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Abstract

Congenital Heart Disease (CHD) affects approximately 1.2 million newborns annually world-

wide, with around 4,600 cases occurring in the UK each year. CHD encompasses a complex

set of structural heart defects that pose challenges in early diagnosis, risk stratification, and

treatment planning. Traditional methods employed for predicting clinical outcomes constrained

by the pronounced anatomical and functional heterogeneity, limited number of datasets, and

single-modal clinical markers, which often hinders the development of generalisable models in

congenital heart diseases. Recent advancements in the field of Machine Learning (ML) and

Deep Learning (DL) offer opportunities to integrate multi-modal data sources, thereby enabling

a more comprehensive understanding of patient health. This thesis explores a multi-modal ma-

chine learning framework designed to improve CHD classification and outcome prediction, by

integrating multi-modal data and geometric learning.

A significant challenge encountered during the course of this research is the heterogeneity

characteristic of clinical data sources. Patient records contain Electrocardiogram (ECG) sig-

nals, cardiopulmonary exercise testing metrics and unstructured clinical documentation, each

with different formats and level of completeness. Furthermore, the inherent anatomical and

physiological heterogeneity of CHD increases the complexity of predictive performance. It is

important to note that a model trained on one subtype may exhibit suboptimal performance when

applied to a different CHD presentation, making generalisation across diverse patient popula-

tions a challenge. This thesis attempts to bridge these gaps by leveraging Riemannian geometry

for the purpose of feature extraction, employing covariance augmentations to generate more

data, and utilising multi-modal data integration to maximise predictive potential.

Risk prediction models are statistical or machine learning-based frameworks designed to es-
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timate the likelihood of future adverse events for a given patient or population. In the domain of

cardiology, these models facilitate predictions about a variety of outcomes, including the risk of

mortality and the progression of the disease. This, in turn, serves to inform the development of

early intervention and treatment strategies. They often rely on features extracted from clinical

data, including ECGs, laboratory results, imaging data, and patient demographics to generate

meaningful insights. However, developing accurate risk prediction models with small sample

sizes presents several challenges such as limited generalisation, high variance, reduced relia-

bility, and an insufficient representation of rare cases, particularly due to the low prevalence of

related events and the inherent imbalances in datasets. Furthermore, models constructed solely

on mortality data often suffer from significant imbalances, which can compromise their predic-

tive performance. To address these challenges, this thesis explores the use of Cardiopulmonary

Exercise Testing (CPET) as a surrogate for mortality, providing a novel approach to enhance

model accuracy even with limited data. This key contribution not only aims to improve the

reliability of risk predictions but also demonstrates the potential for developing robust predic-

tive models that can better inform clinical decisions and improve patient outcomes in the CHD

population.

Geometric deep learning can be defined as a subfield of machine learning that involves the

utilisation of manifold-based, or topology-aware methodologies, for the extraction of features

from structured data. Unlike conventional deep learning models, which assume inputs are or-

ganised in a regular format, such as image or text, geometric deep learning preserves spatio-

temporal relationships and dependencies inherent in medical signals like ECGs. In this thesis,

the covariance structure of ECG signals plays a fundamental role in enhancing risk prediction

models, given that ECG readings exhibit correlated variations across different leads. The utili-

sation of covariance matrices to represent signals in Riemannian space ensures the preservation

of higher-order relationships and can generate more stable and generalisable features, thereby

reducing the impact of small sample sizes.

Machine learning applications in CHD research have traditionally focused on heartbeat clas-

sification, arrhythmia detection, and patient risk stratification based primarily on ECGs inter-

pretation. While deep learning architectures have demonstrated promising results, challenges
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remain in model generalisability, dataset diversity, and clinical utility. This thesis explores the

development of a multi-modal machine learning framework designed to incorporate a variety

of clinical indices. The framework utilises multiple data modalities including medical health

records and ECGs, with the objective of enhancing the precision and reliability of outcome

prediction models. Furthermore, regression models are employed to assess cardiopulmonary

exercise test results, providing insights into cardiac function of the patients. Text-mining tech-

niques are also applied to extract meaningful clinical information from physician notes, enabling

richer data-driven assessments of patient conditions.

By leveraging multiple data modalities, including medical health records and ECGs, this re-

search aims to enhance the precision and reliability of outcome prediction models by providing a

more comprehensive understanding of patient health. The scope encompasses the identification

and digitisation of multiple data sources, the design and implementation of relevant machine

learning models, and the evaluation of the framework’s performance in clinical settings. The in-

tegration of multi-modal data enhances the ability to capture complex cardiac abnormalities, thus

offering a more comprehensive approach to diagnosis. The findings from this thesis contribute

to the growing research on machine learning and congenital heart disease outcomes. We present

a data-driven pathway for improving classification and outcome prediction, addressing key chal-

lenges such as imbalanced datasets, model generalisability and multi-modal data integration. By

expanding dataset accessibility, future research can enhance the application of machine learning

models in CHD, thus supporting clinical decision-making and improving patient care.
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Chapter 1

Introduction

It is estimated that around 1.2 million babies worldwide are born with Congenital Heart Disease

(CHD) each year [1]. CHD refers to a complex group of structural defects of the heart, which

present challenges for medical diagnosis and treatment. In the UK, it affects approximately 1 in

every 100 babies born, which is estimated to result in approximately 4,600 cases annually [2].

The prevalence of CHD emphasises the importance of early detection and treatment in order to

improve the outcomes for those affected.

Clinical care for CHD has significantly improved over the years, allowing most children

with the condition to reach adulthood. However, managing the symptoms of adult CHD and

ensuring a good quality of life requires careful monitoring of disease progression and timely

clinical interventions. This includes adjusting medications and providing appropriate treatments

as needed. Despite the advancements in the domain of surgical interventions and long-term

disease management, the ability to predict risk remains critical for the optimisation of treatment

strategies and the enhancement of long-term prognoses for affected individuals.

Traditional methods employed for outcome prediction are constrained by the limited datasets

and markers, which often hinders the comprehensive nature of the diseases. A significant lim-

itation inherent in many traditional models is their incapacity to effectively integrate heteroge-

neous data sources, resulting in suboptimal predictive performance and a partial understanding.

However, recent developments in the field of machine learning have facilitated the creation of

predictive models that possess the capacity to integrate diverse data sources, thereby promoting

1
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a more comprehensive understanding of patient health.

This thesis presents a multi-modal machine learning framework designed for predicting clin-

ical outcomes in patients with congenital heart disease, addressing the limitations of traditional

models. By leveraging multiple data modalities including medical health records and Elec-

trocardiograms (ECGs), and geometry-driven data transformations such as Riemannian feature

extraction, this research aims to enhance the precision and reliability of outcome prediction

models. Additionally, this thesis explores transfer learning techniques for adapting state-of-the-

art pre-trained models to resource-constrained hospital environments, ensuring that advanced

predictive methodologies remain applicable and scalable in real-world healthcare settings.

1.1 Motivations

The rising prevalence of CHD underscores the need for advanced predictive models that can

provide accurate outcome predictions for the patients. While the overall survival rates for in-

dividuals with CHD have improved significantly, the low prevalence of related events and the

inherent imbalances within this population presents a unique challenge for predictive models.

Even with large datasets, the infrequency of adverse outcomes makes it difficult for traditional

models to succeed in accurately predicting risks and complications. This limitation has mo-

tivated us to utilise Cardiopulmonary Exercise Testing (CPET) as a proxy for mortality in our

machine learning model. This approach not only serves as a key contribution to the field but also

answers a critical question: can we successfully develop predictive models with limited data by

relying on this surrogate? By incorporating CPET data, we aim to enhance the model’s ability

to assess the risk of complications and guide long-term management for patients with CHD.

Predictive models can also help tailor treatment plans to individual needs by predicting how

different patients might respond to various interventions [3]. Additionally, these models can also

assess the risk of complications or adverse outcomes in patients with CHD, helping healthcare

providers prioritise high-risk patients for more intensive monitoring and care [4]. For adults with

CHD, predictive models can monitor disease progression and predict potential complications,

guiding long-term management and follow-up care [5]. Given the complexity and variability of
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CHD presentations, traditional prediction methods often fall short due to their reliance on limited

and singular data modalities. By developing a multi-modal machine learning framework, we aim

to improve the precision and reliability of outcome predictions, ultimately enhancing patient

care and supporting clinical decisions. This approach represents a key contribution to the field,

as it not only addresses the challenges posed by the low prevalence of related events, inherent

imbalances within CHD population and the limitations of traditional prediction methods, but it

also highlights the potential for the development of more sophisticated predictive models even

in the context of limited data.

1.2 Scope of the Thesis

This thesis focuses on the development of a multi-modal machine learning framework for out-

come prediction in congenital heart disease. The scope encompasses the identification and digi-

tisation of relevant data sources, the design and implementation of relevant machine learning

models, and the evaluation of the framework’s performance in clinical settings. The research

will leverage data from medical records and ECGs to create a comprehensive predictive model.

By integrating these data sources, the thesis aims to provide a more comprehensive understand-

ing of patient health and improve the accuracy of outcome predictions.

1.3 Research Questions

1. How can we develop effective diagnostic classification and risk prediction models for

CHD using small and extremely heterogeneous populations?

The fundamental question guiding this study is concerned with the exploration of method-

ologies and techniques that can be applied in the context of limited data availability and

heterogeneous patient characteristics.

2. Can we exploit the ECG waveforms to develop risk prediction models in CHD?

Another objective of this study is to explore the potential of ECG waveforms in the de-

velopment of risk prediction models for CHD. Additionally, the study will investigate
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the potential of surrogate outcomes, such as CPET variables, with a view to determine

whether they can be utilised for prediction purposes and how incorporating CPET vari-

ables as surrogate outcomes can improve the accuracy of these predictions.

3. How to enhance the performance of prognostic/risk prediction models under ex-

tremely small populations?

Explore methods for combining data from multiple sources, such as ECGs and clinical

letters, to create a more comprehensive dataset. And implement robust cross-validation

techniques tailored for small datasets to ensure reliable model evaluation and prevent over-

fitting.

4. How to improve feature extraction applying geometric learning on ECGs?

Investigate the potential of Riemannian geometry to capture the intrinsic geometric prop-

erties of ECG signals and their relevance to CHD classification. Explore the use of geo-

metric augmentations on the same space to generate more data that are clinically relevant

and to enhance the diversity of training samples.

1.4 Contributions

This thesis presents a multi-modal machine learning framework designed for predicting clinical

outcomes in patients with congenital heart disease. Through a structured approach, it integrates

multi-modal data processing, and geometric learning principles to address the complexities of

CHD diagnostics in resource-constrained clinical environments. The contributions of this thesis

span multiple chapters, as outlined below:

Establishing the role of AI in CHD diagnostics (Chapter 2 & 3): The initial chapters

establish the foundation for the investigation of machine learning applications in cardiology.

These chapters discuss the current challenges, limited data availability, and computational con-

straints in hospital settings. With a literature review highlighting the strengths and weaknesses

of the related works, thereby establishing the foundation for the proposed methodologies.

Digitisation of ECG signals for computational analysis (Chapter 4): This chapter de-

velops a pipeline for transforming ECG signals from PDF documents into structured digital
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datasets, overcoming barriers associated with non-digitised clinical formats. This step is instru-

mental in facilitating the transition to automated data processing, thereby ensuring compatibility

between ECG signals and machine learning models employed for diagnostic and predictive ap-

plications.

Application of Riemannian geometry to ECG feature extraction (Chapter 5): This chap-

ter demonstrates the novel application of Riemannian embeddings for enhancing ECG feature

extraction. By applying covariance matrix transformations and tangent space projections, this

chapter significantly enhances classification accuracy, offering a mathematically structured ap-

proach for interpreting ECG signals in clinical research.

Pre-trained models in resource-constrained environments (Chapter 5): This chapter also

examines the pre-trained state-of-the-art model approaches, highlighting their potential for effi-

cient adaptation in data-limited hospital settings. Findings suggest that fine-tuning pre-trained

models does not always yield optimal results due to specialised CHD patient demographics,

reinforcing the necessity for tailored solutions.

Predicting CPET Outcomes in CHD Patients (Chapter 6): This chapter introduces CPET

as a surrogate of mortality and demonstrates the effectiveness of Riemannian geometry and

the covariance augmentation technique in predicting outcomes from cardiopulmonary exercise

testing, by applying both regression and classification models. To our knowledge, this is the

first time that a Riemannian framework has been successfully exploited for the prediction of

patient outcomes in Adult Congenital Heart Disease (ACHD). The chapter assesses the benefits

of the geometric learning approach with ablation studies, demonstrating that this approach yields

superior performance for risk stratification in patients with CHD.

Integration of multi-modal patient data (Chapter 7): A key innovation in this thesis is the

integration of ECG data with clinical information, which facilitate the structuring of unstructured

patient records. This approach, when combined with the proposed geometric learning augmen-

tations, enhances the robustness of classification and regression models. And demonstrates that

it enables machine learning models to better capture anatomical and physiological variations

associated with CHD.

Discussion, limitations, and future directions (Chapter 8): This chapter provides a re-
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flection on the findings, outlining practical challenges such as dataset size limitations, gener-

alisability concerns, and computational constraints. It proposes future research opportunities,

advocating for collaborative efforts to access larger datasets, lightweight models for hospital

deployment, and advanced multi-modal feature extraction strategies.

1.4.1 List of publications

Chapter 7

• Alkan M, Veldtman G, and Deligianni F. “Predicting Cardiopulmonary Exercise Testing

Outcomes in Congenital Heart Disease Through Multi-modal Data Integration and Geo-

metric Learning”. arXiv:2503.14239. 2025. (preprint for Scientific Reports journal)

• Alkan M, Huijsdens H, Jones Y, and Deligianni F. “Electronic Health Records: Towards

Digital Twins in Healthcare”. Smart and Connected Healthcare. Springer 2025. (Book

chapter).

• Alkan M, Zakariyya I, Leighton S, Sivangi K, Anagnostopoulos C, and Deligianni F.

“Artificial Intelligence-Driven Clinical Decision Support Systems”. Smart and Connected

Healthcare. Springer 2025. (Book chapter).

Chapter 6

• Alkan M, Veldtman G and Deligianni F. “Machine Learning Prediction Models of CPET

as a Surrogate of Mortality in CHD Patients”. The Living Lab: Healthcare Innovation

Symposium. 2024. (Abstract).

Chapter 5

• Alkan M, Veldtman G and Deligianni F. “Riemannian Prediction of Anatomical Diagnoses

in Congenital Heart Disease based on 12-lead ECGs”. IEEE International Symposium on

Biomedical Imaging. ISBI 2024.
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• Alkan M, Deligianni F, Anagnostopoulos C and Veldtman G. “Prediction of Anatomical

Diagnoses in Congenital Heart Disease”. Medical Image Understanding and Analysis.

MIUA 2023. (Abstract).

• Alkan M, Deligianni F, Anagnostopoulos C and Veldtman G. “Prediction of Anatomical

Diagnoses in Congenital Heart Disease”. AI-UofG-2023: AI in Pervasive Well-Being and

Healthy Ageing Event. 2023 (Abstract/Poster Presentation).

Chapter 4

• Alkan M, Deligianni F, Anagnostopoulos C, Zakariyya I and Veldtman G. “Digitization

and Linkage of PDF Formatted 12-lead ECGs in Adult Congenital Heart Disease”. CJC

Pediatric and Congenital Heart Disease. 2025.

• Alkan M, Leighton S, Krishnadas R, Cavanagh J, Mallikarjun PK, Gkoutos GV, Everard

L, Singh SP, Freemantle N, Fowler D, Jones PB, Sharma V, Murray R, Wykes T, Drake

RJ, Buchan I, Lewis SW and Birchwood M, Deligianni F. “Challenges in Developing

Risk Prediction Models based on EHR”. AI-UofG-2023: AI in Pervasive Well-Being and

Healthy Ageing Event. 2023 (Abstract/Poster Presentation).

• Verma S, Alkan M, Deligianni F, Anagnostopoulos C, Diller G, Walker L, Johnston FC,

Danton M, Walker H, Swan L, Hunter A, McGuire A, Dawes M, Stott S, Lyndsey M,

Walker N, Veldt- man G. “Development of a Semiautomated Database for Patients With

Adult Congenital Heart Disease”. Canadian Journal of Cardiology. 2022.

• Alkan M, Leighton S, Krishnadas R, Cavanagh J, Mallikarjun PK, Gkoutos GV, Everard

L, Singh SP, Freemantle N, Fowler D, Jones PB, Sharma V, Murray R, Wykes T, Drake

RJ, Buchan I, Lewis SW and Birchwood M, Deligianni F. “Challenges in Developing

Risk Prediction Models based on EHR”. 44th Annual International Conference of the

IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022.

• Alkan M, Leighton S, Krishnadas R, Cavanagh J, Mallikarjun PK, Gkoutos GV, Everard

L, Singh SP, Freemantle N, Fowler D, Jones PB, Sharma V, Murray R, Wykes T, Drake
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RJ, Buchan I, Lewis SW and Birchwood M, Deligianni F. “Challenges in Developing Risk

Prediction Models based on EHR”. The 13th Annual Scottish Informatics & Computer

Science Alliance (SICSA) PhD Conference, 2022 (Abstract/Poster Presentation).

1.4.2 Code and data availability

The study was conducted in accordance with the ethical guidelines established by the Institu-

tional Governance Division of NHS Golden Jubilee National Hospital and the Health Research

Authority. Approval was granted under the designated project ID (23/SC/0436, IRAS project

ID: 335717), thus ensuring adherence to the regulatory standards for medical research and the

protection of patient data. Ethical considerations included the safeguarding of patient confi-

dentiality, adherence to informed consent protocols, and maintenance of transparency in data

collection and analysis. These ethical safeguards ensure that the research contributes in a man-

ner that upholds the highest standards of integrity and responsibility in healthcare research.

To ensure transparency and reproducibility, some of the figures and code related to this study

are publicly accessible on GitHub at https://github.com/alkanmuhammet/ISBI.

Additionally, all remaining figures and code will also be publicly available soon, thus facili-

tating further validation and exploration of the methodologies presented.

1.5 Thesis Outline

The thesis is organised into eight chapters as follows:

• Chapter 2: Introduces the background on electronic health records and the potential of

machine learning in healthcare. It provides an overview of clinical decision supports

systems, their evolution, and the role of machine learning models in enhancing healthcare

delivery and decision-making processes.

• Chapter 3: Discusses the background and significance of congenital heart disease, and

ECGs which is a key tool in CHD assessment. This chapter explores the clinical presen-

tation and existing challenges in diagnosing and treating CHD, emphasising the need for

the clinical predictive models.

https://github.com/alkanmuhammet/ISBI
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• Chapter 4: Outlines the data extraction methodology, including data collection, prepro-

cessing, and digitisation. It details the various sources of data used in the study, the tech-

niques employed for cleaning and transforming raw data, and the strategies for ensuring

data quality and validation.

• Chapter 5: Presents the results and analysis of the ECG classification models with Rie-

mannian geometry. This chapter explains the theoretical foundations of Riemannian ge-

ometry, its application in ECG classification, and the performance metrics used to evaluate

the model’s effectiveness. This chapter also discusses pre-trained state-of-the-art model

approaches highlighting their limitation in different patient demographics and examines

transfer learning approaches reinforcing the necessity for tailored solutions.

• Chapter 6: Presents the results and analysis of the classification and regression models on

cardiopulmonary exercise test results. It covers the development of models, the variables

considered, and the statistical techniques used to assess model accuracy.

• Chapter 7: Examines the results and analysis of integrating information from clinical

letters with ECGs. This chapter discusses the data extraction techniques employed to

extract relevant information from clinical letters, the integration process with ECG data,

and the impact on predictive model performance.

• Chapter 8: Discusses the implications of the findings, potential limitations, and future

research directions. It provides a comprehensive summary of the study’s contributions to

the field, areas for improvement, and suggestions for further investigation to enhance the

understanding and management of congenital heart disease.



Chapter 2

Background on EHR & ML

2.1 Electronic Health Records

Electronic Health Records (EHRs) are digital representations of a patient’s health-related data.

They comprise a heterogeneous collection of data types, including both structured and unstruc-

tured data to support clinical decision-making. Structured data includes demographic details,

laboratory test results, medication prescriptions and diagnostic codes, which are systematically

organised and easily searchable [6]. Conversely, unstructured data includes clinical notes, radi-

ology reports and patient narratives which provides rich contextual insights but poses challenges

for automated processing [6, 7].

In contrast to the systematic monitoring of patients in clinical trials (at intervals such as

6 months, 1 year, or 5 years), the data in electronic health records is not collected at regular

intervals but is instead recorded when an event occurs. For example, an individual may be

admitted to hospital for a period of three days, undergo extensive medical follow-up during their

time in hospital, and then not have any further contact with the medical system for the following

year. This irregular data collection pattern reflects the real-world healthcare dynamics but also

introduces complexities in patient analysis [8].

The transition from paper-based to electronic health records has had a profound impact on

the management of healthcare data, enhancing the quality of clinical decision-making and open-

ing new avenues for medical research [9]. It has also led to a shift from independent records

10
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to integrated databases. These transitions, which take place over a long period of time, present

challenges and requirements for successful integration, even the different health systems are

organised very differently [10, 11].

Clinical registries are of great importance in modern healthcare systems, serving as compre-

hensive repositories of patient data focused on specific conditions or diseases. These systems

are designed to collect, store, and analyse information over extended periods, offering invalu-

able insights into patient care and treatment outcomes. The primary functions of clinical reg-

istries include monitoring and enhancing the quality of care, evaluating the efficacy of various

treatments, and providing a solid foundation for research initiatives in targeted medical areas.

Research findings indicate that clinical registries play a significant role in enabling healthcare

providers to assess the impact of interventions and refine best practices [12]. Several notable ex-

amples of clinical registries have been established across Europe, each contributing significantly

to their respective fields. The Dutch CONCOR Registry, initiated in 2005, stands as the national

registry and DNA bank for patients with congenital heart disease in the Netherlands [13]. This

registry has played an important role in advancing understanding and treatment of congenital

heart conditions in the country, facilitating the monitoring of Congenital Heart Disease (CHD)

prevalence, identification of long-term complications and optimisation of treatment strategies

[14].

Clinical registries focus on specific conditions or diseases, whereas clinical databases en-

compass a broader range of health information from a variety of sources. These databases are

not limited to particular conditions but instead offer a comprehensive overview of patient health

data. A prime example of this broader approach is the hospital database, which typically con-

tains a wealth of information on various medical conditions, treatments, and patient outcomes

within a single healthcare institution or network. In the context of evolving healthcare systems,

clinical registries and databases have become invaluable tools for supporting day-to-day patient

care, driving medical research, informing policy decisions and contributing to the advancement

of medical knowledge and practice [14, 15]. As healthcare continues to evolve, these data col-

lection and analysis systems will undoubtedly contribute to the shaping of the future of patient

care and medical research.
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2.2 From Descriptive Analytics to Predictive Analytics

The processes of healthcare information retrieval may be conceptualised as a pathway that pro-

gresses from descriptive analytics through to diagnostic analytics, predictive analytics, and fi-

nally prescriptive analytics [16, 17]. Descriptive analytics employs techniques such as data

aggregation, data mining, and intuitive visualisation to facilitate comprehension of historical

data [18]. Descriptive analytics provides answers to questions such as the number of patients

admitted to a hospital in a given year, the number of patients who died within 30 days, or the

number of patients who contracted an infection [19]. In other words, descriptive analytics offers

intuitive ways to summarise the data via histograms and graphs and show the data distribution

properties. However, one limitation of descriptive analytics is that it has limited ability to guide

decision-making because it is based on a snapshot of the past [20]. This limitation can be ad-

dressed by progressing through diagnostic, predictive and prescriptive analytics, each offering a

more in-depth understanding of patient care and operational efficiency.

Diagnostic analytics is a specific type of analytics that employs the examination of data

in order to ascertain the underlying cause of a given phenomenon. Diagnostic analytics may

entail the utilisation of correlation techniques with the objective of discerning interrelationships

between clinical variables, treatments, and drugs [21]. The application of predictive analytics

enables the estimation of the probable outcome and likelihood of an event. For instance, one

might wish to predict the mortality risk of a patient, the length of hospitalisation, or the risk

for infection [22]. The objective of predictive analytics is to utilise historical data in order to

provide valuable insights into potential future scenarios. The demand for predictive analytics is

driven by the need for evidence-based approaches to predict and avoid adverse events. Crucially,

predictive analytics facilitate early intervention, which can save lives and enhance quality of life.

Prescriptive analytics, on the other hand, aim to make decisions that yield optimal outcomes.

Prescriptive analytics seek to quantify the impact of prospective decisions by offering guidance

on potential outcomes before the decision is made [23]. Consequently, they provide recommen-

dations regarding actions that take into account the results of predictive analytics [24]. In other

words, prescriptive analytics are instrumental in transforming a prediction model into a clinical
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decision support model.

2.3 Model Development and Validation Strategies of Machine

Learning Models

Model evaluation and selection is a critical step in the machine learning development process.

In an ideal scenario, we would have access to data that perfectly represents the entire target

population. In this case, we could train and test the machine learning model using the same

data, and the error rate obtained would closely reflect the true error rate when the number of

samples is very large. However, in reality, the error rate obtained when training and testing on

the same dataset is positively biased [25, 26]. This is because the model has been exposed to

the same data during both the training and testing phases, which can lead to an overly optimistic

estimate of its performance. To address this issue, in real-world applications, it is common to

split the available data into two separate sets: a training set and a testing set. Typically, around

70% of the data is used for training the model, while the remaining 30% is reserved for testing

its performance on unseen examples [27]. By separating the training and testing data, we can

better evaluate the model’s ability to make accurate predictions on new, unseen data, which is

crucial for deploying the model in real-world applications [28].

In real-world applications, we estimate the empirical risk based on a limited number of test-

ing samples. This involves measuring the loss function with respect to our trained classifier, as

discussed in [29]. Empirical risk estimation is achieved through the computation of the average

loss over the data points (m is the number of samples) according to a loss function L, which

penalises the differences between the predicted values f (x) and the actual targets y.

RS( f ) =
1
m

m

∑
i=1

L(yi, f (xi)) (2.1)

The error modelled based on the Bernoulli distribution is employed to calculate the bound on

the error, thereby providing an indication of the potential deviation between the empirical risk

estimation and the true risk with a high probability (1− δ ) of accuracy [30]. In Equation 2.2,
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m represents the number of samples and δ represents the confidence parameter which quantifies

the probability that our estimate is accurate.

E =

√
1

2m′ ln(
2
δ
) (2.2)

Variations in the empirical risk estimation can arise from several factors. These include

random variations in the testing set, the training set, the learning algorithm itself, and even

the noise inherent in the data classes being considered [25–27, 31, 32]. One key advantage

of the hold-out method (where the training and testing sets are independent) is that it provides

some guarantees about the model’s performance on data it has not been trained on before [33].

However, we must also consider the confidence intervals around the empirical risk estimation.

For example, when evaluating a machine learning algorithm, we should not assume a Gaussian

distribution of the loss error, as the errors may be clustered near zero [34].

Fold 1

Fold 2

Fold 3

Dataset

Test

Train

Train

Train

Test

Train

Train

Train

Test

Figure 2.1: K-fold cross validation method (k=3).

The k-fold cross validation is one of the most popular error estimation approach in machine

learning model training and evaluation [26, 35]. In this method, the dataset is divided into k

distinct parts or "folds" like in Figure 2.1. During each iteration, one of these folds is reserved

for testing, while the remaining (k− 1) folds are used for training the model. This process is

repeated k times, with a different fold serving as the test set each time. By doing so, we obtain

k separate estimates of the classifier’s error rate. These estimates can then be averaged to give

the mean performance of the algorithm across the different folds. Examining the variability of

the error estimates across the k iterations can also provide valuable insights into the algorithm’s

stability and robustness [35]. A key advantage of k-fold cross-validation is that the test samples

are independent between the different folds, as there is no overlap. This helps to ensure a more
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reliable and unbiased assessment of the model’s generalisation capabilities [35, 36].

A potential issue that can arise with standard k-fold cross validation is that the data may

not be evenly distributed across classes. This problem becomes worse when dealing with im-

balanced class data, which is common in healthcare applications [37, 38]. To address this, we

can employ a technique called stratified k- fold cross validation. In this approach, the folds are

created in a way that ensures the class distribution within each fold closely matches the original

class distribution in the overall dataset [27]. A special case of k-fold cross validation is Leave-

One-Out Cross Validation (LOOCV). In this case, the value k is set to the number of samples

in the dataset, meaning that each sample is used as the test set once while the remaining (k−1)

samples are used for training. LOOCV has the advantage of utilising most of the available data,

which can result in relatively unbiased classifier. However, this comes at the cost of significant

computational expense, especially as the dataset size grows [27]. While LOOCV may provide

better performance estimates in datasets with extreme values, it is important to note that this is

not a guarantee of an unbiased classifier, especially when dealing with small datasets [26, 35].

The underlying assumption of LOOCV is that the training set is representative of the true data

distribution, which may not always hold [35].

One key aspect of validation techniques such as k-fold cross-validation and LOOCV is that

the estimate is not based on a single, fixed classifier. Instead, the model is retrained each time,

producing a new classifier with each iteration. This approach has both advantages and disad-

vantages. The primary advantage is that it allows us to assess the stability of machine learning

models across different data partitions [26, 34, 35]. However, the disadvantage is that when

comparing the performance of different algorithms, we must remember that we are comparing

the average performance estimates of various classifiers, rather than a single, fixed classifier as

in the holdout method [26, 34, 35].

One way to describe the performance of classification algorithm is through a confusion ma-

trix as in Figure 2.2b. This square matrix has rows and columns equal to the number of classes.

The diagonal elements represent the true positives and true negatives, assuming "positive" refers

to one class and "negative" to another. The off-diagonal elements indicate false positives and

false negatives. From the confusion matrix, we can derive several performance metrics. For in-
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stance, accuracy is the ratio of correctly predicted observations to the total observations. Speci-

ficity, or the true negative rate, shows how well the classifier identifies negative cases, while

recall also called sensitivity, or the true positive rate, indicates how well it identifies positive

cases [39]. Precision reflects the positive predictive value for a class. The F1 score combines

recall and precision into a single metric, weighting them evenly [40].

(a) Confusion matrix (b) Performance metrics (c) The ROC curve

Figure 2.2: Performance evaluation of ML models.

An alternative method to assess the performance of a machine learning algorithm is by using

a Receiver Operating Characteristic (ROC) curve, as shown in Figure 2.2c. The ROC curve

plots the false positive rate on the horizontal axis and the true positive rate on the vertical axis.

The true positive rate, or sensitivity, indicates how well the classifier identifies positive cases,

while the false positive rate can be expressed as (1− specificity) [41]. Thus, the ROC curve

illustrates the trade-off between sensitivity and specificity for the classifier. It is generated by

varying the threshold for classifying positive and negative cases. This makes the ROC curve a

comprehensive measure of performance, as it considers different threshold settings [41, 42]. It

is used not only to analyse the behaviour of machine learning algorithms but also for model se-

lection by identifying the optimal threshold region [42]. For a random classifier, the ROC curve

would be a straight diagonal line. The area under the curve (AUC) summarises the classifier’s

performance, with higher values indicating better performance [43]. The AUC is often used to

compare different classifiers. Additionally, there are various extensions of the ROC and AUC

for multi-class scenarios [44–47].

When comparing the performance of one algorithm against another, or multiple algorithms

across one or more datasets, it is common to use null hypothesis statistical testing. Several
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statistical tests can validate the performance of two algorithms, but it is crucial to consider

the assumptions underlying these tests [31]. For instance, the paired t-test assumes a normal

distribution, independence of measurements, and an adequate sample size. If the normality

assumption is violated, non-parametric tests are often used [48]. One such test is the Wilcoxon

signed-rank test, an alternative to the paired t-test. This test is based on the ranks of the absolute

differences, making it more robust to outliers [31, 48]. It is important to note that both parametric

and non-parametric tests can be manipulated by increasing the number of samples, potentially

affecting the results of the null hypothesis statistical testing approach [31, 48].

2.3.1 Clinical decision support systems

The domain of clinical research requires a sophisticated methodology for the assessment of pre-

dictive models, which must extend beyond the conventional data science approach [49, 50]. As

we explore this intricate domain, it is essential to address a series of pivotal questions that in-

fluence the advancement and verification of machine learning models, ultimately determining

their efficacy as decision-support systems in healthcare. In prediction modelling, our primary

focus is on estimating the risk of adverse events based on a combination of factors. We seek to

understand not only the predictive power of these factors but also their individual contributions

to the model’s decision-making process. This understanding is crucial, as it allows us to incor-

porate subject matter knowledge into the modelling pipeline, thereby bridging the gap between

data-driven insights and clinical expertise [51–53].

The selection of patient data for model development is of critical importance. It is not un-

common for data to be collected for purposes other than the study at hand, which raises questions

about their representativeness [54, 55]. It is therefore necessary to examine whether the patient

records truly reflect the population for which the study is intended [56, 57]. Furthermore, the

treatment of prognostic factors and their effects presents a unique challenge. While traditional

studies often consider treatment effects to be negligible compared to prognostic factors, there

are instances where these effects warrant specific attention [58, 59]. Adjusting for baseline

prognostic factors can offer significant advantages in estimating treatment effects applicable to

individual patients [60].
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The reliability and completeness of predictor measurements present another challenge in

model development. Incomplete datasets are a common occurrence, with missing values for

potential predictors [61]. The approach to handling these missing data can have a significant

impact on the model’s performance and validity [62]. While complete case analysis, which

excludes patients with any missing values, is a straightforward solution, it often results in a

loss of valuable information [63]. More sophisticated methods, such as imputation techniques

that leverage correlations between variables, offer a more nuanced approach to preserving data

integrity [62].

The selection of the prediction outcome is of paramount importance in clinical research.

Outcomes such as 30-day mortality rates are frequently relevant to a variety of research ques-

tions [55]. However, it is not merely the nature of the outcome that plays a role, but also its

frequency within the dataset. This frequency effectively determines the sample size, which in

turn influences the statistical power and reliability of the model [60]. As we proceed through

these considerations, we appreciate that the development of machine learning models for clin-

ical decision support systems is a multifaceted process. It necessitates a delicate equilibrium

between statistical precision, clinical relevance, and practical applicability [49]. By addressing

these crucial questions and challenges, we establish a foundation for more robust and reliable

predictive models that can genuinely enhance clinical decision-making and, ultimately, patient

care.

The development of Machine Learning (ML) models for clinical decision support systems

requires careful consideration of various factors. The handling of predictor variables is a crucial

aspect, with categorical variables often requiring expert knowledge for appropriate concatena-

tion or fusion [49]. Continuous variables may be modelled linearly, but this approach can affect

interpretation and performance, especially when relationships are non-linear [64]. Model spec-

ification and variable selection are crucial elements of the development process. Traditional

stepwise selection techniques in regression models can be unreliable when applied to small

sample sizes or rare events [65]. Deep Learning (DL) models rely on global explainability

methods to identify influential input parameters [66]. The principle of Occam’s razor is fre-

quently employed, favouring models with fewer parameters to prevent overfitting and enhance
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generalisation [67].

Digital twins can be used by researchers to conduct experiments and analyse data in more

detail, in a controllable and repeatable environment [68]. This can be achieved through the

collection of patients’ existing health data and the translation of the growing amount of such

data into knowledge that is relevant for decision making [69]. Such patient data can be used to

monitor various health indicators and generate important insights. Although this approach has

recently been adopted in the healthcare, it is widely used in engineering [70]. Simulation of an

object or a system is one of the essential parts in engineering for predictive analysis, such as

determining when maintenance is required or observing how the system responds to different

inputs [71]. Adopting this engineering practice, it is possible to create a digital twin that is

paired with the patient’s data. This enables healthcare professionals to process large amounts

of patient data, leading to more personalised and effective care [72]. In our work [73], we have

identified the opportunity to develop digital twins of CHD patients by extracting information

over a decade from clinical letters, which involved diagnoses, diagnostic complexity, interven-

tions, arrhythmia, medications, and demographic data. We believe this information can also be

linked to the patient’s 12-lead Electrocardiogram (ECG) dataset when in digitised format. This

provides the opportunity to develop robust ML models for diagnoses and risk prediction and

explore their capabilities.

2.4 From Machine Learning and Statistical Models to Clini-

cal Decision Support Systems

In the early stages, statistical models were employed to analyse clinical data and predict out-

comes, relying on predefined algorithms with the assumption that the data was structured. The

initial versions of clinical decision support systems were rule-based, utilising if-then logic de-

rived from clinical guides and expert knowledge to provide decision support [74, 75]. The

widespread adoption of EHRs provided a rich source of patient data, which enabled more so-

phisticated analysis and real-time decision support [76]. Integration with EHRs enabled clinical

decision support systems to provide more comprehensive support and diagnostic assistance [77].
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The advent of machine learning models enabled the analysis of vast quantities of clinical

data, facilitating the identification of patterns and the prediction of outcomes. This approach

has led to improvements in diagnostic accuracy without relying on hand-curated features [78–

81]. In the other hand, the application of Natural Language Processing (NLP) techniques has

enabled the extraction and interpretation of information from unstructured data sources within

EHRs, such as clinical notes [82–84].

It has been demonstrated that clinical decision support systems based on machine learning

can enhance patient safety, reduce errors and improve the overall quality of care [85]. These

systems are capable of processing large volumes of data rapidly, thereby providing clinicians

with timely and accurate information to inform their decision-making processes [86]. However,

integrating clinical decision support systems with existing healthcare infrastructure can be com-

plex and costly, and there can be concerns about the reliability of ML models [87–89]. The

effectiveness of ML models also depends on the quality and completeness of the data used to

train them [85]. As we explore this challenging domain, it is essential to address a series of

key questions that form the development and validation of machine learning models, ultimately

determining their efficacy as decision support systems in healthcare.

The foundations of the validation process of clinical prediction models have been presented

in Steyerberg [90]. The fundamental research question or hypothesis represents the core of

this process. The selection of the prediction outcome is of paramount importance in clinical

research. Outcomes such as 30-day mortality rates are frequently relevant to a variety of research

questions. However, it is not merely the nature of the outcome that carries significance, its

frequency within the dataset is also a crucial factor [91]. The frequency in question has an

impact on the sample size, which in turn affects the statistical power and reliability of the model

[60, 91, 92].

In prediction modelling, our primary focus is on estimating the risk of adverse events based

on a combination of factors. We seek to understand not only the predictive power of these factors

but also their individual contributions to the model’s decision-making process [93]. This under-

standing is crucial, as it allows us to incorporate subject matter knowledge into the modelling

pipeline, bridging the gap between data-driven insights and clinical expertise [94–96].
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The selection of patient data for model development is of critical importance. It is not un-

common for data to be collected for purposes other than the study at hand, which raises ques-

tions about their representativeness [60]. It is therefore necessary to examine whether the patient

records truly reflect the population for which the study is intended. Furthermore, the treatment of

prognostic factors and their effects presents a unique challenge. While traditional studies often

consider treatment effects to be negligible compared to prognostic factors, there are instances

where these effects warrant specific attention [97]. Adjusting for baseline prognostic factors can

offer significant advantages in estimating treatment effects applicable to individual patients [98,

99].

The reliability and completeness of predictor measurements pose another hurdle in model

development. Incomplete datasets are common, with missing values for potential predictors

[100]. The approach to handling these missing data can significantly impact the model’s perfor-

mance and validity [101]. While complete case analysis – excluding patients with any missing

values – is a straightforward solution, it often results in a loss of valuable information [102].

More sophisticated methods, such as imputation techniques that leverage correlations between

variables, offer a more nuanced approach to preserving data integrity [61, 63, 103].

In considering these issues, it becomes evident that the development of machine learning

models for clinical decision support systems is a complex and multifaceted process. There

must be a careful balance between maintaining statistical rigour, ensuring clinical relevance, and

practical applicability. By addressing these core questions and challenges, we can facilitate the

creation of more robust and reliable predictive models which can, ultimately, enhance clinical

decision-making and improve patient care.

2.5 Performance Validation in Clinical Decision Support Sys-

tems

Validation of prediction models tailored for clinical decision support systems should occur

through both internal and external methods [90, 104]. Internal validation, using techniques

like split-sample validation, cross-validation, or bootstrapping, assesses reproducibility within
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the development population [105]. External validation, involving patients from different popu-

lations, tests the model’s generalisability across various settings and demographics [106].

While internal validation techniques provide valuable insights into a model’s performance,

external validation serves as a crucial complement in assessing predictive models for clinical use

[3, 107, 108]. This process involves testing the model on data that is entirely separate from the

development dataset, often collected from different institutions or time periods [109]. Despite

the growing number of publications on prediction models, studies employing both internal and

external validation remain relatively scarce [110]. This highlights the challenges in establishing

predictive models as reliable decision support systems [111].

Successful external validation strengthens confidence in a model’s clinical utility. It demon-

strates that the model’s predictions remain accurate across different patient populations and

healthcare settings [49]. This robustness is essential for establishing the model as a trustworthy

component of clinical decision support systems [112]. In other words, external validation offers

a more rigorous test of a model’s generalisability, revealing how well it performs in diverse real-

world scenarios. It helps identify potential overfitting issues that may not be apparent through

internal validation alone [108]. By subjecting the model to new, unseen data, researchers can

gauge its true predictive power and assess its potential as a reliable decision support tool [3,

110].

In essence, external validation acts as a bridge between theoretical model development and

practical clinical application. It provides the evidence needed to justify the integration of pre-

dictive models into healthcare decision-making processes, ultimately contributing to improved

patient care and outcomes.

2.5.1 Calibration of clinical prediction models

In clinical practice, the validation of machine learning models extends beyond traditional pre-

diction performance metrics. While measures like AUC, precision, and F1 scores are crucial,

they do not fully capture a model’s clinical utility. Effective clinical decision support systems

require assessment of underlying risk estimates and clinical usefulness, which can be subjective

and application-dependent.
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Model calibration is a critical aspect of validation, referring to the agreement between ob-

served outcomes and predictions [50]. For instance, if a model predicts a 15% risk of 30-day

mortality, approximately 15 out of 100 patients with such a prediction should experience the out-

come. Calibration is typically assessed using flexible calibration curves, which plot estimated

risks against observed proportions of events.

Two key measures of calibration are the calibration-in-the-large (alpha) and calibration slope

(beta). A well-calibrated model should have an alpha close to zero and a beta close to one.

However, these measures alone do not guarantee perfect calibration across all risk levels. Visu-

alisation through calibration plots helps identify areas of over or underestimation.

Poor calibration can arise from various factors, including differences in patient characteris-

tics or disease prevalence between development and validation populations, changes in health-

care practices over time, model over-fitting, and measurement errors in medical data. Strategies

to improve calibration include model refitting, continuous updating, and addressing population

shifts dynamically. Sample size significantly impacts calibration assessment, with at least 200

events and non-events recommended for precise evaluation. In smaller datasets, evaluating mod-

erate calibration through intercept and slope calculations may suffice.

The importance of calibration in clinical settings cannot be overstated. A poorly calibrated

model, even with high discrimination, can lead to misleading or potentially harmful clinical

decisions. For example, in predicting in vitro fertilization (IVF) success rates, overestimation

could give false hope and expose patients to unnecessary risks. In conclusion, comprehensive

validation of clinical decision support systems must encompass discrimination, calibration and

clinical usefulness.

2.5.2 Calibration in deep learning models for clinical decision support

Calibration is also a critical aspect of deep learning models in clinical decision support systems,

particularly for establishing trustworthiness with users. A well-calibrated model provides con-

fidence estimates that accurately reflect the probability of correct predictions. For instance, a

model with 90% confidence should be correct 90 out of 100 times. In practice, perfect cali-

bration is unattainable, but we aim to approximate it. The Expected Calibration Error (ECE) is
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a common metric used to assess calibration, measuring the difference between confidence and

accuracy across prediction bins.

Recent studies have shown that deeper and more complex neural networks tend to be poorly

calibrated, despite high accuracy [113, 114]. Interestingly, increasing model depth or the num-

ber of convolutional filters per layer tends to worsen calibration error while improving predictive

performance. For example, a 110-layer Residual Network (ResNet) model demonstrated high

accuracy but poor calibration, potentially limiting its reliability as a decision support tool. The

causes of miscalibration in deep networks are not fully understood, but they appear to correlate

with model complexity and capacity. Conversely, techniques like weight decay (L2 regular-

isation) can help reduce calibration error. These findings suggest that in complex networks,

over-fitting may manifest in probability estimates rather than classification errors.

For healthcare applications, reliable confidence measures are crucial. Users of clinical deci-

sion support systems need to be aware of the confidence level in disease diagnostics. Efforts to

improve calibration in deep neural networks include architectural modifications and adjustments

to training and optimisation strategies. While the ECE is widely used, it has limitations. The

choice of bin number involves a bias-variance trade-off, and the metric may not fully capture cal-

ibration in multi-class problems. Additionally, it can be affected by cancellation effects between

over- and under-confident predictions. Adaptive binning schemes have also been proposed to

enhance the stability of calibration measurements.

In conclusion, while deep learning models can achieve high accuracy, their calibration re-

mains a significant challenge. Addressing this issue is essential for developing trustworthy and

effective clinical decision support systems. Future research should focus on refining calibration

metrics and developing techniques to improve the reliability of confidence estimates in complex

neural networks.

2.5.3 Assessing bias in clinical predictive models

EHRs present unique challenges and opportunities in predictive modelling. The concept of

"informative presence" in EHRs refers to the potential information carried by the presence or

absence of patient data at any given time point. This phenomenon differs from missing data,
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as there is no intention to collect data from healthy individuals. For example, EHRs can be

inherently biased because sicker individuals are monitored more frequently. This type of in-

formative presence, indicates that the frequency of health records can reflect a patient’s health

status. "Informative observation" extends this concept to the timing, frequency, and patterns of

longitudinal observations in EHRs, which can provide insights into a patient’s evolving health

state [115]. While these phenomena can complicate causal or association studies, they also offer

potential sources of implicit information that can enhance predictive models.

Therefore, the evaluation of predictive models should extend beyond discrimination and cal-

ibration to encompass potential biases that may introduce systematic errors. A framework for

assessing bias in clinical predictive models has been proposed, focusing on four key domains:

participant selection, variable and predictor selection, outcome assessment, and analysis [116].

This framework emphasises the importance of appropriate inclusion and exclusion criteria, con-

sistent predictor definition and assessment across participants, and the use of standardised out-

come definitions. Biases can stem from flaws in study design, execution, or data analysis. To

identify such biases, a comprehensive approach is necessary, considering the model’s intended

use, target population, predictors, and predicted outcomes. The timing between predictor as-

sessment and outcome determination is crucial for meaningful results. Additionally, the analysis

should consider sample size adequacy, handling of continuous and categorical predictors, and

appropriate performance evaluation methods. Researchers are advised to avoid selecting predic-

tors based solely on univariate analysis. Models can be categorised as having low, medium, or

high risk of bias based on the assessment of these domains. Notably, prediction models devel-

oped without external validation should generally be considered high risk, except when based

on very large datasets.

In conclusion, while identifying and addressing bias is crucial for developing robust clini-

cal predictive models, the inherent characteristics of EHRs, such as informative presence and

observation, present both challenges and opportunities. Researchers must carefully interpret re-

sults while also exploring innovative ways to leverage these implicit data patterns to improve

prediction accuracy.
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2.6 Explainability as a central component of Human-Centered

CDSS

2.6.1 Interpretability vs explainability

Interpretability and explainability, while often used interchangeably, have distinct meanings in

machine learning. Interpretability is an inherent model property, whereas explainability involves

post-hoc methods to elucidate non-interpretable models. Consider a network assessing patient

risk based on factors like Body Mass Index (BMI), age, smoking habits, alcohol consumption,

and blood pressure. For an 85-year-old female patient with a BMI of 32 (class 1 obesity or

low-risk obesity), high blood pressure, and no smoking or alcohol use, the system labels her

’at risk’ recommending medication. However, this output alone may not suffice for a doctor to

trust and act upon the model’s decision. Understanding the reasoning behind the model’s output

becomes crucial, highlighting the importance of explainability in complex models, especially in

critical domains like healthcare where comprehending the decision-making process is essential

for informed and ethical treatment decisions.

Explainability in machine learning models addresses crucial questions about a model’s per-

formance, success conditions, and decision factors. Consider that in heart failure prediction age

is a significant factor, with individuals over 60 having a 60% probability. Furthermore, a BMI

exceeding 25 increases risk by 20%, as does smoking for over a decade. High blood pressure is

also correlated with heart failure. An explainable model should identify these key input factors,

quantify their impact on the decision, and elucidate why they are significant. This insight into

the model’s underlying function aids result interpretation, clarifies decision-making processes,

and helps understand model failures in noisy conditions. Essentially, explainability provides

transparency into the model’s inner workings, enabling users to comprehend not just what the

model predicts, but why it makes those predictions.

Figure 2.3 provides a simplified overview of interpretable and explainable models. On the

left, we see inherently interpretable models such as decision trees, linear regression, and logistic

regression. These models have been widely used in clinical practice and decision-making due
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to their simple construction and easily understandable results. The straightforward nature of

these models allows practitioners to readily interpret their outputs and understand the reasoning

behind decisions. Consequently, these models do not require additional methods to explain their

results, as their decision-making process is transparent by design. This intrinsic interpretability

distinguishes them from more complex models that may require additional explanation tech-

niques to elucidate their outputs.

Figure 2.3: Interpretable vs explainable models [117].

While linear regression and decision trees offer high interpretability, they often fall short in

performance, especially given the complexity of modern datasets and available computational

resources. Sacrificing predictive accuracy for inherent interpretability is increasingly seen as

suboptimal in many applications. Instead, the focus has shifted towards developing methods to

explain high-performing, complex models. This approach aims to harness the superior predic-

tive power of sophisticated algorithms while still providing insights into their decision-making

processes.

2.6.2 Explainability in healthcare applications

In healthcare applications, explainability is particularly critical for assessing model stability, vi-

sualising relationships affecting outcomes, and enabling ethical analysis, especially concerning

minority groups. It also facilitates patient involvement in decision-making processes and allows

for the evaluation of privacy risks associated with complex model representations. This trans-

parency is essential for maintaining the confidence of healthcare professionals, patients, and

end-users. Moreover, explainability aids in monitoring model performance over time, as data

distributions may shift and affect outcomes.
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The significance of explainability extends to various stakeholders. Clinicians require trust-

worthy models that contribute to scientific knowledge. Patients need assurance of fair treatment

and absence of hidden biases. Data scientists and developers utilise explainable models for de-

bugging and improving product efficiency. Management must ensure regulatory compliance,

while regulatory bodies need to certify model adherence to legislation.

Explainability is associated with several key objectives, including trustworthiness, causal-

ity inference, transferability, informativeness, confidence, fairness, accessibility, interactivity,

and privacy awareness. While an explainable model may not guarantee absolute trust or prove

causality, it can provide valuable insights into potential causal relationships and help validate

results from other inference techniques.

2.6.3 Evaluating explainability in clinical decision support systems

The evaluation of explainability methods in clinical decision support systems is a crucial aspect

of their development and implementation. This process considers not only the technical as-

pects of the explanations but also their effectiveness for end-users, whether they are healthcare

professionals or lay individuals.

Evaluation frameworks can be categorised into application-grounded experiments with end-

users and human-grounded experiments with lay individuals. These experiments may employ

both qualitative and quantitative approaches. Quantitative evaluations often utilise metrics based

on questionnaires assessing the usefulness, satisfaction, and interest provided by the system’s

explanations. They may also measure human-machine task performance in terms of accuracy,

response time, error likelihood, and error detection ability.

While mathematical methods provide strong evidence for the efficacy of explainability tech-

niques, evaluating machine learning models with human users is essential to understand both

the model’s performance and its integration into human-in-the-loop systems.

Explanations typically provide three types of information: the importance of features or

attributes to the model, including their interactions; the reasoning behind specific predictions;

and an approximation of the complex model using a simpler, interpretable surrogate model such

as rule-based systems, decision trees, or linear models.
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The evaluation of explanations involves assessing both the model’s intrinsic interpretability

and the quality of its approximation by interpretable explanations. Key aspects of this assess-

ment include clarity (consistency of rationale for similar instances), parsimony (complexity and

compactness of the explanation), fidelity (accuracy in describing the task model), and soundness

(truthfulness to the task model).

Attribution-based explanations, which identify the input features most relevant to the model’s

decision, are common in post hoc explanation methods. While these explanations may not fully

satisfy the sufficiency property, they often meet the parsimony criterion if the features are under-

standable to humans. For clinicians, such explanations are valuable in comparing the model’s

decision-making process with their own clinical knowledge.

User-based evaluation, both quantitative and qualitative, is crucial in understanding how trust

in AI models affects overall system performance in human-in-the-loop scenarios. This approach

bridges the gap between technical performance and practical utility in clinical settings, ensuring

that explainable AI systems not only perform well mathematically but also integrate effectively

into clinical workflows and decision-making processes.

2.7 Machine Learning Models

We evaluated a range of learning algorithms ranging from classical statistical models such as Lo-

gistic Regression (LR) to DL architectures like Convolutional Neural Network (CNN). Also, we

tried to improve the deep learning results by using different geometric learning implementations

like Riemannian.

2.7.1 Logistic regression

Logistic Regression (LR) is a method used to model binary classification tasks as a linear func-

tion of the relationship between the input variables and the target variable [118]. It predicts a

dependent variable by using the relationship between existing independent variables. LR can be

expressed as in the Equation 2.3 where p(x) indicates the probability of an event, βi indicates

the coefficients and the xi indicates the variables.
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log
(

p(x)
1− p(x)

)
= β0 +β1x1 + β2x2 + ... + βmxm (2.3)

The interpretable nature of LR coefficients facilitates the evaluation of the individual pre-

dictor contributions and the integration of clinical knowledge [119, 120]. Furthermore, it serves

as a robust baseline for binary clinical prediction, exhibiting fast training times and optimal

performance when linear relationships are apparent [49, 121, 122].

2.7.2 Support vector machine

Support Vector Machines (SVMs) are a widely used machine learning algorithm that is em-

ployed for a variety of classification tasks. The fundamental objective of an SVM model is

to identify the optimal decision boundary, the point at which the separation between different

classes is maximised [123]. It constructs a hyperplane in a high-dimensional space, thereby en-

suring the largest possible margin between data points from different classes [124]. Given a set

of labelled training data, SVM finds the support vectors which are the critical data points closest

to the hyperplane determining the classification boundary. The SVM decision function f (x) can

be formulated as in Equation 2.4, where w represents the weight vector, x represents the feature

vector, and b is the bias term. In the context of classification, the SVM predicts the class label

based on the sign of the decision function, as in Equation 2.4:

f (x) = sign
(
wT x+b

)
(2.4)

SVM is particularly effective in high-dimensional spaces and is commonly used for appli-

cations such as image recognition, medical diagnosis, and bioinformatics [124]. The ability to

handle both linear and non-linear classification through the utilisation of kernel functions, makes

it a versatile tool in machine learning [25, 124].
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2.7.3 Convolutional neural network

Convolutional Neural Network (CNN) is a type of feed forward neural network mostly used

on computer vision problems, especially image classification. Due to its success in feature

extraction, it is often applied to other supervised learning problems to perform classification

[125]. Each layer is fully connected to the following layers. By training it on many subjects

with similar properties, CNN can generalise the features learned from the examples and then

can recognise similar patterns from a new subject. The model shared in the Figure 2.4 was

utilised in the CNN predictions.

Figure 2.4: Model architecture.

Typical CNN building blocks include convolutional layers, non-linear activation functions

(e.g., ReLU), pooling and batch normalization. Stacking these blocks enables hierarchical fea-

ture extraction from low-level edges to high-level parts. Convolutions share weights across

spatial positions, allowing CNNs to efficiently learn local patterns and generalise well across

image translations and modest deformations when trained on sufficiently diverse datasets [126].

Transfer learning with pre-trained CNNs (fine-tuning or using networks as fixed feature extrac-

tors) extends their applicability to related supervised tasks with limited data, including medical

imaging, remote sensing, and time-series classification after suitable input preprocessing [127,

128]. Regularisation techniques (e.g. dropout, augmentation, weight decay) along with archi-

tecture architecture choices (e.g. ResNet, DenseNet, EfficientNet) have been shown to help

mitigate over-fitting and improve optimisation for very deep models [28, 129].

2.7.4 Riemannian geometry

Riemannian geometry is a branch of differential geometry that studies smooth manifolds and

curved spaces with unique geometries [130]. Using this geometry on electroencephalography

(EEG) data has proven to be very useful in effectively mapping data points and transforming

time series into covariance matrices [131]. We can perform classification in the tangent space of

the covariance matrices estimated from the ECGs or we can use a Minimum Distance to Means
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(MDM) classifier that functions directly on the covariance matrices. MDM takes covariance

matrices as input and then tries to perform classification by the nearest centroid. A centroid is

estimated for each of the classes and then, for each new point, the class is estimated according

to the nearest centroid.

The covariance σ(x,y) of two random variables x and y with n samples is calculated as in

Equation 2.5.

σ(x,y) =
1

n−1

n

∑
i=1

(xi − x̄)(yi − ȳ) (2.5)

And then, with the covariance σ(x,y), we can calculate entries of the covariance matrix,

where our dataset is expressed by the matrix X as in Equation 2.6.

C =
1

n−1

n

∑
i=1

(Xi − X̄)(Xi − X̄)
T (2.6)

Mean of covariance matrices according to the Riemannian metric is estimated as in Equation

2.7, where weight is expressed by w and distance is expressed by d.

argmin
C ∑

i
widR(C,Ci)

2 (2.7)

MDM operates on covariance matrices by representing each class with a mean (centroid) on

the appropriate manifold and assigning new samples to the class whose centroid is nearest under

a chosen metric [132]. For covariance-based MDM the affine-invariant distances are commonly

used because covariance matrices live on the manifold of Symmetric Positive Definite (SPD)

matrices. The utilisation of such metrics has been demonstrated to preserve geometry and im-

prove classification accuracy over Euclidean distance, as Euclidean distance ignores curvature

which can result in an underestimation or overestimation of the similarity between SPD ma-

trices [133]. Affine-invariant metrics preserve important properties like positive-definiteness

and meaningful geodesic structure, which often improves classification accuracy in applications

like brain–computer interfaces and other biomedical signal classification tasks where covariance

captures spatial/temporal structure [134].
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2.8 Data Augmentation Techniques

Despite the ever-increasing capabilities of deep learning models, the success is primarily based

on statistical correlations between input data and predefined labels. This fully supervised learn-

ing approach heavily depends on the variety and volume of curated datasets, which are assumed

to be well-balanced and to have identical distributions between training and testing data. How-

ever, these assumptions are not always valid and handling imbalanced data is a common chal-

lenge in machine learning, especially in fields like healthcare. Various techniques have been

developed to create diverse training samples, thereby improving generalisation and robustness.

2.8.1 Resampling (oversampling or undersampling)

Oversampling can be applied by increasing the number of instances in the minority class by

duplicating or generating synthetic samples (e.g., SMOTE - Synthetic Minority Over-sampling

Technique). On the other hand, undersampling is applied to reduce the number of instances in

the majority class to balance the dataset.

In a machine learning problem, we need to make sure that we are oversampling or undersam-

pling the dataset only after we split dataset into training, testing and validation. If we perform

oversampling or undersampling before splitting the dataset into training and testing, there is a

high probability that our model will suffer from data leakage. Visualisation of oversampling

technique can be seen in Figure 2.5.

Figure 2.5: Visualisation of oversampling technique.
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2.8.2 Mixup

This robust augmentation strategy involves linearly interpolating between training samples in

both input and output spaces. Mixup has been widely adopted across various domains, including

ECG and EEG, as it introduces a useful inductive bias that helps control model complexity and

improves generalisation by creating virtual training samples that are not identical to the originals.

In this technique, samples are mixed-up to create a more balanced distribution that a model

can effectively learn. This helps to improve accuracy and calibration in poorly represented

(minority) classes. An example of its application can be seen in Figure 2.6.

Figure 2.6: Example application of mixup on signals.

This procedure can be defined as follows (λ is a float between 0 and 1):

signalnew = λ ∗ signal1 +(1−λ )∗ signal2 (2.8)

targetnew = λ ∗ target1 +(1−λ )∗ target2 (2.9)

In Figure 2.6, λ value is selected as 0.5 to apply mixup procedure. The value of λ should

be a float between 0 and 1. Choosing a higher λ can create virtual samples that are more distant

from the training samples.

2.8.3 Domain-knowledge guided augmentation

Domain knowledge guided augmentation techniques are frequently used by machine learning

researchers to improve the performance of models by incorporating specific domain knowledge
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into the data augmentation process. This approach leverages expert knowledge to create more

relevant and diverse training data, which can improve the model’s ability to generalise and per-

form well on real-world tasks.

Data augmentation in the spatial domain is one of the most widely used domain knowledge

guided augmentation techniques to improve the performance of machine learning models, espe-

cially in areas such as computer vision and medical imaging. The following is a short summary

of the most commonly applied geometric transformation strategies.

• Flipping: Horizontal and vertical flipping to create mirror images.

• Rotation: Rotating images by various degrees to introduce different perspectives.

• Scaling: Zooming in or out on images to simulate different distances.

• Translation: Shifting images along the x-axis or y-axis to create variations in position.

Physiologically inspired augmentation methods provide another domain-knowledge guided

augmentation technique, which is tailored to the specific physiological characteristics of the

data. For instance, Gopal et al. proposed a method for 12-lead ECG signals that involves

mapping these signals to Vectorcardiogram (VCG) space, applying 3D spatial augmentations,

and then back-projecting to the original ECG space. This approach is motivated by the need

to account for application-specific data variations. An example workflow can be seen in Figure

2.7.

Figure 2.7: Augmentations on ECG signals using VCG space.
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2.8.4 Deep generative models

Deep generative models are a powerful tool for data augmentation, with applications including

the generation of synthetic data that mimics real-world samples, such as Generative Adversarial

Networks (GANs) and Variational Autoencoders (VAEs) [135, 136]. They can generate high-

quality synthetic data samples that enhance the diversity and size of training datasets, which is

especially useful in scenarios with limited data. GANs comprise two neural networks (genera-

tive and discriminative) that are trained concurrently. In contrast, VAEs represent another type

of generative model that learns to encode data into a hidden space and subsequently decode it

back to the original space.

In summary, effective data augmentation techniques are essential for improving the per-

formance of machine learning models, especially in healthcare applications. By leveraging a

combination of physiological insights, domain knowledge, and advanced augmentation meth-

ods like GANs, researchers can create robust models capable of generalising well across diverse

datasets.

2.9 Projection of ECG data

Projection of ECGs rather than the ECG signals itself may be more useful for the classification.

3D VCGs is a technique that tries to represent electrical changes in human heart, its magnitude

and orientation with time [137]. Those changes can then be plotted in 3D space as a snapshot

of electrical activity of the heart. The three leads in 3D space are represented by right-left axis

(X), head-to-feet axis (Y) and front-back axis (Z), with the following equations[138].

X = -(-0.172 V1 - 0.074 V2 + 0.122 V3 + 0.231 V4 + 0.239 V5 + 0.194 V6 + 0.156 DI - 0.010 DII) (2.10)

Y = (0.057 V1 - 0.019 V2 - 0.106 V3 - 0.022 V4 + 0.041 V5 + 0.048 V6 - 0.227 DI + 0.887 DII) (2.11)

Z = -(-0.229 V1 - 0.310 V2 - 0.246 V3 - 0.063 V4 + 0.055 V5 + 0.108 V6 + 0.022 DI + 0.102 DII) (2.12)

We tried to use those 3D representations on training rather than signal itself to see if it makes

any difference on the results. In Figure 2.8, we plotted all classes by using raw signal data and

aligned signal data of a random patient.
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Figure 2.8: Example vectorcardiograms.

2.10 Visualisation of high-dimensional spaces

t-distributed Stochastic Neighbor Embedding (t-SNE) simplifies more complex non-linear or

multidimensional data into 2 or 3 dimensions that are easier to visualise and interpret [139].

Such techniques can be considered as projections of the data, similar to how photos encode

information about a three-dimensional world into 2 dimensional visual displays. t-SNE trans-

forms the similarity, assigned as a distance, as a probability distribution over all the potential

patient pairs. Thus, if two patients’ clinical characteristics are close in high dimensional space,

i.e. in the initial complex dataset, then they are going to be assigned with a high probability

of being neighbour points (i.e. located in close proximity). The aim of the low dimensional

embedding/projections is to approximate the data distributions as closely as possible with the

original, high-dimensional dataset. Mathematically, the similarity between patients xi and x j is

the conditional probability pi/ j defined in Equation 2.13 as follows

pi/ j =
exp

(
−
∣∣xi − x j

∣∣2 /2σ2
i

)
Σk ̸=i exp

(
−|xi − xk|2 /2σ2

i

) (2.13)

An important parameter in t-SNE is the perplexity, that relates to the variance of the Gaus-

sian distribution, and it can be interpreted as a smoothness factor of the number of neighbour

points. Evidently, these probabilities are generated by quantifying and transforming norms (in
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this case we adopt the Euclidean norm/distance) between data points reflecting the probabilis-

tic similarity between them. It is evident that the changes in perplexity will result in changes

in the t-SNE visualisation. Since these visualisations are interactive the user will adjust them

manually. Figure 2.9 shows t-SNE plots for five different perplexity values.

Figure 2.9: Different perplexity values (from 2 to 100).

2.11 Conclusions

In this chapter, the foundational concepts and methodologies that underpin our research are

explored, with a focus on Riemannian geometry, data augmentation techniques and the calibra-

tion of clinical models. Riemannian geometry provides a powerful mathematical framework for

analysing complex data structures, particularly in the context of medical signal analysis. It fa-

cilitates more accurate representation of the underlying anatomical and physiological variations

in patients with CHD. Furthermore, this thesis places particular emphasis on the significance

of data augmentation techniques, which have been demonstrated to enhance the diversity and

robustness of training datasets, consequently leading to improvements in model performance

and generalisability. Finally, the critical need for the calibration of clinical models is addressed,

with the objective being to ensure that their predictions align with real-world outcomes, thereby

enhancing their utility in clinical decisions. The integration of these elements is instrumental

in the development of more effective predictive models that have the potential to significantly

advance the diagnosis and management of CHD.
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Background on Congenital Heart Disease

3.1 Congenital Heart Disease

Cardiovascular disease is a term for any disease that affects the heart or blood vessels. Heart

disease is a type of cardiovascular disease and is a general term for various conditions that affect

the structure and function of the heart. All heart diseases can be classified as cardiovascular

diseases, but not all cardiovascular diseases can be classified as heart disease. Congenital Heart

Disease (CHD) includes various heart defects present from birth, affecting the heart’s structure

and function [140, 141]. Symptoms can range from rapid heartbeat and breathing to difficulty

feeding in babies. Causes are often unknown but can include genetic conditions, maternal in-

fections, certain medications or poorly controlled diabetes during pregnancy [142]. Diagnosis is

typically made before or shortly after birth, with treatments varying from monitoring to surgery

[143]. The following represent some of the most common types of CHD, each affecting cardio-

vascular function in distinct ways:

• Septal defects: Conditions such as Atrial Septal Defect (ASD) and Ventricular Septal

Defect (VSD) are included in this category. These conditions are characterised by the

presence of abnormal openings between the heart’s chambers, which can potentially result

in inefficient blood circulation and oxygenation [140].

• Coarctation of the aorta: This condition is characterised by the narrowing of the body’s

main artery, which has the potential to restrict blood flow and thereby cause hypertension

39
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and heart strain [144].

• Pulmonary valve stenosis: This condition is characterised by the narrowing of the pul-

monary valve, which consequently results in impaired blood flow from the heart to the

lungs, resulting in increased cardiac workload [142].

• Tetralogy of Fallot (ToF): This complex condition comprises four abnormalities: a ven-

tricular septal defect, pulmonary stenosis, an overriding aorta, and right ventricular hyper-

trophy. The consequence of these abnormalities is cyanosis and reduced oxygenation of

blood [143].

Figure 3.1 illustrates the anatomical variations associated with different types of CHD, in-

cluding ASD, VSD and ToF. The top image represents a normal heart, while the lower images

illustrate the structural abnormalities characteristic of each defect, highlighting the impact of

CHD on cardiac anatomy and function.

Figure 3.1: Overview of anatomical variations of different congenital heart diseases.
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3.1.1 Prevalence in the population

CHD is one of the most common types of birth defects. Globally, it is diagnosed in about 1

in 110 births, which translates to approximately 1.2 million babies each year [1]. In the UK, it

affects approximately 1 in every 100 babies born, which is estimated to result in approximately

4,600 cases annually [2]. The prevalence of CHD emphasises the importance of early detection

and treatment in order to improve the outcomes for those affected.

3.1.2 Adults congenital heart disease

CHD in adults, also known as Adult Congenital Heart Disease (ACHD), refers to the presence of

heart defects from birth that persist into adulthood. Many people with CHD are now living well

into adulthood thanks to advances in medical and surgical treatments [145]. Some adults may

have been diagnosed and treated as children, while others might not discover their condition

until later in life. The monitoring and management of ACHD is essential for ensuring that these

individuals maintain a good quality of life. Regular follow-up with specialists is an effective

method for preventing and managing issues at an early stage [146]. For example, in the case of

women with ACHD, proper management and counselling are vital for ensuring safe pregnancies

and reducing risks for both the mother and the child [147].

3.1.3 Predictive models

Predictive models are essential tools in many fields because they allow us to anticipate future

outcomes and make informed decisions based on data. These models can predict how different

patients might respond to various treatments, enabling doctors to tailor treatment plans to indi-

vidual needs [148]. Predictive models can also assess the risk of complications or adverse out-

comes in patients with CHD, helping healthcare providers prioritise high-risk patients for more

intensive monitoring and care [149, 150]. For adults with CHD, predictive models can moni-

tor disease progression and predict potential complications, guiding long-term management and

follow-up care.

Predictive models have been widely used in clinical settings to improve patient care and
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outcomes, such as:

• Risk Stratification: Predictive models assist in the stratification of patients based on their

risk of developing specific conditions or experiencing adverse events. Such complications

may include heart failure, arrhythmias, stroke, or pulmonary hypertension. In traditional

practice, physicians relied on standard clinical risk scores. However, recent technological

advances have led to the development of machine learning models that utilise large-scale

datasets, including electronic health records, imaging data and laboratory test results, with

the aim of identifying patterns that may indicate elevated risk [148]. These models en-

able early detection of potential health issues, thereby enabling healthcare professionals

to implement preventative measures that improve patient outcomes. Advanced compu-

tational techniques, such as deep learning, have demonstrated superior accuracy in risk

assessment when compared with traditional methods, helping prioritise patients who may

require closer monitoring or early interventions [4, 148].

• Diagnosis and Prognosis: Predictive models are also employed to estimate the risk of

existing disease (diagnostic) and future clinical outcomes (prognostic). These models

utilise a combination of demographic factors, biomarkers and imaging data to provide a

clearer picture of disease severity [5, 151]. For example, for prenatal CHD detection, the

utilisation of AI-driven diagnostic models have improved early identification of cardiac

anomalies through the use of fetal echocardiography [152, 153]. Additionally, prognostic

models facilitate the prediction of long-term survival, likelihood of post-surgical com-

plications, and potential deterioration in cardiac function [154–157]. This information

enables healthcare providers to plan interventions more effectively, offering timely treat-

ments that result in a reduction in morbidity and mortality associated with CHD.

• Personalised Treatment Plans: Predictive models facilitate the creation of personalised

treatment plans by predicting how patients may respond to different treatments. By analysing

patient-specific variables, including cardiac anatomy, comorbidities, and prior responses

to treatment, predictive models can assist clinicians in selecting the most effective ap-

proach, thus enabling them to personalise treatment plans based on individual patient
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characteristics. For example, machine learning-based models can predict the success rates

of different types of surgical procedures or medications, and post-operative care allow-

ing physicians to tailor their interventions accordingly [3, 158]. In complex cases, such

as single-ventricle defects, predictive models help determine the optimal timing for surg-

eries, improving survival rates and overall patient well-being [159].

• Resource Allocation: In healthcare systems, predictive models facilitate the optimal al-

location of resources by identifying patients who are most likely to benefit from specific

interventions or require more intensive care [160]. Hospitals can utilise AI-driven models

to predict patient admission rates, surgical demands, and intensive care unit requirements.

By analysing historical patient data, seasonal trends, and demographic shifts, hospitals

can proactively allocate resources in order to prevent shortages and minimise operational

bottlenecks [161]. The enhancement of workflow management, the prevention of resource

shortages, and the reduction of healthcare costs are all key benefits of this approach. In

CHD treatment, the utilisation of predictive models has the potential to assist in schedul-

ing of follow-ups, and optimising diagnostic procedures, ultimately minimising delays in

care delivery and improving overall patient satisfaction [148].

3.2 Electrocardiograms

Electrocardiogram (ECG) is a valuable tool in the analysis of congenital heart defects. In par-

ticular, it can reveal heart blocks and congenital heart defects that may be missed clinically by

providing diagnostic and prognostic information. The more serious the congenital heart de-

fect, the more likely it is to find abnormal changes on the ECG [162]. ASD represents 30% of

congenital heart diseases detected in adults, while ToF represents approximately 10% [163]. It

is important to take into account the main anatomical aspects of various CHD conditions like

ASD and ToF, which may reveal their characteristic ECG patterns individually (see Figure 3.2).

Studies in the literature applying Deep Learning (DL) techniques on ECG signals are generally

focused on heartbeat detection, identification (annotation) and arrhythmia (irregular heartbeat)

classification [164].
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(a) Mustard (b) Fontan (c) Tetralogy of Fallot

(d) Pulmonary Atresia (e) Atrial Septal Defect

Figure 3.2: Example beats for each class (Lead I).

A 12-lead ECG is a standard diagnostic tool used to assess cardiac electrical activity. It

consists of 10 electrodes that are placed on the body with the intention of generating 12 different

views of the heart, as seen in Figure 3.3. The positioning of these electrodes is outlined as

follows:

Limb Leads:

• RA (Right Arm) – Anywhere between the right shoulder and right elbow.

• LA (Left Arm) – Anywhere between the left shoulder and left elbow.

• RL (Right Leg) – Anywhere below the right torso and above the right ankle.

• LL (Left Leg) – Anywhere below the left torso and above the left ankle.

Chest (Precordial) Leads:

• V1 – 4th intercostal space, right sternal border.

• V2 – 4th intercostal space, left sternal border.

• V3 – Midway between V2 and V4.
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• V4 – 5th intercostal space, mid-clavicular line.

• V5 – 5th intercostal space, anterior axillary line (same level as V4).

• V6 – 5th intercostal space, mid-axillary line (same level as V4).

Figure 3.3: Placement of leads in a 12-lead ECG, 10 physical electrode positions.

ECG is a diagnostic procedure that provides a graphical representation of the electrical ac-

tivity of the heart corresponding to different phases of the cardiac cycle. There are a number of

characteristic wave patterns within the ECG for a single heart cycle, as seen in Figure 3.4:

• P Wave: Represents atrial depolarisation, initiating atrial contraction. It is small and

rounded, reflecting the movement of electrical impulses through the atria.

• Q Wave: Represents the initial phase of ventricular depolarisation, corresponding to early

ventricular depolarisation. It is the first downward deflection in the QRS complex.

• R Wave: Represents the primary phase of ventricular depolarisation as the electrical signal

moves through the ventricles. It is the largest upward spike in the ECG.

• S Wave: Represents the completion of ventricular depolarisation process. It is a down-

ward deflection following the R wave.

• T Wave: Represents ventricular repolarization, which marks the recovery phase before

the next cycle.
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Figure 3.4: Key components of an ECG trace.

Each ECG waveform corresponds to a particular mechanical event within the heart, thereby

assisting clinicians in the diagnosis of abnormalities, including but not limited to heart blocks,

arrhythmias, and congenital heart defects. ECG trace also consists of several key components as

seen in Figure 3.4, which reflect the heart’s electrical activity and provide crucial insights into

cardiac function of the patient.

• PR Interval: Measures the time from the start of atrial depolarisation (P wave) to the

onset of ventricular depolarisation (QRS complex). It is widely acknowledged that the PR

interval is of greater clinical significance, as it quantifies the period commencing from the

onset of atrial depolarisation (the P wave) and culminating in the initiation of the QRS

complex.

• QT Interval: Measures the total time taken for ventricular depolarisation and repolariza-

tion, extending from the start of the QRS complex to the end of the T wave. Prolongation

of this interval may serve as a potential indicator of an increased risk of developing ar-

rhythmias.

• QRS Complex: Corresponds to ventricular depolarisation, which in turn marks ventricu-

lar contraction (systole). The QRS duration and its morphology is critical for the detection

of abnormal electrical activity.
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3.3 Clinical Models

Since, in-hospital mortality and length of stay are key patient outcomes that reflect quality of

healthcare, several risk-prediction models have been developed. Most common clinical models

use Logistic Regression (LR), due to its interpretability and effectiveness in binary classification

tasks [165, 166]. Recently, DL has been proposed to exploit large population data and develop

more robust and personalised clinical decision support systems [167]. There are only a few

studies on CHD (for adults or children) that focus on ECG analysis and classification using

machine learning techniques due to the lack of diverse and large labelled data [149, 150, 168,

169]. Most previous works were implemented as a binary problem to detect whether a patient

has the condition or not with aim to reduce mortality and morbidity [169, 170].

Vullings et al. [171] proposed a Deep Neural Network (DNN) to classify 3-dimensional fetal

Vectorcardiogram (VCG) as either healthy or CHD (binary classification). Their architecture

incorporated multiple convolutional layers optimised for feature extraction and classification,

each with residual connections and leaky rectified linear units as activation functions. ECG

measurements were performed at six different medical centres in the Netherlands. The data

collected consisted of various types of CHD, including septal defects, ToF. However, a binary

classification was utilised in this study: either CHD or not. By utilising 386 measurements (266

from the healthy, 120 from the CHD) of 30 mins ECG, their model improved CHD detection

rates at an accuracy rate of 0.76 compared with traditional ultrasonic examination. It is important

to note that the study did not provide any additional metrics beyond accuracy, such as sensitivity,

specificity, or F1 score which are important for evaluating model performance comprehensively.

Du et al. [172] proposed a Residual Network to classify child ECGs as either CHD or not

(binary classification). The model utilised in this study comprised 51 layers, aiding the effective

extraction of temporal and spatial characteristics from the ECG signal with skip connections.

These skip connections were implemented to help mitigate the vanishing gradient problem and

improve feature propagation across layers. By utilising 68,969 child ECGs (58,624 from the

healthy, 10,345 from the CHD) of 10 seconds records on Guangzhou Women and Children’s

Medical Center, their model improved CHD detection rates. In the independent test set, the
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accuracy of the proposed model was 0.92, the sensitivity was 0.74, and the specificity was 0.94.

The performance exceeds other individual CHD screening indicators, which shows that ECG

can be considered as a great value for CHD identification and can be included in the screening

process.

Kim et al. [173] proposed a Long Short-Term Memory (LSTM) to classify heart disease

with ECGs. The dataset was obtained from UCR Time Series Archive and was pre-processed in

two steps: extraction of heartbeats and normalisation of heartbeat length. Then 5,000 heartbeats

were randomly selected for training. The dataset utilised in the study encompassed a range of

cardiac conditions, with the primary focus on the classification of general heart disease rather

than CHD. There was no info about the labels, but the accuracy of classification was 0.97. Also,

they did not share any metric results other than accuracy.

Liang et al. [174] proposed a Residual Network (ResNet) to classify child ECGs as either

CHD or not (binary classification). Since most of the ECGs in the dataset consist of only 9

channels (I, II, III, AVR, AVL, AVF, V1, V3, V5), they reduced the small number of 12 channels

ECGs to 9 channels, leaving out 3 channels (V2, V4, V6). They implemented two different

training approaches with using whole ECG and cardiac cycle segment to assess which one might

have better performance. By utilising 72,626 child ECGs (59,042 from the healthy, 13,584 from

the CHD), they used the same model structure and the same splits for training. The performance

of the model was greatly improved when cardiac cycle segmentation was used, in particular

the sensitivity increased from 0.74 to 0.80. The accuracy of the proposed model was 0.94, the

sensitivity was 0.80, and the specificity was 0.95.

Yuan et al. [175] proposed three different models to compare the classification effect and

accuracy rate of Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and

Multimodal Neural Network (MNN) in ECG classification of CHD patients. The dataset was

obtained from MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) as single-

lead ECGs of 127 patients with CHD. ECGs were classified as normal or bundle branch block

beat (NB), supraventricular abnormal rhythm (SA), abnormal ventricular beat (AV), fusion beat

(FB), and uncategorised beats (UC). The results showed that the classification results of the

MNN (0.98 accuracy) were better than the single CNN and the RNN. Also, they did not share
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any metric results other than accuracy.

Diller et al. [176] proposed a DL architecture to categorise diagnostic group, disease com-

plexity, and New York Heart Association (NYHA) class in a large cohort of patients with adult

CHD. Rather than using ECG signals, they only included some ECG parameters like resting

heart rate (b.p.m.), QRS duration (ms), and QTc duration (ms) along with laboratory and exer-

cise parameters. By utilising 13,649 ECGs and 44,421 medical reports of 10,019 adult patients

(age 36.3 ± 17.3 years), their model achieved an accuracy of 0.91, 0.97, and 0.90 on categorised

diagnosis, disease complexity, and NYHA class.

So far only a binary classification using ECG data has been performed on CHD patients,

child or adult. Making this distinction (either CHD or not) is an important step, but there is

not yet a deep learning study on the classification of disease types. In addition, most studies

have been done entirely on ECG data, only one study has combined different data types as seen

in Table 3.1. Their work was based on derived ECG parameters instead of raw ECG signals.

Beyond the classification type, other potential limitations include the reliance on a single data

modality (e.g. ECG alone) which may restrict predictive performance in comparison to multi-

modal approaches. Furthermore, the size and diversity of the dataset are of crucial importance

in ensuring the generalisability of the model, since imbalanced datasets may lead to biased

predictions that favour more common CHD presentations.

3.4 Research gaps & questions

There are a number of research gaps and questions within the field of predictive models for

CHD, including issues related to data quality and imbalanced datasets, integration with existing

clinical systems, and the limited utilisation of multi-modal data. The following will address

some of the key issues in this regard.

• Data Quality and Availability: Predictive models rely considerably on high-quality and

diverse datasets for the purpose of accurate risk stratification and outcome prediction.

However, many of these datasets exhibit inconsistencies, missing values, and class imbal-

ances for rare conditions as they may suffer from limited sample sizes. This is particularly
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evident in the case of CHD conditions, which are frequently under-represented and lead

to biased models that favour more prevalent conditions [148]. Addressing these issues

requires more robust data pre-processing frameworks and improved data augmentation

approaches, with the objective of achieving a balanced representation of rare cases. As

the development of accurate predictive models hinges on the availability of high-quality

and diverse datasets, there is also a need for more standardised and comprehensive datasets

incorporating a range of different data types.

• Limited Utilisation of Multi-modal Data: Predictive models often rely on a single data

source, such as electronic health records or clinical findings. However, incorporating dif-

ferent data modalities, including ECGs, electronic health records, laboratory test results,

demographic factors and imaging data, has the potential to enhance the performance of

predictive models and facilitate more precise patient risk assessments [177]. Therefore,

it is worth focusing on the development of architectures that incorporate different data

modalities while preserving clinical interpretability and relevance.

• Model Generalisability: It is evident that a considerable number of predictive models

perform well on specific datasets but fail to generalise to other datasets/populations [178].

In the context of CHD, ensuring generalisability is crucial for clinical applicability and

real-world effectiveness [179]. Such predictive models should demonstrate the ability to

perform well on unseen data beyond the training dataset. Consequently, there is a clear

need that aim to develop models which are both robust and applicable across a range of

demographic groups and healthcare settings. In order to address these challenges, the em-

ployment of standardised cross-validation techniques is essential, with models undergoing

testing on independent datasets prior to their clinical deployment.

• Clinical Utility: Although predictive models demonstrate potential and good perfor-

mance, their integration into routine clinical workflows continues to present a significant

challenge [3]. Many healthcare institutions continue to use legacy systems that present sig-

nificant challenges in terms of data retrieval and model development, which consequently

creates barriers to implementation of such models [180]. So, future research should ex-
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plore strategies for seamless data integration, enhanced data preprocessing frameworks

and clinician-friendly interfaces to ensure predictive models enhance decision-making

without compromising standard care protocols [3, 181].

• Ethical and Privacy Concerns: As predictive models become more integrated into health-

care systems, the utilisation of these models raises a number of ethical and privacy con-

cerns particularly in relation to the handling of sensitive health data [182, 183]. One ma-

jor challenge is the security of patient data, as predictive models often rely on large-scale

electronic health records, imaging data, and demographic information [183]. So, there is

a need for further research to develop frameworks for the ethical use of such models and

to guarantee the privacy and security of patient data.

Addressing these questions has the potential to yield more precise, generalisable and ethical

predictive models, which can significantly enhance the diagnosis, treatment, and management

of patients with CHD.

3.5 Conclusions

In summary, the existing literature and clinical practice surrounding predictive models for CHD

face several significant challenges that this thesis aims to address. One of the primary issues is

the quality and availability of data, as many datasets suffer from inconsistencies, missing values

and class imbalances, particularly for rare CHD conditions. This limitation not only prevents

accurate risk stratification and outcome prediction but also leads to biased models that favour

more prevalent conditions. In order to overcome these challenges, there is a need for robust data

pre-processing frameworks and improved data augmentation strategies that ensure a balanced

representation of rare cases, alongside the development of standardised datasets.

Additionally, the limited utilisation of multi-modal data presents another critical gap. Cur-

rent predictive models often rely on single data sources, which restricts their performance and

the precision of patient risk assessments. By incorporating diverse data modalities such as ECGs

and clinical letters this thesis aims to enhance model performance while maintaining its clinical

relevance.
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By addressing the research gaps and questions identified, this thesis aims to contribute to the

development of more precise, generalisable, and well-calibrated predictive models, ultimately

enhancing the diagnosis, treatment and management of patients with congenital heart disease.



Chapter 4

ECG Extraction and Representation in

Congenital Heart Disease

4.1 Abstract

12-lead Electrocardiograms (ECGs) form an essential part of the late follow-up of adults with

Congenital Heart Disease (CHD). Such ECGs are most frequently reviewed by clinicians in

paper or PDF formats. These visual representations of the original vector data do not easily

lend themselves to be directly analysed with the increasingly powerful Machine Learning (ML)

algorithms that hold promise in risk prediction and early prevention of adverse events. In this

work, we set out to recreate the original digital signals from ECG PDF documents by a series

of data processing steps, validate accuracy of the process, and demonstrate its potential utility

in research. Using 4153 ECG PDF documents from 436 CHD patients, we created a "pipeline"

to successfully digitise the visually represented ECG vector datasets. We then proceed with the

validation of the digitised ECG dataset using several features that are also calculated by the ven-

dor, such as QRS duration, PR interval and ventricular rate. We confirmed a strong correlation

with the vendor measured ECG parameters including PR interval (R = 0.952, p < 0.001), QRS

duration (R = 0.969, p < 0.001) and ventricular rate (R = 0.980, p < 0.001). Further, using

Support Vector Machine (SVM), a well-established ML model we demonstrate the ability of

the digitised ECG dataset to accurately predict anatomic diagnosis in CHD. Digitisation of PDF

54
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formatted ECG signal data can be accomplished with good accuracy and can be used in clinical

research in CHD.

4.2 Introduction

With advances in medical sciences, more than 90% of patients with even the most complex

CHD survive into adult life [184]. With this transformational success of medical and surgical

advances, there has emerged a growing burden of morbidity and mortality as individuals enter

later into adult life. Increasing attention is being drawn to the ability to predict which individuals

are likely to deteriorate, and those at risk of mortality [185–189]. ECGs are a fundamental aspect

of such assessments [176, 190–192]. They have been demonstrated to carry important diagnostic

and prognostic information that correlate with the outcomes [176, 193–196]. For example, in

CHD, clinicians use derived ECG measures such as QRS duration, QRS fragmentation, QRS

axis and R-wave height along with PR intervals as indicators of underlying anatomy and prior

surgery, disease state and for mortality prognosis in some specific settings.

More recently ML algorithms promise to extract relevant ECG features and exceed the per-

formance of more traditional and more manual approaches in disease diagnosis and prognos-

tication [172, 197]. In a recent review, Helman et al. [198] highlighted that the development

of ML algorithms to process 12-lead ECGs for CHD is a promising direction, which currently

remains unexplored due to the lack of diverse and large datasets.

We have identified the opportunity to develop digital twins of CHD patients by extracting in-

formation over a decade from clinical letters, which involved diagnoses, diagnostic complexity,

interventions, arrhythmia, medications, and demographic data [73]. We believe this information

can also be linked to the patient’s 12-lead ECG dataset when in digitised format. This provides

the opportunity to develop robust ML models for diagnoses and risk prediction and explore their

capabilities.

In clinical practice, 12-lead ECGs are often interpreted from scanned in or printed PDF

documents. Valuable information can be derived from such visual manual assessment, such as

cardiac rhythm and rate, hemodynamic characteristics like pulmonary hypertension, and prog-
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nostic information relating to sudden cardiac death risk. ML on the actual raw signal data

enhance further diagnostic and prognostic capacity. Due to proprietary software and analysis

of raw ECG signal data, such "raw’ data is not readily available for de-novo or empiric data

analysis or use in further research. Being able to accurately reproduce the digitised ECG signals

from PDF documents can potentially enable signal data to be used in developing ML models for

risk stratification and diagnosis.

For ECG digitisation, all current approaches focus on image processing (i.e. on scanned

images or PDF documents converted into a desired image format) rather than the conversion

to the vector data represented by the PDF document [199, 200], and this in particular has not

previously been evaluated in CHD. By focusing on PDF documents, we recreate ECG PDF

documents created by a specific ECG machine via reverse digitisation, instead of converting

them into images and applying image processing techniques.

We propose a stepwise approach as a pipeline that assemble several steps that are combined

to extract 12-lead ECG digital signals from ECG PDF documents. We adopt open-source generic

Python libraries to extract information about the text and the geometric objects present in ECG

PDF documents, e.g., PyMuPDF [16]. We then validate the digitised dataset using derived ECG

features such as QRS duration, PR interval and heart rate, and further demonstrate its potential

research utility by using it to predict anatomic diagnosis associated with CHD. This is an initial

step towards mortality prediction, which requires significantly larger numbers of subjects to

achieve. Summarising, the contributions of this chapter are as follows:

• Development of an ECG Digitisation Pipeline: A data extraction pipeline was estab-

lished for the systematic conversion of PDF-formatted 12-lead ECG data into digital vec-

tor format, thereby facilitating computational analysis. This approach has been shown to

overcome the limitations of conventional image-based approaches and to enable compu-

tational analysis.

• Validation of Digitised ECG Data: The accuracy and reliability of the digitisation pro-

cess were evaluated through a comparison with vendor-measured parameters. Strong cor-

relations (R > 0.94, P < 0.05) were observed for key features such as PR interval, QRS
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duration, and ventricular rate, demonstrating the robustness of the proposed pipeline.

• Facilitation of Risk Prediction Models: By enabling the transformation of ECG data

into analysable digital signals without any artefacts, this approach opens new opportuni-

ties for the development of risk prediction models. Utilising an SVM model, this chapter

demonstrated that digitised ECG data can effectively predict anatomic diagnosis in Adult

Congenital Heart Disease (ACHD) patients, thus highlighting its potential in clinical re-

search and risk prediction.

4.3 Methods

4.3.1 Linkage of CHD EHR

Study approval was obtained by the Institutional Governance Division of the NHS Golden Ju-

bilee National Hospital. Demographic information including age, sex, anatomic diagnoses, and

prior surgical intervention were extracted from clinical letters as previously described in [73].

The most common condition was Tetralogy of Fallot (ToF), in 197 patients, followed by Pul-

monary Atresia (PA), in 96 patients. The top 15 anatomic diagnoses are summarised in Figure

4.1.

Figure 4.1: Top 15 anatomic diagnoses for 1409 patients.
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Among these conditions, we have selected the 5 most common conditions (shown in bold in

Figure 4.1) for diagnosis prediction including:

1. Tetralogy of Fallot (ToF) (Diagnosis List)

2. Pulmonary Atresia (PA) (Diagnosis List)

3. Fontan (Intervention & Diagnosis List)

4. Atrial Septal Defect (ASD) (Diagnosis List)

5. Mustard (Intervention List) including other atrial switch procedures.

Information from clinical letters was linked to ECG PDFs based on the patient chart number.

Patients were excluded if they did not have available ECGs or were in a permanent dysrhythmia,

such as atrial fibrillation or flutter, or were atrioventricular paced. This led to 436 patients being

included in our investigation. Of these 436 patients, 173 patients had ToF, 77 patients had Atrial

Septal Defect (ASD), 73 patients had PA, 66 patients had Fontan and 47 patients had Mustard.

Overall, 4153 ECG PDF documents were extracted from these 436 patients with diagnoses as

outlined.

4.3.2 ECG data preprocessing

12-lead ECG data were extracted from ECG PDF documents obtained via the Marquette™

12SL by GE Healthcare analysis program [201]. For resting ECGs, the analog voltage potential

is digitised into 4.88-µV units at a rate of 4kHZ. The software down-samples the signal to

500 samples per second and represents a value every 0.05mm on a chart. The ECG signal

has been pre-processed to remove noise and QRS template matching was employed to extract

ECG features and export ECG waveforms to PDF documents in a vectorised format. Each PDF

document contains 12 leads in a specific order (Lead I, II, III, aVF, aVR, aVL, V1, V2, V3, V4,

V5, V6), and provides only 2.5-second strip for each lead as in Figure 4.2.
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Figure 4.2: Example ECG PDF document.

4.3.3 Digitisation of 12-lead ECGs

We developed a new algorithm using vector drawings on the ECG PDF documents to digitise

ECGs without user intervention. PyMuPDF [202] library was used to extract information about

the graphics points present in the PDF documents. The algorithm follows the steps below and it

is described in detailed at Algorithm 1.

1. Locates the coordinates of each lead (position on the page).

2. Obtains the scale indicator (to indicate size and timing intervals) for later use in the digi-

tisation step.

3. Locates the lead specific graphics points to extract each lead signal separately.

4. Using the graphics points on the PDF document, our algorithm extracts line points for

each lead and digitises them individually.

5. After the digitisation step, it scales the extracted signal in mV using the scale indicator

obtained in the second step.

6. As the final step, it matches extracted ECG signals with the determined output column of

the original data of the 436 patients.

An example of the ECG document with two of the extracted leads is shown in Figure 4.3.
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Figure 4.3: Digitisation and linkage of ECG PDF documents that use
vectorised graphic format to store ECG waveforms.

To facilitate analysis of ECG data with ML algorithms, we standardised them by aligning

the ECGs so that the peaks of the R-waves intersected and QRS complexes were digitally syn-

chronised across all leads. An example of the average signal of the aligned ECGs for Mustard is

shown in Figure 4.4 and its characteristic of the underline abnormality.

(a) ECGs (Mustard, Lead I) (b) Aligned ECGs (Mustard, Lead I)

Figure 4.4: ECG alignment using first 50 ECGs on lead I of patients with a Mustard procedure.

4.3.4 Validation of the digitisation algorithm

For validation of our Algorithm 1, we compared vendor derived ECG intervals with derived

intervals from the digitally aligned extracted ECG signals. All the patients were checked to

assess the accuracy of the digitisation algorithm. The onsets and offsets for the points P, Q, R,

S, and T in all 12 leads should be determined first in order to calculate the metrics like QRS
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Algorithm 1: ECG Digitisation Pseudocode that shows each algorithmic step.
Data: 12-lead ECG PDF documents
Result: 12-lead ECG signals

1 initialise a folder with all ECG PDF documents;
2 while there is a PDF document do
3 Locate the coordinates of each lead (position on the page);
4 Obtain the scale indicator (to indicate size and timing intervals);
5 if locate is successful then
6 for each lead do
7 Extract line points;
8 Digitise the lead;

9 if digitisation is successful then
10 for each lead do
11 Scale the digitised lead in mV;
12 Save the lead;

13 if set label then
14 Get the pre-defined output column;
15 Match extracted ECG signals with the output column;

16 Save all the extracted data;

duration, PR interval and ventricular rate. An example illustration can be found in Figure 4.5,

on a single beat. In the vendor algorithm [201], onsets are defined as the earliest deflection in

any 12 leads, and offsets are defined as the latest deflection in any 12 leads. The QRS duration is

measured in milliseconds from the earliest Q onset in any lead to the latest S offset in any lead.

Similarly, the PR interval is measured in milliseconds from the earliest P onset in any lead to

the QRS onset (or earliest Q onset) in any lead. For the ventricular rate (beats per minute), the

number of beats is counted and divided by the time difference in minutes between the first and

last beat. For all our corresponding calculations of QRS duration, PR interval and ventricular

rate, the NeuroKit2 [203] library was used. We followed a processing pipeline similar to the

vendors guidelines [201] to enable meaningful comparison of the final measurements.

Of the 436 patients, 194 patients were female (44.4%). The most common condition was

ToF (39.9%), followed by ASD (17.6%) and PA with VSD (16.7%). Mean ECG age was 33

years (SD 11.7 and 75-25% IQR (40,23)). In a number of ECGs there were overlaps between

the lead signals on the original PDF documents, as can be seen in Figure 4.3. This included lead

labels, as well as large QRS complexes impinging on the lead displayed below it, in particularly
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Figure 4.5: P, Q, R, S, and T points on a single ECG wave.

the precordial leads (V2-V6). We developed an algorithm to successfully overcome this issue

using vector drawings on the original ECG PDF documents. Sample extraction results for the

leads V4 and V5 can be seen in Figure 4.3.

4.4 Results

All the artefacts were overcome without further user intervention, as shown in Figure 4.6 on

another patient. We compared our work with prominent open-source approaches found in the

literature to digitise ECGs like Paper-ECG[204]. Figure 4.6 demonstrates the advantages of our

methods by comparing ECG segment extraction of the two algorithms side-by-side, respectively.

Original signals from the corresponding ECG document are shown in Figure 4.6a, for leads v2

and v3. All the original signals have some difficulties like text overlaps of lead names and letter

notes, signal overlaps between different leads. Those difficulties may lead the digitisation fail, as

detailed in the following examples. While initial QRS complex in Figure 4.6a for v2 is distorted

and abbreviated in a vertical direction in Figure 4.6b because of the lead name overlapping

with the signal, our algorithm can correct this in Figure 4.6c. Figure 4.6d shows overlapping

QRS complexes from the above lead impinging on the QRS complexes of the present lead. Our

algorithm also corrects this in Figure 4.6e. Similarly, the baseline shift artefact in Figure 4.6d is

corrected as shown in Figure 4.6e.

Bland-Altman plots are plotted to compare the measurement of the three variables using two
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Figure 4.6: Comparison of our digitisation results with the Paper-ECG[204].

different algorithms, vendor and our implementation. The mean of the two measurements is

plotted on the x-coordinate while y-axis is the difference between the two algorithms, to show

the agreement or disagreement between the two results. PR interval, QRS duration and ven-

tricular rate are calculated and plotted in Figure 4.7a, 4.7b and 4.7c, respectively. For all the

calculations, similar techniques as in the vendor manual were implemented, as closely as pos-

sible. Ventricular rates derived from the digitised ECG correlated well with the original vendor

rendered ECG, as can be seen in Figure 4.7a. Similarly, in Figure 4.7b and 4.7c, the correla-

tion between vendor calculated and digitised ECG calculated values for both QRS duration and

PR interval is displayed respectively. Plots depict the agreement between the vendor calculated

values on original signals and user calculated values on extracted signals. It also shows that

there is no bias as the mean difference between two measurements is not consistently positive

or negative. Pearson correlation coefficients are also reported along with the two-sided p-value,

to show that there is strong correlation between the results. We also performed a null hypothesis

test to calculate the significance of the correlation coefficient and to decide whether the relation-

ship between the results is strong enough to be used to model the relationship. Null hypothesis

assumes that the correlation coefficient is not significantly different from zero, and hence there

is not a significant relationship between the variables. As the p-value is less than the chosen

significance level (α = 0.05), we reject the null hypothesis. It indicates that there is sufficient

evidence to conclude that there is a statistically significant correlation between the two results.
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Figure 4.7: Bland-Altman plots between vendor and extracted values.

4.5 Conclusions

ECGs are powerful tools when used at a population scale to identify poor cardiovascular out-

comes. ECGs can be used to provide a sense of the physiological and structural condition of

the heart, while also providing valuable diagnostic clues. Currently analysis of large-scale data

requires access to the original ECG datasets, which is embedded in a codified fashion within

the vendor analysis software and is not readily accessible for analysis. Instead, clinicians tend

to use manual evaluation of printed ECGs or review of ECG PDF documents for interpretation.

Digitisation of such 12 lead ECGs as we have been able to demonstrate in this manuscript, is

potentially very helpful in facilitating larger scale research including risk stratification, cross

institutional research, and in registry data recording.

In this work, we suggest linking ECG data with clinical letters and subsequently extracting

accurately labelled digitised ECG waveforms for further analysis with machine learning algo-

rithms. To our knowledge, this is the first time that ECG data from CHD patients are extracted

from PDF documents and labelled automatically. Our proposed framework does not require
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additional user manipulation and we have extensively validated it by estimating ECG features,

such as PR interval, QRS duration and ventricular rate and comparing the values with the vendor

corresponding values.

There are several digitisation algorithms implemented by different researchers and vendors

[199, 200, 204], but to our knowledge all of them work on pixelated images captured from the

ECG PDF documents, or from the scanned ECG papers. This usually results in quality loss, text

along with the ECG waveforms overlap and the digitisation process fails to accurately depict the

original signal. Here we used open-source tools to extract ECG vectorised graphical information

from the PDF documents. In this way, we were able to reconstruct the signal accurately.

The digitised ECG overcomes artefacts present in the Paper-ECG [204] digitised ECG traces

in Figure 4.6, and accurately corrects these without any user intervention. For the first time, we

demonstrate the ability for a relatively simple machine learning model to accurately predict di-

agnosis in the selected five conditions including Atrial Septal Defect, Mustard, Single Ventricle

physiology with a Fontan circulation, Pulmonary Atresia and Tetralogy of Fallot. This prelimi-

nary research application and utility demonstrates encouraging potential for the technique. We

believe that digitisation of the ECG will facilitate further research used in large datasets that can

use PDF formats of the ECG.

The ability of the algorithm we developed to correct artefacts on the original ECG docu-

ment was particularly gratifying. We demonstrate for the first time, the ability to correct for

overlapping QRS complexes, baseline drift in the ECG, and text overlapping QRS or other parts

of the ECG traces in patients with CHD. Though there are open-source works in the literature

to digitise ECGs like Paper-ECG [204], all such software currently needs user intervention to

locate all the 12-leads with a corresponding bounding box. With our automated approach, we

can not only digitise but also export the corrected ECG waveforms to PDF documents to avoid

overlapping and allow clearer interpretation. So, it allows us to reconfigure the 12 ECG leads

from the PDF raw data including individual lead vector data rather than having just an image for

each lead as we are able to capture all the vectors on the PDF document.

We validated the ECG digitisation process by comparing vendor rendered ECG data like

QRS duration, ventricular rate and PR interval between the original ECG and the digitised ver-
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sion. We were able to demonstrate a strong correlation between the measurements. Inherent

variability in the intervals is expected as the techniques used by the vendor to measure particu-

lar intervals vary considerably. For example, some vendors use only simple band-pass filtering

while others use template matching to detect QRS complexes. In future studies, we plan to

create a ground-truth dataset of PDFs to further validate our digitisation algorithm.

In our case, raw ECG data was not readily available even for data analysis purposes. It is a

common practice in the UK as access to raw data requires additional fees. Many hospitals use

standardised forms/reports that are generated as PDFs. These documents can be easily shared

across different hospitals and platforms, making it easier for healthcare providers to access and

digitise information without needing specialised hardware. This is the main reason why we

implemented such a digitisation pipeline, to enable further research on the raw data. We are also

aware that this is not always the case, depending on the agreement with the provider. As they do

not support for such research, not guarantee to access raw data for us. Our digitisation pipeline

can be easily updated for different PDF structures/layouts of ECGs. We have tried several open-

source works and non-commercial toolboxes to digitise ECGs (like Paper-ECG [204]), but the

results were poor on the patients with CHD.



Chapter 5

ECG Classification with Riemannian

Geometry

5.1 Abstract

Congenital Heart Disease (CHD) is a relatively rare disease that affects patients at birth and re-

sults in extremely heterogeneous anatomical and functional defects. 12-lead Electrocardiogram

(ECG) signal is routinely collected in CHD patients because it provides significant biomarkers

for disease prognosis. However, developing accurate Machine Learning (ML) models is chal-

lenging due to the lack of large available datasets. Here, we suggest exploiting the Riemannian

geometry of the spatial covariance structure of the ECG signal to improve classification. Firstly,

we use covariance augmentation to mix samples across the Riemannian geodesic between cor-

responding classes. Secondly, we suggest to project the covariance matrices to their respective

class Riemannian mean to enhance the quality of feature extraction via tangent space projection.

We perform several ablation experiments and demonstrate significant improvement compared to

traditional machine learning models and deep learning on ECG time series data.

67
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5.2 Introduction

12-lead ECG is a very common diagnostic and prognostic tool in cardiac diseases. The rea-

son behind this is that it is easy to acquire and it reflects cardiac anatomy and function in high

spatio-temporal resolution. In fact, recent work showed that 12-lead ECGs can be converted

into 3D representations of the direct cardiac activity during a heart beat based on Vectorcardio-

grams (VCGs) [205, 206]. An example of these representations is shown in Figure 5.1 and it

reveals signatures of anatomical defects in CHD based on our data. Several deep learning tech-

niques have been proposed to classify cardiac rhythms and estimate the risk of adverse effects

[207]. These methods showed impressive results with large datasets that include millions of

patients and ECG recordings. However, it is not clear how they can extend in relatively rare and

extremely heterogeneous cases.

Figure 5.1: Average VCGs across anatomical defects in CHD.

In CHD, abnormalities in structure and function are present at birth and affect around 1% of

babies. In other words, patients are born with genetic defects that differ significantly from the

cardiac abnormalities emerging later in life. Therefore, the efficiency of deep learning methods

developed on a broader population is limited due to lack of large scale representative data and

extreme physiological variations in both anatomy and function. Inspired by successful work

on Riemannian classification [208], we proposed to use the covariance structure of the 12-lead

ECGs to predict anatomic diagnosis associated with CHD as an initial step toward mortality

prediction. Summarising, the contributions of this chapter are as follows:

• Application of Riemannian Geometry to ECG-Based Diagnosis: This chapter pro-
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poses the integration of Riemannian geometry techniques for the purpose of analysing

12-lead ECG data, with the objective of improving the classification accuracy in the con-

text of congenital heart disease. The utilisation of spatial covariance structure of the ECG

signals enables more robust feature extraction and data representation, improving the clas-

sification metrics of the models in clinical research.

• Covariance Augmentation for Improved Data Representation: Covariance augmenta-

tion is utilised to allow ECG samples to be mixed across the Riemannian geodesic, thereby

generating more samples in a controlled manner and avoiding data imbalance issues by

improving feature representation and model robustness. This approach has been shown to

enrich the quality of the dataset, thereby facilitating enhanced model generalisation and

reduced risk of overfitting.

• Multiple Tangent Space Projections: This chapter introduces a multiple tangent space

projection approach, improving feature extraction by mapping covariance matrices onto

the Riemannian mean of each class. This approach facilitates the extraction of a data-

driven representation of ECG signals, not only by utilising the tangent space in which the

data resides, but also the other tangent spaces. It has been demonstrated that this approach

provides relevant information regarding the location of a data points in relation to other

tangent spaces, which refines feature mapping for improved classification.

• Ablation Experiments Validating Model Performance: The study conducts a series of

ablation experiments, demonstrating that the proposed methods significantly outperform

conventional classification models, thereby demonstrating their utility in clinical applica-

tions. These techniques enhance the performance of machine learning models by leverag-

ing the subtle variations captured in ECG signals, which may otherwise be overlooked by

conventional approaches.
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5.3 Methods

5.3.1 Data

The digitised 12-lead ECGs from patients with CHD under regular follow-up at the Scottish

Adult Congenital Cardiac Service based at the Golden Jubilee National Hospital in Scotland

were utilised as the dataset. ECGs in atrial flutter or atrial fibrillation were excluded, as were

atrioventricular paced rhythms, as one of our primary aims was to use ECGs in sinus rhythm to

predict diagnosis. The most common condition was Tetralogy of Fallot (ToF) (39.9%), followed

by Atrial Septal Defect (ASD) (17.6%) and Pulmonary Atresia (PA) (16.7%). Mean ECG age

was 33 years (SD 11.7 and 75-25% IQR(40,23)). Patients with no documented ECGs or those in

atrial flutter or fibrillation or other heart rhythm abnormalities including being paced, at the time

of the ECG were excluded. For patients with more than one anatomic diagnosis, the dominant

diagnosis was considered the primary diagnosis. Extracted 436 patients are summarised as

follows: 173 patients with ToF, 77 patients with ASD, 73 patients with PA, 66 patients with

Fontan and 47 patients with Mustard.

5.3.2 From common to multiple tangent spaces

ECG signal Y is described as a 12× n time series data. For Riemannian manifold classifier,

the covariance structure of the multichannel (12-lead) ECG signal is estimated and projected

into a flat space. This process allows more accurate estimation of linear operations. We applied

spatial filtering F to enhance the signal-to-noise ratio and remove the artifacts [209]. Then, the

covariance matrix is estimated using the Equation 5.1, which reflects the correlations between

each pair of the leads.

C = F(Y ) ·F(Y )T (5.1)

Since covariance matrices are Symmetric Positive Definite (SPD) matrices, they must be

analysed in a Riemannian manifold rather than Euclidean space. Riemannian metric rather than

Euclidean metric is used to project covariance matrices onto tangent space while respecting their
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geometry [210]. To achieve this, typically, the covariance matrices are projected onto a common

tangent space based on Equation 5.2 [208].

VC
i = upper

(
C− 1

2 LogC (Ci)C− 1
2

)
(5.2)

Where Ci is the covariance matrix to be projected onto the tangent space at point C, which

represents the Riemannian mean of all the covariance matrices. This projection enhances the

performance of classifiers that depend on distance metrics between the sample covariance ma-

trices and it has been successful in processing high-dimensional neurophysiological data [133,

210, 211]. However, it assumes that C and Ci are relatively close (see Figure 5.2).

Figure 5.2: Mapping ECG signals to tangent space using Riemannian manifold.

We hypothesise that projecting each covariance matrix to its corresponding class mean will

improve the quality of the mapping, since the distance will be smaller compared to the corre-

sponding distance with the global Riemannian mean. Thus, we fitted a different tangent space

for each class and then combined each of the outputs into a new feature vector. After tangent

space projection, each covariance matrices is represented as a vector V of size n× (n+ 1)/2,

where n is the dimension of the covariance matrices. Each covariance matrix is mapped into

tangent space by keeping the upper triangular part of the resulting symmetric matrix as denoted

in Equation 5.2. Also, an illustration of the multiple tangent space concept can be seen in Figure

5.3. Each output of the tangent spaces can be combined into a single enriched feature vector

that is fed as input to the classification model. It also allows us to balance potential data issues
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by using covariance augmentation, described below, on feature vectors of the underrepresented

classes. All the algorithmic steps of our proposed approach are demonstrated in Algorithm 2.

Figure 5.3: Multiple tangent space concept.

5.3.3 Augmentation of covariance matrices

Since we have a limited dataset, we use a covariance mixing technique to generate more samples

in a controlled way similar to [212]. To apply mixing, we sample α from a beta distribution on

the interval [0, 1], and compute the weighted Riemannian mean according to the Riemannian

distance metric between the randomly selected covariance matrices. We also tried to control

mixing by restricting the range of sampled values for α , but the best results were obtained with

no restrictions. Riemannian mean that minimises the sum of squared Riemannian distances

to the given two SPD matrices was calculated to find the weighted Riemannian mean as in

Equation 5.3, where wi represents a weight matrix generated using the α value, dR represents

the Riemannian distances to the SPD matrices.

Caug = argmin
C ∑

i
wi dR(C,Ci)

2 (5.3)

Instead of mixing all the data we have, we tried to focus only on the classes that are not

easily distinguishable by the model. t-distributed Stochastic Neighbor Embedding (t-SNE) vi-
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Algorithm 2: Prediction of anatomical diagnoses.
Data: 12-lead ECG signals
Result: Anatomic diagnosis associated with CHD

1 initialise SPLO splits and align R Peaks;
2 while there is a 12-lead ECG do
3 calculate covariance matrices based on the
4 spatial filtering F ;
5 if mixup then
6 mixup on covariance matrices using Eq. 5.3;

7 if projection then
8 if multiple tangent space then
9 fit a tangent space for each class;

10 project covariance matrices to those tangent spaces using Eq. 5.2;
11 combine each output to get a feature vector to train on the model
12 else
13 fit only a single tangent space;
14 project covariance matrices to the
15 tangent space using Eq. 5.2;
16 get feature vector to train on the model

17 make classification;

sualisations [213] on the tangent space using only original data, and mixed data combined with

the original are shown in Figures 5.4a and 5.4b, respectively.

(a) t-SNE without covariance augmentations
on tangent space

(b) t-SNE with covariance augmentations
on tangent space

Figure 5.4: t-SNE visualisations on the tangent space.
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5.3.4 Stratified patient leave-out

Training-testing split of data was repeated 100 times based on pseudo-randomised, Stratified

Patient Leave-Out (SPLO) evaluation to ensure that the testing set of patients was representative

of all the classes. One patient for each class is randomly selected for testing. All of testing

patients’ ECG data are removed from training and only data from the rest of patients are used in

the training. This training procedure is repeated 100 times in a pseudo-randomised manner and

the average performance results (accuracy, AUC and F1 macro) along with standard deviation

are reported. On average, each patient has 10 ECG recordings (for a very small number of

patients this number can vary from 2 to 40). Firstly, the data are split into different sets and

subsequently further processing, such as covariance augmentations, is performed only on the

training data. Using such an approach, summarised in Figure 5.5, SPLO enhances the capability

of the Support Vector Machine (SVM) model to predict unseen data by reducing bias [32]. This

approach ensures that each class is proportionally represented in both the training and test sets,

thereby preventing overfitting and underfitting.

Figure 5.5: Stratified patient leave-out setup.

5.3.5 Pre-trained models

In machine learning, a pre-trained model refers to a type of model that has undergone initial

training on a large and diverse dataset. This initial training phase is designed to capture broad

features, patterns and relationships across the full range of data in the larger set. A variety of
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organisations, researchers and communities are involved in the development of pre-trained mod-

els. One such example is Google’s Bidirectional Encoder Representations from Transformers

(BERT), a language model originally implemented in the English language with a base model

comprising over 110 million parameters [214]. Following training on the Toronto BookCorpus

(800 million words) and English Wikipedia (2.5 billion words), BERT demonstrates the substan-

tial computational resources required for such models [215]. Such entities employ large-scale

data and machine learning methodologies to develop pre-trained models that can be fine-tuned

for specific tasks in both practical and cost-effective manner [216].

Although pre-trained models offer a convenient means of reducing training time and com-

putational power, their use without fine-tuning may not yield the desired results [217]. It may

therefore be necessary to perform fine-tuning on the intended data set in order to ensure suitabil-

ity for the task at hand. A further training phase utilising supervised learning techniques on a

task-specific dataset enables the pre-trained model to be optimally fine-tuned for the target task,

while simultaneously leveraging the general knowledge acquired during the pre-training phase.

This approach employs transfer learning, whereby knowledge acquired during the pre-training

phase is transferred to the target task, thereby enhancing performance and reducing the necessity

for extensive task-specific data [216].

The use of pre-trained models helps to overcome the issue of data scarcity by taking ad-

vantage of the vast and diverse datasets available during the pre-training phase. This enables

the model to generalise more effectively from a smaller, task-specific dataset during the fine-

tuning process. Furthermore, this approach improves the model’s performance on the target

task, as it is capable of effectively recognising patterns and features that are common across

different datasets. As a result of the model having already acquired general features during the

pre-training phase, the fine-tuning phase requires less computational power and time, thereby

enhancing the overall process’s efficiency.

Riberio et al. developed a state-of-the-art Deep Neural Networks (DNNs) model for the

automatic diagnosis of 12-lead ECGs [207]. The model was trained on a large dataset com-

prising over 2 million labelled ECGs , using supervised learning techniques where the model

learned to map ECG inputs to corresponding diagnostic labels. The 6 diagnostic labels were as
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follows: 1st degree AV block (1dAVb), right bundle branch block (RBBB), left bundle branch

block (LBBB), sinus bradycardia (SB), atrial fibrillation (AF) and sinus tachycardia (ST). The

DNNs model demonstrated superior performance in identifying 6 types of abnormalities in 12-

lead ECGs , outperforming cardiology resident medical doctors with F1 scores above 80% and

specificity exceeding 99%.

Their ECG data utilised in the paper and our own ECG data extracted from the PDF docu-

ments exhibit similar characteristics. The study employed ECGs obtained from patients aged 16

years and above. And, 12 different leads of the ECGs , that are sampled at 400 Hz, populated

in the following order: DI,DII,DIII,AV R,AV L,AV F,V 1,V 2,V 3,V 4,V 5,V 6. As not all signals

have the same duration, both dimensions were padded with zeros to ensure that they were of an

identical size. We also employed the same strategy while fine-tuning the model with our data.

And, same patient split strategy (SPLO) was used to ensure consistency both with the previous

results and between the different results.

Figure 5.6: Architecture of the pretrained model [207].

The model receives an input tensor with dimensions (N, 4096, 12), where N is the batch

size, 4096 is the number of data points, and 12 represents the 12 leads of the ECG signal.

The structure of the model comprises multiple residual blocks, where each block incorporates

convolutional layers, batch normalization, and ReLU activation functions. The residual connec-

tions enhance the training of deeper networks by enabling the effective propagation of gradients

through the network while addressing the issue of vanishing gradients. The final layer of the net-

work comprises a dense layer with 6 units, which correspond to the 6 types of ECG abnormality.

The output is then passed through a softmax activation function, which generates probabilities
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for each class. Architecture of the pretrained model can be seen in Figure 5.6.

5.3.6 Transfer learning

Transfer learning represents a strategy in machine learning, whereby a model developed for a

task is repurposed as the starting point for another model addressing another related task. This

approach is effective in scenarios where there is limited data or when the new task has similari-

ties with the original task. Especially in the domain of image classification, researchers tend to

adopt a preliminary approach, utilising a pre-trained model that has been previously trained to

categorise visual elements and has acquired general attributes such as edges and shapes.

Fine-tuning is employed to provide additional training to the model whose parameters have

been previously adjusted through an initial learning phase. It involves utilising the knowledge

of the trained model as a starting point and subsequently training the model on a smaller, task-

specific dataset, thereby enabling the model’s adaptation to the particular task at hand. One of

the techniques employed to adapt a pre-trained model to a specific task is fine-tuning by freezing

all but the last layer. The freezing of a layer prevents the weights associated with that layer from

being updated during the training process. This approach is employed to ensure the preservation

of the knowledge that has already been acquired by the pre-trained model.

In order to achieve the desired outcome, it is also necessary to replace the final layer with a

new layer that is appropriate for the specific task at hand. In our case, as it was a classification

task, the final layer may be a dense layer with a softmax activation function. Subsequently, the

model should be fine-tuned by training it on the specific dataset. As only the weights of the

final layer are updated, the model can rapidly adapt to the new task without losing the features

learned during the pre-training phase.

The freezing of the majority of the model’s layers results in a reduction in the time required

for training, as only a limited number of parameters need to be updated. Another advantage

of this approach is better performance, as the pre-trained layers have already captured useful

features, resulting in an improvement in performance with less data.
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Feature extraction

This strategy involves the utilisation of a pre-trained model to extract relevant features from

the intended dataset. The extracted features are subsequently fed into another model for the

designated task. The entire process can be summarised in the following sequence of steps.

1. Load the pre-trained model and pass the data through it.

2. Extract the features using the output of intermediate layers.

3. Train a new model using these features as inputs.

Fine-tuning

Fine-tuning involves the initialisation of the training process with a pre-trained model and then

progresses to the training of a new and relatively smaller dataset. This is usually done by select-

ing a model that has been trained on similar and larger amounts of data. The entire process can

be summarised in the following sequence of steps.

1. Load the pre-trained model.

2. Replace or add new layers suitable for the new task and outputs.

3. Continue training the model on the new dataset.

Freezing layers

A similar approach to fine-tuning is freezing the layers of a pre-trained model, which prevents

any updates to their weights during the training process. Instead, only the newly added layers

undergo training process. The entire process can be summarised in the following sequence of

steps.

1. Load the pre-trained model.

2. Set the trainable attribute to "False" for the frozen layers.

3. Replace or add new layers (after the frozen layers) suitable for the new task and outputs.

4. Continue training the model on the new dataset, updating only the non-frozen layers.
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5.4 Results

Three different classifiers were used to compare our feature extraction framework: SVM, Min-

imum Distance to Means (MDM), and Multi-Layer Perceptron (MLP). We have done ablation

studies with MLP model as well with baseline models SVM and MDM. MDM performs classifi-

cation by the nearest centroid. A centroid of the covariance matrices is estimated for each of the

classes and then, for each new covariance sample, the class is estimated according to the nearest

centroid. MLP model was trained with the different feature extraction frameworks as mentioned

in Table 5.1. Table 5.1 shows the different strategies applied for augmentation and covariance

projection. (DEF) denotes application of the classification directly on the R peak aligned 12-

lead ECG data as the default setting. (VCG) represents augmentations based on ECG VCG

space. Dower transformation was used to project 12-lead ECG data into a 3-dimensional VCG

space. Subsequently, we applied rotations along all three orthogonal axes from 5 to 45 degrees

and projected the augmented VCG back into 12-lead ECG space [206]. (VCG) augmentation

performed poorly in classifying covariance matrices (VCG_COV ). In the next ablation steps,

(COV ) represents that covariance matrices were used. The final step was the projection of these

matrices into tangent space (single: T S or multiple: MT S). The best results were obtained using

multiple tangent spaces with covariance augmentations (MT S_COV ).

Table 5.1: Ablation study: AUC scores for different methods.

Name
Feature Extraction Framework

AUC
(MLP)

AUC
(SVM)

AUC
(MDM)

VCG
Augmentations

Covariance
Matrix

Covariance
Augmentations

Tangent
Space

DEF ✗ 0.73 ± 0.05 0.80 ± 0.08 NA
VCG ✓ 0.76 ± 0.08 0.59 ± 0.04 NA
COV ✗ ✓ 0.77 ± 0.08 0.50 ± 0.09 0.76 ± 0.09

VCG_COV ✓ ✓ 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
T S ✗ ✓ ✗ Single 0.82 ± 0.08 0.72 ± 0.07 0.80 ± 0.07

T S_COV ✗ ✓ ✓ Single 0.83 ± 0.07 0.77 ± 0.06 0.82 ± 0.06
MT S ✗ ✓ ✗ Multiple 0.81 ± 0.09 0.78 ± 0.08 NA

MTS_COV ✗ ✓ ✓ Multiple 0.84 ± 0.06 0.82 ± 0.08 NA

Table 5.2 provides a comparison on the performance metrics (Accuracy, AUC, F1 macro) of

the approaches described in ablation Table 5.1 as well as a baseline model with SVM applied on

the aligned ECG time-series data DEF2D. Using tangent space projection on MLP resulted in a
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9% increase in the AUC score and an 11% increase in the accuracy. Using covariance augmen-

tations on the single tangent space also yielded a further increase of 1% in the AUC score and a

3% increase in the accuracy. Taking a step further and using multiple tangent space projections

with covariance augmentations resulted in an 11% increase in the AUC score and a 16% increase

in the accuracy. Better results were obtained by projecting the augmented covariance matrices

into multiple tangent space while respecting their underlying geometry.

Table 5.2: Performance metrics of the machine learning models.
(With bold we highlight the best six models).

Accuracy AUC F1 macro
MLP (MT S_COV ) 0.71 ± 0.10 0.84 ± 0.06 0.69 ± 0.13

MLP (MT S) 0.64 ± 0.17 0.81 ± 0.09 0.63 ± 0.18
MLP (T S_COV ) 0.69 ± 0.12 0.83 ± 0.07 0.65 ± 0.13

MLP (T S) 0.66 ± 0.15 0.82 ± 0.08 0.63 ± 0.17
MLP (VCG_COV ) 0.17 ± 0.06 0.50 ± 0.00 0.05 ± 0.01

MLP (VCG) 0.62 ± 0.13 0.76 ± 0.08 0.54 ± 0.15

MLP (DEF) 0.55 ± 0.12 0.73 ± 0.05 0.48 ± 0.09

SVM (MT S_COV ) 0.66 ± 0.17 0.82 ± 0.08 0.65 ± 0.17
SVM (MT S) 0.61 ± 0.13 0.78 ± 0.08 0.56 ± 0.16

SVM (T S_COV ) 0.59 ± 0.10 0.77 ± 0.06 0.55 ± 0.11

SVM (T S) 0.56 ± 0.12 0.72 ± 0.07 0.53 ± 0.12

SVM (VCG_COV ) 0.17 ± 0.06 0.50 ± 0.00 0.05 ± 0.01

SVM (DEF2D) 0.65 ± 0.14 0.80 ± 0.08 0.62 ± 0.15

MDM (T S_COV ) 0.67 ± 0.14 0.82 ± 0.06 0.66 ± 0.11
MDM (T S) 0.65 ± 0.15 0.80 ± 0.07 0.63 ± 0.13

MDM (VCG_COV ) 0.17 ± 0.06 0.50 ± 0.00 0.05 ± 0.01

MDM (COV ) 0.63 ± 0.15 0.76 ± 0.09 0.56 ± 0.17

Both SVM and MLP models were trained on R peak aligned ECG data (DEF), but for the

SVM model 3D ECG data were reshaped to 2D (DEF2D). SVM model achieved 7% better

results at this stage for the AUC score. Also, some 3D rotations on the ECG data were tried by

projecting it to the VCG space with the help of Dower transformations. Only MLP model was

trained on these 3D augmented ECG data (VCG) and achieved 3% better results for the AUC

score. But, they caused very poor results with the next steps that include covariance matrices

(VCG_COV ). VCG means without any augmentations for each class can be seen in Figure 5.1.

Figure 5.7 shows how the top six models compare statistically where statistical significance

is based on corrected paired t-test [218]. All the models except SVM achieved better results on
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Figure 5.7: AUC scores for the best six approaches.

the tangent space and peaked at an AUC score of 82%. There was a statistically significant dif-

ference between the AUC results of the MLP(MT S_COV ) model compared to the other models

in Figure 5.7. As shown in Table 5.2, using multiple tangent spaces provided an improvement

of 11% for the MLP model and 2% for the SVM model in the AUC score.

There was a statistically significant difference between the AUC results of the MLP(MT S_COV )

model compared to the other models in Figure 5.7. The confusion matrices in Figure 5.8a, 5.8b

and 5.8c, reflect the improvement in performance with the application of the multiple tangent

space projection and covariance augmentation. Furthermore, Figure 5.9 shows AUC score for

each class on the best model MT S_COV , evaluated using One-vs-Rest (OvR) strategy.

(a) MLP (b) MLP on tangent
space

(c) MLP on multiple
tangent space

Figure 5.8: Confusion matrices of DEF , T S_COV and MT S_COV approaches
with an MLP classifier.
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Figure 5.9: AUC for the best model (MT S_COV ).

In order to quantify the effect of covariance augmentations in Riemannian space on t-SNE

embeddings (see Figure 5.4), the label-wise distances to each class centroid were computed.

For each class we report mean, minimum and maximum Euclidean distances from points to

their centroid in the t-SNE embedding. As demonstrated in Table 5.3, these augmentations not

only reduce intra-class dispersion (points of the same class move closer to their centroid) but

also tighten cluster structure as evidenced by increased separation, which reflected in both the

minimum and maximum distances to each centroid.

Table 5.3: Effect of covariance augmentations on label-wise distances to class centroids.

mean std min max

ASD, without augmentations 24.395 20.331 1.454 134.273
ASD, with augmentations 20.466 13.561 0.756 84.403
PA, without augmentations 44.360 17.438 6.694 112.768

PA, with augmentations 28.743 15.315 1.852 95.420
ToF, without augmentations 38.371 16.433 2.074 102.396

ToF, with augmentations 31.023 13.429 0.258 78.450
Fontan, without augmentations 29.144 13.165 5.783 117.708

Fontan, with augmentations 20.046 10.566 0.469 84.345
Mustard, without augmentations 26.318 12.901 0.873 128.842

Mustard, with augmentations 19.070 9.468 0.447 119.332
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5.4.1 Classification results with the pre-trained model

Firstly, the pre-trained model was tested on our ECG dataset in order to evaluate how the process

of fine-tuning affects the model’s capacity to achieve better results. Without any fine-tuning

and data augmentations, the classification outcomes were predominantly focused on the more

dominant class (ToF). As can be seen in Figure 5.10a, using pre-trained model without any

fine-tuning is not achieving good results.

The pre-trained model then fine-tuned by training on our ECG dataset and only the weights

of the final layer are updated, while the weights of the remaining layers were maintained in

a frozen state. Additionally, the dataset was augmented with randomly selected duplicates,

without compromising the integrity of the training and testing processes. As can be seen in

Figure 5.10b, it achieved better results in terms of accuracy and AUC, but poor confusion matrix

results. An accuracy value of 0.456 was obtained, but the fine-tuned model only classifies the

results as belonging to one of two classes: mustard and fontan. This may be indicative of

potential overfitting, as our dataset contained an even distribution of data across all classes.

(a) without any fine-tuning

and data augmentations

(b) with augmentations

(copying)

(c) with augmentations

(resample)

Figure 5.10: Confusion matrix comparison of the pre-trained model in different settings.

A further attempt was made with the use of augmentations via resampling, employing the

same methodology of fine-tuning. As can be seen in Figure 5.10c, it achieved better results in

terms of accuracy and AUC, as well as a better confusion matrix representation. An accuracy

value of 0.445 was obtained, but the fine-tuned model categorises the outcomes as almost no

outcomes in one category, PA. In our particular case, the utilisation of a state-of-the-art pre-
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trained model was insufficient to yield the desired level of accuracy and reliability in the results

obtained. Even with the incorporation of data augmentation techniques, the desired level of

reliable results was not achieved.

All the experiment results are shared in Table 5.4, while incorporating data augmentations

techniques demonstrated improved results, it did not achieve the desired level of accuracy as

reflected in the F1 score. So, it was not enough fine-tuning only the last layer of the pre-trained

model to achieve optimal results, as the deeper layers of the model are capable of capturing more

complex and task-specific features.

Table 5.4: Classification results on ECGs, with pre-trained model.

Accuracy AUC F1 score

Without fine-tuning 0.172 0.500 0.058
Fine-tuning with augmentations (copying) 0.456 0.599 0.242

Fine-tuning with augmentations (resample) 0.445 0.680 0.378

In order to enable the model to accommodate these more profound and complex character-

istics at the deeper layers, the number of layers undergoing training was increased. For the first

experiment, all but the last five layers were kept frozen, resulting in a total of 26,245 trainable

parameters. The same data augmentation technique utilising resampling was employed for all

subsequent experiments. As illustrated in Figure 5.11a, the pre-trained model demonstrated en-

hanced performance in terms of accuracy (0.466), AUC (0.698), and F1 score (0.461), along

with a more optimal confusion matrix representation. However, the challenge of classifying

outcomes into a single category for PA class remained.

The same procedure was followed this time with the last seven layers unfrozen, resulting in

a total of 108,165 trainable parameters. As illustrated in Figure 5.11b, the pre-trained model

underperformed in terms of AUC (0.673), and F1 score (0.415). Furthermore, the confusion

matrix representation exhibited more issues than those observed in previous models. While the

challenge of classifying the results into a single category for the PA class persisted, a similar

problem was observed for the ASD class. As the total number of trainable layers increased, the

classification process became progressively more centralised, and it was focused solely on the

ToF class for those problematic classes.
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The same procedure was repeated this time with the last eight layers unfrozen, resulting in

a total of 1,746,565 trainable parameters. As illustrated in Figure 5.11c, the pre-trained model

underperformed in terms of accuracy (0.491), AUC (0.653), and F1 score (0.386). A similar

confusion matrix representation with the same issues was observed for the ASD and PA classes,

with a particular focus on the ToF class.

(a) Fine-tuning

last five layers

(b) Fine-tuning

last seven layers

(c) Fine-tuning

last eight layers

Figure 5.11: Confusion matrices of the fine-tuned model using last five, seven and eight layers.

Before unfreezing all the layers, the same procedure was repeated this time with the last

twelve layers unfrozen, resulting in a total of 1,747,205 trainable parameters. As illustrated in

Figure 5.12a, the pre-trained model underperformed in terms of accuracy (0.485), AUC (0.651),

and F1 score (0.389). A similar confusion matrix representation with the same issues was ob-

served for the ASD and PA classes, with a particular focus on the tetralogy of fallot class.

(a) Fine-tuning last twelve layers (b) Fine-tuning all layers

Figure 5.12: Confusion matrices of the fine-tuned model using last twelve and all the layers.

Given the absence of improvement over the last steps, a further round of fine-tuning was
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conducted utilising all layers. The same procedure was repeated this time with all the layers

unfrozen, resulting in a total of 6,416,789 trainable parameters. As illustrated in Figure 5.12b,

the pre-trained model demonstrated best performance so far in terms of accuracy (0.625), AUC

(0.724), and F1 score (0.501), along with a more optimal confusion matrix representation. How-

ever, although the problems in PA class improved, the challenge of classifying outcomes into

a single category for the ASD class remained. All the experimental results shared in Table 5.5

indicate that this approach was insufficient to achieve optimal results.

Table 5.5: Classification results on ECGs, with fine-tuned model.

Accuracy AUC F1 score

All layers 0.625 0.724 0.501
Last layer 0.445 0.680 0.378

Last 5 layers 0.466 0.698 0.461
Last 7 layers 0.536 0.673 0.415
Last 8 layers 0.491 0.653 0.386

Last 12 layers 0.485 0.651 0.389

The confusion matrices in Figure 5.13b and 5.13c reflect the improvement in performance

with the application of the single and then multiple tangent space projections, in comparison

with the pre-trained model in Figure 5.13a. Notably, the MLP model on a single tangent space

projection outperformed the best configuration of the pre-trained model, highlighting the effec-

tiveness of the proposed approach.

(a) Fine-tuning
all layers

(b) MLP on tangent
space

(c) MLP on multiple
tangent space

Figure 5.13: Confusion matrix comparison of the best pre-trained model with the single tangent
space (T S_COV ) and multiple tangent space (MT S_COV ) approaches.
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5.5 Conclusions

We demonstrated promising results on 12-lead ECG classification of anatomical diagnosis in

CHD. Our proposed projection of the augmented covariance matrices to multiple Riemannian

spaces yields significantly better results in improving classification performance with small and

extremely imbalanced 12-lead ECG data. The proposed approach, based on Riemannian geom-

etry, demonstrates significant improvements in diagnostic accuracy, providing a mathematically

rigorous framework that aligns with improved results. While the study establishes the efficacy

of Riemannian geometry, it also highlights areas for further investigation. The limitations in

sample size and data imbalance in this study offer opportunities for future research to refine

and expand upon this approach. By addressing these limitations, the integration of Riemannian

methods into clinical practice has the potential to enhance the accuracy of diagnostic tools in

healthcare.

5.6 Discussion

This chapter explores the application of Riemannian geometry to improve CHD diagnosis ac-

curacy using 12-lead ECG data. By employing covariance matrices and tangent space projec-

tion, the study addresses challenges associated with high-dimensional and heterogeneous phys-

iological data. The proposed approach presents a compelling feature extraction framework for

analysing complex signal structures, demonstrating improved classification performance com-

pared to traditional machine learning and deep learning models, as reflected in ablation studies.

The utilisation of Riemannian geometry provides a mathematically rigorous approach to

analysing the non-Euclidean nature of covariance matrices derived from ECG signals. Unlike

traditional methods that may overlook such geometric properties, the proposed framework en-

sures that the underlying signal structure is preserved during analysis. The results with higher

diagnostic accuracy validate the efficacy of this approach. These findings underscores the im-

portance of tailored methodologies for ECG analysis.

However, several limitations must be considered. The relatively limited diversity of the

dataset suggests the need for validation across broader populations and some rare CHD presen-
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tations. Expanding data sources and leveraging Riemannian geometry techniques may further

enhance model generalisability.

In this chapter, we also acknowledge the significant advancements achieved through exist-

ing Deep Learning (DL) models in the field of medical diagnostics. Numerous state-of-the-art

architectures have demonstrated remarkable performance across various domains, including re-

gression and prediction tasks. However, the application of these models in our context has

been constrained by the limited resources available at the hospital. These constraints include

hardware limitations, restricted computational power, and the unavailability of large annotated

datasets typically required for training such models to their full potential.

Given these limitations, we consider to adopt a transfer learning approach by fine-tuning

a pre-trained model, which is widely regarded as a resource-efficient alternative. Fine-tuning

enables leveraging features learned from large-scale datasets and adapting them to specific tasks

with smaller datasets. Despite this strategy, our experiments revealed that even comprehensive

fine-tuning, adjusting all layers of the pre-trained models, did not yield optimal results. These

findings suggest that the pre-trained models, while effective in their original domains, may not

fully capture the complex nuances of our dataset, which is inherently characterised by unique

patient demographics with congenital heart disease.

This observation highlights the challenges of applying generalised DL models to specific

clinical data, especially when data availability is limited. It underscores the need for tailored

approaches that account for specific clinical contexts. Future work could involve exploring hy-

brid methods, such as combining traditional feature engineering with deep learning techniques,

or developing lighter, domain-specific models that are more adaptable to resource-constrained

environments. Additionally, expanding collaborations to access larger and more diverse datasets

may alleviate some of the limitations observed in this study.



Chapter 6

Predicting Cardiopulmonary Exercise

Testing Outcomes in Congenital Heart

Disease

6.1 Abstract

Cardiopulmonary Exercise Testing (CPET) provides a comprehensive assessment of functional

capacity by measuring key physiological variables including oxygen consumption (VO2), carbon

dioxide production (VCO2), and pulmonary ventilation (V E) during exercise. Previous research

has established that parameters such as peak VO2 and ratio of ventilation to carbon dioxide pro-

duction (V E/VCO2) serve as robust predictors of mortality risk in chronic heart failure patients.

In this study, we leverage CPET variables as surrogate mortality endpoints for patients with

Congenital Heart Disease (CHD). Our methodology began with digitising Electrocardiograms

(ECGs) to obtain quantifiable waveforms and the core innovation of our approach lies in exploit-

ing the Riemannian geometric properties of covariance matrices derived from 12-lead ECGs to

develop robust regression and classification models. For this purpose, we also digitised a total

of 595 CPET documents (all the test results are stored in image format) using Optical Charac-

ter Recognition (OCR) techniques and linked all the data together. Through extensive ablation

studies, we demonstrated how Riemannian embeddings enhanced by covariance augmentation

89
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techniques in Riemannian space consistently produced superior predictive performance com-

pared to conventional approaches.

6.2 Introduction

CPET is a specialised type of exercise to assess a patient’s functional capacity and exercise abil-

ity. The information collected about the heart and lungs during the test is used to understand

whether the physical response to exercise is normal or abnormal, as this is clinically important.

CPET is also a valuable tool in patient assessment and management, as it provides an objec-

tive measure of exercise capacity which can be used to identify patients at risk. The findings

are presented as a set of variables (like oxygen consumption) that can be compared with refer-

ence values obtained from a healthy population. According to a recent survey [219], CPET is

employed in 68% of the hospital departments in the UK to help in the assessment of patients

undergoing major procedures or surgeries.

Using the same set of patients (436 patients with CHD), we digitised all the available CPET

PDF documents to obtain the required exercise variables. Since the CPET results were stored

as images in a PDF document by the vendor, as in Figure 6.1, they were first converted to text

using OCR packages in Python and then all exercise results were saved in a folder. Combining

these important exercise variables with the ECG signals, we aim to develop robust regression

and classification models for predicting the important outcomes on CPET, which are reliable

indicators of mortality and morbidity in CHD patients. Summarising, the contributions of this

chapter are as follows:

• Application of Riemannian Geometry to ECG-Based Diagnosis: An important con-

tribution of this study is the utilisation of Riemannian geometric properties of covariance

matrices derived from 12-lead ECGs, thereby enabling more structured and robust feature

extraction. The chapter demonstrates how Riemannian embeddings improve classification

accuracy, allowing for enhanced diagnostic insights in CHD.

• Reiterating the Efficacy of Covariance Augmentation Methods: The chapter employs

the previously introduced covariance augmentation technique, which was presented in
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earlier chapters, for the purpose of refining the feature representation and enhancing the

generalisation of predictive models. By leveraging Riemannian space transformations, the

proposed methodology enhances the diagnostic capabilities of machine learning models

applied to ECG signals.

• Experimental Validation of Tangent Space Representation for ECGs: The chapter

conducts extensive ablation experiments to demonstrate that projecting ECG signals onto

tangent space significantly improves predictive performance for CHD patients. The chap-

ter also establishes baseline models using vendor-provided ECG features, such as PR

interval and QRS duration, to compare traditional feature-based models with advanced

geometric learning techniques.

6.3 Related Work

6.3.1 CPET as outcome variables

CPET provides invaluable insights into a patient’s cardiorespiratory fitness by measuring key

variables like oxygen consumption, carbon dioxide production, heart rate and ventilatory pa-

rameters [220]. VO2 is a crucial cardiopulmonary exercise variable that serves as a reliable

predictor of mortality and morbidity in patients with CHD. This concept is rooted in the work

of Hill et al., who introduced the idea that there is an individual exercise intensity at which VO2

no longer increases [221]. Consequently, VO2 peak represents the limit of cardiorespiratory ca-

pacity and is a strong indicator of whether individuals reach maximal conditions at the end of

a CPET. The normal range for VO2 peak is typically between 25-35 ml/kg/min. Studies have

shown that lower peak oxygen consumption (VO2 peak) values during CPET are associated with

higher risks of mortality, especially in patients undergoing major surgeries [222].

On the other hand, VO2 %pred is the percentage of the predicted maximum oxygen con-

sumption based on factors such as age, sex, and height. This measure is useful for assessing

ventilatory efficiency, and may indicate potential respiratory and/or cardiac limitations. The nor-

mal range for VO2 %pred is typically within the range of 60 to 85 percent. Another important
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variable is the V E/VCO2 ratio, which measures the relationship between pulmonary ventilation

(V E) and carbon dioxide production (VCO2). VCO2 represents the maximum amount of carbon

dioxide that can be produced during the exercise. Thus, V E/VCO2 ratio can be summarised as

the required ventilation to eliminate the CO2 produced during the test. The normal range for

V E/VCO2 is typically between 20 and 30. Previous works have demonstrated that these vari-

ables are independent predictors of a high mortality risk in patients with Chronic Heart Failure

(CHF) [223, 224]. Nanas et al. confirmed that the V E/VCO2 slope is a strong, independent

predictor of high mortality risk in CHF patients [223]. Another study demonstrated that the

V E/VCO2 slope is a significant predictor of cardiac-related hospitalisations in CHF patients

[225]. VO2 and V E/VCO2 slope values have been correlated with long-term mortality risk in

adults with CHD, with increased risk observed in cases of low VO2, low heart rate reserve, and

high V E/VCO2 in non-cyanotic heart diseases [224].

Efficiency of VO2 is also a good indicator in predicting mortality and morbidity in CHD

patients and is calculated by dividing the VO2 by the logarithm of the minute ventilation (V E),

yielding a value of an Oxygen Uptake Efficiency (OUE). OUE measures how efficiently the

body uses oxygen during the CPET and can be expressed as a slope (OUES) or a plateau (OUEP)

depending on the relationship between VO2 and V E [226]. Several studies have reported that

OUE is lower in patients with CHD compared to healthy controls, and lower OUE is associated

with increased risk of morbidity and mortality [220, 226–228]. Bongers et al. [229] conducted

a study that is relevant to our work as it examines the same set of diagnoses, including Fontan,

Tetralogy of Fallot (ToF), and Mustard. The study compared OUE in children with CHD and the

results showed that OUE was significantly lower in children with CHD than in healthy children,

with Fontan patients having the lowest OUE among the CHD groups.

Given the challenges of directly modelling mortality risk due to low prevalence, CPET of-

fers more than just a pragmatic statistical solution. It provides a dynamic approach to patient

monitoring that extends beyond mortality, which is an extreme outcome. By tracking continu-

ous variables such as VO2 peak and V E/VCO2 ratio, clinicians can capture subtle changes in

a patient’s physiological functioning, allowing for early detection of declining health, person-

alised intervention strategies, and more proactive medical management. This approach enables
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healthcare providers to assess and predict cardiovascular risk with greater sensitivity, tracking

the patient’s functional capacity and potential health trajectories long before critical events might

occur. Recent advancements also suggest the potential of predicting CPET outcomes from ECG

data using machine learning algorithms, which could further streamline the assessment process

[230].

6.4 Methods

This study aims to utilise VO2 and V E/VCO2 during CPET as a means of predicting mortality in

patients with CHD. These surrogate outcomes have demonstrated their efficacy as independent

indicators of a high mortality risk in given demographic [231]. A covariance mixing regularisa-

tion technique for augmentation was employed for ECGs. Similar to mixup approach [232], this

approach performs the interpolation on a Riemannian manifold with respect to the underlying

covariance matrices. Building upon our previous work [233], efficiency of the augmentation

technique was validated with ablation studies on a dataset of patients with CHD that was ex-

tremely small and imbalanced. This technique led to enhancements in both classification and

regression problems, which were the best results.

6.4.1 Building a regression model

In our regression problem, the dependent variables are the selected CPET outcomes like VO2

and V E/VCO2, while the independent variables (or predictor variables) are the ECG intervals

as well as ECG mappings into tangent space. These independent variables are fused to generate

predictions and account for the variation in the dependent variable, objective. Two different

regression models were used to compare the effect of fusing different input types: Support

Vector Machine (SVM) and Logistic Regression (LR). We have done ablation studies with SVM

model as well with baseline model LR. Same patient split strategy (Stratified Patient Leave-Out

(SPLO)) was used to ensure consistency between the different results. VO2 (peak and %pred)

and V E/VCO2, which are the most important outputs of CPET, are used as label.

During CPET, a breathing test is carried out in order to assess the flow of air in and out
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of the lungs. A mouthpiece is fitted in to measure the respiratory rate and levels of certain

gases. The patient is asked to ride an exercise bike for the duration of the test, and the body’s

response to exercise is assessed. During the exercise, the heart rate is also monitored by small

electrodes positioned on the chest. As can be seen in the Figure 6.1, all these values are reported

after the exercise. For the blood pressure (BP) and Oxygen saturation (SPO2), both resting and

peak values during the exercise were reported. For the other values, Oxygen uptake (VO2),

Workload (WR) and Heart Rate (HR), peak, predicted and percentage of the predicted relative

to the healthy reference values were reported.

Figure 6.1: Some important variables from a CPET PDF document.

Different types of input data were used for the implemented models, such as ECG signals

and tabular data containing calculated ECG parameters. Some of the calculated ECG parameters

like QRS duration and PR interval can be found on the ECG PDF documents alongside with the

ECG signals. Also, using the vendor manual, similar calculations performed on the extracted

ECG signals to derive those vendor features.

ECG Data Extraction - Vendor Features

ECG measurements (vendor features) extracted from the ECG PDF documents alongside with

the ECG signals. Similar calculations performed on the extracted ECG signals to derive the

vendor features; ventricular rate, PR interval and QRS duration. Extracted vendor features for a

group of patient ECG PDF documents can be seen in Figure 6.2.

Most patients have at least 1 exercise result (see Figure 6.1), although this is not the case for



Chapter 6 | Predicting Cardiopulmonary Exercise Testing Outcomes in Congenital Heart Disease 95

Figure 6.2: Vendor features extracted from the ECG letters.

every patient. Currently, we have a total of 595 exercise documents (CPET), categorised as in

Figure 6.3.

Figure 6.3: Histogram of CPET documents.

As we have a limited amount of data, we started to experiment with a rather simple Ma-

chine Learning (ML) model to get a baseline result. LR was trained on both the derived ECG

measurements (vendor features) and the calculated ECG measurements separately to predict the

CPET variables, VO2 and V E/VCO2. After the training, the models were tested on the corre-

sponding testing set that does not include any data from the patients in the training set. Vendor

list separated into two sets to match first set (vendor) with the calculated ECG measurements,

as follows:

• vendor: PR interval, QRS duration, Vent. rate

• vendor2: QT, QTc, P axes, R axes, T axes

6.4.2 Enhancing feature extraction with Riemannian geometry

We also experimented on extracted ECG signals by mapping each patient to a tangent space.

Overall process can be seen in Figure 6.4. We exploit tangent spaces to project covariance
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matrices and extract more coherent features. SVM was trained on the projected tangent space

of the ECG aligned time-series data. ECG data were also aligned by using R peak points. After

the training, the models were tested on the corresponding testing set that does not include any

data from the patients in the training set.

Extracting
ECGs

Detecting key
wave forms

(R-peak)

Aligning
ECGs

Calculate
covariance
matrices

Project to
tangent
space(s)

Regression /
Classification

Figure 6.4: Overall process of using ECG signals.

As covariance matrices are Symmetric Positive Definite (SPD) matrices, they must be anal-

ysed in a Riemannian manifold. Riemannian distance metric is used to project covariance matri-

ces onto tangent space while respecting their geometry. To achieve this, typically, the covariance

matrices are projected onto a common tangent space based on Equation 5.2. This projection

enhances the performance of models that depend on distance metrics between the sample co-

variance matrices, and it has been successful in processing high-dimensional neurophysiological

data.

6.4.3 Regressing patient specific data out

As CPET assesses the capacity of an individual’s cardiovascular system, a number of reference

values have been proposed based on sex, age and Body Mass Index (BMI). Since these values

are based on population and body characteristics, they were regressed out in order to avoid

any potential bias in the model’s predictive capabilities. The objective is to generate an output

that is dependent completely on the desired input (such as ECG signals), irrespective of the

characteristics of the patient.

6.5 Results

First experiments, to establish a baseline, were carried out with ECG features using tabular data,

such as PR interval, QRS duration and ventricular rate. Baseline model LR were trained using
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both vendor and calculated ECG features. For all the regression tasks, following evaluation met-

rics are reported; R2, adjusted R2, Root Mean Square Error (RMSE) and correlation coefficient.

Table 6.1: Regression results on tabular data (using vendor list), with baseline LR.

R2 Adjusted R2 RMSE Correlation Coefficient Predicted Label Input Data

Vendor ECG features -0.080 -0.086 8.695 0.196 V E/VCO2 PR interval, QRS duration, Vent. rate
Vendor ECG features -0.093 -0.099 9.221 -0.001 VO2 (%pred) PR interval, QRS duration, Vent. rate
Vendor ECG features -0.054 -0.060 0.444 0.051 VO2 (peak) PR interval, QRS duration, Vent. rate

Calculated ECG features -0.171 -0.178 9.056 -0.025 V E/VCO2 PR interval, QRS duration, Vent. rate
Calculated ECG features -0.106 -0.112 9.274 -0.021 VO2 (%pred) PR interval, QRS duration, Vent. rate
Calculated ECG features -0.058 -0.064 0.445 0.030 VO2 (peak) PR interval, QRS duration, Vent. rate

Table 6.1 summarises all the evaluation metrics for each prediction label, V E/VCO2, VO2

(%pred) and VO2 (peak). There was no correlation between the prediction of the model and the

actual exercise value. Therefore, using ECG parameters alone was not sufficient to create a good

regression model. These ECG parameters are often reported in ECG PDF documents but are not

sufficient to train a regression model. Kernel Density Estimations (KDEs) are also plotted in

Figure 6.5 to show the distribution of the actual and predicted values. These plots show that all

predictions fall within a narrow range, while actual values vary over a wide range.

(a) KDE for V E/VCO2 (b) KDE for VO2 (%pred)

Figure 6.5: Kernel Density Estimations (KDEs) of the baseline model LR (using vendor list).

Regression line plots are also shared in Figure 6.6 to show the relationship between the actual

and the predicted values. These plots show that all predictions fall within a narrow range, while

actual values vary over a wide range. And hence, a flatter regression line is observed which is

also reflected poorly in the results.

After these experiments on the vendor and the calculated ECG measurements, other list of

vendor features (vendor2) are used in similar manner to get the regression results on. This time,
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(a) Regression line for V E/VCO2 (b) Regression line for VO2 (%pred)

Figure 6.6: Regression line plots of the baseline model LR (using vendor list).

only the vendor features QT, QTc, P, R and T axes were used. Table 6.2 summarises all the

evaluation metrics for each prediction label, V E/VCO2, VO2 (%pred) and VO2 (peak). Some

of the results achieved an improvement over those of the first set of vendor features (vendor),

VO2 (%pred) and VO2 (peak). However, there was no evidence of improvement for V E/VCO2,

indicating a lack of consistency between the results.

Table 6.2: Regression results on tabular data (using vendor2 list), with baseline LR.

R2 Adjusted R2 RMSE Correlation Coefficient Predicted Label Input Data

Vendor ECG features -0.166 -0.176 9.034 -0.117 V E/VCO2 QT, QTc, P axes, R axes, T axes
Vendor ECG features 0.009 0.001 8.774 0.328 VO2 (%pred) QT, QTc, P axes, R axes, T axes
Vendor ECG features 0.069 0.060 0.417 0.354 VO2 (peak) QT, QTc, P axes, R axes, T axes

KDE are also plotted in Figure 6.7 to show the distribution of the actual and predicted values.

Again, as in the first set of vendor features (vendor), these plots show that all predictions fall

within a narrow range, while actual values vary over a wide range.

(a) KDE for V E/VCO2 (b) KDE for VO2 (%pred)

Figure 6.7: Kernel Density Estimations (KDEs) of the baseline model LR (using vendor2 list).



Chapter 6 | Predicting Cardiopulmonary Exercise Testing Outcomes in Congenital Heart Disease 99

In addition to KDE plots, regression line plots are also shared in Figure 6.8 as a way to

visually depict the relationship between actual and predicted values. Again, as in the first set of

vendor features (vendor), these plots show that all predictions fall within a narrow range, while

actual values vary over a wide range. It also shows that a flatter regression line is observed,

which is also reflected in the results.

(a) Regression line for V E/VCO2 (b) Regression line for VO2 (%pred)

Figure 6.8: Regression line plots of the baseline model LR (using vendor2 list).

In addition to the baseline model (LR), SVM was also trained using vendor features to

demonstrate that ECG parameters alone are insufficient for creating a reliable regression model.

As illustrated in Table 6.3, a comprehensive overview of the evaluation metrics for each predic-

tion label is provided, including V E/VCO2, VO2 (%pred), and VO2 (peak). A small improve-

ment in performance was observed across all metrics when compared to the initial experiment

results presented in Table 6.1, with the exception of VO2 (%pred) and VO2 (peak) in Table 6.2.

Table 6.3: Regression results on tabular data, with SVM model.

R2 Adjusted R2 RMSE Correlation Coefficient Predicted Label Input Data

Vendor ECG features -0.109 -0.118 10.613 0.247 V E/VCO2 PR interval, QRS duration, Vent. rate
Vendor ECG features -0.177 -0.183 9.567 0.188 VO2 (%pred) PR interval, QRS duration, Vent. rate
Vendor ECG features 0.024 0.018 0.427 0.243 VO2 (peak) PR interval, QRS duration, Vent. rate

KDE are also plotted in Figure 6.9 to show the distribution of the actual and predicted values.

Again, as in the first set of vendor features (vendor), these plots show that all predictions fall

within a narrow range, while actual values vary over a wide range.

In addition to KDE plots, regression line plots are also shared in Figure 6.10 as a way to

visually depict the relationship between actual and predicted values. Again, as in the first set of
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(a) KDE for V E/VCO2 (b) KDE for VO2 (%pred)

Figure 6.9: Kernel Density Estimations (KDEs) of the SVM model (using vendor list).

vendor features (vendor), these plots show that all predictions fall within a narrow range, while

actual values vary over a wide range. It also shows that a flatter regression line is observed,

which is also reflected in the results.

(a) Regression line for V E/VCO2 (b) Regression line for VO2 (%pred)

Figure 6.10: Regression line plots of the SVM model (using vendor list).

As there was no correlation between the prediction and the actual value, and all predictions

fall within a narrow range, we explored tangent space mappings. Similar to our previous works,

we first calculated covariance matrices of the ECG signals and then map all to the tangent space

using Riemannian distance. It yielded better results and also a better density plot of the predic-

tions, as can be seen in Figure 6.11.

Table 6.4 summarises all the evaluation metrics for each prediction label, V E/VCO2, VO2

(%pred) and VO2 (peak). The correlation between the model’s prediction and the actual exercise

value was better, reaching 0.57 for VO2 (peak). It was way better than the parameters that are

often reported in ECG PDF documents, such as PR interval and QRS duration. KDEs plotted in



Chapter 6 | Predicting Cardiopulmonary Exercise Testing Outcomes in Congenital Heart Disease 101

Table 6.4: Regression results on ECGs, with SVM model.

R2 Adjusted R2 RMSE Correlation Coefficient Predicted Label Input Data

Tangent Space 0.011 0.082 8.178 0.349 V E/VCO2 ECGs
Tangent Space 0.218 0.046 7.892 0.550 VO2 (%pred) ECGs
Tangent Space 0.303 0.149 0.358 0.573 VO2 (peak) ECGs

Figure 6.11 to show the distribution of the actual and predicted values. These plots show that all

predictions are much closer to the distribution of actual exercise values.

(a) KDE for V E/VCO2 (b) KDE for VO2 (%pred)

Figure 6.11: Kernel Density Estimations (KDEs) of the SVM model (on ECGs).

Regression line plots are also shared in Figure 6.12 as a way to show the relationship between

actual and predicted values. As there was an improvement over the previous results, this was

also reflected in the regression lines. These plots show that all predictions are close to the range

of actual values. It also shows that a more sloped regression line is observed, which is also

reflected in the results.

(a) Regression line for VE/VCO2 (b) Regression line for VO2 (%pred)

Figure 6.12: Regression line plots of the SVM model (on ECGs).
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6.5.1 From regression to classification

In order to transform the regression problem into a relatively simple classification problem, clin-

ical groups were determined for each label of V E/VCO2, VO2 (%pred) and VO2 (peak) with

data distribution of each class as shown in Figure 6.13, with the grouping boundaries are indi-

cated by red lines. The V E/VCO2 and VO2 (peak) variables were grouped into two categories,

whereas VO2 (%pred) was grouped into four categories. We have done ablation studies with

a Support Vector Machine (SVM) model and evaluated the model performance using multiple

metrics that involve the accuracy, AUC and F1 score.

• V E/VCO2

– Less than 35

– Above 35

• VO2 (peak)

– Less than 1.2

– Above 1.2

• VO2 (%pred)

– Less than 50

– 50 to 65

– 65 to 75

– Above 75

Initial experiments were carried out without any augmentation in order to establish a base-

line. However, it was observed that utilising vendor features derived from the ECG letters as

inputs to the SVM model did not yield optimal results, as previously reported in Table 6.3 on

the regression section. So, without utilising vendor features, the baseline SVM model was em-

ployed with two separate inputs: ECGs alone, and ECGs with covariance augmentations. A

notable improvement (up to 5% on accuracy and AUC, 4% on F1 score) was observed when the
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Figure 6.13: Data distribution of each class, with CPET groups.

ECG data combined with the covariance augmentations, which proved to be advantageous in

terms of the classification metrics.

Table 6.5: Classification results using regression groups with SVM model.

Predicted Label Input Augmentation Accuracy AUC F1 macro
V E/VCO2 ECGs 0.672 ± 0.212 0.577 ± 0.141 0.534 ± 0.181

V E/VCO2 ECGs covariance 0.704 ± 0.195 0.622 ± 0.183 0.572 ± 0.197
VO2 (%pred) ECGs 0.302 ± 0.163 0.506 ± 0.225 0.229 ± 0.127

VO2 (%pred) ECGs covariance 0.324 ± 0.132 0.520 ± 0.225 0.236 ± 0.106
VO2 (peak) ECGs 0.614 ± 0.137 0.585 ± 0.162 0.535 ± 0.167

VO2 (peak) ECGs covariance 0.657 ± 0.150 0.620 ± 0.126 0.553 ± 0.152

Building upon our previous work [233], we employed a sophisticated augmentation tech-

nique using Riemannian geometry on covariance matrices. The weighted Riemannian mean is

computed by minimising the sum of squared Riemannian distances to the given matrices, as

formalised in Equation 5.3. A comprehensive summary of all results is provided in Table 6.5,

with the most optimal results indicated in bold. It was observed that applying covariance aug-

mentations only to ECGs was able to increase accuracy, AUC and the F1 score for all classes by

up to 5%. Our approach to use a sophisticated augmentation technique yielded the best results.

The utilisation of Riemannian geometry augmentations on the covariance matrices of ECGs has

been shown to produce features that are more coherent, as evidenced by the regression problems

previously discussed.

Furthermore, Figure 6.15 illustrates the learning curves for the classification model, demon-

strating how increasing the number of patient samples improves performance. It demonstrates

a clear trend: as the sample size (number of patients) increases, the performance of the model
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(a) ECG without

augmentations

(b) ECG with

augmentations

Figure 6.14: Comparison of t-SNE visualizations on the tangent space.

improves significantly. Initially, with a smaller set of patients, the model exhibited high variance

which resulted in inconsistent predictions. However, as more patient data was incorporated, ac-

curacy, AUC, and F1 score steadily improved. Figure 6.15a shows the impact of sample size on

model performance for V E/VCO2, illustrating that as the number of patient samples increased

from 100 to 250, accuracy rose from 0.62 to 0.71, AUC improved from 0.48 to 0.62, and F1

macro score increased from 0.41 to 0.57. These observations suggest that an expanded dataset

improves the model’s ability to generalise effectively, leading to a reduction in the probability

of overfitting and an enhancement in its predictive robustness.

(a) V E/VCO2 (b) VO2 (peak) (c) VO2 (%pred)

Figure 6.15: Comparison of learning curves for the classification model.

Moreover, Figure 6.16 presents the projected model scores for V E/VCO2, providing accu-

racy, AUC and the F1 score, across a range of sample sizes up to 400 patients. This rough

analysis reveals that with 300 patient samples, accuracy reaches at 0.81, AUC reaches 0.61, and
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F1 score reaches at 0.62. As the dataset expands to 400 patient samples, accuracy improves

to 0.89, AUC rises to 0.68, and F1 score reaches 0.73. This trend underscores the advantage

of incorporating more patient data, as it enables the model to learn more complex patterns and

enhance prediction performance. These findings underscore the importance of continuous data

collection and model refinement to optimise predictive accuracy in healthcare applications.

Figure 6.16: Learning curve projection for the classification model on V E/VCO2.

6.6 Discussion

Medical data analysis, particularly concerning CHD, poses challenges due to the inherent com-

plexity and imbalanced nature of the data. Large machine learning models often struggle in such

contexts, primarily due to their sensitivity to data distribution and inefficiency in learning from

datasets with limited examples. Our approach leverages the geometric properties of Riemannian

spaces, offering a more robust and discriminative feature space for machine learning models.

By utilising the non-Euclidean nature of the data, our method captures intrinsic geometrical

structures that are frequently overlooked by conventional methods. Our study demonstrated

promising results in predicting surrogate mortality for patients with congenital heart disease.

The proposed projection of augmented covariance matrices to Riemannian spaces significantly

improved performance with small and extremely imbalanced 12-lead ECG data. The experi-

mental results support the hypothesis that the proposed solution is effective for both regression

and classification problems.

This chapter explores the importance of geometric learning and augmentation techniques in

predicting cardiopulmonary exercise testing (CPET) outcomes in patients with congenital heart

disease (CHD). Our results demonstrate that traditional ECG parameters alone are insufficient
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for accurately predicting critical outcomes such as oxygen consumption (VO2) and ventilatory

efficiency (V E/VCO2). This results align with the previous literature indicating that a multi-

factorial approach is necessary to capture the complexity of cardiovascular responses in CHD

patients[146].

The application of Riemannian geometry for feature extraction from ECG signals represents

a significant advancement in our methodology. By projecting covariance matrices onto tangent

spaces, we were able to derive features that capture the underlying geometric structure of the data

better. This approach improved the correlation between predicted and actual CPET outcomes.

The enhanced performance of our models when using tangent space mappings suggests that

traditional linear methods may overlook critical relationships in high-dimensional data. This

finding is particularly relevant in the context of CHD, where the physiological responses to

exercise can demonstrate complexity.

While the results of this study are promising, certain limitations should be acknowledged,

including the relatively small sample size which may affect the generalisability of the findings.

Future research should prioritise validating the proposed models in larger and more diverse co-

horts to ensure their applicability across different patient populations. Furthermore, although

this study focused primarily on some of the CPET outcomes, examining additional CPET vari-

ables and their interactions could provide further insights in CHD patients. Additionally, reliance

on historical clinical data may introduce potential biases related to changes in treatment proto-

cols or advancements in medical technology over time. To maintain the relevance and accuracy

of the models in clinical practice, continuous updates to both the dataset and the framework may

be required.

In conclusion, this chapter highlights the potential of leveraging geometrical techniques to

enhance the prediction of CPET outcomes in congenital heart disease. By employing Rieman-

nian based feature extraction methods, we can capture the intrinsic geometry of the data and

thus improve our understanding of exercise capacity and its implications for patient health.



Chapter 7

Integrating Information from Clinical

Letters with ECGs

7.1 Abstract

Cardiopulmonary Exercise Testing (CPET) provides a comprehensive assessment of functional

capacity by measuring key physiological variables including oxygen consumption (VO2), carbon

dioxide production (VCO2), and pulmonary ventilation (V E) during exercise. Previous research

has established that parameters such as peak VO2 and ratio of ventilation to carbon dioxide

production (V E/VCO2) ratio serve as robust predictors of mortality risk in chronic heart fail-

ure patients. In this study, we leverage CPET variables as surrogate mortality endpoints for

patients with Congenital Heart Disease (CHD). To our knowledge, this represents the first suc-

cessful implementation of an advanced machine learning approach that predicts CPET outcomes

by integrating Electrocardiograms (ECGs) with information derived from clinical letters. Our

methodology began with extracting unstructured patient information—including intervention

history, diagnoses, and medication regimens—from clinical letters using natural language pro-

cessing techniques, organising this data into a structured database. We then digitised ECGs

to obtain quantifiable waveforms and established comprehensive data linkages. The core in-

novation of our approach lies in exploiting the Riemannian geometric properties of covariance

matrices derived from both 12-lead ECGs and clinical text data to develop robust regression and

107
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classification models. Through extensive ablation studies, we demonstrated that the integration

of ECG signals with clinical documentation, enhanced by covariance augmentation techniques

in Riemannian space, consistently produced superior predictive performance compared to con-

ventional approaches.

7.2 Introduction

CHD represents the most frequent form of congenital anomaly, with an incidence rate of 1 in 180

births in the United Kingdom. With the advancements in surgical techniques, the overall survival

rate has increased to over 94%, providing more individuals with the opportunity to reach adult

life. Similar improvements have been observed in other developed countries, with the prevalence

of adult CHD now documented at approximately 4 per 1000 adults. This highlights the need for

the development of clinical databases capable of identifying, characterising and monitoring local

and regional CHD patient populations.

A number of developed countries have already invested a significant period of time in es-

tablishing national CHD databases, which have subsequently become an invaluable resource for

a range of purposes including the planning of healthcare services, facilitating research, and the

monitoring of trends in outcomes. Notable databases include the CONgenital CORvitia (CON-

COR) registries, the BELgian COngenital heart disease Database combining Administrative and

Clinical data (BELCODAC), the SWEDish registry of CONgenital heart disease (SWEDCON),

and the National Institute for Cardiovascular Outcomes Research (NICOR) in the United King-

dom [234, 235]. More recently, the Congenital Heart Initiative (CHI) in the United States has

also been established. Despite their efficacy, these databases are labour-intensive, requiring sub-

stantial time and resources, and may be prone to inaccuracies.

In Scotland, the care of adults diagnosed with CHD is centralised and commissioned by the

National Service Division of NHS Scotland, which is hosted by the Golden Jubilee National

Hospital in Glasgow. The Scottish Adult Congenital Cardiac Service (SACCS) is currently re-

sponsible for the care of an estimated 3,000 patients diagnosed with moderate or complex forms

of CHD, in addition to a further 7,000 to 8,000 patients with less severe cases of CHD, who are
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seen less frequently. The latter group with less severe cases of CHD is primarily cared for by

cardiologists at local cardiac centres. The objective was to create a clinical database with a mini-

mal dataset of approximately 1400 patients. This would facilitate the accurate identification and

analysis of all SACCS CHD patients’ diagnoses, interventions, medications, and demographic

data. Summarising, the contributions of this chapter are as follows:

• Integration of Multi-Modal Data: This chapter presents a novel approach for predicting

Cardiopulmonary Exercise Testing (CPET) outcomes in Congenital Heart Disease (CHD),

by integrating both structured and unstructured patient data. The study incorporates ECG

signals with clinical letters using Natural Language Processing (NLP) techniques, trans-

forming unstructured text into meaningful data representations. This integration has been

shown to enhance predictive performance by converting heterogeneous clinical records

into structured formats, thereby enabling more effective analysis.

• Application of Riemannian Geometry: Another contribution of this study is the utilisa-

tion of Riemannian geometric properties of covariance matrices derived from both 12-lead

ECGs and clinical information, thereby enabling more structured and robust feature ex-

traction. The chapter demonstrates the advantages of non-Euclidean feature spaces and

how Riemannian embeddings improve classification accuracy, allowing for enhanced di-

agnostic insights in CHD.

• Reiterating the Efficacy of Covariance Augmentation Methods: The chapter employs

the previously introduced covariance augmentation technique, which was presented in

earlier chapters, for the purpose of refining the feature representation and enhancing the

generalisation of predictive models. By leveraging Riemannian space transformations, the

proposed methodology enhances the diagnostic capabilities of machine learning models.

• Experimental Validation of Tangent Space Representation: The chapter conducts ex-

tensive ablation experiments to demonstrate that projecting both ECG signals and clinical

information onto tangent space significantly improves predictive performance for CHD

patients. The integration of multi-modal patient data with advanced geometric learning
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methods has been demonstrated to produce superior results in terms of model perfor-

mance, both for regression and classification.

7.3 Methods

7.3.1 Data extraction from clinical letters

First draft of the data extraction algorithm is experimented on a small batch of 60 randomly se-

lected letters, to capture a generic image of different writing styles of the cardiology consultants.

Total of 60 letters, 12 letters per cardiology consultant, were randomly selected to develop an

algorithm that is sensitive to different writing styles. The algorithm first converts all the PDF let-

ters into text files and stores them into a secondary folder, to make the letters easy to process and

work on. Next, using key words appearing in the text and regular expression techniques, the al-

gorithm extracts demographic and clinical information including hospital number, date of birth,

name, sex, diagnosis, intervention, medication, clinic date, postal code, health board, height,

weight, and arrhythmia class of each patient. The extracted data is then preprocessed to remove

all the unnecessary tokens such as unwanted characters, bullet points, double spaces. The let-

ters that do not contain the diagnosis, intervention and medication information are marked as

incomplete letters and then excluded from the data extraction. At the final step, after extracting

all the information, European Society of Cardiology (ESC) adult CHD lesion complexity classi-

fication is assigned by matching keywords in the diagnosis section of the letter. These keywords

are populated using a permutation of different cardiac condition names for each classification.

ESC classification of mild, moderate, and great complexity of CHD was used for the complexity

assignment. Medication names were obtained from the British National Formulary (BNF) pub-

lished list of medication and matched for all medications listed in the patient letter. Intervention

names were taken from published CHD treatment lists.

7.3.2 Data processing and populating the database

In total, 17 clinical variables were extracted from the letters into columns of a structured table as

summarised in Table 7.1. These 17 columns of data are stored as text file and then populated to
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a database (NoSQL/MongoDB). All the required checks were made to ensure that the extracted

information stored correctly in the populated database without any problems. For any possible

changes on the database after the first initialization, it reads the text output created by the data

extraction algorithm and then crosschecks the current database to identify whether the patient

is new or not. It identifies new patients if the hospital number is not already stored on the

database and updates information for patients already present in the database. With such control

mechanism, it allows only the single latest version of the patient information to be present on

the database.

Table 7.1: List of extracted variables from the clinical letters.

Name Type Explanation
CHI Number String The unique identifier of the patient (Community Health Index)

Name String The full name of the patient
DOB String The date of birth of the patient

Diagnosis String All the text in the diagnosis section of the patient’s clinical letter
Diagnosis List String List of extracted diagnoses
Intervention String All the text in the intervention section of the patient’s clinical letter

Intervention List String List of extracted interventions
Medication String All the text in the medication section of the patient’s clinical letter

Medication List String List of extracted medications
ESC Classification String ESC classification as mild, moderate and great complexity of CHD

Arrhythmia String Arrhythmia class of the patient
Clinic Date Date The date of visit of the patient.

Health Board String Health board where the postcode is located
Postcode String Postcode of the patient’s usual place of residence

Sex String Sex at birth
Height Integer Height of the patient
Weight Integer Weight of the patient

After all the steps, the populated database is full of updated information and ready to be

inspected by the clinicians and to be used for various data analysis and data visualization tasks.

Total of 1409 clinical letters were uploaded to the database, from different cardiologists over a

span of 2-years’ time. All the steps, data extraction and populating a database, are performed

automatically so that any user intervention is not necessary and clinicians do not have to go

through each patients’ clinical letter manually.

In addition to clinical data, 595 cardiopulmonary exercise test (CPET) documents from the

same patient set were digitised using Optical Character Recognition (OCR) techniques, with all
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data linked through unique patient identifier numbers. Typically, each patient may have 1 to 3

CPET documents corresponding to different testing sessions conducted over time, depending

on the patient’s follow-up schedule and clinical needs. However, it is important to note that the

availability of CPET documents depends on clinical circumstances, as well as the assessment of

the necessity and feasibility of conducting such testing for each individual patient. Although the

cohort consists of 436 patients, the available CPET documents are restricted to a subset of 258

patients who have undergone the testing.

For the purpose of this study, we used the CPET document that was closest in date to the

ECG data for each patient. This approach ensures that the data reflects the most relevant physi-

ological status corresponding to the ECG measurements, providing a more accurate and aligned

analysis. Utilising the CPET document closest to the ECG date, we aim to minimise potential

discrepancies that could arise from changes in the patient’s condition over time. Key variables

such as VO2 and V E/VCO2 were selected as surrogate outcomes for the assessment of mortal-

ity risk. Furthermore, a similar selection approach was also employed for the clinical letters to

gather the closest letter in date to the ECG data for each patient, to ensure that the information

was as relevant as possible. In total, 17 clinical variables were extracted from the letters into

columns of a structured table. With the exclusion of demographic data, list of extracted diag-

noses (Diagnosis List), interventions (Intervention List) and medications (Medication List) were

combined to gather important information about history of the patients. As illustrated in Figure

7.1, a comprehensive overview of the entire data extraction process is provided.

Figure 7.1: Summary of the data extraction steps.
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7.3.3 Dimensionality reduction for visualization

t-distributed Stochastic Neighbor Embedding (t-SNE) is a data visualization technique that sim-

plifies more complex data into 2 or 3 dimensions that are easier to visualise and interpret. As

t-SNE projects the data into a low-dimensional embedding space, it uses the distance between

each data point as a way of calculation of the similarity. Therefore, if 2 patients’ clinical char-

acteristics are close in high dimensional space, they are going to be assigned with a high proba-

bility of being neighbour points and located in close proximity of each other. The aim of these

embeddings is to approximate the data distributions as closely as possible with the original high-

dimensional dataset. As a pilot exploration of the database, we applied unsupervised learning

to the following domains including diagnosis, intervention, medication, and ESC classification

lists. In this way, we aim to qualitatively assess the data-driven low-dimensional embeddings

that form notional clusters of patients with relation to our knowledge about the data.

The aim of the low dimensional embedding is to approximate the distributions as close as

possible with the original, high-dimensional data. Mathematically, the similarity between pa-

tients xi and x j is the conditional probability pi/ j with

pi/ j =
exp(−∥xi − x j∥2/2σ2

i )

∑k ̸=i exp(−∥xi − xk∥2/2σ2
i )

(7.1)

An important parameter in t-SNE is the perplexity, that relates to the variance of the Gaus-

sian distribution, and it can be interpreted as a smoothness factor of the number of neighbour

points. It is reasonable to conclude that changes in perplexity value will consequently lead to

modifications in the t-SNE visualisation. Thus, if the perplexity values is small, there will be a

minimal number of pairs that exhibit any degree of attraction, resulting in an embedding that is

relatively a bubble-like, rounded shape. This phenomenon can be observed in the embeddings

depicted in the first two columns of the Figure 7.4. Conversely, if the perplexity is high, clusters

will tend to contract into more compact structures. In Figure 7.4, we show how perplexity affects

the t-SNE results and also highlight with a red rectangle the results we choose to demonstrate in

Figure 7.3.

Moreover, k-means clustering was employed to facilitate a comparison between the data-
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driven clusters and the default grouping based on disease complexity. The optimal number of

clusters was determined through a process of 100 bootstrap repetitions of t-SNE, followed by

k-means clustering. The degree of agreement between the k-means clusters and the disease

complexity grouping was estimated based on the Jaccard Similarity Index (JSI), which is the

ratio of the intersection of two clusters divided by their union. JSI ranges from 0 to 1, with

higher values indicating greater similarity between two clusters.

7.3.4 Integrating the information with ECGs

From the initially extracted 17 clinical variables in Table 7.1, we focused on three key categories

of patient history: diagnoses, interventions, and medications, excluding demographic data. To

integrate this clinical history information with the ECG signals in tangent space, we developed a

comprehensive text preprocessing pipeline. The pipeline transformed clinical letters into struc-

tured numerical representations through the following steps. First, we converted the textual

content into a sparse matrix representation, where each row corresponds to a unique clinical let-

ter and each column represents a distinct term found across all letters. This matrix captured term

frequencies, quantifying the occurrence patterns of medical terminology within each document.

We then concatenated these word-frequency matrices with the tangent space mapping matrices

derived from ECG signals to create unified input features for our model. This fusion approach

enabled us to simultaneously leverage both the semantic patterns present in clinical documen-

tation and the geometric properties inherent in ECG signals, providing a more comprehensive

representation of each patient’s cardiac condition. The combined feature space preserved both

key features of clinical assessments and the characteristics of electrical cardiac activity.

Figure 7.2: Text to matrix transformation using CountVectorizer.
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For the augmentation of clinical data, a similar weighted mean approach in Equation 5.3 is

applied to the vectors that contain clinical letter information, without any distance function. The

two vectors were averaged according to the specified weight α . All the augmentation is applied

in the same method in order to maintain consistency in the value of α for both ECG and clinical

data augmentations of the same data. To qualitatively validate the effectiveness of this approach,

we employed t-SNE visualizations [213] on the tangent space, comparing representations using

only original data and those combined with the mixed data, as illustrated in Figure 7.11.

7.4 Results

A total of 1409 patient letters were analysed from a cohort of approximately 11,000 Scottish

patients with CHD, of whom 3000 were under regular follow-up. The mean age of the co-

hort was 35.4 years (standard deviation [SD] 14.6; interquartile range [IQR] 45–24), with 737

patients (52.3%) identified as male and 672 patients (47.6%) as female. 284 patients (20.1%)

exhibited mild complexity, 698 patients (49.5%) exhibited moderate complexity, and 369 pa-

tients (26.1%) exhibited severe complexity according to the ESC classification. 43 patients had

no classifiable CHD (3.1%), such as anomalous right subclavian artery. And 8 patients (0.5%)

did not have CHD, such as carcinoid disease. The completeness of data extraction was tested

for each variable and is summarised in Table 7.2.

Figure 7.3 illustrates the t-SNE embeddings within the domains of diagnosis, intervention,

medication, and ESC classification lists. The mean JSI across 100 bootstrap repetitions was 0.28,

0.2, 0.14, and 0.97 for diagnosis, intervention, medication, and ESC classification, respectively.

These values align with the qualitative results presented in Figure 7.5.

The selection of optimal t-SNE parameters and their impact on the embeddings are illus-

trated in Figure 7.4. In Figure 7.4, we show how perplexity affects the t-SNE results and also

highlight with a red rectangle the results we choose to demonstrate in Figure 7.3. In Figure 7.4,

each column corresponds to a perplexity parameter of 3, 5, 30, 50 and 100, respectively. Each

row corresponds to diagnosis, intervention, medication and ESC classification embeddings, re-

spectively.
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Table 7.2: Completeness of data extraction for all variables.

Attribute Completeness (%)
CHI Number 100

Name 100
DOB 100

Diagnosis 100
Diagnosis List 96.95
Intervention 90.84

Intervention List 81.62
Medication 95.39

Medication List 91.55
ESC Classification 96.95

Arrhythmia 13.77
Clinic Date 100

Health Board 100
Postcode 100

Sex 100
Height 53.16
Weight 47.13

Also, in Figure 7.5, the low-dimensional embeddings are coloured according to disease com-

plexity and are compared with data-driven clustering (k-means). First row shows the stability

score of k-means clustering based on 100 bootstrap repetitions. The middle row shows the

embeddings colored based on the data-driven (k-means) clustering and the bottom row shows

the same low-dimensional embeddings coloured according to the disease complexity. The low-

dimensional embeddings have been labelled according to the a priori data by human design, and

Figure 7.3: t-SNE dimensionality reduction of diagnosis, intervention,
medication, and ESC classification.
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thus represent the diagnostic components of the data set, classified as either mild, moderate or

severe complexity. The corresponding ESC classification lists are indicated by the colours blue,

orange, and green, respectively. The results indicate a direct link between disease complexity

and ESC-based embedding, which is also reflected in the almost perfect agreement between the

embeddings and the classification. However, there is no evidence that the diagnostic embed-

dings overlap with the diagnostic classification. Furthermore, the diagnostic embeddings resem-

ble disease complexity more closely than the interventions and the medication embeddings, as

demonstrated quantitatively in Figure 7.3.

A random sample comprising 5% of patient letters was subjected to manual examination to

evaluate the accuracy of the data extraction algorithm as applied to diagnosis, intervention and

medications. The dataset was evaluated manually by an independent skilled observer (F.C.J.),

a final-year medical student working in the CHD department, with regard to the accuracy in

extracting diagnostic, interventional and medication-related data. The data extraction algorithm

was able to accurately identify diagnoses, intervention, and medications in 94%, 93%, and 93%

accurately. Inaccuracies were caused by the following factors: a genetic diagnosis not listed

(DiGeorge syndrome) in 1 case; in another letter, diagnoses were listed with social history in

the original letter, and this was extracted into the diagnostic list; in another 3 letters, clinical

diagnoses and interventions were listed in the same section under diagnosis, and this was in-

appropriately listed as diagnoses only; in another 2 letters that did not list either diagnoses or

interventions, the algorithm incorrectly retrieved diagnostic and intervention history.

7.4.1 Regression with combined information

Another series of experiments were performed combining information from clinical letters with

ECG signals projected onto tangent space. All the information about history of the patients

regarding to interventions, diagnoses and medications is used. More specifically, frequency

count of each unique word is computed and it transformed into a numerical matrix of word

counts. These matrices are then concatenated with the tangent space mapping matrices to feed

the model. To compare the effect of fusing different input types, we employed two regression

models: Support Vector Machine (SVM) and Logistic Regression (LR). Ablation studies were



Chapter 7 | Integrating Information from Clinical Letters with ECGs 119

Fi
gu

re
7.

5:
C

lu
st

er
in

g
re

su
lts

.



Chapter 7 | Integrating Information from Clinical Letters with ECGs 120

conducted using the SVM model, with the LR model serving as the baseline from the previous

chapter.

The data was split into training and testing sets 100 times using a pseudo-randomised, strat-

ified patient leave-out evaluation. This method ensured that the testing set was representative of

all classes by randomly selecting one patient from each class for the testing set, while the remain-

ing patients populated the training set. For each run, the SVM model was trained on the training

set and then tested on the corresponding testing set, which did not include any data from the

patients in the training set. This stratified patient leave-out method enhances the model’s ability

to predict unseen data by reducing bias [32]. The same patient split strategy was used to ensure

consistency across different results. Table 7.3 summarises all the results, it achieved better re-

sults in terms of all the evaluation metrics. The correlation between the model’s prediction and

the actual exercise value was much better, reaching 0.66 for VO2 (peak).

Table 7.3: Regression results on ECGs + clinical letters, with SVM model.

R2 Adjusted R2 RMSE Correlation Coefficient Predicted Label Input Data

Tangent Space 0.111 0.084 7.754 0.478 V E/VCO2 ECGs + clinical letters
Tangent Space 0.263 0.101 7.662 0.658 VO2 (%pred) ECGs + clinical letters
Tangent Space 0.395 0.261 0.333 0.660 VO2 (peak) ECGs + clinical letters

Kernel Density Estimations (KDEs) plotted in Figure 7.6 to show the distribution of the

actual and predicted values. These plots show that all predictions are much closer to the distri-

bution of actual exercise values. These plots also demonstrated a positive alignment with the

better results.

(a) KDE for V E/VCO2 (b) KDE for VO2 (%pred)

Figure 7.6: Kernel Density Estimations (KDEs) of the SVM model.
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Regression line plots are also shared in Figure 7.7 to show the relationship between actual

and predicted values. Improvements in the results are reflected here as well as in the KDE plots.

These plots show that all predictions are close to the range of actual values. It also shows that a

more sloped regression line is observed, which is also reflected in the results.

(a) Regression line for V E/VCO2 (b) Regression line for VO2 (%pred)

Figure 7.7: Regression line plots of the SVM model.

Covariance augmentation technique, which has been successfully applied before to further

optimise the results, was also applied here in order to improve the results. Table 7.4 summarises

all the results, which achieved better results in terms of all the evaluation metrics.

Table 7.4: Regression results on ECGs + clinical letters, with SVM model using covariance
augmentations.

R2 Adjusted R2 RMSE Correlation Coefficient Predicted Label Input Data

Tangent Space 0.111 -0.084 7.754 0.478 V E/VCO2 ECGs + clinical letters
Tangent Space (aug) 0.130 -0.060 7.670 0.491 V E/VCO2 ECGs + clinical letters

Tangent Space 0.263 0.101 7.662 0.658 VO2 (%pred) ECGs + clinical letters
Tangent Space (aug) 0.243 0.076 7.769 0.662 VO2 (%pred) ECGs + clinical letters

Tangent Space 0.395 0.261 0.333 0.660 VO2 (peak) ECGs + clinical letters
Tangent Space (aug) 0.395 0.261 0.333 0.666 VO2 (peak) ECGs + clinical letters

KDEs plotted in Figure 7.8 to show the distribution of the actual and predicted values. These

plots show that all predictions are much more closer to the distribution of actual exercise values.

These plots also demonstrated a positive alignment with the better results.

Regression line plots are also shared in Figure 7.9 to show the relationship between actual

and predicted values. Improvements in the results are reflected here as well as in the KDE plots.

These plots show that all predictions are close to the range of actual values. It also shows that a

more sloped regression line is observed, which is also reflected in the results.
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(a) KDE for V E/VCO2 (b) KDE for VO2 (%pred)

Figure 7.8: Kernel Density Estimations (KDEs) of the SVM model using covariance
augmentations.

(a) Regression line for V E/VCO2 (b) Regression line for VO2 (%pred)

Figure 7.9: Regression line plots of the SVM model using covariance augmentations.

In order to provide a more concise summary of the each step, a regression plot for each

label was also provided in Figure 7.10. The plots illustrate three regression lines for each step,

starting from the vendor features and proceeding to the combination of ECGs and clinical letters.

These plots not only illustrate the capability of the model but also provide an overview of the

improvements achieved.

(a) V E/VCO2 (b) VO2 (%pred) (c) VO2 (peak)

Figure 7.10: Predicting cardiopulmonary exercise biomarkers: comparison of predicted vs. real
values with fitted regression lines
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7.4.2 Classification with combined information

Preliminary experiments were conducted without the utilisation of any augmentation in order

to establish a baseline as outlined in the preceding chapter. Another series of experiments were

performed combining information from clinical letters with ECG signals projected onto tangent

space. All the information about history of the patients regarding to interventions, diagnoses

and medications is used. These matrices are then concatenated with the tangent space mapping

matrices to feed the model.

The regression problem was transformed into a classification problem by assigning clinical

groups for each label of V E/VCO2, VO2 (%pred) and VO2 (peak). Specifically, V E/VCO2 and

VO2 (peak) variables were categorised into two groups, while VO2 (%pred) variable was di-

vided into four groups. As demonstrated in Figure 6.13, the separation of the groups is indicated

by dashed red lines. A series of ablation studies were conducted employing an SVM model

to examine the impact of various factors, including the fusion of different input types and the

application of different augmentation techniques. To ensure the reliability and reproducibility

of the results, the same patient split strategy and training setup were consistently used across

all experiments. The performance of the classification model was evaluated using multiple met-

rics, including accuracy, Area Under the Curve (AUC), and F1 macro score. These metrics

were reported alongside their corresponding mean and standard deviation values to provide a

comprehensive assessment.

Using tangent mappings derived from the ECGs as inputs to the SVM model did not yield

the best results. However, a notable improvement (up to 8% on accuracy and AUC, 5% on F1

score) was observed when the ECG data combined with the clinical letter data, which proved

to be advantageous in terms of the classification metrics. In order to enhance the result and the

balance of the class distribution, the experiments were repeated with the augmentations, both on

ECGs and clinical letters.

We employed the same sophisticated augmentation technique using Riemannian geometry

on covariance matrices, building on our previous work [233]. The weighted Riemannian mean

is computed by minimising the sum of the squared Riemannian distances to the given matrices,

as formalised in the equation 5.3. In this work, we also experiment with the clinical letters to
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demonstrate the employed augmentation technique’s prominence on tabular data. And compared

it with another widely-used and rather simple augmentation technique on tabular data, known as

resampling.

Table 7.5: Classification results using regression groups with SVM model.

Predicted
Label

Input Augmentations
Accuracy AUC F1 macro

ECGs Clinical letters ECGs Clinical letters

V E/VCO2 ✓ 0.672 ± 0.212 0.577 ± 0.141 0.534 ± 0.181

V E/VCO2 ✓ covariance 0.704 ± 0.195 0.622 ± 0.183 0.572 ± 0.197

V E/VCO2 ✓ ✓ 0.696 ± 0.227 0.655 ± 0.179 0.587 ± 0.236

V E/VCO2 ✓ ✓ covariance simple 0.675 ± 0.240 0.620 ± 0.179 0.541 ± 0.238

V E/VCO2 ✓ ✓ covariance covariance 0.738 ± 0.192 0.663 ± 0.180 0.617 ± 0.206
VO2 (%pred) ✓ 0.302 ± 0.163 0.506 ± 0.225 0.229 ± 0.127

VO2 (%pred) ✓ covariance 0.324 ± 0.132 0.520 ± 0.225 0.236 ± 0.106

VO2 (%pred) ✓ ✓ 0.316 ± 0.124 0.529 ± 0.229 0.239 ± 0.093

VO2 (%pred) ✓ ✓ covariance simple 0.312 ± 0.116 0.537 ± 0.255 0.239 ± 0.095

VO2 (%pred) ✓ ✓ covariance covariance 0.331 ± 0.124 0.540 ± 0.245 0.257 ± 0.093
VO2 (peak) ✓ 0.614 ± 0.137 0.585 ± 0.162 0.535 ± 0.167

VO2 (peak) ✓ covariance 0.657 ± 0.150 0.620 ± 0.126 0.553 ± 0.152

VO2 (peak) ✓ ✓ 0.693 ± 0.163 0.601 ± 0.136 0.525 ± 0.169

VO2 (peak) ✓ ✓ covariance simple 0.642 ± 0.111 0.607 ± 0.093 0.544 ± 0.120

VO2 (peak) ✓ ✓ covariance covariance 0.708 ± 0.091 0.658 ± 0.134 0.617 ± 0.142

A comprehensive summary of all results is provided in Table 7.5, with the most optimal

results indicated in bold. It was observed that applying covariance augmentations only to ECGs

was able to increase accuracy, AUC and the F1 score for all classes by up to 5%. When clinical

letters were incorporated, a similar outcome was observed with the covariance augmentations

applied both to ECGs and clinical letters. It was able to increase accuracy, AUC and the F1

score up to 9% for all classes. However, using simple augmentation techniques as opposed to

the covariance augmentations on clinical letters resulted in poor performances, as presented in

Table 7.5. It also demonstrates the importance of the augmentation technique that is tailored to

the particular problem.

Our approach to fuse information derived from ECGs and clinical letters, and to use a sophis-

ticated augmentation technique yielded the best results. The utilisation of Riemannian geometry

augmentations on the covariance matrices of ECGs and clinical letters has been shown to pro-

duce features that are more coherent in comparison to those obtained through simple augmen-

tation techniques. The efficacy of our methodology was evaluated with ablation studies, which

demonstrated that the integration of ECGs and clinical data yielded the best results. Further-
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more, these studies underscored the significance of the augmentation technique that is tailored

to address specific problems.

(a) ECG without

augmentations

(b) ECG with

augmentations

(c) ECG + clinical letters

without augmentations

(d) ECG + clinical letters

with augmentations

Figure 7.11: Comparison of t-SNE visualizations on the tangent space.

In order to assess the reliability of the models, calibration plots are another valuable tool

in the context of medical applications. The purpose of these plots is to facilitate a comparison

between the predicted probabilities of an event occurring and the actual observed outcomes

[50, 236]. This process provides insights into the calibration of the model, thereby determining

whether the model is well-calibrated or whether it over- or underestimates risks. A perfectly

calibrated model produces predictions where the estimated probabilities closely match observed

frequencies. A well-calibrated model ensures that risk scores align with real-world probabilities,

thus enabling clinicians to make accurate, data-driven decisions.

Figure 7.12: Calibration plot comparing predicted probabilities with observed outcomes.

As demonstrated in Figure 7.12, leveraging covariance augmentation and tangent space pro-
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jections improve the robustness of the estimates, consequently leading to better calibration

plots. Additionally, multi-modal data integration that provides complementary patient infor-

mation contributes to reducing calibration errors, as demonstrated in Figure 7.12. These cal-

ibration plots reveal that the models incorporating covariance augmentations and multi-modal

data demonstrated higher reliability, with predicted probabilities aligning closely with actual ob-

served outcomes. The reliability of these results is further supported by the utilisation of Brier

loss scores, which are presented in square brackets in Figure 7.12. The Brier loss is a metric

used to evaluate the performance of a probabilistic prediction (p) in terms of its alignment with

actual outcomes (y), and can be used to assess how well a classifier is calibrated. It is measured

on a scale ranging from 0 to 1, with lower values indicating greater accuracy in prediction, and

is defined as follows for a dataset with n samples:

BrierLoss =
1
n

n

∑
i=1

(yi − pi)
2 (7.2)

Furthermore, Figure 7.13 illustrates the learning curves for the classification model, demon-

strating how increasing the number of patient samples improves performance. It again demon-

strates a clear trend: as the sample size increases, the performance of the model improves signif-

icantly. Initially, with a smaller set of patients, the model exhibited high variance which resulted

in inconsistent predictions. However, as more patient data was incorporated, accuracy, AUC,

and F1 score steadily improved as we observed in the previous chapter. Figure 7.13a shows the

impact of sample size on model performance for V E/VCO2, illustrating that as the number of

patient samples increased from 100 to 250, accuracy rose from 0.63 to 0.74, AUC improved

from 0.48 to 0.66, and F1 macro score increased from 0.41 to 0.62. These observations sug-

gest that an expanded dataset improves the model’s ability to generalise effectively, leading to a

reduction in the probability of overfitting and an enhancement in its predictive robustness.

Moreover, Figure 7.14 presents the projected model scores for V E/VCO2, providing accu-

racy, AUC and the F1 score, across a range of sample sizes up to 400 patients. This rough

analysis reveals that with 300 patient samples, accuracy reaches at 0.77, AUC reaches 0.72, and

F1 score reaches at 0.71. As the dataset expands to 400 patient samples, accuracy improves
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(a) V E/VCO2 (b) VO2 (peak) (c) VO2 (%pred)

Figure 7.13: Comparison of learning curves for the classification model.

to 0.88, AUC rises to 0.85, and F1 score reaches 0.86. This trend underscores the advantage

of incorporating more patient data, as it enables the model to learn more complex patterns and

enhance prediction performance. These findings underscore the importance of continuous data

collection and model refinement to optimise predictive accuracy in healthcare applications.

Figure 7.14: Learning curve projection for the classification model on V E/VCO2.

7.5 Discussion

This chapter explores the potential of multi-modal data integration to predict CPET outcomes

in CHD patients, combining ECG data and clinical text information. The study proposes a

framework that integrates Riemannian geometry (on ECGs) and natural language processing

(on clinical letters), thus addressing the challenges associated with handling diverse data types

and optimising predictive performance. The proposed approach demonstrates significant im-

provements in predictive accuracy, emphasising the value of synthesising diverse data sources

to capture the complexity of CHD. The integration of clinical letters with ECGs and the uti-

lization of Riemannian geometry augmentations yielded the best results. Clinical letters often

contain vital information about a patient’s medical history, symptoms, and other relevant details
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not captured by ECG signals alone. Integrating this textual information with ECG data provides

a more comprehensive and informative feature set. The experimental results demonstrate the

efficiency of the proposed augmentation technique in generating more coherent features.

Previous studies exploring clinical models for predicting mortality and disease complexity

in CHD patients have highlighted the difficulty in stratifying risk for CHD patients due to the

low prevalence of adverse events. To address this challenge, we innovatively adopted CPET

outcomes to provide a more dynamic evaluation of patient condition and risk. To our knowledge,

this represents the first attempt to build a sophisticated machine learning model predicting CPET

results as outcome variables. The improved correlation between our model’s predictions and

actual exercise values, particularly for VO2 (peak), demonstrates the potential of our approach

in clinical settings even with limited data.

One of the key contributions of this chapter is the demonstration that multi-modal data fusion

enhances predictive accuracy for CPET outcomes, which are crucial indicators of functional ca-

pacity in CHD patients. This aligns with existing research on multi-modal learning in healthcare,

which emphasises the importance of integrating diverse data types to capture the multifaceted

nature of medical conditions. The proposed approach leverages the geometric structure of co-

variance matrices derived from ECG data while extracting meaningful features from clinical text

using NLP methods. This multi-modal data approach underscores the importance of synthesis-

ing diverse sources of information to capture the multidimensional nature of CHD. Compared

to traditional single-modality machine learning models (on vendor features), this framework

provides a more comprehensive representation of patient data.

The AUC values for the classification problem range from 0.54 to 0.66 (see Table 7.5),

indicating limited discriminative ability of the model. These values suggest that the clinical

classification groups may require further refinement or the addition of more patients to improve

predictive accuracy. In contrast, the regression model exhibits a strong positive correlation,

with r-values ranging from 0.49 to 0.67 (see Table 7.4), indicating a meaningful relationship

between the predictor variables and the outcomes. While the classification framework requires

optimization, the regression results are encouraging and point to clinically relevant associations.

Furthermore, our learning curve analysis (see Figure 7.14) suggests that with an additional 300
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patient samples, the model may achieve performance levels suitable for clinical application.

Future research directions include exploring advanced natural language processing tech-

niques to extract richer information from clinical letters and investigating the integration of

multi-modal data sources, such as imaging, to provide more comprehensive patient profiles. In

conclusion, our study demonstrates the significant potential of combining clinical letters with

ECG data and leveraging Riemannian geometry to enhance predictive performance in CHD

patients. The use of CPET as an outcome variable provides a dynamic and physiologically

relevant endpoint that better reflects functional capacity and cardiovascular reserve compared

to static measurements alone. This approach effectively addresses challenges posed by small,

imbalanced datasets while providing more accurate patient risk assessments. However, it is im-

portant to acknowledge the limitations of the model, including the requirement for validation

using larger and more diverse datasets to ensure generalisability. Also, incorporation of the

additional data modalities has the potential to further enrich the predictive framework.



Chapter 8

Conclusions and Future Work

8.1 Summary

This thesis explores the development of a multi-modal machine learning framework designed

for predicting clinical outcomes in patients with congenital heart disease. We have discussed

how multiple data modalities, including medical health records and Electrocardiograms (ECGs),

can be applied in different tasks to enhance the precision and reliability of outcome prediction

models. The scope encompasses the identification and digitisation of multiple data sources,

the design and implementation of relevant machine learning models, and the evaluation of the

framework’s performance in clinical settings.

In this section, we summarise the contributions and conclusions of each chapter.

8.1.1 Chapter 4:

ECG Extraction and Representation in Congenital Heart Disease

The data extraction chapter demonstrates the contribution of digitising 12-lead ECG PDF docu-

ments, particularly for patients with adult congenital heart disease. By recreating digital signals

from vector data in PDFs, the study addresses a challenge in leveraging machine learning models

for better diagnostic and prognostic capabilities. The findings demonstrate a strong correlation

between digitised values and vendor-calculated ECG metrics, thereby validating the efficacy of

the developed algorithm. Furthermore, the capacity to predict diagnoses through the utilisation

130
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of a machine learning model underscores the promising potential of such digitised datasets in

clinical research.

The automated pipeline for digitisation is particularly important as it addresses limitations

in manual analysis, overlapping signals, and text artefacts. Linking these ECG data with clinical

letters further adds value by enabling structured, labelled data for the model training.

It has been demonstrated that there are some limitations, including the automation of doc-

ument processing, the incorporation of larger and more diverse datasets, and the adaptation of

the algorithm to function with various formats. These limitations highlight areas where further

development and refinement are essential for broader applicability and improved outcomes:

1. File Collection: The current process for the collection and organisation of ECG docu-

mentation involves manual handling, requiring staff to deposit these files into a desig-

nated analysis folders. This manual process not only adds significant time and effort to

the workflow but also increases the potential for human error, which has the capacity to

compromise data integrity. The automation of this process or the enhancement of digital

solutions could improve efficiency, reduce the workload on staff, and ensure more accurate

and timely access to ECG data for analysis.

2. Signal Duration: It is important to acknowledge that the study is limited by the duration

of ECGs extracted that spans less than one second, in contrast to the ECGs utilised in

the other studies referenced in Table 3.1. When combined with the low prevalence of the

outcomes, the limited signal duration may restrict the ability of the framework extracting

useful information. In order to enhance the functionality of the framework developed,

future research should aim to incorporate larger and more diverse datasets which would

provide longer signal durations and richer features.

3. Dataset Size: While the digitisation of 12-lead ECG PDF documents has shown promise,

it is important to acknowledge that the study is limited by the relatively small size of the

dataset used for data extraction and analysis. The limited number of cases may restrict

the generalisability of the findings. In order to enhance the applicability of the methodol-

ogy developed, future research should aim to incorporate larger and more diverse datasets



Chapter 8 | Conclusions and Future Work 132

which would provide a more comprehensive evaluation of the methodology and its poten-

tial for clinical implementation.

4. File Format: The current methodology is specifically designed for ECGs stored as vec-

torised PDF documents, which allows for precise data extraction and analysis. However, it

should be noted that this approach is not applicable to pixelated or scanned images, as such

formats may lead to inaccuracies. It may be beneficial to explore alternative techniques or

preprocessing steps that can effectively handle various file formats.

8.1.2 Chapter 5:

ECG Classification with Riemannian Geometry

The chapter introduces a novel application of Riemannian geometry to improve the classifica-

tion of congenital heart disease using 12-lead ECG data. By leveraging the spatial covariance

structure of ECG signals, the approach addresses the challenges posed by the heterogeneity of

Congenital Heart Disease (CHD) cases and the limited availability of large datasets. The use

of covariance augmentation and tangent space projection enhances feature extraction, enabling

the model to better capture the underlying anatomical and functional variations in CHD patients.

The results demonstrate significant improvements in classification performance compared to tra-

ditional machine learning and deep learning models, highlighting the potential of Riemannian

geometry in biomedical signal analysis.

The chapter also emphasises the importance of tailored methodologies for rare and complex

conditions like CHD, where standard deep learning approaches may alter due to data scarcity

and extreme variability. The integration of Riemannian geometry provides a robust framework

for analysing ECG data, paving the way for more accurate diagnostic tools and personalised

treatment strategies. The chapter addresses RQ1 and RQ4 (see section 1.3) by investigating the

potential of Riemannian geometry to capture the intrinsic geometric properties of ECG signals

and their relevance to CHD classification in the context of limited data availability and hetero-

geneous patient characteristics.

The chapter also examines the advantages of pre-trained state-of-the-art models in ECG

applications, emphasising their ability to leverage large-scale datasets for more efficient feature
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extraction and reduced computational costs. Whilst pre-trained models and transfer learning

strategies provide a resource-efficient alternative to training models from scratch, they are not

always effective for clinical applications involving unique patient demographics, such as those

with CHD. The findings serve to emphasise the limitations of pre-trained models, particularly in

scenarios involving datasets that are characterised by unique patient demographics.

The chapter also addresses the challenges of implementing such models in hospital environ-

ments with limited resources. Despite the effectiveness of transfer learning, our findings indicate

that even extensive fine-tuning across all layers of the pre-trained model does not always yield

optimal results. This highlights the limitations of general-purpose feature representations when

applied to datasets with distinct characteristics. Consequently, it underscores the necessity for

tailored deep learning approaches that take into account domain-specific nuances and computa-

tional manageability.

It has been demonstrated that there are some limitations, including the incorporation of larger

and more diverse datasets, adaptation of the proposed method to function with various CHD sub-

types and restricted computational power for model development. These limitations highlight

areas where further development and refinement are essential for broader applicability and im-

proved outcomes:

1. Dataset Size: The study acknowledges the limitations posed by the relatively small size

of the dataset, which may impact the generalisability of the models including the pre-

trained model. While the intention behind using such pre-trained models is to provide

a resource-efficient alternative to training from scratch, the findings indicate that these

models may not always be successful for downstream tasks. However, it is important to

emphasise that the size of the dataset is not the only factor, the prevalence of the outcome

being predicted also plays a critical role. Moreover, it is highly impractical to expect large

sample sizes in CHD, unless datasets are merged across countries and continents, where

deep learning approaches might outperform the current methodology. Nevertheless, the

findings of this study demonstrate that combining geometric features with deep learning

offers a promising future direction. This hybrid approach could enhance the robustness

and applicability of the model across diverse populations and clinical settings, ultimately
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improving diagnostic and prognostic capabilities.

2. Complexity of CHD: The extreme heterogeneity in CHD anatomy and physiology poses

challenges for model training and evaluation. While the proposed method shows promise,

its performance may vary across different CHD subtypes.

3. Generalisability: The methodology is specifically tailored for CHD and may require

some adaptation for other cardiac or non-cardiac conditions. While the underlying princi-

ples of the approach could potentially be relevant to a broader range of diseases, it should

be noted that each condition may present unique anatomical, physiological and clinical

characteristics which may require relevant modifications to the methodology.

4. Computational Power: A significant constraint of this study is the computational limi-

tations imposed by the necessity to conduct the research on a hospital computer, which

was required to facilitate access to the patient data. This reliance on limited hardware

capabilities may have constrained the implementation of more advanced methods, poten-

tially limiting the model’s performance. In order to address this challenge, it is crucial to

explore alternative approaches that prioritise resource efficiency and clinical adaptability,

ensuring that the models are optimised for real-world healthcare settings.

8.1.3 Chapter 6:

Predicting Cardiopulmonary Exercise Testing Outcomes in CHD

The chapter demonstrates the effectiveness of incorporating Riemannian geometry into the fea-

ture extraction process with small and imbalanced CHD data. It enhances classification accuracy

through structured covariance matrix transformations, and facilitates more structured and robust

feature extraction for CHD diagnostics. Additionally, as previously discussed in earlier chapters,

the chapter reemphasises the efficacy of the covariance augmentation technique in enhancing

feature representation and improving generalisation in predictive models.

Ablation studies have confirmed the enhanced performance of tailored augmentation tech-

niques in comparison to their more simplistic counterparts. These studies have demonstrated
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the benefits of Riemannian geometry in generating coherent, discriminative features, which is

a crucial aspect in machine learning models. This approach enables a richer understanding of

the underlying relationships within the data, leading to enhancements in diagnostic classifica-

tion and regression models. The chapter addresses RQ1, RQ2 and RQ4 (see section 1.3) by

investigating the potential of ECG waveforms enhanced with Riemannian geometry in the de-

velopment of risk prediction models for CHD and the potential of surrogate outcomes such as

Cardiopulmonary Exercise Testing (CPET) variables.

It has been demonstrated that there are some limitations, including the incorporation of larger

and more diverse datasets, and the adaptation of the proposed method to function with various

CHD subtypes. These limitations highlight areas where further development and refinement are

essential for broader applicability and improved outcomes:

1. Dataset Size: The chapter acknowledges the limited size of the dataset, which consists of

ECGs as the primary input and CPETs as a surrogate for mortality. The limited number

of patients with both ECG and CPET data may restrict the ability to precisely capture

the relationship between ECG and CPET outcomes. Future research should focus on

incorporating larger datasets, as well as efforts to increase the availability of CPET data.

2. Generalisability: The chapter focused on a specific set of anatomical diagnoses, which

may restrict the generalisability of the findings. Expanding the approach to include other

complex cardiac conditions would enhance its generalisability, ultimately contributing to

improved diagnostic and prognostic capabilities.

3. Additional Data: Integration of additional patient data, such as imaging or additional

clinical records, could further improve diagnostic accuracy and predictive capabilities.

The integration of additional data sources has the potential to facilitate the identification

of critical factors that influence patient outcomes, thereby enhancing the model’s per-

formance. This comprehensive data integration could ultimately lead to better-informed

clinical decisions and improved patient care.
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8.1.4 Chapter 7:

Integrating Information from Clinical Letters with ECGs

The chapter discusses the data extraction techniques employed to extract relevant information

from clinical letters, the integration process with ECG data, and the impact on predictive model

performance. And demonstrates the effectiveness of combining ECGs and clinical letters in

CHD diagnostics using advanced augmentation techniques based on Riemannian geometry. The

results highlight the importance multi-modal data integration (ECGs and clinical records) for

enhancing the robustness of classification and regression models.

The chapter underscores the potential of integrating information from clinical letters with

ECG data to enhance diagnostic precision and model performance in patients with CHD. The

integration of clinical letters, which contain crucial patient information such as diagnoses, inter-

ventions, and medications, with digitised ECG signals facilitates a more comprehensive analysis

of patient health. Furthermore, it enables machine learning models to better capture anatomi-

cal and physiological variations associated with CHD. The chapter addresses all the research

questions (in section 1.3) by investigating the potential of combining data from multiple sources

(ECGs and clinical letters) enhanced with Riemannian geometry in the development of risk

prediction models for CHD and the potential of surrogate outcomes (CPET variables).

The incorporation of CPET outcomes into risk prediction models provides clinicians with

several important advantages. The primary and most important outcome of the risk prediction

model is that it can function as both a diagnostic and a functional assessment metric for patients

with CHD. Secondly, model outcomes can also function as a predictive instrument, directly

informing clinical decision-making.

It has been demonstrated that there are some limitations, including the incorporation of larger

and more diverse datasets, and exploring alternative methods for extracting features from clinical

letters. These limitations highlight areas where further development and refinement are essential

for broader applicability and improved outcomes:

1. Dataset Size: Although promising, the study had a relatively small cohort of 436 patients

which may impact the internal validation of the model. We conducted a thorough internal
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validation, which suggests that the model should generalise to new patients within the

same setting. However, the generalisability of our results to other centres remains less

certain, highlighting the need for external validation with larger datasets. Notably, the

learning curves presented in the chapter indicate that increasing the sample size to double

the current number of subjects could yield better results that are clinically relevant.

2. Additional Data: While the integration of clinical letters has demonstrated improve-

ments, the integration of additional data modalities, such as imaging or laboratory results,

has the potential to further refine the model’s performance. By incorporating a broader

range of clinical data, the methodology could capture a more comprehensive view on pa-

tient health, leading to improved diagnostic accuracy and predictive capabilities.

3. Feature Extraction: While the existing methods provided valuable information, explor-

ing alternative methods for extracting features from clinical letters could further improve

the outcomes. By investigating and implementing alternative feature extraction strate-

gies, future research could enhance the data utilised in the model, ultimately leading to

improved diagnostic accuracy and predictive capabilities.

8.2 Future Work

While this study demonstrates the potential of geometric deep learning for predictive analy-

sis, there are several points for future research that could further enhance model performance

and applicability. One key direction involves the incorporation of additional multi-modal data

sources, particularly imaging and genomic data, to enhance prediction accuracy. The incorpora-

tion of modalities such as echocardiography or cardiac imaging could facilitate the utilisation of

structural and functional information beyond ECG signals, thereby potentially providing a more

comprehensive representation of cardiovascular health and strengthening predictive capabilities.

The integration of genomic data has the potential to provide heritable risk information that can

complement other features. This may result in enhanced individualised risk stratification and

clinical understanding. The practical deployment of such models can be facilitated by the use
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of distillation techniques to enable the utilisation of more extensive training on centralised re-

sources while simultaneously permitting lightweight inference on limited hospital hardware.

Additionally, an important consideration is the robustness of our method under varying elec-

trode configurations. The covariance-based feature extraction approach is dependent on the

spatial relationships between different ECG leads, meaning that a reduction in electrode count

could impact feature quality and overall model performance. Future studies could investigate

methods for adapting these scenarios with fewer ECG electrodes, such as optimising lead selec-

tion or incorporating signal reconstruction techniques. Evaluating the impact of reduced spatial

resolution on classification accuracy would provide valuable insights into the adaptability of our

approach in settings where resources are limited.

Beyond these considerations, further efforts could focus on refining model interpretabil-

ity and explainability, ensuring that predictions are clinically meaningful and actionable. The

extension of the dataset to include a larger and more diverse cohort would also enhance gen-

eralisability of deep learning models, thereby addressing potential biases introduced by limited

sample representation. It is acknowledged that continued advancements in multi-modal learning

and feature extraction methods will be instrumental in improving the accuracy and clinical utility

of the models for cardiovascular health assessment. So, combining geometric and deep learning

may offer a promising future direction and could enhance the robustness and applicability of

the model across diverse populations and clinical settings, ultimately improving diagnostic and

prognostic capabilities.



Appendix A

A.1 Beta Distribution

The beta distribution is a continuous probability distribution defined on the interval [0,1], and

characterised by two positive shape parameters α and β [237]. It is often used for modelling

random variables bounded between 0 and 1, such as proportions or probabilities. The probability

density function (PDF) of the beta distribution is defined as:

f (x;α,β ) =
xα−1(1− x)β−1

B(α,β )
(A.1)

where x ∈ [0,1], α > 0, β > 0, and B(α,β ) denotes the beta function which serves as a nor-

malisation constant ensuring the total probability equals one. Its flexibility arises from the shape

parameters: varying α and β can produce distributions that are uniform, U-shaped, skewed, or

symmetric. The beta function B(α,β ) is defined as:

B(α,β ) =
∫ 1

0
tα−1(1− t)β−1dt (A.2)

The mean and variance of the beta distribution are given by:

Mean =
α

α +β
(A.3)

Variance =
αβ

(α +β )2(α +β +1)
(A.4)
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This makes the beta distribution a natural choice for modelling proportions, probabilities and

uncertainties in constrained domains. In our work, the beta distribution is used in the context of

covariance matrix augmentation to control mixing between two random covariance matrices. To

apply augmentation, we sample α from a beta distribution on the interval [0, 1], and compute the

weighted Riemannian mean according to the Riemannian distance metric between the randomly

selected covariance matrices. Using such technique we were able to generate more samples in a

controlled way similar to [212].

A.2 Vectorcardiogram

A Vectorcardiogram (VCG) represents the spatial trajectory of the heart’s electrical activity as

a vector in three-dimensional space, typically projected onto orthogonal leads (X ,Y,Z) [137].

While the standard 12-lead ECG records voltage differences over time across multiple elec-

trodes, the VCG captures the instantaneous cardiac electrical vector and is useful for charac-

terising spatial aspects of depolarization and repolarization [205, 206]. An example of these

representations is shown in Figure A.1 and it reveals signatures of anatomical defects in CHD

based on our data.

Figure A.1: Average VCGs across anatomical defects in CHD.

The primary advantage of VCG lies in its ability to preserve spatial information about de-

polarization and repolarization, which can enhance diagnostic capabilities in conditions such

as ventricular hypertrophy and conduction abnormalities. VCGs are obtained either directly
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through orthogonal lead systems (such as Frank lead system) or derived mathematically from

standard ECG leads via linear transformation matrices (such as Dower transformation). The

Frank’s orthogonal lead system to obtain VCG is the most widely used system for its simplic-

ity. The bipolar circuit representing Frank’s orthogonal lead system, depicted in Figure A.2,

comprises seven electrodes whose position is denoted by capital letters: I, E, C, A, M, F and H.

Figure A.2: Frank’s orthogonal lead system [238].

A.3 Dower Transformation

The Dower transformation provides a linear mapping between the Frank VCG leads and the

standard 12-lead ECG. There are two variants that are commonly referenced: the Dower (for-

ward) matrix which maps Frank leads to 12-lead ECG approximations, and the inverse Dower

(or inverse transformation) which estimates Frank leads from the 12-lead ECG. Some transfor-

mations use 8 independent leads (leads I, II, V1–V6) to avoid extra linear combinations (III,

aVR, aVL, aVF). The linear transformation can be defined as:
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V = M ·E (A.5)

where E contains the ECG lead signals and M is the Dower coefficient matrix determined

empirically from population studies [239]. This approach facilitates retrospective VCG analysis

without requiring direct VCG acquisition hardware, thus enabling spatial vector analysis from

routine ECG recordings. The vectors in Figure A.2, right-left axis PX , head-to-feet axis PY and

front-back axis PZ are defined with the following equations [138].

PX =−(−0.172V 1−0.074V 2+0.122V 3+0.231V 4+0.239V 5+0.194V 6+0.156DI −0.010DII) (A.6)

PY = (0.057V 1−0.019V 2−0.106V 3−0.022V 4+0.041V 5+0.048V 6−0.227DI +0.887DII) (A.7)

PZ =−(−0.229V 1−0.310V 2−0.246V 3−0.063V 4+0.055V 5+0.108V 6+0.022DI +0.102DII) (A.8)

An example application of Dower transformations (both forward and inverse) for 12-lead

ECG signals involving mapping these signals to VCG space, applying 3D spatial augmentations

and then back-projecting to the original ECG space can be seen in Figure A.3.

Figure A.3: Augmentations on ECG signals using VCG space.
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