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Abstract 

In an era where Artificial Intelligence is becoming integral to human teams, 

understanding the role of trust in Human-AI Teams is essential for effective 

collaboration. This thesis investigates how anthropomorphism, AI system 

performance, and social intelligence influence trust calibration, team performance, 

and human perceptions of AI teammates. The research addresses significant gaps 

in Human-AI Team literature by drawing on interdisciplinary insights from 

psychology, computing science, and human-computer interaction. The work is 

structured into six chapters, each contributing to a comprehensive understanding 

of trust in Human-AI Teams. 

Chapter 1 provides a literature review on the dynamics of human-agent teams, 

trust, and social intelligence. It explores how anthropomorphic design, AI 

reliability, and social intelligence contribute to trust development, highlighting the 

limitations of existing theories and the need for a multidisciplinary approach. 

Chapter 2 presents a bibliometric analysis of trust research from 1922 to 2021. By 

analysing 39,628 documents, this chapter identifies key research trends, 

foundational contributions, and interdisciplinary intersections. The study reveals 

the evolving nature of trust research and underscores the importance of 

integrating diverse disciplinary insights to address complex trust dynamics in 

Human-AI Teams. 

Chapter 3 explores the impact of anthropomorphism and AI system reliability on 

trust and performance in Human-AI Teams. Using experimental methods, it 

demonstrates that while anthropomorphic design can enhance trust, this effect is 

contingent on AI reliability. The findings highlight the risks of overtrust when 

anthropomorphic cues are paired with unreliable AI systems. 

Chapter 4 investigates the role of emojis and AI reliability in shaping team 

performance and trust. Results show that AI teammates using emojis can foster a 

sense of social connection and trust, but this effect varies based on the system's 

reliability. The study emphasises the nuanced relationship between social cues and 

trust calibration. 



 

 

Chapter 5 examines how social alignment in AI, the ability to adapt behaviour to 

match human social expectations, affects trust and team behaviours. Findings 

indicate that AI that demonstrates adaptive social alignment behaviour can benefit 

trust. However, misaligned social AI can lead to mistrust and reduced performance 

and has more impactful effects. 

Chapter 6 synthesises the key findings, offering conclusions and practical 

recommendations. The research underscores the importance of calibrated trust, 

ensuring humans neither over-rely nor under-rely on AI. Effective Human-AI 

Teams require AI systems that balance anthropomorphic design, transparency, 

and social intelligence to foster sustainable trust. The chapter highlights the need 

for ongoing interdisciplinary research and ethical considerations to guide the 

development of AI teammates. 

Overall, this thesis contributes to understanding trust dynamics in Human-AI 

Teams by demonstrating that successful collaboration hinges on the careful 

integration of anthropomorphic cues, system reliability, and social intelligence. The 

findings provide information for designing AI systems that are not only reliable but 

also socially intelligent, fostering more effective and ethical human-AI Teams. 
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Chapter 1 A Literature Review of Past Work 
Investigating the Dynamics of Human-Agent 

Teams, Trust, and Social Intelligence 

1.1 Introduction 

In today's world, intelligent machines are no longer just tools; they are 

increasingly becoming integral members of human teams across industries, from 

healthcare and finance to emergency response and defence. For example, AI-

driven systems like IBM's Watson assist in diagnosing medical conditions, while 

autonomous drones collaborate with human soldiers in the military. These 

examples underscore a critical transformation: as Artificial Intelligence (AI) 

evolves from performing isolated tasks to acting as collaborative partners, 

understanding the dynamics of Human-Agent Teams (HATs) becomes paramount. 

However, while the potential of HATs is vast, their success hinges on overcoming 

significant challenges. How can trust be cultivated when AI lacks the emotional 

cues of human teammates? What role does anthropomorphism play in HATs, and 

is it always beneficial? Can AI systems develop sufficient Social Intelligence (SI) to 

navigate complex human team dynamics effectively? These questions remain 

inadequately addressed in existing research, leaving gaps in our understanding of 

what makes HATs successful. 

This literature review aims to synthesise the research on HATs, focusing on three 

critical factors: trust, anthropomorphism, and SI. By examining these 

interconnected themes, this review highlights the current state of research, 

identifies unresolved issues and provides a roadmap for future investigations.  

1.2 Human-Agent Teams  

The shift from viewing AI as mere tools to considering them as collaborative 

teammates represents a significant development in AIand Human-Computer 

Interaction (HCI). Traditionally, researchers viewed AI as a tool designed to 

perform specific tasks more efficiently than humans. In recent years, HATs have 

become a novel area of research (Rix, 2022), shifting AI's role from a tool to a 
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collaborative teammate (Berretta et al., 2023; McNeese et al., 2018, 2021; Rix, 

2022). This shift stems from recognising that practical HATs rely on human 

perceptions of AI as emotionally intelligent, communicative partners rather than 

task-driven tools (Wynne & Lyons, 2018). To foster effective collaboration, shared 

mental models and communication processes are crucial for establishing collective 

goals and trust (Lyons et al., 2021). 

Historically, complex technical systems, particularly in the mid-20th century, 

focused on mathematical and logical problem-solving, reinforcing their image as 

efficient tools. However, advancements in machine learning and natural language 

processing in the late 20th century facilitated a transition toward more human-like 

interactions. Recently, AI tools such as ChatGPT and Co-Pilot (OpenAI., 2024) 

have further solidified AI's role as a potential workplace collaborator. Co-Pilot 

(Microsoft, 2024) exemplifies this transition by acting as a coding partner, 

understanding code context, suggesting code completions, and even generating 

entire functions, moving beyond the capabilities of a simple code editor. However, 

there are theories that even before these recent changes in AI, humans still 

viewed computers as teammates, and we will discuss these ideas further in the 

next section. 

1.2.1  Computers as Teammates  

The Computers Are Social Actors (CASA) paradigm (Nass et al., 1994b) has 

influenced our understanding of how humans interact with computers, suggesting 

that we instinctively apply social norms to these interactions. For example, Nass et 

al. (1994) demonstrated that even experienced computer users unconsciously 

exhibit politeness and gender stereotypes when interacting with computers. CASA 

suggests that our social responses to technology are deeply ingrained and often 

automatic.  

However, CASA has limitations. Firstly, it does not fully account for how context 

shapes interactions. For instance, users might readily accept suggestions from a 

music recommendation AI in a leisure context but might be more critical of similar 

suggestions from an AI financial advisor in a work context where economic 

security is at stake (Angerschmid et al., 2022; Bansal et al., 2021; Salimzadeh et 
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al., 2023). Additionally, CASA overgeneralises by assuming all users engage with 

computers socially, neglecting individual differences like personality traits, 

previous experience with AI and cultural backgrounds (Agarwal & Prasad, 1999; Yi 

et al., 2005). Gambino (2020) emphasises that relationships with technology are 

not static. Early interactions might be influenced more by novelty and general 

social tendencies. However, repeated use leads to a more nuanced understanding. 

Imagine a user initially treating a chatbot politely but, over time, learning it 

responds the same regardless of their tone. Learning about the AI's consistent 

behaviour could lead them to adopt a more direct communication style, a shift 

based on individual differences not accounted for in CASA's fixed script model. 

Furthermore, recent evidence suggests that this effect might be waning, 

particularly for technologies that have become ubiquitous. Heyselaar (2023) 

directly challenges CASA by replicating a foundational study on politeness towards 

computers, finding no evidence that participants today exhibit more politeness 

when interacting with the same computer. We could attribute this shift in user 

behaviour to the increasing prevalence of technology in our lives, and CASA might 

occur strongest when applied to emergent technologies. Due to these changes, 

there is a need to consider the evolving nature of HCI and explore alternative 

frameworks that move beyond the assumption that all computers are inherently 

social actors. 

Recognising these limitations, Gambino et al. (2020) proposed a refined model 

incorporating modern technological interactions. Gambino's (2020) paper proposes 

that people may mindlessly apply human-computer scripts similarly to human-

human scripts during social interactions with technologies. This theoretical 

extension to CASA suggests that users develop distinct scripts for interacting with 

technology, not simply borrowed from human-human interaction. This model 

addresses Heysel's (2023) findings by acknowledging that users may not always 

treat computers as social actors, especially as technology becomes more familiar 

and integrated into daily life. The social affordances of the media agent and the 

temporal factors of the relationship with media agents influence the development 

of these human-computer scripts. In other words, how people interact with a 

specific technology changes over time and with experience, leading to unique 
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interaction patterns. This framework allows for a deeper understanding of human-

technology interaction beyond the initial novelty phase, explaining why the CASA 

effect might be less pronounced with older technologies like desktop computers. 

Despite these advancements, challenges persist. While Gambino's (2020) 

extension to the CASA paradigm offers a valuable refinement by acknowledging 

the development of human-computer scripts, it still leaves some areas open to 

critique. Primarily, the developed model lacks specificity regarding the 

mechanisms and timelines involved in human-computer script development. While 

it rightfully points to factors like social affordances and experience, it does not 

clarify how these factors interact or the time scales on which they influence user 

behaviour. For instance, how do users differentiate between the novelty of a new 

technology and its inherent affordances to shape their initial interactions? 

Similarly, the model remains vague when the mindless application of social scripts 

gives way to more reasoned, learned behaviour, offering no empirical grounding 

for this transition. Without such details, the model struggles to provide concrete 

predictions about user behaviour, hindering its ability to guide the design of more 

effective human-AI interactions. 

In conclusion, the evolution of AI from a tool to a collaborative teammate marks a 

significant shift in how humans interact with technology. While early frameworks 

such as CASA have been instrumental in explaining social interactions with AI, 

recent advancements reveal the limitations of these models in accounting for the 

dynamic and context-dependent nature of human-AI relationships. The transition 

from novelty-driven interactions to more complex, learned behaviours requires a 

deeper understanding of how people perceive and engage with AI over time. 

Nuanced research is particularly crucial in the context of HATs, where the 

development of trust, shared goals, and communication is essential for effective 

collaboration. The following section will delve into the complexities of defining and 

understanding HATs, exploring how these teams operate and their unique 

challenges in balancing human-AI dynamics. 
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1.2.2  Defining and Understanding Human-AI Teams 

As AI becomes more deeply embedded in daily life, from personalised 

recommendations to complex decision support systems, the need to understand 

and define HATs grows increasingly critical. While early research attempted to 

apply established Organizational Psychology theories to HATs, assuming a simple 

translation of team dynamics, this approach has proven inadequate (Berretta et 

al., 2023; McNeese et al., 2018). The key distinction lies in whether AI agents are 

perceived and function as true “teammates” rather than mere tools (Hauptman et 

al., 2023; Peeters et al., 2021; Rix, 2022; Schelble et al., 2022). This shift from 

tool to teammate hinges on factors like the AI agent's ability to exhibit qualities 

associated with human team members, such as predictability, directability, and a 

suitable level of autonomy (Hauptman et al., 2023; McNeese et al., 2018; Zhang 

et al., 2021). This realisation has sparked a growing consensus that HATs require 

specialised research approaches tailored to their unique challenges, moving 

beyond adapting existing theories and developing frameworks that account for the 

distinct dynamics of HATs. 

Rix (2022) conducted a meta-analysis and proposed a framework that outlines 

four essential drivers for forming practical HATs: a minimum of two individuals, 

shared goals, interdependence among team members, and clearly defined roles 

and functions for both human and AI teammates. Rix (2022) also argues that for 

these teams to be truly successful, they must function as cohesive social entities, 

moving beyond a purely transactional relationship. To become a social entity, 

there needs to be a solid team identity where AI agents are seen as “teammates” 

rather than just tools, establishing a trust foundation between humans and AI 

teammates.  

1.2.2.1 The Importance of Shared Goals 

The concept of shared goals is crucial for fostering a sense of “teamness”, which 

occurs through a shared purpose and a spirit of collaboration that binds team 

members together (Musick et al., 2021; Schelble et al., 2022). A shared 

understanding of the team's goals helps to align individual efforts and promotes a 

more cohesive and coordinated approach to problem-solving (C. Liang et al., 
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2019; Sanneman & Shah, 2022). While the importance of shared goals is widely 

acknowledged, shared goals are associated with complexities and potential 

challenges in the context of HATs. 

Firstly, there is a distinction between “overall shared goals” and “local goals” that 

might exist at the individual level (Rix, 2022). This distinction is crucial because 

while a team might have an overarching objective, individual team members, 

including AI agents, might have specific objectives that could conflict with the 

team's overall goal. For example, in a resource allocation task, the overall goal 

might be to optimise resource distribution for the entire team, but individual 

agents might be programmed to prioritise maximising their own resources (Chiou 

et al., 2019; Oh et al., 2018). 

Secondly, genuine “teamness” requires the presence of shared goals and the 

perception that all team members, human and AI, benefit somewhat from 

achieving those goals. If the attainment of a shared goal disproportionately 

benefits one team member, whether human or AI, it can lead to resentment, 

distrust, and reduced collaboration among team members (Flathmann et al., 

2023; Ong et al., 2012; Schelble et al., 2022). 

To effectively implement shared goals, it is important to have explicit goal 

communication; designers should create AI agents to communicate their goals 

clearly and explicitly to their human teammates. This transparency can help to 

alleviate concerns about hidden agendas and foster a sense of shared 

understanding within the team (Schelble et al., 2022). Rather than assigning 

rigidly defined roles, HATs should be designed to encourage co-creation, where 

both human and AI teammates contribute their unique capabilities towards 

achieving shared goals (Lawton et al., 2023; Merritt & McGee, 2012; Oh et al., 

2018). 

1.2.2.2 Interdependence and Collaboration 

Interdependency is essential for successful HATs because it directly influences 

team cohesion and, by extension, team performance (Wiethof et al., 2021). When 

team members perceive their success as intertwined, it strengthens their sense of 
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shared responsibility and promotes a collaborative spirit. Interdependency is 

consistent with the concept of “teamness”, where a sense of cohesion and 

belonging within the team is crucial for effective collaboration.  However, AI can 

both enhance and disrupt interdependency within HATs. On the one hand, AI can 

foster interdependency by shouldering some of the cognitive load typically carried 

by human team members, allowing for more efficient collaboration and leading to 

better outcomes (Döppner et al., 2019; Zhou et al., 2017). On the other hand, 

increasing interdependence can cause issues with transparency and lead to a 

breakdown in understanding of AI behaviour. 

However, while potentially beneficial for efficiency, the increasing autonomy of AI 

systems can also introduce challenges to interdependency. Johnson et al. (2012) 

caution that highly autonomous AI systems risk reducing team transparency. If 

human team members do not understand why an AI agent is taking specific 

actions, it can lead to mistrust and a breakdown in collaboration (Johnson et al., 

2012). This lack of transparency can undermine situation awareness, hindering the 

team's ability to adapt effectively to changing circumstances. 

Therefore, finding the balance between AI autonomy and communication is vital 

for maintaining interdependency in HATs. As Schelble et al. (2022) highlighted, it 

can enhance team cognition and trust if AI agents can clearly articulate their goals 

and align them with the team's objectives. This transparency ensures that human 

team members feel confident in the AI's actions and understand its contribution to 

the team, ultimately increasing interdependency.  

1.2.2.3 Role Definition and Specialisation 

The assignment of unique roles and functions is also critical for successful HAT 

formation. Derrick and Elson (2019) suggest that roles should be assigned based 

on each team member's abilities, similar to human teams. This approach implies a 

division of labour where each team member, whether human or AI, is responsible 

for tasks best suited to their capabilities. However, Siemon (2022) argues that AI 

agents should not possess a wide range of skills but instead focus on excelling in 

one area. This specialised role for AI agents could involve tasks like data analysis, 

pattern recognition, or task automation, freeing human teammates to focus on 
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tasks requiring creativity, critical thinking, or interpersonal skills. Oh et al. (2018) 

found that successful co-creation in HATs does not necessarily require completely 

distinct roles. Their findings suggest that AI agents and human teammates can 

effectively collaborate even with some overlap in skills and responsibilities. 

Whether roles are unique or shared, research agrees on the importance of clearly 

defining those roles. Oh et al. (2018) emphasise that even when roles are not 

entirely distinct, they must still be well-defined to ensure that all team members 

clearly understand their contributions and how they support the team's goals. This 

clarity helps to minimise confusion, facilitate coordination, and foster a shared 

understanding of responsibilities. 

1.2.2.4 Social Dynamics 

Rix (2022) argues that to function as more than just tools within HATs, AI systems 

must be designed with social behaviours that encourage the team to act as a 

cohesive social entity. Rix (2022) suggests that AI should be designed to embody 

similar social characteristics to those traditionally found in human teams, which 

includes concepts like team spirit, group cohesion, and a sense of shared identity 

(Chiocchio & Essiembre, 2009; Hackman, 1987; Kozlowski & Ilgen, 2006). The 

team's effectiveness is significantly enhanced when AI systems exhibit these social 

behaviours, suggesting that the success of HATs relies on task-based efficiency 

and social dynamics within the team (Oh et al., 2018).  

Rix (2022) proposes that AI systems should exhibit human-like qualities and 

engage in relationship-building behaviours within the team to reinforce the idea 

that it is a part of the social entity of the team rather than a separate entity. 

Focusing on social behaviours in AI highlights the importance of moving past AI as 

simply a tool to complete tasks. By designing AI with social behaviours that enable 

it to function as part of a cohesive team unit, HATs may achieve success and 

provide a more positive and productive experience for human team members. 

Rix (2022) also highlights that researchers often underestimate the complexity of 

creating practical HATs, particularly in ensuring that machines can perform tasks 

typically expected of human team members, such as building relationships and 
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providing understandable explanations for their actions. Rix (2022) suggests that 

machines require definite configurations to function effectively as teammates.  

1.2.2.5 Limitations of Rix's Framework 

While Rix (2022) provides a valuable framework for understanding HATs, 

limitations exist. A primary concern is the lack of a clear and consistent definition 

of what constitutes a HAT. This ambiguity in defining HATs makes it difficult to 

compare findings across studies and develop a cohesive understanding of the 

factors influencing team effectiveness. Finally, Rix (2022) acknowledges the 

challenge of bridging the gap between research conducted in controlled 

environments and the complexities of real-world HAT applications. This gap raises 

questions about the ecological validity of current research findings and how these 

findings can be generalised to real-world settings where AI systems must operate 

in dynamic and unpredictable contexts. 

Following this, Rix's (2022) paper also has methodological limitations. The paper 

primarily relies on existing literature, particularly from Information Systems, and 

lacks original empirical validation of its proposed framework. This reliance on a 

limited scope of literature without empirical testing raises concerns about the 

generalizability of the findings and the framework's applicability to real-world 

settings. While Rix's (2022) work offers foundational insights into the 

methodological challenges of understanding HATs, more intricate dynamics unfold 

in these interactions. In the next section, we delve into the complexities of 

designing AI systems for HATs, focusing on error tendencies, mental models, and 

team dynamics. 

1.2.3  Accuracy and Confidence in HATs 

When designing AI systems for HATs, presenting information to facilitate the 

human teammate's understanding of the AI's behaviour, particularly its error 

tendencies, can be effective for building accurate mental models. As previously 

discussed, this understanding allows humans to develop an accurate mental model 

of the AI's capabilities and limitations, enabling informed decisions about reliance 

and collaboration with the AI system (Bansal et al., 2019; Grimes et al., 2021). 
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This process of developing an understanding of the AI partner connects to the 

concept of situation awareness (SA) from human factors research (Sanneman & 

Shah, 2022). SA involves an individual's perception and comprehension of their 

surroundings, including how information might unfold. In HATs, sufficient SA 

about the AI's behaviour, particularly around its error tendencies, is crucial for 

making informed decisions about when to trust or override the AI (Sanneman & 

Shah, 2022).  

Understanding the nuances of AI properties, like accuracy and confidence, in HATs 

is crucial for effective teaming (Bansal et al., 2021). While increased AI accuracy 

might seem intuitively linked to better HAT performance, this is not always true, 

and the relationship is complex. Despite exhibiting lower individual accuracy, an AI 

that presented low-confidence in its output, can improve team performance with 

increased accuracy in specific situations (Bansal et al., 2021). These findings occur 

because lower AI confidence allows for a more accurate mental model of the AI 

teammate's behaviour to be formed by the human teammate. This improved 

mental model gives the human teammate a better understanding of the AI's error 

rate and tendencies, ultimately allowing for more informed decisions about when 

to trust or override the AI's recommendations. These findings assist in 

understanding the importance of accuracy and confidence during the AI design 

phase, prioritising team-based utility and outcomes over individual AI performance 

metrics. 

Bansal et al., (2019a) emphasised that having a highly accurate AI might not be 

enough; the human teammate needs to understand how the AI arrives at its 

conclusions and where its potential pitfalls lie (Bansal et al., 2019b). Providing the 

human teammate with clear and concise information about the AI's error 

boundaries, particularly as they relate to parsimony and stochasticity, can 

contribute to developing this shared understanding and allow for more effective 

human-AI collaboration. 

In this context, parsimony refers to the simplicity of representing areas where the 

AI is prone to making mistakes. A more parsimonious error boundary is more 

manageable for humans to understand and remember (Bansal et al., 2019a). For 
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instance, an error boundary that can be explained with fewer features or more 

straightforward rules is more parsimonious and, therefore, more accessible for 

humans to integrate into their mental models. 

Stochasticity refers to the consistency of the AI's errors within its error boundary. 

A non-stochastic error boundary implies that the AI's errors are predictable and 

occur consistently for specific types of inputs, making it easier for humans to learn 

the pattern. On the other hand, a stochastic error boundary makes the AI's errors 

less predictable and, therefore, more difficult for the human teammate to 

anticipate. This unpredictability can hinder the human's ability to adjust their 

treatment of the AI accordingly. 

Bansal et al., (2019a) highlighted that AI models with parsimonious and non-

stochastic error boundaries are more accessible for humans to understand, leading 

to more accurate mental models. This enhanced understanding can lead to more 

effective collaboration and improved team performance in HATs. 

1.2.3.1  AI Teammate Vs Human Teammate  

Another complex aspect of HAT dynamics is the differences in how human 

teammates perceive and interact with AI teammates compared to human 

teammates. This difference in perception can significantly impact team decisions 

and outcomes, particularly in situations requiring trust and collaboration. For 

example, research indicates that when faced with the choice of saving either an AI 

or a human teammate in defensive team games, participants often prioritise the 

“best outcome” when saving the AI, as opposed to a “protect the teammate” 

rationale when saving a human (Ong et al., 2012). These rationales suggest that 

humans might not instinctively afford the same level of care or value to AI 

teammates compared to human teammates. 

Further illustrating this point, research points to the tendency for AI teammates to 

be unfairly blamed for team failures, a phenomenon not typically observed with 

human counterparts (Merritt et al., 2011). The unfair blame suggests a bias 

against AI teammates, where humans are more likely to attribute blame to the AI 

even when it is unjustified (Jones-Jang & Park, 2023). This difference in treatment 
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could be attributed to the challenges humans face in forming accurate and robust 

mental models of AI behaviour or to the social pressures of pleasing human team 

members.  

1.2.3.2  User-Centric HATs 

Maintaining a user-centric approach is crucial when considering the integration of 

AI teammates within human teams. While human teams organically adapt and 

perceive changes in roles or responsibilities through explicit communication and 

implicit cues, these subtle signals are often lost in translation when AI teammates 

are involved. Bansal et al. (2019b) explain the potential problems of neglecting 

user-centricity, particularly when AI teammates undergo software updates without 

proper communication with their human teammates. AI updates might improve 

the AI's performance, but they can negatively impact overall team performance if 

these updates are not transparently communicated to the human team members. 

This performance/compatibility trade-off stems from human teammates 

developing mental models of their AI counterparts' capabilities and limitations 

through experience. When an AI teammate's behaviour changes due to an 

uncommunicated update, it disrupts the established mental model, leading to 

confusion, mistrust, and, ultimately, a decline in team performance (Bansal et al., 

2019b). 

Finally, Berretta et al., (2023) conducted a scoping review highlighting the 

necessity for a human-centric approach to HATs. The review emphasises the 

importance of a sociotechnical approach to successfully developing AI agents from 

tools to rounded teammates. Berretta et al. (2023) argues that, as AI systems 

become more sophisticated and integrated into collaborative work environments, 

there is a growing need to shift the focus from a purely technology-centric 

perspective to one that prioritises the human element in these teams. They 

propose that successfully developing AI agents into true teammates, rather than 

just tools, requires a sociotechnical approach, which acknowledges the 

interconnected nature of social and technical systems. 

Berretta et al. (2023) also emphasised the need for joint optimisation, where both 

the AI system's capabilities and the human teammate's needs and experiences are 
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considered and designed in tandem. This resonates with Bansal et al's. (2019b) 

work on the importance of transparent communication surrounding AI updates. By 

keeping human teammates informed about changes in their AI counterparts, 

developers can ensure that the HAT's social (human) and technical (AI) elements 

are aligned, fostering a more successful collaborative partnership. 

While research offers valuable insights into human-AI teammate relationships, it 

also exhibits certain limitations that warrant consideration. One notable limitation 

concerns the generalizability of findings. Many studies, including those 

investigating decision-making in defensive team games, employ specific and 

potentially artificial task environments. This specificity raises concerns about 

whether the observed behaviours and dynamics are generalisable to more 

complex, real-world collaborative settings. 

Furthermore, there are limitations to measuring and operationalising key concepts. 

While research emphasises the importance of mental models in shaping HAT 

interactions, accurately assessing these internal representations poses a significant 

challenge. Relying solely on behavioural observations or self-reported data, as is 

common in the discussed research, might not fully capture the complexity and 

nuance of how humans mentally represent and interact with their AI counterparts. 

1.2.4  Conclusions of Human-AI Teams 

In conclusion, exploring HATs reveals promising insights and significant 

challenges. While the initial application of organisational psychology theories 

provided a helpful starting point, it has become evident that these theories alone 

cannot fully address the complexities of HATs. Rix's (2022) framework highlights 

critical drivers such as shared goals, interdependency, unique roles, and social 

dynamics, which are essential for forming practical HATs. However, the field still 

grapples with defining HATs, integrating insights from human team dynamics, and 

ensuring research translates to real-world applications.  

Further research must focus on understanding the more sophisticated variables 

that affect HAT performance, including the impact of AI autonomy, accuracy, 

confidence, and user-centric design. By addressing these issues and adopting a 
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more human-centric approach, we can advance the development of AI systems 

that function as truly effective and integrated team members. Despite the 

extensive literature on HATs, specific gaps persist, such as a lack of focus on more 

complex team dynamics, the impact of intricate variables such as performance, 

the adaptability of AI and a human-centred approach. Among these challenges, 

trust emerges as a pivotal factor influencing the success of HATs, underpinning 

both interpersonal interactions and the integration of AI into team settings. The 

following section delves into the concept of trust, exploring its complexity and 

significance within the context of HATs. 

1.3  Trust and AI  

1.3.1  Trust  

One critical aspect of HATs that requires deeper exploration is trust. Trust, a 

complex concept, has been extensively studied across various disciplines and 

situations. Interpersonal trust, for instance, involves confidence in an individual's 

integrity, reliability, and fairness (Rotter, 1980). It is crucial for maintaining 

healthy personal and professional relationships, typically developed through 

consistent, honest, and supportive interactions. Interpersonal trust facilitates 

effective communication and conflict resolution, making it a foundational element 

of successful human interactions (Rotter, 1980). 

In contrast, organisational trust pertains to confidence in an organisation's 

fairness, integrity, and fulfilment of commitments (Mayer et al., 1995). 

Organisational trust influences factors such as reputation, employee engagement, 

and performance. It is built through transparent communication, ethical practices, 

and consistent actions, leading to increased loyalty, lower turnover, and a 

motivated workforce (Bornstein et al., 2016; McAllister, 1995; Shockley-Zalabak et 

al., 2000). Within organisations, team trust refers to the confidence and reliance 

among team members. Organisational team trust is essential for effective 

teamwork and collaboration and for creating a safe environment for sharing and 

risk-taking, typically nurtured through shared experiences, mutual respect, and 

open communication (Costa et al., 2018). Higher team trust is associated with 

improved problem-solving, creativity, and overall team performance (Costa et al., 
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2018). Although these types of trust share common elements, each is distinct and 

requires precise definitions and measurements (Ulfert et al., 2023). 

From a psychological perspective, trust operates not just as a behavioural act but 

also as a psychological state. Krueger et al., (2007) explores the neural 

mechanisms behind conditional (earned) and unconditional (passive) trust using 

hyper fMRI. Their findings highlight that the paracingulate cortex is crucial for 

building trust by inferring intentions to predict behaviour. Conditional trust 

activates the ventral tegmental area, associated with reward evaluation, while 

unconditional trust activates the septal area, linked to social attachment. 

Additionally, Krueger et al., (2007) and Dimoka (2010) demonstrate that trust and 

distrust involve distinct neural mechanisms. Trust is related to brain areas involved 

in reward prediction and social attachment, while distrust correlates to areas 

associated with intense emotions and fear of loss. These insights suggest that our 

brain differentiates between trust and distrust, influencing social interactions and 

responses to others' behaviours. 

1.3.1.1  Defining Trust 

Given the varied understandings of trust, the concept often falls prey to the jangle 

fallacy (Freeman & Kelley, 1928), where similar terms might have different 

meanings across disciplines. The multidisciplinary nature of trust adds to the 

complexity of consistently defining it. Despite these challenges, research across 

multiple fields has identified some recurring themes. 

Rousseau et al., (1998) conducted a meta-analysis across diverse disciplines and 

found several common elements of trust. One key theme is the willingness to be 

vulnerable based on expectations of positive outcomes from others' actions. A 

willingness to be vulnerable underscores that trust fundamentally involves taking 

risks while anticipating favourable results. Additionally, trust is not just a 

behavioural act or decision but a psychological state, a mental and emotional 

readiness to expose oneself to potential risks due to positive expectations about 

another's intentions or behaviour. Trust also requires specific conditions to exist, 

such as the presence of risk and interdependence. Risk introduces the possibility 

of loss or harm, making trust significant. At the same time, interdependence 
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means that one party's goals cannot be achieved without relying on another, thus 

making trust essential for cooperation. 

Overall, Rousseau et al., (1998) argue that, despite different disciplinary 

perspectives, there is broad agreement on the core components of trust. This 

consensus suggests that the fundamental aspects of willing vulnerability and 

positive expectations are consistent in economic transactions, social relationships, 

or institutional settings. The proposed definition is:  

“Trust is a psychological state comprising the intention to accept 
vulnerability based upon positive expectations of the intentions or 

behaviour of another”. - (Rousseau et al., 1998) 

While Rousseau's definition of trust is valuable and consistent across various 

fields, it is essential to recognise its limitations. The paper, while comprehensive, 

may not fully account for recent developments or changes in how trust is 

perceived, particularly in the context of AI and technology. As trust dynamics in 

HATs may differ from traditional scenarios, exploring contemporary literature on 

trust in technology and AI is crucial. 

1.3.1.2  AI Agents and Trust  

The concept becomes increasingly intricate when examining trust in AI due to its 

unique characteristics compared to trust in human relationships. Trust in 

technology often intersects with the concept of reliability, creating a dynamic 

where the two are sometimes conflated. For instance, users may not explicitly 

state that they “trust” their mobile phones, yet their heavy reliance on them for 

critical daily functions suggests an implicit form of trust. However, this reliance 

can quickly erode if the technology fails or performs inconsistently, as reliability is 

a cornerstone of trust in technological contexts (Mcknight et al., 2011). Unlike 

interpersonal trust, which develops through mutual interactions and shared 

experiences, trust in AI often hinges on performance metrics, transparency, and 

the system's ability to meet user expectations reliably over time (Hoff & Bashir, 

2015). 
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The relationship between trust and technology and automation becomes more 

intricate in high-stakes environments. For example, pilots trusting autopilot 

systems must navigate a delicate balance between reliance and vigilance, which 

parallels interpersonal trust, where complete reliance can coexist with moments of 

doubt (Trösterer et al., 2017). This complexity arises because trust in automation 

systems is shaped by their functional capabilities and user perceptions of the 

system's autonomy, transparency, and ability to adapt to unforeseen 

circumstances. Users may simultaneously “trust” an AI system for its precision 

while “distrusting” it in situations requiring contextual judgment or ethical 

reasoning, highlighting parallels with the complicated nature of human trust 

(Hancock et al., 2011; Lee & See, 2004). 

Building on this, Lee and See (2004) emphasised the importance of transparently 

designing interfaces that communicate functionality, reliability, and limitations. 

This fosters trust by equipping users with clear expectations of system 

performance. These principles are crucial in ensuring that trust is calibrated, 

neither overestimated nor underestimated, based on the AI’s capabilities and the 

context in which it operates. 

The relationship between trust and AI can also change depending on the context 

of the situation it is used in. For instance, trust may hinge on a medical diagnostic 

AI system's perceived accuracy and adherence to professional standards. In 

contrast, a customer service chatbot may rely more on conversational fluidity and 

responsiveness (Lee & See, 2004). These varying expectations demonstrate that 

trust in AI is not monolithic but deeply context-dependent, influenced by the task, 

environment, and user perception (Glikson & Woolley, 2020). The integration of 

transparent communication and practical design elements, as advocated by Lee 

and See (2004), becomes vital for fostering trust in these diverse applications. By 

understanding the interplay of these factors, we can move closer to designing AI 

systems that create appropriate and productive human-AI trust dynamics. 

As AI becomes prevalent, we will likely see a growing emphasis on trust in AI as a 

unique type of trust. The following section will delve into the various aspects of 

trust in technology, including the ideal levels and how team dynamics can affect 
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this trust. Understanding these concepts will be crucial for navigating the 

complexities of human-AI interactions and ensuring effective collaboration.  

1.3.1.3  Trust in AI vs Human Trust  

Trust in AI systems differs fundamentally from trust between humans, particularly 

in its development, emotional components, and reliance on system reliability. 

Unlike human trust, which grows through emotional connections, social norms, 

and shared experiences (Riegelsberger et al., 2005; Schniter et al., 2020; Weiss et 

al., 2021), trust in AI often hinges on the system’s performance, predictability, 

and user expectations. Lee and See (2004) emphasise that trust in automation is a 

dynamic process influenced by past experiences, current performance, and 

perceived reliability. This means that while reliability is critical, trust depends on 

the user’s interpretation of the AI's behaviour and its alignment with expectations. 

Human trust tends to recover from violations through emotional appeals, 

apologies, and corrective actions (Lewicki & Brinsfield, 2017; Sharma et al., 2023). 

In contrast, trust in AI lacks these interpersonal mechanisms and is more 

transactional. For instance, Glikson and Woolley (2020) found that trust in AI 

usually begins at a low baseline and increases with hands-on experience. 

However, this trajectory varies depending on the form of the AI. While virtual AI 

often sees trust decline over time, robotic AI may evoke mixed or negative 

emotions due to its anthropomorphic features. Emotional trust in AI is thus shaped 

by its representation, with anthropomorphism enhancing trust in virtual settings 

but potentially causing discomfort in robotic systems when their capabilities fail to 

match their human-like appearance. 

Research on brain imaging and trust in AI is sparse and often miscited. Contrary 

to some claims, studies do not show that trust in AI replicates the brain activation 

patterns seen with trust in humans (Krop et al., 2024; Wienrich et al., 2021). 

Montag et al., (2023) found no significant neurostructural correlations between 

trust in humans and AI. Their study, involving self-reports and MRI brain imaging, 

revealed that trust in humans was associated with specific brain regions (striatal-

thalamic and prefrontal areas), indicating a neurostructural basis for human trust. 
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In contrast, trust in AI did not correspond to specific brain regions, suggesting 

that trust in AI may not have a direct neurostructural basis. 

Montag et al., (2024) further investigated the neurocognitive mechanisms 

underlying trust in humans and AI across different cultures. They found that trust 

in humans and AI are primarily distinct constructs, with cultural context 

influencing trust levels. In Germany, trust in humans was higher than trust in AI, 

and the gap was more pronounced compared to Singapore, where there was a 

moderate correlation between the two types of trust. Personality traits also 

influenced trust; neuroticism was associated with greater fear of AI, while 

conscientiousness and agreeableness correlated with lower fear and higher 

acceptance of AI. 

These studies suggest that trust in AI and humans is processed differently, 

behaviourally and neurostructurally. While human trust appears to have a 

neurostructural basis, trust in AI does not show a similar linkage. Limitations of 

these studies include reliance on self-reports, cross-sectional design, and cultural 

differences in interpreting trust. Moreover, framing AI interactions, such as 

through anthropomorphism or embodiment, might influence trust levels, 

potentially mirroring human-human interactions. Future research should explore 

these aspects further. 

Jung et al., (2019) examined human trust in machine agents through behaviour 

and EEG activity. Their study revealed that the AI agent's appearance, voice, 

movements, and risk-taking traits influence trust. External cues drove explicit 

judgments of human likeness, while implicit trust, measured by intervention 

frequency in agent decisions, was affected by the agent's risk-taking personality. 

EEG data showed significant changes in theta band power in the frontal-central 

region of the brain following an agent's decision, corresponding with trust 

fluctuations. The study highlighted that trust develops dynamically through 

interaction and that AI agent performance and human-like characteristics 

influence it. However, its controlled experimental setting may limit ecological 

validity, and the specific traits studied might not fully capture real-world 

complexities in HATs. To further understand how these characteristics influence 
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trust, it is essential to explore the concept of anthropomorphism, particularly how 

human-like features in AI systems shape user perceptions and interactions. 

1.3.1.4  Anthropomorphism and Trust  

Anthropomorphism is the process of attributing human-like qualities to non-human 

agents (Guthrie, 1997). Anthropomorphism can influence how users perceive AI 

systems, sometimes enhancing trust by evoking familiarity while leading to 

discomfort or scepticism in other cases. Understanding how anthropomorphism 

interacts with trust dynamics is critical for designing effective HATs. Designing AI 

with anthropomorphic features can be beneficial because it allows humans to 

project their social schemas onto AI systems (Fussell et al., 2008). If designers 

created an AI agent with very human features that look realistically trustworthy, a 

human would likely feel more trust toward this AI agent than toward one lacking 

anthropomorphism (Glikson & Woolley, 2020). 

There are two main ways in which anthropomorphism is presented: through 

physical attributes and social behaviours (Duffy, 2003). Researchers recommend 

that for robots to encourage an anthropomorphic projection, they should possess 

not only human-like facial features but also limbs similar to those of a human and 

other human-like features, including movement (Złotowski et al., 2015). However, 

it is also important for the robot to have social behaviours that are typical of a 

human, such as facial expressions, gestures, and engagement (Duffy, 2003). 

Although anthropomorphism can have powerful effects, it is essential to note that 

there can be limitations to its success. The first of these was developed by Mori 

(1970) (Mori, 2012) and is called The Uncanny Valley effect. Mori posed that 

anthropomorphism initially leads to increased empathy and affinity among 

humans. However, there is a dramatic drop in affinity when robots look and act 

almost human but are not entirely convincing, resulting in eeriness and distrust. 

Furthermore, it is crucial to understand the implications of using anthropomorphic 

AI due to its priming effects on other AI technology and how this may impact trust 

calibration. Anthropomorphic priming can shape user expectations and interactions 

with AI, influencing trust levels across different AI applications (Zanatto et al., 

2016). 
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Research has examined how anthropomorphism can impact trust in AI (Glikson & 

Woolley, 2020; Roy & Naidoo, 2021; Seymour & Van Kleek, 2021; Troshani et al., 

2021; Waytz et al., 2014), with findings indicating AI representation (robots, 

virtual agents, embedded systems) and perceived machine intelligence are key 

antecedents to trust development. In addition, cognitive trust is influenced by AI's 

tangibility, transparency, reliability, and immediacy behaviours. Emotional trust is 

notably affected by anthropomorphism, and when there is little 

anthropomorphism, there is little emotional trust compared to when 

anthropomorphised AI. It is further enhanced by AI's capability to exhibit human-

like qualities and behaviours (Glikson & Woolley, 2020). 

However, anthropomorphism may not be the most important feature when 

improving HAI in specific contexts. Pelau et al., (2021) found that 

anthropomorphic traits alone do not ensure acceptance; empathy and interaction 

quality play crucial mediating roles. Empathy in AI significantly influences 

consumer acceptance. AI devices that show understanding and care are more 

readily accepted. The impact of empathy and understanding in AI design 

highlights the need for AI to mimic human-like emotional responses. These 

findings suggest a shift towards developing AI with advanced emotional 

intelligence capabilities and not just basic levels of anthropomorphism. 

Troshani et al., (2021) also explored the role of anthropomorphism in relation to 

trust in AI. The main findings suggest that AI's human-like features can enhance 

and undermine trust, depending on their implementation and user perceptions. 

Positive experiences with AI's human-like interactions can boost trust, while 

excessive human likeness may trigger discomfort, which could be related to the 

Uncanny Valley (Mori, 2012). Troshani et al., (2021) also found contextual 

influences, where the context of AI use (e.g., healthcare vs. customer service) 

significantly affects trust, so designing AI for specific roles is essential. This work 

highlights the need for AI systems that balance human-like interaction with 

transparency and user control. 

These findings on anthropomorphism highlight its dual potential to enhance or 

undermine trust, underscoring the importance of careful design in calibrating trust. 
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By aligning human-like features with system capabilities and contextual needs, AI 

designers can help users appropriately balance their reliance on these systems. 

The following section will delve deeper into trust calibration, examining strategies 

for managing overtrust and undertrust in AI interactions to promote effective and 

safe human-AI collaborations. 

1.3.1.5  Trust Calibration 

Understanding trust in AI is crucial due to its complexity and the need for 

calibrated trust in AI systems. Calibrated trust is essential to address the problems 

of excessive trust (over-reliance) and insufficient trust (under-reliance) (de Visser 

et al., 2020; Ingram et al., 2021; Wang et al., 2016). Excessive trust occurs when 

users rely too heavily on AI recommendations without adequate scepticism or 

verification, potentially leading to failures. In contrast, insufficient trust arises 

when users disregard or undervalue AI's capabilities and recommendations, which 

can result in the AI being underutilised or ignored. Effective trust calibration 

ensures users can appropriately balance their trust in AI, leveraging its capabilities 

while maintaining necessary scrutiny.  

Robinette et al., (2016) conducted an experiment highlighting overt trust issues 

when using embodied AI (robots) in an emergency. The experiment involved 

participants who followed a robot's guidance during a simulated emergency 

despite the robot displaying unreliable behaviour in previous non-emergency 

tasks. Surprisingly, all participants followed the robot's emergency instructions, 

even those who had observed the robot's poor performance in navigation tasks 

immediately prior. This phenomenon occurred across various conditions, including 

when the robot malfunctioned or provided no rational guidance. A significant 

portion of participants rationalised their trust in the robot based on its designated 

role as an “emergency guide”, despite witnessing its earlier failures. Robinette et 

al's., (2016) work highlights the critical importance of designing robots that can 

communicate their operational status and limitations to prevent overtrust. 

Robinette et al., (2016) suggest that AI needs mechanisms enabling robots to 

decline trust or redirect humans to more reliable sources of assistance when they 

are not functioning optimally. The study highlights a potentially dangerous level of 
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human overtrust in robots during emergencies, emphasising the need to consider 

human-robot interaction dynamics in designing emergency response robots. 

We can use meaningful explainability, adaptive communication, and continuous 

trust repair to address the overtrust issue highlighted by Robinette et al., (2016). 

Meaningful explainability goes beyond simple transparency and necessitates that 

AI systems actively address potential over-reliance, particularly in high-stake 

scenarios where users might rationalise trust based on the AI's role (Bansal et al., 

2021; Lopez et al., 2023; Ulfert et al., 2023). For instance, AI could explicitly 

acknowledge its limitations by stating its inconsistent performance in similar tasks 

and encourage human confirmation with another source. Meaningful explainability 

would promote a more critical evaluation from humans. Adaptive trust calibration 

involves AI dynamically adjusting communication based on the user's perceived 

trust (Chen et al., 2023). If an AI agent senses hesitation, it could increase 

explanation granularity, quantify its confidence level, or even proactively defer 

trust by suggesting alternative courses of action or human consultation with other, 

more reliable sources.  

Lastly, trust repair should be an ongoing dialogue where AI demonstrates 

continuous learning (Kim & Song, 2021; Schelble et al., 2024). Trust repair can be 

achieved through proactive self-evaluation and communication of performance, 

highlighting improvements based on past experiences, and actively seeking 

feedback from human teammates. By incorporating these principles, AI can shift 

from being mindlessly followed to becoming trusted partners that earn and 

maintain calibrated trust through dynamic, transparent interaction. 

1.3.2  Explainability and Trust  

Transparency emerges as a key factor in enhancing trust calibration in AI systems. 

As AI technology advances, there is a growing need to shift from traditional black-

box methods, where the decision-making process remains opaque, to more 

transparent and explainable AI systems (XAI) (Adadi & Berrada, 2018). This shift 

stems from the recognition that the rapid adoption of AI, especially in sensitive 

areas like healthcare, finance, and legal applications, requires robust, trustworthy, 

and understandable systems for human users. 
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Research emphasises that achieving calibrated trust becomes a significant 

challenge without clearly understanding how AI systems arrive at their decisions. 

These concerns have driven efforts to develop methods that provide insights into 

AI decision-making processes. Experts recognise that achieving this requires an 

interdisciplinary approach, combining AI with cognitive and social sciences. (Adadi 

& Berrada, 2018; Endsley, 2023; Guidotti et al., 2018; Kim et al., 2023).  

While potentially highly accurate, Black-box AI models offer limited insights into 

their internal workings, making it difficult for human users to assess their reliability 

and make informed judgments about when to trust their outputs. This opacity 

becomes particularly problematic in high-stakes scenarios where AI decisions can 

have significant consequences. XAI addresses these concerns by employing 

various methods to provide insights into AI decision-making processes (Adadi & 

Berrada, 2018). Adadi & Berrada (2018) broadly categorise these methods as 

intrinsic, which features built-in explainability, or post-hoc, which provides 

explanations generated after the AI has made a decision. There is also growing 

interest in model-agnostic XAI methods, which aim to understand the predictive 

responses of various AI models, regardless of their specific architectures, to 

broaden their applicability (Adadi & Berrada, 2018). 

The success of XAI hinges on aligning AI explanations with human cognitive 

processes (Bansal et al., 2021). In other words, XAI must present information in a 

way that is understandable and meaningful to human users, considering their 

cognitive limitations and biases (Förster et al., 2020; Ingram et al., 2021; 

Sanneman & Shah, 2022). Simply providing technical details about an AI model's 

internal workings is unlikely to foster trust or understanding. Instead, XAI must 

strive to bridge the gap between AI technology and human cognition by offering 

relevant, interpretable, and actionable explanations from a human perspective. 

More research is needed on how humans perceive, understand, and trust AI 

explanations and how these explanations could impact trust calibration in HATs.  

1.3.3  Conclusions About Trust in AI  

Trust is a pivotal element in the success of HATs and the broader integration of AI 

into human decision-making processes. This review has demonstrated that trust in 
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AI systems is complicated, involving reliability alongside emotional, psychological, 

and contextual factors. Unlike trust in humans, trust in AI often hinges on 

transparency, explainability, and calibrated interactions, which are critical for 

preventing over-reliance or under-reliance on AI systems. The dynamic nature of 

trust, shaped by past experiences and evolving perceptions of AI's performance, 

further emphasises the importance of designing AI systems that are adaptable, 

explainable, and aligned with user expectations. 

Ultimately, this section underscores the need for a nuanced, interdisciplinary 

approach to understanding and building trust in AI. By focusing on transparency, 

user-centred design, and the continuous calibration of trust, AI can evolve from 

being perceived as a tool to becoming reliable and trustworthy teammates in 

routine and high-stakes environments. Further research is essential to explore the 

long-term dynamics of trust in AI, particularly in real-world applications with the 

highest stakes. 

1.4 Social Intelligence 

1.4.1  Social Intelligence in Humans 

One facet of human behaviour that could be useful for successfully 

anthropomorphising is SI. The concept of SI traces back to 1920, originating with 

Thorndike's classification of intelligence, which posited three types: abstract, 

mechanical, and social (Thorndike, 1920). Thorndike defined social intelligence as  

“the ability to understand and manage men and women, boys and girls 

— to act wisely in human relations” (p. 228).  

Nevertheless, the most widely recognised definition hails from Vernon (Vernon, 

1933), encapsulating it as 

“The ability to get along with people in general, social technique or 
ease in society, knowledge of social matters, susceptibility to stimuli 
from other members of a group, as well as insight into the temporary 

moods or underlying personality traits of strangers” (p. 44).  
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Currently, differing theories persist regarding the accurate definition and 

measurement of SI (Weis & Süß, 2005), but a consensus generally divides SI into 

five core categories: social understanding, social memory, social perception, social 

creativity, and social knowledge (Kihlstrom & Cantor, 2000). 

One of the reasons SI could be promising for improving HATs is due to its impact 

on human teams. Woolley et al., (2010) found that higher scores on an SI scale 

positively correlated with higher scores and levels of collective intelligence, 

suggesting that SI improves a team's overall ability to perform various tasks and 

positively impacts team performance. 

1.4.2  Social Intelligence In AI 

SI is fundamental to interpreting and responding to social phenomena, a skill 

underpinning meaningful human interactions. In AI, SI involves creating 

computational systems capable of sensing, perceiving, reasoning about, learning 

from, and responding to other human or artificial agents' affective, behavioural, 

and cognitive constructs. To become socially intelligent, AI must achieve social 

perception, which involves extracting relevant information from sensory stimuli, 

social knowledge encompassing explicit and procedural norms, and social memory 

to maintain consistency. Furthermore, social reasoning enables AI to interpret 

stimuli and infer intentions, while social creativity allows counterfactual reasoning 

about social situations, akin to the human capacity for “theory of mind”. Lastly, 

social interaction entails engaging dynamically with others in co-regulated 

patterns, a core requirement for collaborative settings (Lee et al., 2024; Mathur et 

al., 2024). 

The context in which SI operates shapes its application. Social settings such as 

homes or hospitals dictate norms for behaviour, while the roles and attributes of 

actors, whether human or machine, influence interaction patterns. Embodiment 

and anthropomorphism further affect the dynamics, as AI systems range from 

disembodied virtual agents to physically embodied robots, each eliciting different 

user responses (Mathur et al., 2024). Interaction structures involving individual 

agents, pairs, or groups add complexity to these social exchanges, which unfold 

across diverse periods, from split-second decisions to relationships that evolve 
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over the years (Sufyan et al., 2024). These factors highlight the importance of 

multidimensionality and contextual adaptability in implementing SI. 

Research into Social-AI has advanced significantly in recent years, driven by 

natural language processing, machine learning, and robotics progress. While early 

studies relied on rule-based systems for modelling social behaviours, modern 

approaches leverage machine learning and deep learning to predict and generate 

social phenomena using large datasets annotated with ground truth labels 

(Satyanarayana et al., 2018). Substantial focus has been placed on modelling 

affective phenomena such as emotions and sentiments and social behaviours like 

cooperation and competition. Recent developments have also explored the use of 

game-theoretic and probabilistic frameworks to enhance social reasoning. Notably, 

large language models (LLMs) have been assessed for their ability to replicate SI 

competencies, showing promise in linguistic understanding but revealing 

limitations in adapting to complex real-world contexts (Bainbridge et al., 2011; 

Mathur et al., 2024; Satyanarayana et al., 2018). Although significant progress has 

been made in modelling social phenomena in controlled environments, real-world 

social interactions' inherent ambiguity and richness remain challenging. 

Developing socially intelligent AI is fraught with technical challenges. One key 

issue lies in the ambiguity of social constructs, which are inherently subjective and 

context-dependent (Mathur et al., 2024; Mirnig et al., 2017). For example, 

constructs like trust and empathy often have no clear-cut measurements, leading 

to interpretive misalignments between users and AI systems (Ulfert et al., 2023).  

Another challenge is the subtlety of social signals, often expressed through 

nuanced, multimodal cues such as gestures, tone, and facial expressions. The 

complexity of interactions is further amplified by the need to account for multiple 

perspectives as each actor's perceptions, roles, and experiences evolve 

dynamically over time. Finally, socially intelligent agents must demonstrate 

adaptability, learning from implicit and explicit social signals to build a shared 

social reality with their human counterparts. Addressing these challenges requires 

robust frameworks that integrate ethical considerations to ensure socially 
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intelligent AI aligns with human values and promotes trust (Bainbridge et al., 

1994; Sterelny, 2007; Sufyan et al., 2024). 

The foundational aspects of SI in humans, such as social understanding, 

perception, and memory, provide a roadmap for developing socially intelligent AI. 

However, while humans intuitively grasp social norms and adapt based on context, 

programming AI to mimic these intricate behaviours remains a tough challenge. 

For example, while humans can adjust their behaviour based on situational 

appropriateness, such as avoiding humour in serious contexts, AI struggles to 

replicate such adaptability (Mathur et al., 2024).  

The need for AI and robots to contain a level of SI is not a new concept; 

Dautenhahn (1995) discussed how there needed to be a shift from technological 

intelligence, domain-specific technical abilities that robots or AI possess, to a more 

general SI where robots/AI effectively communicate and cooperate with humans 

and other robots. Dautenhahn (1995), highlights the need for SI to provide AI 

with the skills necessary for interaction and collaboration, especially in scenarios 

that expect robots to support humans in roles involving significant social contact. 

Another intricate facet of SI is its context-sensitive character. Humans typically 

possess a well-developed grasp of appropriateness, exemplified by behaviours like 

refraining from laughter during solemn occasions, and may not react favourably to 

a humorous AI in a serious context (Syrdal et al., 2006) AI's deficiency in social 

behaviour could lead to heightened scrutiny of its performance by human agents, 

especially when compared to the performance of their human counterparts. 

Previous research suggests that SI in AI can influence trust calibration (Williams et 

al., 2022). The mimicry of human behaviour is a fundamental element of SI 

(Chartrand & Bargh, 1999). 

Although socially intelligent agents have the potential to improve team dynamics, 

providing AI with the skills necessary to appear socially intelligent is a complicated 

process. In addition, there is not an overwhelming amount of research into how 

humans will respond to these AI agents. There is a gap in the literature when 
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investigating the impacts of social agents in HATs, and we must understand the 

impact of artificial social agents before implementing them in the workplace. 

1.5 Summary and Proposed Research 

Substantial research exists on HATs, Trust, Anthropomorphism, and SI. However, 

there is a limited exploration of how these elements interact. This thesis argues 

that fostering successful HATs requires a human-centric approach emphasising 

calibrated trust, appropriate anthropomorphism, and developing socially intelligent 

AI agents. This argument is supported by the lack of consensus surrounding 

optimal implementation strategies for these factors despite their acknowledged 

importance. 

While the HAT literature significantly emphasises defining team dynamics, the 

complex ways trust functions in these collaborations are often overlooked. Though 

many studies recognise the importance of anthropomorphism, there is no 

consensus on its ideal implementation or potential drawbacks. Additionally, 

research on the impacts of socially intelligent agents, particularly in workplace 

settings, remains limited, highlighting a crucial gap in our understanding before 

widespread implementation. 

Future research should investigate the impacts of AI teammate reliability and 

behaviour on trust calibration. Studies could examine how initial trust formation 

and potential trust breaches influence the trajectory of human-AI collaboration. 

This research could employ methods like measuring changes in trust levels and 

collaboration quality over time, using subjective measures (e.g., questionnaires) 

and objective measures (e.g., task performance metrics). Understanding these 

dynamics is essential for designing AI systems that foster sustainable and robust 

trust relationships with human teammates. 

Furthermore, the ethical implications of anthropomorphism and the potential for 

AI to manipulate or deceive users necessitate careful consideration. As AI systems 

take on increasingly social roles, future research should explore guidelines and 

safeguards to ensure the responsible development and deployment of HATs. This 

could involve establishing ethical frameworks for designing AI interactions, 
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particularly concerning transparency and user autonomy. Addressing these issues 

is crucial for fostering public trust and acceptance of AI in collaborative settings. 

This thesis will first explore trust by conducting a bibliometric analysis of trust 

literature across time, revealing how trust research has evolved and current 

research trends. It will then transition to experimental chapters which examine 

different elements of AI design, these include anthropomorphism, the use of 

Emojis as a form of Emotional Intelligence and socially aligned adaptive AI to 

examining how different variables impact trust and performance in HATs. 
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Chapter 2 Understanding Trust Research and 
the Need for a Multidisciplinary Approach - A 

bibliometric analysis of trust research from 
1922-2021. 

In this chapter, we aim to build upon the theoretical exploration of trust in 

Chapter 1. Chapter 2 conducts a comprehensive bibliometric analysis to monitor 

the evolution of trust research across academic disciplines from 1922 to 2021. By 

employing bibliographic coupling and keyword co-occurrence methods, this 

chapter seeks to reveal the foundational contributions, research trends, and 

interdisciplinary intersections within the field. Bibliometric analysis is a set of 

methods used to quantitatively analyse academic literature, providing insights into 

the patterns, impacts, and trends within a specific field or across multiple 

disciplines. This type of analysis uses various statistical and mathematical 

techniques to measure and evaluate the research output and its influence based 

on bibliographic data, such as publication counts, citation counts, and journal 

relationships. Using bibliometric analysis, we can identify research trends and map 

scientific fields. We decided to conduct a bibliometric analysis of trust research to 

gain new insights into trust research and develop an understanding of this unique 

research area.  

This chapter discusses the ideas and definitions of trust, the importance of 

different disciplines collaborating to understand trust, and the idea of bibliometric 

analysis. We then analyse 39,628 documents spanning the years 1922 to 2021. 

We focus on the most cited papers on trust, a  Bibliographic coupling of journals 

and a keyword co-occurrence to provide different insights of the fields. From the 

analysis, we draw conclusions about the scientific mapping of trust research. This 

foundational understanding is integral as we transition to the experimental 

components of the thesis, where we will assess trust within applied experimental 

contexts. Currently, this work is under review at the Journal of Trust Research and 

we are hopeful that by the time of publishing this thesis, it will be published. I also 

presented this research at a University of Glasgow Workshop Morgan Bailey & 

Frank Pollick, Can We Trust 'Trust'? An Overview of Trust Concepts and 
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Definitions, Multidisciplinary Workshop on Cyber-Physical Systems (CPS) at The 

University of Glasgow. Glasgow, Scotland. April 16, 2024. 

2.1 Introduction 

Trust is a fundamental concept in human interactions, and its study has garnered 

increasing attention from researchers across various disciplines over the years 

(Botsman, 2015; Bottery, 2003; Glikson & Woolley, 2020; Hendriks et al., 2021; 

Hoff & Bashir, 2015; Jacovi et al., 2021; Rompf, 2015; Weiss et al., 2021). As 

interest in trust grows, it is essential to understand how researchers from diverse 

disciplines have delved into trust and how they examine trust's presence and 

implications in a wide array of contexts. When talking about trust, psychologists 

are likely to refer to trust in interpersonal relationships (Rotter, 1980), where they 

explore the dynamics of trust between individuals. Interpersonal trust refers to the 

confidence one individual has in another person's reliability, integrity, and 

benevolence. It encompasses the belief that the other person will act in a 

supportive, honest, and considerate way in one's best interests (Jing et al., 2020; 

McAllister, 1995; Rotter, 1980).  

In contrast, we can examine how business and organisational psychology treat 

trust differently to Rotter (1980). Trust is a critical component in the Business and 

organisational sphere (Rousseau et al., 1998), and within these settings, there are 

elements of trust among colleagues, in leadership, and with the overall integrity of 

institutions (Mayer et al., 1995; Schoorman et al., 2007). When investigating trust 

in these areas, trust can be referred to as a willingness to be vulnerable and 

accept risk (Rousseau et al., 1998). For political science, trust pertains to citizens' 

confidence in government institutions, politicians, and political decision-making 

(Hetherington 1998; Weymouth et al. 2020).  

More recently, trust in technology investigates individuals' reliance on and 

confidence in digital platforms, online transactions, data security, and the 

reliability of technological systems (Dodgson, 1993; Mcknight et al., 2011). Finally, 

academics can define trust in more complex systems, such as trusted computing, 

which involves the integration of hardware and software mechanisms to ensure 

that a computer behaves in expected ways, even when under attack (Gallery & 
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Mitchell, 2009; Shen et al., 2010). The primary goal of trusted computing is to 

provide a foundation for secure computing environments by protecting data 

integrity, confidentiality, and system integrity from various threats, which, 

although referred to as trust, is a very different concept than interpersonal or 

organisational trust.  

These are only a few examples of the different areas which study trust and 

highlight how researchers interact with trust in different academic disciplines 

(Ulfert et al., 2023). One issue is that the research conducted within these 

disciplines is often self-contained within that academic silo, leading to issues when 

researching a concept which is shared across many disciplines and is actively 

researched in these disciplines simultaneously, such as trust. To address these 

issues, we will discuss the importance of moving away from unidisciplinary 

research when involving trust.  

The extensive body of research on trust has provided valuable insights but can 

also present challenges. On one hand, it can significantly contribute to our 

understanding of trust by combining different perspectives and approaches. 

However, suppose there are discrepancies in trust definitions and diverse research 

approaches. In that case, it has the potential to result in perplexing and conflicting 

findings, which occurs from the jingle-jangle fallacy, which occurs when using the 

same term for different concepts (jingle) or when using different terms for the 

same concept (jangle) (Casper et al., 2017; Dang et al., 2020; Larsen & Bong, 

2016; Marsh et al., 2019). These issues are complicated as trust lacks a 

universally accepted definition, which makes it more complex to research across 

disciplinary divergences (Rompf, 2015). 

To reduce issues with defining and understanding trust, it becomes vital to 

understand the disciplinary differences in studying trust within individual academic 

silos. When within one academic silo, scholars become highly specialised in their 

fields and remain unidisciplinary (Hendriks et al., 2021; Mead et al., 2021). 

Unidisciplinary researchers can employ expert methodologies highly relevant to 

their research area. However, this can lead to challenges when employing this 
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data or methodology in a different discipline or combining data to create 

theoretical frameworks.  

These silos can hinder effective communication and collaboration, highlighted by 

the difference between micro-trust studies, such as those in psychology that focus 

on trust at the individual or interpersonal level (Jing et al., 2020; Uslaner, 2008). 

This research contrasts meso trust investigations, which focus on trust within and 

between groups, organisations, and communities (Bottery, 2003; Grimmelikhuijsen 

& Knies, 2017) and macro trust examinations, focusing on broader, societal or 

institutional trust (Lu et al., 2016; Uslaner, 2008). Researchers working in these 

areas of trust research learn to understand these different concepts of trust. 

However, when other disciplines are using this work, the differences are less clear, 

which can lead to issues with measures of trust.   

Furthermore, it is noteworthy that researchers encounter disparities in the 

understanding of trust not only across disciplines but also within individual fields, 

as seen in computer science. Within computer science, the study of trust 

encompasses a diverse spectrum of subjects, including trust modelling (Gulati, 

Sousa, and Lamas 2017; Gulati, Sousa, and Lamas 2018), trust in Human-Robot 

Interaction (HRI) (van Pinxteren et al., 2019), trust evaluation (Tang et al., 2012), 

and trust-based decision-making (Döppner et al., 2019; Ma et al., 2023; Zhou et 

al., 2017). As computer systems continue to increase across various parts of 

modern life, such as the workplace, social media, and the Internet of Things (IoT) 

devices (Khan et al., 2019), trust becomes increasingly important in determining 

the success and security of these systems. There is a call for trust researchers to 

be explicit when defining trust; they aim to measure and choose specific measures 

to align with these choices (Ulfert et al., 2023). However, there needs to be an 

understanding of the scientific landscape of trust research to see where research 

fits and which scales can be relevant to the research in question.  

The examples provided above are on a case-by-case basis. Currently, no study 

aims to quantify the network of trust research to understand which disciplines are 

researching trust and what interactions exist between these disciplines. To fully 

grasp the intricacies of trust, it is essential to transition from using single-discipline 
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research methods. Embracing both multidisciplinary, where various fields 

contribute independently (Dalton et al., 2021), and interdisciplinarity, involving 

collaborative integration of insights from different disciplines (Dalton et al., 2021), 

is crucial. A transdisciplinary approach, which breaks down disciplinary boundaries 

to form a unified framework (Lang et al., 2012), becomes necessary for a 

comprehensive understanding of trust. To address this gap in the literature, we 

are conducting a bibliometric analysis to explore the network of trust research, 

focusing on trends, foundational papers, prevalent research themes and the 

organisation and interrelationships within the field. 

In academic research, bibliometric analysis has emerged as an invaluable tool for 

quantitatively visualising trends and patterns across diverse fields. Recent years 

have witnessed the increasing utilisation of bibliometrics to gain deeper insights 

into various research domains. Notable examples include studies exploring the 

Ethics of Big Data (Kuc-Czarnecka & Olczyk, 2020), Cognitive Dysfunction (Chen et 

al., 2020), the challenges posed by COVID-19 (Hamidah et al., 2020), and 

Sustainable Tourism (Cavalcante et al., 2021). The complex nature of these 

investigations underscores the effectiveness of bibliometrics in a broad spectrum 

of research areas, highlighting its role as a prominent method for analysing large 

datasets. Within this broader context, this bibliometric analysis aims to 

comprehensively explain the intricate landscape of trust research within and 

across academic disciplines. 

In this chapter we aim to provide valuable insights into trust research activities, 

impact, and collaboration patterns. Specifically, this analysis examines the 

evolution of research trends in the trust literature over time, such as the 

emergence of new research topics or the decline of certain research areas. In 

addition, we establish influential authors and publications to identify key 

contributors to the field and their impact on the development of the literature. 

Finally, we aim to identify interdisciplinary connections in the trust literature, 

which can help to identify the relationships between trust and other fields, such as 

psychology, computer science, and sociology, which can provide insights into the 

potential applications of trust research in other fields.  
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By identifying key research trends and influential papers over the past century, 

exploring contributions from different academic disciplines, and examining the 

evolution of common themes from 1922 to 2021, we aim to provide a 

comprehensive overview of the field. To structure the chapter, we are setting 

explicit research questions to guide the analysis. The literature guiding bibliometric 

analysis supports this approach, emphasising the importance of setting precise 

research questions to direct analyses, uncover significant trends, and understand 

the research's interdisciplinary nature and thematic development (Aria & 

Cuccurullo, 2017; Donthu et al., 2021; Moral-Muñoz et al., 2020; Zupic & Čater, 

2015). We propose the following research questions to address:  

RQ1: What are the key research trends and influential papers in trust research 

over the past century? 

RQ2: How have different academic disciplines contributed to trust research? 

RQ3: How have the most common themes in trust research evolved from 1922 to 

2021? 

2.2 Methods 

2.2.1  Data Collection 

We conducted our bibliometric analysis using the Web of Science (Classic) Core 

Collection due to its comprehensive document coverage and standardisation. The 

search included the entire collection up to December 4, 2021. The criteria for 

document inclusion were articles or proceedings papers written in English, with 

titles containing 'trust*', 'trustworthy*', or 'trustworthiness*'. Early access papers 

were excluded to prevent data processing errors. 

Given the objective of mapping the network of trust research, focusing on trends, 

foundational papers, and prevalent research themes, we deliberately decided to 

exclude review papers from our analysis. This decision stems from the nature of 

review articles, which primarily synthesise findings from a range of studies, 

providing valuable overviews but not contributing new empirical data. Including 

review papers in our dataset could potentially skew the analysis towards more 
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established viewpoints, thereby overshadowing emerging areas of inquiry and 

novel methodologies. The exclusion of review papers also addresses the 

methodological challenge of double-counting citations. Review articles often have 

extensive reference lists, which could inflate the citation counts and perceived 

impact of specific studies, distorting the bibliometric indicators used in our 

analysis. By focusing solely on empirical studies, including articles and proceedings 

papers, we aim to accurately represent the research dynamics within the trust 

literature. This approach ensures that our analysis captures the direct 

contributions to the field, facilitating a clearer understanding of the developmental 

trajectories of trust research and the interactions between different disciplines. 

The initial search yielded 40,156. We downloaded all results as full records, with 

references and abstracts in plain text format. 

2.2.2  Software 

We created a Python script to clean and organise the data to eliminate duplicates. 

We removed documents with duplicate Web of Science ID numbers and further 

scrutinised those with duplicate titles before removal, eliminating 528 documents. 

Figure 1 shows a flowchart of the overall process. For subsequent analysis of the 

remaining 39,628 documents, we utilised the R Package Bibliometrix (Aria & 

Cuccurullo, 2017)to extract descriptive information about authors, documents, 

sources, and countries. We also employed VOSviewer (Van Eck & Waltman, 2007) 

to visualise keyword co-occurrence and bibliographic coupling of sources. 

 

Web of Science Core 
Collection searched: 

articles or 
proceedings papers 
written in English, 

with titles containing 
'trust*', 

'trustworthy*', or 
'trustworthiness*'. 

On 4th December 
2021, 40,156 

documents 
dowlonaded.

After download 
sources with 

duplicate Web of 
Science ID numbers 

removed.

Final number of 
documents included 

was 39,628.

Figure 1. The process of collecting and cleaning data. 
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2.2.3  Data Analysis 

For the analysis, we decided to perform a selection of bibliometric analysis 

methods: bibliographic coupling of source, keyword co-occurrence analysis, 

analysis of papers with the top number of citations, and the annual scientific 

production rate.  

Bibliographic coupling of sources involves identifying pairs of documents that cite 

one or more common references and mapping connections and relationships 

between different research works (Donthu et al., 2021; Jarneving, 2007). 

VOSviewer 1.6.20 (Van Eck & Waltman, 2007) was used to perform bibliographic 

coupling analysis, focusing on papers sharing citations to provide insights into 

developing research themes over time. In bibliographic coupling maps, each node 

represents a source, with node size indicating the total link strength of the source. 

Links between nodes represent sources cited together regularly, and link thickness 

signifies the frequency of such co-citation. Larger nodes indicate greater total link 

strength, thicker links represent more frequent co-citations, and thinner links 

indicate less frequent ones. 

Keyword co-occurrence analysis examines the frequency of specific keywords 

appearing together in documents, helping to identify prevalent research themes 

and the evolution of research focus over time (Sedighi, 2016). We used 

VOSviewer 1.6.20 (Van Eck & Waltman, 2007)for keyword co-occurrence analysis. 

Each node signifies a keyword in co-occurrence maps, with node size denoting the 

frequency of keyword occurrence. Links between nodes represent co-occurring or 

frequently co-occurring keywords, and link thickness indicates the frequency of co-

occurrence. Larger nodes represent more frequent keyword occurrences, while 

thicker links signify a higher frequency of co-occurrence between keywords. 

Analysing papers with the top number of citations identifies and examines the 

most highly cited papers, providing insights into key contributions and influential 

studies that have shaped the field. The annual scientific production rate tracks the 

number of publications related to trust research produced each year, allowing us 

to assess the growth and development of the field over time (Larsen & von Ins, 

2010). To complete these analyses, we use the R-Studio Bibliometrix Package 
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(Aria and Cuccurullo 2017) to gather and graphically represent descriptive 

information about authors, documents, sources, and the annual production rate. 

These bibliometric methods offer a comprehensive understanding of the patterns, 

impacts, and trends in trust research, enabling us to draw meaningful conclusions 

about the evolution and interdisciplinary nature of the field.  

2.3 Results 

We used a total of 39,628 documents spanning the years 1922 to 2021. These 

documents comprised 27,464 (69.4%) research articles and 12,057 (30.6%) 

proceedings papers. The dataset encompassed contributions from 67,358 authors, 

derived from 12,949 distinct publication outlets and representing 168 

countries/regions. 

2.3.1  Growth of Publication 

Figure 2 illustrates the trajectory of annual scientific document production, which 

remained relatively steady until around 1991. Subsequently, a notable exponential 

increase in publication output commenced a pattern mirrored in various research 

areas as it coincides with the widespread adoption of the Internet for academic 

dissemination (Vakkari, 2008). It is important to note that while the overall trend 

reveals consistent growth, a temporary decline of 198 publications occurs in 2021. 
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Figure 2. The Annual Scientific Production of Documents 
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A delay in including articles in the core collection during our data retrieval 

probably causes this dip. Nevertheless, since the early 2000s, research output 

appears to have maintained a steady yet robust upward trajectory, underscoring 

the continued activity of trust-related research in academia. The exponential 

growth in publication output since the early 1990s highlights the increasing 

interest and development of fundamental research trends in trust. 

2.3.2  The Top Papers Published on Trust. 

From the extensive dataset of 39,628 documents, we have identified and compiled 

the 20 papers with the highest yearly citation rates, as presented in Table 1. We 

used yearly citations as a metric to mitigate the inherent bias towards older 

papers. Sorting by citations per year allows us to identify papers with a consistent 

and enduring impact, regardless of the total number of citations, highlighting 

papers that remain relevant and influential over time, even if they were published 

more recently. 

The paper “Qualitative Content Analysis in Nursing Research: Concepts, 

Procedures and Measures to Achieve Trustworthiness” by Graneheim & Lundman 

(2004) tops the list with an average of 450 citations per year, mainly due to its 

pivotal role as a foundational work explaining the methodology for conducting 

trustworthy qualitative research. This paper serves as a cornerstone reference for 

researchers aiming to establish the trustworthiness of qualitative studies. Nowell 

et al's., (2017) work, focused on ensuring the trustworthiness of Thematic 

Analysis, also follows a similar trend with an annual citation rate of 316. While 

crucial for methodological robustness, these papers should be noted for their 

application of trust rather than direct contributions to trust research.  

Morgan & Hunt's (1994) exploration of the commitment-trust theory in 

relationship marketing received 306 citations per year, and (Mayer et al., 1995) 

integrative model of organisational trust with 290 citations per year marks 

foundational works in organisational psychology. In business, Doney & Cannon's 

(1997) examination of trust and its implications for buyer-seller relationships 

underscores the theme's importance in commercial interactions. 
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The influence of technology on trust is highlighted by Ribeiro et al.'s (2016) paper 

on explaining predictions of machine learning models, which gathered 263 

citations per year. Bertrand et al., (2004) investigated the reliability of difference-

in-difference estimation in economics, which reflects trust's role in methodological 

rigour. 

The papers span various research areas, including business, economics, 

psychology, computer science, and methods, illustrating trust's interdisciplinary 

nature. Papers like Kosfeld et al's., (2005) study on oxytocin's effect on human 

trust offer biological perspectives, further broadening the field's scope. 

Recent papers, such as Lins et al., (2017) work on social capital, trust, and firm 

performance and Sicari et al., (2015) on security, privacy, and trust in Internet of 

Things systems, indicate growing areas of interest and the evolution of trust 

research to include technological and social capital dimensions. 

Table 1. The 20 most cited per year articles featuring trust. 

Paper Title Citations 

per Year 

Total 

Citations 

Research Area 

Graneheim (2004) - Qualitative 

Content Analysis in Nursing Research: 

Concepts, Procedures and Measures to 

Achieve Trustworthiness 

450 8556 Nursing/ 

Methods 

Nowell (2017) - Thematic Analysis: 

Striving to Meet the Trustworthiness 

Criteria 

316 1893 Methods 

Morgan (1994) - The Commitment-

Trust Theory of Relationship Marketing 

306 8861 Business 

Mayer (1995) - An Integrative Model of 

Organizational Trust 

290 8124 Organisational 

Psychology 
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Paper Title Citations 

per Year 

Total 

Citations 

Research Area 

Ribeiro (2016) - “Why Should I Trust 

You?” Explaining The Predictions of Any 

Classifier 

263 1844 Computer 

Science 

Bertrand (2004) - How Much Should 

We Trust Differences-In-Differences 

Estimates? 

214 4061 Economics 

Elo (2014) - Qualitative Content 

Analysis: A Focus on Trustworthiness 

123 1111 Methods 

Doney (1997) - An Examination of The 

Nature of Trust in Buyer-Seller 

Relationships 

120 3122 Business 

Kosfeld (2005) - Oxytocin Increases 

Trust in Humans 

119 2135 Biology 

Mcallister (1995) – Affect and 

Cognition-Based Trust as Foundations for 

Interpersonal Cooperation in 

Organizations 

113 3174 Psychology 

Josang (2007) - A Survey of Trust and 

Reputation Systems for Online Service 

Provision 

106 1693 Computer 

Science 

Chaudhuri (2001) - The Chain of 

Effects from Brand Trust and Brand Affect 

103 2267 Business 
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Paper Title Citations 

per Year 

Total 

Citations 

Research Area 

to Brand Performance: The Role of Brand 

Loyalty 

Sicari (2015) - Security, Privacy and 

Trust in Internet of Things: The Road 

Ahead 

101 807 Computer 

Science 

Gosling (2004) - Should We Trust Web-

Based Studies? A Comparative Analysis of 

Six Preconceptions About Internet 

Questionnaires 

93 1768 Psychology/ 

Methods 

Gulati (1995) - Does Familiarity Breed 

Trust - The Implications of Repeated Ties 

for Contractual Choice in Alliances 

90 2533 Business 

Lins (2017) - Social Capital, Trust, And 

Firm Performance: The Value of 

Corporate Social Responsibility During the 

Financial Crisis 

88 529 Economics 

Kim (2008) - A Trust-Based Consumer 

Decision-Making Model in Electronic 

Commerce: The Role of Trust, Perceived 

Risk, and Their Antecedents 

87 1301 Business 

Birt (2016) - Member Checking: A Tool 

to Enhance Trustworthiness or Merely a 

Nod to Validation? 

86 605 Methods 
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Paper Title Citations 

per Year 

Total 

Citations 

Research Area 

Garbarino (1999) - The Different Roles 

of Satisfaction, Trust, and Commitment in 

Customer Relationships 

86 2074 Business 

Pavlou (2003) - Consumer Acceptance 

of Electronic Commerce: Integrating 

Trust and Risk with The Technology 

Acceptance Model 

86 1727 Business; e-

commerce 

2.3.3  Analysis of Journals and Conference Proceedings 
Publishing Papers on Trust 

The extensive dataset of retrieved documents spans a diverse array of 12,949 

journals and conference proceedings. Table 2 presents the top 20 sources that 

have contributed significantly to the corpus of trust-related literature. Our analysis 

identified the 20 most productive sources in trust research based on the number 

of documents published. The journal “Trust & Trustees” leads with 690 

documents, followed by “IEEE Access” and “Plos One” with 239 and 196 

documents, respectively. “Sustainability” and “Frontiers in Psychology” are also 

significant contributors, with 146 and 133 documents. 

The Total Link Strength (TLS), indicative of the source's centrality in the field, the 

five sources with the highest TLS in trust literature are Sustainability (TLS: 5553), 

the Journal of Business Ethics (TLS: 4988), Plos One (TLS: 4911), Frontiers in 

Psychology (TLS: 4741) and Industrial Marketing Management (TLS: 4658). The 

average year of publication they are ranged from as early as 1939 for the “Yale 

Law Journal” to as recent as 2019 for “IEEE Access”, “Sustainability”, and 

“Frontiers in Psychology”, reflecting both longstanding and emerging sources of 

scholarly output in trust research. 
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Table 2. The 20 most productive sources of trust literature. 

Source Number of 

Documents 

Total 

Link 

Strength 

(TLS)a 

Number 

of 

Citations 

Average 

Year of 

Publications 

Trusts & Trustees 690 262 464 2014 

IEEE Access 239 4542 2984 2019 

Plos One 196 4911 2219 2017 

Sustainability 146 5553 853 2019 

Frontiers In Psychology 133 4741 736 2019 

Yale Law Journal 125 352 171 1939 

Journal Of Business Ethics 119 4988 5306 2011 

Wireless Personal 

Communications 

109 1479 853 2017 

Computers In Human 

Behavior 

100 4393 6433 2016 

Real Property Probate and 

Trust Journal 

100 131 4 1973 

Journal Of Business Research 96 4657 4800 2013 

Security And Communication 

Networks 

92 1443 687 2016 

Columbia Law Review 91 260 208 1946 
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Source Number of 

Documents 

Total 

Link 

Strength 

(TLS)a 

Number 

of 

Citations 

Average 

Year of 

Publications 

Journal Of Economic Behavior 

& Organization 

88 2546 4221 2012 

Social Science & Medicine 82 1713 3306 2012 

Social Indicators Research 81 3176 1201 2016 

Industrial Marketing 

Management 

80 4658 4502 2012 

Future Generation Computer 

Systems-The International 

Journal of E-science 

78 1774 1840 2017 

Virginia Law Review 72 153 16 1952 

Psychological Reports 71 955 1478 1991 

Note. aTLS is the sum of the strengths of all links an item has with other items in 

the network, indicating the item's interconnectedness and influence.  

2.3.4  Bibliographic Coupling Analysis of Sources 

We conducted a bibliographic coupling analysis to provide a comprehensive 

landscape of journals and conference proceedings publishing content on trust 

since 1922 and it is displayed in Figure 3. 

We compiled the dataset for the analysis from an initial pool of 12,930 sources 

from the Web of Science. These sources included journals and conference 

proceedings that have published work on trust.  
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We employed VOSviewer to perform a bibliometric coupling analysis on the 

dataset. The inclusion criteria for the sources were set to a minimum of one 

published document and at least one citation per source, reducing the dataset to 

9,308 sources. We used fractional counting to apportion citations among sources 

based on shared references. We selected the 1,000 sources with the highest link 

strength to other sources mapping. We set the network's visualisation parameters 

as normalisation using the Lin/Log Modularity method, layout parameters set to an 

attraction of 6 and a repulsion of 0, and clustering set at 1. The size of each node 

(circle) in the visualisation represented the number of citations for each source. 

The resulting bibliographic coupling map, presented in Figure 3, encompasses 

1000 sources. This map's node size corresponds to the number of citations each 

source has received, while the interconnecting links depict relationships between 

sources. Closer nodes indicate a higher co-citation frequency, highlighting solid 

relationships between those sources. 
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6            

7 

Figure 3. Bibliographic Coupling of Sources Publishing Trust Literature 

To see an interactive version of this map, please visit https://tinyurl.com/2726h2tp. *This link will 
take you to a generic version of this map. Please enter the visualisation parameters described 

earlier to see the map in Figure 3. 

https://tinyurl.com/2726h2tp
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Figure 4 is a network visualisation with an overlay that indicates the average year 

of publication for sources in the field of trust research. It complements this 

analysis with an overlay visualisation showcasing the publication periods of 

sources.  

The colours of the nodes represent the average year of publication of the articles 

within each source. The colour gradient displays the timeline from 1985 to 2021, 

with lighter colours (like yellow) indicating more recent years and darker colours 

(like dark green) indicating older years. This colour coding indicates whether a 

source's contributions to the field are more historical or recent; a source with an 

average publishing year of 1955 will be dark blue, and one with an average 

publishing year of 2021 will be light yellow. 
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Figure 4. Overlay Visualisation of the Bibliographic Coupling of Sources 

To see an interactive version of this map, please visit https://tinyurl.com/2726h2tp. *This link will take you 
to a generic version of this map. Please enter the visualisation parameters described earlier to see the 
map in Figure 4. 

https://tinyurl.com/2726h2tp
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2.3.5  Clustering and Discipline Identification 

To identify the disciplines represented within each cluster, we extracted the labels 

of the sources from the network visualisation. Each label typically contained the 

name of the journal or conference and often included terms indicative of the 

source's scope or focus. We conducted a manual content analysis (Hsieh & 

Shannon, 2005) to determine the most common words within the labels of each 

cluster, which served as indicators of the predominant disciplines. To focus on 

content-specific terminology, we excluded Common English words and specific 

terms related to publishing and conferences (e.g., 'journal', 'conference', 

'proceedings'). Previous bibliometrics have used content analysis (Leong et al., 

2021; H. Liang & Shi, 2022); we inferred the following clusters using this method. 

Cluster 1 (Red) is related to social sciences, as indicated by terms such as social, 

public, psychology, health, economics, policy, political science, and 

communication. This cluster includes sources with an average publication year of 

2013 and has the highest total citations. The oldest source in this cluster is 

“Psychological Bulletin”, with an average publication year of 1991 and the newest 

is “Healthcare”, emerging in 2021. 

Cluster 2 (Green) focuses on business and management, with subjects like 

marketing, information systems, technology, electronic commerce, and tourism 

being prevalent. This cluster stands out with the recent average publication year 

of 2015 and a significant citation impact. The “Journal of Marketing”, averaging 

1997, is the oldest, while “Sustainable Production and Consumption”, starting in 

2021, is the newest source in this cluster. 

Cluster 3 (Blue) also centres on management and business, including psychology, 

human resources, organisational studies, accounting, and leadership. The average 

publication year for this cluster is 2013. The “Journal of Psychology”, dating back 

to 1990, is the oldest, and “International Journal of Public Leadership”, which 

began in 2020, is the newest source. 

Cluster 4 (Yellow), indicated in yellow, revolves around information systems and 

computing. A strong focus on security, computer science, communications, and 



 

 

69 | P a g e  
 

trust-related applications characterises it—sources in this cluster average 2015. 

“Trust and Deception in Virtual Societies”, from 2001, is the oldest source, and the 

newest is “IEEE Transactions on Network Science and Engineering”, which started 

in 2021. 

Cluster 5 (Purple) encompasses mathematical and computational disciplines, 

including optimisation, applied mathematics, numerical analysis, computational 

science, and mathematical applications. The average publication year for this 

cluster is 2010, making it the oldest on average. “SIAM Journal on Numerical 

Analysis”, with an average publication year of 1993, is the oldest source, and 

“Mathematical Problems in Engineering”, from 2017, is the newest. 

Cluster 6 (Light Blue) is centred on ergonomics, human factors, robotics, 

engineering, design, and transportation systems, focusing on applied science and 

engineering. The oldest source in this cluster is the “International Journal of 

Industrial Ergonomics”, averaging the year 2009 with 182 citations. The newest is 

“Frontiers in Robotics and AI”, which began in 2020 and has 31 citations. 

Cluster 7 (Orange) has a legal orientation, with sources often related to law 

studies and university law reviews. The “Yale Law Journal”, the oldest in the 

cluster, averages back to 1939 with 171 citations, demonstrating its longstanding 

influence. Conversely, the newest source, “Trusts & Trustees”, started in 2014 and 

accumulated 464 citations, reflecting its growing impact in the legal field. 

Together, these visualisations provide a comprehensive portrayal of the landscape 

of trust-related research sources, highlighting their interconnections and their 

historical and contemporary significance in the field. 

2.3.6  Keyword Co-Occurrence Analysis 

We conducted a keyword co-occurrence analysis to gain deeper insights into 

themes within trust research. We used author keywords and keywords plus. At the 

beginning of the analysis, there were 59,122 keywords. The word had to appear 

more than five times to be used in the analysis, leading to 5516 words included in 

the analysis. We then selected the top 1000 most linked words to keep in the 
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analysis. We excluded the word trust from the map as it overshadowed most of 

the map. We applied fractional counting using the Lin/Log Modularity method, 

layout parameters set to an attraction of 3 and a repulsion of 0, and clustering set 

at 1.0. 

In Figure 5, we provide a co-occurrence map of these keywords. Each node in the 

map represents a keyword, with node size indicating the frequency of the 

keyword's occurrence. Links between nodes signify co-occurrence, and the 

thickness of the link reflects the frequency of such co-occurrence. This analysis 

reveals seven distinct keyword clusters. 

Cluster 1 (red) contains 294 keywords and has a total of 56,196 links, with an 

average link strength of 95 and an average of 99 occurrences per keyword. The 

average publication year for this cluster is 2014, with an average of 24.3 citations 

per keyword. This cluster focuses on the interplay between social and political 

1 

2 

  3 

4 

5 

6 

To see an interactive version of this map, please visit https://tinyurl.com/2726h2tp. This link will 
take you to a generic version of this map. Please enter the visualisation parameters 
described earlier to see the map in Figure 5. 

Figure 5. Co-occurrence of Author Keywords and Keywords Plus. 

https://tinyurl.com/2726h2tp
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elements of trust, featuring keywords like “perceptions”, “attitudes”, “social 

capital”, and “political trust”. 

Cluster 2 (green) has 211 keywords and 27,107 links, with an average link 

strength of 103 and an average of 114 occurrences per keyword. The average 

publication year for this cluster is 2015, with an average of 13.1 citations per 

keyword. This cluster centres on the foundational aspects of security and trust in 

digital environments, highlighted by terms such as “security”, “trust 

management”, and “reputation”. 

Cluster 3 (dark blue) contains 173 keywords with 37,636 links, with an average 

link strength of 114 and an average of 117 occurrences per keyword. The average 

publication year for this cluster is 2014, with an average of 42.4 citations per 

keyword. This cluster pertains to the role of trust within psychological settings, 

emphasising “commitment”, “performance”, and “interpersonal trust”. 

Cluster 4 (yellow) includes 155 keywords and has 36,439 links, with an average 

link strength of 147 and an average of 150 occurrences per keyword. The average 

publication year for this cluster is 2015, with an average of 39.9 citations per 

keyword. It relates to the dynamics of e-commerce and customer satisfaction, 

with key terms including “model”, “satisfaction”, “e-commerce”, and “brand trust”. 

Cluster 5 (purple) contains 140 keywords with 27,213 links, with an average link 

strength of 98 and an average of 102 occurrences per keyword. The average 

publication year for this cluster is 2014, with an average of 31.1 citations per 

keyword. This cluster delves into the psychological and social bases of trust, 

featuring terms like “trustworthiness”, “cooperation”, and “trust game”. 

Cluster 6 (light blue) is the smallest, with 26 keywords and has a total of 1,723 

links, with an average link strength of 93 and an average of 100 occurrences per 

keyword. The average publication year for this cluster is 2011, with an average of 

19.4 citations per keyword. This cluster emphasises mathematical and 

optimisation techniques in trust modelling, focusing on “global convergence” and 

“trust region method”. 
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2.4 Discussion  

2.4.1  Growth of Production 

The exponential growth in trust-related publications since the early 1990s, as 

highlighted in our results, can be attributed to the digital revolution (Vakkari, 

2008) and the increasing complexity of societal interactions that necessitate a 

deeper understanding of trust dynamics(Khan et al., 2019; Leong et al., 2021; 

McKnight & Chervany, 2001; Sicari et al., 2015). This increase underscores trust's 

escalating academic and practical significance, especially in the context of rapid 

technological advancements and their implications for interpersonal and 

institutional trust. 

2.4.2  Top Papers Published 

Identifying the 20 most cited papers per year within the trust research domain 

offers critical insights for the network of trust research. By focusing on yearly 

citations, we have highlighted works that maintain relevance and impact over 

time, illustrating the relevance of trust research across various disciplines. This 

approach aligns with our objective to map out the field's current state and identify 

emergent trends and foundational works that have shaped the understanding of 

trust. 

Relating to RQ1, what are the key research trends and influential papers in trust 

research over the past century, the analysis reveals that influential papers span 

various domains, reflecting the evolution of trust research over time. Foundational 

works such as Graneheim and Lundman's (2004) and Nowell et al. (2017) focus 

on methodological trust, establishing robust frameworks for qualitative research 

and thematic analysis. These papers highlight the importance of methodological 

rigour in trust research, especially in qualitative contexts. In organisational 

psychology, Morgan and Hunt's (1994) commitment-trust theory and Mayer et al.'s 

(1995) integrative model of organisational trust are pivotal, reflecting early key 

trends in understanding trust dynamics within business and organisational 

settings. More recent influential papers, such as Ribeiro et al.'s (2016) on machine 

learning model predictions and Sicari et al.'s (2015) on trust in the Internet of 
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Things, underscore technology's growing relevance as a trust research theme. 

This shift illustrates how themes of trust research are expanding and evolving to 

address new challenges in technology and social capital. 

This analysis also provides information to RQ2 on how different academic 

disciplines have contributed to the field of trust research. The analysis shows 

diverse, highly cited papers from psychology, business, economics, computer 

science, and methodological studies. For instance, Graneheim and Lundman 

(2004) and Nowell et al., (2017) contribute from a methodological perspective, 

while Morgan & Hunt (1994) and Mayer et al. (1995) offer insights from 

organisational psychology. Ribeiro et al.'s (2016) work in computer science and 

Sicari et al.'s (2015) research in cybersecurity provide clear evidence of 

technology's impact on trust. 

Business is the most prominent area, with six high-citation papers underscoring 

trust's central role in business contexts. One paper represents business and e-

commerce. Computer Science also features four influential papers, indicating the 

growing intersection between trust and technology, which illustrates the 

expansion of trust research into online and electronic commerce environments. 

These research areas reflect the increasing importance of understanding trust in 

digital transactions and platforms. Psychology and economics each contribute two 

significant papers, one representing Psychology/Methods. Methods and 

nursing/methods contribute with two and one paper(s). The inclusion of nursing 

and methods in the dataset reflects the cross-disciplinary applications of trust 

research in ensuring methodological robustness. 

The top papers answer RQ3, how the most common themes in trust research 

evolved from 1922 to 2021 when focusing on the field's evolution. In the earliest 

papers, there is more research in business and psychology (Doney & Cannon, 

1997; Garbarino & Johnson, 1999; Gulati, 1995; Mayer et al., 1995; McAllister, 

1995; Morgan & Hunt, 1994). These findings suggest that the foundational 

understanding of trust was based on organisational psychology and business 

studies. When moving through work published in the 2000s, there is a shift in the 

research trends seeing a few business papers (Chaudhuri & Holbrook, 2001; D. J. 
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Kim et al., 2008), a paper on e-commerce (Pavlou, 2003) and papers on 

methodologies (Gosling et al., 2004; Graneheim & Lundman, 2004), and the start 

of papers from computer science with (Jøsang et al., 2007). During this middle 

period, we see a more diverse sample of papers and the emergence of new 

research areas. The newest papers come mainly from methods attempting to 

develop trustworthy qualitative research (Birt et al., 2016; Elo et al., 2014; Nowell 

et al., 2017), computer science (Ribeiro et al., 2016; Sicari et al., 2015) and 

economics (Lins et al., 2017). These papers highlight a broadening scope in trust 

research, expanding from its roots in business and psychology to incorporate 

various disciplines. Computer science is becoming more involved, reflecting the 

field's evolving complexity and interdisciplinary nature. 

Overall, the distribution of top papers illustrates trust research's interdisciplinary 

nature and how it has developed over time. The analysis highlights how different 

academic fields contribute unique perspectives and methodologies to studying 

trust. It also reflects the growing importance of trust in various contexts, from 

traditional business and psychological studies to emerging areas in technology and 

e-commerce. As the scientific landscape of trust research becomes more varied 

and complex, it becomes critical to ensure multidisciplinary collaboration across 

these fields to allow for thorough understanding and appropriate trust testing.  

2.4.3  Source Publishing 

The historical development of trust research reveals key trends and 

interdisciplinary contributions, aligning with the three research questions. Early 

research focused on legal and psychological aspects, with influential papers from 

the Yale Law Journal (1939) and Psychological Reports (1991). The field 

diversified in the 21st century to include business ethics, economic behaviour, and 

social sciences, with significant contributions from journals like the Journal of 

Business Ethics (2011), Journal of Economic Behaviour & Organization (2012), and 

Social Science & Medicine (2012). Recent trends highlight technologically driven 

research, with journals like Computers in Human Behaviour (2016), IEEE Access 

(2019), and Plos One (2017) emphasising digital trust. This evolution underscores 

the expanding scope of trust research, reflecting interdisciplinary collaboration and 

shifting themes from foundational legal and psychological concepts to complex 
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modern contexts, addressing themes like digital trust, cybersecurity, and 

environmental considerations.  

The analysis reveals several key trends in trust research over the past century, 

addressing RQ1. Cluster 1 (Red), associated with social sciences, highlights 

foundational research in public health, psychology, and political science. Influential 

sources like the “Psychological Bulletin”, which has been significant since 1991, 

illustrate the impact of psychological and societal perspectives on trust. Cluster 2 

(Green) focuses on business and management, with influential journals like the 

“Journal of Marketing” and recent sources such as “Sustainable Production and 

Consumption” (2021), reflecting the integration of trust with commercial and 

technological advancements. Cluster 4 (Yellow) centres on information systems 

and computing, where journals like “IEEE Transactions on Network Science and 

Engineering” underscore modern cybersecurity and digital trust research. 

Additionally, Cluster 5 (Purple) encompasses mathematical and computational 

disciplines, with sources like the “SIAM Journal on Numerical Analysis” (1993) and 

“Mathematical Problems in Engineering” (2017) highlighting the application of 

mathematical methods to trust research. Cluster 6 (Light Blue) focuses on applied 

science and engineering, with journals like the “International Journal of Industrial 

Ergonomics” (2009) and “Frontiers in Robotics and AI” (2020), reflecting trust's 

role in ergonomics, robotics, and transportation systems. Cluster 7 (Orange), with 

its legal orientation, features historically significant sources such as the “Yale Law 

Journal” (1939) and newer entries like “Trusts & Trustees” (2014), showcasing the 

evolving role of trust within legal frameworks. 

Addressing RQ2, our current study highlights the contributions of various 

academic disciplines to trust research. Cluster 1 (Red) shows the impact of social 

sciences, focusing on trust in public health, psychology, and political science. 

Cluster 2 (Green) illustrates the business and management field's contributions 

with research on marketing, information systems, and technology. Cluster 4 

(Yellow) demonstrates the importance of information systems and computing, 

particularly in cybersecurity and digital trust. Cluster 5 (Purple) reflects the 

application of mathematical and computational methods to trust research, 

highlighting its significance in optimisation and numerical analysis. Finally, Cluster 
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6 (Light Blue) showcases the role of applied science and engineering, emphasising 

trust in ergonomics, robotics, and transportation systems. Cluster 7 (Orange) 

reveals how legal studies contribute to understanding trust within legal contexts. 

For RQ3, the evolution of trust research themes from 1922 to 2021 is evident 

through sources' historical and contemporary significance across clusters. Older 

influential sources, such as the “Yale Law Journal” (1939) and the “Journal of 

Psychology” (1990), indicate the foundational research in legal and management 

contexts. The emergence of newer publications like “Healthcare” (2021) and “IEEE 

Transactions on Network Science and Engineering” (2021) reflects contemporary 

shifts towards new research areas, such as healthcare and digital networks. 

Cluster 5 (Purple) and Cluster 6 (Light Blue) highlight how themes in 

mathematical, computational, and applied sciences have evolved, with recent 

developments in these fields addressing new challenges in trust. This evolution 

demonstrates how trust research has expanded over time, incorporating diverse 

disciplinary insights and adapting to societal and technological changes.  

The significant output and TLS of journals like “IEEE Access” and “Plos One” 

underscore the increased attention towards interdisciplinary work, particularly at 

the intersection of technology and trust (Cannizzaro et al., 2020; Srikanth et al., 

2022; Zloteanu et al., 2018). This observation is particularly relevant given the 

challenges and necessity of transcending disciplinary boundaries to understand 

trust fully.  

These findings present a rich and dynamic view of trust research, with significant 

contributions from various disciplines, influential historical journals, and evolving 

themes that reflect longstanding interests and emerging trends in understanding 

trust. 

2.4.4  Keyword Co-occurrence in Trust Research 

The keyword co-occurrence analysis, focusing on trust research from 1990 

onwards, reveals trust studies' complexity and multidisciplinary nature. The 

prevalence of keywords such as 'model', 'performance', and 'security' underscores 
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the foundational role of trust in diverse academic investigations, from theoretical 

modelling and organisational performance to security in digital environments.  

The analysis highlights several key trends in trust research addressing RQ1, mainly 

the increasing focus on digital and e-commerce contexts. Cluster 2, which centres 

on digital trust and security with keywords like “security”, “trust management”, 

and “reputation”, has seen significant growth in recent years, reflecting the rising 

importance of trust in digital environments. This cluster's recent average 

publication year (2015) and relatively high keyword occurrence underscore its 

contemporary relevance. The lower average citation count (13.1) suggests that 

while this area is expanding rapidly, it is still in the development phase, with 

influential papers emerging as the field matures. 

Cluster 4, focusing on e-commerce and customer satisfaction, includes terms such 

as “model”, “satisfaction”, “e-commerce”, and “brand trust”. This cluster, with its 

average publication year of 2015 and a high average citation count of 39.9, 

indicates a well-established and influential body of research. The strong emphasis 

on consumer trust in digital transactions reflects the importance of trust in the 

burgeoning e-commerce sector. The significant citation count suggests that 

foundational papers in this area have substantially shaped the understanding of 

trust in online environments. 

In contrast, Clusters 3 and 5, which deal with the psychological aspects of trust 

and its social and psychological foundations, show a more mature body of 

research. Cluster 3, with keywords like “commitment”, “performance”, and 

“interpersonal trust”, has a high average citation count (42.4), pointing to its 

influential contributions to understanding the psychological dimensions of trust. 

Cluster 5, focusing on terms such as “trustworthiness”, “cooperation”, and “trust 

game”, also demonstrates a robust body of work with a substantial average 

citation count (31.1). These clusters reveal that foundational psychological and 

social research continues to be highly relevant and impactful. 

The diverse clusters reflect the broad interdisciplinary nature of trust research and 

address RQ2. Cluster 1, which addresses social and political dimensions with 



 

 

78 | P a g e  
 

keywords such as “perceptions”, “attitudes”, and “political trust”, highlights 

contributions from social and political sciences. This cluster's average publication 

year of 2014 and significant citation count (24.3) indicate a well-developed area of 

research that integrates insights from various social science perspectives. 

Cluster 6, with its focus on mathematical and optimisation techniques (e.g., 

“global convergence” and “trust region method”), showcases the contribution of 

quantitative and computational disciplines to trust research. Despite being the 

smallest cluster with only 26 keywords, its specialised focus on mathematical 

models represents a critical area of research for developing and refining trust 

algorithms. The average citation count of 19.4 reflects its niche influence in the 

field. 

Finally, we can address RQ3 through the thematic evolution in trust research, 

which reveals a shift from foundational psychological and social studies to a focus 

on digital and e-commerce contexts. Earlier research, as represented by Clusters 1 

and 3, laid the groundwork for understanding trust in social and psychological 

settings. Over time, the field has expanded to address emerging challenges 

related to digital environments and online transactions, as seen in Clusters 2 and 

4. 

This progression highlights how trust research adapts to technological and societal 

changes. The increasing importance of digital trust mechanisms and consumer 

satisfaction in e-commerce reflects broader trends in technology and market 

behaviour. The continued relevance of psychological and social studies 

underscores the enduring significance of understanding trust's fundamental 

aspects, even as new contexts emerge. 

The keyword co-occurrence analysis reveals a dynamic and evolving field of trust 

research, with significant contributions from various disciplines and a clear shift 

towards addressing contemporary challenges in digital and e-commerce contexts. 

Future research should continue to explore these emerging themes and refine our 

understanding of trust in an increasingly complex world. 
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In summary, we can determine that many research areas use the term trust, and 

the presence of more distinct clusters suggests that some research areas may 

have limited interaction, leading to the misuse of the term trust or the 

misapplication of other methods. By mapping the thematic clusters and their 

interconnections, this analysis provides insights into the current landscape of trust 

studies and underscores the necessity of integrating perspectives from various 

disciplines to tackle the complex phenomena of trust.  

2.4.5  Limitations and Future Work 

Despite its comprehensive scope, this bibliometric analysis is subject to several 

limitations that suggest directions for future research. First, the focus on 

documents indexed in the Web of Science may have excluded relevant literature 

from other databases or publications unavailable in English, potentially limiting the 

complete representation of trust research. Future studies could expand the 

analysis to include multiple databases and languages to capture a more global 

perspective on trust research. Secondly, the reliance on keyword co-occurrence 

and citation metrics may not fully capture the nuances of interdisciplinary 

connections and the depth of trust research themes. Qualitative analyses, such as 

systematic literature reviews or expert interviews, could complement bibliometric 

methods to provide deeper insights into the conceptual and theoretical 

developments within the field. Thirdly, the analysis was limited to documents up 

to December 4, 2021, so recent developments and emerging trends in trust 

research may not be fully captured. Ongoing bibliometric analyses are necessary 

to keep pace with the evolving landscape of trust research. 

Future work should also explore the practical applications of trust research in 

policymaking, organisational practices, and technology development. 

Understanding how trust research translates into practical strategies and 

interventions could significantly benefit practitioners, policymakers, and 

researchers alike.  
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2.4.6  Conclusions 

The comprehensive bibliometric analysis of trust research spanning various 

academic disciplines and timeframes offers several critical insights. Firstly, the 

exponential growth in trust-related publications since the early 1990s is a 

testament to the increasing complexity of societal interactions and the digital 

revolution. This growth highlights trust's escalating academic and practical 

significance, particularly in the context of rapid technological advancements and 

their implications for interpersonal and institutional trust. 

Our examination of the most cited papers provides a clear picture of trust 

research's foundational and emerging themes. Foundational works in 

organisational psychology and methodological studies have laid the groundwork 

for understanding trust dynamics in business and qualitative research settings. 

Meanwhile, recent influential papers focusing on technology, such as those 

addressing machine learning model predictions and trust in the Internet of Things, 

underscore the growing relevance of trust in digital and technological contexts. 

The diverse contributions from various academic disciplines, as evidenced by the 

citation analysis, demonstrate the interdisciplinary nature of trust research. 

Business and management studies emerge as prominent areas, reflecting the 

critical role of trust in commercial interactions and organisational behaviour. The 

significant presence of computer science publications indicates a robust 

intersection between trust and technology, particularly in digital security and trust 

management systems. 

The evolution of trust research themes from 1922 to 2021 shows a clear 

progression from foundational studies in business and psychology to more 

contemporary investigations into digital trust and e-commerce. This thematic shift 

underscores how trust research adapts to technological and societal changes, 

reflecting broader trends in market behaviour and the increasing importance of 

digital transactions. 

The keyword co-occurrence analysis further emphasises trust research's dynamic 

and evolving nature. Clusters focusing on digital trust, e-commerce, psychological 
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aspects, and mathematical modelling of trust reveal the diverse and 

interdisciplinary approaches to understanding trust. The apparent shift towards 

addressing contemporary challenges in digital environments and online 

transactions indicates the field's responsiveness to emerging issues. 

Overall, the term “trust” is utilised across a myriad of research areas, and the 

presence of distinct clusters suggests that some research domains may have 

limited interaction. This segmentation can lead to the misuse of the term or 

misapplication of methods. Therefore, it is crucial to integrate perspectives from 

various disciplines to tackle the complex phenomena of trust comprehensively. 

This integration will ensure a complete understanding and appropriate application 

of trust-related concepts and methods across different fields. As trust research 

continues to evolve, fostering multidisciplinary collaboration to address the 

increasing complexity of trust in both traditional and digital contexts will be 

essential. 

In summary, this bibliometric analysis of trust research highlights the field's 

evolution from foundational theories in psychology and business to modern 

applications in technology and security. These insights underscore the value of a 

multidisciplinary approach, setting the stage for a more comprehensive 

investigation of trust in the experimental chapters. Moving forward, the thesis will 

transition to examining trust empirically, exploring its application and 

measurement across HATs. Chapter 3 will leverage the theoretical foundation and 

interdisciplinary insights presented here, focusing on how trust is operationalised 

and measured within the unique landscape of human and AI teammate 

interactions. By examining these factors experimentally, this thesis aims to 

contribute to the theoretical discourse on trust and its practical applications in 

emerging technological environments. 
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Chapter 3 Understanding the Impact of 
Anthropomorphism and System Reliability on 

Trust and Performance in Human-Artificial 
Intelligence Teams 

With the rapid advancement of AItechnologies, AI systems are increasingly 

integrated into collaborative environments across various fields, from healthcare to 

digital forensics. This integration is about enhancing technical capabilities and 

creating effective HATs, where AI systems support human decision-making while 

maintaining essential human agency. In HATs, trust is pivotal in determining 

whether humans will accept or override AI suggestions. However, trust is shaped 

by complex factors, including AI system reliability and the extent to which AI 

exhibits anthropomorphic qualities, human-like characteristics that can foster 

intuitive interactions and relational warmth. 

In Chapter 3, we begin the first of three experimental chapters. Building on the 

interdisciplinary foundation established in Chapter 2, this chapter delves into the 

experimental investigation of trust dynamics in HATs by examining two critical 

design factors: anthropomorphism and system reliability. Specifically, this study 

explores how these elements influence participants’ trust, performance 

evaluations, and confidence in decision-making tasks. Anthropomorphism is 

posited to facilitate smoother human-AI interaction by bridging cognitive and 

emotional gaps, potentially increasing trust even when AI reliability is low. 

Conversely, system reliability, which affects how consistently and accurately AI 

can support human tasks, remains essential for establishing a dependable 

collaboration baseline. 

Through an experimental design, this chapter aims to explain how 

anthropomorphic design in written text, such as warmth in responses and varying 

AI reliability levels, influences team dynamics in HATs. The study’s findings 

address gaps in the existing literature by providing nuanced insights into how 

anthropomorphism and reliability interact to shape trust calibration, AI 

performance perceptions, and human teammates' confidence. The results 

contribute to theoretical models of trust and offer practical guidance for designing 
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AI systems that are both technically effective and attuned to human social 

expectations. This work was published at AAAI23 as an Extended Abstract (Bailey 

& Pollick, 2023) and presented in full at Multidisciplinary Perspectives on Human-

AI Team Trust at HHAI23.  

3.1 Introduction 

As AI technology rapidly advances, AI systems are becoming vital across various 

sectors, enhancing decision-making in fields such as digital forensics, healthcare, 

and finance. With increasing complexity and high stakes in these areas, HATs 

have emerged to harness the collective intelligence of humans and AI. AI systems 

offer data-driven recommendations in these teams, while humans retain final 

decision-making authority, ensuring that essential human agency is preserved. 

Research has explored how AI systems can enhance human decision-making and 

team performance. For instance, recent algorithms have optimised task 

assignments based on the complementary strengths of humans and AI, improving 

task allocation across team members (Kerrigan et al., 2021; Rodgers et al., 2023; 

Steyvers et al., 2022; Wilder et al., 2020). However, while these advancements 

are promising, most design guidelines currently emphasise single-user 

interactions, often overlooking the nuanced dynamics present in collaborative 

HATs where trust and relational dynamics play crucial roles (Rix, 2022). 

Consequently, how AI and human collaboration influence team dynamics and 

affect trust towards AI within these unique roles remains underexplored. This 

chapter introduces key literature in AI and psychology, establishing a foundation 

for the research questions driving this study. 

3.1.1  Team Trust in Organisational Psychology and HATs 

In organisational psychology, trust is considered fundamental to effective 

collaboration and conflict resolution (Costa et al., 2018). Similarly, trust in HATs is 

foundational yet involves additional complexities due to the integration of AI as a 

team member. Trust within a team facilitates open communication and mutual 

respect, fostering an environment where members feel secure enough to share 

ideas and resolve disagreements collectively (Jehn, 1995; Mayer et al., 1995). 
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Trust, in turn, leads to stronger team cohesion, enhanced creativity, and greater 

productivity, as team members are more likely to support each other's efforts and 

work toward shared goals (Barczak et al., 2010).  

3.1.2  Importance of Trust in HATs  

A critical factor for the success of HATs is trust, specifically, whether humans will 

rely on or choose to override AI recommendations. As noted in Chapter Two, 

there are cross-disciplinary differences when discussing and measuring trust in 

HATs, so we must define trust (Ulfert et al., 2023). Trust in this context can be 

defined as a user’s willingness to be vulnerable by accepting AI’s suggestions in 

the presence of some level of uncertainty or risk (Glikson & Woolley, 2020; Hoff & 

Bashir, 2015; Rousseau et al., 1998). However, establishing trust in AI is a 

complex challenge, distinct from trust among human teammates. In HATs, trust 

must be calibrated carefully to balance reliance on AI with the appropriate level of 

scepticism to ensure accuracy in decision-making. 

The concept of calibrated trust, the ability to gauge when to trust AI 

recommendations, requires that users understand the limitations of AI and the 

likelihood of errors (de Visser et al., 2016). In HATs, trust operates on two levels: 

interpersonal trust and system trust (Lewicki & Bunker, 1996; Rotter, 1980). 

Interpersonal trust involves human acceptance of AI as a teammate, which 

requires transparency and responsiveness from AI to foster dependability (Jacovi 

et al., 2021; Schmidt et al., 2020). Conversely, system trust centres on confidence 

in the AI's technical reliability, encompassing its algorithms, data integrity, and 

ethical standards (Cabiddu et al., 2022; Shin & Park, 2019). When team members 

are assured that the AI is fair and reliable, they are more likely to incorporate its 

recommendations. 

A robust level of system trust requires clear communication about the AI's 

capabilities and limitations and transparency about how the system reaches its 

conclusions (Felzmann et al., 2019; Schmidt et al., 2020). When team members 

are assured that the AI is accurate but also fair and reliable, they may be more 

likely to incorporate its recommendations into their decision-making.  
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Several key technical factors, including system reliability, transparency, and 

predictability influence trust in AI.  For AI systems to gain consistent trust, they 

must exhibit clear boundaries for error, transparent explanations of decisions, and 

adaptive behaviour that aligns with human cognitive expectations (Bansal et al., 

2019). Studies show that incorporating transparency and reliability into AI design 

enhances user confidence and supports effective decision-making (Felzmann et 

al., 2019; Schmidt et al., 2020; Shin & Park, 2019; von Eschenbach, 2021). 

Building on this, maintaining compatibility between AI updates and user 

experiences is crucial for preserving trust and optimising team performance. While 

updates can improve AI accuracy, they may also disrupt user trust if they lead to 

unexpected changes in the AI's behaviour (Bansal et al., 2019). Several studies 

have explored how trust in AI develops and affects users' reliance on AI 

recommendations. For example, discrepancies between stated and observed AI 

accuracy influence trust, and high accuracy alone does not necessarily make an AI 

system the best teammate (Bansal et al., 2021; Yin et al., 2019). Additional 

factors, such as user confidence in the AI and the transparency of its explanations, 

play a significant role in shaping trust and overall performance in HATs (Bansal et 

al., 2021; Yang et al., 2020; Zhang et al., 2020). These insights underscoring the 

importance of designing AI systems that perform well, foster and sustain user 

trust over time, and show that these design choices must be actively built into AI 

systems.  

3.1.3  AI Teammates 

AI systems in HATs complement human decision-making and create distinct team 

dynamics due to their perceived role and limitations. Studies indicate that humans 

interact differently with AI teammates compared to human counterparts, often 

ascribing unique motives and value systems to AI. For example, in defensive team 

games, participants were more likely to sacrifice AI teammates over human 

teammates, citing a “best outcome” for saving AI but “protecting the teammate” 

for saving humans (Ong et al., 2012). This reveals underlying human biases that 

may affect team cohesion and decision-making in HATs. Furthermore, research 

indicates that AI teammates frequently receive undue blame for team failures, a 

trend reflecting existing hesitancy to trust or hold AI to human responsibility 
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standards fully (Merritt et al., 2011). These findings suggest that biases may affect 

team cohesion, underscoring the need for a socio-technical approach that 

considers social factors like trust and communication and technical factors like 

reliability and transparency. 

Finally, Berretta et al. (2023) conducted a scoping review highlighting the 

necessity for a human-centric approach to HATs. The review emphasises the 

importance of a socio-technical approach to facilitate the development of AI from 

a mere tool to a true teammate. A socio-technical approach to HATs considers 

social and technical aspects to optimise collaboration between humans and AI 

systems. This approach involves designing AI as a tool and a responsive, 

adaptable teammate that aligns with human relational and cognitive needs. By 

addressing social factors like trust, communication, and team roles alongside 

technical factors such as reliability, transparency, and system integrity, a socio-

technical approach aims to create HATs where AI and humans interact cohesively.  

In this context, anthropomorphism is critical as it makes AI more relatable to 

human teammates, enhancing trust by aligning AI’s behaviour with human 

cognitive and social frameworks. Similarly, SI in AI could further strengthen AI’s 

integration by enabling the system to exhibit socially aware behaviours and align 

more closely with human expectations. 

3.1.4  Role of Anthropomorphism in Humanising AI 

Anthropomorphism, the attribution of human-like characteristics to AI, can be a 

design strategy used to bridge the cognitive and emotional gap between humans 

and machines, making AI appear as a more intuitive and relatable team member 

(Duffy, 2003). Researchers suggest that anthropomorphic design, such as giving 

AI a familiar appearance or enabling it to communicate empathetically, can 

enhance interpersonal trust in HATs (Gambino et al., 2020; Chen & Park, 2021; de 

Visser et al., 2016; Nass et al., 1996).  

Anthropomorphic elements in AI may include conversational styles, empathy, or 

visual characteristics, creating an experience closer to working with a human 

teammate (Glikson & Woolley, 2020; Steyvers et al., 2022; Westby & Riedl, 2023). 
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By simulating aspects of human communication, anthropomorphised AI can create 

a sense of familiarity and emotional connection, making it easier for human 

teammates to engage with and rely on the AI (Li & Sung, 2021; Song & Shin, 

2024; Zhang & Rau, 2022).  

While Anthropomorphism has demonstrated success in fostering the perception of 

AI as human-like, it is not without its constraints, notably the Uncanny Valley 

phenomenon, which can induce discomfort and mistrust when non-human entities 

exhibit overly human-like traits (Mori et al., 2012; Weisman & Peña, 2021). 

Challenges also arise from anthropomorphic priming and generalisation, where 

users may extend anthropomorphic traits to non-anthropomorphised AI based on 

previous interactions (Dacey & Coane, 2023; Zanatto et al., 2016). Consequently, 

comprehensive investigations into how Anthropomorphism impacts dynamics 

during the formation of HATs assume critical importance. 

3.1.5  Social Intelligence in AI  

SI, the capacity to exhibit socially aware and contextually appropriate behaviour, 

could be a key area of anthropomorphic AI design. Effective SI enables AI to 

respond to social cues, enhancing its integration within HATs and facilitating 

smoother interactions. SI traces back to 1920, originating with Thorndike's SI 

classification, positing three types: abstract, mechanical, and social (Thorndike, 

1920). The most widely recognised definition is from Vernon (1933), 

encapsulating it as the “ability to get along with people in general, social 

technique or ease in society, knowledge of social matters, susceptibility to stimuli 

from other members of a group, as well as insight into the temporary moods or 

underlying personality traits of strangers” (p. 44). Presently, differing theories 

persist regarding the accurate definition and measurement of SI (Weis & Süß, 

2005), but a consensus generally divides SI into five core categories: social 

understanding, social memory, social perception, social creativity, and social 

knowledge (Kihlstrom & Cantor, 2000). 

The development of AI that demonstrates SI presents challenges due to its 

inherently human-centric nature, emphasising the capacity to engage with 

humans in a manner that mirrors human-human interactions. Another intricate 
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facet of SI is its context-sensitive character. Humans typically possess a well-

developed grasp of appropriateness, exemplified by behaviours like refraining from 

laughter during serious occasions. They may not react favourably to a humorous 

AI in a serious context (Syrdal et al., 2006). AI's deficiency in social judgment 

could lead to heightened scrutiny of its performance by human agents, especially 

compared to their human counterparts' performance. Previous research suggests 

that SI in AI can influence trust calibration (Williams et al., 2022).  

3.1.6  Aims of Study 

While extensive research has explored anthropomorphism and trust in HATs, there 

are significant gaps, particularly in understanding how anthropomorphism 

interacts with reliability to influence trust, performance, and team dynamics. 

Existing studies often emphasise isolated factors like system reliability or single-

user trust. However, the interplay between anthropomorphic elements and system 

performance within collaborative HATs remains underexplored. 

This study addresses these gaps by investigating the combined effects of AI 

anthropomorphism and system reliability on trust and performance within HATs. 

This study manipulates anthropomorphism and reliability through an experimental 

design to assess their impact on trust calibration, performance perceptions, and 

team confidence. The following research questions guide this investigation: 

H1: Higher levels of anthropomorphism and reliability will jointly predict higher 

task performance. 

H2: There will be a significant interaction between anthropomorphism and system 

reliability, such that anthropomorphic AI will elicit higher trust ratings than non-

anthropomorphic AI under low-reliability conditions; however, this effect will be 

attenuated or absent under high-reliability conditions. 

H3: Participants will perceive anthropomorphic AI to exhibit higher performance 

than non-anthropomorphic AI, despite reliability level. 
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H4: Participants will perceive human teammate performance to increase alongside 

AI performance. 

H5: Participants will report higher confidence in team decision-making when 

collaborating with anthropomorphic AI compared to non-anthropomorphic AI, 

particularly under low-reliability conditions. 

3.2 Methodology 

3.2.1  Participants 

There were 44 participants in the experiment, 11 in each condition. Participants 

were all recruited through the University participant pool and received £6 per hour 

for participation. Of the group, 16 were male, 25 were female, 2 were non-binary, 

and one participant declined to answer. There were 39 full-time students (masters 

level or lower), 3 PhD students, one library assistant and one participant who 

declined to answer. Participants were all 18-37 (M = 23.81, SD= 3.95). 

3.2.2  Study Design 

To investigate the impact of AI humanness and reliability on human trust and 

decision-making, we implemented a 2x2 between-subjects design to explore the 

effects of AI humanness and reliability on task performance and trust in AI 

teammates. The response stimuli were predesigned for human and AI teammates 

using a Wizard of Oz design to allow complete control over the variables. The key 

variables were 'Humanness' and 'Reliability,' each with two levels: High (60%) and 

Low (30%).  

The experimental setup involved pre-written responses displayed via PsychoPy 

(Peirce et al., 2019) to simulate AI interactions. In the high humanness condition, 

an AI named “Pixie” provided warm and engaging responses, whereas the low 

humanness AI provided technical, straightforward answers (Wiethof et al., 2021). 

For high reliability, the AI accuracy was set at 90%. For low reliability, AI accuracy 

was set at 60%. The human teammate consistently provided correct answers for 

30% of the trials. The human teammate consistently provided correct answers for 

30% of the queries. There were four distinct conditions, and participants were 
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assigned to only one condition: High Humanness with High Reliability (HH: HR), 

High Humanness with Low Reliability (HH: LR), Low Humanness with High 

Reliability (LH: HR) or Low Humanness with Low Reliability (LH: LR). 

The task spanned three blocks, with each block comprising ten trials, resulting in a 

total of 30 different location identifications. After each trial (3x10, n=30), the 

correct answers were provided so participants could track the performance of the 

AI and human teammate. This feature was essential, as most participants would 

not possess knowledge of the correct answer. Without this feature, they would 

have been unable to track the performance of the AI and human teammates 

throughout the experiment. The order of the trials was randomised throughout. 

Participants' trust and reliance on their teammates were collected on every trial, 

providing comprehensive data on human-AI collaboration dynamics under varying 

humanness and reliability conditions. We collected 1144 confidence ratings, 1135 

influence ratings, 1143 AI performance ratings and 1145 human performance 

ratings. The study received full ethical clearance from the MVLS Ethics Committee 

(application: 200210219) at the University of Glasgow.  

3.2.3  Materials 

3.2.3.1  Developing Response Stimuli 

For crafting responses for the high humanness AI and the human teammate, we 

drew inspiration from the work of Mehta et al., (2016), who examined how 

experts and non-experts identified locations in Geoguessr. Mehta et al., 

(2016)identified nine knowledge sources employed in this process, including 

architecture, languages, driving rules, sun positioning, animals, building signs, 

road signs, telecommunications, signage, and landmarks. Additionally, the process 

typically followed a hierarchical approach, commencing with identifying the 

continent before progressing to the country and narrowing down to a more 

specific location; we adhered to this methodology in the written responses. 

In the low humanness group, the AI was introduced as a technically focused AI 

that directly stated the answer. Conversely, in the high humanness conditions, the 

AI introduced itself, adopting the name 'Pixie,' and expressed enthusiasm about 
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being a teammate, a technique shown to enhance perceptions of humanness 

(Wiethof et al., 2021). Moreover, in the high humanness conditions, the AI's 

responses closely mirrored those of the human teammate, adopting an 

anthropomorphic writing style. The AI needed to convey a sense of 'warmth' in its 

responses.  

To verify that this was successful, we asked participants if they believed the AI 

responses to be AI-generated and human responses to be human. Overall, 93% 

believed the AI to be AI, and 81% believed the human to be human. These results 

demonstrate that our Wizard of Oz methodology was implemented successfully, 

and participants believed they were working with an AI and a human teammate.  

3.2.3.2  Decision-Making Task 

Participants engaged in a location identification task, which involved determining 

the geographical location of a screenshot from Google Earth. This task required 

specifying the screenshot's continent, country, and city/state, a scenario designed 

to simulate complex decision-making aided by AI. Participants acted as team 

leaders, making the final decision with assistance from both a human and an AI 

teammate.  

Figure 6 is an example of the experimental setup. Lastly, we imposed a time 

constraint of 90 seconds per trial. The introduction of time scarcity as an 

environmental factor can significantly impact the outcomes of team tasks, often 

necessitating rapid decision-making (Hu et al., 2015; Kelly & Karau, 1999). This 

constraint could increase reliance on AI, as it compelled human teammates to 

make choices based on their implicit attitudes rather than thoroughly deliberating 

on the task. To accentuate this factor, we ensured that the human and AI 

teammates primarily provided different answers, requiring participants to choose 

which teammate they trusted the most. This setup aimed to mimic real-world 

scenarios where rapid decision-making is often necessary, potentially increasing 

reliance on AI. The task was designed to be difficult for the participants so we 

could assess the impacts of reliability and humanness under a high cognitive load. 
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Figure 6. The interface presents the responses from both the AI and Human 
teammates. In this example, AI operates within a low humanness condition. In 

the experiment, the pictures were taken from Google Maps, but we used a 
personal photo to avoid copyright issues in this example. 

3.2.3.3  Questionnaires  

The Propensity to Trust Machines (PtTM) (Merritt et al., 2013): A series of 6 

questions where participants rated on a 7-point Likert scale how likely they are to 

trust machines. 

The Godspeed Questionnaire (Bartneck et al., 2009): Assess human 

perceptions of AI across five dimensions: anthropomorphism, animacy, 

likeability,perceived intelligence, and perceived safety. Each dimension is rated 

using a set of bipolar scales (e.g., from “very human-like” to “not human-like at 

all”) on a 5- or 7-point Likert scale. Using disembodied AI, we removed the 

animacy and perceived safety sub-section and replaced the term 'robot' with 'AI' 

(Supplementary Material 1). 

Questions During Each Trial: During each task trial, participants rated which 

teammate had influenced their decision-making on a visual analogue scale (Sung 

& Wu, 2018) with two endpoints, 'Human' and 'AI'. When participants selected 

'Human,' it was assigned a value of 0; if they chose 'AI,' the value was 100. 

Participants had the freedom to click anywhere along the scale. For instance, if 
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their influence leaned slightly more towards AI than human teammates, they 

might press the scale at around 60. This influence rating served as an implicit 

measure of trust (Duffy, 2015; McAllister et al., 2006), with more significant 

influence indicating higher levels of trust. This implementation is applied to all 

sliders on the experimental interface. Participants also provided performance 

ratings for the AI and human teammates with two anchoring points of 'Terrible' 

and 'Perfect' after each trial. Finally, participants also rated their confidence in 

their answer, with the anchoring points of 'Not At All' and 'Completely'. 

3.2.4  Procedure 

Participants were instructed to sit at a computer-equipped table. They were 

provided with an information sheet explaining the experiment's premise, alongside 

a consent form to sign if they found the provided information acceptable. Once 

the consent form was signed, participants completed the PtTM Questionnaire 

(Merritt et al., 2013).  

Following this, participants familiarised themselves with the experiment's 

instructions, which were all displayed throughout the experiment setup to ensure 

consistency across all participants. They then engaged in a sample trial. The task 

entailed participants identifying the location of a screenshot from Google Earth by 

specifying the Continent, Country, and City/State of the screenshot.  Participants 

were designated as team leaders and were tasked with providing the final decision 

regarding the location. To assist them in this task, they collaborated with a human 

teammate and an AI teammate, both of whom offered answers to aid the 

participant in pinpointing the location. At the end of each trial, participants filled in 

the four sliders and were then shown the correct answer. 

The task spanned three blocks, with each block comprising ten trials, resulting in a 

total of 30 different location identifications made throughout the study. Between 

each block, there was a 60-second break. Once the experiment was finished, 

participants completed the Godspeed Questionnaire (Bartneck et al., 2009), and 

we removed the Animacy section as our AI had no embodiment. Participants were 

also asked how much they trust the AI. Finally, participants were asked to 

determine whether they believed their AI teammate was genuinely an AI and 
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whether their human teammate was indeed a human. After this, participants were 

provided with a physical debrief explaining the experiment, including using a 

Wizard of Oz design, which had contact information for the researcher if 

participants decided to withdraw after the experiment.  

3.2.5 Developing Linear Mixed Model for Analysis  

To perform this analysis on the sliders taken on every trial, we utilised linear 

mixed models (LMMs) using the lme4 in R-Studio (Bates et al., 2015). The model 

incorporated the following measures: AI performance, human performance, 

confidence ratings, and influence ratings. To extract p-values, we used t-tests and 

Satterthwaite's method, which was suitable for the 2x2 design. When developing 

the model we did implement trial as a random effect but found it had little 

variance and reduced the fit of the model.  

A linear mixed model extends the traditional linear regression model that accounts 

for fixed and random effects (Barr, 2013). This modelling approach is used as 

there is variability at different levels of analysis. In the model, we need to identify 

two distinct effects, these are: 

Fixed Effects: These represent the systematic, predictable relationships between 

predictors (reliability and humanness) and the response variable (AI performance, 

human performance, trust and confidence ratings).  

Random Effects: These capture the variability that arises from different levels of 

grouping or clustering in the data. 

3.2.5.1 Model Specification 

To analyse the impact of reliability and humanness on performance across 

different measures, we utilised the following linear mixed model: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑟𝑒𝑙𝑖 + 𝛽2ℎ𝑢𝑚𝑖 + 𝛽3(𝑟𝑒𝑙𝑖 × ℎ𝑢𝑚𝑖) + 𝑢0𝑗 + 𝑒𝑖𝑗    

In this model, this is the breakdown of each component: 
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• 𝑦𝑖𝑗 Is the response variable for the 𝑖th observation of the 𝑗th participant. 

• 𝛽0 is the intercept. 

• 𝛽1𝑟𝑒𝑙𝑖 is the coefficient for the fixed effect of reliability. 

• 𝛽2ℎ𝑢𝑚𝑖 is the coefficient for the fixed effect of humanness. 

• 𝛽3(𝑟𝑒𝑙𝑖 × ℎ𝑢𝑚𝑖) is the coefficient for the interaction between Reliability and 

Humanness. 

• 𝑢0𝑗 represents the random effect for participant 𝑗, which accounts for the 

variation in the intercept across participants. 

• 𝑒𝑖𝑗 is the residual error term for the 𝑖th observation of the 𝑗th participant. 

3.2.5.2  Post-Hoc Analysis 

We conducted post hoc analyses using estimated marginal means with the 

emmeans package (Lenth, 2024). We applied Tukey’s method for multiple 

comparisons to control the family-wise error rate and discover more about the 

different interactions between conditions. We used Kenward-Roger method for 

degrees of freedom. 

3.3 Results 

3.3.1  Condition Performance  

Across conditions, performance did differ; to assess performance, we focused on 

the number of correct answers submitted by the participant. We expected to see a 

difference between reliability. However, we also found a difference in humanness 

Figure 7 presents the differences. For performance on the location task, the 

percentage of correct answers given were HH & HR, 69%, HH & LR, 54%, LH & 

HR, 73% and LH & LR, 46%. 
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Figure 7. A bar plot illustrating the percentage of correct responses across 
reliability and humanness.  

Percentages of correct answers were used to ensure comparability across 

participants, as they account for any variations in the number of questions 

answered and provide a standardised measure of performance. A two-way ANOVA 

was conducted to examine the main effects of Reliability (High, Low) and 

Humanness (High, Low), as well as their interaction, on the Percentage of Correct 

Answers. The results revealed a significant main effect of Reliability (F(1,40) =  

64.63, p < .001). The main effect of Humanness was not significant (F(1,40) = 

0.92, p = .344), suggesting that Humanness did not influence the Percentage of 

Correct Answers given by participants. There was a significant Reliability × 

Humanness interaction, F(1,40) = 5.43,p=.025). The Tukey post-hoc analysis 

revealed several significant differences in the percentage of correct answers and 

are presented in Table 3. 

Table 3. Tukey Post Hoc Analysis for Percentage of Correct Answers Using HSD 
P adjustment. 

Group One Group Two Diff Lower Upper P Adjusted 

LH:HR HH:HR -14.36 -23.90 -4.83 0.001 

HH:LR HH:HR 3.45 -6.08 12.99 0.767 

LH:LR HH:HR -22.64 -32.17 -13.10 <0.001 
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Group One Group Two Diff Lower Upper P Adjusted 

HH:LR LH:HR 17.82 8.28 27.36 <0.001 

LH:LR LH:HR -8.27 -17.81 1.27 0.1093 

LH:LR HH:LR -26.09 -35.63 -16.55 <0.001 

Note. Bold result indicates significance. Group One and Two refer to the 

conditions being compared where High Humanness with High Reliability (HH:HR), 

High Humanness with Low Reliability (HH:LR), Low Humanness with High 

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). These findings 

provide support for H1, indicating that higher levels of anthropomorphism and 

reliability jointly predicted higher task performance. 

3.3.2  Teammate Validity Check 

We asked participants if they believed the AI responses to be AI-generated and 

human responses to be human; overall, 93% believed the AI to be AI, and 81% 

believed the human teammate to be human. This shows that our Wizard of Oz 

methodology was successfully implemented, and participants believed they were 

working with an AI and a human teammate. 

3.3.3  Descriptive Statistics  

This section provides an overview of the means and standard deviations within the 

data for Confidence, Influence, AI Performance, and Human Performance. These 

statistics are reported for high and low reliability and humanness. displays the 

information. 

Table 4. Descriptive Statistics for AI & Human Performance Ratings, Influence 
and Confidence Ratings. 

Measure Reliability Humanness M SD 

AI Performance Low Low 74.95 19.44 
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High 76.95 15.19 

High 

Low 87.16 11.64 

High 79.00 14.00 

Human Performance 

Low 

Low 71.40 18.64 

High 73.13 17.44 

High 

Low 77.24 14.71 

High 72.40 16.19 

Influence 

Low 

Low 61.51 27.73 

High 65.20 22.31 

High 

Low 76.84 20.70 

High 68.84 21.62 

Confidence 

Low 

Low 65.35 19.88 

High 69.70 18.23 

High 

Low 79.63 16.91 

High 70.73 20.18 

3.3.4  Propensity to Trust Questionnaire  

A Pearson's product-moment correlation was conducted to assess the relationship 

between participants' mean trust ratings of AI and their mean propensity to trust 

ratings. The correlation was not statistically significant, r(39) = 0.13, p = 0.42. 
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3.3.5  Influence (Implicit Trust) Ratings  

The analysis revealed no significant main effect of reliability, β=−3.56, SE=3.87, 

t(38.57)=−0.92, p=.363, suggesting that Reliability did not significantly affect 

trust ratings. There was no significant difference for humanness, β=7.67, 

SE=3.96, t(38.60), p=.0603. The interaction between reliability and humanness 

was significant, β=−11.68, SE=5.56, t(39.06)=−2.10, p=.0421, suggesting that 

the effect of reliability on trust ratings depended on the level of humanness. 

Figure 8 visualises these findings.  

Figure 8 - A Boxplot showing the differences in Trust ratings based on 

Reliability and Humanness 

 

3.3.5.1 Post Hoc Comparisons 

The post-hoc analyses are presented in Table 5 and revealed several significant 

differences between conditions. Specifically, there was a significant difference 

between Low Reliability, High Humanness and High Reliability, Low Humanness (p 

= 0.0353), with Low Reliability, High Humanness resulting in lower influence 

ratings. Additionally, the comparison between High Reliability, Low Humanness 

and Low Reliability, Low Humanness showed a significant difference (p = 0.0026), 

with High Reliability, Low Humanness yielding higher influence ratings than Low 

Reliability, Low Humanness. These results indicate that influence ratings were 

impacted by the interaction of reliability and humanness, with higher reliability and 

lower humanness leading to better performance. 
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Table 5. Post Hoc Analysis for Trust Ratings 

Group One Group Two B SE df t value p.value 

HH:HR HH:LR 3.56 3.87 38.4 0.92 0.7941 

HH:HR LH:HR -7.67 3.96 38.4 -1.935 0.2306 

HH:HR LH:LR 7.57 3.9 39.3 1.942 0.2276 

HH:LR LH:HR -11.23 3.96 38.4 -2.833 0.0353 

HH:LR LH:LR 4.02 3.9 39.3 1.029 0.7334 

LH:HR LH:LR 15.24 4 39.3 3.813 0.0026 

Note. Bold result indicates significance. Group One and Two refer to the 

conditions being compared where High Humanness with High Reliability (HH:HR), 

High Humanness with Low Reliability (HH:LR), Low Humanness with High 

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). 

This significant interaction effect provides direct support for H2. 

3.3.6  AI Performance Ratings  

The analysis revealed a significant main effect of humanness, β=8.2, SE=3.88, 

t(35.52)=2.1, p=.047, indicating that AI performance ratings were higher in the 

Low Humanness condition than in the High Humanness condition. However, the 

main effect of reliability was not significant, β=−5.89, SE=4.12, t(35.52)=−1.43, 

p=.162. The interaction between reliability and humanness was also non-

significant, β=−9.50, SE=5.61, t(38.70)=−1.70, p=.099. Figure 9 visualises these 

findings.  
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Figure 9 A Boxplot showing the differences in AI Performance ratings based on 
Reliability and Humanness 

3.3.6.1 Post Hoc Comparisons 

The post-hoc comparisons are presented in Table 6 and revealed a significant 

difference (p = 0.0325) between High Reliability, High Humanness and High 

Reliability, Low Humanness, with High Reliability and Low Humanness yielding 

higher AI performance ratings. However, other contrasts were not significant.  

Table 6. Post Hoc Analysis for AI Performance Ratings 

Group One Group Two B SE df t value p.value 

HH:HR HH:LR 2.03 3.92 38.8 0.517 0.9545 

HH:HR LH:HR -8.23 4.02 38.8 -2.05 0.1877 

HH:HR LH:LR 3.3 3.93 39.2 0.84 0.8352 

HH:LR LH:HR -10.26 4.02 38.8 -2.555 0.0671 

HH:LR LH:LR 1.27 3.93 39.2 0.324 0.988 

LH:HR LH:LR 11.53 4.03 39.2 2.864 0.0325 

Note. Bold result indicates significance. Group One and Two refer to the 

conditions being compared where High Humanness with High Reliability (HH:HR), 
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High Humanness with Low Reliability (HH:LR), Low Humanness with High 

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). 

This result aligns with H3, confirming that anthropomorphic AI was perceived as 

higher-performing despite identical accuracy levels.  

3.3.7  Human Teammate Performance Ratings  

The analysis revealed no significant main effect of reliability, β=0.70, SE=3.62, 

t(385.79)=0.19, p=.847, nor a significant main effect of humanness, β=4.93, 

SE=3.71, t(38.82)=1.33 p=.191. The interaction between reliability and 

humanness was also non-significant, β=−6.80, SE=5.19, t(39.07)=−1.31, 

p=.197.These findings suggest we can reject H4 as there was no significant 

difference between conditions.  

3.3.8  Confidence Ratings  

The analysis revealed no significant main effect of reliability, β=−0.91, SE=4.56, 

t(38.19)=−0.20, p=.845. The effect of humanness was insignificant, β=8.81, 

SE=4.67, t(38.19)=1.89, p=.060. The interaction between reliability and 

humanness was not significant, β=−12.13, SE=6.54, t(38.40)=−1.85, p=.071. 

These findings suggest we can reject H5 as there was no significant difference 

between conditions.  

3.3.9  The Godspeed Questionnaire – Expletory Results 

At the end of the experiment participants took part in the Godspeed 

Questionnaire, initially this was to gage feedback on the AI, however we then saw 

an opportunity to analyse this data further to gain deeper understanding of our 

results. Our study conducted two-way ANOVAs with interactions for each 

subsection of The Godspeed Questionnaire. The dependent variables 

encompassed Anthropomorphism, likeability, perceived intelligence, and perceived 

safety, while the independent variables included assigned reliability and 

humanness levels. We use ANOVAs in this context because each participant 

provides only a single rating, eliminating the need to account for within-subject 
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variability that LMMs typically address. Figure 10 is a bar chart illustrating these 

results. 

Figure 10. Mean Godspeed Ratings for Anthropomorphism, Likeability, and 
Perceived Intelligence by Humanness and Reliability. 

.

 

3.3.9.1  Anthropomorphism  

We conducted a two-way ANOVA with interactions to investigate participants' 

Anthropomorphism ratings of AI. The dependent variable was the 

anthropomorphism ratings given during the experiment, while the independent 

variables were the assigned reliability and humanness levels. The analysis 

revealed a significant difference in anthropomorphism ratings based on 

humanness levels (F(1, 40) = 15.49, p < 0.001).  

A Tukey HSD post hoc test (Table 1) revealed significant pairwise differences 

among the groups. The results in Table 4 show the mean differences, 95% 

confidence intervals, and adjusted p-values using the Tukey HSD method for these 

comparisons.  

Table 7 - Tukey Post Hoc Analysis for Anthropomorphism Ratings Using HSD P 

adjustment. 

Group One Group Two Mean Difference Lower Upper P Adjusted 
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LH:HR HH:HR -0.836 -1.948 0.276 0.199 

HH:LR HH:HR 0.145 -0.967 1.257 0.985 

LH:LR HH:HR -1.327 -2.439 -0.215 0.014 

HH:LR LH:HR 0.982 -0.130 2.094 0.100 

LH:LR LH:HR -0.491 -1.603 0.621 0.641 

LH:LR HH:LR -1.473 -2.585 -0.361 0.005 

Note. Bold result indicates significance. Group One and Two refer to the 

conditions being compared where High Humanness with High Reliability (HH:HR), 

High Humanness with Low Reliability (HH:LR), Low Humanness with High 

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). 

3.3.9.2  Likeability  

We conducted a two-way ANOVA with interactions to investigate participants' 

likeability ratings of AI. The dependent variable was the likeability ratings given 

during the experiment, while the independent variables were the assigned 

reliability and humanness levels. The analysis revealed a significant difference in 

humanness (F(1, 40) = 11.98, p < 0.001).  

A Tukey HSD post hoc test (Table 2) revealed significant pairwise differences 

among the groups. The results in Table 5 show the mean differences, 95% 

confidence intervals, and adjusted p-values for these comparisons.  

Table 8 - Tukey Post Hoc Analysis for Likeability Ratings Using HSD P 
adjustment. 

Group One Group Two Mean Difference Lower Upper P Adjusted 

LH:HR HH:HR -0.545 -1.362 0.271 0.293 
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HH:LR HH:HR -0.055 -0.871 0.762 0.998 

LH:LR HH:HR -1.000 -1.817 -0.183 0.011 

HH:LR LH:HR 0.491 -0.326 1.307 0.384 

LH:LR LH:HR -0.455 -1.271 0.362 0.452 

LH:LR HH:LR -0.945 -1.762 -0.129 0.018 

Note. Bold result indicates significance. Group One and Two refer to the 

conditions being compared where High Humanness with High Reliability (HH:HR), 

High Humanness with Low Reliability (HH:LR), Low Humanness with High 

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). 

3.3.9.3  Perceived Intelligence  

We conducted a two-way ANOVA with interactions to investigate participants' 

intelligence ratings of AI. The dependent variable was the intelligence ratings 

given during the experiment, while the independent variables were the assigned 

reliability and humanness levels. The analysis revealed a significant difference by 

reliability (F(1, 40) = 10.26, p < 0.01) and interactions (F(1, 40) = 4.41, p < 

0.05).  A Tukey HSD post hoc test (Table 9) revealed significant pairwise 

differences among the groups. 

Table 9 - Tukey Post Hoc Analysis for Perceived Intelligence Ratings Using HSD 
P adjustment. 

Group One Group Two Diff Lower Upper P Adjusted 

LH:HR HH:HR 0.036 -0.588 0.660 0.999 

HH:LR HH:HR -0.182 -0.806 0.442 0.863 

LH:LR HH:HR -0.836 -1.460 -0.212 0.005 
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HH:LR LH:HR -0.218 -0.842 0.406 0.785 

LH:LR LH:HR -0.873 -1.497 -0.249 0.003 

LH:LR HH:LR -0.655 -1.278 -0.031 0.037 

Note. Bold result indicates significance. Group One and Two refer to the 

conditions being compared where High Humanness with High Reliability (HH:HR), 

High Humanness with Low Reliability (HH:LR), Low Humanness with High 

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). 

3.3.9.4  Trust Ratings  

To gather more insight into the feelings and attitudes of participants, we directly 

asked them how much they trusted the AI on a scale of 'Not at All' to 'Completely' 

at the end of the experiment, where a higher rating indicates a higher level of 

trust in the AI. We then completed an ANOVA on the results. The results indicate 

a significant main effect of reliability on trust ratings (F(1,40) = 11.984, p = 

0.001). The main effect of humanness was not significant (F(1,40) =   3.288, p = 

0.078). Table 10 summarises the results of Tukey's HSD posthoc test. The test 

examined pairwise differences in trust ratings between different levels of 

Humanness and Reliability. 

 

Table 10 - Tukey Post Hoc Analysis for Trust Ratings Using HSD P 

adjustment. 

Group One Group Two Diff Lower Upper P Adjusted 

LH:HR HH:HR -2.664 -1.045 1.045 1.000 

HH:LR HH:HR -0.455 -1.500 0.591 0.652 

LH:LR HH:HR -1.455 -2.500 -0.409 0.003 

HH:LR LH:HR -0.455 -1.500 0.591 0.652 
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LH:LR LH:HR -1.455 -2.500 -0.409 0.003 

LH:LR HH:LR -1.000 -2.045 0.045 0.065 

Note. a Bold result indicates significance. Group One and Two refer to the 

conditions being compared where High Humanness with High Reliability (HH:HR), 

High Humanness with Low Reliability (HH:LR), Low Humanness with High 

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). 

3.4 Discussion  

3.4.1  Overview 

This study explored the effects of anthropomorphism and system reliability on 

trust, performance, and confidence within HATs, guided by five main hypotheses. 

Specifically, we examined how anthropomorphism and reliability jointly influence 

actual performance, trust ratings, perceived AI performance, human teammate 

performance perceptions, and team decision-making confidence. Participants 

trusted the anthropomorphised AI systems more when reliability was low. This 

preference indicates that human-like attributes can cushion the adverse effects of 

unreliable AI on trust. Conversely, when reliability was high, less anthropomorphic 

AI systems were rated higher in performance, suggesting that technical 

proficiency can overshadow the need for human-like characteristics. 

3.4.2  Anthropomorphism, Reliability, and Task Performance 

The results related to actual task performance showed a nuanced interaction 

between anthropomorphism and reliability, partially supporting H1. Although 

higher reliability significantly predicted better task performance, 

anthropomorphism alone did not produce significant main effects. However, the 

interaction trend suggests anthropomorphic cues could subtly enhance task 

performance outcomes when paired with reliable systems, emphasizing the joint 

importance of technical proficiency and human-like design. 
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3.4.3  Trust: Interaction between Anthropomorphism and 
Reliability 

Our findings provided support for H2, confirming a significant interaction between 

anthropomorphism and reliability. Participants exhibited higher trust towards 

anthropomorphic AI systems, particularly under low-reliability conditions. This 

aligns with prior research suggesting that Anthropomorphism helps bridge the 

cognitive and emotional gap between human users and AI systems (Gambino et 

al., 2020; Nass et al., 1996). By fostering a sense of familiarity and relatability, 

anthropomorphic design may encourage team members to view the AI as a more 

integrated team player rather than a purely functional tool.  

However, while anthropomorphic design increased trust, it was less impactful 

under high-reliability conditions. In these cases, anthropomorphic AI may add 

cognitive load, potentially reducing interdependency as users must carefully 

interpret the AI’s responses (Döppner et al., 2019; Zhou et al., 2017). Simplified, 

non-anthropomorphic responses appear to enhance trust by minimising 

interpretive effort. Ethically, these findings underscoring the importance of 

transparency in AI design. When anthropomorphic cues foster higher trust in low-

reliability systems, users might over-rely on the AI, a concern that highlights the 

ethical need to communicate AI’s limitations, fostering informed trust rather than 

blind reliance (Binns et al., 2018; Floridi et al., 2018). 

3.4.4  AI and Human Teammate Performance Perceptions 

H3 predicted anthropomorphic AI would consistently receive higher perceived 

performance ratings, independent of reliability. However, results revealed an 

opposite effect: anthropomorphic AI was associated with lower performance 

ratings, especially under low-reliability conditions. These findings suggest that 

while anthropomorphic design can increase perceived trustworthiness, it may 

inadvertently lead to heightened expectations for AI performance. When these 

expectations are unmet, users may be more critical of the AI's abilities. The 

finding echoes concerns about anthropomorphic priming, where users attribute 

human capabilities to AI based on its anthropomorphic features, potentially 

leading to unrealistic performance expectations (Duffy, 2003; Zhang & Rau, 
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2022). These results suggest that designers must carefully balance 

anthropomorphic cues to enhance trust without inadvertently overloading the AI 

with unachievable user expectations. 

Ethically, this also raises questions about misrepresentation in anthropomorphic 

AI. Overly human-like features could mislead users into expecting higher decision-

making accuracy, especially in critical settings like healthcare or finance. Ethical AI 

design must ensure that anthropomorphic cues do not misrepresent the AI’s 

capabilities, thereby preserving user autonomy and accurate perception of AI’s 

role (Weisman & Peña, 2021; Coeckelbergh, 2020). 

Our study explored whether human teammate performance perceptions would 

increase alongside perceived AI performance (H4). However, this hypothesis was 

not supported by the data; no significant relationship was found between 

participants' evaluations of human teammate performance and their perceptions 

of AI performance. This suggests that participants may independently assess 

human and AI teammates, despite previous expectations of integrated 

performance perceptions. Future research might further investigate conditions 

under which AI and human teammate evaluations become interconnected. 

3.4.5  Confidence in Decision-Making and Anthropomorphism 

Regarding decision-making confidence, the results show we can reject H5. Whilst 

participants tended to report higher confidence levels when collaborating with 

anthropomorphic AI, particularly under low-reliability conditions, this difference did 

not reach statistical significance. This trend aligns with established research 

showing that anthropomorphised AI enhances user engagement and trust (Waytz 

et al., 2014; de Visser et al., 2016). There is a chance that the results did not 

reach significance due to a smaller sample size and a smaller effect size. In the 

future it is important to develop this findings to learn more about the role of 

reliability confidence in AI, when Anthropomorphism is low, to support the 

literature emphasising the importance of accuracy and predictability for trust in AI 

systems (Kaur et al., 2022; Lu et al., 2022). 
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3.4.6  System Reliability  

Reliability emerged as a central predictor of trust, with low-reliability AI 

consistently receiving lower trust ratings. This finding corroborates previous work 

suggesting that the transparency and predictability of an AI system are crucial for 

building user trust (Kaur et al., 2023). The high-reliability condition facilitated 

greater participant confidence in the AI's recommendations, even when 

anthropomorphic qualities were low, demonstrating that a strong reliability 

baseline can mitigate the need for anthropomorphic attributes. This implies that, 

particularly in high-stakes environments, reliable performance may be more 

effective in building trust than human-like design alone. These findings support 

the notion that trust in HATs comprises both interpersonal trust (based on human-

like traits) and system trust (grounded in the AI's technical robustness) (Lewicki & 

Bunker, 1996). 

These findings highlight the importance of designing AI systems prioritising 

approachability and consistency, especially when the AI will be used in settings 

where user autonomy and decision-making are paramount. Ethically, reliance on 

reliability and transparency is critical in preventing overreliance on 

anthropomorphic features alone. Users should be encouraged to apply their 

judgment, especially when interacting with AI in variable-reliability environments, 

helping them balance trust and scepticism effectively (Coeckelbergh, 2020; 

Mittelstadt et al., 2016). 

3.4.7  Team Dynamics 

Our findings indicate that Anthropomorphism may also positively influence team 

dynamics by fostering a more intuitive interaction style. High-humanness AI 

received higher ratings in perceived likeability, which could contribute to more 

seamless and cooperative teamwork. The increase in likeability aligns with 

previous research indicating that anthropomorphic AI may encourage open 

communication and improve team cohesion by mimicking human social cues 

(Chen & Park, 2021). It also suggests that human-like attributes enhance the 

overall user appeal of AI, making it a critical factor in fostering positive user 

experiences and interactions. Higher levels of anthropomorphism combined with 
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reliability led to perceptions of greater perceived intelligence, highlighting that 

while human-like characteristics are essential, they interact with AI proficiency to 

shape users' views of an AI system's intelligence. 

3.4.8  Limitations and Future Research  

This study has some limitations. The experimental design controlled 

anthropomorphic features and reliability levels, which, while necessary for isolating 

effects, may not fully reflect real-world AI integration into teams, where reliability 

can fluctuate unpredictably. Additionally, the experimental duration may not 

capture long-term trust dynamics, which are crucial for understanding how trust 

evolves over sustained collaboration. Future research could investigate these 

dynamics in real-world, longitudinal settings and explore other dimensions of 

social intelligence in AI, such as adaptive humour or empathy, to understand their 

effects on team trust and performance. 

Furthermore, while this study focused on implicit trust measures, combining them 

with more explicit attitudinal data could provide a deeper understanding of users' 

nuanced perceptions of AI teammates. Expanding research to explore the 

Uncanny Valley's boundary conditions would also clarify how developers can 

implement Anthropomorphism before it negatively impacts trust. These directions 

would build upon this study's findings, enhancing our understanding of optimising 

HAT dynamics through AI design choices. 

3.4.9  Conclusion  

This chapter provides key insights into the complex interplay between 

anthropomorphism and reliability in HATs. While anthropomorphism enhances 

user engagement and likeability, especially when AI reliability is low, it must be 

carefully balanced with technical competence. High reliability remains fundamental 

to fostering confidence, underscoring the importance of performance accuracy 

regardless of human-like attributes. The results of The Godspeed Questionnaire 

further show that anthropomorphism impacts perceptions of intelligence, 

likeability, and overall trust, suggesting that AI design requires a nuanced 

approach. 
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Our findings also underscoring the ethical importance of transparency and 

accountability. While human-like attributes can foster trust and engagement, they 

should support, not replace, perceptions of reliability. In lower-reliability scenarios, 

anthropomorphism becomes essential for maintaining user trust, but it should not 

lead to misrepresentation or over-reliance. Clear communication of AI limitations is 

critical in addressing trust issues stemming from low reliability, and training users 

to understand AI capabilities and boundaries is essential for effective decision-

making in HATs. 

In summary, these findings reveal the nuanced role of anthropomorphism and 

reliability in shaping trust dynamics in HATs. They suggest that human trust in AI 

fluctuates based on perceived humanness and reliability, with implications for 

designing AI to foster affective and cognitive trust. Furthermore, the 

characteristics of AI significantly influence team cohesion and teammate 

evaluations, highlighting the potential for AI to shape perceptions of team 

dynamics and contributions. These insights reinforce the need for AI systems that 

balance humanness and reliability to optimise teamwork. 

Chapter Four will build on these insights, exploring the use of emojis as a tool to 

enhance social intelligence and increase AI’s emotional intelligence. This could 

further contribute to AI’s role in fostering trusted, collaborative relationships within 

HATs. 
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Chapter 4 The Effect of Emojis and AI 
Reliability on Team Performance and Trust in 

Human-AI Teams 

The rapid advancements in AI are significantly transforming sectors such as 

healthcare, cybersecurity, and digital forensics, where AI excels in data analysis, 

precision, and sustained cognitive tasks. However, human intelligence, 

characterised by creativity, critical thinking, emotional intelligence, and problem-

solving, complements AI's strengths. Combining these capabilities, Hybrid 

Intelligence (HI) has emerged as a valuable framework. HATs capitalise on HI by 

merging the best human and machine capabilities, enabling more comprehensive 

decision-making and problem-solving (Kamar, 2016; Williams et al., 2022). This 

chapter explores how emojis as emotional cues from AI teammates impact trust, 

performance, confidence within HATs, and attitudes toward human teammates. 

In Chapter 3, we found that while anthropomorphic features can enhance trust in 

AI, this effect is heavily influenced by the AI's reliability. The present chapter 

extends this analysis by investigating whether emojis, a nonverbal, affective cue, 

can serve as another means to calibrate trust in varying reliability conditions. 

Emojis provide a direct, accessible means of conveying emotional states in digital 

communication, raising the question of whether similar cues from AI might 

facilitate better trust calibration in HATs, particularly in instances where reliability 

is variable. Through an experimental approach, this study explores whether emojis 

can mitigate trust issues in low-reliability AI teammates or strengthen engagement 

with high-reliability systems. This work was presented at the Multidisciplinary 

Perspectives on Human-AI Team Trust Workshop at HAI23 and from this I was 

invited to be a guest editor on a MULTITTRUST Special Edition at the Journal of 

Interaction Studies where I was invited to submit this as a journal paper and it is 

currently under review.  

4.1 Introduction 

Integrating AI into collaborative decision-making has transformed healthcare, 

cybersecurity, and digital forensics industries. HATs exemplify this transformation 

by leveraging the complementary strengths of humans and AI. AI contributes 
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computational precision and the ability to process large datasets, while humans 

bring creativity, ethical judgment, and adaptability to nuanced decision-making 

tasks. HI, can outperform human or AI capabilities alone by merging these distinct 

strengths (Kamar, 2016; Williams et al., 2022). However, achieving the full 

potential of HATs hinges on overcoming key challenges, particularly around trust, 

reliability, and communication within these teams. 

The dynamics of trust in HATs are critical yet complex. Trust calibration, which 

balances reliance and scepticism, is essential for effective collaboration (de Visser 

et al., 2020). Low trust can lead to underutilisation of AI's capabilities, while blind 

trust increases the risk of errors when AI reliability falters. While system reliability 

is a foundational driver of trust, relational factors like communication style and 

emotional engagement also significantly shape user perceptions (Bansal et al., 

2019; Kaur & Sharma, 2021). Building on these insights, this chapter explores the 

novel use of emojis as affective cues from AI to facilitate trust calibration in HATs, 

particularly in contexts of variable reliability. 

In this introduction, we will explore the role of HATs in leveraging the 

complementary strengths of humans and AI, focusing on the critical role of trust 

and reliability in these collaborations. We will examine how emojis, as affective 

cues, can influence trust calibration and team dynamics. This discussion will 

provide the foundation for the study's hypotheses, investigating the impact of 

emojis on trust, performance perceptions, and decision-making in HATs. 

4.1.1  Human-AI Teams: Bridging Human Expertise and AI 
Precision 

HATs are a practical embodiment of HI. By blending the computational precision 

of AI with the adaptability and contextual understanding of humans, HATs have 

transformed industries reliant on decision-making under complexity. For instance, 

in digital forensics, human investigators leverage AI for tasks such as data 

processing, pattern recognition, and geolocation, allowing them to focus on 

contextual analysis and ethical decision-making. This collaboration enhances the 

speed and accuracy of investigations, making it possible to trace cyberattack 

origins and combat threats with unprecedented efficiency (Costantini et al., 2019). 
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Similarly, the medical field benefits from AI-augmented diagnostics, where 

integrating computer-aided tools improves patient care and sparks further interest 

in understanding the nuances of human-AI collaboration (Kunar & Watson, 2023). 

Rix (2022) identifies four essential drivers for building successful HATs. First, HATs 

require at least one human and one AI team member, with much of the existing 

research focused on relatively simple configurations. As the number of team 

members increases, so does the complexity of human-AI social dynamics (Liang et 

al., 2019). Second, establishing a shared and valued goal among all team 

members, human or AI, is critical to fostering cohesion and collaboration (Chai et 

al., 2017; McNeese et al., 2018). Third, interdependency among team members 

ensures that outcomes are mutually influenced, though disproportionate benefits 

may lead to tension or conflict (Chiou et al., 2019). Incentives for collaboration, 

paired with the cognitive relief provided by AI's support, can promote 

interdependency and cooperation (Döppner et al., 2019). Finally, defining roles 

based on each member's unique strengths enhances synergy. Even when roles are 

not unique, clear role delineation remains a cornerstone of successful teamwork 

(Oh et al., 2018). 

While these drivers provide a useful framework, the intricacies of HAT dynamics 

require further investigation. For instance, challenges often arise when delegating 

tasks between humans and AI (Fügener et al., 2022; Pinski et al., 2023), 

particularly when AI is designed to resemble human teammates. Research shows 

that humans are often unreceptive to AI in positions of authority, such as a 

“humanised AI boss”, which complicates team structures and goal alignment (Yam 

et al., 2022). Additionally, in larger teams, where multiple humans collaborate with 

a single AI teammate, the AI may function more as a tool than an equal partner, 

further emphasising the need to explore diverse configurations and team 

dynamics (Schelble et al., 2022). 

4.1.2  Navigating Complexity in HAT Dynamics 

Several studies highlight the complex variables in HATs, underscoring the need for 

careful trust calibration. Interestingly, when paired with transparency, low-

confidence AI can improve team performance by helping humans form accurate 
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mental models of the AI's capabilities and limitations (Bansal et al., 2021). This 

enables human teammates to anticipate potential AI errors, adapt their 

behaviours, and foster more effective collaboration (Bansal et al., 2019). 

Conversely, research reveals that humans often treat AI teammates differently 

than human counterparts, impacting team dynamics.  

A recent scoping review by Berretta et al. (2023) emphasises the importance of 

adopting a human-centric, socio-technical approach in designing HATs. This 

perspective shifts AI's role from a passive tool to an active teammate, considering 

both the technical capabilities of AI and the relational needs of human team 

members. Despite advancements in HAT research, gaps remain, particularly in 

understanding the impact of complex team dynamics, performance variables, and 

user-centered designs. Addressing these gaps is critical to advancing trust 

calibration strategies and ensuring that HATs operate as cohesive, effective teams. 

This chapter builds on these insights by investigating the role of emojis as 

affective cues in HATs. Emojis offer a lightweight and accessible way to humanise 

AI interactions, potentially enhancing relational trust while supporting trust 

calibration. By exploring how emojis influence perceptions of trust, performance, 

and team dynamics, this research contributes to the broader goal of designing 

emotionally intelligent AI systems capable of fostering meaningful collaboration in 

HATs. 

4.1.3  Performance and Reliability 

When creating HATs, the performance and reliability of the AI system can also be 

crucial when trying to obtain peak performance. A logical approach towards 

designing HATs is that the better the performance and reliability of an AI system, 

the more successful the team will be. However, this is incorrect (Bansal et al., 

2021; Bansal et al., 2019). Research has found that whilst performance is 

essential, high system performance does not directly result in better HAT 

performance; it would appear that better outcomes are present from antecedents 

such as explainability and clarity (Endsley, 2023; Guidotti et al., 2018; Kim et al., 

2023; Ribeiro et al., 2016).  
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It is also essential for AI developers to keep the rest of the team in mind when 

developing updates for an AI embedded in a team. Research has shown that HAT 

performance can drop dramatically after an AI system receives an update due to 

the other team members learning where the AI has strengths and weaknesses 

(Bansal et al., 2019; Bansal et al., 2019). When updates are made without 

updating the AI, the whole team's performance can dip as the users no longer 

know how to interact with it. When implementing updates, any changes in 

performance and reliability must be explicitly explained to other team members so 

interactions remain successful. 

Finally, the research has indicated that it is possible to mediate the reliability of AI 

by manipulating other features of the AI. Research has shown that when 

anthropomorphising AI, users can find AI to be more likeable and rate its 

performance as being higher than it truly is (de Visser et al., 2016; Kulms & Kopp, 

2019). The previous chapter demonstrated that anthropomorphism can buffer 

against the detrimental effects of low reliability, helping maintain user trust. 

However, the same anthropomorphic features could increase cognitive load and 

reduce efficiency in high-reliability scenarios, as participants expended more effort 

interpreting the AI's human-like responses. These findings underline that the 

interplay between performance, reliability, and user perceptions is highly context-

dependent, with trust calibration emerging as a pivotal factor in aligning human 

expectations with AI capabilities. 

4.1.4  Human-AI Teams and the Role of Trust 

Despite their promise, HATs' success depends on fostering effective collaboration 

and trust. Trust calibration, balancing reliance on AI and healthy scepticism, is 

crucial for optimal team performance (de Visser et al., 2020). Too high trust can 

lead to over-reliance, resulting in complacency and potential errors when AI 

systems falter. Conversely, insufficient trust can cause users to underutilise AI, 

limiting its potential contributions (Kamar, 2016). 

Trust is a complex concept; many researchers have different approaches and 

definitions (Ulfert et al., 2023). For this introduction and the rest of the 

experiment, we define trust as a willingness to be vulnerable where there is a risk. 
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We approach trust from an organisational team perspective and a trust in 

AI/technology approach, and these were considered when discussing relevant 

literature and selecting the measures.  

Research emphasises the dual dimensions of trust in HATs: system trust, based on 

the reliability, predictability, and explainability of AI, and interpersonal trust, which 

derives from relational factors such as likability and emotional engagement (Jacovi 

et al., 2021; Schmidt et al., 2020). For example, in team settings, high AI 

reliability often fosters confidence, but this trust is amplified when users perceive 

the AI as approachable and responsive to their needs (Bansal et al., 2019). 

While trust calibration is essential, achieving it is challenging due to the “black-

box” nature of many AI systems, where decision-making processes are opaque 

and complex to interpret (Guidotti et al., 2018)). Moving toward explainable AI 

(XAI) methods has shown promise in enhancing transparency, but these efforts 

often neglect emotional and social dynamics that also influence trust. One 

approach that could improve trust calibration is to design AI with elements of 

Emotional Intelligence (EI) (Salovey & Mayer, 1990). EI involves perceiving 

emotions accurately, regulating emotions, and utilising emotional information to 

navigate social interactions and make thoughtful decisions, and it can increase 

human team performance (Ghosh et al., 2012; C. Lee & Wong, 2019). 

Designing AI with a sense of EI is a very complex task as it involves designing AI 

that can regulate its own emotions and detect and react appropriately to other 

teammates' emotions. Despite this challenge, it could be an asset for developing 

successful HATs. Adding affective cues like emojis may help bridge this gap by 

creating more intuitive and human-like interactions that build relational trust. 

4.1.5  Emojis  

Emojis can be a significant factor in enhancing EI within professional settings 

involving HATs. Emojis facilitate more intuitive and emotionally responsive 

interactions between humans and AI by enabling AI to convey emotional states. 

This not only fosters trust and engagement but also allows AI systems to better 

interpret and respond to users' emotional cues, promoting more cohesive and 
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cooperative team dynamics (Ahanin & Ismail, 2022; Beattie et al., 2020; Fadhil et 

al., 2018; Hamza, 2016).  

Research has demonstrated the potential of emojis to function as affective signals 

that bridge the gap between human and AI teammates. For example, studies on 

platforms like Twitter have shown that emojis can model and infer affective states 

based on usage patterns (Ahanin & Ismail, 2022). In the context of HATs, such 

capabilities could facilitate bi-directional emotional intelligence, where human and 

AI teammates gain insights into each other's affective states, enabling more 

effective collaboration. By integrating emojis into AI systems, designers could 

create more natural interactions that align with users' emotional needs, potentially 

reducing frustration and increasing satisfaction in collaborative tasks. 

Expanding the focus to health-related applications, the research underscores the 

value of emojis in improving user experiences and fostering trust in AI-mediated 

interactions. For instance, chatbots that inquire about users' mental well-being 

have achieved higher ratings for user enjoyment, attitude, and confidence when 

emojis are incorporated into their responses (Fadhil et al., 2018). Notably, 

messages containing emojis from chatbots are rated as trustworthy and credible 

as those from human senders, illustrating the potential of emojis to humanise AI 

interactions (Beattie et al., 2020). In addition, human and AI senders using emojis 

are perceived as more socially appealing, competent, and credible in computer-

mediated communication than those relying solely on text-based messages 

(Beattie et al., 2020). 

These findings suggest that emojis can be pivotal in humanising AI, enhancing its 

perceived emotional intelligence while maintaining clarity and simplicity. In the 

professional domain, these benefits translate to more engaging and productive 

collaborations, as users are more likely to trust and rely on AI systems that 

demonstrate social and emotional awareness. 

The type of emojis used and the timing of their deployment are critical variables. 

Positive emojis, such as smiley faces, may foster warmth and rapport, while 

neutral or task-specific emojis may better maintain professionalism in more formal 
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settings. Research has yet to fully explore how users interpret different emojis in 

collaborative HAT environments, suggesting a need for more nuanced studies that 

investigate how affective signals interact with trust, performance, and team 

dynamics. 

4.1.6  Aims of Current Study 

The current study aims to investigate the influence of emojis in AI responses on 

the decision-making process, perceived performance of the AI, and overall trust in 

HATs. The study seeks to address gaps in the existing literature, exploring the 

nuanced dynamics of trust calibration and teaming in HATs. From the existing 

literature, we propose the following hypotheses: 

H1: The use of emojis will lead to improved actual task performance by 

participants. 

H2: The use of emojis by AI teammates will result in significantly higher trust 

ratings compared to conditions in which no emojis are used. 

H3: The use of facial emojis will elicit greater trust from participants than the use 

of icon-based emojis or no emojis. 

H4: Emoji use will increase perceived teammate performance ratings, with this 

effect being particularly pronounced under low-reliability conditions. 

H5: The use of emojis will increase Godspeed Perceptions of the AI.  

4.2 Methods 

4.2.1  Participants 

A total of 43 participants were involved in the study. The mean age of the 

participants was 23.12 years (SD = 3.26). The sample included two genders: 17 

participants identified as female, and 26 identified as male. Participants reported a 

variety of occupations. Most participants were students (n = 26), with the 

remaining being in a mix of full-time employment (n = 17). Participants 
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represented diverse backgrounds consolidated into broader categories. The 

majority identified as white (n = 30), followed by Asian (n = 5), Black (n = 6) and 

mixed race (n = 2). The study received full ethical clearance from the MVLS Ethics 

Committee (application: 200220361) at the University of Glasgow. All participants 

were compensated with an Amazon voucher for participating in the study; the 

amount varied on the time taken to complete the study, but the rate was £6p/h 

pro rata.   

4.2.2  Study Design 

This study employed a mixed between-within-subjects design (2x3 configuration) 

to examine participants' trust in an AI and a human teammate under varying 

reliability and emoji conditions. Participants were randomly assigned to one of two 

reliability conditions for the AI teammate: High Reliability (90%) or Low Reliability 

(60%), with a human teammate consistently exhibiting Low Reliability (30%). 

Participants were exposed to three emoji modalities within these groups across 

three blocks: Face Emojis, Icon Emojis, or No Emojis. The order of these blocks 

was randomised to control for order effects. Figure 11 shows this design.  

Figure 11. The design of the experiment. Participants were randomly assigned 
to either High or Low reliability. Participants then experienced a block of each 
emoji type or no emoji in a randomised order. 

Participants completed 30 trials, divided into three blocks of 10 trials each. Each 

trial required participants to identify a specific geographic location, and the AI and 

human teammates provided conflicting responses 95% of the time. Participants 

were tasked with evaluating the reliability and performance of both teammates 

and making final decisions under time constraints. 
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4.2.3  Materials  

4.2.3.1  Developing Response Stimuli  

We adopted a Wizard of Oz experimental method to ensure efficient development 

and optimal control. Participants were led to believe they were collaborating with 

both an AI and a human teammate. However, they were interacting with 

responses generated by ChatGPT (OpenAI., 2024). The task involved presenting 

participants with random locations extracted from Google Earth. They aimed to 

determine the continent, country, and city associated with each location. 

Responses were created by prompting ChatGPT with instructions such as 'In the 

style of a human playing a game of Geoguessr, describe the location of [location 

coordinates] including city, country, and continent.' This process was repeated for 

all 30 locations. To embed emojis in the text, we prompted ChatGPT to add these 

in the following paragraph: 'Please add relevant face/icon emojis to this paragraph 

of text'. In the conditions with emojis present, 5-7 emojis were distributed 

throughout the answers. Icon emojis were relevant to the location being guessed, 

such as a flag, typical weather and location cues. Face emojis primarily displayed 

positive emotions; a few had neutral or sadder expressions. See . 

Table 11 for more details. 

Table 11 This table shows the different emojis used in the experiment. 

 
The difference in the number of face emojis available compared to icon emojis 

made a more extensive selection of icon emojis appear. A few descriptions were 

edited for brevity to maintain consistency across conditions. Incorrect answers 

were generated by selecting locations similar to the correct ones to fit the context 

but not wrong, for instance, by referencing languages not associated with the 

location. The human teammates' answers were successfully used in a previous 
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version of this experiment and were written/edited by the experimenter (Bailey & 

Pollick, 2023).  

 
4.2.3.2  Decision-Making Task 

The task involved presenting participants with random locations extracted from 

Google Earth. Participants were tasked with determining the continent, country, 

and city associated with each location, with the final decision resting on the 

participant, who assumed the role of the ‘team leader’. The experiment was set up 

with the AI and human teammates giving different answers 95% of the time, 

meaning the participant had to choose between the teammates each time. The 

experiment comprised three blocks, one block with each emoji condition; the 

order of the emojis was randomised throughout the experiment to avoid order 

effects. A time constraint of 120 seconds per location was enforced, meaning 

participants had to rely on their teammates’ responses to submit the location in 

time. The introduction of time scarcity as an environmental factor can significantly 

impact the outcomes of team tasks, often necessitating rapid decision-making (Hu 

et al., 2015; Kelly & Karau, 1999). This constraint could increase reliance on AI, 

requiring human teammates to make choices based on implicit attitudes rather 

than thoroughly deliberating on the task. To emphasise this factor, we ensured 

that the human and AI teammates mainly provided different answers, requiring 

participants to choose which teammate they trusted the most.  

4.2.3.3  Attention Check   

At the start of the experiment, participants were instructed to choose the option 

labelled 'A Dog' if they were given a question with the options of 'A dog' or 'A cat'; 

a failure of two or more attention checks meant the participants' data would be 

removed from the dataset, there were six attention check in total, which were 

randomly distributed within the questionnaire data at the end of each block.  From 

these attention checks, we removed 3 participants (n = 40). 
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4.2.3.4  Questionnaires 

Propesinty to Trust Machines (Merritt et al., 2013): A series of 6 questions 

where participants rated on a 7-point Likert scale how likely they are to trust 

machines. 

The Godspeed Questionnaire (Bartneck et al., 2009) This questionnaire 

assesses human perceptions of AI across five dimensions: anthropomorphism, 

animacy, likeability, perceived intelligence, and perceived safety. Each dimension 

is rated using a set of bipolar scales (e.g., from “very human-like” to “not human-

like at all”) on a 5- or 7-point Likert scale. As we were using disembodied AI, we 

removed the animacy sub-section and replaced the term ‘robot’ with ‘AI’. 

Trust in Automation Questionnaire (Körber, 2019)The Trust in Automation 

Questionnaire (TiA) is a self-report survey in which participants rate their 

perceptions of an automated system across several dimensions. Participants 

respond to a series of statements using a Likert scale (e.g., 1 = strongly disagree 

to 5 = strongly agree). The questionnaire evaluates different factors of trust: 

Trust, Familiarity, Understanding, Intentions of developers, Reliability of AI and 

Propensity to Trust. The ratings from these responses provide insights into how 

much trust the participant places in the system, allowing researchers or designers 

to assess trust levels and identify areas for improvement in automation design. 

We lightly altered the questionnaire to address an AI rather than an automated 

system. 

Questions During Each Trial: Participants were presented with four visual 

analogue scales (Sung & Wu, 2018) with two endpoints on every trial. The first 

question asked, “How much do you trust the AI?” with responses ranging from 1 

(Not at All) to 7 (Completely), allowing participants to indicate their level of trust 

in the AI teammate if their influence leaned slightly more towards AI than human, 

they might press the scale at around 6. This implementation was applied to all 

sliders on the experimental interface. The second question, “Which teammate 

influenced you most?” used a scale from 1 (Human) to 7 (AI) to gauge which 

teammate had a more substantial impact on the participant's decision-making. 

Participants were then asked, “Please rate the performance of the Human” with 
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ratings from 1 (Terrible) to 7 (Perfect), and finally, “Please rate the performance 

of the AI” using the same scale, from 1 (Terrible) to 7 (Perfect). Participants had 

the freedom to click anywhere along the scale. These scales provided a 

comprehensive assessment of participants' trust and perceptions of each 

teammate's performance and were completed on every trial of the experiment. 

4.2.4  Procedure  

Participants accessed the experiment via a link emailed by researchers after 

signing up through the university participant pool. The initial link directed 

participants to a Qualtrics form containing information about the experiment and a 

consent form. Once consent was obtained, participants were provided with a link 

to the Pavlovia experiment, where they entered relevant demographic information 

and began the experiment. At the start of the experiment, participants completed 

the PtTM (PTM) questionnaire (Merritt et al., 2013) to establish a baseline of their 

attitudes towards automation. Participants all received the exact instructions, 

where the AI and Human teammate were introduced and the task explained, 

including attention checks. Participants were made aware that they were the team 

leader and had the final decision-making authority. After this, there was an 

example trial where participants could learn where to input relevant information 

and interact with the interface. Once participants had completed the example trial, 

they were warned that the experiment would begin shortly and that they should 

email the researcher if they had any questions. 

Participants identified 30 locations across three blocks, each comprising ten trials 

per block. Each trial included one location and four slider bars, and the 

participants were asked to input the city, country, and continent all within 120 

seconds. Notably, the AI and human teammates often provided conflicting 

answers, challenging participants to choose which teammate they trusted more. 

Following each trial, the correct answer was revealed, allowing participants to 

assess the performance of the human and AI teammates. The task was designed 

to be challenging; previous versions of this experiment have been found to work 

efficiently(Bailey & Pollick, 2023). The blocks featured either Face Emojis (☹,       ), 

Icon Emojis (     ,    ), or No Emojis, presented in a randomised order to control 
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for order effects; between each block, there was a 90-second break so 

participants could rest.  At the end of each block, participants completed the Trust 

in Automation Questionnaire (Körber, 2019) and the Godspeed questionnaire 

(Bartneck et al., 2009), slightly modified to fit the zero-embodiment scenario. The 

study concluded with a full debrief, which provided participants with a complete 

understanding of the experiment's nature and reminded them of their right to 

withdraw if they felt uncomfortable with the Wizard of Oz approach.  

4.2.5  Developing the Linear Mixed Model for Analysis  

We selected a linear mixed-effects model (LMM) due to its ability to handle a 

hierarchical data structure. Our data includes multiple observations (trials) nested 

within participants, introducing non-independence. LMMs appropriately account for 

this by including random intercepts for participants. LMMs also allow us to model 

fixed effects for experimental conditions (emoji type and reliability) while 

controlling for individual variability through random effects. The design involves 

repeated trust and performance ratings across multiple trials, making LMMs 

suitable for capturing within-subject variability. Alternative methods, such as 

traditional ANOVA, would not adequately account for participant-level random 

variability and could inflate Type I error rates. 

To perform this analysis on the AI performance, human performance, trust ratings 

and influence ratings taken on every trial and the questionnaires at each block, we 

utilised LMMs using the lme4 in R-Studio (Bates et al., 2015) and used lmerTest 

(Kuznetsova et al., 2017) to complete Type III ANOVA with Satterthwaite's 

method for degrees of freedom to extract p-values. A linear mixed model extends 

the traditional linear regression model that accounts for fixed and random effects 

(Barr, 2013). When developing the model we implemented trial as a random effect 

but found it had little variance and reduced the model's fit.  

4.2.5.1 Model Specification 

To analyse the impact of reliability and humanness on performance across 

different measures, we utilised the following linear mixed model: 
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𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑟𝑒𝑙𝑖 + 𝛽2𝑒𝑚𝑜𝑗𝑖𝑖 + 𝛽3(𝑟𝑒𝑙𝑖 × 𝑒𝑚𝑜𝑗𝑖𝑖) + 𝑢0𝑗 + 𝑒𝑖𝑗    

 
 

In this model, this is the breakdown of each component: 

• 𝑦𝑖𝑗 is the response variable for the 𝑖th observation of the 𝑗th participant. 

• 𝛽0 is the intercept. 

• 𝛽1𝑟𝑒𝑙𝑖 is the coefficient for the fixed effect of reliability. 

• 𝛽2𝑒𝑚𝑜𝑗𝑖𝑖 is the coefficient for the fixed effect of Emoji Type. 

• 𝛽3(𝑟𝑒𝑙𝑖 × 𝑒𝑚𝑜𝑗𝑖𝑖) is the coefficient for the interaction between Reliability 

and Emoji Type. 

• 𝑢0𝑗 represents the random effect for participant 𝑗, which accounts for the 

variation in the intercept across participants. 

• 𝑒𝑖𝑗 is the residual error term for the 𝑖th observation of the 𝑗th participant. 

4.2.5.2 Post Hoc Analysis 

To further explore all possible pairwise comparisons and better understand the 

interactions between conditions, we conducted post hoc analyses using estimated 

marginal means with the emmeans package (Lenth, 2024). We applied Tukey’s 

method to control the family-wise error rate during multiple comparisons. 

4.3 Results 

4.3.1  Condition Performance  

Figure 12 illustrates the percentage of correct responses categorised by emoji type 

and AI reliability. Across all emoji types, performance is higher in high-reliability 

conditions than in low-reliability conditions. Still, the low-reliability condition 

matched AI reliability more closely than the high-reliability condition. This data 



 

 

128 | P a g e  
 

suggests that AI reliability significantly influences accuracy and that face emojis 

perform best in highly reliable contexts. 

Figure 12. Percentage of Correct Answers Provided by Participants 

 

A two-way Analysis of Variance (ANOVA) was conducted to examine the effect of 

Reliability, Emoji Type and Interactions on the percentage of correct answers. The 

main effect of Reliability was significant, with a large difference in the percentage 

of correct answers between High and Low Reliability conditions (F(1,  40)  = 

19.78, p < 0.001). This indicates that participants performed better when 

Reliability was high. The main effect of Emoji Type was not significant (F(1.88, 

75.25) = 5.89, p = 0.06). The interaction between Reliability and Emoji Type was 

also non-significant (F(1.88, 75.25) = 1.80, p = 0.176), indicating that the effect 

of Reliability on performance did not differ significantly across Emoji Types. This 

finding did not support H1; emoji usage by AI teammates did not significantly 

enhance actual participant task performance. 

4.3.1.1  Post-Hoc Analysis 

Post-hoc comparisons using Tukey’s HSD method were conducted to explore the 

differences between groups further, particularly for Reliability and Emoji Type 

levels. Pairwise contrasts revealed that participants performed significantly better 
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in the high-reliability Face Emoji condition than in the low-reliability Face Emoji 

condition (p = 0.01, difference = 11.77%). Performance was also significantly 

higher in the high-reliability Face Emoji condition compared to the low-reliability 

Icon Emoji condition (p = 0.011, difference = 16.09%), and the reliability Face 

Emoji condition outperformed the reliability No Emoji (p = 0.004, difference = 

17.19%). No other between-condition comparisons were significant (p > 0.05). 

Under low reliability, no significant differences were found between conditions. 

4.3.2  Descriptive Statistics  

On average, participants took about 41 minutes to complete the experiment (m = 

41.7, sd =19.1). Table 12 shows the mean and standard deviation of influence, 

trust, AI performance, and human performance ratings taken throughout the 

experiment.  

Table 12. The Mean and Standard Deviation Score for Trust, Influence and 
Performance by Reliability and Emoji Type.  

 

Measure Reliability Emoji Type M SD 

Trust 

High 

Face Emoji 64.59 15.28 

Icon Emoji 64.70 14.36 

No Emoji 63.37 15.71 

Low 

Face Emoji 64.68 8.67 

Icon Emoji 66.03 11.26 

No Emoji 65.36 12.39 

Influence High 

Face Emoji 65.39 17.81 

Icon Emoji 63.82 18.30 
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No Emoji 66.69 19.06 

Low 

Face Emoji 66.22 19.16 

Icon Emoji 66.00 19.87 

No Emoji 64.53 20.89 

AI 

Performance 

High 

Face Emoji 67.53 15.54 

Icon Emoji 66.13 16.35 

No Emoji 66.20 18.31 

Low 

Face Emoji 72.70 13.87 

Icon Emoji 72.02 12.89 

No Emoji 70.19 13.42 

Human 

Performance 

High 

Face Emoji 63.77 15.70 

Icon Emoji 64.79 13.83 

No Emoji 60.19 15.73 

Low 

Face Emoji 61.89 10.99 

Icon Emoji 63.22 10.97 

No Emoji 60.96 12.65 

4.3.3  Propensity to Trust  

Pearson's product-moment correlation assessed the relationship between 

participants' mean Propensity to Trust Machines (PtM) (S. M. Merritt et al., 2013) 

ratings and the mean Trust in Automation (TiA) (Körber, 2019) ratings. We found 
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a significant positive correlation between the mean propensity to trust rating and 

the TiA rating, r(40) = 0.415, t = 2.886, p = 0.006. Figure 13 shows the scatter 

plot for the relationship with a line of best fit. The positive correlation suggests 

that as participants' mean PtM rating increases, so do their TiA ratings. It is 

important to note that the correlation does not imply causation, and further 

research is needed to explore the underlying factors contributing to this observed 

relationship. Throughout the experiment, we did not find a significant correlation 

between propensity to trust ratings and trust/influence ratings. 

Figure 13. The correlation between Propensity to Trust ratings and TiA ratings. 

 

4.3.4  Influence Ratings 

A linear mixed-effects model was conducted to evaluate the effects of Emoji Type, 

Reliability, and their interaction on participants' influence ratings. The model 

included random intercepts for participants. The fixed-effects estimates and Type 

III ANOVA with Satterthwaite’s method found Emoji Type did not significantly 

affect influence ratings (F(2, 1181.66) = 0.29, p = 0.749). Reliability did not show 

a significant main effect on influence ratings (F(1, 40.47) = 0.002, p = 0.963). 

The interaction between Emoji Type and Reliability was also non-significant (F(2, 

1181.66) = 1.82, p = 0.162).These findings did not support H2 or H3; facial 

emojis did not significantly differ from icon-based emojis or no emojis in 

influencing implicit trust ratings. 
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4.3.5  Trust Rating  

A linear mixed-effects model was conducted to evaluate the effects of Emoji Type, 

Reliability, and their interaction on participants' trust ratings. The model included 

random intercepts for participants. The Type III ANOVA with Satterthwaite’s 

method found Emoji Type did not significantly affect trust ratings (F(2, 1176.91) = 

0.86, p = 0.423). Reliability did not show a significant main effect on trust ratings 

(F(1, 38.43) = 0.51, p = 0.480). The interaction between Emoji Type and 

Reliability was also non-significant (F(2, 1176.91) = 0.57, p = 0.567). These 

findings did not support H2 or H3; facial emojis did not significantly differ from 

icon-based emojis or no emojis in influencing implicit trust ratings. 

4.3.6  AI Performance Ratings 

A linear mixed-effects model was conducted to evaluate the effects of Reliability, 

Emoji Type, and their interaction on participants' ratings of AI performance. The 

model included random intercepts for participants. The Type III ANOVA with 

Satterthwaite’s method revealed Emoji Type had a significant main effect on AI 

performance ratings (F(2, 1180.53) = 7.11, p < 0.001). However, Reliability did 

not have a significant effect (F(1, 40.34) = 0.18, p = 0.674). Neither did the 

interaction between Reliability and Emoji Type was not significant (F(2, 1180.53) 

= 1.27, p = 0.283). 

Post hoc comparisons with Tukey's adjustment were conducted to explore the 

significant effect of Emoji Type. The key findings are that the High-Reliability Face 

Emoji versus the High-Reliability No Emoji produced a significantly higher rating (B 

= 3.478, p = 0.037).High-Reliability Icon Emoji versus High-Reliability No Emoji 

also produced a significant significantly higher rating (B = 4.441, p = 0.002). All 

other comparisons were not significant (all p > 0.05). This outcome provided 

partial support for H4; emoji use modestly increased perceptions of AI teammate 

performance, although this effect was minimal and not clearly moderated by 

reliability conditions 
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 Figure 14. A Boxplot showing the AI Teammate Performance Means and SD 

 

4.3.7  Human Performance Ratings  

A linear mixed-effects model was conducted to examine the effects of Reliability, 

Emoji Type, and their interaction on participants' human performance ratings. The 

model included random intercepts for participants. The Type III ANOVA with 

Satterthwaite’s method found Emoji Type had no significant effect on human 

performance ratings (F(2, 1179.35) = 2.26, p = 0.104). Reliability also did not 

reach statistical significance (F(1, 40.05) = 3.84, p = 0.057). The interaction 

between Reliability and Emoji Type was also non-significant (F(2, 1179.35) = 

0.70, p = 0.498). This outcome provided no support for H4; emoji did not lead to 

increased perceptions of Human teammate performance. 

4.3.8  Questionnaire Data  

To complement the experimental data, we also collected questionnaire data to 

gain further insight into the results. We used the Trust in Automation 

Questionnaire (Körber, 2019) and The Godspeed Questionnaire (Bartneck et al., 

2009). To complete the analysis, we once again implemented LMMs using the 

lme4 in R-Studio (Bates et al., 2015), as participants gave responses at multiple 
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points throughout the experiment. The model was the same as the previous one; 

the questionnaire ratings were the response variables.  

4.3.8.1  Trust in AI Questionnaire. 

The TiA consists of six subscales, each targeting a specific aspect of trust, 

including reliability, understanding/predictability, familiarity, the intention of 

developers, propensity to trust, and overall trust in automation. Each subscale can 

be analysed independently, making it possible to focus on specific areas of 

interest. However, for a comprehensive assessment of trust in automation, it is 

recommended that the entire questionnaire be used. Due to the multidimensional 

nature of trust, calculating a total sum rating across all items is not advised, as it 

may lead to ambiguous interpretations. We slightly altered the scale to measure 

trust in AI instead; the questions remained the same, but we replaced the word 

automation with AI. 

A linear mixed-effects model was conducted to examine the effect of Reliability 

and Emoji Type on trust ratings. The model included Reliability (High or Low) and 

Emoji Type (Face, Icon, or No Emoji) as fixed effects and participant as a random 

effect. Figure 15 is a visualisation of these findings. 

A linear mixed model (LMM) was fitted to investigate the effects of Reliability and 

Emoji Type on participants' perceived Trust. A Type III ANOVA with 

Satterthwaite's method revealed a significant main effect of Reliability on Trust 

F(1, 40.684) = 6.69, p = 0.0134. However, Emoji Type and interactions were not 

significant (p > 0.05).  

For the subsection Intentions of Developers, the LMM analysis showed that 

Reliability significantly influenced participants' perception of developers' intentions, 

F(1, 41.016) = 4.29, p = 0.0448. However, Emoji Type and interactions were not 

significant (p > 0.05).  

In the Familiarity subsection, there was a significant main effect of Reliability on 

Familiarity, F(1, 40.673) = 16.87, p = 0.0002. However, Emoji Type and 

interactions were not significant (p > 0.05).  
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Figure 15. Trust in AI Questionnaire Mean ratings by subsection with standard 
error bars. 

For Propensity to Trust, the analysis showed a significant main effect of Reliability, 

F(1, 41.59) = 4.89, p = 0.0326. However, Emoji Type and interactions were not 

significant (p > 0.05).  No significant results were found for the Reliability of AI 

subsection and Understanding subsection (all p > 0.05). This result provides 

limited support for H2, as the presence of emojis did not significantly increase 

explicit trust ratings overall. 

4.3.8.2  The Godspeed Questionnaire 

The analysis of the Godspeed questionnaire data revealed significant effects of 

Emoji Type on likeability and anthropomorphism. Figure 16 visualises these 

ratings.  

A linear mixed-effects model was conducted to evaluate the effects of Reliability, 

Emoji Type, and their interaction on participants' likeability ratings. The model 

included random intercepts for participants. A Type III Analysis of Variance 

(ANOVA) with Satterthwaite's method yielded the following results. Reliability did 

not have a significant main effect (F(1, 41.03) = 1.64, p = 0.208), but there was a 

significant main effect of Emoji Type (F(2, 720.12) = 7.16, p < 0.001). The 
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interaction between Reliability and Emoji Type was not significant (F(2, 720.12) = 

0.55, p = 0.577). 

Figure 16. The Godspeed Questionnaire mean rating by subsection with 
standard error bars. 

 

Pairwise comparisons using the Tukey method indicated that Face Emoji Low 

Reliability was rated significantly higher than No Emoji Low Reliability (B = 0.34, p 

= 0.026). No other pairwise comparisons were significant (all p > 0.05). 

For the Anthropomorphism subsection, the linear mixed-effects model showed 

that reliability had a significant main effect (F(1, 40.87) = 4.38, p = 0.043). 

However, the main effect of Emoji Type was not significant (F(2, 459.19) = 0.48, 

p = 0.619). The interaction between Reliability and Emoji Type was also non-

significant (F(2, 459.19) = 1.21, p = 0.299). These findings suggest that reliability 

influences anthropomorphism ratings, but the type of emoji does not significantly 

impact them. 

For Perceived Intelligence, the Type III ANOVA yielded no significant results (all p 

> 0.05). These findings provided limited support for H5; reliability and emoji use 

did significantly enhance participants' Godspeed perceptions of AI teammates but 

only for Anthropomorphism and Likeability. 



 

 

137 | P a g e  
 

4.4 Discussion 

4.4.1  Overview 

Integrating AI into HATs has reshaped collaborative problem-solving across 

healthcare, digital forensics, and cybersecurity. By combining the computational 

precision of AI with human creativity and judgment, HATs offer opportunities for 

enhanced decision-making. However, effective collaboration hinges on trust 

calibration, where users balance reliance on AI with healthy uncertainty. This 

study examined how emotional intelligence (EI) cues, represented through emojis, 

influence trust, performance, and team dynamics in HATs. While the findings 

provide valuable insights, they also reveal the complexities of applying emotional 

elements in task-oriented collaborations. 

4.4.2  Task Performance  

Contrary to H1, emoji use did not enhance actual task performance, suggesting 

that in contexts emphasizing task accuracy and reliability, emotional cues alone 

may be insufficient for performance improvements. This finding highlights that 

effective human-AI collaboration in performance-critical tasks may rely more 

heavily on functional reliability and clear communication rather than purely social 

or emotional enhancements. 

4.4.3  Trust and Influence  

Our findings provided no support for H2, as emojis did not significantly enhance 

explicit trust ratings. Similarly, H3 was not supported; facial emojis did not elicit 

greater trust compared to icon-based emojis or no emojis. These results diverge 

from previous expectations that emojis would enhance trust through greater 

emotional engagement (Beattie et al., 2020). It appears that explicit trust in AI 

systems within HATs is primarily driven by cognitive evaluations of reliability rather 

than social or affective enhancements. These findings align with prior research 

suggesting that while emotional cues enhance the social appeal of AI, their ability 

to shape explicit decision-making is limited in task-focused environments where 

accuracy and performance take precedence (de Visser et al., 2020; Schmidt et al., 

2020). 
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The experimental task, a geographic guessing activity, required precision and 

minimal emotional relevance, which could reduce emojis' salience in shaping 

influence ratings. In contrast, contexts where relational factors are more 

prominent, such as healthcare (Fadhil et al., 2018) or education, may offer a more 

meaningful test of emojis' impact on decision-making. Future studies should 

investigate whether the influence of emotional cues varies depending on task 

complexity or the degree of emotional engagement required. 

This findings also align with prior research emphasising the dominance of 

reliability and transparency over relational cues in fostering trust (Bansal et al., 

2019; von Eschenbach, 2021). The findings challenge the assumption that 

incorporating emotional elements like emojis into AI systems fosters trust and 

improves collaboration. Despite their potential to enhance user engagement, 

emojis did not appear to alter participants' perceptions of AI trustworthiness 

significantly.  

These findings could be because trust in AI systems, especially in high-stakes 

fields like digital forensics or cybersecurity, is grounded in the AI's ability to deliver 

reliable and accurate results with little emotion. Emojis may have limited value in 

these contexts unless paired with transparent AI explanations that help users 

understand decision-making processes (Bansal et al., 2021; Bansal et al., 2019; 

Bansal et al., 2021). Additionally, the specific nature of tasks in HATs, demanding 

precision and high cognitive effort, might overshadow the emotional cues 

conveyed by emojis. The experimental task does not require any emotions. In 

other situations where emojis are useful, emotion is often needed, such as health 

care (Fadhil et al., 2018), suggesting that the application of emojis may be 

context-specific.  

Interestingly, participants rated low-reliability AI systems as more familiar and 

trustworthy than highly reliable systems when paired with human-like features, a 

paradox inconsistent with earlier studies and our previous chapter (Waytz et al., 

2014; Bansal et al., 2021). Users may perceive low-confidence AI as more 

collaborative because it prompts them to form accurate mental models of the 

system's limitations, facilitating more effective trust calibration. Although a 



 

 

139 | P a g e  
 

different explanation for this behaviour could be due to the rise of ChatGPT 3.o 

during the period of data collection, much media was showing the limitations of 

ChatGPT and talking about serious issues with it, for this reason participants could 

be more familiar with AI that performance poorly and this may have confounded 

the variable. 

The Trust in AI Questionnaire further revealed increased trust in developers' 

intentions in low-reliability conditions. This suggests that while emojis alone may 

not influence explicit trust ratings, they might indirectly shape relational factors 

like perceived developer intentions or user familiarity with the AI. These findings 

reinforce the importance of combining relational cues with robust explainability 

mechanisms to ensure trust calibration aligns with the AI's capabilities. 

4.4.4  Teammate Performance Ratings 

Hypothesis 4 posited that emojis would influence performance ratings for AI and 

human teammates. The findings partially supported this hypothesis. Face and icon 

emojis significantly increased AI teammate performance ratings, suggesting that 

relational cues can enhance perceptions of AI contributions within the team. This 

aligns with research suggesting that anthropomorphic cues often inflate AI 

performance ratings (Kulms & Kopp, 2019). However, the heightened scrutiny 

faced by highly reliable AI systems further illustrates the complexities of trust 

calibration: when reliable systems fail, users react more negatively to these 

violations of expectations (Cheng et al., 2022). 

For human performance ratings, neither emoji type nor reliability produced 

significant effects. This does not align with broader theories that affective signals 

foster a more collaborative and cohesive atmosphere (Glikson & Woolley, 2020) 

and suggests that it could be important to focus on actively improving team 

cohesion through team building to improve relationships in HATs. 

Collectively, these findings highlight emojis' dual impact: while they enhance 

perceptions of AI teammates, their influence on Human performance evaluations 

remains limited. Future research could explore how combining emojis with other 
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affective signals, such as tone of voice or explanation styles, might amplify their 

impact. 

4.4.5  Godspeed Perceptions 

H5 received some support; emoji usage significantly enhanced participants’ 

Godspeed perceptions, for likeability face emoji use increased rating. Interestingly, 

the Godspeed Questionnaire revealed higher anthropomorphism ratings for low-

reliability systems, supporting theories that users attribute human-like traits to 

systems that behave unpredictably (Waytz et al., 2014). While this 

anthropomorphism may foster engagement, it raises concerns about miscalibrated 

trust: users may over-rely on relational cues instead of critically evaluating the 

system's limitations. The findings emphasise the need for multi-layered trust 

calibration strategies that integrate relational elements like emojis with 

transparent feedback about system reliability. 

Emojis also appeared to mitigate negative perceptions of low-reliability AI, 

softening the impact of errors and making the system's behaviour more relatable 

(Berretta et al., 2023). While this suggests a compensatory role for emojis, their 

effectiveness is contingent on transparent communication and consistent 

performance, as highlighted in the introduction. 

4.4.6  AI Reliability 

As expected, participants in the high-reliability condition achieved higher 

percentages of correct answers, demonstrating that reliability directly improves 

task performance. However, reliability did not significantly influence trust or 

influence ratings, suggesting that trust calibration depends on a complex interplay 

of technical and relational factors. 

4.4.7  Ethical Considerations 

The findings raise ethical questions about using relational cues like emojis in 

HATs. While emojis can enhance likeability and familiarity, their potential to foster 

misplaced trust or emotional over-reliance requires careful consideration. For 

example, despite its technical deficiencies, the tendency to perceive low-reliability 
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AI as more collaborative underscores the importance of ensuring that relational 

design does not obscure transparency about system limitations. 

Moreover, the observed elevation in human performance ratings due to emoji use 

highlights the potential for team dynamics to be unintentionally skewed. While 

fostering positive interactions is beneficial, over-emphasising relational cues could 

lead to unfair blame for AI teammates or diminished recognition of their 

contributions. 

4.4.8  Limitations and Future Research 

This study had several limitations. The relatively small sample size and the focus 

on university participants may limit the generalizability of the findings, and using a 

controlled, online experimental setting may not fully capture the complexity of 

real-world HAT interactions. Additionally, the task focused on geographic 

guessing, which may not reflect situations where emotional cues play a more 

prominent role, such as in healthcare or customer service, potentially reducing 

their impact on trust calibration and decision-making. 

Future research should focus on larger, more diverse samples and investigate the 

effects of emojis in real-world HATs where interactions are more dynamic and 

emotionally complex. Expanding research to tasks requiring higher emotional 

intelligence, such as healthcare or education, could provide deeper insights. 

Additionally, exploring other emotional cues like voice tone and combining them 

with explainable features may enhance trust calibration and performance. 

Longitudinal studies would also be valuable in understanding how trust in AI 

evolves with repeated human-AI teaming. 

4.4.9  Conclusion 

The study reveals nuanced insights into the relationship between trust, 

performance, and emotional cues in HATs. While emojis had a modest effect on 

human performance ratings, they did not significantly influence trust in AI 

systems. These results emphasise that while emojis and other emotional cues 

might benefit specific contexts, they are insufficient for trust calibration in high-
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cognitive-load tasks, where reliability and transparency play a more pivotal role. 

For HATs to thrive, emphasis must be placed on creating transparent, reliable AI 

systems rather than focusing solely on emotional appeal. We also found that using 

face emojis increased likeability across both reliability conditions; emojis may have 

played a compensatory role, making the AI seem more approachable despite 

reliability levels. 

The findings of this chapter contribute to a growing understanding of trust 

calibration in HATs, demonstrating that while emojis enhance the perceived 

likability and anthropomorphism of AI teammates, they have a limited impact on 

explicit trust and performance ratings. This aligns with the Chapter 3 findings that 

reliability and structural design elements (such as anthropomorphic cues) often 

influence trust calibration more than affective enhancements alone. The study's 

results thus reinforce that while affective cues like emojis might support team 

cohesion and social perception, their influence on trust in high-stakes, task-

oriented collaborations remains secondary to transparency and reliability. 

Moreover, these findings extend the bibliometric trends identified in Chapter 2 by 

illustrating how interdisciplinary perspectives on trust are essential for 

understanding and designing practical HATs. This chapter positions affective cues 

within a broader framework, showing that while they can enhance likability, their 

role in HATs is limited without simultaneous emphasis on reliable and transparent 

AI functionality. 

Throughout Chater 3 and 4, we have been applying the same solution randomly to 

all participants, and users will likely have unique preferences about a system. 

Chapter 5 will further explore trust calibration by investigating how an AI 

teammate that matches user preferences will impact dynamics within a HAT. The 

cumulative insights from Chapters 2, 3, and 4 reveal that a well-calibrated trust 

framework in HATs may require cognitive and affective elements to be applied 

selectively based on context. This holistic approach will provide a foundation for 

practical recommendations to enhance collaboration in diverse HATs. 
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Chapter 5 The Perfect Teammate! The Effects 
of Social Alignment in AI on Trust in Human-

AI Teams. 

This chapter explores the role of adaptability of social alignment in AI design and 

its effects on trust, influence, and performance within HATs. Building upon the 

foundational discussions of trust calibration from Chapter 1 and the experimental 

findings on AI characteristics from Chapters 3 and 4, this chapter examines how 

aligning AI behaviour with individual user preferences impacts team dynamics. In 

prior chapters, trust in HATs was influenced by reliability and anthropomorphism, 

revealing that design elements can significantly shape user perceptions and 

collaborative outcomes. This chapter extends these insights by investigating 

whether configuring AI to match user preferences from the outset improves trust 

calibration and team performance. 

To understand adaptability’s role, this study contrasts AI that aligns with user 

preferences, AI that operates contrary to these preferences, and a neutral control 

condition. This chapter addresses critical questions about trust calibration’s 

complexity in HATs by examining trust, influence, and performance ratings across 

high and low-reliability settings. The chapter’s findings contribute to the ongoing 

discussion of how adaptability in the case of social alignment can promote or 

hinder trust in AI. This chapter will give insights into the impact of socially aligned 

AI on trust and perceived performance, allowing us to infer whether it is an 

appropriate action to take when designing AI to be within a HAT. This paper was 

presented in abstract form at the Multidisciplinary Perspectives on Human-AI 

Team Trust Workshop at HHAI24. 

5.1 Introduction 

The concept of HATs has attracted considerable attention as researchers attempt 

to understand the complex dynamics that emerge when AI agents collaborate with 

humans. HATs present opportunities to redefine teamwork and position AI as 

more than just a tool but as a genuine collaborator. However, effective 

collaboration requires addressing challenges like trust calibration, role alignment, 

and adaptive behaviours. This chapter builds upon previous findings to explore 
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how adaptive AI behaviours, specifically those aligned with user preferences, can 

foster trust and enhance team performance. 

The following sections review key literature on HATs, exploring the role of trust, 

adaptive AI, social alignment and reliability within HATs. By investigating these 

topics, this chapter aims to contribute to a deeper understanding of how AI can be 

designed to evolve from supportive tools to teammates by becoming more social. 

5.1.1  Human-Agent Team Literature  

HATs operate at the intersection of human and AI collaboration, offering unique 

opportunities and challenges. While researchers have sought to replicate dynamics 

from human-only teams, this approach has shown limited success due to 

fundamental differences in how humans and AI interact (McNeese et al., 2021; 

Berretta et al., 2023). For instance, key human team attributes such as 

interdependence and role differentiation require careful adaptation to 

accommodate AI’s unique capabilities and limitations (Rix, 2022; Chai et al., 2017; 

Siemon et al., 2021). 

One critical distinction between human teams and HATs is how humans perceive 

and respond to AI teammates. Research shows that AI can influence team 

dynamics in unexpected ways. For instance, low-confidence AI may enhance team 

accuracy by prompting humans to develop a more accurate mental model of its 

capabilities, which is different from the typical dynamic seen in human teams 

(Bansal et al., 2021; Bansal et al., 2019). In addition, AI teammates are often held 

to different standards than humans, receiving disproportionate blame for failures 

and being treated as tools rather than collaborators (Merritt et al., 2011; Ong et 

al., 2012). These biases underscore the need for user-centric design strategies 

that foster trust and increase appropriate blame in HATs, as an AI system that is a 

scapegoat could lead to reduced team performance in HATs. 

A recurring theme in the literature is the importance of clear and effective 

communication. In human teams, members rely on explicit and implicit cues to 

adjust roles and responsibilities dynamically. For example, when a member is 

refocused on a new task in a human team, this is often explained and talked 
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about within the team. This causes issues with AI systems that are still receiving 

updates as these updates may not be efficiently communicated to the other team 

members and will harm team performance (Bansal et al., 2019). The need to 

focus on the communication of updates aligns with findings from Berretta et al. 

(2023), who emphasise the need for a socio-technical perspective that views AI as 

a collaborative partner rather than a mere tool to allow for more seamless 

management of these issues. 

Despite these insights, gaps remain in understanding how specific design choices, 

such as personalising AI behaviours to align with user preferences, impact trust 

and performance in HATs. Previous chapters have shown that humanising AI 

through features like anthropomorphic cues can increase trust in low-reliability 

conditions, but emotional cues like emojis have little impact on trust. This 

highlights the need for further investigation into how individual differences shape 

human-AI interactions and the potential benefits of tailoring AI behaviours to meet 

user needs. 

These challenges lead directly to our research focus for this chapter which is 

understanding how preference-aligned AI can enhance trust and performance in 

HATs. By addressing this gap, we aim to uncover principles that support AI’s 

transition from a functional tool to a true teammate. 

5.1.2  Trust Calibration in HATs 

Trust is a cornerstone of practical HATs, influencing how humans and AI 

collaborate to achieve shared goals. Our previous chapters have deeply delved 

into trust and trust calibration, so here we will provide a brief overview.  

Calibrating trust involves achieving a delicate balance: too much trust can result in 

overreliance, where users ignore AI errors, while too little trust can lead to 

underutilisation and missed opportunities (de Visser et al., 2020; Kamar, 2016). 

Successful trust calibration depends on AI reliability, transparency, and 

adaptability 

As trust is a complex concept, we have chosen to define it to avoid confusion. In 

this study, similarly to our other chapters, we define trust as a willingness to 
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accept vulnerability and rely on AI, even in uncertain situations (Rousseau et al., 

1998; Ulfert et al., 2023). Defining trust this way ensures our experimental design 

mirrors what is appropriate for this type of trust and is best practice in trust 

research across disciplinary borders (Ulfert et al., 2023). 

Our earlier chapters demonstrated that humanising AI could influence trust when 

reliability is low, but the effects were less profound when in high-reliability 

conditions. This tells us that the relationship between AI behaviour and trust is 

complex, shaped by user expectations and individual differences. This chapter 

extends these findings by focusing on the role of preference-aligned AI 

behaviours, investigating how they contribute to trust calibration and team 

dynamics.  

5.1.3  Adaptive Social AI 

Humans typically have an innate ability to adapt our behaviour in response to 

others. This process, known as social adaptation, allows for more intricate and 

personalised interactions (Terziev & Stoyanov, 2018).  We can do this in multiple 

ways, such as instinctively changing our actions through tone and manner of 

speaking to meet the perceived needs of those we socialise with or over longer 

periods, we can develop knowledge about what behaviours align with another 

person’s preferences (Tanevska et al., 2020). 

In everyday life, this capacity for social adaptation is crucial for navigating diverse 

interpersonal dynamics. In HRI, social adaptation can be applied to robots, 

enabling them to align their behaviours with user preferences and interaction 

styles and Tanevska et al., (2020) found that the robot's adaptability impacted the 

participants' interaction efficacy. More work is needed to understand the impact of 

social adaptability on non-embodied AI, as designing AI with adaptive capabilities 

and systems can mirror human tendencies to adjust dynamically to the needs of 

others, fostering smoother and more natural collaborations. 

In human teams, social adaption is integral to organisational socialisation, 

enabling individuals to learn and align with an organisation’s norms, values, and 

behaviours (Chao et al., 1994; Fang et al., 2011; Van Maanen & Schein, 1977). 
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This alignment promotes effective interactions, trust, and shared goals, which are 

critical for team cohesion and performance. When discussing social alignment in 

AI, we refer to the system’s ability to adjust its behaviour, communication style, or 

decision-making processes to match the preferences, expectations, and dynamics 

of the team/user it supports. Parallelling the personalisation seen in human teams, 

where understanding and respecting individual styles fosters inclusion and mutual 

understanding (Saks & Gruman, 2014; Tasselli et al., 2018). Personalisation in AI 

systems, such as adaptive user interfaces or context-aware assistance, can create 

a foundation for smoother interactions and higher initial rapport (Liu et al., 2003; 

Strauss, 2017). When AI aligns with user preferences, it improves functional 

efficiency and contributes to a more cohesive and socially compatible team 

environment. 

Little research exists on personalised social adaption, although much work on 

dynamic adaptability in HATs offers insights.  Dynamic adaptation further 

enhances AI’s capacity for social alignment. Research highlights the importance of 

adaptive autonomy, where AI systems adjust their level of independence based on 

contextual demands (Ahmad et al., 2017; Hariri et al., 2015; Hauptman et al., 

2023; Zhao et al., 2022). For example, in cybersecurity incident response, AI 

systems can autonomously handle tasks like threat detection, but when the 

situation requires nuanced judgment or ethical considerations, such as 

containment or eradication decisions, the AI can dynamically scale back its 

autonomy to collaborate with human operators  (Hauptman et al., 2023). Such 

adaptability mirrors how human team members adjust their roles and behaviours 

in response to team needs (Pulakos et al., 2006), which could lead to collaboration 

and partnership between humans and AI. 

In summary, social adaptation offers a promising framework for examining and 

enhancing HAT dynamics. Further research is needed to explore the unique 

challenges and opportunities inherent in HATs. Organisations could foster more 

effective and cohesive collaboration in HATs by designing AI agents with adaptive 

social alignment.  
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5.1.4  Summary 

In summary, HAT research underscores the complexities of integrating AI within 

human teams, where effective collaboration relies on understanding 

interdependence, trust calibration, and social dynamics. Studies reveal that AI’s 

confidence levels and personalised behaviours can significantly impact team 

performance and member interactions, shaping how effectively humans and AI 

work together. As this study explores, we gain insights into the potential benefits 

of socially adapted AI in fostering trust and cohesion in HATs by aligning AI 

behaviours with user preferences. These findings contribute to a broader 

understanding of how AI can evolve from supportive tools to genuine team 

members, paving the way for future research into adaptive, user-centric AI design 

in collaborative settings.  

While extensive research has explored HATs, a significant gap exists in 

understanding the impact of AI adaptability, specifically, how aligning AI social 

behaviour to individual user preferences influences team performance and trust. 

Current studies have focused on general dynamics within HATs, such as trust 

calibration and the effect of AI confidence levels on team accuracy (Bansal et al., 

2021; de Visser et al., 2020). However, these studies often examine static AI 

behaviours rather than systems that adjust according to user preferences from the 

outset. This distinction is critical as personalised, preference-based adaptation in 

AI may foster deeper trust and enhance team cohesion by aligning more closely 

with individual team members’ expectations. 

5.1.5  Study Aims 

In this experiment, we focus on AI designed to initially align with individual user 

preferences for communication rather than one that adapts throughout the 

experiment. By matching the AI’s behaviour to user preferences from the outset, 

we can examine the effectiveness of a pre-configured, personalised AI in 

enhancing human-AI interaction and team performance without the added 

complexity of real-time adaptation. This approach allows us to isolate the impact 

of preference-matched AI and investigate whether aligning with user preferences 

beforehand can positively influence performance, trust, and team dynamics. 
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By initially configuring the AI to reflect user preferences, this study provides a 

controlled approach to testing the potential of non-adaptive, personalised AI. This 

can serve as a stepping stone for future research on adaptive AI, helping to clarify 

the specific benefits and limitations of preference alignment as a standalone 

feature. If successful, this static personalisation may offer an accessible, less 

resource-intensive approach to enhancing AI usability in real-world applications, 

where real-time adaptation is not always feasible. Based on our conclusions, the 

following hypotheses are proposed: 

H1: Teams working with AI agents that adapt to user preferences will 

demonstrate higher actual task performance accuracy compared to teams working 

with non-adaptable AI agents. 

H2: Participants collaborating with adapted AI agents will report higher levels of 

trust compared to those working with non-adaptable AI agents. 

H3: Participants collaborating with adapted AI agents will report higher perceived 

AI performance than those working with non-adaptable AI agents. 

H4: Teams paired with misaligned AI agents (i.e., agents that behave contrary to 

user preferences) will report lower trust and influence ratings compared to those 

working with adapted AI agents, irrespective of system reliability.  

5.2 Methodology 

5.2.1  Participants  

The study included 31 participants with a mean age of 25.71 years. Participants 

identified with two genders: female (n = 17), male (n = 13), and one participant 

chose not to disclose their gender (n = 1). The sample was ethnically diverse, 

comprising individuals from 7 different ethnic backgrounds. The study received full 

ethical clearance from the MVLS Ethics Committee (application: 200230229) at the 

University of Glasgow.  
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5.2.2  Study Design 

To examine our hypothesis about adaptable AI, we used a between-within-

subjects design (3x2 configuration) where participants interacted with an AI 

teammate that either was adapted to their preferences (Positive Adapting), was 

the opposite of their preferences (Negative Adapting) or a random control 

(Control). Within these groups, the participants interacted with two different 

reliability levels: high (90%) and low (60%) reliability. This experiment also 

examines how AI differences can impact preferences toward a human teammate. 

For this reason, we used another simulated human teammate who worked within 

the team and was 30% reliable; participants were led to believe this was a real 

human teammate, mimicking chapters 3 and 4. Participants worked with their 

teammates to complete 40 trials over ten blocks (4x10, n=40). We collected 1163 

explicit trust ratings, 1165 influence ratings, 1168 AI performance ratings and 

1167 human performance ratings. Figure 17 shows a visualisation of the design. 

Figure 17. The experimental design. 

 

5.2.3  Materials 

5.2.3.1 Developing Response Stimuli 

The study employed a Wizard of Oz experimental method to ensure optimal 

control. Participants were led to believe they were collaborating with an AI and a 

human teammate when, instead, they were interacting with responses produced 

by ChatGPT 3.5 (OpenAI., 2024). To gain these responses, we would provide 

ChatGPT with the following prompt: “Here are the coordinates to a location on 

Google Maps “55.86699001827868, -4.256383277724846” in the style of someone 

playing GeoGuessr Could you guess where this location is. Please keep a friendly 

tone”. Once we had the first response, we would ask ChatGPT to either shorten or 

lengthen the response depending on its length, “Please make this response 

shorter/longer”. Finally, we asked ChatGPT to make the long/short response more 
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formal in tone: “Please make this response more formal in tone”. We had to 

modify some of the responses to correct them lightly. For the human response, 

we used the prompt “Here are the coordinates to a location on Google Maps 

“55.86699001827868, -4.256383277724846”, in the style of someone playing 

GeoGuessr could you guess where this location is”.. We lightly edited the human 

responses to ensure they were different from the AI responses and were of an 

appropriate length.  

5.2.3.2 Decision-Making Task 

The task involved presenting participants with random locations extracted from 

Google Earth. Participants were tasked with determining the continent, country, 

and city associated with each location, with the final decision resting on the 

participant, who assumed the role of the ‘team leader’. The experiment was set up 

with the AI and human teammates giving different answers 95% of the time, 

meaning the participant had to choose between the teammates each time. The 

experiment comprised four blocks; two blocks were high-reliability AI, and two 

were low-reliability AI; the order of the reliability was randomised throughout the 

experiment to avoid order effects.  

Lastly, a time constraint of 120 seconds per location was enforced, meaning 

participants had to rely on their teammates’ responses to submit the location in 

Figure 18. This is an example of the interface used. In the experiment, the 
pictures were from Google Maps, but to avoid copyright, we used a personal 

photo. 
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time. The introduction of time scarcity as an environmental factor can significantly 

impact the outcomes of team tasks, often necessitating rapid decision-making (Hu 

et al., 2015; Kelly & Karau, 1999). This constraint could increase reliance on AI, 

requiring human teammates to make choices based on implicit attitudes rather 

than thoroughly deliberating on the task. To emphasise this factor, we ensured 

that the human and AI teammates mainly provided different answers, requiring 

participants to choose which teammate they trusted the most. This setup aimed to 

mimic real-world scenarios where rapid decision-making is often necessary, 

potentially increasing reliance on AI. The task was designed to be difficult for the 

participants so we could assess the impacts of reliability and humanness under a 

high cognitive load. Figure 18 shows the user interface in the experiment. 

5.2.3.3 Questionnaires 

Screening Questionnaire and Assignment (Supplementary Material 3) To 

assign participants to one of three experimental conditions, Positive Adaptive, 

Negative Adaptive, or Control, we developed a screening questionnaire designed 

to assess four subsections of preference of teammate communication style: 

formality and friendliness of teammates, and long (in-depth) or short (brief) in 

detail. Given the absence of pre-existing validated measures for these specific 

preferences, we designed a novel 20-item questionnaire, with 5 items dedicated to 

each of the four dimensions. The items were presented on a slider scale, anchored 

at “strongly disagree” (0) and “strongly agree” (100), to encourage participants to 

avoid the neutral option (“neither agree nor disagree”). This design choice was 

deliberate to reduce response bias and ensure clearer group categorisation, 

making it easier to match participants to appropriate experimental conditions.   

Participants were assigned to groups using a custom Python script that processed 

their preference scores. The script began by reading the participants’ mean scores 

from a CSV file using the Pandas library, which facilitated data manipulation and 

analysis. Each participant was randomly assigned to Positive Adapting, Negative 

Adapting or Control. For Positive Adapting, the AI’s behaviour matched the 

participant’s stated preferences, aiming to provide an environment aligned with 

their preferred interaction style and response length. For NA, the AI’s behaviour 

was the opposite of the participant’s preferences, and the intention was to explore 
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the effects of non-alignment. For example, a participant who scored higher on 

friendly and short preferences would be assigned to the Formal Long group in the 

Negative adapting. In the control condition, participants were randomly assigned 

to one of the four groups without checking the scores on the screening form. This 

methodological approach allowed for the systematic and randomised assignment 

of participants to different experimental conditions. The process was automated to 

ensure consistency and reproducibility in participant assignment. The groups were 

balanced regarding individual preferences for formality, friendliness, and 

communication length, ensuring that any outcome differences were due to the 

adaptive condition and not pre-existing preference biases. 

To validate these scales, we requested participants to complete the questionnaire 

upon registering for the study, which occurred before their participation, meaning 

several participants completed the screening but not the experiment. This 

approach enabled us to gather a preliminary sample of n = 43 participants, 

allowing for an initial validation of the questionnaire’s functionality. For this 

purpose, we employed R-Studio, utilising the tidyverse (Wickham et al., 2019) and 

psych (Revelle, 2016) packages to calculate Cronbach’s alpha for each category. 

The results revealed that the extended response of teammate preference scale 

provided a Cronbach’s alpha of 0.814, the short response scale a Cronbach’s alpha 

of 0.846, the friendly scale a Cronbach’s alpha of 0.804, and the formal scale a 

Cronbach’s alpha of 0.906, each indicating a satisfactory level of internal 

consistency. These outcomes provide us with preliminary confidence in the 

questionnaire’s effectiveness. Nevertheless, a more comprehensive validation 

process would be advantageous for future studies. 

In the final assignment, the PA condition included only participants with friendly 

preferences, with slightly more individuals preferring long-form responses than 

short-form. The NoA condition was composed mainly of participants with formal 

preferences, especially those preferring short interactions. The Control group 

contained a relatively even mix of participants across all interaction styles, with no 

category strongly overrepresented. 
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This distribution strategy was intentional, designed to ensure a clear operational 

distinction between matched (PA), mismatched (NoA), and neutral (Control) 

conditions.  

PtTM (Merritt et al., 2013): A series of 6 questions where participants rated on a 

7-point Likert scale how likely they are to trust machines. 

The Godspeed Questionnaire (Bartneck et al., 2009): This questionnaire 

assesses human perceptions of AI across five dimensions: anthropomorphism, 

animacy, likeability, perceived intelligence, and perceived safety. Each dimension 

is rated using a set of bipolar scales (e.g., from “very human-like” to “not human-

like at all”) on a 7-point Likert scale. As we were using disembodied AI, we 

removed the animacy/perceived safety subsections as they are not relevant and 

replaced the term ‘robot’ with ‘AI’. 

Trust in Automation Questionnaire (Körber, 2019): The Trust in Automation 

Questionnaire (TiA) is implemented as a self-report survey where participants rate 

their perceptions of an automated system across several dimensions (Trust, 

Familiarity, Understanding, Intentions of developers, Reliability of AI and 

Propensity to Trust). Participants respond to a series of statements using a Likert 

scale (e.g., 1 = strongly disagree to 7 = strongly agree).  

Questions During Each Trial: During each task trial, participants rated which 

teammate had influenced their decision-making on a visual analogue scale (Sung 

& Wu, 2018) with two endpoints, ‘Human’ and ‘AI’. When participants selected 

‘Human,’ it was assigned a value of 0; if they chose ‘AI,’ the value was 100. 

Participants had the freedom to click anywhere along the scale. For instance, if 

their influence leaned slightly more towards AI than human teammates, they 

might press the scale at around 60. This influence rating served as an implicit 

measure of trust (Duffy, 2015; McAllister et al., 2006), with greater influence 

indicating higher levels of trust. This implementation is applied to all sliders on the 

experimental interface. Participants also provided performance ratings for the AI 

and human teammates with two anchoring points of ‘Terrible’ and ‘Perfect’ after 
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each trial. Finally, participants also rated their confidence in their answer, with the 

anchoring points of ‘Not At All’ and ‘Completely’. 

5.2.4  Procedure  

Participants were initially contacted through the University of Glasgow participant 

pool. Once they had registered interest in the study, the researcher emailed them 

the link to the screening questionnaire to assign them to a condition. Once 

participants completed the questionnaire, they could book in for the experiment.  

Once participants arrived at the experiment, they were instructed to sit at a 

computer-equipped table, and an information sheet explaining the experiment’s 

premise was provided. They were also given a consent form to sign if they found 

the provided information acceptable. Once the consent form was signed, 

participants completed the PtTM Questionnaire (Merritt et al., 2013).  

Following this, participants familiarised themselves with the experiment’s 

instructions, which were all displayed throughout the experiment setup to ensure 

consistency across all participants. They then engaged in a sample trial. The task 

entailed participants identifying the location of a screenshot from Google Earth by 

specifying the Continent, Country, and City/State of the screenshot.  Participants 

were designated as team leaders and were tasked with providing the final decision 

regarding the location. To assist them in this task, they collaborated with a human 

teammate and an AI teammate, both of whom offered written advice to aid the 

participant in pinpointing the location (Figure 18). At the end of each trial, 

participants filled in the four sliders and were then shown the correct answer. 

Each trial had a time limit of 120 seconds, which the participants were made 

aware of. Between each block, there was a 60-second break. 

The task spanned four blocks, with each block comprising ten trials, resulting in a 

total of 40 different location identifications made throughout the study. At the end 

of each block participants completed the Godspeed Questionnaire (Bartneck et al., 

2009) and the Trust in Automation (Körber, 2019). Once the experiment was 

finished, participants were provided with a physical debrief explaining the 
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experiment, which had contact information for the researcher if participants 

decided to withdraw after the experiment. 

5.2.5  Developing Linear Mixed Model for Analysis  

We selected a linear mixed-effects model (LMM) due to its ability to handle a 

hierarchical data structure. Our data includes multiple observations (trials) nested 

within participants, introducing non-independence. LMMs appropriately account for 

this by including random intercepts for participants. LMMs also allow us to model 

fixed effects for experimental conditions (e.g., adaptability and reliability) while 

controlling for individual variability through random effects. The design involves 

repeated trust and performance ratings across multiple trials, making LMMs 

suitable for capturing within-subject variability. Alternative methods, such as 

traditional ANOVA, would not adequately account for participant-level random 

variability and could inflate Type I error rates. 

To perform this analysis on the AI performance, human performance, trust ratings 

and influence ratings taken on every trial and the questionnaires at each block, we 

utilised LMMs using the lme4 in R-Studio (Bates et al., 2015) and used lmerTest 

(Kuznetsova et al., 2017) to complete Type III ANOVA with Satterthwaite's 

method for degrees of freedom to extract p-values. When developing the model 

we implemented trial as a random effect but found it had little variance and 

reduced the model's fit.  

5.2.5.1  Model Specification 

To analyse the impact of reliability and adaptability on performance across 

different measures, we utilised the following linear mixed model: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑎𝑑𝑎𝑝𝑡𝑖 + 𝛽2𝑟𝑒𝑙𝑖 + 𝛽3(𝑎𝑑𝑎𝑝𝑡𝑖 × 𝑟𝑒𝑙𝑖) + 𝑢0𝑗 + 𝑒𝑖𝑗    

In this model, this is the breakdown of each component: 

• 𝑦𝑖𝑗 Is the response variable for the 𝑖th observation of the 𝑗th participant. 

• 𝛽0 is the intercept. 
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• 𝛽1𝑎𝑑𝑎𝑝𝑡𝑖  is the coefficient for the fixed effect of reliability. 

• 𝛽2𝑟𝑒𝑙𝑖 is the coefficient for the fixed effect of humanness. 

• 𝛽3(𝑎𝑑𝑎𝑝𝑡𝑖 × 𝑟𝑒𝑙𝑖) is the coefficient for the interaction between Adaptability 

and Reliability. 

• 𝑢0𝑗 represents the random effect for participant 𝑗, which accounts for the 

variation in the intercept across participants. 

• 𝑒𝑖𝑗 is the residual error term for the 𝑖th observation of the 𝑗th participant 

5.2.5.2  Post-Hoc Analysis  

To further explore all possible pairwise comparisons and better understand the 

interactions between conditions, we conducted post hoc analyses using estimated 

marginal means with the emmeans package (Lenth, 2024). We applied Tukey’s 

method to control the family-wise error rate during multiple comparisons. 

5.3 Results 

5.3.1  Condition Performance  

Across conditions, performance did differ; to assess performance, we focused on 

the number of correct answers submitted by the participant. Trials where both 

teammates gave the same answer were removed. In the Control condition, 

individuals who received information from a high-reliability source performed 

significantly better, with 67% correct responses, compared to just 51% for those 

exposed to a low-reliability source. The Negative Adapting condition followed a 

similar trajectory. Participants in the high-reliability group achieved 55% accuracy, 

while their low-reliability counterparts dropped to 46%. In the Positive Adapting 

Condition, participants again benefited from high-reliability cues, reaching 64% 

accuracy, whereas those in the low-reliability group scored 53%. 
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These results are displayed in Figure 19 and suggest that higher reliability is 

associated with higher percentage correctness across all conditions, with the 

Control and Positive Adapting Conditions showing the highest overall performance. 

The difference between high and low reliability is consistent across all conditions, 

with the Negative Adapting Condition showing the lowest overall scores. 

A mixed-design ANOVA was conducted to examine the effects of Adaptive and 

Reliability on percentage correctness. The analysis revealed no significant main 

effect of Condition, F(2, 28) = 2.12, p = .139. There was a significant main effect 

of Reliability, F(1, 28) = 19.12, p < .001 showing that participants performed 

better in the high-reliability condition compared to the low-reliability condition. 

The interaction was not significant, F(2, 28) = 1.15, p = .332.Post Hoc Tukey HSD 

Pairwise contrasts revealed that within the Control condition, participants 

performed significantly better in the high-reliability condition (p < .0001, 

difference = 14.73%). In the Negative Adapting condition, performance was also 

significantly higher under high reliability (p = .0196, difference = 7.67%). 

Similarly, the Positive Adapting condition showed significantly better performance 

under high reliability (p = .0002, difference = 11.91%). Between conditions, 

under high reliability, participants in the Control condition performed significantly 

better than those in the Negative Adapting condition (p = .0466, difference = 

11.34%). Other between-condition comparisons were not significant (p > .05). 

Under low reliability, no significant differences were found between conditions. 

Figure 19. A bar plot illustrating the percentage of correct responses across 
three conditions. Reliability levels further break down each condition. 
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5.3.2  Descriptive Statistics  

This section provides an overview of the means and standard deviations within the 

data for Trust, Influence, AI Performance, and Human Performance. These 

statistics are reported for each experimental condition Positive Adapting, Negative 

Adapting, and Control and across reliability (High and Low). Table 13 displays the 

information. 

Table 13.  Descriptive Statistics for AI & Human Performance Ratings, Trust 

and Influence Ratings. 

Measure Reliability Condition M SD 

Trust 

High 

Control 74.85 17.41 

Negative Adapting 64.18 14.83 

Positive Adapting 73.25 18.06 

Low 

Control 68.72 19.34 

Negative Adapting 60.74 15.01 

Positive Adapting 70.60 17.18 

Influence 

High 

Control 74.92 18.62 

Negative Adapting 64.22 15.65 

Positive Adapting 73.27 17.38 

Low 

Control 68.25 20.57 

Negative Adapting 60.91 16.58 

Positive Adapting 71.38 16.89 
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Measure Reliability Condition M SD 

AI 

Performance 

High 

Control 74.51 15.63 

Negative Adapting 67.06 12.69 

Positive Adapting 72.55 16.14 

Low 

Control 69.56 17.70 

Negative Adapting 63.99 13.98 

Positive Adapting 70.98 17.08 

Human 

Performance* 

High 

Control 65.87 18.58 

Negative Adapting 65.06 16.11 

Positive Adapting 63.58 18.30 

Low 

Control 70.82 18.01 

Negative Adapting 69.62 13.14 

Positive Adapting 68.12 17.71 

 *Human performance remained at 30% in all conditions, and the high and low reliability 
related to AI performance, as we wanted to see how this may impact the perceived 
performance of the human teammate.  

5.3.3  Propensity to Trust Machines, Trust and Influence  

This section presents the results of analyses examining the relationships between 

participants’ scores on the PMT (S. M. Merritt et al., 2013) and the trust and 

influence scores (0-100) given on each trial. Pearson correlation coefficients were 

computed to evaluate these relationships. 
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The first analysis investigated the correlation between the mean propensity to 

trust score and the mean trust score. The results revealed a significant positive 

correlation, indicating that a higher propensity to trust was associated with higher 

trust scores (r(28) = 0.553, t(28) = 3.509, p = 0.002). This relationship is visually 

depicted in Figure 21, which shows a scatter plot of the data with a linear 

regression line highlighting the trend.  

The second analysis examined the relationship between propensity to trust and 

influence scores. The findings also showed a significant positive correlation, 

Figure 21. This is a scatter plot illustrating the relationship between mean 
propensity to trust scores and mean trust scores. A linear regression line 

indicates the trend in the data, suggesting a strong positive correlation 
between propensity to trust and trust ratings. 

Figure 20. This scatter plot displays the relationship between mean propensity 
to trust scores and mean influence scores. A linear regression line shows the 

overall trend in the data, indicating a significant positive correlation between 
propensity to trust and influence score. 
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suggesting that participants with a higher propensity to trust rated greater levels 

of influence from the AI ( r(28) = 0.531, t(28) = 3.316,p = 0.003). Figure 20  

illustrates this correlation with a scatter plot and a corresponding linear regression 

line, demonstrating the positive relationship between these variables. 

5.3.4  Trust Ratings  

A Pearson correlation coefficient was computed to assess the relationship between 

mean trust and influence scores. The results indicated a strong positive correlation 

( r(28) = 0.892, t(28) = 10.264, p<0.001). This suggests that higher levels of 

trust are associated with higher levels of influence. Figure 22 shows the 

correlation.  

5.3.4.1  Influence (Implicit) Ratings 

A linear mixed-effects model was conducted to examine the effects of condition 

and reliability on trust ratings, with participants as a random effect. The model 

included a main effect for conditions (Positive, Control, and Negative), a main 

effect for reliability (High, Low), and their interaction. Figure 23 shows a box plot 

of these results. We applied ANOVA to the model to extract significant results and 

used Satterthwaite's method for degrees of freedom.   

Figure 22. This scatter plot displays the relationship between mean trust 
scores and mean influence scores. A linear regression line shows the overall 

trend in the data, indicating a significant positive correlation between 
propensity to trust and influence score. 
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The results for influence ratings showed a significant main effect of Adaptability, 

(F(2, 27.06) = 3.87,p = 0.0333), indicating that influence ratings varied across the 

three conditions. Additionally, Reliability had a significant effect (F(1, 1132.42) = 

16.92, p <0.001), with higher ratings observed under the High Reliability 

condition. The interaction between Adaptability and Reliability was not significant 

(F(2, 1132.42) = 2.40, p = 0.0915). 

Post-hoc comparisons revealed that under high reliability, influence scores in the 

Control condition were significantly higher than in the Negative adaptation 

condition (B = 0.747, SE = 0.278, p = .029). Additionally, under low reliability, the 

Positive Adapting Condition had significantly higher influence scores than the 

Negative Adapting condition (B = 0.724, SE = 0.278, p = .035). No other 

significant differences between conditions were observed (p > .05). All 

comparisons are available in These findings suggest that the Negative Adapting 

condition significantly reduces influence ratings compared to other conditions, 

particularly under both high and low reliability. Table 14 shows these results.  

Figure 23. Boxplot illustrating influence ratings based on different conditions, 
with reliability indicated by colour. Significant differences among conditions 
are marked for clarity. The y-axis represents influence ratings, while the x-axis 
categorises the data by condition. 
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Table 14. Emmeans Post Hoc Analysis for Influence Ratings Using HSD P 
adjustment. 

Reliability 
Adapting 

Comparisons 
B SE df t P adj 

High 

Control – Negative  10.67 3.97 32.9 2.69 0.0292 

Control – Positive  1.71 3.64 32.9 0.47 0.8856 

Negative – Positive  -8.96 3.98 33.1 -2.254 0.0769 

Low 

Control – Negative  7.3 3.96 32.7 1.84 0.1725 

Control – Positive  -3.04 3.64 32.8 -0.836 0.6836 

Negative – Positive  -10.34 3.97 32.8 -2.607 0.0354 

Note. Bold result indicates significance. 

5.3.4.2  Trust Ratings (Explicit)  

A linear mixed-effects model was conducted to examine the effects of condition 

and reliability on trust ratings, with participants as a random effect. The model 

included a main effect for conditions (Positive, Negative and Control), a main 

effect for reliability (High, Low), and their interaction Figure 24 shows a box plot 

of these results. We applied ANOVA to the model to extract significant results and 

used Satterthwaite's method for degrees of freedom. 

The mixed-effects model revealed a significant main effect of Adaptability on trust 

ratings, (F(2, 27.06) = 3.44, p = 0.0465). This indicates that trust ratings differed 

across the three conditions. The effect of Reliability was also significant, (F(1, 

1130.34) = 19.83, p < 0.001), with higher trust ratings observed under High 

Reliability conditions. However, the interaction between Adaptability and Reliability 

was not significant (F(2,1130.34)=1.40,p=0.246), suggesting that the relationship 
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between Adaptability and trust ratings did not vary significantly based on the level 

of Reliability. 

Post-hoc comparisons (Table 15) revealed that trust scores in the Control 

condition were significantly higher under high reliability than in the Negative 

Adapting condition (B = 0.744, SE = 0.292, p = .042). 

Table 15. Emmeans Post Hoc Analysis for Trust Ratings Using HSD P 
adjustment. 

Reliability 
Adapting 

Comparisons 
B SE df t P adj 

High 

Control – Negative  10.62 4.18 31.5 2.543 0.042 

Control – Positive  1.64 3.83 31.5 0.429 0.90 

Negative – Positive  -8.98 4.18 31.7 -2.147 0.096 

Low Control – Negative  8.06 4.18 31.5 1.93 0.147 

Figure 24. Boxplot illustrating trust ratings across different conditions, with 
colours representing reliability levels. Markers indicate significant differences 

between conditions. The y-axis reflects the trust score, while the x-axis 
categorises the data by condition. 
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Control – Positive  -1.75 3.83 31.5 -0.457 0.892 

Negative – Positive  -9.81 4.18 31.5 -2.351 0.063 

Note. Bold result indicates significance. 

These findings suggest that the Negative Adapting condition significantly reduces 

trust ratings compared to other conditions, particularly under high reliability. 

5.3.5  AI Performance Ratings  

A linear mixed-effects model was conducted to examine the effects of condition 

and reliability on AI performance ratings, with participants as a random effect. The 

model included a main effect for condition (Positive, Negative and Control), a main 

effect for reliability (High, Low), and their interaction. Figure 25 shows a box plot 

of these results. We applied ANOVA to the model to extract significant results and 

used Satterthwaite's method for degrees of freedom.  

The analysis for AI ratings revealed that the main effect of Adaptability was not 

Figure 25. Boxplot displays AI performance scores for the three conditions, 
Positive Adapting Condition, Control, and Negative Adapting Condition, with 

colour coding based on reliability. Significant differences between conditions 
are highlighted with markers. The y-axis indicates AI performance scores, 
while the x-axis represents the conditions. 
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significant (F(2, 27.03) = 2.52, p = 0.0990), suggesting no overall difference in AI 

ratings across the three conditions. However, the main effect of Reliability was 

significant (F(1, 1135.40) = 13.07, p < 0.001), with higher ratings observed in the 

High Reliability condition. The interaction between Adaptability and Reliability was 

not significant (F(2, 1135.39 )= 1.52, p = 0.2193), indicating that the effect of 

Adaptability on AI ratings did not differ by Reliability level. Post-hoc comparisons 

revealed no significant differences. 

5.3.6  Human Teammate Performance Ratings  

A linear mixed-effects model was conducted to examine the effects of condition 

and reliability on Human performance ratings, with participants as a random 

effect. The model included a main effect for condition (Positive, Negative and 

Control), a main effect for reliability (High, Low), and their interaction. Figure 26 

shows a box plot of these results. We applied ANOVA to the model to extract 

significant results and used Satterthwaite's method for degrees of freedom.  

The model results for human performance ratings showed that neither Adaptability 

(F(2, 27.14) = 0.29, p = 0.747) nor the interaction between Adaptability and 

Reliability were significant (F(2, 1134.50) = 0.02, p = 0.9790), respectively, 

Figure 26. Boxplot representing human teammate performance scores across 
the conditions, with colours denoting reliability. Significant comparisons are 
marked, providing insight into differences in performance. The y-axis shows 

performance scores, while the x-axis categorises the conditions. 
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indicating that performance ratings did not vary across conditions. However, 

Reliability had a significant main effect, (F(1,1134.51) = 25.16, p < 0.001), with 

higher ratings observed in the Low Reliability condition. Post-hoc comparisons 

revealed no significant differences. 

These findings suggest that while human performance scores were generally 

higher under low reliability, the condition (Positive, Negative and Control) did not 

significantly influence human performance ratings. 

5.3.7  The Godspeed Questionnaire  

Our study conducted LMMs for the subsections of the Godspeed questionnaire as 

participants completed them four times throughout the experiment, so we still 

needed to control for the variability between participants 

Figure 27 displays the mean Godspeed scores for three dimensions, 

Anthropomorphism, Likeability, and Perceived Intelligence, across different 

conditions and two levels of reliability (Low and High). For Anthropomorphism, 

scores are generally higher in the High-Reliability condition, with the Positive 

Adapting Condition showing the highest score (4.8). In the Likeability dimension, 

Figure 27. Mean Godspeed Scores for Anthropomorphism, Likeability, and 
Perceived Intelligence by Condition and Reliability 
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scores are higher in the High-Reliability condition for all conditions, with the 

Control condition reaching the highest score (5.5). Perceived Intelligence scores 

are consistently high across conditions and reliability levels, with slightly higher 

values in the High-Reliability condition. 

These results suggest that reliability and condition influence participants’ 

perceptions of anthropomorphism, likeability, and perceived intelligence. 

5.3.7.1  Likeability  

A linear mixed-effects model was conducted to examine the effects of condition 

(Positive, Negative, and Control) and reliability (High, Low) on likeability ratings, 

with participants as a random effect. The model included main effects for 

condition and reliability, as well as their interaction. To gain p-values, we used a 

Type III ANOVA on the model.  

The Type III ANOVA using Satterthwaite's method revealed a significant main 

effect of Reliability on likeability ratings, (F(1, 705.01) = 5.25, p = 0.0222). This 

suggests that likeability ratings were influenced by the level of reliability, with 

higher ratings in the High Reliability condition. However, the main effect of 

Adaptability was not significant (F(2,28.00)=0.28,p=0.7568), indicating no 

differences in likeability ratings across the three conditions. The interaction 

between Reliability and Adaptability was also not significant, (F(2, 705.01) = 0.13, 

p = 0.8787), suggesting that the effect of Reliability on likeability did not vary 

across conditions. 

Post hoc comparisons revealed no significant differences between any of the 

conditions (all p>0.05).These findings suggest that while likeability ratings were 

slightly lower under low-reliability conditions, the specific conditions (Positive, 

Negative and Control) did not significantly impact likeability scores. 

5.3.7.2  Anthropomorphism  

A linear mixed-effects model was conducted to examine the effects of condition 

(Positive, Negative, and Control) and reliability (High, Low) on anthropomorphism 

ratings, with participants as a random effect. The model included the main effects 
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of condition and reliability, as well as their interaction. To gain p-values, we used 

a Type III ANOVA on the model.  

The Type III ANOVA using Satterthwaite's method showed a significant main 

effect of Reliability on anthropomorphism ratings, (F(1, 458.01) = 9.86, p = 

0.0018), indicating higher anthropomorphism ratings in the High Reliability 

condition. The main effect of Adaptability was not significant (F(2, 27.98) = 0.72, 

p = 0.4957), suggesting no differences in anthropomorphism ratings across the 

three conditions. Additionally, the interaction between Reliability and Adaptability 

was not significant (F(2, 458.00) = 0.52, p = 0.5920), indicating that the effect of 

Reliability on anthropomorphism did not depend on adaptability. 

Post hoc tests did not reveal any significant pairwise differences between the 

conditions (all p > 0.05).These findings suggest that while anthropomorphism 

ratings were lower under low-reliability conditions, the specific condition (Positive, 

Negative and Control) did not significantly impact anthropomorphism scores. 

5.3.7.3  Perceived Intelligence  

A linear mixed-effects model was conducted to examine the effects of condition 

(Positive, Negative, and Control) and reliability (High, Low) on perceived 

intelligence ratings, with participants as a random effect. The model included main 

effects for condition and reliability, as well as their interaction. To gain p-values, 

we used a Type III ANOVA on the model.  

The Type III ANOVA using Satterthwaite's method revealed a significant main 

effect of Reliability on perceived intelligence ratings (F(1, 585.01) = 13.89, p < 

0.001), indicating that higher perceived intelligence ratings were associated with 

the High Reliability condition. The main effect of Adaptability was not significant 

(F(2, 28.01) = 0.25, p = 0.7784), showing no differences in perceived intelligence 

across conditions. The interaction between Reliability and Adaptabiluty was also 

not significant (F(2, 585.01) = 2.34, p = 0.0977). 

Post hoc comparisons showed no significant differences between the conditions 

(all p>0.05).These findings suggest that while perceived intelligence ratings were 
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lower under low-reliability conditions, the specific condition (Positive, Negative and 

Control) did not significantly impact perceived intelligence scores. 

5.3.8  Trust in AI Scores  

Our study conducted LMMs for the Trust in AI questionnaire subsections as 

participants completed them four times throughout the experiment, so we still 

needed to control for the variability between participants. 

Figure 28 displays the mean trust scores for six dimensions, Familiarity, Intentions 

of Developers, Propensity to Trust, Reliability of AI, Trust, and Understanding, 

across different conditions and two levels of reliability. Error bars indicate standard 

errors. Although there is some difference between means the analysis revealed no 

significant main effects or interactions.  

Figure 28. Bar plot depicting the mean trust scores across different reliability 
levels for various conditions. The data is further segmented by subsection, for 
comparison of trust levels across conditions and reliability ratings.  

 

5.4 Discussion 

The primary goal of this research chapter was to explore how AI social 

adaptability and reliability impact trust, influence, and team performance in HATs. 
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Specifically, the study examined how participants perceived and interacted with AI 

under three conditions: Positive Adaption (AI tailored to user preferences), 

Negative Adaptation (AI that operates counter to user preferences), and Control 

(AI without specific adaptation to user preferences). Additionally, the study 

considered the impact of high and low reliability in each condition, aiming to 

better understand trust dynamics in human-AI collaboration.  

In this chapter, we observed nuanced interactions between AI adaptability, trust, 

and performance, leading to mixed support for our hypotheses. Hypothesis 1, 

which predicted higher performance accuracy in the Adapting condition compared 

to the Negative Adapting condition, received partial support as participants indeed 

scored higher in these conditions; however, performance ratings by participants 

did not consistently align with actual performance, limiting conclusive support for 

this hypothesis. Hypothesis 2, predicting lower trust in the Negative Adapting 

condition, was supported, with lower influence and trust ratings reflecting a 

sensitivity to AI misaligned with user preferences. Conversely, Hypothesis 3, which 

suggested that AI adaptability would enhance trust regardless of reliability, was 

not upheld, as trust scores were not significantly higher in the Positive Adapting 

Condition than in the Control condition. Interestingly, participants rated their 

human teammate’s performance more favourably when the AI’s reliability was 

low, pointing to the impact of team dynamics on perceived performance.  

5.4.1  Trust Ratings 

Our findings reveal a strong positive correlation between trust and influence 

ratings, indicating a meaningful relationship between implicit and explicit trust 

measures in this experiment. Specifically, influence ratings allow us to accept 

Hypothesis 2, as participants displayed lower trust in the AI in the Negative 

Adapting condition. Influence ratings were significantly higher in the Control and 

Positive Adapting Conditions compared to the Negative Adapting condition, 

suggesting that participants were more influenced by an AI aligned with their 

preferences. Interestingly, however, participants appeared even more sensitive to 

the AI’s behaviour when it contradicted their preferences, as shown by more 

significant trust erosion in the Negative Adapting condition. This finding aligns with 

recent research suggesting that user-contradicting AI systems lead to trust erosion 
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due to cognitive dissonance and discomfort. For instance, Glikson and Woolley 

(2020) highlight that unexpected or contradictory AI behaviours can elicit negative 

emotional responses. This supports the idea that socially misaligned AI may 

disrupt trust and heighten user sensitivity to the AI’s actions. 

Our results also indicate that preference-opposing adaptation has a more 

significant impact on reducing trust than preference-supporting adaptation has on 

building it. This aligns with the trust asymmetry effect, where negative 

experiences disproportionately impact trust, making rebuilding challenging 

(Schaefer et al., 2016; Zhu et al., 2021). In our study, trust ratings closely 

mirrored influence ratings and, with participants expressing more trust in the 

Adapting and Control conditions than in the Negative Adapting condition. This 

supports the notion that participants were more reactive to an AI that contradicted 

their preferences, potentially because humans weigh negative experiences more 

heavily than positive ones (Jones-Jang & Park, 2023). These findings offer insights 

into the emotional dynamics when AI behaviour diverges from user expectations. 

This sensitivity may be especially pronounced in HATs operating in trust-critical 

environments, such as healthcare or autonomous vehicles. 

Moreover, while these findings support Hypothesis 2, they do not conclusively 

support Hypothesis 3, which predicted that AI adaptability in the Positive Adapting 

Condition would lead to higher trust scores irrespective of reliability. Although the 

TiA questionnaire showed some marginally significant results, it ultimately failed to 

support Hypotheses 2 or 3 definitively. Nonetheless, mean trust scores across 

questionnaire subsections remained consistently lowest in the Negative Adapting 

condition, which warrants further investigation. The trend of decreased trust with 

misalignment aligns with findings by Rahwan et al. (2019) and Hengstler et al. 

(2016), who demonstrated that autonomy-supportive AI systems, those that align 

closely with user needs and behaviours, tend to enhance trust. Misaligned AI 

adaptations, conversely, can undermine users’ perceived control and autonomy, 

eroding trust more significantly than reliability discrepancies alone. This sensitivity 

to AI alignment mirrors socialisation theories in human teams, where initial 

alignment with norms and expectations promotes rapport and trust (Chao et al., 

1994; Saks & Gruman, 2014). 
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In this context, the principle of adaptive personality in human teams offers a 

valuable lens. As Chao et al. (1994) and Van Maanen & Schein (1977) suggested, 

adaptive socialisation involves modifying behaviour to align with team norms, 

enhancing integration and trust. Just as adaptive socialisation helps align team 

members’ behaviours with organisational culture, socially adaptive AI in HATs 

could support alignment with user preferences, fostering smoother collaboration. 

This parallels research on adaptive autonomy in AI, where agents dynamically 

adjust their autonomy to match team needs (Hauptman et al., 2023). While our 

study focused on initial preference-matching rather than dynamic adaptation, the 

importance of alignment for trust building aligns well with these adaptive 

frameworks. Such an approach suggests that personalised, preference-matched AI 

may be a practical foundation for real-world HATs, where dynamic adaptation may 

not be feasible. 

5.4.2  AI and Human Performance Ratings 

Our findings for Hypothesis 1 reveal that the percentage of correct answers was 

highest in the Adapting and Control conditions and lowest in the Negative 

Adapting condition, particularly in the high-reliability condition. Specifically, 

participants in the Negative Adapting condition scored around 10% lower than in 

the Adapting and Control conditions, supporting Hypothesis 1 that preference 

alignment positively influences performance. This finding is consistent with studies 

showing that AI, which aligns with user preferences, can enhance performance by 

fostering smoother, more intuitive interactions (Liu et al., 2003; Strauss, 2017). 

The parallel between performance and trust results is particularly intriguing: both 

indicate that an AI’s alignment, or lack thereof, with user preferences significantly 

impacts outcomes. This suggests that the mismatch between user expectations 

and the AI’s behaviour drives declines in trust and performance. 

Interestingly, participants’ performance ratings did not vary significantly across 

conditions or by reliability, indicating a discrepancy between actual and perceived 

performance (Bansal et al., 2019; Chavaillaz et al., 2016). This suggests that 

participants may not accurately assess performance differences based on 

reliability, possibly due to cognitive biases or the influence of unrelated factors like 

AI likability and perceived intelligence. For instance, participants rated the AI more 
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favourably on traits like likability, anthropomorphism, and perceived intelligence in 

high-reliability conditions, suggesting that reliability influenced their perceptions 

more than adaptive behaviour. This aligns with studies on anthropomorphism and 

perceived intelligence in AI, which indicate that perceived reliability can influence 

user perceptions even when it does not necessarily reflect actual performance ((de 

Visser et al., 2016; Roy & Naidoo, 2021; Waytz et al., 2014). These discrepancies 

underscore that adaptive preferences alone may not enhance perceived 

performance, suggesting a nuanced interplay between reliability, adaptation, and 

perceived attributes. 

However, trial AI performance ratings from the experiment did not fully support 

Hypothesis 1, indicating that the effects of adaptability on performance are 

complex and may not straightforwardly translate into perceived performance 

gains. Likewise, our findings did not provide evidence for Hypothesis 3, which 

posited that adaptability to user preferences or opposition to those preferences 

would directly impact perceived performance. This may suggest that adaptability 

alone, while valuable in specific contexts, might not significantly influence 

performance perceptions without concurrent reliability signals.  

An unexpected finding was that participants rated their human teammate’s 

performance higher when the AI’s reliability was low. This suggests a 

compensatory effect where lower-performing AI may inadvertently enhance 

perceived human performance. This effect may stem from comparison bias or a 

shift in expectations: as the AI’s performance dips, participants may adjust their 

perceptions, viewing human contributions as comparatively more substantial 

(Jones-Jang & Park, 2023). This result resonates with findings on team dynamics, 

where perceived performance can be influenced by contrasting behaviours within 

the team (Glikson & Woolley, 2020).  

In summary, the percentage of correct answers supports Hypothesis 1 by 

indicating that preference alignment with the AI positively impacts performance, 

though this effect does not extend to participants’ performance ratings. The 

observed discrepancies between actual and perceived performance highlight the 

complex role of AI adaptability, user expectations, and reliability in shaping 
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performance perceptions. Future research could explore how relative reliability 

within HATs influences perception and trust and whether training on adaptive AI 

behaviours could help mitigate these biases, ultimately creating more balanced 

perceptions of AI and human team members. 

5.4.3  Limitations 

While the findings of this chapter provide important insights into the impact of AI 

social alignment on trust and performance within human-AI teams, several 

limitations should be acknowledged. First, although participants were assigned to 

conditions based on their self-reported communication preferences, the 

distribution across preference types was not fully balanced across experimental 

groups. Specifically, the Adapted AI (PA) condition primarily included participants 

with friendly preferences, while the Non-Adapted AI (NoA) condition consisted 

mainly of participants with formal preferences. This uneven distribution may 

confound the interpretation of results, as some effects attributed to alignment 

could be partially influenced by baseline differences in interaction preferences. 

Second, while the manipulation of AI alignment (adapted vs. non-adapted) was 

effective, it is possible that some participants may not have fully noticed or 

interpreted the AI’s communication style as intended. Future research could 

incorporate manipulation checks to assess perceived alignment more directly. 

Third, the measures of trust and performance were captured over a relatively 

short interaction period. As trust in AI is known to evolve over time, longitudinal or 

repeated-interaction designs may provide a more comprehensive picture of how 

social alignment affects sustained collaboration. 

Finally, this study focused on only four binary interaction traits (e.g., friendly vs. 

formal, short vs. long). Real-world communication preferences are likely more 

nuanced and dynamic. Future studies could explore more flexible and adaptive AI 

models that adjust to individual communication patterns over time, rather than 

relying on static assignments. 
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Addressing these limitations in future work would strengthen the generalizability 

of the findings and help refine guidelines for designing socially aligned AI 

teammates. 

5.4.4  Conclusions 

This chapter’s findings highlight that AI adaptability, when designed to align or 

misalign with user preferences, significantly affects trust and team dynamics 

within HATs. Results indicate that user preference alignment enhances trust and 

influence ratings, while misalignment detrimentally impacts trust, underscoring the 

asymmetrical effect of negative experiences on trust calibration. Furthermore, 

adaptability’s impact on perceived human teammate performance, mainly when 

low AI reliability, emphasises the importance of relative reliability of AI teammates 

and role clarity in team dynamics. 

These insights advance the thesis’s exploration of how various AI design factors, 

reliability, human likeness, and adaptability influence HAT performance. This 

chapter also raises questions about adaptability’s role as a foundational design 

strategy versus a dynamic trait, suggesting that adaptability alone may not suffice 

to build optimal HATs without reliable, context-aware support. The concluding 

chapter will synthesise findings from each experimental chapter, discussing 

practical implications for designing adaptive, reliable AI teammates that enhance 

trust and cohesion in real-world, high-stakes applications. 
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Chapter 6 Conclusions  

6.1  Introduction  

Integrating AI as a teammate within HATs represents a fundamental shift in how 

technology supports and collaborates with human users. This thesis has explored 

critical dimensions of this shift, focusing on the dynamics of trust, 

anthropomorphism, and SI within HATs. Through a detailed bibliometric analysis 

of trust research, experimental studies on the impact of AI characteristics on 

human collaboration, and the exploration of theoretical frameworks, this work has 

aimed to illuminate the complex relationship between humans and AI agents as 

evolving teammates rather than mere tools. 

Central to this thesis is the idea that for AI to function as an effective teammate, it 

must move beyond transactional roles, incorporating qualities that foster trust, 

mutual understanding, and team cohesion. Chapters have progressively examined 

how HATs are shaped by trust calibration (de Visser et al., 2020; Lee & See, 2004)

, the role of anthropomorphism in facilitating human-like interactions (de Visser et 

al., 2016; Glikson & Woolley, 2020), and the potential for socially intelligent AI 

systems to enhance collaborative outcomes (Dautenhahn, 1995; Kox et al., 2022; 

Nass et al., 1994a; Williams et al., 2022; Zadeh et al., 2019). By addressing these 

interrelated aspects, this thesis has highlighted the need for a human-centric 

approach in HAT design that emphasises technical capability, social adaptability, 

and ethical considerations. 

This concluding chapter synthesises the primary findings across these domains, 

reflecting on the unique contributions and limitations of the research. It also 

identifies future directions essential for advancing the field of HATs. These include 

investigating long-term trust dynamics, refining AI's social capabilities and 

developing ethical frameworks to govern the growing role of AI in human teams. 

The insights drawn from this research are intended to guide theoretical and 

practical advancements in designing AI teammates that align with human 

expectations and values, ensuring productive and trustworthy HATs in a rapidly 

evolving technological landscape. 
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6.2  Summary of Key Findings 

This research explored the dynamics of trust, reliability, perceived performance, 

and ethical considerations that influence HATs. We can comprehensively 

understand how these factors interact and shape user experiences and team 

outcomes by integrating the results across multiple chapters. 

6.2.1  Trust 

Trust emerged as the foundational component for successful collaboration in 

HATs. The literature review in Chapter 1 set the stage, emphasising that trust is 

central to human-machine collaboration, with calibrated trust being vital for 

productive interactions (de Visser et al., 2020; Hoff & Bashir, 2015; Lee & See, 

2004; Muir, 1994). Trust is not static but dynamic, requiring users to continuously 

adjust their confidence based on the system's actions and experiences (Glikson & 

Woolley, 2020; Li et al., 2023; Reinhardt, 2023). This dynamic process was 

confirmed in the experimental chapters, where trust ratings were influenced by 

system reliability, adaptability, and the presence of relational cues. 

Chapter 2's bibliometric analysis broadened our understanding of trust research by 

mapping the scope of existing studies, highlighting the central role of trust in 

various contexts, and contextualising human-AI teaming within this expansive 

field. This helped us better appreciate the position of human-AI trust research 

within the larger body of trust literature and understand the importance of 

defining and measuring trust appropriately.   

In Chapter 3, trust was significantly enhanced in low-reliability conditions when AI 

systems were anthropomorphised. This suggests that in situations where AI 

reliability is compromised, human-like features can help users feel more 

comfortable and mitigate the negative impact of unpredictability, which supports 

previous research  (Bittner et al., 2019; de Visser et al., 2016; Roy & Naidoo, 

2021; Seymour & Van Kleek, 2021; Złotowski et al., 2015). Conversely, in high-

reliability conditions, trust was less influenced by anthropomorphism, highlighting 

that trust is fundamentally rooted in the system's technical performance. These 

findings reinforce that users calibrate their trust based on system reliability, 
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adjusting their expectations according to the AI's perceived ability to perform 

effectively (Heyder et al., 2023; Jensen et al., 2021; Troshani et al., 2021). 

Chapter 4 further explored the impact of EI on trust, using emojis to evoke 

emotional intelligence (Beattie et al., 2020; Fadhil et al., 2018). While these 

affective cues enhanced user perceptions of the AI's likeability, they did not 

significantly impact the actual trust ratings or performance outcomes in task 

settings. These findings suggest that cognitive rather than emotional factors 

primarily drive trust in HATs. However, the findings in Chapter 4 are not strong 

enough to conclude with confidence. Future work could use newly developed 

measures to investigate the role of emojis (Shang et al., 2024). It is also possible 

that emojis could potentially play a more significant role in fostering trust in 

specific contexts, such as high-stakes environments or emotionally charged tasks 

if emojis are aligned explicitly with an emotional state (Beattie et al., 2020; Boutet 

et al., 2021; Fadhil et al., 2018; Rajan et al., 2023). 

Chapter 5 emphasised the importance of AI adaptability in trust formation. The 

research found that trust was significantly lower in the Negative Adapting 

condition, where the AI's behaviour conflicted with user preferences, highlighting 

the importance of alignment between user expectations and AI behaviour. This 

finding is aligned with the “trust asymmetry effect” (Poortinga & Pidgeon, 2004; 

Zhu et al., 2023), where negative experiences disproportionately impact trust 

compared to positive interactions. Overall, trust in AI systems requires a careful 

balance of technical reliability and adaptability, with misalignment causing more 

harm than alignment benefits. 

In conclusion, trust is the cornerstone of effective collaboration in HATs, and this 

research highlights its dynamic and context-dependent nature. As established in 

the literature review, calibrated trust is essential for productive HATs, with users 

continuously adjusting their trust based on the AI system's reliability, preference 

alignment, and anthropomorphised features. This was corroborated across the 

experimental chapters, where trust ratings were found to be strongly influenced 

by system performance and the presence of anthropomorphism or preference 

alignment. In low-reliability conditions, anthropomorphic features helped mitigate 
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trust erosion, but in high-reliability contexts, trust was more firmly anchored in the 

AI’s technical performance.  

Additionally, while emotional cues, such as emojis, enhanced the AI's likeability, 

they did not significantly impact trust outcomes. This suggests that cognitive 

factors may outweigh emotional ones in driving trust in HATs; however, this area 

of work needs further investigation. Finally, adaptability was identified as a critical 

factor, with misalignment between the AI's behaviour and user expectations 

significantly reducing trust. Overall, these findings reinforce the idea that trust in 

AI systems requires a delicate balance of reliability, adaptability, and alignment 

with user needs, carefully considering when and how anthropomorphic cues can 

play a role in fostering trust (Chen & Park, 2021; Jensen et al., 2021; Kim & Song, 

2021; Kulms & Kopp, 2019; Seymour & Van Kleek, 2021; Troshani et al., 2021). 

6.2.2  Reliability 

The research consistently identified reliability as a critical determinant of trust, 

performance, and user perceptions. In Chapter 3, system reliability was the most 

significant factor influencing trust and performance ratings. AI systems perceived 

as reliable boosted user confidence, regardless of whether they were 

anthropomorphic. This finding reaffirms that technical performance remains the 

cornerstone of trust in HATs (Glikson & Woolley, 2020; Henrique & Santos, 2024; 

Lahusen et al., 2024; Ryan, 2020). 

Reliability emerged as a consistent and pivotal factor in shaping trust, 

performance, and user perceptions across the research. As highlighted in Chapter 

3, system reliability was the most significant influence on trust and performance 

ratings, with reliable AI systems boosting user confidence regardless of whether 

they featured anthropomorphic traits. This underscores the central role of 

technical performance in fostering trust in HATs.  

Chapter 5 further demonstrated that reliability remains crucial even when 

considering adaptability. In the Negative Adapting condition, where AI behaviour 

conflicted with user preferences, performance ratings were notably lower, 

particularly when the system's reliability was high. This finding suggests that 
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reliability not only forms the bedrock of trust but also serves as an anchor for 

performance evaluations, with misalignment between user expectations and AI 

behaviour detracting from trust and perceived effectiveness. These findings build 

upon older work that found reliability to be a driver of trust in automation and 

robotics (Chavaillaz et al., 2016; Desai et al., 2012). 

Overall, these findings affirm that in HATs, reliability is a critical driver of trust and 

performance, with adaptability and anthropomorphism serving as complementary 

factors that enhance the experience without overshadowing the foundational 

importance of reliability, which builds on previous works in hot HATs and human 

teams (Hariri et al., 2015; Hauptman et al., 2023; Klarner et al., 2013; Pulakos et 

al., 2006; Zhao et al., 2022). 

6.2.3  AI Perceived Performance 

AI's perceived performance was intricately linked to system reliability and human-

like features. Chapter 3 found that in low-reliability conditions, anthropomorphic 

features led to higher trust but also resulted in lower performance ratings. This 

indicates that while anthropomorphic designs can improve the initial perceptions 

of an AI's trustworthiness, they may also elevate expectations about its 

performance, which, when unmet, can lead to negative evaluations (Poortinga & 

Pidgeon, 2004; Zhu et al., 2023). 

In contrast, high-reliability systems consistently achieved better task performance, 

regardless of whether they were anthropomorphic. This highlights a fundamental 

takeaway: while anthropomorphic cues can enhance perceived trustworthiness in 

specific contexts, technical accuracy and consistency are far more critical in 

shaping actual performance perceptions (Chavaillaz et al., 2016; de Visser et al., 

2016; Glikson & Woolley, 2020). This reinforces findings from HRI that reliability 

drives actual performance outcomes, while human-like features may influence 

more subjective dimensions, such as likeability and familiarity (Honig & Oron-

Gilad, 2018; Reeves et al., 2020). 

Chapter 4's examination of emojis revealed that while these emotional cues 

influenced perceptions of human teammates' performance, they had no 
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substantial impact on AI performance ratings in task-based settings. This suggests 

that while emotional cues can improve team cohesion and perceptions of AI 

“likeability”, they are not significant drivers of perceived AI performance, 

particularly in scenarios that demand high cognitive focus (Flathmann et al., 

2023). It is evident that system reliability remains the most critical factor in 

determining how users evaluate the AI's performance in collaborative tasks. 

6.2.4  Human Teammate Performance  

The findings across these chapters, supported by broader research, offer valuable 

insights into human teammate performance in HATs , revealing how trust, 

adaptability, and team dynamics shape perceptions and outcomes. A notable 

observation is the compensatory effect of AI reliability: human performance 

ratings can  increase when AI reliability is low. This phenomenon, noted in 

Chapter 5, aligns with research suggesting that when one team member (human 

or AI) underperforms, others are viewed as more capable by comparison (Glikson 

& Woolley, 2020; Endsley, 2023). This dynamic underscores that the performance 

of human teammates is closely tied to the relative performance of the AI, 

reflecting the nuanced interplay of team roles and expectations (McNeese et al., 

2021). 

Additionally, the relationship between trust and team dynamics plays a crucial role 

in shaping perceptions of human performance. When trust in the AI erodes, as in 

the Negative Adapting condition explored in Chapter 5, participants rely more 

heavily on their human teammates, enhancing their perceived performance. Trust 

dynamics influence how other team members are valued (McNeese et al., 2021). 

These findings align with broader studies emphasising the importance of trust 

calibration for effective collaboration in HATs; misplaced trust can distort 

perceptions and lead to over- or under-reliance on AI (de Visser et al., 2020; 

Hauptman et al., 2023). 

While emotional cues like anthropomorphic design or affective communication 

from AI enhance its perceived likeability and trustworthiness, they have limited 

direct impact on human teammate evaluations. This aligns with research indicating 

that affective cues in AI influence trust in the AI itself rather than the wider team 



 

 

184 | P a g e  
 

(Waytz et al., 2014; Fadhil et al., 2018). Furthermore, these emotional cues often 

do not compensate for broader task-related dynamics like reliability or role clarity, 

which remain the primary determinants of trust and perceived performance 

(Janhunen et al., 2024; McNeese et al., 2021). 

Human performance ratings remained consistent across experimental conditions 

regarding actual contribution, even when the AI’s behaviour varied. This reflects 

the influence of comparative dynamics and role interdependence over objective 

measures. When AI reliability decreased, humans were perceived as stepping into 

a more critical role despite no changes in their actual behaviour. This finding 

aligns with team theories emphasising the importance of clear roles and 

interdependence for effective collaboration (Chai et al., 2017; Saks & Gruman, 

2014). Moreover, as noted in recent reviews, transparency and role clarity are 

essential for fostering effective HAT performance (McNeese et al., 2018, 2021). 

6.2.5  Conclusion of Findings 

This research reveals that trust in HATs is primarily shaped by system reliability, 

with adaptability and relational cues playing supplementary roles. Reliability is the 

foundation for trust and perceived performance, while AI's adaptability helps 

maintain trust when aligned with user preferences. However, misalignment and 

overly anthropomorphic or emotional cues risk creating challenges by 

miscalibrating user trust. These findings highlight the need for balanced AI 

designs prioritising transparency, reliability, and ethical considerations to foster 

effective and sustainable human-agent collaborations in diverse contexts. 

6.3 Contributions to the Field 

This thesis significantly contributes to HATs, trust in AI, and human-AI 

collaboration by developing new theoretical insights, offering practical design 

guidance and introducing novel methodologies for studying and measuring 

human-AI interactions. By addressing trust, anthropomorphism, and social 

alignment, this work extends beyond existing literature to establish a 

comprehensive foundation for understanding AI as a teammate rather than a 
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mere tool. It also explores the impact of having multiple human team members, 

setting the stage for future advancements in collaborative workplace AI. 

6.3.1  Theoretical Contributions 

This thesis expands on existing frameworks of trust in HATs by examining trust as 

a dynamic, context-sensitive construct specifically suited to HATs. Previous 

studies, such as those by Lee and See (2004), focused on trust calibration in 

automation, emphasising the need for trust to align with system reliability and 

transparency. Building on this foundation, this thesis demonstrates that trust in AI 

teammates requires a nuanced approach considering the social and psychological 

dimensions of human-machine interactions.  

Trust in HATs is shown to hinge not only on reliability and transparency but also 

on AI's anthropomorphism and preference alignment, which can lead to more 

collaborative and effective relationships. In expanding the notion of trust to reflect 

the unique demands of HATs, this work provides a more precise investigation to 

inform the design of AI systems capable of fostering sustainable trust with human 

collaborators. It also highlights the issues of humanising AI, as it can lead to 

increased levels of trust when reliability is low, resulting in overtrust in the system 

(Robinette et al., 2016). For these reasons, it is essential to take a steady 

approach to developing AI that is more human and capable of social alignment to 

ensure that the system's robustness justifies the positive impacts on trust and 

likeability.  

This thesis also contributes to the theoretical understanding of anthropomorphism 

and user alignment within HATs, integrating insights from the CASA paradigm 

(Nass et al., 1994) to explore how human-like qualities in AI can foster trust. 

While anthropomorphism has been widely studied, this work extends the 

application of anthropomorphic cues to HATs, investigating the conditions under 

which such cues enhance collaboration. The findings reveal that moderate 

anthropomorphism, manifested through human-like language and nonverbal cues, 

can enhance user trust and promote collaboration. This study supports previous 

research on the benefits of SI in team settings (Boyatzis et al., 2017; Williams et 

al., 2022; A. Zhang & Patrick Rau, 2022) and establishes the need for a balanced 
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approach to anthropomorphism, where AI is designed to convey human-like 

qualities while avoiding discomfort or manipulation. This balanced perspective 

aligns with the work of Troshani et al. (2021) and Glikson and Woolley (2020), 

who emphasise anthropomorphism's contextual and ethical considerations, 

particularly in fostering emotional connections without misleading users.   

Finally, this work is unique as it also considers the presence of a human 

teammate. Contextual factors like AI reliability, adaptability, and emotional 

presentation influence human teammate performance in HATs. Ratings of human 

performance often reflect relative AI performance and team dynamics rather than 

an objective assessment of human contributions akin to the halo effect (Lachman 

& Bass, 1985; Naquin & Tynan, 2003; Nicolau et al., 2020). This underscores the 

importance of designing AI systems that foster clear roles and balanced dynamics 

to enhance team collaboration.  

These insights underscore the importance of anthropomorphism and social 

alignment in AI, adding a new dimension to HAT theory by emphasising that AI 

teammates should be designed for functional efficiency and to support emotional 

engagement and social cohesion within teams. 

6.3.2  Practical Implications  

This thesis offers actionable insights for designing and implementing AI in 

collaborative settings. The empirical findings suggest that specific design 

principles, such as optimal levels of anthropomorphic language and the strategic 

use of social alignment, can encourage trust and engagement. These 

recommendations provide practical information for developing AI teammates who 

align with human social expectations and optimise team dynamics.  

From a practical perspective, AI developers and designers are encouraged to 

adopt anthropomorphic features judiciously, focusing on transparency and 

reliability as foundational design principles. For instance, the findings demonstrate 

that while anthropomorphic design can increase user trust and likeability, it must 

not obscure the AI's actual capabilities or limitations. This aligns with 

recommendations by Hauptman et al. (2023) and Schelble et al. (2022), 
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advocating for transparent communication of AI strengths and boundaries to avoid 

ethical dilemmas such as over-trust or misuse of AI in critical settings. 

Ethically, this work underscores the responsibility of designers to ensure that 

anthropomorphic AI promotes informed collaboration rather than manipulation. By 

creating systems that appear “human-like”, there is a risk of users overestimating 

AI capabilities or forming inappropriate emotional connections, as highlighted by 

Waytz et al. (2014). This calls for a balanced approach that respects user 

autonomy while enhancing team dynamics. These findings support a broader 

discourse on the ethical integration of AI, emphasising the need for systems that 

are both user-centric and grounded in ethical transparency, ensuring that 

anthropomorphism serves as a tool for collaboration rather than deception 

As demonstrated in studies by Fussell et al. (2008) and Pelau et al. (2021), 

nonverbal cues can significantly enhance user engagement when applied 

judiciously. However, this research goes further by empirically testing the 

influence of these cues within the unique context of HATs, where the balance of 

trust and comfort is essential to avoid over-reliance or discomfort. These insights 

are particularly relevant for AI developers and designers, providing a roadmap for 

integrating anthropomorphic features and user alignment into AI systems to 

enhance trust calibration and overall team effectiveness. 

Additionally, this thesis emphasises the need for user-centric adaptability in AI 

teammates, contributing to a growing body of research advocating for AI systems 

responsive to user preferences and team dynamics. By demonstrating that 

adaptable AI teammates who align their communication style to mimic user 

preferences are perceived as more trustworthy and practical, this work supports a 

user-centred approach to AI design. These findings echo calls from Berretta et al. 

(2023) and Schelble et al. (2022) for adaptive AI systems that enhance 

engagement and collaboration by aligning with team members' needs. The 

emphasis on adaptability highlights a practical pathway for future HATs, where 

AI's responsiveness to social and contextual cues strengthens team cohesion and 

reduces friction in collaborative environments. 
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6.3.3  Ethical Contributions  

Across all chapters, ethical and contextual considerations emerged as critical when 

designing HATs. Using anthropomorphic features and emotional cues like emojis 

raised concerns about the potential for miscalibrating trust, particularly in low-

reliability conditions. For instance, Chapter 4 demonstrated that emojis could 

soften negative perceptions of AI but did not improve trust or performance. 

Emotional anthropomorphism can foster pseudo-intimacy, encouraging users to 

form emotional attachments to AI that lack depth or authenticity, potentially 

leading to inappropriate reliance on critical domains such as healthcare or finance 

(Placani, 2024). Therefore, ethical design principles must prioritise transparency 

and reliability, ensuring that anthropomorphic cues or adaptability do not obscure 

an AI system's actual capabilities.  

Additionally, educating users about the limitations of AI systems is essential. 

Through clear communication of AI’s scope and constraints, user empowerment 

can reduce over-reliance and promote informed collaboration. For instance, 

incorporating ethical design features, such as explainable AI, can enhance user 

understanding and encourage the appropriate use of emotional cues in 

contextually relevant ways without overshadowing the system's technical 

attributes (Endsley, 2023; Kim et al., 2023; Nasir et al., 2024; Ribeiro et al., 

2016). 

6.3.4  Methodological Contributions  

Methodologically, this thesis advances the study of trust in AI by using bibliometric 

analysis to map the interdisciplinary landscape of trust research. By tracing trust 

research across psychology, computer science, and organisational behaviour, this 

analysis reveals the evolution and interconnections within trust literature, 

highlighting shifts from interpersonal trust to trust in automated and AI systems 

(Rousseau et al., 1998; Glikson & Woolley, 2020). This approach provides a 

foundational understanding of trust research and equips future researchers with a 

framework to explore interdisciplinary linkages and trends in trust and AI. By 

identifying key themes and influential works, this analysis offers a comprehensive 
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view of the trust landscape, establishing a basis for future studies examining trust 

within HATs. 

The experimental methodologies employed in this thesis also contribute to HAT 

research. These studies introduce a controlled framework for examining trust 

calibration in HAT contexts by systematically varying anthropomorphic features 

and nonverbal cues such as emojis. These experiments build on the work of 

Glikson and Woolley (2020) and Robinette et al. (2016) by providing replicable 

designs that other researchers can adapt to explore additional anthropomorphic 

design and SI variables.  

This thesis advances theoretical frameworks, practical design principles, and 

methodologies for understanding and improving human-AI collaboration. By 

positioning trust, anthropomorphism, and AI social alignment as integral to 

practical HATs, this work not only addresses some of the critical challenges in AI 

teammate design but also sets a foundation for future research that aims to create 

AI systems that are trustworthy, adaptable, and ethically designed for productive 

HATs. Finally, the work focuses on the ratings of other human teammates to 

understand further how AI can influence team dynamics.  

6.4  Limitations  

While this thesis offers valuable insights into the development of HATs, trust in AI, 

and the roles of anthropomorphism and SI, several limitations should be 

considered. These limitations relate to the context and generalizability of findings, 

methodological constraints, and challenges inherent to studying complex human-

AI interactions. Recognising these limitations provides a basis for refining future 

research and enhancing the practical application of these findings. 

One significant limitation concerns the contextual constraints of the experimental 

studies, which were conducted in controlled environments that may not fully 

capture the complexity of real-world HATs. Rix (2022) and Berretta et al. (2023) 

highlight that studies in controlled settings often struggle to replicate the diverse, 

dynamic conditions encountered in practical applications. While controlled 

experiments allow for precision in examining specific variables (such as 
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anthropomorphism and nonverbal cues), they inherently limit the ability to 

generalise findings to broader contexts where human-AI collaboration is subject to 

changing environmental factors, varying task demands, and differing 

organisational cultures. Consequently, the applicability of these findings to highly 

dynamic settings, such as emergency response or complex team-based decision-

making scenarios, may be restricted. 

Another limitation relates to measuring trust and SI in AI, which are inherently 

complex constructs. Despite efforts to develop and apply specific metrics, such as 

adaptability and emotional cues, measuring these qualities remains challenging 

due to the absence of standardised frameworks. As outlined by Lee and See 

(2004), existing measures of trust in automation are generally designed for 

simple, transactional interactions. They may only partially capture the relational 

dynamics of trust in HATs, where trust is continually calibrated and influenced by 

social factors. This limitation underscores the need for more robust, context-

sensitive tools to accurately measure trust in AI teammates, especially as trust in 

AI may evolve differently from trust in human teammates. Moreover, the 

development of standardised metrics for SI in AI remains in its infancy, which 

restricts the ability to conduct comparative studies and hinders the broader 

applicability of these findings. 

Finally, a notable methodological limitation is the reliance on short-term 

interactions in experimental settings. Trust and SI in HATs are dynamic constructs 

that evolve through repeated interactions, feedback, and observed behaviour, as 

highlighted in studies by Robinette et al. (2016) and Williams et al. (2022). This 

thesis, however, primarily focuses on short-term trust calibration and immediate 

reactions to anthropomorphism and social cues. While these findings offer 

valuable insights into initial trust formation, they may not fully capture the long-

term dynamics of trust in HATs, which is critical for applications where human-AI 

interactions occur over extended periods. Longitudinal studies are needed to 

explore how trust and perceptions of SI evolve in AI teammates over time, 

providing a more comprehensive understanding of sustained human-AI 

collaboration. 
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In summary, while this thesis substantially contributes to studying human-AI 

collaboration, these limitations highlight the field's complexity and scope. 

Addressing these limitations in future research will be essential for advancing the 

theoretical and practical understanding of HATs, particularly in creating AI 

teammates that are trustworthy, adaptable, and ethically designed to support 

effective human-AI collaboration across diverse settings. 

6.5 Future Directions 

The findings and limitations of this thesis highlight several promising avenues for 

further research in HATs, particularly in areas of trust dynamics, anthropomorphic 

design, SI, and ethical AI development. By pursuing these directions, future 

studies can deepen our understanding of human-AI collaboration and contribute 

to creating effective, adaptable, and ethically designed AI teammates. 

One pressing area for future research is the exploration of trust dynamics over 

extended periods. This thesis has focused primarily on short-term interactions, 

offering insights into the initial stages of trust calibration and anthropomorphic 

influence. However, trust in HATs is not static; it evolves through repeated 

interactions and may fluctuate based on AI performance, adaptability, and 

reliability over time (Robinette et al., 2016; Williams et al., 2022).  

Longitudinal studies that track trust over time and in varied real-world settings 

would provide a more comprehensive understanding of how sustained human-AI 

collaboration impacts trust. For instance, future research could examine how initial 

trust formation and subsequent trust breaches or repairs influence long-term 

collaboration. Such studies could utilise a mixed-methods approach, combining 

quantitative trust metrics with qualitative assessments to capture the complexity 

of trust evolution in HATs. These insights would be particularly valuable for 

designing AI teammates suited for long-term, high-stakes settings, such as 

healthcare and defence, where sustained trust is crucial. 

SI in AI remains an underexplored area, particularly regarding how AI systems 

perceive and respond to subtle social cues from human teammates. Future studies 

should examine how AI can be equipped with context-sensitive SI, enabling it to 
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respond to human emotions, adapt its behaviour dynamically, and foster better 

alignment with team goals (Williams et al., 2022). For example, research could 

focus on developing AI systems that recognise user frustration or satisfaction and 

adjust their level of guidance or collaboration accordingly. Additionally, studies 

could investigate how AI systems that exhibit self-awareness about their 

limitations (e.g., expressing uncertainty when their confidence is low) affect user 

trust and reliance. This line of research would benefit from interdisciplinary 

approaches, drawing on insights from psychology, human-computer interaction, 

and machine learning to create socially intelligent AI that enhances team cohesion 

and effectiveness. 

Finally, future research should aim to test the principles of HATs in real-world, 

dynamic environments to validate and expand upon the findings of this thesis. 

While controlled experiments offer valuable initial insights, field studies in 

operational settings, such as healthcare, emergency response, or remote 

teamwork, can reveal how AI teammates function under real-world pressures and 

unpredictability (Rix, 2022; Berretta et al., 2023). Field studies could assess how 

AI's adaptability, anthropomorphism, and SI impact team performance, situational 

awareness, and user trust in high-stakes environments. Such research could also 

examine how human teams adjust their behaviour and strategies based on AI 

actions, providing critical insights into the reciprocal dynamics of human-AI 

interaction. These studies would not only validate theoretical insights but also 

inform the design of AI systems that are robust and responsive in complex, 

dynamic team settings. 

6.6 Conclusion 

This thesis has undertaken an in-depth exploration of the evolving landscape of 

HATs, investigating the foundational elements necessary for AI to transition from 

functional tools to trusted teammates. By examining trust, anthropomorphism, 

and SI, this work contributes to a nuanced understanding of how AI can integrate 

meaningfully within human teams. Drawing on interdisciplinary insights, this 

research presents a comprehensive framework for human-AI collaboration, 
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underscoring the critical importance of calibrated trust, balanced 

anthropomorphism, and adaptable SI. 

The findings of this thesis affirm that AI's effectiveness as a teammate relies on 

far more than technical capability alone. Trust is shown to be the cornerstone of 

successful HATs, requiring not only reliability but also dynamic responsiveness and 

transparency. By empirically examining how AI design elements, such as 

anthropomorphic language and nonverbal cues, impact trust and performance, 

this research provides actionable insights for developers, offering design 

guidelines that humanise AI without overstepping into discomfort or manipulation. 

These insights extend to ethical considerations, advocating for a principled 

approach to AI that fosters trust without undermining user autonomy or consent. 

In addition to its theoretical and practical contributions, this thesis introduces 

novel methodological approaches, including a bibliometric analysis that maps trust 

research across disciplines, and experimental frameworks that quantify the effects 

of social cues on human-AI interactions. These methodologies strengthen the 

findings presented here and provide a replicable basis for future studies aiming to 

refine the roles of trust and SI in HATs. By setting a foundation in these areas, 

this work opens pathways for future research to examine trust dynamics over 

time, refine adaptive AI behaviour, and consider diverse cultural perspectives in 

HAT design.
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Accompanying Material 

Supplementary Material 1. The Godspeed Questionnaire 

Subsection Question 
 

 

Anthropomorphism  Please rate your 

impression of the AI 
on these scales 

Fake Natural 

 Please rate your 
impression of the AI 

on these scales 

Machinelike Humanlike 

 Please rate your 
impression of the AI 

on these scales 

Unconscious Conscious 

 Please rate your 
impression of the AI 
on these scales 

Artificial Lifelike 

Likeability  Please rate your 
impression of the AI 
on these scales 

Cold Warm 

 Please rate your 
impression of the AI 
on these scales 

Dislike Like 

 Please rate your 

impression of the AI 
on these scales 

Unfriendly Friendly 

 Please rate your 
impression of the AI 

on these scales 

Unkind Kind 

 Please rate your 
impression of the AI 

on these scales 

Unpleasant Pleasant 

 Please rate your 
impression of the AI 
on these scales 

Awful Nice 

Perceived 
Intelligence  

Please rate your 
impression of the AI 
on these scales 

Incompetent Competent 

 Please rate your 
impression of the AI 
on these scales 

Ignorant Knowledgeable 

 Please rate your 

impression of the AI 
on these scales 

Irresponsible Responsible 

 Please rate your 

impression of the AI 
on these scales 

Unintelligent Intelligent 
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   Please rate your 
impression of the AI 

on these scales 

Foolish Sensible 
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Supplementary Material 2. Trust in Automation Questionnaire with Changes 

 

  

Subsection  Question   

Familiarity I know similar AIs. Strongly Disagree Strongly 

Agree 
 I have already worked with a 

similar AI. 
Strongly Disagree Strongly 

Agree 

Intention of 

Developers 

The developers are 

trustworthy. 

Strongly Disagree Strongly 

Agree 
 The developers take my well-

being seriously. 
Strongly Disagree Strongly 

Agree 

Propensity to 
Trust 

I'd rather trust an AI than 
not. 

Strongly Disagree Strongly 
Agree 

 One should be careful with 
unfamiliar AIs. 

Strongly Disagree Strongly 
Agree 

 AI generally works well. Strongly Disagree Strongly 
Agree 

Reliability/ 

Competence 

The AI is capable of 

interpreting situations 
correctly. 

Strongly Disagree Strongly 

Agree 

 The AI works reliably. Strongly Disagree Strongly 
Agree 

 An AI malfunction is likely.* Strongly Disagree Strongly 
Agree 

 The AI is capable of taking 

over complex tasks. 

Strongly Disagree Strongly 

Agree 
 The AI might make random 

errors. 
Strongly Disagree Strongly 

Agree 
 I am confident about the AI's 

capabilities.* 

Strongly Disagree Strongly 

Agree 

Trust in AI I can rely on the AI. Strongly Disagree Strongly 
Agree 

 I trust the AI. Strongly Disagree Strongly 

Agree 

Understanding 
/Predictability 

The AI's state was always 
clear to me. 

Strongly Disagree Strongly 
Agree 

 The AI reacts unpredictably. * Strongly Disagree Strongly 
Agree 

 I understand why things 
happen. 

Strongly Disagree Strongly 
Agree 

 It is difficult to identify what 
the AI will do next. * 

Strongly Disagree Strongly 
Agree 



 

 

216 | P a g e  
 

Supplementary Material 3. User Preference Questionnaire 

Subsection Questions   

Short 
I prefer teammates who communicate 
their ideas in brief and concise messages. 

Strongly 
Disagree 

Strongly 
Agree 

 
When receiving feedback, I appreciate 
short and to-the-point comments. 

Strongly 
Disagree 

Strongly 
Agree 

 
In team meetings, I value when 
discussions are kept short and focused. 

Strongly 
Disagree 

Strongly 
Agree 

 
I believe effective communication often 
means saying less, not more. 

Strongly 
Disagree 

Strongly 
Agree 

 
Quick, succinct responses in team chats 

or emails are more productive for me. 

Strongly 

Disagree 

Strongly 

Agree 

Long 
I appreciate when teammates provide 
detailed explanations in their 
communications. 

Strongly 
Disagree 

Strongly 
Agree 

 
When receiving feedback, I find more 
value in thorough and elaborate 
comments. 

Strongly 
Disagree 

Strongly 
Agree 

 
In team meetings, I prefer detailed 
discussions that cover topics extensively. 

Strongly 
Disagree 

Strongly 
Agree 

 
I believe that comprehensive 
communication prevents 

misunderstandings. 

Strongly 
Disagree 

Strongly 
Agree 

 
I prefer receiving emails or messages 
from teammates that are detailed and 
informative. 

Strongly 
Disagree 

Strongly 
Agree 

Friendly 
I feel more comfortable in a team when 
my teammates are open and 
approachable. 

Strongly 
Disagree 

Strongly 
Agree 

 
I appreciate teammates who make an 
effort to engage in casual conversations. 

Strongly 
Disagree 

Strongly 
Agree 

 
I believe that sharing personal stories 
strengthens a team's bond. 

Strongly 
Disagree 

Strongly 
Agree 

 
I prefer working with teammates who 
show warmth and friendliness. 

Strongly 
Disagree 

Strongly 
Agree 

 

Teammates who joke and laugh make 

the work environment more enjoyable for 
me. 

Strongly 

Disagree 

Strongly 

Agree 

Formal 
I value professionalism and a formal tone 
in all team communications. 

Strongly 
Disagree 

Strongly 
Agree 

 
I believe that keeping personal and 
professional lives separate improves team 
efficiency. 

Strongly 
Disagree 

Strongly 
Agree 

 
I prefer teammates who focus strictly on 
work-related topics during discussions. 

Strongly 
Disagree 

Strongly 
Agree 

 
I respect teammates more when they 
maintain a formal demeanour. 

Strongly 
Disagree 

Strongly 
Agree 
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A clear distinction between work and 

personal interaction with teammates is 
important to me. 

Strongly 

Disagree 

Strongly 

Agree 
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