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Abstract

Wastewater engineering needs novel, sustainable systems designed to cope with the pressures of climate
change, urbanisation and increasing water scarcity. Modern molecular methods in microbiology are allowing
us to interrogate the complex microbial communities underpinning biological wastewater treatment technolo-
gies, which affords the opportunity to design and control them. The application of theory is a fundamental tool
to achieve this, however, current theories, whilst numerous, are partial and idiosyncratic. A concerted research
effort is required to generate generic, widely accepted theory for wastewater treatment design. This thesis
approaches the problem of defining fundamental rules on the structure and dynamics of wastewater microbial
communities from two different perspectives.

The first asks the question if there was a generic theory on community assembly for a wastewater micro-
bial community, is it possible to identify its parameters using the type of data that is routinely collected? To
answer this an empirical approach is used where a model is assumed, in this case the simple neutral model.
It is applied to generate a range of synthetic relative abundance time series with a range of different features,
such as different sampling frequencies. The model is then calibrated using these data under various scenarios
to assess parameter identifiability. The process of efficiently simulating, sampling and calibrating was achieved
by developing an open-source user-friendly and adaptable computational framework. The results demonstrate
fundamental difficulties in identifying neutral model parameters, even when using idealised time series. This
is due to misrepresentation of the expected variance and correlated parameters. As such, there is a need to
independently determine some of these parameters a priori. Reduced sampling periods and frequencies are
also shown to impact model calibration, leading to systematic errors in the estimates of certain parameters. The
research highlights the need for increasing information within relative abundance time series and demonstrates
that this can be achieved by inducing a perturbation on a system. Thus, producing time series during periods
of non-equilibrium is shown to be beneficial. Finally, it is demonstrated that for real data sets neutral model
parameters must be considered as "effective" parameters as the estimates obtained will likely reflect a myriad
of complex phenomena.

The second perspective is mechanistic. Growth kinetics, known to drive inter-species competition, are
explored through energy and thermodynamics. This is achieved experimentally by culturing two species of
methanotrophs, Methylomonas methanica S1 and Methylosinus trichosporium OB3b, within an isothermal
calorimeter. Comparisons are made between the heat dissipated by the species and how they partition the avail-
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able carbon between energy-yielding and biosynthetic reactions. The methodology developed for measuring
heat dissipation is novel in its application to methanotrophic bacteria. These measurements identify that a sig-
nificant amount of heat is dissipated during the growth of methanotrophic bacteria. Differences in growth are
also observed with Methylosinus trichosporium producing more CO2 at the cost of a reduced biomass yield
when compared to Methylomonas methanica. This difference in carbon partitioning is shown to be linearly
related to the heat dissipated per unit of biomass, however, the impact this has on providing a competitive ad-
vantage is unclear. It is speculated that additional biochemical and physical phenomena need to be quantified
in order to resolve the relative importance of thermodynamics on the different kinetics.

Simple models with parameters and variables that are easily understood and manipulated by engineers
have a long history of being successfully deployed in engineering design. In this thesis, two approaches have
been explored to describe the assembly and kinetics of microbial communities. It is shown that identifying
model parameters for even the simplest descriptions of community assembly, neutral models, is fraught with
conceptual and practical difficulties. Notwithstanding this, their ability to capture phenomena is apparent, and
the challenge for engineering design is mapping the calibrated parameters onto characteristics of engineered
systems. A more mechanistic approach attempts to use energy and thermodynamics to explain kinetics using
methanotroph species as an example. Energy-based methods are the basis of many models used in engineering
design because they can capture physical phenomena while eschewing much of the underlying complexities in
physical or chemical processes. The thesis falls short of delivering a generic rule on the relationship between
energy dissipated and kinetics. However, the empirical data generated are already being used in the design
of technology for heat recovery from wastewater treatment. In general, the thesis demonstrates the merits of
pursuing simplicity in models for generic application in environmental biotechnologies.
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Chapter 1

Introduction

1.1 Background

The commencement of life as we understand it would not have been possible without water (Vieira et al., 2020;
Westall & Brack, 2018). Indeed, our dependency on water reflects the fundamental role this resource plays
in facilitating carbon-based life. In ancient cultures, the importance of water was reflected in the deities wor-
shipped (Angelakis et al., 2012). Currently, it is expressed within the goals set by intergovernmental agencies.
For example, goal six of the UN’s "Sustainable Development Goals" is solely concerned with ensuring clean
water and sanitation for all (United Nations, 2015). Current anthropogenic and environmental pressures en-
danger water availability, which is presenting new engineering challenges. (T. C. Brown et al., 2019; Gosling
& Arnell, 2016; Nations, 2024; Schlosser et al., 2014; Vörösmarty et al., 2000).

Trends at a global level show that water use, across all sectors, has increased consistently since 1950 (Flörke
et al., 2013). Factors such as an increasing population, urbanisation, expansion of agriculture and economic
growth will act to continue this trend, driving an increase in the global water demand over the coming decades
(Dawadi & Ahmad, 2013; Ercin & Hoekstra, 2014; Flörke et al., 2018; Hanasaki et al., 2013; C. He et al.,
2021). In parallel, pollution, drought and ice-losses are expected to further decrease remaining freshwater sup-
plies in many regions (Pierrat et al., 2023; Rodell et al., 2018; M. Wang et al., 2024). The cumulative result
of these pressures is an increase in the number of people facing water scarcity. Current estimates show that
approximately 4 billion people face severe water scarcity for at least one month of the year (Mekonnen & Hoek-
stra, 2016; WWAP, 2018), projections demonstrate that this could rise to over 6 billion people by 2050 (Boretti
& Rosa, 2019; WWAP, 2018). This increase in water scarcity is expected to drive economic uncertainty (Dolan
et al., 2021), health risks (Motoshita et al., 2011; WHO, 2019), and food insecurity (Mancosu et al., 2015).
There is an additional concern in regions where trans-boundary agreements are lacking, as securing water from
shared basins could exacerbate social and political tensions (De Stefano et al., 2017). Water supply shortages
make it into the top five national risks of seven countries, while the combined supply shortage of food and
water is identified as the fourth most severe global risk of the coming decade (World Economic Forum, 2024).
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INTRODUCTION 2

The technologies we use to dispose of and treat wastewater play a key role in water security. Wastewater
irrigation, reuse and resource recovery technologies are being heralded as a necessity in tackling water scarcity
(United Nations Environment Programme, 2023), however, these technologies can also be counterproductive
if not managed correctly. Wastewater treatment technologies are routinely observed to fail, for mechanical
(Taheriyoun & Moradinejad, 2014; K. Wang et al., 2017), biological (Heine et al., 2002) and economical rea-
sons (Murray & Drechsel, 2011). Even treated wastewater has been shown to be discharged at poor quality
(Charles et al., 2005). As a result, treated and untreated wastewater has the potential to contaminate surface
and groundwater, deteriorating drinking water supplies further (United Nations, 2022b). In low-income and
emerging economies, untreated wastewater is the leading factor in water quality decline (du Plessis, 2022).
Wastewater treatment is also a leading contributor to greenhouse gas emissions, with centralised WWTPs esti-
mated to consume up to 3% of the electricity produced globally (Gong et al., 2024). Although the quantity of
greenhouse gas emissions are harder to estimate for smaller decentralised systems, such as septic tanks, they
are know to produce direct emissions (Risch et al., 2021).

These failings in wastewater treatment reflect a design approach trapped in time. Indeed, there is a growing
consensus that we should move away from design principles adopted within the 20th century, to ones that pro-
mote the hybridisation and integration of centralised and decentralised technologies (Eggimann et al., 2015;
Libralato et al., 2012). There is also a push to look towards the management of these systems through micro-
bial, rather than operational, parameters (Carballa et al., 2015; Connelly et al., 2019; Vanwonterghem et al.,
2014). Progress toward this paradigm shift, is however hindered by the lack of generalised theory. Indeed,
unlike other engineering disciplines, such as structural, mechanical or aeronautical, the theoretical framework
informing wastewater engineering is rudimental in comparison, and thus the development of robust theory
within this field has been emphasised (T. P. Curtis et al., 2003; Prosser et al., 2007; Rittmann et al., 2006; Sloan
& Gómez-Borraz, 2023; Widder et al., 2016). As such, an empirical approach is deployed, which means change
is incremental and slow and the economic and social costs of water infrastructure failure are too high to justify
the risk of radically new designs that are not grounded in theory. Therefore, it is incumbent on researchers to
develop novel theory, that encapsulates and extends the empirical evidence, and can accelerate innovation in
wastewater technologies. This thesis explores nascent theories in microbial ecology that might be deployed in
biotechnologies.
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1.2 Aims and objectives

The weaning from a reliance on empirical data and thus the subsequent quest towards a universal theory within
wastewater treatment defines the raison d’être of this thesis. The assumption that such a theory must be inher-
ently tied to the individuals that carry out the main body of work, the microbes, is at the fore of the research
undertaken. As encouraged by T. Curtis and Fowler (2023), a multifaceted approach is adopted, one that delves
into computational, experimental and theoretical exploration. Empirical and mechanistic methodologies are
undertaken in parallel, in an attempt to tie parameters, obtained through model calibration, to the fundamental
laws of nature. Indeed, phenomenological parameters, such as the Reynolds Number, Gauckler–Manning co-
efficient and Young’s modulus, are routinely used within engineering to inform system design, however, their
usefulness is often tied to our understanding of the processes that drive them. Our attempt at fulfilling this aim
is expressed through two distinct research chapters, entitled:

1. Identifying neutral models on the basis of species abundance time series.

2. Quantifying the heating potential of methanotrophs for application within decentralised wastewater treat-
ment technologies.

The first of these is positioned to adopt the hypothesis that community ecology, and by extension microbial
ecology, is too complex to derive general laws using a reductionist approach (Lawton, 1999; Prosser et al.,
2007; Sloan & Gómez-Borraz, 2023). Here, the aim is to tackle the lack of ecological tools for detecting and
characterising underlying drivers from the trends and patterns exhibited by microbial communities; as high-
lighted by Prosser et al. (2007) and Prosser (2020). By applying tools of ecological theory, namely neutral
models, to single-species relative abundance time series, it is assessed by purely empirical means whether
community structuring processes, such as community size, replacement rate, immigration and local selection,
can be calibrated accurately in specific scenarios.

To achieve this, calibrations of two common neutral models, Hubbell’s purely neutral model (Hubbell,
2001) and Sloan et al.’s near-neutral model (Sloan et al., 2006), are undertaken using simulated relative abun-
dance time series. Using synthetic rather than experimentally obtained datasets allows both models to be
examined under an idealised scenario, in which these data sets are produced over a large period using the
maximum temporal resolution theoretical possible. These conditions are then relaxed to quantify what effect
diverging towards more realistic scenarios, that might reasonably reflect a real experimental campaign, has
on the accuracy of parameter estimates. The first objective is thus to develop a computational framework to
allow the simulation of such datasets and therefore facilitate this research. Once datasets have been generated
estimates of distinct model parameters are produced through maximum likelihood estimation and compared
to those used in generating the synthetic time series. Through this comparison, the accuracy of the estimated
parameters can be determined and thus the ability to accurately identify them for the given scenario can be
assessed. Based on the results this provides, the final objective is to lay out a series of recommendations that
promote the production of accurate parameter estimates from neutral model calibration.
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The second research chapter concedes that, even though the microbial community assembly process may
be largely stochastic, the microbial dynamics must be a function of the interactions between microbes and their
physical and chemical environment (Lawton, 1999; Vellend, 2010; Vellend & Orrock, 2009). Thus, if some
simple, tractable laws can be derived to characterise these interactions, they could provide context for parame-
ters determined through purely empirical means or even allow parameters to be estimated theoretically. Indeed,
if we assume that accurate calibration of the neutral parameters explored within the first chapter is achievable,
then knowledge of the fundamental forces that drive these parameters will increase our ability to engineer the
systems they are derived from. The aim of the second research chapter is therefore to explore the formation of
community structure from a mechanistic perspective, one which explores the causation tied to the second law
of thermodynamics. An attempt is made to demonstrate experimentally, whether growth parameters, known to
drive inter-species competition, can be linked to the heat dissipation exhibited during the growth of bacteria.

The heat dissipated from pure batch cultures of Methylomonas methanica S1 and Methylosinus trichospo-

rium OB3b, two species of methanotrophs, is measured alongside culture growth in an attempt to examine
whether trade-offs between these processes exist. The reason methanotrophic bacteria are used is three-fold.
Firstly, the available energy provided by the catabolism of these bacteria, the oxidation of methane, is signif-
icant (Pittam & Pilcher, 1972). Thus, a wider reservoir of thermal energy is offered, potentially increasing
the amount of heat dissipated and therefore our ability to measure it. Secondly, the carbon and energy source
utilised by these bacteria is the same (Hanson & Hanson, 1996). Coupling between energy-yielding and biosyn-
thetic (energy consuming) reactions is therefore reliant on a single substrate. Thirdly, methanotrophic bacteria
have proved useful in emerging methane mitigation technologies for decentralised wastewater treatment sys-
tems (Gómez-Borraz et al., 2022). Analysing the heat dissipated from these bacteria therefore carries intrinsic
engineering importance. The first objective for this study is to develop a methodology for measuring heat dis-
sipation and growth parameters in situ. Further objectives are to observe whether the two species differ in how
carbon is partitioned and the amount of heat dissipated, and whether correlations can be made between these
processes and observed growth kinetics.

While the aims of both chapters may seem independent of one another, they are linked by the quest toward
a general theory. For example, to arrive at a suitable generalised theory, it is crucial not only to assess whether
the underlying mathematical model makes testable predictions while accurately describing the data under the
scenario applied, but also to ensure it provides fundamental insights (Wieland et al., 2021). In this regard, by
assessing the identifiability of model parameters using data and under scenarios relevant to wastewater treat-
ment, the aims of the first research chapter largely tackle the first two of the aforementioned criteria, to establish
whether neutral models are indeed appropriate models to base such a theory. The second research chapter aims
to provide a context for the usefulness of these models, or the ability to provide fundamental insight, by at-
tempting to derive the more generalised parameters these model rely on, such as a selection coefficient (α),
from a point of fundamental physical theory. Indeed, only by achieving both sets of these aims can a convincing
and useful theory be embarked towards.
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A summary of the aims and objectives outlined for this thesis are laid out in Table 1.1. The aims may seem
ambitious, however, any novel movement towards them can be viewed as success. Even failure, if documented,
can provided a useful resource for future scientific endeavours (T. Curtis & Fowler, 2023).

Table 1.1: Thesis and chapter-specific aims and objectives

Thesis Towards a general theory within wastewater treatment: computational and experimental ex-
amples utilising fundamental laws to describe microbial community structure in wastewater
treatment systems

Aim To develop a general theory describing microbial community structuring for use within wastewater

engineering.

Research
Chapter 1

Identifying neutral models on the basis of species abundance time series

Aim 1.0 To determine whether processes driving community structure can be accurately derived through the

calibration of neutral models using single-species relative abundance time series.

Objective 1.1 To develop a computational framework for simulating and sampling single-species relative abundance

time series, which also facilitates the calibration of Hubbell’s and Sloan et al.’s neutral models to the

produced time series.

Objective 1.2 To assess using idealised time series whether model parameters are structurally identifiable.

Objective 1.3 To assess using sampled time series whether model parameters are practically identifiable.

Objective 1.4 To provide a series of recommendations for ensuring accurate identification of parameters from the

calibration of Hubbell’s and Sloan et al.’s neutral models.

Research
Chapter 2

Quantifying the heating potential of methanotrophs for application within decentralised
wastewater treatment technologies

Aim 2.0 To determine experimentally whether the second law of thermodynamics can be used to explain dif-

ferences in growth kinetics between species of methanotrophs.

Objective 2.1 To develop an experimental methodology for monitoring heat dissipation and growth kinetics in situ

from pure cultures of Methylomonas methanica S1 and Methylosinus trichosporium OB3b.

Objective 2.2 To highlight any differences in growth dynamics between Methylomonas methanica S1 and Methy-

losinus trichosporium OB3b.

Objective 2.3 To highlight any differences in the heat dissipated between Methylomonas methanica S1 and Methy-

losinus trichosporium OB3b.

Objective 2.4 To explore correlations between heat dissipation and growth dynamics.
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1.3 Thesis structure

• Chapter 2 - Literature review: Firstly, historical and current approaches to treating wastewater are laid out. The

challenges facing wastewater treatment technologies are summarised and the need for novel approaches and more

robust theory is highlighted. Attention is then given to theoretical community ecology. The role of mathemati-

cal models within this context is provided and important examples highlighting development within the field are

discussed. An emphasis is then placed on neutral theory and the application of this theory within wastewater en-

gineering. The literature review then pivots to describe how microbial growth is described from a thermodynamic

viewpoint. This section demonstrates theoretical relationships between growth parameters and thermodynamics

concepts such as entropy, enthalpy, Gibbs free energy and growth yields. The importance of heat dissipation and

experimental methods used for measuring this quantity are reviewed. Finally, a short description of methanotrophic

bacteria is provided.

• Chapter 3 - Identifying neutral models on the basis of species abundance time series: This chapter offers a

comprehensive investigation into how sampling single-species relative abundance time series influences the ability

to calibrate neutral model parameters, and thus the identifiability of these parameters under differing scenarios and

datasets. Within this study two common neutral models are assessed; Hubbell’s purely neutral model and Sloan

et al.’s near neutral model. Structural identifiability is firstly examined by calibrating model parameters using

idealised datasets, where the time series calibrated against are produced over a vast period and with maximum

temporal resolution. Relaxation of fitting conditions and sampling regimes is then made to assess the practical

identifiability of these parameters. Processes that offer relative improvement to model calibration are highlighted.

Discussion primarily revolves around the role of effective parameters and how they can be used within the neutral

model framework. The case is made for employing neutral models that include effective parameters as a generalised

framework for characterising single-species relative abundance time series.

• Chapter 4 - Quantifying the heating potential of methanotrophs for application within decentralised wastew-
ater treatment technologies: In this chapter a thermodynamic analysis of the batch growth of two species of

methanotrophs, Methylomonas methanica S1 and Methylosinus trichosporium OB3b, is achieved by isothermal

calorimetry. The quantity and rate of heat dissipation is measured for three different initial concentrations of

methane (8%, 4% and 2%v/v in air). The headspace concentrations of methane and carbon dioxide, system

pressure, pH, dissolved oxygen, optical density and non-purgeable organic carbon are measured through exter-

nal growth experiments under the same growth conditions. By coupling the heat dissipated with how each species

partitions carbon, a discussion is provided on whether the respective heat dissipation is a driver of growth kinetics

and thus community structure.

• Chapter 5 - Conclusion and future perspectives: The final chapter provides a discussion summarising the pri-

mary conclusions of both research chapters. While more specific conclusions are presented within the respective

research chapters themselves, here the broader importance these outcomes have regarding progress towards a gen-

eral theory for use within wastewater treatment is discussed. Areas of improvement regarding the research under-

taken within this thesis are identified and possible critiques are addressed pre-emptively. Avenues for continued

research are identified alongside their possible outcomes, highlighting the future impact of the research presented

within this thesis.



Chapter 2

Literature review

2.1 Wastewater engineering

2.1.1 A brief history

The development of engineering solutions to wastewater management is commonly traced back to examples from the

Mesopotamian Empire which existed over 5,000 years ago (3500 – 2500 B.C.) (P. Cooper, 2005; De Feo et al., 2014;

Lofrano & Brown, 2010). Although humans have existed for a far greater period, the lack of records make evaluating

wastewater practices before this time difficult to achieve. However, it is commonly accepted that before permanent set-

tlements were established disposal of waste was largely left to natural cycles. (Angelakis et al., 2023; Lofrano & Brown,

2010). Therefore transition to early settlements was likely plagued by the lack of waste management and a new relation-

ship between waste and society needed to be adopted (Vuorinen et al., 2007).

In ancient urban settlements, examples of wastewater management can be found, for example, in the village of Skara

Brae in Scotland (3100 - 2500 B.C.) (Childe, 1931; I. A. Simpson et al., 2006) and throughout the Minoan civilisation on

Crete (3200 – 1100 B.C.) (Angelakis et al., 2013). The importance placed on developing sewage and drainage networks

demonstrates the newfound veneration for water management . Indeed, in many ancient civilisations, deities of water were

widely revered and worshipped (Angelakis et al., 2012). Perhaps the most striking example of wastewater infrastructure

during this period is the drainage system found in Mohenjo-Daro; a city of Chalcolithic culture situated near the Indus

River, which existed between 3300 – 2700 B.C. (Webster, 1962). Almost all houses in that city were equipped with a bath-

room and flushable latrine and, in turn, were connected to a centralised sewage network. The most remarkable aspect of

the sewer network, is the use of brick-lined sumps or cesspools, some which were found to be as large as 5ft wide, 7ft long

and 6ft deep. The large size and expected low-flowrate would have allowed for solid sedimentation to occur. Therefore,

it is thought that these cesspools may have been used as an early form of primary treatment (Jansen, 1989; Webster, 1962).

The grandest architectural achievements in water management were made during the Roman period. Large canal

and aqueduct systems were a prominent feature of Roman hydraulic infrastructure (Rogers, 2018). The longest of these

systems was built in the 4th and 5th century to ensure water supply into the city of Constantinople. The entire length of

this system has been calculated to be at least 426km long (Sürmelihindi et al., 2021; Ward et al., 2017). While most of the

systems implemented by Romans for managing wastewater were not new, they demonstrated increasing mastery of these

7
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technologies, developing grand drainage systems such as the Cloaca Maxima in Rome (De Feo et al., 2014). It is also

important to note that the Roman period marked advances within the governance of water resources. Romans adopted

a systematic legislative approach to water. Private and public water rights were written into law and continuities within

policy were observed across the empire (Bannon, 2017).

The collapse of the Roman Empire ushered in the “sanitary dark age”; a period that lasted until the 19th century (P.

Cooper, 2005; Lofrano & Brown, 2010). As Roman and ancient infrastructure degraded, so did the use of these technolo-

gies, and regression in wastewater management was observed in Europe throughout the Early Medieval Age. Waste was

largely disposed of by simply throwing it out the window or dumping it in the street, open defecation was a normality

of life (Angelakis et al., 2023; P. Cooper, 2005). Rivers flowing through large cities were effectively open sewers and

outbreaks of plague and disease, directly or indirectly driven by poor sanitation, were catastrophic for the population

(Robb et al., 2021). Moving into the High and Late Middle Ages some effort was made to curb bad sanitation practices.

In European cities, cesspools and latrines were ordered to be built and regulation combatting the improper dumping of

waste was introduced (Ciecieznski, 2013). Improving sanitary conditions became a community endeavour (Jørgensen,

2008). Perhaps the most forward-thinking solution employed within this period was the formation of "sewage farms",

which combined waste disposal with agriculture. This strategy was first implemented in Bunzlau in 1531 and then in

Edinburgh in 1650, and became a favourable solution for disposing of wastewater from cesspools within cities (Angelakis

et al., 2023). Modern equivalents of this process still exist today (Mishra et al., 2023).

In the wake of the Industrial Revolution, increased urbanisation, rising mortality rates and outbreaks of cholera as

well as other diseases, Europe’s major cities were in desperate need of sanitation reform. The need to transform outdated

sewage systems was pushed by sanitarians such as Sir Edwin Chadwick, culminating in legislation such as The Public

Health Act of 1848 (Aiello et al., 2008; Gill, 2000). As a result, large infrastructure projects were undertaken. In 1842

fire devastated the city of Hamburg, upon rebuilding the city, an extensive centralised sewer network was constructed.

This marks the first of such networks to be introduced into modern European cities and signifies a pivotal shift toward

active design of these systems using empirically driven calculations (Burian & Edwards, 2002; Seeder, 1999). Major im-

provements to Paris’s sewer network were made starting in 1854 and construction of the Bazalgette London sewer system

was started in 1858 (Lofrano & Brown, 2010). Most of these sewer networks operated on the rational that "the solution

to pollution is dilution" (P. Cooper, 2005). It was not until later in the century that more scientific treatment technologies

were developed.

Towards the end of the 19th century a vast range of sewage treatment methods were developed. Between 1865 and

1875 over 400 patents regarding wastewater treatment technologies were registered (Wardle, 1893). A review of the most

popular of these methods at the time was written by Sir Thomas Wardle in his book entitled "On sewage treatment and

disposal: for cities, towns, villages, private dwellings, and public institutions", published in 1893 (Wardle, 1893). Wardle

highlights that most processes developed were various iterations of lime treatment, designed to enhance the precipitation

of solids in sewage through the addition of calcium compounds. From a biological viewpoint, the most interesting method

discussed is the Amines process. This process identifies microorganisms as the primary pollutant and aimed to sterilise

sewage using trimethylamine. Developments during this period were not solely tied to treatment technologies. Advance-

ments in the analysis of network design were also made (Ramalingam et al., 2012). This development of wastewater

treatment methods, combined with a better understanding of sewage composition and the associated risks, prompted the
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construction of wastewater treatment plants (WWTPs). The necessity for these plants was compounded by the increas-

ing scarcity of farmland, a consequence of expanding urbanisation. As a result, many "sewage farms" were replaced by

WWTPs (Angelakis et al., 2023; Seeder, 1999). The first septic tanks were also designed during this period (Cotteral &

Norris, 1969).

Throughout the 20th century the advancement of environmental science and analytical chemistry prompted a new

outlook on waste practices, one primarily driven by environmental considerations (Lofrano & Brown, 2010). The amount

of environmental legislation introduced reflects this shift in societal concern (Shifrin, 2005). Some of the most univer-

sally relevant developments made during the beginning of the 20th century are summarised in the final report issued by

the Royal Commission on Sewage Disposal (Royal Commission on Sewage Disposal, 1915). The conception of stan-

dard methods based on total suspended solids (TSS) and biochemical oxygen demand (BOD) is often credited to the

eighth report produced by this commission (A., 1913). These conceptual breakthroughs paved the way for subsequent

technological advancements, indeed, many of the primary and secondary treatments used today were developed within

the latter half of the 20th century (Lofrano & Brown, 2010). The formation of the Activated Sludge Process as well as

the biological removal of nitrogen and phosphorus through anoxic and aerobic zones are an examples of this (Barnard,

1973, 1974, 1975; Sawyer, 1965). Methods for optimising and analysing water distribution networks were also advanced,

largely catalysed by the birth of the computer (Ramalingam et al., 2012). Many of the centralised WWTPs built within

the 20th century are still in use today (Makisha & Gulshin, 2024).

2.1.2 Current wastewater treatment technologies

The role of current wastewater treatment infrastructure is best summarised by the targets set within the UN Sustainable

Development Goal 6 (United Nations, 2015). The recent recognition of "The human right to a clean, healthy and sus-

tainable environment" (United Nations, 2022a) sets the context in which these targets should be achieved. Wastewater

treatment technologies are thus tasked with removing a variety of constituents, such as, suspended solids, biodegradable

organics, pathogens, nutrients, priority pollutants, refractory organics, heavy metals, dissolved inorganics, pharmaceuti-

cals, microplastics and any emerging contaminants (Khasawneh & Palaniandy, 2021; W. Liu et al., 2021; Metcalf & Eddy,

2003; Sauvé & Desrosiers, 2014; J. Wang & Wang, 2016). The accumulation of these pollutants within the environment

are known to cause toxicity, antimicrobial resistance, facilitate the spread of disease, deplete natural oxygen and increase

nutrient loading (Corcoran et al., 2010; Johnson et al., 2020; J. Li et al., 2018; Metcalf & Eddy, 2003; Mutuku et al.,

2022; Schwarzenbach et al., 2006). Assessment of treatment effectiveness is primarily achieved through the observation

of quantities such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS),

total nitrogen (TN) and total phosphorus (TP) (Metcalf & Eddy, 2003). Current practices for treating wastewater employ

two forms of infrastructure, centralised and decentralised. Centralised wastewater treatment can be defined as a network

of pipes collecting wastewater from multiple sources and transporting it to a large treatment facility some distance away.

Decentralised systems are of smaller-scale and treat wastewater much closer to the source (Capodaglio, 2017; Wilderer

& Schreff, 2000).

Septic tanks are the most commonly installed form of decentralised wastewater treatment (P. J. Withers et al., 2014).

The first septic tanks were established in Europe around 1870 and introduced in the United States in 1884 (Cotteral &

Norris, 1969). By the 1980s nearly one third of all housing units in the US were equipped with a septic tank system. This



LITERATURE REVIEW 10

equates to approximately 17 million septic tanks with a combined annual discharge of 800 billion gallons of wastewater

(Canter & Knox, 1985). Since this time, the design of septic tank systems has largely remained unchanged. Indeed,

current building standards still cite design practices from 1983 (Building Standards Division Directorate for Housing,

2024). According to these practices, septic tanks should utilise two separate compartments, either by partitioning a single

tank or arranging two tanks in series, where the overall capacity should be split two thirds to one third, as shown in Figure

2.1 (BSI, 1983). For most septic tank systems, an accompanying soil absorption field or further treatment technology

is required (BSI, 1983; Canter & Knox, 1985), however, it is not uncommon to find septic tanks discharging directly to

surface water (Richards et al., 2016; P. J. A. Withers et al., 2011, 2012). More recently, designs incorporating a vertical

flow direction (Moussavi et al., 2010), microalgae (Sorenson et al., 2023), solar-powered heating (Connelly et al., 2019),

or a combination of these (Koottatep et al., 2020) have been proposed.

(a) (b)

Figure 2.1: Schematics of typical septic tanks with two compartments, for populations of up to 30. Reproduced from BSI
(1983). a) combined, b) separate.

The physical treatment process employed by septic tanks is the settlement of wastewater, allowing for the separation

of heavier solids (sludge) and lighter particles (scum) to take place. Effective use of baffles and positioning of effluent

pipes allows solids and scum to be retained within the tank rather than passed within the effluent (Canter & Knox, 1985).

Biological treatment is also undergone within these systems, in the form of anaerobic digestion. This involves hydrol-

ysis, acidogenesis, acetogenesis, and methanogenesis undertaken by microbes within the tank (Meegoda et al., 2018).

Removal efficiencies of BOD, COD and TSS by septic tanks have been shown to be as high as 50%, however, nitrogen

and phosphorus removal efficiencies are considerably lower. Removal efficiencies are shown to increase across all these

quantities when assessing effluent from septic tanks that utilise soil absorption systems, demonstrating the importance

these systems have in facilitating the removal of contaminants (Angelakis et al., 2023; Beal et al., 2005; Canter & Knox,

1985; Costa et al., 2002; Dasgupta et al., 2021; Moonkawin et al., 2023; Philippi et al., 1999).

Despite their relatively simple design, recent data shows that decentralised systems are still used extensively through-

out the world. According to European census data (Appendix A), the percentage of population connected to independent

wastewater treatment is high in many countries. For example, in Croatia, Ireland, Slovenia, Bulgaria and France, these

percentages are reported to be 39, 31, 29, 25 and 18% respectively. In the US it was shown that in 2018 approximately a

third of new housing relied on on-site wastewater treatment (NESC, 2020), and that currently around 20% of the popula-

tion is not connected to a public sewer network (Yu et al., 2024). In emerging economies, septic tank systems provide a

cost effective and economically viable option for improving sanitation (Hutton et al., 2013; Van Minh & Hung, 2011).
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Centralised system are more complex than their decentralised counterparts. These are commonly deployed within ur-

ban areas and have been considered the preferred form of wastewater infrastructure until recently (Pasciucco et al., 2022).

The WWTPs associated with these systems employ a variety of treatment processes that can be categorised as preliminary,

primary, secondary, tertiary or advanced (Fernandes et al., 2024; Metcalf & Eddy, 2003). Preliminary treatment is tasked

with removing larger objects that may damage or cause problems in further treatment processes (Metcalf & Eddy, 2003).

The first technology employed in this regard is screens. Typically coarse screens with a spacing of 50mm are used, as

fine screens can plug due to a build up of material on the mesh causing head loss. Head loss within the screening process

is typically ensured to remain below 15cm; as excessive head loss will lead to poor retention of screened objects. This is

achieved through monitoring, cleaning and adjustment of flow rate (Verma, 2023). Following this, grit chambers can be

employed. These systems are designed to remove large particles either through settlement, aeration or mechanical means

(Fernandes et al., 2024). Although the aim of these systems is solely to remove larger objects, a small reduction in COD,

suspended solids, nitrogen and phosphorus has been observed (L. He et al., 2022).

Primary treatment in centralised WWTPs acts to remove constituents by allowing particles to separate based on their

density. This is usually achieved in a clarification tank where oils and grease can be skimmed off the top while heavier

solids settle at the bottom (Ahammad et al., 2020). Gravity alone can facilitate the removal of 40 to 60% of the BOD and

suspend solids respectively. Implementing coagulation or flocculation in aid, can bring the removal of suspended solids

towards 90% (Fernandes et al., 2024; Sukmana et al., 2021; Verma, 2023). Despite these high removal efficiencies pri-

mary effluent can still be assumed to contain the majority of its organic constituents, these remain in the form of colloidal

or dissolved particles and are thus not easily removed through purely physical processes. Primary clarification is therefore

largely used as a precursor to the biological solutions adopted within secondary treatment technologies (Verma, 2023).

The most common form of secondary treatment is known as The Activated Sludge Process (ASP). This process of

aerating wastewater leading to the propagation of suspended flocs, can be traced back to the beginning of the 20th cen-

tury (Ardern & Lockett, 1914). The primary mechanism underpinning this process is the promotion of aerobic bacterial

growth, a biological process that was not understood until more than a decade after the technology’s implementation

(Buswell & Long, 1923). The growth of aerobic bacteria not only acts to degrade organic solids but also supports the

formation of aggregates (flocs), which accelerates sedimentation. Indeed, it is common practice to install a secondary

clarifier after the aeration chamber to allow for this to take place. Early milestones demonstrate that various configuration

of ASP technologies can be implemented (Sawyer, 1965). Alongside the aerobic chamber is common to provide an anoxic

compartment as these conditions facilitate nitrification and denitrification respectively (Barnard, 1973). Another impor-

tant process is the returning of activated sludge to the initial aeration chamber, as this acts to maintain a high volume of

active bacteria within the treatment process (Fernandes et al., 2024). To remove the need for physically returning sludge,

sequencing batch reactors (SBRs) were developed. These reactors condense the ASP process within a single tank. The

cycling of pumping, aeration and idling phases allows for these reactors to implement the key steps of the ASP process

(A. Singh et al., 2022).

Other biological secondary treatment systems such as membrane bioreactors and attached growth systems can also

be utilised within centralised WWTPs (Fernandes et al., 2024). Membrane bioreactors (MBRs) operate similarly to ASP

and SBR technologies, as in they represent a suspended growth system. Where they differ is the introduction of physical
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barriers in the form of microfiltration (MF) and ultrafiltration (UF) membranes (Asante-Sackey et al., 2022). These sys-

tems have been shown to remove pharmaceuticals and personal car products (PPCPs) from wastewater with an efficiency

of between 41 and 95% (Y. Wang et al., 2018) and a removal rate of over 90% for BOD and COD (Hoinkis et al., 2012).

Attached growth systems utilise the formation of biofilms to treat wastewater. The oldest example of these is the trickling

filter in which wastewater is sprayed onto a filter bed to promote the formation of biofilm and thus biological treatment

(Ahammad et al., 2020; Murshid et al., 2023; Verma, 2023). More complex iterations of this technology exists and for

most of these systems removal efficiencies are shown to be greater than 80% (Murshid et al., 2023).

Tertiary and advanced treatment technologies are largely concerned with disinfection of wastewater and is thus im-

plemented in response to the end-use of effluent (Metcalf & Eddy, 2003). Processes included are chloronation and ozona-

tion, ultraviolent disinfection, ultrasound treatment, the Fenton Process, Electrochemical Advanced Oxidation Processes

(EAOPs) and absorption (Ahammad et al., 2020; Fernandes et al., 2024; Verma, 2023). These can often be hybridised

or integrated with other treatment technologies to increase application and compensate for individual process limitations

(Asheghmoalla & Mehrvar, 2024; Fernandes et al., 2024; Su et al., 2016; Sudhakaran et al., 2013). Further treatment of

sludge is also undertaken within WWTPs (Joe Cyril & Pawar, 2024). Anaerobic digestion is the primary form of sludge

treatment and represents the sole energy-positive process utilised within common WWTPs (Jenicek et al., 2012). This is

a consequence of the production of biogas, which can be used to offset energy consumption (Shen et al., 2015).

2.1.3 The microbial community

Microbial communities have been known to drive contemporary wastewater treatment processes for just over a century

(Buswell & Long, 1923; Sawyer, 1965), however, quantification and characterisation of theses organisms in situ, only

became possible with the more recent advent of polymerase chain reaction (PCR) techniques and next-generation se-

quencing (Sanz & Köchling, 2007; Wagner et al., 2002). Research utilising quantitive polymerase chain reaction (qPCR)

on 16S rRNA gene segments has been revolutionary in building a picture of the microbial communities at heart of wastew-

ater treatment technologies (V. Singh & Dey, 2024). Indeed, by applying the aforementioned methods to samples taken

from WWTPs it is shown that the process of ammonia oxidation, a key step of nitrification, within ASP technologies is

dominated by chemolithotrophic ammonia-oxidising bacteria (AOB); specifically Nitrosomonas (H. D. Park et al., 2006;

Purkhold et al., 2000; V. Singh & Dey, 2024; Zhang et al., 2011). Regarding the second step of nitrification, Nitrosipra

have been shown to be the most diverse and ubiquitous nitrite-oxidising bacteria (NOB) (Lücker et al., 2010). Addi-

tionally, denitrifiers related to Azoarcus, Zoogloea and Thauera have been identified within activated sludge (H. Chen

et al., 2020; Thomsen et al., 2007). Phosphorus-accumulating organisms (PAOs) from Tetrasphaera and Accumulibacter,

as well as, filamentous bacteria such as Microthrix and Gordonia are also known to be present, along with many other

genera (H. Chen et al., 2020; Mielczarek et al., 2012; V. Singh & Dey, 2024).

Within the anaerobic digestion process it has been shown that a "core group" of Bacteroidetes, Chloroflexi, Pro-

teobacteria and Synergistetes exist across different anaerobic digesters (Rivière et al., 2009). Members of these phylum

have been found within septic tank sludge and effluent samples, suggesting that commonality regarding the structuring of

microbial communities may exist across different treatment scales (Connelly et al., 2019; Tomaras et al., 2009). On top of

this, functional groups such as hydrolysers, acidogens, acetogens, and methanogens have been linked to system function-
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ality and effectiveness (L. N. Nguyen et al., 2019). Indeed, it has been suggested that improved septic tank performance,

due to increased temperature, may be linked to a more metabolically balanced methanogenic consortia (Connelly et al.,

2019). Many other such relationships between functionality and microbial community composition within anaerobic di-

gesters have been demonstrated (Kundu et al., 2014; Pasalari et al., 2021; Regueiro et al., 2012).

This fingerprinting of microbial communities demonstrates a dramatic increase in our understanding of the biological

processes underpinning current wastewater treatment technologies. As such, it has paved the way for studies investigating

how operational parameters influence the overall microbial community or specific genera of interest (Y. M. Kim et al.,

2011; Seuntjens et al., 2018). This, in turn, has produced practical solutions, such as the implementation of bioaugmen-

tation strategies (Muter, 2023; Sanz & Köchling, 2007). A consensus is developing that wastewater treatment systems,

previously monitored through process parameters and empirical data, should now be maintained through management of

microbial communities (Carballa et al., 2015; Connelly et al., 2019; T. P. Curtis et al., 2003; Vanwonterghem et al., 2014).

2.1.4 Challenges

It is estimated that currently between 37 and 48% of all wastewater is discharged untreated (Jones et al., 2021). This dis-

charging of untreated wastewater is one of the primary drivers of water degradation within surface water and groundwater

resources (Bojanowski et al., 2022; Canter & Knox, 1985; du Plessis, 2022; Naidoo & Olaniran, 2014; United Nations,

2022b; van Wezel et al., 2018). The anticipated rise in water scarcity (Boretti & Rosa, 2019; WWAP, 2018), underscores

the global importance of increasing the proportion of treated wastewater, in addition to the need to prevent, mitigate,

and anticipate potential system failures. Indeed, as water resources become more valuable, contamination as a result of

untreated wastewater discharge is of increasing concern (United Nations, 2022b). Thus, the challenges facing wastewater

treatment must be identified and incorporated into long-term infrastructure planning strategies (United Nations Environ-

ment Programme, 2023).

Climate change is one of the greatest challenges of our time, and just as it is expected to challenge multiple, if not

all, aspects of society, direct concerns regarding the effect physical climate change impacts, such as, increased air temper-

ature, changing precipitation patterns, extreme weather events and a rising sea level, will have on wastewater treatment

infrastructure have been expressed (Major et al., 2011; Vicuña et al., 2018). The consequence of these phenomena vary.

For example, treatment efficiencies within decentralised wastewater treatment technologies have been shown to increase

with higher temperatures (Connelly et al., 2019; Pussayanavin et al., 2015), however, lower levels of BOD may limit

heterotrophic denitrification within associated soil absorption systems, and a reduction in O2 availability, as a result of

increased soil temperature, is expected to diminish phosphorus removal capacity (J. A. Cooper et al., 2016). In centralised

WWTPs there are concerns that global warming could lead to a breakdown within enhanced biological phosphorus re-

moval (EBPR) as a result of a change in microbial community composition (Lopez-Vazquez et al., 2009; Qiu et al., 2022).

The increase in frequency and severity of extreme weather events, such as high temperatures and heavy precipitation, as

a result of climate change is also a cause for concern (Goodess, 2013). Flooding as a result of extreme storms and precip-

itation is known to facilitate the discharge of untreated wastewater (J. Li et al., 2023; Nazari et al., 2022). On the opposite

side of the spectrum, high temperatures leading to drought will lower dilution capacities of lotic systems, increasing the

relative pollution due to wastewater effluent (Benotti et al., 2010; Marino et al., 2024). Extreme weather events are also
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known to damage wastewater treatment infrastructure and thus climate change will invoke structural implications on these

systems (J. Hughes et al., 2021; Hyde-Smith et al., 2022; Valdez et al., 2010).

Another fundamental challenge facing wastewater infrastructure is the expected increase in global population, driving

increases in wastewater production (United Nations Environment Programme, 2023). It has been projected that under all

Shared Socioeconomic Pathways (SSPs), the global population will continue to increase until 2050, with the worst-case

scenario demonstrating a global population of approximately 10 billion at this point (Kc & Lutz, 2017). As a result it is

expected that by 2050 wastewater production will have grown by 51% from current levels, resulting in global production

of over half a trillion m3/year (Qadir et al., 2020). This value can be broken down by looking at per capita production. The

global average per capita production rate has been estimated at 49m3/year, however, for the UK this value is significantly

higher at 92m3/year. Indeed, per capita production rates are shown to vary drastically between regions, with Sub-Saharan

Africa demonstrating the lowest value at just 11m3/year, while North America has the highest per capita production rate

of 210m3/year (Jones et al., 2021). While regions with higher economic classification express a higher production of

wastewater, the proportion of wastewater sent to treatment is also greater (Jones et al., 2021; Su et al., 2016). It has how-

ever been observed that during economic development within emerging countries a lag in infrastructure development has

led to an increase in the discharge of untreated wastewater (Flörke et al., 2013). Thus, wastewater infrastructure should

be at the fore of economic development. To elevate the strain on treatment capacity as a result of increased wastewater

production, strategies for decreasing per capita rates should be explored. In China a reduction in wastewater production

has been achieved through the implementation of water-saving policies (Xu et al., 2020).

The demand increase associated with a growing population will place greater pressure on effective management and

development of urban water infrastructure (United Nations Human Settlements Programme (UN-Habitat), 2023). Indeed,

urbanisation is expected to intensify the challenges facing wastewater treatment. Depending on the SSP assessed, it is

predicted that by 2100 the proportion of the world’s population residing in an urban setting could be between 60 and 92%,

demonstrating an increase from the current level of 50% (Jiang & O’Neill, 2017). This in turn is projected to increase the

global urban area by over 100 and 200% respectively (X. Li et al., 2019). Wastewater treatment systems will therefore

be forced to advance and expand if further pollution is to be avoided (Strokal et al., 2021; United Nations Human Set-

tlements Programme (UN-Habitat), 2023). Indeed, in cities in India, current wastewater generation is already exceeding

treatment capacity by 60 to 70% (Amerasinghe et al., 2013), and in Africa, urbanisation without the development of

suitable wastewater infrastructure, has lead to a deterioration of human and environmental health (Boadi et al., 2005).

The best method to employ in tackling these challenges is not obviously clear. There is a growing consensus that

rather than blindly following design principles developed within the 20th century (S. Graham & Marvin, 2001), the de-

gree of wastewater centralisation should be tailored based on criteria such as, treatment efficiency, type of contaminates

expected, capital and O&M costs, energy demand, social implications, robustness to environmental impact, settlement

dispersion and topography (Eggimann et al., 2015; Libralato et al., 2012). The conversation regarding the respective roles

of centralised and decentralised technologies is still ongoing (Duque et al., 2024; Pasciucco et al., 2022; Torre et al.,

2021) and although integrated and hybrid solutions are being presented as attractive alternatives, the implementation of

these strategies is still rare (Keller, 2023). There is also a shift to view wastewater treatment infrastructure as a solution

rather than a problem (United Nations Environment Programme, 2023). Within a circular economy, WWTPs can be

categorised as resource production hubs primarily due to their capacity for producing nutrients and energy (Ali et al.,
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2022; Kretschmer et al., 2015; Qadir et al., 2020; Shen et al., 2015; van Loosdrecht & Brdjanovic, 2014; Verstraete et al.,

2009). Additional products can be generated from the microbes themselves, such as, cellulose, extracellular polymeric

substances (EPS), volatile fatty acids (VFAs) and single-cell protein (SCP) (Kehrein et al., 2020; Lin et al., 2010; Puyol

et al., 2017). Effluent reuse is also being heralded as a vital strategy for addressing water scarcity (Angelakis & Snyder,

2015; Hristov et al., 2021; Mannina et al., 2022; Salgot & Folch, 2018).

Increasing reliance on wastewater infrastructure offers both opportunities and risks. While these technologies can

provide valuable resources for promoting a circular economy, failures in treatment systems could result in more severe

consequences, especially if treated effluent is to be recycled (Toze, 2006). Indeed, despite technological and theoretical

advancements in wastewater treatment, failure of systems is commonly observed (Cossio et al., 2018; Liang & Yue, 2021;

Murray & Drechsel, 2011; Preisner, 2020). Even treated effluent has been shown to be released at a rate and quality

outside of accepted guidelines (Büttner et al., 2022; Charles et al., 2005). These failures can occur due to mechanical

(Taheriyoun & Moradinejad, 2014; K. Wang et al., 2017), biological (Heine et al., 2002) and economic reasons (Murray &

Drechsel, 2011), and although attempts have been made at developing models for predicting effluent quality and process

failures, these are primarily data-driven reflecting an empirical approach (Afan et al., 2024; Duarte et al., 2024; Weirich et

al., 2015). The lack of theoretical laws governing the structuring of microbial communities at heart of treatment processes

make developing solutions from a fundamental perspective a significant challenge. Indeed, there have been calls to

improve our theoretical basis if we are to better engineer wastewater treatment systems (T. P. Curtis et al., 2003; Prosser

et al., 2007; Sloan & Gómez-Borraz, 2023). The research presented within this thesis is a direct attempt at addressing this

challenge.

2.2 Theoretical community ecology

2.2.1 The role of mathematical models

At the heart of all biological wastewater treatment technologies is a mixed community of bacteria and so developing

a mathematical model of the bacterial populations would appear to be central to predicting the function of wastewater

systems. In the most elementary case, the size of a population results from a trade-off between births, deaths, immigration

and emigration (Nisbet & Gurney, 1982). To formulate a model, one can portray such processes mathematically. For

example, the previous statement can be represented by:

∆N = (B−D+ I −E)∆t, (2.1)

where ∆N represents the change in the number of individuals within a population over a change in time ∆t. B, D, I and E

respectively refer to the rate of births, deaths, immigration and emigration. Early deterministic models largely expanded

on birth and death processes (Lotka, 1920a; Verhulst, 1838). Migration and dispersal were later brought to the fore, most

famously by MacArthur and Wilson in their "Theory of Island Biogeography" (MacArthur & Wilson, 1967). The success

and popularity of such models were dependent on their ability to describe observed patterns (Pearl & Reed, 1920). As a

result, models formulated initially through the description of fundamental processes have been subsequently adapted for

representing specific patterns, leading to a field rich in mathematical theory yet devoid of any overarching organisation

(Vellend, 2010).
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The abundance of mathematical models within theoretical ecology arises from the problem of scale. In the textbook

"Modelling Fluctuating Populations" by Nisbet and Gurney, two categories of models are defined, "tactical" and "strate-

gic" (Nisbet & Gurney, 1982, p. 1). Tactical models refer to those aimed at accurately portraying ecological processes at a

low level. They usually account for complex interactions requiring precise knowledge of the system. Strategic models are

mathematically simpler, using sweeping assumptions to describe trends more broadly. These definitions highlight that the

scale at which a model is applied often determines its relative complexity. Indeed, there is a trade-off between complexity

and scale such that formulating methods for transcribing between models of different scales has occupied ecologists for

years (Jarvis & McNaughton, 1986; Levin, 1992; Martinez-Rabert et al., 2023; Parry & Bithell, 2012).

Taken to its conclusion, some scales must exist where the complexity of processes described must be curtailed. This

is especially true for exceptionally large populations or communities such as those of microorganisms (Woodcock et al.,

2007). It is therefore not always the case that the most realistic model is best. Levin (1992) states this explicitly, declar-

ing "A good model does not attempt to reproduce every detail of the biological system; the system itself suffices for that.

Rather, the objective of a model should be to ask how much detail can be ignored without producing results that contradict

specific sets of observations, on particular scales of interest". Under such a description, mathematical models can only

be expected to provide circumstantial evidence of the processes that drive the observed pattern, to state assuredly would

succumb to the "same behaviour implies same mechanism fallacy" (Woodcock et al., 2007). What Levin highlights is a

pragmatic approach, where the aim of mathematical models is to simply explain the observed pattern rather than describe

all of its underlying processes and drivers (Levin, 1992).

As a consequence of describing distinct patterns, there has been a failure to define a set of universal laws governing

community ecology (Lawton, 1999; Vellend, 2010). Lawton expresses that only an indication of fundamental rules can

be arrived upon when considering patterns from the majority of systems. Most systems are considered too complex, and

thus universal dynamics are obscured by the swathe of local interactions. Despite this observation, he concedes that all

ecological patterns must emerge from the truly universal laws of nature (Lawton, 1999). Vellend argues for the need of

mathematical models to be stripped back towards these fundamental laws, despite their relative importance to the case

at hand (Vellend, 2010; Vellend & Orrock, 2009). He demonstrates this point by highlighting that layering complexity

within mathematical models, in an attempt to describe specific observed phenomena, quickly leads to the formulation of a

vast number of models, all differing in their theoretical importance and with no organisational framework (Vellend, 2010).

Unlike Lawton, Vellend does not promote the physical laws of nature as pillars to coalesce theoretical ecology around,

rather he draws his set of fundamental processes from population genetics (Vellend, 2010; Vellend & Orrock, 2009), a

field developed with a relative lack of empirical data, yet, shares striking similarities to community ecology such that

theoretical insights and mathematical formula are often transcribed between fields (Caswell, 1976; Hedrick, 2009; Hu

et al., 2006; Millstein, 2013; Sloan et al., 2021). A characterisation of the early development of population genetics is

given by Lewontin (1974, p. 189) "For many years population genetics was an immensely rich and powerful theory with

virtually no suitable facts on which to operate. It was like a complex and exquisite machine, designed to process a raw

material that no one had succeeded in mining". Vellend argues that this lack of "raw material" enforced a philosophy

of process over pattern, enabling the field to arrive at theoretical descriptions based on fundamental processes. Vellend

adopts the same set of fundamental processes, albeit with slightly different definitions, for use within community ecology.

These are drift, selection, speciation and dispersal (Vellend, 2010).
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The viewpoints articulated by Levin and Vellend present a dichotomy in regard to the role of mathematical models,

where one favours the description of observable patterns, while the other emphasises expression of universal processes.

However, these perspectives are not mutually exclusive. To demonstrate this the analogy described by Sloan and Gómez-

Borraz (2023) is drawn upon. What they conceptualise is the success of Bernoulli’s equation in informing the design

of water distribution systems, despite the availability of the more comprehensive Navier-Stokes model. Indeed, what

Bernoulli achieved was a refinement of universal processes to a point complex enough to inform engineering design, yet

simple enough to negate the inability to solve it. This outlook is adopted within this thesis. The view is taken that the

formulation of an effective generalised theory for describing microbial communities must be able to describe observed

patterns produced by these communities, whilst also accounting for universal processes, even if these processes must be

simplified to their most parsimonious form.

2.2.2 Early models

The field of theoretical ecology can be traced back to Thomas Malthus’ publication in 1798 entitled "Essay on the Prin-

ciple of Population", in which obstacles to the exponential growth, mathematically described by Euler in 1748, are recog-

nised for living populations (Malthus, 1798). These ideas were further developed in subsequent editions and largely

influenced the theory of evolution developed by Charles Darwin and Alfred Russell Wallace (Bacaër, 2011d). Despite the

success of these ideas, no explicit mathematical descriptions of the limitations proposed by Malthus were given. This was

achieved by Pierre-Francois Verhulst in 1838 (Verhulst, 1838).

The mathematical model developed by Verhulst was coined the logistic growth equation; a common manifestation of

this is given by the form:
dN
dt

= rN
(

1− N
K

)
, (2.2)

where N is the number of individuals within a population at time t, r is the intrinsic growth rate and K is a carrying

capacity. The logistic equation marks a pivotal moment in theoretical ecology as mathematical simplicity is achieved by

characterising external pressures through "vital" coefficients (Scudo & Ziegler, 1978). Indeed, the expansion of these

coefficients to explicitly represent certain phenomena was undertaken in later developments of the model, as reviewed by

Scudo and Ziegler (1978). Application of the logistic equation was undertaken in the years after Verhulst’s formulation,

yet these were done in ignorance of each other leading to "rediscoveries" of the same model (Lloyd, 1967). Indeed, it

wasn’t until the "golden age" of the 1920s that Verhulst’s work was truly appreciated (Scudo & Ziegler, 1978).

In 1920 Raymond Pearl and Lowell J. Reed published an article "On the Rate of Growth of the Population of the United

States since 1790 and Its Mathematical Representation" (Pearl & Reed, 1920), prompting renewed interest in the use of

the logistic equation for describing population growth (Cramer, 2004). Although the formulation of the logistic equation

by Pearl and Reed was achieved independently, Pearl does draw focus to Verhulst’s work in subsequent publications,

stating explicitly that "The equation to the curve which has been found by experiment and observation to be descriptive

of population growth in a wide variety of organisms was first discovered by the Belgian mathematician, Verhulst in 1838"

(Pearl & Slobodkin, 1976).
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Over the same period, Pearl drew inspiration from a publication by Alfred James Lotka on biological oscillations, and

subsequently helped him secure a scholarship at Jon Hopkins University’s School of Hygiene and Public Health (Bacaër,

2011c). Lotka’s primary interest was in mathematically describing predator-prey interactions. Lotka applied his previous

knowledge of chemistry to these systems. To his surprise, this resulted in a series of rhythmic relations stretching out

through infinite oscillations (Lotka, 1920a). Lotka first published these findings in 1920 and during his time at Jon Hop-

kins University developed his ideas into a book entitled "Elements of Physical Biology", published in 1925 (Lotka, 1925).

Lotka’s model describes the abundance of both predator and prey populations through a pair of differential equations.

These can be represented by:

dx
dt

= ax−bxy, (2.3a)

dy
dt

=−cy+dxy, (2.3b)

where x is the total mass of prey at time t, y is the total mass of predators at time t, a is the growth rate of prey when there

are no predators and c is the rate of decrease of predators when no prey is present. b and d describe the respective impacts

that each species has on one another, where b impacts the death rate and d impacts the growth rate respectively. Values

for a, b, c and d are all positive. Under these conditions, the oscillatory nature of the interaction between both species can

be mathematically proven. This process is explicitly shown by Lotka in another publication from 1920 (Lotka, 1920b). It

is important to note that over the same period, Vito Volterra independently utilised the same pair of differential equations

for describing the interactions between predator and prey in fisheries (Volterra, 1926a, 1926b). As such, the predator-prey

model, defined in Equation 2.3, is commonly referred to as the Lotka-Volterra model.

The Lotka-Volterra model is significant as it provided a mathematical framework for analysing populations of multiple

species. Indeed, a general case for n species was developed alongside mathematical explanations of food webs generated

between numerous species (Scudo, 1971). The Lotka-Volterra model was also a necessary step in the formulation of the

competitive exclusion principle defined by Gause in 1934 (Gause, 1934). Gause draws reference to the work undertaken

by Lotka and Volterra throughout his book, and an early example of the exclusion principle was mathematically demon-

strate by Volterra in 1927 (Volterra, 1927). A description of this is provided by Scudo (1971).

Next, focus is given to Sewall Wright’s description of random genetic drift, an antecedent of the neutral models

examined throughout much of this thesis. Sewall Wright first published this description in 1931 (Wright, 1931). This

mathematical formulation followed from the large body of mathematical development within population genetics through-

out the early 20th century; most relevant are works by Hardy (1908), Weinberg (1908) and Fisher (1923, 1930). In its

simplest form it describes the change in frequency of an allele within a Mendelian population with no migration, selection

or speciation, where generations are non-overlapping such that births and deaths occur simultaneously and the population

is of a finite size. Under such a regime the allele type chosen for a subsequent generation is undertaken through random

binomial sampling of the current pool of allele types (Bacaër, 2011e). An allele, short for allelomorph (allelo = of each

other, morph = form), refers to a specific version of a gene that influences the expression of certain traits. Here it is most

helpful to think of this as a fundamental unit of hereditary variation.
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Examining the case where there are only two types of alleles (a and A) for each individual, and the abundance of allele

A is given as i. The probability that allele A is chosen at random is defined as i
2N , where N is the number of individuals

within the population. The probability that allele a is chosen is therefore 2N−i
2N which simplifies to 1− i

2N . In the case

where a future generation contains a single increase in the abundance of allele A, the probability that allele A is chosen in

a further birth is increased by 1
2N . This demonstrates that the magnitude of probability increase is directly linked to the

size of a population N. Indeed, in the case where a population is indefinitely large such that N approaches infinity then
1

2N → 0. In such a population it can therefore be assumed that the frequency of alleles remains constant through time,

this is known as the Hardy-Weinberg Equilibrium (Bacaër, 2011b). Where N is of a fixed size, the increase in selection

probability, attained through the random selection of the allele, will inevitably lead to fixation when i = 2N. This occurs

as the selection probability is tied to allele abundance and thus an increase in one will lead to an increase in the other.

Similarly the opposite trend is true and thus fixation can also occur at i = 0, where the allele is lost entirely. This tendency

of the frequency of alleles to meander based solely on random mating is what is known as "genetic drift" (Bacaër, 2011e).

Methods for assessing when the loss of genetic diversity may occur based on drift and the role of the population size N,

more commonly refereed to as the effective population size Ne, are still central in the field today (Charlesworth, 2009;

J. Wang et al., 2016).

2.2.3 Neutral theory

Neutral theory was established towards the end of the 1960s in opposition to the Darwinian description of genetic evolu-

tion. A summary of the Darwinian approach at this time is given by G. G. Simpson (1964). The argument follows that

if there is control over the molecular level, as stated by Weiss (1962), then if selection pressures exist at the individual

or community level it must also exist at the molecular level. Mayr echoes this viewpoint, stating that the evolution of

proteins is subject to constant selective pressures (Bryson & Vogel, 1965). Despite the success of Darwinian thinking,

Kimaru demonstrates mathematically that at the genetic level selection would induce a rate of evolution so great as to

be unreasonable. The only remedy is to assume that most mutations are neutral (Kimura, 1968). King and Jukes (1969)

support Kimaru’s rationale and provide a fuller account of the position in their definition of non-Darwinian evolution.

Indeed, these early descriptions of the role that neutral mutations play in genetic evolution mark the inception of a defined

neutral theory. The theory was subsequently galvanised, with Kimaru publishing two books on the topic entitled "Theo-

retical Aspects of Population Genetics" and "The Neutral Theory of Molecular Evolution" (Kimura, 1971, 1985)

The migration of neutral theory to community ecology occurred later. In 1976, Caswell applied the neutral model,

originally developed in population genetics, to community ecology. He used this model to establish a reference scale and

demonstrated its capacity to produce relative-abundance patterns and species-area curves that aligned with both theoret-

ical and empirical expectations (Caswell, 1976). This contributed to the ongoing debate over the relative importance of

deterministic versus stochastic processes within community structure at the time (Connell, 1978, 1980; Connor & Sim-

berloff, 1979; Diamond, 1975; Sale, 1977; Simberloff, 1978). Further neutral models were shown to be successful in

describing observed ecological patterns (Hubbell, 1979; R. Hughes, 1986; Innis & Haefner, 1980), yet, there was reluc-

tance to concede the theoretical merits of the theory (Bell, 2000). The idea of neutral processes governing community

structure persisted to seem aberrant to ecologists subscribed to the neo-Darwinian niche-assembly view of community

structure (Chesson, 1991; Gilpin & Diamond, 1984; Roughgarden, 1983). This debate was expected to continue given

the legitimacy of both viewpoints (Hubbell, 1997).
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The most notable development of neutral theory within community ecology came at the turn of the millennium with

Hubbell’s landmark book entitled "The Unified Neutral Theory of Biodiversity and Biogeography" (Hubbell, 2001). In

this book Hubbell expanded on his previous work (Hubbell, 1979, 1995, 1997; Hubbell & Foster, 1986) and aimed to

unify theories of biogeography, such as MacArthur and Wilson’s "Theory of Island Biogeography" (MacArthur & Wilson,

1967), with those of species abundance. A review of species abundance theory at the time is given by Tokeshi (1993,

1997). The result is an in-depth formulation of a mathematical framework describing the change in a species’ abundance

based on neutral processes.

Neutrality in Hubbell’s theory is applied through functional equivalence. In its simplest form, the theory uses a

zero-sum ecological drift model for an isolated community, in which only birth and death impact a community’s struc-

ture. The transitional probabilities describing the outcomes of a single discrete replacement event, in which birth occurs

subsequently to death, on a species’ abundance are as follows:

Pr{Ni −1|Ni}=
(

Ni

NT

)(
NT −Ni

NT −1

)
, (2.4a)

Pr{Ni|Ni}= 1−Pr{Ni −1|Ni}−Pr{Ni +1|Ni}, (2.4b)

Pr{Ni +1|Ni}=
(

NT −Ni

NT

)(
Ni

NT −1

)
, (2.4c)

where Ni is the number of individuals in species i and NT is total number of individuals in the community. The probabilities

for species-specific birth and death events can be separated as:

Pr{Death|Ni}=
(

Ni

NT

)
, (2.5a)

Pr{Birth|Ni}=
(

Ni

NT −1

)
, (2.5b)

This produces similar dynamics to the mathematics developed by Sewall Wright in his formation of genetic drift (Wright,

1931). Indeed, the probability of an allele, or in this case and individual, being chosen is dependent on the abundance

of the quantity itself and the size of pool it exists within. If one were to simulate a community based on Equations 2.4a,

2.4b, and 2.4c over an infinite number of replacement events, fixation of a single species would occur at Ni = NT , while

extinction of all other species would occur at Ni = 0. This reflects the same behaviour as exhibited by Wright’s model,

and thus the random changes in a species relative abundance exhibited by this process can referred to as "ecological drift".

To incorporate the role of migration on community structure, Hubbell expands on the previous mathematical descrip-

tion by including terms m and pi, where m is the probability, or rate, of immigration and pi is the relative abundance of

the ith species within the source community of migrants (Hubbell, 2001). In this case we can also think of the previously
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defined death of an individual as either a local death or emigration from the community. Incorporating these parameters

within the discrete transitional probabilities provided in Equations 2.4a, 2.4b and 2.4c we arrive at:

Pr{Ni −1|Ni}=
(

Ni

NT

)[
m(1− pi)+(1−m)

(
NT −Ni

NT −1

)]
, (2.6a)

Pr{Ni|Ni}= 1−Pr{Ni −1|Ni}−Pr{Ni +1|Ni}, (2.6b)

Pr{Ni +1|Ni}=
(

NT −Ni

NT

)[
mpi +(1−m)

(
Ni

NT −1

)]
, (2.6c)

Following the publication of Hubbell’s theory, an uptake in the application of neutral models transpired. Neutral

theory was applied to species abundance patterns observed from various macro-organisms with varying degrees of suc-

cess (Chisholm & Pacala, 2010; Condit et al., 2002; Dornelas et al., 2006; B. Gilbert et al., 2006; Latimer et al., 2005;

McGill, 2003; Muneepeerakul et al., 2008; Ulrich & Zalewski, 2007; Volkov et al., 2007). The theory’s growing popular-

ity unsurprisingly prompted rigorous critique, (Clark, 2009, 2012; Nee, 2005; Purves & Turnbull, 2010; Ricklefs, 2006),

rekindling the debate observed in the previous millennium. Explicit examples of debate can be found between Bell (2001)

and Enquist et al. (2002), Condit et al. (2002) and Duivenvoorden et al. (2002), Hubbell (2003) and Ricklefs (2003) and

Clark and Volkov et al. (2004)

Most criticisms of neutral theory can be expressed through four primary concerns: the underlying assumptions, the

attribution of processes to patterns, the fitting methods and parameter interpretation, and community size and associated

timescales (Matthews & Whittaker, 2014). In addressing the first two concerns, Hubbell concedes that disregarding com-

petition and niche differences is fanciful, and that multiple explanations can exist for a given observed pattern (Hubbell,

2005). What he draws focus to is that the success of a model, void of any competitive interactions or selection pressures, in

describing observed species abundance patterns is inherently significant; a sentiment echoed by Volkov et al. (2007). Fit-

ting methods and parameter interpretation are largely expanded on through further publications, such as those by Etienne

and others which developed a sampling theory and fitting framework based on likelihood (Etienne, 2005, 2009; Etienne

& Alonso, 2007; Etienne & Olff, 2004; Etienne et al., 2006). Finally, regarding community size and timescales, Ricklefs

(2003) firstly demonstrates that speciation in Hubbell’s model may lead to species lifespans at either end of the acceptable

spectrum. Hubbell admits that these can be viewed as theoretical extremes and offers a third method of speciation in

direct response (Hubbell, 2003). Despite further advancements in how speciation is handled within neutral models, this

still presents an issue within the theory (Chisholm & O’Dwyer, 2014). Ricklefs (2006) and Nee (2005) also demonstrate

a lack of importance of ecological drift in large communities, illustrated by the excessively long timescales needed to

observe any meaningful change. This has been recently challenged through the suggestion of an "effective community

size" (Sloan et al., 2021), an approach employed successfully within population genetics for many years (Charlesworth,

2009). Despite these criticisms, there is a consensus that Hubbell’s theory has merit (Alonso et al., 2006; Rosindell et al.,

2012), and as time passed ecological drift was identified as a fundamental driver of community assembly (Vellend, 2010).

As such, efforts have been made to bridge niche and neutral perspectives (Adler et al., 2007; Leibold & McPeek, 2006;

Stokes & Archer, 2010; Tilman, 2004).
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Further development of Hubbell’s model has occurred since its inception. Developments include the expansion of

speciation modes (de Aguiar et al., 2009; Etienne & Haegeman, 2011; Etienne et al., 2007; Haegeman & Etienne,

2009, 2010; Hubbell, 2003; Kopp, 2010; Rosindell et al., 2010) and the traversal from a spatially implicit model to

spatially explicit ones (Chave & Leigh, 2002; Etienne & Rosindell, 2011; O’Dwyer & Green, 2010; Rosindell & Cornell,

2007). The zero-sum assumption has also been relaxed (Haegeman & Etienne, 2008). These developments are reviewed

in an assessment of the decade succeeding the initial publication of "The Unified Neutral Theory of Biodiversity and

Biogeography" (Rosindell et al., 2011). More recent developments include, the incorporation of habitat and environmental

considerations (Abeysinghe & Punchi-Manage, 2020; Kalyuzhny et al., 2015), new analytical expressions for species ages

(Chisholm & O’Dwyer, 2014) and an adaptation for assessing transient dynamics (Fung & Chisholm, 2023). Hubbell’s

model has also been modified for specific use with microbial communities (Ofiţeru et al., 2010; Sloan et al., 2006, 2021;

Woodcock et al., 2007). Numerous examples demonstrating its application in this context can be found in recent literature

(Cira et al., 2018; Grilli, 2020; Heys et al., 2020; T. Kim et al., 2021; Z. Liu et al., 2019; Sun et al., 2021). Perhaps this

enduring relevance and ongoing development presents the strongest testament to the success of neutral theory.

2.2.4 Application of neutral theory for wastewater engineering

Ecological theories, such as neutral theory, are applied to wastewater engineering through the context of microbial ecol-

ogy. Advances in analytical techniques and molecular tools have prompted the vast accumulation of molecular data,

driving a revolution in this field (Prosser, 2020; Prosser et al., 2007). The overall size, fast turnover and ease of sampling

microbial communities, means high quality time series can be obtained with relative ease; a problem that has stifled the

development of ecological theory when observing larger organisms (Magurran, 2007). However, despite the eagerness to

observe these communities in newfound detail, theoretical analysis of datasets at the community level has been lacking

and the importance of analysing microbial communities across all scales has been recently re-emphasised (J. A. Gilbert

& Lynch, 2019; Lemke & DeSalle, 2023; Stubbendieck et al., 2016). Hampering this process is the nature of these com-

munities, which makes useful application of neutral models to these communities a non-trivial endeavour. Meeting these

challenges will not only enable the useful application of neutral models within wastewater engineering but also facilitate

theoretical development that can be shared between macro and micro ecology (Barberán et al., 2014).

The most obvious challenge is that microbial communities are extremely large. The vast abundance and diversity

of microbes is difficult to comprehend. The total number of prokaryotes globally has been estimated to be 4− 6× 1030

(Whitman et al., 1998), while 4×106 different taxa could exist in a ton of soil (T. P. Curtis et al., 2002). For wastewater

treatment systems, it has been estimated that the global activated sludge community holds up to 6× 1023 individuals,

made up from 1− 2× 109 different species (Wu et al., 2019). Even at small-scale one can expect a large amount of

diversity, with 70 species expected per ml of wastewater (T. P. Curtis et al., 2002). This presents a problem in regard to

the application of neutral theory, firstly, due to the arguments expressed by Nee (2005) and Ricklefs (2006), in which they

demonstrate the decrease in importance of ecological drift as the community size increases. Indeed, the Hardy-Weinberg

equilibrium, developed for population genetics, demonstrates that for an infinite population, genetic drift is diminished to

a point where allele frequency remains constant (Bacaër, 2011a, 2011b).
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The effect of undersampling is also a cause for concern when applying neutral theory to such large communities.

Due to the extreme diversity, within samples it is likely that the few abundant taxa will dominate, thus concealing the

much greater number of rare taxa (T. P. Curtis et al., 2002). Even if a full sample census can be obtained, the discrepancy

between the sample size and community size is dramatically larger for microorganisms than what one might expect for

macro-organisms, resulting in a scattered and under-represented analysis of diversity (Sloan et al., 2007; Woodcock et al.,

2007). One avenue for avoiding this is to base analysis on a single detectable taxa or species. Indeed, Ofiţeru et al. (2010)

demonstrates that through the use of temporal data, neutral model parameters can be calibrated in absence of the full

distribution of taxa. However, the exact impact temporal sampling regimes have on the calibration accuracy of neutral

model parameters is still unknown.

Despite these challenges, the number of studies assessing the role that stochastic processes, such as ecological drift,

have in the structuring of microbial communities has been increasing (Zhou & Ning, 2017). In many cases, this is

achieved by calibrating neutral models to stationary or temporal abundance data. (Fodelianakis et al., 2021; Heys et al.,

2020; Konopka et al., 2015; Logares et al., 2018; Ofiţeru et al., 2010; Sloan et al., 2006, 2021; Venkataraman et al., 2015;

Woodcock et al., 2007). This methodology has been directly applied to microbial communities from within wastewater

treatment systems, most commonly to quantify the importance of stochastic versus deterministic mechanisms in driving

community assembly from stationary species abundance distributions (Ayarza & Erijman, 2011; W. Chen et al., 2022;

Cheng et al., 2019, 2024). While this approach can be useful in helping uncover parameters that may be used to control

these communities, Ofiţeru et al. (2010) demonstrates that through the application to temporal datasets we may be able to

predict the extinction of key taxa or when their abundance might drop below a critical threshold. The study highlights the

ability of neutral models to explain the change in relative abundance of the most abundant ammonia oxidising bacteria

and heterotrophic bacteria obtained from aeration basins at the Palo Alto Regional Water Quality Control Plant. It is

demonstrated that from this, one can empirically derive neutral model parameters that hold ecological meaning and are

"biologically plausible".

The ability to derive parameters that deliver biological insights is a key step to move from a good model to a useful

one (Wieland et al., 2021). Indeed, a recent study aiming to develop the theoretical framework behind the use of neutral

models within microbial ecology has specifically focused on the calibration of model parameters using temporal datasets

(Sloan et al., 2021). The outcome reached is that while derived parameters may be biologically plausible they are often at

odds with what is measured independently and present a higher importance of ecological drift than what one might expect

for large communities; this is made apparent through a significant underestimation of the size of the community. This

mismatch in the theoretical and experimental importance of ecological drift within large communities is not an isolated

case. In population genetics it well established that genetic drift is a key driver of evolution despite the great abundance

of alleles within large populations (Nei et al., 2010). The solution was to adopt a parameter known as the "effective

population size", initially conceptualised by Sewall Wright in 1931 (Wright, 1931). The effect this parameter has on the

importance of genetic drift within large pools of alleles is highlighted by the differences in conclusions reached by Fisher

(1930) and Kimura (1968). In layman’s terms this parameter effectively reduces the population size thereby increasing

the impact of stochastic drift. This is exactly what is being observed within microbial ecology (Sloan et al., 2021).

The error within empirically derived neutral parameters from microbial communities look to reflect a similar phe-

nomena observed within population genetics, however, the exact mechanisms driving this are, as of yet, unproven. While
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it is hypothesised (Sloan et al., 2021) that the answer may lie in theoretical arguments with a richness as vast as that

developed within population genetics (see J. Wang et al., 2016), the answer may lie in the more prosaic problem of model

identification. Within microbial ecology, reduced sampling is often "excused" as analysis of samples is costly in both

time and expense, thus, a pragmatic approach can be adopted (Lemke & DeSalle, 2023). The effect these "excused"

sampling regimes have on the identification of neutral model parameters has not been comprehensively determined. As

sampling and analysis becomes increasingly affordable, a more scientific basis for choosing sampling protocols should

ensue. Indeed, if we are to use neutral model parameters, calibrated from single-species relative abundance time series,

to express the fundamental processes that drive microbial community structure, then it is crucial that the errors associated

with the sampling protocols employed are quantified. This question is directly addressed within the research presented in

Chapter 3.

2.3 Thermodynamics within microbial biology

2.3.1 A thermodynamic description of life

Schrödinger famously wrote "an organism feeds upon negative entropy" (Schrödinger, 1992, p. 71). What this brief state-

ment encapsulates is the analysis of growth, and therefore life, through the lens of the second law of thermodynamics. In

the words of Clausius, the second law of thermodynamics can be summarised as "The entropy of the universe tends to a

maximum" (Clausius, 1867, p. 365). We can rephrase this as the total entropy in an isolated system must either increase

or remain constant. Growth, therefore presents a contradiction to this viewpoint. If the universal tendency is toward decay

(high entropy), how can highly organised organisms (low entropy) exist, let alone grow? Schrödinger’s assessment is that

this is achieved through metabolism and that "the essential thing in metabolism is that the organism succeeds in freeing

itself from all the entropy it cannot help produce while alive" (Schrödinger, 1992, p. 71). This realisation underpins his

concept of "negative entropy".

To analyse the change in entropy across a system we must first decide on suitable boundaries. Indeed, the lack of

system boundaries expressed in Schrödinger’s formulation of negative entropy was a source of criticism (Gnaiger et al.,

1994). In a microbial context we can quite easily set the system boundary as the boundary around a cell, as shown in

Figure 2.2. Given that a cell is an open system (von Bertalanffy, 1950), the rate of change of entropy can be expressed as:

dSsys

dt
= Ṡgen + Ṡin − Ṡout , (2.7)

where, dSsys/dt is the rate of change of system entropy, Ṡgen is the rate of entropy generated, Ṡin and Ṡout are the rate of

entropy into and out of the system. For a cell, the primary entropic processes include the production of entropy within the

cell by irreversible processes, heat transfer, the import of substrates and the export of catabolic products and synthesised

biomass (von Stockar et al., 2006). Based on these entropy fluxes we can recast Equation 2.7 as:

dScell

dt
= Ṡprod +

Q̇
T
+∑

i
(s̄i · ṅi)− s̄x · ṅx, (2.8)

where, dScell/dt is the rate of change of cell entropy, Ṡprod is the entropy production within the cell due to irreversible

processes, Q̇ is the rate of heat import, T is absolute temperature, s̄i and s̄x are the partial molar entropy of the ith metabo-
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lite and the produced biomass respectively and ṅi and ṅx are the molar rates of import and export of the ith metabolite

and the produced biomass respectively. Given that Ṡprod acts to increase entropy within the cell, such that with no other

processes dScell/dt > 0, the eventual death or disorganisation of the cell is inevitable. Thus, to facilitate current existence,

a steady state must be imposed, where dScell/dt = 0. The solution is to ensure that the other three processes amass a

value sufficiently negative to overcome Ṡprod . Given that metabolites are imported and exported from the cell, such that

n̄i can either be positive or negative, to ensure ∑i(s̄i · ṅi) is negative, the metabolites exported must have a higher partial

molar entropy than those imported. Indeed, this represents the primary mechanism of exporting entropy, as although some

reduction in entropy can be expected as a result of the export of newly formed biomass (s̄x · ṅx), this biomass will be of a

highly organised nature, and thus have low partial molar entropy (von Stockar et al., 2006). This entropic flux, described

by ∑i(s̄i · ṅi), is the exact mechanism Schrödinger was referring to in his characterisation of feeding on negative entropy.

Figure 2.2: Diagram defining the cell boundary and processes driving the entropy balance for a growing cell. Reproduced
from von Stockar et al. (2006)

Despite the merit and novelty of Schrödinger’s outlook at the time, debate regarding the interpretation and signifi-

cance of "negative entropy" began immediately after its conceptualisation (Gnaiger et al., 1994). A proportion of early

controversy, pertained to the linguistic nature of the theory. As a result, Schrödinger conceded that the term "free energy"

would have been a more technically sound notation to adopt (Schrödinger, 1992, p. 74). Indeed, an assessment of the

importance of negative entropy within microbial growth, demonstrates that through the evaluation of Gibbs free energy,

growth can be enthalpy-driven as well as entropy-driven (von Stockar & Liu, 1999). Within these explanations focus is

given to the importance of heat dissipation, a process insufficiently accounted for in Schrödinger’s formulation. Through

calorimetric studies investigating the heat evolved during the growth of Methanobacterium thermoautotrophicum and

Methanosarcina barkeri, autotrophic and acetotrophic methanogens respectively, direct evidence of entropy-retarded and

enthalpy-retarded growth is presented (J.-S. Liu et al., 2001; Schill & von Stockar, 1995). Thus, it is not always the case

that growth feeds solely on negative entropy (von Stockar & Liu, 1999).

The concept of "available energy" or "free energy" was developed by J. Willard Gibbs throughout the 1870s, with a

summary of this work provided in 1878 (Gibbs, 1878). What this concept of available energy describes is the portion of

energy that can be used to perform work for a system at constant pressure and temperature. It is now most commonly

referred to as the Gibbs free energy, and the change in this quantity can be expressed as:

∆Gsys = ∆Hsys −T ∆Ssys, (2.9)

where ∆Gsys is the change in Gibbs free energy of the system, ∆Hsys is the change in enthalpy, T is the absolute temperature

and ∆Ssys is the change in entropy of the system. Using the cell once again as a model organism, we can defined the rate
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of change in Gibbs free energy as:
dGcell

dt
=

dHcell

dt
−T

dScell

dt
, (2.10)

where, dGcell
dt , dHcell

dt and dScell
dt represent the the rate of change of Gibbs free energy, enthalpy and entropy with respect

to time respectively. T carries the same definition as before. To arrive at a more detailed mathematical identity we can

express the rate of change of enthalpy as:

dHcell

dt
= Ẇ + Q̇+∑

i
(h̄i · ṅi)− h̄x · ṅx, (2.11)

where Ẇ is the rate of work done on the cell, h̄i and h̄x are the partial molar enthalpy of the ith metabolite and the produced

biomass respectively and dHcell
dt Q̇, ṅi and ṅx carry the same definitions as before (von Stockar et al., 2006). Substituting

Equations 2.8 and 2.11 into Equation 2.10 and simplifying, we get:

dGcell

dt
= Ẇ +∑

i
(µ̄i · ṅi)− µ̄x · ṅx −T Ṡprod , (2.12)

where µ̄i and µ̄x are the chemical potentials of the ith metabolite and the produced biomass respectively and all other iden-

tities hold their previous definitions. For the cell to survive it must balance the Gibbs free energy such that dGcell/dt = 0

despite processes such as the production of entropy (T Ṡprod) and the exporting of biomass (µ̄x · ṅx), that act as sources of

energy loss. Within most bacteria this is achieved through catabolism in which high energy substrate is consumed and

low energy products are excreted. This process acts to drive a positive value of ∑i(µ̄i · ṅi), compensating for the effects

of µ̄x · ṅx and T Ṡprod . In some specialised bacteria, such as phototrophs, a positive Ẇ can be used as a compensation

mechanism (von Stockar et al., 2006).

As highlighted by the previous mathematical definitions, for a living organism to exist at a far-from-equilibrium state,

a constant and unrelenting decrease in Gibbs free energy must be compensated for. This is achieved most commonly

through a catabolic redistribution of energy from high-energy substrate to low-energy products. Although this "feeding"

on free energy as expressed by Schrödinger (1992) may explain how life is able to thrive, Schneider and Kay (1994) take

this theory further and use it to express why life exists. Their theory defines living systems as gradient dissipators and

suggest that "life exists on earth as another means of dissipating the solar induced gradient and, as such, is a manifesta-

tion of the restated second law". Indeed, the inception of theories tackling such fundamental questions demonstrates the

theoretical power that assessing living systems through the second law of thermodynamics has.

2.3.2 Thermodynamics and microbial growth

So far we have supplied examples of thermodynamic interpretations of how and perhaps why life exists. Although this

carries significant scientific and philosophical importance, from an engineering point of view we are arguably more con-

cerned with the effects these processes have on phenomena we can use within engineering contexts, such as those that

drive metabolic processes exploited by biotechnologies or contribute to competitive difference between species. Indeed,

attempts at linking thermodynamic concepts to microbial functions has spawned entire fields of study. Reviewing such a

volume of literature here would be futile, indeed, much more qualified reviews exist (Demirel & Sandler, 2002; Harris,
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2009; Nicholls, 2013). Focus here is given to literature specifically looking at how thermodynamics influence higher-level

growth parameters such as growth yields and rates.

The simplest thermodynamic assessment of microbial growth views the process as a spontaneous reaction (von

Stockar et al., 2008). Under this description we can view microbial growth as a black box, one which requires reac-

tants such as, a carbon source, nitrogen source, electron donor and electron acceptor, and produces a variety of products

including, biomass, CO2 and H2O as well as specific catabolic products and any excreted metabolites (Figure 2.3) (Heij-

nen & Van Dijken, 1992). Given that all reactants and products are accurately measured, a corresponding macrochemical

growth equation can be obtained (Battley, 1960a). To facilitate spontaneity the Gibbs energy change (∆G) of the overall

growth reaction must be negative. By comparing the sum of the Gibbs energy of all the inputs with the sum of the Gibbs

energy of all the outputs, an energy efficiency can be expressed. This efficiency was proposed by Roels and coined the

black box Gibbs energy efficiency (ηBB) (Roels, 1983). Early approaches to correlate Gibbs energy with growth descrip-

tors, such as biomass yield, were expressed using this parameter (Heijnen & Van Dijken, 1992; Roels, 1983). Primarily

the relationship demonstrates that at ηBB = 1 the theoretical maximum biomass yield is observed. The black box Gibbs

energy efficiency is, however, extremely sensitive to the reference frame chosen for calculation of Gibbs energy. It has

been demonstrated that reversals in the relationship between ηBB and biomass yield can occur based on the thermody-

namic reference point chosen (Heijnen & Van Dijken, 1992).

Figure 2.3: A black box description of microbial growth, highlighting generalised reactants and products. Reproduced
from Heijnen and Van Dijken (1992)

Rather than assessing the total black box reaction, an energy convertor description of microbial growth was developed,

assessing microbial growth through coupling catabolic and anabolic reactions, as shown in Figure 2.4 (Battley, 1960b;

Heijnen & Van Dijken, 1992). At first glance, this may seem counter-intuitive, as the synthesis of complex, high-energy

biomass from simpler precursors, through anabolism, surely promotes a positive value for ∆G (von Stockar et al., 2008).

However, by coupling this reaction to the energy-yielding catabolic reaction we define a source of energy for the anabolic

reaction to consume. Indeed, the coupling of reactions is used to explain how "unnatural" processes can be driven (Ke-

dem & Caplan, 1965). On a cellular level this is made possible because microbial organisms transport energy between

catabolic and anabolic reactions using energy carriers such as adenosine triphosphate (ATP) (Kleerebezem & van Loos-

drecht, 2010).
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Figure 2.4: A energy convertor description of microbial growth, highlighting the coupling of catabolic and anabolic
reactions. Reproduced from Heijnen and Van Dijken (1992)

Catabolic reactions are exergonic, with a negative ∆G, while anabolic reactions are endergonic, with a positive ∆G.

Given that the Gibbs energy change across the overall coupled reaction (∆rG) must remain negative, the change in Gibbs

free energy associated with the anabolic reaction must be balanced by that of the catabolic reaction. The energy require-

ment of the anabolic reaction can therefore be thought of as a "payload" that the catabolic reaction must be able to carry

(von Stockar et al., 2008). We can once again determine a thermodynamic efficiency (η) that defines the fraction of

recovered energy as biomass from the energy released during the catabolic reaction. This is known as a energy transducer

efficiency (Stockar & Wielen, 2013a) and can be expressed as:

η =−
YX/S∆Gana

∆Gcat
, (2.13)

where η is the efficiency, YX/S is the yield of gram of biomass per gram of substrate, ∆Gana is the change in Gibbs free

energy of the anabolic reaction and ∆Gcat is the change in Gibbs free energy of the catabolic reaction. The negative is

included to transform the efficiency into a positive value as we assume ∆Gcat to be a negative quantity. If ∆Gana and ∆Gcat

are fixed, Equation 2.13 demonstrates that the efficiency is directly linked to YX/S, where a more energy efficient organism

will have a higher yield of biomass.

To express the relationship between YX/S and the overall change in Gibbs energy across the coupled reaction (∆rG)

we can express the relationship:

∆rG = ∆Gcat(1−η), (2.14)

where quantities hold their previous meanings. Substituting Equation 2.13 into 2.14 we get:

∆rG = ∆Gcat +YX/S∆Gana, (2.15)

where again all quantities hold previous definitions. For an efficient organism, where η → 1, YX/S will tend to a maximum

at YX/S∆Gana =−∆Gcat . According to Equations 2.15 this will drive ∆rG, also known as the "driving force" of the reaction,

to zero, representing thermodynamic equilibrium (von Stockar & Liu, 1999). A trade-off between biomass yield and this

"driving force" is apparent.
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Given this relationship between yield and efficiency it would seem logic to expect evolution to favour efficient growth,

where η tends to 1 and thus YX/S tends to its maximum, however, this applies a limitation to the rate of the coupled re-

actions. If we assume the case where the catabolic and anabolic reactions are perfectly and inversely coupled, such that

every unit of energy from the catabolic process is used to drive the anabolic reaction in the direction opposite to its spon-

taneous tendency, the coupling coefficient q is equal to −1. By favouring efficient growth under this scenario, the force

ratio between the catabolic and anabolic reaction would be driven to 1, meaning the magnitude of the driving (catabolic)

and driven (anabolic) forces are equal in magnitude (Stockar & Wielen, 2013b). This is demonstrated by figure 2.5a.

This presents a problem, as under such conditions all the Gibbs free energy provided by the catabolic reaction would

be consumed by the anabolic reaction, forcing the power output, or ∆rG, to zero and thus thermodynamic equilibrium,

as highlighted by figure 2.5b. At this point the reaction would be infinitely slow and thus no growth would occur. This

condition is named "level flow" (Kedem & Caplan, 1965). Based on this description, we may assume that evolution would

act to drive η to a value less than 1. Indeed, it has been suggested that evolution could favour the maximisation of power

output, which, for perfectly and inversely coupled reactions (q =−1), would occur at a force ratio of 0.5. This is achieved

by reducing efficiency. In most cases it is improper to assume that the biomass production is perfectly coupled to the

catabolic reaction and thus q is more likely to be >−1. The greater q is from −1 the lower the optimum force ratio will

be further driving a decrease in the ’optimal’ efficiency and thus biomass yield (Stockar & Wielen, 2013b; Stucki, 1980).

(a) (b)

Figure 2.5: Relationships within a linear energy converter. Reproduced from Stockar and Wielen (2013b). a) Efficiency
against force ratio, b) output power against force ratio.

This description presents a trade-off between ∆rG and YX/S driven by thermodynamic constraints. This trade-off is

expanded to growth kinetics as well as yield, where the thermodynamic driving force (∆rG) is compared directly to rate of

catabolic and anabolic reactions (Stockar & Wielen, 2013a; von Stockar & Liu, 1999). This can be thought of similarly to

an increase in steepness of physical gradient driven by an increase in potential energy and thus an increase in the velocity

of the object travelling down this gradient (Stockar & Wielen, 2013a; von Stockar et al., 2008). Although there is some

evidence of this relationship (Birou et al., 1987; J.-S. Liu et al., 1999; von Stockar & Liu, 1999) it is important to note
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that biochemical processes, unaccounted for within this description, are known to drive, or place limits on, metabolic

flux (Chubukov et al., 2014; Gerosa & Sauer, 2011; Locasale & Cantley, 2011). Revisiting the previous analogy, we

can compare these to physical processes, such as the friction between the object and the slope or the terminal velocity

imposed by aerodynamics (Harris, 2009). Further experimental analysis of the role that ∆rG has on growth kinetics will

provide a more robust foundation for developing theoretical relationships between these quantities.

2.3.3 The measurement of heat dissipation

Heat export plays a crucial role in maintaining cellular energy balance and dissipating excess energy. Indeed, heat dissipa-

tion is a universal process exhibited by all living organisms. When assessing heat dissipation at a microbial level, during

small-scale experimental studies heat is largely lost to the environment, however, in larger systems, where significant mi-

crobial activity is expected, considerable increases in temperature have been observed (Fjelsted et al., 2020; Huete et al.,

2018). For biotechnologies, the quantification of heat dissipation from microbial processes provides useful information

for informing design (Gómez-Borraz et al., 2022). Observed temperature increases can also be used to directly assess

microbial activity where the quantity of heat dissipation from the organisms present is known or can be estimated (Warren

& Bekins, 2015).

Quantifying heat dissipation can also provide information at a more fundamental level. The previous thermodynamic

description of microbial growth demonstrates that we can expect heat to be dissipated as a result of the excess quantity of

∆rG needed to drive the coupled anabolic reaction. It has therefore been proposed that by measuring heat dissipation, an

indirect observation of ∆rG can be made (Stockar & Wielen, 2013a). These measurements can then be linked to observed

growth kinetics, as demonstrated by Birou et al. (1987), allowing for further development of theoretical arguments or for

developing on-line monitoring technologies.

The primary mechanism for quantifying the heat dissipation from a process is calorimetry. Calorimeters function

in a variety of ways, however, all aim to measure the thermal energy dissipated from a sample added to the measure-

ment chamber. The earliest interpretation of this technology is provided in Figure 2.6 and represents the methodology

designed by Lavoisier and Laplace. This involved measuring the volume of water produced by the heat dissipated from a

guinea pig housed in an enclosure and surrounded by ice and snow (Notley et al., 2023). Since this point technology has

developed significantly, with recent develops including megacalorimetry, chip-calorimetry, high-throughput calorimetry,

ultra-sensitive calorimetry and photocalorimetry (Maskow et al., 2010). Most calorimeters are either adiabatic or isother-

mal in nature. Adiabatic calorimeters allow for a temperature change to arise within the sample chamber and as a result

are largely unsuited for measuring heat dissipation during microbial growth, as changes in temperature can effect growth

kinetics (von Stockar & Marison, 2005). Isothermal (heat conduction) calorimeters measure the rate of heat production

while maintaining the internal chamber at a fixed temperature using high-precision temperature control systems. In sys-

tems that use electrical compensation, the voltage required to maintain this constant temperature is proportional to the

heat exported or imported by the sample, providing a measurement of this quantity (Wadsö & Li, 2008). In most cases a

reference chamber is also used to account for any external disturbances (von Stockar & Marison, 2005).
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Figure 2.6: A diagram representing Lavoisier and Laplace’s early ice calorimeter. Reproduced from von Stockar and
Marison (2005).

Calorimetry, or more accurately microcalorimetry, is arguably underused within microbial studies and bioengineering.

This is primarily due to the necessity of maintaining a fixed temperature and therefore a tightly controlled and closed

environment. This makes processes common to microbial culturing such as, sampling, culture agitation and inclusion of

additional probes and sensors difficult to achieve (Maskow et al., 2010). Despite these challenges, past studies utilising

microcalorimetry have provided clear results and been used to forward the thermodynamic description of microbial growth

(Birou et al., 1987; J.-S. Liu et al., 2001; Schill & von Stockar, 1995). Within wastewater engineering, and as a result of

the previously stated challenges facing current technologies, there is a greater need to engineer carefully within energy

bounds. Quantifying the amount of chemical energy available to these systems has proved fruitful for developing new

technologies able to harvest it (Heidrich et al., 2011, 2013). However, to gain an insight into the bioenergetics taking

place at the heart of these systems the redeployment of calorimetry is needed.

2.4 Methanotrophs

2.4.1 Methane

Methane is the second most abundant greenhouse gas in the atmosphere. Although it has a relatively short lifespan of

11.8± 1.8 years, it holds a global warming potential of 29.8± 11 and 27.0± 11 times that of carbon dioxide over a

100-year period, when emitted from fossil fuels or non-fossil sources respectively. (Intergovernmental Panel on Climate

Change (IPCC), 2023b). From the late 1970s, when the first measurements of atmospheric methane were recorded (Blake

et al., 1982), until the turn of the millennium, the global methane concentration was shown to increase, despite reductions

within its growth rate (Kirschke et al., 2013). Between 2000 and 2006, when the growth rate of atmospheric methane

was at its lowest, a short quasi-equilibrium phase within the global atmospheric methane concentration was observed

(Dlugokencky et al., 2003; Kirschke et al., 2013). However, from 2006 onwards, the concentration of methane within the
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atmosphere has been steadily increasing (Prather & Holmes, 2017). Ice core records paint an even more damning picture,

with the global methane concentration almost tripling in the last 1,000 years (Etheridge et al., 1998). Measurements taken

in 2019 show that the concentration of global methane has reached its highest in over 800,000 years (Intergovernmental

Panel on Climate Change (IPCC), 2023a).

The abundance of methane within the atmosphere is defined by the trade-off between sources and sinks. Methane

sources are abundant and diverse, yet can be categorised as thermogenic, pyrogenic, or biogenic. Thermogenic methane

is formed through the decomposition of organic material due to the heat and pressure deep within the earth. This methane

accounts for natural gas reserves and is released during the processing of fossil fuels. Pyrogenic methane is formed

through the incomplete combustion of biomass, processes such as biofuel usage, peatland fires, and forest fires facilitate

the formation of this methane. Finally, biogenic methane refers to methane produced by methanogenic organisms. These

species exist in anaerobic environments and are responsible for the methane emitted from wetlands, human and animal

guts, landfills and wastewater treatment systems (Saunois et al., 2020). Each process has a unique range of isotopic ra-

tios, and as such, measuring the isotopic composition of the atmosphere can be used to define the relative importance of

these sources (Monteil et al., 2011). In addition to defining methane sources by their emission process, sources are often

categorised as either natural or anthropogenic. Between 2008 and 2017 anthropogenic sources were estimated to make

up between 62% (top-down estimation) and 49% (bottom-up estimation) of all methane sources, with the majority of

these emissions coming from agriculture and waste (Saunois et al., 2020). Natural sources, such as wetlands, freshwater,

permafrost, and others, also play a significant role in the global methane budget. Yet, large uncertainties within the es-

timation of these sources make analysing their relative contributions difficult (O’Connor et al., 2010; Saunois et al., 2020).

Methane sinks exist in soils and the atmosphere, where atmospheric sinks account for the vast majority of methane

losses. This is a result of oxidation by hydroxyl radicals, chlorine atoms, and excited oxygen. Photolysis is also known

to occur within the upper atmosphere, however, due to the lack of methane within this region, this process is usually

ignored within global methane budgets (Brasseur & Solomon, 2005). Out of all atmospheric oxidisers, the hydroxyl

radicals are by far the most prominent, being estimated to account for 84% of all methane sinks during the 2000-2009

period. In perspective, oxidation by atmospheric chlorine was estimated to account for only 4%, while the effects of

excited oxygen, assumed to be 25% of stratospheric losses, is estimated to make up 1% (Saunois et al., 2020). Indeed,

given the importance of hydroxyl radicals in removing methane, it has been suggested that the observed trend within the

global methane concentration since 1995 is directly linked to changes in the concentration of these molecules (Rigby

et al., 2017). Apart from atmospheric losses, the only other sink to be considered within global methane budgets is soil

uptake (Saunois et al., 2020). The loss of methane within soils is a direct result of methanotrophic bacteria. These bacteria

undertake the oxidation of methane to form carbon dioxide through the metabolic pathway they exploit. They account for

the only biological methane sink (Guerrero-Cruz et al., 2021).
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2.4.2 Aerobic methanotrophic bacteria

The first species of aerobic methanotrophs was isolated in 1906 by Söhngen (Sohngen, 1906) named Bacillus methani-

cus, now known as Methanomonas methanica after being renamed by Orla-Jensen in 1909 (Orla-Jensen, 1909). Despite

this success, early attempts to isolate methanotrophs were often unsuccessful. This difficulty in isolating methanotrophs

acted to hamper early research within the field (Leadbetter & Foster, 1958). Isolation of new species began to occur in

the 1950s and 60s with the isolation of Pseudomonas methanica (Dworkin & Foster, 1956; Leadbetter & Foster, 1958),

Methanomonas methanooxidans (L. R. Brown et al., 1964) and Methylococcus capsulatus (Foster & Davis, 1966). How-

ever, it wasn’t until Whittenbury, Phillips, and Wilkinson published the isolation of over a hundred aerobic methane

utilising bacteria that the foundation of current taxonomic classifications were established (Whittenbury et al., 1970).

Methanotrophs fall under two phylum Proteobacteria, split into classes of Alphaproteobacteria and Gammapro-

teobacteria, and Verrucomicrobia (Hanson & Hanson, 1996; Op den Camp et al., 2009), where methanotrophic Verru-

comicrobia were only isolated more recently (Dunfield et al., 2007; Islam et al., 2008; Pol et al., 2007). Rather than

defining methanotrophs at taxonomic levels it is more common to categorise them under simplified functional types,

type-I, type-II, and type-X, where type-X are a sub-group of type-I methanotrophs (Bowman, 2006). These types classify

methanotrophs based on phylogeny, biochemical differences, internal ultrastructure and carbon assimilation pathways

(Bowman, 2006; Hanson & Hanson, 1996). Type-I methanotrophs are all part of the Methylococcaceae family, includ-

ing genera, Methylomonas, Methylobacter, Methylococcus, Methylosphaera, Methylocaldum, Methylothermus, Methy-

lohalobius, Methylomicrobium, Methylosarcina, and Methylosoma (Smith et al., 2010). All type-I methanotrophs are

gram-negative, aerobic, obligate methylotrophs that assimilate carbon using the ribulose monophosphate RuMP cycle

(Hanson & Hanson, 1996). Methylosinus, Methylocystis, Methylocella, and Methylocapsa are examples of genera that

belong to the Methylocystaceae family and are thus categorised as type-II methanotrophs (Bowman, 2006; Smith et al.,

2010). Similarly to type-I methanotrophs they are also gram-negative, aerobic, obligate methylotrophs. Where they differ

is in the use of the serine cycle for carbon assimilation (Hanson & Hanson, 1996).

Figures 2.7a and 2.7b depict the carbon assimilation pathways for type-I and type-II methanotrophs respectively.

Both pathways begin from the catabolic intermediate formaldehyde. In the RuMP cycle, employed by type-I methan-

otrophs, formaldehyde is initial fixed using ribulose-5-phosphate and proceeds through hexulose-6-phosphate to fructose-

6-phosphate, after which variation in the metabolic pathway can occur. (Smith et al., 2010). For type-II methanotrophs,

serine is synthesised through the reaction of formaldehyde and glycine. This amino acid is eventually converted into gly-

oxylate, which leads to the regeneration of glycine, allowing the cycle to continue (Smith et al., 2010). A consequential

step within the serine cycle is the conversion of phosphoenol pyruvate to oxaloacetate as this requires CO2, as highlighted

in Figure 2.7b. This need for CO2 increases interactions between the catabolic and anabolic pathways, as CO2 is pro-

duced following the full oxidation of methane. Indeed, an increased lag phase is observed during the growth of type-II

methanotrophs in systems where the initial concentration of CO2 is low and thus the catabolic oxidation of methane is the

sole source of CO2 (S. Park et al., 1991). Both assimilation pathways eventually tie into more standard cycles, such as the

tricarboxylic acid (TCA) cycle.
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(a) (b)

Figure 2.7: Carbon assimilation pathways of type-I and type-II methanotrophs. Reproduced from Smith et al., 2010.
a) carbon assimilation pathway of type I methanotrophs utilising the ribulose monophosphate (RuMP) cycle, b) carbon
assimilation pathway of type II methanotrophs utilising the serine cycle,
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All aerobic methanotrophs fundamentally share the same catabolic pathway, and generate energy through the oxida-

tion of methane to carbon dioxide via intermediates, methanol, formaldehyde and formate. As methanotrophs utilise the

same compound as their energy and carbon source, not all methane is converted to carbon dioxide through this catabolic

pathway. Thus the stoichiometric of the overall reaction can be expressed as:

CH4 +(2− x)O2 → (1− x)CO2 +H2O+ xCbiomass +heat, (2.16)

where x is the stoichiometric coefficient, typically defined as 0.5 (De Visscher & Van Cleemput, 2003; Gómez-Borraz

et al., 2022; Molins et al., 2008; Ng et al., 2015). Differences in the amount of carbon partitioned between biomass and

CO2 has been measured between type-I and type-II methanotrophs (Templeton et al., 2006). Indeed, although the general

catabolism of methane is considered uniform across methanotrophs (Hanson & Hanson, 1996; Khmelenina et al., 2018),

differences in the exact stoichiometry and biochemistry that facilitate this reaction have been identified.

During the oxidation of methane to methanol, methane monooxygenases (MMOs) are used to activate the methane.

These enzymes have been shown to exist in two forms, a copper-dependent particulate form (pMMO) that is found within

the cytoplasmic membrane, and a soluble form (sMMO) that utilises a diiron active site and is present within the cyto-

plasm. A recent review of the architecture of both these enzymes is given by Koo and Rosenzweig (2021). pMMO can be

expressed by almost all methanotrophs either solely or in addition to the expression of sMMO. Only a handful of species

belonging to the Methylocella and Methyloferula genera have been shown to only express sMMO (Dunfield et al., 2003;

Vorobev et al., 2011). For species able to express both forms of methane monooxygenase, expression is regulated through

a copper switch, where pMMO is the dominant enzyme within copper-rich environments and sMMO is only expressed

under copper limitation (Choi et al., 2003; Stanley et al., 1983). Similar to the oxidation of methane, the oxidation of

methanol is accepted to be achieved by the expression of two enzymes, a calcium-dependent type of methanol dehy-

drogenase MxaFI, and a lanthanide-containing XoxF type (Chu & Lidstrom, 2016; Khmelenina et al., 2018; L. Wang

et al., 2020). The expression of different enzymes within oxidation steps can harbour direct consequences regarding the

competition between methanotrophs. While the expression of either pMMO or sMMO is not type specific, it is generally

accepted that type-I methanotrophs primarily express pMMO while type-II methanotrophs are often more versatile and

can express both. As a result it has been shown that copper limitation can be used to promote the selection of type-II

methanotrophs as a direct consequence of sMMO expression (D. W. Graham et al., 1993).

Other factors are also known to impact competition between type-I and type-II methanotrophs (D. W. Graham et al.,

1993; Hanson & Hanson, 1996). Studies assessing microbial community composition at different soil depths, demonstrate

vertical distribution of methanotrophs, where type-I methanotrophs are show to be abundant closer to the surface while

type-II are more abundant deeper within the soil (Bull et al., 2000; Conrad & Rothfuss, 1991; Henckel et al., 2000). This

spatial separation of methanotrophs is explained through observed differences in the oxygen and methane concentrations

at differing soil depths (Frenzel et al., 1992). Experimental studies that facilitate differing oxygen and methane gradients

support this hypothesis, demonstrating that type-I methanotrophs dominate in high-oxygen low-methane environments

whereas type-II methanotrophs outcompete type-I in environments of low oxygen and high methane (J. Amaral et al.,

1995; J. A. Amaral & Knowles, 1995). The competitive differences observed between type-I and type-II methanotrophs

demonstrates occupation of different ecological niches (Henckel et al., 2000).
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2.4.3 Application within biotechnologies

From an engineering viewpoint, research into methanotrophs tends to explore how the biological oxidation of methane

can be utilised for industrial purposes. One example of this is the use of methanotrophs in biofuel processing. An-

thropogenic sources of methane, such as landfill, wastewater treatment, and anaerobic digestion, facilitate the capture of

biogas that can be used as a renewable alternative to fossil fuels. The main challenges associated with biofuel occur in

the cleaning and upgrading processes required before customer use (Rafiee et al., 2021). Although cleaned biofuel can

be burned to generate energy, research suggests that the conversion of biofuel to liquid fuels and desired chemicals is of

greater benefit (Haynes & Gonzalez, 2014). The conversion of methane to liquid fuels is carried out predominantly by

Fischer–Tropsch technologies, which are expensive in both the energy and capital costs required (Riaz et al., 2013; Wood

et al., 2012). Methanotrophs are centred within emerging technologies as a result of their ability to oxidise methane and

produce methanol under atmospheric conditions (Ge et al., 2014; Guerrero-Cruz et al., 2021; Haynes & Gonzalez, 2014;

Priyadarsini et al., 2023; Sheets et al., 2016).

More relevant applications of the biological oxidation of methane to the research presented in this thesis, are those

concerned with the direct reduction of greenhouse gas emissions from waste management systems. The use of biofilters,

containing methanotrophs within the associated microbial consortium, is being pushed as a strategy to reduce anthro-

pogenic methane emissions (Brandt et al., 2016; Gómez-Borraz et al., 2017; La et al., 2018). This technology is especially

suited to small-scale systems, such as decentralised wastewater treatment systems, in which biogas may not be produced

at quantities great enough for cost-effective capture. Even in systems where biogas capture is feasible, dissolved methane

is being directly emitted through the effluent, where once discharged can desorb to the atmosphere (Gómez-Borraz et al.,

2017). Studies suggest that up to 50% of the CH4 produced via anaerobic digestion can be emitted to the environment

via this route (Noyola et al., 1988; Souza et al., 2011). Laboratory studies have further demonstrated that by co-culturing

aerobic methanotrophs with microalgae, the CO2 produced during methane oxidation can also be removed (Ruiz-Ruiz

et al., 2020).

Methanotrophs can also generate a variety of products useful to society, such as, single cell protein (SCP), internal

storage polymers (PHB), lipids, ectoine and extracellular polysaccharides (EPS) (Strong et al., 2015). Genetic modifica-

tion of methanotrophs has also been proposed for the biosynthesis of additional products (Lee et al., 2019; A. D. Nguyen

et al., 2020; Tan et al., 2024). In most cases further research is however required if biotechnologies based solely on

biosynthesis are to make it to market (Strong et al., 2015). Coupling these biosynthetic processes with the aforemen-

tioned ability of methanotrophs to reduce greenhouse gas emissions from anthropogenic sources of methane provides a

promising strategy within a circular economy (AlSayed et al., 2018; García & Galán, 2022; Govindaraju et al., 2022;

Guerrero Cruz & Pijuan, 2022). The goal of research within this field is to therefore develop technologies and method-

ologies to reduce process costs, or to identify additional products that can be used to increase the end value (Strong et al.,

2015). Within this thesis we explore heat dissipation as a product of methanotrophic growth. Indeed, although tempera-

ture rises as a result of biological methane oxidation have been observed (Fjelsted et al., 2020; Huete et al., 2018; Warren

& Bekins, 2015), and attempts at modelling this have been undertaken (Gómez-Borraz et al., 2022), the exact quantity of

heat produced from these bacteria has not yet been quantified experimentally.
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2.5 Summary

To meet current challenges facing water security there is a shift within wastewater engineering from a reliance on energy-

intensive systems to processes that enable resource recovery and water recycling. To facilitate this shift, precise control

of the microbial communities underpinning these technologies is vital. Within this thesis, advancement to this aim is pur-

sued through development towards a generalised theory describing these communities, one that forgoes defining complex

micro-scale interactions in an attempt to prioritise simplicity and universality.

Neutral models are adopted as the starting point for such a theory given that the number of parameters versus the

number of successful predictions is large (Harte, 2004). Indeed, these models have been successfully fitted using datasets

obtained from many microbial communities, including those found within wastewater treatment plants (Fodelianakis et

al., 2021; Heys et al., 2020; Konopka et al., 2015; Logares et al., 2018; Ofiţeru et al., 2010; Sloan et al., 2006, 2021;

Venkataraman et al., 2015; Woodcock et al., 2007). However, assessing only the fit does not confirm these models to be

"good" (Wieland et al., 2021). In many studies distinct model parameters are left unidentified, and in cases where they

are identified there is little discussion on whether this has been done correctly. While studies accessing parameter identi-

fiability have been undertaken when using stationary species abundance distributions (Etienne et al., 2006), this analysis

has not yet been expanded to include single species relative abundance time series; a data type commonly obtained from

microbial communities and assumed to increase the ability to identify distinct model parameters. As such it is unknown

whether the observed mismatch between calibrated neutral model parameters and independent measurements of these

parameters (Sloan et al., 2021) provides ecological insight or is simply a consequence of incorrect identification. We

therefore arrive at the question, can distinct neutral model parameters be successfully identified when using single species

relative abundance time series. This question is addressed by the research presented in Chapter 3 entitled "Identifying

neutral models on the basis of species abundance time series".

Whilst a generalised model may forgo describing micro-scale interactions and still be effective, knowledge of the

mechanisms that drive the model parameters can prove beneficial. Indeed, a "good" model is only "useful" if correctly

identified parameters provide biological insight (Wieland et al., 2021). Perhaps the most fundamental description of

growth is provided by the second law of thermodynamics. Here we explore the difference in growth of two species of

methanotrophic bacteria through the lens of thermodynamics. This is achieved through quantification of the heat dissi-

pated by these bacteria through use of calorimetry. The quantity of heat dissipated is compared against growth parameters

in an attempt to uncover if a clear relationship between these quantities exist. Due to the potential for methanotrophs to be

incorporated within decentralised wastewater technologies, as a result to their ability to oxidise methane under standard

conditions, the quantification of heat dissipated by these bacteria alone is an inherently valuable finding. This research is

presented in Chapter 4 entitled "Quantifying the heating potential of methanotrophs for application within decentralised

wastewater treatment technologies".



Chapter 3

Identifying neutral models on the basis of species
abundance time series.

3.1 Abstract

Guidance on the sampling regimes that allow for robust calibration of neutral models using relative abundance time series

is sorely lacking. Here, we generate realisations of neutral dynamics at high temporal resolution using both neutral and

near-neutral models and show that, even when sampling from these idealised species abundance time series, certain pa-

rameters are structurally unidentifiable. This is a consequence of correlated parameters and from the generic difficulties in

integrating noisy stochastic data. As the times series duration and the temporal resolution at which it is sampled decrease

to values that are realistic for a pragmatic experimental program, parameters previously shown to be identifiable now

appear to be practically unidentifiable and are thus obscure to robust model fitting methods. The research aims to quantify

the sampling regime-dependent accuracy in parameter estimates and the correlations between parameter estimates as a

guide to the design of experimental campaigns.

Assessment of the errors within parameter estimates indicate that optimal values for these quantities exist and are

dependent on the number and type of parameters estimated. Achieving accurate estimation of parameters, especially

within the more complex near-neutral model, is shown to require further a priori independent knowledge of the processes

governing community structure. The trade-offs in parameters are too extensive to estimate their values based on the

dynamics within relative abundance displayed in the time series. Thus, even with high resolution data, to be confident

that a model is true to its underlying process assumptions, independent experimental determination of model parameters

is required. Alternatively, if relying on calibration with no prior knowledge, it is prudent to use compound parameters or,

a least, be able to constrain the values a parameter can take and accept a level of error within the estimated parameters.

Under scenarios where models under-represent the processes governing a community’s structure, model parameters will

most likely reflect complex dependencies rather than distinct biological mechanisms. The argument is made that by

utilising effective parameters within highly simplified neutral models and calibrating these models under conditions that

facilitate accurate parameter estimates, exploring processes that drive the magnitudes of these parameters can be used to

inform strategies for influencing a community’s structure.

38
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3.2 Introduction

The role of demographic stochasticity was brought to the fore by researchers exploring the diversity of biological commu-

nities of birds, mammals and trees (Caswell, 1976; Hubbell, 2001; MacArthur & Wilson, 1967). Their primary sources

of data were extensive surveys of diversity from multiple locations; the practical difficulties of sampling communities

over multiple generations meant that time series data were rare. Therefore, model calibration aimed to match theoretical

stationary species abundance distributions to observed species abundance distributions.

This was successfully employed initially to macro-organism (Duivenvoorden et al., 2002; Hubbell, 2001; Muneepeer-

akul et al., 2008; Ulrich & Zalewski, 2007; Volkov et al., 2007) and then, more recently, to microorganisms, for example,

waterborne communities (Woodcock et al., 2007; Zhou et al., 2013), in the human lung (Venkataraman et al., 2015), the

guts of insects (Adair et al., 2018) and fish (Burns et al., 2016; Heys et al., 2020), and on micro-plastics (Sun et al., 2021).

Whilst these do lend weight to the view that drift plays a significant role they can only really be described as circumstantial

evidence for three main reasons. Firstly, whilst the stationary distributions seem to fit the models, for large populations

one might expect drift to be so slow as to be swamped by environmental fluctuations (Chisholm & O’Dwyer, 2014; Nee,

2005; Ricklefs, 2006). Secondly, it has been shown that calibration using stationary species abundance distributions

is fraught with uncertainty and large regions of the parameter space can yield equally good fits (Etienne et al., 2006;

Rosindell et al., 2011). Thirdly, other models have been shown to produce similar fits to species abundance distributions

(Chisholm & Pacala, 2010; McGill, 2003). Indeed, the consensus is that stationary abundance distributions alone lack

the information needed to explain micro-scale interactions. It has therefore been suggested that we should move away

from the stationary species abundance distributions and utilise spatial or temporal data sets (Etienne et al., 2006; Jabot &

Chave, 2009; Rosindell et al., 2011).

The relative ease of collecting abundance time series from microbial communities that span multiple generations,

means that recent attempts to pin down the influence of drift using temporal data has been within the field of microbial

ecology (Ofiţeru et al., 2010; Sloan et al., 2021). An emerging finding is the apparent mismatch between calibrated neu-

tral parameters and their independently measured counterparts, as illustrated by Sloan et al. (2021). There could be two

reasons for this. It could be that the models are able to encapsulate processes that are not explicitly represented in their

formulation. Thus, whilst the models may fit experimental data, the parameters have lost the direct link to the underlying

phenomena that they are supposed to represent and, instead, capture the effects of more complex behaviours. Or it may

be the more prosaic problem of model identification from noisy time series data.

Here, the initial focus is in the latter prosaic problem of accurately estimating model parameters from time series. It

is only by demonstrating that it is possible to accurately calibrate model parameters using time series data and by guiding

experimentalist towards effective sampling strategies that we can hope to answer questions like: are time series really

better than spatially distributed data for model estimation; or, do the calibrated model parameters make sense with prior

knowledge of the biological processes; and, consequently, is the model a good fit for the wrong reasons? The sampling

regimes for most experimental studies, are usually determined heuristically. There is a trade off between obtaining as

high a resolution as possible and pragmatism. Indeed, there is a certain "excused" reduction of sampling accepted due to

the cost and complexity of analysis (Lemke & DeSalle, 2023).
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With no ground truth, the accuracy of parameter estimates cannot be anticipated, nor can the perceived parameter

mismatch be distinguished between the consequence of ecosystem functions or calibration errors. Not only this, but it is

unclear whether the dynamics are unnecessarily over-sampled or so under-sampled as to negate any inference, or whether

in all situations the extra effort required to collect time series data actually pays dividends. Here an attempt is made to

remedy this issue, by answering if it is possible to accurately derive distinct parameters using species abundance time

series as well as determining the effects sampling has on the estimation of model parameters.

Typically, quantification of the number of individuals in a particular species requires targeted molecular methods such

as qPCR, which are laborious and, therefore, limit the number of species that can be tracked. Even if a full analysis of the

microbial community can be undertaken the vast diversity within microbial communities make capturing and categorising

every species by sampling extremely difficult (T. P. Curtis et al., 2002; Sloan et al., 2007; Woodcock et al., 2007). For this

reason the analysis is limited to relative abundance time series obtained from a single detectable species. Indeed, Ofiţeru

et al. (2010) demonstrate that when using relative abundance time series, neutral model parameters can be calibrated for

a single taxa.

3.3 Methods

3.3.1 Computational framework

To facilitate the research carried out within this study, a custom computational framework was developed. This was tasked

with simulating single-species relative abundance time series under different sampling protocols using two distinct neutral

models, while also facilitating the calibration of distinct neutral model parameters using these data sets. Figure 3.1 depicts

a basic overview of the developed framework. In total three distinct packages were developed, a simulation package, a

sampling package and a fitting package. The compartmentalisation of code allows packages to be operated individually

or in series as highlighted in Figure 3.1. Outputs from each package are in the correct format for direct use by subsequent

packages. Each package operates based on user provided operational parameters stored in associated spreadsheets, these

are highlighted as the green files in Figures 3.1 and 3.2. A more comprehensive graphic of the framework is provided

in Figure 3.2. An in-depth explanation of Figure 3.2, the overall architecture and individual scripts and functions are

provided at https://github.com/tymonherzyk.

All scripts and functions within these packages were written using MATLAB version R2020b, in accordance with the

academic license provided by the University of Glasgow. Storage of user variables for the operation of these packages

is achieved through accessible xlsx files. Output and log files are produced as MATLAB files. All code is available at

https://github.com/tymonherzyk alongside descriptions. Operational and installation guides are also provided. All code

is shared under the Creative Commons (CC-BY 4.0) license. This framework constitutes the first user friendly, robust

framework for simulating and fitting neutral dynamics. It is anticipated that the framework will find wide application

in both macro and microbial ecology. The modular approach taken promotes future development further widening its

possible application.
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Figure 3.1: Basic overview of the computational framework developed for simulating single-species relative abundance
time series, sampling such time series and calibrating neutral model parameters to these time series. In total three packages
were developed that can be operated individually or in series. Packages operate according to user defined variables stored
in associated spreadsheets. All files, in-depth descriptions and guides are available at: https://github.com/tymonherzyk.
Created in https://BioRender.com
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Figure 3.2: Comprehensive overview of the computational framework developed for simulating single-species relative
abundance time series, sampling such time series and calibrating neutral model parameters to these time series. Processes
belonging to each package are demarcated within dashed boxes. Files marked with blue tags refer to MATLAB files, and
files marked with green tags refer to xlsx files. Each package is executed through the primary MATLAB script highlighted
at the centre of each box. The order of operations carried out by this script are provided by respective numbering. Key
variables are marked in clear tags, and key decisions are depicted by grey tags. Solid arrows depict the passage of
information. Any processes outside a dashed box require user interaction. All files, in-depth descriptions and guides are
available at: https://github.com/tymonherzyk. Created in https://BioRender.com
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3.3.2 Discrete simulation of microbial communities using NCMs

To explore the calibration of neutral community models (NCMs), relative abundance time series were simulated for com-

munities that adhere perfectly to the axioms of the models. The simulated time series were generated at exceptional high

temporal resolution and over large periods; far higher resolution and longer duration that it would ever be feasible to col-

lect for real communities. These idealised time series were generated for two commonly used NCMs: Hubbell’s purely

neutral model (Hubbell, 2001) and Sloan et al.’s near-neutral model (Sloan et al., 2006).

Firstly, Hubbell’s neutral model represents a zero-sum game where the total number of organisms in the community

stays constant and the community structure evolves through discrete random replacement events: births, deaths and

external immigration. The mathematical description of this is given by transition probabilities in a Markov chain:

Pr{Ni +1|Ni}=
(

NT −Ni

NT

)[
mpi +(1−m)

(
Ni

NT −1

)]
, (3.1a)

Pr{Ni −1|Ni}=
(

Ni

NT

)[
m(1− pi)+(1−m)

(
NT −Ni

NT −1

)]
, (3.1b)

Pr{Ni|Ni}= 1−Pr{N +1|Ni}−Pr{N −1|Ni}, (3.1c)

where, Ni represents the total number of individuals within the monitored ith species, NT is the total number of individuals

in the community, which is assumed to be fixed, m is the probability that when an individual dies or leaves the community

it is replaced by an immigrant from a source community, which is assumed to be species independent, and pi is the relative

abundance of the ith species within the source community. So, for example, Equation 3.1a gives the probability that, when

an individual in the community is replaced at random, the number in the ith species increases from Ni to Ni +1. For this

to occur, there needs to be a death/emigration in some other species, with probability NT−Ni
NT

, and either an immigration

from the ith species, with probability mpi, or a birth from the ith species, with probability (1−m)
(

Ni
NT−1

)
.

The second, a near-neutral model developed by Sloan et al. (2006), includes local selection in addition to processes

defined in Hubbell’s model. The transition probabilities are therefore adapted to include a selection parameter αi, resulting

in equations:

Pr{Ni +1|Ni}=
(

NT −Ni

NT

)[
mpi +(1+αi)(1−m)

(
Ni

NT −1

)]
, (3.2a)

Pr{Ni −1|Ni}=
(

Ni

NT

)[
m(1− pi)+(1−αi)(1−m)

(
NT −Ni

NT −1

)]
, (3.2b)

Pr{Ni|Ni}= 1−Pr{N +1|Ni}−Pr{N −1|Ni}, (3.2c)

where, parameters that are shared with Equations 3.1a, 3.1b and 3.1b keep their original meaning, while αi represents

a constant advantage assigned to the ith species. Equations 3.2a and 3.2b are almost identical to their purely neutral
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counterparts (Equations 3.1a and 3.1b) except for a selection advantage and disadvantage assigned to local birth given by

(1+αi) and (1−αi) respectively. The differing of a single parameter between both models means that the influence of a

single community structuring process, in this case local selection, can be explored by means of comparison between both

simulated data sets. Indeed, if the influence of selection is deemed to be negligible, such that αi = 0, then the transition

probabilities revert back to their purely neutral forms.

The simulated time series were produced at the highest possible temporal resolution, where every individual replace-

ment event was represented. Therefore, simulations were conducted directly from the transitional probability equations

defined for each model. Since the simulations were for single detectable species within the community, the parameters

Ni, pi and αi can be referred to as N, p and α , where these are assumed to be specific to the monitored species.

Model parameters were kept constant throughout the simulation periods. Simulations were carried out for a commu-

nity composed of 10,000 individuals (NT = 10,000), with an average time between replacement events of 1.44 seconds

(η = 0.0004h). This represents a community growing, for example, in a chemostat with a hydraulic retention time of four

hours, as depicted in Figure 3.3. The value of NT may seem small for a microbial community, however, Sloan et al. (2021)

demonstrate that the dynamics in real populations of microbes can often be characterised by and an effective community

size, which is orders of magnitude smaller than the census community size. The monitored species was assumed to make

up 20% of the source community (p = 0.2), and the immigration probability was set at 0.1 (m = 0.1). In a typically di-

verse microbial community 0.2 would reflect a relatively high abundance, or common species, however, within wastewater

treatment samples, taxa with relative abundances of up to 0.4 have been observed (Ofiţeru et al., 2010). An immigration

probability of 0.1 is also high and so the local community is well-connected to the source. A high immigration probability

was selected to ensure this process was detectable within the simulated time series. For the purely neutral community

no selection advantage is given (α = 0), while in the community where selection is active, a positive selection of 0.01 is

attributed to the species (α = 0.01).

(a) (b)

Figure 3.3: Example experimental equivalents to the simulated communities. Created in https://BioRender.com a) for
Hubbell’s model, b) for Sloan et al’s model.
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A stochastic process is said to be stationary if the probability distribution (in this case of species abundance) is constant

in time, and therefore statistics like the mean and variance remain constant. In ecology, a stationary community where

all the joint probably distributions of all species abundances stays constant is said to be in equilibrium; also sometimes

referred to as dynamic equilibrium because of the random fluctuations. Historically, calibration of neutral models have

assumed that the community is in equilibrium and hence the observed distribution of abundances is stationary. Here we

simulate time series for stationary communities for two primary reasons, firstly to offer as a comparison to stationary

species abundance distributions, and secondly because studies utilising relative abundance time series have done so for

stationary communities (Ofiţeru et al., 2010). We also simulate communities where the statistics change through time

displaying transient (non-equilibrium) dynamics. This might occur when the community is perturbed in some way, for

example, naturally through environmental events or synthetically through bioaugmentation. For simulations representing

a community in equilibrium, the starting relative abundance values were set at the theoretical mean abundance values.

Calculation of these values is provided in Appendix B. To ensure that these starting values did not bias the parameter

estimates, especially within time series with short sampling periods, data points from the first 7 days of simulation were

ignored. This process allows the starting abundance for each time series to differ and be intrinsic to each simulation. For

simulations undertaken over a period of non-equilibrium all data points were considered.

3.3.3 Sampling of simulated single-species relative abundance time series

Rather than re-simulating time series for different periods and temporal resolutions, the choice was made to sample from

a single initial set of simulated high-resolution time series for each set of community structuring processes simulated;

as defined by Hubbell’s and Sloan et al.’s models respectively. This reduces the computational time required to produce

multiple time series under differing sampling protocols. Sampling was undertaken uniformly from the start point of

the initial time series to a designated end point for a given frequency. In total 28 different sampling protocols were

investigated, ranging in periods from 0.004h to 4000h and frequencies between 0.0004h to 400h.

3.3.4 Calibration of NCMs for estimation of individual parameters

Given that the data are re-sampled from the high-resolutions simulated time series, such that there are potentially numer-

ous births and deaths occurring between observation points, calibration is undertaken using the non-truncated continuous

equivalent of both models. These take the form of the stochastic differential equations (SDEs):

dxi,hubbell =
m(pi − xi)

NT
dτ +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

dWτ (3.3)

dxi,sloan =
m(pi − xi)+2α(1−m)xi(1− xi)

NT
dτ +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

dWτ , (3.4)

where xi is the relative abundance of the monitored ith species, and dxi is the change in this value over an arbitrary change

in number of replacement events (death or emigration followed by birth of immigration) dτ . Parameters NT , m, pi and αi

all carry the same definition as before. A full derivation of the stochastic differential equations for each model is given

in Appendix C. As we are only considering relative abundance data from a single species we can once again refer to

parameters as their species-specific equivalents, such that dxi = dx, xi = x, pi = p and αi = α .
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To estimate individual parameters, maximum likelihood estimation is used. Here this is converted into a minimisation

problem by looking for the minimum negative log-likelihood (NLL). The negative log-likelihood is calculated by making

negative the sum of the log of the probability density function calculated for each value of dx. Given that W is a standard

Weiner process, such that dWτ ≈
√

dτN(0,1), it can be seen that dx is distributed normally, with the mean and variance

defined directly from the respective drift and diffusion terms for each of the previously given SDEs. A conversion is also

made to express these quantities in real-time by assuming τ = t/η , where t is the time between observations and η is the

average time between replacement events. From this, the mean and variance are defined as:

µhubbell =
m(p− x)

NT
· dt

η
(3.5a)

σhubbell =

√
2x(1− x)+m(p− x)(1−2x)

N2
T

·

√
dt
η

(3.5b)

µsloan =
m(p− x)+2α(1−m)x(1− x)

NT
· dt

η
(3.6a)

σsloan =

√
2x(1− x)+m(p− x)(1−2x)

N2
T

·

√
dt
η

(3.6b)

It is common practice to to truncate the variance terms as demonstrated by Sloan et al. (2006). Although the majority

of calibrations in this study are conducted using the full variance terms we do investigate the effect truncating these terms

has on calibration accuracy. For this analysis the variance expressions given previously are simplified to:

σhubbell =

√
2x(1− x)

N2
T

·

√
dt
η

(3.7)

σsloan =

√
2x(1− x)

N2
T

·

√
dt
η

(3.8)

The probability density function for dx in each model can be defined by substituting the required identities for µ and

σ into the standard form:

f (dx | µhubbell,σhubbell) =
1√

2πσ2
hubbell

exp
(
−(dx−µhubbell)

2

2σ2
hubbell

)
(3.9)

f (dx | µsloan,σsloan) =
1√

2πσ2
sloan

exp
(
−(dx−µsloan)

2

2σ2
sloan

)
(3.10)
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The negative log-likelihood is thus determined by:

NLLhubbell =−∑ log f (dx | µhubbell,σhubbell) (3.11)

NLLsloan =−∑ log f (dx | µsloan,σsloan) (3.12)

Optimisation towards the minimum value is achieved by altering the values of unknown parameters using the Nelder-

Mead simplex algorithm. The choice is made to use this algorithm due to its accessibility and efficiency when optimising

a small number of parameters. While other algorithms have the potential to provide a more robust optimisation the

exploration of optimisation algorithms is outwith the scope of this study. The optimisation calculations are conducted

computationally using the MATLAB mle function. By defining the probability density functions in terms of the distinct

model parameters, estimations of each individual parameter can be obtained. This differs from other methods in which

estimations of compound parameters are determined (Latimer et al., 2005; Ofiţeru et al., 2010; Sloan et al., 2021).

All optimisations were carried out under the same conditions. Estimation limits for each parameter were set at their

theoretical maximums and minimums. These are available in Table 3.1 alongside the starting values for each parameter.

These were set to the values used during simulation of the time series and thus offer the optimisation the easiest path to

the correct estimation. The optimisation tolerance was set at the default value of 1×10−6. Maximum function evaluations

and iterations were set to ensure that, in all cases, the optimisation was terminated upon meeting the tolerance criterion.

This was achieved using a value of 1×106.

Table 3.1: Starting values, upper limits and lower limits set within the optimisation for estimating parameters NT , η , m, p
and α .

Parameter Description Actual value Starting value Upper limit Lower limit
NT Community size 10000 10000 In f 0
η Time between replacement events (hours) 4×10−4 4×10−4 In f 0
m Immigration rate 0.1 0.1 1 0
p Relative abundance within immigrating community 0.2 0.2 1 0
α Local selection advantage 0.01 0.01 1 −1
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3.4 Results and discussion

3.4.1 Calibration of neutral models to idealised single species relative abundance time
series

Firstly we assess the structural identifiability of model parameters from single-species relative abundance time series

by calibrating both models with idealised datasets, where every discrete birth, death and immigration event is explicitly

represented. Here we enforce that within the data that there are no sampling errors and that the community sampled is

in equilibrium under the entire sampling period. This equilibrium is defined as when fluctuations in species abundance

proceed around a stationary mean, such that the expected value of the time series does not change over time.

To create a very rich data set one hundred realisations of these idealised time series of species abundance are gener-

ated. For both Hubbell’s purely neutral and Sloan et al.’s near-neutral models the model parameters NT , η , m and p were

kept constant at values of 10,000, 4.00× 10−4h, 0.10 and 0.20 respectively. The additional parameter in Sloan et al.’s

model (α) was set to 0.01, giving the species a selective advantage over other members of the community. The duration of

the time series were one-year, or 8760 hours, and since every replacement was simulated (every 0.0004h) they comprised

21.9×106 data points. The experimental equivalent of this simulation regime is illustrated by Figure 3.4, where either 100

bioreactors are operating in parallel, or an experiment within a single bioreactor is repeated 100 times. For the real-world

such a setup would be extremely costly, even if achieved, observations with the same resolution and duration provided by

the simulations would be impossible using existing experimental methods.

(a) (b)

Figure 3.4: Example experimental equivalents to the simulation regime employed. Created in https://BioRender.com a)
100 bioreactors operating in parallel, b) a single bioreactor repeated 100 times

In this section the one hundred time series are used in a number of different ways. First, the inherent variability

across the time series is characterised. This shows that, even though the time series may be perceived to be long and

high resolution, they are not sufficiently so that the variance is constant from series to series. It is then shown that this

has a knock-on effect on the accuracy of the parameters values estimated by calibration. Thus, even with high resolution
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data there is enough variability between series to make accurately identifying parameters difficult. The analysis also goes

on to highlight that using single-species relative abundance time series captured during a period of equilibrium does not

resolve correlated parameters with the models. Therefore, extra effort should be made to determine certain parameters

a priori by, for example, producing knowledge of the system from previous independent experiments. By reducing the

dimensionality of the parameter space and resolving parameter correlations, identification of the remaining parameters

becomes trivial when using these idealised datasets.

3.4.1.1 Calibration of Hubbell’s purely neutral model

The one hundred high resolution realisations of Hubbell’s model are presented in Figure 3.5a. Given that the simulations

start close to the mean, p, the simulations should be a good representation of the stationary stochastic process and this can

be seen in the frequency distributions plotted in Figure 3.5b. Given the resolution of the times series, one might expect

the mean and variance of each of the one hundred realisations to be the same. Table 3.2 demonstrates that there is still

variability in these statistics between series. Indeed, the standard deviation in variance is only one order of magnitude

smaller than its average value, which suggests an even longer time series is required for the process to be truly stationary

and to capture the true variance with certainty.

(a) (b)

Figure 3.5: Relative abundance time series of a single species obtained through 100 realisations of a simulated community.
Community dynamics were simulated from the discrete transitional probabilities described by Hubbell (2001) for a com-
munity governed by ecological drift alone (Equation 3.1). Parameter values used were: NT = 10,000, η = 4.00×10−4,
m = 0.10 and p = 0.20. Sampling was conducted after every individual replacement event (every 0.0004 hours) over a
period of 8,760 hours. a) Time series plot, b) frequency plot.

Attempts are now made to retrieve the parameters used in the simulation by calibrating the continuous version of

Hubbell’s model for each of the realisations under differing scenarios. Under a naive scenario, an attempt is made to

estimate all parameters within the model. This is akin to having an experimental set-up where none of the parameters can

be fixed or known and where model calibration is the sole source of information on the parameters. This can be the case,

particularly with field studies of natural systems, where there is no human intervention. In a more controlled experiment,
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Table 3.2: Summary table of mean and standard deviation in statistics calculated across all 100 single-species relative
abundance time series portrayed in Figure 3.5.

Statistic
Time Series

Mean SD
Mean 0.200 0.001
Variance 1.585×10−4 0.154×10−4

Skewness 0.061 0.128

it is often possible to fix at least some of the experimental variables, such as the size of the community, the replacement

rate or the immigration rate, or, indeed, one might have prior knowledge of one of these variables. Thus, only a subset of

the parameters need to be estimated by calibration to define the full model. Thus, here Hubbell’s model is calibrated for

all combinations of fixed parameters.

The box plots in Figure 3.6 illustrate the parameter estimates obtained from calibrating Hubbell’s model to all one

hundred time series shown in Figure 3.5. This is done for all scenarios and thus all levels of a priori system knowledge,

with the known/fixed parameters displayed along the x-axis. The y-axis on the left-hand side of each plot shows the

estimated value obtained through calibration, while the y-axis on the right-hand side displays the equivalent percent error

calculated based of the value of that parameter used within the simulation of the time series. To summarise these plots the

corresponding mean percent error (MPE) and coefficient of variation (CV) for each suite of estimations are calculated.

Here MPE provides a measure of bias in the estimates relative to the true value and CV provides the spread of estimates

scaled by the mean. Since MPE and CV are scaled measures they facilitate direct comparison between parameters, despite

differences in the magnitudes of these parameters. Plots displaying the calculated MPEs and CVs are provided in Figures

3.7a and 3.7b respectively.

Figures 3.6c and 3.7b demonstrate that there is a generic, intrinsic difficulty in estimating the immigration rate m. The

results demonstrate that under every knowledge regime (combination of predetermined and calibrated parameters) there

is variation between the estimates of m , even when these idealised time series are used. Although a maximum MPE of

only 1% is observed (Figure 3.7a), a minimum CV of 8% holds true despite the number of fixed parameters (Figure 3.7b).

Thus, under this experimental design, any m calibrated from a single realisation is likely to be erroneous.

If the variance in the simulated time series is underestimated then the fitting algorithm tends to overestimate m, the

opposite is also true. This is especially the case when NT or η is fixed. In Hubbell’s model, the rate of immigration

(m) drives the relative abundance of species towards that of the source community (p). This is implicit in the drift term

m(p− x); if the abundance of the monitored species, x, drifts above p, then the drift term is negative and pulls the next

realisation in the time series back towards p and if it drops below p the drift term is positive and, similarly, draws the times

series back towards p. Thus, if the simulated variance is smaller than the theoretical, then the time series does not deviate

from p as much as expected and it is as if immigration is having a stronger pull towards p; this is reflected in a higher

calibrated m. Similarly, if the simulated variance is larger than the theoretical, it is as if immigration is weaker, allowing

the time series to move further away from p and so the calibrated m is lower than the theoretical. Thus the estimation of

m is related to how representative the variance in the realisation is.
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(a) (b)

(c) (d)

Figure 3.6: Box plots representing the estimation of distinct parameters from Hubbell’s purely neutral model under all
regimes of system knowledge. The degree of system knowledge is represented by the parameters fixed on the x-axis.
The estimated value of the parameter is given on the left y-axis, with the respective percent error displayed on the right
y-axis. Each box plot represents calibration to all 100 distinct time series depicted in Figure 3.5. a) Estimation of NT , b)
estimation of η , c) estimation of m. d) estimation of p.
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(a) (b)

Figure 3.7: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set of 100
estimations of Hubbell’s purely neutral parameters shown in Figure 3.6. The degree of system knowledge is represented
by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a) Heatmap displaying MPEs. b)
Heatmap displaying CVs.

For parameters NT and η robust calibration is observed only when either of these parameters are fixed (Figures 3.6a

3.6b and 3.7). The interdependence of NT and η can be revealed by considering the negative log-likelihood function. Ide-

ally, this multidimensional function would contain a well-defined global minimum, described by a unique set of optimal

parameters. However, for the Hubbell (and Sloan et al.) model this is not the case. If we hold m and p constant at their

theoretical values then the negative log-likelihood function is a two dimensional function of NT and η as shown in Figure

3.8. Rather than a single definitive minimum, there is a region, in dark blue, where the function is at a perceived constant

minimum. A centre line, running through this region traces out the relationship ηN2
T ≈ 4×104.

For individual calibrations the log-likelihood will inevitably alight on a best-fit parameter pair for NT and η . Plotting

these values against each other, for all naive calibrations, we find that they all lie on the centre line, however, the exact po-

sition varies (Figure 3.8b). Thus, for each individual calibration a single minimum, albeit an extremely shallow one, must

exist, driving the calibration away from the starting values used within the optimisation. This focussing of the negative

log-likelihood to different points, is a result of the inclusion of m and p within the diffusion term of the model calibrated.

Indeed, if the same analysis is conducted using the truncated version of Hubbell’s model, which does not contain m and

p within this term, all naive estimations of NT and η lie on the exact same point of the centre line (Appendix D) demon-

strating that they are structurally non-identifiable (Wieland et al., 2021). As p is shown to be estimated robustly for all

calibrations undertaken (Figure 3.6d), we can conclude that the observed differences in the exact location of the minimum

must be predominantly driven by m.

A further relation exists between NT , η and m. Indeed, a change in errors is observed when m is fixed and both NT

and η are unknown (Figures 3.6a 3.6b and 3.7). Again, the errors observed can be explained through the differences

within the variance of each time series. It has been established that unrealistically long simulations would be required to

accurately capture the model’s theoretical variance. And, therefore, the variance of the time series here often differ. Thus,
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(a) (b)

Figure 3.8: a) Negative log-likelihood (NLL) as a function of NT and η . The value of NT is given on the y-axis with
the value of η on the x-axis. Corresponding values for NLL are displayed as a heat map. All NLL values are calculated
by fitting Hubbell’s model to a single time series obtained from a simulated community governed by drift alone. During
acquisition of these values all other parameters within the model were fixed at their expected values. All NLL values
shown are within a range of approximately 0.55% of the minimum value. b) Estimated parameter pairs of NT and η from
naive calibration plotted on top of the centre line of minimum NLL.

if the simulated variance is incorrect and m is fixed at its theoretical value the optimisation will yield incorrect values for

NT and η in an attempt to capture the variance. This process does act, once again, to focus the negative log-likelihood to

a global minimum dependent on the observed variance.

So, from an experimental design perspective, even if you could collect extremely high-resolution data on a system that

you believed to be undergoing long-term neutral population dynamics, it is difficult to calibrate the correlated parameters

NT and η with any degree of confidence through optimisation alone when using single-species relative abundance time

series captured under equilibrium. If one of these parameters has been independently measured, or constrained, in the

experimental setup, then the other can be accurately estimated through calibration with relative ease, assuming use of suf-

ficiently high resolution data. Note, what constitutes a sufficiently high resolution is explored later. When simultaneous

calibration of NT and η is unavoidable, the error observed will be related to the variance captured. We have shown that

capturing the expected variance, even when using high-resolution data, is difficult to achieve. An option to reduce this

error, when there is no alternative to calibration, is to perturb the system, as far away from equilibrium as possible, such

that it is not only the diffusion term that dominates the dynamics and, so, the likelihood function for the time series of

abundance is altered. This is explored later.

Calibration appears to yield accurate estimates of p, independent of the scenario, as highlighted in Figure 3.6d. In-

deed, the MPEs (Figure 3.7a) and CVs (Figure 3.7b) are maintained at under 1% across all estimations of p. In Hubbell’s

description of community structure, p represents the relative abundance of the monitored species within the immigrating,

or source, community. For a neutral community at equilibrium, the relative abundance will fluctuate around a stationary

mean, for Hubbell’s model this is defined solely by p, as demonstrated in Appendix B. Given that the simulated time
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series are acquired over a long enough period such that the variation in relative abundance is Beta distributed (Figures

3.5a and 3.5b), determining this value is a straightforward endeavour.

Large errors in the estimation of p can exist, as alluded to by Etienne et al. (2006). This occurs when m tends to zero.

Under such a scenario, the effect of immigration is so small that the influence of p is insignificant, making its inference

increasingly difficult. This represents a unique difficulty when calibrating neutral models to populations with near-zero

immigration.

3.4.1.2 Calibration of Sloan et al.’s near-neutral model

The second model analysed is Sloan et al.’s near-neutral model (Sloan et al., 2006), which includes an additional parame-

ter α , used to quantify the magnitude of selection experienced by the monitored species relative to all other species within

the community. Again, one hundred year-long time series were produced and sampled at intervals of 0.0004 hours, these

are plotted in Figure 3.9. Comparison of Figure 3.9 and Table 3.3 with Figure 3.5 and Table 3.2 indicates an increase in

mean and variance is induced as a result of the local advantage given to the monitored species.

(a) (b)

Figure 3.9: Relative abundance time series of a single species obtained through 100 realisations of a simulated community.
Community dynamics were simulated from the discrete transitional probabilities described by Sloan et al. (2006) for
a community governed by ecological drift and selection (Equation 3.2). Parameter values used were: NT = 10,000,
η = 4.00× 10−4, m = 0.10, p = 0.20 and α = 0.01. Sampling was conducted after every individual replacement event
(every 0.0004 hours) over a period of 8,760 hours. a) Time series plot, b) frequency plot.

Similarly to Hubbell’s model, Sloan et al.’s model is calibrated to all one hundred time series for all scenarios (com-

binations of fixed and free parameters), box plots summarising the estimations of each parameter are given in Figure 3.10

with the corresponding mean percent error and coefficients of variation given in Figure 3.11. In the first instance, Figures

3.10a and 3.10b indicate similar behaviour to that observed for Hubbell’s model, in which accurate estimation of NT or η

is achieved when the other is fixed. As previously demonstrated this is a result of the area of similar likelihood expressed

in Figure 3.8.
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(a) (b)

(c) (d)

(e)

Figure 3.10: Box plots representing the estimation of distinct parameters from Sloan et al.’s near-neutral model under
all regimes of system knowledge. The degree of system knowledge is represented by the parameters fixed on the x-axis.
The estimated value of the parameter is given on the left y-axis, with the respective percent error displayed on the right
y-axis. Each box plot represents calibration to all 100 distinct time series depicted in Figure 3.9. a) Estimation of NT , b)
estimation of η , c) estimation of m. d) estimation of p, e) estimation of α
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Table 3.3: Summary table of mean and standard deviation in statistics calculated across all 100 single-species relative
abundance time series portrayed in Figure 3.9. Expected values for these statistics based on the parameters used within
the simulation of these time series are also provided.

Statistic
Time Series

Mean SD
Mean 0.232 0.002
Variance 1.914×10−4 0.203×10−4

Skewness 0.073 0.143

(a) (b)

Figure 3.11: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set of
100 estimations of Sloan’s near-neutral parameters shown in Figure 3.10. The degree of system knowledge is represented
by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a) Heatmap displaying MPEs. b)
Heatmap displaying CVs.
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Comparing Figures 3.10c and 3.10d to their counterparts obtained from calibrating Hubbell’s model (Figures 3.6c and

3.6d respectively), highlights that the addition of a single parameter between models, in this case local selection, leads

to further dependencies and thus a requirement of greater a priori knowledge. Indeed, p can no longer be accurately

estimated under the naive scenario. In the purely neutral model, the mean of abundance in the local community for a

species is equal to p. In the near neutral model, if the species has an advantage, α > 0 then the mean is a function of

additional parameters, as demonstrated in Appendix B. Given that the variance in abundance is also a function of these,

the possibility of compensations between parameters yielding the same mean and variances is significantly increased.

Thus, there is not necessarily a unique parameter set for the time series.

3.4.1.3 Truncated models

Within the derivation of the SDEs describing the continuous version of both models, it is common to remove m(p−x)(1−
2x) from the diffusion term; a step not taken within our derivations. This is done because m is often so small as to negate

the effect this term has on random fluctuations, and even if m is large then x tends to p making p−x small, again reducing

the effect of this term (Sloan et al., 2006). However, while removing m and p from the diffusion term can make solving

the SDEs easier, it does impact the calibration of distinct neutral model parameters.

If we truncate both models, such that the numerator within the diffusion term is defined by 2x(1− x), and the same

analysis as before is carried out, it is shown that, for Hubbell’s model, a less accurate estimation of m is produced under

scenarios where either NT or η is fixed (Appendix D). For Sloan et al.’s model this effect is extended to p and α (Ap-

pendix E). In addition, as described previously, the area of minimum negative log-likelihood between NT and η (Figure

3.8) indeed becomes constant and thus estimates are solely driven by the path the optimisation takes in reaching the centre

line of minimum negative log-likelihood. This makes estimates of NT and η , where both are unknown, highly dependent

on the starting value used for parameter estimates.

Under a truly naive calibration in which none of the parameters can be measured and starting values of the opti-

misation are likely to be some distance away from the correct values, then the truncated versions of both models will

perform worse when estimating each parameter distinctly. Indeed, the removal of m(p− x)(1− 2x) from the diffusion

term is a more nuanced decision than originally observed. As such, the rationale behind the use of either the truncated or

non-truncated versions of Hubbell’s and Sloan et al.’s models should be provided when defining a methodology.
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3.4.2 Calibration of neutral models to non-idealised single species relative abundance
time series

3.4.2.1 The effects of duration and frequency of sampling on neutral model identification

Thus far, model calibration has been performed using time series recorded over a large period and produced with the

highest temporal sampling resolution possible. To achieve this degree of resolution, a species’ abundance must be sam-

pled after every distinct replacement event. For most natural or engineered communities of importance, enumerating

the abundance after every replacement is impossible to achieve, even using the most up-to-date molecular methods in

microbiology. Even if expectationally high sampling resolution can be obtained, it would be extremely expensive and

time intensive to conducted sampling at this rate over a long period. For this reason, it is necessary to quantify how the

frequency and duration (or period) of a sampling regime affect the calibration of model parameters and thus analyse the

practical identifiability of the model parameters.

To achieve this, the idealised time series are shortened to 10x, 100x, 1,000x, 10,000x, 100,000x, 1,000,000x and

10,000,000x the time of a single replacement, resulting in overall periods of 0.004, 0.04, 0.4, 4, 40, 400 and 4,000 hours

respectively. Each set of shortened time series is then sampled using frequencies of 0.0004, 0.004, 0.04, 0.4, 4, 40 and 400

hours where possible, ensuring at least one set of sampling regimes with the same total number of samples are obtained.

Employing these sampling regimes results in 28 sets of 100 time series for both the neutral and near-neutral population dy-

namics, this is akin to repeating the experimental setups depicted in Figure 3.4 28 times using differing sampling regimes.

The broad range of time series lengths and resolutions assessed offers insight into datasets that it might be feasible to

collect using different experimental setups or measurement methods. For example, a sampling regime with a short period

and high sampling resolution may reflect experiments undertaken with equipment such as a microfluidic device, while

regimes with longer periods and less frequent sampling are more attributed to field-scale studies.

Tables 3.4 and 3.5 demonstrate how the mean, variance and skewness across each set of one hundred time series are

affected by introducing these new sampling regimes. Table 3.4 shows how these statistics are affected by time series

length (or sampling period) when sampling frequency is fixed at the maximum. Although the mean value calculated from

each set of one hundred time series is stable, the standard deviation in this mean increases as time series length is reduced.

The largest increase is observed when decreasing the sampling period from 400 hours to 40 hours, with the standard devi-

ation at least doubling in magnitude. This trend is also observed for the skewness calculated for each set of one hundred

time series. The mean of this quantity stays relatively consistent, however, its standard deviation increases as sampling

period is decreased. The largest increase is observed between the shortest periods analysed, demonstrating an exponen-

tial rise in the divergence from the previous Beta distributions (Figures 3.5b and 3.9b) as the sampling period tends to zero.

In contrast, the mean of variance calculated for each set of one hundred time series is shown to significantly reduce

as the sampling period is shortened. This reduction is in orders of magnitude with the initial mean of variances across the

set of time series sampled over 4,000 hours recorded at 1.581× 10−4 and 1.928× 10−4, for time series produced using

Hubbell’s and Sloan et al.’s models respectively. For a sampling period of 4 hours these are reduced to 4.303× 10−6

and 5.847× 10−6, and for a period of 0.004 hours values of 6.022× 10−9 and 6.510× 10−9 are recorded. Variation in

the variance is also shown to reduce at a similar rate. This demonstrates that a systematic under-representation of the

expected variance in relative abundance values is induced as a result of decreasing the sampling period.
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Table 3.4: Summary table of mean and standard deviation in statistics across different sets of 100 relative abundance time
series sampled over different sampling periods. Sampling frequency is held constant at a value of 0.0004 hours across all
time series. Values are shown for sets of time series simulated according to Hubbell’s and Sloan et al.’s models.

Statistic Sampling period (h) No. of samples
Hubbell Sloan et al.

Mean SD Mean SD

Mean

4000 10000001 0.200 0.002 0.232 0.002

400 1000001 0.200 0.004 0.232 0.006

40 100001 0.199 0.010 0.231 0.012

4 10001 0.201 0.012 0.231 0.014

0.4 1001 0.201 0.013 0.231 0.014

0.04 101 0.201 0.013 0.232 0.014

0.004 11 0.201 0.013 0.232 0.014

Variance

4000 10000001 1.581×10−4 0.212×10−4 1.928×10−4 0.267×10−4

400 1000001 1.272×10−4 0.588×10−4 1.685×10−4 0.803×10−4

40 100001 3.993×10−5 3.164×10−5 4.220×10−5 3.446×10−5

4 10001 4.303×10−6 2.578×10−6 5.847×10−6 4.372×10−6

0.4 1001 5.111×10−7 4.479×10−7 6.004×10−7 5.763×10−7

0.04 101 4.941×10−8 4.614×10−8 5.477×10−8 4.746×10−8

0.004 11 6.022×10−9 5.002×10−9 6.510×10−9 5.180×10−9

Skewness

4000 10000001 0.055 0.169 0.090 0.198

400 1000001 0.114 0.363 0.124 0.387

40 100001 0.048 0.490 0.045 0.433

4 10001 −0.044 0.416 −0.029 0.488

0.4 1001 0.048 0.486 0.006 0.466

0.04 101 −0.010 0.510 0.028 0.506

0.004 11 0.020 0.775 0.002 0.804
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Table 3.5: Summary table of mean and standard deviation in statistics across different sets of 100 relative abundance time
series sampled using different sampling frequencies. Sampling period is held constant at a value of 4000 hours across all
time series. Values are shown for sets of time series simulated according to Hubbell’s and Sloan et al.’s models.

Statistic Sampling frequency (h) No. of samples
Hubbell Sloan et al.

Mean SD Mean SD

Mean

0.0004 10000001 0.200 0.002 0.232 0.002

0.004 1000001 0.200 0.002 0.232 0.002

0.04 100001 0.200 0.002 0.232 0.002

0.4 10001 0.200 0.002 0.232 0.002

4 1001 0.200 0.002 0.232 0.002

40 101 0.200 0.002 0.232 0.002

400 11 0.200 0.004 0.232 0.005

Variance

0.0004 10000001 1.581×10−4 0.212×10−4 1.928×10−4 0.267×10−4

0.004 1000001 1.581×10−4 0.212×10−4 1.928×10−4 0.267×10−4

0.04 100001 1.581×10−4 0.212×10−4 1.928×10−4 0.267×10−4

0.4 10001 1.581×10−4 0.212×10−4 1.928×10−4 0.267×10−4

4 1001 1.583×10−4 0.213×10−4 1.929×10−4 0.267×10−4

40 101 1.575×10−4 0.236×10−4 1.936×10−4 0.296×10−4

400 11 1.662×10−4 0.688×10−4 1.948×10−4 0.932×10−4

Skewness

0.0004 10000001 0.055 0.169 0.090 0.198

0.004 1000001 0.055 0.169 0.090 0.198

0.04 100001 0.055 0.169 0.090 0.198

0.4 10001 0.055 0.169 0.090 0.198

4 1001 0.053 0.171 0.093 0.198

40 101 0.017 0.239 0.120 0.231

400 11 0.074 0.519 0.051 0.497
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Table 3.5 demonstrates changes within the same quantities as a consequence of increasing the time between samples.

The duration of the time series are fixed over a 4,000-hour period. The results within Table 3.5 demonstrate that sampling

frequency has little influence on the mean, variance and skewness exhibited by each time series. Only when a sampling

frequency of 40 hours is employed is there any noticeable change in the values of each quantity. Even within the lowest of

resolutions analysed significant changes are only observed within the variation of each statistic. This is, therefore, likely

a consequence of a reduction of the total number of samples rather than an under representation of phenomena due to

the increased length between samples. The analysis does suggest that the mean, variance and skewness within the time

series produced here will be accurately portrayed if the number of total samples is higher than an optimal value which

lies between 100 and 1000.

To determine the impact that changes in the sampling regime have on the ability to calibrate model parameters, both

models are calibrated to the sampled time series. Calibration of both models is undertaken using a scenario that facilitates

structural identifiability, this ensures that errors within each parameter can be attributed in large to the sampling regime

used. Tables 3.6 and 3.7 provides the scenario (fixed parameters) used to identify Hubbell’s and Sloan et al.’s models.

Heat maps displaying the MPEs and CVs summarising the accuracy of parameter estimates to each set of 100 sampled

time series for either model, are given in Figures 3.12, 3.13, 3.14 and 3.15c. For all figures, the y-axis portrays the changes

in sampling frequency and the x-axis portrays changes in sampling period. A colour is given to each box demonstrating

accuracy from +100% to −100%, any errors outwith this range are considered grossly inaccurate. In many cases errors

do exceed this range and thus exact values are provided within the boxes themselves.

Table 3.6: Summary of parameters fixed during the calibration of parameters within Hubbell’s neutral model during the
analysis of sampling regimes.

Estimated parameter Fixed parameters
NT η , p
η NT , p
m η , p
p η , m

Table 3.7: Summary of parameters fixed during the calibration of parameters within Sloan et al.’s near-neutral model
during the analysis of sampling regimes.

Estimated parameter Fixed parameters
NT η , m, p
η NT , m, p
m η , p, α

p η , m, α

α η , m, p
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(a) (b)

(c) (d)

Figure 3.12: Heatmaps demonstrating the mean percent error (MPE) for each set of 100 estimations of Hubbell’s purely
neutral parameters from relative abundance time series sampled under different regimes. The sampling frequency used is
represented along the the y-axis. The sampling period used is represented along the x-axis. a) NT , b) η , c) m, d) p.
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(a) (b)

(c) (d)

Figure 3.13: Heatmaps demonstrating the coefficient of variation (CV) for each set of 100 estimations of Hubbell’s purely
neutral parameters from relative abundance time series sampled under different regimes. The sampling frequency used is
represented along the the y-axis. The sampling period used is represented along the x-axis. a) NT , b) η , c) m, d) p.
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For Hubbell’s model, Figures 3.12c and 3.13c demonstrate that once again m is uniquely difficult to estimate and the

most susceptible to changes in sampling period. The mean percent errors observed (Figure 3.12c) demonstrate significant

overestimations of m as the sampling period is reduced; with the highest observed at 448% over the expected value. Based

on previous explanations this would indicate under-representation of variance relative to the expected variance. Indeed,

the onset of overestimation is inline with the onset of dampened variance portrayed in Table 3.4. The increase in the

coefficient of variation displayed in Figure 3.13c is also in line with the increase in relative variance as the sampling

period is decreased (Table 3.4). Therefore, to accurately calibrate m we need time series that best represents the expected

variance. This is only achieved through long sampling periods. Our results do, however, highlight the lack of importance

that sampling frequency has on the observed variance. Thus, if the sole aim of an experiment is to calibrate the immigra-

tion rate m, then sampling frequency can be reduced in order to capture the long time series needed.

The results for p display a similar trend to m. As previously shown, for time series captured at equilibrium the ex-

pected mean value is a much easier quantity to capture than the expected variance, this value will always be captured

correctly given that the values of relative abundance are Beta distributed. This distribution is not represented by the small

range of abundances sampled over a short duration, as suggested by Table 3.4. This leads to an increase in the variation

between estimates of p as the sampling period is decreased, as shown in Figure 3.13d. Table 3.4 shows that this process

happens less drastically than the damping of variance and, therefore, explains why the increase in errors is not as extreme

as that observed for m. For short time series it is more likely that the sampled abundances exhibit a trend, rather than

being stationary. Thus, the time series are just too short to capture the statistics of the process, and parameters, such as p,

that reflect the long term mean abundance cannot be estimated.

Unlike m and p accurate estimates of NT and η can be obtained from regimes with short sampling periods. Indeed,

whilst the magnitude of the errors are not as large as for m and p, from both the MPE and CV heat maps it is apparent that

the sampling frequency make the greater difference to the estimates of NT and η . This is because the fitting algorithm is

based on maximising the likelihood of dx; successive difference in abundance. The continuous model is derived on an

approximation based on small time increments. As the time between observations gets larger the poorer the theoretical

expression for dx becomes.

Calibration of Sloan et al.’s parameters (Figures 3.14 and 3.15) yields similar conclusions. Like previously, errors in

the estimates for NT and η are driven by the total number of samples and sampling frequency, in particular, while errors in

m, p and α are driven by the sampling period. The similarity of results between m, p and α further indicates the increased

dependencies between these parameters as a result of including selection within the model processes. Figures 3.14c and

3.15c, do show that the inclusion of α within the model does stifle the increase in errors observed in m compared to what

was observed for Hubbell’s model when altering the sampling period (Figures 3.14c and 3.15c).
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(a) (b)

(c) (d)

(e)

Figure 3.14: Heatmaps demonstrating the mean percent error (MPE) for each set of 100 estimations of Sloan et al.’s
near-neutral parameters from relative abundance time series sampled under different regimes. The sampling frequency
used is represented along the the y-axis. The sampling period used is represented along the x-axis. a) NT , b) η , c) m, d)
p, e)α .
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(a) (b)

(c) (d)

(e)

Figure 3.15: Heatmaps demonstrating the coefficient of variation (CV) for each set of 100 estimations of Sloan et al.’s
near-neutral parameters from relative abundance time series sampled under different regimes. The sampling frequency
used is represented along the the y-axis. The sampling period used is represented along the x-axis. a) NT , b) η , c) m, d)
p, e)α .
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3.4.2.2 Time series captured from periods of non-equilibrium

In many natural and engineered systems the ecological processes that shape a microbial community will remain constant

over time. Therefore, it is not unusual, indeed it might be the norm, that we rely on data from these communities in

equilibrium to identify the processes. To achieve this in a quantitative fashion means encoding potential processes in a

mathematical model and fitting the model to data. In this chapter, so far, we have explored the potential of retrieving the

parameters of two very simple community assembly models, the neutral and near-neutral models, based on simulated time

series data of the abundance of one species under equilibrium conditions. The results highlight some inherent difficulties

in calibrating the neutral models generally and for equilibrium dynamics, in particular. The implications of trade-offs in

for example NT and η and the effects of sampling frequency and duration on model identification will be discussed later.

First, however, it is worth considering whether the observations on model identification for systems in equilibrium also

hold for systems that are not in equilibrium.

The assumption that the dynamics are in equilibrium may be compromised. For example, changes in physical con-

ditions, such as weather or flow in fluid environments, can mean that immigration m changes over time. In engineered

systems it may be desirable to perturb a system that is ostensibly in equilibrium in order to effect some positive outcome.

For example, in biotechnologies, such as anaerobic digestion (AD) or probiotics in veterinary medicine, AD reactors or

the guts of horses, the abundances of naturally occurring bacteria are boosted by augmentation to improve function or

health. From the perspective of model identification, perhaps periods on non-equilibrium are beneficial, especially when

time series can be collected. When calibrating a neutral model using stationary abundance distributions (SADs), observed

at a single point in time, as is the norm, the assumption that a community is at equilibrium is necessary (Hubbell, 2001).

For time series that are sufficiently long that a period of nonequilibrium can be captured in its entirety, the additional

dynamics may help to separate out the parameters that trade-off when calibrated for equilibrium conditions.

To explore this, new sets of time series are simulated for both neutral systems investigated thus far. These time series

are initially perturbed and then allowed to return to equilibrium dynamics. This is achieved by setting the starting relative

abundance value within each simulation to zero. This is the antithesis of bioaugmentation. Rather than augmenting a

species to an artificially high abundances in the local community, the species is initially removed, or is not present. Im-

migration then acts to grow the abundance of the species until it fluctuates around p, its relative abundance in the source

community. The simulation parameters for the two models are kept consistent with what has been used thus far, such

that, NT = 10,000, η = 0.0004h, m = 0.10, p = 0.20 and α = 0.01. Simulations are recorded after every replacement

(0.0004 hours) for 200 hours as this allows for the period of non-equilibrium to be captured and the system to return to

equilibrium dynamics. All newly simulated time series are depicted in Figures 3.16a and 3.16b.

Similarly to the first analysis undertaken both models are fitted under all scenarios and therefore all combinations

of fixed and free parameters. Figures 3.17 and 3.19 display the values and accuracy in parameter estimations obtained

when a period of non-equilibrium is observed. Figures 3.17 and 3.18 demonstrate that for Hubbell’s model parameters

NT , η and m are estimated with better if not the same accuracy for almost all degrees of freedom when compared to their

counterparts calibrated using high-resolution time series obtained under equilibrium over a period of 8,760 hours (Figure

3.7a and 3.7b). A better comparison is made against time series obtained under equilibrium over a more similar period,

such as those sampled over a 400-hour period, as shown in Figures 3.12 and 3.13.
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(a) (b)

Figure 3.16: Relative abundance time series of a single species obtained through 100 realisations of two simulated com-
munities. Time series represent a period of non-equilibrium. This was achieved by setting the starting relative abundance
to 0 for each simulation. Sampling was conducted after every individual replacement event (0.0004h) for 200 hours.
Parameter values were equal to NT = 10,000, η = 4.00×10−4, m = 0.10 and p = 0.20. For realisations including selec-
tion α = 0.01. a) Community dynamics were simulated from the discrete transitional probabilities described by Hubbell
(2001) for a community governed by ecological drift alone (Equation 3.1), b) community dynamics were simulated from
the discrete transitional probabilities described by Sloan et al. (2006) for a community governed by ecological drift and
selection (Equation 3.2).

For m the improvement in accuracy is significant. For our time series under equilibrium sampled at a frequency of

0.0004 hours over a period of 400 hours the variation in m when η and p are fixed is 36.9%. This is reduced to 7.44%

for a time series half the length that is obtained over a period of non-equilibrium. This improvement in m signifies that

by monitoring periods of non-equilibrium the magnitude of tenancy towards the equilibrium value is better defined. This

indicates that the drift during a period of equilibrium is too subtle to confidently identify m but that its effect on the

dynamics is amplified by a perturbation to a species’ relative abundance in a way that allows m to be identified. Given

our previous description of the relationship between NT , η and m this will likely also increase the ability to accurately

calibrate NT and η under calibrations where both are unknown. Even the perceived increases in variation associated with

the estimation of p when comparing the results here to those from out idealised time series, do not look out of place when

compared to equilibrium time series of a similar length (Figure 3.13d).

Figures 3.19 and 3.20 show that for Sloan et al.’s model monitoring a period of non-equilibrium also improves the

ability to produce accurate parameter estimates. Although the variability in estimates of p and α appear higher than those

for long high-resolution time series (Figures 3.10 and 3.11), these increases are in line with what is expected at equilib-

rium for sampling periods closer to 200 hours (Figures 3.14 and 3.14). Again the highest improvement is in estimates

of m. A reduction in the CV of approximately 10% is observed when calibrating m to a time series captured during a

period of non-equilibrium over a length of 200 hours (Figure 3.20b) compared to the calibration of m using time series at

equilibrium sampled over a period of 400 hours (Figure 3.15c), where the same scenario is used.
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(a) (b)

(c) (d)

Figure 3.17: Box plots representing the estimation of distinct parameters from Hubbell’s purely neutral model under all
regimes of system knowledge. The degree of system knowledge is represented by the parameters fixed on the x-axis.
The estimated value of the parameter is given on the left y-axis, with the respective percent error displayed on the right
y-axis. Each box plot represents calibration to all 100 distinct time series depicted in Figure 3.16a. a) Estimation of NT ,
b) estimation of η , c) estimation of m. d) estimation of p.
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(a) (b)

Figure 3.18: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set
of 100 estimations of Hubbell’s purely neutral parameters shown in Figure 3.17. The degree of system knowledge is
represented by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a) Heatmap displaying
MPEs. b) Heatmap displaying CVs.

As a result the amount of prior knowledge needed to resolve the dependencies between m, p and α is reduced. Figure

3.20 shows that only small differences are observed within the estimation of m, p or α , between combinations of fixed

parameters where one or two of the others are fixed. For example, there is almost no improvement in the estimation of α

after p is fixed, this is contrary to what was previously observed in Figure 3.11. This is also observed across estimations

for m and p. Thus, calibration of the model with higher degrees of freedom is successful.
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(a) (b)

(c) (d)

(e)

Figure 3.19: Box plots representing the estimation of distinct parameters from Sloan et al.’s near-neutral model under
all regimes of system knowledge. The degree of system knowledge is represented by the parameters fixed on the x-axis.
The estimated value of the parameter is given on the left y-axis, with the respective percent error displayed on the right
y-axis. Each box plot represents calibration to all 100 distinct time series depicted in Figure 3.16b. a) Estimation of NT ,
b) estimation of η , c) estimation of m. d) estimation of p, e) estimation of α
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(a) (b)

Figure 3.20: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set of
100 estimations of Sloan’s near-neutral parameters shown in Figure 3.19. The degree of system knowledge is represented
by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a) Heatmap displaying MPEs. b)
Heatmap displaying CVs.
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3.4.2.3 The role of effective parameters

So far, there has been the luxury of generating synthetic time series data, so we know which model should, theoretically,

fit which dataset and the challenge has been ’merely’ to identify the correct parameters. In microbial ecology we do not

have a fundamental, universally agreed set of laws governing community assembly. Whilst, most ecologists include drift,

immigration and selection in ecological community assembly models, some, like Hubbell (2001), neglect selection and

others advocate models with additional biological mechanisms, such as more explicit inter-species competition (Vellend,

2010). For a real system in nature, or in the laboratory, it is not possible to know, a priori, what complexity of model is

warranted to capture the important ecological processes. Indeed, it is likely that when calibrating simple neutral models,

as done here, additional processes will exist within the community. This begs the question whether the inclusion of such

processes i.e those unaccounted for by the model calibrated, will influence the ability to accurately estimate model pa-

rameters and to what extent.

To demonstrate this in the most simple of cases, where only one additional unaccounted process exists, we repeat the

initial analysis for Hubbell’s model, however, we now calibrate it using the one hundred time series generated from Sloan

et al.’s near-neutral model, depicted in Figure 3.9. Thus, selection is taking place within the simulated dynamics but not

accounted for within the model calibrated. The results obtained from these calibrations are displayed in Figures 3.21 and

3.22.

The quantitative differences in expected mean and variance can be captured within Hubbell’s parameters. Estimates

of p, as shown in Figure 3.21d, are largely in line with the observed mean for the time series used (Table 3.3), and the

under-estimation of m, when only NT or/and η is fixed, represents the increase in observed variance. This however poses

a problem when parameters are then independently measured, as shown when p is fixed at its true value of 0.2. The

optimisation process will try to accommodate for the mismatch in the fixed and observed quantity through altering the

value of other parameters. This leads to large errors in the parameter estimates.

Given that for mixed microbial communities in most natural, and even carefully engineered, systems a myriad of

interactions between species and the environment could be impacting community structure. Both Hubbell’s and Sloan

et al.’s models will, inevitably be simplifications, and therefore parameters estimated by calibration may be artifacts of

more complex interactions. The results obtained demonstrate that although these models may provide a good fit, and

that the erroneous estimations of m and p are in fact in line with what is expected given the true community dynamics,

this presents a problem when independently determining the value of a parameter based on its ecological meaning true

to the calibrated model. This is especially worrying as we have previously demonstrated that at least some degree of a

priori knowledge of the system is required to resolve correlated parameters. Although no differences are observed within

the estimation of NT and η , it can be assumed that the same logic applies. Indeed, parameters now describe an effective

quantity and thus it may be more beneficial to name them as such.
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(a) (b)

(c) (d)

Figure 3.21: Box plots representing the estimation of distinct parameters from Hubbell’s purely neutral model under all
regimes of system knowledge. The degree of system knowledge is represented by the parameters fixed on the x-axis.
The estimated value of the parameter is given on the left y-axis, with the respective percent error displayed on the right
y-axis. Each box plot represents calibration to all 100 distinct time series depicted in Figure 3.9. a) Estimation of NT , b)
estimation of η , c) estimation of m. d) estimation of p.
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(a) (b)

Figure 3.22: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set
of 100 estimations of Hubbell’s purely neutral parameters shown in Figure 3.21. The degree of system knowledge is
represented by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a) Heatmap displaying
MPEs. b) Heatmap displaying CVs.

To implement this, the recommendation provided by Sloan et al. (2021) of utilising an "effective community size"

is extended across all unique parameters, such that each parameter can be represented by an effective counterpart. Here,

effective parameters are denoted with a small e, such that NT = NTe, η = ηe, m = me, and p = pe. In the extreme case

where all parameters are considered effective, the continuous form of Hubbell’s purely neutral model is represented by:

dxhubbell =
me(pe − x)

NTe
dτ +

√
2x(1− x)+me(pe − x)(1−2x)

N2
Te

dWτ , (3.13)

where non-effective parameters hold their previous meanings but τ = t/ηe.

To facilitate calibration of this effective model, under all combinations of fixed parameters, we must come up with ex-

pected values for the effective parameters. Here we assume NTe = NT = 10,000 and ηe = η = 0.0004h. We can calculate

pe based on the expected mean, which makes pe = 0.232 (Appendix B). me is harder to determine mathematically and

thus we simply use the mean percent error highlighted in Figure 3.22a obtained when either NT or η is fixed. Therefore,

we arrive at an approximation of me, where me = 0.894m = 0.0864.

Figures 3.23a and 3.23b demonstrate the errors associated with calibrating the effective version of Hubbell’s model

to the time series generated from Sloan et al.’s near-neutral model. While the variance in estimates is almost identical to

those measured previously (Figure 3.22b), the results demonstrate that by recasting Hubbell’s model in terms of effective

parameters the MPEs within the calibrated parameters are significantly improved from those observed previously (Figure

3.22a). MPE values are still however not at the levels observed under our idealised conditions (Figure 3.7a). This is likely

a consequence of the approximations of the effective parameters used, rather than issues with the model fitting. Defining

robust methodologies for determining effective parameters independently is therefore required. For real communities in

which the exact structuring process are truly unknown, this will prove challenging; as demonstrated by the difficulty in
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predicting and estimating the "effective population size" in population genetics (J. Wang et al., 2016).

(a) (b)

Figure 3.23: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set
of 100 estimations of Hubbell’s effective parameters to all 100 distinct time series depicted in Figure 3.9. The degree of
system knowledge is represented by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a)
Heatmap displaying MPEs. b) Heatmap displaying CVs.

3.5 Conclusion and future perspectives

To ecologists and biologists who observe the vast range of interactions between organisms and the environment, NCMs

can appear too simple to represent real ecological communities. Many critiques of neutral theory suggest its lack of

complexity renders it ineffective (Clark, 2009, 2012; Purves & Turnbull, 2010). Despite this, it does encapsulate basic

processes that must occur in every open microbial community (Vellend, 2010). The fact that such simplistic models fit

commonly observed species abundance patterns makes the parameters within them inherently important. Understanding

under what conditions estimates of these parameters is achievable is therefore important (Beeravolu et al., 2009; Etienne

et al., 2006). Interpreting the calibrated parameters, and what they encapsulate, is a separate but equally interesting task.

Accurately identifying distinct parameters, even in highly simplified neutral and near-neutral models, is fundamen-

tally difficult to achieve when using relative abundance time series data obtained from a single detectable species under the

scenarios imposed. The lack of information within these time series, especially when the system is in steady-state, means

that parameters remain correlated making them structurally non-identifiable. For example, when calibrating Hubbell’s

purely neutral model or Sloan et al.’s near-neutral model we observed a prominent correlation between NT and η . For

both these models, even though they comprise only 3 and 4 parameters respectively, the data from monitoring a single

species time series of abundance for a community in equilibrium is insufficient to identify each model accurately. These

simple models are, in effect, over-parametrised for this type of data, even at the very high resolutions simulated here.

Thus, to identify the models based on data, there is a need to constrain or independently measure some of the parameters

or, alternatively, increase the richness of information used to calibrate the model. This could involve using data from

multiple species, which would potentially add to the labour of experiments, or, induce perturbations in the experiment,
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such that the dynamics are not in equilibrium. The results presented also demonstrate that mismatches between expected

and observed phenomena drive errors in parameter estimates and that these errors can propagate through the previously

mentioned correlated parameters.

Additionally, when calibrating these models using abundance data alone and under a scenario where structuring pro-

cesses are unknown, it is impossible to know if the model represents all the processes shaping the community. Where

possible, in highly constrained experiments, one can eliminate some of the external forces that might add complexity, but

even then internal factors, like spatial organisation may be neglected in the model. It has been shown here that building

in complexity only helps if the dynamics in abundance data are sufficiently rich to identify parameters. For systems in

equilibrium this is not the case. Thus neutral models, despite their simplicity, are often fitted in recognition that they are

the most complex warranted given the data. The parameter values will therefore likely encapsulate the effects of processes

over-and-above those that they were conceived for.

This approach is not unique to ecology. In population genetics models for the distribution of alleles in a population,

when calibrated, yield values for population size that are far smaller than the census population. Population geneticists

call this calibrated value the "effective population size". It is a fundamentally important number that drives the evolutions

of populations and indicates, for example, the number of breeding individuals population; which was not explicitly repre-

sented in the original model (Charlesworth, 2009). A recent study from Sloan et al. (2021) pushes for the use of a similar

term, coined the "effective community size", within community ecology. Utilising effective parameters thus allows for the

relaxation of strict ecological definitions tied to each parameter, removing the rigidity of having to assume that the model

calibrated offers an exact explanation of all processes influencing the community structure. These effective"parameters

thus becomes fundamental descriptors of the community that are critical to describing the dynamics. The challenge then

is to identify these effective parameters.

Within this study we have provided an example of utilising such a notation and demonstrated that while this nota-

tion is required to reduce errors when fitting these models to systems more complex than the model describes, accurate

independent determination of effective parameters is more nuanced. As a result, fixing these parameters within models

may become difficult. Indeed, within population genetics multiple methods have been developed in order to predict ef-

fective parameters (J. Wang et al., 2016). This presents an issue, as previously mentioned producing accurate parameter

estimates from single-species relative abundance time series require at least some prior knowledge of these parameters.

Future research must therefore look to develop robust methodologies for independently determining these parameters.

Another approach is to only define effective parameters for those independent of strong correlations, or only in sce-

narios where these correlations are resolved, avoiding the need to determine them independently when estimating them

through model calibration. For example, given that fixing η within Hubbell’s and Sloan et al.’s models acts to facilitate

accurate estimation of NT , then under such a scenario, defining NT as its effective counterpart (NTe) and identifying it

through model calibration will allow the model to capture the quantitative information provided by the time series while

also solving the required trade-off between η and NT .
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Conceding the use of effective parameters such that each parameter now reflects the quantitative effect of many

ecological processes, the distinction between the models developed by Hubbell and Sloan et al. is weakened. As demon-

strated Hubbell’s model with the inclusion of effective parameters can be calibrated to a community in which selection

is active. This is arguably achieved more easily than for Sloan et al.’s model, as the lack of a selection parameter (α)

untangles dependencies between m, p and α . However, the previous definitions of each parameters still provide ecolog-

ical and theoretical insight. Indeed, an effective community size (NTe) is a more natural concept to understand than an

effective average time between replacement events (ηe), although both can be used to capture the relative step change in

abundance per unit of time. It can be argued under the same logic that calibrating a single parameter that captures all

processes driving the behaviour of local selection (αe) is more theoretically compelling than capturing an effective rate of

immigration (me) and an effective relative abundance within the source community (pe).

Irrespective of whether model parameters hold distinct ecological meaning or are considered effective, identification

of these parameters is highly dependent on the sampling protocol used. The results within this study demonstrate that

sampling period and frequency effect the information portrayed within in each relative abundance time series. Reductions

in sampling period are shown to lead to the under-representation of the expected variance and divergence from observed

Beta distributions, while reductions in sampling period degrade the theoretical expression for dx. These trends drive

errors within respective parameters, and therefore, if calibration of neutral models is undertaken to produce parameter

estimates, then at least some rationale behind the sampling regime used during the acquisition of data must be provided.

Processes that maintain the integrity of the time series but allow for reduced sampling should therefore be explored. Here

we have demonstrated that one process which fulfils this is to induce a perturbation on a species and measure its recovery

to its equilibrium. Here it has been shown that if this perturbation, or period of non-equilibrium, is captured in its entirety,

errors associated with sampling period, especially in the under-representation of time series variance are largely negated.

For such a system, the sampling period must therefore only cover the period of recovery. In the example provided, this

allows the required length of time series to be reduced significantly. Another option, not explicitly demonstrated here, is

to provide high resolution snapshots at infrequent intervals. The ideal would be to produce relative abundance measure-

ments (x) in quick succession to get a good estimates of dx, but then spread the estimate of dx sparsely, through the larger

duration need for capturing the long term dynamics.

It is important to note that the analysis conducted here is not exhaustive, the time series produced are simulated based

on only a single set of parameter magnitudes: NT = 10,000, η = 0.0004h, m = 0.1, p = 0.2 and α = 0.01. Indeed, it is

foreseeable that if the magnitudes of these structuring processes are altered then the exact degree of parameter estimation

error will vary. Thus, the exact quantities presented within this study are unlikely to be universal. An expansion of this

study, in which the magnitudes and therefore the relative importance of these processes is altered, would be beneficial

for determining whether universal quantities or trends in calibration errors exists. Within this study it has been alluded

to that optimal sample periods and frequencies exist for ensuring accurate calibration of specific parameters, if possible,

providing a universal mathematical relationship for calculating this point would be extremely useful for informing exper-

imental design. Investigation of other sampling processes not accounted for here, such as, sample size or the inclusion of

multi-species relative abundance time series, would also be useful for experimentalists.
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Future work should also assess the practical applications of the models analysed here. In many engineered systems,

where communities are at the heart of the processes undertaken, it can be beneficial to maintain a certain species, genus or

functional group within the community. Purposely calibrating neutral model parameters from these systems, in an attempt

to monitor trends within a species’ relative abundance would provide a valuable case study. In a more theoretical context,

using closely controlled experiments or computational simulation, parameters produced through the calibration of neutral

models could be utilised for quantifying the impact or relative importance of certain phenomena, as eluded to by Sloan

et al. (2021).

The overall view taken here is that through more nuanced and thoughtful calibration of neutral models, accurate

estimates of the effective parameters governing these models can be achieved. These parameters can then be used, not

only to categorise the information provided by species relative-abundance time series, but also to provide an insight into

how the abundance of a species may vary as time progresses. Additionally, by investigating how certain ecological,

chemical or biological processes adapted the values estimated, it may be possible to develop methods for influencing the

structuring of communities. The work here therefore aims to pivot the use of neutral models towards a more pragmatic

and engineering related use. Indeed, much of the criticisms of neutral models is often in relation to the ecological

contents of the models. If the ecological definitions are therefore relaxed, through the use of effective parameters, then

the mathematical simplicity and ability of these models to fit many observed species abundance patterns can be utilised

in full.



Chapter 4

Quantifying the heating potential of
methanotrophs for application within
decentralised wastewater treatment technologies

4.1 Abstract

In many decentralised wastewater technologies, like septic tanks or small treatment works, wastewater sludge is stored and

undergoes anaerobic digestion, producing methane with significant global warming potential (GWP-100 ≈ 30). Methan-

otrophic bacteria oxidise methane to gain energy, even at low concentrations, and thus could potentially be deployed

in mitigating the methane emissions from decentralised wastewater treatment. There is evidence that methanotrophs

dissipate a significant proportion of the energy released in oxidising methane as heat. This opens up the possibility of

technologies that simultaneously mitigate methane emissions and make use of the low-grade heat dissipated using, for

example, heat pumps. To rationally design such technologies requires a much deeper understanding of the heat dissipated

by methanotrophs. Here we develop a method of characterising and apply it to two different species of methanotrophs:

M. methanica S1 (type-I methanotroph) and M. trichosporium OB3b (type-II methanotroph), known to occupy different

ecological niches.

Batch cultures were grown in isothermal calorimeter chambers at 30◦C with headspace concentrations of 8%, 4% and

2%v/v CH4 in air. Across all cultures, 56−64% of the energy in oxidising all of the methane was dissipated as heat. Batch

experiments, that identically replicated those in the calorimeter, were conducted outside the calorimeter, which allowed

optical density (OD600), headspace composition and pressure, dissolved oxygen, pH and non-purgeable organic carbon

(NPOC) to be measured. Analysing these indicates that for M. methanica S1 and M. trichosporium OB3b approximately

43− 59% and 49− 66% of the carbon stored in the supplied methane is fully oxidised to carbon dioxide respectively.

For M. methanica S1, 27− 35% of this carbon is used to synthesis biomass, while for M. trichosporium OB3b, this is

reduced to between 14− 22%. We demonstrate that for species utilising the same substrate, and where this substrate is

the sole source of energy and carbon, the partitioning of available carbon between energy-yielding and energy consuming

reactions is linearly related to the quantity of heat dissipated per biomass. Discussion is given to the role heat dissipation

has on the thermodynamics at a cellular level and how this impacts the overall growth rate.
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4.2 Introduction

Waste management plays a significant role in the anthropogenic sources of methane (Saunois et al., 2020). As such,

reducing methane emissions from waste and wastewater technologies has been identified as an opportunity for scaling

up climate action (Intergovernmental Panel on Climate Change (IPCC), 2023c). In large-scale systems, mitigation of

methane emissions is undertaken using various technologies (Pratt & Tate, 2018), the most common of which involves

burning the methane in combined heat and power plants. For smaller decentralised systems, such as septic tanks or small

wastewater treatment works, where sewage sludge is stored, little development since their original design has been made

(P. J. A. Withers et al., 2011). The effect of emissions on the climate are often neglected and no mitigation strategies are

used. Until recently, little was known about CH4 emissions production from decentralised wastewater systems, however,

recent studies are demonstrating that CH4 is a leading constituent within greenhouse gas (GHG) emissions from these

systems (Diaz-Valbuena et al., 2011; Manga & Muoghalu, 2024; Somlai et al., 2019). Not only this, but the per capita

carbon footprint of rural wastewater technologies in Scotland have been shown to be 7 times that of centralised urban

technologies and most of this can be attributed to methane emissions from sewage sludge (Gupta et al., 2024).

Biological solutions have shown increasing promise and cost-effectiveness for combatting GHG emissions (López

et al., 2013). In this context it is often prudent to look to nature to find the most suitable solutions. In the environment,

methanotrophic bacteria represent the sole biological methane sink (Guerrero-Cruz et al., 2021). Aerobic methanotrophs

represent a diverse functional group of bacteria that generate energy and biomass through the oxidation of methane.

Their diverse taxonomy reflects variations in preferred growth conditions, physiology, and anabolic pathways. However,

while different enzymes can catalyse the catabolic stages, the overall pathway of methane oxidation to carbon dioxide via

methanol, formaldehyde, and formate remains consistent across methanotrophs (Hanson & Hanson, 1996; Khmelenina

et al., 2018). It is this metabolism that makes them useful in engineering applications to mitigate methane emissions.

The use of methanotrophs for GHG mitigation is an active area of research. Strategies such as co-culturing alkaliphilic

methanotrophs and microalgae have shown the ability to sequester both CH4 and CO2, enabling direct reduction in GHG

emissions (Ruiz-Ruiz et al., 2020). Anaerobic methanotrophs have been incorporated within WWTPs to link nitrogen

and carbon cycles (Guerrero-Cruz et al., 2021; Y. Wang et al., 2017). Interest extends beyond moping up methane emis-

sions because some of the intermediates and products of methanotrophic metabolism are valuable resources. A review by

Strong et al. (2015) highlights that methanotrophs can be used to generate a wide range of useful products. Perhaps the

most well-studied of these is the excretion of methanol due the oxidation of methane by methane monooxygenase (MMO)

in aerobic methanotrophs (D. Park & Lee, 2013; Sahoo et al., 2023; Strong et al., 2015; Xin et al., 2004). This ability

is leveraged to convert biogas into liquid fuels at ambient conditions (Ge et al., 2014; Sheets et al., 2016), representing a

more sustainable strategy to current energy intensive thermo-chemical processes (Riaz et al., 2013).

Our interest is in exploiting the thermodynamic properties of these bacteria. To our knowledge, literature utilising

heat dissipation from methanotrophic bacteria for wastewater treatment GHG emission mitigation strategies is rare. The

most likely manifestation of this would be through the use of biofilters in series with anaerobic digesters (Brandt et al.,

2016; Gómez-Borraz et al., 2017; La et al., 2018). Heat produced within these filters could then be transferred back to the

anaerobic reactors through use of a heat pump or utilised for other means. We hypothesis that such a system is feasible as

the oxidation of methane is highly exothermic (∆cH◦ = −890.71kJ/mol) (Pittam & Pilcher, 1972), and in decentralised
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anaerobic treatment technologies, such as septic tanks, raising the system temperature has been shown to enhance treat-

ment efficiency (Connelly et al., 2019; Pussayanavin et al., 2015). Indeed, in systems where biological methane oxidation

is assumed to be taking place, large temperature increases have been recorded (Fjelsted et al., 2020; Gómez-Borraz et al.,

2022), and increases in subsurface temperatures have also been linked to the activity of methanotrophic bacteria (Warren

& Bekins, 2015).

There is also interest in demonstrating the link between heat dissipation and kinetic parameters from a theoretical

viewpoint. Indeed, perhaps the most fundamental view of bacterial growth is that offered by the second law of thermo-

dynamics, which when applied to biomass production, governs that the biosynthesis of complex molecules from simpler

substrates, requires a thermodynamic driving force (von Stockar & Liu, 1999). This is achieved, at least theoretically, by

coupling the energy-yielding catabolic reaction to the energy-consuming anabolic reaction (Heijnen & Van Dijken, 1992;

Stockar & Wielen, 2013b; von Stockar & Liu, 1999). It is also theorised that the magnitude of driving force dictates the

rate of reactions (Stockar & Wielen, 2013b; von Stockar & Liu, 1999). Methanotrophs offer an interesting case study to

experimentally test this theory. Given that methane is the most reduced form of carbon, methanotrophs have the potential

to dissipate greater amounts of heat relative to other microorganisms (Birou et al., 1987). This makes the quantity of heat

dissipated easier to capture. They also utilise the same substrate for anabolic and catabolic reactions (Hanson & Hanson,

1996), therefore, monitoring how methanotrophic species partition carbon should provide insight into how differences in

heat dissipation between species are generated.

In lieu of the direct measurement of heat dissipation from the biological methane oxidation, theoretical approaches

are used (Gómez-Borraz et al., 2022; Seto et al., 2019; Warren & Bekins, 2015). These approaches have only been

tenuously linked to experimental evidence. Thus, if we are to rationally design biotechnologies to generate heat from

biological methane oxidation then it is imperative that we empirically quantify the heat dissipated by methanotrophs and

validate, or update, theoretical models for their energetics. Here, we have developed a robust approach to characterising

the heat dissipated by different species of methanotrophs. Pure cultures of Methylomonas methanica S1 and Methylosinus

trichosporium OB3b were cultivated separately within a Calimetrix I-CAL HPC 4000 Isothermal Calorimeter, allowing

us to measure the heat dissipation in situ. This was done for three distinct initial concentration of CH4 (8%, 4% and

2%v/v in air). For cultures within the calorimeter measurements of environmental and growth parameters, such as optical

density (OD600), headspace composition and pressure, dissolved oxygen, pH and non-purgeable organic carbon (NPOC)

were taken at the start and end of each growth period. To reproduce how these values change over time, external cultures

were grown in parallel to those within the calorimeter and sampled routinely over the entire growth period.
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4.3 Methods

4.3.1 Materials

4.3.1.1 Methanotrophs

Two species of methanotrophs were used throughout the experiments carried out, these were:

1. Methylomonas methanica S1,

2. Methylosinius trichosporium OB3b,

where, S1 and OB3b are strain identifiers. The selection of species was made on multiple criteria. These species were

selected because, whilst they grow on the same culture media and at similar temperatures, they have distinct metabolisms

classified as type-I and type-II (Bowman, 2006; Hanson & Hanson, 1996; Soni et al., 1998). These types have been

shown to have different growth kinetics and thus occupy different ecological niches (J. Amaral et al., 1995; J. A. Amaral

& Knowles, 1995; D. W. Graham et al., 1993; Hanson & Hanson, 1996; Henckel et al., 2000). Both strains were obtained

from internal freezer stocks stored at the Advanced Research Center at the University of Glasgow and were stored in 2ml

cryovials at −80◦C. Each vial contained 0.9ml of bacteria (OD600 of 0.5-1.0) with 100µl of Dimethyl sulfoxide (DMSO).

Table 4.1 provides a summary of characteristics of each strain.

Table 4.1: Comparison of characteristics between Methylomonas methanica S1 and Methylosinus trichosporium OB3b
(Bowman, 2006; Hanson & Hanson, 1996; Koh et al., 1993; Murrell & Dalton, 1983; Whittenbury et al., 1970).

Methylomonas methanica Methylosinus trichosporium
Depositor designation S1 OB3b
Type I II
Morphology Short rods Rod or pear shaped cells
Colour Pink White
Carbon assimilation RuMP pathway Serine pathway
pMMO + +
sMMO + +
Can fix nitrogen - +
Optimal temperature 25◦C - 30◦C 25◦C - 30◦C
Media Nitrate mineral salts Nitrate mineral salts

4.3.1.2 Media

Both Methylomonas methanica S1 and Methylosinus trichosporium OB3b were grown in nitrate mineral salts (NMS)

media, as initially described by Whittenbury et al. (1970). This media contains: KNO3, MgSO4, CaCl2(anhydrous),

FeEDTA, Na2MoO4, trace elements (CuSO4, FeSO4, ZnSO4, H3BO3, CoCl2, EDTA di sodium salt, MnCL2, NiCl2) and

phosphate buffer (Na2HPO4, KH2PO4). Exact amounts and specific hydrates used, can be found in the recipe supplied

at: https://store.ncimb.com/page/media_table.
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4.3.1.3 Methane

CH4 used within the experiments was obtained from a compressed gas cylinder stored at the Advanced Research Center

at the University of Glasgow. This was decanted through a 0.2µm filter and into a 1L gasbag. All injection of CH4 to

cultures were made directly from the gasbag. The CH4 used was of grade N2.5 (99.5%) and purchased from BOC (Part

number: 270927-F).

4.3.1.4 Culture bottles

The sample containers supplied by Calmetrix for use within the I-CAL 4000 HPC Isothermal Calorimeter were unsuitable

for culturing methanotrophs. As a result custom bottles were designed and manufactured. The design of these bottles

was based on the dimensions of the test chambers, thus, the height and width of these bottles were designed not to exceed

60.0mm and 53.5mm respectively. Accounting for a size tolerance of approximately ±2mm, bottle height and width

dimensions were set at 58mm and 52mm respectively. To ensure airtight sealing, the neck and opening were designed

to accommodate 20mm crimp seals. The bottles were manufactured from 52mm (outer diameter) Simax borosilicate

medium-walled tubing (2.5mm thickness) and produced with a smooth finish to ensure a uniform contact area. The man-

ufacture of all newly designed bottles was undertaken by the glass-blowing facility at the University of Glasgow. In total

32 bottles were produced.

To ensure the experiments conducted outwith the the calorimeter replicated those within, the same bespoke culturing

bottles were used for both. Between experiments bottles were left in virkon for at least 24 hours and autoclaved before

use, safeguarding against the risk of contamination. Exact volumes of each bottle were determined by comparing the

empty weight of each bottle against its filled weight using water. These measurements, alongside engineering drawings

of the bottles, can be found in Appendix F.

4.3.2 Experimental methods

4.3.2.1 Maintenance of stock cultures

Stock cultures of both M. methanica S1 or M. trichosporium OB3b were maintained between subsequent experiments

using a semi-continuos batch method in which headspace and media were replaced on a weekly basis. Cultures were

grown in 3x 250ml serum bottles with a 50:50 ratio of headspace and media. The initial CH4 concentration was close to

but lower than 8%v/v in air to avoid oxygen limitation. The bottles were pressurised through the addition of air to avoid

negative pressure within the bottles; even in the event of full CH4 consumption. Measurements of headspace pressure, pH

and OD600 were taken on a weekly basis to assess culture health. The amount of media replaced each week was altered

to ensure cultures were maintained at an OD600 of 0.100. Cultures were examined on a routine basis using a EVOS mi-

croscope to assess for any potential contamination. Stocks used for inoculation were in the growth phase. These cultures

were grown at 30◦C with no mixing. As a result sedimentation of bacteria occurred. The physical manifestation of this

differed between both species where M. methanica S1 favoured the formation of flocs and larger aggregates, while M.

trichosporium OB3b developed a structured sediment. Photos highlighting this differences are provided in Figures 4.1a

and 4.1b respectively.
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(a) (b)

Figure 4.1: Photos of the bottom of stock culture bottles containing either Methylomonas methanica S1 or Methylosinus
trichosporium OB3b grown at 30◦C with no shaking. a) Methylomonas methanica S1, b) Methylosinus trichosporium
OB3b.

4.3.2.2 Experimental conditions

The aim is to capture both the growth kinetics and and the thermal output, however, these cannot be measured simultane-

ously. This because the isothermal conditions within the calorimeter must be maintained; opening the calorimeter would

release heat and affect the temperature, ruining the measurement of heat flux. Bottles within the calorimeter therefore

cannot be accessed and sampling them to measure physicochemical parameters can only be undertaken prior to their

addition to the calorimeter and once they are removed. Thus, the same conditions were mimicked externally using an

incubator, and cultures within this incubator were grown in parallel with those within the calorimeter. These external

cultures were sacrificed at daily intervals to characterise the dynamics of growth and substrate use. This experimental

setup is highlighted in Figure 4.2. Green bottles indicate active cultures while blue bottles refer to negative controls.

As shown, sets of bottles were separated between the acquisition of thermal output (CAL1-CAL4) and growth dynamics

(C1-C7, S1-S7, D1-D7 and T1-T7). Using a batch method all cultures were grown for a period of 7 days at 30◦C with no

shaking. The aforementioned bespoke bottles were used for all cultures.

For the setup depicted in Figure 4.2, one litre of inoculum was used. This was made by mixing 100ml of a stock

culture, at OD600 = 0.100, with 900ml of fresh NMS media. The inoculum was shaken within a MAAQ incubator at

a speed of 150rpm for at least 1hr at 20◦C prior to use, to ensure uniformity. Before the inoculation of active cultures,

control cultures were made up by adding 30ml of NMS media to each of the control bottles. These bottles were then

sealed using a rubber stopper and 20mm aluminium crimp seal. To avoid any unnecessary increase in pressure due to the

sealing process, the top of each bottle was pierced with a needle to equalise the headspace pressure with the environment.

To active cultures 30ml of the inoculum was added. These bottles were sealed using the same method as for the control

bottles.
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Figure 4.2: Overview of the experimental layout, demonstrating both "External Growth Experiment" and "Heat Dissi-
pation Experiment" setups. Green bottles represent active cultures while blue bottles represent negative controls. Both
experiments are undertaken in unison with the same materials, growth conditions and inoculum used. All cultrues were
grown as pure batch cultures. Experiments were repeated for both M. methanica S1 and M. trichosporium OB3b over
three distinct initial concentrations of CH4 (8%, 4% and 2%v/v in air). Created in https://BioRender.com

Gases were added to sealed bottles using a series of injections. All injections were made using a 5mL Hamilton

gastight syringe model 1005 SL fitted with a sample lock and male luer RN hub (L) adapter. 25G x 5/8" needles were

added to the end of this syringe to facilitate piercing the rubber stoppers. In total, four injections were made; adding a total

of 19.10ml of gas to each bottle. The total amount of gas added was calculated based on the need to ensure pressurisation

throughout the entire growth period; as sampling depressurised systems can invoke errors when sampling gases (Stone

et al., 2019). This calculation can be found in Appendix G. A process of trial and error was used to determine the com-

position of the injected gas required to ensure initial concentrations of 8%, 4% and 2%v/vCH4 in air. These compositions

are given in Table 4.2.

4.3.2.3 Heat dissipation experiments

To measure the thermal power output during batch culture of M. methanica S1 and M. trichosporium OB3b, both strains

were grown within a Calmetrix I-Cal 4000 HPC Isothermal Calorimeter. The Calmetrix I-Cal 4000 HPC contains four

test chambers, three were used to house active cultures, representing biological triplicates, while the fourth was used as a

control, as shown in Figure 4.2. Day 0 samples were taken prior to the addition of bottles to the calorimeter.
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Table 4.2: Injection volumes of CH4 and air used during inoculation to provide target CH4 concentrations of 8%, 4%, and
2%v/v in air. Volumes were determined through trail and error.

Target CH4 Injection 1 Injection 2 Injection 3 Injection 4 Total
concentration CH4 Air CH4 Air CH4 Air CH4 Air CH4 Air
(%v/v in air) (ml) (ml) (ml) (ml) (ml) (ml) (ml) (ml) (ml) (ml)

8 4.10 0.00 0.00 5.00 0.00 5.00 0.00 5.00 4.10 15.00
4 2.05 2.05 0.00 5.00 0.00 5.00 0.00 5.00 2.05 17.05
2 1.00 3.10 0.00 5.00 0.00 5.00 0.00 5.00 1.00 18.10

Cultures were left within the calorimeter for a period of 7 days with the internal temperature of the calorimeter set at

30◦C. To ensure a stable temperature the calorimeter was set at 30◦C for at least 24 hours before bottles were added. In

line with manufacturer recommendations, the factory calibration was used with a reference mass of 100g. Readings of

thermal power output were obtained from each chamber once per minute using the associated CalCommander software.

Post-processing of results was required to remove baseline offsets and account for the settling period of the calorimeter.

A full description of the post-processing steps is provided in Appendix H. On removal from the calorimeter final pressure

measurements were made and headspace sample taken. Samples from the liquid culture were then taken for measuring

growth parameters. In total the experiment was repeated six times, to facilitate results for both M. methanica S1 and M.

trichosporium OB3b under initial CH4 concentrations of 8%, 4% and 2%v/v in air.

4.3.2.4 External growth experiments

External growth experiments were run in parallel to the calorimeter experiments to monitor growth parameters over the

entire growth period. To ensure experiments offered an accurate reflection of growth occurring within the calorimeter,

materials, growth conditions and inoculum were kept identical across the two sets of experiments. Both sets of experi-

ments were undertaken at the same time and analysis of samples was carried out in unison. External cultures were grown

within an MAAQ incubator at 30◦C with no shaking to match the conditions within the calorimeter.

As a large proportion of the total culture volume was required for analytical analysis, sacrificial sampling was im-

plemented within these experiments. To conduct a daily sampling regime over the 7-day experimental period, sets of 7

identical cultures were grown. Three of these sets were required to produce biological replicates. A further 7 cultures

were used as negative controls, increasing the overall total to 28. This layout of bottles is highlighted in Figure 4.2. In line

with the heat dissipation experiments, the external growth experiments were conducted a total of six times, facilitating

results for both M. methanica and M. trichosporium OB3b under initial CH4 concentrations of 8%, 4% and 2%v/v in air.

4.3.2.5 Sampling

Sampling was required for the analysis of optical density (OD600), headspace composition, dissolved oxygen, pH and

non-purgeable organic carbon (NPOC). Headspace pressure was also measured, however, this analysis was undertaken

directly on the bottles themselves and thus no sample was required. In total four separate samples were taken, 3 aqueous

and 1 gaseous: a single 5ml sample for measuring OD600 and pH; a 3ml sample for the dissolved oxygen measurement

and; a 10ml sample for the measurement of NPOC. To measure the headspace composition of CH4 and CO2, a single 3ml
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gaseous sample was extracted from the bottle headspace. Headspace samples were removed using 5mL Hamilton gastight

syringe model 1005 SL fitted with a sample lock and male luer RN hub (L) adapter. Aqueous samples were stored in

sterile 15ml centrifuge tubes, while gaseous samples were added to pre-vacuumed Exetainer® 3ml glass vials with double

wadded caps.

For each bottle, sampling was conducted twice; once prior to experiments beginning (day 0), and once at the end of

the desired growth period (day 7 for calorimeter bottles, day 1-7 for external cultures). Day 0 sampling was conducted

on the stocks of inoculum and NMS media used. Day 0 headspace samples were taken directly from individual bottles.

All final samples were taken directly from bottles, with gaseous samples taken first and aqueous samples taken thereafter.

Cultures were shaken before taking aqueous samples to ensure a uniformly mixed culture. Headspace samples were stored

for future analysis, which took place at the Scottish Universities Environmental Research Centre (SUERC). Samples for

OD600, pH and dissolved oxygen measurements were analysed within 2 hours of being taken, while samples for NPOC

measurement were analysed within 12 hours of being taken.

4.3.3 Analytical methods

4.3.3.1 Headspace pressure

Measurements of headspace pressure were taken using a Greisinger GDH 200 Manometer by attaching a 25G x 5/8"

needle and 8mm (outer diameter) PVC tubing to the positive port on the manometer. By piercing the rubber stopper

of each bottle with the needle the headspace pressure could be measured. To minimise the risk of cross contamination,

needles were replaced between injections and measurements were made on control bottles prior to active cultures. For

each bottle, readings were obtained on three separate occasions: firstly, after the addition of gases to determine the

maximum pressure; secondly, after the first headspace sample was taken to record the initial pressure and; finally, a

measurement was taken after the growth period had been completed to record the final pressure. In the first two instances,

the pressure was measured at room temperature (≈ 22◦C). For the final reading pressure was measured at 30◦C. Pressure

measurements were primarily used to facilitate calculations of molar mass, while also ensuring pressure was within a

range that did not negatively impact methanotrophic growth (Soni et al., 1998).

4.3.3.2 Optical density

The measurement of optical density (OD600) was undertaken using a HACH DR1900 spectrophotometer. Measurements

of absorption were made using a single wavelength of 600nm. The HACH DR1900 was zeroed using NMS media.

Samples, stored within 15ml centrifuge tubes, were mixed at 2500rpm for 5 seconds to break up biomass aggregates and

ensure a uniform sample. The sample was aliquoted into 3x 1ml micro-cuvettes for measurement, with the final value

determined by calculating the mean across all three measurements. In all instances, fresh cuvettes were used, removing

the need for a cleaning methodology. Effort was made to remove any bubbles within a cuvette before the measurement

was taken. This was done by either lightly tapping the cuvette against a surface or fishing out bubbles using a sterile

needle. After measurement, samples were added back to their 15ml tubes for analysis of pH. All measurements of optical

density were taken at room temperature.
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4.3.3.3 Cell dry weight

A calibration curve between OD600 and cell dry weight (CDW ) was obtained to facilitate conversion between these two

quantities. To measure CDW stock cultures of M. methanica S1 and M. trichosporium OB3b were diluted to OD600

values of approximately 0.025, 0.050, 0.075, 0.100, 0.125 and 0.150. Samples were then vacuumed filtered using 0.2µm

cellulose acetate membrane filters. Prior to use, these filters were dried at 105◦C for 12 hours and then left in a desiccator

for 1 hour before initial measurements of weight were recorded. After filtration filters once again dried at 105◦C for 12

hours and then left in a desiccator for 1 hour before final measurements of weight were recorded. For samples with an

OD600 of ≤ 0.100 100ml was filtered. For samples with an OD600 of > 0.100 50ml was filtered. The full calibration

curves obtained can be found in Appendix I.

4.3.3.4 pH

pH was measured using an Orion Star A215 pH Meter. Three-point calibration of the probe was undertaken before each

set of measurements. This was done using standards with pHs of 4, 7 and 10. pH measurements were conducted on

the same samples used for the determination of optical density. The probe was submerged into 5ml of sample, stored in

a 15ml centrifudge tube, and kept there until a stable reading was obtained. The probe was rinsed with Milli-Q water

between each reading. Measurements of pH were taken at room temperature and only obtained after measurements of

OD600.

4.3.3.5 Dissolved oxygen

Dissolved oxygen measurements were made using a Vernier Go Direct Optical Dissolved Oxygen probe. The sample

volume used for dissolved oxygen measurements was 3ml stored within a sterile 15ml centrifuge tube. The probe was

washed with Milli-Q water and wiped dry before use. Readings were obtained via bluetooth using the Vernier Graphical

Analysis app. Readings were taken over a three-minute period. To monitor the instrument variance, readings of Milli-Q

water were taken on each day of use for comparison. Before readings commenced a visual check was made to ensure

no bubbles were present on or around the optical probe base. If bubbles were present, the probe was removed and re-

inserted. Measurements were made to primarily check that dissolved oxygen remained within the system even after the

full consumption of CH4, ensuring growth was indeed carbon limited. These measurements can be found in Appendix J.

4.3.3.6 Non-purgeable organic carbon

Measurements of non-purgeable organic carbon (NPOC) were made to quantify the carbon within biomass. This is

especially useful to account for the carbon partitioned for biosynthetic processes during growth. NPOC was chosen

instead of total organic carbon (TOC) as it acts to remove volatile organic carbon, such as CO2 and CH4, from the sample

before measurements of organic carbon are made. As CO2 and CH4 within the system is already determined through

gas chromatography, the aim of NPOC measurements were only to account for cellular organic carbon. Glass vials were

baked within an oven at 400◦C overnight prior to use. Samples of 10ml were taken from each culture for measurement of

NPOC. These were mixed and then transferred to 10ml baked glass vials. NPOC was measured using a Shimadzu TOC-

L. In accordance with this equipment, acidification and sparging is conducted prior to non-dispersive infrared (NDIR)

detection. The Shimadzu TOC-L was calibrated up to 25mg/L.
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4.3.3.7 Headspace composition

Headspace composition was determined using gas chromatography. Headspace samples were stored within 3ml DW

Exetainer® Vials and transported to the Scottish Universities Environmental Research Centre (SUERC) for analysis.

Measurements of CH4 and CO2 were made using a Hewlett Packard 5890 Gas Chromatograph with a thermal conduc-

tivity detector (TCD). Helium was used as the carrier gas and a Hayesep-N polymer packed column was used with a

column head pressure of 20psi. The initial temperature was set at 50°C for 0.5 minutes followed by a ramp rate of 40°C

per minute until a final temperature of 150°C. Readings were obtained from two 50µL injections of each sample, with

the final reading expressed as the mean. To avoid dilution of sample due to air within the needle itself and to normalise

sample pressure, 100µL was initially taken within the syringe, 50µL of this was purged immediately prior to inserting the

rest of the sample for analysis. Calibration and maintenance of the equipment was facilitated by SUERC, and prior to

use, the column was baked at 150°C for at least 45min or until the measurement baseline returned to a constant reading.

Zeroing of the equipment was undertaken before each sample was measured.

4.4 Results and Discussion

4.4.1 Growth dynamics and yields

Measurements of the headspace concentration of CH4 and CO2, OD600, NPOC, system pressure and pH, for both M.

methanica S1 and M. trichosporium OB3b are provided in Figures 4.3 and 4.4 respectively. Results are shown for three

distinct initial concentrations of CH4 (8%, 4% and 2%v/v in air). These concentrations of CH4 were selected based on

expected CH4 concentrations within a compost biofilter, as defined by Gómez-Borraz et al. (2025), and those observed

within septic tanks (to be published). The overall length of the experiments was determined by the longest period required

for all CH4 to be consumed. This was determined to be one week as demonstrated by Figure 4.4a. The sampling period

was kept uniform across all experiments. Sampling was spaced equally throughout this period with sampling conducted

every 24 hours. For M. methanica S1, when the initial concentration of CH4 was set at 4% and 2%v/v in air, the sampling

frequency was doubled to every 12 hours for the first three and two days respectively. This was done to ensure a higher

resolution within the dynamic period. To achieve this, the sampling frequency of subsequent samples were reduced. This

change in sampling period is displayed in Figure 4.3. As measurements from the calorimeter cultures could only be made

at the start and end of the growth period, growth dynamics are primarily obtained from external cultures grown in parallel

to those within the calorimeter. The final values reached for all quantities measured from both external and calorimeter

cultures are expressed in Table 4.3, where the values presented demonstrate the mean across biological triplicates; the

standard deviation within these values is also provided.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Time series of growth parameters for external and calorimeter cultures of M. methanica S1, measured under
three distinct concentration of initial CH4 over a period of 7 days. a) Headspace CH4 concentration, b) Headsapce CO2
concentration, c) Optical density at 600nm (OD600), d) Non-purgeable organic carbon (NPOC), e) System pressure, f)
pH.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Time series of growth parameters for external and calorimeter cultures of M. trichosporium OB3b, measured
under three distinct concentration of initial CH4 over a period of 7 days. a) Headspace CH4 concentration, b) Headsapce
CO2 concentration, c) Optical density at 600nm (OD600), d) Non-purgeable organic carbon (NPOC), e) System pressure,
f) pH.
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Table 4.3: Final values measured for the headspace concentration of CO2, OD600, NPOC, headspace pressure and pH for
pure batch cultures of M. methanica S1 and M. trichosporium OB3b from external and calorimeter experiments. Means
are calculated from biological triplicates. The standard deviation in these values is also expressed.

Species Experiment Initial CH4 CO2 OD600 NPOC Pressure pH
(%v/v in air) (%v/v in air) (−) (mg/L) (atm) (−)

mean SD mean SD mean SD mean SD mean SD mean SD

M. methanica Calorimeter
7.73 0.13 1.78 0.07 0.142 0.002 21.75 1.33 1.150 0.003 6.82 0.02
3.91 0.06 0.83 0.00 0.063 0.002 8.30 0.31 1.261 0.004 6.84 0.02
1.96 0.03 0.41 0.00 0.042 0.001 1.73 1.29 1.285 0.003 6.89 0.00

M. methanica External
7.56 0.11 1.70 0.03 0.141 0.002 19.27 0.33 1.155 0.007 6.81 0.03
3.89 0.06 0.83 0.04 0.067 0.007 7.77 0.32 1.256 0.002 6.82 0.01
1.96 0.03 0.42 0.01 0.042 0.003 3.59 2.10 1.286 0.002 6.88 0.00

M. trichosporium Calorimeter
7.73 0.13 2.38 0.03 0.052 0.002 10.72 0.45 1.153 0.003 6.68 0.01
4.01 0.04 1.07 0.01 0.031 0.001 4.78 0.75 1.212 0.006 6.78 0.01
1.98 0.02 0.51 0.00 0.023 0.001 6.00 0.63 1.308 0.009 6.85 0.01

M. trichosporium External
7.67 0.03 2.33 0.01 0.053 0.000 8.19 0.57 1.158 0.003 6.73 0.02
4.00 0.03 1.12 0.07 0.035 0.002 4.58 0.43 1.211 0.004 6.81 0.02
2.01 0.04 0.54 0.06 0.025 0.003 6.47 1.57 1.266 0.023 6.87 0.02

Across both M. methanica S1 and M. trichosporium OB3b (Figures 4.3 and 4.4 respectively), OD600 and NPOC is

shown to increase as CH4 is consumed, representing methanotrophic growth. An increase in the headspace concentration

of CO2 is also observed as a result of the full oxidation of CH4. System pressure is shown to decrease as CH4 is consumed

and pH is also shown to decrease as a consequence of CO2 being produced. The delay in growth and the reduced growth

rate experienced by M. trichosporium OB3b mirrors results of S. Park et al. (1991), and is thus a consequence of a lack

of CO2 initially within the system. This lack of CO2 only affects the anabolic pathway within type-II methanotrophs by

inhibiting the conversion of phosphoenolpyruvate to oxaloacetate within the serine cycle.

To summarise the differences between the growth of M. methanica S1 and M. trichosporium OB3b, yields of cell dry

weight (CDW ), NPOC and CO2 were calculated. This was achieved using the relationship:

YX/S =
∆X
∆S

, (4.1)

where, ∆X is the change in mass of a known product over the entire growth period and ∆S is the change of mass of

substrate over the same period. For calculating the yield of CO2, the number of moles is used instead of overall mass. To

determine the total number of moles of CH4 and CO2, the number of moles within the headspace, and the proportion dis-

solved within the media must be calculated. Calculation of the number of moles of each compound within the headspace

is achieved through the ideal gas law, where the total number of moles of gas is calculated based on the measured pres-

sure (Figures 4.4e and 4.3e), the volume of headspace in each bottle (Appendix F) and the temperature. The relative

proportions of CH4 and CO2 are then calculated using the measured concentrations of these gases (Figures 4.4a, 4.4b,

4.3a and 4.3b). The number of moles dissolved are calculated using Henry’s law, where an adjustment is made to correct

Henry’s coefficients based on temperature. The coefficients used and equation for adjusting them based on temperature

dependence can be found in Sander (2023). A large proportion of CO2 will be in the form of HCO−
3 based on the pH

observed for both sets of experiments (Figures 4.3f and 4.4f). This quantity is calculated based on the pH observed and
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the dissociation constant of H2CO3 adjusted to the required temperature. An example calculation determining the total

number of moles of CH4 and CO2 can be found in Appendix K. From these values the total mass of CH4 is subsequently

determined by multiplying the total number of moles by the respective molecular weight. The mass of CDW is calculated

based on the calibration curves given within Appendix I. Thus, for M. methanica S1 OD600 = 1.0 = 358mg/L and for

M. trichosporium OB3b OD600 = 1.0 = 497mg/L. NPOC is directly measured as mg/L. To determine the total mass of

these quantities they are multiplied by the total volume of culture media (30ml).

Carbon conversion efficiency (CCE) is calculated from yields of CDW and NPOC. These are determined using the

equation:

CCE =

(
carbon in biomass

total carbon consumed

)
×100, (4.2)

where, the carbon stored in biomass can be calculated from CDW by assuming cells contain 47% carbon (Leak & Dalton,

1986a), for NPOC the total carbon in biomass is directly measured. The total carbon consumed is calculated by multiply-

ing the initial number of moles of CH4 previously calculated, by the molar mass of carbon.

Yields and CCEs are calculated per culture, as such, the final values provided in Table 4.4 are obtained by taking the

mean across biological triplicates. The standard deviation (SD) in these values is also calculated and provided alongside

the mean values. Yields and CCEs calculated for the external and calorimeter cultures are expressed separately.

Table 4.4: Final yields of cell dry weight (YCDW/CH4), non-purgeable organic carbon (YNPOC/CH4) and carbon dioxide
(YCO2/CH4) calculated for pure batch cultures of M. methanica S1 and M. trichosporium OB3b. Carbon conversion ef-
ficiencies calculated from cell dry weight (CCECDW ) and non-purgeable organic carbon (CCENPOC) are also provided.
Calculations are undertaken using the measurements provided in Figures 4.3 and 4.4 respectively. Means are calculated
from biological triplicates. The standard deviation in these values is also expressed.

Species Experiment Initial CH4 YCDW/CH4 CCECDW YNPOC/CH4 CCENPOC YCO2/CH4
(%v/v in air) (−) (%) (−) (%) (−)

mean SD mean SD mean SD mean SD mean SD mean SD

M. methanica Calorimeter
7.73 0.13 0.53 0.00 33.45 0.08 0.15 0.01 20.42 1.83 0.59 0.03
3.91 0.06 0.43 0.01 27.19 0.71 0.17 0.01 22.08 0.89 0.55 0.01
1.96 0.03 0.56 0.01 35.04 0.68 0.05 0.06 6.32 7.51 0.43 0.04

M. methanica External
7.56 0.11 0.55 0.00 34.31 0.09 0.13 0.01 16.98 0.72 0.58 0.01
3.89 0.06 0.47 0.06 29.64 3.57 0.16 0.01 20.77 1.21 0.56 0.05
1.96 0.03 0.55 0.04 34.32 2.35 0.13 0.09 17.38 12.54 0.48 0.03

M. trichosporium Calorimeter
7.73 0.13 0.25 0.01 15.41 0.62 0.11 0.00 14.18 0.63 0.66 0.00
4.01 0.04 0.22 0.01 13.86 0.38 0.08 0.02 10.94 2.21 0.57 0.01
1.98 0.02 0.30 0.03 19.14 1.67 0.18 0.03 24.14 3.74 0.49 0.01

M. trichosporium External
7.67 0.03 0.26 0.00 16.16 0.16 0.08 0.01 10.48 1.02 0.70 0.01
4.00 0.03 0.27 0.03 16.94 1.61 0.08 0.01 10.07 0.79 0.64 0.02
2.01 0.04 0.36 0.05 22.40 3.44 0.21 0.06 27.88 8.61 0.56 0.08

The yields in Table 4.4 reveal the differences between the growth of batch cultures of M. methanica S1 and M. tri-

chosporium OB3b under the conditions investigated. M. methanica S1 is shown to generate a much higher yield of CDW

when compared to M. trichosporium OB3b, this is shown to be the case across cultures of all initial concentrations of
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CH4 (8%, 4% and 2%v/v in air). The yields of NPOC do not observe the same relationship. While YNPOC/CH4 for M.

methanica S1, for the 8% and 4%v/vCH4 experiments, are higher than that of M. trichosporium OB3b, for our experi-

ments at 2%v/vCH4, NPOC yields are shown to be greater for M. trichosporium OB3b. This contradicts what is observed

for YCDW/CH4 . Indeed when comparing the yields and carbon conversion efficiencies calculated from cell dry weight

(CCECDW ) to those calculated from measurements of non-purgeable organic carbon (CCENPOC), differences are observed

between these values The most likely explanation for this is due to the time required for equipment calibration, samples

within the Shimadzu TOC-L were not analysed until at least 1 hour after they had been mixed prior to being placed within

the machine. Over this period samples stood undisturbed, and as a result some sedimentation of cell mass occurred. This

would happen at a greater rate for M. methanica S1 than M. trichosporium OB3b due to the prevalence of cell aggregates.

Indeed some sediment was found on the bottom of these vials after NPOC measurements had been made. For this reason

we consider the NPOC measurements to under-represent the correct carbon content and base our analysis primarily on

the measurements of CDW . Regarding the yield of CO2 (YCO2/CH4), the results provided in table 4.4 show that cultures of

M. trichosporium OB3b produce more CO2 than cultures of M. methanica S1 across all concentration of CH4 investigated.

To observe if yields depend on the initial concentration of CH4, the final yields of cell dry weight (YCDW/CH4) and

CO2 (YCO2/CH4) for each species are plotted against the initial concentration of CH4 used (Figure 4.5). Trendlines are

generated using all points for a given species. For M. trichosporium OB3b a weak negative correlation between YCDW/CH4

and the initial concentration of CH4 is observed, with the R2 value for this fit equal to 0.38 and the gradient of the linear

fit calculated as −0.0120 per %v/v (Figure 4.5a). For M. methanica S1 no clear relationship between these two quantities

is observed. Indeed, the p-value of the gradient coefficient of the fit is > 0.05, thus, we fail to reject the null hypothe-

sis. For both M. methanica S1 and M. trichosporium OB3b, positive linear correlations between YCO2/CH4 and the initial

concentration of CH4 is observed (Figure 4.5b); where R2 values are 0.61 and 0.68 respectively. The gradient of this

correlation is greater for M. trichosporium OB3b than M. methanica S1, with gradients calculated as 0.027 and 0.020 per

%v/v respectively.

(a) (b)

Figure 4.5: Final yields of cell dry weight (YCDW/CH4), and carbon dioxide (YCO2/CH4) plotted against initial headspace
concentration of CH4 for calorimeter and external batch cultures of M. methanica S1 and M. trichosporium OB3b. Linear
fits are made using all points plotted for M. methanica S1 and M. trichosporium OB3b respectively. Equations of these
lines and the R2 values are provided in figure legends. a) YCDW/CH4 , b) YCO2/CH4 .
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4.4.2 Carbon balance and partitioning

Given that CH4 is both the carbon and energy source for our methanotrophic cultures, we make effort to track how both

strains partition carbon. First this is done by carrying out a carbon balance analysis. Here we assumed that at the start

of each experiment the total amount of carbon present is made up of: the biomass within the inoculum and the CH4 and

CO2 within the system initially. Here the amount of carbon in biomass is calculated from CDW rather than NPOC for

the reasons provided earlier. Again, it is assume that CDW consist of 47% carbon (Leak & Dalton, 1986a). The final

carbon contributions are calculated from the same sources. Within Figure 4.6 the proportion each source makes up of the

initial carbon is displayed as a percentage. These proportions are plotted across all samples for every experiment. The

first three columns of each set within Figure 4.6 represent the biological triplicates, the fourth column displays a negative

control. "EX1-7" refer to samples taken from the external growth experiments over the growth period, and correspond

chronologically to the "external" points displayed in Figures 4.3 and 4.4 respectively. Samples marked "CAL" refer to

samples taken from the calorimeter cultures at the end of the experimental period, these correspond to the "calorimeter"

sample points within Figures 4.3 and 4.4 respectively.

While the graphs displayed in Figure 4.6 clearly depict the transition from CH4 to biomass and CO2. They also

demonstrate that a proportion of carbon is unaccounted for. One reason for this is that during measurements of system

pressure, taken after the initial headspace sample and before the final headspace sample, the total volume of the system

is increased by the internal volume of the manometer. Due to the diffusion of CH4 and CO2 across this volume, the con-

centration of carbon within the headspace will decrease. By comparing the initial carbon composition to the final carbon

composition across all control samples, a decrease of between 3.9% and 13.7% is observed (Figure 4.6). While this does

demonstrate that indeed some carbon is lost as a result of the methodology used, for samples taken towards the end of the

growth period, especially during experiments at lower initial concentration of CH4, this reduction does not sufficiently

explain the amount of unaccounted carbon observed.

It is known that methanotrophs have the potential to secrete metabolites during growth (Kalyuzhnaya et al., 2013;

Kalyuzhnaya et al., 2015; Roslev & King, 1995). Indeed, in some cases, extracellular carbon in the form of metabolites

has been observed to account for 40− 50% of the total carbon within the CH4 consumed (Kalyuzhnaya et al., 2013).

A known pathway of metabolite excretion is unique to type-II methanotrophs and arises when the equilibrium of the

catabolic reaction is shifted by excess CO2, driving the oxidation of CH4 in the reverse direction. Due to the inability

of methane monooxygenase (MMO) to catalyse the reaction from CH3OH to CH4, this energy-intensive process results

in the synthesis of methanol (CH3OH), which is then excreted to the media (Sahoo et al., 2021, 2023; Xin et al., 2007).

Given that excreted metabolites are not captured within OD600 measurements, one would expect a reduction within sys-

tem carbon as a result of their formation. Without a more detailed accounting of the carbon within the system the form of

the additional unaccounted carbon can only be speculated at. Despite this, the consistency of the methodology used does

facilitate the comparison of carbon partitioned between biomass and CO2.



QUANTIFYING THE HEATING POTENTIAL OF METHANOTROPHS FOR APPLICATION WITHIN DECENTRALISED
WASTEWATER TREATMENT TECHNOLOGIES 97

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Carbon composition of CH4, CO2 and biomass expressed as a percent of the initial carbon within the system.
Measurements of CH4, CO2 and biomass are obtained from batch cultures of M. methanica S1 and M. trichosporium
OB3b over three different initial concentration of CH4, as shown in Figures 4.3 and 4.4 respectively. a) M. methanica S1
8%v/vCH4 in air b) M. trichosporium OB3b 8%v/vCH4 in air, c) M. methanica S1 4%v/vCH4 in air, d) M. trichosporium
OB3b 4%v/vCH4 in air, e) M. methanica S1 2%v/vCH4 in air. f) M. trichosporium OB3b 2%v/vCH4 in air.
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To further explore the partitioning of carbon we can present the the amount of carbon in the produced biomass and

CO2 as a percent of the carbon in the CH4 consumed, these values are supplied in Table 4.7, where only the final carbon

compositions presented in Figure 4.6 are used for calculations. To summarise this trade-off, here we define a carbon

partitioning ratio (CPR). This is achieved by dividing the relative percentage of carbon funnelled to CO2, by the relative

percent of carbon converted to CDW or biomass, thus, a ratio of > 1 indicates that more of the carbon stored in the initial

quantity of CH4 is present within the CO2 measured than the CDW , and the opposite is observed when CPR < 1. These

ratios are calculated using the values within Table 4.7, with the ratios themselves provided in the final column.

Table 4.5: Final percentages of carbon stored in the initial volume of CH4 converted to biomass and CO2, measured
for calorimeter and external batch cultures of M. methanica S1 and M. trichosporium OB3b. The ratio of the carbon
converted to CO2 and that stored in biomass is provided. All values are calculated as means from biological triplicates,
with standard deviations also shown.

Strain Experiment Initial CH4 Biomass CO2 CPR
(%v/v in air) (%) (%) (−)

mean SD mean SD mean SD mean SD

M. methanica Calorimeter
7.73 0.13 33.45 0.08 58.84 2.88 1.76 0.08
3.91 0.06 27.19 0.71 55.33 0.97 2.04 0.09
1.96 0.03 35.04 0.68 43.29 4.19 1.23 0.10

M. methanica External
7.56 0.11 34.31 0.09 57.96 0.84 1.69 0.03
3.89 0.06 29.64 3.57 55.53 4.75 1.91 0.41
1.96 0.03 34.32 2.35 48.16 2.77 1.41 0.16

M. trichosporium Calorimeter
7.73 0.13 15.41 0.62 66.26 0.48 4.31 0.19
4.01 0.04 13.86 0.38 56.74 0.96 4.10 0.10
1.98 0.02 19.14 1.66 48.98 0.83 2.57 0.19

M. trichosporium External
7.67 0.03 16.16 0.16 70.42 1.49 4.36 0.06
4.00 0.03 16.94 1.61 64.44 2.33 3.82 0.27
2.01 0.04 22.4 3.44 55.71 7.54 2.50 0.28

The calculated ratios displayed in Table 4.7 highlight that across all cultures there is a preference towards the full

oxidation of CH4, as more of the available carbon is transformed to CO2 than biomass (CDW ). While this is true for both

species, differences in the severity of this preference is observed between the species. M. trichosporium OB3b is shown

to partition a much larger proportion of the available carbon to CO2 relative to that partitioned to biomass when compared

to M. methanica S1, especially when cultured using initial concentrations of 8% and 4%CH4v/v in air. When the initial

concentration of CH4 is reduced to 2%v/v in air, a decrease in the CPR is observed across cultures of M. trichosporium

OB3b. Plotting the calculated CPR values against the initial concentration of CH4 illustrates this (Figure 4.7). For M.

methanica S1 no such trend is observed. Indeed, generating a linear fit to the point displayed in Figure 4.7 provides a

p-value of the gradient coefficient to be > 0.05. Interesting, this shift in carbon partitioning, observed in M. trichospo-

rium OB3b at 2% v/v CH4 in air, aligns with findings from Gómez-Borraz et al. (2025), where an anabolic phase within a

methanotrophic community under the same concentration of 2% v/v CH4 in air was observed. The effect this has on the

bioenergetics is discussed subsequently.
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Figure 4.7: Carbon partitioning ratio (CPR) plotted against the initial concentration of CH4 for M. methanica S1 and M.
trichosporium OB3b.

4.4.3 Thermal output

The thermal output measured from batch cultures of M. methanica S1 and M. trichosporium OB3b using the Calmetrix

I-CAL HPC 4000 Isothermal Calorimeter are provided in Figure 4.8, for the three different concentrations of CH4 inves-

tigated. In all cases, the power of heat dissipation increases exponentially to a peak and then drops-off sharply at a time

that coincides with the total consumption of CH4 (Figures 4.3a and 4.4a respectively). The integral of the total power of

heat dissipation yields the total energy dissipated through time, shown in Figures 4.8c and 4.8d. In all cases, there is a

correlation between the total energy dissipated and the initial concentration of CH4.

In the first instance we aim at quantifying the effectiveness of M. methanica S1 and M. trichosporium OB3b at

producing heat. To do this, we firstly compare the total heat dissipated during the growth of these bacteria with the heat

that could theoretically be accrued by oxidising all the CH4 in air. Here we define this ratio as the thermal efficiency

(ηmax), which follows:

ηmax =
Qdis

Qmax
×100, (4.3)

where, Qdis refers to the total energy dissipated as heat during the growth of M. methanica S1 and M. trichosporium

OB3b, and Qmax refers to the heat that could be produced by oxidising all the CH4 available. Values of Qdis can be taken

directly from the data presented in Figure 4.8. To avoid errors associated with measurement noise, Qdis is calculated by

taking the mean of thermal energy values obtained after the thermal power reaches zero. The maximum available heat

(Qmax) can be calculated from the enthalpy of combustion of CH4. As growth conditions are sufficiently close to standard

conditions, the standard enthalpy of combustion is used (890.71kJ/mol). Given that not all the available CH4 is fully

oxidised to CO2 (Table 4.7), we also compare Qdis to the maximum amount of heat that could theoretically be accrued

from the catabolism undertaken by each culture Qcat . This is different from Qmax as it takes into account how the avail-

able carbon is partitioned between biomass and CO2 production. The thermal efficiency calculated from this quantity is

denoted by ηcat . The method for calculating Qcat is provided in Appendix L.
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(a) (b)

(c) (d)

Figure 4.8: Thermal power and thermal energy dissipated during the batch growth of M. methanica S1 and M. trichospo-
rium OB3b under three initial concentration of CH4 (8%, 4% and 2%v/v in air). Thermal power dissipation was measured
directly using a Calmetrix I-CAL 4000 HPC Isothermal Calorimeter. Total thermal energy was determine through integrat-
ing between measurments of thermal power and summing the results. a) Thermal power dissipation from M. methanica
S1, b) thermal power dissipation from M. trichosporium OB3b, c) total thermal energy dissipation from M. methanica S1,
d) total thermal energy dissipation from M. trichosporium OB3b.



QUANTIFYING THE HEATING POTENTIAL OF METHANOTROPHS FOR APPLICATION WITHIN DECENTRALISED
WASTEWATER TREATMENT TECHNOLOGIES 101

The values of Qmax, Qcat , Qdis, ηmax and ηcat for the different concentrations of CH4 investigated are provided in Table

L.1. The values displayed represent means from the biological triplicates displayed in Figure 4.8.

Table 4.6: Thermal efficiencies (ηmax and ηcat) for batch cultures of M. methanica S1 and M. trichosporium OB3b for
different regimes of initial CH4 concentration. The maximum available heat (Qmax), the maximum available heat from
catabolism (Qcat) and the total heat dissipated (Qdis) are also provided.

Species Experiment Initial CH4 Qmax Qcat Qdis ηmax ηcat
(%v/v in air) (J) (J) (J) (%) (%)

mean SD mean SD mean SD mean SD mean SD mean SD

M. methanica Calorimeter
7.73 0.14 147.98 2.01 109.32 3.06 84.43 1.43 57.06 0.20 77.19 1.91
3.92 0.06 75.27 0.20 53.99 0.45 45.92 1.79 61.00 2.24 85.05 2.93
1.96 0.04 37.40 1.23 23.96 0.82 21.66 0.39 57.94 1.46 90.49 4.26

M. trichosporium Calorimeter
7.73 0.13 148.39 0.82 116.70 0.47 95.39 1.51 64.29 1.31 81.74 1.37
4.01 0.04 76.66 0.20 55.67 0.61 44.46 0.70 57.99 0.84 79.86 0.98
1.98 0.02 38.01 0.27 25.73 0.20 21.41 0.92 56.31 2.30 83.19 4.05

The results in Table L.1 demonstrate that both M. methanica S1 and M. trichosporium OB3b dissipate a significant

proportion of the maximum available heat, with ηmax calculated between 56−64%. When comparing the heat dissipated

to that which could be accrued based on how the available carbon is partitioned (Qcat), these efficiencies rise to between

77−90%, demonstrating that the vast majority of energy generated during the catabolic process is dissipated as heat by

these bacteria. It is, however, important to note that given the observed reduction in carbon between initial and final sam-

pling (Figure 4.6), it is likely that the CO2 measured is an under-representation of the total amount of CH4 fully oxidised

and thus thermal efficiencies may be slightly lower than what is presented here. Additionally, it is known that in type-II

methanotrophs up to 50−60% of cellular carbon can be obtained from CO2 fixation via phosphenolpyruvate (PEP) car-

boxylase (Hanson & Hanson, 1996; Kalyuzhanaya et al., 2013; Templeton et al., 2006), this process is not accounted for

in our measurements of CO2.

From the measurements of heat dissipation we can also calculate the yield of heat per cell dry weight (YQ/CDW,dis)

and the yield of heat per mole of CH4 consumed (YQ/CH4,dis). As measurements of OD600 and headspace composition can

only be obtained from the calorimeter cultures at the end of the growth period, yields are calculated following:

YQ/X =
∆Q
∆X

, (4.4)

where ∆Q is the heat dissipated over the entire growth period and ∆X is the change of a known quantity (CDW , CH4)

over the same period. These yields are calculated for each calorimeter culture individually with the final yields presented

as the mean of these alongside the standard deviation. Within Table 4.7, these yields are presented alongside YQ/CH4,cat

and YQ/CH4,max, where YQ/CH4,cat is calculated by dividing Q,cat by the number of moles of CH4 consumed, this is done

solely using final samples. YQ/CH4,max is the standard enthalpy of CH4 oxidation. YQ/CDW,dis and YQ/CH4,dis can also be

calculated by plotting the the change in thermal energy, measured from the calorimeter cultures, against the change in

CDW or CH4, measured from the external cultures. This is done for both CDW and CH4 as shown in Figures 4.9 and 4.10

respectively. As demonstrated linear fits passing through the origin can be made where the gradient refers to YQ/CDW,dis

and YQ/CH4,dis respectively. This reflects the same process as described by Birou et al. (1987). The values obtained by this
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method are also provided in Table 4.7 where the uncertainty is based on the 95% confidence bounds of the fit. For 4.10

lines corresponding to YQ/CH4,cat and YQ/CH4,max, calculated from external cultures, are also plotted to provide comparison.

Table 4.7: Yields of heat dissipated per cell dry weight (YQ/CDW,dis) and heat dissipated per mole of CH4 consumed
(YQ/CH4,dis) for batch cultures of M. methanica S1 and M. trichosporium OB3b for different regimes of initial CH4 con-
centration. For calorimeter cultures, yields are calculated using the difference in quantities over the entire growth period,
as expressed by Equation 4.4. For external cultures, yields are calculated by plotting quantities at similar time points
against each other and calculating the gradient of a line fitted to this plot. Figures 4.9 and 4.10 demonstrate these plots.
Maximum and catabolic yields of heat dissipated per mole of CH4 are also provided, where YQ/CH4,max refers to the
standard enthalpy the oxidation of CH4 and YQ/CH4,cat is calculated by dividing the maximum heat generated through
catabolism by the number of moles of CH4 consumed. This is done using final samples from cultures grown in the
calorimeter and externally.

Species Experiment Initial CH4 YQ/CDW,dis YQ/CH4,dis YQ/CH4,cat YQ/CH4,max
(%v/v in air) (kJ/g) (kJ/mol) (kJ/mol) (kJ/mol)

mean SD mean SD mean SD mean SD (-)

M. methanica Calorimeter
7.73 0.14 59.46 0.21 508.21 1.75 658.63 16.25 890.71
3.92 0.06 78.27 4.19 543.38 19.91 638.86 5.45 890.71
1.96 0.04 57.66 1.94 516.12 12.99 570.96 23.64 890.71

M. trichosporium Calorimeter
7.73 0.13 145.66 8.43 572.61 11.68 700.50 2.73 890.71
4.01 0.04 145.89 1.94 516.56 7.48 646.82 5.42 890.71
1.98 0.02 103.21 11.89 501.53 20.45 603.03 4.69 890.71

mean SD gradient 95% bounds gradient 95% bounds mean SD (-)

M. methanica External
7.73 0.14 57.96 ±1.05 518.83 ±7.69 653.70 4.72 890.71
3.92 0.06 62.10 ±4.66 521.48 ±23.83 639.99 26.77 890.71
1.96 0.04 55.50 ±1.41 516.80 ±8.93 598.43 15.62 890.71

M. trichosporium External
7.73 0.13 134.46 ±10.21 575.96 ±35.69 723.91 8.39 890.71
4.01 0.04 104.15 ±14.29 480.99 ±52.84 690.25 13.11 890.71
1.98 0.02 77.32 ±12.24 455.46 ±62.13 640.98 42.52 890.71

The yields of heat dissipation provided in Table 4.7 demonstrates significant heat dissipation per cell dry weight from

methanotrophic cultures of M. methanica S1 and M. trichosporium OB3b. The yields observed here are much greater than

those measured for other bacteria, such as E.coli, which provide typical values of 11−15kJ/g when utilising substrates

such as hexoses (Birou et al., 1987). Indeed, it has been observed that growth utilising carbon substrates that are more

reduced resulted in greater yields of heat per biomass formed (Birou et al., 1987; C. Wang & Kuzyakov, 2023). Methane,

being the most reduced form of carbon, will therefore facilitate much higher yields of heat per cell dry weight as demon-

strated.
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(a) (b)

(c)

Figure 4.9: Change in thermal energy dissipated against the change in cell dry weight (CDW ) for batch cultures of M.
methanica S1 and M. trichosporium OB3b under different initial concentrations of CH4. Heat dissipation is measured
from cultures within the Calmetrix I-Cal 4000 HPC Isothermal Calorimeter. Values of CDW are produced from OD600
measurements from parallel external cultures. Values plotted against each other refer to the same time point from the
experiment start time. Linear fits are produced using all points plotted for a single species. a) 8%v/vCH4 in air, b)
4%v/vCH4 in air, c) 2%v/vCH4 in air.
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(a) (b)

(c)

Figure 4.10: Change in thermal energy dissipated against the change in moles of CH4 for batch cultures of M. methanica
S1 and M. trichosporium OB3b under different initial concentrations of CH4. Heat dissipation is measured from cultures
within the Calmetrix I-Cal 4000 HPC Isothermal Calorimeter. The number of moles of CH4 are produced from analysis
of headspace composition of parallel external cultures. Values plotted against each other refer to the same time point from
the experiment start time. Linear fits are produced using all points plotted for a single species. Lines corresponding to
YQ/CDW,cat calculated from external cultures, and YQ/CDW,max are also plotted for both M. methanica S1 and M. trichospo-
rium OB3b to provide comparison. a) 8%v/vCH4 in air, b) 4%v/vCH4 in air, c) 2%v/vCH4 in air.
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4.4.4 Relationship between heat dissipation and growth

For microorganisms, it has been argued that growth is driven by a thermodynamic driving force generated by the difference

in the Gibbs energy change of the energy-yielding catabolic reaction (∆Gcat) and the energy-consuming anabolic reaction

(∆Gana) (von Stockar & Liu, 1999). This viewpoint can be summarised by the flux-force relationship developed in non-

equilibrium thermodynamics, where the proportionality between flux and the conjugate force is linear:

Ji = LiiZi +∑
j ̸=i

Li jZ j, (4.5)

where, Lii is the coefficient that links the flux (Ji) to ’its’ force (Zi) and Li j links the flux (Ji) to all other forces (Z j). As-

sessing the coupling of only two reactions, it is shown that the rate of each individual reaction can therefore be expressed

as:

ra = Laa(−∆Ga)+Lab(−∆Gb) (4.6a)

rb = Lbb(−∆Gb)+Lba(−∆Ga), (4.6b)

where, ra and rb are the rate of reactions a and b respectively, ∆Ga and ∆Gb are the Gibbs free energy of each reaction and

Laa, Lbb, Lab and Lba are coefficients (Stockar & Wielen, 2013b). Given that ∆Ga and ∆Gb are both negative and assuming

the cross coefficients are equal and also significantly negative, Lab = Lba = −ve, then reaction b can be driven "uphill"

(rb < 0) if ∥∆Ga∥ > ∥∆Gb∥. This is the case in the coupling of catabolic and anabolic reactions and thus the magnitude

of the rate of both of these reactions is proportional to the difference in Gibbs free energy between both reactions. This

is commonly referred to as the "driving force" of the coupled reaction (Heijnen & Van Dijken, 1992; Stockar & Wielen,

2013b; von Stockar & Liu, 1999).

For two species utilising similar metabolic pathways, such that the magnitude of energy produced through the

catabolic reaction and energy consumed during the anabolic pathway are consistent across species, then a trade-off is

observed driven by the biomass yield. At high yield, thus efficient growth, ∆Gana tends to ∆Gcat reducing the thermody-

namic driving force and thus the rate of reactions. At low yield, the difference between ∆Gana and ∆Gcat is maximised,

driving an increased reaction rate at the cost of reduced biomass yield (Stockar & Wielen, 2013a; von Stockar et al.,

2008). The growth of M. methanica S1 and M. trichosporium OB3b demonstrate this trade-off. Here we observe that

batch cultures of M. methanica S1 produce a greater yield of biomass while producing a reduced yield of CO2, when

compared to cultures of M. trichosporium OB3b grown under the same conditions. While exact yields may vary from

those previously recorded, this difference in growth is in keeping with literature (Anthony, 1978; Templeton et al., 2006;

Van Dijken & Harder, 1975). These differences in growth efficiency, with M. methanica S1 displaying more efficient

growth and M. trichosporium displaying less efficient growth, is directly reflected in the measurements of heat dissipa-

tion made. M. trichosporium OB3b is observed to dissipate a larger quantity of heat per cell dry weight then that of M.

methanica S1. Plotting the yield of heat per cell dry weight (YQ/CDW,dis) against the carbon partitioning ratio (CPR) results

in a linear relationship, as highlighted in Figure 4.11. This mirrors the results by Birou et al. (1987), where the yield of

heat per biomass is shown to be dependent on biomass yield as well as the oxidation state of the carbon substrate. Indeed

the overall high values obtained for YQ/CDW,dis from our methanotrophic cultures are a consequence of CH4 occupying the



QUANTIFYING THE HEATING POTENTIAL OF METHANOTROPHS FOR APPLICATION WITHIN DECENTRALISED
WASTEWATER TREATMENT TECHNOLOGIES 106

lowest possible oxidation state for carbon, while the differences between species utilising the same substrate being driven

by differences in how carbon is partitioned.

Figure 4.11: Yield of heat per cell dry weight (YQ/CDW,dis) plotted against the carbon partitioning ratio (CPR) for batch
cultures of M. methanica S1 and M. trichosporium OB3b grown under different concentration of CH4 in air. A liner
relationship is observed across all points with the line y = 36.01x providing a fit with R2 = 0.94.

Based on the relationship observed within Figure 4.11, two theoretical extremes can be characterised. At one end,

where the CPR tends to 0, biomass yield is maximised providing a perfectly efficient system where all available energy is

contained within the biomass produced and thus no heat is dissipated. However, under such a regime the rate of reaction

would be infinitely slow (Kedem & Caplan, 1965). At the other, where CPR tends to a maximum, all energy is dissipated

as heat and thus reaction rates are maximised but no biomass is produced. Under both these conditions growth is inhibited.

Thus, at some point between these extremes an optimal point must exist where the growth rate is maximised. A fuller

account of this argument is presented by Stockar and Wielen (2013b). According to our results we can assume that this

point must lie closer to the points plotted for M. methanica S1 as for all experiments undertaken, batch cultures of M.

methanica S1 express a higher growth rate than cultures of M. trichosporium OB3b, however, this is complicated by the

lack of initial CO2, known to impact the growth of M. trichosporium (Kalyuzhanaya et al., 2013; S. Park et al., 1991).

Literature demonstrates that under high methane and high oxygen conditions growth of type-II methanotrophs is

favoured over type-I (J. Amaral et al., 1995; J. A. Amaral & Knowles, 1995; Henckel et al., 2000). This is at odds with

what is observed here. It is also expected and observed that the biomass yield of methanotrophs utilising the serine cycle

(type-II) is greater than we recorded (Anthony, 1978; Templeton et al., 2006; Van Dijken & Harder, 1975). Accepting that

this is the case, we may expect that under optimal conditions the points plotted for M. trichosporium OB3b within Figure

4.11, at higher concentrations of CH4 (8% and 4%v/v), would sit much closer but still above those of M. methanica S1.

If, as observed in literature, type-II methanotrophs enjoy a competitive advantage here then, according to the argument

laid out by Stockar and Wielen (2013b), one would expect this location to better represent the optimal trade-off between

the thermodynamic "driving force" and biomass yield, or in our case the CPR.
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Under low CH4 concentrations the opposite is observed and type-I methanotrophs outcompete type-II (J. Amaral

et al., 1995; J. A. Amaral & Knowles, 1995; Henckel et al., 2000). A study by Graham et al. highlights that when

the concentration of CH4 in the feed gas is reduced from 3.4% v/v to 1.7% v/v, the ratio of the number of cells of M.

trichosporium (type-II) to M. albus (type-I) declined (D. W. Graham et al., 1993). Within our experiments, we observe

a shift in the partitioning of carbon towards greater biomass production within cultures of M. trichosporium OB3b when

grown using an initial concentration of 2%v/vCH4. Carrying on from our previous hypothesis, a case could emerge that as

the concentration of CH4 is reduced the carbon partitioning ratio (CPR) for M. trichosporium OB3b is dropped to below

that of M. methanica S1. Thus, if the optimal CPR lies above the values plotted for M. methanica S1 on Figure 4.11,

then a CPR value below these would invoke a competitive disadvantage. This point would prove a useful indicator for

confirming or disproving this hypothesis. Indeed, further experiments are needed to confirm the speculation made.

This thermodynamic trade-off between biomass yield or carbon partitioning and the "driving force" may be too sim-

plistic to explain the complications of growth under all scenarios. In the previous hypothesis we assume that coefficients

Lab and Lba are equal and constant across species. This is arguably not an accurate assumption. Indeed, the difficulty in

predicting growth yields from energy yields has long been attributed to "uncoupled growth" or wastage of ATP (Leak &

Dalton, 1986b). Under a starvation period, it is likely that the cross coefficients (Lab and Lba) would be affected if a phys-

ical or biochemical processes responsible for coupling catabolic and anabolic reactions is inhibited, or the energy yielded

through the catabolic reaction is being used for other means and is therefore wasted in regard to biomass production.

Indeed, assuming that the catabolic reaction is only coupled to biomass production is a major simplification. In actual fact

a much more complex web will exist (Chubukov et al., 2014; Gerosa & Sauer, 2011; Locasale & Cantley, 2011). This

uncoupling of growth will act to upset the previously argued trade-off.

It is also important to note that physical processes influence the growth rate of organisms. Under the methodology

developed agitation or mixing of cultures is impossible. Cultures will therefore sediment, however, the rate and processes

associated with this can differ between species. Figure 4.1 demonstrates differences in the spatial structure and sedimen-

tation of both M. methanica S1 and M. trichosporium OB3b. This will effect the diffusion of CH4 to the cells and thus the

rate at which substrate can be consumed. These processes are completely ignored within the thermodynamic explanation.

It is most likely that a complex combination of the processes suggested as well as others unaccounted for explain the

differences in growth rates observed here between M. methanica S1 and M. trichosporium OB3b. Here we only speculate

on these processes, indeed a much more rigorous analysis, perhaps utilising in-depth metabolic models, is required to

unlock the exact nature of the interactions between these processes. What the results here do highlight is that a trade-off

between how carbon is partitioned, between energy yielding and energy consuming reactions, and the heat dissipated

per biomass is apparent. However, the relative importance this trade-off has on the overall growth rate, especially under

conditions that invoke non-uniform starvation between species, is difficult to uncover. Indeed, in most cases theory is

developed based on model systems where we assume favourable growth conditions and spatial homogeneity. For most

biotechnologies this is not the case. For example, centralised and decentralised wastewater treatment systems represents

a myriad of conditions, with growth environments varying both spatially and temporally. Trying to define the limitations

and importance of theory under such conditions is thus an equally important endeavour.
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4.5 Conclusion and future perspectives

We have recorded that for batch cultures of both M. methanica S1 and M. trichosporium OB3b, 56−64% of the energy

that would be released as heat during complete combustion of CH4 is evolved as heat during the growth of these species.

This accounts for 77−90% of the energy generated through catabolism. For M. methanica S1 yields of heat per gram of

cell dry weight of between 56− 78kJ/mol are calculated and for M. trichosporium OB3b these are calculated between

77−146kJ/mol, where the exact value is dependent on the initial concentration of CH4 as well as the method of calcula-

tion used. When compared to species grown using less reduced forms of carbon, the results presented here demonstrate

the greatest magnitude of heat dissipation from bacterial growth. Indeed, the values presented here a in excess of previ-

ously recorded maximum yields of heat per biomass of 25kJ/g (Birou et al., 1987).

The difference in yields of heat per cell dry weight obtained within this study is directly linked with how each species

partitions the carbon within the CH4 introduced. Our cultures of M. trichosporium OB3b are shown to convert as little as

14% of the carbon included in the CH4 to cell dry weight, while for M. methanica S1 this proportion is higher at 27−35%.

The inverse is observed for yields of CO2, where within cultures of M. trichosporium OB3b CO2 accounts for between

49− 66% of the carbon stored initially as CH4, this percentage is reduced to between 43− 59% for M. methanica S1.

Plotting a ratio of how carbon is partitioned between CDW and CO2 against yields of heat per cell dry weight demon-

strates a linear relationship. Thus, it is both the yield of biomass and the oxidation state of the substrate that drive heat

dissipation within bacteria.

By demonstrating the vast amount of heat dissipated by methanotrophic bacteria, we have laid a quantitive foundation

for exploiting this heat as a resource, thus aiding the development of methane mitigation technologies that may recycle

this heat. The design of bioreactors capable of harvesting the metabolic heat produced by methanotrophs will encounter

challenges. These include: the trade-off between heat extracted and temperature shifts that will effect bacterial activity,

insulation to ensure heat is not dissipated to the environment, spatial gradients in methane concentration and maintenance

of optimal conditions. As a result the exact impact these challenges provide will need to be understood and solutions for

overcoming them will need to be developed. The research here does however suggest that, in principal, the biological

oxidation of CH4 could be harnessed for useful heat production and rising to these research challenges would not be futile.

It is also apparent that although the link between heat dissipation and biomass yield is demonstrated here, further

research is required to determine the importance this trade-off has on determining growth rates. This is especially true in

scenarios, such as presented here, where cultures are grown outside of optimal conditions and thus thermodynamic expla-

nations of growth are muddied by physical and biochemical processes unaccounted for within these descriptions. Indeed

such conditions are prevalent throughout biotechnologies and therefore expanding thermodynamic theory in relation to

microbial growth to account for such conditions would be of great engineering importance.



Chapter 5

Conclusion and future perspectives

Within this thesis two distinct pieces of research have been presented. The first, a comprehensive investigation of the com-

patibility of neutral models with single-species relative abundance time series, and the second a thermodynamic analysis

of methanotrophic bacteria. Although each have merit of their own accord, here we discuss the broader implications of the

research and whether it provides insight into the acquisition of general theory within wastewater treatment. To support

the arguments made, motivations behind key decisions are reaffirmed, and in an attempt to address foreseen critiques,

shortcomings of the research are discussed retrospectively. Avenues for further research are also made clear.

The first research chapter entitled "Identifying neutral models on the basis of species abundance time series" was

aimed with deriving the underlying principles that govern microbial community structure from observable patterns and

trends using ecological theory. Here we settled on exploring the neutral theory developed by Hubbell (2001) and an adap-

tation of this theory developed by Sloan et al. (2006). The selection of these theories was a deliberate decision, with the

motivation behind this choice based on the logic provided by Curtis, Ofiteru, Sloan, and Woodcock, among others. Wood-

cock et al. (2007) break down the selection of appropriate models for developing a generalised theory into two defining

criteria: validity and predictive capability. Regarding the these, Harte (2004) states "Theories are of most interest when the

ratio of the number of predictions that they make to the number of assumptions and adjustable parameters in the theory is

large". Harte directly provides Hubbell’s purely-neutral model as an example of this (Harte, 2004). Ofiţeru et al. (2010)

states, "the emergent parameter-rich models defy calibration for very diverse microbial communities", highlighting the

difficulty in selecting more complex theories for calibration using data obtained from microbial communities. Indeed,

our results demonstrate that even the simplest of neutral models are over-parametrised to derive all distinct parameters

under a naive scenario when using single species relative abundance time series. Given the extreme diversity of microbial

communities central to wastewater treatment technologies (T. P. Curtis et al., 2002), the selection of simpler models as a

starting point towards a generalised theory provides a pragmatic and scientifically sound approach. Indeed, to assess sys-

tems at a broader scale, one must accept and strive for a loss of detailed intricacies (Levin, 1992). The fact that the most

mathematically simple community models, Hubbell’s purely neutral model and Sloan et al.’s near-neutral model, have

been shown to accurately describe and predict many patterns and trends observed from complex communities, makes the

parameters within these models inherently important (Hubbell, 2001; Latimer et al., 2005; Ofiţeru et al., 2010; Rosindell

et al., 2011; Sloan et al., 2006, 2021).

109



CONCLUSION AND FUTURE PERSPECTIVES 110

From this point the choice of using simulated time series to calibrate the models selected was made. One may ar-

gue that a more compelling analysis could have been provided using ’real’ time series, obtained from highly controlled

experiments in which all model parameters could be measured externally as well as derived through model calibration.

However, with no indication of appropriate sampling protocols, experimental length and sampling frequencies, sampling

regimes used to obtain data sets would have been difficult to determine prior to experimentation. Generating time series

of similar lengths and temporal resolutions to the ones employed within our study would not have been possible experi-

mentally using current technologies. Indeed, experimentation is a much more time intensive approach for producing large

datasets than simulation. Given that time has been identified as our most valuable resource (T. Curtis & Fowler, 2023),

a choice was made to adopt the strategy articulated by Martinez-Rabert et al. (2023), where computational modelling is

used to develop hypotheses through a broader analysis, and where experimentation is only implemented subsequently as

a tool for focused validation. It is important to make clear that this experimental validation has not yet been undertaken

for the conclusions attained through the research presented in Chapter 3.

This lack of experimental validation presents an opportunity for further research. Sloan et al. (2021) demonstrate

a methodology that allows for the controlled culture of microbial communities composed of two species. As a result

the processes assumed to govern neutral community structuring, community size, replacement rate, immigration and

selection can be determined and controlled externally to model calibration. The effects of sampling regimes on parame-

ter estimates could be validated by producing time series of varying lengths and temporal resolutions and subsequently

using these time series to calibrated Hubbell’s and Sloan et al.’s neutral models. Calibration can be achieved using

the computational framework developed within this thesis, which is available at https://github.com/tymonherzyk/neutral-

modelling-framework. For validating the increase in parameter estimation accuracy associated with capturing time series

over a perturbation to the species, a process for artificial inducing a perturbation on the controlled communities would

need to be developed. Similar to how Sloan et al. (2021) artificially induced competitive advantages, antibiotics could be

introduced to the system to reduce the relative abundance of a non-resistant species. Indeed, the methodology developed

by Sloan et al. (2021) demonstrates a promising avenue for validating the results obtained within Chapter 3 through ex-

perimental means.

The results presented in Chapter 3 indicate that for all but the most controlled systems, direct quantification of the

distinct processes that drive microbial community structure is unachievable through calibrating neutral models using

single-species relative abundance time series. The parameter estimates obtained are shown to be influenced by additional

mechanisms unaccounted for in these models and thus it must be assumed that in most cases model parameters reflect a

multitude of complex dependencies and are removed from their attributed distinct mechanistic meanings. This conclusion

is visualised in Figure 5.1, where direct links between model parameters and associated phenomena are maintained only

when ’idealised’ time series are used for calibration. Here we defined ’idealised’ time series as ones produced from com-

munities only governed by the processes described by the model calibrated. For ’real’ communities, governed by more

complex drivers, these links are distorted. Thus, even under suitable sampling protocols and a priori knowledge of the

system only effective parameters can be accurately estimated. This concession may fall short of the initial aim set (Table

1.1), however, the means by which this verdict was reached does indicate fulfilment of the objectives set out.
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(a) (b)

Figure 5.1: Diagram representing the link between neutral model parameters and their attributed mechanistic meaning
when using ’idealised’ and ’real’ relative abundance time series. Here we define ’idealised’ time series as those produced
from communities only governed by the processes described by the model calibrated, whereas ’real’ time series refer to
those produced from communities where the structuring dynamics differ to those described by the model calibrated. a)
idealised time series, b) real time series.

To access the progress this affords towards a general theory it is pertinent to draw focus to the role of phenomenolog-

ical parameters within engineering contexts. General theory typically has the ability to offer insight into complex systems

despite uncertainty (Sloan & Gómez-Borraz, 2023). To achieve this, phenomenological parameters are often used to

summarise intricate interdependencies between phenomena. For example, the Reynolds Number is used in aeronautical

engineering to predict flow regimes and inform aircraft design, the Gauckler–Manning coefficient is used by hydraulic

engineers to portray the roughness of pipes or channels and Young’s modulus is used to define the tensile and compressive

stiffness of materials. Even in fields more closely related to community ecology, such as population genetics, effective pa-

rameters like the "effective population size" are harnessed to quantify genetic diversity and inform conservation strategies

(J. Wang et al., 2016). Quantification of these parameters is achieved through empirical studies or simulation, as deriving

them from first principles is extremely difficult.

Our results demonstrate that a similar method of categorisation can be used for microbial communities where neutral

models are expected to provide a good fit. If these time series are produced through conforming to favourable sampling

regimes, as those demonstrated in Chapter 3, then the parameter quantities estimated will still provide an indication of

abundance dynamics. For example, if for a species of interest the effective immigration rate (me) is estimated at a high

value, then it is likely the species will remain within the community and recover more quickly from perturbations to the

system. On the other hand if this value is low, larger drift within the species abundance can be expected. Other parameters

such as the effective community size NTe and effective local selection αe will provide different characteristics and can

similarly be used to give indication of future dynamics. Therefore, generating high-quality relative abundance time series

from biotechnologies, such as wastewater treatment plants or smaller decentralised wastewater systems, can provide

useful data for predicting species abundance dynamics using the phenomenological or effective parameters expressed

here. Indeed, the argument for utilising effective parameters within these models has been made previously (Sloan et al.,

2021).
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Where the effective parameters presented in our research differ from the engineering examples previously provided,

is in a lack of a consensus regarding the underlying processes that impact them. These processes have only been pos-

tulated and not yet definitively proved (Sloan et al., 2021). For the Reynolds Number, Gauckler–Manning coefficient

and Young’s modulus, knowledge of the factors that drive these values has been established and thus can be leveraged

to inform engineering design. In this aspect our effective parameters are lacking. Establishing these processes can be

undertaken using two approaches, as shown in Figure 5.2. The first is a purely empirical approach. Similarly to the

analysis conducted in Chapter 3, time series can be produced through simulations or sampled from multiple communities

in which the processes driving their structure are known and can be controlled. By calibrating models to time series from

these differing communities and observing the shift in parameter estimates, the relative importance of these processes can

be established. To be confident that any observed relationships between effective parameters and the tested phenomena

are true, we must first be assured that the conditions under which these models are calibrated can produce reliable results.

These conditions have been defined by the research presented in Chapter 3. The second approach is to try and derive pa-

rameters from first principles. This is a similar process to that undertaken in Chapter 4 and is arguably the more difficult

of the two approaches. Both of these approaches have been utilised in predicting and determining drivers of the effective

population size within population genetics (Charlesworth, 2009; Nunziata & Weisrock, 2018; J. Wang et al., 2016).

Figure 5.2: Approaches for determining the phenomena that drive effective neutral model parameters. One is an empirical
approach where time series from differing communities are obtained and model parameters are calibrated to observe
differences in the values obtained. The second is a mechanistic approach that looks to derive parameters from first
principles.
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Here we promote the exploration of both these approaches for undertaking further research. Indeed, despite the

difficulty of providing relationships from first principles, developing theoretical descriptions, even if they are highly sim-

plified, that can be used in predictive equations for determining effective parameters can be extremely useful for informing

decision making and courses of action. For example, regarding the effective populations size (Ne) within population genet-

ics, many predictive equations for this single parameter have been developed (J. Wang et al., 2016). These mathematical

relationships provide a useful theoretical backbone for informing conservation practices. Developing such an abundance

of mathematical theory for effective parameters within ecology, such as those presented in this thesis, is long overdue

and when paired in tandem with methods for estimating these parameters from community data will provide theoretical

context for the behaviour of these communities.

In the meantime, providing insight through empirical means may prove effective. For example, in calibrating Hubbell’s

purely neutral model from a community governed by the dynamics expressed in Sloan’s near-neutral model, we were able

to identify that the inclusion of a local advantage can drive systematic errors in certain parameters, leading to the con-

clusion that these should be considered as effective parameters. The isolation of a single structuring process, in this case

selection, was made relatively easy through computational simulation of contrasting models. A similar process could

be implemented to quantify the effects that other known drivers have on the estimation of neutral model parameters. To

achieve this one would need to develop a system for simulating multiple relative abundance time series from different

theoretical interpretations of community structure. As a result of the design principles adopted within the development

of the computational framework provided in this thesis, the inclusion of additional models into the simulation package

is an uncomplicated process. Given the compatibility of subsequent packages within the computational framework de-

veloped, calibrating effective versions of Hubbell’s and Sloan et al.’s models to newly simulated time series would then

be a straightforward endeavour. By broadly exploring how different interpretations of community structuring affect the

calibration of effective neutral parameters, a picture can begin to be built into the processes that drive the estimated values

of these parameters. Experimental validation is essential before drawing definitive conclusions, however, through this

process of computational probing one could provide areas of focus for experimental studies.

The conclusions reached within Chapter 3, paired with the discussion presented here, indicates, that novel progress

has been made towards the overall aim of the thesis based on the research undertaken regarding neutral models. Although

there are bound to be further critiques, unaccounted for within the discussions provided here, and additional research

could have been undertaken to strengthen the arguments made, we believe that the research provides a fundamental step

necessary for deriving the effective parameters proposed using empirical data. This, in turn, will facilitate studies aimed

at observing relationships between these parameters and the underlying processes that drive them. Only by establishing

these relationships, through empirical observations or by developing derivations for them from first principles, can a gen-

eralised theory utilising these parameters take shape.

Now consider Chapter 4 entitled "Quantifying the heating potential of methanotrophs for application within decen-

tralised wastewater treatment technologies". The purpose of this study was to offer a different approach to that provided

by the aforementioned research. While the first study aimed at deriving the processes governing community structure em-

pirically, which inevitably ended up providing parameters void of specific mechanistic meaning. The goal of the second

research chapter was to build a mechanistic description of these processes from first principles. This is pursued through

an attempt to provide evidence that relationships between growth kinetics and heat dissipation exist. The choice was
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made to achieve this for methanotrophic bacteria. The selection of methanotrophs was made for multiple reasons. Firstly,

it has been shown that heat dissipation from bacteria depends on the degree of reduction of the substrate (Birou et al.,

1987). Therefore, since the carbon in methane has the lowest possible oxidation state, growth on methane should result

in the highest possible yield of heat. Indeed, the values measured for the yield of heat per biomass within Chapter 4 are

higher than any of those observed from less reduced substrates (Birou et al., 1987). Additionally, methanotrophs are of

engineering interest due to their unique ability to oxidised methane under atmospheric conditions, facilitating reductions

in green house gas emissions from biotechnologies (Ruiz-Ruiz et al., 2020; Strong et al., 2015). Thus, reporting the

heat dissipated from these bacteria has great potential for applications in biotechnological and environmental engineering

contexts.

To measure heat dissipation a methodology was developed utilising a Calmetrix I-CAL 4000 HPC Isothermal Calorime-

ter. The growth of methanotrophs presented a unique challenge with this equipment due to the need to maintain a gas-tight

growth system. As a solution, custom culture bottles were designed and produced as part of the research undertaken. The

design of these bottles is provided in Appendix F. While heat dissipation from bacterial growth has been previously

measured in situ (Birou et al., 1987; J.-S. Liu et al., 2001; Schill & von Stockar, 1995; von Stockar & Birou, 1989), our

methodology is novel in its application to methanotrophic bacteria. The results in Chapter 4 demonstrate the success of

this methodology with the heat dissipation curves tracing out patterns that make biological and physical sense and display

similar relationships to those observed elsewhere (Birou et al., 1987; J.-S. Liu et al., 1999, 2001).

The overall methodology could have been strengthened if growth and energy dissipation were measured simultane-

ously. As stated within Chapter 4, growth was measured in external cultures; biomass measurement within the calorimeter

was limited to solely start and end times. While growth of external cultures and those within the calorimeter were shown

to reach the same final states, comparing growth between these two sets of cultures must be handled with care. Another

issue was in the temporal resolution used when measuring these parameters. Phases of exponential growth were too short

and thus undersampled such that the clear determination of rates was difficult. This issue was exacerbated by having to

grow our methanotrophs using batch cultures and thus the low volumes of the culture bottles used determined a limit to

the methane, and therefore carbon available. Differences in growth kinetics between M. methanica S1 and M. trichospo-

rium OB3b as a result of low initial CO2, as demonstrated by S. Park et al. (1991), also made determining a suitable yet

consistent sampling regime more difficult. Indeed, repeating the experiments using a CO2 rich headspace would provide

a useful comparison for highlighting the effect of available CO2 on growth rate and heat dissipation, especially for type-II

methanotrophs. The inability to robustly observe steady-state growth rates and substrate consumption rates made assess-

ing correlations with these rates and quantity or rate of heat dissipation difficult to achieve.

A higher resolution break down of the distribution of carbon in the system would have also been beneficial. A mis-

match in the final amount of carbon calculated versus the initial carbon content is demonstrated. Here we believe the

mismatch may be due to physical and biological processes unaccounted for within the methodology employed. During

headspace sampling and measurements of pressure, perforations made into rubber stoppers are likely to result in the re-

lease of gas, reducing the pressure and thus the carbon content calculated. Some gas may also be lost within the internal

volume of the manometer system used for measuring pressure. The methodology also fails to account for any build up of

inorganic carbon or volatile organic carbon compounds that may have been excreted during growth. Indeed, excretion of

carbon containing metabolites by methanotrophic bacteria has been observed via multiple pathways (Kalyuzhnaya et al.,
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2013; Kalyuzhnaya et al., 2015; Sahoo et al., 2021, 2023). Although the mismatch in carbon balance may throw doubt on

the exact quantities presented, it is important to note that based on the consistency of the methodology these errors would

be uniform across experiments and thus conclusions based on the comparison of results remain sound. To improve on

the methodology a fuller analysis should be undertaken, one that accounts for all possible forms of carbon and minimises

unintentional losses.

Despite possible improvements to the methodology the results do express differences in the growth of M. trichospo-

rium OB3b and M. methanica S1 which are in-keeping with literature, where cultures of M. trichosporium OB3b are

expected to produce a higher yield of CO2 than those of M. methanica S1 while producing a reduced yield of biomass

(Anthony, 1978; Templeton et al., 2006; Van Dijken & Harder, 1975). Our results demonstrate that this trade-off in how

carbon is partitioned is directly related with the heat dissipated per biomass, with this value measured much higher for

cultures of M. trichosporium OB3b. According to thermodynamic theory, as summarised by Stockar and Wielen (2013b),

one would expect the increased quantity of heat dissipation per biomass to drive the rate of catabolic and anabolic reac-

tions, and thus, in regards to growth rate, a trade-off is observed between the heat dissipation and biomass yield, where

an optimal ratio exists. As under all growth experiments we observe greater rates of growth for M. methanica S1 than M.

trichosporium OB3b we would assume that M. methanica S1 would outcompete M. trichosporium OB3b under all growth

conditions investigated and thus the yields for M. methanica S1 must lie closer to this optimal point.

Here it is however important to note that this is not observed under normal growth conditions. While under low con-

centrations of methane M. methanica S1 (type-I methanotrophs) are shown to outcompete M. trichosporium OB3b (type-II

methanotrophs), at higher concentrations of methane they are observed to co-exist or type-II methanotrophs dominate (J.

Amaral et al., 1995; J. A. Amaral & Knowles, 1995; D. W. Graham et al., 1993; Henckel et al., 2000). The primary

difference between our growth conditions and those used within the previously cited literature is the initial concentration

of CO2. Without further experiments, measuring growth yields and heat dissipation under conditions with higher initial

concentrations of CO2 it is unknown whether the ratio of yields observed for M. methanica S1 are indeed more optimal

than those of M. trichosporium OB3b, or whether the results we have observed are a consequence of additional phenom-

ena such as the uncoupling of anabolic and catabolic reactions driven by a period of starvation. An experiment of this

nature would be easy to achieve with the methodology presented in Chapter 4. Indeed, the closer the methodology is to

the one developed here the easier the comparison of results would be. If the methodology in Chapter 4 is followed exactly,

then only the initial composition of culture headspace would need to be altered. This relatively easy study to undertake

would provide a strong source of data for developing the argument between heat dissipation and growth dynamics within

methanotrophic bacteria.

While the biochemical and thus thermodynamic complexity of methanotrophic growth presents a challenge for de-

termining the relationship between heat dissipation and growth, the sheer quantity of heat dissipated, 56− 64% of the

heat dissipated from the equivalent combustion of methane under standard conditions, provides a significant result in

terms of engineering application. In decentralised wastewater treatment systems, where methane is emitted at volumes

and concentrations too low to support cost effective capture, this green-house gas is being emitted to the environment and

the energy within this resource is lost (Gómez-Borraz et al., 2017). Using methanotrophs, for example within a biofilter,

this wasted energy could be repurposed to produce heat. Research, led by Professor William Sloan and Dr Tania Gomez-

Borraz, is being undertaken to quantify the amount of methane emitted from household septic tank systems and the effect
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temperature has on their operation. The results from this study, coupled with the quantification of the heat dissipated from

methanotrophic cultures, as reported here, will allow for an estimate of the available heat to be determined from the incor-

poration of such a technology. Indeed, the quantification of heat dissipated by methanotrophs presented in Chapter 4, lays

out a quantitive framework for analysing the feasibility of such systems. While there is still a lot of research and analysis

required to determine the implementation of such technologies, the vast amount of heat dissipated by methanotrophs pro-

vides a great enough motivation for further research in this regard. Indeed, a pilot-scale system utilising a methanotroph

containing biofilter in series with a septic tank system is currently under construction. While this technology is in its

infancy, if achieved it would provide a significant development of current septic tank systems facilitated by the research

undertaken within this thesis. Thus, while the results in Chapter 4 have difficulty in providing an analysis of community

structuring drivers from first principles, the results have already found purchase within developing wastewater treatment

technologies.

Assessing the two studies in tandem demonstrates novel and tangible advancement toward achieving a generalised

theory. If the effective neutral parameters, which we have shown to be accurately attainable through purely empirical

means, can be linked to the mechanistic description of growth from, for example, our thermodynamic analysis, then

surely a general theory will be close to hand. Although this step is arguably the most difficult, if achieved it will have

reverberating consequences regarding the design of biotechnologies and thus wastewater treatment systems. Even if this

ultimately cannot be achieved, the endeavour itself will undoubtable bear valuable scientific outputs. This thesis serves as

a testament to this notion, with the studies presented here making novel contributions to their respective scientific fields

and already providing output tied to the engineering development of wastewater treatment technologies. Therefore, the

real test of success will lie, not only in the reception with which the research presented here is received, but also in the

outcome of research already prompted by the results and conclusions obtained. Although within this thesis fundamentally

necessary steps to move toward a generalised theory have been provided, further research is still needed to strengthen

the arguments made and, ultimately, to build the critical mass necessary for driving social change and design philosophy

(Centola et al., 2018).
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Figure A.1: European census data displaying the percentage of population connected to independent wastewater treat-
ment. Data available at: https://ec.europa.eu/eurostat



Appendix B

Calculation of expected mean from continuous
stochastic differential equations for Hubbell’s
neutral model and Sloan et al.’s near-neutral
model

Hubbell’s neutral model

The SDE describing the continuous version of Hubbell’s neutral model is given by:

dxi,hubbell =
m(pi − xi)

ηNT
dt +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

ηN2
T

dWt (B.1)

The expected mean can be calculated by observing equation B.1 under steady-state conditions. At steady state, the

expectation of the change dxi,hubbell is zero, and the diffusion term does not contribute to the mean because dWt has zero

expectation. Thus, the expected mean is determined by setting the drift term to zero:

m(pi −E[xi])

ηNT
= 0, (B.2)

where, E[xi] is the expected mean. Rearranging equation B.2 we get:

E[xi] = pi, (B.3)

where for our simulations pi = 0.2 and thus E[xi] = 0.2.
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Sloan et al.’s near-neutral model

The SDE describing the continuous version of Hubbell’s neutral model is given by:

dxi,sloan =
m(pi − xi)+2α(1−m)xi(1− xi)

ηNT
dt +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

ηN2
T

dWt (B.4)

The same process is employed as above such that we get:

m(pi −E[xi])+2α(1−m)E[xi](1−E[xi])

ηNT
= 0 (B.5)

This can be simplified by collecting like terms, resulting in the quadratic equation:

−2α(1−m)E[xi]
2 +(−m+2α(1−m))E[xi]+mpi = 0 (B.6)

This can be solved using the quadratic formula, where our coefficients are:

A =−2α(1−m) (B.7a)

B =−m+2α(1−m) (B.7b)

C = mpi (B.7c)

Substituting these into the quadratic formula we get:

E[xi] =
−(−m+2α(1−m))±

√
(−m+2α(1−m))2 −4(−2α(1−m))(mpi)

2(−2α(1−m))
, (B.8)

where for our simulations m = 0.1, pi = 0.2 and α = 0.01. Using these values to solve the above equation we get two

solutions:

E[xi] =−4.79 (B.9a)

E[xi] = 0.232, (B.9b)

where we ignore the negative solution, giving us E[xi] = 0.232 as the final answer.



Appendix C

Derivation of continuous stochastic differential
equations for Hubbell’s neutral model and Sloan
et al.’s near-neutral model

Discrete probabilities

The derivation of the continuous stochastic differential equations (SDEs) governing Hubbell’s and Sloan’s models begins

at the discrete transitional probability equations. These equitations are commonly written for a single replacement event

in which only three outcomes are possible; the abundance N of species i, will grow by one, decrease by one, or stay the

same. These equation are provided below for Hubbell’s neutral model and Sloan et al.’s near-neutral model respectively:

Pr{Ni +1|Ni}=
(

NT −Ni

NT

)[
mpi +(1−m)

(
Ni

NT −1

)]
, (C.1a)

Pr{Ni −1|Ni}=
(

Ni

NT

)[
m(1− pi)+(1−m)

(
NT −Ni

NT −1

)]
, (C.1b)

Pr{Ni|Ni}= 1−Pr{N +1|Ni}−Pr{N −1|Ni}, (C.1c)

Pr{Ni +1|Ni}=
(

NT −Ni

NT

)[
mpi +(1+αi)(1−m)

(
Ni

NT −1

)]
(C.2a)

Pr{Ni −1|Ni}=
(

Ni

NT

)[
m(1− pi)+(1−αi)(1−m)

(
NT −Ni

NT −1

)]
(C.2b)

Pr{Ni|Ni}= 1−Pr{N +1|Ni}−Pr{N −1|Ni} (C.2c)
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where, parameters hold the same meanings as those within Chapter 3. Given that R represents a specific replacement

event, the probability that the population of the species is growing, decreasing or staying the same, when the abundance of

the monitored species Ni is equal to an arbitrary value X , can be expressed as (GX(R)), (DX(R)) and (SX(R)) respectively.

As such, the transitional probability equations for Hubbell’s neutral model and Sloan et al.’s near neutral model can be

rewritten as:

GX(R) =
(

NT −X
NT

)[
mpi +(1−m)

(
X

NT −1

)]
, (C.3a)

DX(R) =
(

X
NT

)[
m(1− pi)+(1−m)

(
NT −X
NT −1

)]
, (C.3b)

SX(R) = 1−GX(R)−DX(R), (C.3c)

GX(R) =
(

NT −X
NT

)[
mpi +(1+αi)(1−m)

(
X

NT −1

)]
, (C.4a)

DX(R) =
(

X
NT

)[
m(1− pi)+(1−αi)(1−m)

(
NT −X
NT −1

)]
, (C.4b)

SX(R) = 1−GX(R)−DX(R) (C.4c)

To find the probability that the species of interest i has an abundance of X after R+1 events, the combined probability

of outcomes leading to this state must be determined. As progression through time is discrete, outcomes are expressed

as the result of the previous event R, where Ni can occupy one of three values, X − 1, X and X + 1. For each of these

values, a single action must occur for Ni to equal X at event R+1. If Ni = X −1 the abundance of i must grow by one, if

Ni = X the abundance of i must stay the same, and if Ni = X +1 the abundance of i must decrease by one. The combined

probabilities of these outcomes can be expressed in a one-dimensional difference equation:

PX(R+1) = GX−1(R)PX−1(R)+SX(R)PX(R)+DX+1(R)PX+1(R), (C.5)

where PX(R) is equal to the probability that the monitored species has abundance X at event R. Expressing SX(R) in terms

of GX(R) and DX(R) gives:

PX(R+1) = GX−1(R)PX−1(R)+ [1−GX(R)−DX(R)]PX(R)+DX+1(R)PX+1(R), (C.6)

which simplifies to:

PX(R+1) = PX(R)+ [DX+1(R)PX+1(R)−DX(R)PX(R)]+ [GX−1(R)PX−1(R)−GX(R)PX(R)] (C.7)
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Continuous probabilities

Instead of investigating the change in abundance (Ni), it is more beneficial to examine the relative abundance, this is

portrayed as a continuous variable xi which is equal to Ni
NT

with the domain [0,1]. Given that xi is defined as a continuous

variable NT must be limited to large values to accommodate this. This grants a further assumption that the community is

large enough such that NT −1 ≈ NT . If once again Ni is equal to the arbitrary abundance value X , such that xi =
X

NT
, the

discrete transitional probabilities expressed in equations C.3 and C.4, can be recast into continuous forms independent of

time/events as shown below:

G(xi) = (1− xi)(mpi +(1−m)xi), (C.8a)

D(xi) = xi(m(1− pi)+(1−m)(1− xi)), (C.8b)

S(xi) = 1−G(xi)−D(xi) (C.8c)

G(xi) = (1− xi)(mpi +(1+αi)(1−m)xi), (C.9a)

D(xi) = xi(m(1− pi)+(1−αi)(1−m)(1− xi)), (C.9b)

S(xi) = 1−G(xi)−D(xi) (C.9c)

To define a continuous time variable, the discrete replacement event R is replaced by τ , representing an arbitrary

event. This being the case, the one-dimensional difference equation C.7 can now be expressed in terms of G(xi) and D(xi)

over any interval of replacement events δτ . Doing this results in a probability density function (pdf) φ(xi,τ + δτ) that

describes the probability of the relative abundance of species i equalling xi, at event τ +δτ:

φ(xi,τ +δτ) = φ(xi,τ)+[D(xi+δxi)φ(xi+δxi,τ)−D(xi)φ(xi,τ)]+[G(xi−δxi)φ(xi−δxi,τ)−G(xi)φ(xi,τ)], (C.10)

where φ(xi,τ) represents the probability density function at event τ .

Solving the probability density function

To solve equation C.10 the first step is to expand and simplify terms φ(xi,τ + δτ), D(xi + δxi)φ(xi + δxi,τ) and G(xi −
δxi)φ(xi −δxi,τ) using Taylor series expansion, as shown below:

φ(xi,τ +δτ)≈ φ(xi,τ)+δτ
∂φ

∂τ
(xi,τ)+ ... (C.11)
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D(xi +δxi)φ(xi +δxi,τ)≈ D(xi)φ(xi,τ)+(δxi)
∂ [D(xi)φ(xi,τ)]

∂ (xi)
+

1
2
(δxi)

2 ∂ 2[D(xi)φ(xi,τ)]

∂x2
i

+ ... (C.12)

G(xi −δxi)φ(xi −δxi,τ)≈ G(xi)φ(xi,τ)− (δxi)
∂ [G(xi)φ(xi,τ)]

∂ (xi)
+

1
2
(∂xi)

2 ∂ 2[G(xi)φ(xi,τ)]

∂x2
i

− ... (C.13)

Ignoring higher terms, these expansions can be substituted into equation C.10, which follows:

φ(xi,τ)+δτ
∂φ

∂τ
(xi,τ) = φ(xi,τ)

+

[
D(xi)φ(xi,τ)+(δxi)

∂ [D(xi)φ(xi,τ)]

∂ (xi)
+

1
2
(δxi)

2 ∂ 2[D(xi)φ(xi,τ)]

∂x2
i

−D(xi)φ(xi,τ)

]
+

[
G(xi)φ(xi,τ)− (δxi)

∂ [G(xi)φ(xi,τ)]

∂ (xi)
+

1
2
(δxi)

2 ∂ 2[G(xi)φ(xi,τ)]

∂x2
i

−G(xi)φ(xi,τ)

]
,

(C.14)

which simplifies to:

δτ
∂φ

∂τ
(xi,τ) =

[
(δxi)

∂ [D(xi)φ(xi,τ)]

∂ (xi)
+

1
2
(δxi)

2 ∂ 2[D(xi)φ(xi,τ)]

∂x2
i

]
+

[
−(δxi)

∂ [G(xi)φ(xi,τ)]

∂ (xi)
+

1
2
(δxi)

2 ∂ 2[G(xi)φ(xi,τ)]

∂x2
i

]
,

(C.15)

and eventually:

δτ
∂φ

∂τ
(xi,τ) = (δxi)

[
∂ [D(xi)φ(xi,τ)

∂ (xi)
− ∂ [G(xi)φ(xi,τ)]

∂ (xi)

]
+

1
2
(δxi)

2
[

∂ 2[D(xi)φ(xi,τ)]

∂x2
i

+
∂ 2[G(xi)φ(xi,τ)]

∂x2
i

] (C.16)

The partial differential ∂φ

∂τ
(xi,τ) can be defined by dividing through by δτ:

∂φ

∂τ
(xi,τ) =

(δxi)

δτ

[
∂ [D(xi)φ(xi,τ)

∂ (xi)
− ∂ [G(xi)φ(xi,τ)]

∂ (xi)

]
+

1
2
(δxi)

2

δτ

[
∂ 2[D(xi)φ(xi,τ)]

∂x2
i

+
∂ 2[G(xi)φ(xi,τ)]

∂x2
i

] (C.17)

Finally, this can be rearranged into the form:

∂φ

∂τ
(xi,τ) =− ∂

∂xi

[
δxi[G(xi)−D(xi)]

δτ
φ(xi,τ)

]
+

1
2

∂ 2

∂x2
i

[
δx2

i [G(xi)+D(xi)]

δτ
φ(xi,τ)

]
(C.18)
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The Fokker-Planck equation

The Fokker-Planck equation can be defined as:

∂φ

∂τ
(xi,τ) =− ∂

∂xi
[µ(xi,τ)φ(xi,τ)]+

1
2

∂ 2

∂x2
i
[σ2(xi,τ)φ(xi,τ)] (C.19)

where µ(xi,τ) is the drift coefficient, and σ2(xi,τ) is the diffusion coefficient. These identities can be picked out from

equation C.18 such that:

µ(xi,τ) =
δxi[G(xi)−D(xi)]

δτ
(C.20a)

σ
2(xi,τ) =

δx2
i [G(xi)+D(xi)]

δτ
(C.20b)

Since a timestep represents a replacement event, where each event replaces only a single individual, the magnitude of

the change in relative abundance per timestep is always 1
NT

. In the discrete case, where τ = 1, it follows that δxi
δτ

= 1
NT

and
δx2

i
δτ

= 1
N2

T
thus:

µ(xi,τ) =
G(xi)−D(xi)

NT
(C.21a)

σ
2(xi,τ) =

G(xi)+D(xi)

N2
T

(C.21b)

To express µ(xi,τ) and σ2(xi,τ) in specific functional forms as defined by Hubbell’s and Sloan et al.’s models, the

substitution of equations C.8 and C.9 can be made. This results in the definitions of µ(xi,τ) and σ2(xi,τ) for each model

given below:

µ(xi,τ)hubbell =
(1− xi)(mpi +(1−m)xi)− xi(m(1− pi)+(1−m)(1− xi))

NT
, (C.22a)

σ
2(xi,τ)hubbell =

(1− xi)(mpi +(1−m)xi)+ xi(m(1− pi)+(1−m)(1− xi))

N2
T

, (C.22b)

µ(xi,τ)sloan =
(1− xi)(mpi +(1+αi)(1−m)xi)− xi(m(1− pi)+(1−αi)(1−m)(1− xi))

NT
, (C.23a)

σ
2(xi,τ)sloan =

(1− xi)(mpi +(1+αi)(1−m)xi)+ xi(m(1− pi)+(1−αi)(1−m)(1− xi))

N2
T

, (C.23b)
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These simplify to:

µ(xi,τ)hubbell =
m(pi − xi)

NT
(C.24a)

σ
2(xi,τ)hubbell =

2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

(C.24b)

µ(xi,τ)sloan =
m(pi − xi)+2α(1−m)xi(1− xi)

NT
(C.25a)

σ
2(xi,τ)sloan =

2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

(C.25b)

The stochastic differential equations

Using equations C.24 and C.25 a stochastic differential equation can be defined for each model, given that it follows the

standard form:

dxi = µ(xi,τ)dτ +σ(xi,τ)dWτ (C.26)

Substituting in µ and σ for each model results in the SDEs:

dxi,hubbell =
m(pi − xi)

NT
dτ +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

dWτ (C.27)

dxi,sloan =
m(pi − xi)+2α(1−m)xi(1− xi)

NT
dτ +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

dWτ (C.28)

Each SDE can be further simplified using the common approximation of the Weiner process component, such that dWτ ≈√
dτ . Making this simplification results in the final form of both SDEs in which the change in relative abundance dxi can

be estimated across any number of replacement events dτ:

dxi,hubbell =
m(pi − xi)

NT
dτ +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

√
dτ (C.29)

dxi,sloan =
m(pi − xi)+2α(1−m)xi(1− xi)

NT
dτ +

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

√
dτ (C.30)

Conversion to real time

So far the derivation of equations C.29 and C.30 has been conducted using discrete replacement events R and the contin-

uous counterpart τ . This reflects the number of replacement events that transpired rather than the quantity of real-time.

To convert between the two, H is introduced, which represents the magnitude of real-time that transpires between two
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discrete replacement events. Using this identity, T can be calculated following:

T = R ·H (C.31)

Using continuous variables, this equation can be represented as:

t = τ ·η (C.32)

as such the change in time can be defined as:

dt = dτ ·η (C.33)

where η is equal to the average time between replacement events. By rearranging these, descriptions of dτ and
√

dτ can

be made.

dτ =
dt
η

(C.34)

√
dτ =

√
dt
η

(C.35)

Finally, these can be substituted into equations C.29 and C.30, resulting in:

dxi,hubbell =
m(pi − xi)

NT
· dt

η
+

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

·

√
dt
η

(C.36)

dxi,sloan =
m(pi − xi)+2α(1−m)xi(1− xi)

NT
· dt

η
+

√
2xi(1− xi)+m(pi − xi)(1−2xi)

N2
T

·

√
dt
η

(C.37)
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Results from truncated version of Hubbell’s
neutral model when fitted to single species
relative abundance time series
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(a) (b)

(c) (d)

Figure D.1: Box plots representing the estimation of distinct parameters from the truncated version of Hubbell’s purely
neutral model under all regimes of system knowledge. The degree of system knowledge is represented by the parameters
fixed on the x-axis. The estimated value of the parameter is given on the left y-axis, with the respective percent error
displayed on the right y-axis. Each box plot represents calibration to all 100 distinct time series depicted in Figure 3.5. a)
Estimation of NT , b) estimation of η , c) estimation of m. d) estimation of p.
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(a) (b)

Figure D.2: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set
of 100 estimations of the truncated version of Hubbell’s purely neutral parameters shown in Figure D.1. The degree of
system knowledge is represented by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a)
Heatmap displaying MPEs. b) Heatmap displaying CVs.

Figure D.3: Estimated values of NT and η obtained through naive calibration of the truncated version of Hubbell’s neutral
model to the 100 distinct time series depicted in Figure 3.5 plotted against each other and on top of the midline of negative
log-likelihood (NLL) from Figure 3.8.
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Results from truncated version of Sloan et al.’s
near-neutral model when fitted to single species
relative abundance time series
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(a) (b)

(c) (d)

(e)

Figure E.1: Box plots representing the estimation of distinct parameters from the truncated version of Sloan et al.’s near-
neutral model under all regimes of system knowledge. The degree of system knowledge is represented by the parameters
fixed on the x-axis. The estimated value of the parameter is given on the left y-axis, with the respective percent error
displayed on the right y-axis. Each box plot represents calibration to all 100 distinct time series depicted in Figure 3.9. a)
Estimation of NT , b) estimation of η , c) estimation of m. d) estimation of p, e) estimation of α
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(a) (b)

Figure E.2: Heatmaps demonstrating the mean percent error (MPE) and the coefficient of variance (CV) for each set of
100 estimations of the truncated version of Sloan et al.’s near-neutral parameters shown in Figure E.1. The degree of
system knowledge is represented by the parameters fixed on the y-axis. The x-axis shows the estimated parameter. a)
Heatmap displaying MPEs. b) Heatmap displaying CVs.



Appendix F

Design and volumes of bespoke culture bottles for
the Calmetrix I-CAL 4000 HPC Isothermal
Calorimeter

Engineering Drawing

The engineering drawings developed for the first prototype of the bespoke bottles are displayed in Figure I.1. During the

final production of bottles a medium walled tubing was used rather than thick wall tubing. As such the wall thickness was

reduced from 3.5mm to 2.5mm, increasing the internal volume of the bottles. The internal neck diameter was decreased

from 13mm to 12mm in the final design
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Figure F.1: Initial engineering drawings created for bespoke Calmetrix I-CAL 4000 HPC Isothermal Calorimeter bottles.
During final production wall thickness was decreases to 2.5mm, increasing the internal volume of the bottles. The internal
neck diameter was also decreased during production from 13mm to 12mm.
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Volume measurements

name number empty weight filled weight volume
(g) (g) (ml)

CON 1 6 60.021 126.758 66.737
CON 2 25 52.636 126.717 74.081
CON 3 17 55.921 122.909 66.988
CON 4 27 52.405 126.249 73.844
CON 5 31 54.929 126.548 71.619
CON 6 18 57.020 122.305 65.285
CON 7 19 54.805 118.394 63.589
SNG 1 3 53.804 122.107 68.303
SNG 2 4 61.786 129.087 67.301
SNG 3 5 61.128 129.839 68.711
SNG 4 24 56.558 127.634 71.076
SNG 5 7 59.307 128.237 68.930
SNG 6 8 58.021 127.761 69.740
SNG 7 10 60.118 128.922 68.804
DUP 1 11 59.766 127.313 67.547
DUP 2 26 51.552 121.18 69.628
DUP 3 13 58.951 127.629 68.678
DUP 4 14 53.335 124.173 70.838
DUP 5 15 55.217 123.137 67.920
DUP 6 16 54.462 121.978 67.516
DUP 7 12 58.602 127.416 68.814
TRI 1 20 57.101 123.81 66.709
TRI 2 21 49.924 118.476 68.552
TRI 3 22 50.737 121.47 70.733
TRI 4 23 50.413 119.954 69.541
TRI 5 28 50.407 118.457 68.050
TRI 6 29 56.058 124.909 68.851
TRI 7 32 56.604 125.37 68.766
CAL 1 1 58.419 127.076 68.657
CAL 2 2 57.808 126.212 68.404
CAL 3 9 55.866 125.724 69.858
CAL 4 30 58.029 126.548 68.519

Table F.1: Calculation of individual bottles volume. Volumes were determined by measuring the empty weight and the
filled weight of each bottle and finding the difference between these values.



Appendix G

Calculation of the theoretical pressure loss within
culture bottles

As stated earlier, the choice was made to ensure that culture bottles were pressurised to negate errors observed from

sampling depressurised systems (Soni et al., 1998). There are multiple processes that will enact a loss of pressure on each

system within our methodology. In order, these are:

1. Measurement of maximum pressure

2. Starting headspace sample

3. Measurement of starting pressure

4. Conversion of CH4 to biomass during microbial growth

5. Measurement of final pressure

6. Final Headspace sample

To ensure that the pressure of the final headspace sample is ≥ 1atm, we can work backwards to calculate the starting

pressure required within each system. Here we use an average bottle volume of 68ml.

Final Headspace sample

Final headspace samples are withdrawn from each bottle on removal from the incubator. Given that the number of moles

is constant, the headspace volume is 38ml at a temperature of 30◦C, the headspace sample withdrawn has a volume of

3.1ml and the syringe is at room temperature (22◦C). The conditions of this calculation can be given as:

• P1 =?

• V1 = 38ml

• T1 = 303.15K

• P2 = 1atm
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• V2 = 41.1ml

• T2 = 295.15K

From the ideal gas law, where the number of moles is constant we get the relationship:

PV
T

= constant, (G.1)

thus:
P1V1

T1
=

P2V2

T2
, (G.2)

and rearranging for P1 we get:

P1 =
P2V2T1

V1T2
(G.3)

Substituting in the identities previously defined we get:

P1 =
(1)(41.1)(303.15)

(38)(295.15)
= 1.111atm (G.4)

Measurement of final pressure

During the measurement of pressure using a manometer some pressure within the system will be lost as the pressure will

equalise across the system and the additional volume introduced. The volume of the system used to measure pressure

must be defined. An estimate of this volume is is calculated to be 2.391ml, based on the dimensions of the tubing used

and the size of the needle. The gas within this volume will be at atmospheric pressure and as pressure measurement is

taken within the incubator we can consider the temperature to be constant. From this description, we can calculate the

pressure in the bottle before the pressure reading by the conservation of moles. From the ideal gas law, the total number

of moles within the bottle and within the manometer can be expressed separately by:

n1 =
P1V1

RT1
, (G.5a)

n2 =
P2V2

RT2
, (G.5b)

where n1 is the total number of moles within the bottle and n2 is the total number of moles within the manometer. P, V

and T are the respective pressure, volume and temperature of each system and R is the universal gas constant. Given that

the total number of moles is conserved when these two system are added together we get:

n1 +n2 = n3, (G.6a)

P1V1

RT1
+

P2V2

RT2
=

P3(V1 +V2)

RT3
, (G.6b)

since RT is constant across all three systems, this equation can be simplified to:

P1V1 +P2V2 = P3(V1 +V2). (G.7)
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From the previous calculation, we know what the final pressure within the combined system must be equal to at least

1.111atm (P3). We also know both volumes (V1 and V2) and assume that the pressure within the manometer (P2) is at the

air pressure within the incubator. Thus these values are defined as follows:

• P1 =?

• V1 = 38ml

• P2 = 1.027atm

• V2 = 2.391ml

• P3 = 1.111atm

Rearranging equation G.7 to find P1 gives:

P1 =
P3(V1 +V2)−P2V2

V1
, (G.8)

substituting the values provided for these identities, we get:

P1 =
(1.111)[(38)+(2.391)]− (1.027)(2.391)

38
= 1.116atm (G.9)

Conversion of methane to biomass during methanotrophic growth

Under the most extreme scenario for pressure loss from the growth of methanotrophs, we assume that during the oxidation

of methane, all methane is converted to biomass such that the stoichiometric reaction can be expressed as,

CH4(g)+O2(g)+nutrients(l) = biomass(s)+H20(l), (G.10)

thus for every mole of CH4 oxidised, one mole of O2 is also consumed. As no gas phase products are produced, a negative

net change in the moles of gas within the system is observed. If we assume enough oxygen is present to facilitate the

oxidation of all methane within the system then the total number of moles consumed can be described by:

ξ = 2ξ(CH4), (G.11)

where ξ is the total number of moles consumed and ξ(CH4) is the number of moles of methane consumed. From the ideal

gas law, and assuming temperature and volume are constant, the relationship between the number of moles and pressure

can be expressed as:
P1

n1
=

P2

n2
, (G.12)

where P refers to the pressure of the system and n is the total number of moles of gas in the system. If we assess the

number of moles of gas before and after the consumption of methane then we can express n2 as:

n2 = n1 −2ξ(CH4), (G.13)
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This definition can be substituted into equation G.13 resulting in:

P1

n1
=

P2

n1 −2ξ(CH4)
, (G.14)

rearranging we get:

P1 = P2

(
n1

n1 −2ξ(CH4)

)
, (G.15)

Under the experimental methodology developed, the maximum amount of methane expected is ≈ 8% of the headspace,

and thus ξ(CH4) = 0.08n1. Substituting this identity in equation G.15 we arrive at:

P1 = P2

(
n1

n1 −2(0.08n1)

)
=

P2

0.84
(G.16)

Given that from the previous calculation P2 = 1.116atm we get:

P1 =
1.116
0.84

= 1.329atm (G.17)

Measurement of starting pressure

Before bottles are added to incubators to facilitate the growth of methanotrophs a measurement of pressure is taken. This

measurement is taken at room temperature and as the system is the same as that used during the final pressure reading we

can use a similar calculation process, where the conditions are:

• P1 =?

• V1 = 38ml

• P2 = 1atm

• V2 = 2.391ml

• P3 = 1.294atm

Here P3 is lower than what was calculated under the previous step as it has been adjusted for the drop in temperature

using:
P1

T1
=

P2

T2
, (G.18)

where P1 is the pressure in the bottle before it is added to the incubator and thus T1 = 295.15K (room temperature), P2 is

the pressure in the bottle within the incubator as calculated previously to be 1.329atm and thus T2 = 303.15K (incubator

temperature). Substituting all the required values into equation G.8 we get:

P1 =
(1.294)[(38)+(2.391)]− (1)(2.391)

38
= 1.312atm (G.19)
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Starting Headspace sampling

We now have to calculate the drop in pressure associated with the starting headspace sample. Here we can use the

relationship derived earlier as shown in equation G.3. Here the temperature is constant as both the bottle and syringe are

at room temperature. Thus equation G.3 can be simplified to:

P1 =
P2V2

V1
(G.20)

where:

• P1 =?

• V1 = 38ml

• P2 = 1.312atm

• V2 = 41.1ml

substituting these in, we get:

P1 =
(1.312)(41.1)

38
= 1.419atm (G.21)

Measurement of maximum pressure

The final step is to calculate the pressure loss as a result of measuring the maximum pressure. This is measurement is

taken immediately after gases have been added to each bottle. Once again we can use equation G.8 to calculate this as the

temperature is constant. Here the value for each identity will be as follows

• P1 =?

• V1 = 38ml

• P2 = 1atm

• V2 = 2.391ml

• P3 = 1.419atm

Substituting all the required values into equation G.8 we get:

P1 =
(1.419)[(38)+(2.391)]− (1)(2.391)

38
= 1.445atm (G.22)

To ensure the pressure within the syringe during the final headspace sample is at ambient pressure, the initial pressure

within each bottle must be ≈ 1.45atm dependent on the exact volume of each bottle.



Appendix H

Post-processing of thermal power measurements
from the Calmetrix I-CAL 4000 HPC Isothermal
Calorimeter

To obtain the measurements presented in Figure 4.8, the raw values obtained from the Calmetrix I-CAL 4000 HPC

Isothermal Calorimeter must go through several steps of post processing. These are:

• Removal of baseline offset

• Removal of settling period

• Integration of thermal power measurements

Figure H.1 depicts the raw measurements of thermal power from the Calmetrix I-CAL 4000 HPC Isothermal Calorime-

ter for each experiment. As depicted, each chamber within the calorimeter, relating to a single curve on each plot, exhibits

an offset. To remove this offset the last 12 hours of measurements for each curve are average and this value is subtracted

from all prior measurements. This results in the plots provided in figure H.2.

Within figures H.1 and H.2 a settling period is observed, which impacts measurements made within the first 24 hours

of an experiment. Thus rather than removing this period effort is made to firstly dampen this effect and then simulate data

in its place. To dampen the effect of the settling period the first 24 hours from respective control samples (the flat line on

each plot) is subtracted from the other curves. While this does dampen the settling period, due to slight differences within

the time of the settling periods, removing the control measurements presents high errors within the first 10 hours. Thus

the first 10 hours of each curve is removed. An exponential curve is then fit using data from the subsequent 24 hours to

provide data for the first 10 hours. This new data is then appended onto the measurement curves. The final result is a full

removal of the settling period as demonstrated in figure H.3.

The final processing step is the conversion of thermal power to thermal energy. Here this is undertaken within Matlab

using the function "trapz" which facilitates trapezoidal integration. A unit spacing of 60 seconds is used as measurements

of thermal power are taken every minute. The values obtained are summed at every time point to produce the plots of

thermal energy shown in figure H.4.
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(a) (b)

(c) (d)

(e) (f)

Figure H.1: Raw thermal power measurements made using a Calmetrix I-CAL 4000 HPC Isothermal Calorimeter from
batch cultures of M. methanica S1 and M. trichosporium OB3b under three initial concentration of CH4 (8%, 4% and
2%v/v in air). a) M. methanica S1 8%v/vCH4, b) M. trichosporium OB3b 8%v/vCH4, c) M. methanica S1 4%v/vCH4, d)
M. trichosporium OB3b 4%v/vCH4, e) M. methanica S1 2%v/vCH4, f) M. trichosporium OB3b 2%v/vCH4.
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(a) (b)

(c) (d)

(e) (f)

Figure H.2: Thermal power measurements provided in figure H.1 with baseline reduction. a) M. methanica S1 8%v/vCH4,
b) M. trichosporium OB3b 8%v/vCH4, c) M. methanica S1 4%v/vCH4, d) M. trichosporium OB3b 4%v/vCH4, e) M.
methanica S1 2%v/vCH4, f) M. trichosporium OB3b 2%v/vCH4.



POST-PROCESSING OF THERMAL POWER MEASUREMENTS FROM THE CALMETRIX I-CAL 4000 HPC ISOTHERMAL
CALORIMETER 145

(a) (b)

(c) (d)

(e) (f)

Figure H.3: Thermal power measurements provided in figure H.1 with baseline and settling period reduction. a) M.
methanica S1 8%v/vCH4, b) M. trichosporium OB3b 8%v/vCH4, c) M. methanica S1 4%v/vCH4, d) M. trichosporium
OB3b 4%v/vCH4, e) M. methanica S1 2%v/vCH4, f) M. trichosporium OB3b 2%v/vCH4.
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(a) (b)

(c) (d)

(e) (f)

Figure H.4: Thermal energy measurements calculated from the thermal power measurements provided in figure H.3. a)
M. methanica S1 8%v/vCH4, b) M. trichosporium OB3b 8%v/vCH4, c) M. methanica S1 4%v/vCH4, d) M. trichosporium
OB3b 4%v/vCH4, e) M. methanica S1 2%v/vCH4, f) M. trichosporium OB3b 2%v/vCH4.



Appendix I

Calibration curves for OD600 vs CDW for M.
methanica S1 and M. trichosporium OB3b

Figure I.1: Calibration curve for determining cell dry weight from OD600.
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Appendix J

Measurements of dissolved oxygen for batch
cultures of M. trichosporium OB3b and M.
methanica S1

(a) (b)

Figure J.1: Time series of dissolved oxygen measurements for external and calorimeter cultures of M. methanica S1
and M. trichosporium OB3b, measured under three distinct concentration of initial CH4 over a period of 7 days. a) M.
methanica S1, b) M. trichosporium OB3b
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Appendix K

Calculation of total number of moles of CH4 and
CO2 within culture bottles

This is an example calculation of the total number of moles and the mass of CH4 and CO2 in the system. Values chosen

are from sample CAL1.

Known quantities

Measurements (initial)

• %CH4 = 7.88% v/v

• %CO2 = 0.08% v/v

• p = 1.30atm

• T = 22◦C(295.15K)

Measurements (final)

• %CH4, f inal = 0.00%

• %CO2, f inal = 1.83%

• p f inal = 1.15atm

• Tf inal = 30◦C(303.15K)

Constants

• Vbottle = 68.7ml

• Vmedia = 30.0ml
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• Vheadspace = 38.7ml

• R = 8.314J/molK

• R = 0.0821Latm/molK

• H◦
s,CH4

= 1.4×10−5mol/m3Pa

• H◦
s,CO2

= 3.4×10−4mol/m3Pa

• ∆H◦
H2CO3

= 9151J

•
dlnHs,CH4

d(1/T ) = 1600

•
dlnHs,CO2

d(1/T ) = 2300

Number of moles in headspace

To calculate the total number of moles in the headspace the ideal gas law is used:

pV = nRT, (K.1a)

n =
pV
RT

(K.1b)

From initial measurements:

ntotal,headspace =
(1.30)(0.0387)

(0.0821)(295.15)
= 207.62×10−5mol (K.2)

From final measurements:

ntotal,headspace =
(1.15)(0.0387)

(0.0821)(303.15)
= 178.82×10−5mol (K.3)

The number of moles of CH4 and CO2 can be found using the % v/v concentrations of CH4 and CO2 measured in the

headspace respectively.

From initial measurements:

nCH4,head pspace =
207.62×10−5

100
(7.88) = 16.36×10−5mol, (K.4)

nCO2,head pspace =
207.62×10−5

100
(0.08) = 0.17×10−5mol (K.5)

From final measurements:

nCH4,head pspace =
178.82×10−5

100
(0.00) = 0.00mol, (K.6)

nCO2,head pspace =
178.82×10−5

100
(1.83) = 3.27×10−5mol (K.7)
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Number of moles dissolved

To calculate the number of moles dissolved we use Henry’s law:

C = Hs pgas, (K.8)

where C is the solubility at a fixed temperature, Hs is Henry’s coefficient and pgas is the partial pressure of the specific

gas. From literature (Sander, 2023) we can find the Henry’s coefficient for both CH4 and CO2 at 25◦C. This can then be

adjusted to the temperature of the system using the Van’t Hoff equation:

Hs = H◦
s × exp

(
B
(

1
T
− 1

T ◦

))
, (K.9)

where B = −∆solH
R = dlnHs

d(1/T ) . Values for dlnHs
d(1/T ) can also be taken directly from literature (Sander, 2023). Thus to calculate

Hs,CH4 follows:

From initial measurements:

Hs,CH4 = H◦
s,CH4

× exp
(

dlnHs,CH4

d(1/T )

(
1
T
− 1

T ◦

))
, (K.10a)

Hs,CH4 = 1.4×10−5 × exp
(

1600
(

1
295.15

− 1
298.15

))
, (K.10b)

Hs,CH4 = 1.4785×10−5mol/m3Pa, (K.10c)

Hs,CO2 = H◦
s,CO2

× exp
(

dlnHs,CO2

d(1/T )

(
1
T
− 1

T ◦

))
, (K.11a)

Hs,CO2 = 3.4×10−4 × exp
(

2300
(

1
295.15

− 1
298.15

))
, (K.11b)

Hs,CO2 = 3.6773×10−4mol/m3Pa (K.11c)

From final measurements:

Hs,CH4 = H◦
s,CH4

× exp
(

dlnHs,CH4

d(1/T )

(
1
T
− 1

T ◦

))
, (K.12a)

Hs,CH4 = 1.4×10−5 × exp
(

1600
(

1
303.15

− 1
298.15

))
, (K.12b)

Hs,CH4 = 1.2814×10−5mol/m3Pa, (K.12c)
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Hs,CO2 = H◦
s,CO2

× exp
(

dlnHs,CO2

d(1/T )

(
1
T
− 1

T ◦

))
, (K.13a)

Hs,CO2 = 3.4×10−4 × exp
(

2300
(

1
303.15

− 1
298.15

))
, (K.13b)

Hs,CO2 = 2.9938×10−4mol/m3Pa (K.13c)

As we have the respective concentrations of CH4 and CO2 we can calculate the partial pressures.

From initial measurements:

pCH4 =
1.30
100

(7.88) = 0.1024atm, (K.14)

pCO2 =
1.30
100

(0.08) = 0.0010atm (K.15)

From final measurements:

pCH4 =
1.15
100

(0.00) = 0.0000atm, (K.16)

pCO2 =
1.15
100

(1.83) = 0.0210atm (K.17)

Using the previously calculated identities and converting pressure from atmospheres (atm) to pascals (Pa) (multiply by

101325), the solubility of CH4 and CO2 can be calculated.

From initial measurements:

CCH4 = Hs,CH4 pCH4 = (1.4785×10−5)(0.1024)(101325) = 0.1534mol/m3 (K.18)

CCO2 = Hs,CO2 pCO2 = (3.6773×10−4)(0.0010)(101325) = 0.0373mol/m3, (K.19)

From final measurements:

CCH4 = Hs,CH4 pCH4 = (1.2814×10−5)(0.0000)(101325) = 0.0000mol/m3 (K.20)

CCO2 = Hs,CO2 pCO2 = (2.9938×10−4)(0.0210)(101325) = 0.6370mol/m3, (K.21)

The number of moles dissolved can be found by multiplying the solubility by the volume of media, where 1ml = 1×
10−6m3.

From initial measurements:

nCH4,dissolved = (0.1534)(30.0×10−6) = 0.4602×10−5mol, (K.22)

nCO2,dissolved = (0.0373)(30.0×10−6) = 0.1119×10−5mol, (K.23)

From final measurements:

nCH4,dissolved = (0.0000)(30.0×10−6) = 0.0000mol, (K.24)

nCO2,dissolved = (0.6370)(30.0×10−6) = 1.9110×10−5mol, (K.25)
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Accounting for CO2 speciation

CO2 exists in multiple forms when dissolved. Firstly, hydration of the dissolved CO2 occurs forming carbonic acid

(CO2(aq)+H2O <=> H2CO3), while this step is necessary, H2CO3 is short-lived and present in very low concentrations

such that it is generally ignored in carbon calculations. Following this step, two dissociation reactions occur. The first

is the dissociation from carbonic acid to bicarbonate (H2CO3 <=> H++HCO−
3 ). The second is the dissociation from

bicarbonate to carbonate (HCO−
3 <=> H++CO2−

3 ). The amount of CO2 dissociated into these forms is dependent on the

pH of the liquid. At very low pHs no CO2 dissociates and thus these reaction can be ignored. At a pH < 7.5 only the first

reaction is considered. For our samples pH is observed between 6.8 - 7.0 and thus the majority of dissolved CO2 will be

in the form of HCO−
3 and therefore must be accounted for. The proportion quantity of HCO−

3 can be calculated using the

acid dissociation constant. This is given for HCO−
3 at 25◦C as pKa1 = 6.35 or Ka1 = 10−6.35 where pKa = − log10(Ka).

To adjust this constant based on temperature the Van’t Hoff equation can then be used.

From initial measurements:

Ka1,T 2 = Ka1,T 1 × exp
(
−∆H◦

R

(
1
T2

− 1
T1

))
, (K.26a)

Ka1,T 2 = 10−6.35 × exp
(
− 9151

8.314

(
1

295.15
− 1

298.15

))
, (K.26b)

Ka1,T 2 = 4.3023×10−7mol/L, (K.26c)

From final measurements:

Ka1,T 2 = Ka1,T 1 × exp
(
−∆H◦

R

(
1
T2

− 1
T1

))
, (K.27a)

Ka1,T 2 = 10−6.35 × exp
(
− 9151

8.314

(
1

303.15
− 1

298.15

))
, (K.27b)

Ka1,T 2 = 4.7473×10−7mol/L, (K.27c)

To find the number of moles of HCO−
3 we now use the relationship:

Ka1 =
[H+][HCO−

3 ]

[H2CO3]
, (K.28)
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where H+ = 10−pH and H2CO3 ≈CO2(aq).

From initial measurements:

nHCO−
3 ,dissolved =

(4.3023×10−7)(0.1119×10−5)

10−7.00 = 0.4813×10−5mol (K.29)

From final measurements:

nHCO−
3 ,dissolved =

(4.7473×10−7)(1.9110×10−5)

10−6.82 = 5.9939×10−5mol (K.30)

Total number of moles

To calculate the total number of moles we add the moles in the headspace to the moles dissolved. It is important to

note that for the initial measurements headspace samples are taken directly after the addition of CH4 and, as such,h, the

assumption is made that not enough time has passed for CH4 to dissolve.

From initial measurements:

nCH4,total = nCH4,headspace = 16.36×10−5mol, (K.31)

nCO2,total = nCO2,headspace +nCO2,dissolved +nHCO−
3 ,dissolved = 0.7703×10−5mol (K.32)

From final measurements:

nCH4,total = nCH4,headspace +nCH4,dissolved = 0.0000mol, (K.33)

nCO2,total = nCO2,headspace +nCO2,dissolved +nHCO−
3 ,dissolved = 11.1749×10−5mol (K.34)



Appendix L

Calculation of catabolic heat

Enthalpy of reactions

The enthalpy of reaction is calculated for both the full oxidation of methane to carbon dioxide and the oxidation of

methane to formaldehyde. These are calculated from the enthalpy of formation of products and reactants as provided

below. The stoichiometric equations related to the biological oxidation of methane are as follows:

FullReaction =CH4(g)+2O2(g) →CO2(g)+2H2O(l) (L.1)

Step1 =CH4(g)+O2(g) →CH2O(g)+H2O(l) (L.2)

Step2 =CH2O(g)+O2(g) →CO2(g)+H2O(l) (L.3)

Table L.1: Enthalpy of formation of molecules associated with the biological oxidation of methane. Values are obtained
from The US National Institute of Standards and Technology (NIST).

Quantity Molecule Value (kJ/mol)

∆ f H◦
gas CH4 −74.9

∆ f H◦
gas O2 0.0

∆ f H◦
gas CH2O −115.9

∆ f H◦
gas CO2 −393.5

∆ f H◦
liquid H2O −285.8

For the first step in the oxidation of CH4, the enthalpy of reaction is calculated to be −326.9kJ/mol. For the second

step, given by Equation 3, the enthalpy of reaction is calculated as −563.4kJ/mol. The full oxidation of CH4, given by

Equation 1, is therefore calculated as −890.3kJ/mol. This is inline with the standard enthalpy of combustion of methane

given as −890.71kJ/mol (NIST).
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Maximum amount of heat available from catabolism

Here the maximum amount of heat available (Qcat) is calculated by multiplying the enthalpy of combustion of methane

by the number of moles of CO2 produced within each bottle. The remaining moles of CH4 are assumed to be converted

to CH2O, where the change in enthalpy of this reaction is previously calculated as −326.9kJ/mol. So for CAL1 (M.

methanica S1, 8%v/vCH4 in air) we measure that in total 1.6765×10−4 moles of CH4 are consumed while only 1.1053×
10−4 moles of CO2 are produced. Firstly we calculate the heat theoretically generated by production of CO2 which

follows:

QCO2 = 1.1053×10−4 ×890710 = 98.45J. (L.4)

The next step is to calculate the heat generated from the oxidation of CH4 to CH2O for the remaining moles of CH4

consumed. This follows:

QCH2O = (1.6765×10−4 −1.1053×10−4)×326900 = 18.67J. (L.5)

So the final amount of maximum heat generated through the catabolic pathway is:

Qcat = 98.45+18.67 = 117.12J. (L.6)
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