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ABSTRACT

Social signal processing aims to automatically understand and interpret social signals (e.g.

facial expressions and prosody) generated during human-human and human-machine inter-

actions. Automatic interpretation of social signals involves two fundamentally important

aspects: feature extraction and machine learning. So far, machine learning approaches ap-

plied to social signal processing have mainly focused on parametric approaches (e.g. lin-

ear regression) or non-parametric models such as support vector machine (SVM). However,

these approaches fall short of taking into account any uncertainty as a result of model mis-

specification or lack interpretability for analyses of scenarios in social signal processing.

Consequently, they are less able to understand and interpret human behaviours effectively.

Gaussian processes (GPs), that have gained popularity in data analysis, offer a solution to

these limitations through their attractive properties: being non-parametric enables them to

flexibly model data and being probabilistic makes them capable of quantifying uncertainty.

In addition, a proper parametrisation in the covariance function makes it possible to gain

insights into the application under study.

However, these appealing properties of GP models hinge on an accurate characterisation of

the posterior distribution with respect to the covariance parameters. This is normally done

by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require re-

peated expensive calculations involving the marginal likelihood. Motivated by the desire to

avoid the inefficiencies of MCMC algorithms rejecting a considerable number of expensive

proposals, this thesis has developed an alternative inference framework based on adaptive

multiple importance sampling (AMIS). In particular, this thesis studies the application of



AMIS for Gaussian processes in the case of a Gaussian likelihood, and proposes a novel

pseudo-marginal-based AMIS (PM-AMIS) algorithm for non-Gaussian likelihoods, where

the marginal likelihood is unbiasedly estimated. Experiments on benchmark data sets show

that the proposed framework outperforms the MCMC-based inference of GP covariance pa-

rameters in a wide range of scenarios.

The PM-AMIS classifier - based on Gaussian processes with a newly designed group-automatic

relevance determination (G-ARD) kernel - has been applied to predict whether a Flickr user

is perceived to be above the median or not with respect to each of the Big-Five personal-

ity traits. The results show that, apart from the high prediction accuracies achieved (up to

79% depending on the trait), the parameters of the G-ARD kernel allow the identification of

the groups of features that better account for the classification outcome and provide indica-

tions about cultural effects through their weight differences. Therefore, this demonstrates the

value of the proposed non-parametric probabilistic framework for social signal processing.

Feature extraction in signal processing is dominated by various methods based on short time

Fourier transform (STFT). Recently, Hilbert spectral analysis (HSA), a new representation

of signal which is fundamentally different from STFT has been proposed. This thesis is

also the first attempt to investigate the extraction of features from this newly proposed HSA

and its application in social signal processing. The experimental results reveal that, using

features extracted from the Hilbert spectrum of voice data of female speakers, the prediction

accuracy can be achieved by up to 81% when predicting their Big-Five personality traits, and

hence show that HSA can work as an effective alternative to STFT for feature extraction in

social signal processing.
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Chapter 1

Introduction

Our everyday life revolves around interactions with others. We communicate with people in

most of our daily activities - both at work and at home. Therefore, we as human beings, are

actually social animals [3]. Not only do social interactions constellate our daily life, they also

play an important role in a variety of social media. For example, we watch political debates

or talk-shows on TV, we like pictures that are posted on Flickr or Instagram and we write our

comments on Facebook or Twitter. Thus social intelligence - the skill of managing social

signals (e.g. turn taking and mirroring) and social behaviours (e.g. agreement, empathy

and politeness) involved in a social interaction with others - is indispensable and affects

significantly the success of our life [56]. Consequently, a large number of computing efforts

have been made to develop automatic approaches to analyse social interactions and have

made social signal processing (SSP) an emerging research and technological domain in the

computing community [158, 159].

Social signal processing has attracted the interest of a wide range of scientific communities

in, for example, psychology, computer vision and signal processing. It aims to automatically

understand and interpret social signals generated during human-human and human-machine

interactions [112, 158]. Automatic interpretation of social signals involves two fundamen-

tally important aspects: feature extraction and machine learning.

So far, machine learning approaches applied to social signal processing have mainly focused

on the mapping between detectable behavioural cues (e.g. facial expressions and prosody)
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and social and psychological phenomena using parametric approaches (e.g. linear regres-

sion) or non-parametric models such as support vector machines (SVM). Section 6.2 presents

an extensive survey conducted on the computational approaches employed in personality in-

ference from social media data - an important domain of SSP. However, such parametric

approaches fall short of taking into account any uncertainty as a result of model misspeci-

fication (e.g. imposing a linear model on the data even though it is not able to well explain

the data) or the large number of behavioural cues compared to the available annotated data

(over-fitting). In addition, despite its non-parametric formulation, being a non-probabilistic

approach makes SVM deficient in quantifying uncertainty in predictions and it is also statis-

tically not able to assess the predictive effect of different features of the inputs on predicting

the outputs [41].

Nevertheless, an accurate quantification of uncertainty in predictions and being able to gauge

the degree to which each feature of the inputs is relevant to the prediction outcome, are of

great importance for social signal processing applications. For example, when a system

of analysing facial expressions is used in medicine to monitor the pain level or anxiety of

a patient or used in security to assert the credibility of a person [153], a model capable

of accurately quantifying uncertainty would be very useful. In the case of automatically

detecting the conflict level in political debates [75], it is desirable to get a direct interpretation

of the relative influence of different behavioural cues on predictions so that changing the

associated behaviours in future debates could change people’s perception of conflict.

One way to tackle these limitations is through a Bayesian treatment of the problem and a

relaxation of the parametric assumptions to allow for an unknown functional form [121] for

the mapping.

Gaussian processes (GPs), a non-parametric Bayesian framework, have proved to be a suc-

cessful class of statistical inference methods for data analysis in several applied domains,

such as pattern recognition [10, 40, 121], neuro-imaging [41], signal processing [75], Bayesian

optimisation [72], and emulation and calibration of computer codes [74].

GPs are attractive because they are flexible and highly descriptive models with a supe-

rior capability of quantifying uncertainty in predictions: their non-parametric formulation

yields the possibility of flexibly modelling data and, formulated in probabilistic terms, their
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Bayesian treatment allows the incorporation of confidence levels when making predictions.

In addition, with a suitable parametrisation of the covariance function, they offer the possi-

bility of gaining some insights into the application under study without explicit knowledge

of the mapping between inputs and outputs. The application of GP models to SSP data [75]

suggests that the flexibility and interpretability offered by such non-parametric models can

greatly enrich our understanding and interpretation of human behaviours. These properties

of GP models hinge on the parametrisation of the GP covariance function and on the way

GP covariance parameters are optimised or inferred.

Therefore, it is necessary to accurately characterise the posterior distribution over covariance

parameters and extend this source of uncertainty forward to predictions [40, 41, 99, 140].

This task, which is the focus of this thesis, is particularly challenging when dealing with

GPs. Inference of GP covariance parameters in closed form is generally analytically in-

tractable and, when resorting to standard inference methods, a complication arises from the

difficulties associated with having to repeatedly compute the marginal likelihood (and pos-

sibly the gradient of its logarithm). The marginal likelihood is computable in the case of a

Gaussian likelihood, but extremely costly because of the need to carry out a number of oper-

ations that is cubic with the number of input vectors. On the other hand, when the likelihood

function is not Gaussian, e.g. in classification, in ordinal regression, or in Cox-processes, the

marginal likelihood is not even computable analytically.

In response to these challenges, a large body of the literature has developed approximate in-

ference methods [63, 80, 104, 108, 121, 164] which, although successful in many cases, give

no guarantees on the amount of bias they introduce that may affect their ability to quantify

uncertainty. With regards to quantifying uncertainty without introducing any bias, there have

been attempts to employ Markov chain Monte Carlo (MCMC) techniques. We can broadly

divide such attempts in works that propose parametrisation techniques [42, 96, 99, 154]

or methods that carry out inference based on unbiased computations of the marginal like-

lihood [39, 40, 97]. Although these approaches proved successful in a variety of scenar-

ios, employing MCMC algorithms may lead to inefficiencies; for instance, optimal accep-

tance rates for popular MCMC algorithms such as the Metropolis-Hastings (MH) algorithm

(approximately 25% [125]) and the hybrid Monte Carlo (HMC) algorithm (approximately

65% [9, 101]) indicate that several expensive computations are wasted. Introducing adap-



1.1. Aims 4

tivity into MCMC proposal mechanisms to improve efficiency may lead to convergence is-

sues [1].

Consequently, it is difficult to use GPs in real-world applications. In the case of GPs with a

Gaussian likelihood, the marginal likelihood is computable but expensive (scaling with the

cube of the number of data); is it possible to accurately quantify uncertainty (in terms of

being able to sample from the posterior and make good predictions) while mitigating the

effect of the inefficiencies of MCMC methods? In the case of non-Gaussian likelihoods,

the marginal likelihood is not even computable; is it possible to do so when the marginal

likelihood is not available analytically? Indeed, is it possible to effectively employ the non-

parametric GP framework to analyse the SSP data? The work in this thesis mainly aims to

offer solutions to these problems.

1.1 Aims

The aims of the thesis are as follows:

1. To develop a general framework to carry out Bayesian inference for GPs aimed at

overcoming the limitations of MCMC methods, where expectations under the poste-

rior distribution over covariance parameters are carried out by means of the adaptive

multiple importance sampling (AMIS) algorithm [22]. The application of this frame-

work to the Gaussian likelihood case, although novel, is relatively straightforward

given that the likelihood is computable. This thesis extensively compared the sam-

pling efficiency (in terms of convergence speed against computational complexity) of

MCMC versus AMIS for GP regression where the marginal likelihood is computable

and the experimental results showed that AMIS can achieve faster convergence speed

in this case.

In the case of non-Gaussian likelihoods, the inability to compute the likelihood exactly

leads to proposing a novel version of AMIS where the likelihood is unbiasedly esti-

mated. Inspired by the Pseudo-Marginal MCMC approaches [2], the pseudo-marginal

AMIS (PM-AMIS) algorithm was proposed, and a theoretical analysis was provided

showing under which conditions PM-AMIS yields expectations under the posterior
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over GP covariance parameters without introducing any bias. The proposed PM-AMIS

is an instance of the Importance Sampling squared (IS2) algorithms [114, 145] that are

gaining popularity as practical Bayesian inference methods. There was also a exten-

sive comparison of the sampling efficiency of PM-AMIS versus PM-MCMC for GP

classification where the marginal likelihood cannot be computed analytically. In this

case, the experimental results showed that the convergence speed of PM-AMIS is also

faster than that of PM-MCMC.

2. To explore whether the above proposed Bayesian GP framework is suitable for the

analysis (description and interpretation) of scenarios in social signal processing (SSP).

This is at the border between computing and psychology and it can be addressed with

experiments on data collected during social interactions. In this thesis, the proposed

PM-AMIS has been applied with a newly designed kernel - the Group Automatic Rele-

vance Determination (G-ARD) - to classify personality traits of people from the online

Flickr pictures. The results demonstrated the value of this proposal for SSP: this new

methodology not only can accurately predict the personality traits of the Flickr users,

it also has the major advantage of being able to identify visual characteristics of Flickr

images that mostly influence the personality impression.

3. To examine alternative feature extraction method based on the Hilbert spectrum for

social signal processing. Feature extraction in signal processing is dominated by vari-

ous methods based on short time Fourier transform (STFT). Recently, Hilbert spectral

analysis (HSA), a new representation of signal fundamentally different from STFT, has

been proposed by [131] for signal processing. It is, therefore, proposed to investigate

feature extraction from HSA and its application in social signal processing. In this the-

sis, the extraction of features from the Hilbert spectrum (HS) and STFT of voice data

- fillers (sounds filling a pause in a conversation) of female speakers - was explored.

The resulting features are called HS features and STFT features, respectively. Both the

HS and STFT features were used to predict the Big-Five personality traits [132] of the

female speakers. The results showed that the prediction accuracies achieved using HS

features were competitive with those obtained using STFT features, and suggested an

alternative feature extraction method for social signal processing.



1.2. Thesis Statement 6

1.2 Thesis Statement

GPs have gained popularity in data analysis because of their attractive properties - being non-

parametric enables them to flexibly model data and being probabilistic makes them capable

of quantifying uncertainty. In addition, different from SVM that is widely used in SSP,

the parametrisation of the GP covariance function allows insights into the application under

study. However, inferring GP covariance parameters is particularly challenging since the

computation of their marginal likelihoods is very costly. Traditional inference techniques

for GPs, such as MCMC, have inefficiency problems caused by their rejection of expensive

proposals and potential over-estimation of the marginal likelihood. Although parametric

approaches and SVM have been enormously used in SSP, their inherent limitations make

them less able to model the data effectively. With HSA, despite being a new representation

of signal, its practical application to SSP has never been explored. The core assertion of

this thesis is that, using AMIS for inference of GP covariance parameters can mitigate the

inefficiencies of the MCMC algorithms; GPs with the novel G-ARD kernel offers an efficient

probabilistic framework for SSP which can improve our understanding and interpretation of

human behaviours. HSA can work as a valid alternative to STFT for feature extraction in

social signal processing.

This assertion is supported through a number of experiments. An extensive comparison be-

tween AMIS and MCMC in terms of convergence speed against computational complexity

suggested that AMIS is competitive with MCMC algorithms when calculating expectations

under the posterior distribution over GP covariance parameters. The results showed that

AMIS is a valid alternative to MCMC algorithms even in the case of moderately large dimen-

sional parameter spaces, which is common when employing richly parametrised covariances

(e.g. automatic relevance determination (ARD) covariances [90]). Given that importance

sampling-based inference methods, unlike MCMC algorithms, are inherently parallel, ex-

perimental results in the thesis suggested a promising direction to accelerate the inference of

GP covariance parameters.

When GPs with AMIS are applied to conduct personality inference from the pictures that

users have tagged as favourite on Flickr, aside from the high prediction accuracies achieved,
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the novel G-ARD kernel allows the idenfification of visual characteristics that better account

for the prediction outcome while detecting cultural differences between the UK and Asian

personality assessors.

Using features extracted from the Hilbert spectrum of fillers of female speakers, the predic-

tion accuracies of personality traits of female speakers are comparable with those achieved

using features extracted from conventional STFT output. The results suggested that HSA is

an effective alternative feature extraction approach for SSP.

1.3 List of Contributing Papers

The work described in this thesis has led to one journal paper and one conference paper as

follows:

• X. Xiong, V. Šmídl, and M. Filippone. Adaptive multiple importance sampling for

Gaussian processes. Journal of Statistical Computation and Simulation, 87(8):1644–

1665, 2017

• X. Xiong, M. Filippone, and A. Vinciarelli. Looking good with Flickr Faves: Gaussian

processes for finding difference makers in personality impressions. In Proceedings of

the 2016 ACM on Multimedia Conference, pages 412–415, 2016

Chapters 1 to 5 of this thesis are based on the first paper. Chapter 6 contains elements of the

second paper. The analyses provided in this thesis are expanded treatments of the work in

the papers, together with some additional unpublished research (Chapter 7).

1.4 Main Contributions

The main contributions of this thesis are as follows:

• The application of AMIS to infer GP covariance parameters with any likelihood (Chap-

ter 4).
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• A theoretical analysis of PM-AMIS (Chapter 4).

• An extensive comparison of convergence speed with respect to computational com-

plexity of AMIS versus MCMC methods (Chapter 5).

• An application of PM-AMIS with the novel G-ARD kernel to perform personality

inference from online pictures that has demonstrated the value of the proposed non-

parametric probabilistic framework for SSP (Chapter 6).

• The first experimental exploration of feature extraction from the Hilbert spectrum that

provides an alternative feature extraction method for SSP (Chapter 7).

Table 1.1 illustrates where the work fits in the literature of Bayesian inference for GP covari-

ance parameters and beyond.

Table 1.1 Schematic representation of where the proposed contribution (highlighted
in bold red) fits within the literature.

Inference Models
(Marginal) Likelihood

Reparameterizations
Computable Estimated

MCMC
Others [98] [2] [111]
GPs [99] [40] [42]

AMIS
Others [22] PM-AMIS –
GPs AMIS for GPs –

Notes: This thesis proposes AMIS for Gaussian processes and PM-AMIS and studies its appli-
cation to Gaussian processes; the latter can be employed whenever an unbiased estimate of the
(marginal) likelihood is available. The list of references is not exhaustive but illustrates some of
the key works and reviews in this field.

1.5 Thesis Walkthrough

The rest of the thesis is organised into 7 chapters.

Chapter 2, Bayesian Gaussian Processes, provides an overview of GP in Section 2.1, with

Gaussian likelihood and non-Gaussian likelihood described in Sections 2.1.1 and 2.1.2, re-

spectively. In Section 2.1.2, two popular approximation approaches - Laplace approximation

and expectation propagation - are also described. Section 2.2 presents Bayesian inference
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of GP covariance parameters. In Section 2.3, predictions under Gaussian likelihood and

non-Gaussian likelihood are examined. Section 2.4 concludes Chapter 2.

Chapter3, MCMC methods, reviews the state-of-the-art MCMC methods: slice sampling

(Section 3.1), hybrid Monte Carlo including the No-U-Turn Sampler (Section 3.2), Metropolis-

Hastings (Section 3.3) and pseudo-marginal MCMC (Section 3.4). Section 3.5 concludes

Chapter 3.

Chapter 4, Adaptive Monte Carlo, initially reviews adaptive MCMC in Section 4.1, then

presents AMIS for GPs in Section 4.2. Section 4.3 describes the proposed PM-AMIS. Sec-

tion 4.4 concludes Chapter 4.

Chapter 5, Experiments and Results, reports on the experiments and results of convergence

analysis of AMIS versus MCMC for both the GP regression and classification cases.

Chapter 6, Gaussian Processes for Finding Difference Makers in Personality Impressions -

an Application of PM-AMIS, examines the application of PM-AMIS to personality analysis,

an important area of SSP. Section 6.1 introduces human behaviour analysis from social media

data. Section 6.2 provides an extensive survey conducted on the computational approaches

adopted in personality analysis from social media data. In section 6.3, data used in the

experiments, personality and its assessment are described. Section 6.4 details the feature

extraction from the Flickr pictures. In section 6.5, two classification approaches - PM-AMIS

with the proposed novel G-ARD kernel and SVM, and the experimental setup are described.

Section 6.6 reports on the experiments and results. Section 6.7 concludes Chapter 6.

Chapter 7, Feature Extraction Using Hilbert Spectral Analysis, investigates the application of

HSA to SSP, examining the predictive effect of features extracted from the Hilbert spectrum

of fillers of female speakers. Section 7.1 describes the background of HSA and Section 7.2

presents the HSA algorithm used in the experiments. Section 7.3 reports on the experiments

and results of feature extraction from the Hilbert spectrum. Section 7.4 concludes Chapter 7.

Chapter 8, Conclusions, gives a summary of the results and provides suggestions for future

work.
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Chapter 2

Bayesian Gaussian Processes

This chapter reviews Gaussian processes (GPs) and begins by examining the reason for the

adoption of GP in supervised learning, its definition and two common GP covariance func-

tions in Section 2.1. It describes the marginal likelihoods for the cases of Gaussian and

non-Gaussian likelihoods in Section 2.1.1 and Section 2.1.2, respectively. In Section 2.1.2,

in order to integrate out the latent variables introduced by the non-Gaussian likelihood, two

popular approximation approaches - Laplace approximation (LA) and expectation propaga-

tion (EP) - are also described.

Section 2.2 presents the Bayesian inference of GP covariance parameters; in particular, two

stochastic approaches (based on MCMC and importance sampling) to compute the expecta-

tions under the posterior over GP covariance parameters, which are the focuses of this thesis,

are examined.

Section 2.3 derives the predictive distributions under the GP framework with the cases of

the Gaussian and non-Gaussian likelihoods described in Section 2.3.1 and Section 2.3.2 re-

spectively. In Section 2.3.1, an example of GP regression is also presented, showing GP’s

capability of quantification of uncertainty. In Section 2.3.2, where the likelihood is non-

Gaussian, predictive distribution under deterministic approximations (LA and EP) as well as

a fully Bayesian treatment for prediction, are discussed.

Section 2.4 ends with a summary of this chapter.
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2.1 Gaussian Processes

The core of supervised learning is to find the input-output mappings from the observed data

(in particular training data). Given a training data set, the aim is to find an underlying func-

tion that makes predictions for all possible input values. Two common approaches have been

employed to deal with the problem of supervised learning. The first is to restrict the class of

functions, e.g. by only considering linear mappings between input and output. The drawback

of this approach is its limited expressiveness: we may make wrong assumptions about the

model (e.g. the data cannot be well explained by a linear model but we impose a linear model

on the data) and hence the predictions based on it will be poor. One solution to this problem

is to increase the flexibility of the class of functions, for example, by projecting the inputs

into high dimensional spaces using a set of basis functions. However, there is, therefore the

possible risk of overfitting and it is important to face the problem of how to choose the basis

functions [121].

The other approach takes a Bayesian view and aims to assign a prior probability to a general

class of functions, with higher probabilities given to functions considered to be more likely.

A serious problem with this approach is its computational intractability: there is an infinite

set of possible functions, so it is not possible to compute with this set in finite time. This is

where Gaussian processes come into play. A Gaussian process (GP) is a generalisation of

the Gaussian probability distribution. Compared to a probability distribution, defined over

random variables which are scalars (for univariate distributions) or vectors (for multivariate

distributions), a stochastic process controls the properties of functions. That is, a GP de-

scribes a distribution over functions, where a function can be seen as an infinite dimensional

vector, of which each component specifies the function value f(x) at a particular input x. A

GP framework solves this problem of computational intractability by the attractive consis-

tency property of multivariate Gaussian distribution - the marginal and conditional densities

of a multivariate Gaussian are also Gaussian, which enables us to focus exclusively on the

variables of interest whilst ignoring the rest when making an inference. That is to say, under

the GP framework, an inference achieved by just considering functions evaluated at a finite

number of inputs will be identical to that derived by taking into account the infinitely many

other points.
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A formal definition of GP is given by [121] as follows:

"A Gaussian process is a collection of random variables, any finite number of which have a

joint Gaussian distribution."

Here random variables correspond to the function values f(x) at all possbile locations of x.

A GP is specified by its mean function and covariance function, which are defined by

m(x) = E(f(x)) (2.1)

k(xi,xj) = E
[
(f(xi)−m(xi))(f(xj)−m(xj))

]
where the mean function m(x) is usually taken to be zero for notational simplicity.

Note that the above definition of GP automatically implies the marginalisation property of

eq. (C.4), which means that examination of a larger set of variables does not change the

distribution of a smaller set (see Appendix C).

Here is an example of a supervised learning scenario. Let X be a set of n input vectors

xi ∈ Rd(1 ≤ i ≤ n), and let y be the vector consisting of the corresponding labels yi. In

most GP models, the labels are assumed to be conditionally independent given a set of n

latent variables. Such latent variables are modeled as realisations of a function f(x) at the

input vectors x1, . . . ,xn, i.e. f = {f(x1), . . . , f(xn)}. Latent variables are used to express

the likelihood function, which under the assumption of independence becomes p(y | f) =∏n
i=1 p(yi | fi), where p(yi | fi) depends on the data being modelled (e.g. Gaussian for

regression, Bernoulli for probit classification with probability P (yi = 1) = Φ(f(xi)) where

Φ is defined as the cumulative normal distribution).

What characterises GP models is the way the latent variables are specified. In particular, it is

assumed that the function f(x) is distributed as a GP, which implies that the latent function

values f are jointly distributed as a Gaussian p(f | θ) = N (f | 0, K), where K is the

covariance matrix. The entries of the covariance matrix K are specified by a covariance

(kernel) function with hyperparameters θ. The Gaussian distribution p(f | θ) is usually

called a GP prior. A similarity matrix K is chosen so that, when the approximate functions

are fitted to the data, it is possible to make sure that if two input values are close by, the
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corresponding outputs are also close by.

In this thesis, two different covariance functions have been considered. The first is the radial

basis function (RBF) defined as:

cov(f(xi), f(xj)) = k(xi,xj) = σ exp

{
− 1

τ 2
‖ xi − xj ‖2

}
(2.2)

The parameter τ defines the characteristic length-scale of the interaction between the input

vectors, while σ represents the marginal variance for each latent variable. Note that the

covariance between the outputs (f(xi), f(xj)) is written as a function of the inputs (xi,xj).

It can be shown (see Section 4.3.1 of [121]) that the RBF covariance function corresponds to

a Bayesian linear regression model with an infinite number of basis functions.

The second is the ARD covariance, which takes the form:

cov(f(xi), f(xj)) = k(xi,xj) = σ exp

{
−

d∑
r=1

1

τr2
(xi(r) − xj(r))

2

}
(2.3)

The advantage of the ARD covariance is that it accounts for the influence of each feature on

the mapping between inputs and labels, with smaller values of parameters (τ1, ..., τd) indi-

cating a higher influence of the corresponding features [75]: when the length-scale is very

large, the covariance will become nearly independent of that input, effectively eliminating it

from the inference [121]. For simplicity of notation, in the remainder of the thesis the vector

of all covariance parameters will be denoted by θ.

The length-scale parameters τ (RBF) and τ1, ..., τd (ARD) can be thought of as roughly the

distance to be moved in input space before the function value can change significantly [121].

Figure 2.1 shows the RBF kernel k(x, 0) = exp(−x2

τ2
) with length-scales ranging from 0.2

to 2.0 and three samples drawn from the GP priors with the corresponding length-scales. As

can be seen from the figure, larger length-scales give smoother functions.

When making predictions, using a point estimate of θ has been reported to potentially under-

estimate the uncertainty in predictions or yield inaccurate assessment of the relative influence

of different features [10, 40, 41]. Therefore, a Bayesian approach is usually adopted to over-

come these limitations, which entails characterising the posterior distribution over covariance
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Figure 2.1 Panel (a) RBF kernel k(x, 0) = exp(−x2

τ2
) with different length-scales τ . Panel

(b) shows three samples drawn from the GP priors with the corresponding length-scales.

parameters. In order to do so, it is necessary to employ methods, such as MCMC, that re-

quire computing the marginal likelihood every time θ is updated. It is now time to discuss

the challenges associated with the computation of the marginal likelihood for the particular

case of a Gaussian likelihood and the more general case of non-Gaussian likelihoods.

2.1.1 Gaussian Likelihood

In the GP regression setting, the observations y are modeled to be Gaussian distributed with

a mean of f (latent variables) and covariance λI

p(y | f) = N (y | f , λI) (2.4)

where I denotes the identity matrix, and λ is the variance of the Gaussian noise on the

observations. In this setting, the likelihood p(y | f) and the GP prior p(f | θ) form a

conjugate pair, so latent variables can be integrated out of the model using eq. (C.10), leading

to

p(y | θ) =

∫
p(y | f)p(f | θ)df = N (y | 0, C) (2.5)

where C = K + λI . This yields the log-marginal likelihood

log[p(y|θ)] = −1

2
log |C| − 1

2
y>C−1y + const.
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in closed form. Although computable, the log-marginal likelihood requires computing the

log-determinant ofC and solving a linear system involvingC. These calculations are usually

carried out by factorising the matrix C using the Cholesky decomposition, giving C = LL>,

with L being the lower triangular. The Cholesky algorithm requires O(n3) operations, but

subsequently computing the terms of the marginal likelihood requires at most O(n2) opera-

tions [121].

2.1.2 Non-Gaussian Likelihoods

In the case of non-Gaussian likelihoods, the likelihood p(y | f) and the GP prior p(f | θ)

are no longer conjugate. As a consequence, it is not possible to solve the integral needed to

integrate out the latent variables

p(y|θ) =

∫
p(y|f)p(f |θ)df (2.6)

and this requires an approximation. A notable example is GP probit classification, which is

explored in detail in this thesis. In this case, the observations y are assumed to be Bernoulli

distributed with success probability given by [121]:

p(yi | fi) = Φ(yifi) (2.7)

For GPs with non-Gaussian likelihoods, there have been several proposals on how to carry

out approximation to integrate out the latent variables, or to avoid approximations altogether.

The most popular approximations are the Laplace approximation (LA) [142] and expectation

propagation (EP) [80, 121]. The following sections present a brief introduction of the LA

and EP algorithms.

Laplace Approximation (LA)

The Laplace approximation approximates the target distribution of interest (the unnormalised

posterior p(y | f)p(f | θ) in this case) by a Gaussian. The logarithm of the unnormalised
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posterior is defined as:

Ψ(f) = log p(y | f) + log p(f | θ) (2.8)

After applying a second order Taylor expansion to Ψ(f), the following Gaussian approxima-

tion is obtained:

q(f | θ) = N (f | f̂ , Σ̂) (2.9)

with the mean being the mode of Ψ(f):

f̂ = arg max
f

Ψ(f) (2.10)

and the covariance determined by :

Σ̂ = −(∇f∇fΨ(̂f))−1 (2.11)

that is, minus the inverse Hessian of Ψ(f) evaluated at the mode [142].

Solving the maximisation problem in eq. (2.10) involves an iterative procedure based on the

following Newton-Raphson formula:

fnew = f − (∇f∇fΨ(f))−1∇fΨ(f) (2.12)

Next is the derivation of the gradient (∇fΨ(f)) and Hessian (∇f∇fΨ(f)). Recall that under

the GP assumption, the latent variables f are Gaussian distributed with the density:

p(f | θ) = N (f | 0, K) (2.13)

where K is the covariance matrix with hyperparameters θ. The corresponding logarithm of

p(f | θ) takes the form:

log[p(f |θ)] = −1

2
f>K−1f − 1

2
log |K| − n

2
log 2π (2.14)

where n is the number of data points.

Substituting eq. (2.14) into eq. (2.8) gives:
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Ψ(f) = log p(y | f)− 1

2
f>K−1f − 1

2
log |K| − n

2
log 2π (2.15)

Differentiating eq. (2.15) w.r.t. f gives:

∇fΨ(f) = ∇f log p(y | f)−K−1f (2.16)

∇f∇fΨ(f) = ∇f∇f log p(y | f)−K−1 (2.17)

It should be noted that if the likelihood p(y | f) is log concave, such as the probit likeli-

hood defined in eq. (2.7), the Hessian ∇f∇fΨ(f) will be negative definite. Consequently,

Ψ(f) is concave and has a unique maximum. In practice, when implementing the Newton-

Raphson update in eq. (2.12), the matrix inversion lemma, also known as the Woodbury

formula (eq. (C.13)), is employed to avoid inverting K directly (full details can be found in

Section 3.4 of [121]). In this case, only one O(n3) operation is needed at each iteration for

the n× n matrix factorisation.

The logarithm of the approximate marginal likelihood under Laplace approximation is given

by:

log q(y | X,θ) = −1

2
f̂>K−1f̂ + log p(y | f̂)− 1

2
log
∣∣ I +W

1
2KW

1
2

∣∣ (2.18)

where W = −∇f∇f log p(y | f̂).

One drawback of Laplace approximation is that the Hessian (∇f∇fΨ(̂f)) may give a poor

approximation of the true shape of the target distribution (the posterior). Laplace approxi-

mation assumes the posterior has elliptical contours, while the peak of it could be skewed,

or could be much narrower or broader than indicated by the Hessian [121].

Expectation Propagation (EP)

Expectation Propagation makes the assumption that each probit likelihood can be approxi-

mated by a local likelihood approximation, an unnormalised Gaussian function of fi in the
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form:

p(yi | fi) ' ti(fi | Z̃i, µ̃i, σ̃i2) = Z̃iN (fi | µ̃i, σ̃i2) (2.19)

where Z̃i, µ̃i, σ̃i2 are site parameters.

Approximating each individual term of the likelihood by a Gaussian implies the approximate

likelihood is a multivariate Gaussian:

N (f | µ̃, Σ̃)
n∏
i=1

Z̃i (2.20)

with µ̃i = µ̃i and Σ̃ii = σ̃i
2.

With this approximation, the posterior p(f | y,θ) is approximated by a Gaussian:

q(f | y,θ) = N (µ,Σ) with (2.21)

µ = ΣΣ̃−1µ̃ and Σ = (K−1 + Σ̃−1)−1

Following the Gaussian identity of eq. (C.4), the marginal approximate postetior is given by

q(fi | y,θ) = N (fi | µi, σ2
i ) (2.22)

where µi = µi and σ2
i = Σii.

The main characteristic of the EP alogorithm is the way the site parameters Z̃i, µ̃i, σ̃i2 are

optimised. Looping through the n factors approximating the likelihood, the EP algortihm

optimises the three parameters of each factor ti sequentially. Specifically, the optimisation

involves the iteration of the following three steps. First, compute the approximate cavity

distribution by leaving out the ith factor from q(f | y,θ):

q−i(fi | y,θ) =

∫
p(f | y,θ)

∏
j 6=i

t(fj)dfj ∝ N (fi | µ−i, σ2
−i) (2.23)
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Multiplying both sides of eq. (2.23) by t(fi) gives

q−i(fi | y,θ)t(fi) =

∫
p(f | y,θ)

∏
j 6=i

t(fj)t(fi)dfj ∝ N (fi | µi, σ2
i ) (2.24)

Gaussian identity of eq. (C.6) gives the parameters:

µ−i = σ2
−i(σ

−2
i µi − σ̃−2

i µ̃i) and σ2
−i = (σ−2

i − σ̃−2
i )−1 (2.25)

Secondly, find the Gaussian marginal (unnormalised) which closely approximates the prod-

uct of the cavity distribution and the exact ith likelihood:

q̂(fi) = ẐiN (fi | µ̂i, σ̂2
i ) ' q−i(fi)p(yi | fi) (2.26)

The parameters of q̂(fi) are found by minimising the Kullback-Leibler divergence :

KL
(
q−i(fi)p(yi | fi)

∣∣∣∣∣∣ q̂(fi)) (2.27)

which in practice is achieved by means of moments matching. In particular, Ẑi, µ̂i, σ̂2
i

corresponds to the zero-th, first and second moments of q−i(fi)p(yi | fi), respectively. The

derivation of the moments can be found in Section 3.9 of [121]. The corresponding moments

of the posterior marginal are

Ẑi = Φ(zi) µ̂i = µ−i +
yiσ

2
−iN (zi)

Φ(zi)
√

1 + σ2
−i

(2.28)

σ̂2
i = σ2

−i −
σ4
−iN (zi)

(1 + σ2
−i)Φ(zi)

(
zi +

N (zi)

Φ(zi)

)
with zi =

yiµ−i√
1 + σ2

−i

Thirdly, update the parameters of ti as follows:

µ̃i = σ̃2
i (σ̂
−2
i µ̂i − σ−2

−i µ−i) σ̃2
i = (σ̂−2

i − σ−2
−i )
−1 (2.29)

Z̃i = Ẑi
√

2π
√
σ2
−i + σ̃2

i exp
(1

2
(µ−i − µ̃i)2

/
(σ2
−i + σ̃2

i )
)
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Equation (2.29) can be verified by multiplying the cavity distribution q−i(fi) by the local

likelihood approximation ti using eq. (C.6) to obtain eq. (2.28).

One iteration of the above three steps requires five operations in O(n3), which makes EP

approximation computationally expensive.

The logarithm of the approximate marginal likelihood under EP approximation takes the

form:

log q(y | X,θ) = −1

2
log |K + Σ̃| − 1

2
µ̃T(K + Σ̃)−1µ̃ (2.30)

+
n∑
i=1

log Φ(
yiµ−i√
1 + σ2

−i
) +

1

2

n∑
i=1

log(σ2
−i + σ̃2

i ) +
n∑
i=1

(µ−i − µ̃i)2

2(σ2
−i + σ̃2

i )

Although the EP algorithm is not guaranteed to converge in general, it has been reported

that EP always converges for Gaussian process classification with probit likelihood [80], and

no convergence issues have been reported in the literature [40]. Furthermore, despite the

high computational cost involved, EP is usually the preferred method in terms of accuracy

compared to other approximation approaches [104].

As this thesis focuses on stochastic methods (based on MCMC and importance sampling)

to integrate out the latent variables and covariance parameters, the following section will

consider these two stochastic approaches.

2.2 Bayesian Inference of Covariance Parameters

For simplicity of notation, the posterior distribution over covariance parameters is denoted

by:

π(θ) := p(θ|y,X) =
p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

(2.31)

where p(θ) encodes any prior knowledge on the parameters θ. Within the Bayesian frame-

work, there is usually interest in calculating expectations of functions of θ with respect to

the posterior distribution, i.e. Eπ(θ)[h(θ)]. For instance, setting h(θ) = p(y? | θ,x?,y,X)

obtains the predictive distribution for the label y? associated with a new input vector x?.

The denominator needed to normalise the posterior distribution π(θ) is intractable, so it is
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not possible to characterise the posterior distribution analytically. Despite this complication,

it is possible to resort to a Monte Carlo approximation to compute expectations under the

posterior distribution of θ:

Eπ(θ)[h(θ)] ' 1

N

N∑
i=1

h(θ(i)) (2.32)

where θ(i) denotes the ith of N samples from π(θ). However, as it is generally not feasible

to draw samples from π(θ) directly, it is necessary to resort to MCMC methods to generate

samples from the posterior π(θ).

An alternative way to compute expectations is by means of importance sampling, which

takes the following form:

Eπ(θ)[h(θ)] =

∫
h(θ)

π(θ)

q(θ)
q(θ)dθ (2.33)

where q(θ) is the importance distribution. The corresponding Monte Carlo approximation is

of the form:

Eπ(θ)[h(θ)] ' 1

N

N∑
i=1

h(θ(i))
π(θ(i))

q(θ(i))
(2.34)

where the samples θ(i) are now drawn from the importance sampling distribution q(θ). The

key to making this Monte Carlo estimator accurate is to choose q(θ) to be similar to the

function that needs to be integrated, that is h(θ)π(θ). It is easy to verify that when this is the

case, the variance of the importance sampling estimator is zero. Therefore, the success of

importance sampling relies on constructing a tractable importance distribution q(θ) that well

approximates h(θ)π(θ). In the remainder of this thesis, methods that adaptively construct

q(θ) are studied and evaluated.

Both Monte Carlo approximations in eq. (2.32) and eq. (2.34) converge to the desired ex-

pectation, and in practice, they can estimate the desired integral to a given level of preci-

sion [51, 44]. The experimental part of this thesis (Chapter 5) is devoted to the study of

the convergence properties of the expectation Eπ(θ)[h(θ)] with respect to the computational

effort needed to carry out the Monte Carlo approximations in eq. (2.32) and eq. (2.34).

As the general task in supervised learning is to compute the expectations with respect to the
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predictive distribution for the output label y? given a new input x?, the following section

will present the predictive distributions under the GP framework. In particular, predictive

distributions with the Gaussian and non-Gaussian likelihoods will be discussed, respectively.

2.3 Predictions

2.3.1 Predictions Under Gaussian Likelihood

Given a new input x? with the corresponding label y?, following eq. (2.5) gives:

p(y, y? | θ) = N (y, y? | 0, C ′) (2.35)

where C ′ can be partitioned into

C ′ =

 C k?

k?
> c??

 (2.36)

with c?? = k(x?,x?) + λ and k? being the vector with elements k(xi,x?) for i = 1, ..., n.

Following the Gaussian identity of eq. (C.5) gives:

p(y? | y,θ) = N (y? | µ?, β2
?) with (2.37)

µ? = k?
>C−1y and β2

? = c?? − k?
>C−1k?

Next is an example of GP regression where the likelihood is Gaussian.

Figure 2.2 shows samples drawn from a GP prior and posterior resulting from a GP regres-

sion. Panel (a) shows the zero mean function (represented by the solid blue line) of the prior

and two functions (denoted by the red and green lines) drawn at random from the prior. Panel

(b) shows the predictive mean function (represented by the solid blue line) of the posterior

and two random functions (denoted by the red and green lines) drawn from that posterior, i.e.

the prior conditioned on the ten noisy observations indicated by the black dots. In both plots

the shaded area represents the pointwise mean plus and minus twice the standard deviation
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at each input value (corresponding to the 95% confidence region). The effectiveness of the

Bayesian treatment can be seen from the figure: the uncertainty is significantly reduced close

to the observations while the error bars grow rapidly away from the data points.

0.0 0.2 0.4 0.6 0.8 1.0

input, x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

o
u
tp

u
t,

 f
(x

)

(a) Prior

mean

sample 1

sample 2

0.0 0.2 0.4 0.6 0.8 1.0

input, x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

o
u
tp

u
t,

 f
(x

)

(b) Posterior

mean

sample 1

sample 2

observed data

Figure 2.2 Panel (a) shows the zero mean function of the GP prior and two samples drawn
at random from the prior. Panel (b) shows the situation after ten noisy datapoints have been
observed. In both plots the shaded area denotes the pointwise mean plus and minus twice
the standard deviation for each input value (corresponding to the 95% confidence region).

2.3.2 Predictions Under non-Gaussian Likelihood

As discussed earlier (Section 2.1.2), in the case of non-Gaussian likelihood, it is possible to

resort to deterministic approximations such as LA and EP to obtain an approximate posterior

of latent variables in order to exploit conjugacy. In the following section, how to derive the

predictive distribution under such deterministic approximations will be examined.

Predictive distribution under deterministic approximations

The predictive distribution with respect to the approximate posterior q(f | y,θ) in the case

of Gaussian process classification is given by

p(y? | y) =

∫
p(y? | f?)p(f? | f ,θ)q(f | y,θ)df?df (2.38)

where θ can be obtained by optimising the logarithm of the approximate marginal likelihood

defined in eq. (2.30) and eq. (2.18) with respect to θ or a sample from the approximate

posterior up to a normalising constant q(y | X,θ)p(θ) using MCMC techniques.
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Let K be the covariance matrix of the Gaussian prior evaluated at θ, k? be the vector the ith

element of which is k(xi,x? | θ) and k?? = k(x?,x? | θ) where k is the kernel function

defined in eq. (2.2) or eq. (2.3). According to GP definition, this gives

p(f , f? | θ) = N (f , f? | 0, K ′) (2.39)

where K ′ can be partitioned as follows:

K ′ =

 K k?

k?
> k??

 (2.40)

Then the Gaussian identity of eq. (C.5) gives:

p(f? | f ,θ) = N (f? | µ?, β2
?) with (2.41)

µ? = k?
>K−1f and β2

? = k?? − k?
>K−1k?

When q(f | y,θ) is approximated by a Gaussian N (µq,Σq) using the above LA or EP

approximation (see Section 2.1.2), the integration with respect to f can be performed analyt-

ically (see Sections 3.4.2 and 3.6.1 of [121] for full details), yielding

p(f? | θ) = N (f? | m?, s
2
?) with (2.42)

m? = k?
>K−1µq s2

? = k?? − k?
>K−1k? + k?

>K−1ΣqK
−1k?

Consequently the univariate integration with respect to f? is computed as:

∫
p(y? | f?)N (f? | m?, s

2
?)df? = Φ

( m?√
1 + s2

?

)
(2.43)

Compared to using deterministic approximations to integrate out latent variables when mak-

ing predictions, a fully Bayesian treatment for prediction will now be described.
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Fully Bayesian treatment for prediction

A fully Bayesian treatment aims to integrate out latent variables (f ) and hyperparameters (θ)

of the covariance matrix of the GP prior:

p(y? | y) =

∫
p(y? | f?)p(f? | f ,θ)p(f ,θ | y)df?dfdθ (2.44)

Define h(θ, f) =
∫
p(y? | f?)p(f? | f ,θ)df?. As f? is distributed as a Gaussian in the form

of eq. (2.41), it can be integrated out analytically. Therefore, there are two ways to compute

the expectation p(y? | y) in eq. (2.44). One way is to use MCMC methods to sample from

the posterior p(f ,θ | y) and compute the Monte Carlo estimate using eq. (2.32). The other

is to use importance sampling to compute the Monte Carlo estimate using eq. (2.34).

However, it is not feasible to sample from the posterior p(f ,θ | y) by joint proposals because

"it is extremely unlikely to propose a set of latent variables and hyperparameters that are

compatible with each other and observed data" [40]. By employing

p(f ,θ | y) = p(f | θ,y)p(θ | y) (2.45)

it is possible to solve this problem by first sampling θ from p(θ | y) and then sampling f

from p(f | θ,y) using MCMC or importance sampling.

2.4 Conclusion

In this chapter, there has been a description of the principle of Gaussian processes including

two common covariance functions which are considered in this thesis. There has been a

discussion of the computational challenges encountered when calculating the marginal like-

lihoods for the cases of both the Gaussian and non-Gaussian likelihoods. In the case of

non-Gaussian likelihood, each iteration of the EP and LA algorithms needed to integrate out

the latent variables requires five and one O(n3) operations respectively, further increasing

the computational cost. The MCMC-based and importance sampling-based Monte Carlo

approximations needed when conducting Bayesian inference of GP covariance parameters
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have also been introduced. Finally, the predictive distributions in cases of Gaussian and non-

Gaussian likelihoods have been derived. In the case of Gaussian likelihood, an example has

been given showing the samples drawn from a GP prior and posterior respectively. In the

case of non-Gaussian likelihood, the predictive distribution under deterministic approxima-

tions and a fully Bayesian treatment for prediction have been discussed.

This thesis focuses on stochastic approaches to compute the expectations under the posterior

over GP covariance parameters, which are normally carried out by means of MCMC algo-

rithms. The following will discuss the state-of-the-art MCMC approaches. However, as will

be seen in Chapter 3, MCMC algorithms require repeated expensive computations of the

marginal likelihood and the rejection of proposals leads to a waste of computations. In order

to avoid the inefficiencies of MCMC algorithms, in Chapter 4, there will be a brief review

of the adaptive MCMC approaches, and an exploration of the idea of using adaptive mul-

tiple importance sampling algorithms (AMIS) [22] to infer GP covariance parameters for

the particular case of Gaussian likelihood; there will also be an examination of the pseudo-

marginal AMIS proposed for the more general case of non-Gaussian likelihood. In chapter

5, there will be a report on the experiments and results of convergence analysis of AMIS

versus MCMC for both the GP regression and classification cases. Chapter 6 presents an

application of the pseudo-marginal AMIS for a personality classification problem in social

signal processing.
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Chapter 3

MCMC Methods

As described in Chapter 2, Markov chain Monte Carlo (MCMC) methods are normally em-

ployed to solve the intractability problem when inferring GP covariance parameters. This

chapter will see a review of the state-of-the-art MCMC algorithms. Section 3.1 examines the

slice sampling algorithms [100]. Section 3.2 discusses the hybrid Monte Carlo (HMC) ap-

proach [33, 98], with descriptions of its variants (No-U-Turn Sampler and No-U-Turn Sam-

pler with Dual Averaging [66]) in Section 3.2.1 and Section 3.2.2 respectively. Section 3.3

describes the Metropolis-Hastings algorithms [62, 95]. The foregoing MCMC algorithms to

draw samples from the posterior over GP covariance parameters require the marginal likeli-

hood to be computed exactly, that is, the likelihood is Gaussian. In order to deal with cases

where the marginal likelihood is non-Gaussian, it is possible to resort to the pseudo-marginal

MCMC approach (in particular the pseudo-marginal MH in this thesis), which is described

in Section 3.4. Section 3.5 concludes this chapter.

3.1 Slice Sampling - SS

Slice sampling [100], is a method in which the joint probability density of the auxiliary

variable u and parameters of interest θ takes the form π(θ, u), such that

π(θ, u) =

 1/C if 0 < u < f(θ)

0 otherwise
(3.1)
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where C =
∫
f(θ)dθ, and f(θ) = p(y | θ)p(θ), i.e the posterior up to a constant defined

in eq. (2.31) (this definition of f(θ) will apply in the remainder of this chapter). Then the

marginal distribution for θ is given by:

π(θ) =

∫ f(θ)

0

(1/C)du = f(θ)/C (3.2)

as desired. To sample from the target distribution π(θ), it is possible to sample from π(θ, u)

and then ignore u. Specifically, this is done by alternating uniform sampling of u from the

vertical interval from 0 to the density f(θ) evaluated at the current state, with uniform sam-

pling of θ from the union of intervals which are the horizontal "slices" defined by the vertical

position. Single-variable slice sampling is easily implemented and one can do component-

wise univariate slice sampling for a multivariate distribution by updating each variable in

turn. This approach is reported in [100] to be easier to implement than Gibbs sampling and

be able to sample more efficiently than simple Metropolis scheme, because of its ability to

adaptively choose the scale of changes appropriate to the region of the target distribution be-

ing sampled. For example, if the rough guess at the initial interval (an estimate for the scale

of the horizontal slice) is too small compared to the true width of the target density, it can be

expanded by "stepping out" or "doubling", whereas if the initial interval is too large, it can

be shrunk by an efficient shrinkage procedure. More elaborate multivariate slice samplers

can not only adapt to the scale of variables, but also to the dependencies between variables.

Sampling efficiency can also be improved by the "over-relaxed" univariate slice sampling

and the "reflective" multivariate slice sampling that can suppress random walks. Algorithm

1 gives the univariate slice sampling algorithms.

Algorithm 1 Univariate SS, adapted from [100].

Given θ = the current point, f(θ), w = estimate of the typical size of the step (horizontal

slice) for creating interval

• The "stepping out" procedure for finding an interval around the current point:

1. Determine the random vertical position v = u1f(θ) with u1 ∼ U[0,1]

2. Randomly place the interval around the current point
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[θmin,θmax]← [θ − u2,θ + (w − u2)] with u2 ∼ U[0,w]

3. Expand the interval by "stepping out" until its ends are outside the slice:

whilef(θmin) > v: θmin ← θmin − w

whilef(θmax) > v: θmax ← θmax + w

• The "shrinkage" procedure for sampling from the interval:

4. Repeat:

Sample a new point θ′ ∼ U[θmin,θmax]

if f(θ′) > v, accept θ′ then exit loop

else shrink the interval [θmin,θmax]

if θ′ < θ, θmin ← θ′ else θmax ← θ′

3.2 Hybrid Monte Carlo - HMC

HMC [33, 98] originated from Physics, where the Hamiltonian dynamics function is defined

by the sum of a potential energy function of the position vector and a kinetic energy function

of the momentum vector. When HMC is applied to obtaining samples from a target distribu-

tion, the parameters of interest θ, take the role of the position, and an auxiliary "momentum"

variable p, which is commonly assumed to be independently drawn fromN (p | 0,M), needs

to be introduced. Thus the extended target distribution π(θ,p) up to a constant takes the form

exp(L(θ)− 1
2
pTM−1p) where L(θ) is the logarithm of f(θ), i.e., L(θ) = log[f(θ)]. Con-

sequently, the minus logarithm of the augmented target distribution plus some constant will

give an analogy with the Hamiltonian:

H(θ,p) = −L(θ) +
1

2
pTM−1p + const. (3.3)

where −L(θ) is the potential energy and 1
2
pTM−1p is the kinetic energy.
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Generating a new sample of parameters by HMC involves three steps, as reported in Algo-

rithm 2. The first is to draw p randomly fromN (p | 0,M), then to propose a new θ(L),p(L)

through a number of L reversible leapfrog steps (with step-size ε) that follow the Hamil-

tonian dynamics scheme. The leapfrog integrator (described by the Leapfrog function in

Algorithm 2) gives the discrete-time simulation of the Hamiltonian dynamics scheme. As a

result of this approximation by discretion, the energy is no longer conserved. Therefore, to

ensure HMC samples from the correct invariant distribution, a Metropolis accept/reject step

to accept the proposed θ(L),p(L) with probability min
{

1, exp(−H(θ(L),p(L)) +H(θ,p))
}

is needed in the last step of HMC. The step-size ε and the number of steps L are often chosen

randomly to ensure ergodicity, and exploiting the gradient gives HMC one major advantage

of avoiding the random walk behaviour that occurs in MH.

Because of the "shear" transformations in the Leapfrog function, where the update of one

variable θ depends only on the other unchangeable variable p [101], the leapfrog integrator

is volume-preserving. The crucial property of reversibility and preservation of volume of

HMC makes the Metropolis proposal valid and hence ensures sampling from the invariant

target distribution of interest. Another benefit of HMC is its better scalability with dimen-

sionality compared to simple Metropolis approaches, details of which can be found in [101].

The choice of the number of steps L and step-size ε can heavily affect the performance of

HMC; thus careful tuning of these two parameters is usually needed when applying HMC.

Using knowledge of scales and correlation of the position variables can also improve the per-

formance of HMC [101]. Specifically, this is achieved by transforming the position variables

θ to L−1θ or using a mass matrix M = Σ−1 or (diag(Σ))−1, where Σ denotes the estimate

of the covariance of θ, and L denotes the lower triangular of the Cholesky decomposition of

Σ. There will now be a discussion of NUTS which automatically tunes ε, L.

Algorithm 2 HMC.

Given θ = the current point,L(θ), ε = step-size,M = mass matrix, L = sample[1, ..., Lmax],

∇θ = gradient with respect to θ

1. Sample p ∼ N (0,M)
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2. Set θ′, p′ ← Leapfrog(θ,p, ε)

for i = 2 to L do

Set θ′, p′ ← Leapfrog(θ′,p′, ε)

end for

3. Draw u ∼ U[0,1]

if u < min
{

1, exp(−H(θ(L),p(L)) +H(θ,p))
}

, return θ′

else return θ

function Leapfrog(θ,p, ε)

Set p′ = p + ε
2
∇θL(θ)

Set θ′ = θ + εM−1p′

Set p′ = p′ + ε
2
∇θL(θ′)

return θ′,p′

3.2.1 No-U-Turn Sampler - NUTS

As mentioned above, the performance of HMC can be significantly influenced by the choice

of ε and L. Too large an ε will lead to a very low acceptance rate, whereas too small an

ε will result in waste of computation time and also the risk of undesirable random walk

when L is not large. Choosing L can be problematic as well. When L is too large, by

taking too many steps or looping back to where the position variable was before, it will

waste a lot of expensive computations. When L is too small, the resulting random walk

behaviour will cause slow exploration of the state and thus poor-mixing of the samples.

Therefore, [66] introduced NUTS, an extension to HMC, which is tuning-free in the sense

that it eliminates the need to choose the number of L and automatically sets the parameter

ε. NUTS begins with a slice sampling step, where a slice variable u is drawn uniformly

from the interval [0, exp(L(θ) − 1
2
pTM−1p)], where θ denotes the current sample and p

is randomly drawn from N (p | 0,M). This gives the conditional distribution π(θ,p |

u) ∼ U(θ,p | {θ′,p′ | exp(L(θ) − 1
2
pTM−1p) ≥ u}), where θ′,p′ denote the proposed

position and momentum respectively. Then the leapfrog integrator is used to build up a
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trajectory that doubles the previous steps (either forwards or backwards) continuously. By

doing this an implicit balanced binary tree is built with each leaf node corresponding to the

position-momentum variables. The doubling stops when the subpath from the leftmost to the

rightmost nodes of any balanced subtree of the whole binary tree starts to make a "U-turn",

that is, the samples start to retrace their steps. The proposed position-momentum variables

are sampled incrementally from the subtree during the doubling process, and a transition

kernel that leaves the target distribution invariant is used at the end of the simulation to

accept/reject the proposed new samples. In this way there is no need to choose the number

of steps L. For a detailed description of the pseudo code of NUTS algorithm please refer to

Algorithm 3 in [66].

3.2.2 No-U-Turn Sampler with Dual Averaging - NUTSDA

To address the issue of setting the step-size ε, [66] adopts an adaptation of the stochastic

optimisation with a dual averaging scheme of [102], which takes the following form:

εt+1 ← log ε1 −
√
t

γ

1

t+ t0

t∑
i=1

Hi

εt+1 ← t−κ log εt+1 + (1− tκ) log εt

where t denotes the number of iterations; ε1 is the initial value of epsilon, found by the

heuristic that aims to obtain an acceptance rate of 0.5 using the Langevin proposal with step-

size ε1; γ > 0, t0 > 0 are free parameters that determine the shrinkage towards log ε1 and

the stabilisation of the initial iterations respectively; Ht = δ − HNUTS , with δ denoting

the desired target mean acceptance rate, HNUTS being the average acceptance rate during

the final iteration of doubling. The term t−κ(κ ∈ (0.5, 1]) is chosen to ensure the averaged

value εt converges to a value for large t and hence the expectation of Ht (function of εt)

converges to 0. For a full description of the pseudo code of NUTSDA algorithm please refer

to Algorithm 6 in [66].
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3.3 Metropolis-Hastings - MH

The Metropolis-Hastings algorithms [62, 95] samples from f(θ) by repeatedly considering

randomly generated samples [98] and accepting the proposed moves with probability

min

{
1,
f(θ′)q(θ | θ′)
f(θ)q(θ′ | θ)

}
(3.4)

where q(.) is the proposal distribution, θ′ denotes the proposed new sample, and θ denotes

the current sample. The proposal distribution q(.) is commonly chosen to be a succession of

random multivariate Gaussian of the form q(θ′ | θ) ∼ N (θ′ | θ,Σ) with mean θ being the

former state, and covariance Σ. Because of the symmetric property of q(.), the acceptance

function reduces to the form min
{

1, f(θ′)
f(θ)

}
. This generalises to other symmetric proposals.

Tuning the MH involves a proper choice of the covariance Σ. However, as noted in [42], it is

not trivial to select the right covariance as information about the desired target distribution is

required in most cases. Very small values of Σ will cause slow convergence to the stationary

state, whereas very large ones will lead to chains getting stuck in certain regions of the

space. Ways to optimally tune the MH algorithms have been proposed in [50, 126, 127].

Approaches on adaptively tuning MH have also been reported in [58, 59, 60]. Algorithm 3

gives the pseudo code of the generic MH algorithm.

Algorithm 3 Generic MH.

Given current pair (θ, f(θ))

1. Draw θ′ from the proposal distribution q(θ′ | θ)

2. Compute A = min
{

1, f(θ′)q(θ|θ′)
f(θ)q(θ′|θ)

}
3. Draw u from U[0,1]

4. if u < A, return (θ′, f(θ′)), else return (θ, f(θ))
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In cases where the likelihood p(y | θ) cannot be computed analytically, it is possible to

replace f(θ) with an unbiased estimate f̃(θ) to give the pseudo-marginal MH (PM-MH)

transition operator [40], which will be discussed in the next section.

3.4 Pseudo-Marginal MCMC for Inference of Covari-

ance Parameters

Standard MCMC algorithms to draw from the posterior π(θ) require the exact calculation

of the marginal likelihood and the gradient of its logarithm. When the likelihood is not

Gaussian, computing the expectation with respect to the posterior - defined in eq. (2.32) -

is not feasible because of the inability to exactly calculate the marginal likelihood. In cases

where the marginal likelihood can be unbiasedly estimated, it is possible to resort to pseudo-

marginal MCMC approaches. Taking the Metropolis-Hastings algorithm as an example, it is

possible to replace the exact calculation of the Hastings ratio

f(θ′)

f(θ)
=
p(y | θ′)p(θ′)
p(y | θ)p(θ)

(3.5)

with an approximation where the marginal likelihood is unbiasedly estimated:

f̃(θ′)

f̃(θ)
=
p̃(y | θ′)p(θ′)
p̃(y | θ)p(θ)

(3.6)

where p̃(y | θ) denotes such an approximation. Interestingly, the introduction of this ap-

proximation does not affect the properties of the MCMC approach and it still yields samples

from the correct posterior π(θ). The effect of introducing this approximation, however, is

that the efficiency of the corresponding MCMC approach is reduced; this is as a result of

the possibility that the algorithm accepts a proposal with a largely overestimated value of the

marginal likelihood, making it difficult for any new proposals to be accepted.

By inspecting the GP marginal likelihood

p(y | θ) =

∫
p(y | f)p(f | θ)df (3.7)
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it is, therefore, possible to attempt to unbiasedly estimate this integral using importance

sampling:

p̃(y | θ) ' 1

Nimp

Nimp∑
i=1

p(y | fi)p(fi | θ)

q(fi | y,θ)
(3.8)

Here Nimp is the number of samples fi drawn from the importance density q(f | y,θ). The

motivation for attempting this approximation is to leverage the various successful attempts

that construct accurate approximations to the posterior distribution over the latent variables

p(f |y,θ) ∝ p(y | f)p(f | θ). The accuracy of the approximations to the posterior over latent

variables directly affects the accuracy of the importance sampling estimates of the marginal

likelihood. Despite introducing some noise in the calculation of the Hastings ratio, the result-

ing MCMC approach has been shown to yield state-of-the-art performance in sampling from

the posterior over GP covariance parameters [40]. This thesis investigates approximations

q(f | y,θ) to the posterior obtained by the Laplace approximation (LA) and expectation

propagation (EP) algorithms as discussed in Section 2.1.2.

3.5 Conclusion

This chapter examined the popular MCMC algorithms; that is, slice sampling, hybrid Monte

Carlo including NUTS and NUTSDA, Metropolis-Hastings (MH), pseudo-marginal MCMC

with an example of pseudo-marginal MH. These MCMC approaches are usually exploited

to sample from the posterior over GP covariance parameters. However, here the MCMC

algorithms involved repeated computations of the marginal likelihood, which are expensive

in the context of Gaussian processes as discussed in Chapter 2. Accordingly, their rejec-

tion of proposals at each iteration causes a waste of expensive computations. In addition, in

cases where the likelihood is non-Gaussian and hence pseudo-marginal MCMC is employed,

further inefficiencies will occur because when a proposal is accepted with an overestimated

marginal likelihood, it becomes difficult for the chain to accept any other proposal. There-

fore, in the following chapter, alternative sampling approaches within the GP framework

aiming to avoid the inefficiencies of the MCMC algorithms will be explored.



36

Chapter 4

Adaptive Monte Carlo

The last chapter reviewed the MCMC algorithms and analysed the inefficiencies arising from

their use when sampling from the posterior over GP covariance parameters. In order to

avoid such inefficiencies of the MCMC algorithms, this chapter will explore alternative in-

ference framework for Gaussian processes based on adaptive multiple importance sampling

(AMIS) [22].

Section 4.1 briefly reviews early attempts to introduce adaptation mechanism to improve the

sampling efficiency of MCMC. Despite this improved efficiency, the adaptive MCMC suffers

from the ergodicity issues: the resulting chain is no longer Markovian.

Section 4.2 describes the AMIS algorithm that is able to mitigate the ergodicity issues of the

adaptive MCMC, with a modified version of AMIS (called MAMIS in this thesis), which

aims to solve the consistency problem of AMIS, described in Section 4.2.1. This thesis is the

first attempt to explore AMIS and MAMIS to sample from the posterior over GP covariance

parameters.

Section 4.3 proposes the pseudo-marginal AMIS for the case of non-Gaussian likelihood

where the marginal likelihood is unbiasedly estimated and never computed exactly. In this

section, there is a theoretical analysis showing the unbiasedness properties of expectations

computed by the proposed pseudo-marginal AMIS.

Section 4.4 concludes this chapter.
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This chapter together with the following chapter (5), which reports on the experiments and

results of convergence analysis of AMIS versus MCMC for both the GP regression and

classification cases, are the main contributions of this thesis. The contents of these two

chapters have been published in:

• X. Xiong, V. Šmídl, and M. Filippone. Adaptive multiple importance sampling for

Gaussian processes. Journal of Statistical Computation and Simulation, 87(8):1644–

1665, 2017

4.1 Introduction

Inefficiencies arising from the use of MCMC methods to sample from the posterior dis-

tribution over covariance parameters are because several proposals have been rejected. To

mitigate this issue, some adaptation mechanisms of the proposals have been developed in

recent years.

Two adaptation criteria are very common in the literature. One is the optimal acceptance

probability, where the size and shape of the proposal distribution is scaled according to an

optimal acceptance rate [50, 126]. However, as noted in [58], the hand-tuning is time con-

suming as the acceptance probability does not take into account the shape of the target dis-

tribution and can be difficult when the parameters are of different scales and correlated. To

avoid this difficulty, other adaptation schemes employ moment matching, where moments

of the proposal distribution (e.g. mean and covariance) are matched with those of the target

distribution [58, 59]. A further approach to adaptation takes advantage of the regeneration of

the chain [53, 130]. The work in [1] proposes a general adaptation framework using stochas-

tic approximation schemes to learn the optimal parameters of the proposal distribution for

several statistical criteria. However, devising valid adaptive MCMC methods is generally

difficult in practice [1, 60].
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4.2 Adaptive Multiple Importance Sampling for Gaus-

sian Processes

The difficulty of devising adaptive MCMC approaches lies in that the chain resulting from

the adaptivity is no longer Markovian, and thus more elaborate ergodicity results are needed

to establish convergence to the true posterior distribution [1, 58, 59].

In response to this, Cappe et al. [14] proposed a universal adaptive sampling scheme called

population Monte Carlo (PMC), where the difference from sequential Monte Carlo (SMC) [32]

is that the target distribution becomes static. This method is reported to have better adaptiv-

ity than MCMC since the use of importance sampling removes the issue of ergodicity. At

each iteration of PMC, the Sampling Importance Resampling (SIR) [128] particle filter is

used to generate samples that are assumed to be marginally distributed from the target dis-

tribution and hence, the approach is unbiased and can be stopped at any time. Moreover, the

importance distribution can be adapted using part (generated at each iteration) or all of the

importance sample sequence. Douc et al. [30, 31] also introduced updating mechanisms for

the weights of the mixture in D-kernel PMC which leads to a reduction either in Kullback

divergence between the mixture and the target distribution or in the asymptotic variance for a

function of interest. An earlier adaptive importance sampling strategy was proposed in [106].

Cornuet et al. [22] proposed a new perspective of adaptive importance sampling (AIS), called

adaptive multiple importance sampling, which differs from the aforementioned PMC meth-

ods because the importance weights of all simulations, produced previously as well as cur-

rently are re-evaluated at each iteration. This method follows the ’deterministic multiple

mixture’ sampling scheme of [110]. The corresponding importance weight takes the form

wti = f(θti)/
1∑T−1

t=0 Nt

T−1∑
t=0

Ntqt(θ
t
i; γ̂t) (4.1)

where T is the total number of iterations, f(·) denotes the target distribution π(·) up to a

constant, i.e., π(·) ∝ f(·), qt(·) denotes the importance density at iteration twith sequentially

updated parameters γ̂t and θti are samples drawn from qt(·) with 0 ≤ t ≤ T −1, 1 ≤ i ≤ Nt.
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The fixed denominator in eq. (4.1) is called ’deterministic multiple mixture’. The motiva-

tion is that this construction can achieve an upper bound on the asymptotic variance of the

estimator without rejecting any simulations [110]. In AMIS, the parameters γ of a para-

metric importance function qt(θ;γ) are sequentially updated using the entire sequence of

weighted importance samples, based on efficiency criteria such as moment matching, min-

imum Kullback divergence with respect to the target, or minimum variance of the weights

(see, e.g. [109] for stochastic gradient-based optimisation of these efficiency criteria). This

leads to a sequence of importance distributions, q1(θ; γ̂1), ..., qT (θ; γ̂T ) that progressively

improves on the approximation to the posterior over θ. Algorithm 4 gives the pseudo code

of the generic AMIS algorithm.

Algorithm 4 Generic AMIS as analysed by [22].

• At iteration t = 0,

1. Generate N0 independent samples θ0
i (1 ≤ i ≤ N0) from the initial importance

density q0(θ; γ̂0)

2. For 1 ≤ i ≤ N0, compute δ0
i = N0q0(θ0

i ; γ̂0), w0
i = f(θ0

i )
/
q0(θ0

i ; γ̂0)

3. Estimate γ̂1 of q1(θ; γ̂1) using the weighted samples ({θ0
1, w

0
1}, ..., {θ0

N0
, w0

N0
})

and a well-chosen efficiency criterion for estimation.

• At iteration t = 1, ..., T − 1,

1. Generate Nt independent samples θti(1 ≤ i ≤ Nt) from qt(θ; γ̂t)

2. For 1 ≤ i ≤ Nt, compute the multiple mixture at θti

δti = N0q0(θti; γ̂0) +
t∑
l=1

Nlql(θ
t
i; γ̂ l)

and derive the importance weights of θti

wti = f(θti)
/[

δti

/ t∑
j=0

Nj

]
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3. For 0 ≤ l ≤ t− 1 and 1 ≤ i ≤ Nl, update the past importance weights as

δli ← δli +Ntqt(θ
l
i; γ̂t) and wli ← f(θli)

/[
δli

/ t∑
j=0

Nj

]

4. Estimate γ̂t+1 using all the weighted samples

({θ0
1, w

0
1}, ..., {θ0

N0
, w0

N0
}, ..., {θt1, wt1}, ..., {θtNt

, wtNt
})

and the same efficiency criterion for estimation.

This thesis has used a Gaussian importance density with mean µ and covariance Σ, i.e.

γt = (µt,Σt). Moment matching has been chosen as the efficiency criterion to estimate

γ̂t = (µ̂t, Σ̂
t
) using the self-normalised AMIS estimator:

µ̂t =

∑t
l=0

∑Nl

i=1w
l
iθ
l
i∑t

l=0

∑Nl

i=1w
l
i

and Σ̂
t

=

∑t
l=0

∑Nl

i=1w
l
i(θ

l
i − µ̂t)(θli − µ̂t)T∑t

l=0

∑Nl

i=1w
l
i

4.2.1 Modified AMIS - MAMIS

Despite the efficiency brought by AMIS compared with other AIS techniques, proving con-

vergence of this algorithm is not straightforward. The work in [92] proposed a modified

version of AMIS called MAMIS, aiming at obtaining a variant of AMIS where conver-

gence can be more easily established. The difference is that the new parameters γ̂t are esti-

mated based only on samples produced at iteration t, i.e. θt1, ...,θ
t
Nt

, with classical weights

f(θti)/q(θ
t
i; γ̂t). Then the weights of all simulations are updated according to eq. (4.1) to

give the final output. The sample size Nt is suggested to grow at each iteration so as to im-

prove the accuracy of γ̂t. MAMIS effectively solves any convergence issues of AMIS, but

convergence is slower because fewer samples are used to update the importance distribution.

Algorithm 5 describes modified AMIS.

Algorithm 5 MAMIS as analysed by [92].
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Given an initial importance density q1(θ; γ̂1) and increasing sample sizes N1, ..., NT .

• For 1 ≤ t ≤ T ,

1. Generate Nt independent samples θti(1 ≤ i ≤ Nt) from qt(θ; γ̂t)

2. For 1 ≤ i ≤ Nt, compute the importance weights of θti

wti = f(θti)
/
qt(θ

t
i; γ̂t)

3. Estimate γ̂t+1 using the weighted samples

({θt1, wt1}, ..., {θtNt
, wtNt

})

and a well-chosen efficiency criterion for estimation.

• For 1 ≤ t ≤ T and 1 ≤ i ≤ Nt, update the weights of all the simulations

wti = f(θti)/
1∑T
t=1Nt

T∑
t=1

Ntqt(θ
t
i; γ̂t)

and return the weighted samples ({θ1
1, w

1
1}, ..., {θ1

N1
, w1

N1
}, ..., {θT1 , wT1 }, ..., {θTNT

, wTNT
}).

For the illustration of MAMIS in this thesis, a Gaussian importance density and the moment

matching criterion have been used similar to those used for AMIS in Section 4.2.

4.3 Pseudo-Marginal AMIS

The above AMIS/MAMIS estimators are designed for the general analytically computable

marginal likelihood, such as in the case of GP regression. In this thesis, it is proposed

to use AMIS to sample from the posterior over model parameters where the likelihood is

analytically intractable but can be unbiasedly estimated. In practice, we modify AMIS by
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replacing the exact calculation of the marginal likelihood with an unbiased estimate, giving

an unbiased estimate of the posterior up to a normalising constant:

f̃(θ) = p̃(y | θ)p(θ) (4.2)

This is referred to as pseudo-marginal AMIS (PM-AMIS), inspired by the name pseudo-

marginal MCMC that was given to the class of MCMC algorithms replacing exact calcula-

tions of the likelihood with unbiased estimates [2]. The pseudo-code of PM-AMIS is similar

to that of AMIS described in Algorithm 4, except that the target distribution up to a constant

f(θ) = p(y | θ)p(θ) is replaced by the above unbiased estimate f̃(θ).

Despite the fact that calculations are approximate, pseudo-marginal MCMC methods yield

samples from the correct posterior distribution over covariance parameters, so a natural ques-

tion is whether the same argument holds for this proposal. The remainder of this section

provides an analysis of the properties of pseudo-marginal AMIS, discussing the conditions

under which it yields unbiased expectations with respect to the posterior distribution over

covariance parameters. As in [114, 145], a random variable z is introduced whose distribu-

tion (denoted by p(z | θ) herein) is determined by the randomness occurring when carrying

out the unbiased estimation of the likelihood p(y | θ). Define:

z = log p̃(y | θ)− log p(y | θ) (4.3)

i.e.

p̃(y | θ) = p(y | θ)ez (4.4)

Because of the unbiased property (E[p̃(y | θ)] = p(y | θ)), it is possible to readily verify

that E[ez] = 1. For the sake of clarity, it is useful to define the unnormalised joint density of

z and θ as:

f(z,θ) = p(y | θ)ezp(z | θ)p(θ) (4.5)

with a corresponding normalised version

π(z,θ) =
f(z,θ)

Z
(4.6)
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Marginalising this joint density with respect to z

∫
π(z,θ)dz =

∫
f(z,θ)

Z
dz =

p(y | θ)p(θ)

Z
E[ez] =

f(θ)

Z
(4.7)

yields the target posterior π(θ) of interest defined in eq. (2.31).

Recall that the objective is analysing expectations under the posterior over the parameters

π(θ) of some function h(θ)

Eπ(θ)[h(θ)] =

∫
h(θ)π(θ)dθ =

∫
h(θ)

f(θ)

Z
dθ (4.8)

The analysis started by substituting eq. (4.7) into eq. (4.8), obtaining

Eπ(θ)[h(θ)] =

∫
h(θ)

f(z,θ)

Z
dθdz (4.9)

In PM-AMIS, letNt denote the number of samples generated at each iteration t, qt(θ) denote

the importance density at each iteration for π(θ). We also define

qt(z,θ) = p(z | θ)qt(θ) (4.10)

as the joint importance density at each iteration for π(z,θ), (zti ,θ
t
i) as samples drawn from

qt(z,θ) with 0 ≤ t ≤ T, 1 ≤ i ≤ Nt.

Since in a practical setting f(z,θ) is the only function that we can evaluate, the expectation

defined in eq. (4.9) is estimated by the self-normalised PM-AMIS estimator:

Eπ(θ)[h(θ)] ≈ 1∑T
t=0

∑Nt

i=1wi
t

T∑
t=0

Nt∑
i=1

wi
th(θti) (4.11)

where the weights of this estimator are computed as

wi
t =

f(zti ,θ
t
i)

1∑T
j=0Nj

∑T
l=0 Nlql(zti ,θ

t
i)

(4.12)

Expanding the terms in the computations of the weights, namely substituting eq. (4.5) and
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eq. (4.10) into eq. (4.12) gives:

wi
t =

p(y | θti)ez
t
ip(zti | θti)p(θti)

1∑T
j=0Nj

∑T
l=0 Nlp(zti | θ

t
i)ql(θ

t
i)

=
p(y | θti)ez

t
ip(θti)

1∑T
j=0Nj

∑T
l=0Nlql(θ

t
i)

(4.13)

which can be rewritten in terms of the unbiased estimate of the marginal likelihood as:

wi
t =

p̃(y | θti)p(θti)
1∑T

j=0Nj

∑T
l=0Nlql(θ

t
i)

=
f̃(θti)

1∑T
j=0Nj

∑T
l=0 Nlql(θ

t
i)

(4.14)

Equation (4.14) shows how the importance weights can be computed by the unbiased esti-

mator of the marginal likelihood.

It is now time to appeal to Lemma 1 in [22], which gives the conditions under which the

self-normalised estimator of AMIS will converge to eq. (4.8). Following the conditions in

Lemma 1 in [22], when T and N0, ..., NT−1 are fixed, and when NT goes to infinity, wit

(eq. (4.12)) becomes:

wi
t ' f(zti ,θ

t
i)

qT (zti ,θ
t
i)

(4.15)

Then we have

Eqt(z,θ)

[
1∑T

t=0

∑Nt

i=1 wi
t

T∑
t=0

Nt∑
i=1

wi
th(θti)

]
=

1

Z
∑T

t=0 Nt

T∑
t=0

Nt

∫
h(θ)

f(z,θ)

qT (z,θ)
qT (z,θ)dθdz

=
1∑T
t=0Nt

T∑
t=0

Nt

∫
h(θ)

f(z,θ)

Z
dθdz

=
1∑T
t=0Nt

T∑
t=0

Nt

∫
h(θ)

f(θ)

Z
dθ

=

∫
h(θ)

f(θ)

Z
dθ = Eπ(θ)[h(θ)]

where the normalising constant Z is estimated by
∑T

t=0

∑Nt
i=1 wi

t∑T
t=0Nt

.

Therefore, under the conditions that T andN0, ...,NT−1 are fixed and thatNT goes to infinity,

which are the same conditions mentioned in Lemma 1 in [22], the estimator of eq. (4.11)

proves to be an unbiased estimator of Eπ(θ)[h(θ)]. As noted in [22], these conditions might
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prove restrictive in practice; however, these conditions provide some solid grounds onto

which convergence can be established for AMIS. Furthermore, in a practical setting, when

in doubt as to whether convergence might be an issue, it is always possible to switch to the

modified version of AMIS [92] during execution.

4.4 Conclusion

In this chapter, an alternative inference framework based on AMIS to sample from the pos-

terior over GP covariance parameters was proposed in order to mitigate the effect of the

inefficiencies of MCMC methods. In the case of a Gaussian likelihood, AMIS has been pro-

posed for computing expectations under the posterior over GP covariance parameters. In the

case of non-Gaussian likelihoods, pseudo-marginal AMIS that extends AMIS to deal with

GP models where the marginal likelihood cannot be computed exactly and hence is unbias-

edly estimated has been proposed, and the unbiased property of expectations computed by

the proposed Pseudo-Marginal AMIS has been theoretically proved.

The next chapter will empirically examine the sampling efficiency of AMIS versus MCMC

for GP models, where the sampling efficiency is measured in terms of convergence speed

against computational complexity.
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Chapter 5

Experiments and Results

This chapter sees a comparison of the state-of-the-art MCMC methods for GP models against

the proposed AMIS. The comparison targets sampling efficiency (in terms of convergence

speed) versus computational complexity. The aim of the experiments is to discover whether

adaptive importance sampling (AMIS/MAMIS) can improve the speed of convergence with

respect to computational complexity compared to MCMC approaches.

The rest of this chapter is organised as follows. Section 5.1 summarises the tuning param-

eters of the competing MCMC approaches. Section 5.2 presents the data sets used in the

experiments. Section 5.3 describes the experimental setup, with settings for GP regression

and classification given in Section 5.3.1 and Section 5.3.2 respectively. Section 5.4 proposes

a new metric for the comparison of the convergence analysis of MCMC versus AMIS for GP

models. Section 5.5 presents the experimental results, and Section 5.6 offers a conclusion.

5.1 Competing Sampling Methods

This section summarises the turning parameters of the MCMC approaches (a survey of which

can be found in Chapter 3). Table 5.1 gives the tuning parameters of the competing sampling

algorithms.
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Table 5.1 Competing sampling algorithms.

Sampler Tuning parameters
Metropolis-Hastings (MH) Covariance matrix Σ

Hybrid Monte Carlo (HMC)
Mass matrix Σ, Leapfrog stepsize
ε, Number of leapfrog steps L

No-U-Turn Sampler (NUTS) Mass matrix Σ, Leapfrog stepsize ε
NUTS with Dual Averaging (NUTSDA) Mass matrix Σ

Slice Sampling (SS) Width of the initial bracket

5.2 Data Sets

The sampling methods considered in this work were tested on six benchmark data sets from

the University of California, Irvine (UCI) repository [4]. The Concrete, Housing and Parkin-

sons data sets are for GP regression, whereas the Glass, Thyroid and Breast data sets are for

GP classification. The number of data points and features for each data set are given in Table

5.2. For the original Parkinsons data set we randomly sampled 4 records for each of the 42

patients, resulting in 168 data points in total.

Table 5.2 Data sets

Data sets for regression Data sets for classification
Concrete Housing Parkinsons Glass Thyroid Breast

n 1030 506 168 214 215 682
d 8 13 20 9 5 9

n denotes the number of data points
d denotes the number of features.

5.3 Experimental Setup

This section presents the experimental settings of the MCMC and AMIS/MAMIS samplers

for both the GP regression and classification cases, given in Section 5.3.1 and Section 5.3.2,

respectively.
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5.3.1 Settings for GP Regression

Three different covariances have been compared for the proposals of the MH algorithm. The

first is proportional to the identity matrix. The second and third covariances are proportional

to the inverse of the negative Hessian of the log-posterior (denoted by H) evaluated at the

mode (denoted by m); one uses the full Hessian matrix, whereas the other uses its diagonal

only, namely diag((−H)−1). The mode m is found by the maximum likelihood optimisation

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

Thus the proposals that are compared in this work take the form of N (θ | m, αI), N (θ |

m, α(−H)−1), andN (θ |m, α diag((−H)−1)), where α is a tuning parameter. The param-

eter α is tuned in pilot runs until the desired acceptance rate (approximately 25%) is reached,

as suggested by [125].

The approximate distribution N (θ | m, (−H)−1) is used as the initial importance density

for AMIS/MAMIS. This approximation is also used to initialise several other samplers con-

sidered in this work (listed in Table 5.1). In this way, valid summary inference from multiple

independent sequences can be obtained [51]. For AMIS/MAMIS, two different strategies

were explored to update the covariance of the importance density. One updates the full co-

variance, whereas the other updates the diagonal of the covariance only. The first two rows

of Table 5.3 show the experimental settings for AMIS/MAMIS.

Motivated by the knowledge of the scales and the correlations of the position variables can

improve the performance of HMC [101], three types of mass matrices for HMC were cho-

sen, namely the identity matrix, the inverse of the approximate covariance, and the inverse

of the diagonal of the approximate covariance. The maximum leapfrog step was set to be

10. The stepsize ε was tuned until a suggested acceptance rate (approximately 65%) is

reached [9, 101]. The three forms of mass matrix apply to NUTS, NUTSDA as well; a

full description of the pseudo codes of these algorithms can be found in Algorithms 3 and 6

in [66], respectively. NUTS requires the tuning of a stepsize ε. After a few trials, the step-

size of NUTS was set to 0.1. Although tuning leapfrog steps and stepsize is not an issue in

NUTSDA, the parameters (γ, t0, κ) for the dual averaging scheme therein have to be tuned

by hand to produce reasonable results. After trying a few settings for each parameter, it was
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decided to proceed with the values γ = 0.05, t0 = 30, and κ = 0.75 in both the RBF and

ARD covariance cases.

The slice sampling algorithm adopted in this thesis makes component-wise updates of the

parameters, where a new sample was drawn according to the ’stepping out’ and ’shrinkage’

procedures as described in [100]. In these implementations, the estimate of the typical size

of a slice w was set to 1.5.

Table 5.3 Settings for AMIS/MAMIS/PM-AMIS.

RBF covariance ARD covariance
T Nt T Nt

AMIS 1120 25 280 100
MAMIS 46 26t 5 3000 + 1000t

PM-AMIS 60 400 60 400

T is the total number of iterations.
Nt is the sample size at each iteration t.

5.3.2 Settings for GP Classification

As a representative example of GP models with non-Gaussian likelihoods, a probit classifi-

cation was considered. Since the likelihood is analytically intractable and thus unbiasedly

estimated, the critical property of reversibility and preservation of volume of HMC, NUTS,

and NUTSDA is no longer satisfied. In addition, slice sampling with the noisy estimate

f̃(θ) is still valid, but naively running standard SS with the noisy estimate f̃(θ) worked very

poorly as reported in [97]. As a result, only PM-AMIS and pseudo-marginal MH (PM-MH)

have been compared to infer covariance parameters in GP classification.

Both the EP and LA approximations are used to obtain importance densities to unbiasedly

estimate the marginal likelihood. The last row of Table 5.3 shows the settings of PM-AMIS

in both the RBF and ARD cases except for the Breast data set in the ARD case using LA

approximation, where the total number of iterations T was set to 240 for the sake of pre-

sentation. The initial importance density is obtained by the same optimisation method as

described in Section 5.3.1 except that the gradient required to perform the optimisation can-

not be computed analytically but is estimated from the EP or LA approximations. The full
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covariance of the importance density is updated during the adaptation process. The proposal

of PM-MH also takes the form of N (θ | m, α(−H)−1) where H is the Hessian matrix ob-

tained again from the EP or LA approximate marginal likelihood. The collection of samples

follows an initial tuning of α to reach the recommended acceptance rate of approximately

25%.

5.4 Convergence Analysis

Since the classic R̂ score is for MCMC convergence analysis and is not suitable for im-

portance sampling, convergence analysis here is performed based on the IQR (interquartile

range) of the expectation of norm of parameters (Ep(θ|y,X)[ ‖θ‖]) over several repetitions

against the number of O(n3) operations. This is reported to be a more reliable measure

of complexity than running time, as many other factors, which do not relate directly to the

actual computing complexity of the algorithm, can affect the running time [42]. In GP re-

gression the IQR is computed over 100 repetitions, whereas in GP classification it is based

on 20 repetitions.

For AMIS/MAMIS/SS/MH, the computational complexity lies in the computation of the

function of f(θ), where one O(n3) operation is required to perform the Cholesky decompo-

sition of the covariance matrix C. For HMC/NUTS/NUTSDA where computing the gradient

is necessary, two extra O(n3) operations are needed for the computation of the inverse of the

covariance matrix C.

For PM-AMIS/PM-MH, the computational complexity largely comes from the EP or LA

approximation of the posterior of the latent variables in order to compute the unbiased es-

timate f̃(θ). Both EP and LA approximations require two Cholesky decomposition (O(n3)

operations); one is for the decomposition of the covariance matrix K of the GP prior, while

the other is for the decomposition of the covariance of the approximating Gaussian. Each

iteration of EP and LA requires fiveO(n3) operations and oneO(n3) operation, respectively.

In the LA approximation, two extra O(n3) operations are needed to compute the covariance

of the Gaussian approximation.
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5.5 Results

This section reports on the experimental results regarding an extensive comparison of MCMC

versus AMIS for GP models in terms of sampling efficiency, measured by the convergence

speed against computational complexity. Convergence analyses of samplers for GP regres-

sion and classification are described in Section 5.5.1 and Section 5.5.2, respectively.

Table 5.4 Notation for the samplers used in the experiments.

AMIS/MAMIS
AMIS/MAMIS for GP regression where the full
covariance matrix of the proposal distribution is
updated at each iteration

AMIS-D/MAMIS-D
AMIS/MAMIS for GP regression where only the
diagonal of the covariance matrix of the proposal
distribution is updated at each iteration

MH-I
MH for GP regression where the covariance of the
starting proposal distribution for tuning is the
identity matrix

MH-D

MH for GP regression where the covariance of the
starting proposal distribution for tuning is the
diagonal of the approximate covariance from the
optimisation

MH-H
MH for GP regression where the covariance of the
starting proposal distribution for tuning is the
approximate covariance from the optimisation

HMC-I/NUTS-I/NUTSDA-I
HMC family for GP regression where the mass
matrix is the identity matrix

HMC-D/NUTS-D/NUTSDA-D
HMC family for GP regression where the mass
matrix is the inverse of the diagonal of the
approximate covariance from the optimisation

HMC-H/NUTS-H/NUTSDA-H
HMC family for GP regression where the mass
matrix is the inverse of the approximate
covariance from the optimisation

PM-AMIS
AMIS for GP classification where the full
covariance matrix of the proposal distribution is
updated at each iteration

PM-MH
MH for GP classification where the covariance of
the starting proposal distribution for tuning is the
approximate covariance from the optimisation
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5.5.1 Convergence of Samplers for GP Regression

This section presents the comparison of convergence of samplers for GP regression con-

sidered in the experiments (Table 5.4). Details of convergence results of AMIS family

(AMIS/MAMIS and their variants), MH family (MH-I/MH-D/MH-H) and HMC family

(standard HMC , NUTS, NUTSDA) for the three regression data sets can be found in Ap-

pendix A.

Figure 5.1 shows the results of AMIS compared to the various competitors, where for the

sake of brevity, only the results of their best configurations are reported. The results are

shown for the three regression data sets for both the RBF (Figures 5.1(a), 5.1(c), 5.1(e)) and

ARD (Figures 5.1(b), 5.1(d), 5.1(f)) covariances. It is interesting to see that AMIS/MAMIS

performs best among all methods in terms of convergence speed in the RBF covariance

case. In the ARD covariance case, AMIS also converges much faster than the other ap-

proaches. However, these experiments show that in this case, although MAMIS converges

faster than the other approaches in the Concrete data set, it converges slowly in the Housing

and Parkinsons data sets, which is possibly because of the higher dimensionality compared

to the previous cases.
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(a) Concrete data set - RBF
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(b) Concrete data set - ARD
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(c) Housing data set - RBF

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of n3 operations

IQ
R

AMIS
AMIS−MAMIS
MH−D
NUTSDA−H
SS

(d) Housing data set - ARD
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(e) Parkinsons data set - RBF
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(f) Parkinsons data set - ARD

Figure 5.1 Convergence of AMIS, Best of MAMIS, Best of MH family, Best of HMC family,
SS for GP regression.
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In cases where MAMIS converges slowly, the fact that AMIS converges faster can be ex-

ploited to construct hybrid sampling schemes where MAMIS is initialised from a run of

AMIS. In this way, it is possible to leverage the fast adaptation of AMIS, while ensuring that

the overall scheme does not introduce any bias. In the experiments, this AMIS-MAMIS com-

bination was tested in cases where MAMIS converges slowly. These results are reported in

Figure A.5(f), A.6(f) where EOT (end of tuning) indicates the point where there was a switch

to MAMIS. Three settings (Table 5.5) of AMIS-MAMIS were tested for the Parkinsons data

set.

Table 5.5 Settings for AMIS-MAMIS

Nt for
MAMIS

? number of
tuning

samples for
MAMIS

??
corresponding

tuning cost

AMIS-MAMIS 1000t 13000 4333
AMIS-MAMIS’ 5000t 13000 4333
AMIS-MAMIS" 5000t 26000 8667

Nt is the sample size at each iteration t.
? This refers to the number of samples generated from AMIS for
tuning the initial importance density of MAMIS.
?? Unit of the tuning cost: number of n3 operations.

For the Housing data set, only AMIS-MAMIS in Table 5.5 was tested. The results for the

Housing and Parkinsons data sets in the ARD covariance case prove the convergence of

AMIS-MAMIS. In particular, AMIS-MAMIS and AMIS-MAMIS" seem to compete well

with the other MCMC approaches in terms of convergence for the Housing data set and the

Parkinsons data set respectively. As shown in Figure A.6(f), the best performance of AMIS-

MAMIS" for the Parkinsons data set suggests that for higher dimensional problems, a more

accurate initialisation and a larger sample size at each iteration for MAMIS are necessary to

achieve faster convergence.

Another attempt made in this thesis to improve convergence speed of the adaptive importance

sampling schemes was to regularise the estimation of the parameters of the importance distri-

bution as illustrated in [161]. This regularisation stems from the use of an informative prior

on γ of the importance distribution qt(γ) of MAMIS and treats the update of these parame-

ters in a Bayesian fashion [79]. This construction makes it possible to avoid situations where



5.5. Results 55

the importance distribution degenerates to low rank as a result of few importance weights

dominating the rest. In this work, an informative prior based on a Gaussian approximation

to the posterior over covariance parameters has been used. This method has been denoted by

MAMIS-P and in the ARD covariance case it was tested only on the Housing data set. The

result indicates that even though MAMIS-P improves on MAMIS, its convergence is slower

than AMIS-MAMIS (Figure A.5(f)).

5.5.2 Convergence of Samplers for GP Classification

The comparison of convergence of PM-AMIS and PM-MH for GP classification is presented

in this section.

Figure 5.2 shows the convergence results of PM-AMIS/PM-MH using EP and LA approx-

imation with Nimp = 64, where Nimp denotes the number of importance samples of latent

variables f to estimate the marginal likelihood p(y | θ). Figures 5.2 (a), 5.2 (c), 5.2 (e)

are the results for the RBF covariance case, whilst Figures 5.2 (b), 5.2 (d), 5.2 (f) display

the results for the ARD covariance case. In these figures, EP represents the case where the

Gaussian approximation to the posterior of latent variables f is obtained by EP approxima-

tion, whereas LA denotes the case where the Gaussian approximation is obtained by LA

approximation.

The results indicate that PM-AMIS is competitive with PM-MH in terms of convergence

speed in all the EP approximation cases and in most of the LA approximation cases. The

results also seem to suggest that PM-AMIS/PM-MH converge faster with the EP approxima-

tion than with the LA approximation in most cases, which can be attributed to the fact that

EP yields a more accurate approximation to the posterior over covariance parameters than

LA [80, 104].

The performance of PM-AMIS and PM-MH with Nimp = 1 were also tested, the results

of which are shown in Appendix B. As expected, both PM-AMIS and PM-MH algorithms

with a higher number of importance samples converge much faster than those with a lower

number of importance samples.
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(c) Thyroid data set - RBF
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(e) Breast data set - RBF
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Figure 5.2 Convergence of Best of PM-AMIS, Best of PM-MH using EP and LA approx-
imation for GP classification. LA in the brackets indicates the case where the Gaussian
approximation to the posterior of the latent variables used in the corresponding method is
obtained by LA approximation, whereas EP in the brackets indicates the case where the
Gaussian approximation is obtained by EP approximation.
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5.6 Conclusion

This thesis has proposed the use of adaptive importance sampling techniques to compute ex-

pectations under the posterior distribution of covariance parameters in Gaussian processes.

The motivation for this proposal was based on a number of observations related to the com-

plexity of dealing with the calculation of the marginal likelihood. In GPs with a Gaussian

likelihood, calculating the marginal likelihood and the gradient of its logarithm with respect

to covariance parameters is expensive and the rejection of proposals of standard MCMC al-

gorithms leads to a waste of computations. In GPs with non-Gaussian likelihoods, pseudo

marginal MCMC approaches bypass the need to compute the marginal likelihood exactly,

but may suffer from inefficiencies because when a proposal is accepted and the marginal

likelihood is largely overestimated, it becomes difficult for the chain to accept any other pro-

posal. A further motivation behind this work is that importance sampling-based algorithms

are generally easy to implement and tune, and can be massively parallelised.

The extensive set of results reported in this chapter supports the intuition that importance

sampling-based inference of covariance parameters is competitive with MCMC algorithms.

In particular, the results indicated that it is possible to achieve convergence of expecta-

tions under the posterior distribution of covariance parameters faster than employing MCMC

methods in a wide range of scenarios. Even in the case of around twenty parameters, where

importance sampling-based methods start to degrade in performance, this proposal is still

competitive with MCMC approaches.

The following chapter will examine the application of the proposed PM-AMIS in the area

of social signal processing, in particular for classifying the personality traits of individuals

based on their favourite pictures posted on a photo-sharing platform.
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Chapter 6

Gaussian Processes for Finding

Difference Makers in Personality

Impressions - an Application of

PM-AMIS

Flickr (a popular photo-sharing platform) allows its users to generate galleries of “faves”, i.e.

pictures that they have tagged as favourite. According to recent studies, the faves are predic-

tive of the personality traits that people attribute to Flickr users. This chapter investigates this

phenomenon. The experiments were performed over the PsychoFlickr Corpus - 60, 000 pic-

tures tagged as favourite by 300 Flickr users. The experimental results of this chapter showed

that faves can be used to predict whether a Flickr user is perceived to be above median or

not with respect to each of the Big-Five personality traits [132]. The accuracies range be-

tween 58% and 79% depending on the particular trait. The task has been performed with the

PM-AMIS classifier based on Gaussian processes (proposed in Section 4.3), together with a

newly designed kernel - the Group Automatic Relevance Determination (G-ARD) kernel.

The reasons for choosing the GP-based PM-AMIS classifier are as follows. Apart from

being a non-parametric and fully probabilistic approach, which is capable of capturing more

uncertainty in the data, the main novelty of the approach is the G-ARD kernel. Its accuracies

are comparable, if not superior, to those achieved with SVM, a widely applied state-of-the-
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art classifier. However, the most important advantage of the G-ARD is that its parameter

set includes weights - set automatically during the training process - capable of identifying

the feature groups that better account for the classification outcome. In this respect, the

G-ARD has been inspired by the Automatic Relevance Determination (ARD) kernel [90].

The main difference is that this latter has a weight for each individual feature and, therefore,

the number of its parameters tends to be larger. Therefore, the G-ARD appears to be more

suitable when the amount of training material is limited like this case.

In these experiments, the analysis of the G-ARD weights shows that the classification out-

come depends, to a significant extent, on the following characteristics of the faves: presence

of human faces, composition, textural properties and, finally, number and size of visually

homogeneous regions. Furthermore, weight differences across personality assessors of dif-

ferent national origin provide indications about cultural effects.

The prediction of personality traits has been addressed extensively in the literature (see [157]

for an extensive survey). However, this is the first work that has tried to go beyond the simple

classification to provide insights about the actual interplay between the data and the attributed

traits. This applies, in particular, to previous results obtained over the publicly available data

used in this work [24, 134].

The results in this chapter were published in:

• X. Xiong, M. Filippone, and A. Vinciarelli. Looking good with Flickr Faves: Gaussian

processes for finding difference makers in personality impressions. In Proceedings of

the 2016 ACM on Multimedia Conference, pages 412–415, 2016

The rest of this chapter is organised as follows: Section 6.1 shows the importance of inves-

tigating the interplay between the trace people leave on social media and the impressions

these traces convey, Section 6.2 presents state-of-the-art in personality inference from social

media data, Section 6.3 describes the data and the personality model adopted in this work,

Section 6.4 presents the features, Section 6.5 introduces the G-ARD approach, Section 6.6

reports on the experimental results and, finally, Section 6.7 draws some conclusions.
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6.1 Introduction

Photos and videos are seen as key "social currencies" [118] online because of their ubiq-

uitous presence. According to [118], 56% of the American internet users either post self-

made pictures or videos online, or re-post those they have found online. With the ease and

convenience of digital technologies, such as mobile broadband (including wifi) as well as

smartphones with built-in cameras, it is easy for people to take and share pictures or videos

(e.g. life chronicling) online. The work of [34] has shown that 82% of the American users

use mobile phones to take pictures while 56% of the users use them to access the Internet.

Personal photography is described in terms of its social uses as multiple, overlapping tech-

nologies of personal and group memory, relationships, self-representation and expressive-

ness [68]. According to [137], "[...] the image is an extension of one’s identity, reflecting

aspects of one’s personality, relationships, and lifestyle [...]. In some cases, the image gives

expression to the unconscious dimensions of one’s character". In addition, photographic

images (self-portraits, pictures of friends, events and so forth) can both demonstrate the pho-

tographer’s skill or aesthetic sense and reflect his/her unique point of view or creativity, and

thus are often seen as an alternative to direct forms of interaction such as emails [67]. This

"pictorial communication", [17] that provides social and emotional support, information re-

sources and connections to other people [163], has also created the widespread popularity of

online photo-sharing communities such as Flickr.

Furthermore, in many social media platforms (e.g. Flickr, Facebook and Twitter), the perva-

sive "liking" mechanism - the fav/like button underneath an item (e.g. photo and shared link)

by clicking on which viewers mark that item as a favourite - is reported to have acquired sev-

eral social and psychological functions (emotional impact, artistic merit, social support and

social barter) [137]. The significant role of such like/favourite actions in interpersonal inter-

actions is also evidenced by the fact that "likes" happen most frequently among connections

(around 105 times more frequently than among non-connections) [84].

Not only do liking mechanisms maintain relationships and express affiliation, they are also

predictive of highly sensitive private traits and attributes such as intelligence, happiness, reli-

gious and political views, ethnicity, sexual orientation and use of addictive substances. [78].
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In addition, users’ interests (in particular aesthetic preferences) conveyed in social network

sites are capable of identifying personal characteristics such as prestige, differentiation, the-

atrical persona and authenticity [85].

On the other hand, every trace left on social media - pictures, posts, videos and comments

- reaches a large number of unacquainted observers: “[...] the audience layer sits beyond

the weak ties layer. It is made up of strangers [that] can play constructive roles when they

are activated” [119]. Many people "use websites as a way to learn about someone they

barely know" [155]. Employers gathering information about job candidates are a typical

case. According to the Harvard Business Review, the outcome of the interviews depends,

to a significant extent, on the impression that the employers develop by watching the online

material posted by the candidates [23].

These examples show that it is important to investigate the interplay between, on the one

hand, the observable traces people leave online and, on the other hand, the impressions

that these traces convey. For this reason, this chapter investigates the relationship between

“faves” - the pictures that Flickr users tag as favourite - and personality impressions. In the

next section, there is a brief review of the existing literature related to personality inference

from social media data.

6.2 Related Works

This section surveys the main works in the literature that aim to address the inference of

personality traits from social media data.

Social media platforms, such as the social networking application Facebook, the video shar-

ing platform Youtube and the image hosting site Flickr have achieved broad popularity and

have had prominent influence on our daily life since their creation. As self-presentation and

self-disclosure are the main motivations behind the use of such social media platforms [73],

numerous studies have been carried out to investigate the interplay between social media

contents (profiles, posts, pictures and likes) and personality traits. Table 6.1 contains a syn-

opsis of such works in terms of data, approaches and results. The personality traits include

both the self-assessed personality traits that target the real personality of an individual and
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are assessed by the individuals themselves [5, 15, 24, 103, 55, 134], and the attributed ones

that focus on the personality of an individual perceived by others and hence are assigned by

observers [24, 35, 43, 134]. Consequently, according to the definition by [157], the predic-

tion of self-assessed and attributed traits corresponds to Automatic Personality Recognition

(APR) and Automatic Personality Perception (APP), respectively.

The approaches proposed in [55] predicted each of the Big-Five personality traits (self-

assessed) of 167 Facebook users by analysing the information which was revealed in their

online profiles. The feature set included structural features such as density of user’s egocen-

tric network, those derived from personal information such as relationship status, religion and

education history, and language features obtained using Linguistic Inquiry and Word Count

(LIWC) which categorises words through linguistic and psychological processes [139]. The

regression approaches are based on M5 algorithms and Gaussian processes with a mean

absolute error within 11%. However, in their Gaussian processes approach, no ARD ker-

nel was used to learn automatically the influence of each feature on the personality traits.

Instead, a separate correlation analysis was performed to analyse the relationship between

features and personality traits. In a similar fashion, the task of [5] is the discrimination be-

tween individuals scoring in the lower, middle or upper third of observed trait score ranges

for all Big-Five traits. The subjects for study were 209 users of RenRen, a popular social

networking platform in China. The features adopted included basic information (e.g. gender

and age), usage statistics (e.g. blog usage frequency, data upload frequency), time-related

features (e.g. status, count of published blog per recent one month) and emotion-related fea-

tures (e.g. count of angry state within one blog). In this work, the C4.5 Decision Tree [117]

achieved a classification accuracy of up to 72% (in terms of F-measure) depending on the

trait.

The works of [15, 103] attempted to recognise personality traits without the expensive and

time-consuming collection of self-assessments. This might be useful in scenarios where the

population of users is large and hence collecting questionnaires might be difficult. [15] anal-

yses posts from 156 users on FriendFeed, an Italian social network. The features are based

on linguistic factors regarding topic (e.g. posts about job and music), word usage (e.g. the

use of negative particles and word count) and psychological aspects (e.g. positive or negative

emotions). The proposed unsupervised methodology measures first how stable the features
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are across multiple posts of the same user and then assigns personality traits according to the

most stable features (average accuracy 63.1%). Similarly, the work of [103] simply labels

users of blogging site Livejournal as extroverts or introverts based on the number of friends

they have (extroverts have 108 to 150 connections whereas introverts have only 1 to 3 con-

nections). Using the LIWC features, the prediction model involves two separate approaches.

An SVM classifier is employed to predict the personality traits while logistic regression is

used to investigate the predictive effect of each feature.

Compared to the earlier works aimed at addressing the APR problem, the methodology pro-

posed in [43, 35] focuses on APP. In both works, features are extracted from profile informa-

tion of users of social-networking websites and correlation analysis is utilised to explore the

rater-target impression agreement, i.e the agreement between attributed traits by raters and

self-assessed traits by targets (users). In particular, [43] analysed profile photographs and

the results showed that pictures where the profile owners were smiling and outdoors corre-

spond to the higher agreement. By contrast, [35] targeted personal information in the profiles

and the experiments showed that the agreement is higher when users state their spirituality,

beliefs, embarrassing and proud moments and when they post funny material.

The approaches proposed in [24, 134] address both APR and APP using the PsychoFlickr

Corpus - the same data set used in the experiments of this work (see Section 6.3.1). Both

works utilise variants of multiple instance regression [123] with Lasso [141] for prediction

and an individual correlation analysis to capture the covariation between features and traits.

As the above survey shows, most of the works for personality inference focus on non-

probabilistic parametric (various regression models) or non-parametric models such as SVM

and C4.5 Decision Tree that give no indication about the predictive effect of each feature.

Some works (e.g. [103]) had to combine non-parametric (SVM) and parametric (logistic

regression) methods to make predictions and gain some insight into the influence of features

on prediction. The experiments in this work attempted to exploit non-parametric Gaussian

processes models to map favourite pictures into personality traits. This was possibly the first

work to employ a non-parametric and fully probabilistic approach to infer personality traits

from online pictures and learn automatically the interplay between features and personality

factors during the training process.
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6.3 Data and Personality

6.3.1 Data

The experiments in this work have been performed over PsychoFlickr, a publicly available

corpus of 60, 000 pictures tagged as favourite by 300 Flickr users (200 faves per user), the

subjects hereafter [24, 134]. For every subject, the Corpus includes two personality as-

sessments (see Section 6.3.2): the first is the average of the traits attributed by 11 British

assessors, the second is the average of the traits attributed by 11 Asian assessors. This makes

it possible to investigate cultural effects.

6.3.2 Personality and Its Assessment

Personality is the latent construct that accounts for "individuals’ characteristic patterns of

thought, emotion, and behaviour together with the psychological mechanisms - hidden or

not - behind those patterns" [47]. A large number of personality models have been proposed

in the literature (an extensive survey can be found in [94]) and in this work, the personal-

ity assessments are presented in terms of the Big Five Traits (BF). The BFs are as follows:

Openness (tendency to have wide interests and to be intellectually curious), Conscientious-

ness (tendency to be responsible, thorough and planful), Extraversion (tendency to be active

and establish social relationships), Agreeableness (tendency to act according to the benefit

of others) and Neuroticism (tendency to experience only the negative side of life).

The rationale behind the choice of the BF model is that, according to the literature on psy-

chology, these are five behavioural dimensions that are known to capture most individual dif-

ferences and are recognised as the most effective personality model proposed so far [132].

Consequently, the BF model is ubiquitous in personality computing [157] as well as person-

ality science [165].

Moreover, from a computing point of view, the main advantage of the BF is that it represents

personalities as five-dimensional vectors, a format particularly suitable for computer pro-

cessing. Each component of the vector is a score that accounts for how well the behaviour of



6.3. Data and Personality 66

an individual fits the tendencies associated with a particular trait. The scores can be obtained

with questionnaires designed for personality assessment.

In these experiments, the questionnaire used was the Big Five Inventory 10 (BFI-10), shown

in Table 6.2. It is a psychometric instrument aimed at assessing individuals along the BF,

and is abbreviated from the Big Five Inventory (BFI-44) to include only ten items of the

original questionnaire [120]. The selected ten items have substantial correlations with the

measurements obtained using the full forty-four items. This contributes to the major advan-

tage of BFI-10: it takes less than one minute to fill in the questionnaire while still retaining

significant levels of reliability and validity. Furthermore, a self-assessment questionnaire can

be easily obtained by simply replacing "This person" with "I" in Table 6.2.

The five-point Likert scales (from "Strongly Disagree" to "Strongly Agree") are associated to

each of the ten items, and mapped into the numbers ranging from -2 to 2. For a particular

trait, the perceived personality scores can be computed from the assessors’ answers to the

corresponding items as below where Ai denotes the answer to question i:

• Extraversion: A1 (reversed-scored), A6

• Agreeableness:A2, A7 (reversed-scored)

• Conscientiousness: A3 (reversed-scored), A8

• Neuroticism: A4 (reversed-scored), A9

• Openness: A5 (reversed-scored), A10

where "reversed-scored" means that the numerical scoring scale runs in the opposite direction

for the negatively worded questions.

Thus the integer score of each trait is in the interval [-4, 4]. Once the BF scores are available

for all persons in a corpus, it is possible to estimate the median for each trait. In this way, the

subjects can be split into two classes; namely those who are above median and the others.

Hereafter, the classes are referred to as high and low, respectively.



6.3. Data and Personality 67

Table 6.2 The BFI-10 questionnaire [120].

No. Question
Disagree
strongly

Disagree
a little

Neither
agree or
disagree

Agree a
little

Agree
strongly

1 This person is reserved (1) (2) (3) (4) (5)

2
This person is generally

trusting (1) (2) (3) (4) (5)

3 This person tends to be lazy (1) (2) (3) (4) (5)

4
This person is relaxed,

handles stress well (1) (2) (3) (4) (5)

5
This person has few artistic

interests (1) (2) (3) (4) (5)

6
This person is outgoing,

sociable (1) (2) (3) (4) (5)

7
This person tends to find

fault with others (1) (2) (3) (4) (5)

8
This person does a thorough

job (1) (2) (3) (4) (5)

9
This person gets nervous

easily (1) (2) (3) (4) (5)

10
This person has an active

imagination (1) (2) (3) (4) (5)
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Table 6.3 Synopsis of the features.

Category Name d Short Description
G1 Faces 1 Number of faces

G2:
Colour
properties

HSV statistics 5

Average of S channel and standard deviation of
S, V channels [89]; circular variance in HSV
colour space [91]; use of light as the average
pixel intensity of V channel [27]

Emotion-based 3
Measurement of valence, arousal, dominance
of the emotions evoked by the colours [89, 152]

Variety of colours 1
Colour diversity (colourfulness) measure based
on Earth Mover’s Distance (EMD) [27, 89]

G3 Colour distribution 11

Fraction of pixels that can be mapped into each
of the 11 basic colour categories (red, yellow,
pink ,black, blue, brown, green, gray, orange,
purple, white) [89]

G4: Ho-
mogeneous
regions

Edge pixels 1 Fraction of edge pixels in an image

Level of detail 1
Number of homogeneous regions (after mean
shift segmentation) [52, 21]

Average region size 1
Average size of the homogeneous regions
(after mean shift segmentation) [52]

Image size 1 Size of the image [27, 88, 18]

G5: Com-
position

Low depth of
field (DOF) 3

Amount of focus sharpness in the inner part of
the image w.r.t. the overall focus [27, 89]

Rule of thirds 2
Average of S,V channels over inner rectangle
[27, 89]

G6 Texture Wavelets 12

Wavelets coefficients: Level of spatial
graininess measured with a three-level
Daubechies wavelet transform on HSV
channels [27]

G7 GIST filters 24
Output of GIST filters for scene recognition
[107].

G8
Gray Level
Co-occurrence
Matrix (GLCM)

12

Statistics of pixel values co-occurrences in
3× 3 patches: amount of contrast, correlation,
energy, homogeneousness for each HSV
channel [89]

G9:
Texture
statistics

Tamura
features 3

Amount of coarseness, contrast, directionality
[138]

Gray distribution
entropy 1 Image entropy [88]

d denotes dimension, i.e. the number of features.
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6.4 Feature Extraction

Deep convolutional neural networks (DCNN) [133] have been widely applied to learn fea-

tures automatically from pictures. However, features learned by DCNN are generally diffi-

cult to interpret. As discussed in Chapter 1, being able to identify the relative influence of

each feature on the prediction outcome, is of great importance for social signal processing

applications. Therefore, this section presents a full description of the extraction of low-level

features from online Flickr pictures, a synopsis of which can be found in Table 6.3.

Every picture of the corpus was represented by a set of 82 features inspired by Computa-

tional Aesthetics, the domain aimed at predicting whether people consider an image visually

appealing or not [65]. The main reason behind this choice was that these features captured

the visual appearance of the faves and this was the only information that the assessors had to

attribute personality traits to the 300 subjects of the Corpus. Furthermore, the features have

been shown to be effective in tasks similar to the one addressed in this work [24, 134]. In

view of the G-ARD approach (see Section 6.5.1), the features (82 in total) have been split

into 9 groups corresponding to the main visual properties of a picture (see the synopsis of

the features in Table 6.3).

The feature set is designed to account for content independent visual characteristics and,

hence, cope with the wide semantic variability of the pictures posted online. The only content

dependent feature is the number of human faces (Group G1) because these are ubiquitous in

pictures and furthermore, certain neural pathways make the human brain especially sensitive

to face detection [71]. A subject of the PsychoFlickr Corpus is represented with the average

of the 200 feature vectors extracted individually from every fave. In this way, the whole

PsychoFlickr Corpus is represented by 300 vectors - one per subject (see Section 6.3.1). A

full introduction of the group features in Table 6.3 is presented as follows:

G1: Number of faces

The number of faces, the only feature that takes into account the content of the images (i.e.

what the images show), was calculated manually from each of the 60, 000 faves. Every
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visible face was counted without considering its size, scale, pose and the facial expressions

it contained. Since a pilot analysis shows that the accuracy of the Viola-Jones face detector

[160] is only 70% and this introduces noises to the model, automatic face detectors were not

adopted.

G2: Colour properties

This section describes the group features relating to the colour properties represented by the

HSV colour space. HSV is an acronym for Hue, Saturation and Value (also referred to as

Brightness).

HSV statistics: These features are obtained by collecting statistics over H, S and V pixel

values of a picture, and they account for the use of colours. Let I , J denote the height and

width of the image, respectively.

circular variance R [91] provides information of colour diversity and is computed as:

X =
I∑
i=1

J∑
j=1

cosHij, Y =
I∑
i=1

J∑
j=1

sinHij

R = 1− 1

IJ

√
X2 + Y 2

where Hij is the Hue of pixel (i, j).

As light exposure discriminates well between aesthetically appealing and unappealing im-

ages while saturation indicates chromatic purity [27], the features corresponding to such vital

observations of image aesthetics are computed as the average pixel intensity across the V and

S channels:

V̄ =
1

IJ

I∑
i=1

J∑
j=1

IV (i, j), S̄ =
1

IJ

I∑
i=1

J∑
j=1

IS(i, j) (6.1)

where V̄ is called use of light, and IV (i, j), IS(i, j) denote the intensity value of pixel (i, j)

across the V, S channel respectively.

Standard deviation is also calculated on the S and V channels. The average of the Hue was

not computed because the interpretation of such a feature is not clear, because Hue is defined

in the HSV space in terms of angles in a colour wheel.
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Examples of how the figures change with the HSV statistics are shown in Figure 6.2.

Emotion-based: According to psychological studies, Saturation and Brightness show evi-

dence of strong and consistent effects on emotions [152], and emotional reactions to them are

usually expressed through the Pleasure-Arousal-Dominance emotion model (where pleasure

is referred to as valence in this work):

Valence = 0.69V̄ + 0.22S̄

Arousal = −0.31V̄ + 0.60S̄

Dominance = −0.76V̄ + 0.32S̄

where V̄ , S̄ are defined in eq. (6.1). Figure 6.2 provides examples of pictures with different

levels of Valence, Arousal and Dominance.

Variety of colours: This feature accounts for relative colour distribution and distinguishes

multi-coloured images from mono-chromatic, sepia or simply low contrast images. After

conversion to the CEILUV colour space, the Earth Mover’s Distance (EMD) [129] is used

to measure the similarity between the image under analysis and an ideal colourful image

according to the algorithm proposed in [27, 89].

G3: Colour distribution

Every pixel in the image is mapped onto one of the eleven basic colour terms (black, blue,

brown, gray, green, orange, pink, purple,red, white and yellow) [8] using the algorithm of

[162]. Then the fraction of pixels assigned to each of the colour terms is calculated as the

feature. This feature, on the one hand, can account for the frequency of occurrences of the

colours in the image and, on the other hand, can capture the style of a photographer.

G4: Homogeneous regions

Edge pixels: Pixels of sharp changes in brightness (called edge pixels) are often interesting

as they indicate object boundaries and other kinds of meaningful changes such as reflectance

changes (e.g. stripes of zebras and spots of leopards) and illumination changes (e.g. cast
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shadows) [45]. Consequently, the Canny detector [88] is adopted to identify the edges and

the fraction of edge pixels in an image is computed as a feature. The top-left of Figure 6.3

(with title "Canny") provides an example of edge extraction in an image.

Objects and scene semantics have been shown to play a very important role in understanding

the subjective judgement of a picture [26, 70]. Following this, image segmentation was

performed to collect low-level statistics. The EDISON implementation [52] of the mean shift

segmentation algorithm [21] was employed. After segmentation of an image, the number of

segments is calculated as the Level of detail feature, accounting for the regions "density" of

an image. The normalised Average region size of the homogeneous regions has also been

collected as one feature. Normalisation is achieved by dividing the mean size of the regions

by the size of the whole image. As is shown in the top-right of Figure 6.3 (with title "Level

of detail"), a higher number of segments provides more details.

Image size: This feature accounts for the total number of pixels in an image.

G5: Composition

Composition analysis is concerned with analysing the spatial relations between the visual

elements of a picture [89]. In this work, the following two aspects of composition are con-

sidered.

Low depth of field (DOF) is often used by professional photographers to blur the back-

ground and make the object of interest noticeably sharper in order to draw the attention

of the observer [27, 89] (see bottom-left of Figure 6.3). Following [27], the image is di-

vided into 16 equal rectangular blocks {M1, ...M16} numbered in row-major order. Let

w3 = {whl3 , w
lh
3 , w

hh
3 } denote the set of high-frequency (Level 3 by the notation used in

eq. (6.4)) wavelet coefficients (see the following section) of the hue image IH . The reason

for choosing Level 3 is that, in an image with low DOF, the object of interest is assumed

to be central and high-frequency co-efficients encode fine visual details. The feature that

indicates the low depth of field is computed as follow:

DOFH =

∑
(i,j)∈M6∪M7∪M10∪M11

w3(i, j)∑16
k=1

∑
(i,j)∈Mk

w3(i, j)
(6.2)
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i.e the ratio of the wavelet coefficients in the high-frequency of the inner part of the image

to those of the whole image. Similarly, this low depth of field indicator is computed for the

S, V channels of the image. The lower part of Figure 6.3 with the title "Low depth of field

indicator" shows how the image changes with different DOF.

Rule of thirds is a very popular photography composition guideline. It suggests that the

main object (centre of interest) in a photograph should be positioned at one of the four

intersections or along one of the lines on the inside as shown in Figure 6.1. The ’rule of

thirds’ feature is obtained by computing the average values of Brightness and Saturation of

the inner rectangle [27, 89]:

fV =
9

IJ

2I/3∑
i=I/3

2J/3∑
j=J/3

Vij (6.3)

where I is the image height, J is the image width and Vij is the Brightness at pixel (i, j). A

similar feature fS can be computed for the Saturation.

Figure 6.1 The rule of thirds guideline in photography: an image is ideally divided horizon-
tally and vertically each into three parts. Important parts of the composition are placed at
the intersection points instead of the centre. http://digital-photography-school.com/rule-of-
thirds/.

G6: Texture wavelets

Texture is defined as "the set of local neighbourhood properties of the grey levels of an image

region" [86]. It accounts for the intuitive properties of images such as roughness, granulation

and regularity and thus serves as a significant cue for images analysis. Daubechies wavelet
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transform [28] can be employed to measure spatial smoothness/granulation in the image

[27, 89].

In this work, a three-level 2D Discrete Wavelet Transform (2D-DWT) was performed on all

three H, S, V channels, where high frequency was associated to high edge density. Figure 6.5

provides an example of a two-level wavelet transform. As is shown in Figure 6.5(b), the two-

level wavelet bands have been arranged from upper left to lower right in the transformed

image. At each level, the four bands were labelled by LL (LowLow), HL(HighLow), LH

(LowHigh), HH(HighHigh) (see Figure 6.5(a) for their arrangement). LL part is a low-

pass version of the original image, whereas HL, LH, HH parts correspond to images with

their horizontal, vertical and diagonal edges at the finest scale highlighted, respectively. Let

whlk , w
lh
k , w

hh
k denote the wavelet coefficients at level k (k = {1, 2, 3}) for the H channel.

The corresponding wavelet feature is derived from the following equation:

wfk =

∑I
i=1

∑J
j=1w

hl
k (i, j) +

∑I
i=1

∑J
j=1w

lh
k (i, j) +

∑I
i=1

∑J
j=1w

hh
k (i, j)

(
∣∣whlk ∣∣+

∣∣wlhk ∣∣+
∣∣whhk ∣∣) (6.4)

where wfk denotes the wavelet feature at level k. Wavelet features for the S, V colour space

channels are computed similarly. Therefore, a three-level wavelet transform will result in

nine features (three features for each level). At each level, the sum of wfk for the three

channels has also been calculated, leading to another three features.

G7: GIST filters

It is a low dimensional representation of the structure of real world scenes termed as Spatial

Envelope. The spatial envelope relies on Gabor Filters to capture a set of perceptual proper-

ties, namely naturalness, openness, roughness, ruggedness and expansion [107]. The outputs

of the GIST filters are used as features.

G8: Gray Level Co-occurrence Matrix (GLCM)

The GLCM is a matrix where the entry (m,n) is the probability p(m,n) of observing values

m and n for a given channel (H, S or V) among the pixels in the same region R. In the

process of feature extraction, R includes a pixel and its right neighbour and, consequently,
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the GLCM includes the probabilities of observing one pixel with the value n that is at the

right of a pixel with the value m. Several features have been calculated based on GLCM,

each of which has been obtained individually over the H, S and V channels [61]:

Contrast is computed as the average value of (m − n)2, the square difference of values

observed in neighbouring pixels:

C =
L−1∑
m,n=0

(m− n)2p(m,n) (6.5)

where L is the number of possible values of a pixel. The minimum of C is 0, corresponding

to a uniform image, whereas the maximum of C is (L − 1)2. Figure 6.4 (the third row)

provides an example of pictures with high and low contrast.

Correlation is the coefficient that accounts for the measurement of the covariation between

neighbouring pixels:

L−1∑
m,n=0

(m− µ)(n− µ)p(m,n)

σ2
(6.6)

where µ =
∑L−1

m,n=0 mp(m,n), and σ2 =
∑L−1

m,n=0 p(m,n)(m− µ)2 +
∑L−1

m,n=0 p(m,n)(n−

µ)2. The correlation ranges between−1 and 1 (see the third row of Figure 6.4 for an example

of pictures with different correlation).

Energy is computes as the sum of the square values of the GLCM entries:

L−1∑
m,n=0

p(m,n)2 (6.7)

The energy of an uniform image is 1. Bottom-left of Figure 6.4 gives an example of pictures

with high and low energy.

Homogeneity measures how frequently neighbouring pixels have the same value (see bottom-

right of Figure 6.4 for an example) :

H =
L−1∑
m,n=0

p(m,n)

1 + |m− n|
(6.8)
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Larger elements on the diagonal of the GLCM tend to result in higher homogeneity.

G9: Texture statistics

Tamura features:

[138] proposed six texture features approximating human visual perception, namely, coarse-

ness, contrast, directionality, line-likeness, regularity and roughness. Only the first three

have been considered in this work, as they have been found to be tightly correlated with

human perception.

Coarseness accounts for the size of texture elements (texels). The essence of this approach

is to pick large size texels for coarse texture but to pick small size texels for fine texture. The

following steps summarise this procedure:

1) Compute the average at every point over neighbourhoods whose size are powers of two,

e.g. 1× 1, 2× 2, 4× 4, ..., 32× 32. The average over the neighbourhood of size 2k × 2k at

point (i, j) takes the form:

Ak(i, j) =
i+2k−1−1∑
m=i−2k−1

j+2k−1−1∑
n=j−2k−1

f(m,n)/22k (6.9)

where f(m,n) is the grey-level at (m,n).

2) For each point, compute the difference between non-overlapping neighbourhoods on op-

posite sides of the point in both horizontal and vertical directions:

Eh
k (i, j) = |Ak(i+ 2k+1, j)− Ak(i− 2k+1, j)| (6.10)

and

Ev
k(i, j) = |Ak(i, j + 2k+1)− Ak(i, j − 2k+1)| (6.11)

where Eh
k (i, j), Ev

k(i, j) denote the difference for the horizontal and vertical orientation, re-

spectively.
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3) At each point, pick the size that gives the largest difference value:

Sbest(i, j) = 2k

where k maximize E in either orientation, i.e.

Ek = max
d=h,v

(Ed
1 , E

d
2 , ..., E

d
5)

with k ∈ {1, 2, 3, 4, 5}.

4) Finally take the average of Sbest(i, j) over the image as coarseness measure:

Fcrs =
1

IJ

I∑
i=1

J∑
j=1

Sbest(i, j) (6.12)

where I and J are the width and height of the image.

For an example of pictures with different values of coarseness, see top-right of Figure 6.4.

Contrast stands, in the narrow sense, for picture quality. In practice, the following two

factors influence the contrast: dynamic range of grey-levels (the larger the range, the higher

the contrast), polarisation of the distribution of black and white on the grey-level histogram

(pictures with high contrast have polarised histogram). It is computed as follows:

Fcon =
σ

αz4
with α4 =

µ4

σ4

(6.13)

where µ4 is the fourth moment about the mean and σ is the standard deviation of grey-levels

of the picture. z has experimentally been chosen to be 1
4

to yield the best result. See the

second row of Figure 6.4 for an example of pictures with high and low contrast.

Directionality measures how polarised the distribution of edge directions is. High direction-

ality accounts for a texture with homogeneously oriented edges whereas low directionality

indicates a texture where the edges are heterogeneously oriented. It has been calculated in

the following way: First, calculate the entropy E of the distribution of the directions of all

the edge pixels. Then directionality is measured as 1/(E + 1). The distribution of textures

with edges oriented along a single direction features sharp peaks, resulting in E = 0 and a
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maximal directionality of 1. Conversely, images with a nearly flat distribution of edge orien-

tations will have low directionality (≈ 0). See the second row of Figure 6.4 for an example

of pictures with different levels of directionality.

Grey-level distribution entropy measures the homogeneousness of an image. The compu-

tation of this feature involves the following steps. First, convert the image into grey-levels.

Then, for every pixel, calculate the distribution of the grey-values in a neighbourhood of

9 × 9 pixels, i.e. the grey-level histogram of the patch. After that, compute the entropy (a

measure of the average amount of information) of the distribution. Finally, sum up all the

entropy values and divide by the size of the image. A uniformly distributed intensity of an

image will give a low entropy (see top-left of Figure 6.4 for an example of how the entropy

impacts visual characteristics). The entropy takes the form:

E = −
∑
i

PiLog2Pi (6.14)

where Pi is the probability that the difference between two adjacent pixels is equal to i, and

Log2 is the base 2 logarithm.
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Use of light

high (= 0.79) low (= 0.14)

Average saturation

high (= 0.89) low (= 0.17)

Valence

high (= 0.72) low (= 0.18)

Dominance

high (= -0.03) low (= -0.50)

Arousal

high (= 0.36) low (= -0.22)

Hue circular variance

low (= 0.04)high (= 0.84)

Color diversity

high (= 1/8.16) low (= 1/16.7)

Figure 6.2 Examples of how visual properties of a picture change with several colour-related
features.

Canny

processedoriginal

Level of detail

high (#segments = 528
norm. avg extension = 0.002)

low (#segments = 2
norm. avg extension = 0.5)

strong (= 2,1.3, 2) weak (= 1.1, 0.9, 0.9)

Figure 6.3 The upper-left panel of the figure shows the effect of the Canny algorithm and the
rest shows the visual properties related to Level of Detail and Low Depth of Field.
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Entropy

high (= 4.66) low (= 0.31)

Tamura directionality

high (= 0.5) low (= 0.25)

Tamura coarseness

high (= 4.06) low (= 2.93)

Tamura contrast

high (= 0.0598) low (= 0.0027)

GLCM contrast (on the V channel)

high (= 1) low (= 0.75)

GLCM correlation (on the H channel)

high (= 0.9646) low (= 0.7646)

GLCM energy (on the S channel) 

high (= 0.99) low (= 0.58)

GLCM homogeneity (on the H channel)  

high (= 0.95) low (= 0.47)

Figure 6.4 Examples of the textual properties associated to G8, G9.

Original image

LH1

HL1 HH1

LH1

HL1 HH1

LL1

LL2

HL2

LH2

HH2

b)a)

Figure 6.5 Wavelet decomposition.
.
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6.5 Inference of Personality Traits

This section describes in detail the approaches to classification of personality traits into high

or low (see Section 6.3.2).

6.5.1 Trait Classification

This work proposes the adoption of a flexible and highly descriptive classification model

based on Gaussian processes (GPs) [121]. These share with support vector machines (SVM,

see Section 6.5.3) - the classifier that achieves state-of-the-art results in most tasks addressed

in the literature - the important property of being non-parametric. However, GPs have at

least two major advantages. The first is that an appropriate definition of their kernel allows

an explanation of the role played by the different feature groups in the classification (without

explicit knowledge of the mapping between features and labels). The second is that GPs are

formulated in probabilistic terms and, hence, a Bayesian treatment allows an incorporation

of confidence levels when making predictions.

Under the GP assumption (see Chapter 2), the latent values f are jointly Gaussian distributed

with p(f | θ) ∼ N (0,K), where K is the kernel matrix and θ is the parameter vector of

the kernel function. The main novelty introduced in this chapter is the Group-Automatic

Relevance Determination (G-ARD) kernel function, a new kernel parametrisation designed

to quantify the role played by the feature groups identified in Section 6.4 or any other mean-

ingful partitions of the features:

k(xi,xj) = σ exp

{
−

Ng∑
r=1

1

Nrτr2

[∑
s∈Gr

(xi(s) − xj(s))
2

]}
, (6.15)

where σ is the marginal variance of the latent values, τr is the length-scale parameter for

group r (it ensures, on the one hand, that the weights do not depend on the number of

features in the groups and, on the other hand, that different weights are comparable even if

the respective groups include different numbers of features), Nr is the number of features in

group r, Ng is the number of groups, xi(s) is the sth component of vector xi, and Gr is the set

of the indices of the features that belong to group r. This formulation of the G-ARD kernel
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can be interpreted as product of multiple kernels imposed on the different feature groups of

particular interest. Compared to the ARD kernel, the G-ARD allows the reduction of the

number of weights from 82 (the number of features) to 9 (the number of groups).

6.5.2 Fully Bayesian Inference of Parameters and Predictions

Let θ denote the parameter vector of the G-ARD kernel function. Given a new input vector

x? with latent value f?, a fully Bayesian treatment of the y? prediction requires a solution to

the following integral:

p(y? | y) =

∫
p(y? | f?)p(f? | f ,θ)p(f ,θ | y)df?dfdθ (6.16)

where p(f ,θ | y) is the posterior over (f ,θ). In contrast to a point estimate of θ for predic-

tion, which may potentially underestimate uncertainty or cause inaccurate evaluation of the

relative influence of different features [75], the posterior p(f ,θ | y) encodes the uncertainty

in model parameters and thus enables an understanding of the importance of different fea-

tures with confidence on it. Since the computation of eq. (6.16) is analytically intractable,

Monte Carlo approximation methods are usually employed.

Sampling from p(f ,θ | y) is highly non-trivial, and it is normally done by means of Markov

Chain Monte Carlo (MCMC) algorithms [40]. In this work, predictions are carried out us-

ing an adaptive importance sampling-based approach, and in particular the pseudo-marginal

adaptive multiple importance sampling (PM-AMIS) proposed in Section 4.3. The motiva-

tion is that such a methodology has been shown to be faster (see Section 5.5.2), compared

to state-of-the-art MCMC approaches, in computing predictions for GP models. The intu-

ition is that the algorithm adaptively constructs an approximate posterior over (f ,θ) that is

used to build an increasingly more accurate importance sampling estimator of the predictive

distribution above. The importance weights have the following form:

wti = p(θti)/
1∑T−1

t=0 Nt

T−1∑
t=0

Ntqt(θ
t
i; γ̂t), (6.17)

where T is the total number of iterations, p(.) denotes the posterior of θ up to a constant,

qt(.) denotes the importance density at iteration t with sequentially updated parameters γ̂t,
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and θti are samples drawn from qt(.) with 0 ≤ t ≤ T − 1, 1 ≤ i ≤ Nt. At each iteration

of PM-AMIS, all the importance weights get updated, including those computed at previous

iterations. Because in GP classification the marginal likelihood p(y | θ) cannot be computed

analytically, PM-AMIS resorts to an unbiased estimate of the marginal likelihood using a

“nested” importance sampling estimation procedure. Even though the computation of the

weights is now approximate, because p(y | θ) is estimated unbiasedly, it can be shown that

PM-AMIS does not introduce any bias in predictions (see Section 4.3).

6.5.3 Support Vector Machines

The Support Vector Machine (SVM) is one type of decision machine but does not provide

posterior probabilities [10]. The name, SVM, comes from the fact that, if the data is non-

degenerate, the separating hyperplane (decision boundary) is uniquely defined by d+ 1 sup-

port vectors where d is the dimensionality of the data. The distance between the decision

boundary and the nearest data point (sample) is called the margin. This margin indicates

confidence in the prediction (a sample belongs to a positive or negative class). The larger the

margin, the more the confidence there is in the prediction. SVM chooses the decision bound-

ary that maximises this margin, so it is often called a Large Margin Classifier. Consequently,

in SVM, the decision boundary has the special property that it is as remote as possible from

both the positive and the negative data points.

Let x1, ...,xN be the input data points, y1, ..., yN denote the corresponding labels where

yn ∈ {−1, 1}. A linear two-class discriminant function takes the form:

f(x) = wTφ(x) + b (6.18)

where φ(x) denotes a fixed feature-space transformation, and b is the bias parameter (the

negative of which is sometimes called a threshold). In case of a linearly separable training

data set, we have f(xn) > 0 for the positive samples (yn = 1) and f(xn) < 0 for the negative

ones (yn = −1). It can be shown that in this case the margin is defined by 1
‖w‖ . Finding an
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optimal value of w that maximises the margin 1
‖w‖ requires optimising the following:

min
w

1

2
‖w‖2 s.t. ∀i, yi(wTφ(xi) + b) ≥ 1 (6.19)

Equation (6.20) is called SVM with "hard" constraints where Lagrange multipliers can be

used to solve this kind of optimisation problem.

The above formulation makes the assumption that the data is linearly separable, i.e. it is

always possible to find a hyperplane that will perfectly separate the positive and negative

training samples. However, most of the real data sets are noisy, which means there is no such

separating hyperplane. In most cases where the data cannot be nicely separated, a penalty

(cost) has to be introduced, leading to the following formulation:

min
w,b

1

2
‖w‖2 + C

n∑
i=1

ξi s.t. ∀i, yi(wTφ(xi) + b) ≥ 1− ξi (6.20)

where ξi = max{0, 1− yi(wTφ(xi) + b)} is the empirical loss (also called the Hinge Loss)

introduced when xi is on the wrong side of the margin, the regularisation parameter C con-

trols the loss (cost) for misclassification, i.e. it controls the trade-off between fitting the data

(related to the "bias" property of a predictive model) and making the margin large (related to

the "variance" property of a predictive model). In this way, apart from minimising 1
2
‖w‖2,

the number of misclassifications (cost) is also minimised.

Kernels allow for complex, non-linear classifiers using Support Vector Machines by trans-

forming the input feature vector x into a higher dimensional space. A typical Gaussian radial

basis function kernel takes the following form:

k(x,x′) = exp(−‖x,x′‖2
/2σ2) (6.21)

In this case, the regularisation parameter C and the Gaussian kernel parameter σ can be

trained using cross-validation described in the following Section 6.5.4.

It should be noted that, although probabilistic outputs can be formulated for SVM [115, 54],

the objective function therein [115] is somewhat artificial because it uses logistic regression

to obtain a likelihood. In contrast, GPs offer an objective function by default. In addition,
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despite optimising kernel parameters in SVM can also obtain information on the relative

importance of the features, however, this is generally difficult or expensive to do [81, 46],

whereas in GPs the kernel parameters are learned automatically during the training process.

6.5.4 Experimental Setup

In the experiments (see Section 6.6), the k−fold cross-validation method [77] is used to

measure the predictive performance (expressed in terms of prediction accuracy) for both

PM-AMIS and SVM described in Sections 6.5.2 and 6.5.3 respectively. The k−fold cross-

validation involves randomly partitioning the entire data set into k non-overlapping groups

(data "folds") of approximately equal size. Taking k = 10 for example, the original data

D is split into 10 equal size subsets that are mutually exclusive: D1, ..., D10, with one

Di(i ∈ {1, ..., 10}) designated for testing and the remaining nine folds for training. The

overall accuracy has been computed as the average of the accuracies obtained over the ten

partitions. In this way, the k−fold cross-validation corrects for the optimism of training error

by averaging measures of fit (prediction error) and hence derives a more accurate estimate of

prediction accuracy [57].

Table 6.4 Confusion matrix.

Positive (Actual) Negative (Actual)
Positive (Predicted ) True Positive (TP) False Positive (FP)
Negative (Predicted ) False Negative (FN) True Negative (TN)

The prediction accuracy in this work is measured in terms of the F -score [124], which con-

veys the balance between the precision (a measure of a classifier’s exactness, also called Pos-

itive Predictive Value) and the recall (a measure of a classifier’s completeness, also known

as Sensitivity). Given the confusion matrix (also called a contingency table), shown in Ta-

ble 6.4, several common performance metrics can be calculated as below [38]:

• recall =
Positives correctly classified

Total positives = TP
TP + FN

• precision = TP
TP + FP

• F-score = 2
1/precision + 1/recall
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In this work, precision and recall are given equal weight resulting in the above formulation

of F-score [83].

6.6 Results

The experiments addressed the task of predicting whether a subject belongs to class high

or low for the Big-Five (see Section 6.3.2). The main reason behind this choice is that it

corresponded to the natural tendency to compare others in terms of who is higher or lower

along a given dimension: “a compelling argument can be made for emphasising comparisons

among individuals, which we do in everyday life (Who is more assertive? Who is more

responsible?) and which is useful for such practical purposes as deciding whom to hire for

a particular job” [19].

The experiments were performed using a k-fold (k = 10) validation approach (see Sec-

tion 6.5.4) and the same subject never appears in training and test set. The classification has

been performed with both the G-ARD approach (see section 6.5.1) and an SVM with radial

basis function kernel (one parameter, see Section 6.5.3). The SVM classifier optimised the

kernel parameters by minimising the cross-validation error across a set of candidate values,

which is, generally, not feasible for large parameter sets and / or small amounts of data such

as the one adopted in this work (300 subjects in total). In contrast, the proposed G-ARD GPs

can integrate the uncertainty in the kernel parameters by means of a Bayesian approach when

they make predictions. As a result, Figure 6.6 shows that the G-ARD is competitive with the

SVM even if the number of its kernel parameters is larger. The accuracy differences across

the traits are in line with results typically observed in Personality Computing [157], where

different traits can be predicted with different degrees of accuracy depending on the partic-

ular data. This parallels the psychological concept of relevance according to which traits

emerge with different evidence in different contexts (e.g. extraversion is easier to observe at

a party than at a funeral) [165].

Besides achieving high accuracy, the G-ARD provides information about the feature groups

that better account for the classification outcomes. Figure 6.7 shows the inverse of the G-

ARD weights (1/τr defined in eq. (6.15)) for both Asian and British assessors. Overall,
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Figure 6.6 Prediction accuracy of PM-AMIS/SVM for the two cultures (UK and Asia).

the presence of human faces (group G1) plays the most important role for all traits and

both cultures. The only exception is Extraversion, where the role of G1 is significant, but

comparable to those of other groups. The probable reason is that in the case of this trait,

strongly associated to social interactions, it is important not only that there are other faces,

but also in what type of image they appear (e.g. the face is the main element in a portrait,

but it is just a detail in the picture of a crowded public space). Overall, faces appear to be

more important for British assessors than for Asian assessors for all traits except Neuroticism

(the difference between the G1 weights is always statistically significant). The other feature

groups for which the weights are large are those that correspond to high level aspects of a

picture, namely amount and size of visually homogeneous regions (G4), composition (G5)

and textural properties (G9). The other groups have a non-negligible role but appear to be

less important. One possible reason of these results is that visual features accessible at first

glance, such as those included in the groups above, are probably more likely than others to

drive the personality impressions of the assessors.

The difference between the weights resulting from British and Asian assessors is always

statistically significant except in the case of G5 for Neuroticism (p < 0.01 after Bonferroni

Correction according to a weighted two-sample t-test). These results suggest that there is

a cultural effect on personality perception. The largest differences can be observed for G1

(see above). Furthermore, British assessors are less sensitive to number and size of visually

homogeneous regions for Agreeableness and Neuroticism while they are more sensitive to

the texture properties for Conscientiousness and Agreeableness (conversely for Openness).

Overall, Figure 6.7 suggests that UK and Asian assessors are sensitive to the same visual
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G1 G2 G3 G4 G5 G6 G7 G8 G9

N(UK)

N(A)

A(UK)

A(A)

E(UK)

E(A)

C(UK)

C(A)

O(UK)

O(A)

Figure 6.7 The plot shows the co-efficients of the G-ARD for the five traits (O,C,E,A,N) and
the two cultures, namely Asia (A) and UK.

characteristics, but with different relative importance. One possible explanation is that there

is no cultural difference for the physiological aspects - hence all assessors are sensitive to

the same visual features - but there are cultural differences when it comes to the association

between visual features and personality traits.

Another appealing property of the GPs compared to SVM is their capability of quantifying

uncertainty resulting from their probabilistic formulation. The above Figure 6.7 shows the

mean of the coefficients of the nine groups of features, where those of G3, G4, G5 and G6

are very similar for the British and Asian assessors. However, the t-test shows that the dif-

ference between the weights resulting from the British and Asian assessors are statistically

significant. This difference is more obvious by looking at the density plot of the weights.

Figure 6.8 shows the density plot of the co-efficient of G5 for the trait of Agreeableness

(Agr) for both the British and Asian assessors. As can be seen, there is remarkable differ-

ence between the distributions of the co-efficient of G5 for the British and Asian assessors,

reflecting the cultural effects between personality assessors of different national origin when

associating the visual features with the personality traits.
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Figure 6.8 Density plot of the co-efficient of G5 for the trait of Agreeableness (Agr) for both
the British and Asian assessors.

6.7 Conclusion

This chapter has shown that Flickr faves can be used to predict whether a Flickr user is per-

ceived to be above the median with respect to the Big-Five traits. The results showed that the

new G-ARD kernel designed for the experiments of this work allows a GP-based classifier

to achieve comparable accuracies as state-of-the-art SVMs. Furthermore, the parameters of

the G-ARD kernel allowed the identification of the groups of features that better account

for the classification outcome while detecting cultural differences between UK and Asian

personality assessors.

The classification accuracies, well above chance for all traits, showed that the weights of

the G-ARD kernel provide reliable information about the interplay between low-level, visual

characteristics of faves and attribution of personality traits. According to recent sociologi-

cal investigations [119], this is important because the impression people convey online can
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change the outcome of important issues like, e.g. getting or not getting a job [23]. For this

reason, future work will concentrate on how to use the information provided by the G-ARD

weights to ensure that items posted online do not convey a wrong impression, whether it

comes to faves or other types of online material.

This chapter has demonstrated that the interplay between the interpretable features extracted

and the prediction outcome can be learned through the G-ARD kernel, which is important

as it contributes to the understanding of human behaviours. In the following chapter, the

extraction of features using Hilbert spectral analysis (HSA) [131] will be explored. The

motivations behind this choice of feature extraction method are as follows. On the one hand,

HSA is a new representation of signal fundamentally different from STFT that dominates

feature extraction in SSP. On the other hand, compared to features learned by DCNN that

are generally hard to interpret, the resulting features are interpretable, which is of great

importance for SSP.
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Chapter 7

Feature Extraction Using Hilbert

Spectral Analysis

In signal processing, the conventional way to complex extend a real signal in order to ob-

tain the instantaneous amplitude (IA) and instantaneous frequency (IF) is to use the Hilbert

transform to construct Gabor’s analytic signal. This approach relies on the assumption of

harmonic correspondence (HC), which may lead to incorrect IA and IF. Hilbert spectral

analysis (HSA) [131] , a multi-component model that features a relaxation of the HC condi-

tion, is reported to be capable of generating exact IA and IF when appropriate assumptions

are made on the signal model and thus provides a new and powerful framework for signal

analysis. This chapter aims to explore whether features extracted using HSA can improve

the accuracy of data analysis in the area of SSP. In particular, the HSA algorithm [131] was

implemented on filler sounds of female speakers and features extracted from the resulting

Hilbert spectrum (called HS features hereafter) were then fed to a Support Vector Machine

(SVM) classifier to perform personality analysis. The performance of the SVM classifier

using the HS features was compared with that of using features extracted from short time

Fourier transform (STFT), called STFT features hereafter. The results suggested that HS

features are competitive with STFT features in terms of personality prediction accuracy and,

thus, show the effectiveness of HSA for signal processing. However, the experiments showed

that HSA produces a different number of features for every sample and hence it cannot be

used easily in machine learning approaches.
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The rest of this chapter is organised as follows: Section 7.1 describes the background of

HSA, Section 7.2 presents the HSA algorithm, Section 7.3 reports on the experiments and

results and Section 7.4 offers some conclusions.

7.1 Background

HSA generalises the definition of the Hilbert spectrum by using a superposition of complex

AM-FM components parametrised by the IA and IF [131]. It is a type of time-frequency

analysis of non-stationary signals, compared to the Fourier spectral analysis that assumes

the system is linear and the data is strictly stationary [69]. While the Fourier transform

outputs the energy-frequency distribution of the data, the output of HSA gives a full energy-

frequency-time distribution of the data characterised by the IA and IF which will be discussed

next.

Many physical phenomena are characterised by a complex signal

z(t) = x(t) + jy(t) = ρ(t)ejΘ(t) (7.1)

where ρ(t) is called the signal’s IA, Θ(t) the signal’s instantaneous phase (IP), and Ω(t) =

d
dt

Θ(t) the signal’s IF. z(t) is in general called the latent signal because only the real part

x(t) is observed and the imaginary part y(t) is hidden; that is, the observation is related to

the real operator:

x(t) = <{z(t)} (7.2)

Therefore, the complex extension problem, that is, determining z(t) from x(t) is called the

latent signal analysis (LSA) problem. In the classical approach, a unique rule L{.} is sought

to get an estimate of y(t):

ŷ(t) = L{x(t)} (7.3)
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This results in the instantaneous estimates:

ρ̂(t) = ±|z(t)| = ±
√
x2(t) + ŷ2(t) (7.4)

Ω̂(t) =
d

dt

[
arctan

( ŷ(t)

x(t)

)]
(7.5)

The Hilbert transform (HT) is almost universally the chosen rule; however, Sandoval et

al. [131] argued that it limits one to only a subset of latent signals that have the same real

part x(t). After a review of the HT and motivations behind its use and the analytical signal,

they proved that analyticity can still be maintained without HC and that no universal rule for

the quadrature exists. The following Section 7.1.1 briefly reviews the HT and the analytical

signal, and the reasons for relaxing the HC condition are given in Section 7.1.2.

7.1.1 The HT and Analytical Signal

The HT is defined as:

H{x(t)} ≡ − 1

π
−
∫ +∞

−∞

x(τ)

τ − t
dτ (7.6)

The adoption of the HT has three main motivations: 1) Vakman’s physical conditions, 2) an-

alyticity of the resulting complex signal, and 3) computational ease through Gabor’s quadra-

ture method (QM) [48]. The following reviews these motivations.

Vakman’s Physical Conditions

Vakman [146, 147, 148, 149, 150, 151] proposed conditions to restrain the ambiguities in

choosing the complex extension.

The first ambiguity arises when conducting instantaneous parametrisation for real signals

[11, 113]. Consider

x(t) = <

{
a0(t)ej[

∫ t
−∞ ω0(τ)dτ+φ0]

}
(7.7)

There is an infinite set of pairs a0(t), ω0(t) corresponding to the same real signal x(t), and
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hence an infinite set of pairs IA, IF. To ensure that a unique complex extension can be justified

for a real signal, Vakman proposed three conditions:

Condition 1: Amplitude Continuity: A small change in the real signal x(t) should cause

a correspondingly small change in IA ρ(t). That is , ρ(t) is a continuous function, which

implies the rule in eq. (7.3) is continuous, i.e.

L{x(t) + εw(t)} → L{x(t)} for ||εw(t)|| → 0 (7.8)

Condition 2: Phase Independence of Scaling and Homogeneity: Scaling the real signal x(t)

by a real constant c (> 0) should have no affect on IP Θ(t) and IF Ω(t) , and IA ρ(t) should

be multiplied by c. This implies the complex extension rule in eq. (7.3) is scalable:

L{cx(t)} = cL{x(t)} (7.9)

Condition 3: Harmonic Correspondence: Let x(t) = a0 cos(ω0t+φ0), that is, a pure sinusoid

with constant amplitude a0 and frequency ω0. Then HC will lead to the complex extension:

ẑ(t) = a0e
j(ω0t+φ0) (7.10)

where the IA, IF are equal to the constants a0 and ω0, respectively. This implies that for any

constant a0 > 0, ω0 > 0, we must have:

L{a0 cos(ω0t+ φ0)} = a0 sin(ω0t+ φ0) (7.11)

and hence ẑ(t) is a simple harmonic component (SHC) with positive IA and IF.

Vakman showed in [146, 149] that the HT is the only operator that meets the above con-

ditions. Consequently, the HT (or Gabor’s practical QM) is regarded as the correct way to

complex extend a signal.

The following Condition (4) aims to resolve the ambiguity in complex signals: we construct
ˆz(t) using eq. (7.3), but we want the pair IA, IF for signal analysis, and ambiguities can occur

in this coordinate transformation [49]. For example, there may be negative IA in eq. (7.4).
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Condition 4: Phase continuity: The phase Ω(t) is a continuous function.

Gabor’s QM

The HT is an ideal operator and hence is not physically realisable in practice. Gabor’s

QM [48] is a frequency domain method that is equivalent to the HT under certain conditions.

It involves the following three steps:

1. decompose x(t) into SHCs by computing its Fourier spectrum

2. double the magnitude of the non-negative frequency components

3. negate the negative frequency component

The resulting complex signal is formulated in terms of SHCs each having constant IA and

non-negative IF. Gabor’s QM is widely used because of its convenient practical implemen-

tation using Fourier transform (FT).

Analyticity of the Analytic Signal

The analytic signal (AS) refers to the complex signal resulting from the HT (i.e. Gabor’s

QM) of a real signal [6, 12, 20, 156, 167]. Define:

z(ι) = u(t, τ) + jv(t, τ) with ι ≡ t+ jτ (7.12)

Then z(ι) is called an analytic function if its real and imaginary parts satisfy the Cauchy-

Riemann (CR) conditions:

∂

∂t
u(t, τ) =

∂

∂τ
v(t, τ) and

∂

∂τ
u(t, τ) = − ∂

∂t
v(t, τ) (7.13)

For the AS obtained by the HT, that is, ẑ(t) = x(t) + jH{x(t)}, if we set t to ι ≡ t + jτ ,

then the resulting complex function

ẑ(ι) = û(t, τ) + jv̂(t, τ) (7.14)
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is an analytic function [13]. For this reason, the HT-extended complex signal ẑ(t) = x(t) +

jH{x(t)} is called the AS [20, 156].

7.1.2 Relaxing the Condition of HC

The motivation for Vakman’s HC assumption is that the SHC is the solution to the following

differential equation:
d2

dt2
z(t) + ω2

0z(t) = 0 (7.15)

which describes many ideal physical systems such a LC circuit or spring/mass model.

However, any modification to the above differential equation eq. (7.15) means deviation from

the ideal case. Consider:
d2

dt2
z(t) + c

d

dt
z(t) + ω2

0z(t) = 0 (7.16)

where c is a constant. The solution to eq. (7.16) is:

z(t) = a0e
−vtej(ωdt+φ0) (7.17)

which includes an AM term and is not a SHC [76]. In addition, in cases where the dif-

ferential equation contains time-varying coefficients or partial derivatives with respect to τ ,

the associated solution may consist of both AM and FM terms, which is not a SHC as well

[37, 116, 150].

For these reasons, Sandoval et al. [131] advocate that the condition of HC is overly restrictive

and can lead to incorrect interpretations because it is common that real physical systems

deviate from the ideal one such as described in eq. (7.15). Consequently, they claim that, "by

not assuming HC, we gain a degree of freedom in our analysis that allows us to construct

other complex extensions that may be better suited to describing the underlying physical

phenomena associated with the signal" and believe that, any attempt to find a unique rule to

infer z(t) defined in eq. (7.1) from x(t) defined in eq. (7.2), is "fundamentally flawed and

that no such universal rule can exist".

Following this claim, they proved the proposed Theorem "If we do not assume HC, there

exists at least one choice for the quadrature, y(t) 6= H{x(t)} that results in z(t) being an
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analytic function " and the Corollary "No unique rule for the quadrature, ŷ(t) = L{x(t)}

exists to obtain the latent signal, z(t) from the observation, x(t) = <{z(t)} for all z(t)."

Consequently, they argued that the HT (which assumes HC) can be used to determine the

IA/IF only for a small subset of signals (those with HC), and alternative latent signals can

be obtained by relaxing the HC condition. Moreover, they pointed out that Gabor’s practical

QM implementation (equivalent to the HT) can only be used in situations where a latent

signal is a superposition of SHCs with non-negative IF and in cases where H{x(t)} ≈ y(t)

[113], e.g. communication signals that can approximately satisfy Bedrosian’s theorem [7,

105, 150]. For non-linear and non-stationary signals, Gabor’s complex extension fails to

provide the necessary flexibility. To solve this problem, they proposed the Hilbert spectral

analysis (HSA) employing a superposition of latent AM-FM components (rather than SHCs)

which will be presented in the following section.

7.1.3 HSA Using Latent AM-FM Components

By relaxing the HC condition, Sandoval et al. [131] proposed the construction of latent

signal z(t) as a multi-component model comprising a superposition of K (possibly infinite)

complex AM-FM components:

z(t) ≡
K−1∑
k=0

ψ(t; ak(t), ωk(t), φk) (7.18)

where the AM-FM component is defined by:

ψ(t; ak(t), ωk(t), φk) ≡ ak(t) exp

{
j

[∫ t

−∞
ωk(τ)dτ + φk

]}
(7.19)

= ak(t)e
jθk(t)

= sk(t) + jσk(t)

with ak(t), ωk(t) representing the IA and IF for component k respectively, and φk being the

phase reference. The observed signal x(t) is associated with z(t) according to eq. (7.2).

Examples of the above complex AM-FM components (eq. (7.19)) include constant ampli-
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tude and constant frequency, time-varying frequency and constant amplitude, time-varying

amplitude and constant frequency. As can be seen, SHC (constant amplitude and constant

frequency) is just one special case of the AM-FM components, and relaxation of HC allows

greater freedom in the construction of the latent signal. In this case, the complex extension

is implied by the assumptions of the underlying signal model. Consequently, correct as-

sumptions must be made on a per problem basis in order to arrive at a unique decomposition

and hence a proper estimation of the latent signal and its components. The resulting Hilbert

spectrum is parametrised by a set of IA/IF pairs, each associated with the corresponding

component.

Although this newly proposed multi-component representation of the signal (termed as HSA

by [131]) tends to be a powerful signal analysis technique theoretically, its application in

signal processing has not been explored. This chapter aims to bridge this gap and attempts

to explore the usefulness of HSA in practical applications. In particular, the extraction of

features from the Hilbert spectrum (HS) of the filler sounds of female speakers will be ex-

plored, and the resulting HS features will be used to perform a similar personality analysis

to that described in detail in Chapter 6. In the following section, the HSA algorithm used in

this work will be presented.

7.2 HSA Algorithm

The HSA algorithm adopted in this work is called the HSA-IMF algorithm, the pseudo codes

of which can be found in Algorithm 9 in [131]. This algorithm builds upon the empirical

mode decomposition (EMD) of [69], ensemble EMD (EEMD) of [166], complete EEMD of

[144] and tone masking of [29], but proposes the intrinsic mode function (IMF) demodula-

tion rather than the original HT demodulation in EMD of [69] to obtain the estimates of IA

and IF. The reason is that, under the HSA framework, HT is no longer appropriate for the

demodulation since HT assumes SHCs and HC whereas IMF is generally a latent AM-FM

component without HC. The EMD of [69] sequentially found a set of AM-FM components

(IMFs) through a sifting algorithm which iteratively identifies and removes the trend from

the signal (i.e. behaves as a high pass filter). EEMD and tone masking admitted the en-

semble averaging to solve the mode mixing problem caused by the signal intermittency (i.e.
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the relative component intermittency). The complete EEMD aimed to address some of the

undesirable characteristics of EEMD such as high computational complexity, the loss of

the perfect reconstruction property and propagation of IMF estimation error. The way the

complete EEMD works is that it averages at the component-level when estimating each com-

ponent rather than the average at the conclusion of all EMD trials, and hence requires fewer

sifting iterations, a smaller ensemble size and is able to recover the completeness property

of the original EMD algorithm. The tone masking method differs from the EEMD by us-

ing a deterministic (masking) signal rather than a noise signal to help track the components

properly, and can perform better with a carefully chosen masking signal. This HSA-IMF

algorithm incorporates the most desirable features of the complete EEMD and tone mask-

ing to solve the mode mixing problem, Rato’s improvements to the sifting algorithm [122]

and Sandoval et al.’s self-proposed IMF demodulation method [131]. The following section

presents the specific parameter settings for the HSA-IMF algorithm used in the experiments

in this work (see Section 7.3).

7.2.1 Parameter Settings for the HSA-IMF

Table 7.1 shows the specific experimental settings for the HSA-IMF algorithm used in this

work - the "HSAr2" toolkit developed by [131].

Table 7.1 Experimental settings for the HSA-IMF algorithm.

SiftStopThresh
Sifting stop criterion in dB (usually start around

30dB)
30

EMDStopThresh EMD stop criterion in dB (usually start around 10dB) 10
alpha sifting step size (normally<=1) 0.95

I number of ensemble trials 2
beta scale factor for noise [0.01, 2]

The "HSAr2" toolkit was implemented to output the Hilbert spectrum (HS) for the data set

presented in the following Section 7.3 . The HS output includes a set of instantaneous ampli-

tude (IA) and instantaneous frequency (IF) for the latent AM-FM components decomposed.

Experimental exploration of the application of HSA-IMF algorithm - the experiments of ex-

tracting features from the resulting IAs and IFs - will be reported in the following sections.
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7.3 Experiments and Results

In this section, we investigate feature extraction from the Hilbert spectrum (HS) of the voice

data. The data set used are the fillers of female speakers, and the total number of data sam-

ples was 716. Similar to Chapter 6, the Big-Five personality traits [132] were attributed

by experts to each female speaker according to her filler sound. In order to test the effec-

tiveness of the resulting HS features, the classification accuracy of the SVM classifier (see

Section 6.5.3) using HS features is compared with that of using the feature set extracted

from the same data based on short time Fourier transform (STFT). The reason for choosing

a SVM classifier rather than a Gaussian process classifier (described in Chapter 4) is that

here we are just exploring features and we are not too concerned with the quantification of

uncertainty. The STFT features are obtained using openSmile - the state-of-the-art audio

feature extraction toolkit based on the STFT output. The classification task is to predict

whether a female speaker is perceived to be above the median or not with respect to each of

the Big-Five personality traits from her filler sounds on a voice call. The Big-Five traits are:

openness, conscientiousness, extraversion, agreeableness and neuroticism as described in

Section 6.3.2, denoted by "Ope","Con","Ext", "Agr" and "Neu" respectively in the following

sections. The prediction accuracies result from a ten-fold cross-validation approach. In the

following section, feature extraction using openSmile on the fillers data will be introduced.

7.3.1 Feature Set From openSmile

The INTERSPEECH 2009 Emotion Challenge feature set (384 features) was selected using

openSmile [36] as it was more suited to the personality analysis in this case. The 384 fea-

tures are generated by applying twelve statistical functionals (shown in Table 7.2) to sixteen

smoothed low-level descriptor contours as well as their 1st order delta coefficient (differen-

tial). The sixteen low-level descriptors were as follows:

1. Zero-crossing-rate (ZCR) of the time signal

2. Root mean square (RMS) signal frame energy

3. The fundamental frequency computed from the Cepstrum
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4. The voicing probability (harmonics-to-noise ratio) computed from the ACF (autocor-

relation function)

5. Mel-frequency cepstral coefficients (MFCC) one to twelve

Table 7.2 12 functionals for extracting features for emotion recognition as analysed by [36].

max The maximum value of the contour
min The minimum value of the contour

range max - min

maxPos
The absolute position of the maximum value (in

frames)

minPos
The absolute position of the minimum value (in

frames)
amean The arithmetic mean of the contour

linregc1
The slope (m) of a linear approximation of the

contour

linregc2
The offset (t) of a linear approximation of the

contour

linregerrQ
The quadratic error computed as the difference of the

linear approximation and the actual contour
stddev The standard deviation of the values in the contour

skewness The skewness (3rd order moment)
kurtosis The kurtosis (4th order moment)

In the next section, the extraction of features from the HS of the fillers data will be presented.

7.3.2 Feature Extraction From the HS

This section presents the experiments on feature extraction from the IA and IF of the Hilbert

spectrum (HS) of the fillers data. The HS of the data was obtained by implementing the

HSA-IMF algorithm (experimental settings of which can be found in Section 7.2) on the

complete 716 data samples. Since each data sample may have a different number of underly-

ing components because of the nature of the HSA-IMF approach, it is difficult to derive the

same number of features for all the 716 data instances. Consequently, the following settings

for extracting features from the HS of the data were explored. It should be noted that, when-

ever a t-test is mentioned in the following settings, it means one-sided t-test for the results

obtained from ten repeated experiments.
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Setting I

In this first setting, only data that have six or seven intrinsic mode functions (IMFs) were

selected, resulting in a total number of 686 samples (i.e. 96% of the data have six or

seven IMFs). Next, six statistical functionals (mean, median, standard deviation, maximum,

minum, range) were applied to each pair of the IA and IF of the last five IMFs. Apart from

the purpose of obtaining the same number of features for each data instance, another reason

for choosing the last five IMFs is that the first IMF in most cases is noise and this does not

give much information. This leads to sixty (6× 5× 2) features for each data instance. This

case is denoted by HS_60. The binary classification accuracy of SVM using HS_60 fea-

tures is compared with that of exploiting 384 features extracted using openSmile (denoted

by OS_384) in Table 7.3. As can be seen, the classification accuracies with only 60 features

from the HS are well above chance for all traits.

Table 7.3 Prediction accuracy of HS_60 and OS_384_I for each of the
Big-Five traits.

TRAIT HS_60 OS_384_I
Ope 0.69 0.82
Con 0.62 0.77
Ext 0.62 0.74
Agr 0.72 0.82
Neu 0.63 0.73

HS_60 denotes the case where the prediction accuracy of SVM is obtained using
the 60 features extracted by applying 6 statistical functionals to each pair of the
IA and IF of the last 5 IMFs resulting from the Hilbert spectrum of the 686 data
instances that have 6 or 7 IMFs.
OS_384_I denotes the case where the prediction accuracy of SVM is obtained
using the 384 features extracted from the 686 data instances via openSmile.

Setting II

In this setting, 553 data instances that have seven IMFs were selected. The twelve statisti-

cal functionals listed in Table 7.2 were then applied to each pair of the IA and IF of the 7

IMFs, resulting in 168 (12× 7× 2) features for each data instances. This case is denoted by

HS_168. The linear approximation highlighted in Table 7.2 is performed between the IA or

IF and instantaneous time. In Table 7.4, the classification accuracy of SVM using HS_168
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features is compared with that of exploiting 384 features extracted via openSmile (denoted

by OS_384_II in this case). The absolute value of the difference between the prediction

accuracy of the HS_168 case and the OS_384_II case is denoted by Abs_diff_II. Column 4

of Table 7.4 shows the results from the one-sided t-test for the values of Abs_diff_II for the

five traits with p-values shown in brackets. The results suggested that raw features from the

HS (only 168) are capable of achieving comparable prediction accuracy with 384 openSmile

features that have been extracted with very sophisticated methods (p-value < 0.025). In addi-

tion, the much higher prediction accuracy (one-sided t-test, p-value < 0.025) of the HS_168

case than that of the HS_60 case (in Table 7.3) seems to suggest that the application of twelve

functionals to get more features does perform much better than applying six functionals to

the HS of the data.

Table 7.4 Prediction accuracy of HS_168 and OS_384_II for each of
the Big-Five traits.

TRAIT HS_168 OS_384_II Abs_diff_II (p-value)
Ope 0.79 0.84 <0.05 (5.94e-07)
Con 0.68 0.79 <0.1 (1.12e-03)
Ext 0.69 0.72 <0.05 (1.09e-03)
Agr 0.75 0.82 <0.06 (5.38e-04)
Neu 0.73 0.75 <0.03 (3.34e-03)

HS_168 denotes the case where the prediction accuracy of SVM is obtained
using the 168 features extracted by applying 12 statistical functionals to each
pair of the IA and IF of the 7 IMFs of the 553 data instances that have 7 IMFs.
OS_384_II denotes the case where the prediction accuracy of SVM is obtained
using the 384 features extracted from the 553 data instances via openSmile.
Abs_diff_II denotes the absolute value of the difference between the prediction
accuracies of the HS_168 case and the OS_384_II case. The p-values are
obtained from one-sided t-test.

Setting III

In this setting, for the 553 data instances that have seven IMFs, the 144 MFCC features of

the 384 openSmile features are replaced with the 168 HS features described in Setting II.

This leads to 408 (384 - 144 + 168) features for each data instance. This case is denoted

by HS_OS_408. This is because, as the 144 MFCC features and the 168 HS features were

obtained by applying the same 12 functionals (see Table 7.2) to the smoothed STFT output

and the HS output respectively, the performance of this combination of features could indi-
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cate the predictive effect of the HS features. Table 7.5 displays the classification accuracy of

HS_OS_408 and OS_384. The absolute value of the difference between the prediction accu-

racy of the HS_OS_408 case and the OS_384_II case is denoted by Abs_diff_III. The results

from the one-sided t-test for the values of Abs_diff_III for the five traits are shown in Column

4 of Table 7.5, with p-vales shown in brackets. The results suggested that the HS_OS_408

case is able to achieve comparative prediction accuracy with that of the OS_384 case (p-vale

< 0.025), and hence showed the effectiveness of the HS features as an alternative to the STFT

features.

Table 7.5 Prediction accuracy of HS_OS_408 and OS_384_II for each
of the Big-Five traits.

TRAIT HS_OS_408 OS_384_II Abs_diff_III (p-value)
Ope 0.80 0.84 <0.04 (3.03e-05)
Con 0.74 0.79 <0.05 (2.02e-04)
Ext 0.74 0.72 <0.02 (1.56e-02)
Agr 0.81 0.82 <0.02 (6.33e-04)
Neu 0.69 0.75 <0.06 (8.67e-04)

HS_OS_408 denotes the case where the prediction accuracy of SVM is achieved
using the 408 features obtained by replacing 144 MFCC features of the 384
openSmile features with the 168 HS features.
OS_384_II denotes the case where the prediction accuracy of SVM is obtained
using the 384 features extracted from the 553 data instances via openSmile.
Abs_diff_III denotes the absolute value of the difference between the prediction
accuracies of the HS_OS_408 case and the OS_384_II case. The p-values are
obtained from one-sided t-test.
Note: the data used for the two cases are the 553 data instances that have 7 IMFs.

Setting IV

In this setting, for the 553 data instances with seven IMFs, the twelve statistical functionals

(see Table 7.2) were first applied to the IA and IF of the superposition of the seven IMFs.

This leads to 24 (12×2) features for each data instance. This case is denoted by HS_SU_24.

As in Setting III, the 144 MFCC features were also replaced with the 24 HS_SU_24 fea-

tures. This results in 264 (384 - 144 + 24) features for each data instance. This case

is denoted by HS_SU_264. Table 7.6 presents the classification accuracy of HS_SU_24,

HS_168, HS_SU_264, HS_OS_408. The difference of the prediction accuracy between the

HS_168 case and the HS_SU_24 case is denoted by Diff_IV_A (the former minus the lat-
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ter), and that between the HS_OS_408 case and HS_SU_264 case is denoted by Diff_IV_B

(the former minus the latter). The results of the one-sided t-test for the values of Diff_IV_A

and Diff_IV_B are shown in Columns 4 and 7 of Table 7.6, respectively. As can be seen,

the classification accuracies of the HS_SU_24 case reduced significantly compared to those

of the HS_168 case (p-value < 0.025). This indicates that extracting features from the su-

perposition of the IMFs does not seem to give much information. The reduced prediction

accuracies of the HS_SU_264 case compared to those of the HS_OS_408 case (p-value <

0.025) also suggest that it is appropriate to extract features from every pair of IA and IF of

all the IMFs rather than from one pair of IA and IF obtained from the superposition of all the

IMFs.

Table 7.6 Prediction accuracy of HS_SU_24, HS_168, HS_SU_264 and HS_OS_408 for each of
the Big-Five traits.

TRAIT HS_SU_24 HS_168
Diff_IV_A
(p-value) HS_SU_264

HS_OS_408
Diff_IV_B
(p-value)

Ope 0.68 0.79 >0.11 (1.01e-04) 0.75 0.80 >0.04 (4.97e-05)
Con 0.45 0.68 >0.20 (3.86e-03) 0.70 0.74 >0.04 (4.13e-03)
Ext 0.39 0.69 >0.27 (1.06e-02) 0.68 0.74 >0.05 (1.57e-04)
Agr 0.63 0.75 >0.12 (1.88e-04) 0.73 0.81 >0.07 (1.26e-03)
Neu 0.38 0.73 >0.29 (5.14e-03) 0.69 0.70 >0 (1.48e-02)

HS_SU_24 denotes the case where the prediction accuracy of SVM is achieved using the 24 features extracted
by applying 12 statistical functionals to one pair of the IA and IF of the superposition of the 7 IMFs resulting
from the Hilbert spectrum.
HS_168 denotes the case where the prediction accuracy of SVM is obtained using the 168 features extracted by
applying 12 statistical functionals to each pair of the IA and IF of the 7 IMFs of the 553 data instances that have
7 IMFs.
HS_SU_264 denotes the case where the prediction accuracy of SVM is achieved using the 264 features obtained
by replacing 144 MFCC features of the 384 openSmile features with the 24 HS features extracted from the
superposition of the 7 IMFs.
HS_OS_408 denotes the case where the prediction accuracy of SVM is achieved using the 408 features obtained
by replacing 144 MFCC features of the 384 openSmile features with the 168 HS features extracted from the 7
IMFs directly.
Diff_IV_A denotes the difference of the prediction accuracies between the HS_168 case and the HS_SU_24
case (the former minus the latter); Diff_IV_B represents the difference of the prediction accuracies between the
HS_OS_408 case and HS_SU_264 case (the former minus the latter). The p-values are obtained from the the
one-sided t-test.
Note: the data used for the four cases are the 553 data instances that have 7 IMFs.
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Setting V

As mentioned earlier, the nature of HSA means each data instance may have a different

number of IMFs. Therefore, this makes it difficult to generate the same number of features

for all data instances. To solve this problem , only data instances that have six or seven IMFs

were selected in Settings I - IV. However, this means that it is not possible to use all the data

when making predictions. This setting V attempts to make sure all the 716 data instances

have the same number of features in the following way. First, the Hilbert spectrum of data

instances that have fewer than seven IMFs is padded with zeros (e.g. if the number of IMFs

is five, then the first two IMFs are padded with zeros). Next, in data instances for which the

number of IMFs is greater than seven only the last seven IMFs are selected. This will result

in the same number of IMFs and hence the same number of features (168) for all data. The

reason for choosing seven IMFs is that 60% of all data have seven IMFs. This case is denoted

by HS_PAD_168. Table 7.7 shows the classification accuracy of HS_PAD_168 and HS_168.

The difference between the prediction accuracies of the HS_168 case and the HS_PAD_168

case is denoted by Diff_V (the former minus the latter). Column 4 of Table 7.7 displays

the results from the one-sided t-test for the values of Diff_V for the five traits, with p-values

shown in brackets. It can be seen that the prediction accuracies of the HS_PAD_168 case

drop a lot compared to those of the HS_168 case (p-value <0.025). Therefore, using padding

to produce the same number of IMFs and hence to obtain the same number of features for all

data, does not seem to be feasible for the application of Hilbert spectral analysis.

7.4 Conclusions

This chapter has presented the Hilbert spectral analysis (HSA) framework proposed by [131]

and the experimental exploration of the extraction of features from the Hilbert spectrum (HS)

of fillers of female speakers. This has been the first attempt to investigate the application of

HSA-IMF in signal processing. Five settings for extracting features from the HS have been

explored. The resulting HS features were fed into a SVM classifier to discriminate between

female speakers scoring above and below the median of the scores for all Big-Five traits.

The prediction accuracy of SVM using HS features has been compared with that of using
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Table 7.7 Prediction accuracy of HS_PAD_168, HS_168 for each of
the Big-Five traits.

TRAIT HS_PAD_168 HS_168 Diff_V (p-value)
Ope 0.66 0.79 >0.12 (1.33e-03)
Con 0.55 0.68 >0.13 (1.82e-04)
Ext 0.62 0.69 >0.05 (4.49e-04)
Agr 0.69 0.75 >0.05 (6.41e-04)
Neu 0.56 0.73 >0.13 (1.75e-03)

HS_PAD_168 denotes the case where the prediction accuracy of SVM is ob-
tained using the 168 features extracted by applying 12 statistical functionals to
each pair of the IA and IF of the 7 IMFs of all the 716 data instances where the
Hilbert spectrum of the data instances that have fewer than 7 IMFs is padded
with 0s such that they also have 7 IMFs.
HS_168 denotes the case where the prediction accuracy of SVM is obtained
using the 168 features extracted by applying 12 statistical functionals to each
pair of the IA and IF of the 7 IMFs of the 553 data instances that have 7 IMFs.
Diff_V denotes the difference between the prediction accuracies of the HS_168
case and the HS_PAD_168 case (the former minus the latter). The p-values are
obtained from the one-sided t-test.

features extracted from the STFT output. The results suggested that exploiting HS features

achieves competitive prediction accuracy with using STFT features, and hence showed the

effectiveness of HSA in practical applications and indicated an alternative feature extraction

method for signal processing. However, the variability of the number of IMFs in HSA makes

it difficult to generate the same number of features for all data. As a fixed feature size is

expected in most cases in machine learning, finding a good solution for seamlessly using

machine learning on the computed Hilbert spectrum could be one direction for future work.
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Chapter 8

Conclusions

Gaussian processes have been widely applied in a number of domains. The popularity of GP

models is largely attributed to their attractive properties: the probabilistic non-parametric

formulation makes them capable of quantifying uncertainty while offering flexibility when

modelling data and the parametrisation in the covariance function makes it possible to gain

insights into the application under study. These properties are particularly desirable in the

area of social signal processing, where the inference techniques are dominated by non-

probabilistic parametric models.

However, the ability of the GP models to quantify uncertainty relies on an accurate char-

acterisation of the posterior distribution with respect to the covariance parameters. This is

normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which

suffer from the problem of inefficiencies: their rejection of proposals wastes a considerable

amount of expensive calculations and in the case of pseudo-marginal MCMC, an overesti-

mation of the marginal likelihood may cause the chain getting stuck in certain regions of the

space.

In this thesis, an alternative inference framework for GP models based on the adaptive mul-

tiple importance sampling (AMIS) has been proposed in order to overcome the foregoing

limitations of MCMC approaches. There has been an extensive comparison of the sampling

efficiency of MCMC versus AMIS for GP models, and the results showed that AMIS can

achieve faster convergence speed for both scenarios of GP regression and classification. The
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GP-based pseudo-marginal AMIS with a newly designed kernel (G-ARD) to perform per-

sonality inference - an important area of social signal processing - was also applied. The

task was to classify personality traits of people from the online Flickr pictures. The results

demonstrated the value of the proposed GP framework for social signal processing: apart

from achieving high prediction accuracies, the G-ARD kernel is capable of identifying fea-

tures that better account for the classification outcome, information from which can be used

to change our impressions online.

There was also an attempt, possibly for the first time in the literature, to investigate feature

extraction under the Hilbert spectral analysis framework. The results indicated that, for social

signal processing, features extracted from the Hilbert spectrum can work as an effective

alternative to features extracted from the short time Fourier transform output.

The rest of this chapter is organised as follows. Section 8.1 summarises the work reported

in this thesis , Section 8.2 discusses limitations of the research as well as prospective future

research and Section 8.3 ends with the contributions of this thesis.

8.1 Thesis Summary

As Chapter 1 presented the introduction of the thesis, and Chapters 2 and 3 reviewed the

Bayesian Gaussian processes and MCMC approaches respectively, the thesis summary in this

section focuses on Chapters 4 to 7, the contents of which have been the main contributions

of this thesis.

Chapter 4, Adaptive Monte Carlo, examined AMIS for GPs with Gaussian likelihoods and

proposed PM-AMIS for those with non-Gaussian likelihoods. The motivation was as fol-

lows. Inference of GP covariance is usually costly because it requires repeatedly calculating

the marginal likelihood. Even in the case of Gaussian likelihood where the marginal likeli-

hood is computable, the computation of the marginal likelihood is expensive as it has time

complexity scaling with the cube of the number of input data instances. In the non-Gaussian

likelihood case, using approximations such as LA or EP to approximate the marginal likeli-

hood further increases the time complexity. Most of the literature proposes the use of MCMC

to characterise the posterior distribution over GP covariance parameters in order to quantify
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uncertainty without introducing any bias and, although MCMC proved successful in vari-

ous scenarios, employing MCMC algorithms may result in inefficiencies for the following

reasons:

• MCMC methods are based on the iteration of the following two operations: (i) pro-

posal and (ii) an accept/reject step. For instance, optimal acceptance rates for popular

MH and HMC are approximately 25% and 65%, respectively. Given that calculating

the marginal likelihood and possibly the gradients of its logarithm with respect to the

covariance parameters is expensive, whenever MCMC algorithms reject a proposal, a

considerable amount of computations are therefore wasted.

• In GPs with non-Gaussian likelihood, the PM-MCMC approach bypasses the need to

compute the marginal likelihood exactly, but may suffer from inefficiencies because

when a proposal is accepted and the marginal likelihood is largely overestimated, it

becomes difficult for the chain to accept any other proposal.

Consequently, this thesis has proposed AMIS to alleviate the sampling inefficiencies of

MCMC when inferring the GP covariance parameters.

The motivation of PM-AMIS was that it is impossible to compute exactly the marginal like-

lihood in the case of non-Gaussian likelihood, and hence an unbiased estimation of the like-

lihood was needed. A theoretical analysis was provided showing under which conditions the

proposed PM-AMIS produces expectations under the posterior over GP covariance parame-

ters without introducing any bias.

The contribution of this chapter was in proposing AMIS for GPs and in proposing PM-

AMIS together with a theoretical analysis of it, which makes it possible to apply AMIS to

any likelihood (Gaussian or non-Gaussian).

Chapter 5, Experiments and Results, provided an extensive comparison of convergence speed

with respect to the computational complexity of AMIS versus MCMC.

The experiments were conducted for both the GP regression and classification cases, both

of which employed six benchmark data sets. The number of data ranged from 214 to 1030,

and the maximum number of dimensions was 20. The results suggested that importance
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sampling-based inference of GP covariance parameters is competitive with MCMC algo-

rithms; it is possible to achieve convergence of expectations under the posterior distribution

of covariance parameters faster than employing MCMC methods in a wide range of sce-

narios. Even in the case of around twenty parameters, where importance sampling-based

methods start to degrade in performance, this proposal is still competitive with MCMC ap-

proaches.

The contribution of this chapter was in the extensive comparison of convergence speed with

respect to the computational complexity of AMIS versus MCMC and in empirically showing

that AMIS is an effective alternative to MCMC when inferring GP covariance parameters.

The extensiveness of the experiments was evidenced by the following:

1. six benchmark data sets were tested for both the GP regression and classification cases,

each making use of both the RBF and ARD kernels;

2. for AMIS/MAMIS, importance distributions with two types of covariance matrices as

well as regularised importance distribution were examined;

3. for MCMC algorithms, state-of-the-art MH/PM-MH, HMC (including NUTS and NUTSDA)

and SS were considered;

4. for MH and HMC/NUTS/NUTSDA, three kinds of covariances of the starting propos-

als were investigated for tuning;

5. for PM-AMIS/PM-MH, both the LA and EP approximations were exploited.

Chapter 6, Gaussian Processes for Finding Difference Makers in Personality Impressions -

an Application of PM-AMIS, investigated the application of PM-AMIS to SSP. Using fea-

tures of visual characteristics extracted from the Flickr images (Section 6.4), the task was to

predict whether a Flickr user is perceived to be above the median of the scores with respect

to each of the Big-Five traits. The motivation was as follows. Most of the literature for

personality inference (Section 6.2) has focused on non-probabilistic parametric methods that

fall short of taking into account the uncertainty in the data or on non-parametric models such

as SVM that gives no indication about the predictive effect of each feature. The experiments

in this chapter attempted to exploit non-parametric Gaussian processes models (PM-AMIS
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with a newly designed G-ARD kernel) to map favourite pictures into personality traits. The

prediction accuracies achieved with PM-AMIS were compared with those achieved with

SVM. The results suggested that, the new G-ARD kernel designed for the experiments of

this chapter allowed a GP-based classifier (PM-AMIS) to achieve comparable accuracies as

state-of-the-art SVM. Furthermore, the parameters of the G-ARD kernel allowed the iden-

tification of the groups of features that better account for the classification outcome while

detecting cultural differences between UK and Asian personality assessors.

The contribution of this chapter was, firstly, in that it is the first work that has employed GPs

with PM-AMIS, a fully probabilistic and non-parametric approach, to infer personality traits

from online pictures and, secondly, in proposing the G-ARD kernel that learns automatically

the interplay between groups of features and personality factors during the training process

and provides indications about cultural effects through its weight differences.

Chapter 7, Feature Extraction Using Hilbert Spectral Analysis, provided an experimental in-

vestigation of feature extraction from the Hilbert spectrum. The motivation was as follows.

Feature extraction in signal processing is dominated by various methods based on short time

Fourier transform (STFT). Hilbert spectral analysis (HSA), recently proposed by [131], of-

fers a new representation of signal fundamentally different from STFT. Consequently, the

goal of this chapter was to explore feature extraction from this newly proposed HSA and its

application in social signal processing. Similar to chapter 6, the task is to predict whether

a female speaker belongs to the class high (above the median of the scores) or low (below

the median of the scores) for each of the Big-Five traits employing features extracted from

the Hilbert spectrum of her filler sounds. The prediction accuracies achieved with the SVM

classifier using HS features were compared with those achieved using STFT features. The

results suggested that using HS features achieved competitive prediction accuracies with

those achieved using STFT features, and hence showed the effectiveness of HSA for signal

processing.

The contribution of this chapter was in demonstrating a practical application of HSA to social

signal processing for the first time and in providing an alternative feature extraction method

for social signal processing.
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8.2 Future Work

There are many interesting directions for future work which could follow from the results

presented in this thesis. The following sections will discuss these.

8.2.1 AMIS Under Sparse GPs

In Chapter 4, AMIS was proposed to avoid the sampling inefficiencies of the MCMC al-

gorithms for the inference of GP covariance parameters and extensive experiments on the

convergence analysis of AMIS versus MCMC were reported in Chapter 5. As analysed in

Chapter 5 (Section 5.4), the computational complexity of GP models largely comes from

the computation and inversion of the covariance matrix and in the case of non-Gaussian

likelihood, the LA and EP approximation significantly further increases the computational

complexity. These make the GP models scale poorly in the number of data and this limi-

tation applies when using AMIS for GP models. A variety of sparse GP models have been

proposed in the literature for efficient computation when the number of data is large. An

early attempt of [25] proposed the strategy of retaining a subset of the data. An inducing

point approach was introduced by [135], augmenting the model with additional variables.

Titsias [143] exploited the ideas of [135] in a variational approach. Authors of [82, 136]

have introduced approximations based on the spectrum of the GP. Inducing point schemes

that assume a Gaussian posterior have been proposed by [16, 87, 64] and can reduce the

required computation enormously. Inspired by the findings of [93] that the variational in-

ducing point method can minimize the Kullback-Leibler divergence to the posterior process,

recent work by [63] presented a general inference scheme that extends the variational in-

ducing point framework and allows for non-Gaussian posteriors. It would be interesting to

explore how AMIS works under the foregoing sparse GP frameworks in the future.

8.2.2 Parallelisation of AMIS for GPs

Apart from resorting to spare GPs to improve computational efficiency, it is possible to ex-

ploit the fact that importance sampling-based algorithms are inherently parallel. Conse-
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quently, with the advances in techniques of GPU and distributed computing, parallelisation

of AMIS for GPs to accelerate computations is possible, and hence is another useful area to

investigate in the future.

8.2.3 Use of the G-ARD Kernel

It is acknowledged that importance sampling suffers from the curse of dimensionality - for

large dimensional problem, its performance degrades dramatically, and this applies to AMIS

as well. One way to mitigate this is to use the G-ARD kernel proposed in Chapter 6. By

using the G-ARD covariance function, the number of dimensions can be reduced to a level at

which AMIS still performs well while providing meaningful information about each group

of features. Therefore, an interesting possibility for future work is to exploit the G-ARD

kernel in AMIS for large dimensional problem.

In Chapter 6, GPs with the proposed PM-AMIS, were used to predict personality traits from

online pictures. The novel G-ARD kernel was able to detect the groups of features that better

account for the classification outcome. According to recent sociological investigations [119],

this is important because the impression people convey online can change the outcome of

important issues such as, e.g. getting or not getting a job [23]. For this reason, future work

could concentrate on how to use the information provided by the G-ARD weights to ensure

that items posted online do not convey a wrong impression, whether it comes to faves or

other types of online material.

8.2.4 Seamlessly Using Machine Learning on the Computed Hilbert

Spectrum

In Chapter 7, feature extraction from the Hilbert spectrum of fillers of female speakers was

explored. The results of the experiments showed the usefulness of the Hilbert spectrum in

practical applications and thus indicated an alternative feature extraction method for social

signal processing. However, because of the nature of the HSA-IMF approach, every data

sample may have a different number of underlying components leading to an inability to

generate the same number of features for all data. Since a fixed feature size is expected in
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most cases in machine learning, one direction of future work could focus on finding a good

solution for seamlessly using machine learning on the computed Hilbert spectrum.

8.3 Final Remarks

It is a challenging task to infer GP covariance parameters and to effectively apply the GP

models to the analysis of scenarios in social signal processing. This thesis has addressed

the sampling efficiency problem of MCMC algorithms that are normally employed, when

inferring GP covariance parameters, by providing an alternative sampling framework based

on AMIS. This thesis has also showed that, for social signal processing, GPs with AMIS is a

powerful Bayesian approach capable of quantifying uncertainty while providing meaningful

insights about the features. For feature extraction in social signal processing, this thesis has

demonstrated novel results showing that Hilbert spectral analysis can work as an effective

alternative to short time Fourier transform.

With regards to the future, there are opportunities to investigate AMIS for spare GPs to

deal with larger data sets and to parallelise AMIS to accelerate computations; it would be

interesting to study the application of the G-ARD kernel to AMIS for large dimensional

problems and to explore how to use the information provided by the G-ARD kernel to convey

a correct impression through online materials; and there are also opportunities to investigate

seamlessly using machine learning on the computed Hilbert spectrum.

However, despite these possible future investigations, this thesis has presented a compelling

inference framework for GP models and has demonstrated its power of quantifying uncer-

tainty and interpretability for analyses in social signal processing. During this thesis, the

following novelties with respect to the state-of-the-art were developed: (i) the application of

AMIS to infer GP covariance parameters with any likelihood; (ii) a theoretical analysis of

PM-AMIS; (iii) an extensive comparison of convergence speed with respect to computational

complexity of AMIS versus MCMC methods; (iv) an application of PM-AMIS with the

novel G-ARD kernel to perform personality inference from online pictures that has demon-

strated the value of the proposed non-parametric probabilistic framework for SSP; (v) the

first experimental exploration of feature extraction from the Hilbert spectrum that provides



8.3. Final Remarks 116

an alternative feature extraction method for social signal processing.
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Appendix A

Convergence of samplers for GP

regression

Appendix A shows the convergence results of AMIS family (AMIS/MAMIS and their vari-

ants), MH family (MH-I/MH-D/MH-H) and HMC family (standard HMC , NUTS, NUTSDA)

for the three regression data sets (Concrete, Housing and Parkinsons). Figures A.1 to A.3

show the convergence results for the samplers with the RBF covariance (RBF covariance

case), whereas Figures A.4 to A.6 are convergence results for those with the ARD covari-

ance (ARD covariance case).

Sub-figure (a) of Figures A.1 to A.6 demonstrate the results of AMIS/MAMIS. It can be seen

that AMIS/MAMIS that exploits the full covariance structure of the proposal distribution

performs better than the one that only updates the diagonal of the covariance matrix of the

proposal density.

For the MH family and HMC family, sub-figures (b), (c), (d), (e) of Figures A.1 to A.6 show

that, the methods that make use of the scales and correlation of the parameters, perform bet-

ter than the ones that do not in most cases. Also, NUTS/NUTSDA turns out to converge

much faster than the standard HMC because standard HMC has to be tuned costly in pilot

runs. For MH and standard HMC, the computational cost of tuning is counted when com-

paring the convergence, as is shown in sub-figures (b), (c) of Figures A.1 to A.6 where the

end of tuning (EOT) is indicated by three vertical dotted lines, corresponding to the three
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variants respectively from left to right. For NUTSDA, the computational cost of tuning the

parameters of the dual averaging scheme is also counted when determining the convergence,

as is displayed in sub-figure (e) of Figures A.1 to A.6 with EOT indicated by three vertical

dotted lines, relating to the three variants respectively from left to right. Table A.1 shows the

corresponding computational cost of tuning:

Table A.1 Computational cost of tuning for
HMC/NUTSDA.

Concrete Housing Parkinsons

RBF ARD RBF ARD RBF ARD
HMC-I 6.75 5.91 4.78 3.92 1.56 1.34
HMC-D 6.04 7.32 7.28 7.73 8.88 8.47
HMC-H 10.85 9.45 10.99 8.86 10.87 8.74

NUTDA-I 1.40 3.53 1.19 7.43 1.34 6.49
NUTDA-D 1.36 1.58 1.12 2.42 0.98 1.95
NUTDA-H 0.68 1.02 0.67 1.87 0.73 1.79

Unit of the tuning cost: number of 1000 n3 operations.
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Concrete dataset - RBF covariance
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Figure A.1 Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Concrete
dataset (RBF covariance case). EOT stands for "end of tuning".
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Housing dataset - RBF covariance
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Figure A.2 Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Housing
dataset (RBF covariance case). EOT stands for "end of tuning".
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Parkinsons dataset - RBF covariance
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Figure A.3 Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Parkinsons
dataset (RBF covariance case). EOT stands for "end of tuning".
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Concrete dataset - ARD covariance
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Figure A.4 Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Concrete
dataset (ARD covariance case). EOT stands for "end of tuning".
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Housing dataset - ARD covariance
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Figure A.5 Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Housing
dataset (ARD covariance case). EOT stands for "end of tuning".
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Parkinsons dataset - ARD covariance
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Figure A.6 Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Parkinsons
dataset (ARD covariance case). EOT stands for "end of tuning".
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Appendix B

Convergence of samplers for GP

classification

Appendix B shows the convergence results of PM-AMIS/PM-MH for the three classification

data sets (Glass, Thyroid and Breast) for both the RBF (Figure B.1) and ARD (Figure B.2)

covariances. In the figures, LA represents the case where the Gaussian approximation to

the posterior of latent variables f is obtained by LA approximation, whereas EP denotes the

case where the Gaussian approximation is obtained by EP approximation. Nimp denotes

the number of importance samples of latent variables f to estimate the marginal likelihood

p(y | θ). As can be seen from the figures, both the PM-AMIS and PM-MH algorithms

with higher number of importance samples (Nimp=64) converge much faster than those

with lower number of importance samples (Nimp=1) in both the EP and LA approxima-

tion cases as expected. The results also indicate that PM-AMIS is competitive with PM-MH

in terms of convergence speed in most of the EP and LA approximation cases. Moreover,

PM-AMIS/PM-MH seem to converge faster with EP approximation than with LA approx-

imation in most cases which is probably because EP yields a more accurate approximation

than LA as reported in [80, 104].
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Figure B.1 Convergence of PM-AMIS, PM-MH for the RBF case. LA indicates the Gaus-
sian approximation to the posterior of latent variables f is obtained by LA approximation,
whereas EP indicates the Gaussian approximation is obtained by EP approximation. Nimp
denotes the number of importance samples of latent variables to estimate the marginal like-
lihood p(y | θ).
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Figure B.2 Convergence of PM-AMIS, PM-MH for the ARD case. LA indicates the Gaus-
sian approximation to the posterior of latent variables f is obtained by LA approximation,
whereas EP indicates the Gaussian approximation is obtained by EP approximation. Nimp
denotes the number of importance samples of latent variables to estimate the marginal like-
lihood p(y | θ).
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Appendix C

Mathematical Background

C.1 Gaussian Identities

The joint probability density of the multivariate Normal (or Gaussian) distribution is given

by

p(x |m,Σ) = (2π)−D/2|Σ|−1/2 exp
(
− 1

2
(x−m)TΣ−1(x−m)

)
(C.1)

where m is the mean vector (of lenght D), and Σ is the (symmetric, positive definite) covari-

ance matrix (of size D ×D). A shorthand for eq. (C.1) is

x ∼ N (m,Σ) (C.2)

Let x, y be jointly Gaussian random vectors x

y

 ∼ N(
 µx

µy

 ,
 A C

CT B

) (C.3)

then the marginal distribution of x is

x ∼ N (µx, A) (C.4)



C.1. Gaussian Identities 129

and the conditional distribution of y given x is

y | x ∼ N (µy + CTA−1(x− µx), B − CTA−1C) (C.5)

The product of two Gaussians gives another unnormalised Gaussian

N (x | a, A)N (x | b, B) = Z−1N (x | c, C) where (C.6)

c = C(A−1a +B−1b) and C = (A−1 +B−1)−1

and the normalising costant takes the Gaussian form (in a or b)

Z−1 = (2π)−D/2|A+B|−1/2 exp
(
− 1

2
(a− b)T(A+B)−1(a− b)

)
(C.7)

Given a marginal Gaussian distribution of x and a conditional Gaussian distribution of y

given x in the form:

p(x) = N (x | µ,Λ−1) (C.8)

p(y | x) = N (y | Ax + b, L−1) (C.9)

the marginal distribution of y and the conditional distribution of x given y are given by

p(y) = N (y | Aµ + b, L−1 + AΛ−1AT) (C.10)

p(x | y) = N (x | Σ{ATL(y − b) + Λµ},Σ) (C.11)

where

Σ = (Λ + ATLA)−1 (C.12)
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C.2 Matrix Identities

Let Z be a n × n matrix, W be a m ×m matrix, U and V be matrices both of size n ×m

and assume the relevant inverses all exist. Then the matrix inversion lemma, also known as

the Woodbury, Sherman & Morrison formula is given by

(Z + UWV T)−1 = Z−1 − Z−1U(W−1 + V TZ−1U)−1V TZ−1 (C.13)

If Z−1 is known, a low rank (i.e. m < n) perturbation made to Z, as in left-hand side of

eq. (C.13), will result in considerable speedup [121].
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