at the client or server level. Active attacks include a variety of strategies, such as model poi-
soning, in which attackers alter the model parameters that are provided to the server in order to
reduce the accuracy of the model, and data poisoning, in which attackers add modified data to
affect the model’s behavior. Furthermore, adversaries use updates to infer private information
about training data in FL inference attacks, which could compromise privacy [101].

2.5.2 Data FL Attacks

In order to adversely affect the learning process, data attacks target the training data that is kept
on client devices. These attacks can take several prominent forms, each with unique processes
and outcomes:

Data Poisoning: One of the most alarming risks of FL is this. In order to skew the model’s
training process and ultimately produce a degraded global model, malicious clients may intro-
duce inaccurate or misleading data into their local datasets [102, 103]. In the context of load
forecasting, attackers could inject false energy consumption records, leading to unreliable de-
mand predictions that disrupt energy supply planning and increase operational costs.
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Label Flipping: a particular and sneaky type of data poisoning in which the labels of indi-
vidual training instances are purposefully changed [104]. However, it is important to note that
label flipping attacks are not applicable in load forecasting applications, as energy consumption
data does not have discrete class labels but rather continuous numerical values. Consequently,
such attacks do not pose a realistic threat in this domain.

Backdoor Attacks: In these types of attacks, adversaries establish a covert backdoor by al-
tering the training data. Certain triggers have the ability to activate this backdoor, which causes
the model to generate inaccurate outputs when it encounters them [105]. In load forecasting,
such an attack could introduce systematic biases in energy predictions, leading to resource mis-
allocation and inefficiencies in power generation and distribution [106].

Local data corruption at the client level is usually the first sign of the impact of data attacks.
The corresponding local model updates are influenced by these compromised local datasets
and subsequently transmitted to a central server for aggregation. Consequently, the aggrega-
tion process incorporates these poisoned updates, leading to a compromised global model. The
ramifications can be severe, resulting in degraded performance across the system. However, it
is important to note that in load forecasting applications, data attacks are often ineffective due
to the continuous and structured nature of energy consumption data. Unlike classification tasks,
where mislabeling can directly impact model accuracy, dat attacks are usually ineffective in load
forecasting applications [96].

2.5.3 Model FL Attacks

A serious risk to FL is model attacks, in which malicious clients deliberately alter their local
model updates before sending them to the central server or man in the middle can create mali-
cious updates [107, 108]. The primary objective of these attacks is to compromise the integrity
of the global model through a technique known as model poisoning. This process involves
the introduction of harmful alterations to the local updates, which can significantly disrupt the
learning process.

One of the common strategies employed in model poisoning is the modification of gradients
or model parameters. By intentionally altering these updates, malicious clients can steer the
global model towards producing incorrect or biased outputs [94]. In load forecasting, such
manipulation could lead to inaccurate energy demand predictions, which can cause over- or
under-supply of electricity, leading to economic losses and instability in grid operations [107].

Model attacks start to have an effect at the client level, where the fraudulently modified lo-
cal model updates are produced. The aggregation procedure starts as soon as the central server
receives these erroneous updates. All participating clients, both malicious and honest, provide
updates to the server. Sadly, most of the time, the server is unable to distinguish between au-
thentic updates and ones that have been altered. Consequently, it can inadvertently add these
tainted changes to the global model.
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Table 2.1: A summary of state of the art stealth attacks in federated systems.

Sr. No. Problem Type Dataset Ref.
1 Classification CIRF10 [113]
2 NLP Reddit, IMDB, Sentiments140 [114]
3 Classification MNIST [115]
4 Classification FMNIST, Adult Census [116]
5 NLP 20Newsgoups, DistilBert [117]
6 Classification MNIST, CIRF10 [114]
7 Classification MNIST, CIRF10 and 100 [118]

This aggregation presents a serious danger since the compromised updates’ influence may
distort the model’s performance and result in less-than-ideal choices or actions throughout the
FL network. Such model attacks can have serious repercussions in critical domains such as
energy forecasting, where compromised predictions could lead to inefficient power distribution
strategies, increased carbon emissions, and economic losses.

In FL, model attacks can be categorized into two main types: partial and fully model poi-
soning attacks, as well as blunt and stealthy attacks.

• Partial Model Poisoning Attacks: These attacks involve altering only a subset of model
parameters, which can introduce noise and degrade the model’s performance without be-
ing immediately detectable [94].

• Fully Model Poisoning Attacks: In contrast, these attacks modify the entire model, lead-
ing to severe disruptions in the training process and significant degradation in model ac-
curacy [31, 93, 107, 109–112].

• Blunt Attacks: These are overt and easily detectable, often resulting in noticeable perfor-
mance drops in the model [31, 107, 112].

• Stealthy Attacks: These attacks are designed to evade detection, subtly degrading model
performance while maintaining overall accuracy in the short term [113, 114, 114–117].

Literature surveys suggest that most stealth attacks are implemented on classification models
and natural language processing applications. A summary of stealth attacks is presented in a
Table 2.1. It suggests that no one has yet implemented stealth attacks in regression problems
such as STLF.

2.5.4 Privacy FL Attacks

As privacy attacks are explicitly made to extract sensitive information from model updates or the
aggregated model, they could compromise the confidentiality of training data, which is a major
concern in the field of FL [88]. These attacks take advantage of the information contained in
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model updates to infer private information about the underlying data, even while FL is designed
to protect privacy by keeping data localized on client devices [119, 120].

The transmission of model changes from clients to the central server is where privacy threats
start to have an impact. Attackers may intercept these updates throughout this procedure and
use advanced analytic methods to retrieve potentially private data. In load forecasting, attackers
could infer energy consumption patterns of individual households, potentially exposing sensitive
details about users’ daily routines, appliance usage, or even occupancy status [121].

The severity of a privacy breach largely depends on the attacker’s capabilities and the so-
phistication of their inference methods. Advanced techniques may enable attackers to reverse-
engineer model updates, revealing confidential information such as individual energy consump-
tion trends. This undermines consumer privacy and can significantly erode trust in FL-based
load forecasting systems. Effective privacy-preserving mechanisms must be implemented to
ensure the confidentiality of users’ energy data while maintaining accurate demand predictions.

2.5.5 Gap Analysis

Despite the existing research on FL security, a significant gap remains in addressing stealth
attacks that subtly degrade model performance over time without triggering conventional detec-
tion mechanisms. Additionally, while differential privacy is often employed to enhance security,
it can negatively impact forecasting accuracy, particularly in load forecasting applications where
precise numerical predictions are required. Forecasting accuracy is paramount for ensuring ef-
ficient energy management, and any reduction in precision due to privacy-enhancing techniques
can lead to suboptimal resource allocation. Therefore, a more effective solution is necessary to
balance privacy preservation and forecasting accuracy while ensuring resilience against stealth
attacks in load forecasting scenarios.

2.5.6 Future Directions and Proposed Solutions

While existing defense mechanisms can effectively detect traditional model attacks in FL, there
is a growing need to explore stealth attacks that remain undetected by current security frame-
works. Conventional model poisoning attacks introduce abrupt changes in model updates, mak-
ing them easier to identify. However, a carefully designed stealth attack could gradually manipu-
late model parameters in a way that subtly skews load forecasting predictions over time without
raising suspicion. Such an attack could exploit the natural variability in energy consumption
patterns, making it indistinguishable from normal fluctuations.
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2.6 Defense Frameworks in FL

Deploying customized security frameworks that take into account device configurations, FL
architecture, and resources is crucial to combating the many threats on FL. As seen in Fig.
2.3, several attack types, including data, model, and privacy, exploit unique weaknesses and
call for different defensive tactics [122]. For instance, secure aggregation and Byzantine fault
tolerance successfully combat model poisoning [123], while strong data validation and anomaly
detection can reduce data poisoning [124]. To defend against inference attacks, methods such
as homomorphic encryption and differential privacy are essential. To improve the security and
resilience of FL systems, a layered defense strategy encompassing many frameworks is required;
a one-size-fits-all approach is not feasible [125].

FL defense strategies

Data and model
defense

Privacy defense

Adversarial 
Training

Model 
Pruning

Byzantine
 Robust

 Aggregation
Techniques

Detect and
 Remove

Robust Client
Selection 

Techniques

Data and 
Update Analysis

Homomorphic
Encryption

Knowledge 
Distillation

Secure 
Multi-party

Computation

Trusted 
Execution

Environments

Split
Learning

Perturbing 
Gradients

Differential
Privacy

Incentivised Blockchain Robust
aggregation

Pre aggregation  Post aggregation In aggregation

FL Defense
deployment 

Figure 2.3: Type of defense strategies.

Scholars have put forth a number of defensive tactics to combat new FL risks [115,126,127],
concentrating on pre-, in-, and post-aggregation stages of the learning process. Identifying and
mitigating harmful updates early is the goal of pre-aggregation protections [126–128]. During
global model updates, robust operators are used in in-aggregation approaches [94,115,129–131].
The goal of post-aggregation strategies [93,132,133] is to ensure the integrity of the final model
by fixing adversarial models after training. The security of FL systems against backdoor assaults
is improved by these phase-specific countermeasures. Defenses are further arranged according
to their operational principles and classified into data, model, and privacy frameworks. Table
2.2 provides a summary of these frameworks.
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Table 2.2: Defense Frameworks and Privacy Techniques in FL

No. Defense Strategies Description References
1 Detect and Remove Employs statistical analysis or anomaly detection tech-

niques to identify and eliminate harmful updates or
corrupted clients, thus maintaining the integrity of the
global model.

[104, 105, 134–
140]

2 Adversarial Training Enhances robustness by incorporating adversarial exam-
ples during training, which helps defend against poten-
tial threats to both data integrity and model updates.

[141, 142]

3 Model Pruning Optimizes the model by eliminating non-essential pa-
rameters, thereby improving efficiency and complicating
efforts for attackers to introduce malicious updates.

[143, 144]

4 Byzantine/Reliable Aggrega-
tion

Combines updates that are consistent with the major-
ity, effectively filtering out anomalies that may originate
from compromised clients.

[111, 130, 131,
145–149]

5 Robust Client Selection Chooses clients based on their reliability, minimizing
the impact of malicious or unreliable participants on the
global model’s performance.

[150–152]

6 Data and Update Analysis Conducts thorough analysis of local data and model up-
dates to pinpoint inconsistencies or suspicious activities
that may signal adversarial attacks.

[124, 153–155]

7 Blockchain Integrates blockchain technology to provide trans-
parency, immutability, and auditability in FL, thereby
preventing tampering and ensuring trustworthy aggrega-
tion of updates.

[156–158]

8 Incentive FL Implements reward systems for client participation, fos-
tering honest contributions and deterring malicious be-
havior within the network.

[159, 160]

9 Regularization Aims to prevent overfitting by placing constraints on
model updates, which enhances generalization and miti-
gates vulnerabilities to various attacks.

[161, 162]

10 Homomorphic Encryption Utilizes a cryptographic approach that safeguards pri-
vacy in FL by enabling computations on encrypted data
without requiring decryption.

[163, 164]

11 Knowledge Distillation Facilitates privacy-preserving model compression,
where a smaller "student" model learns from the outputs
of a larger "teacher" model.

[165–167]

12 Secure Multi-party Computa-
tion

Establishes a protocol that upholds input privacy while
allowing multiple parties to compute a function based on
those inputs.

[168–170]

13 Split Learning Segments the model between the client and server, ensur-
ing only intermediate activations are shared, which keeps
the data localized and secure.

[171–173]

14 Perturbing Gradients Lowers the risk of exposing private information by intro-
ducing noise into gradients before they are shared with
the server.

[174–177]

15 Differential Privacy Reduces the likelihood of individual identification by in-
jecting calibrated noise into data or gradients, thus en-
hancing privacy.

[178, 179]

16 Trusted Execution Environ-
ments

Employs secure hardware that processes data within an
isolated, tamper-proof environment, thereby ensuring
data confidentiality and security.

[180, 181]



CHAPTER 2. LITERATURE SURVEY 32

2.6.1 Gap Analysis

Despite the breadth of existing defense frameworks (summarized in Table 2.2), critical gaps re-
main in addressing emerging challenges specific to resource-constrained FL environments like
load forecasting. First, most defences prioritize robustness over efficiency, resulting in compu-
tationally heavy frameworks ill-suited for lightweight edge devices common in smart grids or
IoT-based forecasting systems [125]. Second, stealth attacks—such as adaptive model poisoning
that mimics benign gradient patterns—often evade traditional anomaly detection and Byzantine
aggregation methods [123]. These attacks require dynamic detection mechanisms that analyze
temporal behavioral shifts in client updates, which existing tools lack. Third, while DP miti-
gates inference risks, its noise injection severely degrades load forecasting accuracy due to the
sensitivity of time-series patterns [178]. A balance between DP’s privacy guarantees and utility
preservation remains unresolved, particularly in scenarios requiring high-frequency model up-
dates. Finally, load forecasting’s unique attack surface—where subtle model manipulations can
propagate grid instability—demands domain-specific defenses that integrate physical constraints
(e.g., energy conservation laws) into adversarial model validation [124]. Current frameworks
treat FL security generically, overlooking these application-critical nuances.

2.6.2 Future Directions and Proposed Solutions

To address these gaps, future defence frameworks must adopt three principles:

1. Stealth-aware Detection: In an increasingly sophisticated threat environment, detection
mechanisms must be aware of stealth tactics employed by adversaries. This principle
involves developing detection methods that can identify subtle and covert attacks without
generating excessive false positives. Techniques such as behavioral analysis, anomaly
detection, and ML can play a crucial role in recognizing patterns indicative of stealthy
intrusions, allowing for timely and effective responses.

2. Lightweight Defence Framework: This principle emphasizes the importance of design-
ing security measures that do not impose significant overhead on system resources. A
lightweight framework should efficiently operate in resource-constrained environments,
ensuring that performance is not sacrificed for security. This can involve the use of sim-
plified algorithms, minimalistic architectures, and adaptive mechanisms that dynamically
adjust resource allocation based on the threat landscape.
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2.7 Communication and Computational Efficiency in FL for
Distributed Applications

Effective FL requires balancing model performance with resource constraints across distributed
environments. Key efficiency optimization strategies include model compression, communica-
tion optimization, and topology design, which address challenges in distributed training scenar-
ios like resource-constrained edge devices and heterogeneous network conditions [94].

2.7.1 Model Compression Techniques

Model compression techniques reduce neural network size while preserving performance, criti-
cal for edge deployment in distributed systems.

Pruning

Pruning eliminates unnecessary parameters to simplify networks. Unstructured pruning re-
moves small-magnitude weights using magnitude thresholds [182] or Bayesian methods [183],
though requiring specialized hardware for full benefits. Structured pruning removes entire
network components via sensitivity analysis [184] or soft thresholding [185], achieving 2-4×
CPU speedups [186] crucial for large-scale distributed applications. Post-training pruning can
reduce model size by 90% without accuracy loss [187].

Sparsification

Sparsification minimizes communication by transmitting only essential parameters. Weight
sparsification zeros small weights during training [188], while gradient sparsification applies
similar principles to gradients, achieving 10-100× compression [189]. This technique reduces
bandwidth by up to 95% in cross-silo FL [189], beneficial for time-sensitive applications like
energy forecasting.

Gradient Compression

Gradient compression reduces update sizes through parameter-efficient strategies. Quantiza-
tion lowers gradient precision (e.g., 8-bit vs 32-bit), achieving 4× compression with <1% ac-
curacy loss [190, 191]. Selective transmission prioritizes high-magnitude gradients using error
feedback [192], combining with Huffman coding for up to 89% bandwidth reduction [193].

Quantization

Quantization techniques enhance deployment efficiency in distributed systems. Fixed-point
arithmetic reduces memory footprint by 4-8× [194], lowering energy consumption in edge
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devices [195, 196]. Dynamic quantization adapts bit-widths per layer for better embedded
performance [197, 198]. Medical IoT applications show 63% energy reduction with 8-bit quan-
tization [199], applicable to smart grid deployments.

2.7.2 Communication Optimization

Optimizing communication improves FL efficiency in distributed environments.

Topology Design

Topology design optimizes device-server interactions in distributed systems. Hierarchical topolo-
gies use edge intermediaries, reducing direct transmissions by 70% [200]. Adaptive connectiv-
ity adjusts participation based on channel quality and energy levels, accelerating convergence
by 2× [201, 202].

Communication Compression

Balancing update quality and resource usage is critical. Early stopping terminates local train-
ing at validation plateaus, reducing compute time by 40-60% [94]. The FL-RCE framework
automates this process [203]. Adaptive compression adjusts sparsity/quantization based on
network conditions, achieving 82% communication reduction [204]. Lossless methods like
Huffman coding recover exact gradients with 15-30% additional compression [205].

Hardware-Software Co-Design

Emerging co-design approaches improve FL efficiency. FPGA accelerators offer 8× energy
efficiency over GPUs [206]. In-memory computing reduces data movement overhead by 90%
[196], enhancing prediction speed in distributed systems.

2.7.3 Gap Analysis

While existing FL efficiency techniques show promise, critical gaps remain. First, most com-
pression methods rely on static heuristics that fail to adapt to dynamic network conditions or data
distribution shifts. Second, topology optimization lacks integration with adaptive compression
mechanisms. Third, hardware-specific optimizations sacrifice cross-platform generality.

2.7.4 Future Directions and Proposed Solutions

Current frameworks often treat communication and computation as isolated optimizations. Co-
designing pruning and topology-aware aggregation could reinforce efficiency gains. Developing
lightweight self-adaptive mechanisms for dynamic resource allocation represents an important
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research direction. Our proposed framework addresses these gaps by combining quantization,
early stopping criteria, and partial layer aggregation to enhance distributed learning efficiency
in applications like energy load forecasting.

2.8 Heterogeneity in FL for Distributed Applications

FL enables distributed model training by allowing multiple clients to learn from their local
datasets without directly sharing data. Despite this advantage, achieving consistent model per-
formance across heterogeneous data sources remains a critical challenge. In distributed appli-
cations like energy load forecasting, heterogeneity is influenced by variations in data patterns,
which stem from factors such as geographical location, consumer behavior, seasonal changes,
and sensor accuracy. These variations lead to diverse data distributions among clients, affect-
ing both model convergence and generalization capabilities. Data heterogeneity in distributed
learning can be divided into several categories. Distribution Skew occurs when data patterns
across regions vary significantly due to factors like climate and economic conditions, which
can lead to biased models [207]. Label Skew arises when certain clients lack data for specific
patterns, leading to reduced predictive accuracy [68]. Feature Skew is caused by the use of
different types of sensors or varying measurement resolutions across infrastructures [208, 209].
Quality Skew emerges from inconsistencies in data collection, such as missing values or noise
from faulty sensors [69, 210]. Finally, Quantity Skew happens when different amounts of data
are contributed by clients, which can lead to imbalanced model updates [71, 72]. To tackle
these challenges, various strategies have been proposed in FL frameworks. Clustering-based
approaches, such as FedCluster [74] and ClusterFL [211], group clients with similar data pat-
terns to enable more focused aggregation of local models. However, while clustering can be
effective, it introduces additional computational complexity and faces scalability challenges as
the number of clients increases [212]. Another strategy is parameter decoupling, which sepa-
rates models into shared components and client-specific components. Methods like FedPer [85]
and FedRep [86] allow clients to individually train their personalized parts of the model while
collaborating on a common base. While these techniques enhance personalization, they require
careful tuning to strike a balance between global and local adaptations, especially for clients
with limited data. Knowledge distillation presents an alternative by enabling local models to
share knowledge through aggregated representations instead of exchanging raw model parame-
ters [213, 214]. This technique improves model generalization while reducing communication
overhead [165, 215]. Similarly, prototype-based FL methods, like those discussed in [73], gen-
erate low-dimensional representations of local data. These prototypes are shared and aggregated
to refine global models. However, ensuring that prototypes remain representative across diverse
data profiles continues to be a challenge [89]. Addressing the challenges posed by data hetero-
geneity is essential for improving the robustness of FL-based models. Future research should
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focus on adaptive aggregation techniques and dynamic personalization strategies to improve
model performance in real-world, diverse conditions.

2.8.1 Gap Analysis

Existing approaches to addressing heterogeneity in FL have made significant strides in mitigat-
ing challenges such as distribution skew, communication overhead, and personalization. Tech-
niques like client clustering, parameter decoupling, knowledge distillation, and prototype-based
learning demonstrate promise in improving model generalization and adaptability. However,
critical gaps remain that limit their practical applicability and effectiveness in real-world sce-
narios. First, clustering methods often rely on static assumptions about client data distributions,
which may not hold in dynamic environments where client data evolves over time [216]. This
raises scalability concerns and limits adaptability to shifting client participation patterns. Ad-
ditionally, it is difficult to decide how many clusters should be made, as this decision can sig-
nificantly impact the performance and efficiency of the clustering approach [216]. Second,
parameter decoupling and personalization strategies require manual tuning of shared versus
client-specific components, posing challenges for clients with limited computational resources
or sparse local data [217]. This can lead to suboptimal performance and increased complexity
in the training process. Third, while knowledge distillation reduces communication costs, it in-
troduces trade-offs between prototype quality, aggregation efficiency, and privacy preservation,
especially as the number of clients grows. Prototype-based methods, meanwhile, struggle to
maintain representative global prototypes under extreme feature or label skew, often sacrificing
granularity for scalability [218].

2.8.2 Future Directions and Proposed Solutions

A key unresolved challenge lies in unifying these approaches into a holistic framework that dy-
namically balances generalization, personalization, and scalability while preserving privacy. For
instance, few works address the interplay between multiple heterogeneity dimensions (e.g., fea-
ture skew compounded by device heterogeneity) or the long-term effects of evolving client data
distributions. Furthermore, reliance on idealized assumptions, such as uniform client partici-
pation or stationary data, limits applicability in practical deployments where client availability
and data quality fluctuate. Finally, there is a need for lightweight, adaptive mechanisms to
automate the trade-off between shared and personalized model components without extensive
hyperparameter tuning. These gaps motivate my work, which introduces an adaptive single layer
aggregation framework to address scalability, dynamic adaptation of data heterogeneity while
minimizing computational and communication overhead.
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2.9 Performance metrics

In this section, different metrics are discussed that were used to evaluate the various parameters
of the system. These metrics include loss functions, which assess the model’s performance by
measuring the difference between predicted and actual outcomes, thereby indicating how well
the model is learning from the training data. Energy consumption measures the efficiency of the
training process, highlighting the resources used by client devices during model updates. Com-
munication cost examines the bandwidth and time required for data transmission between the
central server and client devices, emphasizing the importance of optimizing these exchanges for
better performance. Finally, Levene’s test for data heterogeneity analyzes the variability in data
distributions among clients, which can significantly impact the effectiveness and robustness of
the FL approach. Together, these metrics provide a comprehensive framework for understanding
and improving the system’s overall performance.

2.9.1 Loss functions

The forecasting accuracy in this study is evaluated using two commonly applied error metrics:
the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE). These met-
rics were chosen due to their interpretability and robustness to outliers in practical forecasting
scenarios.

The Mean Absolute Error quantifies the average magnitude of errors without considering
direction:

MAE =
1
n

n

∑
t=1
|yt− ŷt | (2.6)

The Mean Absolute Percentage Error measures relative error magnitude as a percentage:
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MAE provides a straightforward error magnitude while remaining robust to outliers through
its use of absolute differences. MAPE complements this by expressing error as a percentage of
actual values, facilitating comparisons across datasets with different scales. Note that MAPE
should be used carefully when actual values approach zero to avoid division by small numbers.

2.9.2 Energy Consumption:

Energy consumption (Ecom) for transmitting local models depends on factors like energy per
kilobyte, transfer time, and device type. Using [219]’s model, Ecom is calculated as:

Ecom = R[(α× t)+(β ×D)] (2.8)
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where R denotes the number of communication rounds, α = 0.0001 kWh/sec represents
energy per second, t = 1 ms is the transmission time, β = 0.015 kWh/GB is the energy per
kilobyte, and D is the data size.

2.9.3 Communication Cost

Communication cost in FL refers to the total resources, primarily bandwidth and time, required
to transmit model updates between the central server and client devices, including the size of
the data sent and the frequency of transmissions. Minimizing these costs is crucial for opti-
mizing system performance, effectively managing network resources, and assessing scalability
as the number of clients increases. Additionally, understanding communication costs informs
the development of algorithms aimed at reducing data exchange, such as model compression
techniques. Ultimately, addressing communication costs is key to enhancing the efficiency and
practicality of FL implementations in real-world applications.

2.9.4 Levene’s Test

Levene’s test [220] was employed to investigate the data heterogeneity representing variability in
energy consumption patterns among clients in the smart grid network. This statistical method is
robust for evaluating whether different groups have equal variances. It enables the comparison
of energy consumption variability across clients and helps identify significant differences in
consumption patterns.

The test statistic W in Levene’s test is derived from the absolute deviations of data points
from their group means. The formula for W is:

W =
(N− k)
(k−1)

× ∑
k
i=1 Ni(Z̄i·− Z̄··)2

∑
k
i=1 ∑

Ni
j=1(Zi j− Z̄i·)2

(2.9)

In this equation, W is the test statistic, N is the total number of observations, k is the number
of groups, Ni is the number of observations in the ith group, Z̄i· is the mean of the ith group, Z̄··
is the overall mean, and Zi j is the jth observation in the ith group.

Under the assumption of equal variances, W follows an F-distribution with (k− 1) and
(N− k) degrees of freedom. The p-value reflects the probability of obtaining a test statistic like
W if the groups have equal variances. A small p-value suggests that W is unlikely under the
assumption of equal variances, indicating significant differences. A large p-value implies that
W is more common, suggesting similar variances.

A low p-value, usually below a significance level (e.g., 0.05), indicates that the differences
in variance between groups are statistically significant. This leads to the rejection of the null
hypothesis of homogeneity, implying data heterogeneity. A high p-value above the significance
level indicates insufficient evidence to reject the null hypothesis, suggesting data homogeneity.
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2.10 Summary of Literature Review, Research Gap and Link
with Challenges

This section synthesizes the key insights from the literature review, identifies critical research
gaps, and elucidates their connection to the challenges outlined in Chapter 1. By addressing
these gaps, the research aims to enhance the practicality and effectiveness of FL systems, par-
ticularly in energy networks.

Summary of Literature Review The literature review in this Chapter has provided an ex-
tensive overview of FL, detailing its training process, categories, applications, and inherent
challenges. It has delineated the five key phases of the FL training pipeline: global model
initialization, client selection and model distribution, local model training, layer-wise aggrega-
tion of local updates, and global model updates with convergence validation. The review has
also explored various categories of FL based on data partitioning (horizontal, vertical, trans-
fer), system architecture (centralized, decentralized), and operational strategies (cross-device,
cross-silo). Furthermore, the applications of FL across different domains, particularly in en-
ergy systems for load forecasting, have been emphasized. The review has identified several
challenges in FL, including data heterogeneity, communication overhead, resource constraints,
privacy-security trade-offs, model convergence, and client dynamics.

Research Gaps and Their Significance: Despite the extensive research on FL, several gaps
remain that hinder its practical adoption, particularly in energy networks. These gaps are not
merely theoretical; they have profound implications for the performance, security, and efficiency
of FL systems. Addressing these gaps is essential for advancing the field and ensuring the
successful deployment of FL in real-world applications.

1. Stealth Attacks: First and foremost, there is a pressing need to create stealth attacks that
current defence frameworks cannot detect, this gap is tied to challenge C1. Most attacks
can be detected by the frameworks can be detected defence frameworks. Existing research
does not adequately address stealth attacks that subtly degrade model performance over
time without triggering conventional detection mechanisms. These attacks are particularly
insidious because they can remain undetected for extended periods, gradually eroding the
accuracy and reliability of the global model. In energy networks, where precise load fore-
casting is critical for grid stability and operational planning, the lack of effective defences
against stealth attacks can lead to significant economic losses and increased operational
risks. For instance, a stealth attack like the Federated Communication Round Attack (Fed-
CRA), which increases communication rounds without affecting model accuracy, can re-
sult in higher energy consumption and communication costs, undermining the efficiency
and sustainability of the FL system.
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2. Defense Mechanisms: There is a lack of lightweight defence frameworks that are suitable
for resource-constrained edge devices common in smart grids or IoT-based forecasting
systems. Current defence mechanisms often introduce additional computational overhead,
making them less suitable for edge devices with limited processing power and memory.
This gap is critical because it directly impacts the challenge of robust aggregation (C2).
Without lightweight and efficient defense mechanisms, FL systems remain vulnerable to
adversarial attacks, which can compromise the integrity of the global model and lead to
unreliable predictions. For example, in a smart grid scenario, a compromised global model
could result in inaccurate load forecasts, potentially causing grid instability and increased
operational costs.

3. Communication Efficiency: Current techniques for communication and computational
efficiency, such as model pruning, quantization, and topology optimization, often rely on
static heuristics or manual tuning, which fail to adapt to dynamic network conditions or
evolving data distributions. This gap is directly tied to the challenge of communication
and computational efficiency (C3). In energy networks, where bandwidth and energy re-
sources are often limited, inefficient communication can lead to increased latency, higher
energy consumption, and reduced scalability. For instance, if an FL system cannot dy-
namically adjust its communication strategy based on real-time network conditions, it
may result in excessive data transmission, straining the network and reducing the overall
efficiency of the system.

4. Data Heterogeneity: Most clustering methods for addressing data heterogeneity rely on
static assumptions about client data distributions, which may not hold in dynamic envi-
ronments. Additionally, there is a need for lightweight, adaptive mechanisms that can dy-
namically adjust to data drift and varying client participation patterns. This gap is closely
linked to the challenge of data heterogeneity (C4). In energy networks, where clients may
have diverse and non-IID data distributions due to varying consumption patterns and en-
vironmental conditions, static clustering methods can lead to biased global models and
reduced forecasting accuracy. For example, if an FL system cannot adapt to dynamic
changes in client data distributions, it may fail to provide accurate load forecasts for dif-
ferent regions or consumer groups, resulting in inefficient energy allocation and increased
operational costs.

By addressing these research gaps, the research presented in this thesis aims to enhance the
security, efficiency, and adaptability of FL systems, particularly in energy networks. The pro-
posed solutions seek to bridge the gap between theoretical promises and practical deployment
of FL by focusing on robustness, communication efficiency, and adaptability to data hetero-
geneity. This will ensure that FL systems can deliver reliable and accurate load forecasts while
preserving privacy and operating efficiently in real-world conditions.



Chapter 3

Attack Strategies in Distributed Systems

In the field of FL, the distributed nature of model training introduces unique vulnerabilities
that can be exploited by malicious actors. These vulnerabilities are particularly concerning as
they can compromise the integrity and performance of the global model. Understanding these
attack strategies is crucial for developing robust defense mechanisms that can safeguard FL
systems against such threats. This chapter delves into various attack strategies that adversaries
can employ to undermine FL systems, with a focus on model poisoning attacks. These attacks
involve malicious clients manipulating their local updates to corrupt the global model, thereby
degrading its performance and reliability.

Attacks in FL can be broadly classified into two categories: those that directly degrade
model performance and those that inflate resource consumption without necessarily affecting
performance. Furthermore, attacks can be categorized based on their detectability as abrupt
(easily detectable) or stealthy (designed to evade detection mechanisms).

Building on the challenges outlined in Chapter 1, this chapter specifically addresses Chal-
lenge C1 (Model Attacks) by exploring how adversarial clients can manipulate the training pro-
cess. As highlighted in Chapter 1, FL systems are susceptible to various types of attacks that can
gradually degrade model performance without immediate detection. This is particularly relevant
to the research gap identified in Section 2.5.6 of Chapter 2, where the need for effective defence
mechanisms against stealth attacks was emphasized. Existing defence frameworks often fail to
detect stealth attacks that subtly manipulate model parameters over time, as discussed in Section
2.6.1. To mitigate these vulnerabilities, robust defence mechanisms are essential to safeguard
the integrity and reliability of FL systems.

Stealth attacks, such as the Fed-CRA introduced in Section 3.2, are particularly challenging
because they evade traditional detection mechanisms. Fed-CRA, which increases communi-
cation rounds without affecting model accuracy, exemplifies how adversaries can exploit FL
systems to inflate resource consumption while remaining undetected. This type of attack is criti-
cal for testing and developing defence frameworks, as it highlights the need for mechanisms that
can identify and mitigate subtle threats. As mentioned in Section 2.5.6, current defence frame-
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works are often inadequate against such stealthy tactics, making the development of advanced
defence strategies a pressing concern. By examining these attack strategies, this chapter under-
scores the importance of creating defence mechanisms that are specifically designed to detect
and counteract stealth attacks, thereby enhancing the security and efficiency of FL systems.

To address these concerns, this chapter explores a range of attack strategies, starting from
basic random approaches to more sophisticated stealth-targeted attacks. The following attack
types are examined in increasing order of sophistication:

• Completely Random Attack (CRA): Malicious clients submit entirely random model
updates, directly degrading global model performance.

• Partially Random Attack (PRA): A hybrid approach where only portions of model up-
dates are randomized, balancing disruption with plausibility.

• Model Flipping Attack (MFA): Clients invert model parameters to introduce systematic
errors in the global aggregation.

• Perturbed Attack (PA): Local updates are systematically perturbed rather than fully ran-
domized, creating targeted model degradation.

• Federated Communication Round Attack (Fed-CRA): A stealthy attack designed to
increase training rounds and communication overhead without directly affecting model
accuracy, representing a resource-inflating strategy.

The chapter evaluates these attack strategies through experiments with real-world datasets.
Results demonstrate significant performance degradation from CRA, PRA, MFA, and PA. Addi-
tionally, Fed-CRA’s unique impact on system resources is highlighted, showing increased train-
ing time, communication resources, and energy consumption despite maintaining model accu-
racy. By progressing from basic performance-degrading attacks to advanced resource-inflating
strategies, this chapter provides a comprehensive analysis of FL vulnerabilities and establishes
a foundation for developing effective defense mechanisms. This analysis directly contributes to
addressing the research gap identified in Section 2.5.6, where current defense mechanisms were
found to be inadequate against stealth attacks that gradually compromise model integrity.

3.1 Performance Degrading Attacks

Based on the discussion of threat modelling described in section 2.5.1, this work assumes an
active attacker who possesses the capability to intercept and alter model weights, enabling them
to systematically inject errors or biases into the model to achieve specific objectives. This active
manipulation poses a significant challenge for maintaining the integrity and reliability of FL
systems.
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Objective: The objective of these attacks is to create a local update that differs from the
original update (local model) but not so much that it can be easily detected.

It is possible to plan a model poisoning assault by carefully adjusting the weights of client-
submitted local updates. Each client uses its own data to train a local model in a FL environment,
and then it sends back modifications to the server. In order to provide a global model update for
each layer, these local changes are usually combined layer by layer at the server.

At the t-th communication round, let W i
t,L represent the weight of the L-th layer from the i-th

client. An attacker can send malicious weight changes intended to impair the global model’s
performance if they manage to breach one or more clients. Poor generalization on unseen data
might result from this modification, which can have a substantial impact on the aggregated
model.

The aggregation of each layer across K clients can be mathematically expressed as follows:

G1
t

G2
t

...

GL
t

=



∑
K
i=1 W i

t,1
K

∑
K
i=1 W i

t,2
K

...

∑
K
i=1 W i

t,L
K

(3.1)

In this equation, GL
t represents the aggregated model weights for the L-th layer at the t-

th communication round. Each layer’s weights are averaged over all K clients, thus reflecting
contributions from both benign and potentially malicious updates. This means that the integrity
of the global model relies heavily on the assumption that the majority of clients are honest,
which is a key vulnerability in FL systems. The following attack scenarios can be used to access
FL network’s robustness:

1. Completely Random Attack (CRA):In this attack, a client updates the server with ran-
dom weights. The attacker selects values from the range of actual update values to gener-
ate a fresh random update for each communication round. The randomness of the update is
determined using the Mersenne Twister algorithm, a widely used pseudorandom number
generator known for its high-quality randomness and long period [221]. The Mersenne
Twister algorithm produces a sequence of numbers that approximates the properties of
random numbers. It is particularly effective because it can generate a large number of ran-
dom values quickly, making it suitable for applications where high efficiency and uniform
distribution are crucial. By leveraging this algorithm, the attacker ensures that the updates
appear legitimate, making it difficult for the server to detect the manipulation. Each round
of communication introduces new random updates, further complicating efforts to identify
the source of the bias while allowing the attacker to systematically degrade the model’s
performance. If one client provides random updates while the others send legitimate up-
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dates, Eq. 3.1 becomes:
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2. Partially Random Attack (PRA): In PRA, an adversary scales the local update by a ran-
dom seed before transmission, making the updates look similar but adversarially modified.
With one client sending partially random updates and others legitimate updates, Eq. 3.1
becomes:
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where r is a random seed, updated per communication round using the Mersenne Twister
algorithm [221]. By adjusting r, the adversary can control the degree of deviation in the
update, enabling a finer control over the attack’s impact.

3. Model Flipping Attack (MFA): In MFA, the adversary flips the original update by mul-
tiplying it by −1 before sending it to the server [94]. If only one client sends a flipped
update, Eq. 3.1 is updated as follows:
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This approach, often referred to as "model flipping," can significantly degrade model ac-
curacy by reversing the learning progress contributed by legitimate clients.

4. Perturbed Attack (PA): In PA, an adversarial client introduces controlled random pertur-
bations to the updates, generated using a Gaussian distribution. Let P1,P2, and PL represent
the perturbation matrices for respective layers, where the perturbation for the first layer is
defined as:
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P1 ∼N (0,σ2I) (3.5)

where N (0,σ2I) is a multivariate normal distribution with mean 0, covariance matrix
σ2I, and I as the identity matrix with dimensions matching W 1

t,1. Eq. 3.1 then updates as:
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Through such perturbations, an adversary can introduce subtle but effective alterations to
the model, potentially reducing its accuracy or shifting the model’s decision boundary.

3.1.1 Experiments and Results

The HUE dataset (Dataset 1), obtained from the Harvard Dataverse and released by Stephen
Makonin [222], was used to assess the effects of various model poisoning techniques. Com-
prehensive energy usage data from residential customers of BCHydro, a regional electricity
provider in British Columbia, Canada, is included in this dataset. Time-series data records
trends of energy use for different homes over a given time period and is part of the HUE dataset.
Each household exhibits a unique energy consumption profile, influenced by several factors such
as household size, the number and types of electrical appliances used, and individual daily rou-
tines. Typically, most energy consumption values fall within the range of 0 to 5 kWh, reflecting
the variations in usage across different times of the day and week. An example of the data dis-
tribution is illustrated in Fig. 3.1, showcasing the typical consumption trends observed in the
dataset.

Preprocessing: I used a rolling mean with a window of five to stabilize the energy use
data in order to minimize swings and improve trend clarity. Because raw data might be noisy
and contain transient anomalies that could mask underlying trends, this preprocessing phase is
essential. We can examine consumption trends more precisely and produce more trustworthy
forecasts by smoothing the data. Five features—the value from the previous hour, the previous
24 hours, the previous week, and the averages for the preceding hour and week—were extracted
from the processed data [24]. A thorough picture of energy use across time is provided by these
aspects, which aid in capturing both short-term and long-term consumption trends.

Deep Learning Model: For time-series forecasting, a three-layer neural network was cre-
ated, comprising a 32-neuron Long Short-Term Memory (LSTM) layer, two dense layers of
28 neurons each, and a single neuron. To maximize model efficiency, a 12-hour look-back
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Figure 3.1: Overview of dataset 1.
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Figure 3.2: MAE during FL training process of global model on Dataset 1.

window was chosen after experimenting with different configurations. Using a grid search tech-
nique, hyperparameters such as neuron count, learning rate, batch size, and dropout rate were
methodically tuned. To ensure that the model is well-tuned to capture the subtleties of energy
consumption patterns, it uses the Adam optimizer for efficient convergence with adaptive learn-
ing rates, the Rectified Linear Unit (ReLU) activation function to introduce non-linearity, and
mean squared error (MSE) loss to measure prediction accuracy.

Baseline results: The MAE was plotted during the 20 communication rounds of the FL
training process, as illustrated in Fig. 3.2. FedAvg serves as the aggregate framework in this
case. By the end of the training procedure, it was evident that all of the clients’ MAEs had
converged. 0.076 kWh was the average client MAE.

As observed, the MAE of most clients exhibits a downward trend with an increasing number
of communication rounds, reflecting the gradual improvement in the global model’s perfor-
mance. However, fluctuations in the MAE values of different clients can be attributed to several
factors. Firstly, data heterogeneity is a significant concern in practical FL scenarios. Clients
often possess non-IID data, and variations in data distributions can lead to differing model per-
formances. Clients with more representative data may achieve lower MAE values more rapidly,
while those with significantly deviating data may experience slower convergence and higher
MAE values.

Effect of model poisoning updates:
The designed attacks called completely random attack (CRA), partially random attack (PRA),

model flipping attack (MFA) and perturbed attack (PA) are applied on the weights of local mod-
els. This effect is presented in Fig. 3.3. The density plots associated with each attack reveal
distinct patterns in how they influence the model’s output distributions. In the MFA, the density
plot shows a noticeable shift, resulting in a bimodal distribution where certain predictions are
significantly altered. This highlights the model’s vulnerability to targeted manipulations. Con-
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versely, the CRA presents a nearly uniform distribution, indicating that the model struggles to
discern any meaningful patterns, thereby diluting its predictive power.

The PRA offers a more complex landscape, as the density plot demonstrates concentrated
distributions while others remain dispersed. This indicates that the attack selectively impacts
certain predictions, exploiting the model’s weaknesses without overwhelming it with noise. Fi-
nally, the PA shows subtle shifts in the output distribution. This suggests that the weight mod-
ifications have a targeted effect, altering predictions in a manner that may not be immediately
apparent but can lead to significant misclassifications.

The effect these attacks are Fig. 3.4. The graph shows the average MAE for all the attacks.
It can be observed that the highest impact is caused by PA, resulting in an MAE of 0.270 kWh,
while the lowest impact is caused by PRA, with an MAE of 0.088 kWh. This value is very
close to the baseline (no-attack) condition of 0.076 kWh. The results reveal that the PA induces
the highest MAPE, while the PRA has the least impact. This disparity can be explained by the
distinct mechanisms of these attack strategies. The PA introduces controlled random perturba-
tions to the model updates. Although these perturbations are subtle, they can accumulate over
time and mislead the model’s learning direction toward incorrect patterns. By directly targeting
model parameters and introducing targeted disturbances, PA significantly affects model accu-
racy, leading to biased predictions for certain data features and a higher MAPE. In contrast,
the PRA only randomizes a subset of model parameters, introducing noise without entirely dis-
rupting the model’s overall structure. Consequently, the impact on model accuracy is relatively
limited, as the unaffected parameters can still guide the model toward the correct optimization
direction to some extent, resulting in a lower MAPE. The comparison of MAPE values across
different attack types underscores the varying threats posed by different attack strategies to FL
systems. It emphasizes the need for attack-specific defense mechanisms. For instance, advanced
anomaly detection techniques and robust aggregation algorithms are required to address subtle
perturbations introduced by PA, while data validation and model parameter filtering can mitigate
the effects of PRA. Overall, this figure provides a quantitative comparison of the effectiveness
of different model poisoning attacks, offering valuable insights for the design of defense frame-
works to enhance the security and robustness of FL systems.

3.2 Stealth Communication Round Attack (Fed-CRA)

The attacks presented in previous sections are primarily concerned with performance degrada-
tion in the system; however, this attack focuses on the resources of the system, which include
time, energy, and communication resources. Since it does not affect model performance, it is
categorized as a stealth attack, addressing the gap presented in Section 2.5.3 and Table 2.1.

Objective: Fed-CRA’s main goal is to carry out a model poisoning attack that preserves the
forecasting error while increasing the number of communication cycles between the server and
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Figure 3.4: Effect of different model posing attacks when client 1 was subjected to attack.

clients. This method requires more energy to be used when training the global model because
it increases these communication rounds. Since there is no discernible drop in model accuracy,
this feature enables the attack to be categorized as a stealth attack, which makes it challenging
to identify.

It is presumed in this scenario that the attacker does not have direct access to the clients’
data. Therefore, the attacker’s only realistic option is to change the weights of the local models
that the clients have submitted. This technique is similar to those used in Man-in-the-Middle
(MITM) attacks, in which an interceptor obtains unapproved access to the channel of communi-
cation. With this access, the attacker can intercept client model updates and substitute them with
malicious updates intended to undermine the integrity of the model as a whole. Wang et al. [223]
provide a comprehensive discussion on this form of attack, emphasizing that attackers can adopt
two primary approaches: they can either alter the updates in real networks or construct fictitious
networks under their control to facilitate their schemes. By leveraging these tactics, the attacker
can effectively manipulate the learning process without raising immediate suspicion, thereby
undermining the efficacy of the FL system.

A common strategy employed in MITM attacks involves the removal of encryption from the
compromised communications, thereby enabling the attacker to observe, modify, or redirect the
model updates being exchanged between clients and the server [224]. The difficulty in identify-
ing such attacks arises from the fact that the attacker might not only monitor the updates but may
also re-encrypt them before forwarding to the intended recipient, thereby concealing their activ-
ities. Additionally, this kind of interference can be categorized as a backdoor attack, wherein the
client becomes compromised, and the attacker gains control over the training process [113,115].

In my investigation, i deliberately chose not to include attacks that could potentially af-
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fect model accuracy [97, 225]. The rationale behind this decision is that state-of-the-art defense
frameworks are adept at identifying and mitigating such accuracy-impacting attacks [94,97,134].
Instead, our focus was directed toward designing a targeted attack [124], specifically aimed at
increasing the communication rounds rather than jeopardizing the accuracy of the global model.
This strategy not only preserves the model’s integrity but also results in increased energy con-
sumption during the training phase, as the server and clients engage in more frequent exchanges
of information.

To implement this attack strategy, we constructed malicious updates using a random seed,
denoted as r. This seed is generated within a specified range, between 0.5 and 1. The ap-
proach involves modifying only the biased portion of the first layer in the compromised local
model, while ensuring that the weights in other layers remain unchanged. This method is criti-
cal because incorporating the seed into more than one layer could inadvertently compromise the
stealthiness of the attack. We aimed to craft updates that closely mirror actual model updates
to avoid detection, as completely random updates can be quickly flagged by state-of-the-art
detection systems, as noted in [94, 111].

To ensure the stealth of the attack, we deliberately avoided using entirely random updates,
which are easily detectable by modern defense mechanisms. Instead, we concentrated on for-
mulating an update that is similar to the legitimate model updates, thereby ensuring that the
malicious alteration does not affect the forecasting error. The random seed is generated us-
ing the Mersenne Twister (MT) algorithm [221], which is a widely recognized pseudorandom
number generator utilized across various computational and scientific applications. The MT
algorithm is celebrated for its robust statistical properties and its capacity to generate an exten-
sive sequence of numbers before repeating, which is essential for maintaining the stealthiness of
Fed-CRA [226–228].

The seed value, which is the initial input used by the Mersenne Twister algorithm [221], is
where the number creation process starts. This algorithm employs a highly intricate mathemat-
ical formula that transforms the seed value into a seemingly random sequence of numbers, thus
providing the randomness needed for our updates. Consequently, we can modify Equation 1 to
reflect this attack mechanism as follows:
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In this equation, Gk
t represents the global model parameters at time t, with the first part

indicating the aggregation of model weights from all clients, while the second part incorporates
the biased updates influenced by the random seed r. This carefully crafted update mechanism is
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central to the effectiveness and stealth of the Fed-CRA attack.

3.2.1 Experimental Results

The dataset utilized in this section was sourced from PJM Interconnection LLC [229], which
provided a collection of ten datasets corresponding to ten distinct substations across their grid.
For this study, Dataset 2, referred to as APE, was selected, as illustrated in Fig. 3.5. The
data was organized into ten clients, with each client allocated 2,267 data samples, allowing for
a decentralized approach to analysis and modeling. This dataset is specifically employed for
STLF, a crucial task for energy management and planning.

To enhance the accuracy of future energy demand predictions, five relevant features were
generated, as detailed in previous studies [24,93,94]. These features are designed to capture var-
ious temporal aspects of energy consumption and include: (1) the previous hour’s consumption
value, which provides immediate context; (2) the previous day’s consumption value, offering
insights into daily trends; (3) the previous week’s consumption value, allowing for the identifi-
cation of weekly patterns; (4) the 24-hour average value, which smooths out short-term fluctua-
tions; and (5) the weekly average value, which helps in understanding longer-term consumption
behaviors. These features collectively enhance the model’s ability to predict short-term energy
needs effectively.

Deep Learning Model: A three-layered artificial neural network (ANN), which is intended
to identify intricate patterns in the data, was used to anticipate the energy demand for both
datasets. With 100 neurons in the first layer, the model can learn a wide variety of features
from the input data and successfully capture complex correlations in the patterns of energy
usage. The model’s capacity to generalize was improved by the second layer, which had 50
neurons and functioned as a hidden layer that improved the features that the first layer had
retrieved and helped to reduce dimensionality. One neuron, which produces the anticipated
energy demand value, makes up the last layer. Each layer made use of the Rectified Linear Unit
(ReLU) activation function, which is well-known for its ability to add non-linearity to the model
and facilitate quicker training convergence. Because of its flexible learning rate capabilities,
which aid in effectively navigating the loss terrain during training, the Adam optimizer was
used. The model was adjusted to reduce mistakes in energy demand projections by using mean
squared error (MSE), which provides a measure of the average squared differences between
anticipated and actual values. This architecture is appropriate for short-term load forecasting
activities because it was created to improve predicted accuracy and robustness.

Global Dataset: o provide a comprehensive overview of the entire data landscape, the global
dataset for this simulation is constructed by aggregating 10% of the data from each client. This
method enhances the assessment of the global model’s predictive accuracy by incorporating
variances from multiple sources, ensuring an objective evaluation of the model’s performance
across different client scenarios. The global dataset serves as a robust benchmark, enabling cen-
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Figure 3.5: Sample of the dataset 2.
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tralized access for both training and evaluation stages of the model. By utilizing a portion of
each client’s data, this approach mitigates potential biases that might arise from relying solely on
a single client’s dataset, thereby improving the reliability and generalizability of the forecasting
results. Additionally, this strategy facilitates a more nuanced comparison of the model’s perfor-
mance against a collective dataset, offering valuable insights into the model’s ability to adapt to
various operational contexts. The global dataset is securely stored on the server upon construc-
tion, ensuring that it remains a trusted reference point throughout the model’s development and
assessment phases.

Stopping Criterion:A thorough stopping criterion was painstakingly created for this collec-
tion of simulations in order to optimally cease the global model’s training process. This criterion
is essential for figuring out how many communication rounds are best for reaching convergence
during the training stage. Prematurely ending the training phase can result in low forecasting
accuracy since the model might not have fully mastered the underlying patterns in the data.
Conversely, if training continues beyond the point of convergence, it not only wastes computa-
tional resources but also risks overfitting, where the model starts to learn noise instead of the
true signal. To establish this stopping point, the criterion was defined by closely monitoring
the loss function of the global model throughout the training iterations. Specifically, if there is
no significant improvement in the loss function over 20 consecutive communication rounds, the
training process will automatically cease. This strategy ensures that the model is trained effi-
ciently, striking a balance between achieving high accuracy and conserving valuable resources
in the computational environment.

Baseline Results: The mean absolute percentage error (MAPE), which provides a quan-
titative indicator of predicting accuracy, was computed for both the global model and each
individual client following the FL procedure. Fig. 3.6 provides a visual comparison of the
global model and client performance indicators, illustrating these findings. Interestingly, after
72 communication rounds, the global model was able to converge, suggesting that the iterative
training procedure successfully adjusted the model parameters to reduce predicting errors. The
average MAPE for all clients was 2.79%, however the global model showed a great predictive
performance with a MAPE of 2.75%. The efficacy of the FL strategy in improving forecasting
dependability is demonstrated by this little accuracy difference, which implies that the global
model was able to generalize better than individual client models thanks to the combined in-
sights of several clients.

Effect of Fed-CRA: A sample of actual and attacked weight are plotted in Fig. 3.7 showcas-
ing the similarity between actual and attacked weights. This proves the stealthiness of the attack.
The stealthiness of the generated attack is evaluated using cosine similarity, which measures the
difference between the actual weights and biases of client 1 and client 2, as well as the attacked
weights and biases of client 1 compared to client 2’s actual weights and biases. The analysis
shows that, under normal conditions (with neither client 1 nor client 2 being attacked), the co-
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Figure 3.6: Baseline results for dataset 2.
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Figure 3.7: A sample of the local model of client one’s weight distribution, both as it is and as it
was attacked.

sine similarity of their actual weights is 0.99996781. Interestingly, when client 1 is targeted
by an attack, the cosine similarity slightly increases to 0.99999588, demonstrating the attack’s
subtlety and effectiveness.

The percentage of attacked clients was varied from zero to one hundred, and the MAPE of the
global model, along with the corresponding communication rounds, was measured. The results
are plotted in Fig.3.8. It can be observed that as the percentage of attacked clients increased, the
corresponding communication rounds also increased, while the MAPE remained unchanged.
This further demonstrates the stealthiness of the attack. Fed-CRA successfully increased the
communication rounds from 72 to 485.

Communication Cost: Communication cost, defined as the total data exchanged between
clients and the server [165], plays a crucial role in influencing a system’s energy efficiency and
overall performance [24, 219]. This cost is intricately linked to both the number of commu-
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Figure 3.8: Communication rounds (red) and MAPE (blue) resulting from Fed-CRA global
model training.

nication rounds and the size of the data exchanged during each round. Notably, the machine
learning model is transmitted twice per round: first, from the client device to the server in the
form of the local model, and subsequently, the global model is sent back to the clients. In the
baseline scenario, which consists of 72 communication rounds, the total communication over-
head amounts to 5.4 MB for a model size of 38 KB. However, under the Fed-CRA framework,
when all clients are compromised, the number of required communication rounds escalates to
485, which significantly increases the communication overhead to 36.86 MB. This represents a
staggering 582.59% increase in communication costs, highlighting the substantial impact that
the choice of communication strategy can have on resource consumption and efficiency in FL
environments.

Energy consumption: Energy consumption (Ecom) for transmitting local models depends
on factors like energy per kilobyte, transfer time, and device type. Using [219]’s model, Ecom is
calculated as:

Ecom = R[(α× t)+(β ×D)] (3.8)

where R denotes the number of communication rounds, α = 0.0001 kWh/sec represents
energy per second, t = 1 ms is the transmission time, β = 0.015 kWh/GB is the energy per
kilobyte, and D is the data size (38 kB in this case). For baseline FL, Ecom was 41.04 kWh
per device. Under Fed-CRA, when all clients are compromised, Ecom increased to 276.35 kWh.
This elevated demand raises concerns about cost, resource strain, and sustainability.
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3.3 Discussion

The varying impacts of these attacks on the FL system also reflect differences in the ability of
defense mechanisms to address them. Model poisoning attacks, such as the PRA and CRA,
directly target the integrity of the model updates. Traditional defense mechanisms can often
identify and mitigate these attacks to some extent, especially when the attacks are not highly so-
phisticated. However, for more advanced model poisoning attacks like the PA, which introduce
subtle but targeted perturbations, defense mechanisms need to be more sophisticated. Advanced
anomaly detection techniques and robust aggregation methods are better suited to handle such
attacks. These frameworks can detect anomalies in the model updates and either exclude or
down-weight the malicious updates, thereby maintaining the integrity of the global model.

The MFA presents a different challenge. It reverses the learning direction of the model,
which can be difficult for some defense mechanisms to detect as it may not necessarily increase
the model’s prediction error but rather misdirects the model’s learning. Defense mechanisms
that monitor the direction of model updates and the consistency of the model’s behavior over
time are more effective against MFA.

The Fed-CRA is unique in that it does not directly affect model accuracy but instead in-
creases communication overhead. Defense mechanisms targeting Fed-CRA need to focus on
identifying abnormal communication patterns rather than model update content. Mechanisms
that monitor communication frequency and data transmission volumes can detect such attacks.
For example, by setting thresholds for acceptable communication rounds and data sizes, any
deviation beyond these thresholds can trigger investigative or corrective actions to mitigate the
attack’s impact.

The ability of defense mechanisms to cope with different types of attacks varies. Basic de-
fense mechanisms may suffice for simple model poisoning attacks, but advanced and targeted
defense strategies are required to effectively address sophisticated attacks like Perturbed At-
tacks and Model Flipping Attacks. For stealthy attacks like Fed-CRA, defense mechanisms
need to shift their focus from model accuracy to communication patterns and resource usage.
This discussion highlights the importance of selecting and implementing appropriate defense
mechanisms based on the specific types of attacks that an FL system may encounter.

3.4 Concluding Remarks

In this chapter, various attack strategies that can compromise FL systems have been explored,
with a particular focus on model poisoning attacks. These attacks aim to degrade the perfor-
mance of the global model by introducing malicious updates from compromised clients. The
key findings and contributions can be summarized as follows:

• Performance Degrading Attacks: Several types of model poisoning attacks, including
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Completely Random Attack (CRA), Partially Random Attack (PRA), Model Flipping At-
tack (MFA), and Perturbed Attack (PA), were introduced and evaluated. These attacks
simulate real-world scenarios where malicious clients can manipulate their local updates
to corrupt the global model. The experiments demonstrated the significant impact these
attacks can have on model performance, thereby underscoring the necessity for robust de-
fence mechanisms to address these vulnerabilities. This addresses the challenge of model
attacks (C1).

• Stealth Communication Round Attack (Fed-CRA): A novel attack, Fed-CRA, was pro-
posed. This attack aims to increase the number of communication rounds between the
server and clients while keeping the accuracy unchanged. Designed to create inefficien-
cies in the learning process without being easily detected, the results indicated that Fed-
CRA can significantly increase communication overhead, thus addressing the challenge
of communication and computational efficiency (C3).

• Impact on Model Performance: The experimental results revealed that the highest im-
pact on model performance was caused by the Perturbed Attack (PA), resulting in an MAE
of 0.270 kWh, while the lowest impact was caused by the Partially Random Attack (PRA),
with an MAE of 0.088 kWh. This highlighted the varying degrees of vulnerability of FL
systems to different types of attacks and emphasized the importance of developing defence
mechanisms that can effectively mitigate these threats.

Additional Insights: Some attacks, such as the Perturbed Attack (PA), resulted in high
MAE but were relatively easier to detect due to their overt impact on model performance. In
contrast, Fed-CRA caused significant operational overhead without triggering detection mecha-
nisms, thereby emphasizing the need for defence strategies specifically tailored to stealthy versus
blatant attacks. In STLF applications, where communication latency and forecasting precision
are critical, attacks like Fed-CRA could substantially inflate operational costs while escaping
anomaly detectors, thus posing risks to grid reliability and efficiency.

The findings from this chapter underscore the critical need for robust defence frameworks
to protect FL systems against adversarial attacks. The proposed attack strategies provide valu-
able insights into the vulnerabilities of FL systems and highlight the importance of developing
advanced anomaly detection and mitigation techniques. Future research directions could fo-
cus on designing defence mechanisms that can effectively detect and neutralize both overt and
stealthy attacks, ensuring the integrity, efficiency, and reliability of FL systems in real-world
applications, particularly in critical domains such as energy management.



Chapter 4

Novel Attack Resolution Frameworks

FL systems offer significant advantages in terms of privacy preservation and decentralized train-
ing. However, they remain susceptible to various types of attacks, particularly model poisoning
attacks. As highlighted in Chapter 1, these attacks can compromise the integrity of the global
model by subtly manipulating local model updates, leading to degraded performance and inac-
curate predictions. The challenges posed by such adversarial activities are further compounded
by the need to balance communication efficiency and computational constraints, as outlined in
Section 1.2 (Challenges C2 and C3).

This chapter introduces three novel defense frameworks designed to address these challenges
and enhance the robustness of FL systems in real-world applications:

• Federated Random Layer Aggregation (FedRLA): FedRLA directly targets Challenge
C3 by reducing communication overhead while maintaining model accuracy. This frame-
work enhances global model training efficiency and defends against adversarial attacks
by aggregating only a single, randomly chosen neural network layer during each com-
munication round. This method reduces data exchange between devices and the server,
streamlining communication and enhancing privacy. Experimental results demonstrate
that FedRLA achieves comparable model accuracy to traditional methods while reducing
communication costs by a factor of 3.56.

• Layer-Based Anomaly Aware Federated Averaging (LBAA-FedAvg): LBAA-FedAvg
addresses Challenge C2 by introducing a robust aggregation mechanism that detects and
mitigates adversarial updates. It leverages anomaly detection to identify deviations in
model updates caused by adversarial clients. By clustering the weights of each layer and
selectively excluding compromised layers from the aggregation process, LBAA-FedAvg
ensures the integrity of the global model. Experiments show that LBAA-FedAvg main-
tains a stable average client MAPE even under varying attack scenarios.

• Federated Incentivized Averaging (Fed-InA): Fed-InA focuses on Challenges C2 and
C3 by developing a novel scoring mechanism to identify and neutralize stealth attacks,
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thereby reducing communication costs. This framework introduces a scoring mechanism
that evaluates clients based on their contribution to the model’s accuracy and reliability.
By rewarding good clients and penalizing malicious ones, Fed-InA encourages honest
participation and contributes to the overall integrity and performance of the FL system.
Experimental results indicate that Fed-InA significantly reduces communication rounds
while maintaining model accuracy, even in the presence of adversarial attacks.

The need for such defense frameworks is further underscored by the research gap identified
in Section 2.2.5, where existing defense mechanisms were found to be inadequate against so-
phisticated stealth attacks. As discussed in Section 2.10, traditional defense frameworks often
struggle with detecting and mitigating stealth attacks that subtly manipulate model parameters
over time. The proposed frameworks in this chapter aim to fill this gap by providing advanced
defense strategies specifically designed to counteract such threats. Each framework is designed
to complement the others, providing a comprehensive defense strategy against the diverse threats
facing FL systems. By explicitly addressing the challenges and building on the insights from the
literature survey in, these frameworks contribute to the development of more secure, efficient,
and reliable FL systems, particularly in sensitive applications such as short-term load forecasting
(STLF) where model integrity and user privacy are paramount.

4.1 Federated Random Layer Aggregation

FedRLA is introduced as a novel approach to enhance global model training efficiency and
defend against adversarial attacks. Unlike traditional FedAvg, FedRLA aggregates a single,
randomly chosen neural network layer during each communication round, leaving other layers
unchanged. This reduces data exchange between devices and the server, streamlines commu-
nication, and enhances privacy by limiting shared model information. The server dynamically
selects the layer to aggregate, ensuring all layers contribute over successive rounds, with ran-
domness provided by the robust Mersenne Twister (MT) algorithm [221]. This method improves
security, resource efficiency, and privacy, making it ideal for privacy-sensitive applications such
as household energy forecasting. Details of the framework are provided in Algorithm ?? and
illustrated in Fig. 4.1.The training process for energy forecasting using FedRLA follows five
key steps:

1. Sending Generic Models to Clients: The server initiates the process by distributing a
generic ML model comprising L layers to all K edge devices. This model is meticu-
lously designed based on historical data and expert insights, ensuring that it incorporates
foundational knowledge relevant to the specific task. Additionally, the server includes in-
formation specifying which layer, denoted as Lr, should be returned after local training,
allowing for targeted updates.
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Figure 4.1: Schematic diagram of FedRLA process.

2. Local Model Training: Each edge device independently trains the received model using
its unique energy consumption data. This step is crucial as it ensures the development of
personalized local models that accurately reflect the individual behaviors and consumption
patterns of different households, thereby enhancing the relevance and effectiveness of the
predictions.

3. Model Update and Loss Calculation: Upon completing the training phase, the edge de-
vices transmit their local model’s weights and biases, represented as UP= {W 1

t,r,W
2

t,r, . . . ,W
K

t,r},
back to the server. Additionally, they send the corresponding loss functions, denoted as
σk, which quantify the performance of each local model. Here, W K

t,r specifically refers
to the weights of layer Lr for the Kth client, providing insight into the model’s learning
progress.

4. Model Aggregation: The server aggregates the weights received from the local models
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to formulate the global model, denoted as Gt . This aggregation employs the Federated
Averaging (FedAvg) algorithm, but it is applied solely to the selected random layer Lr:

Gt =
∑

K
i=1W i

t,lrand

K

In this equation, W i
t,lrand

represents the weights of the randomly chosen layer lrand from
the ith client, ensuring that the global model benefits from diverse local insights while
maintaining focus on specific layers.

5. Global Model Sharing: In the end, the server completes one communication round by
sharing the updated global model Gt with every edge device. By repeating this iterative
process, the accuracy of the global model can be continuously improved over subsequent
rounds, ultimately improving the predictive power of the system.

This framework is outlined in Algorithm 1 for client side and 2 for server side and visually
represented in Fig. 4.1.

Algorithm 1 Federated Random Layer Aggregation (FedRLA) - Client Side
1: Initialization:
2: Initialize local model W k

0,l for all layers l.
3: Receive global model and lrand from the server.
4: for t = 1 to T do
5: Local Training and Update:
6: Update local model using local data.
7: Create an update for the randomly selected layer: W k

t,lrand
← LocalUpdate(W k

t,lrand
)

8: Send W k
t,lrand

back to the server.
9: end for

Privacy Enhancement: The privacy of the model is significantly enhanced in FedRLA
through the selective aggregation of a single random layer. Traditional FL methods require
clients to transmit their entire model update to the server, which can expose a significant amount
of information about the client’s local data and model. In contrast, FedRLA limits the exposure
by only transmitting a single randomly selected layer. This means that during each communica-
tion round, only a fraction of the model’s information is sent over the network. By reducing the
amount of information transmitted, the risk of data leakage is minimized. Additionally, since the
layer to be transmitted is randomly chosen in each round, it becomes more difficult for potential
attackers to reconstruct the full model or infer sensitive information from the transmitted data.
This randomization adds an element of unpredictability, making it harder for attackers to target
specific layers or extract meaningful patterns from the transmitted information.

Furthermore, the selective aggregation approach in FedRLA ensures that the global model is
built from diverse contributions across different layers from various clients. This diversity makes



CHAPTER 4. NOVEL ATTACK RESOLUTION FRAMEWORKS 63

Algorithm 2 Federated Random Layer Aggregation (FedRLA) - Server Side
1: Initialization:
2: Initialize global model W0,l for all layers l.
3: Set communication rounds T , number of clients K, and number of layers L.
4: Send global model and initial lrand to all clients.
5: for t = 1 to T do
6: Aggregation:
7: for each layer l do
8: if l = lrand then
9: Aggregate updates for the selected layer: Wt,l ← 1

K ∑
K
i=1W i

t,lrand
10: end if
11: end for
12: New Instructions:
13: Choose new lrand for next communication round.
14: Send updated global model and new lrand to all clients.
15: end for
16: return Trained global model.

it difficult for any single client’s update to have a disproportionate influence on the global model,
thereby reducing the risk of model inversion attacks or other privacy-threatening activities. By
limiting the information transmitted and introducing randomness in the selection of layers, Fe-
dRLA provides a robust defense against privacy breaches while maintaining the efficiency and
effectiveness of the FL process.

4.1.1 Experiments and Results

In this set of studies, Dataset 1 was selected due to its robust foundation for examining trends in
energy usage. A rolling mean of 5 was applied to the dataset to mitigate fluctuations and stabilize
the energy use statistics. This technique effectively smoothed out short-term anomalies, result-
ing in a more consistent pattern that accurately reflected the underlying trends in consumption
over time. Additionally, five characteristics were developed to enhance the dataset beyond the
preprocessing step: the past-hour value, past-hour average, past-week average, past-hour value,
and past-24-hour value [24]. These features aimed to improve the model’s predictive power by
capturing both short-term and long-term consumption patterns.

The model architecture consisted of a three-layer neural network, comprising an LSTM (long
short-term memory) layer followed by two dense layers. The final output layer featured a single
neuron to estimate the energy consumption value, with the first dense layer containing 32 neu-
rons and the second layer containing 28 neurons. The design focused on minimizing model size
while maintaining performance for deployment in edge machine learning environments. After
evaluating various options, a 12-hour look-back window was chosen, as it effectively captured
relevant temporal dependencies in the data. Hyperparameters such as batch size, learning rate,
dropout rate, and the number of neurons per layer were fine-tuned using grid search to optimize
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Figure 4.2: MAE of every client following 20 rounds of communication.

model performance. The Adam optimizer was selected for its training effectiveness, and all lay-
ers utilized the ReLU activation function. The model’s prediction accuracy was assessed using
mean squared error as the loss function.

Baseline results Fig. 4.2 displays the FedRLA results, which plot each client’s mean abso-
lute error (MAE) against the communication rounds. With an average client MAE of 0.80 kWh
after 20 rounds, FedRLA’s performance closely resembles the baseline findings in Fig. 3.2. This
shows that a single neural network layer, rather than the complete network, can be aggregated
to create a global model. In addition to yielding results that are equivalent, this method lowers
communication overhead, increasing the scalability and efficiency of network resources.

Communication cost: The data sent between devices and the server was used to calculate
the communication cost in this study [165]. The LSTM-based model, sized at 23,220 bytes,
comprised three layers: 19,968 bytes for the first, 3,696 bytes for the second, and 28 bytes
for the last. Over 20 communication rounds, FedRLA transmitted 0.781 MB of data, reduc-
ing communication by 3.56 times compared to FedAvg while maintaining the same forecasting
accuracy. This efficiency arises from FedRLA’s reduced selection probability for the largest
layer, which contained the most parameters. With only three layers, FedRLA achieved notable
communication savings, which would further increase in models with more layers.

FedRLA under Adversarial Attacks: During training, FedRLA only communicates with one
neural network layer per communication round, which significantly reduces the likelihood that
adversarial updates can compromise the entire model. This design choice introduces a prob-
abilistic element to the aggregation process. Since the probability of any given layer being
selected for aggregation is 1/L (where L is the total number of layers in the model), the impact
of malicious updates is naturally confined to a single layer at a time. This probabilistic layer se-
lection inherently dilutes the influence of adversarial updates across the entire model, making it
less probable that any single attack can systematically degrade the global model’s performance.
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In this investigation, four different model poisoning attacks were employed to evaluate Fe-
dRLA’s robustness: Partially Random Attack (PRA), Completely Random Attack (CRA), Model
Flipping Attack (MFA), and Perturbed Attack (PA) (see Section 3.1 for detailed descriptions of
these attacks). The results of these experiments are summarized in Figure 4.3, which illustrates
the Mean Absolute Error (MAE) under different attack scenarios.

• In the absence of any attacks, both FedRLA and FedAvg achieved a steady MAE of ap-
proximately 0.079 kWh, establishing a baseline for model performance.

• Under the Partially Random Attack (PRA), FedRLA recorded an MAE of 0.081 kWh,
compared to FedAvg’s 0.088 kWh. This indicates that FedRLA’s selective layer aggrega-
tion strategy effectively limits the spread of malicious updates.

• In the case of the Completely Random Attack (CRA), FedRLA showed greater resilience
with an MAE of 0.109 kWh, while FedAvg’s MAE increased to 0.124 kWh.

• For the Model Flipping Attack (MFA), FedRLA achieved an MAE of 0.081 kWh, whereas
FedAvg’s MAE rose to 0.19 kWh. This highlights FedRLA’s ability to maintain the co-
herence of the model’s learning direction.

• During the Perturbed Attack (PA), FedRLA maintained a stable MAE of 0.0805 kWh,
while FedAvg’s MAE sharply increased to 0.27 kWh. This demonstrates FedRLA’s effec-
tiveness against sophisticated attack vectors.

These results collectively highlight FedRLA’s superior adaptability and robustness against a
variety of adversarial attacks. By aggregating only a single randomly selected layer per commu-
nication round, FedRLA inherently reduces the attack surface for potential adversaries, thereby
enhancing the security and reliability of the federated learning process.

Although FedRLA has built-in protection against model poisoning, the addition of other
defense mechanisms like ZeKoC [111], FedClamp [93], LBAA-FedAvg [94], and ShieldFL
[147] could increase its efficacy and computational efficiency and guarantee a more dependable
and safe FL environment.

4.1.2 Computational Efficiency

Computational efficiency is assessed by analyzing CPU and memory usage over time, which
provides insights into the operational demands of a system. High CPU usage may indicate ex-
cessive computations, inefficient algorithms, or suboptimal implementation strategies, while low
CPU usage suggests potential underutilization of available computational resources. Similarly,
excessive memory consumption can lead to performance degradation due to cache misses or fre-
quent swapping with disk storage, which increases latency. Thus, monitoring these metrics over
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Figure 4.3: FedRLA and FedAvg are compared under various hostile attacks.

time aids in identifying bottlenecks, such as redundant computations, inefficient data structures,
or inappropriate resource allocation.

Some algorithms optimize processing speed by utilizing more memory to store precom-
puted values, thereby reducing the need for repeated calculations. In contrast, other algorithms
conserve memory by recomputing values as needed, which can lead to increased CPU usage.
Achieving an optimal balance between CPU and memory efficiency is crucial for enhancing
overall system performance while minimizing resource consumption, particularly in resource-
constrained environments.

The average CPU usage during the training phase is calculated as the mean of the CPU
utilization at the beginning and end of the training process. This measurement offers a reli-
able estimate of the overall CPU load experienced during training. The peak memory usage
is determined by identifying the maximum memory consumption recorded during the training
phase, ensuring that the system had sufficient resources to accommodate the demands placed
upon it. These metrics serve as essential indicators for evaluating the computational efficiency
and scalability of the FL model.

The following section offers a comprehensive comparison of the computational efficiency
of FedRLA against other frameworks, including FedProx [230], ZeKoC [111], FRA [129], and
FedAvg. Fig. 4.4 presents a detailed comparative evaluation of these five frameworks across
three critical performance indicators: average CPU usage, peak memory usage, and time taken to
execute tasks. For the purpose of effective visualization, normalized values are employed, which
allow for equitable comparison across different scales. Each axis on the chart corresponds to one
of these indicators, plotted in a circular format to facilitate intuitive and immediate comparison.
The working principles of the chosen frameworks are as follows:

• FedProx: FedProx is designed to handle heterogeneous client participation and vary-
ing computation capabilities. It introduces a proximal term to the optimization problem,
allowing clients to perform a variable amount of work and enabling more flexible and ef-
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ficient updates. This makes FedProx particularly suitable for environments with diverse
computational resources.

• ZeKoC: ZeKoC focuses on enhancing the security and robustness of FL systems through
zero-knowledge clustering. It ensures that the global model is not compromised by mali-
cious clients by clustering clients based on their data characteristics and only aggregating
updates from trusted clusters. This approach is effective in maintaining model integrity
but may require additional computational overhead for clustering.

• RFA: RFA, or Robust Federated Aggregation, is a novel approach to federated learning
that enhances the aggregation process’s robustness against potential poisoning of local
data or model parameters from participating devices. It utilizes the geometric median
for aggregating updates, computed efficiently using a Weiszfeld-type algorithm. RFA is
agnostic to the level of corruption and can aggregate model updates without revealing
individual contributions from devices. The convergence of the robust federated learning
algorithm is established for stochastic learning of additive models with least squares.

• FedAvg: FedAvg is the traditional federated averaging algorithm where all clients’ model
updates are averaged to form the global model. While simple and effective in homoge-
neous environments, it can struggle with communication efficiency and may be less robust
to adversarial attacks in heterogeneous settings.

The blue line on the graph indicates average CPU usage, revealing that FedProx exhibits the
highest usage at approximately 1 (normalized value), while FedAvg shows the lowest usage at
around 0.73 (normalized value). The orange line represents peak memory usage, with ZeKoC
consuming the most memory at around 1 (normalized value) and RFA being the most memory-
efficient at about 0.85 (normalized value). The green line illustrates the time taken by each
method, with RFA demonstrating the highest efficiency in terms of time, completing tasks in
approximately 0.43 (normalized value), whereas FedProx is the least efficient, requiring around
1 (normalized value) to complete the same tasks.

Notably, FedRLA utilizes computational resources similarly to FedAvg, making it particu-
larly suitable for deployment on resource-constrained devices. It achieves a balanced perfor-
mance profile in terms of average CPU usage (0.78, normalized value), peak memory usage
(0.87, normalized value), and time taken (0.42, normalized value). This balanced profile es-
tablishes FedRLA as a robust choice for environments where effective resource management is
critical.

4.1.3 Discussion

FedRLA is specifically designed for resource-constrained devices, effectively balancing effi-
ciency, security, and privacy in the context of FL. By aggregating only a single randomly se-
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Figure 4.4: Comparison of Different Robust FL Frameworks in Terms of Resource Utilization

lected layer per round, it achieves a significant reduction in communication overhead—up to
92.97% for household-level data and 93.66% for grid-level data with 8-bit quantization—while
maintaining predictive accuracy. This reduction is particularly crucial for smart meters and edge
devices that operate under limited bandwidth and computational capabilities.

In contrast to traditional FL methods such as FedAvg and FedProx, which transmit full model
updates, FedRLA minimizes both communication and computational costs without compromis-
ing model performance. The selective layer aggregation approach not only enhances efficiency
but also improves resilience against adversarial attacks by limiting the impact of potentially
malicious updates. As a result, forecasting errors are lower compared to those observed with
FedAvg, providing an added layer of reliability.

Privacy is inherently reinforced within the framework, as transmitting only a single layer
significantly reduces the potential for data exposure. This privacy-preserving effect is further
enhanced through the implementation of differential privacy (DP), ensuring stable performance
even under stringent privacy constraints. Furthermore, FedRLA is compatible with various
quantization techniques, allowing it to maintain accuracy while significantly reducing both stor-
age and processing requirements.

Overall, FedRLA demonstrates strong computational efficiency, with an average CPU usage
of 7.4%, peak memory usage of 12,588 MB, and an execution time of 41.79 seconds. These
performance metrics are comparable to those of FedAvg but exhibit higher efficiency than those
of FedProx. Although there is a slight increase in computational load compared to FedAvg,
FedRLA offers a more favorable trade-off by enhancing security, communication efficiency,
and privacy. These characteristics render it a practical and effective choice for FL applications
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in energy-constrained environments where resource management is paramount.

4.2 LBAA-FedAvg

Many existing defense frameworks, as outlined in Chapter 2, address the challenge of anomalous
clients by excluding their entire local model from the aggregation process. While this method
is effective for fully compromised models, it proves inefficient in scenarios where only specific
layers of a local model are targeted by attacks. The exclusion of the entire model results in the
loss of valuable information contained within unaffected layers, consequently diminishing the
robustness and overall performance of the aggregation process.

To tackle this issue, I propose Layer-Based Anomaly-Aware Federated Averaging (LBAA-
FedAvg). This innovative approach diverges from traditional methods by isolating adversarially
compromised layers while retaining the unaffected layers during the aggregation phase. By
concentrating on layer-level granularity, LBAA-FedAvg excludes only the maliciously modified
portions of a model, thereby preserving the integrity of the global model and maximizing the
utility of the available data. This strategy is particularly pertinent for systems that have expe-
rienced partial attacks, where targeted defenses are essential for maintaining both security and
efficiency within FL environments.

The aggregation framework of LBAA-FedAvg, illustrated in Fig. 4.5, divides each neural
network layer into two clusters: one representing the larger, unaffected cluster and the other
representing the smaller, potentially compromised cluster. The underlying assumption is that
the number of compromised clients will be fewer than that of normal clients. This allows for the
effective isolation and exclusion of the compromised layer while retaining the remainder of the
model for aggregation. Consequently, this approach ensures that each layer of the global model
benefits from insights gathered from multiple clients, thereby enhancing the overall learning
process and resilience against adversarial threats.

The inclusion or exclusion of clients during the aggregation process is determined by specific
clustering criteria, as depicted in Fig. 4.6. This criterion mandates that there must be a larger gap
between the centroids of each cluster than the maximum Euclidean distances between any two
clients within those clusters. Specifically, for each layer, the weights from different clients are
clustered into two groups. The validity of the clustering is assessed by comparing the distance
between the centroids of the two clusters (D3) with the maximum Euclidean distances within
each cluster (D1 and D2). If D3 exceeds both D1 and D2, it indicates that the clusters are
sufficiently distinct and the larger cluster is selected for aggregation. This ensures that only the
weights from the more representative and potentially non-adversarial cluster are used to update
the global model, thereby enhancing the robustness and integrity of the aggregation process.

The steps for implementing Layer-Based Anomaly-Aware Federated Averaging (LBAA-
FedAvg) are as follows:
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Figure 4.6: Illustration of the clustering criterion for LBAA-FedAvg, where C1 and C2 denote
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1,w

t
2, . . . ,w

t
k.

2. Split the layers of local models into separate weight groups for granular analysis.

3. Compute the centroids for each layer’s weights:

wc1 = avg(wt
1), wc2 = avg(wt

2), . . . , wck = avg(wt
k).

4. Cluster the weights for each layer into two distinct groups, denoted as C1 and C2.
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5. Calculate the maximum Euclidean distance, D1, for clients in cluster C1.

6. Calculate the maximum Euclidean distance, D2, for clients in cluster C2.

7. Compute the distance D3 between the centroids of clusters C1 and C2.

8. If D3 > D1 and D3 > D2, select the larger cluster and aggregate the weights from that
cluster using:

nmax

∑
k=0

1
nmax

wt
k.

Repeat this process for all layers.

9. If the clustering condition is not met, proceed with the standard Federated Averaging
(FedAvg) method as outlined in [231].

This method ensures that only compromised layers are excluded from the aggregation pro-
cess, thereby preserving both the efficiency and integrity of the overall model aggregation.

Design Insights: A clustering-based aggregation technique called LBAA-FedAvg is based
on the idea that there will be fewer compromised clients than healthy ones. It should be noted,
though, that the error rate of the aggregated model may be higher than that of the conventional
FedAvg technique if the percentage of compromised clients is greater than 50%. The flexibility
of LBAA-FedAvg to selectively include or exclude specific layers according to the type of attack
detected is a noteworthy feature. Because of this flexibility, compromised clients can be included
in the aggregate process while the negatively impacted layers are excluded. A compromised
client’s model will therefore probably continue to resemble that of the other healthy clients even
if it is included in the aggregation even though it does not satisfy the clustering condition. This
resemblance increases the resilience of the aggregation process by reducing the overall effect of
the compromised client’s existence on the model’s performance.

4.2.1 Experiments and Results:

In order to assess LBAA-FedAvg’s efficacy against standard FedAvg, we performed model flip-
ping attacks using compromised clients that ranged from 10% to 50%. The local models were
explicitly targeted by these attacks, which sequentially attacked the first, second, and third layers
of each of their three layers. The findings, as shown in Fig. 4.7, show a distinct pattern: the
MAPE in FedAvg increased in tandem with the rise in the proportion of compromised clients.
Attacks on the first layer, in particular, had the least effect on the MAPE, indicating that it might
have more resilient features or be less vulnerable to hostile manipulation.

In contrast, when the attack percentage was between 10% and 40%, LBAA-FedAvg was
able to sustain an average MAPE of 2.8%. This steady performance demonstrates how well
LBAA-FedAvg reduces the effects of hostile attacks. However, the MAPE in LBAA-FedAvg
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Figure 4.7: Effect of LBAA-FedAvg on average client MAPE .

significantly increased when the attack percentage increased to 50%. This decrease can be as-
cribed to difficulties precisely locating the larger cluster in the midst of a greater number of
compromised customers. It is interesting that LBAA-FedAvg outperformed FedAvg in spite of
this rise at the greatest attack percentage, proving its efficacy and robustness in situations even
when a sizable fraction of clients were compromised. The benefits of using layer-level granu-
larity to counter adversarial threats in FL environments are demonstrated by this performance.

Resource Utilization: Examining the resource consumption of LBAA-FedAvg across a
range of resources allows for an assessment of its overall resource use. This analysis con-
siders five important factors: disk space, communication rounds, global model training time,
CPU consumption, and memory utilization. In the absence of adversarial attacks, Fig. 4.8 il-
lustrates the resource usage of both FedAvg and LBAA-FedAvg. Both strategies demonstrate
similar levels of CPU, memory, and disk space usage, suggesting that their fundamental re-
source requirements are essentially the same.There is a minor discrepancy in the number of
communication rounds needed; FedAvg required 65 rounds, while LBAA-FedAvg required 67
rounds. However, the training time shows a more noticeable difference. FedAvg took 266.27
seconds to complete training, while LBAA-FedAvg took 317 seconds, which is approximately
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19% longer. The clustering procedure used by LBAA-FedAvg in each communication round
introduces computational overhead, which is the main cause of this increase in training time.
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Figure 4.8: Resource utilisation of FedAvg and LBAA-FedAVG.

4.3 Federated Incentivized Averaging (Fed-InA)

Fed-CRA is a subtle and difficult-to-detect poisoning attack due to its random nature, where it
may appear in one round and disappear in the next. This unpredictability makes it challeng-
ing to identify compromised clients without prolonged observation [232]. To address this, an
incentive-based aggregation approach is proposed that rewards clients providing beneficial up-
dates, inspired by real-world incentive systems [233]. Various incentive mechanisms, including
contract theory [234], game theory [235], and deep reinforcement learning [236], have been
explored in FL.

To counter the Fed-CRA attack, Fed-InA is introduced, a scoring-based aggregation method
that rewards valuable updates and penalizes attempts to manipulate the global model. Fed-InA
incorporates clustering, scoring, and scored averaging components, allowing it to assess each
layer’s weights and biases independently during aggregation. The method processes updates by
breaking them down into layers, weights, and biases, assigning rewards based on the detection
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of adversarial components in both weights and biases [233]. Fed-InA is represented graphically
in Fig. 4.9 and in the form of algorithm in algorithm 3.
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Figure 4.9: Block diagram of Fed-InA.

The weights for the new global model are computed as follows:

1. Initialization: After clients K send their updated weights W k
t to the server, initialize the

client score St
k. Identify all layers L and store them separately in W k

t,l , where k ∈ K and
l ∈ L represent the clients and layers, respectively.

2. Clustering: To facilitate clustering, find the centroids Ct,l for each layer and perform
clustering with n = 2, generating two clusters: C1

t,l and C2
t,l .

3. Clustering criteria: Calculate the Euclidean distances within each cluster and store them
in d1

t,l and d2
t,l . Identify the largest Euclidean distances, D1

t,l and D2
t,l , and the distance D3

t,l

between the centroids of C1
t,l and C2

t,l . If D3
t,l is greater than D1

t,l and D2
t,l , the clustering is

accepted; otherwise, skip clustering and use FedAvg as described in [231]. If clustering is
not approved, it indicates that the clients are too close to each other, suggesting no attack
detection. A graphical representation of the clustering criteria is shown in Fig. 4.6.

4. Scoring: The larger cluster from C1
t,l and C2

t,l receives a positive score, while the smaller
cluster is penalized with a negative score. To calculate the score, first determine the pair-
wise Euclidean distances of all clients, zk,l , from Ct,l . Then, compute the average pairwise
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distance zk,l and the client-wise average Davg,l . For clients in the larger cluster, update
their score as:

Sk
t = Sk

t−1 +
∣∣Davg,l− zk,l

∣∣
For clients in the smaller cluster, update their score as:

Sk
t = Sk

t−1−
∣∣Davg,l− zk,l

∣∣
5. Scored average: Normalize the client scores St

n so that their sum equals 1. The global
model is then obtained by computing the scored average:

Gk
t = (W 1

t ×S1
n)+(W 2

t ×S2
n)+(W 3

t ×S3
n)+ · · ·+(W k

t ×Sk
n)

Design insights: The scoring method in this algorithm rewards clients who contribute pos-
itively to the model and penalizes those attempting to manipulate it. Based on their Euclidean
distance from the mean, clients are assigned scores that encourage competition, motivating them
to enhance their models and align with the global model. While the algorithm does not explicitly
reference game theory concepts such as Nash equilibria, it incorporates mechanisms that pro-
mote desired behaviors and deter harmful actions, reflecting the core principles of game theory.
Fed-InA, a clustering-based aggregation method, assumes that compromised clients are fewer
than healthy ones, a common assumption in prior work, which typically considers attack per-
centages up to 50%. If compromised clients exceed 50%, the aggregation process may select
compromised clients during clustering and incentivize them accordingly.

4.3.1 Experiments and Results

Fed-InA was applied to Fed-CRA to evaluate its performance. The effectiveness of Fed-InA de-
pends on the proportion of compromised clients, which should ideally be less than 50%, as the
method relies on clustering-based techniques. Therefore, Fed-CRA was evaluated with attack
percentages ranging from 10% to 50%. The results, including the average client MAPE and the
number of communication rounds, are presented in Fig. 4.10. These results demonstrate that
implementing Fed-InA can significantly reduce communication rounds. The observed reduction
in communication rounds is attributed to a greater focus on clients providing superior updates
during the aggregation of the global model. Importantly, Fed-InA managed to keep the com-
munication rounds below 120 even as the attack percentage in Fed-CRA increased from 10% to
50%. Fig. 4.10 provides a comparison of communication rounds when the system was subjected
to Fed-CRA. The shaded bars in the figure illustrate the effect of Fed-InA on the performance
of Fed-CRA. It is evident that the impact of Fed-InA increases as the attack percentage rises.

Computational Analysis To evaluate the computational efficiency of Fed-InA, a detailed
computational analysis was conducted [94], considering the following key parameters:
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Algorithm 3 Federated Incentivized Averaging (Fed-InA) for weights of global model
1: Initialize global model parameters W0
2: for t = 1 to T do
3: for each client k ∈ K do
4: Client k sends local model parameters W k

t
5: end for
6: for l = 1 to L do
7: for each client k ∈ K do
8: Separate layer l parameters from W k

t and store them in W k
t,l

9: end for
10: Ct,l =

1
K ∑

K
k=1W k

t,l ← Compute centroid
11: Perform k-means clustering with n = 2 on W k

t,l to form clusters C1
t,l and C2

t,l
12: d1

t,l and d2
t,l ← Euclidean distance within Cluster

13: D1
t,l and D2

t,l ← max distance for C1
t,l and C2

t,l
14: D3

t,l ← distance between centroids of C1
t,l and C2

t,l
15: if D3

t,l > D1
t,l and D3

t,l > D2
t,l then

16: Clustering approved
17: for each client k ∈ K do
18: zk,l ← pairwise distance of client k from centroid Ct,l

19: Davg,l =
1
K ∑

K
k=1 dk,l ← averaged pairwise distance

20: if client k is in the larger cluster then
21: Update the previous score, St−1 of client k

Sk
t = Sk

t−1 +
∣∣Davg,l− zk,l

∣∣
22: else
23: Update the previous score, St−1 of client k

Sk
t = Sk

t−1−
∣∣Davg,l− zk,l

∣∣
24: end if
25: end for
26: Snt ← Normalised score of all k clients

Snt = (S1
t ,S

2
t ,S

3
t , ...,S

k
t )/∑Sk

t
27: Gk

t ← Global model
Gk

t = (W 1
t ×Sn1

t )+(W 2
t ×Sn2

t )+(W 3
t ×Sn3

t )+ ...+(W k
t ×Snk

t )
28: else
29: Ignore scoring and compute FedAVG on all clients K as mentioned in [231]
30: Gk

t ← ∑
K
k=0

1
KW k

t
31: end if
32: end for
33: end for
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Figure 4.10: Effect of Fed-InA on Fed-CRA.

1. CPU Usage: This metric quantifies the computational requirements of the algorithm, pro-
viding insight into its temporal complexity. Higher CPU usage indicates a greater computational
burden, while lower usage suggests enhanced efficiency and reduced computational demands.

2. Memory Usage: This parameter reflects the algorithm’s scalability and memory effi-
ciency. A significant increase in memory usage may indicate inefficiencies or higher complexity,
suggesting a greater requirement for resources.

3. Time: This measure reflects the total computational time required by the algorithm,
offering insights into its performance and computational demands. It aids in optimizing and
selecting algorithms based on the time required for effective execution.

4. Disk Space: This metric assesses the space complexity of the algorithm, indicating how
the storage requirements grow with the size of the input or other related factors. It provides an
understanding of the algorithm’s efficiency in utilizing storage resources.

The performance of Fed-InA was compared to the baseline results of FL using FedAvg under
conditions with no attack. Given that FedAvg is not capable of detecting Fed-CRA, which is
designed to increase training time, the comparison was made under no-attack conditions for
a fair evaluation. The summarized results, presented in Fig. 4.11, indicate that the primary
resource constraint for Fed-AwR, in comparison to FedAvg, is the computational time. FedAvg
completed the process in 266 seconds, while Fed-AwR required 293 seconds, reflecting an 11%
increase. The additional time required by Fed-AwR is attributed to the clustering and scoring
processes performed in each communication round.
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Figure 4.11: Resource utilisation of Fed-InA.

4.3.2 Discussion

This section delves into a comprehensive analysis of Fed-InA, comparing it against several state-
of-the-art robust aggregation frameworks: FedClamp [93], LBAA-FedAvg [94], ZeKoC [111],
and Cluster FL [237], under the challenging scenario of Fed-CRA. The evaluation was metic-
ulously conducted using the standard FedAvg algorithm on a dataset where 50% of the partic-
ipating clients were compromised by adversarial behavior. This adversarial setup is designed
to simulate real-world scenarios where a significant portion of clients may exhibit malicious or
anomalous behavior, thereby testing the robustness of each framework.

The frameworks compared can be broadly categorized based on their operational strategies:
post-aggregation and in-aggregation approaches. Post-aggregation frameworks, such as Cluster
FL and FedClamp, execute the entire FL training process first and then identify anomalous
clients by comparing their behavior against the majority. These frameworks assume that the
majority of clients are benign and use this assumption to detect outliers. Once identified, these
anomalous clients are subsequently clustered separately to mitigate their impact on the global
model. This approach is effective in scenarios where the majority of clients are indeed benign,
but it may fail when the adversarial clients are able to mimic the behavior of the majority.

On the other hand, in-aggregation frameworks like LBAA-FedAvg [94] and ZeKoC [111]
dynamically adjust client contributions during the FL training process. ZeKoC employs a
clustering-based methodology, where clients are grouped into clusters using a comprehensive
three-step process. This process involves initial clustering, refinement of clusters based on client
behavior, and final adjustment of cluster assignments. Separate global models are then generated
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for each cluster, allowing for more granular control over the aggregation process. In compari-
son, LBAA-FedAvg uses a performance-based clustering mechanism that restricts the number
of clusters to two at any given time. This simplifies the aggregation process while maintaining
robustness against adversarial attacks by ensuring that only the top-performing clients influence
the global model.

Despite these varied strategies, none of these frameworks were capable of detecting the ad-
ditional communication rounds introduced by Fed-CRA. As depicted in Fig. 4.12, the primary
limitation of these frameworks is their reliance on clustering methodologies that focus on identi-
fying poorly performing clients. In Fed-CRA, all clients exhibit uniformly consistent behavior,
effectively bypassing detection mechanisms that depend on performance-based differentiation.
This uniformity makes it difficult for traditional clustering-based approaches to identify mali-
cious clients, as they do not stand out in terms of performance metrics.
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Figure 4.12: Comparison of different state-of-the-art robust aggregation frameworks with Fed-
CRA and Fed-InA. The figure illustrates the number of communication rounds required by each
framework under adversarial conditions. Fed-InA significantly reduces the number of rounds
compared to Fed-CRA, demonstrating its robustness and efficiency.

Even Fed-InA, despite its advanced incentive-based aggregation mechanism, was not able to
completely eliminate the effects of Fed-CRA. However, it demonstrated a significant improve-
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Figure 4.13: Visual representation of the heterogeneous dataset. The figure shows the data dis-
tribution across different clients, highlighting the significant deviation in client 10’s data pattern.

ment in mitigating its impact. The baseline FL process required 72 communication rounds,
while Fed-CRA inflated this to 263 communication rounds by introducing deceptive patterns
in the client updates. These deceptive patterns are designed to mislead the aggregation pro-
cess, causing unnecessary communication overhead. Fed-InA effectively reduced this to 120
communication rounds, all while maintaining comparable model performance. This reduction
showcases Fed-InA’s capability to counteract adversarial strategies while improving communi-
cation efficiency. The incentive-based mechanism of Fed-InA allows it to dynamically adjust
client contributions based on their behavior, thereby reducing the influence of malicious clients
and stabilizing the global model.

To further assess Fed-InA’s robustness in heterogeneous data scenarios, a behavioral shift
was induced in client 10 (Fig. 4.13), causing it to exhibit a significantly different data pattern
compared to other clients, simulating non-IID (non-identically and independently distributed)
conditions. Non-IID data is a common challenge in FL, where clients may have data that is not
representative of the overall distribution. This deviation affected the aggregation process during
the first 15 communication rounds, as shown in Fig. 4.14. During this period, the global model’s
performance was unstable due to the conflicting updates from client 10. In response, Fed-InA
dynamically adjusted its incentive mechanism, progressively reducing the incentives for client
10. This adjustment is based on the observed behavior of client 10, which was identified as
potentially misleading. By reducing the incentives, Fed-InA effectively discouraged client 10’s
updates, thereby reducing its influence on the global model. As the incentives approached zero,
client 10’s influence diminished, allowing the remaining clients to align their updates and sta-
bilize the global model’s performance. This dynamic adjustment mechanism is a key feature
of Fed-InA, enabling it to adapt to changing client behaviors and maintain overall model ac-
curacy even in challenging non-IID scenarios. In summary, Fed-InA demonstrates robustness
against adversarial attacks and non-IID data conditions through its advanced incentive-based ag-
gregation mechanism. While it cannot completely eliminate the effects of adversarial strategies
like Fed-CRA, it significantly mitigates their impact, improving communication efficiency and



CHAPTER 4. NOVEL ATTACK RESOLUTION FRAMEWORKS 81

0 20 40 60 80
Communication rounds

0

25

50

75

100

M
AP

E 
(%

)

client1
client2
client3
client4
client5
client6

client7
client8
client9
client10
GM

Figure 4.14: Effect of Fed-InA on the heterogeneous dataset. The figure illustrates the stabiliza-
tion of the global model’s performance as Fed-InA adjusts its incentive mechanism to mitigate
the influence of client 10.

maintaining model performance. This makes Fed-InA a promising approach for FL in real-world
scenarios where data heterogeneity and adversarial behavior are common challenges.

4.4 Concluding Remarks

In this chapter, i explored the critical need for robust defense mechanisms in FL systems, par-
ticularly in the face of adversarial attacks that can compromise the integrity and performance of
the global model. The proposed defense frameworks aim to enhance the security and resilience
of FL systems by effectively detecting and mitigating the impact of various types of attacks. The
key contributions and findings of this chapter can be summarized as follows:

• Federated Random Layer Aggregation (FedRLA): FedRLA introduces a novel ap-
proach to enhance global model training efficiency and defend against adversarial attacks.
By aggregating only a single, randomly chosen neural network layer during each commu-
nication round, FedRLA reduces data exchange between devices and the server, thereby
streamlining communication and enhancing privacy. This method not only improves se-
curity but also significantly reduces communication overhead, making it ideal for privacy-
sensitive applications such as household energy forecasting. Experimental results demon-
strate that FedRLA achieves comparable model accuracy to traditional methods while
reducing communication costs by a factor of 3.56. This addresses the challenge of com-
munication efficiency (C3) by minimizing the amount of data transmitted during each
round.

• Layer-Based Anomaly Aware Federated Averaging (LBAAFedAvg): LBAAFedAvg
leverages anomaly detection to safeguard against deviations in model updates caused by
adversarial clients. By clustering the weights of each layer and selectively excluding com-
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promised layers from the aggregation process, LBAAFedAvg ensures the integrity of the
global model. This approach effectively mitigates the impact of partial attacks, preserv-
ing the accuracy and robustness of the FL system. Experiments show that LBAAFedAvg
maintains a stable average client Mean Absolute Error (MAPE) even under varying attack
scenarios, demonstrating its effectiveness in enhancing model security. This framework
addresses the challenge of robust aggregation (C2) by detecting and isolating attacked
layers during the aggregation process.

• Federated Incentivized Averaging (Fed-InA): Fed-InA introduces a scoring mechanism
that evaluates clients based on their contribution to the model’s accuracy and reliability.
By rewarding good clients and penalizing malicious ones, Fed-InA encourages honest par-
ticipation and contributes to the overall integrity and performance of the FL system. This
incentivization strategy effectively identifies and mitigates stealth attacks, which are par-
ticularly challenging to detect due to their subtle nature. Experimental results indicate that
Fed-InA significantly reduces communication rounds while maintaining model accuracy,
even in the presence of adversarial attacks. This framework addresses the challenge of
stealth attacks (C2) by introducing a novel scoring mechanism that rewards honest clients
and penalizes malicious ones.

The findings from this chapter highlight the importance of developing tailored defense mech-
anisms to address specific vulnerabilities in FL systems. The proposed frameworks—FedRLA,
LBAAFedAvg, and Fed-InA, demonstrate significant improvements in security and model per-
formance by employing advanced anomaly detection techniques and selective model aggrega-
tion. These advancements contribute to the ongoing research in secure FL, providing practical
solutions to enhance the robustness and reliability of FL systems in real-world applications. Fu-
ture work will focus on further refining these frameworks and exploring additional techniques
to enhance the security and efficiency of FL in diverse applications.



Chapter 5

Novel Framework for Data Heterogeneity
in FL

Data heterogeneity presents a significant challenge in FL systems, leading to biased global up-
dates, slower convergence, and reduced model accuracy. This issue is particularly pronounced
in real-world deployments where client heterogeneity and resource constraints are common. As
outlined in Section 1.2.3 (Challenge C4), FL systems often struggle with data heterogeneity,
which can severely impact model performance and fairness. This challenge is further elaborated
in Section 2.6.1, where the gap analysis highlights the need for robust solutions to handle non-
IID data distributions. In the realm of smart energy networks, device-level variance and non-IID
data distributions exacerbate these problems, affecting the efficiency of smart grid management
and posing risks to grid stability. STLF is a critical application in this domain, where accurate
predictions are essential for efficient energy allocation and operational planning.

Building upon the challenges identified in Chapter 1 and the gap analysis from Chapter 2,
this chapter evaluates two complementary solutions: FedBranched and ASLA. FedBranched
directly addresses Challenge C4 by enhancing personalization and fairness through its inno-
vative clustering approach. ASLA, on the other hand, not only contributes to resolving data
heterogeneity (C4) but also specifically targets Challenge C3 by optimizing communication and
computational efficiency. Both frameworks are designed to ensure the equitable contribution of
clients and improve the robustness of global models under non-IID settings.

By addressing data heterogeneity and optimizing resource usage, we aim to pave the way
for more resilient, efficient, and reliable energy systems. This chapter thus directly responds to
Challenges C3 and C4, contributing to the mitigation of the heterogeneity and efficiency gaps
previously identified. The key contributions of this chapter are:

• FedBranched Framework: This section presents FedBranched, a novel framework that
employs Hidden Markov Model (HMM) clustering to address data heterogeneity in FL.
Through comprehensive analysis, the framework demonstrates its effectiveness in han-
dling diverse data distributions and improving model performance and convergence in

83
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energy networks.

• Adaptive Single Layer Aggregation (ASLA) Framework: This section introduces ASLA,
which simplifies the aggregation process by focusing on a single layer of neural networks.
ASLA is designed to tackle both communication and computational efficiency (C3) and
data heterogeneity (C4). It achieves this by reducing communication overhead and main-
taining model accuracy while enhancing computational efficiency.

Key Difference: FedBranched and ASLA both aim to enhance FL systems but differ in
their primary focus and methodology. FedBranched employs HMM clustering to tackle data
heterogeneity (C4), improving model performance and convergence in energy networks. In
contrast, ASLA addresses both communication/computational efficiency (C3) and data hetero-
geneity (C4) by simplifying the aggregation process to a single neural network layer, reducing
overhead while maintaining accuracy.

5.1 FedBranched

This section presents FedBranched, a novel framework designed to address data heterogeneity
in FL systems. The following subsections provide a detailed exploration of the framework’s
motivation, driven by the need to handle non-IID data distributions in smart energy networks.
The methodology is then delved into, outlining how FedBranched employs HMM clustering to
enhance model convergence. Subsequent sections detail the simulation setup, experiments con-
ducted, and the results obtained, which demonstrate the framework’s effectiveness in improving
forecasting accuracy and its ability to adapt to diverse data patterns. Additionally, valuable
design insights gained from implementing FedBranched are shared, offering a comprehensive
understanding of its functionality and potential applications.

5.1.1 Motivation

FedBranched is a zero-knowledge FL framework developed to enhance model convergence
through the innovative use of Hidden Markov Model (HMM) clustering. The primary motiva-
tion behind FedBranched stems from the challenge of data heterogeneity in FL systems, which
can lead to biased global updates, slower convergence, and reduced accuracy in load forecast-
ing. As outlined in Section 1.2.3 (Challenge C4), data heterogeneity is a significant issue in
real-world FL deployments, particularly in smart energy networks where device-level variance
and non-IID data distributions are common. Traditional FL approaches often struggle to handle
these diverse data patterns effectively, resulting in inefficient energy allocation, increased oper-
ational costs, and heightened risks of grid instability. FedBranched addresses this challenge by
employing HMM clustering to group clients with similar performance characteristics, ensuring
more accurate and personalized model updates for each cluster.
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5.1.2 Methodology

The FedBranched framework effectively groups clients into distinct branches based on the Eu-
clidean distances of their MAPE, assigning a unique global model to each branch. The Hidden
Markov Model is a generative probabilistic model that describes a system where a sequence
of hidden states Z generates observable variables X. In this context, the hidden states are not
directly observable and transition according to a first-order Markov chain, which captures the
temporal dependencies between states. The integration of HMM in the clustering process en-
sures robust grouping by taking into account the probabilistic nature of the data distribution,
as highlighted in previous studies [238]. This allows the framework to adaptively account for
variations in client performance and data characteristics.

The framework limits clustering to two branches at each step of the aggregation process to
maximize resource utilization and improve computational efficiency. By reducing the maximum
number of branches to n/2, where n is the total number of clients participating in the training,
this restriction effectively reduces the overall number of global models needed. In addition
to simplifying model administration, this design decision lowers the communication overhead
involved in updating multiple global models.

A generic machine learning model is distributed to each participating client at the start of
the procedure. Each client uses this model to train on its own local dataset, resulting in the
production of local models. These local models are then sent back to the central server along
with their corresponding loss values. The server aggregates the local models into a single global
model, represented by M. The loss function employed in this framework is the MAPE.

After completing a predefined number of communication rounds, the server evaluates the
MAPE for all clients. If convergence is not achieved, clients are divided into two branches,
labeled Branch 1 and Branch 2, using HMM clustering applied to the Euclidean distances of
their MAPEs. A new generic ML model is then provided to each branch, and the local models
from each branch are aggregated to create branch-specific global models, M1 and M2.

5.1.3 Simulation Setup

To evaluate the performance of FedBranch in comparison to vanilla FL, we established an FL
environment comprising nine clients, utilizing a real-world energy dataset sourced from PJM
Interconnection LLC [229]. This dataset provides a comprehensive view of energy consumption
patterns across different substations and is specifically designed for short-term load forecasting
applications. Each column in the dataset corresponds to energy usage recorded at a specific
substation, allowing for the analysis of energy consumption trends over time.

The dataset encompasses a wide range of energy usage scenarios, reflecting variations in
consumption due to factors such as time of day, day of the week, and seasonal changes. This
diversity in the data is essential for training robust models that can generalize well to different
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Figure 5.1: Framework of FedBranched.

conditions. Each client in the study was allocated 13,896 samples, which are drawn from the
energy consumption records of individual substations. These samples are time-series data points
that capture the dynamic nature of energy usage, making them suitable for training models to
predict future energy demand.

As illustrated in Fig. 5.2, the energy consumption patterns vary significantly across different
substations. The figure shows the energy consumption (in MW) over a range of sample numbers
for each of the nine clients. The distinct lines represent the energy usage trends for each client,
highlighting the diversity in consumption patterns. For example, client 1 exhibits the highest
mean energy usage, with consumption levels frequently exceeding 15,000 MW. This suggests
it may represent a substation serving a densely populated or industrial area with consistently
high demand. Client 7, on the other hand, demonstrates the lowest mean energy usage, typically
below 5,000 MW, potentially indicating a substation in a residential area with lower overall
consumption. Client 2 is identified as having the most outliers, indicated by sudden spikes in
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energy consumption that deviate from the typical patterns observed in the dataset. These outliers
could be due to specific events or anomalies in energy usage, such as sudden increases in demand
during particular periods.

The p-values from Levene’s test are shown in Table 5.1. Consistently low p-values across all
client pairs highlight significant differences in energy consumption variability, confirming the
presence of data heterogeneity within the smart grid network.

Table 5.1: Matrix of p-values of Levene’s test for Data 1

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9
C 1 0.0 1.02×10−59 0.0 0.0 8.39×10−1 0.0 0.0 0.0 0.0
C 2 1.02×10−59 0.0 0.0 0.0 1.17×10−56 0.0 0.0 0.0 0.0
C 3 0.0 0.0 0.0 0.0 0.0×100 3.64×10−226 2.94×10−1 0.0 0.0
C 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 5 8.39×10−1 1.17×10−56 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 6 0.0 0.0 3.64×10−226 0.0 0.0 0.0 4.02×10−183 0.0 0.00
C 7 0.0 0.0 2.94×10−1 0.0 0.0 4.02×10−183 0.0 0.0 0.0
C 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.83×10−118

C 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.83×10−118 0.0

The table above presents the matrix of p-values obtained from Levene’s test. Each cell in the
table represents the p-value for the comparison between two clients (e.g., C1 vs. C2, C1 vs. C3,
etc.). The diagonal elements are zero because the variance comparison within the same group is
not meaningful.

• Low p-values (e.g., 1.02× 10−59): These indicate significant differences in variances
between the compared groups, suggesting heterogeneity in energy consumption patterns.

• High p-values (e.g., 0.0 or 8.39×10−1): These suggest that there is no significant differ-
ence in variances between the compared groups, indicating homogeneity in energy con-
sumption patterns.

The dataset was specifically designed for STLF and includes five key features that are pre-
dictive of future energy demand: the last-hour value, the last-day value, the last-week value, the
24-hour average, and the weekly average. These features were selected based on their relevance
to forecasting energy load and their ability to capture temporal trends in energy usage.

For the modeling aspect, a three-layer ANN was designed for STLF. This architecture con-
sists of an input layer with 100 neurons, a hidden layer with 50 neurons, and an output layer
with a single neuron to predict energy load. All layers employ the ReLU (Rectified Linear
Unit) activation function, which is effective in mitigating the vanishing gradient problem often
encountered in deep learning. The Adam optimizer, recognized for its adaptive learning rate ca-
pabilities, was utilized, and mean squared error served as the loss function to quantify prediction
accuracy.

The dataset was split into training and testing subsets with a ratio of 70/30, ensuring ef-
fective validation against unseen data. The FL process was conducted over 30 communication
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Figure 5.2: Dataset with nine substations.

Figure 5.3: Baseline results representing MAPE of all clients during training process of global
model.

rounds, with each client performing 15 local epochs to refine models. A batch size of 300 was
used during local training, allowing for efficient processing of respective datasets. FedAvg was
employed as the server aggregation method, which combines the locally trained models to pro-
duce a consolidated global model, thereby enabling collaborative learning while preserving data
privacy.

5.1.4 Experiments and Results

Baseline results: Fig. 5.3 shows the MAPE for each client’s local model across communication
rounds in traditional FL. By the eighth round, most clients converge, except for clients 6 and 7.
After 30 rounds, client 2 achieves the best MAPE of 2.51%, while client 7 has the worst at
15.71%. These results indicate that a single global model is inadequate, and clients 6 and 7 may
require a separate global model.

Fedbranched results: Fedbrached results in two mini global models after two clustering
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Table 5.2: Comparison of MAPE between Traditional FL and FedBranch.

Client Vanilla FL (%) FedBranch (%) Percentage Improvement (%)
1 4.13 2.78 1.35
2 2.80 2.66 0.14
3 4.05 2.98 1.07
4 3.63 3.95 -0.32
5 3.88 3.65 0.23
6 12.43 2.61 9.82
7 15.71 4.35 11.36
8 2.51 2.50 -0.01
9 2.85 2.82 0.03

rounds. After running FedBranch for two clustering rounds, two mini global models, M2,4 and
M3 , were finalized. Table 5.2 summarizes the results, showing that FedBranched improved
performance compared to traditional FL. The highest improvement, 11.36%, was observed for
client 7, while client 4 experienced a slight decline of -0.32%. The clustering mechanism used
by FedBranch is illustrated in Fig. 5.4, where clients 3, 4, and 7 formed one cluster, and clients
1, 2, 5, 8, and 9 were grouped into another. Each cluster was assigned its own global model.
These results demonstrate that FedBranch effectively enhances forecasting accuracy for highly
diverse datasets. The average MAPE across all clients decreased from 5.172% in traditional
FL to 2.83% with FedBranch, highlighting its ability to address data heterogeneity. The results
showing the convergence of all the MAPE of all clients is presented in Figs. 5.5(a) and 5.5(b).
Fig. 5.5(a) represents MAPE form client number 3, 6 and 7 while Fig. 5.5(b) shows the MAPE
of cleint number 1, 2, 4, 5, 8 amd 9

5.1.5 Design Insights:

FedBranched is an innovative framework that employs a probabilistic clustering approach tai-
lored for FL with heterogeneous data. One of its key strengths is that it requires no prior knowl-
edge of the dataset, making it adaptable to various applications. The framework ensures conver-
gence of the loss function by clustering clients based on the sum of Euclidean distances of their
respective loss values, utilizing HMM to enhance the robustness of the clustering process.

To optimize model aggregation, FedBranched integrates a multi-stage clustering mechanism
that minimizes the total number of clusters and global models. By restricting each stage to
a maximum of two clusters, the framework provides better control over the training process
and facilitates more efficient model updates. Furthermore, by leveraging the loss functions
rather than the model weights, FedBranched maintains compatibility with techniques such as
differential privacy [18] and homomorphic encryption [18], thereby ensuring that data security
and privacy are prioritized throughout the training process.

Despite these advantages, FedBranched does have its limitations. For instance, it is less
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Figure 5.4: Graphical elaboration of FedBranch on considered example.

effective when the number of clients is fewer than five. In such cases, the lack of sufficient
data diversity can hinder accurate clustering, which is crucial for optimal model performance.
Additionally, the multi-stage clustering approach necessitates increased computational resources
and energy consumption.

In terms of operational efficiency, while Vanilla FL required only 30 communication rounds,
FedBranched necessitated 150 rounds (30 rounds per stage for five stages). This substantial in-
crease in communication rounds significantly escalates the overall computational effort required
for training.

Energy consumption during the training process, denoted as Ecom, is influenced by various
factors such as data transfer size, the efficiency of the communication channel, and computation
time. Following the formulation from prior research [219], Ecom is calculated using the equation:

Ecom = R[(α · t)+(β ·D)]

In this equation, R represents the number of communication rounds, α signifies the energy
consumed per second (in kWh), t denotes the computation time (in seconds), β indicates the
energy consumed per kilobyte (KB) of data transferred, and D refers to the data transfer size (in
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(a) FL Results when branch 2 + 4.

(b) FL Result of branch 3.

Figure 5.5: FL results of 2nd round of clustering after 30 communication rounds.

KB).
In these experiments, i found that each global or local model had a size of 38 KB. The

energy consumption per KB, denoted as β , was set at 0.015 kWh/GB [239], while the energy
consumed per second, α , was determined to be 0.0001 kWh/sec. For the Vanilla FL setup,
with computation time t = 3.39 minutes (equivalent to 203.4 seconds), the calculated energy
consumption Ecom was approximately 27 W. In contrast, the FedBranched framework saw an
increase in energy consumption to 136 W, primarily due to the additional communication rounds
required for effective clustering and model aggregation.

5.2 Adaptive Single Layer Aggregation (ASLA)

The following subsections delve deeper into the architectural design of ASLA, illustrating how
its adaptive framework dynamically adjusts to client resources. Furthermore, an in-depth quan-
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tization analysis is provided to demonstrate how ASLA reduces communication overhead and
enhances computational efficiency through precision optimization. At the end ASLA is applied
to STLF in heterogeneous STLF application.

5.2.1 Motivation

The Adaptive Single-Layer Aggregation (ASLA) framework is an advanced solution designed
to tackle several critical challenges in FL , particularly in domains such as energy networks
and load forecasting. These challenges include data heterogeneity, which arises when clients
possess diverse datasets that may vary significantly in distribution and characteristics; resource
constraints, where computational power and energy availability are limited; and communication
overhead, which refers to the bandwidth and energy costs associated with transmitting model
updates between clients and the central server. Traditional FL aggregates all layers of the neural
network models from participating clients, which can lead to excessive communication costs
and inefficiencies, particularly for resource-constrained devices. ASLA addresses these issues
by aggregating only selected layers based on device capability and experimental results, thereby
reducing communication costs and enhancing computational efficiency while maintaining model
accuracy.

5.2.2 Architecture

ASLA simplifies the aggregation process by focusing on a single layer of neural networks.
Resource-constrained devices aggregate only the last layer, while more capable devices can
aggregate an optimal layer determined through experimentation. This approach significantly
reduces the amount of data transmitted during model updates, leading to more efficient use of
resources and faster convergence times. The framework dynamically adjusts based on client
resources to balance global and local learning needs, as illustrated in Fig. 5.6.

Stopping Criteria: Efficient training in FL necessitates mechanisms that prevent resource
wastage during redundant iterations, which can be particularly detrimental in environments with
limited computational and communication resources. ASLA incorporates dual stopping criteria
implemented at both the client and server levels to enhance training efficiency:

1. Client Level: Training on a client is halted when its loss function exhibits no improvement
for a specified number of consecutive communication rounds. This criterion eliminates
unnecessary computational effort and reduces network transmission for models that are
not converging.

2. Server Level: At the server level, training globally terminates when a predefined per-
centage (x) of clients cease sending updates. This criterion ensures consistency in model
performance and enhances the overall efficiency of the FL process.
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Figure 5.6: Adaptive framework of ASLA.

The early stopping mechanism employed by ASLA is visually summarized in Fig. 5.7,
which highlights its critical role in optimizing both communication and computational resources.

5.2.3 Quantization Analysis

To address the high communication and memory demands in FL, ASLA employs weight quan-
tization. This technique reduces neural network weights from the standard 32-bit floating-point
representation to a more compact 8-bit fixed-point precision. This reduction in weight size leads
to a drastic decrease in the amount of data transmitted during model updates, resulting in several
key benefits:

1. Lower Bandwidth Usage: The smaller model sizes facilitate faster data transmission,
particularly in environments where bandwidth is limited.

2. Reduced Memory Requirements: Quantized weights occupy significantly less memory,
making ASLA suitable for deployment on edge devices with constrained storage capacity.
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Figure 5.7: Block diagram of early stopping criteria.

3. Improved Communication Efficiency: Faster model updates enhance the overall effi-
ciency of the FL process, enabling more timely forecasting and decision-making.

By default, Python employs a 32-bit floating-point representation, which adheres to the IEEE
754 standard [240]. This representation offers a wide range of numbers with variable precision
but comes at the cost of increased computational complexity and higher hardware resource con-
sumption. In contrast, fixed-point arithmetic provides a simpler and more efficient alternative,
particularly for applications with limited computational power and hardware resources. The
Qn.m format represents a number using n bits for the integer part and m bits for the fractional
part. This method reduces memory usage and computational overhead, enabling faster process-
ing and simpler hardware implementations [195].

5.2.4 Experiments and Results

To evaluate the Adaptive Single-Layer Aggregation (ASLA) framework and compare its per-
formance with that of vanilla FL , a FL environment consisting of ten clients was established.
This setup utilized real-world energy data sourced from PJM Interconnection LLC [241]. Each
client was assigned a total of 13,896 samples, showcasing significant diversity in data across
the clients. This data heterogeneity is visually represented in Fig. 5.8, which illustrates the
variations in the load profiles among the participating clients.
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The collected data was specifically employed for STLF, utilizing five key features: the previ-
ous hour’s load value, the previous day’s load value, the previous week’s load value, the average
load over the last 24 hours, and the average load over the last week [24]. These features were
carefully selected to capture the temporal dynamics of energy consumption, which are crucial
for making accurate predictions.

For the modeling process, a three-layer artificial neural network (ANN) was constructed to
effectively learn the underlying patterns in the data. The architecture of the ANN consisted of
100 neurons in the first layer, 50 neurons in the second layer, and a single neuron in the final
layer, which outputs the forecasted load value. All layers employed the ReLU activation function
to introduce non-linearity into the model, enhancing its ability to capture complex relationships
in the data. The Adam optimizer was utilized to minimize the mean square error, serving as the
loss function, which is a common choice for regression tasks.

To ensure robust evaluation, the dataset was divided into a training set and a testing set in
a 70/30 ratio. The FL process was executed for 100 communication rounds, with each client
performing 1 local epoch per round and utilizing a batch size of 300 samples. For server-
side model aggregation, the FedAvg algorithm [231] was employed, which averages the model
updates from all participating clients to produce a global model that benefits from the collective
knowledge of the decentralized data.
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Figure 5.8: A sample of used dateset containing ten different clients

Baseline results: After 100 communication rounds of FL, the MAPE of the local models
did not converge effectively, as shown in Fig. 5.9. Only Clients 2, 8, and 10 exhibited signs of
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convergence, while Clients 6 and 7 faced significant challenges. The average MAPE was a con-
cerning 79.1 percent, indicating that the models struggled to stabilize around a consistent error
rate. This lack of convergence suggests that clients may be overly influenced by updates from
others, which can obscure the unique characteristics of their local datasets. As a result, high
model diversity may become detrimental, preventing effective learning. In contrast, centralized
learning, where each client trains independently on its own data, achieved a MAPE of approxi-
mately 3.1 percent. This stark difference underscores the advantages of centralized approaches,
allowing for focused learning that captures local data nuances effectively. The elevated MAPE
in the FL setup likely stems from clients learning excessively from each other, leading to aggre-
gated models that do not generalize well, ultimately compromising overall system performance.

Communication Round

M
AP

E 
(%

)

Figure 5.9: MAPE of all local clients in the baseline simulation. The x-axis represents the
MAPE of all clients, while the y-axis represents the communication rounds.

Effect of single layer aggregation: Simulations were conducted to improve local learning
by aggregating layers in different ways. Initially, only the first layer was aggregated while
the others remained unchanged. Gradually, more layers were aggregated. The results, shown
in Table 5.3, indicated that not aggregating all layers significantly improved the MAPE for
clients. However, when all layers were aggregated, the MAPE increased sharply to 79.1% for
the two datasets. This demonstrates that partial aggregation of layers enhances local learning
and reduces the effect of other clients’ models, leading to better overall performance.

Further testing was done by aggregating each layer individually while leaving others un-
changed, as shown in Table 5.4. Aggregating any single layer resulted in an average MAPE of
about 3.3%. This suggests that aggregating just one layer is sufficient, reducing communica-
tion time and improving model performance. The local MAPE for all clients in both datasets
is shown in Fig. 5.10, where the MAPE for all clients converges when only the first layer is
aggregated.

Effect of Quantization: Communication overhead can be significantly reduced by sharing
only one layer of the model, with additional improvements achieved through the quantization of
weights in both local and global models. Experiments conducted in Python evaluated various
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Table 5.3: Average client MAPE of step by step aggregation

Layer 1 Layer 1-2 Layer 1-3
MAPE(%) 3.26 3.29 79.1

Table 5.4: Only a single layer aggregation

Layer 1 Layer 2 Layer 3
MAPE(%) 3.29 3.3 3.32

quantization strategies, including float16, fixed-point formats of 32, 16, and 8 bits. A three-
layer neural network was utilized, and only the first layers of local models were aggregated
while tracking the average MAPE across clients.

In the 32-bit fixed-point system, 8 bits are allocated for the integer part and 24 bits for the
fractional part, offering a wide dynamic range and high precision. The 16-bit fixed-point system
designates 5 bits for the integer part and 11 bits for the fractional part, striking a balance between
range and memory efficiency. The 8-bit system utilizes 2 bits for the integer part and 6 bits for
the fractional part, minimizing resource consumption even further. These configurations are
particularly advantageous for embedded systems that operate under strict resource constraints.

The results for Data 1, illustrated in Fig. 5.11, show only minor variations in the Mean
Absolute Percentage Error (MAPE) when reducing the bit depth from 32 to 16 bits, with both
configurations yielding an MAPE of approximately 3.3%. Even with the 8-bit fixed-point for-
mat, the MAPE remains at 3.4%, which is deemed acceptable for the intended application. This
demonstrates that quantization not only reduces communication overhead but also maintains an
adequate level of accuracy suitable for practical use in resource-limited environments.

Effect of Layer-wise Aggregation and Stopping Criteria:
To enhance energy and communication efficiency in the FL framework, an early stopping

rule was implemented. If a client fails to show improvement in Mean Absolute Percentage Error
(MAPE) over five consecutive rounds, it ceases sending updates. The server then relies on the
last update received from that client. Additionally, if updates are not received from a specified
number of clients, denoted as x (in this case, x = 3), the aggregation process is terminated.

In these experiments, the number of communication rounds was not fixed, unlike previous
setups that used a total of 100 rounds. With 8-bit quantization and a focus on aggregating only
the first layer, the average MAPE results for clients are shown in Fig. 5.12. Aggregating the first
layer resulted in a MAPE of 3.26% over 114 rounds, while the second layer achieved a MAPE
of 3.25% with 102 rounds. The third layer produced a MAPE of 3.50% across 110 rounds,
indicating that the second layer performed the best.

These results underscore the benefits of optimizing each layer individually, demonstrating
that effective resource and communication management can improve performance. Balancing
accuracy and the number of communication rounds is crucial when designing distributed learn-
ing systems, as it significantly impacts the overall efficiency and effectiveness of the learning
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Figure 5.10: MAPE of all clients during training of global model when only first layers were
aggregated. The x-axis represents the MAPE of all clients, while the y-axis represents the com-
munication rounds.
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Figure 5.11: The effect of quantization on communication rounds and on average client MAPE.
The x-axis represents the MAPE of all clients, while the y-axis represents the communication
rounds.
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Figure 5.12: The effect of stopping criteria on communication rounds and on average client
MAPE. The x-axis represents the MAPE of all clients, while the y-axis represents the commu-
nication rounds.

5.2.5 Findings and Insights

The ASLA framework effectively addresses issues of data heterogeneity in distributed load fore-
casting while improving communication, computational efficiency, and memory usage by shar-
ing only a single layer of the neural network and implementing stopping criteria and quantiza-
tion.

Key Advantages of the ASLA Framework

1. Enhanced privacy

2. Reduced computation

3. Reduced memory requirements

4. Lower communication costs

Enhanced Privacy: Privacy protection is crucial in distributed learning systems. ASLA
enhances privacy by sharing only a single layer of a model’s weights. This makes it harder for
attackers to reverse-engineer users’ private data, minimizing the risk of information leakage.
Since shared models typically perform best on the data they are trained on, adversaries can
exploit prediction accuracy gaps to deduce sensitive information. By limiting the shared data to
a single layer, the ASLA framework reduces the likelihood of such reverse-engineering attacks,
offering better privacy protection.

Reduced Computation: Fixed-point arithmetic, particularly with 8-bit quantization, pro-
vides several computational benefits over floating-point arithmetic. Floating-point systems,
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while more complex, require more silicon area, leading to slower speeds and higher power con-
sumption. In contrast, 8-bit fixed-point systems are simpler, faster, and more energy-efficient.
This makes them ideal for applications with power and speed requirements, such as IoT devices.
Transitioning from 32-bit floating-point to 8-bit fixed-point systems offers substantial savings in
hardware design, speed, and power, leading to improved energy efficiency and reduced opera-
tional costs.

Reduction in Memory Usage: Efficient memory usage is crucial in resource-constrained
environments like IoT devices [205]. To calculate the size of a neural network, we focus on the
weights, excluding biases for simplicity. The total weight size is determined by counting the
connections between layers, multiplying by the weight size in bytes (e.g., 32-bit floating-point),
and converting to kilobytes.

For a 3-layer network:

• Input to the first hidden layer: 100×100 = 10000.

• First to second hidden layer: 100×50 = 5000.

• Second hidden layer to output: 50×1 = 50.

Total weights: 15050.
With 32-bit weights (4 bytes), the total size is 15050× 4 = 60200 bytes, or 58.72 KB. The

breakdown is: first layer (39.06 KB), second layer (19.53 KB), and last layer (0.19 KB). Biases
are minimal (0.59 KB) and can be ignored. Similar calculations apply for 16-bit and 8-bit
systems, and the LSTM model used with Data 2, summarized in Table 5.5.

Table 5.5: Sizes of Different Layers of Local Model

32 bit (KB) 16 bit (KB) 8 bit (KB)
Entire NN 58.72 29.36 14.68

Layer 1 39.06 19.53 9.765
Layer 2 19.53 9.765 4.8825
Layer 3 0.19 0.095 0.0475

Communication Cost: Communication cost is intrinsically linked to the volume of data
transferred between clients and the server within a distributed learning framework. The ASLA
approach mitigates this communication burden by limiting the data shared to a single layer of
the neural network. This strategy not only reduces the total amount of data transmitted but also
facilitates more efficient utilization of network resources.

The communication cost is quantified by multiplying the volume of data transferred by the
number of communication rounds. As illustrated in Fig. 5.13, the choice of which layer to
aggregate significantly influences communication costs. Selecting the last layer for aggregation
results in substantial reductions in communication costs , with reductions of up to 829.2 times
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when transitioning from a 32-bit system to an 8-bit system. This notable decrease in communi-
cation overhead enhances scalability and energy efficiency, rendering the system more suitable
for large-scale distributed learning applications.

Moreover, the analysis of communication costs revealed significant savings achieved by ag-
gregating later layers and employing fixed-point arithmetic. Specifically, the communication
expense for the final layer using an 8-bit fixed-point system was considerably lower, resulting
in communication cost reductions of 829.2 times compared to the first layer utilizing a 32-bit
floating-point system. This highlights the potential for enhancing FL systems through strate-
gic selection of layers and quantization methods, thus improving efficiency while maintaining
model accuracy. For optimal results, it is recommended to utilize the last layer, which provides
satisfactory outcomes alongside the lowest communication costs.

The ASLA framework distinctly outperforms several state-of-the-art frameworks. For in-
stance, FedKD [165], a communication-efficient framework based on knowledge distillation,
achieved only a 19-fold improvement in communication costs. Another framework, FedProto
[242], which employed prototype learning to address heterogeneity in FL, accomplished a 161.25-
fold improvement in communication costs compared to FedAvg. A framework introduced
in [21] aimed to minimize communication costs but achieved only a 34% enhancement. Sim-
ilarly, the authors in [243] reported a 95% reduction in communication costs. SmartIdx [244]
achieved a 69.2-fold improvement in communication expenses. Lastly, FedPSO [245] used par-
tial swarm optimization to reduce communication costs, resulting in a 55% enhancement.

Furthermore, the framework is considerably more straightforward and can be scaled to larger
applications with relatively less complexity. This simplicity not only mitigates implementation
challenges but also ensures that the approach can be easily adopted and deployed in practical
scenarios, providing substantial advantages in terms of both communication efficiency and op-
erational viability.

5.3 Comparison and Discussion of FedBranched and ASLA

While FedBranched and ASLA both aim to enhance FL systems in energy networks, they em-
ploy different strategies and address distinct aspects of the challenges posed by real-world de-
ployments. This section provides a comprehensive comparison of these frameworks, guiding
the selection of the most suitable approach based on specific requirements and constraints.

5.3.1 FedBranched vs. ASLA

FedBranched primarily targets data heterogeneity (C4) by using HMM clustering to group
clients with similar data patterns, allowing for personalized model training within each cluster.
This approach is particularly effective in scenarios where data distributions vary significantly
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Figure 5.13: Communication costs for different layers of a three-layered neural network, when
only single layer was used for aggregation

across clients, such as in smart energy networks with diverse consumer behaviors and grid in-
frastructures.

ASLA, on the other hand, focuses on optimizing communication and computational effi-
ciency (C3) by aggregating only a single neural network layer. This reduces the communication
overhead and makes the framework suitable for resource-constrained environments. Addition-
ally, ASLA also addresses data heterogeneity (C4) by allowing selective layer aggregation based
on client capabilities, which helps in maintaining model accuracy while reducing the amount of
data transmitted.

5.3.2 When to Use Each Framework

The choice between FedBranched and ASLA depends on the specific requirements and con-
straints of the application:

• FedBranched is more suitable when the primary challenge is data heterogeneity and per-
sonalized models are needed for different client clusters. It is particularly beneficial in
scenarios where the number of clients is sufficiently large to leverage the clustering ad-
vantages. However, FedBranched may require more computational resources due to the
clustering process and the management of multiple global models.
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• ASLA is preferable when communication efficiency and computational resource con-
straints are critical concerns. Its single-layer aggregation strategy significantly reduces
the data transmitted between clients and the server, making it ideal for large-scale deploy-
ments with limited bandwidth or high communication costs.

In scenarios where both data heterogeneity and resource constraints are significant, a com-
bination of FedBranched and ASLA could be explored. FedBranched can first cluster clients
based on data characteristics, and within each cluster, ASLA can be applied to further opti-
mize communication and computation. This hybrid approach may offer a balanced solution that
addresses both challenges effectively.

5.3.3 Summary Comparison

Table 5.6: Summary Comparison of FedBranched and ASLA

Aspect FedBranched ASLA
Primary Challenge Addressed Data heterogeneity (C4) Communication and compu-

tational efficiency (C3) and
data heterogeneity (C4)

Aggregation Strategy Clusters clients using HMM
based on MAPE and assigns
unique models to each clus-
ter

Aggregates only a single
neural network layer, with
options for different layers
based on client capability

Resource Utilization May require more computa-
tional resources due to clus-
tering and multiple models

Reduces communication
overhead and computational
load by limiting aggregation
to one layer

Suitability Ideal for scenarios with
significant data distribution
variations

Best for resource-
constrained environments
where communication effi-
ciency is critical

Scalability Suitable for deployments
with a moderate to large
number of clients

Highly scalable due to re-
duced communication and
computation requirements

Model Personalization High, as each cluster has a
personalized global model

Moderate, as personalization
is limited to layer-specific
updates

Understanding the strengths and limitations of FedBranched and ASLA enables practitioners
to select the most appropriate framework for their specific use case. FedBranched offers superior
handling of data heterogeneity through its innovative clustering approach, while ASLA provides
significant advantages in resource-constrained settings with its efficient aggregation strategy.
In complex scenarios requiring both heterogeneity handling and efficiency, a hybrid approach
combining these frameworks may yield optimal results.
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This comparison section can be placed at the end of Chapter 5, after the individual framework
discussions, to provide a comprehensive synthesis of FedBranched and ASLA.

5.4 Concluding Remarks

In this chapter, we have explored the significant impact of data heterogeneity on the performance
of FL systems, particularly in energy networks. Data heterogeneity, characterized by variations
in energy consumption patterns and data distributions across different clients, poses a major
challenge to the convergence and accuracy of FL models. Addressing this challenge is crucial
for enhancing the robustness and efficiency of FL systems in managing and optimizing energy
resources. The key findings and contributions of this chapter can be summarized as follows:

• FedBranched Framework: FedBranched addresses the challenge of data heterogene-
ity (C4) by employing a probabilistic clustering approach using Hidden Markov Models
(HMM) to categorize clients based on their data characteristics. This method effectively
handles diverse data distributions by creating distinct branches for clients with similar data
profiles, allowing for tailored model training within each branch. The results demonstrate
a significant improvement in model performance and convergence, with a notable reduc-
tion in the average Mean Absolute Percentage Error (MAPE) from 5.172% in traditional
FL to 2.83% with FedBranched. This framework effectively mitigates the impact of data
heterogeneity, ensuring more accurate and reliable predictions in energy networks.

• Adaptive Single Layer Aggregation (ASLA) Framework: ASLA tackles the challenge
of communication and computational efficiency (C3) by simplifying the aggregation pro-
cess. Instead of aggregating all layers of the neural network, ASLA focuses on a single
layer, reducing the amount of data transmitted and processed during each communication
round. This approach not only minimizes communication overhead but also enhances the
scalability of FL systems. The incorporation of quantization techniques further optimizes
data transmission, while stopping criteria ensure that training halts when performance
plateaus. The results show that ASLA achieves a substantial reduction in communica-
tion costs, with an 829.2 times decrease compared to traditional methods, without com-
promising model accuracy. This makes ASLA highly suitable for resource-constrained
environments and underscores its effectiveness in improving the efficiency of FL systems.

This chapter has provided valuable insights into addressing the challenges of data hetero-
geneity in FL systems. The proposed FedBranched and ASLA frameworks offer effective solu-
tions to enhance the robustness and efficiency of FL models in energy networks. By explicitly
addressing the challenges of data heterogeneity (C4) and communication efficiency (C3), these
frameworks pave the way for more reliable and efficient FL applications in diverse environments.



Chapter 6

DRLA: A Decentralised Defence
Framework for FL

In this chapter, DFL is compared with CFL under adversarial attacks for load forecasting, and
performance is evaluated. Furthermore, DRLA is proposed to further reduce the effect of adver-
sarial attacks. Building on the FedRLA framework introduced in Chapter 4, this chapter extends
the defence strategy to decentralized settings through the DRLA framework. The DRLA frame-
work leverages the principles of FedRLA while adapting them to the decentralized environment
to enhance robustness against adversarial threats. As with the approaches discussed in Chapter
4, DRLA continues the focus on mitigating the impact of adversarial attacks while preserving
model accuracy and integrity. This extension to DFL not only addresses the vulnerabilities high-
lighted in the threat models of Chapter 3 but also aligns with the defence strategies developed in
Chapter 4. Specifically, DRLA addresses Challenge C2 (robust aggregation) and Challenge C3
(communication and computational efficiency) by introducing a novel aggregation method that
selectively aggregates model layers in a decentralized manner. This approach directly responds
to the need for enhanced security and efficiency in FL systems as outlined in Chapter 1.

DFL offers a transformative approach to address the inherent challenges of traditional FL by
eliminating the dependency on a central server. Unlike CFL, which relies on a central server for
aggregating updates and coordinating the global model, DFL employs a peer-to-peer (P2P) com-
munication model. In this model, nodes can dynamically switch between acting as servers and
clients, fostering a more collaborative and resilient environment [246, 247]. This decentralized
framework is crucial for enhancing security, fairness, and resilience in FL systems. By removing
the central server, DFL mitigates the Single Point of Failure (SPF) vulnerability and reduces the
risk of biased or malicious interventions by a central authority [248, 249]. This is particularly
important in critical applications like energy networks, where the integrity and reliability of the
model are paramount.

The need for DFL is further emphasized by the vulnerabilities associated with CFL. As dis-
cussed in Chapter 3, adversarial attacks can significantly impact the performance and security

105
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of FL systems. DFL, by its nature, inherently reduces some of these risks. For instance, the
decentralized architecture makes it more difficult for attackers to compromise the entire system,
as they would need to target multiple nodes instead of a single central server. This aligns with
the defence strategies presented in Chapter 4, where frameworks like FedRLA were introduced
to enhance robustness against adversarial attacks. DRLA, as an extension of FedRLA, brings
these robust aggregation techniques to decentralized settings, ensuring that the benefits of selec-
tive layer aggregation are preserved even in the absence of a central coordination point [155].
By doing so, DRLA not only addresses the specific challenges outlined in Chapter 1 but also
advances the field of FL by providing a more secure and efficient alternative to traditional cen-
tralized approaches.

The key contributions of this chapter are:

• DFL Framework:

– Presented a novel DFL framework to mitigate adversarial attacks in FL systems.

– Conducted a comparative analysis of DFL with traditional Centralized FL (CFL)
under adversarial attacks for load forecasting.

– Evaluated the performance of DFL and CFL across various communication topolo-
gies (line, ring, and bus), demonstrating the robustness of DFL in limiting the impact
of compromised clients.

– Measured and analyzed the communication costs associated with each topology,
highlighting the efficiency benefits of DFL.

• Decentralized Random Layer Aggregation (DRLA):

– Introduced the Decentralized Random Layer Aggregation (DRLA) framework, an
adaptation of FedRLA for decentralized settings.

* Building on the FedRLA framework from Chapter 4, DRLA extends its robust
aggregation strategy to DFL environments.

– Applied DRLA to the line, ring, and bus topologies and tested its performance under
attack conditions.

– Demonstrated how DRLA reduces the impact of adversarial attacks by aggregating
only a single, randomly selected layer per round in a decentralized manner.

– Analyzed the improvements in communication efficiency and model robustness pro-
vided by DRLA in decentralized environments.
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6.1 Decentralized FL (DFL)

In distributed machine learning, communication rounds between clients and servers are cru-
cial for ensuring effective model training and achieving accurate predictions. In centralized FL
(CFL), clients participate concurrently, meaning that multiple clients can send their updates to
the server simultaneously. In this context, the order in which the server aggregates these updates
has minimal impact on convergence, as the server can effectively average the contributions from
all clients without being significantly affected by the sequence of incoming data, which allows
for a more streamlined and efficient learning process [250]. However, in DFL, the iteration or-
der of clients plays a significant role in determining the performance of individual models. The
lack of a centralized server in DFL means that the order in which clients communicate their
updates can lead to variations in model convergence and accuracy, making it a critical factor in
the learning process [251]. To optimize performance in DFL, various strategies for managing
client iteration order can be implemented, including sequential patterns, where clients update the
server in a fixed order; cyclic patterns, which ensure that all clients are included in the update
process over time; random patterns, allowing for varied participation that can enhance robust-
ness; and parallel patterns, where multiple clients send updates concurrently. Each of these
strategies influences not only the convergence speed but also the overall efficacy of the model,
highlighting the importance of effective communication round management in decentralized
environments [252].

In STLF, efficient communication round management becomes paramount. STLF relies on
the collaborative training of models across diverse datasets distributed among various clients,
such as smart meters and energy sensors, to predict future energy consumption accurately. The
application of STLF in smart grids necessitates a robust and efficient FL framework due to the
dynamic nature of energy consumption patterns and the need for real-time predictions. The
communication strategies employed in DFL directly impact the model’s ability to adapt to these
dynamic conditions while preserving data privacy and ensuring secure model updates. By opti-
mizing communication rounds through strategies such as sequential, cyclic, random, and parallel
patterns, DFL can enhance the convergence and accuracy of STLF models, making it a suitable
choice for this critical application in smart energy systems

6.1.1 Communication Methods

• Pointing: A simple, one-to-one communication model resembling direct interaction, where
a node sends a specific message to another. This method is efficient for targeted updates
but may not scale well in larger networks due to increased communication overhead.

• Gossip Protocol: A decentralized approach involving random, peer-to-peer exchanges
that facilitate fluid information sharing among nodes. Each node periodically selects
a peer to exchange information, effectively spreading updates throughout the network.



CHAPTER 6. DRLA: A DECENTRALISED DEFENCE FRAMEWORK FOR FL 108

This protocol enhances resilience and convergence speed, particularly in dynamic envi-
ronments [253].

• Broadcast Protocol: A one-to-all communication model where updates are disseminated
simultaneously across the network. This method ensures that all nodes receive the same
information at the same time, promoting synchronization. However, it may lead to net-
work congestion if the volume of data is high, necessitating careful management of band-
width [254].

DFL networks leverage diverse topologies like grids, rings, and fully connected structures,
each with unique convergence characteristics [255]. Unlike CFL, DFL involves multiple model
versions and lacks a centralized server, complicating knowledge consolidation and access for
clients.

6.1.2 Design Consideration

In this work, a pointing and broadcast iterative method is adopted with a sequential communi-
cation protocol across three topologies: line, ring, and bus. The choice of these topologies facil-
itates efficient communication while aligning with decentralization principles, thereby avoiding
star or mesh structures that can introduce unnecessary complexity and single points of failure.

The sequential communication protocol ensures methodical information flow by organizing
the order of message exchanges, which enhances clarity and reduces the risk of data collisions.
This systematic approach allows nodes to process updates in an orderly fashion, promoting
synchronization within the network.

In contrast, the broadcast mechanism enables simultaneous transmission of updates to all
nodes within the network, significantly enhancing robustness against connectivity disruptions.
By allowing every node to receive critical information at the same time, the system can maintain
operational integrity even if some connections fail. This dual approach of pointing for targeted
communication and broadcasting for widespread dissemination effectively balances efficiency
and reliability in decentralized settings.

6.1.3 DFL with Line Network Communication Topology

To transition from centralized FL (CFL) to decentralized FL (DFL) while maintaining consis-
tency, a line communication topology is adopted. In this setup, Client 1 initiates the process by
sending its locally trained model to Client 2. Client 2 then aggregates this model with its own,
resulting in an updated global model. This refined model is then passed sequentially through
Clients 3, 4, and 5, with each client contributing to further enhancements based on their local
data. Upon reaching Client 5, the model follows a reverse path back to Client 1, completing one
full communication round. This round-trip communication ensures that all clients can benefit
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Figure 6.1: Line, Ring and Bus ring topologies used in DFL for load forecasting
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from the updates made at each stage. At every aggregation point, the process is executed us-
ing the aggregation equation defined in Equation 2.3. The structure and flow of the Line-DFL
topology are illustrated in Fig. 6.1, highlighting the sequential nature of communication and
collaboration among the clients.

6.1.4 DFL with Ring Network Communication Topology

In the ring topology, Client 1 initiates the communication process by sharing its locally trained
model with Client 2. Client 2 then aggregates this model with its own, creating an updated
version, which is subsequently forwarded to Client 3. This process continues as the model cycles
through Clients 4 and 5, effectively forming a closed loop. Upon reaching Client 5, the global
model is passed back to Client 1, marking the completion of one iteration. Communication
rounds are considered complete when the model returns to its origin, ensuring that all clients
participate in the iterative refinement of the model. At each stage of this process, aggregation is
performed using Equation 2.3, facilitating consistent updates across the network. The structure
and flow of the Ring-DFL topology are illustrated in Fig. 6.1, emphasizing the interconnected
nature of client communication and model aggregation.

6.1.5 DFL with Bus Network Communication Topology

In the bus topology, Client 1 initiates the process by broadcasting its locally trained model to all
other clients in the network. Each subsequent client—Clients 2, 3, 4, and 5—then broadcasts its
own updated model to the rest of the clients. This collective broadcasting continues until every
client has contributed, thus completing one communication round. This topology is particularly
advantageous for ensuring fault tolerance, as the process can still proceed even if one or more
clients fail to respond, allowing for robust model updates despite potential communication dis-
ruptions. The structure and flow of the DFL Bus topology are illustrated in Fig. 6.1, highlighting
the collaborative nature of client interactions and the inclusive model aggregation process.

6.2 Experiments and Results

In this experiment, we used Dataset 1, as described in Section 3.1.1. The dataset underwent the
same preprocessing steps and featured the same attributes and deep learning model.

6.2.1 Baseline Results

In the experiments, baseline results for CFL were obtained by conducting 20 communication
rounds, with each client performing 1 local epoch of training on their individual datasets. Fig.
6.2 displays the MAE for all clients throughout the global model’s training process, revealing
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Figure 6.2: Client-wise MAE for all clients during the global model’s training phase.

an average MAE of 0.076 kWh, which indicates a strong predictive capability of the model.
This value suggests that the predictions made by the model were consistently close to the actual
energy consumption values.

Additionally, baseline results for DFL are presented in Fig. 6.3, featuring the Mean MAE for
a prediction task involving five clients using three distinct distributed FL topologies: line, ring,
and bus. Each topology represents a different configuration for client communication, affecting
how updates and model parameters are shared among clients. Remarkably, the average MAE
remained consistent at 0.076 kWh across all topologies, as shown in Fig. 6.2. This consistency
underscores the robustness of the model across various network configurations, suggesting that
it can maintain high performance regardless of the underlying communication structure.

The learning behaviours of these three communication topologies were strikingly similar,
closely resembling the performance observed in CFL, as indicated in Fig. 6.2. This finding
suggests that the choice of topology did not significantly impact the model’s learning efficacy.
Such results are encouraging for practical applications, as they imply that system designers can
select from multiple topologies without fearing a detrimental effect on model accuracy. More-
over, this flexibility can facilitate easier implementation in diverse environments, allowing for
optimization based on specific operational constraints or preferences. Overall, the experiments
highlight the model’s adaptability and effectiveness in various decentralized settings.

6.2.2 Communication Cost

Communication cost is calculated as the amount of data transfer between clients and the server.
This metric is crucial in evaluating the overall performance of distributed systems, as high com-
munication costs can lead to increased latency and resource consumption. The energy efficiency
of any system is directly related to the amount of transmitted data. To calculate communication,
it is necessary to determine the size of the local and global models. The primary factor in de-
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Figure 6.3: Client-wise MAE observed during the global model’s training in the context of DFL.

termining the size of a neural network model is the total number of parameters, which includes
both weights and biases. Each layer’s parameters are calculated by multiplying the number of
input units by the number of output units, with an additional parameter for each output unit to
account for biases.

The designed deep learning model had three dense layers, the first layer’s parameters are
the product of the input size plus one (for the bias) and the 64 output units. The second layer’s
parameters result from multiplying the 64 units from the previous layer by the 32 output units,
again adding one for bias. The final layer reduces the output to a single unit, contributing
an additional set of parameters. The total number of parameters in this case is 2561, which
translates to approximately 10 KB of memory, as each 32-bit floating-point parameter occupies
4 bytes.

In CFL, the communication cost is calculated by measuring the data transmitted by a single
device, multiplying it by the number of devices, and then multiplying that result by the num-
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Figure 6.4: Communication cost of CFL and DFL frameworks.

ber of communication rounds. The same amount of data is also transmitted by the server. In
DFL Line, Client 1 sends the model to Client 2, and this process continues until the last client
is reached. The process then reverses direction. In each communication round, the model is
transmitted by 2× (number of devices)−2. Multiply this amount by the number of communi-
cation rounds to get the total communication cost. In Ring DFL, Client 1 sends data to Client 2,
and the process continues until the last client is reached. Then, the last client sends the model
back to Client 1. Thus, the number of model transmissions is equal to the number of clients,
which is then multiplied by the total number of communication rounds. In Bus DFL, during
each communication round, only one client sends the model to all other clients. Therefore, the
total number of model transmissions is equal to the number of devices minus one, and this is
multiplied by the number of communication rounds to calculate the communication cost.

The exact communication cost is plotted in Figure 6.4.t is evident that CFL exhibits the high-
est communication cost, followed by DFL Line, DFL Ring, and finally DFL Bus. This variation
is attributed to the differences in topologies, which influence the efficiency of data transmission
between clients and the server. CFL requires each device to communicate extensively, leading
to increased data transfer and higher costs. In contrast, DFL Line minimizes communication by
allowing sequential data transfer, thereby reducing the overall cost. DFL Ring further optimizes
communication by creating a circular path for data exchange, which enhances efficiency. Fi-
nally, DFL Bus allows a single client to communicate with all others, but still incurs lower costs
compared to CFL due to reduced redundancy in data transmission. Thus, the choice of topology
plays a critical role in determining communication costs in distributed systems.
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Figure 6.5: Comparison of actual and pre-
dicted curves in the CFL bus topology during
a model flipping attack targeting Client 1.
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Figure 6.6: Comparison of actual and pre-
dicted curves in the DFL line topology during
a model flipping attack targeting Client 1.

6.2.3 Effect of Adversarial Attack

In this work, a model flipping attack is considered. The details of the attack are presented
in Section 3.1. In this attack, the weights of the local model are multiplied by -1 to create
adversarial effects, effectively reversing the model’s predictions. This manipulation can lead to
significant misclassification, thereby compromising the model’s accuracy and reliability. The
implications of such adversarial attacks will be explored in depth, emphasizing their potential
impact on the overall security and performance of FL systems.

The actual and predicted curves are illustrated in Fig. 6.5, providing a clear depiction of the
repercussions of a model inversion attack on Client 1 within the centralized FL (CFL) frame-
work. This approach, while capable of achieving high accuracy through centralized training,
inadvertently exposes all participating clients to significant security vulnerabilities. As a re-
sult, a consistent Mean Absolute Error (MAE) of approximately 0.2 kWh is observed across
all clients. Among them, Clients 1 and 5 are particularly vulnerable, experiencing the most
pronounced effects of the attack, which compromises their predictive accuracy and reliability.

In stark contrast, DFL methods employing bus, line, and ring topologies demonstrate a re-
markable resilience to model inversion attacks. This robustness is evidenced by significantly
lower MAE values, illustrating the effectiveness of decentralized approaches in safeguarding
client data. Figs. 6.6, 6.7, and 6.8 visually represent the prediction outcomes derived from these
diverse topologies.

Clients 3 and 4 stand out with notably low MAEs, achieving values as low as 0.07 kWh
in both line and ring topologies. This indicates a strong performance and suggests that these
topologies are particularly effective in mitigating the impacts of attacks. However, not all clients
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Figure 6.7: Comparison of actual and pre-
dicted curves in the DFL ring topology during
a model flipping attack on Client 1.
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Figure 6.8: Comparison of actual and pre-
dicted curves in the DFL bus topology during
a model flipping attack targeting Client 1.

are equally insulated; for instance, in the bus topology, Client 5 registers an MAE of 0.1 kWh,
which, while still relatively low, is slightly elevated compared to the 0.09 kWh observed for other
clients. This highlights that certain clients remain susceptible to minor disruptions. Similarly,
in the ring topology, Client 1 displays a higher MAE of 0.25 kWh, underlining the variability in
client performance under different topological configurations.

Overall, the DFL framework significantly limits the adverse impacts of model inversion
attacks, confining them to specific clients rather than affecting all participants uniformly, as
seen in the CFL approach. This distinction underscores the importance of topology selection
in designing more secure FL systems, enhancing both individual client resilience and overall
network integrity. By leveraging decentralized strategies, the DFL approach not only maintains
predictive accuracy but also fortifies the system against potential security threats, ensuring a
more robust and reliable learning environment.

6.3 Decentralised Random Layer Aggregation (DRLA)

In conventional FL, the central server aggregates all neural network layers to create a compre-
hensive global model during each communication round. This holistic approach, while effective
in enhancing model accuracy, often results in increased communication overhead, which can
strain network resources and lead to delays. Furthermore, the aggregation process may introduce
potential vulnerabilities, as it becomes a target for adversarial attacks aimed at compromising
the integrity of the model.

To address these significant challenges and to enhance both energy efficiency and resilience
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Algorithm 4 Decentralized Federated Random Layer Aggregation (DRLA)
1: Device Initialization:
2: Initialize global model, W k

0,l for all layers, where l represents the layer number and k repre-
sents the client number.

3: Each client initializes its local model W k
t,l ←W k

0,l for all layers l.
4: Set communication rounds, T , number of clients, K, and number of layers in local models,

L.
5: Each client selects a random layer lrand.
6: for t = 1 to T do
7: Device Side (Local Training and Update):
8: for each client i = 1 to K in parallel do
9: Train the local model on local data.

10: Create an update for the randomly selected layer: W k
t,lrand

← LocalUpdate(W k
t,lrand

).
11: end for
12: Device Side (Peer-to-Peer Aggregation):
13: for each client i = 1 to K in parallel do
14: Exchange W k

t,lrand
with a random subset of peers (P2P communication).

15: Aggregate updates received from peers for the selected layer: W k
t,lrand
← 1
|P|∑ j∈PW j

t,lrand
,

where P is the set of peers.
16: end for
17: Device Side (Model Update):
18: for each client i = 1 to K in parallel do
19: Update the local model W k

t+1,l for all layers l:
20: W k

t+1,l ←W k
t,l for l ̸= lrand.

21: W k
t+1,lrand

← 1
|P|∑ j∈PW j

t,lrand
.

22: Select new lrand for the next communication round.
23: end for
24: end for
25: return Trained local models W k

T,lrand
for the randomly selected layers lrand on clients K.

to adversarial threats, the Decentralised Random Layer Aggregation (DRLA) framework has
been adopted [107]. The detailed algorithm for DRLA is presented in Algorithm 4.

DRLA introduces an innovative strategy by randomly selecting a single layer for aggregation
in each communication round while leaving all other layers unchanged. This selective aggrega-
tion not only significantly reduces the amount of data transmitted between clients and the server,
thereby minimizing communication costs, but also enhances the robustness of the model against
adversarial attacks. By making the aggregation process less predictable, DRLA complicates the
task for attackers attempting to exploit vulnerabilities in the data exchange.

When applied to Decentralized FL (DFL), DRLA has demonstrated substantial improve-
ments in both model performance and security. For instance, the average MAE results, as de-
picted in Fig. 6.9, were evaluated under a model-flipping attack originating from Client 1. In
the DFL bus and ring topologies, the MAE was successfully reduced to 0.09 kWh, showcasing
the strong defensive capabilities of DRLA during adversarial conditions.
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Figure 6.9: Analysis of average client MAE under model flipping attack targeting Client 1: A
comparison across CFL, DFL, and DRLA frameworks.

Furthermore, in the ring topology, the MAE registered at 0.102 kWh during the attack, which
is notably higher than the significantly lower MAE of 0.076 kWh observed when no attacks were
present. This comparison underscores the effectiveness of DRLA across various communication
topologies, illustrating its potential to maintain model integrity and accuracy even in the face
of adversarial challenges. Overall, the implementation of DRLA in DFL not only optimizes
communication efficiency but also fortifies the system against security threats, establishing it as
a valuable approach within the evolving landscape of FL.

6.4 Concluding Remarks

In this chapter, i explored the application of Decentralized FL (DFL) for mitigating adversarial
attacks and enhancing communication efficiency in FL systems, particularly in load forecasting.
The key contributions and findings of this chapter can be summarized as follows:

• Robust Aggregation (C2): The experiments conducted demonstrate that DFL topolo-
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gies, including line, ring, and bus, significantly reduce the impact of adversarial attacks
on model performance. This is in contrast to Centralized FL (CFL), where a single com-
promised client can degrade the global model’s accuracy. The results show that DFL
effectively confines the adverse effects of attacks to specific clients, thereby preserving
the integrity and accuracy of the overall system. Additionally, the Decentralized Random
Layer Aggregation (DRLA) framework further enhances the robustness of the system by
aggregating only a single, randomly selected layer per round. This selective aggregation
strategy not only reduces the amount of data transmitted but also minimizes the impact
of potential adversarial updates. By focusing on a single layer, DRLA ensures that the
global model remains robust even in the presence of malicious clients. This addresses the
challenge of robust aggregation (C2) by effectively detecting and mitigating the impact of
anomalous updates.

• Communication Efficiency (C3): DFL leverages peer-to-peer communication, eliminat-
ing the need for a central server and thereby reducing communication overhead. This de-
centralized approach not only enhances privacy but also improves the system’s resilience
against single points of failure. The DRLA framework further optimizes communication
by aggregating only a single, randomly selected layer per round. This selective aggre-
gation strategy significantly reduces the amount of data transmitted, making DFL highly
suitable for bandwidth-constrained environments. This addresses the challenge of com-
munication and computational efficiency (C3) by minimizing the communication over-
head and enhancing the scalability of the system.

This chapter has provided valuable insights into the potential of DFL for enhancing the
security and efficiency of FL systems. The proposed frameworks and methods demonstrate sig-
nificant improvements in mitigating adversarial attacks and optimizing communication, paving
the way for more robust and scalable FL solutions. The findings presented here contribute to
the ongoing research in secure and efficient FL, highlighting the importance of decentralized
approaches in addressing the challenges of modern distributed machine learning environments.



Chapter 7

Conclusion and Future Work

This final chapter synthesizes the research presented in this thesis, highlighting the key con-
tributions and their impact on addressing the critical challenges in FL, as discussed in Sec-
tion 1.2. These challenges include managing data diversity, ensuring robustness against ad-
versarial threats, and optimizing resource efficiency, all of which require innovative real-world
application solutions. This thesis has advanced FL by proposing novel frameworks that ad-
dress these gaps, making it more effective in energy forecasting. The chapter consolidates these
technical contributions, situates them within the broader context of secure and efficient FL, and
outlines future research directions that build on the foundational insights established throughout
this work. The goal is to provide a comprehensive summary of the progress made and to offer a
clear roadmap for future advancements in the field.

7.1 Summary of Contributions

This thesis has made significant contributions to the field of FL by addressing key challenges
related to adversarial robustness, communication efficiency, and data heterogeneity. The follow-
ing is a synthesis of the contributions made in each chapter and their relevance to the overall
goals of the research. In Chapter 3, a thorough analysis of various adversarial attack strategies
was conducted to evaluate the robustness of FL systems. These attacks, including the novel
Federated Communication Round Attack (Fed-CRA), highlighted vulnerabilities in FL systems
and emphasized the need for robust defence mechanisms. This work specifically targeted the
challenge of ensuring robustness against adversarial attacks (C1) and laid the foundation for de-
veloping subsequent defence frameworks. Chapter 4 introduced three novel defence frameworks
designed to enhance robustness (C2) and communication efficiency (C3):

• Federated Random Layer Aggregation (FedRLA): This framework improves commu-
nication efficiency by aggregating only a single randomly selected neural network layer
during each communication round, thereby reducing data exchange and enhancing pri-
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vacy. FedRLA effectively mitigated adversarial attacks while maintaining model accu-
racy.

• Layer-Based Anomaly Aware Federated Averaging (LBAA-FedAvg): By incorporat-
ing anomaly detection and selective layer exclusion, this framework ensures the integrity
of the global model against adversarial updates, demonstrating strong robustness and sta-
bility under various attack scenarios.

• Federated Incentivized Averaging (Fed-InA): Introducing a scoring mechanism to re-
ward honest clients and penalize malicious ones, Fed-InA promotes honest participation
and effectively identifies and mitigates stealth attacks, further enhancing the system’s ro-
bustness and efficiency.

Chapter 5 proposed two frameworks to address data heterogeneity (C4) and further optimize
communication and computational efficiency (C3):

• FedBranched: Utilizing probabilistic clustering based on Hidden Markov Models (HMM),
this framework categorizes clients to handle diverse data distributions, significantly im-
proving model performance and convergence in energy networks.

• Adaptive Single Layer Aggregation (ASLA): By simplifying the aggregation process to
a single neural network layer and incorporating quantization techniques, ASLA drastically
reduces communication overhead while maintaining model accuracy, making it highly
suitable for resource-constrained environments.

Chapter 6 presented the Decentralized Federated Learning (DFL) framework and the Decen-
tralized Random Layer Aggregation (DRLA) mechanism. DFL leverages peer-to-peer commu-
nication topologies to eliminate the single point of failure associated with centralized systems.
DRLA, a combination of FedRLA and DFL, extends the principles of FedRLA to decentralized
settings by aggregating a single, randomly selected layer in each communication round within
a decentralized environment. This approach further enhances robustness and communication
efficiency.

Cross-Cutting Synthesis

The frameworks developed in this thesis offer distinct advantages depending on the scenario:

• FedRLA is ideal for centralized FL environments where communication efficiency and
robustness against adversarial attacks are critical.

• ASLA, with its significant reduction in communication costs and adaptability to resource
constraints, is best suited for large-scale deployments with limited bandwidth.
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• DRLA, as an extension of FedRLA to decentralized settings, provides enhanced security
and resilience in environments where a central server is either unavailable or undesirable.

• LBAA-FedAvg and Fed-InA provide additional robustness through anomaly detection
and client incentivization, respectively, making them valuable for scenarios with high ad-
versarial risk.

• FedBranched addresses data heterogeneity through clustering, making it suitable for ap-
plications with diverse data distributions.

Table 7.1: Comparative Strengths of Frameworks

Framework Key Strengths Ideal For Challenge
Addressed

FedRLA Minimizes communication costs by ag-
gregating a single neural network layer
per round, offering high resilience
against adversarial attacks while main-
taining model accuracy.

Centralized FL systems with
bandwidth limitations where ef-
ficient communication and ro-
bust security are paramount.

C2, C3

LBAA-FedAvg Combines anomaly detection with se-
lective layer aggregation to maintain
model integrity, effectively countering
partial adversarial updates and ensur-
ing stable model performance.

FL environments facing par-
tial adversarial attacks, requiring
strong model integrity and ro-
bustness.

C2

Fed-InA Utilizes a scoring system to distinguish
between honest and malicious clients,
reducing communication rounds and
fostering a trustworthy FL environ-
ment.

Scenarios with potential stealth
attacks and limited resources,
needing efficient communica-
tion and honest client participa-
tion.

C2

FedBranched Employs HMM-based clustering to
categorize clients, addressing data het-
erogeneity and enhancing model con-
vergence in applications with varied
data distributions.

Energy networks and other ap-
plications with diverse and non-
IID data distributions, requiring
personalized model training.

C4

ASLA Drastically cuts communication over-
head using single-layer aggregation
and quantization, making it highly ef-
ficient in resource usage while preserv-
ing model accuracy.

Large-scale FL deployments
with stringent bandwidth con-
straints and resource-limited
clients.

C3, C4

DRLA Extends FedRLA principles to decen-
tralized settings, enhancing security
through P2P communication and main-
taining robust aggregation of model up-
dates.

Decentralized FL systems re-
quiring high resilience against
adversarial attacks and efficient
communication without a cen-
tral server.

C2, C3

Reflecting on the objectives outlined in Section 1.3 and the research gaps identified in Chap-
ter 2, this thesis has made substantial progress in advancing the practical deployment of FL
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systems. The proposed frameworks not only address the technical challenges of robustness, ef-
ficiency, and heterogeneity but also contribute to the broader goal of enabling more secure and
efficient intelligent systems in real-world applications. By synthesizing insights across Chapters
3 to 6, this work provides a comprehensive toolkit for practitioners and researchers to select
the most appropriate FL framework based on their specific requirements and operational con-
texts. The summary of purposed frameworks, according to their applications, is presented in
table 7.1. The thesis has thus achieved its aim of developing robust, efficient, and heterogeneous
data-aware FL frameworks for secure and privacy-conscious applications, particularly in energy
forecasting. The contributions made provide a solid foundation for future research and practical
implementations in the field of FL.

7.2 Limitations of the Research

• Data Assumption Limitations: The research assumes that the data distribution across
clients, despite being non-IID, follows certain identifiable patterns that can be leveraged
by the proposed frameworks like FedBranched and ASLA. However, in real-world scenar-
ios, data distributions can be extremely complex and dynamic, potentially deviating from
the assumed patterns and thus affecting the performance of these frameworks.

• Attack Model Limitations: The study focuses on specific types of adversarial attacks,
such as model poisoning and stealth attacks like Fed-CRA. While these attacks are repre-
sentative, there may be other sophisticated attack vectors not considered in this research
that could potentially compromise the proposed defense frameworks.

• Client Resource Heterogeneity: Although the research acknowledges the heterogeneity
of client resources, it simplifies this aspect to a certain extent. In practice, the diversity
in computational power, memory, and network conditions among clients can be more
pronounced, which might influence the effectiveness and applicability of the proposed
frameworks.

• Scalability Limitations: The proposed frameworks have been tested and validated within
a specific range of client numbers and data scales. When applying these frameworks
to larger-scale FL systems with thousands or even millions of clients, new challenges
may emerge, such as increased communication overhead and heightened computational
complexity, which are not fully addressed in this research.

• Privacy Protection Limitations: While the research emphasizes privacy preservation
through techniques like model quantization and differential privacy, achieving a high level
of privacy protection often comes at the cost of reduced model accuracy and increased
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computational overhead. The proposed methods may not fully satisfy the stringent privacy
requirements of certain highly sensitive applications.

7.2.1 Tradeoffs Made in the Research

• Model Accuracy vs. Communication Efficiency: The proposed frameworks, such as
FedRLA and ASLA, reduce communication costs by aggregating only a single layer of
the neural network. However, this approach may lead to a certain degree of decline in
model accuracy compared to traditional FL methods that aggregate all layers. The research
attempts to strike a balance between communication efficiency and model accuracy but
may not achieve optimal results in all scenarios.

• Robustness vs. Computational Overhead: To enhance the robustness of FL systems
against adversarial attacks, the research introduces defense mechanisms like Fed-InA and
DRLA. These mechanisms increase computational overhead by incorporating clustering,
scoring, and other operations. In resource-constrained environments, this additional com-
putational burden may affect the system’s overall efficiency. The research makes a tradeoff
between robustness and computational overhead, aiming to provide a reasonable level of
protection without significantly impacting system performance.

• Personalization vs. Global Model Performance: FedBranched addresses data hetero-
geneity by clustering clients and training personalized models for each cluster. While this
approach improves the personalization of models for individual clients, it may result in
suboptimal global model performance compared to a single global model trained on ho-
mogeneous data. The research balances personalization and global model performance
but may not achieve the best of both worlds in certain cases.

• Privacy Protection vs. Model Utility: In order to protect data privacy, techniques like
model quantization and differential privacy are employed, which may limit the utility of
the model to some extent. The research explores the tradeoff between privacy protection
and model utility, striving to maximize model utility while ensuring a certain level of
privacy but potentially falling short of satisfying both aspects fully.

• Complexity vs. Practicality: The proposed frameworks introduce additional complex-
ity in terms of algorithms and system design. While these complex frameworks offer
improved performance in specific aspects, they may reduce the practicality and ease of
implementation of FL systems. The research seeks to balance complexity and practicality
but may not fully achieve simplicity and ease of use in real-world deployments.
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7.3 Future Work

The research presented in this thesis has significantly advanced FL by developing novel defense
frameworks, addressing data heterogeneity, and optimizing communication efficiency. However,
there are several promising directions for future work that can further enhance the robustness,
efficiency, and applicability of FL systems.

7.3.1 Combining Presented Techniques

In future work, I plan to integrate robust aggregation, communication efficiency, computational
efficiency, privacy awareness, and stopping criteria into a single, cohesive framework. This
integrated approach aims to enhance the overall performance and security of FL systems by
addressing multiple challenges simultaneously.

7.3.2 Evaluation on Other Domains

While the techniques presented in this thesis have been evaluated on energy networks, their
applicability and effectiveness need to be tested across other domains to ensure their versatil-
ity and robustness. For example, in healthcare, the robust aggregation and privacy-preserving
techniques can be evaluated in medical imaging to ensure they maintain data confidentiality
and improve model performance. In autonomous vehicles, the communication efficiency and
computational efficiency techniques can be tested to ensure they enable timely and accurate
decision-making while minimizing resource usage. In smart cities, the stopping criteria and
privacy awareness techniques can be assessed in applications such as traffic management and
environmental monitoring to ensure they provide efficient and secure solutions. In supply chain
and logistics, the robust aggregation and communication efficiency techniques can be evaluated
in inventory management, demand forecasting, and delivery route optimization to ensure they
provide accurate predictions and efficient communication.

7.3.3 Additional Areas for Future Work

Future work will also explore methods to improve interoperability between different FL frame-
works and systems, ensuring seamless integration and operation. Enhancing the scalability of
FL systems to handle large numbers of clients and diverse datasets efficiently will be another
focus. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of
FL by non-expert users will promote wider deployment and use.
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