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Abstract

In recent years, mid-air gesture recognition and control have emerged as touch-free inter-
action mechanisms with significant potential, but human-centered design challenges persist,
particularly due to the complexity of user hand movements, user-learnability of interaction
system, and usability across varied contexts. This research addresses limitations in current
mid-air gesture systems by introducing strategies that reduce the latency of real-time interac-
tion and enhance hand pose interpretability. We introduce a hand pose recognition approach
using only two video frames, optimizing for speed and accuracy while minimizing time de-
pendencies, thereby allowing users to experience a more responsive system. Building on
these insights, the Hand-pose Embedding Interactive System (HpEIS) employs a Variational
Autoencoder to map gestures to a two-dimensional space, introducing visualized feedback
mechanisms that improve user experience. At the same time, interaction stability improved
through smoothing and anti-jitter methods. While this approach improves robustness in dy-
namic movements, further challenges remain in adaptability and flexible user control. To ex-
pand flexibility, the HandSolo model introduces a disentangled hand pose embedding space,
supporting multi-dimensional control with independent degrees of freedom, thus enabling
interactions adaptable across devices and contexts. Coupled with a Visual Interaction Eval-
uation Strategy (VIEs), HandSolo provides a guidance for system designers to align model
capabilities with user preferences. The experimentation underscores the effectiveness of these
systems. This integrated research establishes a framework for mid-air hand pose control, ad-
vancing usability, flexibility and extensibility in the interaction design of mid-air hand pose
with high dimensional input.
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Chapter 1

Introduction

This chapter introduces the necessity of touch-free interaction and focuses on the

demand for mid-air hand pose interaction and its challenges. In particular, i) we

analyze the limitations of current interaction methods, emphasizing the impor-

tance of device-free technologies in enhancing user experience. ii) we explore the

benefits of mid-air hand pose interaction while highlighting challenges related

to accuracy, user adaptability, and environmental factors. Finally, the chapter

summarizes the key contributions of this thesis and provides an overview of the

subsequent chapters, establishing the background and technical framework for

this research.

1.1 The Need for Touch-Free Interaction

As technological change increases across all industries brought about by the development
of artificial intelligence, enthusiasm for new technologies and sciences is growing. But the
question that follows is whether the new technologies give users a comfortable experience
in practical applications. In other words, whether the way the user interacts with the smart
device or smart object can meet the user’s expectations or requirements. The rapid devel-
opment of artificial intelligence is not only reflected in specific technological or laboratory
environments, but also affects areas such as healthcare, entertainment, and industry. Whether
it is widely used smart devices such as mobile phones, virtual environment based VR, AR, or
still in the developmental stage of embodied intelligence based robots, it is applied in various
fields we are familiar with. And interacting with intelligences still faces many challenges in
the research of AI applications.

1
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Eye

Hand

Voice

Location

Touch
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Some distance

Interface

Figure 1.1: The touch free interaction and mid-air hand pose interaction concept figure(Guo
& Pan 2023).

The Figure 1.1 shows the concept of touch-free interaction. For sanitary and health con-
cerns, how to make more efficient, understandable touch-free interactions has attracted the
interest of a growing number of researchers (Jalaliniya et al. 2013). Such sanitary concerns
were particularly serious during the COVID-19 outbreak and in the post-outbreak era (Huang
et al. 2020, Pearson et al. 2022). Even outside of outbreaks, public interaction interfaces also
increase the risk of transmitting bacteria and viruses. So replacing traditional contact inter-
action with touch-free interaction is a natural approach for designers to consider. Based on
the requirement of touch-free interaction, some mature and simple interactions have already
been applied in daily life. For example, some simple payments using voiceprint (Alver 2007)
or face recognition (Nasution et al. 2020). Compared with the traditional password input, the
contactless voice or face recognition provides a cleaner and safer interaction for users.

However, while researchers are designing safe methods of interaction, they must not af-
fect the convenience of the user interacting with the system. If the user has to learn a new
mode of interaction all over again in order to interact with the system, the user might be an-
noyed with the interaction and use it less (Weise et al. 2020). In addition, in some specific
scenarios, considerations based on convenience and naturalness of interaction may provide
a more convenient interaction experience for the user. The ability to control a device using
gestures, voice, or proximity sensors makes daily activities more seamless. For example,
swiping the hand to skip songs or adjust the volume is faster than picking up the device to
navigate the menu (Xu et al. 2023). In scenarios where both hands are busy, such as cooking
in the kitchen or carrying groceries, voice commands or mid-air gestures enable users to in-
teract with their smart devices simply and quickly without interrupting the current activity of
their hands.
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Similarly, a touch-free interaction system provides a much easier, less stressful interac-
tion for people with disabilities or mobility issues. A smart home system that can be con-
trolled by voice is obviously more user-friendly for those who cannot use physical buttons,
or touch a screen due to mobility issues (Jeet et al. 2015). At the same time, in scenarios
where direct contact is inconvenient, non-contact interaction offers more accessible possibil-
ities. For example, wearing gloves in cold environments or working in sterile laboratories
require a contactless interaction (Pearson et al. 2022). As an alternative to traditional con-
tact interaction, touch-free interaction increases the accessibility of the system and reduces
the interaction limitations in some specific scenarios. Especially in situations that may be
dangerous or contaminated, a touch-free interaction is necessary and efficient. For example,
when surgeons perform surgery (O’Hara et al. 2014), gesture-based controls enable them
to view and manipulate digital imaging tools while maintaining sterility. Workers handling
toxic substances or working in extreme heat (Dang & Cheffena 2024) can operate safely and
efficiently without physical contact with the machine through voice-activated commands or
proximity sensors.

With advances in artificial intelligence and sensor technology, contactless interaction in-
terfaces are becoming more accurate, flexible and diverse. The demand for contactless in-
teractions is increasing, both for the ordinary user as well as for designers or industry. On
the one hand, touch-free interactions, which are supported by different new technologies and
devices, bring a more immersive interaction experience to the user. For example, in the appli-
cation of virtual and augmented reality (Kim et al. 2024, Wu et al. 2019, Zhang et al. 2017),
touch-free controls allow users to operate virtual objects in a natural and immersive way.
Using gestures to pick up, move, or throw objects provides a much deeper engagement than
interactions limited to those based on other physical agents, such as the mouse. This experi-
ence gives users a more immersive experience both in gaming and in daily operations. On the
other hand, as mentioned before, touch-free interactions are attracting more users due to the
futuristic technology of the interactions and novel interaction experiences, meanwhile, the
consumer products that employ touch-free interactions offer companies benefits in terms of
reducing costs and increasing product flexibility. For example, smart TVs are equipped with
gesture or voice controls now, which reduces the demand for traditional remote controls by
users, so a traditional remote control (Dezfuli et al. 2012) with many functions is no longer
a necessary accessory for TVs. Unlike the usual physical controls, touch-free systems can be
adapted to different users and environments. For example, voice assistants (Hoy 2018) can
recognise a personal voice and provide customised responses. Gesture systems (Kim et al.
2015) can be adapted to a user’s range of movement or personal preferences. It certainly
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provides greater competitiveness to the product.

1.2 The Need for Mid-Air Hand Pose Interaction

In recent years, mid-air gesture recognition and control methods have garnered considerable
attention as a touch-free interaction mechanism across various applications. Mid-air gestures
provide a more intuitive control experience than voice commands or proximity-based sys-
tems. Realistic expressions of physical movement can be combined with multiple forms of
feedback to give the user a more realistic interaction process.

While in some scenarios, such as voice-control-based smart home systems (Jeet et al.
2015), touch-free interactions based on similar voice recognition offer considerable con-
venience, there are still many environments where interactions such as voice control or
voiceprint recognition are not appropriate (Seaborn et al. 2021). For example, in a noisy of-
fice or a meeting room in the process of a meeting, users are unable to give commands loudly
and clearly, which means that it may be difficult for the interaction system to recognise voice
commands clearly and accurately. In addition, in some public places, mid-air gestures, espe-
cially minor micro-gestures, can provide a more silent and unobtrusive interaction solution
and reduce the disruption of the user’s interactions to the surrounding area, whether based on
privacy considerations or on the user’s own mental need (Sharif & Tenbergen 2020).

In addition, with the development of various sensor technologies as well as extended
reality (Bhardwaj et al. 2021, Dube & Arif 2023), users are placing more and more emphasis
on the sense of participation in interactions in various scenarios. In other words, interaction
modes that provide a higher sense of participation and interaction, whether in games, work,
or daily activities, tend to provide higher user satisfaction. The interaction mode of mid-air
gesture has an exceptional performance in such considerations. Specifically, mid-air gesture-
based interaction processes provide more direct methods of manipulation in extended reality-
based games (Du et al. 2022). Pointing a finger directly to select an object or swiping the
palm of a hand to browse a menu reflects the intuitive and habitual actions we perform in the
real world, and gestures are easier to learn and remember and respond faster than abstract
voice commands. In museums, galleries, and some facilities used for exhibits or storytelling
(Baraldi et al. 2015, Shapiro et al. 2017), the exploration by hand movement creates a visually
more immersive experience that attracts and maintains the user’s attention, which increases
the utility of display facilities that are designed to output information.

In summary, mid-air gesture interaction provides a more flexible and wider range of ap-
plication scenarios than other touch-free interaction methods such as voice control. It gives
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the user a more engaging and experiential interaction process, which has motivated more
researchers to research mid-air gesture interaction.

1.3 Difficulties of Mid-Air Hand Pose Interaction

Many researchers are actively seeking to optimize interactions between mid-air hand poses
and smart systems; however, designing such interactions while adhering to a human-centered
approach remains challenging. Firstly, the shape and size of hands are different for different
users, for example, the size of a child’s small hand and an adult’s hand, and the differences
in these unchangeable characteristics contribute to the stability and accuracy of the effect
of the interaction model. The encoding of hand information, including size and shape, will
invariably result in differences. However, in many interaction scenarios, the size of the hand
is not a primary concern; instead, the focus is on the diverse interaction outcomes that can be
achieved through hand gestures. Consequently, addressing the potential bias introduced by
different feature information can enhance the stability and accuracy of the interaction.

The latency of the interaction also affects the user’s interaction experience (Liu & Heer
2014). If the users wait too long from the time they make a hand movement to the time they
get the response from the interaction system, it will affect the consistency of the interaction.
Sometimes, even a small delay can be unbearable. Like the annoyance when the user wants
to play or pause, but has to wait a second. This is why many applications or smart devices
want to ensure the interaction is fluent. Reducing latency during interaction is an important
issue for interaction designers to consider.

Many existing gesture recognition or classification models are supervised learning (Ge
et al. 2024, Hayashi et al. 2021, Liu et al. 2021, Qi et al. 2024, Stančić et al. 2017), which
means that a large amount of data is required to achieve accurate gesture recognition. In
addition, many gesture recognition methods based on supervised learning are preset with
some gesture categories (Liu et al. 2020, Nguyen et al. 2023). And in real life, many users
find it difficult to complete some gestures when interacting with systems. Meanwhile, some
dynamic gestures, such as rotation, stretching, etc., are likely to not get the desired interaction
results because the gestures are not performed in a proper manner. For users who are not
used to precise gestures, preset gestures may not be easily completed. The challenge of
how to address the accuracy requirements of hand movements during interaction remains an
important research direction.

In addition, when focusing on human-centred interactions, an important issue that re-
searchers should also consider is the system learning cost of the user (Novack & Goldin-
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Meadow 2015, Paik et al. 2015). Not all users are able to quickly understand and master
the interaction meanings of different gestures (Pukari et al. 2023), especially some complex
hand movements. In some cases, it may take a long time for users to become familiar with
a new interaction mode. For example, if the interaction system expects the user to drag a
progress bar with fingers, it may take several times for the user to get a clear idea of how
the finger position corresponds to the progress bar. On the other hand, gesture controls with
static feedback may be easy to understand, such as finger taps to control start and pause, etc.
However, for dynamic controls without fixed hand movement states, it may be more difficult
for the user to understand how to perform the interaction or what kind of interaction results
will be triggered by the change of hand movements. Therefore, ways to reduce the user’s
learning time and improve the user’s understanding of how the interactive system works in a
superficial way will help develop a more user-friendly and practical interactive system.

For interactive system designers, a well-designed interactive system should facilitate
seamless migration across devices and environments to ensure that it is effective and adapt-
able (Hosseini et al. 2023, Myers et al. 2000). Many existing mid-air gesture interaction
systems have been developed based on specific usage scenarios, such as the contactless inter-
action of mobile phones, which receives hand movement signals through the internal sensors
of the mobile phone, and then controls the flipping of a video or an e-book (Kallio et al. 2003,
Lu et al. 2014). However, it is still difficult to have a general processing method and process-
ing logic used for interaction for different scenarios and different types of high-dimensional
sensor inputs. This means that similar research that has already been performed is likely
to require the development of entirely new models and interaction logic due to differences
in hardware such as sensors. Therefore, a more unified and migratable approach to mid-air
hand gesture or pose interaction needs to be investigated.

These considerations are crucial in the broader scope of user-smart-device and smart-
interaction system design, as they influence the system’s overall practicality, usability, and
applicability across different scenarios. This research builds upon these foundational insights
by addressing several limitations present in existing methods, particularly in handling long-
time sequence dependencies in models and enhancing the interpretability and Extensibility
of mid-air gesture interactions.

1.4 Overview of Thesis and Contributions

The main objective of this thesis is to propose a generic framework that can be used for mid-
air hand pose interaction with high-dimensional inputs. The framework will be able to be
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used for the dimensionality reduction and visualisation of high-dimensional dynamic
mid-air hand pose and provides an extensible interaction design process and ideas for
real-time, smoothness, and flexibility of the interaction system. Based on the objectives,
the central research question of this thesis is: How can machine learning be used to design

mid-air hand pose interaction methods that improve efficiency, robustness, and user experi-

ence in touch-free interaction?

In Chapter 2, we will introduce existing gesture interaction methods, devices, machine
learning foundations for gesture recognition, and evaluation methods for interactive systems
from three aspects: mid-air gesture interaction, machine learning in interaction, and evalua-
tion of interaction, and briefly describe the problems and advantages.

Current mid-air gesture methods face persistent challenges, particularly in terms of model
dependency on long-time sequences and limited interpretability in gesture interactions. Long
sequence dependencies hinder the speed and accuracy of gesture recognition and response,
while a lack of interpretability limits intuitive understanding and usability. To address these
challenges, we propose a continuous interaction strategy in Chapter 3 that integrates visual
feedback of hand poses and recognizes gestures using only two video frames. This approach
minimizes time dependencies, enhances response speed, and provides a clearly structured
gesture embedding space, allowing users to interact with a more interpretable and responsive
system.

Specifically, our approach utilizes frame-based hand pose features from MediaPipe Hands,
containing 21 landmarks, embedded into a two-dimensional pose space via an autoencoder,
thereby compressing high-dimensional hand pose data while retaining essential interaction
cues. A PointNet-based model is then applied to classify gestures, enabling device interac-
tion and exploration control. By jointly optimizing the autoencoder with the classifier, we
have developed a gesture-discriminative embedding space, improving classification accuracy
and processing speed. Experimental results indicate that our embedding space achieves supe-
rior performance in gesture classification accuracy (75.2%) and interaction processing delay
(2.4ms) compared to existing methods, providing users with a more interpretable and efficient
interaction experience.

Despite these advances, challenges such as jitter, instability, and non-smoothness in dy-
namic movements remain prevalent, especially when diverse hand conditions are considered.
Many existing interaction systems rely on black-box gesture recognition models that deliver
rapid, direct feedback but often lack interpretability and adaptability for complex interac-
tion tasks. To tackle these issues, we designed a Hand-pose Embedding Interactive System
(HpEIS) as a virtual sensor in Chapter 4, which maps users’ flexible hand poses to a two-
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dimensional visual space using a Variational Autoencoder (VAE) trained on a large variety of
hand poses, with only a camera required for hand pose acquisition. To improve stability and
smoothness, we introduced several processing measures, including quaternion processing,
hand-pose data augmentation, an anti-jitter regularization term added to the loss function, sta-
bilizing post-processing for movement turning points, and smoothing post-processing based
on One Euro Filters. These enhancements were validated in target selection tasks, where
the system achieved significantly improved task completion times with the gesture guidance
window (approximately 10s) compared to without it (approximately 20s). Questionnaire re-
sponses further indicated that HpEIS provided an engaging, stable, and smooth interaction
experience, with all participants agreeing that hand-pose interactions offered greater novelty
and appeal than traditional touch- or voice-based systems.

To further expand the applicability of hand-pose interactions across diverse scenarios, in
Chapter 5, we developed an adjustable hand-pose space disentanglement approach for a learn-
able VAE-based high-to-low dimensional embedding model, HandSolo. This model decom-
poses the latent embedding space into multiple independent one- or two-dimensional spaces,
enabling multi-DOF (degrees of freedom) control. HandSolo introduces a flexible, extensi-
ble interaction system paradigm, supporting multi-dimensional configurations and multiple
DOF combinations. To maximize model performance and user comfort, we also proposed
a Visual Interaction Evaluation Strategy (VIEs) to help system designers understand model
capabilities and users’ preferences. Experimental studies demonstrated the effectiveness of
our embedding disentanglement designs through a discovery Experiment I for VIEs, an in-
spiration Experiment II for approach extensibility, and an exploration Experiment III for the
virtual interaction system.

In summary, we present an integrated mid-air hand pose interaction system that combines
visual feedback and low-dimensional embedding learning to address key limitations of pre-
vious models in hand-pose control. This system provides flexible, stable, and interpretable
touch-free interactions, adaptable to multiple devices and contexts. Our experiments show
that this system offers a robust, engaging user experience and can serve as an alternative
for mid-air hand pose control. This work thus contributes to the field by building on foun-
dational insights and addressing critical aspects of adaptability, usability, and scalability in
mid-air hand pose interaction design.

This research has made contributions in the following areas:

1. We developed a hand pose recognition and control strategy based on two video frames,
achieving fast and high-precision hand pose classification through the joint optimiza-
tion of an autoencoder-based and a PointNet-based model.
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2. We introduced the Hand-pose Embedding Interactive System (HpEIS), which utilizes
a Variational Autoencoder to map user hand poses to a two-dimensional visual space,
providing visualized interactive feedback.

3. We developed a hand pose space disentanglement model (HandSolo) that supports flex-
ible interactions across multiple dimensions and degrees of freedom.

4. Through systematic experimental design, we evaluated the effectiveness and practi-
cality of the proposed methods, offering references for future research and practical
applications.

Most of the thesis generalizes and builds on the following publications accepted by vari-
ous international conferences and journals, as follows:

1. Xu, S., Kaul, C., Ge, X. and Murray-Smith, R., 2023, June. Continuous interac-
tion with a smart speaker via low-dimensional embeddings of dynamic hand pose. In
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (pp. 1-5). IEEE. (Chapter 3)

2. Xu, S., Ge, X., Kaul, C. and Murray-Smith, R., 2024, July. HpEIS: Learning Hand
Pose Embeddings for Multimedia Interactive Systems. In 2024 IEEE International
Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE. (Chapter 4)

3. Xu, S., Ge, X., Kaul, C. and Murray-Smith, R., Hand Solo A Mid-Air Hand Pose
Interaction Method Based on Disentangled Degrees-of-Hand-Freedom. Accepted by
ACM Multimedia (ACM MM) 2025. (Chapter 5)

All experiments in this research has been accepted by Ethics Committees, application
number 300230025, 300210276.



Chapter 2

Background and Related Work

This chapter reviews key research in the field of mid-air hand pose interaction,

focusing on three main aspects. i) We explore broader studies on touch-free in-

teraction methods, followed by a more detailed introduction to the devices and

techniques related to mid-air hand pose interaction. We also reference studies on

both dynamic hand poses and static gestures, providing insights into real-world

applications and key considerations in gesture-based interaction. ii) We examine

the role of machine learning in interaction, which contributes to the develop-

ment of our interaction models. Our research is inspired by autoencoders, with

a particular emphasis on variational autoencoders and their underlying theo-

ries. A wide range of probabilistic models and supervised learning techniques

serve as valuable references for gesture recognition and classification in mid-

air interaction. iii) We discuss basic evaluation methods for interactive systems,

highlighting the widespread application of Fitts’ law and closed-loop feedback

in assisting designers in refining and iterating interaction systems to enhance us-

ability and efficiency. By integrating these areas, this chapter aims to provide an

overview of advancements in mid-air hand pose interaction and their relevance

to the research presented in this work.

2.1 Mid-air gesture interaction

2.1.1 Touch-Free Interaction

In recent years, touch-free interaction technology has attracted much attention, and its ap-
plications have been extended to smart home (Geeng & Roesner 2019, Kühnel et al. 2011,

10
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Wu & Fu 2011), healthcare (Da Gama et al. 2015, Meng et al. 2013), and other fields. In
some scenarios, proximity sensing (Cheung & Lumelsky 1989, Hsiao et al. 2009) provides a
simple interaction solution. Proximity sensors typically utilise technologies such as infrared
and ultrasonic signals (Cheung & Lumelsky 1989) to detect the presence or proximity of a
user, thereby triggering predefined actions without the need for physical contact (Wu et al.
2024). While proximity sensing is effective for basic applications such as remote monitor-
ing, safety prevention and healthcare systems (Fu et al. 2023, Wu et al. 2024), it lacks the
flexibility required for complex interactions because it cannot respond to specific commands
or gestures. This limitation makes proximity sensing unsuitable for applications that require
more complicated interactions.

Voice control is one of the widely adopted touch-free interaction methods in some inter-
action scenarios that require more functionality, especially in smart home (Mittal et al. 2015)
and personal assistant applications (López et al. 2018, O’Brien et al. 2020). Voice assistant
systems such as Amazon’s Alexa (Hoy 2018, Lopatovska et al. 2019) and Google Assistant
(López et al. 2018) allow users to speak commands and then provide corresponding results or
interfaces. The touch-free, eye-free feature of voice control may be beneficial for users who
may have barriers to the use of digital technologies (Jakob et al. 2021), or who have physical
ailments (Derboven et al. 2014). However, voice control systems often encounter problems
such as noise interference (Martinek et al. 2020) and dysarthria (Ballati et al. 2018), which
can hinder the accuracy and consistency of commands (Gong & Poellabauer 2018). Addi-
tionally, privacy concerns remain, as these systems often rely on continuous listening, which
can lead to user concerns about the security of personal data (Cheng & Roedig 2022).

With the maturity of eye-tracking devices nowadays, eye-tracking has become a more
immersive way of interaction (Carter & Luke 2020, Krafka et al. 2016), especially in virtual
reality (VR) (Clay et al. 2019), augmented reality (AR) (Koulieris et al. 2019) and assistive
technologies (Majaranta 2011). On the one hand, eye-tracking systems can detect and re-
spond to the user’s gaze, enabling contactless control by recognising the user’s gaze point on
the interface. In VR environments, this allows for seamless control of in-game objects (Ren
et al. 2011) or navigation through virtual space (Andersen et al. 2012). On the other hand,
eye tracking allows for interaction in special situations, such as users with physical ailments
(Wästlund et al. 2015). However, for users in real-life scenarios, the high cost of eye-tracking
hardware and the problem of eye fatigue during a long period of use pose a challenge to its
widespread adoption (Valtakari et al. 2021).

In contrast, gesture recognition offers a flexible and natural (Panwar & Mehra 2011) ap-
proach to contactless interaction that is effective in a range of applications from utilities (Ban-
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Figure 2.1: Data gloves. Collects data through positioning points on the glove, including
coordinates, velocity, acceleration, flexion (Rusu et al. 2021).

garu et al. 2020) to smart home systems (Kühnel et al. 2011). Gesture recognition systems
allow users to interact in a simpler way. For example, Microsoft Kinect (Mousavi Hondori
& Khademi 2014, Panger 2012, Yang et al. 2019). provide gesture-based control for VR and
AR, allowing users to more accurately manipulate virtual objects without physical contact
(Da Gama et al. 2015, Meng et al. 2013). Due to the flexibility (Panwar & Mehra 2011) of
the human hand, gesture recognition can provide more varied interactions (Panwar & Mehra
2011, Zhou et al. 2023) than just recognising the presence of the user, and allows users to
interact silently and with small movements (Xu et al. 2024, 2023) in a space that requires
silence or confinement. Additionally, unlike eye tracking, many gesture recognition methods
do not require heavy equipment support and are therefore less likely to cause fatigue after
prolonged use (Kim et al. 2015). Although some camera-based gesture recognition systems
may face challenges related to lighting conditions (Ren et al. 2011), machine learning and the
support of different sensor types and accuracies significantly improve the accuracy of gesture
interactions (Ren et al. 2011, Yan et al. 2023).

2.1.2 Device

At present, common interactive technologies mainly focus on voice, touch screen and other
fields, but the technology of direct gesture without visual attention and direct recognition
in the air is still in the development stage. Gesture recognition has the advantage of silent,
visual-attention-free messaging over traditional, widely-used voice and touch-screen interac-
tions. (Ahmed et al. 2021, Guo et al. 2021, Sun et al. 2021, Yeo et al. 2015) Specifically,
speech recognition interaction is more suitable for use in home environments and personal
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Figure 2.2: (left) Surface EMG (Farrell et al. 2008). The human skeleton and muscles used
in EMG and their cross-sectional drawings, as well as the EMG test equipment. (right)
Inertial sensing (Strachan et al. 2007). Different positions of the phone relative to the body
trigger different responses. Different tilt of the phone in different directions triggers different
responses.

space, because once entering public space, the sound emitted by interaction may become un-
acceptable. For example, when listening to music in the library, the quiet environment does
not allow users to interact loudly with the system (Kimura et al. 2019). The most obvious
downside of touch-screen interaction is that it is often accompanied by visual attention, which
means it can be inconvenient for users in situations where they cannot be distracted, such as
when they want to hang up a phone call that comes in unexpectedly while playing a computer
game (Yeo et al. 2015). Interaction through gestures can be silent and rapid.

Gesture, as one of the most important ways to express ideas and convey information, is
flexible, convenient and less restricted. Therefore, the research on interaction design based on
gesture recognition has attracted great attention in recent years. (Guo et al. 2021) In recent
years, popular gesture recognition sensing technologies include data gloves (Figure. 2.1)
(Dipietro et al. 2008, Fang et al. 2018, Rusu et al. 2021), vision (Lin & Ding 2013, Sun et al.
2018), surface EMG (Figure. 2.2 left) (Farrell et al. 2008), ultrasound (Yang et al. 2018),
pressure sensing (Dementyev & Paradiso 2014), inertial sensing (Figure. 2.2 right) (Fang
et al. 2018, Strachan et al. 2007), motion-sensing (Wen et al. 2016, Xu, Pathak & Mohapatra
2015) and so on. However, most of the devices involved in these methods are inconvenient
and limited and have limited ability to recognize subtle hand gestures. (Guo et al. 2021, Sun
et al. 2021)

• Depth Cameras

To develop a prototype system that can be used to interact with the music system, subtle
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Figure 2.3: (left) camera above the user (middle) cameras are around and above the user or
table in a room (right) cameras are around the user and sensor is on the table.

gestures, such as common music application functions, play, pause, previous, next, volume
control, etc, need to be recognized. So researchers trying to use depth cameras (Figure 2.3)
(Kim et al. 2015, Ren et al. 2011, Wilson & Benko 2010). One of the benefits of using a
depth camera is that it can be positioned in the environment, avoiding the bulkiness of large
wearable devices such as headsets or hand-held (Kim et al. 2015, Wilson & Benko 2010). We
can simulate scenarios with multiple sensors for better performance, or more immediately
commercially realistic ones with a single sensor associated with the smart speaker.

• Soli Radar

To support fast recognition response, camera-based gesture recognition usually causes user
privacy problems. A highly efficient, low-energy miniature gesture sensor developed by
Google based on the physics of millimetre wave radiofrequency radiation—Soli Radar (Fig-
ure 2.3, Figure 2.4). The sensor can recognize micro gestures well and has a range of 10-15
metres, so can also track room context. (Figure 2.5) (Lien et al. 2016)

In the existing research on small wearable devices, the research on bracelets, watches
and rings accounts for a large proportion, because similar jewellery or accessories wearable
devices are more lightweight and natural. (Kim et al. 2010, Sun et al. 2021, Vatavu & Bilius
2021, Yin et al. 2021) However, a lot of research focuses on discrete gesture recognition (Sun
et al. 2021), so the establishment of a wearable device that can be used for both discrete and
continuous gesture recognition and tracking is a promising direction. Wearable devices also
allow immediate identification of the user, and the ability to personalise the content to them.
Besides providing personalized services for each user, it can recognize the user’s information
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Figure 2.4: A highly efficient, low-energy miniature gesture sensor developed by Google
based on the physics of millimetre wave radiofrequency radiation—Soli Radar (Lien et al.
2016).

when other users enter the room and then provide personalized services to the master user
based on the information of other users, (Kim et al. 2010, Vatavu & Bilius 2021, Yin et al.
2021) such as recommending playlists suitable for multiple people. This is a good implemen-
tation for tasks that want to identify the current environment. If there are many people in the
room, we can make a decision on an appropriate recommendation after obtaining information
about each person’s basic personal interests.

2.1.3 Gesture and Hand Pose

Among the existing research on the use of gestures for interaction and control (Anthony
et al. 2012, Lien et al. 2016, Mlakar et al. 2021, Potts et al. 2022, Shakeri et al. 2017, Sun
et al. 2021), the two main directions are contact gesture control and mid-air gesture control.
Contact gesture control means that the hand comes in contact with some medium and makes
a series of gestures to interact (Anthony et al. 2012, Chamunorwa et al. 2022, Potts et al.
2022). Contact gestures have been used in many studies for smart furniture design as well
as for the design of gesture exploration tools. Embedding interaction control interfaces on a
set of objects and furniture that users are already familiar with allows users to interact more
explicitly in the context in a way that is more familiar to them in their familiar environment
(Chamunorwa et al. 2022, Parilusyan et al. 2022, Potts et al. 2022). The obvious benefit of this
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Figure 2.5: The Soli radar can recognize multiple micro gestures at a range of 10-15 metres
(Lien et al. 2016).

approach to interaction through media is that it avoids the application of additional devices
such as cameras (Chakraborty et al. 2018, Ren et al. 2011), sensors (Lien et al. 2016), or
data gloves (Dipietro et al. 2008, Fang et al. 2018, Rusu et al. 2021). In addition, due to the
diversity of mediums, the same gesture on different mediums can be given different meanings
(Chamunorwa et al. 2022). However, at the same time, the way and range of gestures can be
accomplished is limited.

On the contrary, in the existing studies on mid-air gesture control, a large number of
devices are used for the detection of gestures, such as EMG (Farrell et al. 2008), data gloves
(Dipietro et al. 2008, Fang et al. 2018, Rusu et al. 2021), soli radar (Lien et al. 2016), sensors
embedded in wearable devices (Kim et al. 2010, Sun et al. 2021, Vatavu & Bilius 2021, Yin
et al. 2021). Cameras and depth cameras are used in many studies of gesture recognition
(Chakraborty et al. 2018, Ren et al. 2011). In our study, we also used the depth camera as the
beginning of the research to perform mid-air gesture interaction and control.

Based on this, we are also inspired by some well-established methods for gesture and
pose recognition, such as Mediapipe (Lugaresi et al. 2019), a tool that can apply cameras
for recognition, segmentation and tracking of different objects, as well as for the detection
and marking of keypoints. Mediapipe hands is a hand and finger tracking method. It can
predict 21 3D landmarks of a hand from a single frame only using machine learning (ML)
(Lugaresi et al. 2019, Zhang et al. 2020). It does a good prediction and marking of hand
keypoints even when the hand is partially occluded. Compared to embedding the images of
video frames directly, representing each frame with 21 3D- point coordinates largely reduces
the complexity of the model and the prediction time.

In the existing research on gestural interaction, the design of interactive gestures has
been broadly classified into two categories, one for discrete gestures and one for continuous
gestures. Discrete gestures mean that feedback is obtained after the full gesture has been
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triggered, while continuous gestures obtain the real-time feedback while the gesture is in
progress. Compared to the methods (Kim et al. 2010, Liao et al. 2021, Vogiatzidakis &
Koutsabasis 2021) that focus only on discrete gesture interaction, our approach handles both
discrete and continuous gesture-based interaction scenarios.

2.1.4 Reality and Interaction

Thanks to the development of the Internet of Things, ubiquitous computing (ubicomp) is
increasingly being mentioned in the field of modern interaction. The main function of ubi-
comp is to help users perform various operations and tasks more efficiently. This means
that context-awareness (CA) is an important part of the research in the field of ubicomp.
(do Nascimento et al. 2021, Marquardt & Greenberg 2015) Context is the information that
can represent entities and influence the interaction between users and the system. (Abowd
et al. 1999, Prekop & Burnett 2003)It includes the identification of characters (including iden-
tity, interests and hobbies, number.), item identification (name and location), environmental
recognition (environment information such as an object, sound, temperature.), people and en-
tities position (the position relationships between humans, position relationships entities, the
relationship between humans and entities, and the humans’ entities’ orientation.) recognition.
(Marquardt & Greenberg 2015)

2.2 Machine Learning in Interaction

2.2.1 Autoencoder

Low-dimensional embedding methods have been widely used to support real-time hand ges-
ture control while minimising the complexity of models deployed on user devices. Traditional
linear mappings, such as Principal Component Analysis (PCA) (Zebari et al. 2020) and Fac-
tor Analysis (FA) (Gisbrecht et al. 2015), have been used to project high-dimensional data
into lower-dimensional spaces. However, the linear nature of PCA limits its ability to identify
complex, non-linear relationships within the data, potentially leading to a loss of information
during dimensionality reduction.

To address these limitations, non-linear dimensionality reduction techniques like t-distributed
Stochastic Neighbour Embedding (t-SNE) (Gisbrecht et al. 2015) and Uniform Manifold Ap-
proximation and Projection (UMAP) (McInnes et al. 2018) have been introduced. These
methods effectively represent complex structures in the data by preserving local and global
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relationships respectively. t-SNE focuses on keeping local neighbourhood relationships and
is particularly effective for visualising high-dimensional data in two or three dimensions.
However, it has scalability issues as the computational cost increases quadratically with the
number of data points (Linderman & Steinerberger 2019). UMAP, on the other hand, pro-
vides a more efficient approach to reduce dimensionality while preserving both global and
local structures. Despite these advantages, both t-SNE and UMAP lack the ability to recon-
struct the original data from the embedded representation, which limits their utility in tasks
requiring reversible transformations.

In contrast, autoencoders provide a robust framework for learning non-linear embeddings
that allow both dimensionality reduction and data reconstruction (Hinton & Salakhutdinov
2006). An autoencoder consists of an encoder, which maps the input data into a latent space
representation, and a decoder, which reconstructs the original data from this representation.
The latent space learned by autoencoders can represent meaningful structures, making them
highly suitable for real-time gesture control applications. In addition, recent advances such as
convolutional autoencoders (Masci et al. 2011) have demonstrated their ability to extract spa-
tial features, further improving their effectiveness in processing gesture data. Autoencoders
also allow fine-tuning of hyperparameters, such as the number of layers and units, to achieve
an optimal trade-off between representation quality and computational efficiency.

An extension of autoencoders is the Adversarial Autoencoder (AAE), which uses the
principles of Generative Adversarial Networks (GANs) to enforce specific priors on the la-
tent space (Makhzani et al. 2015). By combining the reconstruction capabilities of autoen-
coders with the adversarial training process of GANs, AAEs can improve the quality of latent
representations and provide better control over the generative process. This makes AAEs
particularly attractive for tasks requiring structured latent spaces. However, AAEs generally
require complex training procedures due to the challenge of balancing adversarial losses and
reconstruction goals. While AAEs have been successfully applied in various generative tasks,
they are less commonly used in gesture-related systems, where the probabilistic modelling
and generative capabilities of Variational Autoencoders (VAE) offer a more direct benefit.
VAE models extend the traditional autoencoder architecture by introducing a probabilistic
approach to learning latent representations (Kingma 2013). Unlike standard autoencoders,
which map data into fixed latent vectors, VAEs encode input data into a probability distri-
bution, typically Gaussian, over the latent space. This allows sampling and generation of
new data, enabling VAEs to be powerful generative models. For gesture control systems, this
property is particularly useful for data augmentation, since synthetic samples can improve
the performance of downstream classifiers (Pu et al. 2016). In addition, VAEs promote dis-
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entangled representations, separating independent factors within latent space. However, this
comes at the cost of additional complexity, such as latent variables cannot represent mean-
ingful information effectively (Razavi et al. 2019). Solutions such as Beta-VAE have been
proposed to reduce these problems by balancing reconstruction quality and latent space dis-
entanglement (Higgins et al. 2017). Despite these challenges, VAEs remain a prime choice
due to their flexibility and ability to generate meaningful latent representations, making them
highly adaptable for gesture-related applications.

2.2.2 Probabilistic Model

In gesture recognition, probabilistic models are useful for capturing variations in human hand
movements. Hidden Markov Models (HMMs) are often used to classify continuous gestures
and (Starner et al. 1998, Vogler & Metaxas 1999) used an HMM to recognise American
Sign Language (ASL) in real-time, achieving highly accurate gesture recognition results by
training on long sequences of different gestures from different users. The effectiveness of
HMM in modelling complex, multi-featured gestures was demonstrated. On the other hand,
Bayesian networks can even achieve more than 99% accuracy in the dynamic recognition of
two-handed continuous gestures (Suk et al. 2010). These models perform well in distinguish-
ing gestures, making them effective in hand pose recognition or classification.

Furthermore, probabilistic models not only improve gesture recognition accuracy, but
also support applications ranging from assistive technologies to immersive virtual environ-
ments. Specifically, in the field of VR- and AR-based extended reality interactions, HMMs
can be used to use data obtained based on eye-tracking for the prediction of users’ visual
behaviours, leading to a smoother and more immersive museum visit experience (Pierdicca
et al. 2018). HMMs have been integrated into automotive control systems for recognising
driver gestures for touch-free interaction with in-vehicle entertainment systems to improve
safety and comfort (Deo et al. 2016).

2.2.3 Supervised Learning

Gesture Recognition

Mid-air gesture recognition and control has recently attracted increasing research attention
in multimedia applications. Early works such as Kinect in the Kitchen (Panger 2012) has
explored mid-air gestural control and feedback using a Kinect in cooking scenarios, where
common devices have limited displays and touch is less appropriate when cooking. Recently,
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many studies (Qian et al. 2020, Shakeri et al. 2017) have proposed mid-air interaction meth-
ods for driving based on mid-air gesture recognition and control, which can prevent driver
distraction caused by conventional physical handling or touch. However, conventional ges-
ture interaction methods require a physical device as support and focus on solving physical
controls and interactions, such as simple music control, device selection. Hence, in recent
years deep learning based gesture recognition methods (Ahmed et al. 2022, Ur Rehman et al.
2021) have been studied to enhance mid-air gesture control and interaction for many applica-
tions. For instance, (Ur Rehman et al. 2021) proposed a deep learning architecture based on
the combination of a 3D Convolutional Neural Network (3D-CNN) and a Long Short-Term
Memory (LSTM) network, which takes advantages of spatial-temporal information from 30-
frame video sequences. To address these limitations, the Video Transformer Network (VTN)
(Neimark et al. 2021) introduced a transformer-based architecture, allowing for more effec-
tive global temporal modeling while reducing redundancy. Though they achieve significant
improvements, these methods remain unsatisfactory due to long time sequences dependen-
cies and high-dimensional feature inputs of models. In addition, the interpretability of the
user gesture interaction process is not addressed by most current methods, which is widely
regarded as a critical component in real-world gesture control.

Gesture Classification

With the application of depth cameras, in addition to the traditional application of RGB im-
ages for object recognition, motion recognition, path tracking and other tasks, the use of depth
images for video-related tasks is increasingly being studied. Depth image is an image that
takes the distance (depth) from the image collector to each point in the scene as a pixel value,
which directly reflects the geometry of the visible surface of the scene. The depth image
can be calculated as point cloud data after coordinate transformation, and point cloud data
with rules and necessary information can also be back-calculated as depth image data (Song
& Xiao 2014). As show in Figure 2.6, each pixel point in the image frame provided by the
depth data stream represents the distance from the object at that particular (x, y) coordinate
to the closest object to the camera plane in the field of view of the depth sensor. Currently,
depth images are acquired by LIDAR depth imaging method (Frueh et al. 2005), computer
stereo vision imaging (Woodfill & Von Herzen 1997), coordinate measuring machine method
(Liao et al. 1999). Compared with the traditional use of RGB images for computer vision re-
lated work, depth images can still maintain good picture recognition in low light or exposure
state (Frueh et al. 2005, Song & Xiao 2014). In addition, in terms of practical applications,
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Figure 2.6: Depth distance values are the distances between the points and the sensor plane
(Pterneas 2023).

images that do not contain specific details but only depth information can effectively protect
the privacy of users (Elezovikj et al. 2013).

In many existing video classification studies, depth images are often used in conjunction
with other techniques to achieve good results. For example, deep images and radar data are
applied for target recognition, detection (Chen et al. 2022, Han et al. 2022) and classification
(Yue-Hei Ng et al. 2015). The extraction of depth information and other information and
temporal information of video frames by CNN, self attention and other models are used to
perform related tasks (Chen et al. 2022, Han et al. 2022, Yue-Hei Ng et al. 2015).

In addition, because of its ability to detect moving objects and motion trends, the opti-
cal flow method is also used for video-related classification (Mahmoodi & Salajeghe 2019,
Yu et al. 2014) and detection (Mase 1991) tasks. Optical flow is a method that uses the
change of pixels in an image sequence in the time domain and the correlation between neigh-
boring frames to find the correspondence that exists between the previous frame and the
current frame, so as to calculate the motion information of objects between neighboring
frames(Beauchemin & Barron 1995, Murray-Smith 2017). In general, optical flow is gen-
erated by the movement of the foreground target itself in the scene, the motion of the camera,
or the joint motion of both (Beauchemin & Barron 1995). By calculating the optical flow
between the previous and the current frames, we can obtain the optical flow field as shown in
the Figure 2.7, with the direction of the arrow representing the direction of the movement of
that pixel point (Murray-Smith 2017). The optical flow carries not only the motion informa-
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Figure 2.7: Visual optical flow field of realistic scene. The direction of the optical flow is
shown by the line segments (Baltes et al. 2015).

tion of the moving object, but also rich information about the three-dimensional structure of
the scene, and it is able to detect the moving object without knowing any information about
the scene. However, the traditional optical flow method is not applicable when the object to
be detected is moving too fast (Beauchemin & Barron 1995).

With the development of 3D technology, point cloud classification of data is an important
task in processing 3D data, which is widely used in automatic navigation, robot navigation,
3D reconstruction and other fields. Researchers initially used traditional methods to clas-
sify point clouds. For example, multi-view projection converts a point cloud from multiple
perspectives into a 2D image, thus allowing the application of 2D CNNs (Su et al. 2015). Al-
though these methods are effective, they lose important 3D geometric information, thus lim-
iting its ability to represent complex spatial relationships. PointNet (Qi et al. 2017) addresses
these limitations by directly processing raw, unordered point clouds. It uses shared MLPs for
point-wise feature extraction and a max-pooling operation to achieve permutation invariance.
This innovation eliminates the need for projection while maintaining the raw structure of the
point cloud. However, PointNet does not model local neighbourhoods, making it less effec-
tive at detecting local geometric relationships. To improve local feature learning, DGCNN
(Wang et al. 2019) introduces a dynamic graph representation in which local neighbourhoods
are constructed and updated during training. This method provides richer geometric infor-
mation compared to PointNet, while maintaining the global context. However, the dynamic
graph computation increases the general computational cost, which can be problematic for
large datasets.
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2.3 Interaction evaluation

2.3.1 Evaluation Methods

Research on touch-free and mid-air interaction has explored different ways of evaluation.
Objective measures such as accuracy, response time, and throughput have been widely used,
to compare systems under controlled conditions (Hincapié-Ramos et al. 2014, Soukoreff &
MacKenzie 2004). These studies also highlight the problem of fatigue in longed mid-air use,
with Consumed Endurance (CE) proposed as a metric to capture physical demand. On the
contrary, subjective evaluations complement these measures by focusing on user perception.
Scales such as SUS, NASA-TLX, and UEQ are commonly applied to assess usability, work-
load, and overall experience (Brooke et al. 1996, Hart & Staveland 1988, Laugwitz et al.
2008). Gesture interaction research has further emphasized naturalness, intuitiveness, and
memorability (Wobbrock et al. 2009).

Most evaluations have been carried out in controlled laboratory settings, where fixed tasks
and simple backgrounds reduce noise and ensure comparability. Such tests provide strong
internal validity but may not capture the complexity of real-world use (Hincapié-Ramos et al.
2014). Many works (Hart & Staveland 1988, Wobbrock et al. 2009)suggest that combining
objective and subjective methods in controlled environments remains the dominant approach,
but it also points to the need for more diverse and realistic evaluation scenarios.

2.3.2 Fitts’ law

In order to measure the good design of HCI interfaces and to improve the user experience,
Fitts’ law provides an important way of evaluating the design of interactive systems. By using
the following equation:

MT = a+b · log2

(
D
W

+1
)
, (2.1)

where MT represents the movement time, D is the distance to the target, W is the width
of the target, and a and b are constants to compute the relationship between the movement
time, the distance to the target, and the size of the target when the user is completing the
interaction task, Fitts’s law gives a quantifiable assessment index. Specifically, the further
away the target is, the more difficult it is to reach. The smaller the target, the harder it is to
hit it (MacKenzie 1992).

Fitts’ law is widely used in guiding the design of human-computer interaction interfaces,
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for example, the bottom bar (dock) is placed at the bottom of the screen by default in mac
os, and the start menu is at the bottom left corner of the screen in windows, where the W
of the bottom edge and corners are infinitely large, and so the target is infinitely selectable
(Tidwell 2010). Moreover, in systems that interact with a mouse, Fitts’ law suggests targeted
design references in the interaction design of other input types such as visual, haptic. For
example, in order to help people with physical and speech impairments to interact effectively,
the feasibility of gaze interaction is confirmed in (Rajanna & Hammond 2022) by Fitts’ law.
In addition, the comparison between mouse and gesture input in (Sambrooks & Wilkinson
2013) confirms that the difficulty of gesture interaction is due to the user’s unfamiliarity with
gesture-sensing devices and inaccuracy of gestures, which also informs our research, i.e., to
consider what can be used to allow the user to become quickly familiar with gestures and to
use gestures for interaction. In more complex interactions, such as robotic arm design and
interaction design in virtual reality, the use of the Fitts’ Law to compare the effects of tasks
performed with a robotic arm (Guo 2022) or in virtual environments (Shi et al. 2023) with
the effects of tasks performed by human beings in real life will help designers to increase the
effectiveness of their designs and improve the user experience.

2.3.3 Closed-Loop Feedback

A closed-loop system is a dynamic loop system that includes perception, feedback, and ac-
tion (Crossman & Goodeve 1983). To adapt the interaction system to different users’ needs
and behaviour changes in HCI research, designers often consider using a closed-loop sys-
tem to adjust the response or design based on the user’s behaviour, which may go through
several loops of such adjustment (Fischer et al. 2022). Compared with open-loop systems,
the dynamic feedback and adjustment of closed-loop systems brings more adaptability to the
design of interactive systems, especially in the optimisation process of user experience, and
the closed-loop feedback can help designers to adjust the system behaviour to improve the
interaction (Renaud & Cooper 2000, Zhongcheng et al. 2005). For example, (Cockburn et al.
2007) explores dynamically changing menu layouts based on real-time input adjustments to
accommodate user behaviour. In addition, a system that adjusts the content and difficulty of
a lesson based on real-time student performance was introduced in (Luckin et al. 1999) to
meet individual learning needs and improve student engagement and learning outcomes.
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2.4 Conclusion

In this chapter, we review basic and widely used touch-free interaction methods as well as
commonly used interaction methods and devices. Based on this, we highlight work related
to hand interaction and provide a brief analysis of existing research on gestures as well as
hand poses, including not only contact interaction but also static and dynamic mid-air ges-
ture interaction. To further illustrate the need for research on gesture interaction, we also
investigate research related to mid-air gesture interaction in real-world applications. These
works provide support for the necessity and justification of our research on mid-air hand pose
interaction.

In order to provide better processing of mid-air hand interaction poses for more stable
and usable interaction models, we review machine learning and deep learning based related
work in the study of gestures and hand poses. These include relevant probabilistic models for
gesture recognition and classification, and supervised learning models. As well we highlight
the autoencoder based approach which can be used not only for dimensionality reduction
but also for generation. In our study of hand pose interaction, the above models provide
the theoretical basis for dimensionality reduction visualisation and gesture recognition and
generation.

In addition, to better evaluate and improve our interaction system, we discuss methods
commonly used for HCI evaluation, including Fitts’ law and closed-loop feedback. These
methods provide theoretical support for evaluating our mid-air hand pose interaction system,
allowing us to make improvements to our system and further refine our evaluation strategies
to provide comfortable interaction experiences and interaction design strategies for users as
well as interaction designers.

While previous studies have contributed significantly to understanding and designing a
user-friendly mid-air hand poses and gestures interaction system, there are still some limita-
tions that have not been addressed. Many studies focus on predefined gestures interaction,
but they fail to address dynamic hand poses interaction problems. This limits their interaction
applicability in a flexible real scenario. In addition, the dominant gesture classifiaction and
recognition approaches, such as deep-learning- and machine-learning-based methods, suffer
from high latency when predicting and low interpretability when user interact with the sys-
tem. These challenges indicate a need for a low latency stable model to predict dynamic
hand pose, which provides an interpretable real-time interaction process. Additionally, the
relevant literature has not sufficiently explored whether it is possible to interact effectively
through the flexible use of different hand movement states, which is the key to designing an
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interaction system that can be more flexibly extended to more scenarios. Therefore, further
research is necessary in order to design an mid-air hand interaction system that can be used
more flexibly. This will lead to the development of an interaction design framework that can
be extended to multiple interaction scenarios. The aim of the research is to make the interac-
tion process more flexible by introducing the disentanglement of hand poses, and to make the
interaction system extensible to more scenarios, as well as to provide an interaction system
evaluation scheme for interaction system designers. Although previous research has provided
a foundation for the study of mid-air hand-pose interactions, there are still many problems.
This thesis will provide a thought for flexible and extensible mid-air hand-pose interaction
by proposing a Learning Low-dimensional Latent Spaces for Hand-pose Interaction Systems
approach, which will be described in detail in the following chapters.



Chapter 3

Visualization of High-dimensional Hand
Pose in Low-dimensional Space

Current mid-air gesture recognition methods struggle with processing long-sequence

frames and lack interaction interpretability, limiting real-world usability. This

chapter introduces a continuous interaction strategy that integrates visual hand-

pose feedback with gesture recognition and control. Our approach leverages

frame-based hand pose features extracted from MediaPipe Hands. These fea-

tures are embedded into a two-dimensional pose space using an autoencoder,

followed by a PointNet-based model for gesture classification. The recognized

gestures are then used for device control and interaction exploration. i) By jointly

optimizing the autoencoder with the classifier, we learn a discriminative embed-

ding space for gesture recognition. ii) Through accuracy evaluation and inter-

action processing latency analysis, we demonstrate that our method achieves a

clear embedding space which implements the embedding fast. iii) We validate

the system’s effectiveness with experienced users exploring various parts of the

gesture space by adjusting their hand poses.

3.1 Introduction

With the increasing use of virtual reality (VR) and augmented reality (AR) technologies and
the increased need for direct control with the eyes away from the screen (Khundam 2015,
Yousefi et al. 2016), the direct recognition and control of mid-air gestures is now an im-
portant area of interaction and artificial intelligence research. Mid-air gesture recognition

27
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and control (MG-RC) has recently attracted ever-increasing research attention in multimedia,
due to its widely multimedia interactions and applications (Xu et al. 2024), e.g., interactive
control of different applications by the mid-air gestures for electronic devices. However,
the current MG-RC methods remain unsatisfactory due to the processing of long-sequence
frames in the model and a lack of interpretability of the process of mid-air gesture interac-
tions, which are widely regarded as important cues in real-world gesture control. This
chapter presents a new continuous interaction strategy with visual feedback of hand pose and
mid-air gesture recognition and control for a smart music speaker, which utilizes only 2 video
frames to recognize gestures. Frame-based hand pose features from MediaPipe Hands (Lu-
garesi et al. 2019), containing 21 landmarks, are embedded into a 2 dimensional pose space
by an autoencoder. The corresponding space for interaction with the music content is created
by embedding high-dimensional music track profiles to a compatible two-dimensional em-
bedding. A PointNet-based model (Qi et al. 2017) is then applied to classify gestures which
are used to control the device interaction or explore music spaces. By jointly optimising the
autoencoder with the classifier, we manage to learn an embedding space for discriminating
gestures. We demonstrate the functionality of the system with experienced users selecting
different musical moods by varying their hand pose.

We propose a simple PointNet-based classification network to recognize the predefined
discrete gestures and continuous hand poses by fewer frames (2 frames) in low-dimensional
inputs (2 dimensions) from an autoencoder. Our approach handles both discrete and con-
tinuous gesture-based interaction scenarios. Finally, we defined corresponding functions for
the different recognized gestures, which include discrete gesture control for music start/stop
and continuous hand pose control for real-time musical space exploration. Our proposed
pipeline overcomes to some extent the disadvantages of high-dimensional feature input and
long sequence frames, and implements a continuous hand pose to explore the music space.
The low frame dependency of the gesture recognition stage gives our model the advantage of
low latency. Visible user interaction based on the autoencoder encoding gives the user more
freedom of choice and exploration, which is not exploited in the literature.

3.2 Background

3.2.1 Dimensionality reduction

Since the gesture data collected by various types of sensors have high dimensionality and
may even reach thousands of dimensions, dimensionality reduction of the data is necessary
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for better processing of the data and better visualization. There are two main methods of
dimensionality reduction, 1) retaining only the most relevant variables in the original dataset
(feature selection). 2) finding a set of smaller new variables, each of which is a combination
of the input variables and contains essentially the same information as the input variables
(feature extraction). For the former, the main methods include high correlation filter, ran-
dom forest (Reddy et al. 2020, Zebari et al. 2020). For the latter, the main methods include,
principal component analysis (PCA) (Cao et al. 2003, Partridge & Calvo 1998, Zebari et al.
2020), independent component analysis (ICA) (Cao et al. 2003, Zebari et al. 2020), t-SNE
(Gisbrecht et al. 2015), UMAP (McInnes et al. 2018). A pair of variables with high corre-
lation increases the multicollinearity in the data set, so it is necessary to delete one of them
with high correlation filter. Random forest is one of the most commonly used methods for
dimensionality reduction, which will explicitly count the importance of each feature in the
dataset (Zebari et al. 2020). PCA is one of the most widely used techniques to deal with
linear data (Cao et al. 2003, Reddy et al. 2020). We can use ICA to transform the data into in-
dependent components, using fewer components to describe the data (Cao et al. 2003, Zebari
et al. 2020). Conversely, t-SNE is suitable for nonlinear data processing, and the visualization
of this method is more straightforward than other methods (Ge et al. 2024, Gisbrecht et al.
2015). UMAP is suitable for high-dimensional data, and this method is faster compared to
t-SNE (Becht et al. 2018, McInnes et al. 2018).

3.2.2 User Feedback and Visualization

When the user is interacting with the device, a feedback system that is easy for users to
understand will give the user a good interaction experience (Aula & Surakka 2002, Ryoo
& Aggarwal 2007). For example, the tik-tik sound when rotating the dial, the vibration of
the smart bracelet when clicking the button. As a form of user feedback, visual feedback
is one of the forms we consider in our work, especially when users interact with mid-air
gestures, visual gesture space can give users a more visualized interaction experience than
only using sound or vibration as a feedback method (Pavlovic et al. 1997). At the same time,
visual gesture interface has an active role in exploring the types of gestures that are more
user-friendly, easier to use, and more easily recognized by the model (Aloba et al. 2020,
Dang & Buschek 2021). In addition to the aforementioned visualization tools such as t-SNE
(Gisbrecht et al. 2015), UMAP (McInnes et al. 2018), clustering algorithms (Jang et al. 2014)
and autoencoder (Dang & Buschek 2021, Rusu et al. 2022) also perform well in visualization.
Take autoencoder as an example, when the output dimension of encoder in autoencoder is
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two-dimensional, then it is a coordinate that can be visualized in two-dimensional space. A
well-performing gesture space can map different gestures to different locations in the gesture
space (Dang & Buschek 2021, Rusu et al. 2022). For continuous gesture segments, a smooth
line in the gesture space will represent the hand movement.

3.2.3 Music and Interaction

Interacting with multimedia content has become a widespread part of daily entertainment,
including watching videos, playing games, and listening to music. However, technical and
environmental limitations can affect the user experience. Factors such as device deployment
and interaction needs across different scenarios influence how users interact with smart mul-
timedia for entertainment when they have entertainment needs. Taking the interaction of
smart speakers as an example, the need to listen to music may occur at any occasion and
time, including driving, cooking, etc. Unlike watching movies or playing games, which re-
quire prolonged screen attention, listening to music does not demand continuous visual focus.
Music can be enjoyed without direct hand operation or eye contact. Therefore, smart speaker-
based exploration is an easy start to conduct research on the interaction of mid-air hand pose
with smart multimedia systems, as the impact of other modal interactions can be reduced,
such as unnecessary voice control and visual feedback, and focused on hand poses.

Currently, touchscreen-based interaction with smart music players is very common. Users
can easily browse playlists, adjust volume, and select tracks. However, traditional touch-
sensitive surfaces lack adaptability to various environments, which may limit user experience
(Modaberi 2024). When cooking in the kitchen, touchscreens become impractical due to dirty
hands. When the user is driving, touchscreen interactions can distract drivers and pose safety
risks (Mitsopoulos-Rubens et al. 2011). Additionally, while voice control is well-developed
in many applications, it may not be suitable for individuals with speech impairments (Harish
& Poonguzhali 2015). An alternative interaction solution will meet their needs for interaction
with smart speakers in multiple scenarios (Kendon 2014).

Unlike touch and voice control, gesture interaction offers a silent way to control music
playback, volume, and track selection while reducing the need for visual attention and surface
contact (Carfì & Mastrogiovanni 2021). By using hand’s or finger’s natural movements, users
can control music playback without physical contact or verbal commands. This flexible and
convenient interaction solution meets the diverse interaction needs of different people, such
as a driver who is driving (Qian et al. 2020, Shakeri et al. 2017) or someone in a quiet public
place (Kimura et al. 2019).
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① ② ③ ④⑤

⑥

Figure 3.1: Five functional hand-pose schematics and some generic movements. The top row
shows the collection of five functional hand pose schematics, with pinch and double pinch at
the end. The bottom row shows examples of generic movements.

3.3 Methodology

3.3.1 Dataset

We investigate and design interactive control gestures that conform to human habits for the
smart music speaker, including ’continuous palm sweep (right)’ (the arm and hand away
from body), ’continuous palm sweep (left), ’hand dial rotation (right)’, ’hand dial rotation
(left)’, index finger drawing ’circle clockwise’, drawing ’circle counterclockwise’, ’pinch’
and ’double-pinch’. In fact, since these gestures are in pairs and opposite directions, we col-
lect 8 gestures in total. In addition, we incorporate generic hand pose movements, i.e., the free
variation and movement of the hand posture, into the mid-air hand-pose embedding space to
enhance the flexibility of the system interaction. Specifically, using the Intel® RealSenseTM

LiDAR Camera L515 depth camera (frame rate is 30 fps), we collected 25 clip videos for
each gesture for 7 volunteers. Each video duration varies from 1 to 3 seconds. To avoid the
influence of the background, we choose a white wall about one meter away from the camera
as the background and the collected gestures are 40-50 cm away from the camera. After that,
we extract about 90, 000 frames containing gestures from the collected clip videos. In Table
3.1, we provide the detailed information of our collected gesture dataset.

Figure 3.1 presents the collected hand poses used for interaction, including five func-
tional hand poses, called palm sweep, hand dial rotation, index finger and thumb pinch, and
index finger and thumb double pinch. These hand poses encompass multiple angular rela-
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Table 3.1: Overview information of our collected hand-pose frames corresponding to Figure
3.1.

No. Hand Pose Hand Pose Split Frames Total Frames

① palm sweep
palm sweep (right) 11002

21809
palm sweep (left) 10807

②
hand dial
rotation

hand dial rotation (clockwise) 9526
18912

hand dial rotation (counterclockwise) 9386

③
index finger

circle
index finger circle (clockwise) 10520

20980
index finger circle (counterclockwise) 10460

④ pinch - - 9181
⑤ double pinch - - 8980

⑥
generic

movement
- - 9781

Total 89643

tionships between the thumb and index finger, as well as the relationship between different
inter-articular angles and flexion changes of a single finger or two fingers. The collected
gesture data will continue to be used in subsequent research and experiments.

3.3.2 Music Space

Our music data is provided by our industrial partner, Moodagent, including about 55,000
music tracks. Each track is represented by 34 features, including predicted subjective scores
for 6 emotion types, 14 genre types, and 14 style types, with scores ranging from 1 to 7.
In addition, we do not perform augmentation operations on the music space embedding.
These features are derived from the track’s audio signal using a convolutional neural network
to predict human subjective classifications. The music features are embedded by UMAP
down to a 2-dimensional music space for human interaction. In this work, we focus on the
exploration of a music space with different emotions, including sadness, joy, fear, erotic,
anger and tenderness, which the user can interact with via continuous hand pose changes. We
colour the music space with scores for different emotions.

3.3.3 Mediapipe

MediaPipe Hands (Lugaresi et al. 2019, Zhang et al. 2020), a real-time hand landmarks de-
tection model, is used to extract 3-dimensional (3D) coordinate information of 21 hand land-
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Figure 3.2: Mediapipe 21 hand landmarks (Lugaresi et al. 2019). In this experiment, we will
process the 3D coordinates of the hand landmarks and perform dimensionality reduction on
the vector composed of the coordinates. Where the vector is the sequential concatenation of
x,y,z coordinate values of the landmark numbers in the figure.

marks as shown in Figure 3.2, which saves a significant model space compared to directly
using pixel-level image (image size is 480 × 620). Then, an autoencoder based on fully
connected layers (Rusu et al. 2022) is designed to reduce the dimensionality of the 3D co-
ordinates of the 21 hand landmarks. The encoder and decoder in autoencoder contain four
fully-connected layers respectively, and the layers use LeakyReLU (Xu, Wang, Chen & Li
2015) for non-linear activation.

3.3.4 Low-dimensional Embedding

In this work, the main purpose of the low-dimensional embedding is that the space distribu-
tion of low-dimensional hand pose features can be visualized. In this way, gesture interac-
tions are more understandable and more controllable when interacting with a music space.
Our work explores the impact of different data inputs on subsequent classification and visual-
ization. Specifically, we acquired RGB color images, depth images, and keypoint coordinates
for gesture keypoint detection using Intel® RealSenseTM LiDAR Camera L515 depth cam-
era. We configured different layers and cells of the encoder and decoder for the different
inputs.

3.3.5 Gesture Classification



C
H

A
PT

E
R

3.
V

ISU
A

L
IZ

A
T

IO
N

O
F

H
IG

H
-D

IM
E

N
SIO

N
A

L
H

A
N

D
PO

SE
34

2D PointnetLatent 
Feature

Encoder

Decoder
Classification Loss

Pose Space

Autoencoder LossGesture Frames

Music Space

Scaling

mapping

Continuous 
hand pose track

Frames ∗ 21 ∗ 3

Joint Learning

Video process

VTN

UMAP

Pose Space
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2D mid-air gesture space after dimensionality reduction. Further, we show an example of connecting the 2D gesture space of our
model to the music space and performing a hand pose tracking.
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In order to use different gestures to control different functions in gesture interaction, we
need to implement a classification of gestures. Although our low-dimensional embedding
model can achieve gesture clustering to some extent and has a gesture clustering visualization
result, it still cannot classify gestures. Therefore, we decided to add an auxiliary classification
model based on the low-dimensional embedding model. The main roles of this model are
(1) to assist in training the low-dimensional embedding model, so that the low-dimensional
embedding model can get more discriminative gesture clustering visualization results. (2)
Classify the gestures so that the classification results can be used for different control and
interaction operations.

Video Transformer Network for Depth Images and Optical Flow

In our study, we first focus on the Intel® RealSenseTM LiDAR Camera L515 depth camera.
The depth image collected by this camera is an image with a resolution of 480× 620. We
process this image into a pseudo-RGB image, which is shown in the lower left corner of
Figure 3.3. The RGB color image collected by this camera is a three-channel image with a
resolution of 480×620. We applied the optical flow method to the original RGB color image
and obtained the optical flow field and the corresponding optical flow matrix for the second
image in the lower left corner of Figure 3.3.

In order to process the frames information, we applied the video classification model
Video Transformer Network (VTN) (Neimark et al. 2021) which can extract temporal and
spatial information in the transformer to classify the video frame sequence. In addition to
outputting the gesture category during gesture classification, we also output the input of the
fully connected classification layer as the encoding of each frame. In this embedding phase,
the depth images are embedded into a 256-dimensional vector, while the optical flow is em-
bedded into a 192-dimensional vector. In order to reduce the dimensionality of the frames
into a two-dimensional vector that can be visualized, we directly applied UMAP (McInnes
et al. 2018) to visualize the clustering of the VTN output. We used UMAP clustering with
Euclidean distance, minimum neighbors of 20, and minimum distance of 0.5 units.

The Video Transformer Network (VTN) (Neimark et al. 2021) model is a novel model
for video processing and classification. The application of splitting each frame into 16 small
patches and transformer extracts both temporal and spatial information between video frames.
For our task, due to the simple content and objects of our gesture depth images, too-deep
transformer layers are not conducive to classification, so we chose to adjust the depth of the
transformer layer to 2. To fit the model, we process the original depth image (480× 620)
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into a pseudo-RGB map with three channels (3×480×620) first and then resized the image
to 224. The depth information provides 3D coordinates of the hand, rather than only 2D
projections, which improves the robustness of gesture recognition. In this way, the VTN can
learn both the spatial hand structure and the temporal dynamics across frames. On the other
hand, we use OpenCV to process the depth image directly to get the optical flow matrix,
which has a size of 2× 480× 620. To apply VTN to the optical flow, we modify the ’in
channel’ of the spatial transformer of VTN to 2. For the VTN model, the loss function we
choose is cross entropy.

To compare with the VTN model, we also try the ResNet-34 (He et al. 2016). The dif-
ference between the depth image and optical flow as input is that the convolution layer of
the first layer of ResNet-34 is set to 3 and 2 respectively. The loss function we use is cross
entropy.

PointNet for 2D Points

We employ a highly efficient and effective PointNet (Qi et al. 2017) that directly consumes
point information, based on multiple linear layers, to classify the predefined gestures. PointNet-
based classification network reduces the model size and training time by using low-dimensional
inputs from the autoencoder, as well as assisting the pose space to obtain better distinguisha-
bility in the autoencoder by their jointly learning. Specifically, the input to our PointNet-
based classification model is the output of the encoder, i.e., the latent embedding. In contrast
to the original PointNet, the channel of the input of our classification model depends on
the dimensions of the latent embedding, and not a fixed three dimensions. In our models
in this chapter, we use channel=2, and in subsequent research, we will explore cases such
as channel=4 and channel=5 to adapt to our research. Moreover, considering that our out-
puts are classification results for gestures with fewer classes, and in order to obtain results
with higher accuracy, the output dimensions of each fully connected layer of our PointNet-
based classification model are set to 512, 192, and 6. Furthermore, inspired by the popular
sequence-based methods (Neimark et al. 2021, Ur Rehman et al. 2021), we also explore and
take advantage of the sequence information from the gesture video. Specifically, the frame-
based sequence features are encoded by the autoencoder as new inputs of the classification
network. Then, we get the corresponding predicted gesture categories from the optimized
classification network. In this work, we explore single-, 2- and 8-frame sequence inputs for
the PointNet-based classification, and we chose a 2-frame sequence as our final inputs, based
on trading-off classification performance with minimizing time latency.
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Our goal is to jointly learn the parameters of the proposed fully-connected layer based
autoencoder and PointNet-based classification by minimizing a loss function over the training
set, which employs mean square loss (Sara et al. 2019) and cross-entropy loss (Zhang &
Sabuncu 2018), respectively. We employ Adam (Kingma & Ba 2014) with 0.001 weight
decay and 0.001 learning rate as the optimizer of our joint model.

3.3.6 Interaction

We propose a novel, user-friendly strategy for control interaction and exploration in a visible
music space, where the continuous hand pose is used for continuous exploration.

To connect the pose space to the music space, we use a physical mapping, i.e., first scaling
the music space and the pose space to the same range and computing the cluster centres
for each type of music and then computing the distance to the coordinates of the real-time
pose in the two-dimensional pose space. The music category with the closest distance to the
coordinates of the real-time pose will be highlighted.

We mark different emotions in different colours in the music space. The colours range
from light to dark, indicating light to heavy emotional expressions of music. In this way,
users have more freedom and controllability to explore the music space with an entire music
database by the continuous mid-air hand pose movement, as shown in Figure 3.3.

3.4 Discussion

In this section, we report results on dimensionality reduction and classification of gestures
over different models and data, and visualize and interact with gestures in air. We designed
gestures according to the desired interaction function and performed gesture data collection.
Based on this, we compare the results of depth image, optical flow and hand landmarks with
different models for reducing dimension and classifying. Finally, we visualize the gesture
data in the gesture space and interact with the music space.

We first present an empirical finding that highlights the effectiveness of a well-selected
fully-connected autoencoder in the proposed pipeline, which will get low-dimensional pose
spaces for interactions. Then the effectiveness of well-designed VTN-based, ResNet34-based
and PointNet-based classifiers will be proved.
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Table 3.2: Classification results for different models with depth images and optical flow

Model Data Frames Classes Precision (%) mAP (%) Time (ms)

VTN

Depth Image 4 6 34 29 130
Depth Image 8 6 46 40 260
Optical Flow 4 6 29 27 120
Optical Flow 8 6 29 26 290

ResNet 34

Depth Image 4 6 29 26 120
Depth Image 8 6 31 29 240
Optical Flow 4 6 33 27 110
Optical Flow 8 6 33 29 250

VTN+
VTN

Depth Image +
Optical Flow

4 6 50 43 270

Depth Image +
Optical Flow

8 6 50 43 550

VTN+
ResNet 34

Depth Image +
Optical Flow

4 6 45 40 200

Depth Image +
Optical Flow

8 6 55 49 480

3.4.1 Effects of Autoencoder

As shown in Figure 3.4, the 2D outputs of the different gestures from the encoder in the au-
toencoder are plotted in a 2D space on the display. Compared with the widely used UMAP
(indicated by (a), (a’) and (a")), which has significant effects on dimensionality reduction
(McInnes et al. 2018) and clustering (Becht et al. 2018), the proposed fully-connected layer
based autoencoder (indicated by (b), (b’) and (b")) can better distinguish the distribution
of different gestures with lower model complexity. This allows users to see the positions
of different gestures in the pose space and the relationship between different gestures. When
hand pose points in the pose space are sufficiently dispersed, subtle hand pose changes will be
clearly tracked. Furthermore, we explore the distributional effects of using different frame se-
quences (2-frame and 8-frame) on the encoding of the proposed fully-connected autoencoder.
By comparing the visualization results with the first column of Figure 3.4 with single-frame
inputs, using multi-frame information can significantly improve inter-class gesture clustering
and intra-class dispersion. As low latency is very important for user interaction, we focus on
2 frames in our subsequent study, which can avoid long time latency caused by longer frame
sequences dependencies in other methods (Ur Rehman et al. 2021).
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(a) (a’) (a’’)

(b’)

Continuous arm open

Continuous arm close

Circle clockwise

Circle counterclockwise

Pinch

Double pinch

(b) (b’’)

(d)(c)

Figure 3.4: Visualization of different embedding methods of mid-air gestures. (a), (a’) and
(a") use single-, 2- and 8-frame gesture sequence inputs of UMAP (McInnes et al. 2018), re-
spectively; (b), (b’) and (b”) use single-, 2- and 8-frame gesture sequence inputs of our fully-
connected autoencoder without classification; (c) and (d) are joint autoencoder and PointNet-
based classifier on single- and 2-frame gesture sequences, respectively.

3.4.2 Effects of Classification

VTN- and ResNet-based classification

At the beginning of our experiments, we first consider transferring original video frames to
depth images (480×620) and use the depth images with different frame sequence lengths as
inputs to ResNet- and VTN-based models (He et al. 2016, Neimark et al. 2021) and outputs as
gesture categories. We considered 4- and 8-based frame sequences, respectively. In the Table.
3.2, we give the gesture classification results. It contains the frame sequence classification
accuracy and the category classification accuracy. In addition, we also calculate the time of
the prediction of the model. From the Table 3.2, we can see that the use of depth images does
not work well (the maximum precision is 46%) for gesture recognition and classification.
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Based on this, we consider whether we can add dynamic information to the frame-sequence
input. So we used the optical flow (2× 480× 620) of RGB frames as input to the model
and applied it to ResNet- and VTN-based models. The results are also shown in Table. 3.2.
We also tested combining the two data types and performing joint learning on the model, but
the results were still not satisfactory, with the highest classification accuracy of 55% (using
Depth image and Optical flow on VTN + ResNet34 ).

PointNet-based classification

Different from previous approaches, e.g. (Rusu et al. 2022), where only clustering is used
for gesture reduction and visualization, we utilize a PointNet-based classification network to
recognize the mid-air gestures for interactions and to further guide the visualization of the
distribution of pose space. As shown in (c) and (d) of Figure 3.4, by joint learning with the
classification network, the proposed autoencoder can better distinguish the space distribution
of inter- and intra-class mid-air gestures. Although this increases the training time, there is
no additional cost in the inference process of gesture feature dimensionality reduction and
clustering. In addition, in Table 3.3, we provide the detailed classification results for differ-
ent frame-based gestural sequence features from the autoencoder. We also provide inference
time for the entire mid-air hand pose interaction process of each sequence. Compared to the
12.6 ms required by the original PointNet without autoencoder, the recognition and interac-
tions with autoencoder take 2.3 ms, 2.4 ms and 3 ms on 1-, 2- and 8-frame based sequences,
respectively. It demonstrates that the joint learning of the fully-connected autoencoder and
PointNet-based classifier can improve the clustering effect of the autoencoder while also
keeping the accuracy of the classification. Meanwhile, compared to using only the encoder
output of Autoencoder for classification, the 2-frame-based PointNet improves the precision
by 3.9% and the mAP by 6.3%. Finally, by balancing classification effectiveness and low
latency requirements, we finally choose 2-frame sequences as inputs. Combining our clas-
sification results as well as the latency results, our PointNet-based model will be used as an
auxiliary model in our interaction model to help the model accurately discriminate different
gestures with a small latency.

3.4.3 Visualization of Latent Space

In order to provide a better experience and understanding when using the smart music player,
we display the selected music position and use the dynamic hand pose continuous control
process to map to locations in the music space. As shown in the top row of Figure 3.5,
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Table 3.3: Comparisons of Classification models with hand landmarks

Method Autoencoder Frames Precision(%) mAP(%) time (ms)
−

√
1 72.4 58.8 2.3

Po
in

tN
et

ba
se

d

− 1 70.6 62.1 12.6√
1 71.3 61.9 2.3√
2 75.2 62.5 2.4√
8 77.2 64.9 3.0

when we specify different target music positions in music spaces, they can all be reached
by continuous movement and exploration of mid-air hand pose. We provided the detailed
music space information in Appendix A. For the Figure 3.5 (d), (e), we measure the time
for an experienced user to reach the specified target point when exploring the pose space for
two consecutive times, 4.4 s and 2.1 s, respectively. This demonstrates that users can learn
to explore one point in the music space by continuous dynamic mid-air hand pose control
to enhance their understanding of interaction with the music space, and thus reach the goals
faster. The three different tracks of hand pose in the Figure 3.5 (f) shows that users can reach
the same target music position with continuous control by different dynamic hand pose, and
that the starting position and pose of the hand does not affect the exploration of the target
music. Notably, the latency of the interaction process of a frame-based gesture sequence (2
frames) is about 2.4 ms, as shown in Table 3.3, including the inference of autoencoder and
classifier and drawing.

3.4.4 Limitation

Method Limitation

While improving response speed and interaction accuracy, our current mid-air hand gestures
recognition and interaction methods often struggle to provide stable and smooth user experi-
ences when faced with diverse hand gestures and movements. The reliance on model-driven
gesture embeddings, although effective for classification, does not fully account for variations
in users’ hand physiology or unpredictable motion patterns.

Additionally, many existing systems lack interpretability in gesture recognition and con-
trol processes, which limits users’ understanding and undermines the system’s user-learnability.
This lack of real-time feedback and interpretability makes it difficult for users to grasp how
their gestures are processed and recognized, leading to potential frustration and inefficiency
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Figure 3.5: Visualization of hand-pose-controlled track selection in the music spaces of
55,000 music tracks. The yellow ✩ indicates the target music position point, the green
○ indicates the hand pose starting point, and hand-pose-selected movement tracks are in
blue. Different colours of points in the space represent music with different emotions, and
the darker the colour, the higher the emotional value.

in practical applications. Moreover, without clear visual or sensory feedback, users may find
it challenging to adjust their gestures accurately, reducing the overall usability and comfort
of mid-air interactions. Addressing these limitations requires the development of models that
not only classify gestures effectively but also provide meaningful, interpretable feedback that
enhances users’ understanding and control within the interaction system.

Study Limitation

This study has some clear limitations. The dataset was collected from only seven participants,
which is a small number, so it cannot fully show the variation of hand poses in a larger
population. All participants were young adults. The system was not tested with children,
older adults, or people with different backgrounds. This reduces the diversity of the study
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and makes the results less general. And all gesture recordings were made with the right
hand only. The system may work differently with the left hand or with users who use both
hands in daily life. Because of these limits, the findings may not represent all users. Future
work should include more participants, cover different age groups, and collect data from both
hands. This would improve the reliability of the results and give a more complete evaluation
of the hand pose interaction method.

3.5 Conclusion

In this chapter, we study the problem of mid-air hand pose control and visible interaction for
a smart music speaker and propose a hand pose space encoding and visualization model by
a fully-connected autoencoder joined with a PointNet-based gesture classification network.
Specifically, a new mid-air gesture dataset is collected to train and evaluate the proposed
mid-air gesture recognition and control method. The proposed autoencoder embeds gestures
into low-dimensional spaces suitable for visualisation and interaction, which helps to unify
the pose space with the music space for interactions. In addition, the auxiliary PointNet-
based classification network further improves the clustering of gestures in the visualized pose
space and maintains better classification performance (75.2%) than just using Autoencoder
(72.4%). Moreover, the proposed interaction strategy requires only a few gesture frames (2-
frame sequence) of input to get a continuous control that the user can explore, which helps to
maintain a low interaction latency (2.4ms). The chapter also provides an exploratory demon-
stration of the ability to control and select different areas of the user space via continuous
hand pose changes by experienced users. However, ensuring the stability and smoothness of
hand movements within the low-dimensional gesture space remains a challenge that must be
addressed to provide users with a more fluid and natural interactive experience. Additionally,
enhancing the interpretability of the interaction can further reduce the learning curve for users
and improve overall efficiency. Therefore, in the next chapter, we will focus on tackling these
issues to refine and optimize the interaction process.



Chapter 4

Stable and Smooth Interaction System
with Hand Pose Estimation

Mid-air gesture and hand-pose interaction provide an alternative to touchscreens,

especially for diverse hand conditions. The previous chapter introduced a low-

dimensional space for hand poses but faced challenges like jitter and instability.

Many gesture methods rely on black-box models, limiting interpretability for vi-

sualization tasks. To address this, we propose a VAE-based Hand-pose Embed-

ding Interactive System (HpEIS), mapping hand poses to a 2D visual space for

guided exploration. Specifically, i) we introduce improvements, including stabil-

ity processing and smoothness processing. ii) we evaluate HpEIS based on target

selection task completion time and final distance to the target point, comparing

performance with (10s) and without (20s) the gesture guidance window condi-

tion. iii) experimental results and user feedback indicate that HpEIS enables a

user learnable, movement stable and smooth mid-air hand movement interaction

experience, which can be flexibly started from any position.

4.1 Introduction

In this chapter, we focus on the more challenging topic of mid-air hand pose embedding and
interaction. Challenges in adopting this potentially more intuitive and convenient approach
to multimedia control are due to the complexity and challenges of hand-pose embedding.
The complexity is mainly due to the inherent flexibility of human hands, resulting in a wide
variety of complex postures. The flexibility of hand postures is a fundamentally crucial con-

44
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sideration in designing interactions. Unlike virtual reconstruction of hand poses directly
using external handheld devices or radar, encoding hand poses and visualizing their positions
in low-dimensional space can be challenging due to their low dimensionality but high com-
plexity. Moreover, interacting in a visualized embedding space using hand-pose movement
is subject to many uncontrolled factors, such as unavoidable physiological jitter.

We present a Hand-pose Embedding Interactive System (HpEIS) as a virtual sensor,
which maps users’ flexible hand poses to a two-dimensional visual space using a Variational
Autoencoder (VAE) model trained on a large variety of hand poses. HpEIS enables visually
interpretable and guidable support for user explorations in multimedia collections, using only
a camera as an external hand pose acquisition device. We identify general usability issues as-
sociated with system stability and smoothing requirements through pilot experiments with
expert and inexperienced users. We then design stability and smoothing improvements, in-
cluding hand-pose data augmentation, an anti-jitter regularisation term added to the loss func-
tion, stabilising post-processing for movement turning points and smoothing post-processing
based on One Euro Filters. In target selection experiments (n=12), we evaluate HpEIS by
measures of task completion time and the final distance to the target point, with and without
the gesture guidance window condition. Experimental results and questionnaire responses
indicate that HpEIS provides users with a learnable, flexible, stable and smooth mid-air hand
movement interaction experience.

1) We introduce a virtual sensor HpEIS, a user-learnable hand-pose embedding interac-
tive system, to provide new inspiration for interacting with multiple multimedia collections
with flexible hand movement. 2) We proposed an augmented VAE model to encode the hand
pose into a visualized latent space for interaction, which contains an innovative augmentation
strategy with an anti-jitter regularisation term based on a pilot experiment. 3) We introduced
stabilization post-processing and smoothing post-processing to specifically deal with insta-
bility due to physiological jitter and system sensitivity. 4) We designed a real-time user
guidance window based on the hand pose reconstruction in the hand pose interaction system.
This greatly improves the user interaction experience. 5) Our user study experiments demon-
strate substantial advancements in the user experience of our system in terms of stability and
smoothness, while maintaining interaction flexibility.

4.2 Background

We will introduce the background of using mid-air-hand-pose interaction, such as hand pose
categories and common devices, interaction flexibility and interpretability. Moreover, the
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related works of these tasks are also described in detail.

4.2.1 Interaction Flexibility

In existing research on hand-pose interaction, various sensors have been applied to differ-
ent interaction tasks (Hayashi et al. 2021, Liu et al. 2021, Qin et al. 2021, Wilhelm et al.
2020). Thus, different interaction methods are used to meet the needs of people interacting
in different scenarios. However, as mentioned in (Vogiatzidakis & Koutsabasis 2022, Xu
et al. 2023), among these typical interaction methods (Groenewald et al. 2016, Kong et al.
2020, Nacenta et al. 2013), the dominant one is still the static hand-pose interaction. This
means that the user needs to give a specified static and non-continuous hand pose and then
the system gives the corresponding feedback after acquiring and recognizing the hand rep-
resentation. These studies were widely used in multimedia single-control scenarios, such
as volume and top/bottom selection for multimedia music. It leads to less flexibility in the
system interaction. In addition, this kind of static hand-pose control usually uses black-box
operation, i.e., direct feedback without interpretable interaction.

4.2.2 Interaction Interpretability

As artificial intelligence (AI) models become more powerful, the user interaction require-
ments also become more complex (Silva et al. 2019). While users do not need to understand
exactly how the model works internally, there is a growing demand for users to seek ex-
plainable interactions with intelligent systems. It will help less experienced users understand
and use AI systems faster (Došilović et al. 2018, Taka et al. 2022), allowing them to experi-
ence the rapid advances in AI more quickly and more realistically. Therefore, it is especially
important to break the black box between the user and the system (Došilović et al. 2018),
increase the user’s trust in the AI system, and improve the transparency and interpretability
of AI (XAI) (Banovic et al. 2023, Gilpin et al. 2018). On one hand, to improve the XAI, re-
searchers proposed new XAI tools (Sharma et al. 2019), e.g., head-mounted VR/AR glasses
(Du et al. 2022, Masurovsky et al. 2020, Tseng et al. 2023) and handheld sensing devices., to
reconstruct virtual hands in virtual environments for users to understand virtual world inter-
actions. However, expensive and uncomfortable bulky equipment limits the access of many
users. On the other hand, reducing high-dimensional representations and interacting on their
visualized low-dimensional latent space has the potential to be an intuitive and interpretable
interaction strategy (Dang & Buschek 2021, Rusu et al. 2022, Strachan et al. 2007, Xu et al.
2023). For instance, (Xu et al. 2023) introduced a fixed gesture-based music space explo-
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ration scheme that enforced a physical mapping of the hand pose latent space to a music
latent space. This is an interpretable study of gesture interaction but reduces the flexibility
of the interaction due to their requirements for fixation and recognition of gesture categories.
Additionally, the additional mapping requirement of hand-embedding space and multimedia
latent space also reduces the migratability of their interaction systems.

4.2.3 Quaternion

Quaternion-based representations are frequently applied in 3D transformations within human-
computer interaction (HCI), where accurately and stably tracking hand poses in 3D space is
vital. Unlike conventional rotation representation methods, such as Euler angles or rotation
matrices, quaternions can effectively mitigate issues related to gimbal lock. Gimbal lock
occurs when two of the three rotational axes align, leading to a loss of one degree of free-
dom and resulting in erratic behavior during complex movements. This issue can disrupt the
continuity and smoothness of hand pose tracking, a critical requirement for mid-air gesture
interactions that need to operate seamlessly across a range of orientations (Kuipers 1999). A
quaternion q is defined as

q = w+ xi+ y j+ zk, (4.1)

where w,x,y,z are real numbers, and

i2 = j2 = k2 = i jk =−1. (4.2)

This four-dimensional representation encapsulates rotation in a way that provides continuous,
singularity-free results, which is crucial for maintaining consistent tracking during dynamic
and multi-axis movements.

In the context of mid-air hand gesture interactions, maintaining consistency despite varia-
tions in hand size, distance from the camera, and orientation changes remains a key challenge
(Xu et al. 2023). Recent research has explored the use of quaternions to create more resilient
systems that can compensate for these variations (Arsenault 2014, Elouariachi et al. 2020,
Patil et al. 2019). By encoding hand rotations in quaternion space, interaction models can
avoid the pitfalls of orientation-based noise and misalignment, ensuring that gestures are ac-
curately interpreted regardless of user-specific or environmental factors. This characteristic
is particularly useful for enabling gesture control in variable lighting conditions and diverse
backgrounds, where traditional 2D or non-robust 3D representations may fail (Xu et al. 2023).
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Figure 4.1: Example scenes of our designed Hand-pose Embedding Interactive System
(termed HpEIS). (a) A user is exploring the hand-pose embedding space and interactively
finding target points that can be given new multimedia meanings. (b) Partial mid-air hand-
pose movement. (c) The hand-pose embedding space visualization. (d) User Guidance win-
dow with hand-pose reconstruction.

4.3 Overview of System

The pipeline of our model is in Figure. 4.2. We will give preliminaries of our work in Section
4.3.1 and a detailed introduction to obtaining the mid-air hand-pose embedding space in
Section 4.3.2. And then, the design of visualization guidance in the system, and the design of
interaction flexibility, stability and smoothness will be introduced in Section 4.3.3, Section
4.3.4, Section 4.3.5 and Section 4.3.6, respectively.

4.3.1 Data Processing

As a new multimedia adapter, our mid-air hand-pose movement interaction system aims to
control multimedia through a flexible-stable-smooth hand pose interaction strategy in a visu-
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Figure 4.2: The pipeline of our mid-air hand-pose embedding space construction and user
guidance reconstruction.

alized embedding space, which can be mapped with any multimedia space. In this work, as
shown in Figure 4.3 (a), we use the thumb and index finger to form a hand pose for interac-
tion and consider the relative angle information of both fingers to the wrist simultaneously.
We argue that simple hand poses are easier to detect and embed for the model and speed
up the interaction for the system. In addition, simple and straightforward hand poses make
them easier to remember and accomplish. Note that, different poses of the remaining fin-
gers do not affect the mid-air hand-pose definition, thus maintaining a certain degree of hand
flexibility and pose robustness. To get the hand-pose embedding space, we use an external
camera device to capture the hand inputs G = {g1, . . . ,gn}, where n is the length of hand
sequence of each user, and employ MediaPipe (Lugaresi et al. 2019) to detect the 21 key
points P = {p1, . . . , p21} for each hand frame, where each point has three-dimensional co-
ordinates pi = (x̂i, ŷi, ẑi). We find that different experimental users with different hand sizes
at different distances from the camera device usually produced different interaction results
using mid-air hand poses with identical meanings in the embedding space. To address this
issue, we employ quaternion (Rieger & Van Vliet 2004) to transfer the hand key landmarks,
avoiding the effect of hand size, hand position in the sensor field and distance from the sen-
sor. Specifically, as shown in Figure 4.3 (b), we choose the 9 landmarks from the thumb and
index finger, containing an anchor point at the wrist and 8 landmarks at the joints of two fin-
gers, to calculate the quaternion number of adjacent landmarks. After transferring, we obtain
new quaternion-based rotation angle hand-pose movement representations Q = {q1, . . . ,qn}
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Figure 4.3: Example of MediaPipe extraction and quaternion conversion. (a) means that we
only consider the thumb and index fingers and their angles with the wrist, and the posture of
other fingers does not affect the hand-pose representation. (b) means the quaternion conver-
sion for 9 detected landmarks.

based on the detected landmarks, where qi = [θ 01
i ,θ 12

i ,θ 23
i ,θ 34

i ,θ 05
i ,θ 56

i ,θ 67
i ,θ 78

i ] for each
hand frame. Afterwards, we use Variational Autoencoder (VAE) (Kingma & Welling 2014)
to encode and decode all hand pose representations and use the intermediate 2-dimensional
latent representations as coordinates to compose the embedding space S = {s1, . . . ,sm} for
interaction and visualization, where si = (xi,yi). Finally, we can obtain a 2-dimensional
hand-pose embedding space S , which allows users to explore in all directions with differ-
ent hand postures. Once it is assigned to a specific multimedia space, such as music space
and book space, then we can pair free or purposeful explorations of the corresponding mul-
timedia space. Additionally, we provide new users with visualized guidelines based on the
decoder in trained VAE for hand pose movement, while also reducing user discomfort once
the embedding space is updated.

4.3.2 Dispersed Latent Space with Continuity Movement

Figure 4.2 shows the pipeline of our mid-air hand-pose embedding space construction. For
each hand frame gi, we use a Variational Autoencoder (VAE) (Kingma & Welling 2014) to
obtain the latent 2-D embedding as the hand pose coordinate si = (xi,yi), which conforms to
a learnable Gaussian distribution with mean µ and standard deviation σ , with the quaternion-
based rotation angle representation qi ∈ R8 as input. It contains a Multi-Layer Perceptron
(MLP) based encoder and an MLP-based decoder. Specifically, each MLP contains 4 fully
connected layers, where the neuron numbers in the encoder are 128, 96, 64 and 2, respectively
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and the reverse in the decoder. The 2-D latent embeddings are normalized between 0 and 1.
Our goal is to make the sample representations before encoding and after decoding as

similar as possible by optimization, and the latent space used for decoding obeys the Gaussian
distribution. In other words, the Mean Squared Error (MSE) between input qi = [θ 01

i ,θ 12
i ,θ 23

i ,

θ 34
i ,θ 05

i ,θ 56
i ,θ 67

i ,θ 78
i ] and output q′i = [θ

′01
i ,θ

′12
i ,θ

′23
i ,θ

′34
i ,θ

′05
i ,θ

′56
i ,θ

′67
i ,θ

′78
i ] and the Kull-

back Leibler(KL) divergence of the distribution of low-dimensional data and the standard
normal distribution are as small as possible, which are as follows:

LMSE =
1
8

8

∑
j=1

(
θ
( j)
i −θ

′( j)
i

)2
, (4.3)
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)
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(4.4)

where Pφ is a binary independent Gaussian distribution with learnable mean µi and stan-
dard deviation σi, Pϕ is a binary standard Gaussian distribution N (0,1). O is a randomly
re-sampled 2-D latent feature from Pφ to decode. Finally, we use binary mean µφ as the
coordinate (xi,yi) to present the hand-pose position in the embedding space.

4.3.3 User Guidance Window

To bring users, especially novice users, a learnable exploration and interaction experience,
we provide an innovative method called user guidance window in Figure 4.2, which uses
a trained decoder to obtain hand-pose decoding representations in four directions around
the current hand pose and inversely uses quaternion to reconstruct the image expression of
these neighbour hand poses. Specifically, given the current mid-air hand pose gi, we use the
trained encoder to obtain the means (xµ ,yµ) of latent representation as the current position
in the hand-pose space. Then, we sample 20 latent representations with the same distribution
as the current hand pose as neighbour hand poses, and take 4 latent representations in four
directions as the final hand-pose guidance inputs to the trained decoder for decoding and
reconstruction. During the reconstruction process, we invert the quaternion and recalculate
the positional relationship of the thumb, index finger and wrist, according to the decoded
quaternion-based neighbour hand-pose representations {q′1,q

′
2,q

′
3,q

′
4}. In addition, as shown

in Figure 4.1 (d), we selected eight orientations at the edge of the entire space for hand posture
reconstruction as fixed orientation guidance. Note that, since we focus on reconstructing the
thumb and index finger, the other finger postures are the same as the current gesture. The
main purpose of our user guidance window is to provide visual guidance for novice users
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when exploring a new embedding space, which can greatly reduce the unfamiliarity of the
space. Alternatively, the user guidance window can be closed once the user has mastered the
hand-pose habit of exploration.

4.3.4 Design for Flexibility

We believe that system flexibility is crucial to user interaction experience. Different from the
current gesture interaction systems (Rusu et al. 2022, Xu et al. 2023), we mainly consider the
flexibility design in two aspects:

(1) Data flexibility: Fixed hand-pose data is often limited and their spatial distribution is
often local due to hand-pose similarity, which will lead to many other irregular hand poses
not being positioned or positioned incorrectly. To this end, our HpEIS considers embedding
space global exploration. In order to generate the entire hand-pose embedding space, we
train our VAE using arbitrary hand poses, which contain specified hand poses, but also more
generic movement, which ensures the distributional diversity of the space.

(2) Interaction flexibility: On one hand, we consider interacting with only two fingers,
while other fingers do not affect the hand-pose embedding space. As mentioned in (Lang &
Schieber 2004), mechanical coupling limits the independence of the index, middle, and ring
fingers to the greatest degree and neuromuscular control primarily limits the independence
of the ring, and little fingers during large-arc movements. Only considering the thumb and
index finger reduces the influence of the non-independence of other fingers, allowing for hand
flexibility during user hand movements. On the other hand, due to the inclusion of arbitrary
mid-air hand poses in the training data, our system allows users to take any mid-air hand pose
to start exploring the embedding space. Thus, this makes our system interaction flexible.

4.3.5 Design for Stability

As a user system, stability is a crucial part of enhancing the user experience. To improve
the interactive stability of the VAE-based hand-pose embedding space, we first conduct pilot
experiments (details in Section 4.4.3) on the current interactive system. However, we found
three intuitive instability issues during our pilot experiments, which are (1) different hand
sizes and the distance from hand to camera will influence the embedding place in the latent
embedding space, (2) hand-pose embedding space is overly sensitive to subtle hand changes
caused by physiological jitter and (3) space track exhibits jump due to error detection of hand
key landmarks from intrinsic defects of the hand detector.
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D1 D2
P1P2

U1U2

Figure 4.4: Quaternion experimental set up. U1 and U2 are different users and represent
different hand sizes. P1 and P2 represent different startingpositions for hand movement. D1
and D2 represent different distances to the camera.

Quaternion Design

Compared to simple 3D coordinates, relative coordinates (Feng et al. 2003) and quaternion
(Shoemake 1985) can well avoid the effects of different hand sizes, different distances from
the camera, and different positions in the screen. Specifically, relative coordinates and quater-
nion arrays are only related to the selection of anchor (Feng et al. 2003, Shoemake 1985), so
they can reduce the bias caused by distance and position. In contrast to relative coordinates,
the quaternion array only cares about the rotation angle between different points and anchor
points, which avoids the position deviation of the same gesture in the gesture space caused
by the hand size (Hsu et al. 2018, Shoemake 1985). Therefore when we want to have a more
general system, using the quaternion array will give more stable results than relative coordi-
nates. Fig. 4.4 shows an illustration of our different setup for experiments. Where U1 and U2
are different users and represent different hand sizes. P1 and P2 represent different starting
positions for hand movement. D1 and D2 represent different distances to the camera.

Model Design

To address the mentioned issues more effectively with the algorithm, inspired by (Sinha &
Dieng 2021), as shown in Figure 4.5, we design a new data augmentation strategy based on
pilot experiments on the trained VAE to mitigate the position oscillations in embedding space
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Figure 4.5: The data augmentation strategy and the VAE re-training process with stability
constraints.

due to hand jitter and add a new optimization objective function for this purpose to refine and
retrain the VAE. Specifically, we first trained a pilot model on the collected hand poses, then
we designed a pilot experiment (details in Section 4.4.3) to further collect the real-interaction
data, which contains 10 hand poses closest to each target hand-pose location during the pilot
experiments as the stable proximity hand poses. After that, we can get the proximity dis-
tribution for each landmark of the target hand pose based on the collected proximity hand
poses and then we sample M (M=100) new proximity hand poses as the augmented hand
poses, where the mean is from the target feature and the standard deviation is averaged from
proximity hand poses. Note that, because we only consider two fingers, we only have 9 land-
marks. Next, we use quaternion to convert the target and augmented hand-poses landmarks
and input them into the new VAE. Our goal is to overcome the system sensitivity caused
by slight movement or jitter by optimizing the minimum distance between the jittered hand
poses and the target hand pose and the space distribution of both. The objective functions
between the target hand-pose representation qi and each augmented representation qm can be
described as:

LMSE =
1
8

8

∑
j=1

(
θ
( j)
i −θ

( j)
m

)2
(4.5)
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Where the LKL is similar to (Sinha & Dieng 2021) for minimizing the difference in distri-
bution between training hand poses and proximity hand poses. Additionally, the new LMSE

between the proximity hand poses and the target hand pose serves as a regularization term to
further limit the difference between the jittered hand pose and the target hand pose in reality.
Notably, we finally minimize the objective functions containing the loss computation of VAE
itself.

Post-processing Design

In order to solve the error detection issue caused by MediaPipe, for example, inaccurate
landmark detection occurs when the finger is perpendicular to the camera (last image in
the bottom row of Figure 3.1) or when the finger is obscured (second image in the bottom
row of Figure 3.1), we design a post-processing measure to further improve the stability
of system interaction. Here we consider the Euclidean distance change of the coordinates
in the embedding space to be greater than 0.1 as the mutation coordinates, i.e. unstable
phenomenon, and there may exist error detection. We neutralize the unstable point si with
the following operation:

si =

1
2(si−1 + si), if

√
(si−1 − si)2 > 0.1

si, if
√
(si−1 − si)2 < 0.1.

(4.7)

4.3.6 Design for Smoothness

During the pilot experiments, the smoothness of system interaction is required to be im-
proved. The main problem is that there are jagged changes in the interaction path during the
user’s interactive exploration of the embedding space. Additionally, when users approach
the target point, the decrease in movement speed leads to more pronounced space path non-
smoothness around the target point due to hand jitter. To further improve the smooth ex-
perience during user interaction, we follow One Euro Filter (Casiez et al. 2012) to balance
denoising and preservation of path dynamics. One Euro Filter is an effective method to filter
out noise while maintaining important features of the signal with two main parameters, cutoff
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frequency CF and slope threshold ST . A higher cutoff frequency will reduce the response of
the filter and is more suitable for processing fast-changing signals. A lower slope threshold
will increase the intensity of the filter to suppress the noise and is more suitable for processing
low-changing signals.

In our system, we use One Euro Filters with different parameters, i.e. cutoff frequency and
slope threshold, to handle different hand-pose interaction scenarios separately. Specifically,
we divide user interaction scenarios into two types, fast-moving interaction and slow-moving
interaction. The former tends to occur during the initial stage of the interaction, where the
user’s hand moves faster, so the hand moves a greater distance between frames. Conversely,
the latter tends to occur at the end of the interaction near the target point, where the user’s
hand moves slowly and the movement distance is small. Furthermore, we argue that users
value the speed of exploring to the target point at the initial stage of interaction, but value the
accuracy of reaching the target point at the end of the interaction stage. To this end, according
to the distance between two neighbouring hand-pose points in embedding space, we choose
two different group parameters for One Euro Filters, as follows:

(CF,ST ) =

(0.04,0.85), if 1
9 ∑

9
j=1 L > 0.015

(0.005,0.75), if 1
9 ∑

9
j=1 L < 0.015,

(4.8)

where L =

√
(x̂( j)

i−1 − x̂( j)
i )2 +(ŷ( j)

i−1 − ŷ( j)
i )2 +(ẑ( j)

i−1 − ẑ( j)
i )2. (4.9)

Note that, due to the consideration that real-world hand movements are less sensitive than
corresponding movements in embedding space, we use the movement distance between two
neighbouring hand poses, gi−1 and gi, calculated from 9 landmarks of two fingers in the real
world as the parameter setting condition.

4.4 Experiments

In this section, we will first introduce our comparative results based on the 3D spatial coor-
dinates and the transformation of quaternions. On this basis, we will elaborate on our pilot
experimental design for the interactive system and its results, thereby refining the research
designs and constructing the final HpEIS system. Finally, we will validate our HpEIS system
and the effectiveness of the user guidance window through a user study.
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Figure 4.6: The figure (a) shows the low-dimensional embedding of ’continuous arm open’
when quaternion is not used, and the figure (b) shows the low-dimensional embedding of
’continuous arm open’ when quaternion is used. In contrast to figure (a), the use of quater-
nions in figure (b) brings more stability to the model, because the trajectories are more dis-
persed in a) than b). For greater visibility, the background Music Space using a subset (2,000
music tracks) of the music dataset is shown in black.

4.4.1 Quaternion Test

During our designing process, we found that different experienced users with different dis-
tances from the camera usually produce different control results on the interaction with the
music space for the same hand pose. To have a more stable interaction with the music space,
we explore the use of quaternions (Saxena et al. 2009) to make the system invariant to hand
size, hand position in the camera field, and distance from the camera on gesture embedding.

Fig. 4.6 compares two experienced users (indicated U1 and U2) of different palm sizes
(palm width and palm length) without and with quaternion conversion (as (a) and (b)), re-
spectively, to control the music space at different locations (start position and distance) from
the camera using the same gesture. Specifically, the palm width and length for U1 are 7 cm
and 15 cm respectively, and for U2 are 10 cm and 17 cm, where palm width is the distance
from the widest part of the palm and palm length is the distance from the root of the palm to
the tip of the middle finger. P1 and P2 indicate different starting positions, with a difference
of 20 cm. D1 and D2 indicate different distances from the camera, which are 45 cm and 100
cm, respectively. Compared with (a) and (b) in Fig. 4.6, it suggests that the use of quaternion
effectively reduces the effects of hand size, hand position and distance from the camera on
the low-dimensional embedding of the gestures, thus allowing the interactive system to work



CHAPTER 4. STABLE AND SMOOTH INTERACTION SYSTEM 58

Hand-pose 
Embedding

Space

User Guidance 
Window

Powermate
Bluetooth Knob

Intel RealSense 
LiDAR Camera

Headphones

Figure 4.7: Detailed display of experimental equipment.

more stably.

4.4.2 Experimental Setup

We introduce pilot experiments with two users, one expert user and the other a less experi-
enced user. 12 participants (7 men and 5 women) aged between 22 and 38 took part in our
User Study. Additionally, 12 participants were divided equally into two groups. The first
group completed the experiment without a user guidance window, and the other group was
guided with a user guidance window.

We conduct pilot experiments to identify problems, refine research designs and assess
feasibility. Specifically, the pilot experiments contain 4 experiments, which are the baseline

experiment in Section 4.4.3, the augmentation experiment in Section 4.4.3, the stability ex-

periment in Section 4.4.3, and the smoothness experiment in Section 4.4.3. The User Study
in Section 4.4.4 is for assessing our interaction system and interface. In all experiments, as
shown in Figure 4.7, the camera used to capture hands was Intel® RealSenseTM LiDAR Cam-
era L515 camera (frame rate is 30 fps). The hand movement plane was specified to be within
30-60 centimetres from the camera. The hand starting position and starting pose were not
fixed. In addition, when the user finds the target point, a Bluetooth knob (Griffin PowerMate)
was used as a labelling tool and then headphones produce audio feedback.

4.4.3 Pilot Experiment

Tasks

Two experimenters, including an expert user and an inexperienced user, conducted an explo-
ration of the hand-pose embedding space. Our goal was to verify whether the user could find
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the target point in the 2D embedding space and to detect the interaction problems in the pro-
cess of finding the point. Firstly, we identify 10 randomly selected points to avoid hand-pose
inertia in the trained embedding space as the target points for pilot users. The pilot users
were presented with a black circular pointer in the embedding space representing the current
hand-pose position in the space. Target points for different hand poses are marked by differ-
ent coloured circles, and different coloured points encoded in the embedding space mean the
collected hand-pose embedding points. Then, we asked pilot users to press and hold the knob
when they intuitively thought they had found a point to mark the point found, and the system
would display the next target point. We evaluate the interactive usability of our system by the
distance (between the final point and the goal point) and the time taken (between the start and
the stop) when users thought they had reached the target point within a limited time. After
the pilot experiments, we computed and showed the uncertainty of the last ten frames of each
attempt around different target points.

Baseline Experiment

As mentioned in Section 4.3.2, we trained our VAE on the collected hand poses as the pilot
model. Figure 4.8 (a) showed the results of the last ten frames to target points in the embed-
ding space from the basic VAE and Figure 4.10 (a) showed the distance of each hand pose
from the target points and the time-consuming. We found two obvious problems: (i) It is
relatively easy for the users to approach the area of target points, but it is harder to anchor the
hand pose to the target point or an acceptable target point, as shown in Figure 4.8 (a); (ii) The
instability and non-smoothness of the user’s interaction, i.e. the oscillation of the distance
from the target points in Figure. 4.10 (a). As shown in Figure 4.9, by directly analyzing the
corresponding detected hand landmarks, we argue that both problems are mostly caused by
physiological jitter and system sensitivity. Specifically, we randomly chose a target point in
the embedding space and then took 10 frames after reaching the target point where the hand
stopped moving. We define these 10 frames as hand-stabilized, but it is clear from the coordi-
nates of two landmarks at the top of Figure 4.9 that the last 10 frames also have physiological
jitter. Moreover, by combining the uncertainty variance of the 3D coordinates of the hand
landmarks before encoding (at the end of Figure 4.9) and the uncertainty variance of the 2D
coordinates after encoding (at the end of Figure 4.8), we can clearly see that the variance in
the system is larger, thus indicating that there are system sensitivities that lead to interactive
instability.
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Figure 4.8: The uncertainty of each target point and the variance for embedded coordinates (x,y) for Basic VAE (a), with standard
deviation augmentation (StdAug) VAE (b) and with average standard deviation augmentation (AvgStdAug) VAE (c).
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Figure 4.9: Analysis of Hand physiological jitter. The three-dimensional coordinates of 9
detected landmarks and their average variances from the last 10 frames when the user thinks
they are close to the random target point and stops moving their hand.

Augmentation Experiment

To improve the stability of the system interaction process, especially to address the instabil-
ity and sensitivity when approaching the target points, we proposed the data augmentation
strategies in Section 4.3.5 and retrained the VAE model on the augmented hand poses with
an objective function. In particular, we explored two augmentation strategies. (i) StdAug
VAE: For the last ten frames of 200 explorations (target points are not fixed), we calculate
the standard deviation of each coordinate of each point on their original landmarks, and fi-
nally average the standard deviation of each target point and then sample. (ii) AvgStdAug
VAE: Different from StdAug VAE, we first calculate the standard deviations of the last 10
frames of each exploration and then calculate the average of the standard deviations of the
200 explorations.

By comparing (a), (b) and (c) in Figure 4.8, we observed that StdAug VAE made the
distribution of hand poses more uncertain but AvgStdAug VAE was better. Specifically, for
AvgStdAug VAE, the both principal axis (0.0091) and secondary axis (0.0023) of the mean-
variance value of the binary distribution are smaller than that of basic VAE (0.0193, 0.0032).
StdAug VAE shows the worst results (0.1175, 0.0156). Among all the target points, the point
(No.1 point) with the largest uncertainty in AvgStdAug VAE also has a smaller variance
(0.0549) than that (0.0733) of the same point in basic VAE. For the other target points, the
variance figures of Figure 4.8 show that AvgStdAug VAE has smaller variances. Moreover,
as shown in the uncertainty figures with 95% confidence intervals, AvgStdAug VAE allows
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Figure 4.10: Distance changes for each attempt of the two users in the pilot experiments
in relation to time on two random target points. The horizontal axis represents time (s/10)
and the vertical axis represents Euclidean distance with regularization. The length of the
curve shows how long it takes the user to complete a task. The convex and concave cusps of
each curve represent a situation where the hand movement is unstable, in other words, fewer
convex and concave cusps means less jitter.

most points to contract near the target point, somewhat reducing the constant jumping that
occurs when the hand poses close to the target point. We believe that this owes to AvgStdAug
VAE can mitigate the inaccuracy of the explorations due to multiple bad cases, and thus more
accurately obtain the distribution of the hand poses from each exploration to target points.

Additionally, we also displayed the distance of each interaction from the target points
and the time from the start points in Figure 4.10 (b). Compared with basic VAE (Figure
4.10 (a)), our AvgStdAug VAE with anti-jitter KL loss can better improve the stability of
interactions when approaching target points. Note that, the user may have bad cases due to
fatigue. Although we have improved the stability when approaching the target points, there
is still instability and non-smoothness during the interaction. Next, we further propose two
improvements.

Stability Experiment

To further improve the stability during interactions, we further introduced a stable post-
processing design in Section 4.3.5. By comparing Figure 4.10 (b) and Figure 4.10 (c), we
can find that the stable post-processing design can better improve the stability during inter-
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actions. In particular, Figure 4.10 (b) shows many sudden increases or decreases of distance
variation, i.e., some convex and concave cusps in (b), which are mostly higher than 0.1. After
our stability post-process, a large proportion of the cusps have been replaced by more gentle
curves in Figure 4.10 (c). These changes are particularly evident in the distance variation
curves after 6s for both types of users. It reflects that our proposed stable post-processing has
an excellent capability to improve the stability of system interaction.

Smoothness Experiment

We proposed the smoothness experiment to address the phenomenon of non-smoothness ac-
cording to Section 4.3.6. By implementing smooth post-processing, the distance-time curves
between the gesture-embedding position and the corresponding target point in the space have
been significantly improved, as shown in Figure 4.10 (d). Due to the staged filtering effect
of the One Euro Filter with different parameters, subtle wave peaks during the interaction
process were significantly reduced, resulting in a smoother trajectory and stability near the
target point. Moreover, the different filter settings in the first and second stages of interactions
allow for a better balance between speed considerations in the first stages of interactions and
accurate considerations at the end of interaction.

4.4.4 User Study: System and Interface Assessment

In this Section, we conduct user studies to evaluate the proposed interactive system on the
designed hand pose embedding space, as well as the interface.

Experiment Design

After the pilot experiments, we solved a series of stability and smoothness issues and com-
pleted the final hand pose movement interactive system. Then, we conducted a user study to
evaluate the performance of the proposed HpEIS. Before introducing the study experiments,
we first introduce the configuration of the two versions of the proposed HpEIS. The main
difference between the two versions is that we propose an innovative user guidance window
based on hand pose reconstructions from the decoder of the VAE in version 2 (as shown
in Fig. 4.2). We believe that providing users with guidance on hand posture movement is
beneficial to the overall space exploration and interaction experience, especially for novice
users.

Then, we conducted user study experiments. 12 participants were evenly divided into two
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Mean variation of distance for point NO.4 Mean variation of distance for point NO.4

Mean variation of distance for point NO.2

Mean variation of distance for point NO.6

Mean variation of distance for point NO.9

Mean variation of distance for point NO.2

Mean variation of distance for point NO.6

Mean variation of distance for point NO.9

Users attempt w/o user guidance window Users attempt w/ user guidance window

Figure 4.11: The average time-distance curves for the two groups of participants. The hor-
izontal axis represents time (s/10) and the vertical axis represents Euclidean distance with
regularization. Using the user guidance window can reduce the user’s approaching time to
the target point, which is 20s and 10s for the mean time, respectively. Fewer convex and
concave cusps and a smaller light blue background area mean the overall interaction process
is more stable and smoother when using the guidance window. It suggests that the user guid-
ance window has a superior capability to guide users, especially new users.

non-overlapping groups to prevent the influence of experience factors. The first group com-
pleted the experiment without a user guidance window, and the other group was guided with
a user guidance window. Participants were granted a 10-minute period for initial acclima-
tization before the formal experiment commenced to facilitate familiarity with the system.
The staff took the initiative to elucidate the requisite hand pose (collected hand poses) that
participants could use and stipulated that hand poses could be free. Note that, the second
group was individually introduced to the use of the user guidance window. Next, participants
in both groups began a user test in which each participant conducted a total of 100 interactive
explorations and each time the target point was a random one of 10 specific target points.
At the end of the experiment, participants were asked to complete a questionnaire to help us
improve the system.
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Figure 4.12: Two random participants’ hand-pose points were visualized, one used the user
guidance window and one did not. The black stars are stopping points of the final hand poses
from a random participant. In particular, we split the first 70 and last 30 attempts of hand
movements for each participant. The area covered by the gestures points that the participants
need to explore when trying to find the target becomes smaller as the number of attempts
increases, which demonstrates the user-learnability of our system interactions.

Tasks

The task is the same as our pilot experiment, i.e. finding specific target points. The goal is to
swiftly and accurately navigate towards the designated target point by employing varied hand
movements or distinct hand poses. Participants are entrusted with the intuitive determination
of their proximity or arrival at a given target point. Once the target point is believed to be
reached, the participant stops the interaction by performing a long press on the knob, which
triggers an audio feedback. We set a maximum threshold of 30 seconds for exploration for
each target point.
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Data and Analysis

We evaluate the developed HpEIS from two aspects, the duration of interactive exploration
and the final distance from the target point. We argue that these two aspects of interaction
metrics can reflect the user interaction experience. In addition, the real-time distance curves
(Figure 4.11) between the user’s current position and the target point can also reflect the
stability and smoothness of the interaction during user exploration.

Figure 4.11 shows the average time-distance curves for the two groups of participants. In
addition, we believe that the computationally averaged area (i.e., the light blue background
area can somewhat indicate the stability and smoothness of the interaction. Due to space
limitations, we randomly selected 4 target points as examples for display. By comparing the
results of the two groups of experiments, it is observed that using the user guidance window
can reduce the user’s approaching time to the target point, which is 20s and 10s for the mean
time, respectively. Fewer convex and concave cusps and a smaller light blue background area
mean the overall interaction process is more stable and smoother when using the guidance
window. It suggests that the user guidance window has a superior capability to guide users,
especially new users.

Moreover, as shown in Figure 4.12, we further visualized the location of the stopping
point of the final hand pose for two random participants, one used the user guidance window
and one did not. By comparison, it is clear that the participant with the guidance of the user
window had more accurate interaction results. This again demonstrates the effectiveness of
the user guidance window. Additionally, we analyzed the first 70 attempts and the last 30
attempts of each participant, and it can be seen that there is a certain unfamiliarity when the
user first experiences our HpEIS. However, as the interaction progresses, users can learn the
regularity of the hand poses in the embedding space, which makes it possible to become more
familiar with the interaction of our system. This further demonstrates the user-learnability
and acceptability of interactions on our hand pose embedding space.

Questionnaire Analysis

After the user experiment, 12 participants (6 with the user guidance window and 6 without it)
filled out a questionnaire. It contained 23 questions, of which 22 were mandatory multiple-
choice questions and 1 was a short-answer question. Three of the questions were specific
to participants using the guidance window. Our questionnaire used a 10-point Likert scale
and included the NASA Task Load Index (Hart & Staveland 1988) for workload assessment.
The details of the questionnaire and the results can be found in the Appendix D. Specifi-
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Figure 4.13: Statistical analysis of questions related to interactive hand poses. The graph on
the left counts the number of participants with different scores for each question. The graph
on the right shows the mean score and standard deviation for each question. Where the error
bars are the standard deviation. On the left graph, we provide the questions.

cally, as shown in Figure 4.13, the figure on the left presents the responses to each question,
which provides a clear picture of participants’ overall evaluation of the system. The figure
on the right offers a more precise view through statistical analysis based on these ratings. We
found that more than half (58.3%) of the participants felt that they were able to find the target
point accurately (Mean (M)=7.33, Standard Deviation (SD)=0.78). 10 participants (83.4%)
largely felt that after a few more attempts they could memorize some information about the
hand-pose space and target points could be found more easily (M=8.5, SD=0.92) in subse-
quent tasks. Among 6 participants who used the user guidance window, half always used it
and the other half sometimes. 5 of them agreed that the guidance window helped them to a
great extent to perform the task better (M=8.5, SD=0.83). Some participants stated that our
HpEIS requires learning to find the correct way to use it, which requires a certain mental de-
mand (M=4.25, SD=1.96) and physical demand (M=3.75, SD=1.75). Overall, all participants
agreed that the proposed hand-pose interactions are more engaging and novel than traditional
touch-based or voice-based interactions (M=8.58, SD=1.15).

HpEIS connects multimedia space

We believe the proposed HpEIS is a flexible multimedia adapter used to connect multiple
multimedia spaces and directly interact without additional operations, such as song selection
in the music space and movie selection in the movie space, etc. Here we apply it to a music-
embedding space, which provides a new inspiration for research on connecting multimedia.
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Random start hand-pose position Target point Similar attribute area

Angry: 3
Erotic: 4
Fear: 3
Joy: 3
Sad: 2

Tender: 1

Angry: 3
Erotic: 2
Fear: 3
Joy: 2
Sad: 1

Tender: 1

Angry: 6
Erotic: 4
Fear: 4
Joy: 2
Sad: 2

Tender: 1

Angry: 1
Erotic: 3
Fear: 1
Joy: 5
Sad: 5

Tender: 4

Figure 4.14: A simple interactive application of the proposed HpEIS on a music multimedia space of expressive angry music (The
darker color, the more intense the ’Anger’ expressed in the song.). The first one is the exploration and interaction of music with
different levels of anger. The latter two respectively represent multiple explorations and interactions corresponding to music with
a similar attribute. Specifically, two yellow points are on a circle of similar attributes with radius 0.1 in the music space, and the
real distance in the high dimension are 1.41 and 2.24 respectively. The distance between the left start point and end points in higher
dimensions is about 3.16, and the distance between the right start point and end points in higher dimensions is about 6.00, but only
0.47 and 0.65 in the music space. All distances are Euclidean distances.
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In particular, given a music-embedding space embedded from a similar VAE model, we
normalize its extent to be the same as the hand-pose embedding space extent. After that,
we can directly interact with the music-embedding space via hand movement. As shown in
Figure 4.14, any hand pose can intervene in the space for interaction, thus ensuring interaction
flexibility. For exploring music areas with similar attributes, we can use different starting
hand poses to explore the target areas from different directions and paths, thereby maintaining
the user’s sense of novelty in the music system. Notable, the multimedia space is not limited
to music space, any other multimedia space interaction can use the same HpEIS system. This
improves the transferability of HpEIS and reduces repetitive work, which is not available in
other interaction studies (Xu et al. 2023).

4.5 Limitation

4.5.1 Method Limitation

Although we have been able to visualise high-dimensional hand movement poses in low-
dimensional space and allow different hand poses to be distributed in different locations in the
potential space by implementing classification of the hand poses. Based on this, our stability
design and smoothness design allow us to build a more stable and smooth interaction system,
which can be used to explore some 2D-based data spaces. However, the current system still
has the disadvantage of having many hand poses in one region of the latent space, as shown
in Figure 4.1 (c) and more details will be illustrated in the next chapter, so there is still a lack
of good control or disentanglement of individual hand poses. In other words, the system has
less control of how the hand poses could relate to different aspects of latent space control.

In addition, due to the limitations of the dataset, the current systems can only have good
interaction control for the categories of hand poses that have been collected. This property
makes our control of hand movements less flexible. We would like to be able to control
different controls by different hand movement states, whereas existing interaction systems
are difficult to achieve separate controls corresponding to different movement states without
more extensive datasets and a large overlapping area due to the above two limitations.

4.5.2 Study Limitation

This chapter also has some study limitations. The number of participants in the experiment
was still small, as already discussed in Chapter 3, and this remains a constraint. More im-
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portantly, all experiments were conducted in a controlled environment with a plain white
background. This condition simplified the recognition task by removing visual noise and
distractions, but it does not reflect the complexity of real-world scenarios. In everyday set-
tings, users may interact in front of varied backgrounds, in different rooms, or even outdoors,
where the colors, textures, and lighting conditions are much less stable. Such changes may
influence the performance of the hand pose interaction method, and the current results may
therefore overestimate the robustness of the system. Another limitation is that the controlled
setting restricted the evaluation of how the system adapts to diverse and dynamic conditions.
For example, sudden changes in lighting, cluttered scenes, or moving objects in the back-
ground were not considered in this study. These factors can affect both the accuracy of hand
detection and the stability of the interaction. Addressing them will be necessary to make the
method practical for real-world use.

4.6 Conclusion

In this chapter, we developed a HpEIS to adapt multimedia collections via mid-air hand
movement using only a camera with MediaPipe software. HpEIS engages in (i) provid-
ing user-learnable and interpretable visible space exploration experiences, and (ii) providing
flexible, stable, and smooth hand-pose interactions. To this end, we proposed the augmented
VAE model encoding to obtain a 2D normalized hand-pose embedding space, which can be
visualized for multimedia interaction via hand movement. A series of stability and smooth-
ness post-processing operations have improved the overall user experience of the interactive
system. We evaluated HpEIS in the task of finding the target points in the hand-pose embed-
ding space with and without a user guidance window, as well as mapping music embedding
space exploration. The hand movement curves of our user experiments show that our HpEIS
provides a flexible, stable and smooth hand-pose interaction method, and the application of
our HpEIS in a music space provides an idea for 2D-space interaction of mid-air hand poses
with smart multimedia systems. It guides a stable, smooth and easy-to-learn approach for
visualising mid-air hand poses for interaction with smart multimedia. However, we still want
to further enhance hand interaction by making it more natural and flexible. Rather than re-
stricting interactive hand poses to predefined gestures within a dataset, we seek a method that
allows control based on the continuous state of hand movements. At the same time, we aim
to minimize the need for constantly collecting new gesture data to accommodate evolving
interaction demands. Therefore, in the next chapter, we will explore these challenges and
expectations through the use of a disentangled low-dimensional hand pose space.



Chapter 5

A Mid-Air Hand Pose Interaction
Method Based on Disentangled
Degrees-of-Hand-Freedom

Previous research has shown that high-dimensional hand poses can be mapped

to a low-dimensional space, enabling stable and smooth visualization of mid-air

movements. However, these methods are limited by predefined poses and a 2D

space, restricting their functionality. Furthermore, distinguishing between over-

lapping hand-pose intervals within one representation space remains a signifi-

cant challenge. To address these limitations, we proposing a generalizable strat-

egy for handling high-dimensional inputs. In this chapter, we address three key

challenges in hand-pose-based interaction research: i) disentangling the hand-

pose embedding space to ensure independent interactions of different hand poses

within a unified representation, ii) enhancing the extensibility of hand-pose en-

coders for broader interactions, and iii) developing an optimisation evaluation

framework to assess interaction performance and adaptability. Our goal is to

improve the practicality and extensibility of mid-air hand movement interactions

for real-world applications.
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Figure 5.1: Our HandSolo mid-air hand pose interaction method can disentangle the high-dimensional hand poses captured by
a camera into low-dimensional degrees of hand freedom (DOF) embedding spaces. It can independently apply different hand
poses, such as PINCH, ROTATION and others, to one-dimensional (1D) or two-dimensional (2D) interactive control. The two 1D
disentangled spaces and one 2D disentangled space in the example shown above can be mapped to a variety of practical uses, such
as dial control of music volume, dragging a slider of progress bars, selecting tracks in a streaming media space (Vad et al. 2015).
The visualization analysis tool, VIEs, we proposed to help designers design and combine DOFs to find reasonable mid-air interactive
hand poses.
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5.1 Introduction

Mid-air hand-pose interaction aims to use different hand poses and movements for contactless
system control. In recent years, mid-air hand-pose interaction has made significant progress
in the field of intelligence with the development of smart devices, e.g. contactless hand
pose interactions in intelligent driving systems (D’Eusanio et al. 2020, Qian et al. 2020)
help reduce distractions while driving, facilitates control of furniture such as curtains with
gestures in smart homes (Liu et al. 2020), exploration of medical images through contactless
hand poses in surgery (Alonazi et al. 2023, Lee et al. 2020, Mahmoud et al. 2021, Zhao et al.
2023). The main challenge is to implement various mid-air hand-pose interactions using a
unified easy-to-adjust approach.

Our previous research has demonstrated that we can perform dimensionality reduction of
high-dimensional hand poses, thus allowing changes in mid-air hand poses to be visualised
in low-dimensional space, and making mid-air hand movement more stable and smooth in
low-dimensional space. Our approach can effectively reduce the disadvantages of bulky, ex-
pensive, and uncomfortable devices based on large devices such as VR and AR. However,
the former still faces huge challenges, such as processing of the high-dimensional character-
istics of hand-pose signal features and the constraints in gesture interaction based on fixed
hand-pose classification.

Specifically, due to the widespread use of cameras on different devices, such as mobile
phones, homes, and even cars, camera-based mid-air hand pose interaction applications have
been further extensively studied. However, they still face the two challenges, i.e. high-
dimensional hand-pose signal features and user-friendly interaction design based on a pow-
erful hand-pose encoder. Our work in Chapter 3 introduce a continuous interaction strategy
with visual feedback of hand pose and mid-air hand pose recognition and control for a smart
music speaker, relying on an autoencoder joint training framework for embedding fixed hand-
pose categories. Chapter 4 further propose a new hand-pose embedding interactive system
with stabilising and smoothing post-processing operations, mapping a user’s flexible hand
poses to a two-dimensional visual space using a Variational Autoencoder (VAE) trained on
different hand poses. The methods mapped mid-air hand-pose movements onto a continu-
ous two-dimensional platform for a stable and smooth interaction design. Although these
interaction methods have some amount of flexibility and are easy to visualize, they are only
adapted to fixed hand-poses and can only be used in a two-dimensional continuous space,
which results in a limited functionality. Furthermore, based on the latent encoding obtained
via the training of different mid-air hand-poses, although the different hand-poses can be



CHAPTER 5. A MID-AIR HAND POSE INTERACTION METHOD 74

Proposed DisentanglementNo DisentanglementHpEIS

Figure 5.2: Comparisons of traditional hand-pose embedding space from HpEIS in Chapter
4, and ours without and with disentanglement. Note that the embedding figure comes directly
from the Chapter 4. The mixture of multiple hand poses allows for continuous interaction of
different hand-pose movements, but it is difficult to separate the different hand-pose spaces
independently, resulting in ambiguity in space representation. Compared with HpEIS and no
disentanglement VAE model, our disentanglement VAE model can better separate the unified
mixed embedding spaces into two independent embedding spaces which can be used for
independent interactions.

mapped to a unified representation space, there is still an underlying challenge that different
hand-pose intervals in the unified hand-pose space are difficult to split, especially in areas
where hand-poses overlap, as shown in the left of Figure 5.2.

In order to achieve interaction independence of different mid-air hand poses, the
flexible mid-air hand movement interaction is then extended to more real-world inter-
action scenarios, thus providing a generalisable application strategy for interaction with
more high-dimensional inputs. In this chapter, we simultaneously highlight and address
three important issues in current hand-pose based interaction research for real-world applica-
tion scenarios, including (i) separating the joint hand-pose embedding space of all poses in a
representative dataset such that different hand-poses from the same encoder can be allowed
to interact independently leading to a disentangled representation of the different poses, (ii)
enhancing the extensibility of hand-poses from said hand-pose encoders, and (iii) designing
an interaction optimisation evaluation scheme.

To address the above mentioned issues, we propose a new paradigm for mid-air hand-
pose interactive system design, focusing on separating the hand-pose spaces from a trainable
VAE-based encoder to obtain a more flexible representation of degrees of freedom (DOF) of
hands and perform virtual control of different functions. The key challenges lie in (i) how
to separate hand-poses and keep their interaction independent, and (ii) how to make system
designers better at improving interaction design based on interaction feedback. To address
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the first issue, mainstream research (D’Eusanio et al. 2020) tends to use different classifiers to
obtain the corresponding categories of hand-poses and map them to their respective embed-
ding spaces, which are used for the corresponding hand-pose interaction control. However,
this requires independent encoding of different hand-poses and the technique tends to be less
robust to new hand-poses. The latter is often achieved using user questionnaires to obtain a
rough design but without a reasonably detailed design paradigm. Thus, this remains an open
research problem.

In this chapter, we propose a adjustable hand-pose space disentanglement approach for a
VAE-based hand-pose embedding model (named HandSolo) to obtain optional dimensional
and independent hand-pose embedding spaces for interactions based on different degrees of
freedom (DOFs) of hands. In addition, we further introduce a new visual interaction eval-
uation strategy (VIEs) to help system designers understand the optimal interaction scheme
during user hand-pose interaction. In particular, different from our previous work, we in-
corporate a disentanglement penalty term into a trainable VAE model to separate different
embedding spaces of hand-pose movements with different DOFs. It plays a crucial role in
the separation and control of hand poses, as well as in the study of high-dimensional sig-
nal interaction. On one hand, the disentangled hand-pose DOF representation from the low-
dimensional embedding space of high-dimensional hand poses allows for different functional
hand interaction designs in corresponding independent distinct low-dimensional spaces. On
the other hand, we can disentangle arbitrarily required hand poses with different DOFs from
a hand space coming from the same encoder, resulting in low-cost controllable interaction
systems. Furthermore, to better design a human-computer interaction system, we further
propose the visual interaction evaluation strategy for system designers to choose the best dis-
entangled embedding space of hand-pose DOFs for interactions. The whole new paradigm
of mid-air hand-pose interactive system design we proposed is shown in Figure 5.1.
Contributions:

• We propose a method, HandSolo, to realize multiple interactive functions with ad-
justable mid-air hand-pose movements by disentangling the embedded low-dimensional
latent space from a learnable VAE model into different independent hand pose sub-
spaces with different DOFs.

• We explore new hand information representations (named new hand features) to better
enhance the spatial extent of the disentangled embedding for specific hand poses, thus
providing better interaction design options for different interaction functions.

• We design a new visual interaction evaluation strategy (VIEs) to help the system de-
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signer design and improve optimal interaction systems based on visual analysis of user
feedback. This is a new effort that improves on the traditional questionnaire-based
human-computer interaction strategies.

• We design a simple mid-air hand-pose system with the proposed new approaches and
use it to demonstrate the effectiveness of our proposed methods. We further demon-
strate the applicability of our HCI system in real-world scenarios through user studies.

• We demonstrate the extensibility of our proposed HandSolo model for more hand-pose
interactions with more DOF latent embedding spaces.

5.2 Background

5.2.1 Mid-air Hand-pose Interaction

Directly using hands to complete different control functions is a convenient way of interac-
tion in the real world, because hands are a medium and a powerful tool to interact with the
surrounding environment. By changing different hand poses, such as pinching, rotating, we
can trigger different interactive functions and further realize interactive control. For exam-
ple, we only need two fingers to control the TV volume, which enables fun new styles of
interaction.

Some studies (Khundam 2015, Yousefi et al. 2016, Zhang et al. 2017) have attempted
to model a virtual hand in virtual systems and perform hand interactions in the virtual en-
vironment based on virtual reality (VR) and augmented reality (AR) devices. For example,
(Kim et al. 2024) designed a skin stretch display to simulate hand interaction in a VR envi-
ronment that features four independently controlled stretching units surrounding the forearm.
Although these approaches may work well to simulate hand interactions in virtual environ-
ments, they are difficult to implement in the real world and rely on external physical devices,
such as head-mounted displays.

Detecting hand pose signals in the real world and parsing the signal content to implement
corresponding interactive functions has recently attracted ever-increasing research attention
in the HCI community. There are two main methods: one is based on radar hand signal rep-
resentation (Hajika et al. 2024, Lee et al. 2024, Sluÿters et al. 2023), and the other is based
on camera hand signal representation (Qi et al. 2024, Zahra et al. 2023). Hand interaction
systems based on radar signals are often only applied to coarse-grained gesture recognition
interactions due to the inherent crudeness of signal representation, such as different gestures
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corresponding to different interaction feedback. For instance, (Sluÿters et al. 2023) used mi-
crowave radar sensors to recognize gestures for interactions, which only filters the raw radar
signals and reduces them to two physically meaningful features, i.e. the hand-radar distance
and the effective permittivity of the hand. Although gesture interaction based on radar signals
has certain efficiency advantages, i.e., the feature dimension of radar signals is not high, the
gesture interaction it can do has obvious limitations, such as many continuous hand move-
ments cannot be recognized, the popularity of radar equipment is not high, and the distance
between the hand and the radar cannot be too far. However, camera-based feature extraction
for hand has attracted more and more attention because it is widely configured. For example,
(Zahra et al. 2023) designed a camera-based hand gesture recognition and interaction system
based on a traditional genetic algorithm. They achieved the same recognition performance
and interaction functions as using radar equipment. Moreover, (Xu et al. 2023) proposed an
autoencoder with a PointNet-based classifier, which encodes high-dimensional hand features
in a low-dimensional embedding space. It allows multiple hand-pose movements to interact
continuously in the embedding space, which can achieve more efficient embedding than radar
signals. These studies have given us great inspiration, as they demonstrate the effectiveness
and convenience of mid-air hand interaction. However, current research still has defects in
the independence and coherence of hand-pose movement interaction, so we further address
these issues in this study.

5.2.2 Hand-pose Embedding

In this section, we will introduce some existing hand-pose embedding methods (Lee et al.
2024), based on the camera sensor. Some studies (Islam et al. 2020, Nguyen et al. 2023,
Wang et al. 2020) employ the Convolutional Neural Network (CNN) to extract the hand
features and recognise them to realize different interactive functions. However, their high-
dimensional properties make them difficult to apply in real scenarios. Dimensionality reduc-
tion techniques (Gisbrecht et al. 2015, Rusu et al. 2022) are introduced into the hand-pose
embedding, transforming and creating a low-dimensional representation of high-dimensional
hand signals. For example, (Rusu et al. 2022) used a data glove equipped with accelerometers
to record high-dimensional hand movement data that are thereafter reduced to 2D embeddings
using autoencoders. However, its dependence on devices makes it not extend well to multiple
high-dimensional sensors and more real-world scenarios, such as dirty hands when cooking.
Chapter 3 and Chapter 4 proposed a VAE model joint learning with a hand pose classifier
under the real-world camera, which can better embed the hand movement into a 2D embed-
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ding space and allow the user to interact in this space. However, these methods encode all
the collected fixed gestures or hand poses into a unified 2D embedding space, which makes
the interaction single-functional and less independent among different hand poses. Disentan-
glement methods (Fu et al. 2024, Higgins et al. 2017, Locatello et al. 2020, Tran et al. 2021)
are popular and effective methods to achieve interpretable application of model to different
tasks, and are mainly used to disentangle feature representations from a unified model into
independent feature representations with different attributes and thus achieve independent
adaptation to different tasks. Inspired by this, in this study, we would like to introduce the
disentanglement strategy into the high- to low-dimensional VAE to allow high-dimensional
hand signals to be mapped into hand-pose embedding spaces with different DOFs using a
unified encoder and achieve different interaction functions.

5.2.3 Disentanglement Metrics

To assess the ability to disentangle models in representation learning, (Kumar et al. 2017)
developed the SAP score. This score is used to measure the difference in predictive ability
between the two most predictive latent variables in each generative factor. This assessment
metric is simple but assumes that the relationship between the variables is linear, which is
less applicable in more complex datasets. Similarly, the Beta-VAE score (Higgins et al. 2017)
uses a linear classifier to predict generative factors from latent variables. The higher the score,
the better the separation. However, it relies on the assumption that the relationship between
factors and latent variables is linearly separable, which limits its flexibility. To improve the
limitations of the Beta-VAE score, (Kim & Mnih 2018) proposed the FactorVAE score. It
measures the independence between latent variables by using discriminators. This approach
obtains more complex dependencies, but it increases the computational cost and the choice
of hyperparameters is a challenge.

In addition, Mutual Information Gap (MIG) (Chen et al. 2018) calculates the gap between
the highest mutual information and the second highest mutual information between latent
variables and generative factors. It penalises information overlap between latent dimensions
and encourages more unique representations. However, for high-dimensional data, MIG can
be very expensive to compute.

To better assess the ability of latent variables to match generative factors, the DCI (East-
wood & Williams 2018) uses three metrics to assess representations: disentanglement, com-
pleteness, and informativeness. However, the classes of generative factors are not always
known, especially for some unsupervised or weakly supervised learning, so DCI does not
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work in such cases.

5.3 Designing of Mid-air Hand-pose Disentanglement Model

In this section, we present the details of our new mid-air hand-pose disentanglement model,
including the fundamental hand-pose embedding model. and our model’s extensible explo-
ration. Our main innovation is an extensible hand-pose space disentanglement approach
based on VAE (HandSolo).

5.3.1 Adjustable Hand-pose Space Disentanglement VAE (HandSolo)

As shown in Figure 5.3, we propose a HandSolo, a disentanglement approach for the widely
used VAE model (Kingma & Welling 2014, Rezende et al. 2014, Xu et al. 2024, 2023), to
disentangle the unified hand-pose embedding space into different independent sub-space for
meaningful hand poses with different Degrees-of-Freedoms (DOFs). Please note that, in our
study, the DOF is different from the traditional “hand DOF” (Hollerbach 1985, Muceli & Fa-
rina 2011), such as bones and joints. We set different movement patterns and characteristics
of the hand as different DOFs, because we found that different dimensions of embeddings can
represent different hand poses, e.g. joint rotation, fingertip distance, different finger move-
ment speeds. On the one hand, our HandSolo can reduce various complex high-dimensional
hand-pose representations to a specified low-dimensional space and disentangle it into de-
sired hand poses to control the system. This is an efficient fundamental model with low
hardware requirements. On the other hand, we introduce more detailed hand features to
better represent the corresponding hand movements with different DOFs and improve the ro-
bustness by increasing specific hand-pose movement embedding capability and reducing the
influence of physical factors such as camera distance and different individual hands. In ad-
dition, we further explore the potential of the proposed HandSolo to extend more new hand
DOFs to represent new hand poses, thus reducing the design cost of more new interaction
requirements.



C
H

A
PT

E
R

5.
A

M
ID

-A
IR

H
A

N
D

PO
SE

IN
T

E
R

A
C

T
IO

N
M

E
T

H
O

D
80

4D Latent 
Embedding

Encoder

Reconstructed 𝐻′𝑖
Reconstructed Positive 

hand pose ෢𝐻′𝑖

Reconstructed  
Augmented  {𝐻′1

𝑖
,…, 𝐻′100

𝑖
}

ℒ𝐶

Frame 𝐻𝑖  from hand 
movement {𝐻}

Frame ෡𝐻𝑖  from Positive 
hand movement { ෡𝐻}

Augmented hand 
poses {𝐻1

𝑖
,…, 𝐻100

𝑖
}

D
ecoder

128 Neurons

97 Neurons

4 Neurons

66 Neurons

128 Neurons

97 Neurons

4 Neurons

66 Neurons

𝑁(𝜇 ഥ𝐻, 𝜎 ഥ𝐻) 𝑁(𝜇𝐻, 𝜎𝐻) 𝑁(𝜇 ෡𝐻, 𝜎 ෡𝐻)

ℒ𝐴𝐶𝑅

𝑁(0, 1)

ℒ𝐷𝐶𝑅

ℒ𝐴𝐾𝐿 ℒ𝐷𝐾𝐿

ℒ𝐾𝐿

(ℒ𝑅
ഥ𝐻, ℒ𝑅

𝐻, ℒ𝑅
෡𝐻)

PointNet
Classifier

Input
Hand Poses

Reconstructed
Hand Poses

Augmentation and Disentangle

ℒ𝐷𝐶𝑅: CR Loss between   
            embeddings of 𝐻𝑖  and ෡𝐻𝑖  
ℒ𝐴𝐶𝑅: CR Loss between   
            embeddings of 𝐻𝑖  and ഥ𝐻𝑖

  ℒ𝐾𝐿: KL Loss for 𝐻𝑖  in VAE
ℒ𝐴𝐾𝐿: KL Loss for ഥ𝐻𝑖  in VAE
ℒ𝐷𝐾𝐿: KL Loss for ෡𝐻𝑖  in VAE
    ℒ𝑅

𝐻: Reconstruction Loss 
      between 𝐻𝑖  and 𝐻′𝑖

    ℒ𝑅
ഥ𝐻: Reconstruction Loss 

         between ഥ𝐻𝑖and 𝐻′𝑖

    ℒ𝑅
෡𝐻: Reconstruction Loss 

       between ෡𝐻𝑖  and ෢𝐻′𝑖  
     ℒ𝐶: Classification Loss

Loss Functions:

Figure 5.3: The framework of the proposed adjustable hand-pose space disentanglement VAE for HandSolo. The model principal
is a basic Encoder-Decoder VAE, containing four linear layers respectively. It uses three inputs, namely target hand-pose frame Hi,
augmented hand poses {H i}[1,100] and positive sample hand-pose frame Ĥi. We optimise the three hand-pose inputs using the regular
VAE loss functions, containing reconstruction loss and KL loss in VAE. Besides, we introduce a PointNet-based classification loss to
constrain the regular classes of hand pose. Finally, we construct a disentanglement loss and augmentation loss based on Consistency
Regularization (Sinha & Dieng 2021) (CR) loss with the positive sample and augmented samples, allowing the same hand-pose
embedding to be further approximated and maintaining interaction stability.
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Basic VAE Model

Variational Autoencoder (VAE) (Kingma & Welling 2014) is a widely used model for high-
dimensional to low-dimensional mapping learning due to its efficiency. Inspired by Chapter
4, we employ the same augmented VAE model to learn a unified hand pose embedding latent
space. This is due to its effective stability and smooth designs that can provide powerful
interaction experience guarantees. In detail, as shown in Figure 5.3, the augmented VAE
model with an encoder containing four fully connected layers with 128, 97, 66, and 4 neurons
and the opposite number of neurons in the decoder. Our VAE model also contains a joint
learning classification model based on the PointNet (Qi et al. 2017, Xu et al. 2023) to further
improve the distinguishability of different hand-pose embeddings. This classifier accepts a
low-dimensional latent space embedding as input, and the classifier loss LC is joint with
VAE loss. The VAE loss contains a reconstruction loss function L H

R , i.e. Mean Squared
Error (MSE), for target hand pose Hi from the hand movement {Hi} and a Kullback Leibler
(KL) divergence LKL of the distribution of low-dimensional data and the standard normal
distribution.

New Disentanglement Approach

To eliminate semantic ambiguities between different hand-pose embeddings for multiple in-
dependent interaction requirements, we propose a HandSolo approach to represent different
DOFs in terms of independent low-dimensional sub-spaces learnt from a VAE-based disen-
tanglement model. Here, we refer to the learned low-dimensional latent mappings as differ-

ent degrees of freedom (DOFs), e.g., in Figure 5.3 we have 4-dimensional (4D) DOFs and
we can flexibly set or combine different DOFs to form the corresponding hand pose. In this
way, we can assign independent disentangled embedding spaces with fixed dimensions to
corresponding hand-pose movements with different DOFs for different interaction require-
ments. For example, we utilize the disentangled one-dimensional space to independently
represent “PINCH”, where the DOF values represent the distance of two fingertips. The in-
dependent embedding space allows “PINCH” interaction to be focused and uninterrupted by
other degrees-of-freedom hand poses.

To realize the disentanglement ability in the VAE model, we introduce the Positive hand
movement, which has the same interactive meaning as target hand movement (either multiple
repetitions by the same user or attempts by different users). The motivation of our HandSolo
is to narrow down the embeddings of hand poses (Here they are composed of predefined
DOFs) from different hand movements with the same interaction meaning (Here we call
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them as Positive hand movements {Ĥ}). As shown in Figure 5.3, we first train the VAE
model for the Positive hand pose Ĥi for target hand pose Hi from Positive hand movement
by a reconstruction loss L Ĥ

R and KL divergence LDKL. To narrow the embeddings between
the target hand pose and the positive hand pose, we employ a Consistency Regularization
(Sinha & Dieng 2021) (CR) (Here we called disentanglement penalty term) to make the
embeddings of Hi and Ĥ consistently. It is formatted as LDCR in Figure 5.3.

In addition, due to the augmentation strategy, we also consider the reconstruction loss
L H

R and KL divergence LAKL for augmented samples {H i}[1,100]. To improve the stability of
hand poses in corresponding embedding space, we also employ a Consistency Regularization
LACR to make the embeddings of augmented neighboring hand poses {H i}[1,100] (the main
cause of the system jitter phenomenon) consistent with target hand pose Hi. We sample 100
augmentations for each hand pose sample and the augmentation details follow with Chapter
4. Finally, our whole disentanglement VAE model (HandSolo) is optimized as follows:

LVAE = (L H
R +LKL +LC)+(L Ĥ

R +LDKL +LDCR)+(L H
R +LAKL +LACR). (5.1)

As shown in Figure 5.4, we visualize the ability to represent different hand poses with dif-
ferent combinations of DOFs from the 4D latent embedding space, based on different variants
of the VAE model. Specifically, we regard two of the 4 dimensions as two-dimensional point
coordinates (x,y), and we further use the left two disentangled dimensions as two indepen-
dent one-dimensional coordinate movements, termed z1 and z2. In this way, we can fully
demonstrate the multi-scenario utility of our HandSolo. Comparing the basic VAE (Figure
5.4 (a)) and our disentanglement VAE (Figure 5.4 (b)), when we consider the proposed dis-
entanglement approach in the VAE model, the overlapping embedding spaces with different
DOFs, which can be treated as three hand poses for interactions, one for 2D interaction and
others for 1D interactions, are separated clearly. However, when we carefully disentangle the
two disentangled 1D sub-spaces, there is still a certain overlapping interval. This indicates
that two hand poses with the same DOF range may be activated in one interaction, which is
problematic. To address this problem, we further introduce some new features for hand-pose
representation, detailed in the next section.

New Feature Enhancement

In this section, we will introduce the inputs of our disentanglement VAE (HandSolo). On one
hand, we follow Chapter 4 to represent the i-th hand pose by 21 key landmarks detected by
MediaPipe (Lugaresi et al. 2019). Different from Chapter 4, to better represent the complex
hand poses, we consider more landmarks (total 13 landmarks {(xk,yk,zk)}, k ∈ [1,13]) from
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w/o disentanglement w/ disentanglement
w/ disentanglement 
and hand features

w/ disentanglement and hand 
features in 5D latent space

(a) (b) (c) (d)

Figure 5.4: Comparisons of different disentangled embedding spaces from different VAE
variants. When considering disentanglement (b), we can obtain more independent sub-spaces
for different degrees of freedom (DOFs) of hand poses. When further introducing new hand
features (c), the distinguishability of the embedding spaces for different DOFs is more obvi-
ous, further facilitating interaction independence. Additionally, we can set higher dimensions
of embedding space (d) to represent more DOF of hand poses and the still excellent discrim-
inability reflects the cost-effectiveness and robustness of our model. We also provide more
comparative results with different DOF combinations and settings in Appendix C.

three main fingers, not only two. Specifically, we represent i-th hand pose from hand move-
ment as qi = [θ 1

i ,θ
2
i ,θ

3
i , . . . ,θ

11
i ,θ 12

i ] after the quaternion conversion (Rieger & Van Vliet
2004) in Chapter 4. The quaternion is calculated based on two neighbour landmarks as shown
in Figure 5.5 and can avoid the effect of hand size, hand position in the sensor field and dis-
tance from the sensor. However, there is still a certain overlapping interval as shown in Figure
5.4 (b), when we only consider the quaternion features. On the other hand, to improve the
robustness and further reduce subspace ambiguity, we introduce new features to better repre-
sent the specific hand poses based on the detected landmarks referring to their physiological
properties. As shown in Figure 5.4 (b) and (c), two 1D DOF sub-spaces can represent RO-
TATION (z1) and PINCH (z2). When we add two new features, i.e. the angle α between
Landmark 12 and Anchor 0 and the physical distance d between Landmark 4 and Landmark
8, two 1D DOF sub-spaces can be disentangled better and no overlapping interval compared
with Figure 5.4 (b) and (c).
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(a) HpEIS

Figure 5.5: Different from the existing HpEIS in Chapter 4, we consider more additional
features to represent the complex hand poses. By introducing new features, such as the angle
between two landmarks and distance between two fingertips, the mapping correspondence
of each hand-pose movement in the corresponding disentangled embedding space becomes
larger and maintains linear correspondence for better interactions. The detailed comparsions
are shown in Figure 5.6.

Extensibility Setup

In addition, we further analyse and visualize the importance of new features on Figure 5.6, to
demonstrate that the embeddings can be disentangled into exclusive hand DOF without being
affected by other factors. We use z2, the fourth dimension in the 4D embedding space, as an
example (Here we observe that PINCH is the best hand pose, details are given in Section
5.4.1.). When we consider the angle α and physical distance d (Figure 5.6 (b)), the PINCH
interaction can perform more linearly without being affected by other factors, such as wrist
rotation and hand moving from the sensor, compared with Figure 5.6 (a). This is because we
only consider key hand movements that affect PINCH, and take other potential factors into
account in hand features, thus ensuring that they are ignored as the PINCH subject movement
occurs. Specifically, wrist rotation induces a smaller change in the DOF dimension of the
fingertip distance, highlighting a more effective disentanglement of these degrees of freedom
in the latent space. It also demonstrates that the disentanglement between wrist rotation and
fingertip distance (PINCH) is improved.

In this way, as shown in Figure 5.6 (b), when PINCH occurs in the real world, our Hand-
Solo can achieve a linear movement in the disentangled 1D embedding space. This can be
employed in many interactions, such as controlling the progress bar of music, and control-
lable opening/closing of curtains or lights in a smart home.

As shown in Figure 5.7, our HandSolo has the extensibility to scale multiple DOFs to
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Figure 5.6: Mapping correspondence between the distance between the thumb’s tip and index
finger’s tip and the embedding of PINCH hand pose in disentangled low-dimensional space.
(a) for without new features, (b) for with two hand features. With the additional new features,
the DOF for expressing the PINCH hand pose show a clearer linear correspondence with the
variation of distance between the two fingertips, which is shown in magenta. The wrist
rotation (blue), which was originally more sensitive, becomes less noticeable in this DOF. As
a comparison, we also give the smaller impact of moving the hand back and forth relative to
the camera (red).

accommodate new hand pose requirements without complex setups. This has great potential
for real-world applications and lays the foundation for realizing low-cost and easy-to-use
mid-air hand-pose interactive systems. In particular, in our disentanglement VAE model, if
we want to add more hand poses for more interactive function controls, we only need to
change the dimension of the latent embedding space and leave the rest unchanged. As shown
in Figure 5.4 (d), we add another DOF in our disentanglement VAE by setting the dimension
to 5. Compared with the 4D embedding space, in Figure 5.4 (c), our model can maintain
good discriminability. We provide more details experiments to discuss this and demonstrate
its effectiveness in Section 5.4.3.

5.3.2 Experiment I Disentanglement Test

Based on our previous description, in this section we compare the effects of the models.
Inspired by Group-MIG (Tran et al. 2021), we designed a metric to assess the performance
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Figure 5.7: Extensibility Setup. Our HandSolo can directly extend a new disentangled candi-
date space to accommodate new hand pose requirements without complex setups. For exam-
ple, we can add an additional dimension of VAE embeddings as a new DOF to disentangle a
new 1D hand pose for another independent interaction.

of our model and named it Latent-MIG L:

L =
1
d

d

∑
i=1

M(zi), (5.2)

M(zi) =
H(zi)− Imax(zi)

H(zi)
, (5.3)

Imax(zi) = max
j ̸=i

I(zi,z j), (5.4)

I(zi,z j) = H(zi)−H(zi | z j), (5.5)

=
∫

p(zi,z j) log
p(zi | z j)

p(zi)
dzidz j, (5.6)

H(zi) =−
∫

p(zi) log p(zi)dzi, (5.7)

in which zi is the value of dimension i of latent embedding, H(zi) is the entropy of the random
variable zi, p(zi) is its probability density function. I(zi,z j) denotes the mutual information
between zi and z j, while H(zi | z j) is the conditional entropy of zi given z j. The joint probabil-
ity density function is given by p(zi,z j), with p(zi | z j) as the conditional probability density.
Imax(zi) represents the maximum mutual information between zi and any other latent vari-
able. M(zi) is the mutual information gap for zi. The density function p(z) is estimated using
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kernel density estimation (KDE),

p(z) =
1

nh

n

∑
k=1

K
(

z− zk

h

)
, (5.8)

where h is the bandwidth, K(·) is the kernel function, and zk are the sample points.
The Latent-MIG can be used to assess the degree to which each latent variable is sepa-

rated from the others in our learned representation of mid-air hand pose. Latent-MIG relies on
entropy and mutual information. Higher values of mutual information indicate greater depen-
dence between two variables. To assess the disentanglement ability of our model, Latent-MIG
calculates the maximum mutual information between each latent dimension and any other di-
mension. However, traditional MIG calculation methods require discrete data, and to accom-
modate the continuous data of our mid-air hand movements, probability density estimation
is required to compute entropy and mutual information. Kernel density estimation (KDE)
approximates probability distributions by smoothing the observed data points using a kernel
function (e.g., Gaussian).KDE provides a flexible method for estimating single-variable dis-
tributions and joint distributions. However, incorrect choice of bandwidth can lead to under-
or over-smoothing, which can affect entropy calculations. So to prevent numerical errors,
we truncate the estimated density to a small positive value before taking the logarithm. Un-
like Group-MIG, Latent-MIG focuses only on the independence between latent dimensions
and does not assess how well latent variables or groups of latent variables represent known
data factors. This allows it to be used for unsupervised learning without predefined factors,
thus enabling training without predefined gestures. Furthermore, the reason that we did not
consider optimisation with the same metrics during training is because optimising mutual
information (MI) during training is difficult as it requires the estimation of unknown distri-
butions p(z) and p(zi | z j), which is computationally expensive to estimate using methods
such as KDE. In addition, the probability estimates computed by KDEs are non-parametric
methods that are non-differentiable and therefore not suitable for gradient-based optimisa-
tion. MI also involves hard-to-solve integrals that require numerical approximations with
high variance, further increasing the computational difficulty.

We obtain the results as shown in Table 5.1. In the table, we show the Latent-MIG L of
the four models. In this case, the VAE (Xu et al. 2024) is derived from our previous study.
Also we compare Beta-VAE(Higgins et al. 2017), our base HandSolo, and our HandSolo with
the addition of two hand features. For a further exploration, we also give the results of our
extension HandSolo, i.e., 5-dimension latent space. In this experiment, besides considering
the accuracy of the hand pose, we also consider the Latent-MIG, which is mainly used to
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Table 5.1: HandSolo disentanglement performance results

Score VAE Beta-VAE HandSolo
HandSolo

Two extra features
Extension
HandSolo

Acc(%) 97.16 96.87 98.55 98.46 97.28
Latent-MIG 0.4784 0.6726 0.7475 0.7840 0.6913

compare the degree of disentanglement of the data, i.e., the more disentangled the data is,
the larger the Latent-MIG is, and vice versa. In this case, we emphasised larger Latent-
MIG results considering that we wanted greater numerical differentiation of the different
dimensions to be used to interact more flexibly and accurately with different DOFs.

Table 5.1 shows that the addition of the disentanglement module can increase the degree
of discretisation of the dimensions in the latent space. Meanwhile, the Latent-MIG score
of our HandSolo (0.7475) is 0.0749 higher than that of Beta-Vae (0.6726), while adding
more hand features gives the highest Latent-MIG score of 0.7840. Compared with Beta-
Vae which has the disentanglement effect, the Latent-MIG scores of our model are improved
by 2.78%- 16.56%. While all the disentanglement models have higher Latent-MIG scores
than that of VAE (0.4784), which verifies that our disentanglement model obtains a more
discriminative latent space than that of the non-disentangled VAE. The accuracies of our
proposed models are all higher than Beta-Vae (96.87%). Although the accuracy of adding
hand features (98.46%) is not higher than that of the basic HandSolo (98.55%), there is not
a significant difference between them. With higher Latent-MIG scores, the HandSolo with
added hand features is more effective in implementing flexible interaction control through
mid-air hand DOFs. Although our extension’s setting results in lower Latent-MIG scores
(0.6913) for the 5D HandSolo model, it is still a significant improvement over the VAE model
without disentanglement or Beta-Vae. The possible reason for the reduced Latent-MIG scores
for the extension’s setting is that disentanglement of higher dimensions is more difficult, more
complex, and more demanding on the model. We believe that more gesture data will help the
disentanglement of higher dimensions.

5.4 Designing of Mid-air Hand-pose Interaction System

In this section, we present the details of our new mid-air hand-pose interaction system, includ-
ing the prototype of our interaction system. Our main innovation is a new visual interaction
evaluation strategy (VIEs) for system design. We provide the details below.
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5.4.1 Interaction System

In this section, we introduce an example interaction system in Figure 5.8, which can employ
our proposed HandSolo to control different interactive functions by the disentangled hand
poses. In this way, we can evaluate our proposed HandSolo for mid-air hand pose interac-
tions. We take 4D DOF latent embedding space from the trained disentanglement based VAE
as an example. We also introduce examples of the application of hand poses with different
DOF components. Finally, we provide a visual interaction evaluation strategy (VIEs), which
can be used by system designers to choose the best embedding range and the most usable
hand movements range for user interaction.

System Scenario

In the designed interaction system, we set the application scenario to interact with smart
multimedia. When interacting with smart multimedia, e.g., smart music speaker, the most
frequently used functions include volume level control, progress bar dragging, and searching
in the media library according to preferences. To this end, based on our hand pose charac-
teristics, we decompose the four-dimensional latent space of the trained disentangled VAE
into three different interactive hand poses with different DOFs. That is, one two-dimensional
DOFs for 2D interaction and two 1D DOFs for independent interactions, corresponding to
the three interactive scenarios, such as searching music in a 2D media library (Vad et al.
2015), volume level control, and progress bar dragging. In this way, we can demonstrate the
power of our model for different hand poses. To better understand these interactive processes,
as shown in Figure 5.8, we provide a visualization interactive function interface that can be
directly applied to the physical device. The dial and slider can simulate user interactive func-
tions such as adjusting the volume and dragging the progress bar, respectively. Additionally,
in a two-dimensional space, other hand poses control the cursor to select points that represent
music tracks in a media library. Specifically, 2D interactive area be practically applied to
multimedia exploration applications, such as virtual music tracking, where hand poses are
mapped to corresponding music tracks. In this space, the user’s hand movement is visually
represented by a moving green cross pointer, the blue point represents the target point. In
the dial area at the right side’s upper part, we have marked letters at each π

4 interval around a
circular dial. Numbers can alternatively replace these letters to indicate volume levels. The
dial’s starting position is set at the top of the circle, with the letters arranged clockwise. The
user’s hand rotation movement will guide a green linear pointer that moves around the circle
from the center of the circle, allowing the user to control the rotation angle. The red sector is
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Figure 5.8: A sample virtual interaction system that integrates various virtual interaction
objects such as a 2D interactive area, a dial and a bar with a slider.

the target point. In addition, on the lower right side, we design a horizontal bar with multiple
marker points. The number and positioning of these markers can be adjusted to suit various
functions and UI designs. Here we adapt hand pinch to control a vertical green linear pointer
as a slider that moves horizontally. The red rectangular area on the bar is the target point.
Each target point in all tasks is shown in only one of the areas and not shown in the other two.
For our experiment, we set three sizes of different target points in each interaction, which
randomly appeared. The details are further provided in Appendix B. Due to our excellent
disentanglement capability, our system enables users to switch between various functions
via different hand poses, facilitating volume adjustment, progress bar manipulation, explo-
ration and selection of music tracks. These three designs illustrate one possible application
of hands. And it is versatile and can be adapted for various functions and smart devices or
applications. In the next, we will look for the best hand pose with different DOF choosing to
implement each interaction separately.

DOF Setting of Interaction

To find a better single 1D DOF or combined multi-dimensional DOFs in the embedding
space to match the hand pose interactive requirements, we provide an example to balance
different settings (More examples with different DOF settings are provided in Figure C.3
of Appendix C). This is a selective process and requires the designer to make a trade-off.
For example, we employ the trained 4D embedding space to represent four DOFs, called
O0,O1,O2,O3. As shown in the Figure 5.9, we compare single 1D DOF from O3 (a) and
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Figure 5.9: (a) and (b) is one of the examples to compare different DOF choices of PINCH
(Slider) representation from the trained disentanglement VAE, where the DOF of (a) is O3
and (b) is O2.

O2 (b), respectively. For each DOF, we try three hand poses to experiment with feedback
in the corresponding disentangled space. Through the comparisons, we can observe that it is
smooth and maintains linear growth when pinching. Therefore, we set DOF O3 as the PINCH
hand pose and treat it as the final interaction of bar dragging. Similarly, we use O2 to control
the dial rotation because it perfectly expresses hand rotation, which fits perfectly to adjust
the volume of music by dial rotation. And the other DOFs (O0,O1) form a two-dimensional
space that is used to match the music track space for interaction by other hand poses.

With the above description, we have constructed a mid-air hand-pose interaction system
based on our proposed HandSolo for musical multimedia. ROTATION is used to control vol-
ume, PINCH is for dragging the slider on the progress bar and others are for music searching.

Visual Interaction Evaluation Strategy (VIEs)

We introduce a new visual interaction evaluation strategy (VIEs) to help the system designer
design and improve optimal interaction systems based on visual analysis of user feedback,
like refining the range for the selected gestures. This is a valuable new effort that improves on
the time-consuming of traditional questionnaire-based human-computer-interaction design
strategies. Specifically, as shown in Figure 5.10, we visualize the user interaction process into
a unified view and present a reference line of skilled user hand movements. Here, we define
the standard movement completed by our experimental designers as ‘skilled user movement’.
These standard movements are baseline movements made by our designers after several at-
tempts of our hand movement poses. These movements can be regarded as a benchmark for
the hand interaction movements initially designed by our designers for the interaction system.
The view is two-dimensional, with the horizontal coordinate representing the movement time
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and the vertical coordinate representing the value of the corresponding hand pose in the cor-
responding disentangled embedding space. The hand pose analysis curves of multiple users
will be presented in the same view simultaneously. Through visual comparison, the best user
hand pose range and comfortable hand poses can be clearly obtained. Then the embedding
interval corresponding to the best hand movement range can be mapped to the corresponding
interactive device. In this way, the system designer can provide users with a comfortable and
reasonable interactive system through our proposed VIEs.

5.4.2 Experiment I Discovery of VIEs

We conducted three experimental studies to introduce the interaction system’s design and
illustrate our proposed model’s effectiveness. In Experiment I, we experimentally showed
how the VIEs could be used to help system designers discover optimal design choices
of our HandSolo for comfortable and easy-to-use interactions. In this experiment, we
will help the designer to discover more comfortable and reasonable hand poses and ranges of
movement by comparing multiple hand pose movement curves of different users with those
of our experienced designers, so as to achieve a more optimised interaction system.

Note that, the experimental setup of all experiments included an RGB camera of Intel®

RealSenseTM LiDAR Camera L515 (frame rate is 30 fps) and a monitor displaying the in-
teractive interface as shown in Figure 5.8. At the beginning of each experiment, participants
were briefed on the specific requirements of the experiments. The researchers would demon-
strate to them the hand poses they needed to accomplish. All participants were instructed to
sit within one meter of the camera, with hand movements to be performed at a distance of 30
cm from the camera. Participants were assured that their faces and other personal information
would not be recorded, with only their hands and arms being captured.

Experiment Design

The purpose of this experiment was to investigate whether interactive system designers could
design a comfortable and easy-to-use interactive system without resorting to user feedback in
the form of questionnaires or interviews. The experiment was based on the disentangled four-
dimensional embedding space from our trained disentanglement VAE. Before the experiment,
as mentioned in section 5.3.1, we chosen the best three hand poses with different DOFs based
on the trained VAE, including ROTATION from 1D DOF O2, PINCH from 1D DOF O3 and
SWIPE from 2D DOFs (O0,O1). In this case, as shown in Figure 5.8, ROTATION was
used for the interaction of Dial, PINCH was for slider adjustment and SWIPE was for 2D
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interaction.
Four participants (3 female and 1 male) took part in this experiment. All participants

were right-handed, aged between 25 and 35 years. Here we simulate a system designer
making system design and interaction choices. The researcher gave an example of each hand
pose before user experimentation.

Task

In this task, participants were asked to complete the experiment as much as possible with the
hand movement they felt comfortable with. When the experiment started, the participants
were required to perform three complete hand interaction poses in the Dial interaction area,
Slider interaction area, and 2D exploration interaction area on the interactive screen of Figure
5.8. The participants completed the complete interaction with the most comfortable starting
and ending hand pose. After completing a hand pose, the participants clicked the space on
the keyboard to proceed to the next pose. These processes simulate the user’s optimal hand
pose interaction process.

Experiment Data

As shown in Figure 5.10, the recordings of “skilled user movement” for three hand poses
were shown as the guidelines in blue lines. To avoid incomplete entries or possible inaccurate
recognition of one single hand movement, each hand pose was repeated three times. After
this, taking the system designer’s point of view, we could visualise the user tests into the
same view for evaluation and selection of optimal interaction intervals. The Line of “skilled
user movement” presented the changes within the corresponding hand-pose embedding space
during the uniform hand movement of a skilled user. The other user test lines, which represent
user interaction operations in real situations, reflected user interaction habits. Compared with
them, the designers could design a comfortable and easy-to-use interaction based on the
optimal comfortable interactive control interval of the user’s curve response. VIEs showed
whether the corresponding hand-pose embedding space could be used for comfortable easy-
to-use interaction design.

Findings

As shown in Figure 5.10, we compared the movement results of three different hand poses of
four participants in the disentangled low-dimensional embedding space with the correspond-
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Figure 5.10: Visual Interaction Evaluation Strategy (VIEs) of three hand pose, including
ROTATION, PINCH and SWIPE. ROTATION and PINCH interactive in the corresponding
1D embedding spaces and SWIPE in the 2D space. To allow designers to understand the
interaction details more clearly, we expanded the 2D embedding space into 1D values for
visualization. The blue line is “skilled user movement”, presenting the embedding changes
within the corresponding hand-pose embedding space during uniform hand movement for
guideline. The horizontal axis represents the regularized time, and the vertical axis represents
the embedding value.

ing “skilled user movement” blue guideline curves. For easy comparison, we normalized the
time of all movements to 0-1.

Specifically, the PINCH movement curve shown in Figure 5.10 (b) has a high degree
of overlap with the “skilled user movement” curve, which means that the user’s DOFs of
hand poses have a good disentanglement effect. It means all PINCH movement ranges could
be well mapped to the corresponding embedding space for the corresponding comfortable
easy-to-use system interactions. The embedding values from 0.50 to 1.0 could be chosen and
remapped for PINCH interaction in real-world systems, such as progress bars.

However, the ROTATION movement in Figure 5.10 (a) was roughly similar to the “skilled
user movement” in terms of movement trend, but there were still some undesirable situations.
For example, the hand pose skeleton h6 in Figure 5.10 (a) was not easy for all users to do, so
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most users could not reach the maximum value of the ideal situation shown in “skilled user
movement”. Similarly, from the hand movement curves of the four users, it could be seen
that the comfortable hand-starting pose is near the hand pose shown in h3. Therefore, the
designer could consider reducing the interaction area corresponding to a smaller movement
range when designing the interactive system, i.e., renormalizing the area of 0.3-0.6 of the
hand pose to adapt to the hand movement mode that makes the user feel comfortable and
remapped to the Dial.

Additionally, Figures (c) and (d) respectively showed the movement curves of the x and
y coordinates of the SWIPE hand movement in two-dimensional space. The x-curve showed
a better degree of disentanglement of the DOFs, and the overlap of the hand pose movement
curves was higher. Although the y-curve did not achieve a better disentanglement effect to a
certain extent, the SWIPE hand pose alone had little impact on the y-disentanglement-space,
and its fluctuation range was only about 0.04, which was in line with the physiological law
of SWIPE hand movement. So we could still consider using these two dimensions to express
the two-dimensional disentanglement space for hand pose exploration.

In conclusion, the designer could design a comfortable and easy-to-use interaction system
that meets the user’s comfortable interactions based on the proposed HandSolo by only using
our VIEs.

5.4.3 Experiment II Extensibility Discovery

In this experiment, we gave a further extensibility experiment of our proposed disentangle-
ment VAE to provide evidence for the further interaction extension. This experiment aimed
to evaluate the simple extensibility of our HandSolo to provide a new method for the
mid-air hand-pose-based HCI research community. Unlike the 4D spaces in Experiment
I, in order to verify the extensibility of our interaction model, we will use 5D latent space
as an example in this experiment to demonstrate that our model is also highly capable in the
disentanglement of the other-dimensions DOFs’ latent space. Effective interaction control of
hand pose can still be performed with different disentangled hand DOFs.

Experiment Design

The purpose of this experiment was to explore the different possibilities of our HandSolo
system in the process of exploring more hand DOFs from the proposed disentanglement
VAE. In this experiment, we invited participants who completed Experiment I to complete
Experiment II at the same time. They completed the similar task as Experiment I. We first
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trained a disentanglement VAE model with a five-dimensional latent embedding space, in
which we disentangled three 1D spaces and one 2D space. Notably, we have developed one

more new 1D DOF space than Experiment I. We selected four hand poses for control, namely
ROTATION, PINCH, SWIPE, and WRIST. The first three were the same as Experiment I. The
WRIST hand pose was to lightly squeeze the fist and rotate the wrist. The starting position
was the direction of the fist facing the camera, and then rotated inward to the maximum angle.
Participants saw the interactive interface shown in Figure 5.11 (f). The blue slider was for
the WRIST pose. The researchers still recorded the “skilled user movement” first. In the
experiment, the researchers demonstrated the four hand poses to the participants and asked
them to make each hand pose three times respectively.

Task

The participants were asked to complete the same task as Experiment I for Experiment II
with the only difference being that we added a new Slider function to simulate the linear
interaction of the WRIST hand pose.

Findings

Similar to Experiment I, we utilized the proposed VIEs to visualize the relationship between
the disentangled hand-pose embedding spaces of participants and the normalized time in
Figure 5.11. When comparing Figure 5.10 and Figure 5.11, we found that more DOFs in the
disentanglement VAE could be used to extend new hand-pose embedding space for additional
interactive functions.

On one hand, after we extend more DOFs in our disentanglement VAE, the original three
hand poses in Experiment I still maintained stable disentanglement capabilities, with some
of the previous poses performing even better. Specifically, ROTATION obtains clearer disen-
tanglement results, compared with Figure 5.10 (a), in which different participants performed
similar hand pose movement curves in the results shown in Figure 5.11 (a). When the hand
moved, a more overlapping hand pose movement curve could be obtained, which showed that
the disentanglement result of 1D DOF O2 was more stable and robust. The disentanglement
results of PINCH were still excellent and did not require major adjustment or remapping in
terms of DOFs for disentanglement, i.e., the range of y in Figure 5.11 (b). Regarding the
DOFs disentanglement of hand poses in 2D space, we found that, based on the same hand
poses, although 2D hand pose interactions could be realised as interactive functions, the sta-
bility was still challenged due to the multi-DOF combinatorial dexterity.
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(f)Interface

Figure 5.11: Similar with Figure 5.10, (a) to (e) showed the VIEs of four hand-pose move-
ments. It included existing three hand poses, i.e. ROTATION, PINCH, SWIPE and a new
additional hand pose, WRIST. ROTATION, PINCH and WRIST interactived in correspond-
ing 1D embedding spaces and SWIPE in the 2D space. WRIST was the hand pose that we
choosed to represent the extended DOF (O4) spaces. This indicated the extensibility of our
HandSolo. (f) was the extended interactive interface the participants see when they did Ex-
periment III. The blue progress bar in the lower right was the interactive object of WRIST,
and the rest objects were the same as those in Experiment I.
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On the other hand, for another disentangled one-dimensional DOF dimension O4 that we
extended in this experiment, we tried to use it to express the WRIST hand pose, because
when we performed model testing (Figure 5.6), we found that the rotation of the wrist had
a certain influence in the disentangled latent space. The experimental results shown in Fig-
ure 5.11 (e) verified the ability of our model to disentangle the new hand DOF to a certain
extent. Specifically, the hand movement curves of the multiple participants in Figure 5.11
(e) trended approximately the same, reflecting the stability of the interaction. Besides, the
embedding value range could still be used to set up the interactive function. However, the
disentanglement ability in this dimension was not as good as in the remaining two 1D DOF
disentanglement spaces, and the hand movement curves overlapped less than those in the re-
maining two 1D spaces. The main reason for the participants’ large difference from “skilled
user movement” was the flexibility of the participants’ wrist movement; the back of the hand
facing the camera pose as shown in h5 was not achieved by all participants.

Overall, our disentanglement model (HandSolo) could be extended to the disentangle-
ment space with more hand DOFs and maintained disentanglement consistency and interac-
tion independence. It could help designers find more combinations of DOF and discover the
rationality of hand poses. Our HandSolo provides designers with more inspiration in mid-air
hand pose interaction design.

5.4.4 Experiment III Interaction System User Study

The Experiment III was used to evaluate the user performance of the virtual interaction
system based on our proposed HandSolo after VIEs optimisation. In order to demonstrate
the rationality, efficiency and usability of our interaction model, we invite more participants
to conduct interaction experiments. In the experiments, we will collect data such as time to
complete the experiment and distance moved., and evaluate our interaction system according
to Fitts’ law. A questionnaire was also conducted with the participants for qualitative analysis.
At the end of the experiment we will give our evaluation results and discussion.

Experiment Design

We performed user experiments on interactive designs by performing target-points-finding
in the virtual interaction system in Figure 5.8. 10 participants (4 females, 6 males) aged
between 25 and 40 years old, all right-handed, took part. Each participant completed 40
target-point-finding tasks, which took about 30 minutes.
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Specifically, the researchers first explained the experimental requirements and the interac-
tive system interface as shown in Figure 5.8. Then they gave examples of different hand-pose
interactive processes to the participants, including two 1D interactions, named ROTATE and
PINCH, and a 2D interaction containing multiple such as SWIPE, CIRCLE. In our experi-
ment, we defined the hand poses in two-dimensional interaction as OTHER. The participants
were allowed to make some additional changes based on these displayed poses, such as wrist
rotation, palm tilting forward and backward. Participants had 5 minutes to familiarize them-
selves with the experimental system and tasks before the experiment officially began. They
were allowed to pause the experiment if they felt tired, and continued after a short break.

We defined 15 target points, with 5 target points in each interaction area. The target points
appeared randomly in three areas. There were three sizes of target points in each interactive
area (the visualize interface image is further given in Appendix B), and target points with
different sizes were appear randomly. As shown in Figure 5.8, in the 2D interactive area,
the target point was a light blue dot with a diameter of 10, 15, and 20 pixels, and the hand
movement pointer in the area was a green crosshair. In the 1D Dial area, the target was an arc
of 10, 15, and 20 pixels on the circle. The fan-shaped area corresponding to the calculated
central angle was coloured red. The central angle was calculated by θ = S

r , where θ was
central angle, S was arc length, r was radius length. The hand movement pointer in the area
was a green linear pointer with the radius length rotating around the center of the circle. In
the 1D Slider area, the target point was a red rectangle with a width of 10, 15, and 20 pixels,
and the hand movement pointer in the area was a green linear pointer that could slide on the
progress bar. Each target point in all tasks was shown in only one of the areas and not shown
in the other two.

Task

Each participant was asked to complete a task of finding target points in the different interac-
tion areas of the virtual system in Figure 5.8. When the participant saw a target point in one
interactive area, they needed to find the target point by changing their hand pose and moving
their hand. They needed to get as close to the target point as possible. When participants
thought the point of orientation on the hand was close enough or has entered the range of
the target point area, they pressed the space key on the keyboard to record and continued to
find the next target point. If the participant thoughts that they had tried hard but still couldnot
reach the target point area range, they could still press the space key at the position where
they thought their hands were closest to target point.
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Experiment Data

In the experiment, we recorded the time each participant takes to find each target point, the
size of the target point each time, and the position in the embedding space of the participant’s
hand pose when it is first marked as appearing in the interaction area, which could measure
the distance to the target point. Based on the data recorded in the experiment, we evaluated
the interactive system according to Fitts’ Law (Fitts 1954, Rusu et al. 2022). The Index of
Difficulty (ID) and Index of Performance (IP) values were calculated by

ID = log2

(
D
W

+1
)
,

MT = a+b · log2

(
D
W

+1
)
,

IP =
ID
MT

,

where Movement Time (MT ) was the time required to complete the task, D was the distance
to the target point, W was the target size, and a and b were constants. The linear relationship
between MT and ID for each type of hand pose, the statistical graph of IP, and the statistical
graph of all hand poses were given respectively.

Findings

To evaluate the rationality of our hand-pose interactions, we visualized the Fitts’ Law statis-
tical analysis (Fitts 1954, Rusu et al. 2022) results of 10 participants (t=400) in Figure 5.12
and a histogram of the IP distributions for three hand poses was plotted in Figure 5.13 to
show more details. As mentioned in section 5.4.4, we presented three interactive functions
with three explored hand poses in their corresponding disentangled spaces from the unified
4D DOF embedding space. Note that the purpose of this study was not to generalise the
results, but rather to illustrate the feasibility of our multiple disentanglement hand-pose in-
teractions and to demonstrate how designers could further identify the hand poses that were
most appropriate for their interaction prototypes.

By analyzing the linear relationship between ID and MT, we observed that for all three
mid-air hand pose interactions, they all conformed to the Fitts’ Law, that was, the more
difficult the task, the more time they spent. It also demonstrated the feasibility of our three
disentangled hand poses in their respective interaction sub-spaces. Specifically, comparing
the IP box plots in Figure 5.12 with the IP histogram in Figure 5.13, the IP value of dragging
the slider with the PINCH hand pose was higher than the other two interactions, and the
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Figure 5.12: Box plots showed the IP of ROTATION, PINCH, and OTHER hand poses in
the interaction experiment. The correlation diagrams showed the relations between ID and
MT, and the PCC and fitted coefficients a and b were statistically calculated. Each blue point
in the figure represented a task, the red line was the fitting line, and the red area is the 95%
confidence interval.

majority of the PINCH hand pose tasks had higher IP values, i.e., the bins in orange in Figure
5.13. This indicated that the one-dimensional interaction of the PINCH hand pose is the
easiest of the three interactions. Although the ROTATE hand pose for the one-dimensional
interaction and the OTHER hand pose for the two-dimensional interaction shown in Figure
5.12 had approximate task difficulty, i.e., IP values, the fitting of IP is not very good on both
small and large ID values, which may be related to the limits of experimental data. We are
able to see from the more detailed histogram of the IP distributions, Figure 5.13, that the IP
values of the ROTATION hand pose in blue are more in line with a Gaussian distribution,
which is the type of distribution we expect to see. Whereas the green bins of OTHER hand
poses show a bimodal distribution, where one of the centers is similar to the mean value
of ROTATION hand pose, but the other center is located on the far left. In other words,
there were still many 2D OTHER hand pose interaction tasks with a small IP. One possible
reason for presenting this bimodal distribution is that the 2D interaction mode utilized the
combination of two DOFs of hand. Without a clear expression of the DOFs of hand, it
was difficult to accurately control the movement of two dimensions at the same time. This
leads to two possible centers of distribution. Also, due to less experimental data, we did not
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Figure 5.13: The histogram shows the IP distribution of the three hand poses. This figure
gives more statistical details about Figure 5.12. Most of the IP values of the PINCH hand pose
are larger than those of the other two poses, indicating that our disentangled PINCH hand
pose is the easiest one among the three hand poses. The distribution of the ROTATE hand
pose presents an approximate Gaussian distribution, while the OTHER hand pose presents an
obvious bimodal distribution with a center located to the left of the mean of the ROTATION
distribution, which indicates that in our disentanglement model, the one-dimensional ROTA-
TION hand pose is easier than the two-dimensional hand pose.

obtain the Gaussian distributions for the PINCH hand pose and OTHER hand pose that we
expected should comply with the law of large numbers. From the overall IP distribution,
the interaction of the two one-dimensional hand poses was easier than the interaction of the
two-dimensional hand poses. In addition, in terms of linear correlation shown by the Pearson
correlation coefficient (PCC), the linear correlation shown by the PCC (0.07) of ROTATION
was smaller, which to a certain extent showed that the task difficulty determined by the target
point was not the only challenge faced by participants when completing task.

In general, our HandSolo could disentangle the unified hand-pose embedding space into
different independent interactive sub-spaces for different DOF hand poses. Through further
analysis of the results, we found that one-dimensional linear interaction was more suitable
for designing comfortable and easy-to-use simple interactions than two-dimensional inter-
action, and two-dimensional interaction was suitable for difficult interactions with a certain
interaction experience.
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Figure 5.14: Statistical analysis of questions related to interactive hand poses. The graph on
the left counts the number of participants with different scores for each question. The graph
on the right shows the mean score and standard deviation for each question. Where the error
bars are the standard deviation. Below the graphs, we provide the questions.

Qualitative Analysis

Although one of the aims of our system design was to have a system evaluation method that
did not require questionnaires, we still included questionnaires in this experiment in order to
assess the effectiveness of our interactive system and designing methods. Each participant in
the experiment was asked to complete a questionnaire after the experiment for approximately
5 minutes. It consisted of 22 mandatory multiple-choice questions and one optional short-
answer question. Our questionnaire used a 10-point Likert scale and included the NASA Task
Load Index (Hart & Staveland 1988) for workload assessment.

In Figure 5.14 we give statistical graphs for eight of the main questions related to the in-
teraction process of different hand pose movements. We also give both the mean and standard
deviation of the scores for each question. Here, Q2-Q4 and Q5-Q7 are two sets of questions
related to different hand interaction movements, where Q2 and Q5 are related to interactions
in 2D space. Q3 and Q6 are related to ROTATE hand movements, i.e., Dial space. and Q4
and Q7 are statistically related to PINCH hand movements, i.e., interaction feelings while
controlling the Slider. The figure on the left shows that most of the ratings are concentrated
in the 6-8 range, but there are still a lot of participants (8 participants for Q4 and 5 partici-
pants for Q7) who give a score of 10 for the interaction experience of controlling the slider
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Figure 5.15: A virtual smart music player demonstrates our HandSolo application. The two-
dimensional space on the left area is a music space that is freely explored by hand movements,
with each point representing a music track. We have provided two different hand movement
trajectories to show that we can control hand movement and explore the music space with
different DOFs. The top right area shows the volume control dial, we also provide hand
pose examples for the corresponding volume and map the hand poses on a 3

4 circle to avoid
uncomfortable poses. The lower area on the right shows the progress bar, controlled by
PINCH, for which we have also provided hand pose examples.

with the PINCH. The lowest score of 2 was given to questions related to the exploration of
two-dimensional space (1 participant for Q2). From the mean and standard deviation plots on
the right, we can clearly see that most of the participants agreed that for controlling the slider
with the PINCH was the most intuitive way (Mean (M)=9.6, Standard Deviation (SD)=0.84)
of controlling and using PINCH to control was easier to find more target points (M=9.4,
SD=0.70). In contrast, the exploration of 2D space presented the greatest challenge to partic-
ipants, and there was greater divergence in terms of controllability. This is reflected not only
in the fact that some of the participants felt that their mid-air hand movements in reality did
not give them intuitive 2D-space feedback to a certain degree (M=5.4, SD=1.43), but also in
the fact that some of them felt that the OTHER hand movements (M=6.0, SD=1.25) made
it harder for them to find target points compared to the PINCH (M=9.4, SD=0.70) and the
ROTATE (M=7.4, SD=0.97). The details of the questionnaire and more statistical results can
be found in the Appendix E.
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5.4.5 Virtual Application of HandSolo

To demonstrate the effectiveness and applicability of our interaction system, we designed a
virtual smart music player interface for our interaction system as shown in Figure 5.15. This
interaction interface can virtually connect our HandSolo interaction system with a smart mu-
sic system, allowing the user to explore the two-dimensional music space by controlling it
with hand DOFs, and to control the volume dials by ROTATE, and can also drag the progress
bar through PINCH. In this application, our music data is processed and visualised as de-
scribed in Section 4.4.4. Based on observations from our VIEs in 5.4.2, we designed the
volume control area on a 3

4 clockwise circle which is a comfortable user movement range, in
order to reduce the uncomfortable hand movements that users use to control the dial rotation.
At the same time, we used the basic four-dimensional latent space for the demonstration,
i.e., one two-dimensional space and two one-dimensional spaces. It is worth noting that this
application can still be extended to more dimensions, such as one two-dimensional space and
three one-dimensional spaces, but more functions are needed to correspond to it.

In this simple demonstration, our skilled user achieves switching between different func-
tions by changing hand movements freely, which indicates the applicability of our interaction
system in a real scenario. We provide examples of hand poses in different positions in Fig-
ure 5.15. Where, in the 2D music space, we show two different hand movement trajectories
which are controlled by different hand DOFs. Users can explore the 2D music space through
more flexible hand poses besides PINCH and ROTATE. Using different Hand DOFs to con-
trol and explore demonstrates the flexibility of our interacting system. In addition, the hand
movements represented by the blue and green trajectories in the 2D space reveal that our ap-
plication of the four-dimensional hand DOFs latent space in this application can be extended
with more independent hand DOFs, which allows to control more functions without having
to re-collect the hand data and train a new interaction model.

5.4.6 Discussion

Through the above experimental setup, we demonstrate that the HandSolo method imple-
ments a extensible system in which multiple mid-air hand poses can independently interact
with different functions. Moreover, VIEs provides interaction designers with a visual method
for analysing the interaction of mid-air hand poses, which can be used to design more com-
fortable and easy-to-use interaction systems. However, there are still more possibilities to
be explored in our design and certain limitations that need to be addressed in future work.
On the one hand, when we are designing interactions with a combination of multiple DOFs,
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such as hand interactions in 2D-DOF embedding spaces, the multiple DOFs allow various
hand poses to interact freely in the embedding space, which makes the interaction less sta-
ble although more flexible. In future work, we will further investigate the independence of
different hand-pose movements in 2D embedding spaces. This can be easily solved by our
HandSolo system, but needs to be carefully designed. On the other hand, we have shown
that adding some customisation features to corresponding hand-pose interactions can further
improve the interaction independence, but this still needs to be carefully designed by the de-
signer. Therefore, how to accurately find new features to enhance the embedding of hand
poses is still a development problem that needs to be further enhanced in our future work.

5.5 Limitation

5.5.1 Method Limitation

The current method still has limitations in 2D-space-exploring interactions. Although our
method allows for more flexible mid-air control, the experimental results and user feedback
show that fatigue is still a problem when users engage in interactions that require multiple
hand DOFs. The increased physical and mental demand reduces the efficiency and comfort of
long-term use. Compared with simpler 1D interactions, the 2D control still falls short of ex-
pectations in terms of ease of use and intuitiveness. This indicates that more work is needed to
design interaction techniques that reduce user fatigue while preserving the expressive power
of multi-DOF control.

5.5.2 Study Limitation

In this study, our user experiments were based on fixed tasks. Participants were asked to
complete pre-defined interaction tasks under controlled conditions. While this design helped
to ensure consistency and comparability across users, it restricted the scope of the evaluation.
Real-world interactions are often open-ended and dynamic, requiring users to adapt gestures
in more flexible ways. By focusing on fixed tasks, the study may not fully capture the vari-
ability and unpredictability of natural interaction scenarios. Future studies should therefore
include more free-form tasks and open-ended usage contexts to better reflect realistic appli-
cations.
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5.6 Conclusion

Elicitation of hand poses by designers can lead to poor performance during deployment if it
does not take classification performance into account when selecting which combinations of
hand poses to use with the given sensors. We used an approach which could gather hand data
from proposed hand poses, as well as general random hand movements, and used machine
learning to find combinations of useful trajectories which would not interfere with each other
during classification. Novel hand-pose movement controls which were not in the original
training data can be derived with this approach.

We describe the design and implementation of an adjustable mid-air hand-pose interac-
tion method, named HandSolo, which can map high-dimensional data to controllable low-
dimensional projections. It is based on a Variational AutoEncoder (VAE) deep neural net-
work, with a disentanglement approach to separate out multiple low-dimensional degrees of
hand-freedom. Further, we also propose a new visual interaction evaluation strategy (VIEs)
to assist designers in analysing candidate hand poses and deciding between options.

We overcame two key challenges of the existing state of the art, (i) using machine learning
techniques for disentangling independent multiple hand pose embedding spaces with differ-
ent DOFs for different interaction functions through a unified VAE model, and (ii) visually
analysing user interaction habits to adapt the interaction system to the trained model’s capa-
bilities, in particular to involve designers.

The user experiments provide three hand poses statistic results and the use case of differ-
ent hand poses interact with a smart music speaker show that our designs not only provide
multiple hand-pose interactions from a unified model, but also consider user interaction com-
fort, design consistency, and model classification capability. The extensibility experiment
also provide visualized hand movement curves to show how the tools can support the devel-
opment of new hand pose controls in multiple hand-pose interactions.



Chapter 6

Conclusion and Discussion

This chapter summarizes the key contributions of this thesis in developing a flex-

ible, interpretable, and extensible mid-air hand pose interaction system. Our re-

search improves interaction stability, usability, and learning efficiency by using

low-dimensional representations and disentanglement strategies. Despite these

advancements, challenges such as user fatigue and limited multi-modal feedback

remain. Future work should focus on reducing interaction fatigue and enhancing

accessibility through multi-modal feedback integration. This study can inspire

more adaptive and immersive human-computer interaction systems.

6.1 Discussion

With the development of various methods and devices that are used to perform user interac-
tion with smart systems, mid-air gestures for flexible and simple interaction with smart sys-
tems face many problems. The high-dimensional inputs of interaction devices and the com-
plexity and variability of scenarios make it difficult to implement an easy-to-use and easy-to-
understand interaction system. Among these, we develop a deep-learning-based interactive
model that visualises high-dimensional changing hand pose input data in a low-dimensional
space. In this way, we implement a flexible, interpretable, visualisation interaction tool. We
address the difficulty of learning low-dimensional interactions with high-dimensional inputs
while also providing a more flexible and controllable processing paradigm. In order to extend
the interaction of mid-air hand poses with smart systems to a wider range of possible smart
systems and scenarios, this thesis also proposes an extensible method for disentanglement in
low-dimensional spaces. The method is shown to extend the deep-learning-based interactive
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model, which has been trained with a small amount of data, with different hand degrees of
freedom, thus allowing for more flexible hand interactions, as well as providing an extensible
interaction model that can be used in other high-dimensional gesture interaction scenarios.
Furthermore, based on our proposed framework, our user studies demonstrate the controlla-
bility and easy-to-understand properties of our interaction system when users interact with
our interaction system. Moreover, we also demonstrate that our framework suggests a visual
evaluation approach that can be used as a reference by designers of interactive systems.

In order to address the problems still faced in real-time mid-air gesture interaction sys-
tems with respect to the processing of long-sequence-frame input and the interpretability of
the interaction, in Chapter 3 we propose a continuous interaction strategy with visual
feedback. The classification and processing time results in Section 3.4 demonstrate that this
strategy has 75.2% of gesture recognition and the 2.4ms latency in response. Using only
two video frames of mid-air gestures, Section 3.4.1 employ an autoencoder-based model to
compress the high-dimensional hand data into a two-dimensional space. Meanwhile, our
classification results in 3.4.2 shown that the auxiliary classification model also performs the
classification of the gestures, which improves the processing speed (2.4ms) of the real-time
interactions while maintaining the precision (75.2%) of the gesture recognition. In addition,
the time and movement trajectories given by the visual interaction user study in Section 3.4.3
confirm that our proposed visual feedback strategy is equipped to improve the usability and
interpretability of the interaction and enhance the understanding of user interaction. We pro-
vide the user with a visualized and structured feedback of the hand pose space by using the
low-dimensional embedding space, which allows the user to understand the movement state
of the hand movement in the hand pose space while interacting with the hand movement.

Although in terms of modelling, we can visualise the user’s mid-air hand movements
in a low-dimensional hand pose space, which improves the user’s understanding and effi-
ciency in using the interactive system. However, while making these advances, we found that
users still face the problems of jittering, instability and non-smoothness during mid-air hand
movements due to the physiological characteristics of the human body and the properties of
the interaction device when interacting with the interaction system. At the same time, we
found that the black-box models that traditional interaction systems rely on often make it
difficult for users to learn how to control the interaction with different hand movements, thus
reducing the applicability of the interaction model for complex tasks. Therefore, in Chap-
ter 4, we design a mid-air hand pose embedding system with stable and smooth design
and visual guidance window. Based on Chapter 3, we processed the data with quaternions
in the model in Section 4.4.1 and introduced a regularisation term against jitter while we
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augmented the gesture data in Section 4.4.3, which reduce the physiological jitter and jitter
during interaction caused by the sensor variability from mediapipe. In addition, to further
make the interaction process more stable and smooth, we added the post-processing of the
mid-air hand pose embedding during the interaction, including the post-processing of sta-
bilising the movement inflection point and the One Euro Filter Casiez et al. (2012), which
is the post-processing of smoothing the hand movement. Our users’ hand movement curves
in Section 4.4.4 show the time of complete tasks and the convex and concave cusps of the
curves, which demonstrate the smoothness and ease of use of our stable and smooth design
and guidewindow design. Meanwhile, we designed a hand pose guidance window to help
users interact with the system. Our experiments’ movement curves and hand-pose points in
the space in Section 4.4.4 show that users can complete the task in about half the time than
without the hand pose guidance window. In other words, users can learn how to interact
dynamically in the low-dimensional space of mid-air hand poses more quickly by using the
hand pose guidance window to prompt gestures in each direction. Section 4.4.4 provides a
multimedia-based application of our HpEIS, which also demonstrates the ability to be used
in a real scenario. Our hand movement trajectory curves in the music space demonstrate the
flexibility and the ease-of-use ability of our system.

While designing the methodology for user interaction with the smart system, we have
considered the aspects of comfort, stability, comprehensibility and ease of learning, but at
the same time, we still want to extend our methodology so that we can make the mid-air
hand pose interaction more flexible, including deploy and the hand movement, and increase
the availability of our methodology in different scenarios. In addition, our current approach
follows a traditional basic interaction design process, i.e., a closed-loop approach that in-
volves user experimentation, user surveys, feedback, and system improvements. We wanted
to find an easier way to reduce the workload of interaction designers. In Chapter 5, we
develop HandSolo, an extensible low-dimensional hand space disentanglement method,
and VIEs, a designers’ helping tool. On the one hand, the method proposed in Section 5.3.1
allows flexible control of multiple hand DOFs through the introduction of a disentanglement
penalty term that disentangles the low-dimensional representation in the latent embedding
space of the high-dimensional mid-air hand pose input into multiple independent one- or
two-dimensional spaces. The method can also be extended to different combinations of other
degrees of freedom, as well as other high-dimensional inputs, improving the availability of
the interaction system. This availability includes both different input devices and interactions
in different environments. The accuracy and Latent-MIG results in 5.3.2 show the disentan-
glement performance of our model and demonstrate the extensibility of our system. Through
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the box plot and statistic plot of Fitts’ law and statistic plot of questionnaires in 5.4.4, our
user study confirms that our proposed interaction system complies with the basic rules of
human-computer interaction and that different functions can be controlled by different hand
DOFs in the low-dimensional hand pose space. However, there is still difficulty in controlling
in 2D space. On the other hand, Section 5.4.1 also propose a Visual Interaction Evaluation
strategy (VIEs). The Section 5.4.2 indicates that this strategy helps designers to directly un-
derstand user interaction preferences and interaction functions by visualising the difference
between the mid-air hand movement curves of users and the experimental baseline curves,
which can be used for further system design. The experiment in Section 5.4.3 not only further
demonstrates the extensibility of our interactive system, but also demonstrates the stability
of multi-dimensional disentanglement, which can provide a reference for designers to design
and optimize interactive functions. The questionnaires results in Section 5.4.4 and our vir-
tual application of the system in Section 5.4.5 demonstrate that our disentanglement method
with VIEs provides users with a flexible and comfortable interaction experience, and at the
same time provides interaction designers with an effective potential strategy for evaluating
and optimizing the system that can be used in a real scenario.

6.2 Limitation and Future Work

Although our mid-air hand pose interaction system enables users to interact more flexibly and
comfortably with smart systems in a controlled way, we still have some potential problems
and limitations. As shown by the experimental results in Section 5.4.4 and its questionnaire
in Section 5.4.4 and Appendix E, the problem of fatigue in interaction still exists. Current
interaction systems still have high demands on the physical and mental capabilities of the
user when faced with multi-hand-DOFs, i.e., the 2D-space-exploring interactions mentioned
in the previous section. Moreover, while the ease of control in other 1D-interaction is higher
than that of multi-hand- DOFs, still falls short of expectations.

On the other hand, in the process of interacting with a smart system, users usually need
clear visual, auditory, or haptic feedback to confirm a successful interaction. Our current
mid-air hand pose interaction system provides visual feedback, but still does not provide
good accessibility to certain specific users and scenarios, like the interaction feedback for
people with visual impairment and the interaction feedback needed by drivers when they are
driving. It is obvious that simple visual feedback cannot satisfy the multiple interaction needs
of users.

The experiments were conducted with only a small number of participants, all young
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adults, and only with the right hand. This reduces the diversity of the dataset and may limit the
generalizability of the findings to broader populations. In addition, all tasks were performed
in a controlled laboratory setting with a plain white background and stable lighting. These
conditions reduce noise but fail to capture the complexity of real-world environments.

Addressing the problems and limitations mentioned in our current mid-air hand pose
interaction system will provide some benefits in future research studies. Firstly, the most
important research direction is how to reduce fatigue when users interact with smart systems,
not only limited to physical fatigue, but also focusing on mental fatigue. In the process
of interaction between users and smart systems, providing users with a good experience and
feeling is the focus in HCI research. Therefore, more research can focus on more controllable
hand DOFs disentanglement methods to provide more flexible and easy-to-understand hand
movement control methods, especially two-dimensional and multi-dimensional hand DOFs
movement interaction methods and the way to assess the systems.

In addition, considering the user’s feedback needs, the combination of multiple feedback
and response approaches is a way to enhance the user experience. By considering different
users and different usage scenarios, multi-modal feedback, such as visual, sound, and haptic,
enhances interaction clarity. Effective and appropriate feedback will bring a more immersive
experience to the user and increase the accessibility of the interactive system, especially for
smart systems applied in the entertainment and leisure domains.

Future studies should also expand the participant type to include users of different ages,
left- and right-hand use, and larger sample sizes, in order to improve diversity and robustness.
Testing should be carried out in multiple environments instead of just in the lab, which can
better reflect real world use. These directions will make the system more generalizable and
practical for daily applications.

6.3 Conclusion

In conclusion, this thesis explores a flexible approach for interaction of mid-air hand pose
with smart systems, focussing on flexibility, interpretability, and extensibility of mid-air hand
pose interactions. While there is still some user comfort and user feedback research to con-
tinue to explore, our research shows that the method based on interaction with smart systems
proposed in this thesis can solve the problems of flexibility and stability that exist in mid-air
hand pose interaction. At the same time, the user will learn how the hand space works in
the interaction system through the interaction process, which will reduce the time required
to learn and be familiar with the interaction system. This improves the interpretability and
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user-learnability of the interactive system. This work also highlights that in terms of the
model of the interaction system, the flexible framework we propose can also be transferred
to other scenarios and devices. This study demonstrates the development potential of our
interaction system framework for transferring to more application scenarios and will provide
design ideas for more flexible interactions with mid-air hand poses.



Appendix A

Stream Media Data

Music embedding for #angryMusic embedding for #fear Music embedding for #erotic

Music embedding for #joy Music embedding for #sad Music embedding for #tender

Figure A.1: The music embedding spaces for each emotion.

Figure A.1 shows our music embedding space. Similar to the VAE of the hand pose space,
we use the same VAE setup, specifically, each MLP contains 4 fully connected layers, where
the neuron numbers in the encoder are 128, 96, 64 and 2, respectively and the reverse in the
decoder. The 2-D latent embeddings are normalized between 0 and 1. The only difference
is that our original music features have 34 dimensions, and these features include scoring
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situations for style type, emotion type, etc., with scores ranging from 1 to 7. In addition, we
do not perform augmentation operations on the music space embedding. In the figure, we
colour the music space with scores for different emotions, and we consider 6 emotions, fear,
erotic, angry, joy, sad, and tender.



Appendix B

Interaction Interface

In Experiment II, each time the participants do a target-point-finding task, they will see the
target point appear in the corresponding area, as shown in Figure B.1. Each area shows the
minimum size of one of the target points, and we display the three target point sizes in equal
proportion next to it.

(a) ROTATION

(b)  PINCH

(c)  OTHER

Dial Area

Slider Area

2D Area

Figure B.1: Three different interfaces the participants saw when they did different target-
point-finding tasks in different areas. Different target sizes for each area were also provided.
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Disentangled DOF Spaces with Different
Settings

We provide DOF-space figures for 4D latent space, including with and without disentangle-
ment, and add extra hand features. And a disentangled DOF-space figure with extra hand
features for 5D latent space.
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Figure C.1: 4D DOF spaces without disentanglement. The extracted 1D embeddings can
be seen to have a high amount of overlap making it infeasible to utilize the hand poses for
interactive control in practical use cases such as controlling a dial or slider.
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Figure C.2: 4D DOF spaces with disentanglement. The hand poses are disentangled in the la-
tent space allowing for more fine-grained control of systems interfaced with our embeddings.



APPENDIX C. DISENTANGLED DOF SPACES WITH DIFFERENT SETTINGS 120

Figure C.3: 4D DOF spaces with disentanglement and extra hand features. The extra hand
features are added to make the disentanglement results for specific hand DOFs clearer than
in Figure C.2, thus making the corresponding interactions more robust and comfortable.
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Figure C.4: 5D DOF spaces with disentanglement and extra hand features. Our HandSolo
model is extensible and still maintains good disentanglement properties with similar hand
DOFs as before.



Appendix D

Questionnaire with more details for
HpEIS

Fig. D.1 shows the statistical information sheet of the questionnaire, which contains all Likert
linear scale questions and short answer questions. After this, we provide our questionnaires.

No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

1 No Yes 7 Yes Yes Yes 6 8 blue Yes 10 No 9 3 3 5 9 5 1

2 No Yes 9 Sometimes Yes Yes 5 7 blue Yes 10 No 10 2 3 3 10 5 1

3 No Yes 8 Yes Yes Yes 5 8 blue Yes 8 No 10 4 3 3 8 2 1

4 No Yes 7 Sometimes Yes Yes 5 8 the right part Yes 8 No 9 1 1 3 8 1 1

5 No Yes 8 Sometimes Yes Yes 5 7 blue points Yes 8 Yes Yes 7 6 9 2 1 3 9 2 1

6 No Yes 7 Yes Yes Yes 8 8 blue area Yes 10 Yes Yes 8 8 7 2 1 3 8 2 1

7 Yes Yes 5 Yes Sometimes Yes 4 5 Yes Yes 7 Yes Yes 9 6 7 6 5 5 7 7 6

8 No Yes 8 Yes Yes Yes 8 8
blue area in 
the right of 
the layout

Sometimes 8 Yes Sometimes 8 7 10 8 7 7 8 6 3

9 No Yes 8 Sometimes Yes Yes 8 6 edge regions Sometimes 7 No 10 8 7 7 6 7 2

10 No Yes 7 Sometimes Yes Yes 6 8 Yes Yes 8 No 8 5 5 5 7 6 3
some points 

unclear

11 No Yes 7 Sometimes Yes Yes 5 7
right area, 
blue points

Yes 9 Yes Sometimes 9 6 7 6 5 4 9 6 3
guidance 

hand hard to 
understand

12 No Yes 8 Sometimes Yes Yes 6 8

two blue 
points and 
one yellow 

point

Yes 9 Yes Sometimes 10 7 7 4 4 4 8 6 3
dial not easy 

to use

mean 7.41666667 5.91666667 7.33333333 8.5 8.5 6.66666667 8.58333333 4.25 3.75 4.33333333 8.08333333 4.58333333 2.16666667

standard 
diviation

0.75 1.08333333 0.77777778 0.91666667 0.83333333 0.66666667 1.15277778 1.95833333 1.75 1.22222222 0.77777778 1.88888889 1.19444444

Figure D.1: The results table of questionnaires.
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Gesture interaction questionaires 
Thank you for participating in our experiment. 

 
We want your feedback so that we can continuously improve our interactions 
design and procedures. Please fill out this short questionnaire and tell us what you 
think (your responses will be anonymous). 
  

---------------------------------------------------------------------------------------------- 
1. Before this experiment, did you have experience interacting using mid-air gestures? 

        Yes                        No 

2. Do you know exactly what you need to accomplish? 
        Yes                        No 

3. Did the preparation time give you a basic understanding of the gesture space? 

(Including but not limited to the location of different gestures in gesture space, hand 

movement methods) 

              Completely Unfamiliar                                                                              Extremely Familiar 

      1             2            3             4             5             6            7            8            9           10 
 
 

4. Do you have a clear view of the task points? 

        Yes                        No                      Sometimes 

5. Can you clearly see the gesture position change in gesture space as your hand moves? 

        Yes                        No                      Sometimes 

6. Are you able to clearly hear auditory feedback when you long-press the knob? 

        Yes                        No                      Sometimes 

7. When you move your hand, does the way the position of the gesture moves in gesture 

space match your intuition? 

   Very counterintuitive                                                                                              Very intuitive 

      1             2            3             4             5             6            7            8            9           10 

 
8. To what extent can you find task points. 

Very hard                                                                                                                  Very easy 
      1             2            3             4             5             6            7            8            9           10 
 
 

9. Is the difficulty level of finding all the task points the same? If not, please give the 

harder areas or locations. 

        Yes                        No, please provide which area or part___________________________ 

10. Can you learn more about gesture space after a few attempts, including, but  not limited 

to, how to get to a particular area faster. 

        Yes                        No                      Sometimes 

11. To what extent do you think a few more attempts will help you remember how to find a 

task point. 

Hard to remember                                                                             Remember very quickly 
      1             2            3             4             5             6            7            8            9           10 
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12. Are you a user of the guidance window? 
        Yes, to 13             No, to 16              
 

13. Did you use the gesture guidance window during the experiment? 
        Yes                        No                      Sometimes 

14. To what extent do you think the gesture guidance window has helped you? 
   None                                                                                                                    Very helpful 
      1             2            3             4             5             6            7            8            9           10 
 
 

15. Is the virtual gesture skeleton in the gesture guidance window easy to understand and 
imitate? 
Very hard                                                                                                                  Very easy 
      1             2            3             4             5             6            7            8            9           10 
 
 

16. Is using mid-air gestures to interact with smart devices more fun than touch or voice? 
Strongly disagree                                                                                              Strongly agree 
      1             2            3             4             5             6            7            8            9           10 
 
 

17. How mentally demanding was the task? 
Very low                                                                                                                  Very high 
      1             2            3             4             5             6            7            8            9           10 
 
 

18. How physically demanding was the task? 
Very low                                                                                                                  Very high 
      1             2            3             4             5             6            7            8            9           10 
 
 

19. How hurried or rushed was the pace of the task? 
Very low                                                                                                                  Very high 
      1             2            3             4             5             6            7            8            9           10 
 
 

20. How successful were you in accomplishing what you were asked to do? 
Very low                                                                                                                  Very high 
      1             2            3             4             5             6            7            8            9           10 
 
 

21. How hard did you have to work to accomplish your level of performance? 
Very low                                                                                                                  Very high 
      1             2            3             4             5             6            7            8            9           10 
 
 

22. How insecure, discouraged, irritated, stressed, and annoyed were you? 
Very low                                                                                                                  Very high 
      1             2            3             4             5             6            7            8            9           10 
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23. Do you have any suggestions for our interactive system? 



Appendix E

Questionnaire with more details for
HandSolo

In this appendix, we give the full results of the questionnaire, as shown in Figure E.1. As
well as a statistical chart for the NASA Task Load Index of the questionnaire as shown in
Figure E.2. We have included our questionnaire at the end of this appendix. In Figure E.2, an
average mental (M=4.8, SD=1.14) and physical (M=4.6, SD=1.07) requirements are shown.
The speed requirements (M=4.2, SD=1.23) for our experiments shown in the graph are also
not very high. Although the average level of completion as perceived by the participants was
not low (M=6.4, SD=1.65), there were still participants who were dissatisfied with the level of
task completion and most of them felt that they needed a lot of hard work (M=5.8, SD=1.87)
to complete the task. Combined with the experimental results in the section 5.4.4, we believe
that the main source of difficulty is the fact that the process of exploring the two-dimensional
space can cause some distress to the participants.

No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

1 Yes 9 Yes Yes 5 8 10 6 7 9 Slider 2D space 7 Yes 9 8 6 5 5 8 7 3

2 Yes 8 Yes Yes 6 9 10 6 9 10 Slider 2D space 6 Yes 8 7 4 4 4 8 5 4

3 No 8 Yes Yes 5 8 10 4 7 10 Slider 2D space 7 Yes 8 8 6 6 7 5 8 6

4 No 8 Yes Yes 7 7 10 8 8 10 Slider Dial 7 Yes 8 8 5 5 4 8 4 1

5 Yes 8 Yes Yes 5 8 10 7 8 10 Slider 2D space 7 Yes 8 7 3 3 3 7 3 1

6 Yes 7 Yes Yes 6 8 10 6 8 10 Slider 2D space 7 Yes 8 8 3 3 4 7 4 3

7 Yes 6 Yes Yes 7 7 8 7 6 8 Slider Dial 6 Sometimes 7 6 5 5 5 5 5 4

8 No 6 Sometimes Sometimes 6 8 10 6 7 9 Slider 2D space 6 Sometimes 6 7 6 6 4 7 6 6

9 Yes 8 Sometimes Sometimes 2 6 10 4 6 9 Slider 2D space 5 Sometimes 7 7 5 4 3 3 8 5

10 Yes 7 Yes Sometimes 5 7 8 6 8 9 Slider 2D space 7 Sometimes 7 6 5 5 3 6 8 8

Figure E.1: The results table of HandSolo questionnaires.
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HandSolo Interaction Questionnaires 
Thank you for participating in our experiment. 
 
We want your feedback so that we can continuously improve our interactions design and 
procedures. Please fill out this short questionnaire and tell us what you think (your 
responses will be anonymous). 
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Masci, J., Meier, U., Cireşan, D. & Schmidhuber, J. (2011), Stacked convolutional auto-
encoders for hierarchical feature extraction, in ‘Artificial Neural Networks and Machine
Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Es-
poo, Finland, June 14-17, 2011, Proceedings, Part I 21’, Springer, pp. 52–59.

Mase, K. (1991), ‘Recognition of facial expression from optical flow’, IEICE TRANSAC-

TIONS on Information and Systems 74(10), 3474–3483.

Masurovsky, A., Chojecki, P., Runde, D., Lafci, M., Przewozny, D. & Gaebler, M. (2020),
‘Controller-free hand tracking for grab-and-place tasks in immersive virtual reality: Design
elements and their empirical study’, Multimodal Technologies and Interaction 4(4), 91.

McInnes, L., Healy, J. & Melville, J. (2018), ‘UMAP: Uniform manifold approximation and
projection for dimension reduction’, arXiv preprint arXiv:1802.03426 .

Meng, M., Fallavollita, P., Blum, T., Eck, U., Sandor, C., Weidert, S., Waschke, J. & Navab,
N. (2013), Kinect for interactive ar anatomy learning, in ‘2013 IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR)’, IEEE, pp. 277–278.

Mitsopoulos-Rubens, E., Trotter, M. J. & Lenné, M. G. (2011), ‘Effects on driving perfor-
mance of interacting with an in-vehicle music player: A comparison of three interface
layout concepts for information presentation’, Applied ergonomics 42(4), 583–591.

Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R. & Mittal, V. K. (2015), A voice-
controlled multi-functional smart home automation system, in ‘2015 Annual IEEE India
Conference (INDICON)’, IEEE, pp. 1–6.



BIBLIOGRAPHY 145

Mlakar, S., Alida Haberfellner, M., Jetter, H.-C. & Haller, M. (2021), Exploring affordances
of surface gestures on textile user interfaces, in ‘Designing Interactive Systems Conference
2021’, pp. 1159–1170.

Modaberi, M. (2024), ‘The role of gesture-based interaction in improving user satisfaction
for touchless interfaces’, International Journal of Advanced Human Computer Interaction

2(2), 20–32.

Mousavi Hondori, H. & Khademi, M. (2014), ‘A review on technical and clinical impact of
microsoft kinect on physical therapy and rehabilitation’, Journal of medical engineering

2014(1), 846514.

Muceli, S. & Farina, D. (2011), ‘Simultaneous and proportional estimation of hand kinemat-
ics from emg during mirrored movements at multiple degrees-of-freedom’, IEEE transac-

tions on neural systems and rehabilitation engineering 20(3), 371–378.

Murray-Smith, R. (2017), Stratified, computational interaction via machine learning, in

‘Eighteenth Yale Workshop on Adaptive and Learning Systems (New Haven, CT, USA.
95–101’.

Myers, B., Hudson, S. E. & Pausch, R. (2000), ‘Past, present, and future of user interface
software tools’, ACM Transactions on Computer-Human Interaction (TOCHI) 7(1), 3–28.

Nacenta, M. A., Kamber, Y., Qiang, Y. & Kristensson, P. O. (2013), Memorability of pre-
designed and user-defined gesture sets, in ‘Proceedings of the SIGCHI conference on hu-
man factors in computing systems’, pp. 1099–1108.

Nasution, M. I. P., Nurbaiti, N., Nurlaila, N., Rahma, T. I. F. & Kamilah, K. (2020), Face
recognition login authentication for digital payment solution at covid-19 pandemic, in

‘2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)’,
IEEE, pp. 48–51.

Neimark, D., Bar, O., Zohar, M. & Asselmann, D. (2021), Video transformer network, in

‘Proceedings of the IEEE International Conference on Computer Vision’, pp. 3163–3172.

Nguyen, H.-Q., Le, T.-H., Tran, T.-K., Tran, H.-N., Tran, T.-H., Le, T.-L., Vu, H., Pham, C.,
Nguyen, T. P. & Nguyen, H. T. (2023), ‘Hand gesture recognition from wrist-worn camera
for human–machine interaction’, IEEE Access 11, 53262–53274.



BIBLIOGRAPHY 146

Novack, M. & Goldin-Meadow, S. (2015), ‘Learning from gesture: How our hands change
our minds’, Educational psychology review 27, 405–412.

O’Brien, K., Liggett, A., Ramirez-Zohfeld, V., Sunkara, P. & Lindquist, L. A. (2020), ‘Voice-
controlled intelligent personal assistants to support aging in place’, Journal of the Ameri-

can Geriatrics Society 68(1), 176–179.

O’Hara, K., Gonzalez, G., Sellen, A., Penney, G., Varnavas, A., Mentis, H., Criminisi, A.,
Corish, R., Rouncefield, M., Dastur, N. et al. (2014), ‘Touchless interaction in surgery’,
Communications of the ACM 57(1), 70–77.

Paik, J., Kim, J. W., Ritter, F. E. & Reitter, D. (2015), ‘Predicting user performance and
learning in human–computer interaction with the herbal compiler’, ACM Transactions on

Computer-Human Interaction (TOCHI) 22(5), 1–26.

Panger, G. (2012), Kinect in the kitchen: testing depth camera interactions in practical home
environments, in ‘CHI’12 Extended Abstracts on Human Factors in Computing Systems’,
pp. 1985–1990.

Panwar, M. & Mehra, P. S. (2011), Hand gesture recognition for human computer interaction,
in ‘2011 International Conference on Image Information Processing’, IEEE, pp. 1–7.

Parilusyan, B., Teyssier, M., Martinez-Missir, V., Duhart, C. & Serrano, M. (2022), ‘Sensur-
faces: A novel approach for embedded touch sensing on everyday surfaces’, Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6(2), 1–19.

Partridge, M. & Calvo, R. A. (1998), ‘Fast dimensionality reduction and simple pca’, Intelli-

gent data analysis 2(3), 203–214.

Patil, A. K., Kim, S. H., Balasubramanyam, A., Ryu, J. Y. & Chai, Y. H. (2019), Pilot experi-
ment of a 2d trajectory representation of quaternion-based 3d gesture tracking, in ‘Proceed-
ings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems’,
pp. 1–7.

Pavlovic, V. I., Sharma, R. & Huang, T. S. (1997), ‘Visual interpretation of hand gestures
for human-computer interaction: A review’, IEEE Transactions on pattern analysis and

machine intelligence 19(7), 677–695.



BIBLIOGRAPHY 147

Pearson, J., Bailey, G., Robinson, S., Jones, M., Owen, T., Zhang, C., Reitmaier, T., Steer,
C., Carter, A., Sahoo, D. R. et al. (2022), Can’t touch this: Rethinking public technol-
ogy in a covid-19 era, in ‘Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems’, pp. 1–14.

Pierdicca, R., Paolanti, M., Naspetti, S., Mandolesi, S., Zanoli, R. & Frontoni, E. (2018),
‘User-centered predictive model for improving cultural heritage augmented reality appli-
cations: An hmm-based approach for eye-tracking data’, Journal of imaging 4(8), 101.

Potts, D., Dabravalskis, M. & Houben, S. (2022), Tangibletouch: A toolkit for designing
surface-based gestures for tangible interfaces, in ‘Sixteenth International Conference on
Tangible, Embedded, and Embodied Interaction’, pp. 1–14.

Prekop, P. & Burnett, M. (2003), ‘Activities, context and ubiquitous computing’, Computer

communications 26(11), 1168–1176.

Pterneas, V. (2023), ‘Measuring distances using kinect – the right way’. Accessed: 18 March
2025.
URL: https://pterneas.com/2016/08/11/measuring-distances-kinect/

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A. & Carin, L. (2016), ‘Variational
autoencoder for deep learning of images, labels and captions’, Advances in neural infor-

mation processing systems 29.

Pukari, A., Nivalainen, J., Alavesa, P. & Korkiakoski, M. (2023), Learn flags: Assessment
of the learning curve of inexperienced users with gesture interactions with hands-free aug-
mented reality, in ‘Proceedings of the 26th International Academic Mindtrek Conference’,
pp. 340–343.

Qi, C. R., Su, H., Mo, K. & Guibas, L. J. (2017), Pointnet: Deep learning on point sets for
3D classification and segmentation, in ‘Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition’, pp. 652–660.

Qi, J., Ma, L., Cui, Z. & Yu, Y. (2024), ‘Computer vision-based hand gesture recognition for
human-robot interaction: a review’, Complex & Intelligent Systems 10(1), 1581–1606.

Qian, X., Ju, W. & Sirkin, D. M. (2020), ‘Aladdin’s magic carpet: Navigation by in-air
static hand gesture in autonomous vehicles’, International Journal of Human–Computer

Interaction 36(20), 1912–1927.



BIBLIOGRAPHY 148

Qin, K., Chen, C., Pu, X., Tang, Q., He, W., Liu, Y., Zeng, Q., Liu, G., Guo, H. & Hu, C.
(2021), ‘Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture
interaction’, Nano-micro letters 13, 1–9.

Rajanna, V. & Hammond, T. (2022), ‘Can gaze beat touch? a fitts’ law evaluation of gaze,
touch, and mouse inputs’, arXiv preprint arXiv:2208.01248 .

Razavi, A., Van den Oord, A. & Vinyals, O. (2019), ‘Generating diverse high-fidelity images
with vq-vae-2’, Advances in neural information processing systems 32.

Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G.
& Baker, T. (2020), ‘Analysis of dimensionality reduction techniques on big data’, IEEE

Access 8, 54776–54788.

Ren, Z., Meng, J. & Yuan, J. (2011), Depth camera based hand gesture recognition and
its applications in human-computer-interaction, in ‘2011 8th International Conference on
Information, Communications & Signal Processing’, IEEE, pp. 1–5.

Renaud, K. & Cooper, R. (2000), ‘Feedback in human-computer interaction-characteristics
and recommendations’, South African Computer Journal 2000(26), 105–114.

Rezende, D. J., Mohamed, S. & Wierstra, D. (2014), Stochastic backpropagation and ap-
proximate inference in deep generative models, in ‘International conference on machine
learning’, PMLR, pp. 1278–1286.

Rieger, B. & Van Vliet, L. J. (2004), ‘A systematic approach to nD orientation representation’,
Image and Vision Computing 22(6), 453–459.

Rusu, M. M., Schött, S. Y., Williamson, J. H., Schmidt, A. & Murray-Smith, R. (2021), ‘Low-
dimensional embeddings for interaction design’, Advanced Intelligent Systems p. 2100045.

Rusu, M. M., Schött, S. Y., Williamson, J. H., Schmidt, A. & Murray-Smith, R. (2022),
‘Low-dimensional embeddings for interaction design’, Advanced Intelligent Systems

4(2), 2100045.

Ryoo, M. S. & Aggarwal, J. K. (2007), Robust human-computer interaction system guiding
a user by providing feedback., in ‘IJCAI’, pp. 2850–2855.

Sambrooks, L. & Wilkinson, B. (2013), Comparison of gestural, touch, and mouse interac-
tion with fitts’ law, in ‘Proceedings of the 25th Australian Computer-Human Interaction
Conference: Augmentation, Application, Innovation, Collaboration’, pp. 119–122.



BIBLIOGRAPHY 149

Sara, U., Akter, M. & Uddin, M. S. (2019), ‘Image quality assessment through FSIM, SSIM,
MSE and PSNR — a comparative study’, Journal of Computer and Communications

7(3), 8–18.

Saxena, A., Driemeyer, J. & Ng, A. Y. (2009), Learning 3-D object orientation from images,
in ‘2009 IEEE International Conference on Robotics and Automation’, pp. 794–800.

Seaborn, K., Miyake, N. P., Pennefather, P. & Otake-Matsuura, M. (2021), ‘Voice in human–
agent interaction: A survey’, ACM Computing Surveys (CSUR) 54(4), 1–43.

Shakeri, G., Williamson, J. H. & Brewster, S. (2017), Novel multimodal feedback techniques
for in-car mid-air gesture interaction, in ‘Proceedings of the 9th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications’, pp. 84–93.

Shapiro, B. R., Hall, R. P. & Owens, D. A. (2017), ‘Developing & using interaction geogra-
phy in a museum’, International Journal of Computer-Supported Collaborative Learning

12, 377–399.

Sharif, K. & Tenbergen, B. (2020), ‘Smart home voice assistants: a literature survey of user
privacy and security vulnerabilities’, Complex Systems Informatics and Modeling Quar-

terly (24), 15–30.

Sharma, S., Henderson, J. & Ghosh, J. (2019), ‘Certifai: Counterfactual explanations for
robustness, transparency, interpretability, and fairness of artificial intelligence models’,
arXiv preprint arXiv:1905.07857 .

Shi, R., Wei, Y., Li, Y., Yu, L. & Liang, H.-N. (2023), Expanding targets in virtual reality
environments: A fitts’ law study, in ‘2023 IEEE International Symposium on Mixed and
Augmented Reality Adjunct (ISMAR-Adjunct)’, IEEE, pp. 615–618.

Shoemake, K. (1985), Animating rotation with quaternion curves, in ‘Proceedings of the 12th
annual conference on Computer graphics and interactive techniques’, pp. 245–254.

Silva, V. S., Freitas, A. & Handschuh, S. (2019), ‘On the semantic interpretability of artificial
intelligence models’, arXiv preprint arXiv:1907.04105 .

Sinha, S. & Dieng, A. B. (2021), ‘Consistency regularization for variational auto-encoders’,
Advances in Neural Information Processing Systems 34, 12943–12954.



BIBLIOGRAPHY 150

Sluÿters, A., Lambot, S., Vanderdonckt, J. & Vatavu, R.-D. (2023), ‘Radarsense: Accurate
recognition of mid-air hand gestures with radar sensing and few training examples’, ACM

Transactions on Interactive Intelligent Systems 13(3), 1–45.

Song, S. & Xiao, J. (2014), Sliding shapes for 3d object detection in depth images, in ‘Euro-
pean conference on computer vision’, Springer, pp. 634–651.

Soukoreff, R. W. & MacKenzie, I. S. (2004), ‘Towards a standard for pointing device eval-
uation, perspectives on 27 years of fitts’ law research in hci’, International journal of

human-computer studies 61(6), 751–789.
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