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Abstract

This thesis explores foundational problems in microeconomic theory and advances un-
derstanding of complex decision-making processes in different environments with dif-
ferent parties through mathematical modelling.

Chapter 2 proves a new representation theorem for continuous‐time preference over con-
sumption or portfolio streams that take values in the probability simplex, allowing for
both fully continuous and piecewise‐continuous paths. Unlike existing results, our con-
struction only relies on standard axioms. This framework is applicable to problems like
portfolio allocation under a fixed budget or consumption under liquidity shocks—where
payoffs may jump at discrete dates. We also show that one agent is more impatient
than another if and only if their discount factor is larger.

Chapter 3 explores the asymptotic behaviour of strictly dominated strategies in ran-
dom games of two players, in which the elements are i.i.d. selected from a probability
distribution. As the game size increases, if the number of strategies for the two play-
ers is similar, in a sense we make precise, the probability of having strictly dominated
strategies approaches 0. This is particularly evident in large nearly square games where
the row size is proportionate to the column size within a specific range. Consequently,
the probability of a game being dominance solvable diminishes to zero. Furthermore,
we show that this result is very nearly tight: small deviations lead to a non-zero chance
of strictly dominated strategies, while larger deviations make their existence nearly cer-
tain. Our findings first emphasize the significance of the parameters in the underlying
probability distribution.

Chapter 3 also examines the asymptotic behaviour of the fixed proportion q of domin-
ated strategies as M,N → ∞, where M and N are the row and column sizes. Specifically,
for the row player, we show that the probability of existence of q-portion-dominated
strategy approaches 0 as N ≥ M/(ln(M))α for some α > 0 and it approaches 1 when M

grow much faster than (N/(1−δ −q))N for some δ > 0.

iii



Finally, Chapter 3 proposes a simple algorithm for detecting strictly dominated strategies
in finite games, a topic of interest in economics and computer science since Yu and
Zeleny 1975. This algorithm improves the conventional approach by utilizing minimum
and maximum comparisons to reduce the expected time complexity.

Chapter 4 introduces a social planner into the random allocation framework who does
not receive any object but may influence the allocation toward his preference. We
present two guiding principles to clarify the conditions under which the social plan-
ner’s opinion cannot be dismissed and when an agent’s opinion must be respected.
Conformity-Priority Efficiency (CPF) asserts that for any given object, we should re-
ward the agent who conforms to social expectation more than others, which strengthens
the notion of ordinal efficiency. Indistinguishability Fairness (IF) requires that for any
object, if we can’t distinguish agents due to social expectation and support of lottery,
then they should be treated equally. Then, we construct a simple Flow algorithm to
characterize them precisely.

Chapter 4 also examine the classic random allocation problem and, adhering to the
principle of interim favouring rank, propose an alternative variant to the probabil-
istic setting to eliminate an unfair scenario where agents who rank objects higher
receive more favourite objects with positive probability. We introduce the property of
interim favouring support, which is satisfied by the fractional adaptive Boston rule.
Additionally, we propose a new fairness criterion, termed equal support equal claim, to
characterize the fractional adaptive Boston rule.

Finally, Chapter 4 introduces a new efficiency notion, interim efficiency, which is
stronger than ex-post Pareto efficiency but weaker than ordinal efficiency. We con-
struct the algorithm that is easy to apply in the lab, the Random Flow mechanism, to
achieve interim efficiency. Numerical analysis shows that random flow results in less
envy across preference profiles than the random priority mechanism.

Together, these contributions demonstrate the versatility of game theory in addressing
complex decision-making, resource allocation, and strategic refinement across diverse
contexts.
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Chapter 1

Introduction

In the 18th century, Daniel Bernoulli introduced the concept of ”expected utility” in
the context of gambling, a concept later formalized by John von Neumann and Os-
kar Morgenstern in the 1940s. This foundational work inspired numerous studies in
economics, particularly in decision-making under risk and uncertainty. Subsequently,
Koopmans 1960 provided a rigorous axiomatic basis for intertemporal preferences. He
introduced the concept of time consistency and developed a framework in which in-
tertemporal preferences are represented as a sum of utilities, weighted by a discount
factor, under specific axioms. This work extended Samuelson’s 1937 model model and
addressed issues of dynamic consistency and separability (Samuelson 1937). Koopmans
emphasized that resolving discontinuous cases is a simpler but critical step toward ad-
dressing continuous cases. However, many practical outcome spaces do not satisfy von
Neumann-Morgenstern’s independence axiom.

Chapter 2 constructs classical models of intertemporal preferences by developing rep-
resentation theorems specifically tailored to simplex spaces, where utility functions
may be nonlinear. This approach models decision-making scenarios where agents eval-
uate the allocation of heterogeneous or homogeneous cake over time or allocate fixed
capital among stocks, bonds, and real estate across different periods. Building on Qin
and Rommeswinkel 2022, this work also extends the representation theorem into a dy-
namic framework, addressing limitations in prior research by incorporating piecewise
continuous functions and accounting for utility discontinuities. This provides a robust
framework for modeling preferences under risk.

1



1. Introduction 2

In addition to individual decision-making, game theory has long served as a corner-
stone for understanding strategic interactions, starting with Neumann and Morgen-
stern 1944. A fundamental concept in microeconomics and game theory is that of
dominated strategies: a strategy is strictly dominated if it yields lower payoffs than
an alternative across all possible scenarios. Players naturally avoid strictly dominated
strategies if their objective is to maximize payoffs. However, identifying strictly dom-
inated strategies becomes computationally challenging as the size of players’ strategy
spaces grows (Yu and Zeleny 1975).

Chapter 3 examines the existence of dominated strategies in random games with two
players, where strategies are independently and identically distributed (i.i.d.) from a
probability distribution. We present three main results. First, as the game size increases,
if the number of strategies of two players is similar, in a sense we make precise, the
probability of having strictly dominated strategies approaches 0. Small deviations in
these growth rates lead to a non-zero probability of strictly dominated strategies, while
larger deviations make their existence almost certain. Second, we introduce q-portion
dominated strategies, where a fraction q of strategies is strictly dominated. This refined
concept is particularly useful in large games. We identify thresholds for growth rates
that determine the existence of q-portion dominated strategies. This result is stronger,
as it yields a single strategy that strictly dominates the q-portion of strategies. Lastly,
we develop an algorithm that reduces the time complexity of identifying strictly dom-
inated strategies by approximately half, which can be integrated with other efficient
algorithms.

Finally, we aim to understand the decision procedure in economics when the social plan-
ner is involved. It is common that the social planner’s objective function significantly
shapes economic outcomes and raises important philosophical questions about whether
such interventions should be enforced when they conflict with individual preferences.
In the last chapter, we take the axiomatic approach to economic design to understand
this problem. The theory of economic design aims to identify and construct a decision
procedure to satisfy desirable properties. And in the last twenty years, the literature on
economic design, both its theoretical branch and its applied branch, has experienced
spectacular growth.(Thomson 2023).

In Chapter 4, we model the social planner in the classic random allocation problem,
in which every normal agent submits an ordinal preference and receives a lottery. The
social planner, as the special agent, does not receive any object and holds a different
preference compared to agents, depending on the nature of the social planner. We
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assume the social planner’s preference is responsive to the order of importance, one
example is lexicographical preference. To address the conflict between the social planner
and normal agents, we formalize the principle of Conformity-Priority Efficiency (CPF),
which rewards agents who conform more closely to social expectations.

In cases where agents cannot be distinguished due to conformity, we emphasize the
significance of lottery support, as every agent will receive a lottery as an outcome.
We argue that it is fairer to consider lottery support rather than relative rank.1 The
second part of Conformity-Priority Efficiency (CPF) states that if the object a is
conformed to by multiple agents at the same level regarding social expectation, priority
should be given to the agent i with fewer objects assigned with positive probability—
specifically, those preferred by agent i over object a, while also preferred by the object
being associated with the highest violations against the social planner’s preferences
concerning a. To achieve this property effectively, we propose a simple Flow Algorithm.

Chapter 4 also analyzes the classic market without intervention from a social planner
and formalizes the second part of Conformity-Priority Efficiency (CPF) in the classic
model. Additionally, this chapter introduces the notion of interim efficiency, which
bridges gaps in existing allocation standards. Meanwhile, our Random Flow Algorithm
presents a novel mechanism enhancing fairness and efficiency compared to traditional
Random Priority Mechanisms.

Together, these contributions underscore the power of game theory and economic design
in addressing complex economic and public policy challenges.

1. We define an agent’s most favored object as having rank 1.



Chapter 2

Intertemporal time preference on a
simplex in continuous time

2.1 Introduction

Time preference and intertemporal decision making have long been central issues in
economics. Koopmans’ early work showed that under some conditions, an exponential
discount utility model can explain how people value consumption over time (Koopmans
1960, 1966, 1972), and Bleichrodt furthered clarity on the mathematical foundations of
Koopmans’s theorem (Bleichrodt et al. 2008). As mentioned by Koopmans, solving the
discontinuous case is simpler and is also the main step towards the continuous case.

Most traditional models assume an unconstrained outcome space and rely on the von
Neumann-Morgenstern independence axiom. However, many real-life decisions, such as
dividing a fixed cake over time or allocating a fixed budget among different investments,
do not fit this model. In these situations, a simplex better represents outcomes (i.e.,
Qin and Rommeswinkel 2022) and shows how a fixed total wealth is allocated across
different choices.

In this paper, we extend the static representation theorem of ibid. to a dynamic,
continuous-time setting. Our approach allows for consumption streams that are not
entirely smooth but can include jumps or discontinuities. This flexibility is important
when modeling sudden changes in consumption or investment behavior. Meanwhile,
including discontinuous functions is particularly important because solving the discon-

4



2.1. Introduction 5

tinuous case often serves as a critical step toward addressing the continuous case. For
instance, Kopylov 2010 examines simple step functions as a foundation for continuous
analysis. We also examine how delay affects preferences, establishing that one agent is
more impatient than another precisely when their discount factor is higher.

To our understanding, there are three similar works, Harvey and Østerdal 2012, Pivato
2021, and Qin and Rommeswinkel 2022. The former considers a piece-wise continuous
function with the outcome space being a product space. Moreover, they introduce a
technically demanding axiom, Mid-outcome Independence, which is clearly stated in
Discussion, while we use standard axioms in our representation theorem. The second
one focuses on a connected space, emphasizing the importance and realism of continu-
ous functions, while allowing for finitely many discontinuities. The last one deals with
the static preference over simplex while we focus on dynamic model. Our research is
necessary and complementary to this series of research and is unique in illustrating
a representation theorem for preference over piecewise continuous functions within a
simplex.

In the continuous-time problem, significant contributions have been made by Bell 1974
in demonstrating the exponential discount expected utility form for evaluating income
time streams, Chichilnisky 1981 in identifying conditions for optimal growth in infinite
continuous time, and Weibull 1985 in offering a representation theorem for single-
value streams among others. However, these works often focused on spaces with either
discontinuous functions in continuous time when consumption is in a product space
(Harvey and Østerdal 2012, Hara 2016), or continuous functions in continuous time in
a connected space (Pivato 2021), or on spaces with step functions (Kopylov 2010).

Regarding risk capture over time, one approach considers choice objects as probability
measures on deterministic outcome streams in continuous time (Epstein 1983, Hayashi
2003, Hara 2016), while another views them as lottery streams or functions (Epstein
and Schneider 2003, Lu and Saito 2018). These methods differ significantly in their
treatment of choice objects and temporal decisions. Our study aligns with the latter
approach and acknowledges the inclusion of discontinuous streams due to functions
with finite jumping points. While Pivato 2021 focused on continuous trajectories, most
research has concentrated on discontinuous trajectories (Kopylov 2010, Harvey and
Østerdal 2012, Hara 2016).
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Also, seminal works such as Fishburn 1970 and Fishburn and Rubinstein 1982, Lan-
caster 1963 have concentrated on the theoretical foundations of decision-making for
single outcomes or multidimensional commodity bundles at discrete time points.

The article is organized as follows: Section 2.2 presents the model, Section 2.3 intro-
duces axioms, Section 2.4 discusses the main results, Section 2.5 compares them to
previous studies, and Section 2.6 concludes the study.

2.2 Model

Let T = [0,T ] be an interval and T < ∞. Outcome space is a n-1 dimensional standard
simplex as ∆ = {p ∈ [0,1]n : ∑i∈l pi = 1} with a natural algebraic structure, convex
combination, and denote the support of an element p = (p1, p2, ..., pn) as the set s(p) =

{i ∈ {1,2, ...,n}|pi > 0}. ∆ is a subset of product spaces, moreover, any change in one
dimension will change the value in other dimensions.

We define choice objects as outcome stream (or trajectory) denoted by the bold letter:
p : T → ∆. In this paper, we mainly discuss piecewise continuous outcome stream.
In other words, p is piecewise continuous if it is continuous on each piece of a finite
partition of T , and the image of each piece is contained in ∆. In the remaining part, we
consider outcome stream space P as all piecewise continuous outcome streams p and
the outcome stream space Pt that contains all piecewise continuous outcome streams
p[t,T ] starting from time t for any fixed t ∈ [0,T ].

At every time t, there is an ordering ≳t on Pt , with the meaning that if p[t,T ] ≳t q[t,T ],
in words, today’s preferences will only be relevant to consumption beyond today and
independent from the past consumption. For simplicity, we will denote it as p ≳t q.
Hence, ≻t and ∼t are strict preference and indifference components of ≳t .



2.3. Axioms 7

2.3 Axioms

In the following, we define the standard axioms based on a given the outcome space ∆
and outcome stream space Pt for any t.

First of all, we have to derive the preference over simplex (the static outcome). At each
time t, we derive a preference ≳∆

t on ∆ from ≳t . For any outcome p ∈ ∆, we denote c(p)

as the constant outcome stream such that it generates outcome p for every time t.

Now, for all t, for all outcomes p, p
′ ∈ ∆, and constant outcome streams c(p),c(p

′
) ∈

P,we say p ≳∆
t p

′ if c(p)≳t c(p
′
).

In literature, it is often defined≳t and≳∆
t separately and assuming one ’agrees with’ the

other in some sense (i.e., Harvey and Østerdal 2012). Although there is no difference for
the main result, it is useful to derive ≳∆

t from ≳t . One advantage is that our framework
can easily be adapted to situations where the utility function or preferences change
over time.

Axiom 1. Weak order [WO]: ∀t ∈ T ,≳t is complete and transitive over Pt .

Axiom 1 also implies ≳∆
t satisfies Weak Order because ≳∆

t is derived from the or-
derings ≳t . Next, we state the axiom for preference ≳∆

t only according to Qin and
Rommeswinkel 2022. We need one more notation [n] = {1,2, ...,n}. Reminder s(p) is
the support of an element p = (p1, p2, ..., pn).

Axiom 2. Simplex Additive Utility [SAU] : At any time t, we state ≳∆
t satisfies

Strong Essentiality and Comeasurability, and Dimensional Independence, where

1. Strong Essentiality We say ≳∆
t on set ∆ fulfills strong essentiality for a dimen-

sion set [n] if for all α ∈ (0,1) there exist some p, p
′
, p

′′ such that s(p),s(p
′
)⊆ [n],

and s(p
′′
)∩ [n] = /0, then α p+(1−α)p

′′ ≻∆
t α p

′
+(1−α)p

′′

2. Comeasurability For every t, ∀p, p
′
, p

′′
, p

′′′
, p̃, p̃

′
, p̃

′′
, p̃

′′′ ∈ ∆,a, ã ∈ (0,1),
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if [s(p)∪ [s(p
′
)]∩ [s(p

′′
)∪ [s(p

′′′
)] = /0, and [s( p̃)∪ [sp̃

′
)]∩ [s(p̃

′′
)∪ [s(p̃

′′′
)] = /0, s.t.

ap+(1−a)p
′′ ∼∆

t ãp̃+(1− ã)p̃
′′

ap+(1−a)p
′′′ ∼∆

t ãp̃+(1− ã)p̃
′′′

ap
′
+(1−a)p

′′ ∼∆
t ãp̃

′
+(1− ã)p̃

′′

⇒ [ap
′
+(1−a)p

′′′
∼∆

t ãp̃
′
+(1− ã)p̃

′′′
]

(2.1)
3. Dimensional Independence For every t,∀p, p

′
, p

′′
, p

′′′ ∈ ∆,a ∈ (0,1), if [s(p)∪
[s(p

′
)]∩ [s(p

′′
)∪ [s(p

′′′
)] = /0, s.t.

[ap+(1−a)p
′′ ≳∆

t ap
′
+(1−a)p

′′
]⇒ [ap+(1−a)p

′′′ ≳∆
t ap

′
+(1−a)p

′′′
] (2.2)

Axiom 2 is the same necessary and sufficient condition for additive representation on
the simplex from Qin and Rommeswinkel 2022. This ensure the induced preference on
∆ to admit a simplex‐additive representation (Theorem 1 in Qin and Rommeswinkel
2022).

Now we state the axiom for time preference. We define αp+ (1−α)q as pointwise
convex combination between trajectories p and q. Moreover we define (p, xq[a,b)) as the
stream on the time interval [0,T ] which follows q(t − x) from time a to b and follows
p on the time interval T \ [a,b). Particularly, we denote (p,0q[a,b)) as (p,q[a,b)) (see
Figure 2.1).

0.5 1 1.5 2

0.25

0.5

0.75

1

t

p(t)

Stream p(t)

0.5 1 1.5 2

0.25

0.5

0.75

1

t

q(t)

Stream q(t)

0.5 1 1.5 2

0.25

0.5

0.75

1

t

r(t)

Composite Stream (p, 0.5q[0.5,1))

Figure 2.1: Left: Original streams p(t) (top) and q(t) (bottom).
Right: Composite stream (p, 0.5q[0.5,1)).
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Axiom 3. Independence [I]: For all t, for all sub half closed interval V of [t,T ], for
all p,p′

,q,q′ ∈ Pt we have

(p,qV )≳t (p
′
,qV )⇒ (p,q

′
V )≳t (p

′
,q

′
V ) (2.3)

Axiom 3 is the traditional separability: one may wish to assume that preferences
between money and gold are separable for any period.

Axiom 4. Continuity [C]:

For all t, for any p ∈ Pt and any q ∈ Pt

1. If p ≻t q, then there exists δ > 0 and h such that d(q(t ′),h(t ′))< δ for all t
′
> t

implies p ≻t h for all h ∈ Pt .
2. If q ≻t p, then there exists δ > 0 and h such that d(q(t ′),h(t ′))< δ for all t

′
> t

implies h ≻t p for all h ∈ Pt .

Debreu 1959, Gorman 1968, and Harvey and Østerdal 2012 employed conditions that
are analogous to Axioms 1, 3, and 4 in order to formulate additive-utility models. These
models are specifically tailored for the scenario involving multivariable consequences
and employ step functions that are contingent upon a designated partition of the
interval [0,T ].

Axiom 5. Time Monotonicity [TM]: ∀t ∈ T .

1. ∀t ∈ T ,∀p,p′ ∈ Pt

∀τ ≥ t,p(τ)≳∆
t p

′
(τ)⇒ p ≳t p

′

Moreover, if p(τ) ≳∆
t q(τ) almost everywhere except a non-point interval, and

p(τ)≻∆
t q(τ) on that non-point interval, then p ≻t q.

2. For all t, for all constant outcome stream c(p) and c(p′), we have

if p ≳∆
τ p′for all τ > t except a finite numbers, then c(p)≳t c(p′)
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Axiom 5 suggests that if one stream is always superior to the other for any single
time period based on the current period preference, then the agent should hold the
same preference. If there exist a non-point interval, i.e, [τ,τ ′) with τ < τ ′, we have
p(s) ≻∆

s q(s), then p ≻t q. It’s worth clarifying that the second part differs from the
definition of ≳∆.

Axiom 6. Time Stationary [TS]: ∀t ∈T ,p ∈Pt ,γ > 0, and q,q′
: [0,γ]→ ∆, if for

some τ ≥ t, we have
(p, τq[τ,τ+γ))≳t (p, τq

′
[τ,τ+γ)) (2.4)

then it’s true for any τ with τ ≥ t and τ + γ ≤ T .

Axiom 6 is a reduced continuous-time form of risk preference introduced by Epstein
and Schneider 2003. This imposes a similar time-stationary property on the ranking
of probability measure streams. In continuous time, this axiom applies not to two
single time periods but to a small time interval. Consequently, a specific component
of the probability measure stream, p,q, remains invariant starting time τ . Axiom 6
necessitates invariance with time τ and γ , such that τ + γ ≤ T , implying that if a
discounted utility function exists at time τ = t for some time periods [τ,τ + γ], then a
discounted utility function exists at any time t.

Axiom 7. Time Impatience [TI]: ∀t ∈ T ,∀γ > 0 and γ + t ≤ T , ∀p,q ∈ Pt with
p(s)≳∆

s q(s),∀s ∈ [t,T ], if for some τ ≥ t we have

(q,p[t,t+γ))≳t (q,p[τ,τ+γ)) (2.5)

then this is true for all τ ≥ 0 and τ + γ ≤ T .

Axiom 7 enforces that if a player prefers a probability measure stream now over one
in the future for any delayed period [0,τ] at the outset, they need to hold the same
attitude at any future time t, and vice versa.

Axiom 8. Dynamic Consistency [DC]: ∀t ∈ T ,p,p′ ∈ Pt ,∀τ ≤ t

[p(τ) = p
′
(τ)]∧ [p ≳t p

′
]⇒ [p ≳τ p

′
] (2.6)

with the strict inequality holding if p′ ≻t p.
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Axiom 8 posits that if an agent opts for the outcome stream p over p′ at time t

when everything before time t is identical, it would appear irrational if they changed
their preference to p′ over p when returning to a previous time. This axiom reflects
classic dynamic consistency within the context of intertemporal choice. While Axiom 6
and Axiom 8 appear to capture similar behavior when considering a single preference
relation, there are conceptual differences between them within the context of the current
model. Specifically, Axiom 6 pertains to a single preference relation within a specific
period, whereas Axiom 8 encompasses the entire process.

Although the relation ≳t originates from ≳0 due to the principle of Dynamic Consist-
ency, it is important to clarify that the focus of the model under consideration is on
the whole process of preferences. For this reason, the notation ≳t will be employed in
subsequent discussions.

Axiom 9. Non-Degeneracy [ND]: For every t, there are some p,p′ ∈Pt , such that
p′ ≻t p.

Axiom 9 stipulates that the decision-making problem and qualitative consumption are
nontrivial by eliminating the possibility of the decision-maker being indifferent among
all consumption at every time, implying that a strict component is non-empty.

2.4 Result

In this work, we provide two representation theorems under the restriction of P and
present a representation of when consumption is under budget, enabling the natural
construction of an expected utility version of the utility function through homogeneity,
as the expected utility is a linear variant of our model. Specifically, Proposition 1
characterizes the preference ≳0 at a fixed date via an integral over an arbitrary weight
function δ (t) and Proposition 2 strengthens this to the dynamic setting {≳t}, deriving
the unique exponential form and the discount function δ (t) = e−β t .

Proposition 1. For a binary relation ≳0 on P and a derived preference {≳∆
0} on P,

the following statements are equivalent:

1. ≳0 satisfies WO, I, TM, TS, C, ND and ≳∆
0 satisfies SAU.



2.4. Result 12

2. There exists a utility function U(p) = ∑n
i ui(pi) for all p ∈ ∆, exists a continuous

function δ : T → R, such that for any p,q ∈ P,

p ≳0 q ⇔
∫ T

0
U(p(t))δ (t)dt ≥

∫ T

0
U(q(t))δ (t)dt (2.7)

The proof of Proposition 1 is based on the proof of Theorem 1 in Harvey and Østerdal
2012 and the additive representation theorem in Debreu et al. 1954 and Gorman 1968,
but it relies on a set of standard axioms compared to Harvey and Østerdal 2012. There is
no direct logical connection between the two results due to differences in the properties
of the outcome spaces. Specifically, we require the outcome space to be a simplex,
whereas ibid. relies on the full product space of intervals. Moreover, their framework
and axioms depend on the existence of a null outcome, which is also impossible in ∆.
Instead, we incorporate the commonly used axiom of Non-degeneracy to address this
limitation.

When we restrict attention to static outcomes, Weak Order, SAU and Continuity on
the simplex ∆ guarantee by standard results (Qin and Rommeswinkel 2022) a con-
tinuous additive utility U(p) = ∑n

i=1 ui(pi). Next, any piecewise‐continuous stream can
be approximated by a step function on a finite partition of [0,T ], and Independence
together with Goldman 1957 and Gorman 1968 on the product space ∆m yields an
additive representation (Lemma 5). To use that, we have to show that a point inter-
val is inessential and non‐trivial intervals are essential (Lemma 4). Then we have to
show that all functions are cardinal equal by the Jensen functional equation. This is
the key difference from Harvey and Østerdal 2012, and they use a new complicated
axiom called ’Mid-outcome independence’. We instead use Time Stationary to show
the cardinal equivalence in Lemma 6. After that, we follow the last step in Theorem
A.1 (ibid.) to show it has the integral representation, which completes the proof.

Proposition 2. For a set of preference {≳t}t∈T on P and a set of derived preference
{≳∆

t }t∈T on P, following statements are equivalent:

1. ∀t, ≳t satisfies Axiom WO, I, TM, TS, TI, DC, C, ND and ≳∆
t satisfies SAU.

2. There exists a utility function U = ∑n
i ui(pi), exists a discount factor β , s.t. for

any t ∈ T , and p,q ∈ P

p ≳t q ⇔
∫ T

t
e−β (s−t)U(p(s))ds ≥

∫ T

t
e−β (s−t)U(q(s))ds (2.8)
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To prove Proposition 2, we use Time stationary and Time impatience and Cauchy’s
multiplicative functional equation to show the exponential expression of δ (t). Then we
use Dynamic Consistency to show ≳t share the same discount factor β . To do so, we
will pick one utility index (ui)i∈n that assigns utility 1 to the first dimension and 0 to
the others. Then we will construct the two trajectories that are the same up to some
time t and different in the first dimension such that p ≳t q. Dynamic consistency say
the relation between p and q will remain for all τ < t. We can show a contradiction to
assumption p≳t q if δt ̸= δt ′ for some t ̸= t ′.

The results presented in this paper diverge from previous findings from two perspect-
ives. For one thing, the outcome space considered is distinct from those in earlier
studies. For instance, Harvey, Østerdal et al. 2007; Harvey and Østerdal 2012, and
Hara 2016 stipulated that the outcome space must be a product set. On the opposite,
this research examines a subset of the product space, leading to distinct assumptions
about preferences in the outcome space. Also, we focus on an intertemporal preference
structure as opposed to the temporal preference employed by Weibull 1985, Harvey,
Østerdal et al. 2007; Harvey and Østerdal 2012, Hara 2016, and Kopylov 2010, among
others. For another, Pivato 2021 offered a representation theorem for intertemporal
preferences with any connected outcome space in 2021. Nevertheless, discontinuity is
not allowed in his research.

Returning to our results, Time Monotonicity (2) implies that the utility function re-
mains the same for all time t, and Dynamic Consistency suggests that the discount
factor is constant over time t. However, it may be more practical to drop Time Mono-
tonicity (2) in certain situations, for example, our preference over gold and currency
varies. Now, we analyze how the parameter β changes influence investor behaviour.

Definition 1. (at least as impatient as) For any time t, we say a preference ≳∗
t is at

least as impatient as a preference ≳t , where ≳∆
t =≳∗∆

t ∀t if and only if for all γ > 0 for
all p,q ∈ Pt with p(s)≳∆

t q(s) ∀s, there exists some τ ≥ t we have

(q,p[t,t+γ))∼t (q,p[τ,τ+γ))⇒ (q,p[t,t+γ))≳∗
t (q,p[τ,τ+γ)) (2.9)
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We compare two people, A and B, who agree on which payoffs are better at each
moment. We say “A is at least as impatient as B” if whenever B is exactly torn
between getting a payoff now versus a payoff later, A would prefer getting it sooner.
We say a preference ≳∗

t is strictly more impatient than a preference ≳t if (q,p[t,t+γ))∼t

(q,p[τ,τ+γ))⇒ (q,p[t,t+γ))≻∗
t (q,p[τ,τ+γ)).

Proposition 3. For two different preference relations ≳0 and ≳∗
0, ≳∗

0 is at least as
impatient as ≳0 if and only if β ∗ ≥ β .

In the standard exponential‐discounting model, there’s a single number β that tells
decision makers how sharply they discount the future. The proposition shows that
raising β exactly results in impatience in the sense above, and vice versa.

Corollary 1. For two different preference relations ≳0 and ≳∗
0, ≳∗

0 is more impatient
than ≳0 if and only if β ∗ > β .

2.5 Discussion

One close paper is Pivato 2021 which considers all bounded continuous trajectories
from (finite or infinite) time intervals to connected topological space. And the other
close paper is Harvey, Østerdal et al. 2007; Harvey and Østerdal 2012 which consider
piece-wise trajectories with the assumption ’Weakly Increasing Assumption’. However,
this is not feasible considering that increasing the value in one dimension while keeping
other dimensions constant is impossible in ∆.

Assumption 1. Weakly Increasing Assumption

We say ≳ on outcome set X = ∏n
i=1 Xi is general weakly increasing if ∀ j = 1, ..,n,∀x j ∈

X j,∀(x j,x− j),(x
′
j,x− j) ∈ X :

x j ≥ x
′
j ⇔ (x j,x− j)≳ (x

′
j,x− j) (2.10)

Axiom* 1. Agree with: For any p,q ∈ P,∀t, we have

1. [p(τ)≳∆
t q(τ)] almost everywhere for τ ≥ t in P and p(τ)≻∆

t q(τ) on a non-point
interval ⇒ [p ≻t q]
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2. [p(τ)≳∆
t q(τ)] almost everywhere for τ ≥ t in P ⇒ [p ≳t q]

People might notice a similarity between ”Agree with” and ”Time Monotonicity.” The
first part of ”Agree with” is the same as the first part of ”Time Monotonicity.” However,
the second part of ”Agree with” is stronger because it applies to all outcome streams,
while ”Time Monotonicity” only applies to constant outcome streams.

Lastly, we state one axiom used in Harvey and Østerdal 2012: mid-outcome independ-
ent, instead we use Time monotonicity and non-degeneracy to ensure the outcome scale
does not depend on the time. Let outcome space X be the product of intervals that
contain the null outcome 0. Let 0 be the null outcome stream that generates 0 for
all time. Then let ≳X be the preference over outcomes and ≳ be the preference over
outcome streams. We use the same operation in the Previous section: (xE ,yF ,z) is the
outcome stream that generates x(t) on time period E, generates y(t) on time period F ,
and generates z(t) on the rest.

Now we define x1/2 ∈ X as the mid-outcome of two outcomes x0 and x1 if 1) x1 ≻X

x1/2 ≻X x0 and 2) exist y1 ≻X y0 and z ∈ ∆ such that (c(x1/2)<s,s′>,c(y0)<t,t ′>,c(z)) ∼
(c(x0)<s,s′>,c(y1)<t,t ′>,c(z)) and (c(x1/2)<s,s′>,c(y1)<t,t ′>,c(z))∼ (c(x1)<s,s′>,c(y0)<t,t ′>,c(z))
for some disjoint interval < s,s′ > and < t, t ′ >.

To notice, ibid. requires zero consumption instead of a constant outcome z. However,
it’s equivalent in their model when we impose the Axiom independence because we
could replace z with any other constant outcome.

Moreover, ibid. needs one complicated axiom: Mid-outcome independence.

Axiom* 2. Mid-outcome independence For any disjoint, non-point intervals <

s,s′ > and < t, t ′ >, and outcome x1 ≻X x0, if the pair x1,x0 has a mid-outcome with
respect to outcomes in < t, t ′ >, and the pair x1,x0 has a mid-outcome with respect to
outcomes in < s,s′ >, then x1,x0 has the same mid-outcome in both cases.

From their result, if x1,x0 has same mid-outcome x1/2 in two disjoint interval < s,s′ >

and < t, t ′ >, then u(x1/2) = 1/2u(x0)+ 1/2u(x1) holds in both time intervals < s,s′ >

and < t, t ′ >. However, without requiring this axiom, we can obtain a similar conclu-
sion with the combination of Independence, Time monotonicity, Time stationary, and
Non-Degeneracy. We mainly show if x1/2 is mid-outcome to x1 and x0 with respect to
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outcomes in < t, t ′ >, then it’s indifferent to the mid-outcome to x1 and x0 with respect
to outcomes in < s,s′ >. To notice, it doesn’t imply equivalence or other logical rela-
tion it’s weaker in the sense we can’t guarantee they have the same mid-outcome, but
we can conclude those two mid-outcomes are indifferent, hence equivalent in cardinal
utility.

Harvey and Østerdal 2012 use this axiom and Assumption 1 to provide Riemann integ-
ral for piecewise continuous function from time interval to product space. It is worth
noting that the ’Weakly Increasing Assumption’ and ’Mid-outcome independence’ is a
pivotal in their theorem. As a consequence, the representation theorems stated in Pro-
position 1 and Proposition 2 cannot be directly derived from Harvey and Østerdal’s
contributions.

2.6 Conclusion

This paper introduces a novel representation theorem for exponential discounted addit-
ive utility within a continuous-time framework, where consumption exists in a simplex.

Our primary contribution is the formulation of a representation theorem that elucidates
the decision-makers preferences over consumption streams within a budget, integrating
risk into the model. A potential future extension could be to replace exponential dis-
counting with a broader class of discount functions or test the axiom Time Monotonicy
(2) instead of focusing on Dynamic consistency in literature. This would necessitate
a new set of axioms, possibly leading to alternative representations of preferences.
Incorporating stochastic elements into the outcome domain would offer a more com-
prehensive perspective on decision-making under uncertainty over time, capturing the
complexities of real-world scenarios that are influenced by both temporal preferences
and the uncertain nature of future events.

Our approach differs significantly from existing literature in several key aspects. First,
the consumption space in our study is a subset of a product space without null con-
sumption, which limits the direct application of theorems by Hara 2016; Harvey, Øs-
terdal et al. 2007; Harvey and Østerdal 2012; Kopylov 2010; Weibull 1985. Second,
we expand the consumption stream space to include piecewise continuous functions,
differentiating our work from that of Pivato 2021 and Hara 2016.
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Contrary to previous studies (Hara 2016; Epstein 1983; Hayashi 2003), we move away
from the traditional risk paradigm associated with probabilistic distributions over cer-
tain outcome streams. Instead, we adopt Epstein and Schneider 2003 and Lu and Saito
2018, treating consumption as a probabilistic measure in a broader context. However,
our model differs from Harvey and Østerdal 2012 by allowing Lebesgue integrals. Our
approach allows for greater flexibility by considering time preferences beyond a fixed
preference at t=0, as ensured by Dynamic Consistency. We also introduce a unique
structure for the discount factor, focusing on Time Stationarity and Time Impatience,
aspects not explored in Harvey, Østerdal et al. 2007.

This framework lays a solid groundwork for analyzing various decision problems in-
volving intertemporal preference. By adjusting some assumptions and extending the
model to more encompassing settings, we can obtain deeper insights into the mechan-
isms of intertemporal choice, leading to more precise and practical models for decision-
making in continuous time.
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Chapter 3

Dominated Strategy in Random
Game

3.1 Introduction

The concept of a dominated strategy is fundamental in microeconomics and game the-
ory: a strategy is strictly dominated by another strategy if it yields a lower payoff than
another strategy in every possible scenario. It’s used in many solution concepts such
as dominance solvability (Gale 1953, Luce and Raiffa 1957, Moulin 1979). Recently,
the dominance solvability of random games has gained attention (Alon et al. 2021),
although strictly dominated strategies themselves have not been the primary focus.
A random game, as introduced by Goldman 1957, is a non-cooperative game where
payoffs are independently and identically distributed (i.i.d.) according to a probability
distribution. Identifying strictly dominated strategies or computing sets of undomin-
ated strategies becomes computationally intensive as the size of the players’ strategy
spaces grows (Yu and Zeleny 1975). Moreover, in large games, the existence of a strictly
dominated strategy may be less significant than in smaller games. Hence, we seek the
existence of q− portion strictly dominated strategies.

Alon et al. 2021 indicates that the probability that the random game has a strictly
dominated strategy trends towards zero when the size of the strategy space is not
excessively unbalanced. In this study, we at first show a positive result and conform
the conjecture in ibid.: there exists a specific threshold defined by f (n) ∈ Θ(ln(n)),1

such that as m,n go to infinity with m > f (n), the probability of a game lacking any

1. We write f (n) = Θ(g(n)) if both g(n) = O( f (n)) and f (n) = O(g(n)). Informally, it means that f is
bounded both above and below by g asymptotically.

18
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dominated strategies approaches 1, and consequently, the probability of the game being
dominance solvable tends to zero. For example, in an m×n random game with uniformly
distributed payoffs, if the growth rate m(n) falls within the range [log2(n

2+δ ),2
n

2+δ ] for
some δ > 0, our findings indicate that the probability of the existence of a strictly
dominated strategy, denoted as P(SD), nears zero. This implies that the probability
of a game being dominance solvable also approaches zero, as illustrated in Figure 3.1
(Yellow Area).

logρ(N/2) N 2ρN

(2+δ ) logρ(N) ρ
N

2+δlogρ(N)−M → ∞ logρ(M)−N → ∞
: Unknown Area
: lim

N→∞
P(SD) = 1

: limsup
N→∞

P(SD)< 1

: lim
N→∞

P(SD) = 0

Figure 3.1: Summary of Results
Note: This figure is as M varies for fixed N

This paper additionally analyzes the ’only if’ part: for the majority of cases outside the
specified region, P(SD) is bounded away from 0 as N approaches infinity. Importantly,
this represents an upper limit on the probability that a game is dominance solvable, as
the initially mentioned relationship is not an equivalence but a strict subset. Therefore,
it encompasses the growth rate m = log2(n) + ω(1). This study is also the first to
quantify the results in terms of the size of the atoms of the underlying probability
distribution, allowing the results to be applicable across various distributions. However,
due to our focus on defining constraints and identifying a region for positive outcomes,
we do not provide characterizations for the probabilities of ’dominance solvability’ as
detailed by Alon et al. 2021, rather only for the existence of a strictly dominated
strategy. Nonetheless, our findings present a precise cutoff in the order of Θ(ln(n)).

For the large game, we answer another question: what is the asymptotic behavior of a
fixed portion of strategies as M and N approach infinity? This question is important
for three reasons. First of all, this notion is much more meaningful in the large game.
Secondly, it is practical to eliminate many strategies instead of just a single strategy.
Lastly, Dufwenberg and Stegeman 2002 finds that if strategy spaces are compact and
payoff functions are upper semicontinuous in their own strategies, then the order of
elimination does not matter, which means that if we eliminate all current strictly
dominated strategies at once, it will lead to the same reduction game in the end.
However, it will reduce the number of iterations and minimize redundancy in checking
strategies repeatedly.
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However, addressing this question is non-trivial due to the complexity of conditional
events across multiple strategies. We establish the negative result using binomial coef-
ficient approximations and the positive result using the Chernoff bound. Specifically,
for the row player (with M), the probability of the existence of a q-portion of dom-
inated strategies will converge to 0 as M and N approach infinity, provided that
N ≥ M/(ln(M))α for some fixed α > 0. Conversely, the probability will converge to
1 as M and N approach infinity, provided that M ≫ (N/(1− δ − q))N for some fixed
δ > 0. Notice that, this is a stronger result as we require that there exists q−portion
dominated strategies are dominated by a single strategy. Perhaps the threshold could
be improved by relaxing this condition.

Finding an efficient algorithm to obtain all dominated strategies or undominated
strategies has been the interest in economics and computer science since Yu and Zeleny
1975. They propose a much more efficient algorithm, but rely on the particular con-
straint of the problem. Here, we try to propose an efficient algorithm without constraint.
Current computational complexity is O(M2N) to find strictly dominated strategies for
row player in a given payoff matrix, which involves comparing every element of their
payoff vectors across different strategies.

In this work, we aim to find a simple algorithm that is faster, at least by a constant
factor, than the most direct brute-force algorithms. Such an algorithm could potentially
be combined with existing ones to achieve even greater efficiency. From the simple
observation, if the maximum of one payoff vector is smaller than the minimum of
the other payoff vector, then it’s strictly dominated for sure. Even though this will
help, the probability of this event approaches 0 as the number of strategies tends to
infinity. We have another observation for the rest of the events when the maximum of
one payoff vector is larger than the minimum of another payoff vector. If a particular
pattern exists—where the range of one payoff vector is contained within the range of the
other—then it is certain that neither dominates the other. Importantly, the probability
of this event approaches 1

2 as the number of strategies tends to infinity. If neither of
these cases applies, we compare every element of their payoff vectors.
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In practice, this is efficient because there are two cases where checking every element
is unnecessary, and they will happen about 50% of the time as M,N go to infinity.
By Knuth 1997, the minimum and maximum of a set of n elements can be found
with 3n/2−2 comparisons when n is even and with 3(n−1)/2 comparisons when n is
odd. Therefore, in the first two cases, we require at most M × (3N/2− 2)+M(M − 1)
times instead M(M−1)/2×N times when n is even. In the remaining case, we need to
compare every element of the payoff vectors.

3.2 Literature Review

To best of our knowledge, Goldman 1957 is the first study to consider random games
in the context of zero-sum games. As random games became a common topic of in-
terest, many other concepts in this framework were investigated, including: value of
a random zero-sum game (Thrall and Falk 1965,Thomas 1965,Cover 1966), Nash
Equilibrium (Goldberg et al. 1968, Dresher 1970, Powers 1990, Rinott and Scarsini
2000, Bárány et al. 2007, McLennan 2005), best-response dynamics (Galla and
Farmer 2013, Sanders et al. 2018, Pangallo et al. 2019, Heinrich et al. 2021, Amiet et
al. 2021), or equilibrium properties in evolutionary games (Gokhale and Traulsen
2010, Han et al. 2012, Galla and Farmer 2013, Gokhale and Traulsen 2014, Duong and
Han 2016b, Duong and Han 2016a). Also, modeling payoffs as independent random
variables enables tractable, average‐case analysis across diverse settings. For example,
using random games is useful to model and understand social and biological systems
in which very limited information is available, or where the environment changes so
rapidly and frequently that one cannot predict the payoffs of their inhabitant (Fuden-
berg and Harris 1992, Han et al. 2012, May 2001, Gross et al. 2009). In addition, some
experimentalists randomly select games to test theories(Erev et al. 2007).

However, strictly dominated strategies and related solution concepts were not a primary
focus of the random-games literature. The closest one is by Pei and Takahashi 2019.
They examine point-rationalizable and rationalizable strategies in random games, show-
ing that all strategies are rationalizable with probability one as n approaches infinity
in both symmetric and asymmetric games when the two players’ strategy spaces are
of the same order. Specifically, they show that all strategies survive iterated elimina-
tion of strategies strictly dominated by pure strategies with probability close to one
when the strategy space is large in a symmetric random game. Notably, we analyze
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the upper bound of the probability that a strategy is rationalizable, as a rationalizable
strategy cannot be strictly dominated by any pure strategy. Our main contribution is
determining the threshold of how ”imbalanced” a game must be to ensure the existence
of strictly dominated strategies or ”q-portion” dominated strategies.

The other relevant paper is Alon et al. 2021, which demonstrated that the probability
of a two-person random game being dominance-solvable decreases as the number of
actions increases, aligning closely with our results.

Their research notably suggests that when there is a considerable imbalance in players’
action sets, the IESDS can still effectively simplify the game. However, the precise ex-
tent of imbalance required for the probability of dominance solvability to approach zero
remains an open question. This leads to further inquiry into the potential effectiveness
of IESDS. Furthermore, they hypothesize that for growth rates defined by m = o(ln(n))
or m = log2(n)+ω(1),2 m,n are the number of strategies for row and column players,
a substantial proportion of strategies will remain undominated, nearly approaching 1.
The crux of these inquiries lies in the probability of encountering a strictly dominated
strategy. Specifically, when the growth rate of a function is in this range, this probabil-
ity goes to one as the n goes to infinity, we can straightforwardly assess the probability
of a game being dominance-solvable.

The article is organized as follows: Section 3.3 presents the model, Section 3.4 intro-
duces the result in existence of strictly dominated strategy, Section 3.5 delivers the
result in existence of q−portion strictly dominated strategy, Section 3.6 introduce new
simple algorithm to check strictly dominance, and Section 3.7 concludes the study.

3.3 Preliminary

A two-player finite game is G = {S,T,u1,u2}, where S is set of strategies for player 1
with |S|= M, T is set of strategies for player 2 with |T |= N, ui : S×T →R is the payoff
for i=1,2. G can also be represented by a pair of payoff matrix RM×N = {R1

M×N ,R
2
M×N},

then any pair of two elements (u1(si, t j),u2(si, t j)) ∈ RM×N is a payoff of player 1 and 2
generated by the strategy profile s= (si, t j).

2. We write f (n) = ω(g(n)) if g(n) = o( f (n)). Informally, it means that f dominates g asymptotically.
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RM×N = {R1
M×N ,R

2
M×N}= {


u1(s1, t1) · · · u1(s1, tN)

... . . . ...
u1(sM, t1) · · · u1(sM, tN)

 ,


u2(s1, t1) · · · u2(s1, tN)

... . . . ...
u2(sM, t1) · · · u2(sM, tN)

}
(3.1)

In this work, we consider a random game G, where payoff R1
M×N and R2

M×N is a realiz-
ation of random variable in (X i

s)i=1,2,s∈S×T where (X i
s)i=1,2,s∈S×T are selected i.i.d from

probability distribution on [0,1]. We denote ρ =
[
P(X i

s > X i
s’)

]−1, for any two random
variables X i

s and X i
s’. For example, if the distribution is non-atomic, then ρ = 2; other-

wise, ρ > 2.

In a game G, we say the strategy si ( or ti) is strictly dominated for player 1 (or 2) if
there exists another strategy s

′
i (or t

′
i), s.t. si (or ti) generates strict worse payoffs than

s
′
i (or t

′
i) for all t ∈ T (or s ∈ S). We denote si strictly dominates s j as si ≻1 s j and denote

si doesn’t strictly dominates s j as si ∼1 s j for player 1, similarly ti ≻2 t j and ti ∼2 t j for
player 2.

We denote the set of strictly dominated strategies of game G by SD(G) with the car-
dinality card(SD(G)).3 In the following parts, we denote the probability that there
doesn’t exist strictly dominated strategy as P(¬SD) = P(card(SD(G)) = 0). Due to
independence of (X s

i )i=1,2,s∈S∪T , we have P(¬SD) = P(SD1 = 0)P(SD2 = 0).

We will focus on asymptotic behavior of strictly dominated strategies because the spe-
cific distribution of strictly dominated strategies is far too cumbersome to calculate
regarding M and N (see Hammett and Pittel 2008; Gunby and Pálvölgyi 2019; Alon
et al. 2021). The reason it’s difficult is that the domination relationships are complex.
Strategy A might dominate Strategy B. Strategy C might also dominate Strategy B.
Determining the final set of undominated strategies requires considering all these rela-
tionships simultaneously. Notably, even for a relatively simple case (M=3), just finding
the probability that the other player (Column) has no strictly dominated strategies is
equivalent to a known difficult mathematical problem (”permutation avoidance”) that
doesn’t have an explicit, simple formula (Alon et al. 2021 Online Appendix).

3. For short, we use SD1 and SD2 to represent the cardinality of the set of strictly dominated strategies
for players 1 and 2 respectively.
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3.4 Existence of Strictly Dominated Strategy

In this work, we will study the probability that a game doesn’t have a strictly dominated
strategy. We observe the fact of bound of P(SD) = 1−P(¬SD) where P(SD) is the
probability that there exists a strictly dominated strategy:

1. If for some strategy si, exist s j such that si ≻ s j, then it implies there exists a
strictly dominated strategy, hence the P(¬SD)= 1−P(SD)≤ 1−P(for some si ,∃s j,si ≻
s j).

2. If there is no strict domination relation for any pair of strategies, then there
is no strictly dominated strategy. Hence max{(1−∑si ̸=s j P(si ≻ s j)),0}max{(1−
∑ti ̸=t j P(ti ≻ t j)),0} ≤ P(¬SD).

In this part, we mainly check the following:

1. Under which condition, do those bounds converge to 1?
2. Under which condition, does the upper bound not converge to one?
3. Under which condition, do those bounds converge to 0?

Proposition 4. In a M×N random game,

1. P(SD)→ 0 if M,N → ∞ with M = N.
2. P(SD)→ 0 if M,N → ∞ with (2+δ )logρ(N)≤ M ≤ ρ

N
2+δ for some δ > 0.

Proposition 4 provides an approximate result for the probability of a dominated strategy
in a random game with payoffs that are independently and identically distributed over
any distribution. The first statement is a special case of the second statement. The
proof relies on the second observation

max{(1− ∑
si ̸=s j

P(si ≻ s j)),0}max{(1− ∑
ti ̸=t j

P(ti ≻ t j)),0} ≤ P(¬SD)

Take the first statement as an example. In an M ×N random game with uniformly
distributed payoffs, for player 1, the probability that a strategy strictly dominates the
other strategy is 1

2N . Then this observation tells us P(¬SD) ≥ (max{1−N2( 1
2N ),0})2

which goes to 1 as N goes to infinity. The second statement is less straightforward, as
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one needs to deduce reasonable bounds on the rate of growth; however, after some trial
and error, a proof with these given bounds follows from a straightforward calculation.
It indicates that the probability of there being no dominated strategy will increase to
1 as the number of strategies satisfies certain conditions and increases to infinity.

Now, we can directly analyze the probability that a game is dominance solvable, de-
noted by P(Dominance Solvability).

Corollary 2. In a M ×N random game, P(Dominance Solvability)→ 0 if M,N → ∞
with (2+δ )logρ(N)≤ M ≤ ρ

N
2+δ , for some δ > 0.

Notice that this does not contain the ’only if’ part because the event ’a game doesn’t
have a strictly dominated strategy’ is a strict subset of the event ’a game is not dom-
inance solvable’. In the following, we can show the ’only if’ part for Proposition 4 that
the range of M ∈ [(2+δ )logρ(N),2

N
2+δ ],∀δ > 0 is very nearly tight.

Proposition 5. In a M×N random game,

1. limsupP(SD)< 1 if M,N → ∞ with N ≤ logρ(M/2).
2. P(SD)→ 1 if M,N → ∞ with logρ(M)−N → ∞.

To prove the first statement in Proposition 5, we rely on the inclusion and exclusion
equation of P(¬SD) ≤ 1−P (for some si, si is dominated)= lim

M,N→∞
(1−

(N−1
1

)
/ρM +(N−1

2

)
/(ρM)2 −·· ·− (−1)N−2(N−1

N−1

)
/(ρM)N−1), where ρ = [P(X i

s > X i
s′ )]

−1. We focus on
the function f (k) =

(N−1
k

)
/(ρM)k and find the condition such that f (k+1)/ f (k)≤α < 1

for each k and liminf
M,N→∞

f (1) > 0. As a result, the probability will be positive and less
than 1. To prove the second statement in Proposition 5, we will divide the game into
Z equal-sized subgames such that all subgames will satisfy the conditions given in first
statement.

By the first statement, each such subgame has at most probability η < 1 of lacking
any strictly dominated strategy, Since these subgames are generated independently,
the probability that all Z subgames simultaneously lack a strictly dominated strategy
is at most ηZ. Hence, the probability that the original large game contains no strictly
dominated strategy approaches zero as well.
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Notice, there is a small uncovered area in the line as shown in Figure 3.1, which
summarizes the results from Propositions 4 and 5.

Now, we simulate random normal‐form games of all sizes from 2×2 up to 20×20. For
each size, we generated 100,000 payoff matrices at random, and used a ’brute-force’
algorithm to test whether either player has a strictly dominated strategy (the algorithm
1 in Section 6). Finally, for each game size, we recorded the proportion of games in
which a strictly dominated strategy was present.

Figure 3.2: Simulation Result for Propositions 1 and 2

Figure 3.2 displays the result. In the right graph, the x-axis represents the number of
strategies for player 2 (n), the y-axis represents the number of strategies for player 1
(m), and the z-axis represents the probability of strictly dominated strategies. It can
be observed that the P(¬SD) approaches 1 with increasing values of n and m within
the yellow region. However, P(¬SD) does not approach 1 in other areas of the graph. In
the left one, we point out the specific growth rate N = 2.01log2(M) and N = log2(M/2),
similar to the row player. The probability will not approach 1 in the large game if the
growth rate is slower than N = log2(M/2) and will approach 1 if the growth rate is
faster than N = 2.01log2(M), which is consistent with our analysis. Note that Pei and
Takahashi 2019 also stimulate the symmetric (Figure 4 and Proposition 5), which is
exactly the ’45 degree line’ of this graph.
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3.5 Existence of q-portion Strictly Dominated Strategy

Proposition 4 told us if the game is ’imbalanced’ then there will exist a strictly dom-
inated strategy when the game is very large. But if the game is very large, it’s prac-
tical and meaningful to eliminate a portion of strategies instead of a single strategy.
Hence, we wish to determine the conditions for the existence or nonexistence of a
’q-portion’ dominated strategies. Notice that, unlike the previous section relying re-
lationship between the two variables based on their comparative probabilities, we are
focusing on the ordinal comparison between elements in this section. Hence, the results
of this section will hold under continuous distributions. For simplicity, the arguments
and proofs depending on the uniform distribution.

Definition 2. For any S′ ⊆ S, we say S′ is strictly dominated if ∀s′ ∈ S′, ∃s ∈ S, s.t.
s ≻ s′.

By definition, we have S′ is strictly dominated if and only if ∀s′ ∈ S′, ∃s ∈ S \ S′, s.t.
s ≻ s′.

For any x ∈R+, ⌈x⌉= min{z ∈ Z+ : x ≤ z}. Whenever q ∈ (0,1), we define P1
q,M,N as the

probability of there are SqM ⊂ S of size ⌈qM⌉ strictly dominated strategies for player 1
in the game RM,N . Fix SqM, We denote

Ek(SqM) =
[
∃ kS ⊆ S\SqM, s.t. kS of size k strictly dominates SqM

]
.

Then, by definition, for a set SqM of size ⌈qM⌉, which does not depend on the particular
choice of SqM,

P
[
∃SqM ⊂ S, ∃ S′ ⊂ S such that SqM is strictly dominated by S′

]
=

(
M

qM

) qM∪
k=1

P
[
Ek(SqM)

]

In particular, we denote P1
q,M,N,↓ as the probability that there is a particular (for example

on the bottom) ⌈qM⌉ strategies are strictly dominated for player 1 in the game RM,N .
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Proposition 6. In a M×N random game, for any q ∈ (0,1), for any M,

1. P1
q,M,N,↓ will go to 0 when N,M goes to infinity.

2. P1
q,M,N will go to 0 when N,M goes to infinity with N ≥ M/(ln(M))α for some fixed

α > 0.

Proposition 6 states that if, for any q, we fix their positions (e.g., placing them all
at the bottom), the probability that all are strictly dominated strategies approaches
0, regardless of the growth rate between M and N. The proof is straightforward. We
focus on the logic: in a payoff matrix, if a set of rows is strictly dominated, then for
any column, the highest payoff in that column cannot come from a row in this set.
Therefore, it’s easy to find the upper bound of P1

q,M,N,↓ and it doesn’t depend on any
growth rate.

Furthermore, if no restrictions are placed on their positions (e.g., the set can be located
anywhere in the matrix, not just at the bottom), the probability of the existence of q-
portion dominated strategies depends on the growth rate between M and N. Specifically,
if N ≥ M/(ln(M))α for some fixed α > 0, then no q-portion dominated strategies exist,
which includes, but not limited to, scenarios with linear growth rates. To prove this,
we characterizes the event Ek(SqM) by partitioning the strategy set SqM into subsets.
For each subset, we check if the corresponding strategy in kS strictly dominates all
strategies in that subset. Then we can find the upper bound of P[Ek(SqM)]. After that,
we apply logarithmic transformations and use Shannon entropy to approximate P1

q,M,N

and show it will go to infinity under the condition in the second statement.

However, we can show for any q, when M,N go to infinite when M growth much faster
than (N/(1−q−δ ))N , there is a block of a q-fraction of strategies which are all strictly
dominated by one single strategy. Figure 3.3 illustrates the idea. We assume all elements
in the payoff matrix are independently and identically distributed (i.i.d.) according to
a probability distribution. Thus, the question can be reformulated to demonstrate the
existence of one point in the Red area and the existence of qM points in the Purple area
when M points are randomly selected. Namely, we aim to show there exists a subset of
rows S such that |S| ≥ qM and each xi ∈ S is in the selected rows is in the Purple area,
namely xi j ≤ (δ +q)1/N , ∀ j = 1, . . . ,N, for some δ > 0 with δ +q ∈ (0,1). Namely,

P(∃S′ ⊆ S, |S′| ≥ qM,∀x ∈ S′,xi j ≤ (δ +q)1/N ,∀ j = 1, ..,N)
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(δ +q)1/N

P(A ≥ qM)→ 1

P(B ≥ 1)→ 0

Figure 3.3: Chernoff Bound of Event A and B

We could find this probability using the Chernoff bound,4 particularly when M,N → ∞
and each element xi, j is uniformly distributed in [0,1]. As remarked, the argument
works for any nonatomic distribution.

From the construction, we have P(xi j ≤ (δ + q)1/N) = (δ + q)1/N . Now we define the
event that a row satisfies this condition as Ai = {xi j ≤ (δ +q)1/N ,∀ j = 1, . . . ,N}. Then

P(Ai) =
N

∏
j=1

P(xi j ≤ (δ +q)1/N) =
(
(δ +q)1/N

)N
= (δ +q).

Since we are interested in the probability of having at least qM rows satisfy the con-
dition, we define the following sum: A = ∑M

i=1 1Ai , where 1A is the indicator random
variable that the i-th row satisfies the condition Ai and E[A] = M(δ +q).

Similarly, we define the event when the row xi is falling in the red area.

Bi =
{

xi j ∈
(
(δ +q)1/N ,1

)
,∀ j = 1, . . . ,N

}
.

4. Let X =∑n
i=1 Xi, let all Xi are independent and Xi = 1 with probability pi. Then Chernoff bound gives

us 1) P(X ≥ (1+δ )E[X ])≤ e−
δ2

2+δ E[X ] for all δ > 0; 2) P(X ≤ (1−δ )E[X ])≤ e−
δ2E[X ]

2 for all 0 < δ < 1.
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And we define the sum B = ∑M
i=1 1Bi , where 1B is the indicator random variable that

the i-th row satisfies the condition Bi.

Proposition 7. In a M×N random game, for any q ∈ (0,1), for any M,

1. P(A ≥ qM)→ 1 as M → ∞ and N → ∞.
2. P(B ≥ 1)→ 1 as M → ∞ and N → ∞ with M ≫ (N/(1− δ − q))N for some fixed

δ > 0.

Using the Chernoff bound, we have shown that the probability of having at least
qM rows in an M ×N matrix where xi j ≤ (δ + q)1/N and at least one row that xi j ∈
((δ +q)1/N ,1) tends to 1 for each j as both M and N go to infinity with M ≫ ( N

(1−δ−q))
N

for some fixed δ > 0. In other words, there exist q-portion strategies that are strictly
dominated by at least one strategy.

2ρNlogρ(N)−M → ∞ logρ(M)−N → ∞logρ(N/2) (2+δ ) logρ(N) ρ
N

2+δ

N

N ≥ M/(ln(M))α M ≫ (N/(1−δ −q))N

: Unknown Area
: P(SD)→ 1
: limsup

N→
P(SD)< 1

: P(SD)→ 0

:P1
q,M,N → 0

:P1
q,M,N → 1

Figure 3.4: Summary of Results
Note: This figure is as M varies for fixed N

Figure 3.4 illustrates the growth rate of M with respect to N for the existence of a
strictly dominated strategy (the upper line) and the existence of q-portion dominated
strategies (the bottom line).

In the upper line, the yellow area represents the condition where no strictly dominated
strategy exists in the game, hence Iterated Elimination of Strictly Dominated Strategies
(IESDS) is not useful and the probability that the game is dominance solvable is 0.
When M grows faster than N, for example, at a rate like 2ρN , there may exist a strictly
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dominated strategy, which corresponds to the green area. When M grows significantly
faster, as shown in the blue area, a strictly dominated strategy will exist in large games.
The red area is currently small and unexplored, so it is unknown whether a strictly
dominated strategy exists there.

The bottom line represents the partial characterization of the growth rate required
for the existence of q-portion dominated strategies for player 1. In the black area, no
q-portion dominated strategies exist for player 1, regardless of the value of q. It is
important to note that this holds even when M grows faster than a linear growth rate
with respect to N. In the grey area, q-portion dominated strategies always exist for
player 1, and they are dominated by a single strategy. Similarly, the red area remains
unknown. By symmetric, we can easily obtain the partial characterization of the growth
rate required for the existence of q-portion dominated strategies for player 2.

3.6 Computational analysis

To determine the existence of strictly dominated strategies in a game, a comparison
of each strategy’s payoffs against all others for every player is required. This process
factors in every strategy of the opponents as in Algorithm 1, and it’s the O(M2 ×N)

problem. We aim to find a simple algorithm that is faster, at least by a constant factor,
than the most direct brute-force algorithms. Such an algorithm could potentially be
combined with existing ones to achieve even greater efficiency.

Algorithm 1: Baseline Method
Input: Payoff matrix of a game RM×N

Output: A boolean value indicating if the game has a strictly dominated strategy or
not

1: ▷ For player 1 (or 2), for any strategy si ∈ S (or ti ∈ T ), for each other strategy
s j ∈ S (or t j ∈ T ), compare the payoffs of strategy si,s j (or ti, t j) for all t ∈ T (or
s ∈ S).

2: ▷ If strategy si ∈ S (or ti ∈ T ) is not dominated by all the other strategies, then
denote si ∈ S (or ti ∈ T ) as an undominated strategy.

3: ▷ If all strategies are undominated strategies, then the game does not have a
strictly dominated strategy.

return A boolean value indicating if the game has a strictly dominated
strategy or not
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Assume we have the matrix R1
M×N , and we mark the maximum as red and the minimum

as green. Comparing the maximum and minimum of any two rows, i and j, we can claim
Proposition 8:

R1
M×N =


R1

M×N(s1)

R1
M×N(s2)

...
R1

M×N(sM)

=


. . . u1(s1, tp) . . . u1(s1, tq) . . . u1(s1, tk) . . . u1(s1, tl) . . .

. . . u1(s2, tp) . . . u1(s2, tq) . . . u1(s2, tk) . . . u1(s2, tl) . . .
... ... ...
. . . u1(sM, tp) . . . u1(sM, tq) . . . u1(sM, tk) . . . u1(sM, tl) . . .


(3.2)

Proposition 8. In above problem, for any two different si,s j ∈ S, we have

1. P(si ∼1 s j|min(si) > max(s j)) = P(si ∼1 s j|min(s j) > max(si)) = 0. The union of
those two events will happen with probability 2/

(2N
N

)
and will go to 0 as N go to

infinity.
2. P(si ∼1 s j|max(si)>max(s j)>min(s j)>min(si))=P(si ∼1 s j|max(s j)>max(si)>

min(si) > min(s j)) = 1. The union of two events will happen with probability
(2N −2)/(4N −2) and will go to 1/2 as N go to infinty.

3. P(max(si)>max(s j)>min(si)>min(s j))=P(max(s j)>max(si)>min(s j)>min(si))=

N/(4N − 2)− 1/
(2N

N

)
. The union of those two events will go to 1/2 as N go to

infinity.

Proposition 8 states that if min(si) > max(s j), then si must strictly dominate s j for
any strategies si and s j. If max(si) > max(s j) and min(s j) > min(si), then there is no
domination between si and s j. However, in the last situation, we cannot conclude strict
domination. Since this result relies only on the ordinal comparison between the elements
of si and s j, regardless of the underlying probability distribution, we can show that the
last case occurs with a probability of 1/2. Hence, there is a half chance that we can tell
the dominance relation between two vectors without comparing element by element.
The key here is the combinatorics involved in the ordering of elements in the vectors,
and how the relationships between their maximum and minimum elements affect these
probabilities. The general intuition is that the probability of these specific orderings of
elements in the vectors decreases as the vector size N grows. As N approaches infinity,
the probabilities tend to the limits stated in this proposition.
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For any comparison of two strategies, there is approximately a 50% chance of the event
that we do not need to compare them element by element. For player 1, Algorithm
2 checks the minimum and maximum of each row in the payoff matrix with 3n/2− 2
comparisons when n is even and with 3(n− 1)/2 comparisons when n is odd (Knuth
1997). Therefore, in the first two cases (in 50%), we compare M×(3n/2−2)+M(M−1)
times and in the last case (in 50%), we compare M(M−1)/2×N times. Although the
last case will dominate the time complexity, Algorithm 2 is more efficient in practice
because of its potential for early termination via the MinMax/MaxMin checks, leading
to fewer comparisons on average.

Algorithm 2: MaxMin and MinMax
Input: Payoff matrix of a game
Output: A boolean value indicating if the game has a strictly dominated strategy or

not
1: ▷ For player 1 (or player 2), for any strategy si ∈ S (or ti ∈ T ), for each other

strategy s j ∈ S (or t j ∈ T ),
2:

• If min(si)> max(s j) or min(si)> max(s j), then return there exist strictly
dominated strategy and the algorithm stops.

• If max(si)> max(s j)> max(s j)> min(si)) or
max(s j)> max(si)> max(si)> min(s j), then there is no dominance relation
between si and s j.

• Otherwise, compare the payoffs of strategy si,s j (or ti, t j) for all t ∈ T (or
s ∈ S). If strategy si ∈ S (or ti ∈ T ) is not dominated by all the other
strategies, then denote si ∈ S (or ti ∈ T ) as an undominated strategy.

3: ▷ If all strategies are undominated strategies, then the game does not have a
strictly dominated strategy. return A boolean value indicating if the game has a
strictly dominated strategy or not

3.7 Conclusion

While the distribution of strictly dominated strategies cannot be explicitly character-
ized in general, this study verifies the absence of strictly dominated strategies and
demonstrates that the probability of this occurrence approaches 1 as the number of
strategies for both players tends to infinity, as shown in Proposition 4. This also indic-
ated a clear result for the probability of a game being dominance solvable. Furthermore,
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we present a positive result in Proposition 5, indicating the existence of a region in
which a strictly dominated strategy will be present either probably or for sure. It’s
important to emphasize that the above results also capture the parameter of the un-
derlying probability distribution.

Practically, we are not only interested in the existence of dominated strategy, but we are
interested in the set of dominated strategies. We then further analyze the asymptotic
behaviour of the existence of a q-portion-dominated strategy in a random game. We
denote P1

q,M,N as the probability of there are SqM ⊂ S of size ⌈qM⌉ strictly dominated
strategies for player 1 in the game RM,N . In Proposition 6, we show there is no q-
portion-dominated strategy when N,M goes to infinity with N ≥ M

(ln(M))α for some α > 0.
Positively, in Proposition 7 we show there exist q-portion strategies strictly dominated
by a single strategy when N,M goes to infinity with M ≫ ( N

1−δ−q)
N for some fixed δ > 0.

Lastly, since Yu and Zeleny 1975, the efficient algorithm to find a whole set of domin-
ated strategies or undominated strategies has been of interest in both economics and
computer science. Their result relies on the particular constraint, however, our simple
algorithm doesn’t depend on the extra constant and deduces the time complexity by
half from the basic algorithm.

In the future, researchers can explore the unknown areas in both problems, and it
would be more meaningful to improve the threshold of the growth rate to guarantee
the existence of q-portion dominated strategies, i.e., when the q−portion dominated
strategies are dominated by either 1 or 2 strategies. This is not only because this
threshold is especially relevant to simplifying our understanding, but also because our
result is much stronger, treated as an upper bound, where the strategy is strictly
dominated by a single strategy.

Additionally, relaxing the assumption of independent and identically distributed (i.i.d.)
variables could help derive more useful bounds for specific questions, as the approach
in this paper can be potentially applied to such cases. Beyond directly relaxing the
i.i.d. assumption, it is also meaningful to consider dominated strategies in random
extensive form games, where there are n players, each choosing between two actions,
and all payoffs are i.i.d. selected from a probability distribution. When transforming to
a normal form game, the i.i.d. assumption no longer holds, making the problem more
complex.
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Furthermore, the proposed algorithm can be improved to reduce its time complexity.
One potential improvement is to focus on the maximum or minimum values of the
columns for player 1 (or the rows for player 2), as the row with the maximum value in
the columns cannot be dominated.
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Chapter 4

Social Expectation in Random
Allocation Problem

4.1 Introduction

A planner often must assign scarce slots to agents who are ranked externally by merit.
This creates a unique challenge: how to allocate resources when only one side has
ordinal preferences, while an exogenous priority order ranks the other side.

Consider the university admissions—such as the “consent to reassignment” mechan-
ism1. Although students may privately favor certain fields, the system will treat them
as having no strict preferences over majors once they consent to reassignment. However,
each major should have a preference over students who are also ranked by exam grade.
The university problem is to assign students to majors, respecting these one‐sided pref-
erences and external rankings to balance efficiency and fairness. Similar tensions arise
in other domains. In military personnel assignments, ministries allocate officers to posts
varying in strategic criticality. Officers may submit preferences, but posts themselves
are ranked by criticality 2. In development finance, public agencies allocate funding to
projects ranked by social urgency, while investors have return preferences.

1. In some centralized systems (e.g., certain national entrance examinations), students submit a
single broad application and indicate “consent to reassignment,” meaning they agree to be placed into
another major if their preferred choice is unavailable, rather than ranking multiple majors.
2. See “Determine Priority of Position Vacancies,” p. 11 in U.S. Army Human Resources Command
2020.

36
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These examples share a common structure: one side expresses preferences or priorities,
while the other is guided by exogenous rankings reflecting quality, urgency, or strategic
value. Traditional matching frameworks do not capture this asymmetry.

We propose a unified model that focuses on one-sided preferences, combined with
external priority rankings. We analyze randomized mechanisms, explore trade‐offs
between fairness and efficiency, and discuss implications for education policy, milit-
ary human resource management, and social finance. Our approach sheds light on a
broad class of allocation problems where merit and priority override explicit agent
preferences.

There are many other examples, such as dairy food for a food bank (Prendergast
2022), food rescue services (Aydin Alptekinoglu 2023), organ allocation with waiting
times (Ashlagi, 2024), and status ranking (Richter and Rubinstein 2024), or a planner
may rank colleges based on quality or societal benefit (Salgado-Torres 2013; Xie 2024).

On the other hand, a growing body of work shows how to design mechanism to achieve
social planner optimal allocation (Abdulkadiroğlu et al. 2020, Abdulkadiroglu et al.
2021, Cowgill et al. 2024, Kang 2023, Noda 2023 etc.) or ensure truth-telling (i.e.,
Dworczak 2020) or ensure incentive-compatibility of social planner (Akbarpour and
Li 2020). However, it’s worth discussing whether a social planner’s preference should
be enforced if it conflicts with the individual. In this project, we will touch on the
following questions: 1) When should agents follow a social planner’s objective function
called social expectation? 2) When should individual freedom be prioritized over social
expectations? We model the social planner as an agent (Agent 0) within a random
allocation framework to propose principles for balancing these two parties.

4.1.1 Model of Social planner

In our model, agent 0 plays a role in influencing the allocation but does not receive the
object placement for themselves, such as a manager, government, or social planner. In
this model, we must allocate n goods to n agents with the agents’ ordinal preferences
and agent 0’s order of importance called social expectation.
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Besides the previous real examples, there is another reason to model an order of im-
portance: it’s too expensive to report the information or preference over the entire
allocation. Of course, some works introduce exogenous matching quality to the school
choice model to measure the quality of each match, which plays a similar role (Ab-
dulkadiroglu et al. 2021). But, as discussed by Ludwig von Mises and Friedrich Hayek,
a planned economy is impossible because a central planner cannot access and collect
all the necessary economic knowledge “in the absence of market prices for the factors of
production” (Von Mises 2002, p.705). Hence, in our model, social planners generate a
preference ordering over allocations from the whole ordinal preference profile (including
both classic agents and agent 0). See Example 1.

Example 1. We assume agent 0 has the original preference over objects. Imagine the
following preference profile in Table 4.1. Agent 1’s preference list ′a5,a4,a2,a1,a′3 means
that the Agent 1 prefers a5 over a4, a4 over a2, a2 over a1, and a1 over a3.

0: a1,a2,a3,a4,a5
1, 2: a5,a4,a2,a1,a3
3, 4: a2,a4,a1,a3,a5

5: a3,a1,a5,a2,a4

Table 4.1: Preference Profile

Let’s consider the distribution of objects, i.e., the distribution of object a1 indicates how
much of a1 each agent receives. So, in the Table 4.2, the distribution of a1 is the vector
(1

2 ,
1
2 ,0,0,0). Now, given agent i, object a and his preference Ri, we denote rank(a;Ri)

as the rank of the object a to agent i according to preference Ri, and U(Ri;a) as the
agent i’ weak upper counter set of object a. Hence, if rank(a;Ri) = 1 means the object
a is the most favourite to agent i.

For each object, Agent 0 first generates a welfare vector by reordering the distribution
of a1 by arranging agents in ascending order of rank(a1;Ri). Agent 0 then evaluates
the two distributions of a1 based on first-order stochastic dominance. For example, the
welfare vector of a1 in Table 4.2 is [0,0,0,1,0] while the the welfare vector of a1 in
Table 4.3 is [0,1,0,0,0]. Under this method, Agent 0 prefers the distribution of a1 in
Table 4.3 to the one in Table 4.2.

After comparing the distribution of all objects between the two allocations, Agent 0
encounters a situation where they prefer the distribution of a1 in Table 4.3 but prefer
the distribution of a3 in Table 4.2. To resolve this, we employ a simple lexicographical
rule: Agent 0 favours the allocation in Table 4.2 because object a1 is more important.
Moreover, the allocation in Table 4.3 is not dominated by the above preferences.
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a1 a2 a3 a4 a5
1 1

2 0 0 0 1
2

2 1
2 0 0 0 1

2
3 0 1

2 0 1
2 0

4 0 1
2 0 1

2 0
5 0 0 1 0 0

Table 4.2: Allocation 1

a1 a2 a3 a4 a5
1 0 0 0 1

2
1
2

2 0 0 0 1
2

1
2

3 0 1
2

1
2 0 0

4 0 1
2

1
2 0 0

5 1 0 0 0 0

Table 4.3: Allocation 2

Table 4.4: Illustration for construction of agent 0’s preference

This creates a potential conflict between the social planner and agents if we obey the
social planner regardless of individual willingness. See Example 2

Example 2. In Table 4.3, Agent 5 might prefer to exchange a3 for a share of a1,
improving their welfare. Should Agent 0 reject such a trade based on social expectations?
We argue that Agent 0 should not reject it on the grounds of efficiency. What we aim to
evaluate is the justice of objections raised by other agents to the information provided
by Agent 0. It is worth noting that the allocation in Table 4.2 is efficient, so it’s not
first-order-stochastic-dominated by other random allocations.

a1 a2 a3 a4 a5
1 1

4 0 0 1
4

1
2

2 1
4 0 0 1

4
1
2

3 1
4

1
2 0 1

4 0
4 1

4
1
2 0 1

4 0
5 0 0 1 0 0

Table 4.5: Idea solution in Literature

Consider the allocation in Table 4.5, which is both efficient and envy-free (Bogomolnaia
and Moulin 2001). So, all agents prefer their own allocation to that of others. Then,
should Agent 0 reject to this allocation based on social expectations? We argue that this
objection, while possibly in tension with fairness, reflects a broader normative question:
to what extent should collective expectations shape individual entitlements? Comparing
this with Table 4.2, we observe that the main tradeoff lies in the distribution of objects
a1 and a4. Agents 1 and 2 might challenge the latter allocation for violating envy-
freeness; however, if Agent 0’s preferences reflect shared or institutional expectations,
such objections should not justify a change.
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We suggest a principle: agents who align more closely with social expectations—as
encoded by order of importance—may justifiably be prioritized. While this limits purely
self-interested improvements, it supports a form of fairness grounded in conformity to
collective values. 3

Now, we evaluate how much each agent’s preferences align with those of Agent 0.
Focusing on object a4, note that Agents 3 and 4 prefer a4 to a5, as does Agent 0,
whereas Agents 1, 2, and 5 do not. Hence, it is reasonable to say that Agents 3 and 4
conform more to social expectations for object a4 compared to Agents 1, 2, and 5.

We formalize this by comparing agents’ weakly upper counter sets. The agent whose set
contains objects with lower maximum ranks in Agent 0’s preference order is considered
to conform more to social expectations, namely for any object a, for any two agents
i, j, Agent i conform more to social expectation for object a compared to Agent j if

max
x∈U(Ri;a)

rank(x;R0)< max
x∈U(R j;a)

rank(x;R0).

This means agent i’s substitutes for object a lie closer to the top of Agent 0’s preferences.
Notice that arg max

x∈U(Ri;a)
rank(x;R0) could be a itself.

Example 3. In Example 1, we suggest Agents 1, 2, and 5 should only receive a positive
share of object a4 if Agents 3 and 4 are fully satisfied with respect to a4, i.e., they receive
probability 1 from their weak upper counter set. This criterion is not met in either Table
4.3 or Table 4.5, as both allocations assign positive probability to a4 for Agents 1 or 2
while Agents 3 or 4 receive less than 1 across their substitutes. Thus, these allocations
violate the conformity-based fairness principle.

This approach aligns with the idea that justice in collective outcomes may involve
respecting established norms or social expectations, not just individual improvements.
However, it’s often to encounter a situation in which Agent i and j are not distinguished
due to conformity to social expectations. For such a situation, we draw the light from
the axiom called ’Interim Favoring Support’.

3. Man is by nature a social animal... Anyone who either cannot lead the common life or is so self-
sufficient as not to need to, and therefore does not partake of society, is either a beast or a god. (Book
1 of the Politics, in section 1253a)



4.1. Introduction 41

4.1.2 Interim Favoring Support

In many works, people assume that agents are justly entitled to acquire objects based
on whether they prefer them more than others. Harless 2018 introduce the strong
fairness notion for random assignments: interim favoring rank, and further explored
by Ramezanian and Feizi 2021, and Chen et al. 2023.4 Interim favoring rank states for
any object a, for any two agents Ann and Bob, if rank(a;RAnn) < rank(a;RBob), then
Bob receives a positive share of the object a only when Ann receives 1 from Ann’s weak
upper counter set of object a. Now, we will see interim favouring rank will lead to an
unfair situation in the random allocation problem.

Example 4. Consider the preference list in the Table 4.6.

1, 2, 3: a1,a2,a4,a3,a5
4,5: a3,a1,a2,a4,a5

Table 4.6: Preference Profile

Due to symmetry, we only analyze Agent 1 and Agent 4. Because rank(a1;R1) <

rank(a1;R4), then interim favoring rank states P4,a1 > 0 only if P1,a1 = 1, which is
impossible due to equal treatment of equals. Therefore P1,a1 = P2,a1 = P3,a1 =

1
3 . Sim-

ilar analysis holds for object a3: P4,a3 = P5,a3 =
1
2 . For object a2, because rank(a2;R1)<

rank(a2;R4), then P4,a2 > 0 only if P1,a1 +P1,a2 = 1, which is impossible also. Therefore
P1,a2 = P2,a2 = P3,a2 =

1
3 . Similar analysis holds for object a4. Lastly, equal treatment of

equals implies P4,a5 =P5,a5 =
1
2 . Eventually, interim favouring rank support the allocation

in Table 4.7.

a1 a2 a3 a4 a5
1 1

3
1
3 0 1

3 0
2 1

3
1
3 0 1

3 0
3 1

3
1
3 0 1

3 0
4 0 0 1

2 0 1
2

5 0 0 1
2 0 1

2

Table 4.7: Interim Favoring Rank

a1 a2 a3 a4 a5
1 1

3
1
5 0 1

5
4

15
2 1

3
1
5 0 1

5
4

15
3 1

3
1
5 0 1

5
4

15
4 0 1

5
1
2

1
5

1
10

5 0 1
5

1
2

1
5

1
10

Table 4.8: Interim Favoring Support

Table 4.9: Comparison

However, in Table 4.7, agents 1, 2, and 3 always have higher priority for objects
a1,a2,a4, no matter what they obtain in outcome. It’s unlikely that people reject agents
1, 2, and 3 to have higher priority on object a1 not only because they rank object a1

as top 1, but also the other agents will receive their top-choice object a3. However, it’s

4. In school choice literature, Kojima and Ünver 2014 first introduce the deterministic version, called
favouring higher rank, and their axiom support well-known Boston mechanism.
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arguable for object a2 and a4. In Table 4.7, it’s obvious that agents 1, 2, and 3 already
have opportunities to access their top two preferred objects (a1,a2), while agents 4 and
5 only have a chance to secure their top-choice object (a3). Under these circumstances,
is it fair that agents 1, 2, and 3 have additional priority over object a4?

As noted by Kojima and Ünver 2014, the deterministic version, ’favouring higher rank’,
is typically viewed as a welfare criterion, yet it has also been interpreted as a fairness
standard by Ramezanian and Feizi 2021. Importantly, it is not fair enough for a probab-
ilistic setting. Specifically, this fairness concern does not arise in deterministic settings
because each agent will receive only one object.

Hence, we take fairness criteria and propose the following variant to the probabilistic
setting: interim favouring support. Now we denote the Z(a;Ri;Pi) as the number of
objects that agent i will receive with positive probability and that agent i prefers
to a and a itself. It’s different from rank(a;Ri) and rank(a;Ri) ≥ Z(a;Ri;Pi). Interim
favouring support states that for any object a, for any two agents Ann and Bob, if
Z(a;RAnn;PAnn) < Z(a;RBob;PBob), no matter who prefer the object more than others,
then Bob receive this object only when Ann receives 1 from Ann’ weak upper counter
set of object a.

Example 5. Consider the same problem in Table 4.6, given any allocation P, if P4,a1 > 0
then it implies Z(a1;R4;P4) ≥ 1. Hence Z(a1;R1;P1) ≤ 1, then it’s only possible when
Z(a1;R4;P4) = Z(a1;R1;P1) = 1. However, it implies P4,a3 = 0 and Z(a3;R4;P4) = 0 <

1 ≤ Z(a3;R1;P1). Hence no one receives a3, a contradiction. Therefore Pi,a1 > 0 , for
all i = 1,2,3, and ∑3

i=1 Pi,a1 = 1. Similarly, we have Pi,a3 > 0 , for all i = 4,5, and
∑5

i=4 Pi,a3 = 1.

However, differences from interim favouring rank arise after. For object a2, we state
that all five agents should receive a positive share of a2. If agent i didn’t receive a
positive share, then Z(a2;Ri;Pi)< Z(a2;R j;Pj) where Pj,a2 > 0. Then interim favouring
rank states agent i must receive 1 of his top favourite object, which is a contradiction
to our previous analysis. Hence Pi,a2 > 0 , for all i, and ∑5

i=1 Pi,a2 = 1.

The analysis for objects a4 and a5 is similar. It will object allocation of interim favouring
rank and support the allocation in Table 4.8 is fair.
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4.1.3 Main contribution: Principle and Realization

4.1.3.1 Two axioms in the random allocation problem with
social planner

Based on the previous discussion, we have two criteria: conformity to social expecta-
tions and favoring support. Hence, for each object a, we can assign priority at first to
agents who conform to social expectations more than others, hence the agent i with
smaller max

x∈U(Ri;a)
rank(x;R0). For those who are indistinguishable, we assign priority to

agents based on a variant of Z(a;Ri;Pi) conditional on conformity to social expectations
max

x∈U(Ri;a)
rank(x;R0) because of the existence of social planner.

We denote ∗(i;a) = arg max
x∈U(Ri;a)

rank(x;R0). Now we denote the Ẑ(a;Ri;Pi) as the number

of objects that agent i will receive with the positive probability and that agent i prefers
to a and prefered by ∗(i;a) including themselves.

Then, we have the first axiom mentioned before: Conformity-Priority Efficiency: 1)
for any object, agents who conform to social expectations more than others should be
rewarded; 2) for some objects, if some agents conform to the social expectation at the
same level, then the one with less number Ẑ(a;Ri;Pi) should have the high right.

The second principle is called Indistinguishability Fairness: for any object, when the
above criteria cannot distinguish agents, they should receive equal shares of an object
for fairness.

Example 6. Continue Example 1

Now, let’s back to the Example 1, Agent 5 has the highest right to object a1 and a3,
then P5,a3 = 1. Otherwise, we have contradiction to Conformity-Priority Efficiency that
Pi,a3 > 0 and P5,a3 < 1 for i ̸= 5. Similarly, Agents 3 and 4 have the highest right to object
a2 and rank(a2;R3) = rank(a2;R4) = 1, then P3,a2 = P4,a2 =

1
2 due to Indistinguishability

Fairness. We have analyzed object a4 and it give us P1,a4 > 0 only if Pi,a2 +Pi,a4 = 1 where
i = 3,4, which is impossible. Hence P3,a4 = P4,a4 =

1
2 because we can’t distinguish Agent
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3 and 4 due to our criteria. Lastly, we have P1,a5 = P2,a5 =
1
2 and P1,a3 = P2,a3 =

1
2 due

to Indistinguishability Fairness. Overall, it leads to the allocation in Table 4.2, the one
we believe achieves a balance between conforming to social expectations and respecting
individual freedom.

Now, we propose a simple method to achieve this outcome. Following Agent 0’s prefer-
ence, we equally allocate to the agents who prefer the most according to their capacity.
Formally, it is called Flow algorithm:

1. In round 1, we require the object in the first position of Agent 0’s preference
(smallest rank), denoted as π(1), to appear in the market, then equally allocate
them to agents who put them on top of the total objects and discard this object.
If not, we add this object to the next position.

2. In round k, we iteratively allocate objects that have the left objects in the previous
round and the objects in the k− th position of Agent 0’s preference, π(k). We
allocate the objects to agents who put them at the top of the remaining objects
equally, considering their capacity. Whenever the capacity of an object is 0, we
discard that object. We keep this process until no one puts the object in π(k) at
the top of the remaining objects or π(k) is exhausted. Then, we add the remaining
objects in the next position.

It will return the probabilistic allocation directly and use the lottery between agents
during allocation. (Proposition 13)

4.1.3.2 Two axioms in the random allocation problem

In random allocation problem, we find unfairness resulting by interim favoring rank
and believe interim favoring support will eliminate it. However, some popular mechan-
isms do not satisfy this axiom such as Random Priority (Abdulkadiroğlu and Sönmez
1998) and Probabilistic Serial (Bogomolnaia and Moulin 2001)(we will explain them
later), while fractional adaptive Boston rule satisfies. Fractional adaptive Boston rule
is the adaption of well-known adative Boston Mechanism and Bogomolnaia 2015 first
introduce this to random allocation problem. Under this mechanism, every agent re-
ports an ordinal preference list and will receive a lottery. Based on the preference list,
each object is equally allocated to available agents who rank that object first among
the rest of the objects up to their capacity, then to those who rank it second among
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the rest of the objects if there are any remaining capacity of the object, and so forth.
Bogomolnaia 2015 shows it is ordinally efficient, lexi-envy-free and lexi-strategy-proof.
The reader can realize the fractional adaptive Boston rule is also interim favouring
support.

Considering the characterisation, we need one more axiom: equal support equal claim
requires agents who are not distinguished by Z(a;Ri;Pi) to have no incentive to exchange
their assignment for this object. Go back to example in Table 4.8, take object a1 for
example, this axiom implies P1,a1 = P2,a1 = P3,a1 =

1
3 . Together with interim favouring

support support the allocation in Table 4.8.5(Proposition 10)

4.1.3.3 New notion of efficiency in random allocation problem

In literature, there are two dominant methods to solve the general problem: Ran-
dom Priority (RP) (Abdulkadiroğlu and Sönmez 1998) 6, and Probabilistic Serial (PS)
(Bogomolnaia and Moulin 2001).

A sequence of agents (termed priority) serves as a natural tool to solve this problem.
The manager sequentially asks agents, based on an exogenous priority, to choose their
most preferred object from the remaining ones. This mechanism is renowned for its
efficiency and incentive compatibility, but it falls short in terms of fairness. To address
this, random priority is employed: the manager randomly determines an ordering and
then queries agents to select their best object from what remains. 7

However, ibid. shows RP lacks efficiency, namely it is not ordinally efficient. Therefore,
they construct the probabilistic serial. In this method, the manager directly allocates
a divisible probability weight. Agents simultaneously ’eat’ the probability weight of
their most preferred available object at a uniform rate. Once an object is fully ’eaten’
by some agents, they move on to their next most preferred yet uneaten object. This
process continues until all objects are completely allocated.

5. To notice, Chen et al. 2023 replace ’support’ with ’rank’ to characterize the naive fractional Boston
rule.
6. Also known as random serial dictatorship in literature.
7. Recently, RP is shown the unique rule satisfies symmetry,ex-post Pareto efficient, and obvious
strategy-proof.
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One advantage of ordinal efficiency is that it guarantees any decomposition of ran-
dom allocation is the convex combination of efficient deterministic allocations while
the efficiency of RP only guarantees there exists a convex combination of efficient
deterministic allocations called ex-post Pareto efficiency.

We realize there is a natural extension of ex-post Pareto efficiency such that the random
allocation can decompose into a convex combination of probabilistic ordinal efficient
allocations. We call it interim efficiency. The interim efficiency is logically squeezed
between ordinal efficiency and ex-post Pareto Efficiency: every ordinally efficient al-
location is ’interim efficient’ and every ’interim efficient’ allocation is Ex-post Pareto
efficient (the converse is not true). Unfortunately, Random Priority is not interim
efficient. (Proposition 14)

We want to propose another, more efficient rule that is also easy to practice in reality.
Imprecisely, we randomly generate an order of objects (permutation), π, then run the
Flow algorithm that we take π as Agent 0’ preference. Although Random Priority and
Random Flow can both be easily implemented and understood in lab settings, they
exhibit distinct axiomatic properties, as shown in Table 4.10.(Proposition 15)

Efficiency Fairness Incentive Compatibility
RF Interim Efficient weakly sd Envy-Free weakly sd Strategy-Proof
RP Ex-post Pareto Efficient weakly sd Envy-Free sd Strategy-Proof

Table 4.10: comparison Between RP and RF

We provide a numerical analysis among existing dominant mechanisms and RF. In
4× 4 case, we observed RF generates no-envy in more preference profiles than RP:
RP generates sd-envy-free allocation in 36% of preference profiles while RF generates
sd-envy-free allocation in 48% of preference profiles. It suggests we can design an easy
algorithm based on RF that is superior to RP with efficiency and fairness.

4.2 Literature Review

This project contributes to different questions.
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4.2.1 Conformity, Social planner, and individual happiness

Existing literature typically models the social planner’s preference as an exogenous
factor and many works have discussed how to ensure the incentive compatibility of
social planners or agents when a social planner is incorporated into a model. For in-
stance, some works study how to incentive social planners to follow the game or report
true objective function (i.e., Akbarpour and Li 2020) and some works study the com-
patibility between the social planner optimal outcome and incentive-compatibility for
agents (i.e., Noda 2023, Dworczak 2020). On the other hand, many works discussed
what could be the optimal mechanism when social planners use different objective func-
tions (i.e., Weitzman 1977, Abdulkadiroglu et al. 2021) or what would be distortion in
equilibrium when there is the intervention of social planner (i.e., Kang 2023).

In contrast, we model the social planner through a strict ordering of importance and a
constructed preference over allocations. This approach allows us to identify and analyze
potential conflicts between the planner’s priorities and individual agents’ preferences.
By doing so, we formulate a new criterion—conformity—which determines when an
agent should follow the planner’s ordering instead of solely pursuing their payoff.

There is also normative justification for conformity: if social expectations really are
internalized virtues or shared norms that enhance cooperation and well-being, then it’s
rational (and welfare‐enhancing) for agents to respect the planner’s ordering. Philo-
sophical and psychological theories offer the reason. Thinkers have long argued that
social expectations are internalized norms that guide cooperative behavior: from Ar-
istotle’s view of humans as “social animals” whose virtues are realized through com-
munal life (Politics, 1253a, Aristotle 1980), to Confucian role ethics emphasizing duties
of self‐cultivation, family, and state (Weiming 1985). Pragmatists like Dewey 1916 and
James 1907 further stress that responsiveness to collective aims drives social progress.
Self-Determination Theory (Ryan and Deci 2000, Deci and Ryan 2013) provides a psy-
chological mechanism: when agents internalize pro-social norms, they satisfy core needs
for competence and relatedness, yielding intrinsic motivation to comply.
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4.2.2 Favor higher ranks and Boston Rule

In the literature, agents are typically prioritized by how much they wish to obtain
an object—namely, by their rank (Kojima and Ünver 2014, Harless 2018, Ramezanian
and Feizi 2021, Chen et al. 2023 etc.) However, we propose a new index: the number of
objects an agent prefers to a given object with positive probability. To distinguish this
“support‐based” index from rank, we note that it corresponds exactly to the difference
between the Naïve Boston rule and the Adaptive Boston rule (Mennle and Seuken
2014 and Mennle and Seuken 2021). Hence, in this paper, a key distinction between the
fractional Boston rule and the fractional Adaptive Boston rule reflects the fundamental
tension between welfare and fairness arising from a focus on support versus rank.

4.2.3 Mechanism Design for the market with the order of ob-
jects

It is worth noting two related works on the order of objects. Liu and Zeng 2019 provides
the algorithm on restricted tier domain, simply the preference is consistent with public
rank, i.e., if social planner prefers block of A to block of B, then agents can’t prefer
the objectb in B to the object a in A. However, the public rank is the complete rank
over all objects, not blocks, in our model, and we do not impose restrictions on the
preference domain. Also, Harless 2019 characterizes all sd-efficient algorithms using
the order-claim-algorithm. Although efficiency is not the only focus of this paper, there
is the same spirit between ibid. and this paper: generating the order of objects and
allocating them efficiently. However, we are curious about how to allocate the object
when there is an inconsistency between preference and order of importance.
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4.2.4 Refinement of Ex-post Pareto Efficiency

Lastly, it is well-known that ordinal efficiency is stronger than ex-post efficiency and RP
is not ordinally efficient. Then it is always interesting to check the boundary of efficiency
for RP. Interim efficiency requires that the random allocation can be decomposed (if
there is one) into a convex combination of ordinally efficient random allocations. It
is exactly between ordinal efficiency and ex-post efficiency and we show RP does not
satisfy this property. 8

This paper is structured as follows: Section 4.3 presents the Preliminaries of classic
random allocation problem. Section 4.4 describes the new axiom ’Interim Favoring
Support’. Section 4.5 presents the ’fractional adaptive Boston rule’ and it’s charac-
terization. Section 4.6 introduces the new model with social planner, two new desired
properties, the new Flow Algorithm, and characterization. Section 4.7 introduces a new
notion of efficiency and introduces the new Random Flow algorithm with its necessary
conditions and numerical analysis.

4.3 Preliminary

Consider a classic assignment problem with indivisible goods. For any positive integer
x, define [x] = {1,2, ...,x}. Let N = [n] denote a set of agents, and A = [n] denote a
set of goods. The capacity of each agent and each object is 1. We consider the set of
strict preferences R on A, the representative element is R. We use RN to represent the
preference profile.

8. There is one interesting question: Do interim efficiency and robust ex-post efficiency imply ordinal
efficiency? Robust ex-post efficiency see Aziz et al. 2015 and Ramezanian and Feizi 2022. Abdulkad-
iroğlu and Sönmez 2003 also gives some thoughts on why ex-post efficiency is not ordinal efficiency:
a random assignment is ordinally efficient if and only if for any given feasible support, each of its
subsets is undominated.
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A random assignment is a bistochastic P= [pia]i∈N,a∈A.9 The set of random assignments
is denoted P. We use Pi to represent the allocation of agent i. A random assignment
rule is a mapping f : RN → P. We use fi(RN) to represent the allocation/probability
that agent i receives under the assignment rule f and use fia(RN) to represent the
allocation/probability that agent i receives object a under rule f and preference profile
RN .

4.4 Interim Favoring Support

We define the upper contour set of Ri at an object a ∈ A as U(Ri;a) = {x : xRia} and
weak upper contour set of Ri at an object a ∈ A as U(Ri;a) =U(Ri;a)∪{a}.

We need one definition to introduce the property.

Definition 3 (Effective Rank). Whenever RN, P, i and a, we define

Z(a;Ri;Pi) = #{b : b ∈U(Ri;a),Pib > 0}

to be the effective rank of object a for agent i, measuring how many objects preferred
to a are actually allocated to i with positive probability.

The classical rank of an object a for agent i, denoted rank(a;Ri), counts how many
objects agent i strictly prefers to a, without considering the allocation. Our Effective
Rank Z(a;Ri;Pi) refines this concept by counting only those preferred objects that agent
i actually receives with positive probability under the allocation Pi. Thus, Z(a;Ri;Pi)

captures the effective rank of a within the allocated bundle, reflecting both preferences
and current assignments, i.e., Z(a;Ri;Pi) for your second-choice is at most 2 (and may
be smaller if the lottery never awards you one of the first two favorite objects).

Property 1. Interim Favoring Support

For all RN, all a, all i, if Pia > 0, then ∑
x∈U(R j;a)

Pjx = 1 for all j that Z(a;R j;Pj) <

Z(a;Ri;Pi).

9. That is, P ∈ [0,1]N×A and for each i ∈ N and a ∈ A, ∑
b∈A

Pib = 1 and ∑
j∈N

p ja = 1.
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Property 1 says: if you’re getting any of a, the doughnut, under the assignment P,
anyone who has a smaller Z(a;R j;Pj) – meaning they have fewer “top‑or‑equal” sweets
in their lottery – must already have spent their entire probability on those sweets before
you can keep any of a.

Different from Kojima and Ünver 2014 and Harless 2018, this property entitles the
right of the object to agents based on what they will receive instead of how they value
the object. In the previous example, if one agent (he) ranks one object a higher than
another (she) but he already receives more objects (possibly) than another, interim
favoring support will allocate a to her while interim favoring rank will allocate a to
him. Hence, it will eliminate the unfairness in Example 4.

Now we show it’s stronger than ordinal efficiency. For all i, given a preference Ri on A,
we call a partial ordering of the set ∆(A) the stochastic dominance relation associated
with Ri and denoted Rsd

i if ∀Pi,P
′
i ∈ ∆(A) we have

PiRsd
i P

′
i ⇔ ∑

x∈U(R;a)

Pi ≥ ∑
x∈U(R;a)

P
′
i ,∀a ∈ A.

Given a preference Ri on A, ∀Pi,P
′
i ∈ ∆(A), we say P

′
i is stochastically dominated by Pi

for agent i if we have PiRsd
i P

′
i and Pi ̸= P′

i . We define P as ordinally efficient if Pi is not
stochastically dominated for all i. A random assignment rule f is ordinally efficient if,
for all R ∈ Rn, f (R) is ordinally efficient.

Proposition 9. Interim Faovring Support implies Ordinal efficiency.

We can show if the allocation is not ordinally efficient for some preference profile, then
there exist a probabilistic improvement circle (agent i prefer ai to ai+1 but receive a
positive share of ai+1). Then there exist agent i who have the highest Z(ai+1;Ri;Pi),
then for object ai+1, we must have Z(ai+1;Ri;Pi)> Z(ai+1;Ri+1;Pi+1), but the agent i+1
are not satisfied to object ai+1 because Pi+1,ai+2 > 0, hence it will violate the Property
1.

Now we state the second fairness property: requires such agents to have no incentive to
exchange their assignment for this object also. Together with Property 2, it will single
out the allocation in Table 4.8 in Example 4.
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Property 2. Equal Support Equal Claim

For all RN, a, i, j s.t. Z(a;Ri;Pi) = Z(a;R j;Pj), if Pia > Pja > 0 then ∑
x∈U(R j;a)

Pjx = 1.

Property 2 says: for any doughnut a if two people have the same effective rank under
assignment P, you can’t give one of them a larger share of doughnut unless the other
has already used up their full probability on sweets they rank at least as highly as
doughnut a.

4.5 Fractional Adaptive Boston Rule

Now, we start with the fractional adaptive Boston rule in a random assignment prob-
lem. To provide the formal definition, we need to define: whenever B ⊆ A,N′ ⊆ N,a ∈
B,M(a;B;N′) ≡ {i ∈ N′ : aRib,∀b ∈ B} and m(a;B;N′) = #M(a;B;N′). In words, the
M(a;B;N′) is the set of agents in N′ who put a at the top of B and the set of M(a;B;N′)

is a partition of N′.

Given a preference profile RN , the fractional adaptive Boston rule proceeds sequentially.
Let A0 = A,N0 = N, let C = [1]N be the capacity of agents, Z = [1]A be the capacity of
objects.

1. In the first period, for all a if M(a;A0;N0) ̸= /0, we fully allocate a to M(a;A0;N0)

and every agent receives shia =
1

m(a;A0;N0)
. Then we update capacity Z1 and C1,

the remaining objects A1, and the agents with positive capacity N1.
2. For each k period, for all a ∈ Ak−1 if M(a;Ak−1;Nk−1) ̸= /0, we allocate a to agents

M(a;Ak−1;Nk−1) and every agent receives, for some e:

shia = ck−1
i ∧ e s.t. ∑

i∈M(a;Ak−1;Nk−1)

shia = zk−1
a ∧ ∑

i∈M(a;Ak−1;Nk−1)

ck−1
i

Then we update capacity Zk and Ck, the remaining objects Ak, and the agents
with positive capacity Nk.

This algorithm will finish in finite periods at most |A| and produce an allocation matrix
sh.
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Proposition 10. A random assignment function satisfies Interim Favoring Support
and Equal Support Equal Claim if and only if it is a fractional adaptive Boston rule.

We prove it by mathematical induction and simple logic. At first, we show if the
allocation satisfies the Property 1 and Property 2, then all agents will receive the
allocation of their favourite object as same as under the fractional adaptive Boston
rule. Then we show it’s true for all agents and all objects such that Z(a : Ri;Pi) = k. For
this induction, we need to be careful because Z(a : Ri;Pi) = k may imply r(a : Ri;Pi)> k

and the agent may receive 0 probability of object a.

Now, we show Interim favoring support and equal support equal claim are independent.
Moreover, we show 1) equal claim equal support and ordinal efficiency are not sufficient
to obtain interim favoring support; 2) Interim favoring support and Lexi-envy-free are
not sufficient to obtain equal claim equal support.

Given the stick preference Ri : a1Ria2 . . .Rian, we define lexicographic preference Rlex
i

over all probability distributions ∆(A): for all p,q ∈ ∆(A), then we say pRlex
i q as long

as there is j ∈ {1, ...,n} such that pa j > qa j , while pak = qak for all k < j. Given an
allocation P and preference profile RN , we say it is lexi-envy-free, if for any agents i and
j, we have PiRlex

i Pj and PjRlex
j Pi.

Proposition 11.

1. Lexi-envy-free and interim favoring support do not imply equal support equal
claim.

2. Ordinal efficiency and equal support equal claim do not imply Property interim
favoring support.
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4.6 Social Planner’s preference and principles for
new problem

In this section, we provide the new problem: how to allocate the object when the social
planner exists. We assume the social planner holds an order of importance over objects
(see motivated examples and explanation in Introduction). This could refer to the tiered
ordering of universities in school allocation problems, the strict ranking of placements
in military graduate assignment, the priority ordering of projects in government-led
investment allocation, or similar situations.

4.6.1 Model: Social Planner’s preference and Problem

To distinguish from agents, we denote π ∈ Π as it’s strict preference from now on.

Definition 4 ( Order of Importance). An order of importance π on the set of objects
A is a strict total order. We write

πa < πb ⇐⇒ object a is more important than object b.

Equivalently, π is a bijection from A to {1,2, . . . , |A|}, where a smaller numeric value
indicates higher priority.

Remark. This notion of Order of Importance refers to a ranking over objects (e.g.,
projects, schools, positions) as determined by a central planner or social value. This
contrasts with the standard use of priority orders in matching theory, where each
object typically ranks agents by priority. For concrete illustrations of our notion, see
the examples of military‐graduate placement and investor‐fund allocation.

Now, we can define Agent 0’s preference over allocation. We adopt a lexicographical
approach to compare allocations. The social planner does not receive any objects but
derives utility directly from the allocation itself, distinguishing their objective from
that of individual agents. In our model and the motivating example, the social planner
values objects differently from agents and wants

1. more of an object should go to those who value it more,
2. and ensure that more important objects are better allocated.
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The first assumption is natural — it reflects a welfarist principle: for any given ob-
ject, the planner prefers to allocate it to the agents who value it most or derive the
highest utility from it. The second one is natural in this model because of the order
of importance. For example, a planner wants to ensure more important posts are al-
located to appropriate graduates before less important posts. The government favours
allocations where higher-priority investment projects (e.g., renewable energy, AI) get
better-targeted investment. Now, we define this π-lexicographic first-order dominance.

Hence, we define the welfare vector for every object that tells us the distribution
among agents, who prefer a the most and get how much, and so forth. wr(a;R;P)[1] =

∑i:rank(a;Ri)=1 Pia is total share of object a given to agents who rank a first, rank(a;Ri)= 1.

Definition 5 (Welfare vector). For each object a ∈ A, the welfare vector of a under
(R,P) is the n-dimensional vector

wr(a;R;P) =
(
wr(a;R;P)[1], wr(a;R;P)[2], . . . , wr(a;R;P)[n]

)
∈ Rn,

whose jth component is
wr(a;R;P)[ j] = ∑

i∈N
rank(a;Ri)= j

Pia.

Then we define the First-order dominance relation over the Welfare vector. In other
words, the social planner prefer one allocation P to the other allocation P′ with the
distribution of object a if the welfare vector of object a in allocation P first order
stochastic dominates the welfare vector of object a in second allocation P′.

Definition 6 (First-order dominance relation over Welfare vector). Let P,P′ ∈ P be
two random assignments, and let a ∈ A. We define the First-order dominance relation
over Welfare vector

wr(a;R;P)▷ wr(a;R;P′) ⇐⇒
k

∑
j=1

wr(a;R;P)[ j]≥
k

∑
j=1

wr(a;R;P′)[ j] ∀k = 1, . . . ,n.
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The second assumption connects the social planner’s preferences over allocations to
their preferences over individual objects called responsiveness. Specifically, we assume
that if two allocations P and P′ differ only in the distribution of objects a and b, then
the social planner prefers P over P′ if and only if they prefer the distribution of the more
desirable object (among a and b) in P. For example, in Example1, the social planner
prefers the allocation in Table4.2 over that in Table4.5 if and only if they prefer the
distribution of the more desirable object between a1 and a4 in the former.

Definition 7 (Responsiveness). The preference relation ⪰R over set of student is
responsive to π if, for any P and P only differs in welfare vector of a and b with
πa < πb, then P ⪰R P′ if and only if wr(a;R;P)▷ wr(a;R;P′).

One example is simple π-lexicographic first-order dominance.

Definition 8 (π-lexicographic first-order dominance). Let P,P′ ∈ P be two random
assignments, and let a ∈ A. We say

P ⪰π-LSD P′ ⇐⇒
∃a ∈ A : wr(a;R;P)▷ wr(a;R;P′)

∧ ∀b with πb < πa : wr(b;R;P) = wr(b;R;P′).

π-lexicographic first-order dominance orders entire allocations by (1) fixing a priority
ordering of objects, and then (2) comparing two assignments by the cumulative shares
those assignments give—object by object in priority order—to the agents who most
desire each object. Recall the motivated ministry officer assignment problem, a national
ministry of defence assigning freshly commissioned officers to posts that range from
frontline duty to technical support and administrative staff. A π-lexicographic first-
order dominance orders elegantly reconciles the concern: it fills the highest-priority
post by awarding it to the officers who value it most, then proceeds, in succession,
through the full portfolio of assignments. See the following example.

1, 2: a ≻ b ≻ c
3: b ≻ a ≻ c

Table 4.11: Preference Profile
a b c

1 0.5 0 0.5
2 0.5 0 0.5
3 0 1 0

Table 4.12: Assignment P

a b c
1 0.4 0 0.6
2 0.4 0 0.6
3 0.2 1 0

Table 4.13: Assignment P′
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Example 7. Both assignments P and P′ fully assign objects to agents. The planner
ranks objects as a ≻ b ≻ c. In P, object a is entirely given to agents 1 and 2, who rank it
first. In P′, a fraction of a is given to agent 3, who ranks it second. The welfare vector
for a under P is lexicographically better: more of a goes to its top-ranked supporters.
Since object a is the top priority and P outperforms P′ at a, while all lower-ranked
objects are equal or irrelevant, we conclude P ⪰π-LSD P′.

Definition 9 (π-lexicographic efficiency). Fix a priority order π. A random assignment
P ∈P is called π-lexicographically efficient if there exists no other assignment P′ ∈P

such that
P′ ⪰π-LSD P and P′ ̸= P,

i.e. no P′ π-lexicographically first-order dominates P.

An assignment P ∈ P is called π-lexicographically efficient if there is no other as-
signment P′ ∈ P that π-lexicographically first-order dominates it (i.e. no P′ ̸= P with
P′ ⪰π-LSD P). Intuitively, you cannot find any feasible re-allocation that—when you
compare objects in priority order—improves the share given to agents who value the
first differing object most, without worsening a strictly higher-priority object.

Lemma 1. The relation ⪰π-LSD is:

(i) Irreflexive: ¬(P ⪰π-LSD P) for all P.
(ii) Transitive: If P ⪰π-LSD P′ and P′ ⪰π-LSD P′′, then P ⪰π-LSD P′′.

(iii) Responsive to π.

However, ⪰π-LSD is not complete.

Proof. By definition, P cannot strictly dominate itself at any object. Thus P ̸⪰π-LSD P.

Suppose P ⪰π-LSD P′ via first differing object a, and P′ ⪰π-LSD P′′ via first differing
object b. If πa < πb, then a is the first object where P,P′′ differ, and cumulative sums
satisfy the lexicographic inequality by chaining the two comparisons at a. The argument
is symmetric when πb < πa.

Failure of completeness. There exist P,P′ whose welfare vectors at the object are in-
comparable under cumulative sums. Then neither dominates the other.
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There is a clear difference between Ordinal efficiency and π-lexicographic efficiency.
Ordinal efficiency ensures that no group of agents could all weakly prefer a differ-
ent allocation without making someone worse off, given their ordinal preferences. In
contrast, π-lexicographic efficiency reflects the social planner’s prioritization over ob-
jects: it seeks to allocate higher-priority goods to agents who desire them most, in
a lexicographically fair manner. The lemma 2 states that these two goals are gen-
erally incompatible—there exist allocations that are optimal under one criterion but
suboptimal under the other. This misalignment arises because the planner may favor
reallocating high-priority objects to better-aligned agents even when such reallocations
violate Pareto improvements among the agents themselves.

Lemma 2. π-lexicographic efficiency and ordinal efficiency are not compatible.

Now, we conclude the model by defining the allocation role as a mapping g : RN ×Π →
P. We use gi(RN ,π) to represent allocation that agent i receives under the assignment
rule g and preference profile RN and order of importance π.

4.6.2 Principles

We consider the properties mentioned in the Introduction. Conformity-Priority Effi-
ciency (CPF) says that the object should be allocated to the agents who value them
in the much more ’correct’ position corresponding to Agent 0’s preference. Indistin-
guishability Fairness (IF) says that those agents should receive an equal share for
fairness.

We aim to identify which agents conform more closely to the social planner’s expect-
ations. Recall from the motivating example: if object a4 ranks fourth in the planner’s
ordering, and some agents place it above a5 while others place it below, then only the
former are consistent with the planner’s intended priority. To formalize this, we define
a conformity measure that accounts not only for how an agent ranks a particular object
a, but also for which high-priority objects (as judged by the planner) the agent already
receives.
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Let ∗(i;a) = argmax{πx : x ∈ U(Ri;a)} be the least socially important object among
those that agent i prefers at least as much as a. This serves as a benchmark for evalu-
ating the agent’s alignment with planner priorities.

Define the conformity cluster.

Û(Ri;a) = {b : ∗(i;a)RibRia}∪{a}∪{∗(i;a)}

This is the set of objects that agent i places between a and ∗(i;a) in their ranking.
In other words, This is the ”cluster” of objects agent i sees as near or better than a,
bounded by planner priority and agent preference. Then we define Conditional Effective
Rank.

Definition 10 (Conditional Effective Rank). Whenever RN, π, P, i and a, we define

Ẑ(i;a;P) = #{b : b ∈ Û(Ri;a),Pib > 0}

to be the conditional effective rank of object a for agent i, measuring how many objects
in this conformity cluster agent i are receiving a nonzero share under the current
allocation P.

This is subtle because it doesn’t just say: How high is object a in your ranking? But
says: How many goods that you consider as good as or better than a, and that the
planner thinks are also important, are you already receiving?

Example 8. Consider the same example in Introduction,

0: a1,a2,a3,a4,a5
1, 2: a5,a4,a2,a1,a3
3, 4: a2,a4,a1,a3,a5

5: a3,a1,a5,a2,a4

Table 4.14: Preference Profile

We have ∗(3;a4) = ∗(4;a4) = a4 but ∗(1;a4) = ∗(2;a4) = ∗(5;a4) = a5. Now assume P1 =

P2 = P6 = (1
4 ,

1
4 ,0,

1
4 ,

1
4). Then we have: Ẑ(5;a4;P) = 2 but Ẑ(1;a4;P) = Ẑ(2;a4;P) = 3.

Definition 11 (Agent Priority at Object a). Given preferences R, allocation P, and
planner priority π, we define the binary relation ≺a as follows:

1. i ≺a j if
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• max{πx : x ∈U(Ri;a)}> max{πx : x ∈U(R j;a)}, or
• these values are equal and Ẑ(i;a;P)> Ẑ( j;a;P).

2. i ∼a j if both expressions are equal.

Now we are ready to state the following Properties.

Property* 1. Conformity-Priority Efficiency (CPF)

For all RN, all π, all a, all i, if Pia > 0, then ∑
x∈U(Ri;a)

Pjx = 1 for all j that i ≺a j

Conformity-Priority Efficiency means that before the social planner gives a doughnut to
someone, look up the line—make sure everyone with a higher need or claim has already
been taken care of. This property respects a priority queue, where priority is not just
based on personal taste, but is carefully measured using both personal preferences and
social importance.

Proposition 12. CPF implies ordinal efficiency.

Suppose for contradiction that an allocation P satisfies Conformity-Priority Efficiency
(CPF) but fails ordinal efficiency. Then there is an “improvement cycle”

i1 : a1a2, i2 : a2a3, . . . , in : ana1,

where each agent ik has Pik,ak+1 > 0 and strictly prefers ak+1 to ak. Let a1 be the highest-
priority object in this cycle under π. Trace the cycle backwards from in: CPF requires
that any agent with strictly lower planner-priority alignment or with “used up” fewer
high-priority goods cannot hold a positive share of a1 if another agent with a stronger
claim does. Yet the cycle demands exactly such a reallocation, yielding a direct violation
of CPF at a1. Repeating the same argument at each link shows no improvement cycle
can exist, so P must be ordinally efficient.

Property* 2. Indistinguishability Fairness (IF)

For all RN, all π, all a, all i, j s.t. i ∼a j, if Pia > Pja > 0 then ∑
x∈U(R j;a)

Pjx = 1.
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The second property says if for any object we can not distinguish agents due to two
criteria, then they should have the same chance/right to that object. So, if social
planner is giving agent i more of something than an equally deserving agent j, then
make sure that j is already being well taken care of in terms of their top preferences.
Together with Property 1, it will single out the allocation in Table 4.2 in Example 1.

4.6.3 Flow Algorithm

Before defining the new method, we define a component rule that allocates the sub-
set of objects to agents with consideration of full preference. Now given RN ,P,B,A,N,
whenever RN is preference profile, P is the matrix, B is to-assign-objects, A is set of
objects, N is set of agents, we define BM(B;A;N) as the constraint fractional adapt-
ive Boston rule in the following sequential procedure. Let the capacity of objects be
Z0 = [1]A − [ ∑

i∈N
P0

ia]a∈A the capacity of agents be C0 = [1]N − [ ∑
a∈A

Pia]i∈N .

1. In the first period, for all a∈B if M(a;A0;N0) ̸= /0, we fully allocate a to M(a;A0;N0)

and every agent receives shia =
1

m(a;A0;N0)
. Then we update capacity Z1 and C1,

the remaining objects A1 and B1, and the agents with positive capacity N1.
2. For each k period, for all a ∈ Bk−1 if M(a;Ak−1;Nk−1) ̸= /0, we allocate a to agents

M(a;Ak−1;Nk−1) and every agent receives, for some e:

shia = ci ∧ e s.t. ∑
i∈M(a;Ak−1;Nk−1)

shia = za ∧ ∑
i∈M(a;Ak−1;Nk−1)

ck−1
i

Then we update capacity Zk and Ck, the remaining objects Ak and Bk−1, and the
agents with positive capacity Nk.

This algorithm will finish in finite periods at most |B| and produce an allocation matrix
sh. The Constraint fractional adaptive Boston rule is the variant fractional adaptive
Boston rule when we allocate a set of objects B by considering full preference. To notice,
the object in B is not necessary to be fully allocated because it may not be at the top
of unassigned objects in A for all agent i.

Now, we construct an algorithm to satisfy CPF and IF. Given a preference profile RN

and π. The algorithm is defined by the sequential procedure. Let A0 = A,N0 = N,π0 =

π,C0 = [1]N ,Z0 = [1]A,.
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1. In first period, we run BM(π(1);A0;N0), then update π1 as the set of unassigned
objects in π(1), A1 as the set of unassigned objects in A0, N1 as the set of agents
who do not approach the capacity, C1 as the capacity of agents, Z1 as the capacity
of objects.

2. For each k period, denote π(k) = π(k)∪πk−1 we run BM(π(k);Ak−1;Nk−1), then
update πk′ , Ak, Nk, Ck, Zk.

This algorithm is denoted by Fπ and will finish in finite periods. The method is simple,
it allocates the object set by set according to the π, for each set we run the constraint
fractional adaptive Boston rule until it is fully allocated or no agent prefers it the most.
Now we use the example in Table 4.4 to illustrate this method.

Example 9. We consider RN and π in Table 4.4, then the method works sequentially:

1. In step 1, allocate the object in π(1) = {a1}. No one prefers a1 to the rest, then
a1 passes to the next period.

2. In step 2, allocate the object in π(2)∪{a1}.
• Agent 3,4 prefer a2 and receive 1

2 each.
• After this, no one prefers a1 to the rest, then a1 passes to the next period.

3. In step 3, allocate the object in π(3)∪{a1}.
• Agent 5 prefers a3 and receive 1 and leave the market.
• After this, no one prefers a1 to the rest, then a1 passes to the next period.

4. In step 4, allocate the object in π(4)∪{a1}.
• Agent 3,4 prefer a4 and receive 1

2 each and leave the market.
• After this, no one prefers a1 to the rest, then a1 passes to the next period.

5. In step 5, allocate the object in π(5)∪a1.
• Agent 1,2 prefer a5 and receive 1

2 each.
• After this, Agent 1,2 prefer a1 and receive 1

2 each.

So, it result in the allocation in Table 4.4. Now, we present the main result: this
algorithm exactly characterizes CPF and IF.

Proposition 13. A mechanism is Fπ if and only if it satisfies CPF and IF.

We prove this by mathematical induction, and it’s similar but complicated than Pro-
position 10. The process that those two axioms and the flow algorithm result in the
same allocation is illustrated clearly in the above example and the example in the
Introduction.
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4.7 Interim Efficiency

In random allocation, a randomization device is crucial. Ordinal efficiency (OE) is
important because it ensures that every possible way of breaking down the allocations
is Pareto efficient. In contrast, ex-post Pareto efficiency (EPPE) only requires that an
efficient randomization device exists. Now, we consider an intermediate notion, interim
efficiency (IE), which allows for more efficient randomization devices.

Given a preference profile RN , let DR denote the set of deterministic efficient assign-
ments, and PR denote the set of probabilistic ordinally efficient assignments.
The union DR ∪PR represents the entire set of efficient assignments.

A random assignment is ex-post Pareto efficient if it can be decomposed into a convex
combination of deterministic efficient assignments, i.e., ∑K

k=1 λkDR
k with λk > 0 and

DR
k ∈ DR for all k.

A random assignment is ’Interim Efficient’ if it can be decomposed into a convex
combination of probabilistic ordinally efficient assignments, i.e., ∑K

k=1 λkPR
k with λk > 0

and PR
k ∈ PR for all k.

We will demonstrate that these two notions are distinct, specifically, that ’Interim
Efficient’ refines ex-post Pareto efficiency but is less stringent than ordinal efficiency.

Proposition 14.

1. Interim Efficiency implies ex-post pareto efficiency, but the converse is not true.
2. Ordinal Efficiency implies Interim Efficiency, but the converse is not true.
3. Random Priority is Ex-post Pareto Efficient but not Interim Efficient.

Proposition 14 explains that interim efficiency is a more refined concept than ex-post
Pareto efficiency but is less demanding than ordinal efficiency. IE is significant because
it permits more types of efficient randomization devices, although it is less strict than
OE, which demands efficiency in all possible deterministic assignments.
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4.7.1 Random Flow

In this part, we consider methods that are easy to run in the lab, such as Random
Priority, and examine those that are superior to Random Priority in terms of efficiency
(based on axioms) and fairness (based on experiments).

We randomly arrange a series of objects and present them sequentially to the agents.
We treat that order of objects as the Agent 0’ preference, and run Flow algorithm.
This method results in a random allocation directly. This is the opposite of Random
Priority. We call it Random Flow and we show Random Flow has better performance in
efficiency, called interim efficient (explained in the next part), which Random Priority
does not. Moreover, Random Flow is at least neutral, weakly strategy-proof, and weakly
envy-free.

We denote Π as the set of permutations of A. Given π ∈ Π, we denote Fπ as the flow
algorithm with order π. Then a mechanism is a Random Flow mechanism if for any
RN it selects the allocation:

1
|Π| ∑

π∈Π
Fπ(RN)

Remark. In practical scenarios where many agents require a limited number of valu-
able items, the Random Flow (RF) mechanism demonstrates superior computational
efficiency compared to the Random Priority method. This efficiency stems from ran-
domizing the order of objects rather than the order of agents.

4.7.2 Necessary condition for Random Flow

A random assignment rule f is sd-Envy-Free if ∀RN ,∀i∈N we have fi(R)Rsd
i f j(R),∀ j ̸= i.

A random assignment rule is weakly sd-Envy-Free if no agent strictly prefers someone
else’s allocation to him or her, that is f j(RN)Rsd

i fi(RN) indicates f j(RN) = fi(RN), ∀ j ̸=
i,∀i ∈ N.
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A random assignment rule is sd-strategy-proof if ∀i∈N,∀(Ri)i∈N and ∀R′ ∈R, fi(R)Rsd
i fi(R

′
i,R−i).

A random assignment rule is weakly sd-strategy-proof if an agent cannot obtain an al-
location that strictly stochastic dominates to a true allocation by telling a lie, that is
f j(R

′
i,R−i)Rsd

i fi(RN) indicates fi(R
′
i,R−i) = fi(RN), ∀i ∈ N,∀R

′
i ∈ R.

Proposition 15. RF is interim efficient, weakly envy-free, and weakly strategyproof.

4.7.3 Numerical testing of fairness

For the random allocation problem, we consider two mechanisms: Random Priority
(RP) and Random Flow (RF), and focus on the property sd-envy-free and ask the
question of which algorithm will generate ’no-envy’ allocation more often. We focus
on the case n = 4 and all preference profiles. We began by selecting unique preference
profiles and eliminating permutations of rows and columns. Each method was then
applied to these profiles to determine allocations.

Observation: RF generates more sd envy-free allocations than RP.

Figure 4.1 shows RP generates sd-envy-free allocation in 36% of preference profiles
while RF generates sd-envy-free allocation in 48% of preference profiles which is an
improvement of 12% in RF. Moreover, given the nature of the Flow Algorithm, it
is possible to improve this behavior by designing a more fair and easy-to-implement
algorithm while keeping higher efficiency (interim) in this spirit.

Figure 4.1: Ratio of No-envy for RP and RF

Observation: RF generates a more equalized allocation than RP and PS in
about 60% of profiles.
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In comparing RP, PS, and RF, Table 4.15 displays the percentage of preference profiles
where the row method outperforms the column method. RF generates a more equalized
allocation than RP in about 61.5% of profiles and then PS in roughly 59.7% of profiles.

RP PS RF
RP 0.479 0.289
PS 0.502 0.402
RF 0.615 0.597

Table 4.15: Better Performance for RP, PS, and RF when comparing to RP, PS, and
RF

Then we analyze to what extent the RF is more equalized. In Figure 4.2, we compare
RF and PS across each preference profile. The x-axis represents each preference profile,
while the y-axis represents the variance difference between PS and RF, specifically
calculated as the variance of PS minus the variance of RF. A positive value on the
graph signifies that the allocation under PS is less equalized than that under RF, and
conversely for negative values. Moreover, in those 59.7% preference profiles, the variance
under PS is much larger than the variance under RF with the maximum 0.047 while
in the 40.2% preference profiles, the variance under RP is much larger than variance
under PS with the maximum 0.01. So we can state that for the preference profile PS
is much equalized, the difference between RF and PS is not large.

Figure 4.2: Difference between PS and RF
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4.8 Conclusion

This paper investigates the classic random allocation problem with a focus on fairness
and efficiency, particularly in settings involving a social planner. First, we examine the
efficiency notion of interim favouring rank, introduced by Harless 2018, and propose a
novel variant called interim favouring support. This suggests focusing on the support
of the allocation to avoid unfair situations in which some agents have a higher chance
of receiving top objects than others. We agree with the criticisms in Kojima and Ünver
2014 regarding the use of ’favouring rank’ as a welfare criterion. Furthermore, we ex-
plore the applicability of the interim favouring support axiom and find that the popular
mechanism, the fractional adaptive Boston rule, satisfies this axiom. To characterize
this mechanism, we introduce a natural fairness principle: equal support, equal claim,
which requires that agents indistinguishable by prior criteria should have equal chances
of receiving an object.

Next, we introduce a new model that incorporates a social planner. We propose two
main axioms based on conformity and favouring support. The first, Conformity-Priority
Efficiency, requires that agents who conform to the social planner be rewarded. The
second, Indistinguishability Fairness, ensures that agents indistinguishable by the pre-
vious criteria are treated equally. To characterize these axioms, we construct a simple
algorithm called the Flow Algorithm. The algorithm allocates objects according to the
social planner’s preference order (from most to least preferred). If some agents conform
to an object—meaning they prefer it to the remaining ones—they receive it with equal
probability. Otherwise, the object is temporarily held, and the algorithm proceeds to
allocate the next object in the next period. In each period, we revisit the held objects:
if any agent now prefers a held object to the remaining ones, it is allocated with equal
chance. This process eventually returns a probabilistic allocation that satisfies the two
proposed axioms.

Finally, we consider the construction of a more efficient and practically implement-
able algorithm. We introduce the Random Flow (RF) algorithm, which is a uniform
randomization over all possible Flow allocations. RF satisfies a new efficiency notion,
Interim Efficiency, which requires that the random allocation be decomposable into
a convex combination of probabilistically ordinally efficient allocations. Interim Ef-
ficiency lies between ordinal efficiency and ex-post Pareto efficiency: every ordinally
efficient allocation is interim efficient, and every interim efficient allocation is ex-post
Pareto efficient (though the converse does not hold). We show that Random Flow is
interim efficient, while Random Priority is not. Although RF is not strategy-proof,
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it is weakly strategy-proof. Beyond our axiomatic analysis, we also provide numerical
evidence. We observe that RF generates no-envy outcomes in more preference profiles
than RP, with a 12% improvement. These results suggest that we can design and apply
a simple, practical algorithm inspired by the Flow mechanism that outperforms RP in
both efficiency and fairness.
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Chapter 5

Conclusion

This thesis explores critical aspects of intertemporal preferences, strategic behavior
in random games, and fairness principles in random allocation problems, offering new
theoretical insights and practical implications in these areas. Each chapter presents
distinct yet interconnected contributions to the broader field of microeconomics and
decision theory, advancing our understanding of individual and collective decision-
making under uncertainty and competing objectives.

In Chapter 2, we introduced a novel representation theorem for exponential discoun-
ted additive utility within a continuous-time framework, where consumption exists in
a simplex. This framework extends the consumption space to piecewise continuous
functions and incorporates risk into decision-making. Our work diverges from tradi-
tional paradigms by addressing temporal preferences with Time Stationarity and Time
Impatience, allowing for greater flexibility in modeling. By moving beyond the fixed
preference at t = 0, this chapter lays the foundation for more robust analyses of inter-
temporal choice. Future directions include relaxing exponential discounting assump-
tions and incorporating stochastic elements into the outcome domain, enhancing the
model’s applicability to real-world scenarios characterized by uncertainty and evolving
preferences.

Chapter 3 addresses the asymptotic behavior of strictly dominated strategies in random
games, contributing both theoretical and computational advancements. We demon-
strated that the probability of strictly dominated strategies vanishes as the number of
strategies increases, while providing bounds on the existence of q-portion-dominated
strategies. The proposed algorithm significantly reduces computational complexity

69
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compared to existing methods, paving the way for practical applications in econom-
ics and computer science. Extending these results to settings with non-i.i.d. payoffs or
extensive-form games presents exciting future challenges, as does refining the algorithm
to handle broader classes of strategic interactions efficiently.

In Chapter 4, we construct a new model including the social planner. The chapter
explored the critical question of whether social planners’ objectives should override
individual freedom when conflicts arise. By modelling the social planner as an agent
within the allocation framework, we assume the social planner’s preference is respons-
ive to the order of importance, one example is lexicographical preference. The analysis
revealed the importance of rewarding conformity to social expectations while acknow-
ledging the limitations of truthful reporting by both planners and agents. The chapter
highlighted the interplay between individual preferences and social expectations, pro-
posing principles like Conformity-Priority Efficiency (CPF) and Indistinguishability
Fairness (IF) to balance these competing priorities. This work invites further explora-
tion of strategy-proof mechanisms that incentivize honest behavior for both of the social
planner and agents, with significant implications for tax systems, subsidy programs,
centralized planning, and crisis management scenarios such as COVID-19 lockdowns.

Then, we turned to the classic random allocation problem, introducing a novel fairness
criterion, interim favouring support, and analyzing its implications for popular mechan-
isms like the fractional adaptive Boston rule. Then through the Flow Algorithm and its
randomized variant, Random Flow (RF), we demonstrated the feasibility of designing
mechanisms that enhance fairness and efficiency while respecting practical constraints.
RF’s superiority over Random Priority in terms of envy-freeness and interim efficiency
underscores its potential for real-world applications.

In conclusion, this thesis contributes to advancing theoretical frameworks and prac-
tical tools for understanding decision-making under risk, strategic interactions, and
the trade-offs between fairness and efficiency. Each chapter offers pathways for future
research, bridging gaps between theory and application, and providing a foundation
for addressing pressing economic and societal challenges. By integrating innovative ap-
proaches to preferences, strategies, and allocations, this work aspires to inspire further
exploration and development in microeconomics and mechanism design.



Appendices

A Proof in Chapter 2

A.1 Proof: Necessity of Axioms in Proposition 2

Now we prove the necessary part of a proposition 2. Recall the utility function:

DU(p[t,b]) =
∫ b

t
e−β (s−t)

n

∑
i=1

ui(pi(s))ds (1)

It is easy to check it satisfies Weak Order, Continuity, Independence, Non-degeneracy,
and SAU because it is an additive utility over simplex for each time t. Now we prove
it also satisfies the other time preference axioms.

Time monotonicity For all t ∈ T ,p,p′ ∈ Pt ,∀τ ≥ t, if p(τ) ≳∆
τ p(τ)′ : U(p(τ)) ≥

U(p′
(τ)),∀t ∈ T , which means

∫ T

t
e−β (s−t)U(p(s))ds >

∫ T

t
e−β (s−t)U(p

′
(s))ds ⇔ p ≳t p

′ (2)

For all t ∈ T for all constant streams, c,c′ , if c ≳t c′ , the other operation is obvious
because U(c(t))≥U(c(t))′ . □

Time stationary ∀t,γ ∈ T ,p ∈ Pt , and f : [0,γ]→ ∆, g : [0,γ]→ ∆, if for some τ > t,
we have

(p, τ f[τ,τ+γ))≳t (p, τg[τ,τ+γ)) (3)
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Then we have

DU((p, τf [τ,τ+γ))[t,T ])

=
∫ τ

t
e−β (s−t)U(p(s))ds+

∫ τ+γ

τ
e−β (s−τ)U(f (s))ds+

∫ T

τ+γ
e−β (s−τ−γ)U(p(s))ds

≥
∫ τ

t
e−β (s−t)U(p(s))ds+

∫ τ+γ

τ
e−β (s−τ)U(g(s))ds+

∫ T

τ+γ
e−β (s−τ−γ)U(p(s))ds

= DU((p, τg[τ,τ+γ))[t,T ])

(4)

As a result ∫ τ+γ

τ
e−β (s−τ)U(f (s))ds ≥

∫ τ+γ

τ
e−β (s−τ)U(g(s))ds (5)

It’s true for any τ due to the construction of g and g, then ∀δ > 0, let τ ′
= τ +δ and

s
′
= s+δ ∫ τ ′+γ

τ ′
e−β (s′−τ ′)U(f (s))ds

′
=

∫ τ ′+γ

τ ′
e−β (s′−(τ+δ ))U(f (s′))ds

′

=
∫ τ+γ

τ
e−β (s−τ)U(f (s))ds

≥
∫ τ+γ

τ
e−β (s−τ)U(g(s))ds

=
∫ τ+γ

τ
e−β (s−(τ ′−δ ))U(g(s))ds

=
∫ τ ′+γ

τ ′
e−β (s′−τ ′)U(g(s′))ds

′

(6)

As a result, for any τ ≥ t, we have (p, τf [τ,τ+γ))[t,T ]) ≳t (p, τg[τ,τ+γ))[t,T ]) is true for any
τ ≥ t. □

Time Impatience

∀t ∈ T ,∀γ > 0,∀p,q ∈ Pt with p(s) ≳∆
s q(s),∀s ∈ [t,T ], if for some τ ≥ t we have

(q,p[t,t+γ))≳t (q,p[τ,τ+γ)), then we have (as same as the Figure 6):

∫ τ

t
e−β (s−t)U(p(s

′
))ds

′
+

∫ τ+γ

γ
e−β (s−γ)U(q(s))ds

≥
∫ τ

t
e−β (s−t)U(q(s

′
))ds

′
+

∫ τ+γ

γ
e−β (s−γ)U(p(s))ds

(7)

Then for any τ > t, the above relation doesn’t change because U(p(t)) > U(q(t)),∀t.
As a result, ∀τ > t,(q,p[t,t+γ))≳t (q,p[τ,τ+γ)). □
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Dynamic Consistency If ∀t ∈ T ,p,p′ ∈ Pt , p′ ≳t p:
∫ T

t
e−β sU(p(s))ds >

∫ T

t
e−β (s−τ)U(p

′
(s))ds (8)

If ∀τ ≤ t,p(τ)′ = p(τ), then

∫ t

τ
e−β sU(p(s))ds+

∫ T

t
e−β sU(p(s))ds >

∫ t

τ
e−β (s−τ)U(p

′
(s))ds+

∫ T

t
e−β (s−τ)U(p

′
(s))ds

(9)
It means p ≳τ p′ .

A.2 Proof: Sufficiency in Proposition 1

Lemma 3. If the preference ≳∆
t satisfies conditions Weak Order, Simplex Additive

Utility, Independence, Continuity, Time Monotonicity, and Non-Degeneracy, then:

1. There exist outcomes x,y ∈ ∆, such that x ≻∆
t y.

2. p ≻∆ q if and only if (c(p),g[t,t ′])≳t (c(q),g[t,t ′]) for any outcome p,q ∈ ∆ and any
g ∈ P, and any t ̸= t ′.

3. ≳∆ is continuous in the sense that for any p ≻∆ q there exist δ > 0 such that
|g−q|< δ implies p ≻∆ g and |g− p|< δ implies g ≻∆ q.

4. There exists a continuous utility function for ≳X , specifically, U(p) = ∑n
i=1 ui(pi)

for all p ∈ ∆. And it has a non-point interval range.
5. For any p ∈ P and any time t, there exists a constant outcome stream c(x) such

that c(x)∼t p.
6. There exist x ∈ ∆ such that exist p ∈ ∆, we have either x ≻∆ p or p ≻∆ x.

Proof. 1. By Strong Essentiality, for all α ∈ (0,1) there exist some p, p
′
, p

′′ such
that s(p),s(p

′
)⊆ [n], and s(p

′′
)∩ [n] = /0, then α p+(1−α)p

′′ ≻∆
t α p

′
+(1−α)p

′′ .
Then denote x = α p+(1−α)p

′′ and y = α p
′
+(1−α)p

′′ .
2. ⇒ By definition of ≳∆, for any outcome p,q ∈ ∆, we have two constant streams

c(p) and c(q) such that c(p) ≳t c(q) for every t. By Time monotonicity (1), we
have for any g∈P, we have (c(p),g[t,t ′])≳t (c(q),g[t,t ′]) because (c(p),g[t,t ′])(τ)≳∆

t

(c(q),g[t,t ′])(τ) for all τ ≥ t.⇐. Assume we have we have (c(p),g[t,t ′])≳t (c(q),g[t,t ′])
for all g ∈ P and for all t. Then if q ≳∆ p, we have (c(q),g[t,t ′])≳t (c(p),g[t,t ′]) for
similar reason which is contradiction. Hence p ≳∆ q.

3. By Continuity for ≳t and definition of ≳∆, we have immediately the Continuity
for ≳∆.
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4. From Qin and Rommeswinkel 2022, the ≳∆ satisfies Weak Order, Simplex Ad-
ditive Utility, and Continuity have an additive utility representation. Because ∆
is connected and contains outcomes that are not indifferent, then the range of
any such function is a non-point interval.

5. ≳∆ has a continuous utility function u(p), and it has the maximum value u∗ and
minimum value u∗. By continuity, we can choose y,z ∈ ∆ such that u(z) = u∗ and
u(y) = u∗. Then by definition of ≳∆ and Time monotonicity (1), for any p ∈P, it
implies c(z)≳t p ≳t c(y). By Continuity, there exist a constant stream c(x) such
that c(x)∼t p.

6. By Non-Degeneracy, for every time t, there exist p,q ∈ P such that p ≳t q.
Suppose x ∼∆ y for all x,y ∈ ∆, then by definition we have p ∼t q for all t and for
all p,q by (d), thus it’s a contradiction of Non-Degeneracy.

Now we define π be the partition of an interval [0,T ] as the set of disjoint sub-intervals:
< t0, t1 >,. . . ,< tm−1, tm >, where 0 = t0 ≤ t1 ≤ ·· · ≤ tm−1 ≤ tm and m is an integer. A step
outcome stream based on a partition π is an outcome stream that is constant on each
sub-interval < ti−1, ti > for all i = 1, . . . ,m. To abuse notation, for a step outcome stream
p, we define the value for each sub-interval t ∈< ti−1, ti > as the subscribe p(t)≡ p(i).
Hence we will use (p(1), p(2), . . . , p(m)) to denote a step outcome stream based on a
partition π =< t0, t1 >,. . . ,< tm−1, tm >.

The set of step outcome streams based on a partition π will be denoted by S(π), and
the set of step outcome streams for all partitions of [0,T ] will be denoted by S(T ). A
step outcome stream p in S(π) can be regarded as a vector (p(1), p(2), . . . , p(m)) of
outcomes, and the set S(π) can be regarded as the product set ∆m. For preference ≳
on product space ∆m, because ∆ is connected and topological separable, Gorman 1968
and Debreu et al. 1954 states there exist a continuous function defined on S(π) such
that U(p)≥U(p′) if and only if p ≳ p′. Then we can rely on the additive value model
from Debreu 1959, Gorman 1968, or Harvey and Østerdal 2012. To do so, we need to
show there are more than two essential factors.

Definition 12. A factor or subinterval < s,s′ > is essential if there exist step outcome
streams p,q,h in S(π) such that (h,p<s,s′>) and (h,q<s,s′>) are not indifferent.
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Lemma 4. If a space (S(π),≳) satisfies the condition required in Lemma 3, if a subin-
terval < s,s′ >=< ti−1, ti > is non-point, then it is essential. Moreover, if subinterval
< s,s′ >=< ti−1, ti > is a point or empty, then it is inessential.

Proof. By Lemma 3, there exist outcomes x,y ∈ ∆ such that x ≻∆ y. Then pick any
h ∈ S(π) ⊂ P, by first statement of Time monotonicity, we have (h,c(x)<s,s′>) ≳
(h,c(y)<s,s′>). And because < s,s′ > is a non-point interval, then it’s a strict relation,
hence not indifferent.

If subinterval < s,s′ >=< ti−1, ti > is a point or empty, then we show (h,p<s,s′>) and
(h,q<s,s′>) are indifferent for all p,q,h in S(π). At first we take h as the constant
outcome stream c(h), then second axiom in Time Monotonicity states (h,p<s,s′>) and
(h,q<s,s′>) are indifferent. By Independence, we can replace h with any other non-
constant stream, and it still holds.

We define (S(π),≳) as proper if π has at least three non-point intervals. Then we rely
on the additive value model from Debreu 1959, Gorman 1968.

Lemma 5. If a proper space (S(π),≳) satisfies conditions in Lemma 3, then

1. ≳ has an additive utility function, U(p) = ∑m
i∈E ui(p(i)), where partition E is the

set of all non-point intervals, and ui(p(i)) = ∑n
j=1 ui(p j(i)).

2. The function U(p) is cardinally unique upon on affine transformation.

Proof. By definition, S(π) is product space. The relation ≳ is continuous, transitive,
complete, preferential independent by Axiom Continuity, Axiom Weak Order, and Ax-
iom Independence. Also, there are at least three non-point intervals and at least three
essential factors because (S(π),≳) is proper.

Then we show those m factors of S(π) are independent. So we need to show, for any
< s,s′ >=< ti−1, ti >, we have for any p,q,h, l in S(π)

(h,p<s,s′>)≳ (h,q<s,s′>)⇔ (l,p<s,s′>)≳ (l,q<s,s′>)
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We know ≳ is preferential independent. Hence we obtain the relation be same if we
replace h with l in time period < 0,s > at first. After, we obtain (l,p<s,s′>)≳ (l,q<s,s′>)

by replacing the h with l in time period < s′,T >.

Then, by Debreu 1959, the additive utility function is obtained.

Since all functions are ordinally equal in the sense u j(p)= f (ui(p)) for all i ̸= j and for all
p∈∆ by Lemma 3. We could prove they are also cardinal equal by the Jensen functional
equation once we have the form f (λu(p0)+(1−λ )u(p1)) = λ f (u(p0))+(1−λ )u(p1).

There is a difference. We rely on the second statement of Time Monotonicity and Inde-
pendence, and Time stationarity instead of the Mid-outcome independence condition
in Harvey and Østerdal 2012.

Recall x1/2 ∈ X as the mid-outcome of two outcomes x0 and x1 if

• x1 ≻X x1/2 ≻X x0

• exist y1 ≻X y0 and z ∈ ∆ such that

(c(x1/2)<s,s′>,c(y0)<t,t ′>,c(z))∼ (c(x0)<s,s′>,c(y1)<t,t ′>,c(z))

and
(c(x1/2)<s,s′>,c(y1)<t,t ′>,c(z))∼ (c(x1)<s,s′>,c(y0)<t,t ′>,c(z))

for some disjoint interval < s,s′ > and < t, t ′ >.

Axiom* 3. Mid-outcome independence For any disjoint, non-point intervals <

s,s′ > and < t, t ′ >, and outcome x1 ≻X x0, if the pair x1,x0 has a mid-outcome with
respect to outcomes in < t, t ′ >, and the pair x1,x0 has a mid-outcome with respect to
outcomes in < s,s′ >, then x1,x0 has the same mid-outcome in both cases.

They use it to show for any three tuples if u(p1)− u(p1/2 = u(p1/2)− u(p0)) then
w(p1)−w(p1/2 =w(p1/2)−w(p0)) which functions u,w are functions in different period.
However, we do not rely on this axiom to obtain cardinal equivalence.

Lemma 6. If ≳0 satisfies conditions required by Lemma 4 and Time stationary, then
it has a utility function of the form, U(p) = ∑i δ (i)u(p(i)), such that:
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1. u(p) is continuous for p ∈ ∆ and has a non-point interval range.
2. A weight δ (i) is positive if the interval < ti−1, ti > is non-point and is zero other-

wise.
3. The function u(p) and δ (i) are unique up to positive multiples.

Proof. Suppose we have two different time intervals < ti−1, ti > and < t j−1, t j > where
i ̸= j. By Lemma 3, there is a utility function on ≳∆, u(p) and w(p) for each interval,
so they are two different components in the additive utility function U(p). We show
they are cardinal equal.

For any tuples p0 ≻∆
i p1/2 ≻∆

i p1 such that p1/2 is mid-outcome for p0, p1 with respect
to outcomes in < t j−1, t j >. Now we show p1/2 is indifferent to (may not be the same)
the mid-outcome for p0, p1 with respect to outcomes in < ti−1, ti >.

From definition of mid-outcome, we obtain u(p1/2) = 1
2u(p0) + 1

2u(p1) and p1/2 ∼∆
i

1
2 p0 + 1

2 p1. Therefore, c(p1/2)∼i c(1
2 p0 + 1

2 p1). Then time stationary states

(c(p1/2),c(p1/2)<ti−1,ti>)∼0 (c(p1/2),c(
1
2

p0 +
1
2

p1)<ti−1,ti>)

Then it’s true for all j−1 > 0,

(c(p1/2),c(p1/2)<t j−1,t j>)∼0 (c(p1/2),c(
1
2

p0 +
1
2

p1)<t j−1,t j>)

By Lemma 4, we have ∑k ̸= j uk(p1/2)+ u j(p1/2) = ∑k ̸= j uk(p1/2)+ u j(
1
2 p0 + 1

2 p1). Then
w(1

2 p0 + 1
2 p1)≡ u j(

1
2 p0 + 1

2 p1) = u j(p1/2)≡ w(p1/2) and p1/2 ∼∆
j

1
2 p0 + 1

2 p1.

Now assume h is the mid-outcome for p0, p1 with respect to outcomes in < ti−1, ti >.
We have w(h) = 1

2w(p0)+ 1
2w(p1) and h ∼∆

j
1
2 p0+ 1

2 p1 ∼∆
j p1/2. Then w(p1/2) = w(h) =

1
2w(p0)+ 1

2w(p1). In other words, f (u(p1/2)) = 1
2 f (u(p0))+ f (u(p1))). By Jensen func-

tional equation, we have f (u(p)) = au(p)+b for some constant a,b.
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Then in conclusion, the function U(p) can be written as U(p) = ∑m
i=1 δ (i)ui(p(i) =

∑m
i=1(δ (i)u(p(i)+ bi)) and we can omit the constant term by cardinal uniqueness of

U(p), hence U(p) = ∑m
i=1 δ (i)u(p(i)). Condition 1 is implied by Lemma 4 and Lemma

3, and Condition 2 is implied by Lemma 4.

Then we apply the Theorem A.1 in Harvey and Østerdal 2012 if ≳0 satisfies conditions
required by Lemma 5, then it has a utility function of the form, U(p) = ∑m

i=1(µ(si)−
µ(si−1))u(p(i)). Also because µ(t) is continuous for every t, it is absolutely continu-
ous for t ∈ [0,T ]. Then ≳0 also have a utility function of the form, U(p) = ∑m

i=1(µ(si)−
µ(si−1))u(p(i))=∑m

i=1(
∫
[si−1,si]

δ (t)dt)u(p(i))=∑m
i=1(

∫
[si−1,si]

δ (t)u(p(i)))dt =
∫ T

0 δ (t)u(p(t))dt.

A.3 Proof: Sufficiency in Proposition 2

Lemma 7. If ≳0 and {≳∆
t }t∈T satisfy conditions required by Proposition 1, moreover

if ≳t satisfies Time impatience, then ≳0 is represented by an exponential discount
function:

DU(p) =
∫
T

e−β tU(p(t))dt (10)

Proof. From Proposition 1, We know ∃δ (t), s.t.

DU(p) =
∫
T

U(p(t))δ (t)dt =
∫
T

U(p(t))dµ(t),∀p ∈ P (11)

Now we show δ (t) has the exponential expression.

Claim 1: If µ is monotone, then δ (s) is a strictly decreasing function.
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Let’s set δ (t) = µ([t,∞)), which is indeed strictly decreasing. We can show: for any
t1 > t2, we construct two subset E1 = [t1,∞),E2 = [t2,∞) , then E1 ⊂ E2, as a result of
monotonicity of measure µ , we have δ (t1) = µ(E1)< µ(E2) = δ (t2). So, δ (t) is strictly
decreasing and positive, then for simplicity, we assume δ (0) = 1.

Claim 2: δ (t+s) = δ (t)δ (s) if ⪰0 satisfies time stationary and time impatience.

1. Assume we have a function δ ′
: T → R, with the form δ ′

(t + s) = δ (t)δ (s). From
construction, we know it’s decreasing with δ ′

(0) = 1 and lim(t+s)→∞ δ ′
(t + s) = 0.

Since δ (t) is decreasing, then δ (t)> δ (t+γ),∀t,γ ∈T , then assume δ (s) = δ (t+γ)
δ (t) ,

then δ (s)δ (t) = δ (t+γ). So this question is equivalent to show if ∀γ, t ∈T ,δ ′
(t+

s) = δ (s)δ (t) = µ([s,∞))µ([t,γ)) = µ([t + γ,∞)) = δ (t + γ), which means s = γ
under specific axiom.

2. If γ = 0, then this is obvious. Now assume ∀t,γ ∈ T ,γ ̸= 0 then ∃s, s.t. δ (s) =
δ (t+γ)

δ (t) . Now assume γ > s Because of decreasing function δ (t), then δ (s)> δ (γ),
means that µ([0,s)) < µ([0,γ)). By time impatience, if (l[0,γ), l

′
) ∼0 (l[t,t+γ), l

′
)

with appropriate choice of l′ s.t. U(l′(t)) = 0 and l(t) ≳ l′ ,∀t ∈ [0,γ), then it’s
true for all t > 0 as well as (l[0,s), l

′
) ∼0 (l[t,t+s), l

′
), which means that µ([0,s)) =

µ([t, t + s)), and µ([0,γ)) = µ([t, t + γ)). From construction of δ (s), we have

δ (s) = 1−µ([0,s)) =
1−µ([0, t))−µ([0,γ))

1−µ([0, t))
(12)

thus
µ([0,γ)) = µ([0,s))(1−µ([0, t))) (13)

As a result µ([0,s))> µ([0,γ)) and δ (s)< δ (γ), which is a contradiction to s < γ .
3. Now assume s> γ , then from time impatience, we know (l[0, s−γ

2 ), l
′
)∼0 (l[t,t+ s−γ

2 ), l
′
)

is true for all t > 0, now assume t = s−γ
2 > 0, then µ([0, s−γ

2 )) = µ([ s−γ
2 ,s− γ)),

thus
µ([0,γ)) = µ([0,s))−µ([γ,s))

= µ([0,s))−2µ([0, t))

= µ([0,s))(1−µ([0, t)))

(14)

As a result µ([0,s)) = 2 and δ (s) = 1−2=−1 which is a contradiction of δ (t)> 0.

To sum up, δ (t + s) = δ (t)δ (s), and implied by Cauchy’s multiplicative functional
equation1, this means that δ (t) = e−β t ,∃β ∈ [0,1].

1. Cauthy Equation: Let f : R → (0,∞) be a continuous function. if f(x + y) = f(x)f(y) for all x, y,
there exists c∈R such that f(x) = ecx for all x.
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Then for each preference relation ≳t on subset Pt , it can be represented by the dis-
counted utility form:

DU(p, t) =
∫ T

t
e−βt(s−t)

n

∑
i

ui(p(s))ds (15)

Now we finish the proof by showing at any time t, ≳t shares the same discount factor
β .

Lemma 8. If {≳t}t∈T satisfies Dynamic Consistency, then βt = βt ′ for all t ̸= t ′.

Proof. We show it by contradiction. Assume there exists τ, t, where t ̸= τ , s.t. βt ≠ βτ ,
w.o.l.g, let t > τ and βt > βτ (similar for βτ > βt). Let’s construct p,q are same up to
time t, and utility function u, ∃tτ > t such that:

ui(pi)

pi, i = 1

0, i ̸= 1
(16)

Then utility function U(p(t)) = p1(t). Now we construct two trajectories:

p =

p1(s) = 1, s ∈ [t, tτ ]

p1(s) = x, s ∈ [tτ ,T ]
(17)

q =

q1(s) = 0, s ∈ [t, tτ ]

q1(s) = y, s ∈ [tτ ,T ]
(18)

Therefore the utility for p,q is

u(p) =

1, s ∈ [t, tτ ]

x, s ∈ [tτ ,T ]
(19)

u(q) =

0, s ∈ [t, tτ ]

y, s ∈ [tτ ,T ]
(20)
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And they are same up to time t s.t. p ≳t q. By Dynamic Consistency, we have p ≳τ q,
which means:

1. p(γ) = q(γ),∀γ ≤ t

2.
∫ T

t e−βt(s−t)∑n
i ui(p(s))ds >

∫ T
t e−βt(s−t)∑n

i ui(q(s))ds

Condition 2 implies

(y− x)<

∫ T
tτ e−βt(s−tτ )ds∫ tτ
t e−βt(s−t)ds

(21)

Now we will show if we choose tτ > t, and βt −βτ = a > 0, s.t.
∫ T

tτ
e−a(s−tτ )ds >

∫ tτ

t
e−a(s−t)ds (22)

It means that:

∫ T
tτ e−βt(s−tτ )ds∫ tτ
t e−βt(s−t)ds

>

∫ T
tτ e−βτ (s−tτ )ds∫ tτ
t e−βτ (s−t)ds

(23)

Therefore, we can choose (y-x) between those two value, such that

(y− x)>

∫ T
tτ e−βτ (s−tτ )ds∫ tτ
t e−βτ (s−t)ds

(24)

And it equals ∫ tτ

t
e−βτ (s−t)ds <

∫ T

tτ
e−βτ (s−tτ )(y− x)ds (25)

It means
∫ tτ

t e−βτ (s−t)[∑n
i ui(p(s))−∑n

i ui(q(s))]ds<
∫ T

tτ e−βτ (s−tτ )[∑n
i ui(q(s))−∑n

i ui(p(s))]ds.
Therefore

∫ T
τ e−βτ (s−τ)[∑n

i ui(p(s))−∑n
i ui(q(s))]ds < 0 ⇔ q ≳P

τ p, a contradiction with
DC.
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A.4 Proof for Proposition 3

Proof. By Proposition 1 and 2, we know that ≳∗
0 and ≳0 can be presented by the ad-

ditive exponential discounted utility function DU∗ and DU respectively while DU(p) =∫ T
0 e−β sU(p(s))ds and DU∗(p) =

∫ T
0 e−β ∗sU∗(p(s))ds.

Now assume there are two streams p,q ∈ P with p(s)≳∆
s q(s),∀s ∈ T and ∀γ > 0, for

some τ ≥ t we have h∗ = (q,p[0,γ))∼0 (q,p[τ,τ+γ)) = h, then those two streams will share
the same parts of [τ,γ) and [τ + γ,T ) if γ > τ or the same parts of [γ,τ) and [τ + γ,T )
if τ > γ . We take γ > τ as an example because it will be the same proof for the other
case.

By time stationary, by moving the common part of [τ,γ) to [2τ,γ + τ), then we have
h̄∗ = (p[0,τ), (τ−γ)q[τ,2τ))∼0 (q[0,τ), (τ−γ)p[τ,2τ)) = h̄ ⇔ DU(h̄∗) = DU(h̄) as illustrated in
Figure 6. Then there is either a single-crossing at time point τ as illustrated in Figure
6 or no crossing at all if it is a jump point in τ .

0 τ γ τ + γ
T

P TS

0 τ 2τ τ + γ
T

h
h∗

h̄
h̄∗

Figure 6: Time Stationary

For ’if’ part. Because that U∗(p(t)) and U(p(t)) are identical up to an affine transform-
ation and e−x is decreasing, we assume β ∗ = β +a and a ≥ 0, we have
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DU(h̄∗) = DU(h̄)

⇔
∫ τ

0
e−β sU(p(s))ds+

∫ 2τ

τ
e−β sU(q(s))ds =

∫ τ

0
e−β sU(q(s))ds+

∫ 2τ

τ
e−β sU(p(s))ds

⇔
∫ τ

0
e−β sU∗(p(s))ds+

∫ 2τ

τ
e−β sU∗(q(s))ds =

∫ τ

0
e−β sU∗(q(s))ds+

∫ 2τ

τ
e−β sU∗(p(s))ds

⇔
∫ τ

0
[e−β s(U∗(p(s))−U∗(q(s)))]ds =

∫ 2τ

τ
[e−β s(U∗(p(s))−U∗(q(s)))]ds

⇔
∫ τ

0
[e−β s(U∗(p(s))−U∗(q(s)))]ds

∫ τ

0
e−axdx ≥

∫ 2τ

τ
[e−β s(U∗(p(s))−U∗(q(s)))]ds

∫ 2τ

τ
e−axdx

⇔
∫ τ

0

∫ τ

0
[e−β ∗s(U∗(p(s))−U∗(q(s)))]dsds ≥

∫ 2τ

τ

∫ 2τ

τ
[e−β ∗s(U∗(p(s))−U∗(q(s)))]dsds

⇔
∫ τ

0
DU∗(p[0,τ])ds+

∫ 2τ

τ
DU∗(q[τ,2τ])ds ≥

∫ τ

0
DU∗(q[0,τ])ds+

∫ 2τ

τ
DU∗(p[τ,2τ])ds

⇔DU∗(h̄∗)≥ DU∗(h̄)

(26)

The Therefore, we have h∗ = (q,p[0,γ))≳∗
0 (q,p[τ,τ+γ)) = h

For ’only if’ part.

DU∗(h̄∗)≥ DU∗(h̄)

⇔
∫ τ

0
DU∗(p[0,τ])ds+

∫ 2τ

τ
DU∗(q[τ,2τ])ds ≥

∫ τ

0
DU∗(q[0,τ])ds+

∫ 2τ

τ
DU∗(p[τ,2τ])ds

⇔
∫ τ

0

∫ τ

0
[e−β ∗s(U∗(p(s))−U∗(q(s)))]dsds ≥

∫ 2τ

τ

∫ 2τ

τ
[e−β ∗s(U∗(p(s))−U∗(q(s)))]dsds

⇔
∫ τ

0
[e−β s(U∗(p(s))−U∗(q(s)))]ds

∫ τ

0
e−axdx ≥

∫ 2τ

τ
[e−β s(U∗(p(s))−U∗(q(s)))]ds

∫ 2τ

τ
e−axdx

⇔
∫ τ

0
[e−β s(U(p(s))−U(q(s)))]ds

∫ τ

0
e−axdx ≥

∫ 2τ

τ
[e−β s(U(p(s))−U(q(s)))]ds

∫ 2τ

τ
e−axdx

(27)

By assumption, we have DU(h̄∗) = DU(h̄), then from previous discussion, we have

∫ τ

0
[e−β s(U(p(s))−U(q(s)))]ds =

∫ 2τ

τ
[e−β s(U(p(s))−U(q(s)))]ds.

Then we have
∫ τ

0 e−axdx ≥
∫ 2τ

τ e−axdx which means a≥ 0, otherwise it is a contradiction.
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B Proof in Chapter 3

B.1 Proof for Proposition 4

Proof. By definition of strictly dominated strategy, we have:

lim
N,M→∞

P(¬SD)

= lim
N,M→∞

P(SD1 = 0) lim
N,M→∞

P(SD2 = 0)

≥ lim
N,M→∞

max{1− ∑
si ̸=s j

P(si ≻ s j),0} lim
N,M→∞

max{1− ∑
ti ̸=t j

P(ti ≻ t j),0}

= lim
M,N→∞

max{1−M(M−1)(
1
ρ
)N ,0} lim

M,N→∞
max{1−N(N −1)(

1
ρ
)M,0}

(28)

1. If M = N,
lim

N,M→∞
P(¬SD)≥ lim

N→∞
((1−N2(

1
ρ
)N)2 = 1 (29)

2. Simply, let start with M = (2+δ )logρ(N), for some δ > 0,

lim
N,M→∞

P(¬SD)≥ lim
N→∞

(1− N(N −1)
ρN )(1− N(N −1)

N2+δ ) = 1 (30)

Then, if (2+δ )logρ(N)≤ M ≤ N, for some δ > 0,

lim
N,M→∞

P(¬SD)≥ lim
N→∞

((1−N2(
1
ρ
)N) lim

M→∞
(1−ρ

2M
2+δ −M) = 1 (31)

The case M ≤ N ≤ ρ
M

2+δ for some δ > 0 follows similarly because of symmetry.

B.2 Proof for Proposition 5

Lemma 9. In a M×N random game, limsup
M,N→∞

P(¬SD)≤ 1−(1−α)2α if N = logρ(M)−

logρ(2α) for some α ∈ (0,1].
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Proof. By definition of strictly dominated strategy, we have:

lim
M,N→∞

P(SD1 = 0))

≤ lim
M,N→∞

(1−P(∃ j,s1 ≻ s j)))

= lim
M,N→∞

(1−∑
j

P(s1 ≻ s j)+ ∑
1< j<k

P([s1 ≻ s j]∩ [s1 ≻ sk])−·· ·− (−1)M−2P(∑
j ̸=1

s1 ≻ s j))

= lim
M,N→∞

(1−
(M−1

1

)
ρN +

(M−1
2

)
(ρN)2 −·· ·− (−1)M−2

(M−1
M−1

)
(ρN)M−1 )

(32)

Similarly.

lim
M,N→∞

P(SD2 = 0))≤ lim
M,N→∞

(1−
(N−1

1

)
ρM +

(N−1
2

)
(ρM)2 −·· ·− (−1)N−2

(N−1
N−1

)
(ρM)N−1 ) (33)

Now focus on the function f (k) = (M−1
k )

(ρN)k , we will show at first f (k+1)
f (k) ≤ α < 1,∀k ∈N+ if

N = logρ(M)− logρ(2α) for some α ∈ (0,1]. We observe f (k+1)
f (k) = M−k−1

(k+1)ρN ,∀k and M−k−1
k+1

is decreasing on k, so we have f (2)
f (1) =

M−2
2ρN < M

2ρN ≤ α ⇒ f (k+1)
f (k) ≤ f (2)

f (1) = α < 1.

Then if M = 2αρN ⇔ N = logρ(M)− logρ(2α), we have

limsup
N→∞

P(SD1 = 0))

≤ limsup
N→∞

(1− f (1)+ f (2)−·· ·− (−1)M−2 f (M−1))

≤ limsup
N→∞

(1− f (1)+ f (2))

= 1− limsup
N→∞

((1−α) f (1))

= 1− limsup
N→∞

((1−α)
M−1

ρN ))

≤ 1− (1−α)2α < 1

(34)

To sum up, we have limsup
M,N→∞

P(¬SD)≤ limsup
M,N→∞

P(¬SD1)< 1 when N = logρ(M)−logρ(2α).

Now we prove the Proposition 5.
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Proof. 1. Fix some 0 < α < 1. Given M,N, with N ≤ logρ(
M
2 ), then if we set N′ =

logρ(
M
2α ), then N′ ≥ N. The probability of no strictly dominated strategy for

Player 1 is greater in the M×N′ game than in the M×N game, and in the game
M ×N′, we have limsupM,N′→∞ P(¬SD) as N′ = logρ(

M
2α ) is bounded from above

by 1−(1−α)2α ; hence, limM,N→∞ P(¬SD) as N ≤ logρ(
M
2 ) is bounded from above

by 1− (1−α)2α .
2. Fix Z arbitrarily large, we may assume logρ(M)≥ N+Z. Then we divid the rows

into Z
2 groups, each forming a matrix of M′ = 2M

Z rows and N columns. In the
below, we will denote Gz as a subgame for all positive integer z ≤ Z. If there is
no ambiguity, we denote G[si] as the subgame that strategy si belongs to.

G =



G1
...

Gz
...

GZ


Now, let’s denote two events:
SDz: The subgame Gz has a strategy that is strictly dominated by a strategy in
Gz.
SD

′
z: The subgame Gz has a strategy that is strictly dominated by a strategy in

G.
Therefore, SDz ⊂ SD

′
z for all z and SD1,SD2, ...,SDZ are independent.

Claim: P(¬SD)≤ ∏s(¬SDz).

P(¬SD) = 1−P(SD) = 1−P(∪zSD
′
z)≤ 1−P(∪zSDz) = P(∩z¬SDz) = ∏

z
P(¬SDz)

From Proposition 5 (1), there exist η ∈ (0,1) such that in each subgame Gz, when
N ≤ logρ(M)−Z ≤ logρ(

M
Z ) = logρ(

M′

2 ), then lim
N,M→∞

P(¬SDz)≤ η for all z. Then
we have

lim
N,M→∞

P(¬SD)≤ lim
N,M→∞∏

z
P(¬SDz) = lim

N,M→∞
P(¬SD1)

Z ≤ lim
N,M→∞

ηZ = 0
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B.3 Proof for Proposition 6

Proof. 1.
Lemma 10. For any S′ ⊂ S, if S′ is strictly dominated, then for any j ∈ N,
argmax

i∈M
ai j /∈ S′.

Proof. We show if there exist some j that max
i∈M

ai j ∈ S′, then S′ is not strictly

dominated. Denote ŝ
′ ∈ S′ be the strategy contains at least one maximum, then

it can not be strictly dominated by any strategy in S, thus S′ is not strictly
dominated.

Corollary 3. P1
q,M,N,↓ is bounded by (1−q)N and it will go to 0 when N.M go to

infinity.
Proof. Given M,N, the probability that the maximum in the random matrix
R1

MxN in column j is in S/SqM is 1−q. Then by i.i.d., we have P1
q,M,N,↓ ≤ (1−q)N .

Hence, P1
q,M,N,↓ will go to 0 when N.M go to infinity.

2.
Lemma 11. For all 1≤ k ≤ qM, P

[
Ek(SqM)

]
≤∑

a
(M−qM)!(qM)!
(M−qM−k)!k!

1
∏i=1 ai!(ai+1)N , where

a ∈ Zk
+ s.t.

k
∑

i=1
ai = qM.

Proof. In the following, without misunderstanding, we refer ’doms’ or ’dominates’
as ’strictly dominates’. For each event Ek(SqM), it equals to

∪
a

{ {pick T1 of size a1 from SqM, s.t. 1st strategy in kS doms T1}∩
{pick T2 of size a2 from SqM \T1, s.t. 2nd strategy in kS doms T2}

...∩
{k-th strategy in kS doms remaining Tk}

}

We obtain

P
[
Ek(SqM)

]
≤
(

M−qM
k

)
∑
a

(
qM
a1

)
1

(a1 +1)N ·
(

qM−a1

a2

)
1

(a2 +1)N · · · 1
(ak +1)N

=

(
M−qM

k

)
∑
a

(
qM

a1, . . . ,ak

)
· (∏

i
(ai +1))−N

After simplification, we have

P
[
Ek(SqM)

]
≤ ∑

a

(M−qM)!(qM)!
(M−qM− k)!k!

1

∏k
i=1ai!(ai +1)N

.
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For example, if k = 1 then P
[
E1(SqM)

]
= M−qM

(qM+1)N which is the probability that
pick one strategy, s∗i ∈1 S from S\SqM such that s∗i ≻ si for all si ∈ SqM. If k = qM,
then P

[
EqM(SqM)

]
= (M−qM)!

(M−qM−qM)!2qMN =
(M−qM

qM

) (qM)!
2qMN which is the probability that

pick qM strategies, S∗, from S \SqM and pick any possible (one to one) matches
with qMS and SqM, we have s

′ ≻ s where s′ ∈ qMS and s ∈ SqM.
Lemma 12. For any q ≤ 1

3 , ∑
k

( M
qM

)
P
[
Ek(SqM)

]
→ 0 for any when N,M goes to

infinity with N ≥ M
(ln(M))α for some 0 < α < 1.

Proof.

∑
k

(
M

qM

)
P
[
Ek(SqM)

]
≤ ∑

k

(
M−qM

k

)
∑
a

(
qM

a1, . . . ,ak

)
· (∏

i
(ai +1))−N

Also, given k and q, there are
(qM−1

k−1

)
distinct a which are positive integer solutions

to ∑k
i=1ai = qM. Now, we have

∑
k

(
M

qM

)
P
[
Ek(SqM)

]
≤ qM

(
M−qM

k

)(
qM−1
k−1

)(
qM

a1, . . . ,ak

)
(∏

i
(ai +1))−N

For binomial coefficients, after logarithmic transformations and approximations,

ln(
(

n
m

)
) = n ln(n)−m ln(m)− (n−m)ln(n−m)≈ n[−(

m
n
) ln(

m
n
)− (1− m

n
) ln(1− m

n
)]

= nH (
m
n
)

where H (m
n ) =−m

n ln(m
n )− (1− m

n ) ln(1− m
n ) is the Shannon entropy.

For multinomial coefficient, we make logarithm and according to Lemma 2.2 in
Csiszár, Shields et al. 2004, we have ln(

( qM
a1,...,ak

)
)≈ qMH ( a1

qM , . . . , ak
qM ) where H is

also the Shannon entropy H for a distribution of values
(

a1
qM , . . . , ak

qM

)
as follows:

H

(
a1

qM
, . . . ,

ak

qM

)
=−

k

∑
i=1

ai

qM
ln
(

ai

qM

)
.

By Shannon 1948, H(p) will be maximized when all observations have the same
probability of occurrence p1 = p2 = · · ·= pn. Hence, we have

ln(
(

qM
a1, . . . ,ak

)
)≈ qMH

(
a1

qM
, . . . ,

ak

qM

)
≤ qM ln(k)

and
ln(

(
n
m

)
)≈ nH (

m
n
)≤ n ln(2)

Lastly, for term 1
∏i(ai+1))N , we have
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1
∏i(ai +1))N ≤ 1

(qM+1)N2k(N−1)

Hence, we obtain

ln(∑
k

(
M

qM

)
P
[
Ek(SqM)

]
)

≤ ln(k)+ ln(
(

M−qM
k

)
)+ ln(

(
qM−1
k−1

)
)+ ln(

(
qM

a1, . . . ,ak

)
)+ ln((∏

i
(ai +1))−N)

≤ ln(k)+(M−qM) ln(2)+(qM−1) ln(2)+qM ln(k)−N ln(qM+1)− k(N −1) ln(2)

≈ M ln(2)−N ln(qM)+ ln(
kqM

2kN )

For function ln( kqM

2kN ), by F.O.C, it will be maximized when k = qM
N ln(2) . Hence

ln(∑
k

(
M

qM

)
P
[
Ek(SqM)

]
)≤ M ln(2)−N ln(qM)+qM ln(

qM
N ln(2)

)−qM

= M(ln(2)−q)+qM ln(
qM

N ln(2)
)−N ln(qM)

If N ≥ M
(ln(M))α for some 0 < α < 1, then

we have N ln((qM))≥M(ln(M))1−α and qM ln( qM
N ln(2))≤ qMα ln(ln(M))−qM ln( q

ln(2)).
Hence

ln(∑
k

(
M

qM

)
P
[
Ek(SqM)

]
)≤ M(ln(2)−q−q ln(

q
ln(2)

)+qα ln(ln(M)))−M(ln(M))1−α

(35)
Since ln(M) goes faster than ln(ln(M)) and ln(2)− q− q ln( q

ln(2)) is a constant
number between 0 and 1 given 0 < q < 1

3 . We conclude ln(∑
k

( M
qM

)
P
[
Ek(SqM)

]
)

goes to negative infinity when N,M goes to infinity with N ≥ M
(ln(M))α for some

0 < α < 1. It implies ∑
k

( M
qM

)
P
[
Ek(SqM)

]
→ 0.

From Lemma 12, we have ∑
k

( M
qM

)
P
[
Ek(SqM)

]
→ 0 when N,M goes to infinity with

N ≥ M
(ln(M))α for some α > 0 and for any q ≤ 1

3 , for any k = {1, ..,qM}. If the
probability that a small ratio of strategies is strictly dominated for player 1 will
go to 0 in a large game, then it is also less likely to have the larger ratio of
strategies being strictly dominated, therefore this is also true for all q ∈ (1

3 ,1).
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B.4 Proof for Proposition 7

Proof. 1. We apply the Chernoff bound to estimate the probability that at most
(q+δ + ε)M rows satisfy the condition. The Chernoff bound gives:

P(A ≤ qM) = P(A ≤ (1− δ
q+δ

)(q+δ )M)≤ e−
( δ

q+δ )2E[A]

2 = e−
δ2M

2(q+δ )

where δ
q+δ > 0 for some δ > 0.

Hence lim
M,N→∞

P(A ≥ qM)≥ lim
M,N→∞

P(A > qM) = 1− lim
M,N→∞

P(A ≤ qM) = 1.
2. By definition,

P(Bi) =
N

∏
j=1

P(xi j ≥ (δ +q)1/N) =
(

1− (δ +q)1/N
)N

.

Then P(B = 0) = (1−P(Bi))
M = (1− (1− (δ +q)

1
N )N)M.

Since for 0 < r < 1, 1−r
N < 1− r1/N , then 1− (δ +q)

1
N > 1−δ−1

N . Hence

P(B = 0)≤ (1− (
1−δ −q

N
)N)M

Also (1− r)N ≤ e−Nr for 0 < r < 1 and all integer N. we have

P(B = 0)≤ e−M( 1−δ−q
N )N

So, if M grows much faster than ( N
1−δ−q)

N , then −M(1−δ−q
N )N goes to negative

infinity as N goes to infinity. Hence lim
M,N→∞

P(B = 0) = 0. Immediately, we have
lim

M,N→∞
P(B ≥ 1) = 1.

B.5 Proof for Proposition 8

Notice that Proposition 8 depends only on the ordinal comparison between elements
and the minimum/maximum values of the vectors. We can arrange the elements of two
vectors into a single sequence ordered from largest to smallest. The total number of
distinct arrangements of two vectors of size N each is given by

(2N
N

)
.
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Proof. 1. Given two payoff vectors si and s j, if min(si) > max(s j), then s j must be
strictly dominated by si.
Moreover, it requires that all elements of si appear to the left of all elements of
s j in this ordered sequence. If all elements are randomly selected, there is only
one arrangement that satisfies this condition.

P(min(si)> max(s j)) =
1(2N
N

)
and it will approach 0 as N go to infinity. Same analysis for the event min(s j)>

max(si).
2. Given two payoff vectors si and s j, suppose max(si)>max(s j)>min(s j)>min(si).

We denote t∗= argmax(si) as the index of the column of the maximum of vector si.
Then we have max(si)> max(s j)> u(s j, t∗). Moreover, we denote t∗ = argmin(si)

as the index of the column of the minimum of vector si. Then we have u(s j, t∗)>

min(s j)> min(si). Hence there is no dominance between si and s j.
Similar to statement a), there are totally

(2N−2
N

)
distinct arrangements out of(2N

N

)
, we have

P(max(si)> max(s j)> min(s j)> min(si)) =

(2N−2
N

)(2N
N

) =
N −1
4N −2

and it will approach 1
4 as N go to infinity. Same analysis for the event max(s j)>

max(si)> min(si)> min(s j).
3. Given two payoff vectors si and s j, suppose max(si)>max(s j)>min(si)>min(s j).

There are totally
(2N−2

N−1

)
−1 distinct arrangements out of

(2N
N

)
, we have

P(max(si)> max(s j)> min(si)> min(s j)) =

(2N−2
N−1

)(2N
N

) − 1(2N
N

) =
N

4N −2
− 1(2N

N

)
and it will approach 1

4 as N go to infinity. Same analysis for the event max(s j)>

max(si)> min(s j)> min(si).
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C Proof in Chapter 4

C.1 Proof for Proposition 9

Proof. We show if the allocation is not ordinally efficient, then it violates Property 1.
Fix preference profile RN and assume the allocation P is not ordinally efficient, then
there exists a (probabilistic) improvement circle τ that akτikak+1 if and only if akRikak+1

and Pikak+1 > 0.
a1τi1a2 . . .anτinan+1

We denote an+1 = a1. Now we define Z∗ = maxn
k=1{Z(ak+1;Rik ;Pik)} as the highest index

among those agents of the object that they wish to exchange with others. W.l.o.g,
assume it’s agent i1 with the object a2. Then in this circle, we have Z(i1;a2;P) >

Z(i2;a3;P). Given the construction of Z(I;a;P) and construction of circle, we have
Z(i2;a3;P)> Z(i2;a2;P).

However, ∑
x∈U(Ri2 ,a2)

Pi2x ≤ 1−Pi2a3 < 1 and P1a2 > 0 which violate Property 1.

C.2 Proof for Proposition 11

Proof. 1. Consider the preference profile:

1,2 : abcd;3,4 : bacd

And the allocation:
1,2 : (

1
2
,0,

1
3
,
1
6
)

3,4 : (0,
1
2
,
1
6
,
1
3
)

The allocation does not violate lexi-envy-free and Property 1, but violates Prop-
erty 2 because P1c > P3c > 0 but agent 3 does not satisfy with the U(R3;c).

2. Consider the preference profile:

1,2 : abcd;3,4 : bacd
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And the allocation:
1,2 : (

1
2
,
1
4
,
1
4
,0)

3,4 : (0,
1
4
,
1
4
,
1
2
)

The allocation does not violate ordinally efficient, Property 2, but violates Prop-
erty 1 because P1b > 0 but agent 3,4 do not satisfy with b.

C.3 Proof for Proposition 12

Proof. We show if the allocation is not ordinally efficient, then it violates Property. Fix
preference profile RN and order of importance π. W.o.l.g., assume π = a1,a2, . . . ,am.

Assume the allocation P is not ordinally efficient, then there exists a (probabilistic)
improvement circle τ that akτikak+1 if and only if akRikak+1 and Pikak+1 > 0.

a1τi1a2 . . .anτinan+1

We denote an+1 = a1. Moreover, we assume a1,a2, . . . ,an are ascending in π.

Now we start with agent in and show the contradiction in the following.

Look agent i1, there are only three cases: rank(∗̄(i1;a1);π)> rank(∗̄(in;a1);π) or rank(∗̄(i1;a1);π)=
rank(∗̄(in;a1);π) or rank(∗̄(i1;a1);π)< rank(∗̄(in;a1);π).

1. If it is the last case, we obtain a contradiction directly because agent i1 has a
higher claim on object a1 compared to agent in while agent in receives a positive
share of a1 and agent i1 receives a positive share of a2.

2. We show it can not be the first case. If it happens, we can look at the next
agent i2 and there are also only three cases: rank(∗̄(i2;a2);π)≥ rank(∗̄(i1;a2);π)≥
rank(∗̄(i1;a1);π) or rank(∗̄(i2;a2);π)< rank(∗̄(i1;a2);π). Due to the same reason,
the second case will result in a contradiction. And we will continue this logic
until we end up to the comparison between agent in−1 and in.
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As the result, we have rank(∗̄(in;an);π)≥ rank(∗̄(in−1;an);π)≥ rank(∗̄(i1;a1);π)>
rank(∗̄(in;a1);π).
However, remember for agent in, we have anRina1, hence we have rank(∗̄(in;a1);π)≥
rank(∗̄(in;an), which is a contradiction because the week upper counter set of a1

contains the set of an.
3. If it’s the second case, only one possible case is possible rank(∗̄(i1;a1);π) =

rank(∗̄(i1;a2);π)= · · ·= rank(∗̄(in;an);π)= rank(∗̄(in;a1);π). In other words, there
exist a∗ which is ’the object’ for all agent i and two objects ai and ai+1, where
’the objects’ refers ∗̄(ii;ai).
If it’s not this case, we will result in the same contradiction rank(∗̄(in;an);π) >
rank(∗̄(in;a1);π).
Now, we conclude for all objects ak, ik and ik+1 equally conform the social plan-
ner’ preference. Then we will use the similar logic in Proposition 9 to select
the agent with the Ẑ(ik;a j;P) where a j ∈ {ak,ak+1}. Assume it’s first agent
with Ẑ(i1;a2;P) and it can’t be Ẑ(i1;a1;P). Then we obtain the contradiction:
Ẑ(i2;a2;P)< Ẑ(i1;a2;P), Pi1a2 > 0, and Pi2a3 > 0. This means agent 2 is not satis-
fied with the goods that are at least as good as a2.

D Characterization of fractional adaptive Boston
rule: Proposition 10

Whenever RN , a ∈ A and P ∈ P, we define Na = {i ∈ N : Pia > 0} be the set of agents
who receive a and Nwish

a = {i ∈ N : Pia = 0 and ∃x,aRix, s.t. Pix > 0} be the set of agents
who wish to receive a to by replacing with other objects if it is possible.

Proposition 16. If an allocation satisfies Property 1, then for all RN, all a,

1. max
i∈Na

Z(a;Ri;Pi)≤ min
i∈Nwish

a

Z(a;Ri;Pi).

2. For all i, Pia = 0 and ∑
x∈U(Ri;a)

Pix < 1 ⇒ ∑
j:Z(a;R j;Pj)≤Z(a;Ri;Pi)

Pja = 1.

Proof.

Lemma 13. Condition (a) and Condition (b) are equivalent.
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⇒Fix RN and a, and assume P satisfies condition (a). Pick i ∈ Nwish
a , then we have

∑
j:Z(a;R j;Pj)≤Z(a;Ri;Pi)

Pja = ∑
j∈Na

Pja +0 = 1.

⇐ Pick i∗ = arg min
i∈Nwish

a

Z(a;Ri;Pi), then we have ∑
j∈Na

Pja = 1. Condition (b) implies Na ⊆

{ j : Z(a;R j;Pj)≤ Z(a;Ri∗;Pi∗)} and max
i∈Na

Z(a;Ri;Pi)≤ min
i∈Nwish

a

Z(a;Ri;Pi).

Lemma 14. For all RN, all a, all i, if an allocation satisfies Property 1, then max
i∈Na

Z(a;Ri;Pi)≤

min
i∈Nwish

a

Z(a;Ri;Pi).

Fix RN and P, we have Nwish
a and Na. Pick i∗ = argmax

i∈Na
Z(a;Ri;Pi). We show Z(a;Ri;Pi)≥

Z(a;Ri∗ ;Pi∗) for all i∈Nwish
a . Suppose not, then exist i∈Nwish

a that Z(a;Ri;Pi)<Z(a;Ri∗;Pi∗),
then by Property 1, we have ∑

x∈U(Ri;a)
Pix = 1 which contradict to the fact that i ∈ Nwish

a .

Then it implies max
i∈Na

Z(a;Ri;Pi)≤ min
i∈Nwish

a

Z(a;Ri;Pi).

Proof. Now, given RN we denote P∗ as the assignment of fractional adaptive Boston
rule and denote P as the assignment satisfies Property 2 and Property 1. Now we show,
for all i, all a we have Pia = P∗

ia. At first, we show for all i and ∀a that Z(a;Ri;Pi) = 1,
then Pia = P∗

ia.

We suppose there exists agent i that Pia < P∗
ia. There are two cases: Pia > 0 or Pia = 0.

Claim 1.1: For all i and ∀a that Z(a;Ri;Pi) = 1 and Pia > 0, then Pia = P∗
ia.

Property 2 implies Pia = Pja > 0 for all j that Z(a;R j;Pj) = 1, then it also implies
r( j;a) = 1. The Property 2 implies Pia = Pja < P∗

ia = P∗
ja,∀i, j that r(i;a) = r( j;a) = 1,

which means ∑
i:(r(i;a)=1

Pia < ∑
i:(r(i;a)=1

P∗
ia ≤ 1. Then Property 1 implies ∀i that r(i;a) = 1,

Pia = 1, which is a contradiction. Then we conclude Pia = P∗
ia. The case Pia > P∗

ia is
symmetry.

Claim 1.2: For all i and ∀a that Z(a;Ri;Pi) = 1 and Pia = 0, then Pia = P∗
ia.
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If Pia = 0, Property 1 implies either ∑
k:Z(k;a;P)≤1

Pka = 1 or ∑
x∈U(Ri;a)

Pix = 1. The latter and

Claim 1.1 implies P∗
ia = Pia = 0. Now if ∑

x∈U(Ri;a)
Pix < 1, then a is fully allocated to agents

who rank a in the top, namely for all j who r( j;a) = 1. By Claim 1.1, we know Pja = P∗
ja

for all j, r( j;a) = 1. Then it implies Pia = 1− ∑
k:Z(k;a;P)≤1

Pka = 0 = P∗
ia

We conclude for all i and ∀a that Z(a;Ri;Pi) = 1, then Pia = P∗
ia.

Now assume for all i and all a that Z(a;Ri;Pi) = z, we have Pia = P∗
ia for z = 1, ..,k−1, we

show for all i and all a that Z(a;Ri;Pi) = k, then Pia = P∗
ia. By contradiction, suppose,

there exists agent i such that Pia < P∗
ia. Again, there are two cases Pia > 0 or Pia = 0.

Claim 2.1: For all i and ∀a that Z(a;Ri;Pi) = k and Pia > 0, then Pia = P∗
ia.

There are two cases:

1. If Pia =Pja for all j that Z(a;R j;Pj) = k. Then we have Pia =Pja <P∗
ia =P∗

ja for all j

that Z(a;R j;Pj) = k. It implies ∑
i:Z(a;Ri;Pi)≤k

Pia < ∑
i:Z(a;Ri;Pi)≤k

P∗
ia ≤ 1. Then Property

1 implies ∑
x∈U(Ri;a)

Pix = 1 for all i that Z(a;R j;Pj)≤ k. However, we have

∑
x∈U(Ri;a)

Pix = ∑
x∈U(Ri;a)

Pix +Pia = ∑
x∈U(Ri;a)

P∗
ix +Pia < ∑

x∈U(Ri;a)

P∗
ix ≤ 1

Which is a contradiction. Then P∗
ia = P∗

ia.
2. If there exists j that Pia > Pja. Property 2 implies

∑
x∈U(R j;a)

Pjx +Pja = ∑
x:Z(x;R j;Pj)<k

P∗
jx +Pja = 1.

Now suppose P∗
ja < Pja (it can not be P∗

ja > Pja), then we have P∗
ia > Pia > Pja > P∗

ja.
By Property 2, we have ∑

x∈U(R j;a)
P∗

jx +P∗
ja = 1, then P∗

ja = Pja, a contradiction.

Therefore, we have P∗
ja = Pja. Consider agent i, we have

∑
i:Z(a;Ri;Pi)≤k

Pia < ∑
i:Z(a;Ri;Pi)≤k

P∗
ia ≤ 1 and ∑

x∈U(Ri;a)

Pix < ∑
x∈U(Ri;a)

P∗
ix ≤ 1

which is a contradiction. Then we have Pia = P∗
ia.

Then we conclude Pia = P∗
ia for all i and ∀a that Z(a;Ri;Pi) = k and Pia > 0.
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Claim 2.2: For all i and ∀a that Z(a;Ri;Pi) = k and Pia = 0, then Pia = P∗
ia.

By Property 1, we have either ∑
x∈U(Ri;a)

Pix = 1 or ∑
j:Z(a;R j;Pj)≤Z(a;Ri;Pi)

Pja = 1.

• ∑
x∈U(Ri;a)

Pix = 1 implies ∑
x∈U(Ri;a)

P∗
ix = ∑

x∈U(Ri;a)
Pix = 1, then P∗

ia = Pia = 0.

• ∑
j:Z(a;R j;Pj)≤Z(a;Ri;Pi)

Pja = 1 and Claim 2.1 states for all i that Z(a;Ri;Pi) = k and

0 < Pia we have Pia = P∗
ia. Therefore

∑
j:Z(a;R j;Pj)≤Z(a;Ri;Pi)

P∗
ja = ∑

j:Z(a;R j;Pj)≤Z(a;Ri;Pi)

Pja = 1.⇒ P∗
ia = 0

Then we conclude Pia = P∗
ia for all i and ∀a. We complete the proof. For necessity, it

exactly follows the definition.

E Characterization of Flow Algorithm: Proposition
13

Proof. Whenever ≻, P, a ∈ A, i, j ∈ N, and Pia > 0 we define i ⪯a j if either i ∼a j or
i ≺a j .

Whenever RN , a ∈ A and P ∈ P, we define Na = {i ∈ N : Pia > 0} be the set of agents
who receive a and Nwish

a = {i ∈ N : Pia = 0 and ∃x,aRix, s.t. Pix > 0} be the set of agents
who wish to receive a to by replacing with other objects if it is possible.

Lemma 15. If Property 1 holds, then [Pia = 0 and ∑
x∈U(Ri;a)

Pix < 1]⇒ ∑
j:i⪯a j

Pja = 1.

Proof. We show i ⪯a j for all i ∈ Nwish
a and for all j ∈ Na, which implies a is full dis-

tributed among agents i ⪯a j whenever i ∈ Nwish
a , thus complete the proof. Pick j∗ ∈ Na

with the highest Z(a;Ri;Pi) among agents who have he highest π∗(a).
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Suppose not, there exist i ∈ Nwish
a that j∗ ≺a i. By Property 1, we have ∑

x∈U(Ri;a)
Pix = 1

which violate the fact that i ∈ Nwish
a .

To prove the theorem, we need a few notations.

Given ∗(i;A), ∗(i;a) is called the last peak for agent i when for all b ∈ L(i;∗(i;a)) that
∗(i;b) = ∗(i;a). L(Ri;a) is the weak lower counter set of a for agent i under Ri. If ∗(i;a) is
not the last peak we denote ∗(i;a) as the peak immediately after a, namely there exists
b with smallest r(i;b) that ∗(i;b) ̸= ∗(i;a). Then we define ∗(i;a) as the set containing
a as following:

1. ∗(i;a) = {b : r(i;∗(i;a))≤ r(i;b)< r(i;∗(i;a))} if ∗(i;a) is not last peak.
2. ∗(i;a) = {b : r(i;∗(i;a))≤ r(i;b)≤ |A|} if ∗(i;a) is last peak.

Whenever RN , we define π1 = min{πx : x ∈ ∪
i∈N

∗(i;A)} as the rank of minimal peak, and
πk = min{πx : x ∈ ∪

i∈N
∗(i;A),πx > πk−1} as the rank of k− th peak. Then, given RN , there

is the largest rank πK . For each πk, we define I(πk) = {i : ∃b,∗(i;b) ∈ π(πk)} be the set
of agents who have one peak b ∈ π(πk). Then for all i ∈ I(πk), we denote the peak as
ak

i .

Now, given RN we denote Pπ = F(RN) and denote P as the assignment satisfies Prop-
erty* 2 and Property* 1 that P ̸= Pπ .

Claim 1: For all i ∈ I(π1), ∀a ∈ ∗(i;a1
i ) we have Pia = Pπ

ia.

This is easily obtained from the Proposition 10. People who are familiar with Proof of
Proposition 10 can jump to Claim 2.

Claim 1.1: For all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = 1, then Pia = Pπ
ia.

We suppose there exists agent i that Pia < Pπ
ia. There are two cases: Pia > 0 or Pia = 0.

Claim 1.1.1: For all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = 1 and Pia > 0, then Pia = Pπ
ia.
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Property* 2 implies if Pia = Pja > 0 for all j that Ẑ( j;a; p) = 1, then it also implies
r( j;a) = 1. The Property* 2 implies Pia = Pja < Pπ

ia = Pπ
ja,∀i, j that r(i;a) = r( j;a) = 1,

which means ∑
i:(r(i;a)=1

Pia < ∑
i:(r(i;a)=1

Pπ
ia ≤ 1. Then Property* 1 implies ∀i that r(i;a) = 1,

Pia = 1, which is a contradiction. Then we conclude Pia = Pπ
ia. The case Pia > Pπ

ia is
symmetry.

Claim 1.1.2: For all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = 1 and Pia = 0, then Pia = Pπ
ia.

By Property* 1, if Pia = 0, then either ∑
x∈U(Ri;a)

Pix = 1 or ∑
j:i⪯a j

Pja = 1. The former one

implies P∗
ia = 0 = Pix immediately. If ∑

x∈U(Ri;a)
Pix < 1, then a must be fully allocated to

agents who rank a in the top, namely for all j, r( j;a) = 1. By Claim 1.1, we know
Pja = Pπ

ja for all j, r( j;a) = 1 . Then it implies Pπ
ia = Pia = 0.

Now assume for all For all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = z, we have Pia = Pπ
ia for

z = 1, ..,k−1, we show for all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = k, then Pia = Pπ
ia.

Claim 1.2: For all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = k, then Pia = Pπ
ia.

Claim 1.2.1: For all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = k and Pia > 0, then Pia = Pπ
ia.

By contradiction, suppose, Pia < Pπ
ia. Again, Pia > Pπ

ia is symmetric. There are two cases:

1. If Pia = Pja for all j that Ẑ( j;a; p) = k. Then we have Pia = Pja < Pπ
ia = Pπ

ja for all
j that Ẑ( j;a; p) = k. It implies ∑

i:Ẑ(i;a;p)≤k
Pia < ∑

i:Ẑ(i;a;p)≤k
Pπ

ia and ∑
x∈U(Ri;a)

Pix = 1 for

all i that Ẑ( j;a; p)≤ k. However, we have

∑
x∈U(Ri;a)

Pix = ∑
x∈U(Ri;a)

Pix +Pia = ∑
x∈U(Ri;a)

Pπ
ix +Pia < ∑

x∈U(Ri;a)

Pπ
ix ≤ 1

Which is a contradiction. Then Pπ
ia = Pπ

ia for all all i that Ẑ( j;a; p) = k if Pia = Pja

for all j that Ẑ( j;a; p) = k.
2. If there exists j that Pia > Pja. Property* 2 implies

∑
x∈U(R j;a)

Pjx +Pja = ∑
x:Z(x;R j;Pj)<k

Pπ
jx +Pja = 1.
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Now suppose Pπ
ja < Pja (it can not be Pπ

ja > Pja), then we have Pπ
ia > Pia > Pja > Pπ

ja.
By Property* 2, we have ∑

x∈U(R j;a)
Pπ

jx +Pπ
ja = 1, then Pπ

ja = Pja, a contradiction.

Therefore, we have Pπ
ja = Pja. Now for i, we have ∑

i:Ẑ(i;a;p)≤k
Pia < ∑

i:Ẑ(i;a;p)≤k
Pπ

ia ≤ 1

and ∑
x∈U(Ri;a)

Pix < ∑
x∈U(Ri;a)

Pπ
ix ≤ 1 , which is a contradiction. Then we have Pia =Pπ

ia.

Then we conclude Pia = Pπ
ia for all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = k and Pia > 0.

Claim 1.2.2: For all i ∈ I(π1) and ∀a that Ẑ(i;a; p) = k and Pia = 0, then Pia = Pπ
ia.

By Property* 1, if ∑
x∈U(Ri;a)

< 1 (otherwise, P∗
ia = Pia = 0), we have ∑

j:i⪯a j
Pja = 1 and

Claim 1.2.1 states 0 < Pia = Pπ
ia for all i that Ẑ(i;a; p) = k, also Pia = Pπ

ia for all i that
Ẑ(i;a; p) = j for all j = 1, ...,k−1. Therefore ∑

j:i⪯a j
Pπ

ja = ∑
j:i⪯a j

Pja = 1. It implies Pπ
ia = 0.

Then we conclude Pia = Pπ
ia for all i ∈ I(π1) and ∀a ∈ ∗(i;a1

i ).

Claim 2: Assume for all i ∈ I(πz), ∀a ∈ ∗(i;az
i ) we have Pia = Pπ

ia for all z = 1, ...,k−1,
then we show i ∈ I(πk), ∀a ∈ ∗(i;ak

i ) we have Pia = Pπ
ia.

Claim 2.1: For all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = 1, then Pia = Pπ
ia.

We suppose there exists agent i that Pia < Pπ
ia. There are two cases: Pia > 0 or Pia = 0.

Claim 2.1.1: For all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = 1 and Pia > 0, then Pia = Pπ
ia.

There are two cases:

1. If Pia = Pja for all j that Ẑ( j;a; p) = 1. Then we have Pia = Pja < Pπ
ia = Pπ

ja for all
j that Ẑ( j;a; p) = 1. It implies ∑

i
Pia < ∑

i
Pπ

ia ≤ 1 and ∑
x∈U(Ri;a)

Pix = 1 for all i that

Ẑ(i;a; p) = 1. However, we have

∑
x∈U(Ri;a)

Pix = ∑
x∈ ∪

z<k
∗(i;az

i )

Pix +Pia = ∑
x∈ ∪

z<k
∗(i;az

i )

Pπ
ix +Pia < ∑

x∈U(Ri;a)

Pπ
ix ≤ 1
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Which is a contradiction. Then Pπ
ia = Pπ

ia for all all i that Ẑ( j;a; p) = 1 if Pia = Pja

for all j that Ẑ( j;a; p) = 1.
2. If there exists j that Pia > Pja. Property* 2 implies

∑
x∈U(R j;a)

Pjx +Pja = ∑
x∈ ∪

z<k
∗( j;az

j)

Pjx +Pja = ∑
x∈ ∪

z<k
∗( j;az

j)

Pπ
jx +Pja = 1

Now suppose Pπ
ja < Pja (it can not be Pπ

ja > Pja), then we have Pπ
ia > Pia > Pja > Pπ

ja.
By Property* 2, we have ∑

x∈U(R j;a)
Pπ

jx +Pπ
ja = 1, then Pπ

ja = Pja, a contradiction.

Therefore, we have Pπ
ja = Pja.

Now for i, we have

∑
i∈ ∪

z<k
I(πz)

Pia + ∑
i∈I(πk),Ẑ(i;a;p)=1

Pia = ∑
i∈ ∪

z<k
I(πz)

Pπ
ia + ∑

i∈I(πk),Ẑ(i;a;p)=1

Pia < 1

which is a contradiction. Then we have Pia = Pπ
ia.

Then we conclude Pia = Pπ
ia for all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = 1 and Pia > 0.

Claim 2.1.2: For all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = 1 and Pia = 0, then Pia = Pπ
ia.

By Property* 1, if ∑
x∈U(Ri;a)

< 1 (otherwise, P∗
ia = Pia = 0), we have ∑

j:i⪯a j
Pja = 1 and

Claim 2.1.1 states 0 < Pia = Pπ
ia for all i that i ∈ I(πk) and Ẑ(i;a; p) = 1, also Pia = Pπ

ia

for all i that i ∈ I(πz) for all z = 1, ...,k−1. Therefore ∑
j:i⪯a j

Pπ
ja = ∑

j:i⪯a j
Pja = 1. It implies

Pπ
ia = 0.

Now assume for all For all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = z, then Pia = Pπ
ia for z =

1, ..,m−1, we show for all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = m, then Pia = Pπ
ia.

Claim 2.2: For all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = m, then Pia = Pπ
ia.

Claim 2.2.1: For all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = m and Pia > 0, then Pia = Pπ
ia.

By contradiction, suppose, Pia < Pπ
ia. Then there are two cases:
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1. If Pia = Pja for all j that Ẑ( j;a; p) = m. Then we have Pia = Pja < Pπ
ia = Pπ

ja for all
j that Ẑ( j;a; p) = m. It implies ∑

i
Pia < ∑

i
Pπ

ia ≤ 1 and ∑
x∈U(Ri;a)

Pix = 1 for all i that

Ẑ( j;a; p) = m. However, we have

∑
x∈U(Ri;a)

Pix = ∑
x∈ ∪

z<k
∗(i;az

i )

Pix + ∑
x∈∗(i;ak

i ),Z(i;x;P)<m

Pix +Pia

= ∑
x∈ ∪

z<k
∗(i;az

i )

Pπ
ix + ∑

x∈∗(i;ak
i ),Z(i;x;P)<m

Pπ
ix +Pia

< ∑
x∈U(Ri;a)

Pπ
ix ≤ 1

Which is a contradiction. Then Pπ
ia = Pπ

ia for all all i that Ẑ( j;a; p) = m if Pia = Pja

for all j that Ẑ( j;a; p) = m.
2. If there exists j that Pia > Pja. Property* 2 implies

∑
x∈U(R j;a)

Pjx = ∑
x∈ ∪

z<k
∗( j;az

j)

Pjx + ∑
x∈∗( j;ak

i ),Z(x;R j;Pj)<m

Pjx +Pja

= ∑
x∈ ∪

z<k
∗( j;az

j)

Pπ
jx + ∑

x∈∗( j;ak
j),Z(x;R j;Pj)<m

Pπ
jx +Pja = 1

Now suppose Pπ
ja <Pja, then we have Pπ

ia >Pia >Pja >Pπ
ja. By Property* 2, we have

∑
x∈ ∪

z<k
∗( j;az

j)
Pπ

jx + ∑
x∈∗( j;ak

j),Z(x;R j;Pj)<m
Pπ

jx + Pπ
ja = 1, then Pπ

ja = Pja, a contradiction.

Therefore, we have Pπ
ja = Pja.

Now for i, we have

∑
i∈ ∪

z<k
I(πz)

Pia + ∑
i∈I(πk),Z(a;Ri;Pi)<m

Pia + ∑
i∈I(πk),Ẑ(i;a;p)=m

Pia

= ∑
i∈ ∪

z<k
I(πz)

Pπ
ia + ∑

i∈I(πk),Ẑ(i;a;p)<m

Pπ
ia + ∑

i∈I(πk),Ẑ(i;a;p)=m

Pia < 1

which is a contradiction. Then we have Pia = Pπ
ia.

Then we conclude Pia = Pπ
ia for all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = m and Pia > 0.

Claim 2.2.2: For all i ∈ I(πk) and ∀a that Ẑ(i;a; p) = m and Pia = 0, then Pia = Pπ
ia.
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By Property* 1, if ∑
x∈U(Ri;a)

< 1 (otherwise, P∗
ia = Pia = 0), we have ∑

j:i⪯a j
Pja = 1 and

Claim 2.2.1 states Pia = Pπ
ia for all i ∈ I(πk) that Ẑ(i;a; p) < m, and 0 < Pia = Pπ

ia for
all i ∈ I(πk) that Ẑ(i;a; p) = m, and for all i ∈ I(πz) for all z = 1, ...,k− 1. Therefore

∑
j:i⪯a j

Pπ
ja = ∑

j:i⪯a j
Pja = 1. It implies Pπ

ia = 0.

Then we conclude Pia = Pπ
ia for all i ∈ I(πk) and ∀a ∈ ∗(i;ak

i ). We complete the proof.

For necessity, it exactly follows the definition of Fπ .

F Proof for Proposition 14

Proof. 1. Consider Example 10:
’Interim Efficient’ requires a random assignment that can be decomposed into a
convex combination of ordinally efficient random assignments, then it is ex-post
Pareto efficient. Now we show the converse is not true.
Example 10. Assume there are 4 agents and 4 objects, and the preference profile
is the following:

1: acbd

2: adbc

3: bcad

4: bdac

(36)

Consider a random assignment

a b c d
1 1

2 0 1
2 0

2 1
2 0 0 1

2
3 0 1

2 0 1
2

4 0 1
2

1
2 0

There are only two deterministic assignments, and it is easy to check those two
are efficient because they could be represented by a priority order (1 2 3 4) and
(2 1 4 3):
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a b c d
1 1 0 0 0
2 0 0 0 1
3 0 1 0 0
4 0 0 1 0

a b c d
1 0 0 1 0
2 1 0 0 0
3 0 0 0 1
4 0 1 0 0

Table 6: Two deterministic assignments

Also, this random assignment can’t be decomposed into the convex combination
of probabilistic ordinally efficient assignments because all ’0’ should be unchanged
after convex combination, then agent 3 will trade object ’d’ with agent 4 for object
’c’, therefore this random assignment is ex-post Pareto efficient, not ’Interim
Efficient’.

2. Consider Example 11:
Example 11. Assume there are 4 agents and 4 objects, and the preference profile
is the following:

1,2: badc

3,4: abcd
(37)

Consider a random assignment

a b c d
1 1

8
3
8

1
8

3
8

2 1
8

3
8

1
8

3
8

3 3
8

1
8

3
8

1
8

4 3
8

1
8

3
8

1
8

It is the average of ordinally efficient random assignments of:

a b c d
1 1

4
1
2 0 1

4
2 1

4
1
2 0 1

4
3 1

4 0 1
2

1
4

4 1
4 0 1

2
1
4

a b c d
1 0 1

4
1
4

1
2

2 0 1
4

1
4

1
2

3 1
2

1
4

1
4 0

4 1
2

1
4

1
4 0

Table 7: Two Random assignments

But this random assignment is not ordinally efficient.
3. Consider the preference profile:

In this preference profile, if P is ordinally efficient, then
(a) If P1c > 0, then P2d = P4d = 0.
(b) If P4d > 0, then P1c = P3c = 0.
Then we try to construct the support of random assignment in Table 10 such
that Table 11 must be satisfied. In the end, we will have a contradiction.
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1: adbc
2: acbd
3: abdc
4: abcd

Table 8: RN

a b c d
1 1

4 0 1
24

17
24

2 1
4 0 17

24
1
24

3 1
4

1
2

1
12

1
6

4 1
4

1
2

1
6

1
12

Table 9: Allocation of RP

Table 10: Violation of ’Interim Efficient’: RP

a b c d
1 0 +
2 0 0
3
4 0

a b c d
1 0 0
2 0
3 0
4 +

Table 11: Two possibility

Claim 1: Now, suppose P1c > 0, then it must be Table 12 with the weight 1
24 :

a b c d
1 0 0 1 0
2 1 0 0 0
3 0 0 0 1
4 0 1 0 0

Table 12: Possible deterministic assignments when P1c > 0

Claim 2: Suppose P4d > 0, then it must be Table 13 with weight 1
12 .

a b c d
1 1 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 0 0 1

Table 13: Possible deterministic assignments when P4d > 0

Now, we have:

a b c d
1 1

12 0 1
24 0

2 1
24 0 1

12 0
3 0 1

12 0 1
24

4 0 1
24 0 1

12

Table 14: 1
12 Table 13+ 1

24 Table 12

Given Table 10 and Table 14, we know the support of Table 10 must contains
following deterministic assignments:
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(a) When P1a = 1:

a b c d
1 1 0 0 0
2 0 0 0 1
3 0 1 0 0
4 0 0 1 0

a b c d
1 1 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 1 0 0

Table 15: Total Weight 1
24

and

a b c d
1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 1 0 0

Table 16: With Wight 1
8

(b) When P1d = 1:

a b c d
1 0 0 0 1
2 1 0 0 0
3 0 0 1 0
4 0 1 0 0

a b c d
1 0 0 0 1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

Table 17: Total Weight 5
24

and

a b c d
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0

a b c d
1 0 0 0 1
2 0 0 1 0
3 1 0 0 0
4 0 1 0 0

Table 18: Wight with 1
4 each

Now because P4a =
1
4 in Table 10, then we know the third deterministic assignment

of Table 18 must weight 1
4 . And P3d = 1

6 implies Table 16 must be weight 1
8 =

1
6 −

1
24 . Then we have
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a b c d
1 5

24 0 1
24

1
2

2 1
24 0 17

24 0
3 1

4
7

24 0 1
6

4 1
4

10
24 0 1

12

Table 19: 1
12 Table 13+ 1

24 Table 12+ 1
4 Table 18 each+1

8 Table 16

Given the current assignment, we have the lottery left 1
4 and four deterministic

assignments:

a b c d
1 1 0 0 0
2 0 0 0 1
3 0 1 0 0
4 0 0 1 0

a b c d
1 1 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 1 0 0

a b c d
1 0 0 0 1
2 1 0 0 0
3 0 0 1 0
4 0 1 0 0

a b c d
1 0 0 0 1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

Table 20: Total weight 1
4

Now denote the weight for each deterministic assignments in Table 20 from left
to right as x,y,z,w. Then we have the following equations:x+w = 1

6 = P4c

x+w = 5
24 = 1

2 −
7
24 = P3b − 7

24

Which is a contradiction.
4. We know Fπ is ordinally efficient for every π ∈ Π, then RF is interim efficiency,.

G Proof for Proposition 15

Proof. interim efficiency is proved, now we show weakly envy-freeness and weakly
strategy-proofness.

Claim 1: RF is weakly Envy-free.
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Lemma 16. RF is weakly envy-free.

Proof. Fix a preference profile R with Ri = a1Ria2R . . .Rian, we show for any agent, it
won’t be the case RFj(R)Rsd

i RFi(R).

Let’s start from the a1. Assume R j(1) = ak ̸= a1, then there is 1
2 probability that a1

proceeds ak and 1
2 probability that ak proceeds a1. In formal case, agent i is on the

higher priority, hence Pia1 ≥ Pja1 . In the later case, agent i will not be the lower priority,
hence Pia1 ≥ Pja1 . Overall, Pia1 > Pja1 . Then it can’t be RFj(R)Rsd

i RFi(R).

Then let’s look at a2. If agent i and j have a different top preference, we have a previous
conclusion. Now let’s assume:

Ri = a1Ria2Ri . . .RiakRi . . . (38)
R j = a1R jakR j . . .Ria2Ri . . . (39)

Let’s start to look at a2 and ak, there are also two possibilities, either ak proceeds a2

or a2 proceeds ak.

If ak proceeds a2, then when a2 appears, similarly, agent i won’t be the lower priority,
hence Pia2 ≥ Pja2 . If a2 proceeds ak, then agent i will be the higher priority, hence
Pia2 > Pja2 . To sum up (by average), we get pia2 > p ja2 . Given Pia1 = Pja1 , then it can’t
be RFj(R)Rsd

i RFi(R).

It’s enough to make induction for any ak given piak−1 = p jak−1 , by assuming rank(Ri;k) ̸=
rank(R j;k), then we get Piak ≥ Pjak if ak proceeds R j(k) or Piak > Pjak if akfollows R j(k).
and by averaging, Piak > Pjak , then it can’t be RFj(R)Rsd

i RFi(R).

Claim 2: RF is weakly strategy-proof.

Now we prove weakly strategy-proofness. We will show RF is upper invariance and
Swap monotonicity (Mennle and Seuken 2021).

Definition 13. Adjacent preference
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Given Ri, we say R j is an adjacent preference of Ri if there exist K ∈ [n], such that

1. o(i;K +1) = o( j;K) and o( j;K +1) = o(i;K)

2. o(i;k) = o( j;k) for all k ∈ [n]\{K,K +1}

Then given a preference R, we denote the set of adjacent preferences as δ (R).

Axiom 10. (Swap monotonicity)

A mechanism f is swap monotonic if, for all agents i ∈ N, all R and all R
′
i ∈ δ (R) with

aRib but bR
′
ia, one of the following holds:

1. either: fi(R
′
i,R−i) = fi(R),

2. or: fi,b(R
′
i,R−i)> fi,b(R).

In other words, swap monotonicity requires that the mechanism reacts to the swap
in a direct and monotonic way: If the swap that brings b forward affects the agent’s
assignment at all, then at least its assignment for b must be affected directly. Moreover,
this change must be monotonic in the sense that the agent’s assignment for b must
increase when b is reportedly more preferred.

Axiom 11. (Upper invariance)

A mechanism g is upper invariant if, for all agents i ∈ N, all R and all R
′
i ∈ δ (R) with

aRib but bR
′
ia, we have fi,x(R) = fi,x(R

′
i,R−i) for all x ∈U(Ri,a)

From Mennel and Seuken Mennle and Seuken 2021, if one mechanism satisfies the swap
monotonic and upper invariant then it is weakly strategy-proof.

Claim 2.1: RF satisfies upper invariance.

To notice Fπ will allocate agent object a to i in round k only when every object that
is better than a is allocated (according to agent i preference) and π(k) = a for some k,
then R

′
i( j) = R

′
i( j) for all j < k implies pia j = p

′
ia j

for all j < k which means that RF is
upper invariance because it’s an average over π.



G. Proof for Proposition 15 110

Claim 2.2: RF satisfies Swap monotonicity. For all RN , all π ∈ Π, all i that Ri

with an adjacent preference R
′
i:

Ri = a1Ri . . .aKRiaK+1Rian (40)
R

′
i = a1R

′
i . . .aK+1R

′
iaKR

′
ian (41)

We show it either be RFi(R) = RFi(R
′
i;R−i) or RFiaK+1(R) < RFiaK+1(R

′
i;R−i). Since it is

Upper invariance, then RFiak(R) = RFiak(R
′
i;R−i) for all k < K.

We denote the T π
K as the period when U(Ri;aK) fully allocated given the π. Notice

that, agent i will receive aK and aK+1 under those two situations only after T π
K . If aK

is fully allocated before T π
K for some π ∈ Π, then Pπ

iaK
(R) = Pπ

iaK
(R

′
i;R−i) = 0. We focus

on set ΠK = {πK} that aK still have capacity after period T π
K . Similarly, we consider

ΠK+1 = {πK+1} that aK+1 still have capacity after period T π
K+1.

At first, consider π in ΠK+1 and not in ΠK . Then Pπ
iaK

(R) = Pπ
iaK

(R
′
i;R−i) = 0. If aK

proceeds aK+1 under π, then agent i will be allocated with aK+1 when it appears under
both two preferences. Also because agent i receive the same allocation in U(Ri;aK),
then due to the Flow algorithm, agent i will receive the same share of aK+1 up to its
capacity under both two preference. If aK+1 proceeds aK under π and still have capacity
after U(Ri;aK) and aK are fully allocated, then following Flow algorithm, agent i will
receive the same share of aK+1 due to same reason. For the objects in L(Ri;aK+1), agent
i will receive the same share under those two preference because agent i will have the
same capacity and have the same priority on those objects. Hence RFi(R) = RFi(R′).
For π in ΠK and not in ΠK+1, we have similar analysis that RFi(R) = RFi(R′).

Now we consider π ∈ ΠK+1 ∩ΠK . Because both aK and aK+1 still have capacity after
period T ∗ when U(Ri;aK) fully allocated. First of all, if aK appears before time T ∗, then
Then Pπ

iaK+1
(R)≤ Pπ

iaK+1
(R

′
i;R−i) because agent i will receive aK with positive probability

under Ri, then his capacity when he’s called to receive aK+1 will be smaller.

If aK+1 appears before time T ∗ but aK doesn’t, then agent i has to wait until aK

appears. If aK+1 is fully allocated before that period, then 0=Pπ
iaK+1

(R)<Pπ
iaK+1

(R
′
i;R−i),

otherwise Pπ
iaK+1

(R)≤ Pπ
iaK+1

(R
′
i;R−i).
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If both two objects appears after T ∗, then there are two cases:aK+1 proceeds aK or aK

proceeds aK+1. If aK+1 appears first, then similarly there are two cases: aK+1 is fully
allocated before period TaK or not under R. In the former case, we have 0 = Pπ

iaK+1
(R)<

Pπ
iaK+1

(R
′
i;R−i) and in the later case, we have 0 ≤ Pπ

iaK+1
(R)≤ Pπ

iaK+1
(R

′
i;R−i).

If aK proceeds aK+1, then agent i will have smaller capacity under Ri when aK+1 appears,
hence 0 ≤ Pπ

iaK+1
(R)≤ Pπ

iaK+1
(R

′
i;R−i).

Overall, if π ∈ ΠK+1 ∩ ΠK and it exists, then Pπ
iaK+1

(R) < Pπ
iaK+1

(R
′
i;R−i), otherwise,

RFi(R)=RFi(R′). Immediate result fromMennle and Seuken 2021. RF is weakly strategy-
proof.
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