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Abstract 

Promising results have identified the gut microbiome and immune system as important 

modulators of response to cancer therapies. This provided a rationale for the current study 

to explore their combined roles on influencing response to neoadjuvant chemotherapy 

(NACT) in early-breast cancer patients enrolled in the NEO-MICROBE BREAST clinical 

study. This study aimed to characterise the composition of metabolites within the gut by 

conducting LCMS analysis on stool samples from cancer patients. A second aim was to 

start the process of immunophenotyping peripheral blood mononuclear cells through 

optimisation of a novel 10-colour flow cytometry panel.  

Untargeted and targeted metabolomics data analysis of the stool samples profiled the gut 

metabolic environment of cancer patients and healthy volunteers highlighting several 

metabolites indicative of NACT response: elucidating alpha-ketoglutarate (aKG) and 

citrate as potential biomarkers for achievement of pathological complete response, 

associating guanine and uridine with non-response to NACT and uridine-5’-

monophosphate (UMP) potentially linked to cancer status. In combination with 

metabolomic analysis of blood samples from the same cohort; glutamate demonstrated a 

correlation between higher stool- and blood- derived levels in TNBC patients, 

demonstrating potential direct involvement of glutamate in the response to NACT. 

A 10-colour panel was generated and optimised via flow cytometry analysis of PBMCs 

from healthy blood donors and its ability to successfully identify T cell subsets associated 

with breast cancer was validated. Upon further validation to allow for optimal marker 

detection, this panel provides the foundation for future PBMC immunophenotyping of this 

cohort. Overall, this study strengthens the evidence that NACT efficacy may be influenced 

by the involvement of gut-derived metabolites and systemic modulation; and highlights the 

importance of the immune-profiling of breast cancer to allow for a comprehensive 

approach to improve NACT response via personalised treatment. 
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1. Introduction 

An introduction to Breast Cancer 

Breast cancer has the highest incidence rate among all other malignancies 

worldwide, responsible for 12.5% of all new cancer diagnoses recorded globally in 2020, 

with an estimated 2.3 million new cases (1,2). 15% of the new cases of cancer in the UK 

were breast cancer, making it the most common cancer in the UK between 2017-2019 (3). 

Breast cancer is a heterogeneous disease and can be clinically classified into subtypes 

based on expression of various receptors; specifically, estrogen receptor positive (ER+) 

and/or progesterone receptor positive (PR+), human epidermal growth factor receptor 2 

positive (HER2+) and triple-negative (TNBC). By determining the biological classification 

of breast cancer this can guide clinicians on treatment decisions and prognostic 

assessments (4). A plethora of risk factors have been associated with breast cancer over the 

years such as age, family history and inherited gene mutations, however 70% of women 

who are diagnosed with breast cancer are not shown to exhibit any of these risk factors (5). 

This is in accordance with the World Health Organisation who stated in March 2024 

“roughly half of all breast cancers occur in women with no specific risk factors” (6).  

The advent of immunohistochemistry (IHC) has allowed for more precise diagnosis of 

specific subtypes of breast cancer therefore benefiting patients, as the most appropriate 

therapy regimes can be selected, potentially leading to better outcomes (7). IHC is a 

powerful tool that can characterize breast cancer tissue, using monoclonal and polyclonal 

antibodies to detect specific antigens within the tissue (8). 

 

1.1.1 ER/PR positive breast cancer 

Estrogen receptor (ER) and progesterone receptor (PR) have been identified as important 

diagnostic and prognostic biomarkers of breast cancer. This is due to reports of high ER 

expression being characteristic of approximately 70-75% of invasive breast malignancies 
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(9). Furthermore, PR expression is regulated by ER therefore both have exhibited 

significantly high levels in breast cancer cells (10,11). ER+ tumours can be treated using 

targeted hormone therapies, such as tamoxifen and aromatase inhibitors. In a study looking 

at trends in breast cancer incidence in Scotland based on data of molecular subtypes 

between 1997 and 2016, it was found that cases of ER+ tumours increased for all ages of 

women but in particular those 50-69 years old showed the largest increases from 1997 to 

2011(12). This elevated trend in ER+ cases in postmenopausal women is believed to be 

due to a variety of factors including changes in reproductive and lifestyle habits that have 

been associated with contributing to higher estrogen levels such as childbirth later in life, 

reduced breastfeeding rates and increased rates of obesity. The study also revealed that 

ER+ tumours showed a better prognosis than ER- tumours, consequential of earlier 

diagnosis being typical of ER+ tumours. ER+ breast cancer is also shown to progress at a 

slower rate than ER- and when treated with appropriate endocrine therapy, has better long-

term survival rates. Similar to ER+ breast cancer, PR+ breast cancer exhibits favourable 

prognostic features such as lower tumour grade and better response to endocrine therapy 

resulting in improved disease-free survival. A study conducting a meta-analysis of over 

13,000 patients linked PR expression in ER+ tumours with improved disease-free survival 

compared to ER+PR- tumours (13). Further research is ongoing to gain a greater 

understanding of the molecular characteristics of ER+ breast cancer, contributing to 

targeted therapies such as CDK4/6 inhibitors and selective estrogen receptor degraders 

(SERDs) being developed (12). 

 

1.1.2 HER2 positive breast cancer 

HER2+ breast cancer is a subset of the breast cancer classified by overexpression of the 

HER2 protein which subsequently promotes proliferation of cancer cells. HER2+ breast 

cancer comprises 15-20% of all breast cancer cases and is connected to aggressive disease 
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progression and poor patient prognosis (12). However, due to the evolution of the breast 

cancer treatment landscape using targeted biological therapies that inhibit the HER2 

protein; the overall survival rate of patients has been significantly improved within the last 

two decades (14). Trastuzumab is the most commonly prescribed HER2-targeted therapy 

in combination with chemotherapy. This treatment has proven to significantly improve 

disease free survival and allow management of a once fatal diagnosis, however, recently 

resistance to HER2-targeted therapies has a presented a clinical challenge. This resistance 

is resultant of both HER2-dependent and independent resistance mechanisms such as 

truncated HER2 receptor forms and alternative receptor tyrosine kinases such as IGF-1R 

being activated, deeming trastuzumab ineffective and continuation of cell survival and 

proliferation (15). Various next-generation therapies such as Pertuzumab and Ado-

trastuzumab emtansine (T-DM1) have been developed to combat these resistance 

mechanisms. Combination strategies of HER2 inhibitors as well as inhibitors of 

downstream signaling pathways (e.g. PI3K) is key focus of current HER2+ cancer 

research, all in an effort to overcome resistance (12,15). Accurate identification of HER2 

status of each patient is crucial in effective use of targeted interventions for optimal patient 

outcome and improvement of disease recurrence. About 2/3 of HER2+ cancers are ER-

positive and 1/3 are ER-negative. 

 

 

1.1.3 Triple negative breast cancer 

Triple negative breast cancer (TNBC) can be defined as breast cancer lacking expression 

of ER, PR and HER2. It accounts for around 15-20% of breast cancer cases overall (16) 

and is most commonly seen in women harbouring a BRCA1 mutation. BRCA mutation 

carriers represent approximately 12% of triple negative breast cancers and 80% of BRCA1 

associated breast tumours are triple negative breast cancers. TNBC has been found to be 
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more aggressive than the other subsets, due to the nature of its high proliferation rate and 

likelihood to have metastasised at initial diagnosis; therefore, resulting in poorer patient 

prognosis and higher chance of cancer recurrence (17). Chemotherapy is the standard 

primary treatment for TNBC, however it common for this subset to show resistance to 

conventional chemotherapeutic drugs, resulting in disease reoccurrence and further 

progression (18). There has been recent development in alternative treatments for TNBC 

due to advances in research identifying potential therapeutic targets; including poly (ADP-

ribose) polymerase (PARP), androgen receptor as well as immune checkpoint inhibition. 

PARP is associated with DNA repair leading to recovery of damaged cells; therefore, it 

was first hypothesised that targeted inhibition of these proteins would block the repair of 

DNA damage in cancer cells consequential of chemotherapy, driving cell death and 

reducing chemotherapeutic resistance (19). PARP inhibitors have also shown efficacy in 

treatment against breast cancer with a BRCA mutation as well as TNBC cancers (20). 

Further research is still required to gain a deeper understanding of the heterogeneity of 

TNBC, with the aim of developing individualised treatment strategies to improve disease 

free survival for patients.  

 

1.2 Neoadjuvant Systemic Therapy 

Neoadjuvant chemotherapy (NACT) is widely used approach to treatment in various solid 

tumour malignancies such as breast, rectal, upper G.I and ovarian cancer, and is defined as 

drug treatment given prior to surgery to resect the primary tumour.  

 

1.2.1 Advantages and Disadvantages of Neoadjuvant Chemotherapy 

This approach is favourable as it can be beneficial for patients as tumour shrinkage as a 

result of the NACT may downstage the tumour allowing for a less aggressive surgery (21), 

making this particularly beneficial for patients with large tumours who could be 



   

 

5 

reconsidered for breast-conserving procedures after NACT instead of a full mastectomy 

(22). It is also beneficial for the clinician to assess how the individual responds to certain 

drugs, which may influence adjuvant treatment plans and allow to predict patient 

outcomes (23). Clinical studies have revealed that a pathological complete response (pCR) 

can be achieved in HER2+ and TNBC subtypes. Pathological complete response (pCR) 

can be defined as “the absence of any residual invasive cancer in the breast and axillary 

lymph nodes” (24). Achieving pCR is strongly associated with improved disease-free 

survival rates (25). Combination therapy of NACT with targeted therapies such as 

trastuzumab in HER2+ breast cancer has demonstrated improved long-term outcomes for 

patients and significant pCR rate increases (26). On the other hand, the disadvantage of 

NACT is there is currently no way of predicting patient response to the chemotherapy, 

which in turn allows time for further tumour proliferation and potential risk of cancerous 

cells metastasising if poor response is seen. Cases of poor response rate to NACT have 

been identified in various bladder cancers which have been correlated with advancement 

of stage, tumour growth, metastases, and reduced survival rate (27).  

 In recent years, several studies have demonstrated NACT’s ability to achieve a 

tumour pathologic complete response (pCR) more frequently in various cancers, 

specifically breast cancer patients with specific subtypes of breast cancer (i.e. TNBC and 

HER2+) (28). Findings such as these allow for progression towards today’s NACT regimes 

becoming more personalized to the individual, to achieve the best possible outcome (29)  

 

1.2.2 Neoadjuvant Chemotherapy (NACT) in Breast Cancer  

Neoadjuvant chemotherapy (NACT) is recognized as a primary treatment for breast cancer 

patients with operable tumours and has been shown to improve patients' treatment options 

for large, or inoperable tumours, as the therapy reduces tumour size (30). Quantifying pCR 

within patients allows for rapid monitoring of response to chemotherapy; therefore, this 
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model provides the basis for other trials evaluating the efficacy of novel therapies using 

pCR as a surrogate marker for long term outcomes (disease free survival and overall 

survival) (28,31). Meta-analysis carried out over various trials has shown that in patients 

with triple- negative and HER2+ breast cancer receiving trastuzumab, there was a 

significant association between pCR and long-term outcomes, thus these subtypes have the 

highest sensitivity to NACT (31). More recently, immune cells, specifically peripheral 

blood monocytes, and the cytokine IL-10 have been shown to be potentially useful 

predictive markers for pCR in breast cancer patients, in the NACT setting (32).  

 

1.2.3 Tumour Immune Environment and NACT  

Tumour infiltrating lymphocytes (TILs) are pro-inflammatory lymphocytes that have 

invaded the tumour tissue residing in both the tumour and the surrounding 

microenvironment. Typically, they are made up of CD8+ and CD4+ T cells, as well as B-

cells, natural killer, and dendritic cells (33). Extensive clinical studies have found that a 

higher density of TILs is associated with increased pathological complete response (pCR). 

These studies have highlighted TILs predictive value as a potential biomarker for response 

to NACT (34).    

  

1.2.4 Pathological Complete Response Rate to NACT in Breast Cancer 

Various clinical trials have demonstrated the clinical benefits of NACT, including tumour 

size reduction resulting in increased cases of breast-conserving surgery (BCS) instead of a 

mastectomy, which can have longer recovery time and pose more risk of incurring 

problems (35). Despite these advantages, complete or partial response is only achieved in 

30% of patients after NACT (36).  For example, a study with a cohort of 13,939 women 

looked at evaluating pCR rates in women with various subsets of breast cancer after 

undergoing NACT. Results showed overall only 19% of the patients achieved pCR, with 
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patients with HER2+ showing the highest pCR rate (38.7%), and TNBC subtype was 

shown to be nearly 100 times more likely to achieve pCR than luminal A (ER+ and/or 

PR+, HER2-) (37).  

  The factors determining why a patient does or does not achieve pCR are not yet fully 

understood therefore; this highlights the need to investigate other potential factors involved 

such as the immune system and gut microbiome and their association with pCR to NACT. 

By characterizing NACT responders/non-responders, it may allow for treatment plans to be 

tailored to the individual more effectively, thereby allowing for increased efficacy of 

neoadjuvant chemotherapy and patient outcomes.  

  

1.3 The Immune System and Cancer  

The immune system’s involvement in cancer was first recognized by William B. Coley. He 

is widely known as the father of immunotherapy for his research which involved 

stimulating strong immune responses through injecting patients diagnosed with inoperable 

sarcomas with a cocktail of various bacteria referred to as “Coley’s toxins;” subsequently 

inducing sepsis within patients and initiating immune response (38).  In the last decade, the 

idea that the immune system plays a vital role in almost all types of cancers has shown to 

be true with its promising potential to be utilized in a therapeutic manner. This 

development has transformed the basis of primary cancer treatments, distinguishing 

immunotherapies as a key therapeutic strategy for cancer patients (39). One key concept 

recognised is immune surveillance, which is pivotal in recognizing and destroying cancer 

cells before tumour formation occurs. This important interaction between the immune 

system and cancer cells, is also seen between tumour cells that have evaded this so-called 

immune surveillance through a process called cell-mediated immune escape (40), 

subsequently allowing for tumour formation. Cell's ability to escape this process and 
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therefore resulting in failure of immunosurveillance is now a recognised hallmark of 

cancer (41).  

1.4 Immune System and treatment response 

For years, research into the immune systems role in the efficacy of treatments for cancer 

patients has been neglected. More recently, this field of the immune systems contribution 

to therapy response has been more widely acknowledged, allowing for discoveries into the 

immunological aspects of current treatments as well as the application of novel 

immunotherapies in combination with standard treatments.  

1.4.1 Immune Checkpoint Modulation  

In more recent years, a deeper understanding of T-cell immune checkpoints and the effects 

of targeting inhibitory immune receptors such as cytotoxic T-lymphocyte antigen-4 

(CTLA-4), programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), 

has further revolutionized the field of cancer-immunotherapy (42). Upregulation of 

immune checkpoints serve as negative regulators within the immune system, whereby they 

inhibit the cytotoxic response of immune T cells to prevent destruction of healthy cells 

within the body.   

Cancer cells utilize this immunosuppressive network so that it becomes advantageous, thus 

escaping detection and subsequent destruction. Tumour cells corrupt the immune system 

by creating an immunosuppressive microenvironment through upregulation of cell surface 

immune checkpoint receptors (CTLA-4, PD-L1). Upregulation of these receptors has 

shown to cause a lack of T cell function, leading to an impaired immune response resulting 

in an immunosuppressive state being established (43). Targeted inhibition of these immune 

checkpoints using antibodies to block binding with their partner proteins (figure 1.1), has 

proven to have a therapeutic effect for various cancers, including breast cancer. 

Immunotherapy drugs known as immune checkpoint inhibitors (ICIs) have been approved 
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by the FDA for clinical use. Various checkpoints have been researched as targets, however 

those with the most promising clinical outcomes are CTLA-4, PD-1 and PD-L1 (44).  

 

 

 

  

  

  

  

  

  

  

  

  

  

Figure 1.1 Immune Checkpoint Modulation of T cells. Upon binding of PD1 to PDL1 T cells activity is inhibited and therefore the 

cancer cells escape death and continue to proliferate. Using checkpoint inhibitors such as anti-PD1 and anti-PDL1 to block their 

subsequent binding, allowing the immune cells cytotoxic response to be activated and cell death of the tumour cell.  

  

1.4.2 Cancer Chemotherapy 

Chemotherapy has shown to not only have a direct cytotoxic effect on cancer cells but also 

has a significant involvement in both immunosuppressive and immunostimulatory 

pathways. For example, the chemotherapeutic agent anthracycline induces an adaptive 

immune response that is mediated by dendritic cell maturation and cytotoxic T cell 

activation; resultant of immunogenic death of tumour cells whereby danger-associated 

molecular pattern (DAMPs), such as calreticulin and HMGB1 are released in response to 

the chemotherapies (45). On the other hand, high-dose glucocorticoids have demonstrated 
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immunosuppressive effects by impairing cell function of dendritic cells and cytokine 

production.  

There have been recent developments that receptiveness to immune-mediated attack is 

improved by the modulation of tumour microenvironment in response to chemotherapy. A 

study showed that efficacy of immune checkpoint inhibitors can be increased as antigen-

presenting cells are recruited and activated upon chemotherapy-induced immunogenic cell 

death (ICD) increasing anti-tumour T cell activity, creating an optimal tumour 

microenvironment for ICIs (46). Overall, this provides substantial evidence that 

chemotherapy plays a dual role in killing cancer cells and modifying the tumour 

microenvironment, therefore therapeutic efficacy could be improved with the synergy of 

chemotherapy alongside immunotherapy as a more standardised method of care. 

 

1.4.3 HER2-targeted treatment  

HER2+ tumours are often associated with better response to therapy due to them being 

more immunogenic than other breast cancer subtypes as a result of them having more 

tumour infiltrating lymphocytes (TILs). The targeted anti-HER2 antibody trastuzumab has 

a multipurpose role in inhibiting HER2 as well as upregulating immune effector cell 

activity (i.e. natural killer cells) thus signalling the death of tumour cells. Research has 

suggested that the immune microenvironment is critical in determining therapeutic 

response; for example, anti-HER2 therapy resistance has been linked to 

immunosuppressive mechanisms within the tumour microenvironment (47).  
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1.5 Immunophenotyping of Peripheral Blood Mononuclear Cells (PBMCs)  

Research on various subtypes of cancer shows differences in sensitivity to chemotherapy, 

therefore suggesting that neoadjuvant chemotherapy doesn’t have the same effect in all 

breast cancer patients. Further personalization of chemotherapy, using IHC to 

immunophenotype each patient could provide a more patient-specific treatment and better 

clinical outcomes. Peripheral blood mononuclear cells (PBMCs) have been proven to be an 

effective biomarker material for identifying and characterizing immune cells in cancer 

patients. Flow cytometry analysis is a very common technique for immunophenotyping 

PBMCs. Flow cytometry can detect levels of immune cell populations of interest through 

the binding of fluorophore-labelled antibodies to their antigen-targets on the surface of the 

immune cell in PBMC sub-populations (48).   

In a previous study observing PBMCs expressing the CD45 receptor, it was suggested that 

TNBC cells exploit CD45 function to suppress immune response. It was shown that CD45 

may be a potential therapeutic target as treatment with C24D reversed this inhibitory 

immune effect, by binding to CD45 and inducing its subsequent signal transduction 

pathway, killing TNBC cells (49).   

In a study analysing CD56 as a predictive biomarker for immunotherapy sensitivity in 

breast cancer, it was highlighted that CD56 is involved in regulating NK-mediated 

cytotoxicity. Interestingly reduction of CD56 expression in breast cancer tissues is thought 

to be a mechanism to escape NK-immune response (50).   

With various studies suggesting that the immune system and varying PBMC subsets play a 

significant role in breast cancer, this highlights the need to determine if changes in 

leukocyte subsets are correlated to NACT sensitivity and pCR rates in breast cancer 

patients.  
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1.6 Metabolomics and Cancer 

Metabolomics can be defined as the study of the metabolites within a biological system. 

Advancements in analytical technologies has allowed for a deeper understanding of the 

various effects of metabolites, at both local and systemic level, which has sparked an 

interest within the field of cancer research. This interest stems from the desire to provide 

insight into how certain metabolites may be associated with disease status, progression, 

and therapy response (51). Cancer cells rely on dysregulation of cellular metabolism to 

survive and proliferate rapidly. Metabolomics allows for the identification of biomarkers of 

cancer as well as disease related metabolomic pathways which can present novel 

therapeutic vulnerabilities (52). The reprogramming of energy metabolisms a recognised 

hallmark of cancer which involves cancer cells utilising glycolysis for energy, even when 

oxygen is not restricted (53). Metabolomics can also identify potential biomarkers of 

cancer that could be utilised as diagnostic tools as well as providing insight on the efficacy 

of treatments (54). This provides an example of how tumour cells’ adaptive behaviour to 

exploit metabolic pathways, presents a need for these mechanisms to be understood.  

In an effort to gain insight into tumour biology, disease progression and response to 

treatment the analytical approach of metabolomics can be an extremely useful tool, and 

various studies have employed either untargeted or targeted data analysis to reveal 

metabolic alterations in cancer. Untargeted data analysis aims to measure all detectable 

metabolites within a given sample (55). Conversely, targeted metabolomics uses a bank of 

pre-defined metabolites and measures specific metabolites within a sample (56). 
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1.7 The Gut Microbiome and Cancer  

1.7.1 Gut Dysbiosis in Cancer 

The human microbiota is composed of a vast consortium of bacteria and other 

microorganisms that all play a role in overall human health. The gastrointestinal (GI) tract 

is home to the largest number of bacteria compared to the rest of the human organs, with 

70% of the human body's microbes residing in the colon alone (57). With the growing 

interest in the gut microbiota in humans and how it influences systemic homeostasis, it has 

been conceptualized that gut microbiota may have an important role in cancer development 

and studies to improve knowledge of this theory may have therapeutic benefits (5).   

Bacterial metabolites (such as short chain fatty acids (SCFA), lactate, pyruvate, secondary 

bile acids and metabolites of amino acids) have been analysed to establish microbial 

biomarkers linked to increased risk of cancer (58). Further assessment of the fecal 

metabolome via techniques such as liquid chromatography mass spectrometry (LCMS), 

can produce a functional readout of the gut microbial metabolism (59), allowing 

identification of specific metabolites involved in microbial-cancer interactions.  

This subject is still not fully understood, however more evidence is emerging to support 

the hypothesis that changes in the gut microbiome are strongly linked to disease 

development and progression of breast cancer. Studies in murine models have 

demonstrated a link between microbial metabolites and breast cancer (57). Miko et al 

reported the bacterial metabolite, lithocholic acid, has anti-proliferative effects on breast 

cancer cells through modulating TGR5 receptor activity via the human circulatory system 

(60).   

1.7.2 Microbial Metabolites in Cancer Treatment 

Recently the focal point of research has shifted to the interplay between the gut microbiota 

and the efficacy of cancer therapy (61). Researchers have found that bacterial communities 

residing in the GI tract are related to the activity of the hosts immune system. Along with 
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the advances in immunotherapy for breast cancer, this has created the shift to investigate 

the regulation of innate or adaptive immunity via the gut microbiota and how this may 

influence therapy response. Studies focusing mainly on checkpoint inhibitors anti-PD-1 

and anti CTLA-4, have identified specific bacterial species that may have potential in 

predicting patient response to respective immunotherapies in melanoma patients (62–65).  

These findings have provoked studies observing the modulation of cancer 

immunotherapies through targeted interventions in the gut microbiota. Changes to dietary 

fiber intake and probiotic supplementation were assessed in melanoma patients to 

investigate the impact of these dietary modifications to immunotherapy response. Clinical 

evidence demonstrated that significantly improved progression-free survival was observed 

in 128 patients reporting a high fiber diet (66). Fecal microbiota transplantation (FMT) has 

also become a popular method to alter a person’s gut microbiome, e.g. with the objective to 

improve immunotherapy efficacy (67,68). Potential in vivo mechanisms that have been 

described have been; changes in T-cell activity pathways, increased memory CD8+ T cells 

and CD4+ T cells in the tumour microenvironment and increased activity of mucosal-

associated invariant T (MAIT) cells (66,68).  

Beyond immunotherapy, studies have demonstrated that the gut metabolome is strongly 

associated with response to chemotherapy. Recent studies have indicated that gut microbes 

play a role in drug metabolism which therefore influences the rate and extent of systemic 

availability of chemotherapeutic drugs as well as potential drug toxicity. For example, a 

recent study by Alexander et al., 2021 recognised that the integral probiotic members of 

the gut microbiota, Lactobacillus and Bifidobacterium have the ability to reduce the 

gastrointestinal toxicity of fluoropyrimidine chemotherapy which subsequently improves 

the anti-tumour efficacy of this drug (69). Furthermore, another study indicated the 

composition of the gut microbiome influences response to chemotherapy in pancreatic 

cancer via modulation of immune cell infiltration in the tumour microenvironment (70). 



   

 

15 

1.8 The Gut Microbiome and Breast Cancer 

Despite the intriguing results observed on the influence of the gut microbiome on other 

diseases and cancers, there is limited data on the functional relationship between the gut 

microbiome and breast cancer. It has been established that there is significant variability of 

bacterial species comprising the gut microbiome among different subtypes of cancers, as 

well as clinical characteristics such as breast cancer stage and grade (71). Dysbiosis may 

also be responsible for tumorigenesis in the breast, as changes to the bacterial composition 

of the gut can lead to alterations of immune responses that promote tumour progression 

(72).   

 

1.9 The Gut Microbiome as a predictive marker for NACT response in Breast 

Cancer 

A previous pilot study recruited 21 patients diagnosed with early breast cancer and due to 

commence neoadjuvant chemotherapy for early breast cancer at the Beatson West of 

Scotland Cancer as well as 21 healthy volunteers from August 2017 to June 2019. Baseline 

gut microbial richness was significantly lower in patients without subsequent pCR 

compared to those patients with pCR or healthy volunteers. Results revealed that pCR 

outcome was associated with the diversity and composition of the gut microbiome. It was 

highlighted that patients with a higher abundance of beneficial gut microbial taxa such as 

Akkermansia and Ruminococcaceae, were more likely to achieve pCR. Increased 

abundance of SCFA producing genera were present in patients without pCR and mean 

concentrations of butyrate and propionate were higher in patients without subsequent pCR 

vs. patients with pCR (73). It is thought this could be due to these microbes influencing 

systemic immune activation by creating a favourable immunometabolic environment 

which subsequently improves the patient's ability to respond to therapy. In contrast, 

patients who exhibited an enrichment of pro-inflammatory bacteria were often non-
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responders to NACT, thus not achieving pCR(74). These findings support the idea that gut 

microbiota strongly influences NACT efficacy, which drove the inception of the NEO-

MICROBE BREAST clinical study to gain a deeper insight into this topic. 

 

 

 

 

1.10 NEO-MICROBE BREAST Study  

The NEO-MICROBE BREAST study (ISRCTN13877559) was then initiated to 

prospectively test the hypothesis that the composition and function of the gut microbiome 

contributes to achieving pCR and to explore putative mechanisms including modulation of 

the immune microenvironment and alterations in circulating metabolites and cytokines. 

Patients were recruited prior to commencing neoadjuvant chemotherapy and stool and 

blood samples obtained as shown in figure 1.2. In addition, a cohort of healthy volunteers 

was recruited.  
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Figure 1.2. Overview of study design and sample collection timeline for the NEO-MICROBE BREAST cancer 

trial. The study involves 75 breast cancer patients (with TNBC or HER2⁺ subtypes) undergoing 4–8 cycles of 

neoadjuvant chemotherapy followed by surgery, with individual participation lasting up to 26 weeks. Clinical data and 

biospecimens are collected at baseline and post-chemotherapy (pre-surgery). 
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The co-primary objectives of the NEO-MICROBE BREAST study were (1) to test the 

association of gut microbial taxonomic richness with efficacy of neoadjuvant 

chemotherapy in early breast cancer, (2) to investigate the association of Short Chain Fatty 

Acid (SCFA) levels with efficacy of neoadjuvant chemotherapy in early breast cancer, and 

(3) to investigate the association of bacterial species abundance with the efficacy of 

neoadjuvant chemotherapy in early breast cancer. At the time of writing, analysis is 

ongoing, and these results have not yet been reported.  

 

 

The samples collected within the NEO-MICROBE BREAST clinical study provide a rich 

resource for further study. The main aims of the current work were to: 

1) To optimise a protocol for performing metabolomic analysis of stool samples. 

2) To investigate differences in stool metabolomics in patients with cancer versus 

healthy volunteers and in patients with pathological complete response (pCR) 

versus no pathological complete response (non-pCR).  

3) To validate a panel for flow cytometry analysis of NEO-MICROBE BREAST 

PBMCs with the aim of identifying metabolites correlated with specific 

peripheral blood immune phenotypes. 
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2. Materials and Methods 

 

2.1 Sample Collection 

This work utilised samples and data previously collected within the NEO-MICROBE 

BREAST study. Patients eligible for NEO-MICROBE BREAST were female, age 16 or 

older and planned to commence neoadjuvant chemotherapy for HER2-positive or triple 

negative breast cancer. Potential patients eligible for participation in the NEO-MICROBE 

BREAST study were identified by their own clinical care team within the NHS. Once 

notified of the study the patients were provided with an information sheet and consent 

form. They were given at least 24 hours to make a decision before committing to take part 

in the study and were notified of their ability to leave the study at any time.  Exclusion 

criteria included unequivocal evidence of metastatic disease or any other malignancy in the 

preceding 24 months, which was treated with systemic therapy. In addition, patients were 

not eligible of they had a history of gastrointestinal (GI) disorders including inflammatory 

bowel disease, irritable bowel syndrome (if severe or on regular medication) or persistent 

infectious gastroenteritis, colitis, or gastritis, or persistent or chronic diarrhoea of unknown 

aetiology or clostridium difficile infection. Major gastrointestinal surgery except for 

appendicectomy and cholecystectomy was also an exclusion. Treatment with systemic 

corticosteroids (intravenous or oral) or other immunosuppressive therapy within 28 days 

prior to Cycle 1 of neoadjuvant chemotherapy was also not allowed. Twenty-five healthy 

volunteers with an approximate age and body mass index (BMI) matching the patient 

cohort were recruited. This recruitment process was carried out using methods such as 

word of mouth and REC-approved advertising material placed on posters (placed in NHS 

Greater Glasgow and Clyde locations and Glasgow City Council libraries) and social 

media (e.g Beatson Cancer Charity website). Healthy volunteers were female, aged 16 or 

over, and were taking no medications requiring regular medical consultations. Eligibility 
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also required no history of breast cancer at any time or of any other malignancy requiring 

systemic therapy in the previous 24 months. Exclusion criteria related to GI conditions and 

use of immunosuppression were identical to the patient population.  

 

The NEO-MICROBE BREAST Study, including the exploratory analyses reported here 

for breast cancer patients and healthy volunteers, was approved by West of Scotland 

Research Ethics Committee 4 (ref: 21/WS/0078) 

 

 

 

2.1.1 Blood Collection 

Upon patients attending their pre-assessment oncology clinic as part of the NEO-

MICROBE study they provided a baseline blood sample (total volume 50ml) prior to 

chemotherapy, for later analysis including metabolomics and immune marker analysis. 

Bloods were taken from the antecubital fossa and if possible, via the venflon already sited 

to reduce further venepuncture to the patients. Various tubes of blood were collected (2 x 

6ml EDTA, 2 x 6ml LiHep) by the research team at oncology outpatient's clinics at four 

sites within the NHS GGC, NHS Lanarkshire, and NHS Forth Valley, and labelled 

accordingly to the patients assigned study ID number. Samples were then transported by 

driver to the lab at the Glasgow Royal Infirmary (GRI) for processing.  

 

2.1.2 Stool Collection  

Stool samples were collected at two timepoints; Timepoint 1- Baseline before starting 

NACT and Timepoint 2 – after completion of NACT and before surgery. Samples were 

collected at home in a pre-weighed plastic tub and stored in a cool-bag or mini-freezer 

provided. Samples were then transported to the Human Nutrition Lab at GRI for 
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processing. The patients provided a baseline sample (T1) no earlier than 28 days pre-

chemotherapy, but ideally this was collected roughly 14 days prior. Patients provided a 

second stool sample after completion of chemotherapy and prior to surgery (T2), following 

the same protocol as the collection of T1. Stool samples for healthy volunteers were 

collected as above at a single timepoint. 

 

2.2 Stool sample preparation  

Stool samples were processed at the human nutrition lab at the GRI. The frozen sample 

was left out at room temperature to thaw and the tub containing the sample was weighed to 

calculate the sample weight. The sample was homogenised using an electric blender before 

transferring specific weights of sample into various labelled tubes and stored in -80C or    

-20C for later analysis. The sample was then freeze-dried before weighing out and 

transferring the specific weight the necessary for later LCMS analysis (25mg).  

 

2.3 Liquid Chromatography-Mass Spectrometry 

Stool samples were prepared using a methanol-based extraction protocol adapted and 

optimised based on the methodology decribed by Clarke et al. (2022) (75), whereby 25mg 

of freeze-dried stool sample from NEO-MICROBE patients was weighed out into 2ml 

microtubes prefilled with beads and extracted using a 100% cold MeOH solvent. The cells 

were then disrupted using a Precellys Homogenizer (Bertin Instruments) to ensure 

complete homogenisation. After centrifugation, the supernatant was recovered and 

ACN:H20 solution was added to obtain a final solvent ratio of MeOH:ACN:H20 of 

50:30:20 before transferring to glass LCMS vials for analysis. Metabolomic analysis was 

completed using a Thermo-Ultimate 3000 high-performance liquid-chromatography 

(HPLC) system, equipped with a ZIC-pHILIC column (SeQuant; 150 mm by 2.1 mm, 5 

m; Merck KGaA), with a ZIC-pHILIC guard column (SeQuant; 20 mm by 2.1 mm) for 
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metabolite seperation.Quality control for background interference and potential sources of 

contamination solvent blanks were prepared and incorporated into the LCMS workflow at 

the beginning of every run. As this was the first time stool metabolomics had been 

performed at the Beatson Institute for Cancer Research instrument blanks were run 

intermittently between samples, serving as a control to assess for carryover and ensuring 

robustness of results. Furthermore, the reliability of metabolites detected was enhanced by 

running Plasmax medium mimicing the metabolic composition of human plasma alongside 

the sample cohort. Each NEO-Microbe stool sample was analysed in a single technical 

replicate.  

 

2.4 Data analysis  

Raw LCMS data was processed using Thermo Tracefinder 4.1 for targeted data analysis, 

and data were visualised using Metabolite Autoplotter v2.6, which generated PCA plots 

and bar plots of individual metabolites of interest; allowing for visualisation of patterns in 

metabolite profiles and identification of potential biomarkers of breast cancer.  If required, 

further statistical analysis was performed using Microsoft Excel or Graphpad Prism, which 

was also used to generate volcano plots. Thermo Compound Discoverer was used for 

untargeted data analysis.   

 

2.6 PBMC Extraction 

The whole blood sample was diluted with sterile phosphate buffered saline (PBS) and 

layered over 4ml histopaque. Peripheral blood mononuclear cells (PBMC) were isolated by 

histopaque density centrifugation, creating 4 distinct layers. The buffy coat layer contained 

the PBMCs was carefully collected and washed in PBS. After spinning, the pellet was the 

resuspended in PBS and the total cell yield was calculated. The PBMCs were stained 
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within the same day, or they were cryopreserved in a medium of 20% fetal bovine serum 

(FBS) and 10% dimethyl sulfoxide (DMSO). 

 

2.7 PBMC Flow Cytometry Staining 

2.7.1 Viability Staining 

Approximately 500,000 cells per sample were incubated with a live/dead master mix 

(according to the lab protocol at Milling Lab, Sir Graeme Davies Building; PBS, 

eFluor780 fixable viability dye (ThermoFisher) in PBS at 1000:1 dilution) and blocked 

with 5l/ml Human TruStrain FcX (Biolegend) and incubated on ice for 15 mins in the 

dark. The viability dye eFluor780 was chosen due to its compatibility with the 

fixation/permeabilisation protocols and minimal spectral overlap with other fluorophores 

used in the panel. Following incubation cells were washed with PBS and resuspended in 

500l PBS. 

 

2.7.2 Extracellular Staining 

For surface marker staining, 500,000 cells were stained with the correlating master mix of 

fluorochrome-conjugated monoclonal antibodies in 500l PBS and incubated at room 

temperature for 30mins in the dark.  
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2.7.3 Intracellular Staining 

The cells were first fixed and permeabilized using the Foxp3/Transcription Factor Staining 

Buffer kit (eBioscience, ThermoFisher Scientific) and incubated for 45mins in the dark at 

room temperature. The cells were then resuspended in 500l 1x permeabelisation buffer 

and centrifuged; 5mins, 400 x g, at room temperature. The pellet was the resuspended in 

100l 1 x permeabelisation buffer and 1l of each fluorochrome-conjugated monoclonal 

antibody was added and incubated for 30mins at room temperature. The cells were washed 

twice with 1 x permeabelisation buffer and resuspended in 200l FACS buffer for analysis. 

 

2.8 Flow Cytometry analysis 

PBMCs were prepared for flow cytometry analysis to assess surface and intracellular 

marker expression. The trypan blue exclusion test was used to assess cell viability within 

the population. Data acquisition was carried out on a BD LSRFortessa Cell Analyser, with 

50,000 events being recorded per sample. Compensation was carried out using single 

stained UltraComp eBeads Plus Compensation Beads (Invitrogen). Gating strategies were 

implemented using fluorescence minus one (FMO) controls.  

 

2.9 Quantitative Analysis of Flow Cytometry Data – Flowjo 

The data obtained from the flow cytometry analysis of PBMCs was analyses using FlowJo 

software (version 10.10.0) whereby FCS files were imported. The compensation data from 

the single-stained comp beads was applied for each fluorochrome and gating strategies 

were used to exclude debris and doublets. Further gating strategies were applied to 

determine cell populations of interest allowing these populations to be quantified. 
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2.10 Antibodies Used 

   Marker   Fluorophore   Company  Clone Laser Channel 

1    Viability     eFluor780   

ThermoFisher 

Scientific 

 640nm 780/60 755LP 

2    CD45    BB515   BD Biosciences HI30 488nm 530/30 

3 CD45 

Spark Blue 

574 

BioLegend 2D1 488nm 530/30 505LP 

4 CD45RA    BV510   BioLegend HI100 405nm 510/50 

5 CD45RA BUV395 BD Biosciences 5H9 355nm 379/28 

6 CD3    BV785   BioLegend OKT3 405nm 780/60  

7 CD3 BV510 BioLegend SK7 405nm 525/50 502LP 

8 CD4    PE-Cy7   BioLegend OKT4 561nm 780/60 

9 CD4 BUV805 BD Biosciences SK3 355nm 820/60 770LP 

10 CD8    BV421   BioLegend RPA-T8 405nm 450/50 

11 CD8 Pacific Blue BioLegend SK1 405nm 450/50 

12 CD25     APC   BioLegend BC96 640nm 670/14 

13 CCR7     PerCP-Cy5.5   BioLegend G043H7 488nm 695/40 

14 CCR7 PE BioLegend G043H7 561nm 585/15 570LP 

15 FoxP3    PE   BioLegend 206D 488NM 585/42 

16 FoxP3 BB700 BD Biosciences 236A/E7 488nm 695/40 655LP 

17 CTLA-4     AF700   NovusBiologicals BNI3 640nm 730/45 685LP 

18 PD1     BUV395   BD Biosciences MIH4 355nm 379/28 

19    HLA-DR     BV605   BioLegend L243 405nm 605/20 595LP 
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Table 1. All antibodies used for flow cytometry antibody optimisation to characterise immune cell populations. 

Each row details the target marker, conjugated fluorophore, supplier, antibody clone, excitation laser, and corresponding 

detection filter(s). Multiple conjugates were included for key markers (e.g., CD45, CD3, CD4, CD8, FoxP3, CCR7) to 

facilitate comparison and panel optimisation. 
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3. Results : Optimisation of novel stool metabolomics protocol 

 

Recently the comprehensive approach of using the gut microbiota as a diagnostic and 

predictive tool to response of therapies, specifically in NACT in breast cancer, has proven 

to show promising results. Similarly, the fecal metabolome which is dependent on the 

composition of the gut microbiome may also offer predicting information as well as 

possible mechanistic insights. Studies have shown specific metabolite signatures to be 

valuable biomarkers for stratifying responders and non-responders to NACT (76).  

 

 

3.1 Optimisation of stool metabolomics protocol   

To obtain an efficient protocol for extraction of metabolites from stool samples for 

metabolomic analysis, we first followed the protocol used in the study by Kelly PE et al. 

(77) and carried out optimisation of the protocol as stool metabolomics had not previously 

been carried out in our facility. Optimisation was completed through work to determine the 

appropriate conditions for optimal extraction.  
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3.1.1 Evaluating the drying stage in stool metabolomics protocol  

 

Freeze-dried faecal samples from 3 healthy individuals were pulverized and 50mg was 

weighed out before adding 100% MeOH at a 50mg/ml. The samples were vortexed, and 

the supernatant was recovered and centrifuged for 10mins at high speed. After spinning, 

the supernatant was recovered and aliquoted for treatment in five separate conditions to 

determine the most suitable condition for metabolomic analysis. All conditions ended up 

with a final proportion of solvents in coherence with the CRUK Scotland Institute’s 

extraction solution previously established for pHILIC chromatography; MeOH:ACN:H20 

50:30:20 (Table 2).    

 

Sample conditions A-D were placed under N2 to evaporate the MeOH to dryness using a 

MULTIVAP nitrogen evaporator block heater before the dry pellet was reconstituted in a 

MeOH: ACN:H20 solution at various volumes to explore the effects of concentrating the 

sample. As condition E did not contain a drying stage, a solution containing only 

ACN:H20 (60:40) was added to the solute. All samples were vortexed and transferred to 

glass vials for LCMS analysis. As samples B-D began to precipitate prior to LCMS 

analysis, these samples were excluded from the experiment.  

 

As conditions B-D were excluded this allowed a direct comparison between A and E, 

comparing the effects of drying down(A) the sample prior to LCMS compared to not (E). 

After inspecting the full scan extracted ion chromatogram obtained from this experiment it 

can be seen from figure 3.2 that there was a large peak in the first few minutes suggesting a 

high output at the start of the chromatography which may suggest non-polar substances 

that have not been optimally removed during extraction.   
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Untargeted analysis of samples A and E also showed that there was no benefit to drying 

down samples before LCMS analysis. This can be visualised on a PCA plot (figure 3.3) 

showing little separation between the conditions for all samples analysed.   

  

 

When targeted analysis was carried out on specific metabolites of interest, it was again 

found that for the majority of metabolites there was little apparent variation between the 

two conditions (figure 3.4a), with only 6 metabolites among the 61 analysed appearing 

discordant according to drying conditions(figure 3.4b). From this it was concluded that the 

drying down stage is not necessary during extraction for this specific protocol.   
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Table 2. The various conditions used in the metabolite 

extraction. Table 2 shows the five conditions selected to determine 

the best for optimal extraction of metabolites from freeze-drier stool 

samples. Conditions A-D were dried down, whereas condition E 

was not dried down.   

 

 

 

 

 

 

 

 

 

 



   

 

31 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic of experimental protocol of metabolomic analysis of 

stool samples evaluating optimal extraction methods and comparing 

drying methods. Figure 3.1 is a flowchart of the protocols followed for each 

sample extraction method to determine the optimal sample weight for 

metabolite extraction as well as to compare if a drying down stage using 

nitrogen was necessary. Conditions B-D have been crossed out due to them 

being excluded from the experiment as they began to precipitate prior to 

LCMS analysis. 
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Figure 3.2 Chromatogram of untargeted metabolomic analysis of stool 

samples from three different individuals that have been dried down 

under N2. . Visual output of the signal detected from the stool samples 

obtained from 3 seperate healthy individuals (1E/2E/3E); all of which had not 

undergone the drying down stage during processing prior to LCMS analysis. 

Each peak represents different components and metabolites within the sample. 

It can be suggested the large peak emitted between 1-2 minutes is due to 

unwanted substances that have failed to be removed during extraction.    
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Figure 3.3 PCA plot of targeted metabolomic analysis comparing stool 

sample drying methods during metabolite extraction protocol. . The PCA 

plot represents the variation between the two sample conditions for each 

sample group. It can be seen in figure 3.2 that for each sample group the dots 

are close by therefore it can be suggested there is little variation introduced 

between the two extraction conditions 
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Figure 3.4 Bar plots representing peak area of  metabolites from targeted 

metabolomic analysis comparing drying down methods in triplicate. The 

barplot describes the levels of metabolites detected in stool samples which 

have been dried down (A) and not dried down (E) from three different 

individuals.  a) Selected representative metabolites with little variation in the 

peak area detectedbetween the two extraction conditions.. b) metabolites 

(n=6) with discordance between extraction conditions.  
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3.1.2 Determining optimal conditions for metabolite extraction 

A metabolite extraction was carried out by adding 100% MeOH to a freeze-dried faecal 

sample from one healthy individual that had been weighed out in 2ml tubes containing 

ceramic beads at three weights in triplicates. Upon extraction in MeOH various desired 

concentrations were obtained (50mg/ml, 25mg/ml, and 10mg/ml). An ACN:H20 solution 

was then added to these samples to obtain three final dilutions per sample (½, ¼, 1/8), at a 

ratio to obtain a final concentration in coherence with that of the CRUK Scotland 

extraction solution. The samples were then centrifuged for 10mins at high speed and 100ul 

of supernatant was recovered from each sample to undergo a hexane cleanup attempting to 

maximally remove the apolar fraction. The rest of the supernatant was recovered and 

transferred to glass vials for LCMS analysis as such. To each extract undergoing the 

hexane prep, 300ul of hexane was added, samples were vortexed and spun at 6°C, 3mins, 

high speed. A glass pasteur pipette was used to recover the bottom layer of the extract and 

transferred to glass vials for LCMS analysis (figure 3.4).   

  

The results of the untargeted analysis on the LCMS experiment 2 showed that there was 

more variation between samples at higher concentrations (i.e. 25mg/ml (50mg, 1_2, 

no_hex) and 12.5mg/ml (25mg, 1_2, no_hex))) compared to lower concentrations such as 

6.25mg/ml (50mg, 1_8, no_hex) and 3.125mg/ml (25mg, 1_8, no_hex). This trend of 

lower concentrations correlating with reduced variability between sample replicates can be 

visualized in figure 3.5.  The samples outlined in red were selected for further analysis 

(targeted) as they were clusters of samples of the same final concentration however had 

various initial concentrations prior to solvent addition (i.e. final concentration of 

6.25mg/ml = 50mg 1/8, 25mg ¼, 10mg ½). The other samples were chosen to have a lower 

concentration comparison (3.125mg/ml) as well as being able to see the effect of the 
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hexane prep. All of the samples chosen for targeted analysis were also chosen for their 

reliability of results between replicates due to their reduced variability.  

  

Targeted analysis was carried out on the samples selected from the untargeted 

metabolomic results. Figure 3.6a shows the targeted metabolomic results which 

demonstrate the levels of individual metabolites detected by LCMS for each dilution 

selected. At the higher concentration (6.25mg/ml) there is more variability in results 

between the various dilutions compared to the lower concentration of 3.125mg/ml. 

Samples that received the hexane cleanup showed positive results in figure 3.6c whereby 

the levels of various fatty acids (non-polar) were reduced, and the signal intensity for 

lactate (polar) was higher. However, as exemplified in Figure 3.6a hexane prep did not 

improve detection for the majority of the polar metabolites (apart from lactate). In addition, 

the large signal of obtained early during chromatography was not markedly reduced post 

hexane prep (Figure 3.7). Hence this extra step which can introduce errors during sampling 

handling was not carried forward for future analyses. Figure 3.6b indicates that typical 

hydrophilic metabolites of interest remain well detected at the lower concentration (>1 x 

106 AUC).  

 

In conclusion, based on the previous experiments we determined that in order to achieve 

optimal results the most appropriate condition for metabolite extraction was 25mg/ml,1/8 

(final conc = 3.125mg/ml) without the drying stage before extraction and the hexane prep. 

This condition provided a stool weight that allowed for easy sample handling while still 

demonstrating robust results. It was determined the drying stage before metabolite 

extraction was not required as results were consistent with samples that did not undergo 

drying. Furthermore, the hexane prep did not remove the high output seen at the start of the 

column during LCMS analysis, therefore it was deemed an unnecessary step (Figure 3.7).  
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Figure 3.5 Schematic oftargeted metabolomic analysis protocol to 

evaluate optimal metabolite extraction condition and the benefit of the 

hexane clean up step prior to LCMS analysis. . Figure 3.4 is a flowchart of 

the protocols followed for each sample extraction method. Three different 

weights of stool sample from the same individual was prepared in triplicate to 

obtain various final concentrations, to assess the optimal metabolite detection 

output as well as, the easiest method for sample handling.  
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Figure 3.6 PCA plot from untargeted metabolomic analysis of each stool 

sample condition comparing various concentrations and hexane clean up 

methods for optimal metabolite extraction. The various colours of dots 

represent each sample dilution and whether they have received the hexane 

clean-up. There is a trend at lower concentrations the sample replicates 

become closer together, ultimately reducing variability.  
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 Figure 3.7Bar plots representing peak area of metabolites from targered 

metabolomic analysis comparing two separate sample concentrations and 

hexane clean up methods. A) The bar charts describe the variability of each 

metabolite for the two concentrations 6.25mg/ml and 3.125mg/ml with 

hexane prep, and 3.125mg/ml without hexane. B) Indicates that at lower 

concentrations there is still a good quality detection of metabolites of interest. 

C) Shows the variability between no hexane and hexane prep in the 

3.125mg/ml samples.  
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Figure 3.8 Chromatogram of untargeted metabolomic analysis assessing 

the effect of hexane clean up on metabolite detection using LCMS. Visual 

output of the signal detected from the stool samples with and without hexane 

prep obtained from LCMS analysis. Each peak represents different 

components and metabolites within the sample. It can be suggested the large 

peak emitted between 1-2 minutes is due to unwanted substances that have 

failed to be removed during extraction. The figure suggests that the hexane 

prep step is not necessary as the large peak is still visualised. 
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4. Results : LCMS Analysis of NEO-MICROBE Stool Samples 

Targeted and untargeted analysis of stool metabolomics was carried out to elucidate any 

potential metabolites that may be involved in modulating patient response to NACT as 

well as their role as biomarkers to predict therapeutic outcomes. 

From November 2021 to August 2023, 65 patients consented to enter NEO-MICROBE 

BREAST study, one patient subsequently withdrew consent. Patient characteristics are 

shown in Table 2; patients (n=64) had a median BMI of 27kg/m2 and were largely of 

white ethnicity (92.2%). Half of the cohort were pre-menopausal with most having no co-

morbidities and TNBC was the most common subtype seen within the group, as well as 

nearly all having grade 3 invasive ductal carcinoma. The median baseline tumour size was 

34.5mm. Fifty-three of the 64 patients had negative baseline clinical nodal status with 

stage II being the most common clinical TNM stage within the population (68.75%). 

Twenty-five healthy volunteers with a median age of 51.5 years old (range of 26y-68y) and 

a median BMI of 23.8 kg/m2 (range of 19.3kg/m2-28.2kg/m2) were also recruited. 
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4.1 NEO-MICROBE Patient Clinical Data  

  All Patients  
(n=64)  

Pathological Complete 
Response   

(n=33)  

Non-Pathological 
Complete Response   

(n=31)  
Age – median (range)  51 (29-74)  54 (32-73)  50 (29-74)  

BMI (kg/m2) – median 
(range)  
  
• Underweight <18.5   
• Healthy 18.5-25  
• Overweight 25-30  
• Obese >30  
• Morbidly Obese >40   

27 (18.1- 48.9)  
  
  

1 (1.6%)  
 23 (35.9%)  
17 (26.6%)  
 21 (32.8%)  

 2 (3.1%)  

26.7 (19.1-38.7)  
  
  

0  
13 (39.4%)  
9 (27.2%)  

11 (33.3%)  
0  

28.2 (18.1-48.9)  
  
  

1 (3.2%)  
10 (32.3%)  
8 (25.8%)  

10 (32.3%)  
2 (6.5%)   

Ethnicity  
• White  
• Black African  
• Asian Pakistani  
• Asian Chinese  
• Arab  

  
59 (92.2%)  

2 (3.1%)  
1 (1.6%)  
1 (1.6%)  
1 (1.6%)  

  
30 (90.9%)  

1 (3%)  
1 (3%)  
1 (3%)  

0  

  
29 (93.5%)  

1 (3.2%)  
0  
0  

1 (3.2%)  
Menopausal status  

• Pre- or peri-menopausal  
• Post-menopausal  

  
32 (50%)  

  
32 (50%)  

  
18 (54.5%)  

  
15 (45.5%)  

  
14 (45.2%)  

  
17 (54.8%)  

Co-morbidities  
• gastrointestinal  
• diabetes  
• autoimmune   

  
5 (7.8%)  

4 (6.25%)  
3 (4.68%)  

  
2 (6.1%)  

1 (3%)  
1 (3%)  

  
3 (9.7%)  
3 (9.7%)  
2 (6.5%)  

Breast cancer subtype  

• HER2+/ER+  
• HER2+/ER-  
• TNBC  

  
  

24 (37.5%)  
14 (21.9%)  
26 (40.6%)  

  
  

9 (27.3%)  
10 (30.3%)  
14 (42.4%)  

  
  

15 (48.3%)  
4 (12.9%)  

12 (38.7%)  
Histological Subtype  
• Invasive Ductal 
carcinoma   
• Invasive Lobular 
carcinoma  

  
62 (96.9%)   

  
2 (3.1%)  

  
31 (93.9%)  

  
2 (6.1%)  

  
31 (100%)  

  
0  

Histological grade  

• Grade 1  
• Grade 2  

• Grade 3  

  
1 (1.6%)  

23 (35.9%)  
40 (62.5%)  

  
0  

13 (39.3%)  
20 (60.6%)  

  

  
1 (3.2%)  

10 (32.3%)  
20 (64.5%)  

 
Baseline tumour size,  
(mm)  

• Median (range)  

  
  

34.5 (10-112)  

  
  

36 (10-112)  

  
  

31 (15-110)  

Baseline nodal status  
• Negative  
• Positive  

  
  

53 (82.8%)  
11 (17.2%)  

  
  

26 (78.8%)  
7 (21.2%)  

  
  

27 (87.1%)  
7 (12.9%)  

Clinical TNM Stage  
• I  

  
5 (7.8%)  

  
0  

  
5 (16.1%)  
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• II  
• III  

44 (68.75%)  
15 (23.4%)  

24 (72.7%)  
9 (27.3%)  

20 (64.5%)  
6 (19.4%)  

 

Table 2: Baseline Demographics of All Evaluable Patients and Segregated by 

Pathological Complete Response Outcome  
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4.2 Untargeted Analysis  

To obtain a comprehensive view of the gut microbiome and its impact on response we first 

started with untargeted analysis of the stool metabolomics. 

4.2.1 Healthy Volunteers versus cancer patients  

Principal component analysis (PCA) was conducted on untargeted metabolomic profiles to 

gain an understanding on the variation in gut metabolites between breast cancer patients 

(BC) and healthy volunteers (HV). The plot shows the distribution between the two group 

along the first two principal components with PC1 accounting for 10.9% total variance and 

7.8% accounted for by PC2. The PCA plot (Figure 4.1) exhibits significant overlap in the 

metabolomic profiles of the two groups, revealing no clear separation between the data 

points. This finding suggests that individual variation exceeds any variation between HV 

and BC patients.  

 

Further statistical analysis (T-test) was carried out to generate the volcano plot (Figure 4.2) 

to present the differences observed in metabolic composition between HV and BC patients. 

Metabolites that are modulated exhibited a fold change (FC) >1 (red/green dots). Any 

metabolites with FC > 1 and statistically significant are coloured in the red square 

(increased levels) and those that are downregulated (<-1) are highlighted by the green 

square. A total of 97 metabolites (55 upregulated, 42 downregulated) were significantly 

altered based on cancer status. These specific metabolites may have predictive value in 

cancer status. Overall, these findings identify considerable differences in metabolomic 

profiles between healthy individuals and those with breast cancer, signifying that necessity 

for further analysis to identify these altered metabolites. 
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4.2.2 PCR vs non-PCR– whole population 

Next, we conducted untargeted metabolomic profile of cancer patients at timepoint one 

who achieved pathological complete response (pCR) and those who did not (non-pCR). 

Principal component analysis was completed to understand the metabolic variation 

between the two groups and to explore if such variation has an influence on 

chemosensitivity. The PCA plot (Figure 4.3) demonstrates the separation along the first 

two principal components (PC1, 11.9% total variance and PC2, 7.6% total variance). The 

plot exhibits no distinct separation between the two groups which suggests that, in general, 

metabolic profiles of responders and non-responders are similar. The data points are 

widely dispersed across the plot which indicates a high degree of metabolic heterogeneity.  

 

Subsequent analysis was carried out to generate the volcano plot (Figure 4.4) in order to 

understand the abundance of metabolites that showed a FC > 1 (red) or lower (FC<-1) 

(green) levels in non-pCR patients compared to pCR patients. A total of three metabolites 

showed statistically significantly higher levels in non-responders, as well as meeting the 

cutoff of FC > 1 (red gate) and 6 metabolites demonstrated statistically significantly lower 

abundance and a FC < -1 (green gate) in non-responders compared with responders. 

Overall, this analysis identifies potential metabolic biomarkers of NACT response (p < 

0.05) as well as other metabolites shown by red and green dots that may be contributing to 

the variance driving response to treatment.  
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Figure 4.1 Principal component analysis (PCA) of untargeted stool metabolomic profiles 

from healthy volunteers (HV)(n=25) and breast cancer patients at timepoint 1 (BC T1) 

(n=64). Each point represents an individual sample. The plot demonstrates clear overlap 

between the sample groups, indicating that variance is not primarily driven by disease 

status. 
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Figure 4.2. Volcano plot showing the relationship between untargeted metabolomic 

profiles p-values (T-test) and fold changes among patients with breast cancer at timepoint 

one (BC T1) and healthy individuals (HV). The effect size of the two groups is plotted on 

the x-axis on a logarithmic scale to base 2 (Log2(FC)). The -log10 p-values are plotted on 

the y-axis. Red gates demonstrate the metabolites that demonstrated statistically 

significantly higher level in BC T1 patients and a FC > 1 and statistically significantly 

lower levels in BC T1 patients and a FC < -1 are described by the green gate. Each dot 

describes a specific metabolite.  
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Figure 4.3. Principal component analysis (PCA) of untargeted stool metabolomic profiles 

from responders (1) (pCR) and non-responders to NACT (2) (non-PCR). Each point 

represents an individual sample. The plot demonstrates clear overlap between the sample 

groups, indicating that variance is not primarily driven by response to NACT. 
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Figure 4.4. Volcano plot showing the relationship between untargeted metabolomic 

profiles p-values and fold changes among patients who did not achieve pathological 

complete response (non-PCR) versus those who did achieve pCR (PCR). The effect size of 

the two groups is plotted on the x-axis on a logarithmic scale to base 2 (Log2(FC)). The -

log10 p-values (T-test) are plotted on the y-axis. Red gates demonstrate the metabolites 

that demonstrated statistically significantly higher level in non-responders also with a FC > 

1 and statistically significantly lower levels in non-pCR patients and with a FC < -1 are 

described by the green gate. Each dot describes a specific metabolite.  
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4.3 Targeted Analysis 

Targeted analysis of the stool metabolomics data was performed to understand how a 

predefined panel of cancer-relevant metabolites influenced pCR in patients from the NEO-

MICROBE study. Defining metabolites within the gut that may be linked to the efficacy of 

NACT provides an insight into the mechanistic role of these metabolites impact on drug 

metabolism and potential immune modulation via systemic circulation. Global analyses 

were first performed on the entire study populations before stratification by subtype to 

determine subtype-specific metabolic trends. 

4.3.1 Healthy volunteer's vs patients with cancer 

Targeted analyses were performed on selected metabolites of interest (n=76) known to be 

linked to cancer to investigate potential differences between HV and BC T1 at the 

compound level. Principal component analysis (PCA) was performed to understand the 

variations between healthy volunteers (HV) and cancer patients stool metabolomic profiles 

at T1 (pre-chemotherapy) (BC T1). The PCA plot (Figure 4.5) shows no clear separation 

between the two sample groups, thus highlighting that there is no strong variance between 

healthy volunteers and cancer patient's pre-treatment. Considerable overlap can be 

visualised along the first two principal components (PC1 and PC2), which accounted for 

33.3% explained variance overall. This suggests that there are similarities in metabolic 

profiles between individuals with cancer and healthy individuals, thus variation is not 

disease driven. As PCA only considers dominant variance, additional targeted metabolite 

specific analysis was conducted.  

Overall, both cohorts showed similar distribution in metabolic levels with no statistically 

significant difference in peak area between HV and BC 1 for most metabolic compounds 

analysed. Figure 4.6 highlights three metabolites that are representative of most 

metabolites analysed; 3-indoleacetic acid (3-IAA), demonstrated no statistically significant 

difference in levels between the two sample groups (p=0.74). The same trend was evident 
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for Aspartate and Adenine, with no statistical significance observed; p=0.39 and p=0.55, 

respectively. Some inter-individual variability was evident across all metabolites however 

overall; relatively consistent levels were seen across individuals. This is demonstrated with 

the tight clustering of data points in 3-IAA (Figure 4.2), excluding a few elevated outliers 

which is consistent across most metabolites. These findings suggest that for most 

metabolites analysed they were not predictive of cancer status, as the peak area levels were 

not differentially abundant at baseline (BC T1) versus HV. 

Metabolites showing statistically significant differences between the two cohorts are 

shown in Figure 4.7.  

Linoleic acid displays significant difference with a p-value of 0.024, with a peak area for 

HV being significantly higher than BC T1. Marked separation of the individual points 

distribution between the two groups can be visualised, suggesting that cancer status is 

influencing different metabolic profiles here.  

Oleic acid exhibits a similar pattern whereby a significant difference (p=0.02) in peak areas 

between HV and BC T1 is highlighted, with healthy individuals showing a higher level of 

the compound. Similar distribution of data points is also shown, with distinct clustering of 

points being consistently lower in BC T1 versus HV. 

UMP displays substantial separation, with UMP peak area being considerably higher in BC 

T1 patients than healthy individuals; this is demonstrated through a highly significant p-

value of 0.00094. Distribution of individual points suggests that HV had mostly extremely 

low or absent peak areas, with only one outlier presenting a peak area of 1x106. This 

finding suggests that UMP could potentially be acting as a driver in the complex 

mechanisms involved in cancer development and progression. 

Similar to UMP, the metabolic compound Cystine showed a noticeably higher peak area in 

BC T1 patients than HV. A significant difference in cystine levels was demonstrated with a 

p-value of 0.024. Cystines higher abundance in cancer patients is emphasized by the 
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skewed distribution of individual data points that can be visualised; suggesting that cystine 

in general is higher in BC T1 versus HV however outlying data points are pulling 

distribution towards higher peak areas, thus contributing to the significant difference 

between the two groups. 

As UMP showed highly significant elevated levels in BC T1 vs HV it was hypothesised 

UMP may be associated to breast cancer status in a subset of individuals, therefore further 

targeted analyses were performed to gain a better understanding of clinical factors 

influence on UMP levels (Figure 4.8). 

Figure 4.8a presents the correlation between UMP and menopausal status in breast cancer 

patients at T1. No significant difference (p=0.5009) was displayed between patients that 

are pre/peri-menopausal and menopausal cancer patients, suggesting that menopausal 

status does not modulate UMP levels in breast cancer patients. 

The correlation between UMP levels and age of clinical patients of the NEO-MICROBE 

study at T1 is illustrated by XY plot (figure 4.8b). A weak positive correlation is 

demonstrated by the correlation coefficient (r = 0.3374) and p-value (p = 0.0730); 

however, this was not statistically significant.  

Similar to the other clinical factors, no association between BMI of patients at T1 and 

UMP levels is shown. Figure 4.8c displays boxplots representing the comparison of UMP 

levels between patients with low UMP and elevated UMP, however no statistically 

significant difference was indicated (p = 0.5033). 
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Figure 4.5. Principal component analysis (PCA) of stool metabolomic data from healthy 

volunteers (HV)(n=25) and breast cancer patients at timepoint 1 (BC T1) (n=64). Each 

point represents an individual sample. The plot demonstrates clear clustering between the 

sample groups, indicating that variance is not primarily driven by disease status. 
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Figure 4.6. Boxplots demonstrating the peak areas of metabolites (3-IAA, Aspartate and 

Adenine) representative of the overall metabolites of interest that were analysed across 

healthy individuals (HV)(blue) and breast cancer patients from the NEO-MICROBE study 

at timepoint 1 (BC T1) (red). The graph also displays statistical comparisons (p-value) (T-

test) highlighted the statistically significant differences between the two groups. 
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Figure 4.7. Boxplots demonstrating the peak areas of metabolites (Linoleic acid, Oleic 

acid, UMP and Cystine) that showed statistical significance across healthy individuals 

(HV)(blue) and breast cancer patients from the NEO-MICROBE study at timepoint 1 (BC 

T1) (red). Significant statistical differences are displayed by the p-value (T-test). 
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Figure 4.8. Correlation plots between UMP in breast cancer patients at T1 and 

clinical factors. A two-tailed T-test was carried out to calculate the p-value (A) 

Comparison of UMP levels between pre-/peri- menopausal and menopausal 

individuals showed no significant difference (p=0.5009). (B) Correlation analysis 

between UMP levels and patient age revealed a weak, non-significant positive 

correlation (r = 0.3374, p = 0.0730). (C) Body mass index (BMI) at timepoint 1 (T1) 

was compared between patients with low versus elevated UMP levels, showing no 

significant difference (p=0.5033). 
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4.3.2 PCR vs Non-PCR– whole population 

We first examined the metabolic profiles of cancer patients at T1 who achieved a 

pathological complete response (pCR)(n=33) versus those who did not achieve pCR 

(n=28) after NACT. By assessing the gut metabolome of each individual with reference to 

pCR we aimed to identify potential biomarkers of neoadjuvant treatment response. Initial 

targeted analysis was conducted on the whole population (BC T1) to gain a broader 

understanding of treatment efficacy overall and how the gut microbiome may influence 

this response.  

 

A Principal Component Analysis (PCA) was carried out to assess the variability of 

metabolic profiles between pCR and non-pCR patients. Figure 4.9 demonstrates the 

separation along the first two principal components between pCR (22.4% total variance 

explained) and non-pCR (12.8% total variance explained) groups. The pCR data points 

(circles) are more tightly clustered suggesting less variability within this group compared 

to non-pCR patients show points (squares) indicating a broader distribution of data points. 

Overall, there is some overlap of the groups suggesting similarities in metabolic profiles 

however some points are distinguishable between the groups, demonstrating a degree of 

metabolic difference potentially influencing response to NACT.  

 

Statistical analysis was performed on metabolomic data generated from LCMS. The 

volcano plot in Figure 4.10 presents the variance of metabolites between pCR vs non-pCR 
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patients. A two-tailed T test was conducted on non-pCR vs pCR patients and log10 

transformation was applied to calculate the -Log10(p-value) (y-axis), representing the level 

of significance of each metabolite. The magnitude of differences between the two groups 

for each metabolite is represented on a logarithmic scale to base 2 (Log2(FC))(x-axis). The 

metabolites that showed significant results and a FC > 1 are highlighted in red, with the 

metabolites in the upper left/right corners showing statistical significance (aKG and 

dTMP). The volcano plot highlights that aKG has higher levels in patients who achieved 

pCR and dTMP levels are more abundant in non-pCR patients. Visualisation of the data in 

Figure 4.10 allowed for identification of potential metabolites that are involved in driving 

response to NACT.  

 

Following this, the data was analysed using the software tool Metabolite Autoplotter to 

measure metabolite abundance in cancer patients at T1 who achieved pCR versus non-

pCR. Results indicated that most metabolites did not exhibit statistically significant 

differences (p-value ≤ 0.05) between the two groups (Figure 4.11, representative of all 

non-significant metabolites). The distribution of peak areas for individual points showed 

similar trends across the majority of metabolites, with a few outliers which may be 

consequent of subtype-specific trends.  

 

The metabolites that did show statistically significant differences in peak area between the 

two groups included aKG, guanine and dTMP (Figure 4.12). The significant difference in 

dTMP levels (A) is represented by the p-value of 0.043, with non-PCR patients displaying 

higher levels. The relatively tight clustering of the data points for the pCR group shows 

that peak area was consistently low across the sample group. A broader spread of points is 

visible in the non-pCR group, suggesting more variability in dTMP levels within patients 

who did not achieve pCR. This variability may be explained by subtype driven metabolic 
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patterns. Guanine (B) also demonstrated a statistically significant difference (p=0.042), 

with reduced levels of guanine in pCR patients compared to non-pCR; thus, highlighting 

depleted guanine levels as a potential biomarker for treatment response. Distribution of 

individual points shows similar patterns to dTMP, with more variance seen in non-pCR 

patients. In the pCR group, clustering of points can be visualised however there is a small 

subset of patients with higher peak area of guanine. Lastly, aKG revealed the most striking 

results, demonstrating significantly higher levels in patients who achieved a complete 

pathological response, with a p-value of 0.0022.  
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Figure 4.9. Principal component analysis (PCA) of stool metabolomic data from cancer 

patients at T1 who achieved pathological complete response after NACT (PCR)(n=33) and 

breast cancer patients who did not achieve pCR (Non-PCR)(n=28). Each point represents 

an individual sample.  
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Figure 4.10. Volcano plot showing the relationship between metabolites p-values and fold 

changes among patients who did not achieve pathological complete response (Non-PCR) 

versus those who did achieve pCR (PCR). The effect size of the two groups is plotted on 

the x-axis on a logarithmic scale to base 2 (Log2(FC)). The -log10 p-values are plotted on 

the y-axis (T-test). Gridlines act as cut off points for results of significance; metabolites of 

significance are highlighted by red dots.   
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Figure 4.11. Boxplots representative of all metabolites analysed demonstrates the peak 

areas of metabolites (1-methylnicotinamide, 3-hydroxybutyric acid, 3-IAA, 4,5-

dihydroorotic acid, Adenine, Adenosine) that did not show statistical significance across 

breast cancer patients from the NEO-MICROBE study at timepoint 1 that achieved 

pathological complete response(PCR)(blue, n=33) and those who did not (Non-PCR)(red, 

n=28). Individual data points represent peak area levels per individual. Significant 

statistical differences are displayed by the p-value (T-test). 
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Figure 4.12. Boxplots demonstrating the peak areas of metabolites (dTMP (A), Guanine 

(B), aKG (C)) that exhibited statistical significance across breast cancer patients from the 

NEO-MICROBE study at timepoint 1 that achieved pathological complete 

response(PCR)(blue, n=33) and those who did not (Non-PCR)(red, n=28). Individual data 

points represent peak area levels per individual. Significant statistical differences are 

displayed by the p-value (T-test). 
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Targeted Analysis in Breast Cancer Subtypes 

After carrying out a comprehensive analysis of the whole population to obtain an 

understanding of how metabolite profile has an influence on response rate to NACT in 

breast cancer patients, we next examined subtype-specific responses. By exploring 

metabolic profiles of patients based on their subtype and how they respond to NACT, this 

enables detection of potential metabolic drivers of NACT response unique to breast cancer 

subtype; subsequently allowing for potential therapeutic targets to be recognised and 

development of personalised treatments. 

 

Table 3 shows the demographics of patients stratified into subtypes of breast cancer. 

Patients demonstrate fairly similar median ages and bmi across HER2+/ER+, HER2+/ER- 

and TNBC; median age = 54y, 56y, 45.5y, and median BMI = 26.8kg/m2, 30.4kg/m2, 

24.8kg/m2, respectively. The majority of patients were white with no co-morbidities across 

all subtypes. Patients were more commonly post-menopausal in HER2+ ER+ and ER- 

groups, compared to pre-menopausal in TNBC. Histology of the tumour highlighted nearly 

all patients had invasive ductal carcinoma in all subtypes with a fairly even split between 

grade 2 and 3 histological grade however in TNBC the majority of patients (88.5%) were 

grade 3. Patients had similar median tumour size (mm) at baseline (34.5mm, 46mm, 

30.3mm), with the majority of patients in each subtype presenting negative baseline nodal 

status and a clinical TNM stage of II. Anthracycline and taxane was the primary treatment 

in HER2+ER+ and ER-, however contrastingly the addition of platinum alongside 

anthracycline and taxane was more commonly used in TNBC. Patients with TNBC were 

largely recruited prior to routine use of the immune checkpoint inhibitor, pembrolizumab 

with only one patient having received this immunotherapeutic drug. 
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  HER2+/ER+  
(n=24)  

HER2+/ER-  
(n=14)  

TNBC  
(n=26)  

Age – median (range)  
  

54 (43-68)  56 (32-74)  45.5 (29-67)  

BMI (kg/m2) – median 
(range)  
  
• Underweight <18.5   
• Healthy 18.5-25  
• Overweight 25-30  
• Obese >30  
• Morbidly Obese >40  
  

26.8 (21.5-42.1)  
  
  

0  
7 (29.2%)  

10 (41.7%)  
6 (25%)  
1 (4.2%)  

30.4 (19.4-48.9)  
  
  

0  
4 (28.6%)  
3 (21.4%)  
6 (42.9%)  
1 (7.1%)  

24.8 (18.1-38.7)  
  
  

1 (3.8%)  
12 (46.1%)  
4 (15.4%)  
9 (34.6%)  

0  

Ethnicity  
• White  
• Black African  
• Asian Pakistani  
• Asian Chinese  
• Arab  

  
23 (95.8%)  

0  
0  

1 (4.2%)  
0  

  
13 (92.9%)  

1 (7.1%)  
0  
0  
0  

  
23 (88.5%)  

1 (3.8%)  
1 (3.8%)  

0  
1 (3.8%)  

Menopausal status  

• Pre- or peri-
menopausal  
• Post-menopausal  

  
9 (37.5%)  

  
15 (62.5%)  

  
4 (28.6%)  

  
10 (71.4%)  

  
19 (73.1%)  

  
7 (26.9%)  

Co-morbidities   
• gastrointestinal   
• diabetes  
• autoimmune   

  
3 (12.5%)  
1 (4.2%)  
1 (4.2%)  

  
0  

1 (7.1%)  
1 (7.1%)  

  
2 (7.7%)  
2 (7.7%)  
1 (3.8%)  

Histology  

• Invasive Ductal 
carcinoma   
• Invasive Lobular 
carcinoma  

  
23 (95.8%)  

  
1 (4.2%)  

  
13 (92.9%)  

  
1 (7.1%)  

  
26 (100%)  

  
0  

Histological grade  

• Grade 1  
• Grade 2  
• Grade 3  

  
1 (4.2%)  

13 (54.2%)  
10 (41.7%)  

  
0  

7 (50%)  
7 (50%)  

  

  
0  

3 (11.5%)  
23 (88.5%)  

  
Baseline tumour size, 
(mm)  

• Median (range)  

  
  

34.5 (18-112)  

  
  

46 (25-110)  

  
  

30.3 (10-73)  
Baseline nodal status  

• Negative  
• Positive  

  
18 (75%)  
6 (25%)  

  
11 (78.6%)  
3 (21.4%)  

  
24 (92.3%)  

2 (7.7%)  
Clinical TNM Stage  
• I  
• II  
• III  

  
3 (12.5%)  
12 (50%)  
9 (37.5%)  

  
0  

12 (85.7%)  
2 (14.3%)  

  
2 (7.7%)  

20 (76.9%)  
4 (15.4%)  

 Chemotherapy   
• Anthracycline / 
taxane  

  
17 (70.8%)  

  
  

  
9 (64.3%)  

  
  

  
4 (15.4%)  
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• anthracycline / 
taxane with platinum  
•  Docetaxel + 
carboplatin  
• Taxane monotherapy  
• Docetaxel + 
cyclophosphamide  

0  
  

6 (25%)  
  

0  
  

1 (4.2%)  
  

0  
  

3 (21.4%)  
  

1 (7.1%)  
  

1 (7.1%)  
  

21 (80.8%)  
  

0  
  

0  
  

1 (3.8%)  

Immunotherapy  
•  pembrolizumab  

  
0  

  
0  

  
1 (3.8%)  

HER2-targeted therapy  
•  Trastuzumab + 
pertuzumab  
•  Trastuzumab  

  
  

24 (100%)  
  

0  

  
  

13 (92.9%)  
  

1 (7.1%)  

  
  

0  
  

0  
 

 

Table 3: Baseline Demographics and Neoadjuvant Treatment by Breast Cancer 

Subtype  
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4.3.3 PCR vs Non-PCR – HER2+ 

Principal component analysis was conducted to examine the variation in metabolic profiles 

of HER2+ breast cancer patients who achieved pCR (PCR)(n=19) and those who did not 

(Non-PCR) (n=17) (Figure 4.13). The separation between the two groups is along the first 

two principal components (PC1 and PC2, 39.8 explained total variance overall). Little to 

no separation is seen between the two groups, suggesting there is little variation in 

metabolic profiles between pCR and non-pCR patients.  

A two-tailed T-test was conducted to determine the difference between the average peak 

area of the metabolites analysed in HER2+ patients who achieved pCR and those who did 

not. The effect size was also calculated, and log transformation was carried out on both of 

these statistics; the results of this statistical analysis can be visualised in Figure 4.14. The 

volcano plot indicates metabolites of significance by highlighting them with red dots (x = 

<0.58 or >0.58); furthermore, metabolites with a -log10 p-value >1.3 showed statistical 

significance. Some noteworthy statistically significant metabolites included aKG, 

guanosine, uridine, and inosine, suggesting potential association with response to NACT in 

HER2+ breast cancer.  

 

 

As the next phase we carried on from the previous metabolomic analysis in Metabolite 

Autoplotter to visualise the difference in peak areas of metabolites between pCR and non-

PCR HER2+ patients. The majority of metabolites showed no association to response of 

NACT in HER2+ breast cancer patients (Figure 4.15).  

Five metabolites showed statistically significant differences between HER2+ patients who 

achieved pCR and those who did not; aKG, Citrate, Guanosine, Inosine and Uridine 

(Figure 4.12). Inosine (A), uridine (B) and guanosine (D) all showed elevated levels in 

non-pCR patients (p = 0.042, 0.028 and 0.021, respectively). All of these metabolites 
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showed similar patterns in distribution of individual points as well with clustering towards 

low/absent levels in the pCR group and wider spread of point in non-pCR patients. Citrate 

(E) showed a slightly statistically significant difference with a p-value of 0.053. Patients 

who achieved a pCR were shown to have higher abundance of citrate in their gut, with 

some individuals showing an unusually high peak area; this may be contributing to the 

significantly higher levels of citrate observed relative to non-pCR patients that 

demonstrated little variance within the population. The metabolite with the highest 

statistical significance was aKG (C), demonstrating higher levels in the pCR patients 

compared to non-pCR patients (p=0.0073). Clustering of individual data points is 

presented in non-pCR patients, suggesting that aKG is consistently low in most individuals 

within the group. In contrast, patients within the pCR group show a large distribution of 

points signifying high levels of variance within the group, with the majority of them being 

higher than non-pCR patients. Overall, it can be suggested that these metabolites which are 

all involved in the same nucleotide metabolic pathway may play a role in response to 

NACT in HER2+ malignancies.  
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Figure 4.13. Principal component analysis (PCA) of stool metabolomic data from HER2+ 

cancer patients at T1 who achieved pathological complete response after NACT 

(PCR)(n=19) and breast cancer patients who did not achieve pCR (Non-PCR) (n=17). Each 

point represents an individual sample.  
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Figure 4.14. Volcano plot showing the relationship between metabolites p-values and fold 

changes among HER2+ patients who did not achieve pathological complete response 

(Non-PCR) versus those who did achieve pCR (PCR). The effect size of the two groups is 

plotted on the x-axis on a logarithmic scale to base 2 (Log2(FC)). The -log10 p-values are 

plotted on the y-axis (T-test).   
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Figure 4.15. Boxplots demonstrating the peak areas of metabolites (deoxyuridine, dTMP, 

Glucose-6-Phosphate (G6P) third peak, GLN, GLU and Glucose) that did not show 

statistical significance across HER2+ breast cancer patients from the NEO-MICROBE 

study at timepoint 1 that achieved pathological complete response(PCR)(blue, n=19) and 

those who did not (Non-PCR)(red, n=17). Individual data points represent peak area levels 

per individual. Significant statistical differences are displayed by the p-value (T-test). 
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Figure 4.16. Boxplots demonstrating the peak areas of the five metabolites (Inosine (A), 

Uridine (B), aKG (C), Guanosine (D), Citrate (E)) that exhibited statistical significance 

across HER2+ breast cancer patients from the NEO-MICROBE study at timepoint 1 that 

achieved pathological complete response(PCR)(blue, n=19) and those who did not (Non-

PCR)(red, n=17). Individual data points represent peak area levels per individual. 

Significant statistical differences are displayed by the p-value (T-test). 

 

Sample Group 

Sample Group 

Sample Group 

Sample Group 

Sample Group 



   

 

73 

  

4.3.4 PCR vs Non-PCR – HER2+ER+ 

Principal component analysis (PCA) was carried out to understand the differences between 

the two populations; HER2+ER+ patients at T1 who achieved pCR compared to those who 

did not (non-pCR) after treatment. Figure 4.17 shows that there was no separation between 

the two groups suggesting that the gut microbiome of the HER+ER+ patients who 

achieved pCR and those who did not (non-pCR) were very similar.  

 

After various statistical analysis (as per other targeted analysis) to understand any 

differences in metabolic profiles between the two groups (pCR and non-pCR) in 

HER2+ER+ breast cancer patients. Figure 4.18 demonstrates the metabolites that showed 

significant difference (red dots) between the two sample groups; six metabolites exhibited 

statistically significant differences including Guanosine, Inosine, Myristic acid, Citrate, 

Cystine and Uridine. This is emphasized in Figure 4.20, which demonstrates analysis of the 

difference in peak level of each metabolite specific to HER2+ER+ breast cancer subtype. 

The bar plots displayed in Figure 4.19 highlight that for most of the metabolites analysed 

(n=76) there was no significant change in metabolic profiles between individuals who 

responded completely to NACT (pCR) and those who did not (non-pCR). This lack of 

variation is consistent with the patterns of distribution of individual points seen between 

the two groups, with the exception of a few outliers (Figure 4.19).  

The bar plot in Figure 4.20 indicates that three metabolites; Myristic acid (A), guanosine 

(B) and inosine (C) all exhibit a statistically significant difference in peak area, with 

elevated levels in HER+ER+ patients who did not achieve pathological response to NACT. 

In contrast, HER+ER+ patients who achieved pCR exhibited statistically significant levels 

of Citrate (D) and L-pyroglutamic acid (E). Cystine appeared to be statistically significant 

in Figure 4.20, with elevated levels in PCR patients; however, this did not reach the 
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threshold of p<0.05 when statistical analysis was performed using Metabolite Autoplotter 

rather than Microsoft Excel (Figure 4.20 (E). HER2+ER+ patients who achieved pCR still 

exhibit higher levels of cystine however the majority of the population show low or absent 

levels, this is highlighted by the clustering of individual data points towards the bottom of 

the y-axis in the group. 
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Figure 4.17. Principal component analysis (PCA) of stool metabolomic data from 

HER2+ER+ cancer patients at T1 who achieved pathological complete response after 

NACT (PCR)(n=9) and breast cancer patients who did not achieve pCR (Non-PCR) 

(n=13). Each point represents an individual sample.  
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Figure 4.18. Volcano plogts showing targeted analysis of stool metabolomics. Volcano 

plot showing the relationship between metabolites p-values (T-test) and fold changes 

among HER2+ER+ patients who did not achieve pathological complete response (Non-

PCR) versus those who did achieve pCR (PCR). The effect size of the two groups is 

plotted on the x-axis on a logarithmic scale to base 2 (Log2(FC)). The -log10 p-values are 

plotted on the y-axis.   
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Figure 4.19. Comparison of peak areas of metabolites according to response. Boxplots 

representing the peak areas of metabolites (deoxyuridine, dTMP, G6P third peak, GLN, 

GLU and Glucose) that did not show statistical significance across HER2+ER+ breast 

cancer patients from the NEO-MICROBE study at timepoint 1 that achieved pathological 

complete response(PCR)(blue, n=9) and those who did not (Non-PCR)(red, n=13). 

Individual data points represent peak area levels per individual. Significant statistical 

differences are displayed by the p-value (T-test). 
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Figure 4.20. Boxplots demonstrating the peak areas of the five metabolites (Myristic acid 

(A), Guanosine (B), Inosine (C), Citrate (D), L-Pyroglutamic acid (E), Cystine (F)) that 

exhibited statistical significance across HER2+ER+ breast cancer patients from the NEO-

MICROBE study at timepoint 1 that achieved pathological complete response(PCR)(blue, 

n=9) and those who did not (Non-PCR)(red, n=13). Individual data points represent peak 

area levels per individual. Significant statistical differences are displayed by the p-value 

(T-test). 
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4.3.5 PCR vs Non-PCR – HER2+ER- 

A Principal Component Analysis was carried out on stool samples using metabolite 

autoplotter software from HER2+ER- breast cancer patients at T1 to understand the 

variance in metabolomic profiles between patients who achieve pathological complete 

response (PCR) and those who did not achieve pCR (Non-PCR). Figure 4.21 describes the 

differences in metabolites present in the gut microbiome of patients in both sample groups; 

the separation is shown along the first two principal components (PC1 explaining 29.9% 

total variance, PC2 explaining 14% total variance). The PCA plot suggests that there is 

separation between the populations suggesting the metabolite profiles of pCR compared to 

non-pCR are distinct. There is a slight overlap seen suggesting that there may be some sort 

of similarities in metabolites found in the patients across the two groups. 

 

Statistical analysis (p-value and fold change calculated) was conducted on the stool 

metabolomics data in excel from LCMS analysis, which was then inputted into software 

(GraphPad Prism) for visualisation. The volcano plot (Figure 4.22) demonstrates the 

results of the statistical analysis, highlighting the metabolites that exhibited significant 

differences between the two groups in red. The metabolites that showed statistically 

significant differences in gut metabolite composition are seen in the upper right section of 

the plot (Cytosine, Guanine, Uridine and Cytidine).  

 

Further analysis using Prism software was carried out to understand the exact statistical 

difference in specific metabolites (n=76) between patients who achieved pCR and those 

who did not across the HER2+ER- population. For the majority of metabolites (Figure 

4.23) no statistically significant differences were demonstrated in peak area of metabolites 

between the sample groups. This suggests that for the metabolites similar metabolic 
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profiles were seen in patients across the two therefore they do not appear to have an 

influence on response to NACT. 

 

The exact statistical value of difference was calculated for the metabolites that showed 

elevated levels in non-PCR patients in the volcano plot. Figure 4.24 demonstrates that 

Uridine (A) (p = 0.018), Guanine (C) (p = 0.0068) and Cytosine (D) (p = 0.016) presented 

with statistical significantly higher levels in non-pCR HER2+ER- patients. Glutamate 

(GLU)(B) exhibited a statistically significant difference, with elevated levels seen in 

HER2+ER- patients who achieved pCR. This metabolic result was not shown in figure 

4.24 which may be a consequence of the p value being 0.05, making it only just significant. 
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Figure 4.21. Principal component analysis (PCA) of stool metabolomic data from 

HER2+ER- cancer patients at T1 who achieved pathological complete response after 

NACT (PCR)(n=10) and breast cancer patients who did not achieve pCR (Non-PCR) 

(n=4). Each point represents an individual sample.  
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Figure 4.22. Volcano plot showing the relationship between metabolites p-values and fold 

changes among HER2+ER- patients who did not achieve pathological complete response 

(Non-PCR) versus those who did achieve pCR (PCR). The effect size of the two groups is 

plotted on the x-axis on a logarithmic scale to base 2 (Log2(FC)). The -log10 p-values are 

plotted on the y-axis (T-test).   
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Figure 4.23. Boxplots demonstrating the peak areas of metabolites (1-methylnicotinamide, 

3-hydroxybutyric acid, 3-IAA, 4,5-dihydroorotic acid, Adenine, Adenosine) that did not 

show statistical significance across HER2+ER+ breast cancer patients from the NEO-

MICROBE study at timepoint 1 that achieved pathological complete response(PCR)(blue, 

n=10) and those who did not (Non-PCR)(red, n=4). Individual data points represent peak 

area levels per individual. Significant statistical differences are displayed by the p-value. 
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Figure 4.24. Boxplots demonstrating the peak areas of the five metabolites (Uridine (A), 

GLU (B), Guanine (C), Cytosine (D)) that exhibited statistical significance across 

HER2+ER+ breast cancer patients from the NEO-MICROBE study at timepoint 1 that 

achieved pathological complete response(PCR)(blue, n=10) and those who did not (Non-

PCR)(red, n=4). Individual data points represent peak area levels per individual. 

Significant statistical differences are displayed by the p-value (T-test). 
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4.3.6 PCR vs Non-PCR – TNBC 

A principal component analysis carried out using Metabolite Autoplotter of the stool 

metabolomics data from stool samples of TNBC breast cancer patients at T1 demonstrated 

little to no separation between the two sample groups (PCR and non-PCR). Figure 4.25 

presents the separation between the groups along the first two principal components, with 

26.4 total variance explained by PC1 and 13.2% total variance explained by PC2. The plot 

presents a high degree of overlap in metabolites with the exception of a few outliers, 

suggesting there is little variation in metabolomic profiles in TNBC patients who achieved 

pCR and those who did not. 

Statistical analysis using Graphpad Prism on the two sample groups further reiterated that 

the majority of metabolites analysed demonstrated no significant difference between the 

two groups and subsequently highlight no influence on response to NACT. The volcano 

plot (Figure 4.26) presents the metabolites that were significantly different between TNBC 

pCR and non-pCR patients in red, with the compounds of statistical significance including 

Aspartate, Creatine, Glutamate, Inosine, Linoleic acid, Oleic acid, Stearic acid, and 

Succinic acid. 

The boxplots shown in Figure 4.27 highlight the metabolites that did not show statistically 

significant differences between the two groups after further statistical analysis. Figure 4.28 

demonstrates the eight metabolites that did show statistically significant differences in 

levels between TNBC patients who achieved pCR and those who did not; including 

Aspartate (A)(p = 0.016), Creatine (B)(p = 0.052), Glutamate (C)(p = 0.041), Inosine (D)(p 

= 0.018), Linoleic acid (E)(p = 0.031), Oleic acid (F)(p = 0.027), Stearic acid (G)(p = 

0.035) and Succinic acid (H)(p = 0.066). Although succinic acid appeared to be of 

statistical significance on the volcano plot (Figure 4.28), when the p-value was calculated 

via Metabolite Autoplotter, it did not reach the threshold for significance. 
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Figure 4.25. Principal component analysis (PCA) of stool metabolomic data from TNBC 

cancer patients at T1 who achieved pathological complete response after NACT 

(PCR)(n=14) and breast cancer patients who did not achieve pCR (Non-PCR) (n=11). Each 

point represents an individual sample.  
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Figure 4.26. Volcano plot showing the relationship between metabolites p-values and fold 

changes among TNBC patients who did not achieve pathological complete response (Non-

PCR) versus those who did achieve pCR (PCR). The effect size of the two groups is 

plotted on the x-axis on a logarithmic scale to base 2 (Log2(FC)). The -log10 p-values are 

plotted on the y-axis (T-test).   
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Figure 4.27. Boxplots demonstrating the peak areas of metabolites (1-methylnicotinamide, 

3-hydroxybutyric acid, 3-IAA, 4,5-dihydroorotic acid, Adenine, Adenosine) that did not 

show statistical significance across TNBC breast cancer patients from the NEO-MICROBE 

study at timepoint 1 that achieved pathological complete response(PCR)(blue, n=14) and 

those who did not (Non-PCR)(red, n=11). Individual data points represent peak area levels 

per individual. Significant statistical differences are displayed by the p-value (T-test). 
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Figure 4.28. Boxplots demonstrating the peak areas of the five metabolites (Aspartate (A), 

Creatine (B), GLU (C), Inosine(D), Linoleic acid (E), Oleic acid (F), Stearic acid (G), 

Succinic acid (H)) that exhibited statistical significance across HER2+ER+ breast cancer 

patients from the NEO-MICROBE study at timepoint 1 that achieved pathological 

complete response(PCR)(blue, n=14) and those who did not (Non-PCR)(red, n=11). 

Individual data points represent peak area levels per individual. Significant statistical 

differences are displayed by the p-value (T-test). 
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4.3.7 Stool and Blood Metabolomics  

Metabolomics analysis was conducted previous to this study on baseline blood samples 

collected as part of the NEO-MICROBE study. We first identified metabolites that 

stratified for response in stool and then carried out correlation analysis of these metabolites 

on the metabolomic data generated from the blood and stool of the same patients within the 

NEO-MICROBE study. This analysis was conducted to understand how response to 

neoadjuvant chemotherapy is influenced by systemic pathways that are modulated by 

translocation of gut-derived metabolites into the bloodstream. By identifying potential 

biomarkers of chemotherapy efficacy both in the blood and stool, this would allow for 

personalised therapy to reduce any systemic immunity driven by circulating microbial 

metabolites. 

 

We analysed all of the metabolites of interest from the targeted analysis that demonstrated 

statistically significant variations in metabolomic profiles between responders and non-

responders in the whole patient cohort and subtype specific response. We first looked at 

the correlation between the metabolomic results seen in blood versus the stool for the 

metabolites of interest (n=16) within the whole population at T1. As presented in Figure 

4.29, there were no correlations demonstrated for any of the metabolites with most of the 

metabolites exhibiting r-values close to zero and unsignificant p-values. Two of the 

metabolites suggested a weak correlation between stool and blood metabolite levels; 

including succinic acid (r = 0.0627, p = 0.0517) and myristic acid (r = 0.2564, p = 0.0461) 

which exhibited a nearly statistically significant correlation (i.e. p-value < 0.05). These 

findings suggest that for these specific metabolites, stool metabolite levels aren't consistent 

with circulating metabolite levels across the whole population. 
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Glutamate was the only metabolite that demonstrated a correlation between the stool and 

blood metabolomics data. To understand whether gut-derived glutamate (GLU) levels are 

reflected systemically, we conducted correlation analysis between stool and blood 

glutamate levels in the whole breast cancer cohort and TNBC patients at T1. A statistically 

significant result was seen in TNBC patients, exhibiting a positive correlation in gut-

derived GLU and circulating GLU levels (Figure 4.30). The p-value of 0.0134 

demonstrates that the elevated levels of GLU seen in non-responders in TNBC patients 

(Figure 4.28) is moderately correlated (r = 0.4879) to higher levels of GLU in the blood of 

the same individuals. The scatter plot in Figure 4.30, highlights no statistically significant 

correlation (r = -0.0591, p = 0.6508) between gut and systemic GLU between responders 

and non-responders across the whole population. This suggests that the association is 

specific to TNBC subtype, which ultimately presents a potential biomarker for response to 

NACT in TNBC.  
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Figure 4.29. Correlation between stool and blood metabolite levels across the whole 

breast cancer population at T1. Scatter plots show spearman correlation analyses 

between stool and blood levels of metabolites of interest that were detected via targeted 

analysis and may be potentially implicated in treatment response. Each black point 

signifies a specific individual. The correlation coefficient (r) and p-values (p)(T-test) 

indicated the extent of correlation and the statistical significance between the two groups.    

XY data: Correlation of Aspartate whole population  
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Figure 4.30. Correlation between stool and blood glutamate (GLU) levels in TNBC 

patients and across the whole breast cancer population. Scatter plots show spearman 

correlation analyses between stool-derived glutamate and circulatory glutamate in TNBC 

patient samples at timepoint 1 (Left) and in the whole breast cancer cohort (Right). The 

correlation co-efficient (r) and p-value (p)(T-test) is demonstrated on both graphs, with 

statistically correlation between stool and blood GLU seen in TNBC patients (p= 0.0134). 

Each black point represents an individual sample.  
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Discussion 

Cancer cells adapt their metabolism to facilitate the uptake and utilization of various 

metabolic compounds such as amino acids to allow for survival and proliferation (78). To 

allow sustained proliferation, cancer cells rely on exogenous nutrient sources. Emerging 

evidence suggests that gut microbiome is a crucial source of metabolites for cancer cells to 

enable their altered metabolic processes (79). Furthermore, it has also been suggested that 

the gut microbiome not only be responsible for supplying cancer cells with nutrients but 

may contribute to modulating sensitivity and resistance to chemotherapy via metabolite 

signalling pathways (80). 

 

Untargeted metabolomics revealed numerous metabolites that significantly associate with 

breast cancer, and with response to NACT. This highlights that gut-derived metabolites 

may serve as a biomarker for disease incidence and therapy selection and may be causally 

involved in these processes. We also investigated the targeted metabolomic profiles 

between HV and BC T1, with the aim of identifying metabolites that may be associated 

with cancer status. Unsurprisingly, we found no clear separation between the two sample 

groups upon principal component analysis (PCA), which suggests that in general there was 

little variation in metabolic profiles of cancer patients prior to treatment and healthy 

individuals. While tumorigenesis and metastasis are often linked to reprogramming of 

metabolic pathways (81), metabolic plasticity aims to maintain systemic metabolic 

homeostasis. Indeed, when we investigated the correlation between metabolites from the 

Beatson Cancer Institute database with known involvement in cancer and disease status, no 

statistically significant differences were observed for most metabolites. Of the 76 

metabolites analysed four metabolites showed significant differences between healthy 

volunteers and breast cancer patients. The two fatty acids, linoleic acid and oleic acid 

highlighted metabolite-specific differences, with low abundance of both metabolites 
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recognised in the BC T1 group. Both of these fatty acids are involved in important cellular 

metabolic processes such as energy synthesis, activation of signalling pathways and 

cellular functions. Studies have shown that linoleic acid is involved in tumorigenesis due to 

it being metabolised into arachidonic acid, which undergoes enzymatic conversion 

resulting in eicosanoid formation. These arachidonic-acid-derived eicosanoids are linked to 

activation of signalling pathways promoting tumour growth, metastasis, and angiogenesis 

(82); additionally, it has been observed in several cases that arachidonic acid is involved in 

breast cancer proliferation and infiltration (83). As we found linoleic acid levels to be 

reduced in breast cancer patients, it would be of interest to study whether this goes together 

with an increase in arachidonic acid.  

Oleic acid, which is abundantly found in animal and vegetable fats and oils (for example, 

olive oil), is a key metabolite in lipid homeostasis, with involvement in lipid synthesis and 

storage (84). Research into oleic acid and breast cancer has noted its anti-cancer properties 

such as improving response to oxidative stress, inhibition of tumour cell growth and 

migration. Further research has also shown oleic acids effectiveness in reducing cancer cell 

survival and progression, via inhibiting phosphorylation of Akt (85). Further research into 

these fatty acid's role in lipid metabolism within breast cancer is necessary, allowing us to 

gain an understanding of their potential involvement in lipid metabolism reprogramming, 

which is a known hallmark of cancer (86).  

In contrast to the previous metabolites, Cystine exhibited higher levels in BC T1 patients. 

Cystine is a precursor to cysteine, an amino acid that is often upregulated in cancer cells 

due to its redox regulation abilities through glutathione. The latter serves as an important 

mechanism to protect tumour cells from oxidative damage allowing for survival and 

growth (87). This metabolic pathway has also been recognised as potential therapeutic 

target whereby inhibiting cystine uptake results in oxidative stress in tumour cells which 

can improve response to treatment (88). These studies are therefore in accordance with our 
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findings that cystine levels are more abundant in cancer patients (BC T1) suggest this is in 

support of metabolic reprogramming of cancer cells. Overall, further research is required to 

understand cystines behaviour at the subtype level as well as its potential role in disease 

formation. 

Uridine monophosphate (UMP) demonstrated the most striking results with elevated levels 

in BC T1 patients compared to HV (p = 0.00094). Highlighted by the skewed distribution 

of the individual data points indicating that UMP levels were extremely low or non-

existent in healthy volunteers whereas a specific subset of BC T1 patients exhibited higher 

peak areas of UMP across the cohort. This demonstrates a significant finding as it suggests 

UMP as a potential biomarker of breast cancer. Previous research has shown UMP as a key 

nucleotide in cancer cells metabolism. Tumour cells require increased RNA synthesis in 

order to maintain rapid cell proliferation; therefore, they undergo metabolic 

reprogramming to upregulate nucleotides including UMP to fulfil the cells metabolic 

requirements (89). Our findings align with results of previous studies, suggesting that UMP 

is a driver in cancer development via upregulated supporting altered nucleotide metabolism 

in cancer cells. We hypothesised that clinical factors may be contributing the highly 

significant differences in UMP observed in the cancer cohort however, no significant 

correlation was found between any of the clinical factors (menopausal status, age, and 

BMI). Further research is required to reveal the source and clinical relevance of UMP in 

this subset of BC patients. 

 

This study hypothesised that gut-derived metabolites may influence response to 

neoadjuvant chemotherapy (NACT) in breast cancer patients, specifically achieving 

pathological complete response (pCR). We first explored stool metabolomic profiles across 

all breast cancer patients within the NEO-MICROBE clinical study in the context of pCR, 

before studying breast cancer subtype specific results. Our results both align with previous 
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literature on the gut metabolism's role in breast cancer, as well as reveal novel metabolites 

as potential biomarkers for treatment response.  

 

Analysis of the whole cohort (n=61) revealed that there was some degree of variation in 

stool metabolomic profiles between patients who achieved pCR and non-pCR patients. 

This finding suggests that this metabolic divergence between the two groups could be 

involved in efficacy of NACT. A key intermediate metabolite of the Krebs cycle, -

Ketoglutarate (aKG) showed notably elevated levels in patients who achieved pCR. These 

higher levels of aKG associated with improved response to NACT demonstrated in this 

study is coherent with previous studies that have shown aKG to have correlations to greater 

chemosensitivity through enhancing anti-tumour immune responses or metabolic rewiring 

(90,91). The elevated levels of dTMP (deoxythymidine monophosphate) and guanine in 

non-responders suggests a potential mechanistic role in influencing anti-response to 

NACT. dTMP is a nucleotide that plays a central role in DNA synthesis and is produced by 

thymidylate synthase (TYMS). TYMS is often a chemotherapeutic target whereby its 

inhibition causes subsequent reduction in dTMP levels, resulting in a cytotoxic response to 

cancer cells (92). The increased dTMP levels in non-pCR patients demonstrated in this 

study, may be explained by the existing evidence that elevated levels of dTMP are linked 

to treatment resistance (93). Guanine, a purine nucleobase involved in DNA repair is 

strongly linked to cancer proliferation due to cancer cells high rates of DNA replication. 

Previous studies have shown that resistance to DNA-damaging chemotherapeutic agents 

may be influenced by shifts in purine metabolism in glioblastoma (94). These findings 

support the results seen in this study of greater guanine abundance in non-responders to 

NACT, which may be described by upregulation of DNA repair driving chemoresistance. 

Subtype-specific analysis was conducted to gain a more refined understanding of stool 

metabolites influence on response to NACT per subtype. Metabolomic profiling of HER2+ 
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stool samples identified five metabolites with potential association to pCR status. TCA 

cycle intermediates such as aKG and citrate exhibited elevated levels in HER2+ patients 

who achieved pCR, suggesting a link between energy metabolism and improvement of 

treatment efficacy. This result is consistent with the findings observed in the whole 

population as well as HER2+ER+ patients who also demonstrated statistically significantly 

higher levels of citrate in patients who achieved pCR. It could also be suggested that purine 

metabolism is correlated to resistance to NACT as elevated levels of purine nucleosides 

such as guanosine were demonstrated in HER2+ patients, and a greater abundance of 

inosine, guanosine was observed in HER2+ER+ patients; all of whom did not achieve 

pCR. This finding was further emphasized in HER2+ER- patients showing statistically 

significant elevated guanine, uridine, cytosine, and cytidine levels in non-responders. 

Statistically significantly elevated levels of glutamate (GLU) was noted in HER2+ER- and 

TNBC patients who achieved pCR, this may subsequent of GLU ability to modulate 

oxidative stress which supports tumour survival and proliferation, therefore suggesting 

GLU as a potential biomarker for breast cancer and its involvement in antioxidant 

protection could be a target for improving NACT sensitivity (95). The reoccurrence of the 

same metabolites across multiple subtypes highlights these as potential metabolic 

biomarkers of response to NACT in breast cancer, however further studies would be 

required to determine these as definitive hallmarks of NACT sensitivity.  

 

The importance of precise validation methods was highlighted by metabolites such as 

cystine in HER2+ER+ and succinic acid in TNBC that demonstrated initial statistical 

significance in the volcano plot analysis however upon deeper inspection were deemed 

insignificant.  

Overall, our findings demonstrate stool-derived metabolites as potential indicators of 

NACT response in breast cancer patients; with aKG and citrate presenting promising 
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results as biomarkers for positive response to NACT, and resistance may be associated 

with purine nucleotides. In order to validate these findings, subsequent research using 

larger patients cohorts would be required to determine the predictive ability of these gut 

metabolites to tumour response. 

 

Within the field of cancer metabolomics, the relationship between gut-derived metabolites 

and systemic circulation is an established method to study associations between gut 

microbiota composition and disease. In this study, we aimed to understand this relationship 

in the context of treatment response. We observed a statistically significant positive 

correlation (r = 0.4879, p = 0.0134) between gut-derived glutamate (GLU) and circulatory 

GLU in TNBC patients at T1. Contrastingly, when observing correlation of GLU levels 

across the whole breast cancer patient cohort no significant correlation was seen therefore 

highlighting a subtype-specific metabolic link between gut-microbial metabolites and 

systemic metabolism as a potential biomarker for treatment response to NACT in TNBC. 

 

TNBC is known for its aggressive clinical behaviour and distinct metabolic dependencies 

in order to maintain rapid proliferation and redox regulation via enhanced dependence on 

pathways such as glutaminolysis and other anaplerotic pathways. These have significant 

roles within the tricarboxylic acid (TCA) cycle to support energy production, rapid cell 

division and survival. Glutamate (GLU) is a key intermediate of the TCA cycle, whereby 

GLU is converted to aKG prior to entry of the TCA cycle (96). GLU also plays a vital role 

in redox regulation in cancer cells via glutathione synthesis, which may influence positive 

response to NACT by supporting oxidative stress (97). The rewiring of TNBCs metabolic 

system is a recognised hallmark of cancer, allowing for absorption of compounds more 

efficiently to support this aggressive cancers enhanced metabolic demands. This could 

explain why higher gut-derived GLU is correlated with increases in circulatory GLU, as it 
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is more easily transported into circulation in TNBC due to the altered absorption to further 

facilitate TNBC upregulated metabolism compared to other subtypes.  

 

No significant correlation in GLU levels was identified across the whole population, which 

may be due to different metabolic pathway reliance in other subtypes that don’t utilise 

GLU the same as TNBC (98). Furthermore, dietary influences were not taken into 

consideration which can lead to individual variability in gut microbiota composition and 

influence GLU levels.  

 

In conclusion, our findings present evidence that elevated glutamate levels in stool are 

moderately correlated to higher circulating levels, thus driving non-response in TNBC 

patients however this is not corroborated in the broader breast cancer population within the 

study. This suggests that glutamate may have predictive value specific to TNBC, 

highlighting the importance of molecular subtype stratification when evaluating stool 

metabolites as potential biomarkers of NACT response.  
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5. Flow Cytometry Panel Validation 

5.1 Antibody Titrations  

A novel 12-colour panel (table 1) for human T cell markers was  designed for routine use 

in the NEO-MICROBE BREAST trial based on immune cell populations that have been 

previously shown in literature to have relevance in breast cancer development, as well as 

response to therapy . This 12-colour panel was then assessed to determine optimal 

concentration of each marker-specific antibody. Optimal concentration can be defined as 

the best separation between positive and negative populations and a metric known as the 

Separation Index (SI) was used to evaluate staining results. Determining the optimal 

concentration will also minimise oversaturating populations which will increase non-

specific binding, creating background and reducing the resolution of results.  
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Table 4. 12 colour panel for Flow Cytometry analysis. This table contains the markers selected for flow cytometry 

analysis on the PBMC patient samples from the NEO-MICROBE study. The fluorophores for each marker are also 

included.    

 

 

 

 

 

 

 

 

   Marker   Fluorophore   

1    Viability     eFluor780   

2    CD45    BB515   

3    CD45RA    BV510   

4    CD3    BV785   

5    CD4    PE-Cy7   

6    CD8    BV421   

7    CD25     APC   

8    CCR7     PerCP-Cy5.5   

9    FoxP3    PE   

10    CTLA-4     AF700   

11    PD1     BUV395   

12    

HLA-

DR     

BV605   
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Each antibody was titrated individually on PBMCs from a healthy individual using the 

same protocol established for flow cytometry analysis of NEO-MICROBE BC patient 

PBMCs, to maintain reproducibility.  Human PBMCs were stained with each antibody at 

increasing dilution and an unstained sample was also included in each titration (figure 5.1). 

Samples were analysed on a BD LSR Fortessa using FACSDiva software version. The 

acquired data was analysed using FlowJo software version 10.10.0. Within each group, 

doublets and dead cells were excluded, gating only for lymphocytes and expression of each 

marker was assessed on this population. The SI (Median positive – Median negative/ 

(84%Negative – MedianNegative)/0.995) was calculated for each dilution per sample.   

  

  

  

  

  

  

  

  

  

Figure 5.1. Serial dilution for antibody titrations. Figure 5.1 is a schematic of the dilution carried out for each 

antibody titration to determine optimal concentration. A stock dilution of 120ul FACS buffer and 2.4ul antibody (Ab) 

was used.   
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Figure 5.2 represents the concatenation of the datafiles from each antibody titration, with 

the optimal concentration highlighted in red. The dilution with the highest the separation 

index (SI) indicates optimal concentration as this shows the greatest separation between the 

negative and positive cell populations, thus giving the clearest result for positive staining 

signal and ultimately increasing robustness of results. Overall, these results will ensure 

optimal results are obtained when carrying out flow cytometry analysis on the 12-colour 

panel, while also ensuring cells are not being oversaturated with antibody which may 

produce ambiguous results. Figure 4 highlights that after multiple titration experiments of 

the antibodies for FOXP3 (PE), CD25 (APC) and CTLA-4 (AF700) there was little to no 

positive signal detected at all concentrations, suggesting these antibodies are not suitable.   

 

5.2 Immunophenotyping PBMCs  

After running the 12-colour panel (Table 4) using healthy blood several times, it has been 

identified that some antibodies are not being detected by the fortessa for various reasons. 

This is highlighted in figure 4 whereby several antibodies showed very low positive signals 

even at higher concentrations. From these results, it was concluded that changes to the 

selected antibodies must be made in order to detect the markers of interest (Table 5). The 

panel has also changed to a ten-colour panel, losing PD-1 and HLA-DR as it was not 

possible to optimise the panel with the inclusion of these markers within the available time 

frame 
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  Marker  Fluorophore  

1  Viability   eFluor780  

2  CD45  

Spark Blue 

574  

3  CD45RA   BUV395  

4  CD3   BV510  

5  CD4  BUV805  

6  CD8   Pacific Blue  

7  CD25  APC  

8  CCR7   PE  

9  FoxP3   BB700  

10  CTLA-4   AF700  

 

 

Table 5. 10 colour panel for flow cytometry analysis. Table 3 shows the markers 

selected for flow cytomtery analysis and the new fluorophores selected.   
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5.3 Flow Cytometry analysis for T cell panel validation 

Flow cytometry analysis was conducted to characterise T cell populations within 

peripheral blood mononuclear cells (PBMCs) from healthy volunteers. Blood samples 

collected from healthy volunteers was used for validation of the panel for future use on 

PBMC samples collected previously as part of the NEO-MICROBE study. Figure 5.3 

demonstrates the gating strategy utilised to characterise the cells of interest. Lymphocytes 

were first gated based on forward and side scatter, and doublets were excluded to identify 

single cells. Cells were stained using eFluor780 to isolate live cells (76.1%) from dead 

cells (22%). Next, we gated on live cells for CD3+CD45+ T cells (21.6%), as CD3 is a 

pan-T cell marker and CD45 is expressed on all hematopoietic cells which we are 

interested in. 

Within the total T cell population, we distinguished populations into CD4+ T cells (69.5%) 

and CD8+ T cells (28.1%). Of the CD4+ T cell population, 4.82% were Tregs 

(CD25+FoxP3+) and non-Tregs accounted for 93.8%. Among CD4+ non-Tregs, 10.3% 

showed a memory cell phenotype (CD45RA-CCR7+), and naïve cells accounted for 89.1% 

(CD45RA+CCR7+). CD4+ showed a distribution of naïve and memory cells of 58.8% and 

41.2%, respectively. 

Among the CD8+ T cell population, 11.2% were regulatory T cells (Tregs; 

CD25+FoxP3+) and non-Tregs accounted for 84.6% of the population. Further analysis 

divided the CD8+ non-Tregs into three subsequent populations; naïve cells (83.5%; 

CD45RA+CCR7+), memory cells (10.7%; CD45RA-CCR7+) and TEMRA cells (5.79%; 

CD45RA+CCR7-). TEMRA cells are a subset of T effector memory cells that re-express 

CD45RA+ and are more commonly found in CD8+ populations rather than CD4+. Of the 

CD8+ Tregs population, 62.5% were naïve and 31.2% were memory. The CTLA-4 marker 

exhibited very low expression so was not included in the analysis. 



   

 

108 

Overall, this panel and gating strategy will allow for a comprehensive understanding of T 

cell phenotypes among PBMCs of cancer patients within the study. 

 

5.3.1 Fluorescence Minus One (FMO) Controls for T cell panel validation 

Fluorescence Minus One (FMO) controls (Figure 5.4) were implemented to confirm the 

antibody is specific to its target marker and there is no overlap in the 10-colour panel, as 

well as to validate gating strategies. The unstained control highlighted there was no 

background fluorescence which would skew the results and confirmed no positive dead 

cells (97% live cells) as expected from the unstained sample. The gating for T cells 

(CD3+CD45+) was verified in the CD45 and CD3 FMOs, as there were no cells present 

within the T cells gate. The CD4 FMO validated the gating for T cell subset showing no 

CD4+ population (0%), however unexpectedly CD8+ cells were not excluded in the CD8 

FMO which highlights an error. FMOs for CD25 and FOXP3 confirmed the accuracy of 

Treg and non-Treg identification, with 0% Tregs in both FMOs which confirms any Treg 

cells observed in the sample is correspondent of positive CD25 or FOXP3 status. 

Furthermore, naïve and memory gating strategies were validated using CD45RA and 

CCR7 FMOs, whereby little to no spillover was demonstrated.  
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Figure 5.2. Flow cytometry dot plots of antibody titrations. Figure 5.2 shows the dot plots of each titration 

concentration for each antibody. The population above 103 is the positive population and those below 103 are 

negative. The concentration with the highest separation index is highlighted in a red box (the bottom row 

indicates the only populations detected were negative (below 103) demonstrated by the red box. Three 

antibodies(PE, APC, AF700) showed no seperation (can be seen on bottom row), as no positivation 

population were detected therefore demonstrating a handling error or that these fluorophores are not suitable 

for detecting these T cell populations.  
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Figure 5.3 Flow Cytometry Analysis gating strategy to identify populations of T cell 

subsets. Flow cytometry analysis was conducted on PBMCs from healthy blood donors to 

validate the 10-colour panel for identification of T cell populations. Gating was carried out 

on full stained lymphocytes. 
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Figure 5.4. Fluorescence Minus One (FMO) controls for validation of T cell gating 

strategy and panel design. The contour plots show the FMO controls that allow for 

validation of the gating strategy applied to full stained samples and marker-specific 

fluorescence to identify the correct T cell population. 
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Discussion 

In this study, a 12-colour panel was initially developed for flow cytometry analysis, 

antibodies were titrated for identification of optimal concentration before subsequently 

refining the panel to 10 colours while still allowing for optimal phenotyping of T cells 

within PBMCs from healthy blood donors. The objective was to generate and validate a 

robust panel capable of immunophenotyping PBMCs from breast cancer patients in the 

future to gain an understanding of the immune systems role in NACT response.  

With the aim of determining optimal staining concentration for each specific marker, 

antibody titrations were conducted to ensure clear separation between each positively and 

negatively stained cell population. Figure 5.2 highlights that for the markers FOXP3 (PE), 

CD25 (APC) and CTLA-4 (AF700), there was no clear discrimination between positive 

and negative population; demonstrating no positive signal present at all. This finding 

suggests that these antibodies were not suitable to detect these markers therefore, it was 

necessary to revise the panel, and a decision was made to shift to a different 10-colour 

panel (Table 5) with the hopes of optimal detection of the markers of interest.  

Healthy donor blood was used as a validation model of the revised 10-colour panel; 

whereby PBMCs were extracted and stained with their corresponding antibody. As 

demonstrated in Figure 5.3, the panel successfully identified T cells subsets including 

CD3+CD45+, CD4+ and CD8+ T cells, Tregs and non-Tregs, as well as subsequent 

classification of the Tregs populations into naïve, memory and TEMRA subsets. The 

validation of this panel in detection subsets such as TEMRA population is specifically 

beneficial in breast cancer immunology as CD8+TEMRA cells (CD45RA+CCR7-) have 

been associated with tumour infiltration and immune checkpoint therapy resistance due to 

altered effector functions (99). The use of FMO controls (Figure 5.40) examined the 

robustness of gating accuracy as well as ensuring correct identification of positive 

populations (100). Overall, the FMOs minimal signal detection of their respective 
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fluorophore, excluding the CD8 FMO which still demonstrated CD8+ cell population thus 

signifying a compensation error that determines the need for further validation. 

Additionally, there was very low signal observed for CTLA-4 which may be explained by 

the low expression levels typical of healthy cells therefore in vitro stimulation protocols 

may be required in the future to allow for a reliable signal to be detected (101). 

Furthermore, AF700 used to detect CTLA-4 is considered a fairly dim fluorophore 

therefore this in combination with a low expression of CTLA-4 could cause the low signals 

observed (102). An alternative fluorophore could be used to combat the lack of CTLA-4 

signal. 

In conclusion, the validation of the 10-colour panel facilitates future analysis of PBMCs 

from the NEO-MICROBE study to immunophenotype breast cancer patients and 

understand the influence on treatment efficacy. This study provides a solid foundation for 

future applications of the panel however some further optimisation and validation is 

required before utilisation in breast cancer immunology research.  
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6. Concluding remarks 

This study aimed to investigate the interplay between the collective influence of the gut 

metabolome and the immune system on response to neoadjuvant chemotherapy (NACT) in 

early breast cancer, through analysis of samples from the NEO-MICROBE BREAST 

study. Combining insights from the metabolomic profiling of the stool and blood samples 

along with immunophenotyping of PBMCs in the future utilising the validated panel from 

this study, has potential to define metabolic and immune signatures involved in driving 

cancer status and influencing the efficacy of NACT. 

We mainly focused on identifying stool-derived metabolites that showed potential as 

biomarkers of NACT response by conducting untargeted and targeted analysis on LCMS 

stool metabolomic data. Notably, several metabolites demonstrated significant association 

with achievement of pCR to NACT; including -ketoglutarate (aKG), citrate, glutamate 

(GLU) and uridine monophosphate (UMP). The elevated levels of UMP observed in 

cancer patients compared to healthy individuals implies a potential role as a biomarker of 

cancer. It was suggested that energy metabolism may be linked to response to NACT in 

breast cancer patients due to elevated levels of the TCA cycle intermediates, aKG and 

citrate in patients who achieved pCR. On the other hand, enrichment of the metabolite's 

guanine and uridine in non-responders (non-pCR), and their involvement in purine 

metabolism suggests a potential link to purine metabolic pathways and resistance to 

NACT. Subtype-specific correlation analysis highlighted differential glutamate signatures 

in TNBC patients who achieved pCR, however this was not recognised across the whole 

cohort. This finding indicates that glutamate may be a valuable predictor of response to 

chemotherapy, specifically in TNBC patients.  

Furthermore, with some future validation to ensure optimal antibody detection; the 10-

colour panel flow cytometry generated in this study provides a robust foundation for future 

work to immunophenotype PBMCs of NEO-MICROBE patients, with the hope of 
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identifying immune profiles potentially modulated by gut metabolites recognised as 

significant to response in this study. Despite some limitations in detecting the antibodies 

for FOXP3 and CTLA-4, the panel successfully identified crucial T cell subsets related to 

breast cancer. 

 

In order to generate more reliable and reproducible results a larger, distinct cohort is 

essential to validate the identified metabolic biomarkers and their influence on response. 

Additionally, a limiting factor in the flow cytometry analysis was reduced cell count which 

subsequently made marker detection more difficult therefore future validation work of the 

flow cytometry should use larger number of PBMCs when staining. It would also be 

beneficial to incorporate detailed dietary data for each patient in future studies to 

understand to what extent the metabolomic profiles of individuals are affected by dietary 

intake which could also reveal potential modifiable lifestyle factors that could enhance an 

individual's response to NACT. Despite the overall success of the project, it was not 

possible to complete immunophenotyping of the NEO-Microbe PBMC samples due to the 

time taken to design and validate a bespoke panel. In addition we were unable to include 

all of our planned markers due to technical challenges such as spectral overlap between 

fluorophores. 

In conclusion, this study provides evidence in favour of the hypothesis that gut-derived 

metabolites and their systemic interplay are associated with modulation of response to 

NACT in breast cancer. Ultimately, understanding the collective influence of these 

identified metabolites alongside immune response provides insight into the mechanisms 

behind achieving pathological response, allowing for more effective, personalised 

treatment for early-stage breast cancer. 
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