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Abstract

In an era where Artificial Intelligence is becoming integral to human teams,
understanding the role of trust in Human-Al Teams is essential for effective
collaboration. This thesis investigates how anthropomorphism, Al system
performance, and social intelligence influence trust calibration, team performance,
and human perceptions of Al teammates. The research addresses significant gaps
in Human-AI Team literature by drawing on interdisciplinary insights from
psychology, computing science, and human-computer interaction. The work is
structured into six chapters, each contributing to a comprehensive understanding

of trust in Human-AI Teams.

Chapter 1 provides a literature review on the dynamics of human-agent teams,
trust, and social intelligence. It explores how anthropomorphic design, Al
reliability, and social intelligence contribute to trust development, highlighting the

limitations of existing theories and the need for a multidisciplinary approach.

Chapter 2 presents a bibliometric analysis of trust research from 1922 to 2021. By
analysing 39,628 documents, this chapter identifies key research trends,
foundational contributions, and interdisciplinary intersections. The study reveals
the evolving nature of trust research and underscores the importance of
integrating diverse disciplinary insights to address complex trust dynamics in

Human-AI Teams.

Chapter 3 explores the impact of anthropomorphism and Al system reliability on
trust and performance in Human-AI Teams. Using experimental methods, it
demonstrates that while anthropomorphic design can enhance trust, this effect is
contingent on AI reliability. The findings highlight the risks of overtrust when

anthropomorphic cues are paired with unreliable AI systems.

Chapter 4 investigates the role of emojis and Al reliability in shaping team
performance and trust. Results show that Al teammates using emojis can foster a
sense of social connection and trust, but this effect varies based on the system's
reliability. The study emphasises the nuanced relationship between social cues and

trust calibration.



Chapter 5 examines how social alignment in Al, the ability to adapt behaviour to
match human social expectations, affects trust and team behaviours. Findings
indicate that AI that demonstrates adaptive social alignment behaviour can benefit
trust. However, misaligned social Al can lead to mistrust and reduced performance

and has more impactful effects.

Chapter 6 synthesises the key findings, offering conclusions and practical
recommendations. The research underscores the importance of calibrated trust,
ensuring humans neither over-rely nor under-rely on Al. Effective Human-Al
Teams require Al systems that balance anthropomorphic design, transparency,
and social intelligence to foster sustainable trust. The chapter highlights the need
for ongoing interdisciplinary research and ethical considerations to guide the

development of Al teammates.

Overall, this thesis contributes to understanding trust dynamics in Human-AI
Teams by demonstrating that successful collaboration hinges on the careful
integration of anthropomorphic cues, system reliability, and social intelligence. The
findings provide information for designing Al systems that are not only reliable but

also socially intelligent, fostering more effective and ethical human-AI Teams.
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Chapter 1 A Literature Review of Past Work
Investigating the Dynamics of Human-Agent
Teams, Trust, and Social Intelligence

1.1 Introduction

In today's world, intelligent machines are no longer just tools; they are
increasingly becoming integral members of human teams across industries, from
healthcare and finance to emergency response and defence. For example, Al-
driven systems like IBM's Watson assist in diagnosing medical conditions, while
autonomous drones collaborate with human soldiers in the military. These
examples underscore a critical transformation: as Artificial Intelligence (AI)
evolves from performing isolated tasks to acting as collaborative partners,

understanding the dynamics of Human-Agent Teams (HATs) becomes paramount.

However, while the potential of HATSs is vast, their success hinges on overcoming
significant challenges. How can trust be cultivated when AI lacks the emotional
cues of human teammates? What role does anthropomorphism play in HATs, and
is it always beneficial? Can AI systems develop sufficient Social Intelligence (SI) to
navigate complex human team dynamics effectively? These questions remain
inadequately addressed in existing research, leaving gaps in our understanding of

what makes HATs successful.

This literature review aims to synthesise the research on HATS, focusing on three
critical factors: trust, anthropomorphism, and SI. By examining these
interconnected themes, this review highlights the current state of research,

identifies unresolved issues and provides a roadmap for future investigations.

1.2 Human-Agent Teams

The shift from viewing Al as mere tools to considering them as collaborative
teammates represents a significant development in Aland Human-Computer
Interaction (HCI). Traditionally, researchers viewed Al as a tool designed to
perform specific tasks more efficiently than humans. In recent years, HATs have

become a novel area of research (Rix, 2022), shifting Al's role from a tool to a
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collaborative teammate (Berretta et al., 2023; McNeese et al., 2018, 2021; Rix,
2022). This shift stems from recognising that practical HATs rely on human
perceptions of Al as emotionally intelligent, communicative partners rather than
task-driven tools (Wynne & Lyons, 2018). To foster effective collaboration, shared
mental models and communication processes are crucial for establishing collective

goals and trust (Lyons et al., 2021).

Historically, complex technical systems, particularly in the mid-20th century,
focused on mathematical and logical problem-solving, reinforcing their image as
efficient tools. However, advancements in machine learning and natural language
processing in the late 20th century facilitated a transition toward more human-like
interactions. Recently, Al tools such as ChatGPT and Co-Pilot (OpenAl., 2024)
have further solidified Al's role as a potential workplace collaborator. Co-Pilot
(Microsoft, 2024) exemplifies this transition by acting as a coding partner,
understanding code context, suggesting code completions, and even generating
entire functions, moving beyond the capabilities of a simple code editor. However,
there are theories that even before these recent changes in Al, humans still
viewed computers as teammates, and we will discuss these ideas further in the

next section.

1.2.1 Computers as Teammates

The Computers Are Social Actors (CASA) paradigm (Nass et al., 1994b) has
influenced our understanding of how humans interact with computers, suggesting
that we instinctively apply social norms to these interactions. For example, Nass et
al. (1994) demonstrated that even experienced computer users unconsciously
exhibit politeness and gender stereotypes when interacting with computers. CASA
suggests that our social responses to technology are deeply ingrained and often

automatic.

However, CASA has limitations. Firstly, it does not fully account for how context
shapes interactions. For instance, users might readily accept suggestions from a
music recommendation Al in a leisure context but might be more critical of similar
suggestions from an Al financial advisor in a work context where economic

security is at stake (Angerschmid et al., 2022; Bansal et al., 2021; Salimzadeh et
21|Page



al., 2023). Additionally, CASA overgeneralises by assuming all users engage with
computers socially, neglecting individual differences like personality traits,
previous experience with AI and cultural backgrounds (Agarwal & Prasad, 1999; Yi
et al., 2005). Gambino (2020) emphasises that relationships with technology are
not static. Early interactions might be influenced more by novelty and general
social tendencies. However, repeated use leads to a more nuanced understanding.
Imagine a user initially treating a chatbot politely but, over time, learning it
responds the same regardless of their tone. Learning about the Al's consistent
behaviour could lead them to adopt a more direct communication style, a shift

based on individual differences not accounted for in CASA's fixed script model.

Furthermore, recent evidence suggests that this effect might be waning,
particularly for technologies that have become ubiquitous. Heyselaar (2023)
directly challenges CASA by replicating a foundational study on politeness towards
computers, finding no evidence that participants today exhibit more politeness
when interacting with the same computer. We could attribute this shift in user
behaviour to the increasing prevalence of technology in our lives, and CASA might
occur strongest when applied to emergent technologies. Due to these changes,
there is a need to consider the evolving nature of HCI and explore alternative
frameworks that move beyond the assumption that all computers are inherently

social actors.

Recognising these limitations, Gambino et al. (2020) proposed a refined model
incorporating modern technological interactions. Gambino's (2020) paper proposes
that people may mindlessly apply human-computer scripts similarly to human-
human scripts during social interactions with technologies. This theoretical
extension to CASA suggests that users develop distinct scripts for interacting with
technology, not simply borrowed from human-human interaction. This model
addresses Heysel's (2023) findings by acknowledging that users may not always
treat computers as social actors, especially as technology becomes more familiar
and integrated into daily life. The social affordances of the media agent and the
temporal factors of the relationship with media agents influence the development
of these human-computer scripts. In other words, how people interact with a

specific technology changes over time and with experience, leading to unique
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interaction patterns. This framework allows for a deeper understanding of human-
technology interaction beyond the initial novelty phase, explaining why the CASA

effect might be less pronounced with older technologies like desktop computers.

Despite these advancements, challenges persist. While Gambino's (2020)
extension to the CASA paradigm offers a valuable refinement by acknowledging
the development of human-computer scripts, it still leaves some areas open to
critique. Primarily, the developed model lacks specificity regarding the
mechanisms and timelines involved in human-computer script development. While
it rightfully points to factors like social affordances and experience, it does not
clarify how these factors interact or the time scales on which they influence user
behaviour. For instance, how do users differentiate between the novelty of a new
technology and its inherent affordances to shape their initial interactions?
Similarly, the model remains vague when the mindless application of social scripts
gives way to more reasoned, learned behaviour, offering no empirical grounding
for this transition. Without such details, the model struggles to provide concrete
predictions about user behaviour, hindering its ability to guide the design of more

effective human-AI interactions.

In conclusion, the evolution of Al from a tool to a collaborative teammate marks a
significant shift in how humans interact with technology. While early frameworks
such as CASA have been instrumental in explaining social interactions with AI,
recent advancements reveal the limitations of these models in accounting for the
dynamic and context-dependent nature of human-AlI relationships. The transition
from novelty-driven interactions to more complex, learned behaviours requires a
deeper understanding of how people perceive and engage with Al over time.
Nuanced research is particularly crucial in the context of HATs, where the
development of trust, shared goals, and communication is essential for effective
collaboration. The following section will delve into the complexities of defining and
understanding HATSs, exploring how these teams operate and their unique

challenges in balancing human-AI dynamics.
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1.2.2 Defining and Understanding Human-AI Teams

As Al becomes more deeply embedded in daily life, from personalised
recommendations to complex decision support systems, the need to understand
and define HATs grows increasingly critical. While early research attempted to
apply established Organizational Psychology theories to HATs, assuming a simple
translation of team dynamics, this approach has proven inadequate (Berretta et
al., 2023; McNeese et al., 2018). The key distinction lies in whether Al agents are
perceived and function as true “teammates” rather than mere tools (Hauptman et
al., 2023; Peeters et al., 2021; Rix, 2022; Schelble et al., 2022). This shift from
tool to teammate hinges on factors like the Al agent's ability to exhibit qualities
associated with human team members, such as predictability, directability, and a
suitable level of autonomy (Hauptman et al., 2023; McNeese et al., 2018; Zhang
et al., 2021). This realisation has sparked a growing consensus that HATs require
specialised research approaches tailored to their unique challenges, moving
beyond adapting existing theories and developing frameworks that account for the
distinct dynamics of HATSs.

Rix (2022) conducted a meta-analysis and proposed a framework that outlines
four essential drivers for forming practical HATs: @ minimum of two individuals,
shared goals, interdependence among team members, and clearly defined roles
and functions for both human and AI teammates. Rix (2022) also argues that for
these teams to be truly successful, they must function as cohesive social entities,
moving beyond a purely transactional relationship. To become a social entity,
there needs to be a solid team identity where Al agents are seen as “teammates”
rather than just tools, establishing a trust foundation between humans and Al

teammates.

1.2.2.1 The Importance of Shared Goals

The concept of shared goals is crucial for fostering a sense of “teamness”, which
occurs through a shared purpose and a spirit of collaboration that binds team
members together (Musick et al., 2021; Schelble et al., 2022). A shared
understanding of the team's goals helps to align individual efforts and promotes a

more cohesive and coordinated approach to problem-solving (C. Liang et al.,
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2019; Sanneman & Shah, 2022). While the importance of shared goals is widely
acknowledged, shared goals are associated with complexities and potential

challenges in the context of HATSs.

Firstly, there is a distinction between “overall shared goals” and “local goals” that
might exist at the individual level (Rix, 2022). This distinction is crucial because
while a team might have an overarching objective, individual team members,
including AI agents, might have specific objectives that could conflict with the
team's overall goal. For example, in a resource allocation task, the overall goal
might be to optimise resource distribution for the entire team, but individual
agents might be programmed to prioritise maximising their own resources (Chiou
et al., 2019; Oh et al., 2018).

Secondly, genuine “teamness” requires the presence of shared goals and the
perception that all team members, human and Al, benefit somewhat from
achieving those goals. If the attainment of a shared goal disproportionately
benefits one team member, whether human or Al, it can lead to resentment,
distrust, and reduced collaboration among team members (Flathmann et al.,
2023; Ong et al., 2012; Schelble et al., 2022).

To effectively implement shared goals, it is important to have explicit goal
communication; designers should create Al agents to communicate their goals
clearly and explicitly to their human teammates. This transparency can help to
alleviate concerns about hidden agendas and foster a sense of shared
understanding within the team (Schelble et al., 2022). Rather than assigning
rigidly defined roles, HATs should be designed to encourage co-creation, where
both human and Al teammates contribute their unique capabilities towards
achieving shared goals (Lawton et al., 2023; Merritt & McGee, 2012; Oh et al.,
2018).

1.2.2.2Interdependence and Collaboration

Interdependency is essential for successful HATs because it directly influences
team cohesion and, by extension, team performance (Wiethof et al., 2021). When

team members perceive their success as intertwined, it strengthens their sense of
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shared responsibility and promotes a collaborative spirit. Interdependency is
consistent with the concept of “teamness”, where a sense of cohesion and
belonging within the team is crucial for effective collaboration. However, Al can
both enhance and disrupt interdependency within HATs. On the one hand, Al can
foster interdependency by shouldering some of the cognitive load typically carried
by human team members, allowing for more efficient collaboration and leading to
better outcomes (Ddéppner et al., 2019; Zhou et al., 2017). On the other hand,
increasing interdependence can cause issues with transparency and lead to a
breakdown in understanding of Al behaviour.

However, while potentially beneficial for efficiency, the increasing autonomy of Al
systems can also introduce challenges to interdependency. Johnson et al. (2012)
caution that highly autonomous Al systems risk reducing team transparency. If
human team members do not understand why an AI agent is taking specific
actions, it can lead to mistrust and a breakdown in collaboration (Johnson et al.,
2012). This lack of transparency can undermine situation awareness, hindering the

team's ability to adapt effectively to changing circumstances.

Therefore, finding the balance between Al autonomy and communication is vital
for maintaining interdependency in HATs. As Schelble et al. (2022) highlighted, it
can enhance team cognition and trust if Al agents can clearly articulate their goals
and align them with the team's objectives. This transparency ensures that human
team members feel confident in the AI's actions and understand its contribution to

the team, ultimately increasing interdependency.

1.2.2.3Role Definition and Specialisation

The assignment of unique roles and functions is also critical for successful HAT
formation. Derrick and Elson (2019) suggest that roles should be assigned based
on each team member's abilities, similar to human teams. This approach implies a
division of labour where each team member, whether human or Al, is responsible
for tasks best suited to their capabilities. However, Siemon (2022) argues that Al
agents should not possess a wide range of skills but instead focus on excelling in
one area. This specialised role for Al agents could involve tasks like data analysis,
pattern recognition, or task automation, freeing human teammates to focus on
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tasks requiring creativity, critical thinking, or interpersonal skills. Oh et al. (2018)
found that successful co-creation in HATs does not necessarily require completely
distinct roles. Their findings suggest that Al agents and human teammates can

effectively collaborate even with some overlap in skills and responsibilities.

Whether roles are unique or shared, research agrees on the importance of clearly
defining those roles. Oh et al. (2018) emphasise that even when roles are not
entirely distinct, they must still be well-defined to ensure that all team members
clearly understand their contributions and how they support the team's goals. This
clarity helps to minimise confusion, facilitate coordination, and foster a shared

understanding of responsibilities.

1.2.2.4 Social Dynamics

Rix (2022) argues that to function as more than just tools within HATs, AI systems
must be designed with social behaviours that encourage the team to act as a
cohesive social entity. Rix (2022) suggests that AI should be designed to embody
similar social characteristics to those traditionally found in human teams, which
includes concepts like team spirit, group cohesion, and a sense of shared identity
(Chiocchio & Essiembre, 2009; Hackman, 1987; Kozlowski & Ilgen, 2006). The
team's effectiveness is significantly enhanced when Al systems exhibit these social
behaviours, suggesting that the success of HATSs relies on task-based efficiency

and social dynamics within the team (Oh et al., 2018).

Rix (2022) proposes that AI systems should exhibit human-like qualities and
engage in relationship-building behaviours within the team to reinforce the idea
that it is a part of the social entity of the team rather than a separate entity.
Focusing on social behaviours in Al highlights the importance of moving past Al as
simply a tool to complete tasks. By designing Al with social behaviours that enable
it to function as part of a cohesive team unit, HATs may achieve success and

provide a more positive and productive experience for human team members.

Rix (2022) also highlights that researchers often underestimate the complexity of
creating practical HATSs, particularly in ensuring that machines can perform tasks

typically expected of human team members, such as building relationships and
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providing understandable explanations for their actions. Rix (2022) suggests that

machines require definite configurations to function effectively as teammates.

1.2.2.5Limitations of Rix's Framework

While Rix (2022) provides a valuable framework for understanding HATS,
limitations exist. A primary concern is the lack of a clear and consistent definition
of what constitutes a HAT. This ambiguity in defining HATs makes it difficult to
compare findings across studies and develop a cohesive understanding of the
factors influencing team effectiveness. Finally, Rix (2022) acknowledges the
challenge of bridging the gap between research conducted in controlled
environments and the complexities of real-world HAT applications. This gap raises
questions about the ecological validity of current research findings and how these
findings can be generalised to real-world settings where AI systems must operate

in dynamic and unpredictable contexts.

Following this, Rix's (2022) paper also has methodological limitations. The paper
primarily relies on existing literature, particularly from Information Systems, and
lacks original empirical validation of its proposed framework. This reliance on a
limited scope of literature without empirical testing raises concerns about the
generalizability of the findings and the framework's applicability to real-world
settings. While Rix's (2022) work offers foundational insights into the
methodological challenges of understanding HATs, more intricate dynamics unfold
in these interactions. In the next section, we delve into the complexities of
designing AI systems for HATs, focusing on error tendencies, mental models, and

team dynamics.

1.2.3 Accuracy and Confidence in HATs

When designing Al systems for HATS, presenting information to facilitate the
human teammate's understanding of the AI's behaviour, particularly its error
tendencies, can be effective for building accurate mental models. As previously
discussed, this understanding allows humans to develop an accurate mental model
of the Al's capabilities and limitations, enabling informed decisions about reliance
and collaboration with the Al system (Bansal et al., 2019; Grimes et al., 2021).
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This process of developing an understanding of the AI partner connects to the
concept of situation awareness (SA) from human factors research (Sanneman &
Shah, 2022). SA involves an individual's perception and comprehension of their
surroundings, including how information might unfold. In HATs, sufficient SA
about the AlI's behaviour, particularly around its error tendencies, is crucial for
making informed decisions about when to trust or override the AI (Sanneman &
Shah, 2022).

Understanding the nuances of Al properties, like accuracy and confidence, in HATs
is crucial for effective teaming (Bansal et al., 2021). While increased AI accuracy
might seem intuitively linked to better HAT performance, this is not always true,
and the relationship is complex. Despite exhibiting lower individual accuracy, an Al
that presented low-confidence in its output, can improve team performance with
increased accuracy in specific situations (Bansal et al., 2021). These findings occur
because lower Al confidence allows for a more accurate mental model of the Al
teammate's behaviour to be formed by the human teammate. This improved
mental model gives the human teammate a better understanding of the Al's error
rate and tendencies, ultimately allowing for more informed decisions about when
to trust or override the Al's recommendations. These findings assist in
understanding the importance of accuracy and confidence during the AI design
phase, prioritising team-based utility and outcomes over individual Al performance

metrics.

Bansal et al., (2019a) emphasised that having a highly accurate AI might not be
enough; the human teammate needs to understand how the Al arrives at its
conclusions and where its potential pitfalls lie (Bansal et al., 2019b). Providing the
human teammate with clear and concise information about the Al's error
boundaries, particularly as they relate to parsimony and stochasticity, can
contribute to developing this shared understanding and allow for more effective

human-AI collaboration.

In this context, parsimony refers to the simplicity of representing areas where the
Al is prone to making mistakes. A more parsimonious error boundary is more

manageable for humans to understand and remember (Bansal et al., 2019a). For
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instance, an error boundary that can be explained with fewer features or more
straightforward rules is more parsimonious and, therefore, more accessible for

humans to integrate into their mental models.

Stochasticity refers to the consistency of the AI's errors within its error boundary.
A non-stochastic error boundary implies that the AI's errors are predictable and
occur consistently for specific types of inputs, making it easier for humans to learn
the pattern. On the other hand, a stochastic error boundary makes the Al's errors
less predictable and, therefore, more difficult for the human teammate to
anticipate. This unpredictability can hinder the human's ability to adjust their

treatment of the AI accordingly.

Bansal et al., (2019a) highlighted that AI models with parsimonious and non-
stochastic error boundaries are more accessible for humans to understand, leading
to more accurate mental models. This enhanced understanding can lead to more

effective collaboration and improved team performance in HATSs.

1.2.3.1 AI Teammate Vs Human Teammate

Another complex aspect of HAT dynamics is the differences in how human
teammates perceive and interact with Al teammates compared to human
teammates. This difference in perception can significantly impact team decisions
and outcomes, particularly in situations requiring trust and collaboration. For
example, research indicates that when faced with the choice of saving either an Al
or a human teammate in defensive team games, participants often prioritise the
“best outcome” when saving the Al, as opposed to a “protect the teammate”
rationale when saving a human (Ong et al., 2012). These rationales suggest that
humans might not instinctively afford the same level of care or value to Al

teammates compared to human teammates.

Further illustrating this point, research points to the tendency for AI teammates to
be unfairly blamed for team failures, a phenomenon not typically observed with
human counterparts (Merritt et al., 2011). The unfair blame suggests a bias
against Al teammates, where humans are more likely to attribute blame to the AI

even when it is unjustified (Jones-Jang & Park, 2023). This difference in treatment
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could be attributed to the challenges humans face in forming accurate and robust
mental models of Al behaviour or to the social pressures of pleasing human team

members.

1.2.3.2 User-Centric HATs

Maintaining a user-centric approach is crucial when considering the integration of
Al teammates within human teams. While human teams organically adapt and
perceive changes in roles or responsibilities through explicit communication and
implicit cues, these subtle signals are often lost in translation when Al teammates
are involved. Bansal et al. (2019b) explain the potential problems of neglecting
user-centricity, particularly when Al teammates undergo software updates without
proper communication with their human teammates. Al updates might improve
the Al's performance, but they can negatively impact overall team performance if
these updates are not transparently communicated to the human team members.
This performance/compatibility trade-off stems from human teammates
developing mental models of their Al counterparts' capabilities and limitations
through experience. When an Al teammate's behaviour changes due to an
uncommunicated update, it disrupts the established mental model, leading to
confusion, mistrust, and, ultimately, a decline in team performance (Bansal et al.,
2019b).

Finally, Berretta et al., (2023) conducted a scoping review highlighting the
necessity for a human-centric approach to HATs. The review emphasises the
importance of a sociotechnical approach to successfully developing Al agents from
tools to rounded teammates. Berretta et al. (2023) argues that, as Al systems
become more sophisticated and integrated into collaborative work environments,
there is a growing need to shift the focus from a purely technology-centric
perspective to one that prioritises the human element in these teams. They
propose that successfully developing Al agents into true teammates, rather than
just tools, requires a sociotechnical approach, which acknowledges the

interconnected nature of social and technical systems.

Berretta et al. (2023) also emphasised the need for joint optimisation, where both
the Al system's capabilities and the human teammate's needs and experiences are
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considered and designed in tandem. This resonates with Bansal et al's. (2019b)
work on the importance of transparent communication surrounding Al updates. By
keeping human teammates informed about changes in their Al counterparts,
developers can ensure that the HAT's social (human) and technical (AI) elements

are aligned, fostering a more successful collaborative partnership.

While research offers valuable insights into human-Al teammate relationships, it
also exhibits certain limitations that warrant consideration. One notable limitation
concerns the generalizability of findings. Many studies, including those
investigating decision-making in defensive team games, employ specific and
potentially artificial task environments. This specificity raises concerns about
whether the observed behaviours and dynamics are generalisable to more

complex, real-world collaborative settings.

Furthermore, there are limitations to measuring and operationalising key concepts.
While research emphasises the importance of mental models in shaping HAT
interactions, accurately assessing these internal representations poses a significant
challenge. Relying solely on behavioural observations or self-reported data, as is
common in the discussed research, might not fully capture the complexity and

nuance of how humans mentally represent and interact with their AI counterparts.

1.2.4 Conclusions of Human-AI Teams

In conclusion, exploring HATSs reveals promising insights and significant
challenges. While the initial application of organisational psychology theories
provided a helpful starting point, it has become evident that these theories alone
cannot fully address the complexities of HATs. Rix's (2022) framework highlights
critical drivers such as shared goals, interdependency, unique roles, and social
dynamics, which are essential for forming practical HATs. However, the field still
grapples with defining HATSs, integrating insights from human team dynamics, and

ensuring research translates to real-world applications.

Further research must focus on understanding the more sophisticated variables
that affect HAT performance, including the impact of Al autonomy, accuracy,
confidence, and user-centric design. By addressing these issues and adopting a
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more human-centric approach, we can advance the development of Al systems
that function as truly effective and integrated team members. Despite the
extensive literature on HATS, specific gaps persist, such as a lack of focus on more
complex team dynamics, the impact of intricate variables such as performance,
the adaptability of Al and a human-centred approach. Among these challenges,
trust emerges as a pivotal factor influencing the success of HATS, underpinning
both interpersonal interactions and the integration of Al into team settings. The
following section delves into the concept of trust, exploring its complexity and

significance within the context of HATSs.

1.3 Trust and Al

1.3.1 Trust

One critical aspect of HATSs that requires deeper exploration is trust. Trust, a
complex concept, has been extensively studied across various disciplines and
situations. Interpersonal trust, for instance, involves confidence in an individual's
integrity, reliability, and fairness (Rotter, 1980). It is crucial for maintaining
healthy personal and professional relationships, typically developed through
consistent, honest, and supportive interactions. Interpersonal trust facilitates
effective communication and conflict resolution, making it a foundational element

of successful human interactions (Rotter, 1980).

In contrast, organisational trust pertains to confidence in an organisation's
fairness, integrity, and fulfilment of commitments (Mayer et al., 1995).
Organisational trust influences factors such as reputation, employee engagement,
and performance. It is built through transparent communication, ethical practices,
and consistent actions, leading to increased loyalty, lower turnover, and a
motivated workforce (Bornstein et al., 2016; McAllister, 1995; Shockley-Zalabak et
al., 2000). Within organisations, team trust refers to the confidence and reliance
among team members. Organisational team trust is essential for effective
teamwork and collaboration and for creating a safe environment for sharing and
risk-taking, typically nurtured through shared experiences, mutual respect, and
open communication (Costa et al., 2018). Higher team trust is associated with
improved problem-solving, creativity, and overall team performance (Costa et al.,
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2018). Although these types of trust share common elements, each is distinct and

requires precise definitions and measurements (Ulfert et al., 2023).

From a psychological perspective, trust operates not just as a behavioural act but
also as a psychological state. Krueger et al., (2007) explores the neural
mechanisms behind conditional (earned) and unconditional (passive) trust using
hyper fMRI. Their findings highlight that the paracingulate cortex is crucial for
building trust by inferring intentions to predict behaviour. Conditional trust
activates the ventral tegmental area, associated with reward evaluation, while
unconditional trust activates the septal area, linked to social attachment.
Additionally, Krueger et al., (2007) and Dimoka (2010) demonstrate that trust and
distrust involve distinct neural mechanisms. Trust is related to brain areas involved
in reward prediction and social attachment, while distrust correlates to areas
associated with intense emotions and fear of loss. These insights suggest that our
brain differentiates between trust and distrust, influencing social interactions and

responses to others' behaviours.

1.3.1.1 Defining Trust

Given the varied understandings of trust, the concept often falls prey to the jangle
fallacy (Freeman & Kelley, 1928), where similar terms might have different
meanings across disciplines. The multidisciplinary nature of trust adds to the
complexity of consistently defining it. Despite these challenges, research across

multiple fields has identified some recurring themes.

Rousseau et al., (1998) conducted a meta-analysis across diverse disciplines and
found several common elements of trust. One key theme is the willingness to be
vulnerable based on expectations of positive outcomes from others' actions. A
willingness to be vulnerable underscores that trust fundamentally involves taking
risks while anticipating favourable results. Additionally, trust is not just a
behavioural act or decision but a psychological state, a mental and emotional
readiness to expose oneself to potential risks due to positive expectations about
another's intentions or behaviour. Trust also requires specific conditions to exist,
such as the presence of risk and interdependence. Risk introduces the possibility
of loss or harm, making trust significant. At the same time, interdependence
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means that one party's goals cannot be achieved without relying on another, thus

making trust essential for cooperation.

Overall, Rousseau et al., (1998) argue that, despite different disciplinary
perspectives, there is broad agreement on the core components of trust. This
consensus suggests that the fundamental aspects of willing vulnerability and
positive expectations are consistent in economic transactions, social relationships,

or institutional settings. The proposed definition is:

“Trust is a psychological state comprising the intention to accept
vulnerability based upon positive expectations of the intentions or
behaviour of another”. - (Rousseau et al., 1998)

While Rousseau's definition of trust is valuable and consistent across various
fields, it is essential to recognise its limitations. The paper, while comprehensive,
may not fully account for recent developments or changes in how trust is
perceived, particularly in the context of Al and technology. As trust dynamics in
HATs may differ from traditional scenarios, exploring contemporary literature on

trust in technology and Al is crucial.

1.3.1.2 AI Agents and Trust

The concept becomes increasingly intricate when examining trust in Al due to its
unique characteristics compared to trust in human relationships. Trust in
technology often intersects with the concept of reliability, creating a dynamic
where the two are sometimes conflated. For instance, users may not explicitly
state that they “trust” their mobile phones, yet their heavy reliance on them for
critical daily functions suggests an implicit form of trust. However, this reliance
can quickly erode if the technology fails or performs inconsistently, as reliability is
a cornerstone of trust in technological contexts (Mcknight et al., 2011). Unlike
interpersonal trust, which develops through mutual interactions and shared
experiences, trust in Al often hinges on performance metrics, transparency, and
the system's ability to meet user expectations reliably over time (Hoff & Bashir,
2015).
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The relationship between trust and technology and automation becomes more
intricate in high-stakes environments. For example, pilots trusting autopilot
systems must navigate a delicate balance between reliance and vigilance, which
parallels interpersonal trust, where complete reliance can coexist with moments of
doubt (Trosterer et al., 2017). This complexity arises because trust in automation
systems is shaped by their functional capabilities and user perceptions of the
system's autonomy, transparency, and ability to adapt to unforeseen
circumstances. Users may simultaneously “trust” an Al system for its precision
while “distrusting” it in situations requiring contextual judgment or ethical
reasoning, highlighting parallels with the complicated nature of human trust
(Hancock et al., 2011; Lee & See, 2004).

Building on this, Lee and See (2004) emphasised the importance of transparently
designing interfaces that communicate functionality, reliability, and limitations.
This fosters trust by equipping users with clear expectations of system
performance. These principles are crucial in ensuring that trust is calibrated,
neither overestimated nor underestimated, based on the Al's capabilities and the

context in which it operates.

The relationship between trust and AI can also change depending on the context
of the situation it is used in. For instance, trust may hinge on a medical diagnostic
Al system's perceived accuracy and adherence to professional standards. In
contrast, a customer service chatbot may rely more on conversational fluidity and
responsiveness (Lee & See, 2004). These varying expectations demonstrate that
trust in AI is not monolithic but deeply context-dependent, influenced by the task,
environment, and user perception (Glikson & Woolley, 2020). The integration of
transparent communication and practical design elements, as advocated by Lee
and See (2004), becomes vital for fostering trust in these diverse applications. By
understanding the interplay of these factors, we can move closer to designing Al

systems that create appropriate and productive human-AI trust dynamics.

As Al becomes prevalent, we will likely see a growing emphasis on trust in Al as a
unique type of trust. The following section will delve into the various aspects of

trust in technology, including the ideal levels and how team dynamics can affect
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this trust. Understanding these concepts will be crucial for navigating the

complexities of human-Al interactions and ensuring effective collaboration.

1.3.1.3 Trust in AI vs Human Trust

Trust in Al systems differs fundamentally from trust between humans, particularly
in its development, emotional components, and reliance on system reliability.
Unlike human trust, which grows through emotional connections, social norms,
and shared experiences (Riegelsberger et al., 2005; Schniter et al., 2020; Weiss et
al., 2021), trust in Al often hinges on the system’s performance, predictability,
and user expectations. Lee and See (2004) emphasise that trust in automation is a
dynamic process influenced by past experiences, current performance, and
perceived reliability. This means that while reliability is critical, trust depends on

the user’s interpretation of the Al's behaviour and its alignment with expectations.

Human trust tends to recover from violations through emotional appeals,
apologies, and corrective actions (Lewicki & Brinsfield, 2017; Sharma et al., 2023).
In contrast, trust in Al lacks these interpersonal mechanisms and is more
transactional. For instance, Glikson and Woolley (2020) found that trust in AI
usually begins at a low baseline and increases with hands-on experience.
However, this trajectory varies depending on the form of the AIL. While virtual Al
often sees trust decline over time, robotic Al may evoke mixed or negative
emotions due to its anthropomorphic features. Emotional trust in Al is thus shaped
by its representation, with anthropomorphism enhancing trust in virtual settings
but potentially causing discomfort in robotic systems when their capabilities fail to

match their human-like appearance.

Research on brain imaging and trust in Al is sparse and often miscited. Contrary
to some claims, studies do not show that trust in Al replicates the brain activation
patterns seen with trust in humans (Krop et al., 2024; Wienrich et al., 2021).
Montag et al., (2023) found no significant neurostructural correlations between
trust in humans and AI. Their study, involving self-reports and MRI brain imaging,
revealed that trust in humans was associated with specific brain regions (striatal-

thalamic and prefrontal areas), indicating a neurostructural basis for human trust.
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In contrast, trust in AI did not correspond to specific brain regions, suggesting

that trust in AI may not have a direct neurostructural basis.

Montag et al., (2024) further investigated the neurocognitive mechanisms
underlying trust in humans and Al across different cultures. They found that trust
in humans and Al are primarily distinct constructs, with cultural context
influencing trust levels. In Germany, trust in humans was higher than trust in AI,
and the gap was more pronounced compared to Singapore, where there was a
moderate correlation between the two types of trust. Personality traits also
influenced trust; neuroticism was associated with greater fear of Al, while
conscientiousness and agreeableness correlated with lower fear and higher

acceptance of Al

These studies suggest that trust in AI and humans is processed differently,
behaviourally and neurostructurally. While human trust appears to have a
neurostructural basis, trust in Al does not show a similar linkage. Limitations of
these studies include reliance on self-reports, cross-sectional design, and cultural
differences in interpreting trust. Moreover, framing Al interactions, such as
through anthropomorphism or embodiment, might influence trust levels,
potentially mirroring human-human interactions. Future research should explore

these aspects further.

Jung et al., (2019) examined human trust in machine agents through behaviour
and EEG activity. Their study revealed that the Al agent's appearance, voice,
movements, and risk-taking traits influence trust. External cues drove explicit
judgments of human likeness, while implicit trust, measured by intervention
frequency in agent decisions, was affected by the agent's risk-taking personality.
EEG data showed significant changes in theta band power in the frontal-central
region of the brain following an agent's decision, corresponding with trust
fluctuations. The study highlighted that trust develops dynamically through
interaction and that AI agent performance and human-like characteristics
influence it. However, its controlled experimental setting may limit ecological
validity, and the specific traits studied might not fully capture real-world

complexities in HATs. To further understand how these characteristics influence
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trust, it is essential to explore the concept of anthropomorphism, particularly how

human-like features in Al systems shape user perceptions and interactions.

1.3.1.4 Anthropomorphism and Trust

Anthropomorphism is the process of attributing human-like qualities to non-human
agents (Guthrie, 1997). Anthropomorphism can influence how users perceive Al
systems, sometimes enhancing trust by evoking familiarity while leading to
discomfort or scepticism in other cases. Understanding how anthropomorphism
interacts with trust dynamics is critical for designing effective HATs. Designing Al
with anthropomorphic features can be beneficial because it allows humans to
project their social schemas onto AI systems (Fussell et al., 2008). If designers
created an Al agent with very human features that look realistically trustworthy, a
human would likely feel more trust toward this Al agent than toward one lacking

anthropomorphism (Glikson & Woolley, 2020).

There are two main ways in which anthropomorphism is presented: through
physical attributes and social behaviours (Duffy, 2003). Researchers recommend
that for robots to encourage an anthropomorphic projection, they should possess
not only human-like facial features but also limbs similar to those of a human and
other human-like features, including movement (Ztotowski et al., 2015). However,
it is also important for the robot to have social behaviours that are typical of a

human, such as facial expressions, gestures, and engagement (Duffy, 2003).

Although anthropomorphism can have powerful effects, it is essential to note that
there can be limitations to its success. The first of these was developed by Mori
(1970) (Mori, 2012) and is called The Uncanny Valley effect. Mori posed that
anthropomorphism initially leads to increased empathy and affinity among
humans. However, there is a dramatic drop in affinity when robots look and act
almost human but are not entirely convincing, resulting in eeriness and distrust.
Furthermore, it is crucial to understand the implications of using anthropomorphic
AI due to its priming effects on other Al technology and how this may impact trust
calibration. Anthropomorphic priming can shape user expectations and interactions
with AI, influencing trust levels across different Al applications (Zanatto et al.,
2016).
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Research has examined how anthropomorphism can impact trust in AI (Glikson &
Woolley, 2020; Roy & Naidoo, 2021; Seymour & Van Kleek, 2021; Troshani et al.,
2021; Waytz et al., 2014), with findings indicating AI representation (robots,
virtual agents, embedded systems) and perceived machine intelligence are key
antecedents to trust development. In addition, cognitive trust is influenced by Al's
tangibility, transparency, reliability, and immediacy behaviours. Emotional trust is
notably affected by anthropomorphism, and when there is little
anthropomorphism, there is little emotional trust compared to when
anthropomorphised Al. It is further enhanced by Al's capability to exhibit human-
like qualities and behaviours (Glikson & Woolley, 2020).

However, anthropomorphism may not be the most important feature when
improving HAI in specific contexts. Pelau et al., (2021) found that
anthropomorphic traits alone do not ensure acceptance; empathy and interaction
quality play crucial mediating roles. Empathy in Al significantly influences
consumer acceptance. Al devices that show understanding and care are more
readily accepted. The impact of empathy and understanding in Al design
highlights the need for AI to mimic human-like emotional responses. These
findings suggest a shift towards developing Al with advanced emotional

intelligence capabilities and not just basic levels of anthropomorphism.

Troshani et al., (2021) also explored the role of anthropomorphism in relation to
trust in AIL. The main findings suggest that Al's human-like features can enhance
and undermine trust, depending on their implementation and user perceptions.
Positive experiences with Al's human-like interactions can boost trust, while
excessive human likeness may trigger discomfort, which could be related to the
Uncanny Valley (Mori, 2012). Troshani et al., (2021) also found contextual
influences, where the context of Al use (e.g., healthcare vs. customer service)
significantly affects trust, so designing Al for specific roles is essential. This work
highlights the need for AI systems that balance human-like interaction with

transparency and user control.

These findings on anthropomorphism highlight its dual potential to enhance or

undermine trust, underscoring the importance of careful design in calibrating trust.
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By aligning human-like features with system capabilities and contextual needs, Al
designers can help users appropriately balance their reliance on these systems.

The following section will delve deeper into trust calibration, examining strategies
for managing overtrust and undertrust in Al interactions to promote effective and

safe human-AI collaborations.

1.3.1.5 Trust Calibration

Understanding trust in Al is crucial due to its complexity and the need for
calibrated trust in AI systems. Calibrated trust is essential to address the problems
of excessive trust (over-reliance) and insufficient trust (under-reliance) (de Visser
et al., 2020; Ingram et al., 2021; Wang et al., 2016). Excessive trust occurs when
users rely too heavily on AI recommendations without adequate scepticism or
verification, potentially leading to failures. In contrast, insufficient trust arises
when users disregard or undervalue Al's capabilities and recommendations, which
can result in the Al being underutilised or ignored. Effective trust calibration
ensures users can appropriately balance their trust in AI, leveraging its capabilities

while maintaining necessary scrutiny.

Robinette et al., (2016) conducted an experiment highlighting overt trust issues
when using embodied Al (robots) in an emergency. The experiment involved
participants who followed a robot's guidance during a simulated emergency
despite the robot displaying unreliable behaviour in previous non-emergency
tasks. Surprisingly, all participants followed the robot's emergency instructions,
even those who had observed the robot's poor performance in navigation tasks
immediately prior. This phenomenon occurred across various conditions, including
when the robot malfunctioned or provided no rational guidance. A significant
portion of participants rationalised their trust in the robot based on its designated
role as an “emergency guide”, despite witnessing its earlier failures. Robinette et
al's., (2016) work highlights the critical importance of designing robots that can
communicate their operational status and limitations to prevent overtrust.
Robinette et al., (2016) suggest that Al needs mechanisms enabling robots to
decline trust or redirect humans to more reliable sources of assistance when they

are not functioning optimally. The study highlights a potentially dangerous level of
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human overtrust in robots during emergencies, emphasising the need to consider

human-robot interaction dynamics in designing emergency response robots.

We can use meaningful explainability, adaptive communication, and continuous
trust repair to address the overtrust issue highlighted by Robinette et al., (2016).
Meaningful explainability goes beyond simple transparency and necessitates that
Al systems actively address potential over-reliance, particularly in high-stake
scenarios where users might rationalise trust based on the AI's role (Bansal et al.,
2021; Lopez et al., 2023; Ulfert et al., 2023). For instance, Al could explicitly
acknowledge its limitations by stating its inconsistent performance in similar tasks
and encourage human confirmation with another source. Meaningful explainability
would promote a more critical evaluation from humans. Adaptive trust calibration
involves AI dynamically adjusting communication based on the user's perceived
trust (Chen et al., 2023). If an Al agent senses hesitation, it could increase
explanation granularity, quantify its confidence level, or even proactively defer
trust by suggesting alternative courses of action or human consultation with other,

more reliable sources.

Lastly, trust repair should be an ongoing dialogue where AI demonstrates
continuous learning (Kim & Song, 2021; Schelble et al., 2024). Trust repair can be
achieved through proactive self-evaluation and communication of performance,
highlighting improvements based on past experiences, and actively seeking
feedback from human teammates. By incorporating these principles, Al can shift
from being mindlessly followed to becoming trusted partners that earn and

maintain calibrated trust through dynamic, transparent interaction.

1.3.2 Explainability and Trust

Transparency emerges as a key factor in enhancing trust calibration in Al systems.
As Al technology advances, there is a growing need to shift from traditional black-
box methods, where the decision-making process remains opaque, to more
transparent and explainable Al systems (XAI) (Adadi & Berrada, 2018). This shift
stems from the recognition that the rapid adoption of AI, especially in sensitive
areas like healthcare, finance, and legal applications, requires robust, trustworthy,

and understandable systems for human users.
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Research emphasises that achieving calibrated trust becomes a significant
challenge without clearly understanding how Al systems arrive at their decisions.
These concerns have driven efforts to develop methods that provide insights into
AI decision-making processes. Experts recognise that achieving this requires an
interdisciplinary approach, combining AI with cognitive and social sciences. (Adadi
& Berrada, 2018; Endsley, 2023; Guidotti et al., 2018; Kim et al., 2023).

While potentially highly accurate, Black-box AI models offer limited insights into
their internal workings, making it difficult for human users to assess their reliability
and make informed judgments about when to trust their outputs. This opacity
becomes particularly problematic in high-stakes scenarios where Al decisions can
have significant consequences. XAl addresses these concerns by employing
various methods to provide insights into AI decision-making processes (Adadi &
Berrada, 2018). Adadi & Berrada (2018) broadly categorise these methods as
intrinsic, which features built-in explainability, or post-hoc, which provides
explanations generated after the Al has made a decision. There is also growing
interest in model-agnostic XAI methods, which aim to understand the predictive
responses of various AI models, regardless of their specific architectures, to
broaden their applicability (Adadi & Berrada, 2018).

The success of XAI hinges on aligning Al explanations with human cognitive
processes (Bansal et al., 2021). In other words, XAI must present information in a
way that is understandable and meaningful to human users, considering their
cognitive limitations and biases (Forster et al., 2020; Ingram et al., 2021;
Sanneman & Shah, 2022). Simply providing technical details about an AI model's
internal workings is unlikely to foster trust or understanding. Instead, XAI must
strive to bridge the gap between AI technology and human cognition by offering
relevant, interpretable, and actionable explanations from a human perspective.
More research is needed on how humans perceive, understand, and trust Al

explanations and how these explanations could impact trust calibration in HATS.

1.3.3 Conclusions About Trust in Al

Trust is a pivotal element in the success of HATs and the broader integration of Al

into human decision-making processes. This review has demonstrated that trust in
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AI systems is complicated, involving reliability alongside emotional, psychological,
and contextual factors. Unlike trust in humans, trust in Al often hinges on
transparency, explainability, and calibrated interactions, which are critical for
preventing over-reliance or under-reliance on Al systems. The dynamic nature of
trust, shaped by past experiences and evolving perceptions of Al's performance,
further emphasises the importance of designing Al systems that are adaptable,

explainable, and aligned with user expectations.

Ultimately, this section underscores the need for a nuanced, interdisciplinary
approach to understanding and building trust in AL. By focusing on transparency,
user-centred design, and the continuous calibration of trust, Al can evolve from
being perceived as a tool to becoming reliable and trustworthy teammates in
routine and high-stakes environments. Further research is essential to explore the
long-term dynamics of trust in AI, particularly in real-world applications with the

highest stakes.

1.4 Social Intelligence

1.4.1 Social Intelligence in Humans

One facet of human behaviour that could be useful for successfully
anthropomorphising is SI. The concept of SI traces back to 1920, originating with
Thorndike's classification of intelligence, which posited three types: abstract,

mechanical, and social (Thorndike, 1920). Thorndike defined social intelligence as

“the ability to understand and manage men and women, boys and girls
— to act wisely in human relations” (p. 228).

Nevertheless, the most widely recognised definition hails from Vernon (Vernon,

1933), encapsulating it as

“The ability to get along with people in general, social technique or
ease in society, knowledge of social matters, susceptibility to stimuli
from other members of a group, as well as insight into the temporary
moods or underlying personality traits of strangers” (p. 44).
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Currently, differing theories persist regarding the accurate definition and
measurement of SI (Weis & SuB, 2005), but a consensus generally divides SI into
five core categories: social understanding, social memory, social perception, social

creativity, and social knowledge (Kihlstrom & Cantor, 2000).

One of the reasons SI could be promising for improving HATSs is due to its impact
on human teams. Woolley et al., (2010) found that higher scores on an SI scale
positively correlated with higher scores and levels of collective intelligence,
suggesting that SI improves a team's overall ability to perform various tasks and

positively impacts team performance.

1.4.2 Social Intelligence In Al

SI is fundamental to interpreting and responding to social phenomena, a skill
underpinning meaningful human interactions. In AI, SI involves creating
computational systems capable of sensing, perceiving, reasoning about, learning
from, and responding to other human or artificial agents' affective, behavioural,
and cognitive constructs. To become socially intelligent, AI must achieve social
perception, which involves extracting relevant information from sensory stimuli,
social knowledge encompassing explicit and procedural norms, and social memory
to maintain consistency. Furthermore, social reasoning enables Al to interpret
stimuli and infer intentions, while social creativity allows counterfactual reasoning
about social situations, akin to the human capacity for “theory of mind”. Lastly,
social interaction entails engaging dynamically with others in co-regulated
patterns, a core requirement for collaborative settings (Lee et al., 2024; Mathur et
al., 2024).

The context in which SI operates shapes its application. Social settings such as
homes or hospitals dictate norms for behaviour, while the roles and attributes of
actors, whether human or machine, influence interaction patterns. Embodiment
and anthropomorphism further affect the dynamics, as Al systems range from
disembodied virtual agents to physically embodied robots, each eliciting different
user responses (Mathur et al., 2024). Interaction structures involving individual
agents, pairs, or groups add complexity to these social exchanges, which unfold

across diverse periods, from split-second decisions to relationships that evolve
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over the years (Sufyan et al., 2024). These factors highlight the importance of

multidimensionality and contextual adaptability in implementing SI.

Research into Social-Al has advanced significantly in recent years, driven by
natural language processing, machine learning, and robotics progress. While early
studies relied on rule-based systems for modelling social behaviours, modern
approaches leverage machine learning and deep learning to predict and generate
social phenomena using large datasets annotated with ground truth labels
(Satyanarayana et al., 2018). Substantial focus has been placed on modelling
affective phenomena such as emotions and sentiments and social behaviours like
cooperation and competition. Recent developments have also explored the use of
game-theoretic and probabilistic frameworks to enhance social reasoning. Notably,
large language models (LLMs) have been assessed for their ability to replicate SI
competencies, showing promise in linguistic understanding but revealing
limitations in adapting to complex real-world contexts (Bainbridge et al., 2011;
Mathur et al., 2024; Satyanarayana et al., 2018). Although significant progress has
been made in modelling social phenomena in controlled environments, real-world

social interactions' inherent ambiguity and richness remain challenging.

Developing socially intelligent Al is fraught with technical challenges. One key
issue lies in the ambiguity of social constructs, which are inherently subjective and
context-dependent (Mathur et al., 2024; Mirnig et al., 2017). For example,
constructs like trust and empathy often have no clear-cut measurements, leading

to interpretive misalignments between users and Al systems (Ulfert et al., 2023).

Another challenge is the subtlety of social signals, often expressed through
nuanced, multimodal cues such as gestures, tone, and facial expressions. The
complexity of interactions is further amplified by the need to account for multiple
perspectives as each actor's perceptions, roles, and experiences evolve
dynamically over time. Finally, socially intelligent agents must demonstrate
adaptability, learning from implicit and explicit social signals to build a shared
social reality with their human counterparts. Addressing these challenges requires

robust frameworks that integrate ethical considerations to ensure socially
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intelligent AI aligns with human values and promotes trust (Bainbridge et al.,
1994; Sterelny, 2007; Sufyan et al., 2024).

The foundational aspects of SI in humans, such as social understanding,
perception, and memory, provide a roadmap for developing socially intelligent Al
However, while humans intuitively grasp social norms and adapt based on context,
programming Al to mimic these intricate behaviours remains a tough challenge.
For example, while humans can adjust their behaviour based on situational
appropriateness, such as avoiding humour in serious contexts, Al struggles to
replicate such adaptability (Mathur et al., 2024).

The need for Al and robots to contain a level of SI is not a new concept;
Dautenhahn (1995) discussed how there needed to be a shift from technological
intelligence, domain-specific technical abilities that robots or Al possess, to a more
general SI where robots/Al effectively communicate and cooperate with humans
and other robots. Dautenhahn (1995), highlights the need for SI to provide Al
with the skills necessary for interaction and collaboration, especially in scenarios

that expect robots to support humans in roles involving significant social contact.

Another intricate facet of SI is its context-sensitive character. Humans typically
possess a well-developed grasp of appropriateness, exemplified by behaviours like
refraining from laughter during solemn occasions, and may not react favourably to
a humorous Al in a serious context (Syrdal et al., 2006) AlI's deficiency in social
behaviour could lead to heightened scrutiny of its performance by human agents,
especially when compared to the performance of their human counterparts.
Previous research suggests that SI in AI can influence trust calibration (Williams et
al., 2022). The mimicry of human behaviour is a fundamental element of SI
(Chartrand & Bargh, 1999).

Although socially intelligent agents have the potential to improve team dynamics,
providing Al with the skills necessary to appear socially intelligent is a complicated
process. In addition, there is not an overwhelming amount of research into how

humans will respond to these AI agents. There is a gap in the literature when
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investigating the impacts of social agents in HATs, and we must understand the

impact of artificial social agents before implementing them in the workplace.

1.5 Summary and Proposed Research

Substantial research exists on HATs, Trust, Anthropomorphism, and SI. However,
there is a limited exploration of how these elements interact. This thesis argues
that fostering successful HATs requires a human-centric approach emphasising
calibrated trust, appropriate anthropomorphism, and developing socially intelligent
AI agents. This argument is supported by the lack of consensus surrounding
optimal implementation strategies for these factors despite their acknowledged

importance.

While the HAT literature significantly emphasises defining team dynamics, the
complex ways trust functions in these collaborations are often overlooked. Though
many studies recognise the importance of anthropomorphism, there is no
consensus on its ideal implementation or potential drawbacks. Additionally,
research on the impacts of socially intelligent agents, particularly in workplace
settings, remains limited, highlighting a crucial gap in our understanding before

widespread implementation.

Future research should investigate the impacts of Al teammate reliability and
behaviour on trust calibration. Studies could examine how initial trust formation
and potential trust breaches influence the trajectory of human-Al collaboration.
This research could employ methods like measuring changes in trust levels and
collaboration quality over time, using subjective measures (e.g., questionnaires)
and objective measures (e.g., task performance metrics). Understanding these
dynamics is essential for designing Al systems that foster sustainable and robust

trust relationships with human teammates.

Furthermore, the ethical implications of anthropomorphism and the potential for
AI to manipulate or deceive users necessitate careful consideration. As Al systems
take on increasingly social roles, future research should explore guidelines and
safeguards to ensure the responsible development and deployment of HATs. This

could involve establishing ethical frameworks for designing Al interactions,
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particularly concerning transparency and user autonomy. Addressing these issues

is crucial for fostering public trust and acceptance of Al in collaborative settings.

This thesis will first explore trust by conducting a bibliometric analysis of trust
literature across time, revealing how trust research has evolved and current
research trends. It will then transition to experimental chapters which examine
different elements of Al design, these include anthropomorphism, the use of
Emojis as a form of Emotional Intelligence and socially aligned adaptive Al to

examining how different variables impact trust and performance in HATSs.
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Chapter 2 Understanding Trust Research and
the Need for a Multidisciplinary Approach - A
bibliometric analysis of trust research from
1922-2021.

In this chapter, we aim to build upon the theoretical exploration of trust in
Chapter 1. Chapter 2 conducts a comprehensive bibliometric analysis to monitor
the evolution of trust research across academic disciplines from 1922 to 2021. By
employing bibliographic coupling and keyword co-occurrence methods, this
chapter seeks to reveal the foundational contributions, research trends, and
interdisciplinary intersections within the field. Bibliometric analysis is a set of
methods used to quantitatively analyse academic literature, providing insights into
the patterns, impacts, and trends within a specific field or across multiple
disciplines. This type of analysis uses various statistical and mathematical
techniques to measure and evaluate the research output and its influence based
on bibliographic data, such as publication counts, citation counts, and journal
relationships. Using bibliometric analysis, we can identify research trends and map
scientific fields. We decided to conduct a bibliometric analysis of trust research to
gain new insights into trust research and develop an understanding of this unique

research area.

This chapter discusses the ideas and definitions of trust, the importance of
different disciplines collaborating to understand trust, and the idea of bibliometric
analysis. We then analyse 39,628 documents spanning the years 1922 to 2021.
We focus on the most cited papers on trust, a Bibliographic coupling of journals
and a keyword co-occurrence to provide different insights of the fields. From the
analysis, we draw conclusions about the scientific mapping of trust research. This
foundational understanding is integral as we transition to the experimental
components of the thesis, where we will assess trust within applied experimental
contexts. Currently, this work is under review at the Journal of Trust Research and
we are hopeful that by the time of publishing this thesis, it will be published. I also
presented this research at a University of Glasgow Workshop Morgan Bailey &

Frank Pollick, Can We Trust Trust'? An Overview of Trust Concepts and
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Definitions, Multidisciplinary Workshop on Cyber-Physical Systems (CPS) at The
University of Glasgow. Glasgow, Scotland. April 16, 2024.

2.1 Introduction

Trust is a fundamental concept in human interactions, and its study has garnered
increasing attention from researchers across various disciplines over the years
(Botsman, 2015; Bottery, 2003; Glikson & Woolley, 2020; Hendriks et al., 2021;
Hoff & Bashir, 2015; Jacovi et al., 2021; Rompf, 2015; Weiss et al., 2021). As
interest in trust grows, it is essential to understand how researchers from diverse
disciplines have delved into trust and how they examine trust's presence and
implications in a wide array of contexts. When talking about trust, psychologists
are likely to refer to trust in interpersonal relationships (Rotter, 1980), where they
explore the dynamics of trust between individuals. Interpersonal trust refers to the
confidence one individual has in another person's reliability, integrity, and
benevolence. It encompasses the belief that the other person will act in a
supportive, honest, and considerate way in one's best interests (Jing et al., 2020;
McAllister, 1995; Rotter, 1980).

In contrast, we can examine how business and organisational psychology treat
trust differently to Rotter (1980). Trust is a critical component in the Business and
organisational sphere (Rousseau et al., 1998), and within these settings, there are
elements of trust among colleagues, in leadership, and with the overall integrity of
institutions (Mayer et al., 1995; Schoorman et al., 2007). When investigating trust
in these areas, trust can be referred to as a willingness to be vulnerable and
accept risk (Rousseau et al., 1998). For political science, trust pertains to citizens'
confidence in government institutions, politicians, and political decision-making
(Hetherington 1998; Weymouth et al. 2020).

More recently, trust in technology investigates individuals' reliance on and
confidence in digital platforms, online transactions, data security, and the
reliability of technological systems (Dodgson, 1993; Mcknight et al., 2011). Finally,
academics can define trust in more complex systems, such as trusted computing,
which involves the integration of hardware and software mechanisms to ensure

that a computer behaves in expected ways, even when under attack (Gallery &
51|Page



Mitchell, 2009; Shen et al., 2010). The primary goal of trusted computing is to
provide a foundation for secure computing environments by protecting data
integrity, confidentiality, and system integrity from various threats, which,
although referred to as trust, is a very different concept than interpersonal or

organisational trust.

These are only a few examples of the different areas which study trust and
highlight how researchers interact with trust in different academic disciplines
(Ulfert et al., 2023). One issue is that the research conducted within these
disciplines is often self-contained within that academic silo, leading to issues when
researching a concept which is shared across many disciplines and is actively
researched in these disciplines simultaneously, such as trust. To address these
issues, we will discuss the importance of moving away from unidisciplinary

research when involving trust.

The extensive body of research on trust has provided valuable insights but can
also present challenges. On one hand, it can significantly contribute to our
understanding of trust by combining different perspectives and approaches.
However, suppose there are discrepancies in trust definitions and diverse research
approaches. In that case, it has the potential to result in perplexing and conflicting
findings, which occurs from the jingle-jangle fallacy, which occurs when using the
same term for different concepts (jingle) or when using different terms for the
same concept (jangle) (Casper et al., 2017; Dang et al., 2020; Larsen & Bong,
2016; Marsh et al., 2019). These issues are complicated as trust lacks a
universally accepted definition, which makes it more complex to research across

disciplinary divergences (Rompf, 2015).

To reduce issues with defining and understanding trust, it becomes vital to
understand the disciplinary differences in studying trust within individual academic
silos. When within one academic silo, scholars become highly specialised in their
fields and remain unidisciplinary (Hendriks et al., 2021; Mead et al., 2021).
Unidisciplinary researchers can employ expert methodologies highly relevant to

their research area. However, this can lead to challenges when employing this
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data or methodology in a different discipline or combining data to create

theoretical frameworks.

These silos can hinder effective communication and collaboration, highlighted by
the difference between micro-trust studies, such as those in psychology that focus
on trust at the individual or interpersonal level (Jing et al., 2020; Uslaner, 2008).
This research contrasts meso trust investigations, which focus on trust within and
between groups, organisations, and communities (Bottery, 2003; Grimmelikhuijsen
& Knies, 2017) and macro trust examinations, focusing on broader, societal or
institutional trust (Lu et al., 2016; Uslaner, 2008). Researchers working in these
areas of trust research learn to understand these different concepts of trust.
However, when other disciplines are using this work, the differences are less clear,

which can lead to issues with measures of trust.

Furthermore, it is noteworthy that researchers encounter disparities in the
understanding of trust not only across disciplines but also within individual fields,
as seen in computer science. Within computer science, the study of trust
encompasses a diverse spectrum of subjects, including trust modelling (Gulati,
Sousa, and Lamas 2017; Gulati, Sousa, and Lamas 2018), trust in Human-Robot
Interaction (HRI) (van Pinxteren et al., 2019), trust evaluation (Tang et al., 2012),
and trust-based decision-making (Déppner et al., 2019; Ma et al., 2023; Zhou et
al., 2017). As computer systems continue to increase across various parts of
modern life, such as the workplace, social media, and the Internet of Things (IoT)
devices (Khan et al., 2019), trust becomes increasingly important in determining
the success and security of these systems. There is a call for trust researchers to
be explicit when defining trust; they aim to measure and choose specific measures
to align with these choices (Ulfert et al., 2023). However, there needs to be an
understanding of the scientific landscape of trust research to see where research

fits and which scales can be relevant to the research in question.

The examples provided above are on a case-by-case basis. Currently, no study
aims to quantify the network of trust research to understand which disciplines are
researching trust and what interactions exist between these disciplines. To fully

grasp the intricacies of trust, it is essential to transition from using single-discipline
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research methods. Embracing both multidisciplinary, where various fields
contribute independently (Dalton et al., 2021), and interdisciplinarity, involving
collaborative integration of insights from different disciplines (Dalton et al., 2021),
is crucial. A transdisciplinary approach, which breaks down disciplinary boundaries
to form a unified framework (Lang et al., 2012), becomes necessary for a
comprehensive understanding of trust. To address this gap in the literature, we
are conducting a bibliometric analysis to explore the network of trust research,
focusing on trends, foundational papers, prevalent research themes and the
organisation and interrelationships within the field.

In academic research, bibliometric analysis has emerged as an invaluable tool for
quantitatively visualising trends and patterns across diverse fields. Recent years
have witnessed the increasing utilisation of bibliometrics to gain deeper insights
into various research domains. Notable examples include studies exploring the
Ethics of Big Data (Kuc-Czarnecka & Olczyk, 2020), Cognitive Dysfunction (Chen et
al., 2020), the challenges posed by COVID-19 (Hamidah et al., 2020), and
Sustainable Tourism (Cavalcante et al., 2021). The complex nature of these
investigations underscores the effectiveness of bibliometrics in a broad spectrum
of research areas, highlighting its role as a prominent method for analysing large
datasets. Within this broader context, this bibliometric analysis aims to
comprehensively explain the intricate landscape of trust research within and
across academic disciplines.

In this chapter we aim to provide valuable insights into trust research activities,
impact, and collaboration patterns. Specifically, this analysis examines the
evolution of research trends in the trust literature over time, such as the
emergence of new research topics or the decline of certain research areas. In
addition, we establish influential authors and publications to identify key
contributors to the field and their impact on the development of the literature.
Finally, we aim to identify interdisciplinary connections in the trust literature,
which can help to identify the relationships between trust and other fields, such as
psychology, computer science, and sociology, which can provide insights into the

potential applications of trust research in other fields.
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By identifying key research trends and influential papers over the past century,
exploring contributions from different academic disciplines, and examining the
evolution of common themes from 1922 to 2021, we aim to provide a
comprehensive overview of the field. To structure the chapter, we are setting
explicit research questions to guide the analysis. The literature guiding bibliometric
analysis supports this approach, emphasising the importance of setting precise
research questions to direct analyses, uncover significant trends, and understand
the research's interdisciplinary nature and thematic development (Aria &
Cuccurullo, 2017; Donthu et al., 2021; Moral-Muhoz et al., 2020; Zupic & Cater,
2015). We propose the following research questions to address:

RQ1: What are the key research trends and influential papers in trust research

over the past century?
RQ2: How have different academic disciplines contributed to trust research?

RQ3: How have the most common themes in trust research evolved from 1922 to
202172

2.2 Methods

2.2.1 Data Collection

We conducted our bibliometric analysis using the Web of Science (Classic) Core
Collection due to its comprehensive document coverage and standardisation. The
search included the entire collection up to December 4, 2021. The criteria for
document inclusion were articles or proceedings papers written in English, with
titles containing 'trust*', 'trustworthy*', or 'trustworthiness*'. Early access papers

were excluded to prevent data processing errors.

Given the objective of mapping the network of trust research, focusing on trends,
foundational papers, and prevalent research themes, we deliberately decided to
exclude review papers from our analysis. This decision stems from the nature of
review articles, which primarily synthesise findings from a range of studies,
providing valuable overviews but not contributing new empirical data. Including

review papers in our dataset could potentially skew the analysis towards more
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established viewpoints, thereby overshadowing emerging areas of inquiry and
novel methodologies. The exclusion of review papers also addresses the
methodological challenge of double-counting citations. Review articles often have
extensive reference lists, which could inflate the citation counts and perceived
impact of specific studies, distorting the bibliometric indicators used in our
analysis. By focusing solely on empirical studies, including articles and proceedings
papers, we aim to accurately represent the research dynamics within the trust
literature. This approach ensures that our analysis captures the direct
contributions to the field, facilitating a clearer understanding of the developmental
trajectories of trust research and the interactions between different disciplines.
The initial search yielded 40,156. We downloaded all results as full records, with

references and abstracts in plain text format.

2.2.2 Software

We created a Python script to clean and organise the data to eliminate duplicates.
We removed documents with duplicate Web of Science ID numbers and further

scrutinised those with duplicate titles before removal, eliminating 528 documents.
Figure 1 shows a flowchart of the overall process. For subsequent analysis of the

Figure 1. The process of collecting and cleaning data.

Web of Science Core
Collection searched:

articles or After download
proceedings papers oggg? D“e(;:elr;téer sources with Final number of
written in English, doctl,lme'nts duplicate Web of documents included
with titles containing dowlonaded Science ID numbers was 39,628.
'trust*’, ' removed.

'trustworthy*', or
'trustworthiness*'.

remaining 39,628 documents, we utilised the R Package Bibliometrix (Aria &
Cuccurullo, 2017)to extract descriptive information about authors, documents,
sources, and countries. We also employed VOSviewer (Van Eck & Waltman, 2007)

to visualise keyword co-occurrence and bibliographic coupling of sources.
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2.2.3 Data Analysis

For the analysis, we decided to perform a selection of bibliometric analysis
methods: bibliographic coupling of source, keyword co-occurrence analysis,
analysis of papers with the top humber of citations, and the annual scientific

production rate.

Bibliographic coupling of sources involves identifying pairs of documents that cite
one or more common references and mapping connections and relationships
between different research works (Donthu et al., 2021; Jarneving, 2007).
VOSviewer 1.6.20 (Van Eck & Waltman, 2007) was used to perform bibliographic
coupling analysis, focusing on papers sharing citations to provide insights into
developing research themes over time. In bibliographic coupling maps, each node
represents a source, with node size indicating the total link strength of the source.
Links between nodes represent sources cited together regularly, and link thickness
signifies the frequency of such co-citation. Larger nodes indicate greater total link
strength, thicker links represent more frequent co-citations, and thinner links

indicate less frequent ones.

Keyword co-occurrence analysis examines the frequency of specific keywords
appearing together in documents, helping to identify prevalent research themes
and the evolution of research focus over time (Sedighi, 2016). We used
VOSviewer 1.6.20 (Van Eck & Waltman, 2007)for keyword co-occurrence analysis.
Each node signifies a keyword in co-occurrence maps, with node size denoting the
frequency of keyword occurrence. Links between nodes represent co-occurring or
frequently co-occurring keywords, and link thickness indicates the frequency of co-
occurrence. Larger nodes represent more frequent keyword occurrences, while

thicker links signify a higher frequency of co-occurrence between keywords.

Analysing papers with the top number of citations identifies and examines the
most highly cited papers, providing insights into key contributions and influential
studies that have shaped the field. The annual scientific production rate tracks the
number of publications related to trust research produced each year, allowing us
to assess the growth and development of the field over time (Larsen & von Ins,

2010). To complete these analyses, we use the R-Studio Bibliometrix Package
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(Aria and Cuccurullo 2017) to gather and graphically represent descriptive

information about authors, documents, sources, and the annual production rate.

These bibliometric methods offer a comprehensive understanding of the patterns,
impacts, and trends in trust research, enabling us to draw meaningful conclusions

about the evolution and interdisciplinary nature of the field.

2.3 Results

We used a total of 39,628 documents spanning the years 1922 to 2021. These
documents comprised 27,464 (69.4%) research articles and 12,057 (30.6%)
proceedings papers. The dataset encompassed contributions from 67,358 authors,
derived from 12,949 distinct publication outlets and representing 168

countries/regions.

2.3.1 Growth of Publication

Figure 2 illustrates the trajectory of annual scientific document production, which
remained relatively steady until around 1991. Subsequently, a notable exponential
increase in publication output commenced a pattern mirrored in various research
areas as it coincides with the widespread adoption of the Internet for academic
dissemination (Vakkari, 2008). It is important to note that while the overall trend

reveals consistent growth, a temporary decline of 198 publications occurs in 2021.

Figure 2. The Annual Scientific Production of Documents
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A delay in including articles in the core collection during our data retrieval
probably causes this dip. Nevertheless, since the early 2000s, research output
appears to have maintained a steady yet robust upward trajectory, underscoring
the continued activity of trust-related research in academia. The exponential
growth in publication output since the early 1990s highlights the increasing

interest and development of fundamental research trends in trust.

2.3.2 The Top Papers Published on Trust.

From the extensive dataset of 39,628 documents, we have identified and compiled
the 20 papers with the highest yearly citation rates, as presented in Table 1. We
used yearly citations as a metric to mitigate the inherent bias towards older
papers. Sorting by citations per year allows us to identify papers with a consistent
and enduring impact, regardless of the total number of citations, highlighting
papers that remain relevant and influential over time, even if they were published

more recently.

The paper “Qualitative Content Analysis in Nursing Research: Concepts,
Procedures and Measures to Achieve Trustworthiness” by Graneheim & Lundman
(2004) tops the list with an average of 450 citations per year, mainly due to its
pivotal role as a foundational work explaining the methodology for conducting
trustworthy qualitative research. This paper serves as a cornerstone reference for
researchers aiming to establish the trustworthiness of qualitative studies. Nowell
et al's., (2017) work, focused on ensuring the trustworthiness of Thematic
Analysis, also follows a similar trend with an annual citation rate of 316. While
crucial for methodological robustness, these papers should be noted for their

application of trust rather than direct contributions to trust research.

Morgan & Hunt's (1994) exploration of the commitment-trust theory in
relationship marketing received 306 citations per year, and (Mayer et al., 1995)
integrative model of organisational trust with 290 citations per year marks
foundational works in organisational psychology. In business, Doney & Cannon's
(1997) examination of trust and its implications for buyer-seller relationships

underscores the theme's importance in commercial interactions.
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The influence of technology on trust is highlighted by Ribeiro et al.'s (2016) paper
on explaining predictions of machine learning models, which gathered 263

citations per year. Bertrand et al., (2004) investigated the reliability of difference-
in-difference estimation in economics, which reflects trust's role in methodological

rigour.

The papers span various research areas, including business, economics,
psychology, computer science, and methods, illustrating trust's interdisciplinary
nature. Papers like Kosfeld et al's., (2005) study on oxytocin's effect on human

trust offer biological perspectives, further broadening the field's scope.

Recent papers, such as Lins et al., (2017) work on social capital, trust, and firm
performance and Sicari et al., (2015) on security, privacy, and trust in Internet of
Things systems, indicate growing areas of interest and the evolution of trust

research to include technological and social capital dimensions.

Table 1. The 20 most cited per year articles featuring trust.

Paper Title Citations  Total Research Area

per Year Citations

Graneheim (2004) - Qualitative 450 8556 Nursing/
Content Analysis in Nursing Research: Methods
Concepts, Procedures and Measures to

Achieve Trustworthiness

Nowell (2017) - Thematic Analysis: 316 1893 Methods
Striving to Meet the Trustworthiness

Criteria

Morgan (1994) - The Commitment- 306 8861 Business

Trust Theory of Relationship Marketing

Mayer (1995) - An Integrative Model of 290 8124 Organisational

Organizational Trust Psychology
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Paper Title Citations  Total Research Area
per Year  Citations

Ribeiro (2016) - "Why Should I Trust 263 1844 Computer

You?” Explaining The Predictions of Any Science

Classifier

Bertrand (2004) - How Much Should 214 4061 Economics

We Trust Differences-In-Differences

Estimates?

Elo (2014) - Qualitative Content 123 1111 Methods

Analysis: A Focus on Trustworthiness

Doney (1997) - An Examination of The 120 3122 Business

Nature of Trust in Buyer-Seller

Relationships

Kosfeld (2005) - Oxytocin Increases 119 2135 Biology

Trust in Humans

Mcallister (1995) — Affect and 113 3174 Psychology

Cognition-Based Trust as Foundations for

Interpersonal Cooperation in

Organizations

Josang (2007) - A Survey of Trustand 106 1693 Computer

Reputation Systems for Online Service Science

Provision

Chaudhuri (2001) - The Chain of 103 2267 Business

Effects from Brand Trust and Brand Affect
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Paper Title

Citations

per Year

Total

Citations

Research Area

to Brand Performance: The Role of Brand
Loyalty

Sicari (2015) - Security, Privacy and
Trust in Internet of Things: The Road
Ahead

101

807

Computer

Science

Gosling (2004) - Should We Trust Web-
Based Studies? A Comparative Analysis of
Six Preconceptions About Internet

Questionnaires

93

1768

Psychology/

Methods

Gulati (1995) - Does Familiarity Breed
Trust - The Implications of Repeated Ties

for Contractual Choice in Alliances

90

2533

Business

Lins (2017) - Social Capital, Trust, And
Firm Performance: The Value of
Corporate Social Responsibility During the

Financial Crisis

88

529

Economics

Kim (2008) - A Trust-Based Consumer
Decision-Making Model in Electronic
Commerce: The Role of Trust, Perceived
Risk, and Their Antecedents

1301

Business

Birt (2016) - Member Checking: A Tool
to Enhance Trustworthiness or Merely a
Nod to Validation?

605

Methods
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Paper Title Citations  Total Research Area

per Year  Citations

Garbarino (1999) - The Different Roles 86 2074 Business
of Satisfaction, Trust, and Commitment in

Customer Relationships

Pavilou (2003) - Consumer Acceptance 86 1727 Business; e-
of Electronic Commerce: Integrating commerce
Trust and Risk with The Technology

Acceptance Model

2.3.3 Analysis of Journals and Conference Proceedings
Publishing Papers on Trust

The extensive dataset of retrieved documents spans a diverse array of 12,949
journals and conference proceedings. Table 2 presents the top 20 sources that
have contributed significantly to the corpus of trust-related literature. Our analysis
identified the 20 most productive sources in trust research based on the number
of documents published. The journal “Trust & Trustees” leads with 690
documents, followed by “IEEE Access” and “Plos One” with 239 and 196
documents, respectively. “Sustainability” and “Frontiers in Psychology” are also
significant contributors, with 146 and 133 documents.

The Total Link Strength (TLS), indicative of the source's centrality in the field, the
five sources with the highest TLS in trust literature are Sustainability (TLS: 5553),
the Journal of Business Ethics (TLS: 4988), Plos One (TLS: 4911), Frontiers in
Psychology (TLS: 4741) and Industrial Marketing Management (TLS: 4658). The
average year of publication they are ranged from as early as 1939 for the “Yale
Law Journal” to as recent as 2019 for “IEEE Access”, “Sustainability”, and
“Frontiers in Psychology”, reflecting both longstanding and emerging sources of

scholarly output in trust research.
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Table 2. The 20 most productive sources of trust literature.

Source Number of  Total Number Average
Documents Link of Year of

Strength Citations Publications
(TLS)?

Trusts & Trustees 690 262 464 2014

IEEE Access 239 4542 2984 2019

Plos One 196 4911 2219 2017

Sustainability 146 5553 853 2019

Frontiers In Psychology 133 4741 736 2019

Yale Law Journal 125 352 171 1939

Journal Of Business Ethics 119 4988 5306 2011

Wireless Personal 109 1479 853 2017

Communications

Computers In Human 100 4393 6433 2016

Behavior

Real Property Probate and 100 131 4 1973

Trust Journal

Journal Of Business Research 96 4657 4800 2013

Security And Communication 92 1443 687 2016

Networks

Columbia Law Review 91 260 208 1946
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Source Number of  Total Number Average
Documents  Link of Year of

Strength Citations Publications

(TLS)?
Journal Of Economic Behavior 88 2546 4221 2012
& Organization
Social Science & Medicine 82 1713 3306 2012
Social Indicators Research 81 3176 1201 2016
Industrial Marketing 80 4658 4502 2012
Management
Future Generation Computer 78 1774 1840 2017
Systems-The International
Journal of E-science
Virginia Law Review 72 153 16 1952
Psychological Reports 71 955 1478 1991

Note. ?TLS is the sum of the strengths of all links an item has with other items in

the network, indicating the item's interconnectedness and influence.

2.3.4 Bibliographic Coupling Analysis of Sources

We conducted a bibliographic coupling analysis to provide a comprehensive
landscape of journals and conference proceedings publishing content on trust

since 1922 and it is displayed in Figure 3.

We compiled the dataset for the analysis from an initial pool of 12,930 sources
from the Web of Science. These sources included journals and conference

proceedings that have published work on trust.
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We employed VOSviewer to perform a bibliometric coupling analysis on the
dataset. The inclusion criteria for the sources were set to a minimum of one
published document and at least one citation per source, reducing the dataset to
9,308 sources. We used fractional counting to apportion citations among sources
based on shared references. We selected the 1,000 sources with the highest link
strength to other sources mapping. We set the network's visualisation parameters
as normalisation using the Lin/Log Modularity method, layout parameters set to an
attraction of 6 and a repulsion of 0, and clustering set at 1. The size of each node

(circle) in the visualisation represented the number of citations for each source.

Figure 3. Bibliographic Coupling of Sources Publishing Trust Literature
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To see an interactive version of this map, please visit https://tinyurl.com/2726h2tp. *This link will

take you to a generic version of this map. Please enter the visualisation parameters described
earlier to see the map in Figure 3.

The resulting bibliographic coupling map, presented in Figure 3, encompasses
1000 sources. This map's node size corresponds to the number of citations each
source has received, while the interconnecting links depict relationships between
sources. Closer nodes indicate a higher co-citation frequency, highlighting solid
relationships between those sources.
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Figure 4. Overlay Visualisation of the Bibliographic Coupling of Sources

Joumalof #spitality & touri

‘u a agemem

|eeemterﬂet of thm journa
ce search

o SUtar netWorks
- “@np erne ;
bee accesyfe et %&on Secur
nal of nenignd ‘compute

, u wirele J“etworks
’lon computer sys

puters & mah&patics with a

numerical algor ithms

foplied mathenq@tics and co

9mﬁ%ﬂhﬁ‘l'mlmm

S Journal‘;‘uﬂerlcal

. & 16
. . ¢ F :
4 lecology law qua
«harvard review

columbiadaw review

&VOSviewer '
2010 2012 2014 2016 2018 2020

To see an interactive version of this map, please visit https://tinyurl.com/2726h2tp. *This link will take you
to a generic version of this map. Please enter the visualisation parameters described earlier to see the
map in Figure 4.

Figure 4 is a network visualisation with an overlay that indicates the average year
of publication for sources in the field of trust research. It complements this
analysis with an overlay visualisation showcasing the publication periods of

sources.

The colours of the nodes represent the average year of publication of the articles
within each source. The colour gradient displays the timeline from 1985 to 2021,
with lighter colours (like yellow) indicating more recent years and darker colours
(like dark green) indicating older years. This colour coding indicates whether a
source's contributions to the field are more historical or recent; a source with an
average publishing year of 1955 will be dark blue, and one with an average

publishing year of 2021 will be light yellow.
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2.3.5 Clustering and Discipline Identification

To identify the disciplines represented within each cluster, we extracted the labels
of the sources from the network visualisation. Each label typically contained the
name of the journal or conference and often included terms indicative of the
source's scope or focus. We conducted a manual content analysis (Hsieh &
Shannon, 2005) to determine the most common words within the labels of each
cluster, which served as indicators of the predominant disciplines. To focus on
content-specific terminology, we excluded Common English words and specific
terms related to publishing and conferences (e.g., journal’, 'conference’,
'proceedings'). Previous bibliometrics have used content analysis (Leong et al.,

2021; H. Liang & Shi, 2022); we inferred the following clusters using this method.

Cluster 1 (Red) is related to social sciences, as indicated by terms such as social,
public, psychology, health, economics, policy, political science, and
communication. This cluster includes sources with an average publication year of
2013 and has the highest total citations. The oldest source in this cluster is
“Psychological Bulletin”, with an average publication year of 1991 and the newest

is “Healthcare”, emerging in 2021.

Cluster 2 (Green) focuses on business and management, with subjects like
marketing, information systems, technology, electronic commerce, and tourism
being prevalent. This cluster stands out with the recent average publication year
of 2015 and a significant citation impact. The “Journal of Marketing”, averaging
1997, is the oldest, while “Sustainable Production and Consumption”, starting in

2021, is the newest source in this cluster.

Cluster 3 (Blue) also centres on management and business, including psychology,
human resources, organisational studies, accounting, and leadership. The average
publication year for this cluster is 2013. The “Journal of Psychology”, dating back

to 1990, is the oldest, and “International Journal of Public Leadership”, which

began in 2020, is the newest source.

Cluster 4 (Yellow), indicated in yellow, revolves around information systems and
computing. A strong focus on security, computer science, communications, and
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trust-related applications characterises it—sources in this cluster average 2015.
“Trust and Deception in Virtual Societies”, from 2001, is the oldest source, and the
newest is “IEEE Transactions on Network Science and Engineering”, which started
in 2021.

Cluster 5 (Purple) encompasses mathematical and computational disciplines,
including optimisation, applied mathematics, numerical analysis, computational
science, and mathematical applications. The average publication year for this
cluster is 2010, making it the oldest on average. “SIAM Journal on Numerical
Analysis”, with an average publication year of 1993, is the oldest source, and

“Mathematical Problems in Engineering”, from 2017, is the newest.

Cluster 6 (Light Blue) is centred on ergonomics, human factors, robotics,
engineering, design, and transportation systems, focusing on applied science and
engineering. The oldest source in this cluster is the “International Journal of
Industrial Ergonomics”, averaging the year 2009 with 182 citations. The newest is

“Frontiers in Robotics and AI”, which began in 2020 and has 31 citations.

Cluster 7 (Orange) has a legal orientation, with sources often related to law
studies and university law reviews. The “Yale Law Journal”, the oldest in the
cluster, averages back to 1939 with 171 citations, demonstrating its longstanding
influence. Conversely, the newest source, “Trusts & Trustees”, started in 2014 and

accumulated 464 citations, reflecting its growing impact in the legal field.

Together, these visualisations provide a comprehensive portrayal of the landscape
of trust-related research sources, highlighting their interconnections and their

historical and contemporary significance in the field.

2.3.6 Keyword Co-Occurrence Analysis

We conducted a keyword co-occurrence analysis to gain deeper insights into
themes within trust research. We used author keywords and keywords plus. At the
beginning of the analysis, there were 59,122 keywords. The word had to appear
more than five times to be used in the analysis, leading to 5516 words included in

the analysis. We then selected the top 1000 most linked words to keep in the
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analysis. We excluded the word trust from the map as it overshadowed most of
the map. We applied fractional counting using the Lin/Log Modularity method,
layout parameters set to an attraction of 3 and a repulsion of 0, and clustering set
at 1.0.

Figure 5. Co-occurrence of Author Keywords and Keywords Plus.
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To see an interactive version of this map, please visit nttps://tinyurl.com2726n2tp. This link will
take you to a generic version of this map. Please enter the visualisation parameters
described earlier to see the map in Figure 5.

In Figure 5, we provide a co-occurrence map of these keywords. Each node in the

map represents a keyword, with node size indicating the frequency of the
keyword's occurrence. Links between nodes signify co-occurrence, and the
thickness of the link reflects the frequency of such co-occurrence. This analysis

reveals seven distinct keyword clusters.

Cluster 1 (red) contains 294 keywords and has a total of 56,196 links, with an
average link strength of 95 and an average of 99 occurrences per keyword. The
average publication year for this cluster is 2014, with an average of 24.3 citations

per keyword. This cluster focuses on the interplay between social and political
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elements of trust, featuring keywords like “perceptions”, “attitudes”, “social

III

capital”, and “political trust”.

Cluster 2 (green) has 211 keywords and 27,107 links, with an average link
strength of 103 and an average of 114 occurrences per keyword. The average
publication year for this cluster is 2015, with an average of 13.1 citations per
keyword. This cluster centres on the foundational aspects of security and trust in
digital environments, highlighted by terms such as “security”, “trust

management”, and “reputation”.

Cluster 3 (dark blue) contains 173 keywords with 37,636 links, with an average
link strength of 114 and an average of 117 occurrences per keyword. The average
publication year for this cluster is 2014, with an average of 42.4 citations per
keyword. This cluster pertains to the role of trust within psychological settings,

7\

emphasising “commitment”, “performance”, and “interpersonal trust”.

Cluster 4 (yellow) includes 155 keywords and has 36,439 links, with an average
link strength of 147 and an average of 150 occurrences per keyword. The average
publication year for this cluster is 2015, with an average of 39.9 citations per
keyword. It relates to the dynamics of e-commerce and customer satisfaction,

”m \\

with key terms including “model”, “satisfaction”, “e-commerce”, and “brand trust”.

Cluster 5 (purple) contains 140 keywords with 27,213 links, with an average link
strength of 98 and an average of 102 occurrences per keyword. The average
publication year for this cluster is 2014, with an average of 31.1 citations per
keyword. This cluster delves into the psychological and social bases of trust,

n” \\

featuring terms like “trustworthiness”, “cooperation”, and “trust game”.

Cluster 6 (light blue) is the smallest, with 26 keywords and has a total of 1,723
links, with an average link strength of 93 and an average of 100 occurrences per
keyword. The average publication year for this cluster is 2011, with an average of
19.4 citations per keyword. This cluster emphasises mathematical and
optimisation techniques in trust modelling, focusing on “global convergence” and

“trust region method”.
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2.4 Discussion

2.4.1 Growth of Production

The exponential growth in trust-related publications since the early 1990s, as
highlighted in our results, can be attributed to the digital revolution (Vakkari,
2008) and the increasing complexity of societal interactions that necessitate a
deeper understanding of trust dynamics(Khan et al., 2019; Leong et al., 2021;
McKnight & Chervany, 2001; Sicari et al., 2015). This increase underscores trust's
escalating academic and practical significance, especially in the context of rapid
technological advancements and their implications for interpersonal and

institutional trust.

2.4.2 Top Papers Published

Identifying the 20 most cited papers per year within the trust research domain
offers critical insights for the network of trust research. By focusing on yearly
citations, we have highlighted works that maintain relevance and impact over
time, illustrating the relevance of trust research across various disciplines. This
approach aligns with our objective to map out the field's current state and identify
emergent trends and foundational works that have shaped the understanding of

trust.

Relating to RQ1, what are the key research trends and influential papers in trust
research over the past century, the analysis reveals that influential papers span
various domains, reflecting the evolution of trust research over time. Foundational
works such as Graneheim and Lundman's (2004) and Nowell et al. (2017) focus
on methodological trust, establishing robust frameworks for qualitative research
and thematic analysis. These papers highlight the importance of methodological
rigour in trust research, especially in qualitative contexts. In organisational
psychology, Morgan and Hunt's (1994) commitment-trust theory and Mayer et al.'s
(1995) integrative model of organisational trust are pivotal, reflecting early key
trends in understanding trust dynamics within business and organisational
settings. More recent influential papers, such as Ribeiro et al.'s (2016) on machine

learning model predictions and Sicari et al.'s (2015) on trust in the Internet of
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Things, underscore technology's growing relevance as a trust research theme.
This shift illustrates how themes of trust research are expanding and evolving to

address new challenges in technology and social capital.

This analysis also provides information to RQ2 on how different academic
disciplines have contributed to the field of trust research. The analysis shows
diverse, highly cited papers from psychology, business, economics, computer
science, and methodological studies. For instance, Graneheim and Lundman
(2004) and Nowell et al., (2017) contribute from a methodological perspective,
while Morgan & Hunt (1994) and Mayer et al. (1995) offer insights from
organisational psychology. Ribeiro et al.'s (2016) work in computer science and
Sicari et al.'s (2015) research in cybersecurity provide clear evidence of

technology's impact on trust.

Business is the most prominent area, with six high-citation papers underscoring
trust's central role in business contexts. One paper represents business and e-
commerce. Computer Science also features four influential papers, indicating the
growing intersection between trust and technology, which illustrates the
expansion of trust research into online and electronic commerce environments.
These research areas reflect the increasing importance of understanding trust in
digital transactions and platforms. Psychology and economics each contribute two
significant papers, one representing Psychology/Methods. Methods and
nursing/methods contribute with two and one paper(s). The inclusion of nursing
and methods in the dataset reflects the cross-disciplinary applications of trust

research in ensuring methodological robustness.

The top papers answer RQ3, how the most common themes in trust research
evolved from 1922 to 2021 when focusing on the field's evolution. In the earliest
papers, there is more research in business and psychology (Doney & Cannon,
1997; Garbarino & Johnson, 1999; Gulati, 1995; Mayer et al., 1995; McAllister,
1995; Morgan & Hunt, 1994). These findings suggest that the foundational
understanding of trust was based on organisational psychology and business
studies. When moving through work published in the 2000s, there is a shift in the

research trends seeing a few business papers (Chaudhuri & Holbrook, 2001; D. J.
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Kim et al., 2008), a paper on e-commerce (Pavlou, 2003) and papers on
methodologies (Gosling et al., 2004; Graneheim & Lundman, 2004), and the start
of papers from computer science with (Jgsang et al., 2007). During this middle
period, we see a more diverse sample of papers and the emergence of new
research areas. The newest papers come mainly from methods attempting to
develop trustworthy qualitative research (Birt et al., 2016; Elo et al., 2014; Nowell
et al., 2017), computer science (Ribeiro et al., 2016; Sicari et al., 2015) and
economics (Lins et al., 2017). These papers highlight a broadening scope in trust
research, expanding from its roots in business and psychology to incorporate
various disciplines. Computer science is becoming more involved, reflecting the

field's evolving complexity and interdisciplinary nature.

Overall, the distribution of top papers illustrates trust research's interdisciplinary
nature and how it has developed over time. The analysis highlights how different
academic fields contribute unique perspectives and methodologies to studying
trust. It also reflects the growing importance of trust in various contexts, from
traditional business and psychological studies to emerging areas in technology and
e-commerce. As the scientific landscape of trust research becomes more varied
and complex, it becomes critical to ensure multidisciplinary collaboration across

these fields to allow for thorough understanding and appropriate trust testing.

2.4.3 Source Publishing

The historical development of trust research reveals key trends and
interdisciplinary contributions, aligning with the three research questions. Early
research focused on legal and psychological aspects, with influential papers from
the Yale Law Journal (1939) and Psychological Reports (1991). The field
diversified in the 21st century to include business ethics, economic behaviour, and
social sciences, with significant contributions from journals like the Journal of
Business Ethics (2011), Journal of Economic Behaviour & Organization (2012), and
Social Science & Medicine (2012). Recent trends highlight technologically driven
research, with journals like Computers in Human Behaviour (2016), IEEE Access
(2019), and Plos One (2017) emphasising digital trust. This evolution underscores
the expanding scope of trust research, reflecting interdisciplinary collaboration and

shifting themes from foundational legal and psychological concepts to complex
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modern contexts, addressing themes like digital trust, cybersecurity, and

environmental considerations.

The analysis reveals several key trends in trust research over the past century,
addressing RQ1. Cluster 1 (Red), associated with social sciences, highlights
foundational research in public health, psychology, and political science. Influential
sources like the “Psychological Bulletin”, which has been significant since 1991,
illustrate the impact of psychological and societal perspectives on trust. Cluster 2
(Green) focuses on business and management, with influential journals like the
“Journal of Marketing” and recent sources such as “Sustainable Production and
Consumption” (2021), reflecting the integration of trust with commercial and
technological advancements. Cluster 4 (Yellow) centres on information systems
and computing, where journals like “IEEE Transactions on Network Science and
Engineering” underscore modern cybersecurity and digital trust research.
Additionally, Cluster 5 (Purple) encompasses mathematical and computational
disciplines, with sources like the “"SIAM Journal on Numerical Analysis” (1993) and
“Mathematical Problems in Engineering” (2017) highlighting the application of
mathematical methods to trust research. Cluster 6 (Light Blue) focuses on applied
science and engineering, with journals like the “International Journal of Industrial
Ergonomics” (2009) and “Frontiers in Robotics and AI” (2020), reflecting trust's
role in ergonomics, robotics, and transportation systems. Cluster 7 (Orange), with
its legal orientation, features historically significant sources such as the “Yale Law
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Journal” (1939) and newer entries like “Trusts & Trustees” (2014), showcasing the

evolving role of trust within legal frameworks.

Addressing RQ2, our current study highlights the contributions of various
academic disciplines to trust research. Cluster 1 (Red) shows the impact of social
sciences, focusing on trust in public health, psychology, and political science.
Cluster 2 (Green) illustrates the business and management field's contributions
with research on marketing, information systems, and technology. Cluster 4
(Yellow) demonstrates the importance of information systems and computing,
particularly in cybersecurity and digital trust. Cluster 5 (Purple) reflects the
application of mathematical and computational methods to trust research,

highlighting its significance in optimisation and numerical analysis. Finally, Cluster
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6 (Light Blue) showcases the role of applied science and engineering, emphasising
trust in ergonomics, robotics, and transportation systems. Cluster 7 (Orange)

reveals how legal studies contribute to understanding trust within legal contexts.

For RQ3, the evolution of trust research themes from 1922 to 2021 is evident
through sources' historical and contemporary significance across clusters. Older
influential sources, such as the “Yale Law Journal” (1939) and the “Journal of
Psychology” (1990), indicate the foundational research in legal and management
contexts. The emergence of newer publications like “Healthcare” (2021) and “IEEE
Transactions on Network Science and Engineering” (2021) reflects contemporary
shifts towards new research areas, such as healthcare and digital networks.
Cluster 5 (Purple) and Cluster 6 (Light Blue) highlight how themes in
mathematical, computational, and applied sciences have evolved, with recent
developments in these fields addressing new challenges in trust. This evolution
demonstrates how trust research has expanded over time, incorporating diverse

disciplinary insights and adapting to societal and technological changes.

The significant output and TLS of journals like “IEEE Access” and “Plos One”
underscore the increased attention towards interdisciplinary work, particularly at
the intersection of technology and trust (Cannizzaro et al., 2020; Srikanth et al.,
2022; Zloteanu et al., 2018). This observation is particularly relevant given the
challenges and necessity of transcending disciplinary boundaries to understand

trust fully.

These findings present a rich and dynamic view of trust research, with significant
contributions from various disciplines, influential historical journals, and evolving
themes that reflect longstanding interests and emerging trends in understanding

trust.

2.4.4 Keyword Co-occurrence in Trust Research

The keyword co-occurrence analysis, focusing on trust research from 1990
onwards, reveals trust studies' complexity and multidisciplinary nature. The

prevalence of keywords such as 'model', 'performance’, and 'security' underscores

76|Page



the foundational role of trust in diverse academic investigations, from theoretical

modelling and organisational performance to security in digital environments.

The analysis highlights several key trends in trust research addressing RQ1, mainly
the increasing focus on digital and e-commerce contexts. Cluster 2, which centres
on digital trust and security with keywords like “security”, “trust management”,
and “reputation”, has seen significant growth in recent years, reflecting the rising
importance of trust in digital environments. This cluster's recent average
publication year (2015) and relatively high keyword occurrence underscore its
contemporary relevance. The lower average citation count (13.1) suggests that
while this area is expanding rapidly, it is still in the development phase, with

influential papers emerging as the field matures.

Cluster 4, focusing on e-commerce and customer satisfaction, includes terms such
as “model”, “satisfaction”, “e-commerce”, and “brand trust”. This cluster, with its
average publication year of 2015 and a high average citation count of 39.9,
indicates a well-established and influential body of research. The strong emphasis
on consumer trust in digital transactions reflects the importance of trust in the
burgeoning e-commerce sector. The significant citation count suggests that
foundational papers in this area have substantially shaped the understanding of

trust in online environments.

In contrast, Clusters 3 and 5, which deal with the psychological aspects of trust
and its social and psychological foundations, show a more mature body of
research. Cluster 3, with keywords like “commitment”, “performance”, and
“interpersonal trust”, has a high average citation count (42.4), pointing to its
influential contributions to understanding the psychological dimensions of trust.
Cluster 5, focusing on terms such as “trustworthiness”, “cooperation”, and “trust
game”, also demonstrates a robust body of work with a substantial average
citation count (31.1). These clusters reveal that foundational psychological and

social research continues to be highly relevant and impactful.

The diverse clusters reflect the broad interdisciplinary nature of trust research and

address RQ2. Cluster 1, which addresses social and political dimensions with
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keywords such as “perceptions”, “attitudes”, and “political trust”, highlights
contributions from social and political sciences. This cluster's average publication
year of 2014 and significant citation count (24.3) indicate a well-developed area of

research that integrates insights from various social science perspectives.

Cluster 6, with its focus on mathematical and optimisation techniques (e.g.,
“global convergence” and “trust region method”), showcases the contribution of
quantitative and computational disciplines to trust research. Despite being the
smallest cluster with only 26 keywords, its specialised focus on mathematical
models represents a critical area of research for developing and refining trust
algorithms. The average citation count of 19.4 reflects its niche influence in the
field.

Finally, we can address RQ3 through the thematic evolution in trust research,
which reveals a shift from foundational psychological and social studies to a focus
on digital and e-commerce contexts. Earlier research, as represented by Clusters 1
and 3, laid the groundwork for understanding trust in social and psychological
settings. Over time, the field has expanded to address emerging challenges
related to digital environments and online transactions, as seen in Clusters 2 and
4.

This progression highlights how trust research adapts to technological and societal
changes. The increasing importance of digital trust mechanisms and consumer
satisfaction in e-commerce reflects broader trends in technology and market
behaviour. The continued relevance of psychological and social studies
underscores the enduring significance of understanding trust's fundamental

aspects, even as new contexts emerge.

The keyword co-occurrence analysis reveals a dynamic and evolving field of trust
research, with significant contributions from various disciplines and a clear shift
towards addressing contemporary challenges in digital and e-commerce contexts.
Future research should continue to explore these emerging themes and refine our

understanding of trust in an increasingly complex world.

78| Page



In summary, we can determine that many research areas use the term trust, and
the presence of more distinct clusters suggests that some research areas may
have limited interaction, leading to the misuse of the term trust or the
misapplication of other methods. By mapping the thematic clusters and their
interconnections, this analysis provides insights into the current landscape of trust
studies and underscores the necessity of integrating perspectives from various

disciplines to tackle the complex phenomena of trust.

2.4.5 Limitations and Future Work

Despite its comprehensive scope, this bibliometric analysis is subject to several
limitations that suggest directions for future research. First, the focus on
documents indexed in the Web of Science may have excluded relevant literature
from other databases or publications unavailable in English, potentially limiting the
complete representation of trust research. Future studies could expand the
analysis to include multiple databases and languages to capture a more global
perspective on trust research. Secondly, the reliance on keyword co-occurrence
and citation metrics may not fully capture the nuances of interdisciplinary
connections and the depth of trust research themes. Qualitative analyses, such as
systematic literature reviews or expert interviews, could complement bibliometric
methods to provide deeper insights into the conceptual and theoretical
developments within the field. Thirdly, the analysis was limited to documents up
to December 4, 2021, so recent developments and emerging trends in trust
research may not be fully captured. Ongoing bibliometric analyses are necessary

to keep pace with the evolving landscape of trust research.

Future work should also explore the practical applications of trust research in
policymaking, organisational practices, and technology development.
Understanding how trust research translates into practical strategies and
interventions could significantly benefit practitioners, policymakers, and

researchers alike.
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2.4.6 Conclusions

The comprehensive bibliometric analysis of trust research spanning various
academic disciplines and timeframes offers several critical insights. Firstly, the
exponential growth in trust-related publications since the early 1990s is a
testament to the increasing complexity of societal interactions and the digital
revolution. This growth highlights trust's escalating academic and practical
significance, particularly in the context of rapid technological advancements and

their implications for interpersonal and institutional trust.

Our examination of the most cited papers provides a clear picture of trust
research's foundational and emerging themes. Foundational works in
organisational psychology and methodological studies have laid the groundwork
for understanding trust dynamics in business and qualitative research settings.
Meanwhile, recent influential papers focusing on technology, such as those
addressing machine learning model predictions and trust in the Internet of Things,

underscore the growing relevance of trust in digital and technological contexts.

The diverse contributions from various academic disciplines, as evidenced by the
citation analysis, demonstrate the interdisciplinary nature of trust research.
Business and management studies emerge as prominent areas, reflecting the
critical role of trust in commercial interactions and organisational behaviour. The
significant presence of computer science publications indicates a robust
intersection between trust and technology, particularly in digital security and trust

management systems.

The evolution of trust research themes from 1922 to 2021 shows a clear
progression from foundational studies in business and psychology to more
contemporary investigations into digital trust and e-commerce. This thematic shift
underscores how trust research adapts to technological and societal changes,
reflecting broader trends in market behaviour and the increasing importance of

digital transactions.

The keyword co-occurrence analysis further emphasises trust research's dynamic
and evolving nature. Clusters focusing on digital trust, e-commerce, psychological
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aspects, and mathematical modelling of trust reveal the diverse and
interdisciplinary approaches to understanding trust. The apparent shift towards
addressing contemporary challenges in digital environments and online

transactions indicates the field's responsiveness to emerging issues.

Overall, the term “trust” is utilised across a myriad of research areas, and the
presence of distinct clusters suggests that some research domains may have
limited interaction. This segmentation can lead to the misuse of the term or
misapplication of methods. Therefore, it is crucial to integrate perspectives from
various disciplines to tackle the complex phenomena of trust comprehensively.
This integration will ensure a complete understanding and appropriate application
of trust-related concepts and methods across different fields. As trust research
continues to evolve, fostering multidisciplinary collaboration to address the
increasing complexity of trust in both traditional and digital contexts will be

essential.

In summary, this bibliometric analysis of trust research highlights the field's
evolution from foundational theories in psychology and business to modern
applications in technology and security. These insights underscore the value of a
multidisciplinary approach, setting the stage for a more comprehensive
investigation of trust in the experimental chapters. Moving forward, the thesis will
transition to examining trust empirically, exploring its application and
measurement across HATs. Chapter 3 will leverage the theoretical foundation and
interdisciplinary insights presented here, focusing on how trust is operationalised
and measured within the unique landscape of human and AI teammate
interactions. By examining these factors experimentally, this thesis aims to
contribute to the theoretical discourse on trust and its practical applications in

emerging technological environments.
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Chapter 3 Understanding the Impact of
Anthropomorphism and System Reliability on
Trust and Performance in Human-Artificial
Intelligence Teams

With the rapid advancement of Altechnologies, Al systems are increasingly
integrated into collaborative environments across various fields, from healthcare to
digital forensics. This integration is about enhancing technical capabilities and
creating effective HATs, where AI systems support human decision-making while
maintaining essential human agency. In HATSs, trust is pivotal in determining
whether humans will accept or override Al suggestions. However, trust is shaped
by complex factors, including Al system reliability and the extent to which AI
exhibits anthropomorphic qualities, human-like characteristics that can foster

intuitive interactions and relational warmth.

In Chapter 3, we begin the first of three experimental chapters. Building on the
interdisciplinary foundation established in Chapter 2, this chapter delves into the
experimental investigation of trust dynamics in HATs by examining two critical
design factors: anthropomorphism and system reliability. Specifically, this study
explores how these elements influence participants’ trust, performance
evaluations, and confidence in decision-making tasks. Anthropomorphism is
posited to facilitate smoother human-AlI interaction by bridging cognitive and
emotional gaps, potentially increasing trust even when Al reliability is low.
Conversely, system reliability, which affects how consistently and accurately Al
can support human tasks, remains essential for establishing a dependable

collaboration baseline.

Through an experimental design, this chapter aims to explain how
anthropomorphic design in written text, such as warmth in responses and varying
Al reliability levels, influences team dynamics in HATs. The study’s findings
address gaps in the existing literature by providing nuanced insights into how
anthropomorphism and reliability interact to shape trust calibration, Al
performance perceptions, and human teammates' confidence. The results

contribute to theoretical models of trust and offer practical guidance for designing
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Al systems that are both technically effective and attuned to human social
expectations. This work was published at AAAI23 as an Extended Abstract (Bailey
& Pollick, 2023) and presented in full at Multidisciplinary Perspectives on Human-
AI Team Trust at HHAI23.

3.1 Introduction

As Al technology rapidly advances, Al systems are becoming vital across various
sectors, enhancing decision-making in fields such as digital forensics, healthcare,
and finance. With increasing complexity and high stakes in these areas, HATs
have emerged to harness the collective intelligence of humans and Al. Al systems
offer data-driven recommendations in these teams, while humans retain final

decision-making authority, ensuring that essential human agency is preserved.

Research has explored how Al systems can enhance human decision-making and
team performance. For instance, recent algorithms have optimised task
assignments based on the complementary strengths of humans and Al, improving
task allocation across team members (Kerrigan et al., 2021; Rodgers et al., 2023;
Steyvers et al., 2022; Wilder et al., 2020). However, while these advancements
are promising, most design guidelines currently emphasise single-user
interactions, often overlooking the nuanced dynamics present in collaborative
HATs where trust and relational dynamics play crucial roles (Rix, 2022).
Consequently, how AI and human collaboration influence team dynamics and
affect trust towards AI within these unique roles remains underexplored. This
chapter introduces key literature in Al and psychology, establishing a foundation

for the research questions driving this study.

3.1.1 Team Trust in Organisational Psychology and HATs

In organisational psychology, trust is considered fundamental to effective
collaboration and conflict resolution (Costa et al., 2018). Similarly, trust in HATs is
foundational yet involves additional complexities due to the integration of Al as a
team member. Trust within a team facilitates open communication and mutual
respect, fostering an environment where members feel secure enough to share

ideas and resolve disagreements collectively (Jehn, 1995; Mayer et al., 1995).
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Trust, in turn, leads to stronger team cohesion, enhanced creativity, and greater
productivity, as team members are more likely to support each other's efforts and

work toward shared goals (Barczak et al., 2010).

3.1.2 Importance of Trust in HATs

A critical factor for the success of HATSs is trust, specifically, whether humans will
rely on or choose to override Al recommendations. As noted in Chapter Two,
there are cross-disciplinary differences when discussing and measuring trust in
HATs, so we must define trust (Ulfert et al., 2023). Trust in this context can be
defined as a user’s willingness to be vulnerable by accepting Al's suggestions in
the presence of some level of uncertainty or risk (Glikson & Woolley, 2020; Hoff &
Bashir, 2015; Rousseau et al., 1998). However, establishing trust in Al is a
complex challenge, distinct from trust among human teammates. In HATs, trust
must be calibrated carefully to balance reliance on Al with the appropriate level of

scepticism to ensure accuracy in decision-making.

The concept of calibrated trust, the ability to gauge when to trust Al
recommendations, requires that users understand the limitations of Al and the
likelihood of errors (de Visser et al., 2016). In HATSs, trust operates on two levels:
interpersonal trust and system trust (Lewicki & Bunker, 1996; Rotter, 1980).
Interpersonal trust involves human acceptance of Al as a teammate, which
requires transparency and responsiveness from Al to foster dependability (Jacovi
et al., 2021; Schmidt et al., 2020). Conversely, system trust centres on confidence
in the AI's technical reliability, encompassing its algorithms, data integrity, and
ethical standards (Cabiddu et al., 2022; Shin & Park, 2019). When team members
are assured that the Al is fair and reliable, they are more likely to incorporate its

recommendations.

A robust level of system trust requires clear communication about the Al's
capabilities and limitations and transparency about how the system reaches its
conclusions (Felzmann et al., 2019; Schmidt et al., 2020). When team members
are assured that the Al is accurate but also fair and reliable, they may be more

likely to incorporate its recommendations into their decision-making.
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Several key technical factors, including system reliability, transparency, and
predictability influence trust in AI. For Al systems to gain consistent trust, they
must exhibit clear boundaries for error, transparent explanations of decisions, and
adaptive behaviour that aligns with human cognitive expectations (Bansal et al.,
2019). Studies show that incorporating transparency and reliability into Al design
enhances user confidence and supports effective decision-making (Felzmann et
al., 2019; Schmidt et al., 2020; Shin & Park, 2019; von Eschenbach, 2021).

Building on this, maintaining compatibility between Al updates and user
experiences is crucial for preserving trust and optimising team performance. While
updates can improve Al accuracy, they may also disrupt user trust if they lead to
unexpected changes in the Al's behaviour (Bansal et al., 2019). Several studies
have explored how trust in Al develops and affects users' reliance on Al
recommendations. For example, discrepancies between stated and observed Al
accuracy influence trust, and high accuracy alone does not necessarily make an Al
system the best teammate (Bansal et al., 2021; Yin et al., 2019). Additional
factors, such as user confidence in the Al and the transparency of its explanations,
play a significant role in shaping trust and overall performance in HATs (Bansal et
al., 2021; Yang et al., 2020; Zhang et al., 2020). These insights underscoring the
importance of designing Al systems that perform well, foster and sustain user
trust over time, and show that these design choices must be actively built into AI

systems.

3.1.3 AI Teammates

AI systems in HATs complement human decision-making and create distinct team
dynamics due to their perceived role and limitations. Studies indicate that humans
interact differently with Al teammates compared to human counterparts, often
ascribing unique motives and value systems to AI. For example, in defensive team
games, participants were more likely to sacrifice AI teammates over human
teammates, citing a “best outcome” for saving AI but “protecting the teammate”
for saving humans (Ong et al., 2012). This reveals underlying human biases that
may affect team cohesion and decision-making in HATs. Furthermore, research
indicates that Al teammates frequently receive undue blame for team failures, a

trend reflecting existing hesitancy to trust or hold AI to human responsibility
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standards fully (Merritt et al., 2011). These findings suggest that biases may affect
team cohesion, underscoring the need for a socio-technical approach that
considers social factors like trust and communication and technical factors like

reliability and transparency.

Finally, Berretta et al. (2023) conducted a scoping review highlighting the
necessity for a human-centric approach to HATs. The review emphasises the
importance of a socio-technical approach to facilitate the development of Al from
a mere tool to a true teammate. A socio-technical approach to HATs considers
social and technical aspects to optimise collaboration between humans and Al
systems. This approach involves designing Al as a tool and a responsive,
adaptable teammate that aligns with human relational and cognitive needs. By
addressing social factors like trust, communication, and team roles alongside
technical factors such as reliability, transparency, and system integrity, a socio-

technical approach aims to create HATs where Al and humans interact cohesively.

In this context, anthropomorphism is critical as it makes AI more relatable to
human teammates, enhancing trust by aligning AI's behaviour with human
cognitive and social frameworks. Similarly, SI in AI could further strengthen Al's
integration by enabling the system to exhibit socially aware behaviours and align

more closely with human expectations.

3.1.4 Role of Anthropomorphism in Humanising Al

Anthropomorphism, the attribution of human-like characteristics to Al, can be a
design strategy used to bridge the cognitive and emotional gap between humans
and machines, making Al appear as a more intuitive and relatable team member
(Duffy, 2003). Researchers suggest that anthropomorphic design, such as giving
AI a familiar appearance or enabling it to communicate empathetically, can
enhance interpersonal trust in HATs (Gambino et al., 2020; Chen & Park, 2021; de
Visser et al., 2016; Nass et al., 1996).

Anthropomorphic elements in AI may include conversational styles, empathy, or
visual characteristics, creating an experience closer to working with a human
teammate (Glikson & Woolley, 2020; Steyvers et al., 2022; Westby & Riedl, 2023).
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By simulating aspects of human communication, anthropomorphised AI can create
a sense of familiarity and emotional connection, making it easier for human
teammates to engage with and rely on the AI (Li & Sung, 2021; Song & Shin,
2024; Zhang & Rau, 2022).

While Anthropomorphism has demonstrated success in fostering the perception of
Al as human-like, it is not without its constraints, notably the Uncanny Valley
phenomenon, which can induce discomfort and mistrust when non-human entities
exhibit overly human-like traits (Mori et al., 2012; Weisman & Pefa, 2021).
Challenges also arise from anthropomorphic priming and generalisation, where
users may extend anthropomorphic traits to non-anthropomorphised AI based on
previous interactions (Dacey & Coane, 2023; Zanatto et al., 2016). Consequently,
comprehensive investigations into how Anthropomorphism impacts dynamics

during the formation of HATs assume critical importance.

3.1.5 Social Intelligence in AI

SI, the capacity to exhibit socially aware and contextually appropriate behaviour,
could be a key area of anthropomorphic AI design. Effective SI enables Al to
respond to social cues, enhancing its integration within HATs and facilitating
smoother interactions. SI traces back to 1920, originating with Thorndike's SI
classification, positing three types: abstract, mechanical, and social (Thorndike,
1920). The most widely recognised definition is from Vernon (1933),
encapsulating it as the “ability to get along with people in general, social
technique or ease in society, knowledge of social matters, susceptibility to stimuli
from other members of a group, as well as insight into the temporary moods or
underlying personality traits of strangers” (p. 44). Presently, differing theories
persist regarding the accurate definition and measurement of SI (Weis & SuB,
2005), but a consensus generally divides SI into five core categories: social
understanding, social memory, social perception, social creativity, and social
knowledge (Kihlstrom & Cantor, 2000).

The development of Al that demonstrates SI presents challenges due to its
inherently human-centric nature, emphasising the capacity to engage with

humans in a manner that mirrors human-human interactions. Another intricate
87|Page



facet of SI is its context-sensitive character. Humans typically possess a well-
developed grasp of appropriateness, exemplified by behaviours like refraining from
laughter during serious occasions. They may not react favourably to a humorous
Al in a serious context (Syrdal et al., 2006). Al's deficiency in social judgment
could lead to heightened scrutiny of its performance by human agents, especially
compared to their human counterparts' performance. Previous research suggests

that SI in Al can influence trust calibration (Williams et al., 2022).

3.1.6 Aims of Study

While extensive research has explored anthropomorphism and trust in HATS, there
are significant gaps, particularly in understanding how anthropomorphism
interacts with reliability to influence trust, performance, and team dynamics.
Existing studies often emphasise isolated factors like system reliability or single-
user trust. However, the interplay between anthropomorphic elements and system

performance within collaborative HATs remains underexplored.

This study addresses these gaps by investigating the combined effects of Al
anthropomorphism and system reliability on trust and performance within HATSs.
This study manipulates anthropomorphism and reliability through an experimental
design to assess their impact on trust calibration, performance perceptions, and

team confidence. The following research questions guide this investigation:

H1: Higher levels of anthropomorphism and reliability will jointly predict higher
task performance.

H2: There will be a significant interaction between anthropomorphism and system
reliability, such that anthropomorphic AI will elicit higher trust ratings than non-
anthropomorphic AI under low-reliability conditions; however, this effect will be

attenuated or absent under high-reliability conditions.

H3: Participants will perceive anthropomorphic AI to exhibit higher performance

than non-anthropomorphic Al, despite reliability level.
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H4: Participants will perceive human teammate performance to increase alongside

AI performance.

H5: Participants will report higher confidence in team decision-making when
collaborating with anthropomorphic AI compared to non-anthropomorphic Al,

particularly under low-reliability conditions.

3.2 Methodology

3.2.1 Participants

There were 44 participants in the experiment, 11 in each condition. Participants
were all recruited through the University participant pool and received £6 per hour
for participation. Of the group, 16 were male, 25 were female, 2 were non-binary,
and one participant declined to answer. There were 39 full-time students (masters
level or lower), 3 PhD students, one library assistant and one participant who
declined to answer. Participants were all 18-37 (M = 23.81, SD= 3.95).

3.2.2 Study Design

To investigate the impact of AI humanness and reliability on human trust and
decision-making, we implemented a 2x2 between-subjects design to explore the
effects of Al humanness and reliability on task performance and trust in Al
teammates. The response stimuli were predesigned for human and Al teammates
using a Wizard of Oz design to allow complete control over the variables. The key
variables were 'Humanness' and 'Reliability,' each with two levels: High (60%) and
Low (30%).

The experimental setup involved pre-written responses displayed via PsychoPy
(Peirce et al., 2019) to simulate Al interactions. In the high humanness condition,
an Al named “Pixie” provided warm and engaging responses, whereas the low
humanness Al provided technical, straightforward answers (Wiethof et al., 2021).
For high reliability, the AI accuracy was set at 90%. For low reliability, Al accuracy
was set at 60%. The human teammate consistently provided correct answers for
30% of the trials. The human teammate consistently provided correct answers for

30% of the queries. There were four distinct conditions, and participants were
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assigned to only one condition: High Humanness with High Reliability (HH: HR),
High Humanness with Low Reliability (HH: LR), Low Humanness with High
Reliability (LH: HR) or Low Humanness with Low Reliability (LH: LR).

The task spanned three blocks, with each block comprising ten trials, resulting in a
total of 30 different location identifications. After each trial (3x10, n=30), the
correct answers were provided so participants could track the performance of the
AI and human teammate. This feature was essential, as most participants would
not possess knowledge of the correct answer. Without this feature, they would
have been unable to track the performance of the AI and human teammates
throughout the experiment. The order of the trials was randomised throughout.
Participants' trust and reliance on their teammates were collected on every trial,
providing comprehensive data on human-AI collaboration dynamics under varying
humanness and reliability conditions. We collected 1144 confidence ratings, 1135
influence ratings, 1143 AI performance ratings and 1145 human performance
ratings. The study received full ethical clearance from the MVLS Ethics Committee
(application: 200210219) at the University of Glasgow.

3.2.3 Materials
3.2.3.1 Developing Response Stimuli

For crafting responses for the high humanness Al and the human teammate, we
drew inspiration from the work of Mehta et al., (2016), who examined how
experts and non-experts identified locations in Geoguessr. Mehta et al.,
(2016)identified nine knowledge sources employed in this process, including
architecture, languages, driving rules, sun positioning, animals, building signs,
road signs, telecommunications, signage, and landmarks. Additionally, the process
typically followed a hierarchical approach, commencing with identifying the
continent before progressing to the country and narrowing down to a more

specific location; we adhered to this methodology in the written responses.

In the low humanness group, the AI was introduced as a technically focused Al
that directly stated the answer. Conversely, in the high humanness conditions, the

Al introduced itself, adopting the nhame 'Pixie,' and expressed enthusiasm about
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being a teammate, a technique shown to enhance perceptions of humanness
(Wiethof et al., 2021). Moreover, in the high humanness conditions, the Al's
responses closely mirrored those of the human teammate, adopting an
anthropomorphic writing style. The AI needed to convey a sense of 'warmth' in its

responses.

To verify that this was successful, we asked participants if they believed the Al
responses to be Al-generated and human responses to be human. Overall, 93%
believed the Al to be Al, and 81% believed the human to be human. These results
demonstrate that our Wizard of Oz methodology was implemented successfully,

and participants believed they were working with an Al and a human teammate.

3.2.3.2 Decision-Making Task

Participants engaged in a location identification task, which involved determining
the geographical location of a screenshot from Google Earth. This task required
specifying the screenshot's continent, country, and city/state, a scenario designed
to simulate complex decision-making aided by Al. Participants acted as team
leaders, making the final decision with assistance from both a human and an Al

teammate.

Figure 6 is an example of the experimental setup. Lastly, we imposed a time
constraint of 90 seconds per trial. The introduction of time scarcity as an
environmental factor can significantly impact the outcomes of team tasks, often
necessitating rapid decision-making (Hu et al., 2015; Kelly & Karau, 1999). This
constraint could increase reliance on Al, as it compelled human teammates to
make choices based on their implicit attitudes rather than thoroughly deliberating
on the task. To accentuate this factor, we ensured that the human and Al
teammates primarily provided different answers, requiring participants to choose
which teammate they trusted the most. This setup aimed to mimic real-world
scenarios where rapid decision-making is often necessary, potentially increasing
reliance on Al. The task was designed to be difficult for the participants so we

could assess the impacts of reliability and humanness under a high cognitive load.
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Figure 6. The interface presents the responses from both the AI and Human
teammates. In this example, AI operates within a low humanness condition. In
the experiment, the pictures were taken from Google Maps, but we used a
personal photo to avoid copyright issues in this example.

Please rate the peformance of the Al:
| |

Terrible Perfect
Please rate the performance of the Human:

I |
Terrible Perfect

How confident are you in your answer:
I |

Not at All Completely
Which teammate influenced you most:
I |

Human Al

Al Guess Alex's Guess

It looks pretty overcast, the Continent:
. traffic is on the side the UK
Continent: Europe drive on, I’m thinking N
Countl'y: Unlted Klngdom somewhere up north’ Clty'
City: Glasgow maybe Edinburgh, UK,
Europe

Country:

Submit Answers

3.2.3.3 Questionnaires

The Propensity to Trust Machines (PtTM) (Merritt et al., 2013): A series of 6
questions where participants rated on a 7-point Likert scale how likely they are to

trust machines.

The Godspeed Questionnaire (Bartneck et al., 2009): Assess human
perceptions of Al across five dimensions: anthropomorphism, animacy,
likeability,perceived intelligence, and perceived safety. Each dimension is rated
using a set of bipolar scales (e.g., from “very human-like” to “not human-like at
all”) on a 5- or 7-point Likert scale. Using disembodied Al, we removed the
animacy and perceived safety sub-section and replaced the term 'robot' with 'Al'

(Supplementary Material 1).

Questions During Each Trial: During each task trial, participants rated which
teammate had influenced their decision-making on a visual analogue scale (Sung
& Wu, 2018) with two endpoints, 'Human' and 'AI'. When participants selected
'Human,' it was assigned a value of 0; if they chose 'Al,' the value was 100.

Participants had the freedom to click anywhere along the scale. For instance, if
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their influence leaned slightly more towards AI than human teammates, they
might press the scale at around 60. This influence rating served as an implicit
measure of trust (Duffy, 2015; McAllister et al., 2006), with more significant
influence indicating higher levels of trust. This implementation is applied to all
sliders on the experimental interface. Participants also provided performance
ratings for the Al and human teammates with two anchoring points of Terrible'
and 'Perfect' after each trial. Finally, participants also rated their confidence in

their answer, with the anchoring points of 'Not At All' and 'Completely'.

3.2.4 Procedure

Participants were instructed to sit at a computer-equipped table. They were
provided with an information sheet explaining the experiment's premise, alongside
a consent form to sign if they found the provided information acceptable. Once
the consent form was signed, participants completed the PtTM Questionnaire
(Merritt et al., 2013).

Following this, participants familiarised themselves with the experiment's
instructions, which were all displayed throughout the experiment setup to ensure
consistency across all participants. They then engaged in a sample trial. The task
entailed participants identifying the location of a screenshot from Google Earth by
specifying the Continent, Country, and City/State of the screenshot. Participants
were designated as team leaders and were tasked with providing the final decision
regarding the location. To assist them in this task, they collaborated with a human
teammate and an Al teammate, both of whom offered answers to aid the
participant in pinpointing the location. At the end of each trial, participants filled in

the four sliders and were then shown the correct answer.

The task spanned three blocks, with each block comprising ten trials, resulting in a
total of 30 different location identifications made throughout the study. Between
each block, there was a 60-second break. Once the experiment was finished,
participants completed the Godspeed Questionnaire (Bartneck et al., 2009), and
we removed the Animacy section as our Al had no embodiment. Participants were
also asked how much they trust the Al. Finally, participants were asked to

determine whether they believed their Al teammate was genuinely an Al and
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whether their human teammate was indeed a human. After this, participants were
provided with a physical debrief explaining the experiment, including using a
Wizard of Oz design, which had contact information for the researcher if

participants decided to withdraw after the experiment.

3.2.5Developing Linear Mixed Model for Analysis

To perform this analysis on the sliders taken on every trial, we utilised linear
mixed models (LMMs) using the Ime4 in R-Studio (Bates et al., 2015). The model
incorporated the following measures: Al performance, human performance,
confidence ratings, and influence ratings. To extract p-values, we used t-tests and
Satterthwaite's method, which was suitable for the 2x2 design. When developing
the model we did implement trial as a random effect but found it had little

variance and reduced the fit of the model.

A linear mixed model extends the traditional linear regression model that accounts
for fixed and random effects (Barr, 2013). This modelling approach is used as
there is variability at different levels of analysis. In the model, we need to identify

two distinct effects, these are:

Fixed Effects: These represent the systematic, predictable relationships between
predictors (reliability and humanness) and the response variable (Al performance,

human performance, trust and confidence ratings).

Random Effects: These capture the variability that arises from different levels of

grouping or clustering in the data.

3.2.5.1 Model Specification

To analyse the impact of reliability and humanness on performance across

different measures, we utilised the following linear mixed model:
Yij = Bo + Birel; + fohum; + B3 (rel; X hum;) + ugpj + ey
In this model, this is the breakdown of each component:
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« y;; Is the response variable for the ith observation of the jth participant.

e B, is the intercept.

o pByrel; is the coefficient for the fixed effect of reliability.

o B,hum; is the coefficient for the fixed effect of humanness.

e Bs(rel; x hum,;) is the coefficient for the interaction between Reliability and

Humanness.

« u,; represents the random effect for participant j, which accounts for the

variation in the intercept across participants.

« e;; is the residual error term for the ith observation of the jth participant.

3.2.5.2 Post-Hoc Analysis

We conducted post hoc analyses using estimated marginal means with the
emmeans package (Lenth, 2024). We applied Tukey’s method for multiple
comparisons to control the family-wise error rate and discover more about the
different interactions between conditions. We used Kenward-Roger method for

degrees of freedom.

3.3 Results

3.3.1 Condition Performance

Across conditions, performance did differ; to assess performance, we focused on
the number of correct answers submitted by the participant. We expected to see a
difference between reliability. However, we also found a difference in humanness
Figure 7 presents the differences. For performance on the location task, the
percentage of correct answers given were HH & HR, 69%, HH & LR, 54%, LH &
HR, 73% and LH & LR, 46%.
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Figure 7. A bar plot illustrating the percentage of correct responses across
reliability and humanness.
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Percentages of correct answers were used to ensure comparability across
participants, as they account for any variations in the number of questions
answered and provide a standardised measure of performance. A two-way ANOVA
was conducted to examine the main effects of Reliability (High, Low) and
Humanness (High, Low), as well as their interaction, on the Percentage of Correct
Answers. The results revealed a significant main effect of Reliability (F(1,40) =
64.63, p < .001). The main effect of Humanness was not significant (F(1,40) =
0.92, p = .344), suggesting that Humanness did not influence the Percentage of
Correct Answers given by participants. There was a significant Reliability x
Humanness interaction, F(1,40) = 5.43,p=.025). The Tukey post-hoc analysis
revealed several significant differences in the percentage of correct answers and

are presented in Table 3.

Table 3. Tukey Post Hoc Analysis for Percentage of Correct Answers Using HSD
P adjustment.

Group One Group Two Diff Lower  Upper P Adjusted
LH:HR HH:HR -14.36 -23.90 -4.83 0.001
HH:LR HH:HR 3.45 -6.08 12.99 0.767
LH:LR HH:HR -22.64 -32.17 -13.10 <0.001
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Group One Group Two Diff Lower  Upper P Adjusted

HH:LR LH:HR 17.82 8.28 27.36 <0.001
LH:LR LH:HR -8.27 -17.81 1.27 0.1093
LH:LR HH:LR -26.09 -35.63 -16.55 <0.001

Note. Bold result indicates significance. Group One and Two refer to the
conditions being compared where High Humanness with High Reliability (HH:HR),
High Humanness with Low Reliability (HH:LR), Low Humanness with High
Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR). These findings
provide support for H1, indicating that higher levels of anthropomorphism and

reliability jointly predicted higher task performance.

3.3.2 Teammate Validity Check

We asked participants if they believed the Al responses to be Al-generated and
human responses to be human; overall, 93% believed the Al to be AI, and 81%
believed the human teammate to be human. This shows that our Wizard of Oz
methodology was successfully implemented, and participants believed they were

working with an AI and a human teammate.

3.3.3 Descriptive Statistics

This section provides an overview of the means and standard deviations within the
data for Confidence, Influence, Al Performance, and Human Performance. These
statistics are reported for high and low reliability and humanness. displays the

information.

Table 4. Descriptive Statistics for AI & Human Performance Ratings, Influence
and Confidence Ratings.

Measure Reliability Humanness M SD

Al Performance Low Low 74.95 19.44
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High 76.95 15.19

Low 87.16 11.64
High

High 79.00 14.00

Low 71.40 18.64
Low

High 73.13 17.44

Human Performance

Low 77.24 14.71
High

High 72.40 16.19

Low 61.51 27.73
Low

High 65.20 22.31

Influence

Low 76.84 20.70
High

High 68.84 21.62

Low 65.35 19.88
Low

High 69.70 18.23

Confidence

Low 79.63 16.91
High

High 70.73 20.18

3.3.4 Propensity to Trust Questionnaire

A Pearson's product-moment correlation was conducted to assess the relationship

between participants' mean trust ratings of AI and their mean propensity to trust

ratings. The correlation was not statistically significant, r(39) = 0.13, p = 0.42.
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3.3.5 Influence (Implicit Trust) Ratings

The analysis revealed no significant main effect of reliability, B=—3.56, SE=3.87,
t(38.57)=-0.92, p=.363, suggesting that Reliability did not significantly affect
trust ratings. There was no significant difference for humanness, f=7.67,
SE=3.96, t(38.60), p=.0603. The interaction between reliability and humanness
was significant, B=-11.68, SE=5.56, t(39.06)=-2.10, p=.0421, suggesting that
the effect of reliability on trust ratings depended on the level of humanness.

Figure 8 visualises these findings.

Figure 8 - A Boxplot showing the differences in Trust ratings based on
Reliability and Humanness
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3.3.5.1Post Hoc Comparisons

The post-hoc analyses are presented in Table 5 and revealed several significant
differences between conditions. Specifically, there was a significant difference
between Low Reliability, High Humanness and High Reliability, Low Humanness (p
= 0.0353), with Low Reliability, High Humanness resulting in lower influence
ratings. Additionally, the comparison between High Reliability, Low Humanness
and Low Reliability, Low Humanness showed a significant difference (p = 0.0026),
with High Reliability, Low Humanness yielding higher influence ratings than Low
Reliability, Low Humanness. These results indicate that influence ratings were
impacted by the interaction of reliability and humanness, with higher reliability and

lower humanness leading to better performance.
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Table 5. Post Hoc Analysis for Trust Ratings

Group One Group Two B SE df t value p.value
HH:HR HH:LR 3.56 3.87 38.4 0.92 0.7941
HH:HR LH:HR -7.67  3.96 38.4 -1.935 0.2306
HH:HR LH:LR 7.57 3.9 39.3 1.942 0.2276
HH:LR LH:HR -11.23  3.96 38.4 -2.833 0.0353
HH:LR LH:LR 4.02 3.9 39.3 1.029 0.7334
LH:HR LH:LR 1524 4 39.3 3.813  0.0026

Note. Bold result indicates significance. Group One and Two refer to the

conditions being compared where High Humanness with High Reliability (HH:HR),

High Humanness with Low Reliability (HH:LR), Low Humanness with High

Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR).

This significant interaction effect provides direct support for H2.

3.3.6 AI Performance Ratings

The analysis revealed a significant main effect of humanness, 3=8.2, SE=3.88,

t(35.52)=2.1, p=.047, indicating that AI performance ratings were higher in the

Low Humanness condition than in the High Humanness condition. However, the
main effect of reliability was not significant, f=-5.89, SE=4.12, t(35.52)=-1.43,
p=.162. The interaction between reliability and humanness was also non-
significant, f=-9.50, SE=5.61, t(38.70)=-1.70, p=.099. Figure 9 visualises these

findings.
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Figure 9 A Boxplot showing the differences in AI Performance ratings based on
Reliability and Humanness
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3.3.6.1Post Hoc Comparisons

The post-hoc comparisons are presented in Table 6 and revealed a significant
difference (p = 0.0325) between High Reliability, High Humanness and High
Reliability, Low Humanness, with High Reliability and Low Humanness yielding

higher AI performance ratings. However, other contrasts were not significant.

Table 6. Post Hoc Analysis for AI Performance Ratings

Group One Group Two B SE df t value p.value
HH:HR HH:LR 2.03 3.92 38.8 0.517  0.9545
HH:HR LH:HR -8.23  4.02 38.8 -2.05  0.1877
HH:HR LH:LR 3.3 3.93 39.2 0.84 0.8352
HH:LR LH:HR -10.26  4.02 38.8 -2.555 0.0671
HH:LR LH:LR 1.27 3.93 39.2 0.324 0.988

LH:HR LH:LR 11.53  4.03 39.2 2.864  0.0325

Note. Bold result indicates significance. Group One and Two refer to the

conditions being compared where High Humanness with High Reliability (HH:HR),
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High Humanness with Low Reliability (HH:LR), Low Humanness with High
Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR).

This result aligns with H3, confirming that anthropomorphic AI was perceived as

higher-performing despite identical accuracy levels.

3.3.7 Human Teammate Performance Ratings

The analysis revealed no significant main effect of reliability, =0.70, SE=3.62,
t(385.79)=0.19, p=.847, nor a significant main effect of humanness, =4.93,
SE=3.71, t(38.82)=1.33 p=.191. The interaction between reliability and
humanness was also non-significant, =-6.80, SE=5.19, £(39.07)=-1.31,
p=.197.These findings suggest we can reject H4 as there was no significant

difference between conditions.

3.3.8 Confidence Ratings

The analysis revealed no significant main effect of reliability, B=—0.91, SE=4.56,
t(38.19)=-0.20, p=.845. The effect of humanness was insignificant, 3=8.81,
SE=4.67, 1(38.19)=1.89, p=.060. The interaction between reliability and
humanness was not significant, B=—12.13, SE=6.54, t(38.40)=-1.85, p=.071.
These findings suggest we can reject H5 as there was no significant difference

between conditions.

3.3.9 The Godspeed Questionnaire — Expletory Results

At the end of the experiment participants took part in the Godspeed
Questionnaire, initially this was to gage feedback on the Al, however we then saw
an opportunity to analyse this data further to gain deeper understanding of our
results. Our study conducted two-way ANOVAs with interactions for each
subsection of The Godspeed Questionnaire. The dependent variables
encompassed Anthropomorphism, likeability, perceived intelligence, and perceived
safety, while the independent variables included assigned reliability and
humanness levels. We use ANOVAs in this context because each participant

provides only a single rating, eliminating the need to account for within-subject
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variability that LMMs typically address. Figure 10 is a bar chart illustrating these
results.

Figure 10. Mean Godspeed Ratings for Anthropomorphism, Likeability, and
Perceived Intelligence by Humanness and Reliability.
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3.3.9.1 Anthropomorphism

We conducted a two-way ANOVA with interactions to investigate participants'
Anthropomorphism ratings of Al. The dependent variable was the
anthropomorphism ratings given during the experiment, while the independent
variables were the assigned reliability and humanness levels. The analysis
revealed a significant difference in anthropomorphism ratings based on
humanness levels (F(1, 40) = 15.49, p < 0.001).

A Tukey HSD post hoc test (Table 1) revealed significant pairwise differences
among the groups. The results in Table 4 show the mean differences, 95%
confidence intervals, and adjusted p-values using the Tukey HSD method for these

comparisons.

Table 7 - Tukey Post Hoc Analysis for Anthropomorphism Ratings Using HSD P
adjustment.

Group One  Group Two  Mean Difference Lower  Upper P Adjusted

103|Page



LH:HR HH:HR -0.836 -1.948  0.276 0.199

HH:LR HH:HR 0.145 -0.967  1.257 0.985
LH:LR HH:HR -1.327 -2.439 -0.215 0.014
HH:LR LH:HR 0.982 -0.130 2.094 0.100
LH:LR LH:HR -0.491 -1.603  0.621 0.641
LH:LR HH:LR -1.473 -2.585 -0.361  0.005

Note. Bold result indicates significance. Group One and Two refer to the
conditions being compared where High Humanness with High Reliability (HH:HR),
High Humanness with Low Reliability (HH:LR), Low Humanness with High
Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR).

3.3.9.2 Likeability

We conducted a two-way ANOVA with interactions to investigate participants'
likeability ratings of AI. The dependent variable was the likeability ratings given
during the experiment, while the independent variables were the assigned
reliability and humanness levels. The analysis revealed a significant difference in
humanness (F(1, 40) = 11.98, p < 0.001).

A Tukey HSD post hoc test (Table 2) revealed significant pairwise differences
among the groups. The results in Table 5 show the mean differences, 95%

confidence intervals, and adjusted p-values for these comparisons.

Table 8 - Tukey Post Hoc Analysis for Likeability Ratings Using HSD P
adjustment.

Group One Group Two Mean Difference Lower Upper P Adjusted

LH:HR HH:HR -0.545 -1.362 0.271  0.293

104 |Page



HH:LR HH:HR -0.055 -0.871 0.762  0.998

LH:LR HH:HR -1.000 -1.817 -0.183 0.011
HH:LR LH:HR 0.491 -0.326 1.307 0.384
LH:LR LH:HR -0.455 -1.271 0.362 0.452
LH:LR HH:LR -0.945 -1.762 -0.129 0.018

Note. Bold result indicates significance. Group One and Two refer to the
conditions being compared where High Humanness with High Reliability (HH:HR),
High Humanness with Low Reliability (HH:LR), Low Humanness with High
Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR).

3.3.9.3 Perceived Intelligence

We conducted a two-way ANOVA with interactions to investigate participants'
intelligence ratings of Al. The dependent variable was the intelligence ratings
given during the experiment, while the independent variables were the assigned
reliability and humanness levels. The analysis revealed a significant difference by
reliability (F(1, 40) = 10.26, p < 0.01) and interactions (F(1, 40) = 4.41, p <
0.05). A Tukey HSD post hoc test (Table 9) revealed significant pairwise

differences among the groups.

Table 9 - Tukey Post Hoc Analysis for Perceived Intelligence Ratings Using HSD
P adjustment.

Group One  Group Two Diff Lower Upper P Adjusted
LH:HR HH:HR 0.036  -0.588 0.660 0.999
HH:LR HH:HR -0.182  -0.806 0.442 0.863
LH:LR HH:HR -0.836 -1.460 -0.212 0.005
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HH:LR LH:HR -0.218 -0.842 0.406 0.785

LH:LR LH:HR -0.873  -1.497 -0.249 0.003

LH:LR HH:LR -0.655 -1.278 -0.031 0.037

Note. Bold result indicates significance. Group One and Two refer to the
conditions being compared where High Humanness with High Reliability (HH:HR),
High Humanness with Low Reliability (HH:LR), Low Humanness with High
Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR).

3.3.9.4 Trust Ratings

To gather more insight into the feelings and attitudes of participants, we directly
asked them how much they trusted the AI on a scale of 'Not at All' to '‘Completely’
at the end of the experiment, where a higher rating indicates a higher level of
trust in the AI. We then completed an ANOVA on the results. The results indicate
a significant main effect of reliability on trust ratings (F(1,40) = 11.984, p =
0.001). The main effect of humanness was not significant (F(1,40) = 3.288, p =
0.078). Table 10 summarises the results of Tukey's HSD posthoc test. The test
examined pairwise differences in trust ratings between different levels of

Humanness and Reliability.

Table 10 - Tukey Post Hoc Analysis for Trust Ratings Using HSD P
adjustment.

Group One Group Two Diff Lower Upper P Adjusted
LH:HR HH:HR -2.664  -1.045 1.045 1.000
HH:LR HH:HR -0.455 -1.500 0.591 0.652
LH:LR HH:HR -1.455 -2.500 -0.409 0.003
HH:LR LH:HR -0.455 -1.500 0.591 0.652
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LH:LR LH:HR -1.455 -2.500 -0.409 0.003

LH:LR HH:LR -1.000 -2.045 0.045 0.065

Note. a Bold result indicates significance. Group One and Two refer to the
conditions being compared where High Humanness with High Reliability (HH:HR),
High Humanness with Low Reliability (HH:LR), Low Humanness with High
Reliability (LH:HR), Low Humanness with Low Reliability (LH:LR).

3.4 Discussion

3.4.1 Overview

This study explored the effects of anthropomorphism and system reliability on
trust, performance, and confidence within HATs, guided by five main hypotheses.
Specifically, we examined how anthropomorphism and reliability jointly influence
actual performance, trust ratings, perceived Al performance, human teammate
performance perceptions, and team decision-making confidence. Participants
trusted the anthropomorphised AI systems more when reliability was low. This
preference indicates that human-like attributes can cushion the adverse effects of
unreliable AI on trust. Conversely, when reliability was high, less anthropomorphic
AI systems were rated higher in performance, suggesting that technical

proficiency can overshadow the need for human-like characteristics.

3.4.2 Anthropomorphism, Reliability, and Task Performance

The results related to actual task performance showed a nuanced interaction
between anthropomorphism and reliability, partially supporting H1. Although
higher reliability significantly predicted better task performance,
anthropomorphism alone did not produce significant main effects. However, the
interaction trend suggests anthropomorphic cues could subtly enhance task
performance outcomes when paired with reliable systems, emphasizing the joint

importance of technical proficiency and human-like design.

107 |Page



3.4.3 Trust: Interaction between Anthropomorphism and
Reliability

Our findings provided support for H2, confirming a significant interaction between
anthropomorphism and reliability. Participants exhibited higher trust towards
anthropomorphic Al systems, particularly under low-reliability conditions. This
aligns with prior research suggesting that Anthropomorphism helps bridge the
cognitive and emotional gap between human users and Al systems (Gambino et
al., 2020; Nass et al., 1996). By fostering a sense of familiarity and relatability,
anthropomorphic design may encourage team members to view the AI as a more

integrated team player rather than a purely functional tool.

However, while anthropomorphic design increased trust, it was less impactful
under high-reliability conditions. In these cases, anthropomorphic AI may add
cognitive load, potentially reducing interdependency as users must carefully
interpret the AI's responses (Ddppner et al., 2019; Zhou et al., 2017). Simplified,
non-anthropomorphic responses appear to enhance trust by minimising
interpretive effort. Ethically, these findings underscoring the importance of
transparency in Al design. When anthropomorphic cues foster higher trust in low-
reliability systems, users might over-rely on the Al, a concern that highlights the
ethical need to communicate Al's limitations, fostering informed trust rather than
blind reliance (Binns et al., 2018; Floridi et al., 2018).

3.4.4 AI and Human Teammate Performance Perceptions

H3 predicted anthropomorphic Al would consistently receive higher perceived
performance ratings, independent of reliability. However, results revealed an
opposite effect: anthropomorphic Al was associated with lower performance
ratings, especially under low-reliability conditions. These findings suggest that
while anthropomorphic design can increase perceived trustworthiness, it may
inadvertently lead to heightened expectations for Al performance. When these
expectations are unmet, users may be more critical of the Al's abilities. The
finding echoes concerns about anthropomorphic priming, where users attribute
human capabilities to Al based on its anthropomorphic features, potentially

leading to unrealistic performance expectations (Duffy, 2003; Zhang & Rau,
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2022). These results suggest that designers must carefully balance
anthropomorphic cues to enhance trust without inadvertently overloading the Al

with unachievable user expectations.

Ethically, this also raises questions about misrepresentation in anthropomorphic
Al. Overly human-like features could mislead users into expecting higher decision-
making accuracy, especially in critical settings like healthcare or finance. Ethical Al
design must ensure that anthropomorphic cues do not misrepresent the Al’s
capabilities, thereby preserving user autonomy and accurate perception of Al's
role (Weisman & Pefa, 2021; Coeckelbergh, 2020).

Our study explored whether human teammate performance perceptions would
increase alongside perceived Al performance (H4). However, this hypothesis was
not supported by the data; no significant relationship was found between
participants' evaluations of human teammate performance and their perceptions
of Al performance. This suggests that participants may independently assess
human and Al teammates, despite previous expectations of integrated
performance perceptions. Future research might further investigate conditions

under which AI and human teammate evaluations become interconnected.

3.4.5 Confidence in Decision-Making and Anthropomorphism

Regarding decision-making confidence, the results show we can reject H5. Whilst
participants tended to report higher confidence levels when collaborating with
anthropomorphic Al, particularly under low-reliability conditions, this difference did
not reach statistical significance. This trend aligns with established research
showing that anthropomorphised Al enhances user engagement and trust (Waytz
et al., 2014; de Visser et al., 2016). There is a chance that the results did not
reach significance due to a smaller sample size and a smaller effect size. In the
future it is important to develop this findings to learn more about the role of
reliability confidence in AI, when Anthropomorphism is low, to support the
literature emphasising the importance of accuracy and predictability for trust in Al
systems (Kaur et al., 2022; Lu et al., 2022).

109|Page



3.4.6 System Reliability

Reliability emerged as a central predictor of trust, with low-reliability Al
consistently receiving lower trust ratings. This finding corroborates previous work
suggesting that the transparency and predictability of an Al system are crucial for
building user trust (Kaur et al., 2023). The high-reliability condition facilitated
greater participant confidence in the AI's recommendations, even when
anthropomorphic qualities were low, demonstrating that a strong reliability
baseline can mitigate the need for anthropomorphic attributes. This implies that,
particularly in high-stakes environments, reliable performance may be more
effective in building trust than human-like design alone. These findings support
the notion that trust in HATs comprises both interpersonal trust (based on human-
like traits) and system trust (grounded in the AI's technical robustness) (Lewicki &
Bunker, 1996).

These findings highlight the importance of designing Al systems prioritising
approachability and consistency, especially when the AI will be used in settings
where user autonomy and decision-making are paramount. Ethically, reliance on
reliability and transparency is critical in preventing overreliance on
anthropomorphic features alone. Users should be encouraged to apply their
judgment, especially when interacting with Al in variable-reliability environments,
helping them balance trust and scepticism effectively (Coeckelbergh, 2020;
Mittelstadt et al., 2016).

3.4.7 Team Dynamics

Our findings indicate that Anthropomorphism may also positively influence team
dynamics by fostering a more intuitive interaction style. High-humanness Al
received higher ratings in perceived likeability, which could contribute to more
seamless and cooperative teamwork. The increase in likeability aligns with
previous research indicating that anthropomorphic AI may encourage open
communication and improve team cohesion by mimicking human social cues
(Chen & Park, 2021). It also suggests that human-like attributes enhance the
overall user appeal of Al, making it a critical factor in fostering positive user

experiences and interactions. Higher levels of anthropomorphism combined with
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reliability led to perceptions of greater perceived intelligence, highlighting that
while human-like characteristics are essential, they interact with AI proficiency to

shape users' views of an Al system's intelligence.

3.4.8 Limitations and Future Research

This study has some limitations. The experimental design controlled
anthropomorphic features and reliability levels, which, while necessary for isolating
effects, may not fully reflect real-world Al integration into teams, where reliability
can fluctuate unpredictably. Additionally, the experimental duration may not
capture long-term trust dynamics, which are crucial for understanding how trust
evolves over sustained collaboration. Future research could investigate these
dynamics in real-world, longitudinal settings and explore other dimensions of
social intelligence in Al, such as adaptive humour or empathy, to understand their

effects on team trust and performance.

Furthermore, while this study focused on implicit trust measures, combining them
with more explicit attitudinal data could provide a deeper understanding of users'
nuanced perceptions of Al teammates. Expanding research to explore the
Uncanny Valley's boundary conditions would also clarify how developers can
implement Anthropomorphism before it negatively impacts trust. These directions
would build upon this study's findings, enhancing our understanding of optimising

HAT dynamics through Al design choices.

3.4.9 Conclusion

This chapter provides key insights into the complex interplay between
anthropomorphism and reliability in HATs. While anthropomorphism enhances
user engagement and likeability, especially when Al reliability is low, it must be
carefully balanced with technical competence. High reliability remains fundamental
to fostering confidence, underscoring the importance of performance accuracy
regardless of human-like attributes. The results of The Godspeed Questionnaire
further show that anthropomorphism impacts perceptions of intelligence,
likeability, and overall trust, suggesting that AI design requires a nuanced

approach.
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Our findings also underscoring the ethical importance of transparency and
accountability. While human-like attributes can foster trust and engagement, they
should support, not replace, perceptions of reliability. In lower-reliability scenarios,
anthropomorphism becomes essential for maintaining user trust, but it should not
lead to misrepresentation or over-reliance. Clear communication of Al limitations is
critical in addressing trust issues stemming from low reliability, and training users
to understand Al capabilities and boundaries is essential for effective decision-

making in HATSs.

In summary, these findings reveal the nuanced role of anthropomorphism and
reliability in shaping trust dynamics in HATs. They suggest that human trust in Al
fluctuates based on perceived humanness and reliability, with implications for
designing Al to foster affective and cognitive trust. Furthermore, the
characteristics of Al significantly influence team cohesion and teammate
evaluations, highlighting the potential for Al to shape perceptions of team
dynamics and contributions. These insights reinforce the need for Al systems that

balance humanness and reliability to optimise teamwork.

Chapter Four will build on these insights, exploring the use of emojis as a tool to
enhance social intelligence and increase Al's emotional intelligence. This could
further contribute to Al's role in fostering trusted, collaborative relationships within
HATSs.
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Chapter 4 The Effect of Emojis and Al
Reliability on Team Performance and Trust in
Human-AI Teams

The rapid advancements in Al are significantly transforming sectors such as
healthcare, cybersecurity, and digital forensics, where Al excels in data analysis,
precision, and sustained cognitive tasks. However, human intelligence,
characterised by creativity, critical thinking, emotional intelligence, and problem-
solving, complements Al's strengths. Combining these capabilities, Hybrid
Intelligence (HI) has emerged as a valuable framework. HATs capitalise on HI by
merging the best human and machine capabilities, enabling more comprehensive
decision-making and problem-solving (Kamar, 2016; Williams et al., 2022). This
chapter explores how emojis as emotional cues from Al teammates impact trust,

performance, confidence within HATs, and attitudes toward human teammates.

In Chapter 3, we found that while anthropomorphic features can enhance trust in
Al, this effect is heavily influenced by the AI's reliability. The present chapter
extends this analysis by investigating whether emojis, a nonverbal, affective cue,
can serve as another means to calibrate trust in varying reliability conditions.
Emojis provide a direct, accessible means of conveying emotional states in digital
communication, raising the question of whether similar cues from AI might
facilitate better trust calibration in HATSs, particularly in instances where reliability
is variable. Through an experimental approach, this study explores whether emojis
can mitigate trust issues in low-reliability AI teammates or strengthen engagement
with high-reliability systems. This work was presented at the Multidisciplinary
Perspectives on Human-Al Team Trust Workshop at HAI23 and from this I was
invited to be a guest editor on a MULTITTRUST Special Edition at the Journal of
Interaction Studies where I was invited to submit this as a journal paper and it is

currently under review.

4.1 Introduction

Integrating Al into collaborative decision-making has transformed healthcare,
cybersecurity, and digital forensics industries. HATs exemplify this transformation

by leveraging the complementary strengths of humans and Al. AI contributes
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computational precision and the ability to process large datasets, while humans
bring creativity, ethical judgment, and adaptability to nuanced decision-making
tasks. HI, can outperform human or Al capabilities alone by merging these distinct
strengths (Kamar, 2016; Williams et al., 2022). However, achieving the full
potential of HATs hinges on overcoming key challenges, particularly around trust,

reliability, and communication within these teams.

The dynamics of trust in HATs are critical yet complex. Trust calibration, which
balances reliance and scepticism, is essential for effective collaboration (de Visser
et al., 2020). Low trust can lead to underutilisation of Al's capabilities, while blind
trust increases the risk of errors when Al reliability falters. While system reliability
is a foundational driver of trust, relational factors like communication style and
emotional engagement also significantly shape user perceptions (Bansal et al.,
2019; Kaur & Sharma, 2021). Building on these insights, this chapter explores the
novel use of emojis as affective cues from Al to facilitate trust calibration in HATs,

particularly in contexts of variable reliability.

In this introduction, we will explore the role of HATs in leveraging the
complementary strengths of humans and Al, focusing on the critical role of trust
and reliability in these collaborations. We will examine how emojis, as affective
cues, can influence trust calibration and team dynamics. This discussion will
provide the foundation for the study's hypotheses, investigating the impact of

emojis on trust, performance perceptions, and decision-making in HATS.

4.1.1 Human-AI Teams: Bridging Human Expertise and AI
Precision

HATSs are a practical embodiment of HI. By blending the computational precision
of AI with the adaptability and contextual understanding of humans, HATs have
transformed industries reliant on decision-making under complexity. For instance,
in digital forensics, human investigators leverage Al for tasks such as data
processing, pattern recognition, and geolocation, allowing them to focus on
contextual analysis and ethical decision-making. This collaboration enhances the
speed and accuracy of investigations, making it possible to trace cyberattack

origins and combat threats with unprecedented efficiency (Costantini et al., 2019).
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Similarly, the medical field benefits from AI-augmented diagnostics, where
integrating computer-aided tools improves patient care and sparks further interest

in understanding the nuances of human-AlI collaboration (Kunar & Watson, 2023).

Rix (2022) identifies four essential drivers for building successful HATs. First, HATs
require at least one human and one AI team member, with much of the existing
research focused on relatively simple configurations. As the number of team
members increases, so does the complexity of human-Al social dynamics (Liang et
al., 2019). Second, establishing a shared and valued goal among all team
members, human or Al, is critical to fostering cohesion and collaboration (Chai et
al., 2017; McNeese et al., 2018). Third, interdependency among team members
ensures that outcomes are mutually influenced, though disproportionate benefits
may lead to tension or conflict (Chiou et al., 2019). Incentives for collaboration,
paired with the cognitive relief provided by AI's support, can promote
interdependency and cooperation (D6ppner et al., 2019). Finally, defining roles
based on each member's unique strengths enhances synergy. Even when roles are
not unique, clear role delineation remains a cornerstone of successful teamwork
(Oh et al., 2018).

While these drivers provide a useful framework, the intricacies of HAT dynamics
require further investigation. For instance, challenges often arise when delegating
tasks between humans and AI (Fligener et al., 2022; Pinski et al., 2023),
particularly when Al is designed to resemble human teammates. Research shows
that humans are often unreceptive to Al in positions of authority, such as a
“humanised Al boss”, which complicates team structures and goal alignment (Yam
et al., 2022). Additionally, in larger teams, where multiple humans collaborate with
a single AI teammate, the AI may function more as a tool than an equal partner,
further emphasising the need to explore diverse configurations and team
dynamics (Schelble et al., 2022).

4.1.2 Navigating Complexity in HAT Dynamics

Several studies highlight the complex variables in HATs, underscoring the need for
careful trust calibration. Interestingly, when paired with transparency, low-

confidence Al can improve team performance by helping humans form accurate
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mental models of the Al's capabilities and limitations (Bansal et al., 2021). This
enables human teammates to anticipate potential Al errors, adapt their
behaviours, and foster more effective collaboration (Bansal et al., 2019).
Conversely, research reveals that humans often treat Al teammates differently

than human counterparts, impacting team dynamics.

A recent scoping review by Berretta et al. (2023) emphasises the importance of
adopting a human-centric, socio-technical approach in designing HATs. This
perspective shifts Al's role from a passive tool to an active teammate, considering
both the technical capabilities of Al and the relational needs of human team
members. Despite advancements in HAT research, gaps remain, particularly in
understanding the impact of complex team dynamics, performance variables, and
user-centered designs. Addressing these gaps is critical to advancing trust

calibration strategies and ensuring that HATs operate as cohesive, effective teams.

This chapter builds on these insights by investigating the role of emojis as
affective cues in HATs. Emoijis offer a lightweight and accessible way to humanise
Al interactions, potentially enhancing relational trust while supporting trust
calibration. By exploring how emojis influence perceptions of trust, performance,
and team dynamics, this research contributes to the broader goal of designing
emotionally intelligent AI systems capable of fostering meaningful collaboration in
HATSs.

4.1.3 Performance and Reliability

When creating HATs, the performance and reliability of the Al system can also be
crucial when trying to obtain peak performance. A logical approach towards
designing HATSs is that the better the performance and reliability of an AI system,
the more successful the team will be. However, this is incorrect (Bansal et al.,
2021; Bansal et al., 2019). Research has found that whilst performance is
essential, high system performance does not directly result in better HAT
performance; it would appear that better outcomes are present from antecedents
such as explainability and clarity (Endsley, 2023; Guidotti et al., 2018; Kim et al.,
2023; Ribeiro et al., 2016).
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It is also essential for Al developers to keep the rest of the team in mind when
developing updates for an Al embedded in a team. Research has shown that HAT
performance can drop dramatically after an Al system receives an update due to
the other team members learning where the Al has strengths and weaknesses
(Bansal et al., 2019; Bansal et al., 2019). When updates are made without
updating the AI, the whole team's performance can dip as the users no longer
know how to interact with it. When implementing updates, any changes in
performance and reliability must be explicitly explained to other team members so

interactions remain successful.

Finally, the research has indicated that it is possible to mediate the reliability of Al
by manipulating other features of the Al. Research has shown that when
anthropomorphising Al, users can find Al to be more likeable and rate its
performance as being higher than it truly is (de Visser et al., 2016; Kulms & Kopp,
2019). The previous chapter demonstrated that anthropomorphism can buffer
against the detrimental effects of low reliability, helping maintain user trust.
However, the same anthropomorphic features could increase cognitive load and
reduce efficiency in high-reliability scenarios, as participants expended more effort
interpreting the Al's human-like responses. These findings underline that the
interplay between performance, reliability, and user perceptions is highly context-
dependent, with trust calibration emerging as a pivotal factor in aligning human

expectations with Al capabilities.

4.1.4 Human-AI Teams and the Role of Trust

Despite their promise, HATS' success depends on fostering effective collaboration
and trust. Trust calibration, balancing reliance on Al and healthy scepticism, is
crucial for optimal team performance (de Visser et al., 2020). Too high trust can
lead to over-reliance, resulting in complacency and potential errors when Al
systems falter. Conversely, insufficient trust can cause users to underutilise Al,

limiting its potential contributions (Kamar, 2016).

Trust is a complex concept; many researchers have different approaches and
definitions (Ulfert et al., 2023). For this introduction and the rest of the

experiment, we define trust as a willingness to be vulnerable where there is a risk.
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We approach trust from an organisational team perspective and a trust in
Al/technology approach, and these were considered when discussing relevant

literature and selecting the measures.

Research emphasises the dual dimensions of trust in HATs: system trust, based on
the reliability, predictability, and explainability of Al, and interpersonal trust, which
derives from relational factors such as likability and emotional engagement (Jacovi
et al., 2021; Schmidt et al., 2020). For example, in team settings, high Al
reliability often fosters confidence, but this trust is amplified when users perceive

the Al as approachable and responsive to their needs (Bansal et al., 2019).

While trust calibration is essential, achieving it is challenging due to the “black-
box” nature of many Al systems, where decision-making processes are opaque
and complex to interpret (Guidotti et al., 2018)). Moving toward explainable Al
(XAI) methods has shown promise in enhancing transparency, but these efforts
often neglect emotional and social dynamics that also influence trust. One
approach that could improve trust calibration is to design Al with elements of
Emotional Intelligence (EI) (Salovey & Mayer, 1990). EI involves perceiving
emotions accurately, regulating emotions, and utilising emotional information to
navigate social interactions and make thoughtful decisions, and it can increase
human team performance (Ghosh et al., 2012; C. Lee & Wong, 2019).

Designing AI with a sense of EI is a very complex task as it involves designing Al
that can regulate its own emotions and detect and react appropriately to other
teammates' emotions. Despite this challenge, it could be an asset for developing
successful HATs. Adding affective cues like emojis may help bridge this gap by

creating more intuitive and human-like interactions that build relational trust.

4.1.5 Emojis

Emojis can be a significant factor in enhancing EI within professional settings
involving HATs. Emojis facilitate more intuitive and emotionally responsive
interactions between humans and Al by enabling Al to convey emotional states.
This not only fosters trust and engagement but also allows Al systems to better
interpret and respond to users' emotional cues, promoting more cohesive and
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cooperative team dynamics (Ahanin & Ismail, 2022; Beattie et al., 2020; Fadhil et
al., 2018; Hamza, 2016).

Research has demonstrated the potential of emojis to function as affective signals
that bridge the gap between human and Al teammates. For example, studies on
platforms like Twitter have shown that emojis can model and infer affective states
based on usage patterns (Ahanin & Ismail, 2022). In the context of HATS, such
capabilities could facilitate bi-directional emotional intelligence, where human and
AI teammates gain insights into each other's affective states, enabling more
effective collaboration. By integrating emojis into Al systems, designers could
create more natural interactions that align with users' emotional needs, potentially

reducing frustration and increasing satisfaction in collaborative tasks.

Expanding the focus to health-related applications, the research underscores the
value of emojis in improving user experiences and fostering trust in AI-mediated
interactions. For instance, chatbots that inquire about users' mental well-being
have achieved higher ratings for user enjoyment, attitude, and confidence when
emojis are incorporated into their responses (Fadhil et al., 2018). Notably,
messages containing emojis from chatbots are rated as trustworthy and credible
as those from human senders, illustrating the potential of emojis to humanise Al
interactions (Beattie et al., 2020). In addition, human and AI senders using emojis
are perceived as more socially appealing, competent, and credible in computer-
mediated communication than those relying solely on text-based messages
(Beattie et al., 2020).

These findings suggest that emojis can be pivotal in humanising AI, enhancing its
perceived emotional intelligence while maintaining clarity and simplicity. In the
professional domain, these benefits translate to more engaging and productive
collaborations, as users are more likely to trust and rely on Al systems that

demonstrate social and emotional awareness.

The type of emojis used and the timing of their deployment are critical variables.
Positive emojis, such as smiley faces, may foster warmth and rapport, while

neutral or task-specific emojis may better maintain professionalism in more formal
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settings. Research has yet to fully explore how users interpret different emoijis in
collaborative HAT environments, suggesting a need for more nuanced studies that
investigate how affective signals interact with trust, performance, and team

dynamics.

4.1.6 Aims of Current Study

The current study aims to investigate the influence of emojis in Al responses on
the decision-making process, perceived performance of the Al, and overall trust in
HATs. The study seeks to address gaps in the existing literature, exploring the
nuanced dynamics of trust calibration and teaming in HATs. From the existing

literature, we propose the following hypotheses:

H1: The use of emojis will lead to improved actual task performance by

participants.

H2: The use of emojis by AI teammates will result in significantly higher trust

ratings compared to conditions in which no emojis are used.

H3: The use of facial emojis will elicit greater trust from participants than the use

of icon-based emojis or no emoajis.

H4: Emoji use will increase perceived teammate performance ratings, with this

effect being particularly pronounced under low-reliability conditions.

H5: The use of emojis will increase Godspeed Perceptions of the Al

4.2 Methods

4.2.1 Participants

A total of 43 participants were involved in the study. The mean age of the
participants was 23.12 years (SD = 3.26). The sample included two genders: 17
participants identified as female, and 26 identified as male. Participants reported a
variety of occupations. Most participants were students (n = 26), with the

remaining being in a mix of full-time employment (n = 17). Participants
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represented diverse backgrounds consolidated into broader categories. The
majority identified as white (n = 30), followed by Asian (n = 5), Black (n = 6) and
mixed race (n = 2). The study received full ethical clearance from the MVLS Ethics
Committee (application: 200220361) at the University of Glasgow. All participants
were compensated with an Amazon voucher for participating in the study; the
amount varied on the time taken to complete the study, but the rate was £6p/h

pro rata.

4.2.2 Study Design

This study employed a mixed between-within-subjects design (2x3 configuration)
to examine participants' trust in an AI and a human teammate under varying
reliability and emoji conditions. Participants were randomly assigned to one of two
reliability conditions for the Al teammate: High Reliability (90%) or Low Reliability
(60%), with a human teammate consistently exhibiting Low Reliability (30%).
Participants were exposed to three emoji modalities within these groups across
three blocks: Face Emojis, Icon Emojis, or No Emojis. The order of these blocks

was randomised to control for order effects. Figure 11 shows this design.

Figure 11. The design of the experiment. Participants were randomly assigned
to either High or Low reliability. Participants then experienced a block of each
emoji type or no emoji in a randomised order.

Block One Block Two Block Three
High Reliability Face Emoji Icon Emoji ~ No Emoji

Between (90%)
Group
Low Reliability Face Emoji Icon Emoji ~ No Emoji
(60%)

\ J
|

Within Group
Randomised Order

Participants completed 30 trials, divided into three blocks of 10 trials each. Each
trial required participants to identify a specific geographic location, and the Al and
human teammates provided conflicting responses 95% of the time. Participants
were tasked with evaluating the reliability and performance of both teammates

and making final decisions under time constraints.
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4.2.3 Materials
4.2.3.1 Developing Response Stimuli

We adopted a Wizard of Oz experimental method to ensure efficient development
and optimal control. Participants were led to believe they were collaborating with
both an Al and a human teammate. However, they were interacting with
responses generated by ChatGPT (OpenAl., 2024). The task involved presenting
participants with random locations extracted from Google Earth. They aimed to
determine the continent, country, and city associated with each location.
Responses were created by prompting ChatGPT with instructions such as 1n the
style of a human playing a game of Geoguessr, describe the location of [location
coordinates] including city, country, and continent.' This process was repeated for
all 30 locations. To embed emaojis in the text, we prompted ChatGPT to add these
in the following paragraph: Please add relevant face/icon emojis to this paragraph
of text" In the conditions with emojis present, 5-7 emojis were distributed
throughout the answers. Icon emojis were relevant to the location being guessed,
such as a flag, typical weather and location cues. Face emojis primarily displayed

positive emotions; a few had neutral or sadder expressions. See .

Table 11 for more details.

Table 11 This table shows the different emojis used in the experiment.

Emojis Used

Icon Face
XYY I IO Y ceceteceeees
"'gé‘i’r-:uf({t*‘&joa g'"
e @/l = FOmSEBE VG WA
Y¥eadonEnTldfeel&E
Lz 44 ™ &% = 2R 68 M ¢ N -

A T FRFA FYYIEY EEBE!
Rz e@CrsYalEBO

The difference in the number of face emojis available compared to icon emojis

made a more extensive selection of icon emojis appear. A few descriptions were
edited for brevity to maintain consistency across conditions. Incorrect answers
were generated by selecting locations similar to the correct ones to fit the context
but not wrong, for instance, by referencing languages not associated with the
location. The human teammates' answers were successfully used in a previous
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version of this experiment and were written/edited by the experimenter (Bailey &
Pollick, 2023).

4.2.3.2 Decision-Making Task

The task involved presenting participants with random locations extracted from
Google Earth. Participants were tasked with determining the continent, country,
and city associated with each location, with the final decision resting on the
participant, who assumed the role of the ‘team leader’. The experiment was set up
with the AI and human teammates giving different answers 95% of the time,
meaning the participant had to choose between the teammates each time. The
experiment comprised three blocks, one block with each emoji condition; the
order of the emojis was randomised throughout the experiment to avoid order
effects. A time constraint of 120 seconds per location was enforced, meaning
participants had to rely on their teammates’ responses to submit the location in
time. The introduction of time scarcity as an environmental factor can significantly
impact the outcomes of team tasks, often necessitating rapid decision-making (Hu
et al., 2015; Kelly & Karau, 1999). This constraint could increase reliance on Al,
requiring human teammates to make choices based on implicit attitudes rather
than thoroughly deliberating on the task. To emphasise this factor, we ensured
that the human and Al teammates mainly provided different answers, requiring

participants to choose which teammate they trusted the most.

4.2.3.3 Attention Check

At the start of the experiment, participants were instructed to choose the option
labelled 'A Dog' if they were given a question with the options of 'A dog' or 'A cat’;
a failure of two or more attention checks meant the participants' data would be
removed from the dataset, there were six attention check in total, which were
randomly distributed within the questionnaire data at the end of each block. From

these attention checks, we removed 3 participants (n = 40).
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4.2.3.4 Questionnaires

Propesinty to Trust Machines (Merritt et al., 2013): A series of 6 questions
where participants rated on a 7-point Likert scale how likely they are to trust

machines.

The Godspeed Questionnaire (Bartneck et al., 2009) This questionnaire
assesses human perceptions of Al across five dimensions: anthropomorphism,
animacy, likeability, perceived intelligence, and perceived safety. Each dimension
is rated using a set of bipolar scales (e.g., from “very human-like” to “not human-
like at all”) on a 5- or 7-point Likert scale. As we were using disembodied AI, we

removed the animacy sub-section and replaced the term ‘robot” with ‘Al".

Trust in Automation Questionnaire (Korber, 2019)The Trust in Automation
Questionnaire (TiA) is a self-report survey in which participants rate their
perceptions of an automated system across several dimensions. Participants
respond to a series of statements using a Likert scale (e.g., 1 = strongly disagree
to 5 = strongly agree). The questionnaire evaluates different factors of trust:
Trust, Familiarity, Understanding, Intentions of developers, Reliability of Al and
Propensity to Trust. The ratings from these responses provide insights into how
much trust the participant places in the system, allowing researchers or designers
to assess trust levels and identify areas for improvement in automation design.
We lightly altered the questionnaire to address an Al rather than an automated

system.

Questions During Each Trial: Participants were presented with four visual
analogue scales (Sung & Wu, 2018) with two endpoints on every trial. The first
question asked, “How much do you trust the AI?” with responses ranging from 1
(Not at All) to 7 (Completely), allowing participants to indicate their level of trust
in the AI teammate if their influence leaned slightly more towards Al than human,
they might press the scale at around 6. This implementation was applied to all
sliders on the experimental interface. The second question, “Which teammate
influenced you most?” used a scale from 1 (Human) to 7 (AI) to gauge which
teammate had a more substantial impact on the participant's decision-making.
Participants were then asked, “Please rate the performance of the Human” with
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ratings from 1 (Terrible) to 7 (Perfect), and finally, “Please rate the performance
of the AI” using the same scale, from 1 (Terrible) to 7 (Perfect). Participants had
the freedom to click anywhere along the scale. These scales provided a
comprehensive assessment of participants' trust and perceptions of each

teammate's performance and were completed on every trial of the experiment.

4.2.4 Procedure

Participants accessed the experiment via a link emailed by researchers after
signing up through the university participant pool. The initial link directed
participants to a Qualtrics form containing information about the experiment and a
consent form. Once consent was obtained, participants were provided with a link
to the Pavlovia experiment, where they entered relevant demographic information
and began the experiment. At the start of the experiment, participants completed
the PtTM (PTM) questionnaire (Merritt et al., 2013) to establish a baseline of their
attitudes towards automation. Participants all received the exact instructions,
where the AI and Human teammate were introduced and the task explained,
including attention checks. Participants were made aware that they were the team
leader and had the final decision-making authority. After this, there was an
example trial where participants could learn where to input relevant information
and interact with the interface. Once participants had completed the example trial,
they were warned that the experiment would begin shortly and that they should

email the researcher if they had any questions.

Participants identified 30 locations across three blocks, each comprising ten trials
per block. Each trial included one location and four slider bars, and the
participants were asked to input the city, country, and continent all within 120
seconds. Notably, the Al and human teammates often provided conflicting
answers, challenging participants to choose which teammate they trusted more.
Following each trial, the correct answer was revealed, allowing participants to
assess the performance of the human and AI teammates. The task was designed
to be challenging; previous versions of this experiment have been found to work

efficiently(Bailey & Pollick, 2023). The blocks featured either Face Emojis (&, @),

Icon Emojis ( il , "), or No Emojis, presented in a randomised order to control
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for order effects; between each block, there was a 90-second break so
participants could rest. At the end of each block, participants completed the Trust
in Automation Questionnaire (Koérber, 2019) and the Godspeed questionnaire
(Bartneck et al., 2009), slightly modified to fit the zero-embodiment scenario. The
study concluded with a full debrief, which provided participants with a complete
understanding of the experiment's nature and reminded them of their right to

withdraw if they felt uncomfortable with the Wizard of Oz approach.

4.2.5 Developing the Linear Mixed Model for Analysis

We selected a linear mixed-effects model (LMM) due to its ability to handle a
hierarchical data structure. Our data includes multiple observations (trials) nested
within participants, introducing non-independence. LMMs appropriately account for
this by including random intercepts for participants. LMMs also allow us to model
fixed effects for experimental conditions (emoji type and reliability) while
controlling for individual variability through random effects. The design involves
repeated trust and performance ratings across multiple trials, making LMMs
suitable for capturing within-subject variability. Alternative methods, such as
traditional ANOVA, would not adequately account for participant-level random

variability and could inflate Type I error rates.

To perform this analysis on the AI performance, human performance, trust ratings
and influence ratings taken on every trial and the questionnaires at each block, we
utilised LMMs using the Ime4 in R-Studio (Bates et al., 2015) and used ImerTest
(Kuznetsova et al., 2017) to complete Type III ANOVA with Satterthwaite's
method for degrees of freedom to extract p-values. A linear mixed model extends
the traditional linear regression model that accounts for fixed and random effects
(Barr, 2013). When developing the model we implemented trial as a random effect

but found it had little variance and reduced the model's fit.

4.2.5.1 Model Specification

To analyse the impact of reliability and humanness on performance across

different measures, we utilised the following linear mixed model:
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Yij = Bo + Birel; + fremoji; + B3 (rel; X emoji;) + ug; + e;;

In this model, this is the breakdown of each component:

yij is the response variable for the ith observation of the jth participant.

e f, is the intercept.

e pyrel; is the coefficient for the fixed effect of reliability.

e B,emoji; is the coefficient for the fixed effect of Emoji Type.

e Bs(rel; X emoji;) is the coefficient for the interaction between Reliability

and Emoji Type.

e u,; represents the random effect for participant j, which accounts for the

variation in the intercept across participants.
e ¢ is the residual error term for the ith observation of the jth participant.

4.2.5.2Post Hoc Analysis

To further explore all possible pairwise comparisons and better understand the
interactions between conditions, we conducted post hoc analyses using estimated
marginal means with the emmeans package (Lenth, 2024). We applied Tukey’s

method to control the family-wise error rate during multiple comparisons.

4.3 Results

4.3.1 Condition Performance

Figure 12 illustrates the percentage of correct responses categorised by emoji type
and AI reliability. Across all emoji types, performance is higher in high-reliability
conditions than in low-reliability conditions. Still, the low-reliability condition

matched Al reliability more closely than the high-reliability condition. This data
127|Page



suggests that Al reliability significantly influences accuracy and that face emojis

perform best in highly reliable contexts.

Figure 12. Percentage of Correct Answers Provided by Participants
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A two-way Analysis of Variance (ANOVA) was conducted to examine the effect of
Reliability, Emoji Type and Interactions on the percentage of correct answers. The
main effect of Reliability was significant, with a large difference in the percentage
of correct answers between High and Low Reliability conditions (F(1, 40) =
19.78, p < 0.001). This indicates that participants performed better when
Reliability was high. The main effect of Emoji Type was not significant (F(1.88,
75.25) = 5.89, p = 0.06). The interaction between Reliability and Emoji Type was
also non-significant (F(1.88, 75.25) = 1.80, p = 0.176), indicating that the effect
of Reliability on performance did not differ significantly across Emoji Types. This
finding did not support H1; emoji usage by Al teammates did not significantly

enhance actual participant task performance.

4.3.1.1 Post-Hoc Analysis

Post-hoc comparisons using Tukey’s HSD method were conducted to explore the
differences between groups further, particularly for Reliability and Emoji Type

levels. Pairwise contrasts revealed that participants performed significantly better
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in the high-reliability Face Emoji condition than in the low-reliability Face Emoji
condition (p = 0.01, difference = 11.77%). Performance was also significantly
higher in the high-reliability Face Emoji condition compared to the low-reliability
Icon Emoji condition (p = 0.011, difference = 16.09%), and the reliability Face
Emoji condition outperformed the reliability No Emoji (p = 0.004, difference =
17.19%). No other between-condition comparisons were significant (p > 0.05).

Under low reliability, no significant differences were found between conditions.

4.3.2 Descriptive Statistics

On average, participants took about 41 minutes to complete the experiment (m =
41.7, sd =19.1). Table 12 shows the mean and standard deviation of influence,
trust, Al performance, and human performance ratings taken throughout the

experiment.

Table 12. The Mean and Standard Deviation Score for Trust, Influence and
Performance by Reliability and Emoji Type.

Measure Reliability Emoji Type M SD
Face Emoiji 64.59 15.28
High Icon Emoiji 64.70 14.36
No Emoji 63.37 15.71
Trust
Face Emoiji 64.68 8.67
Low Icon Emoiji 66.03 11.26
No Emoji 65.36 12.39
Face Emoiji 65.39 17.81
Influence High
Icon Emoji 63.82 18.30
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No Emoji 66.69 19.06

Face Emoji 66.22 19.16

Low Icon Emoiji 66.00 19.87

No Emoji 64.53 20.89

Face Emoiji 67.53 15.54

High Icon Emoji 66.13 16.35

No Emoji 66.20 18.31

Al
Performance -

Face Emoiji 72.70 13.87

Low Icon Emoji 72.02 12.89

No Emoji 70.19 13.42

Face Emoji 63.77 15.70

High Icon Emoiji 64.79 13.83

No Emoji 60.19 15.73

Human
Perf

erformance Face Emoji 61.89 10.99
Low Icon Emoji 63.22 10.97

No Emoji 60.96 12.65

4.3.3 Propensity to Trust

Pearson's product-moment correlation assessed the relationship between
participants' mean Propensity to Trust Machines (PtM) (S. M. Merritt et al., 2013)

ratings and the mean Trust in Automation (TiA) (Kérber, 2019) ratings. We found
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a significant positive correlation between the mean propensity to trust rating and
the TiA rating, r(40) = 0.415, t = 2.886, p = 0.006. Figure 13 shows the scatter
plot for the relationship with a line of best fit. The positive correlation suggests
that as participants' mean PtM rating increases, so do their TiA ratings. It is
important to note that the correlation does not imply causation, and further
research is needed to explore the underlying factors contributing to this observed
relationship. Throughout the experiment, we did not find a significant correlation

between propensity to trust ratings and trust/influence ratings.

Figure 13. The correlation between Propensity to Trust ratings and TiA ratings.
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4.3.4 Influence Ratings

A linear mixed-effects model was conducted to evaluate the effects of Emoji Type,
Reliability, and their interaction on participants' influence ratings. The model
included random intercepts for participants. The fixed-effects estimates and Type
III ANOVA with Satterthwaite’s method found Emoji Type did not significantly
affect influence ratings (F(2, 1181.66) = 0.29, p = 0.749). Reliability did not show
a significant main effect on influence ratings (F(1, 40.47) = 0.002, p = 0.963).
The interaction between Emoji Type and Reliability was also non-significant (F(2,
1181.66) = 1.82, p = 0.162).These findings did not support H2 or H3; facial
emojis did not significantly differ from icon-based emojis or no emajis in

influencing implicit trust ratings.
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4.3.5 Trust Rating

A linear mixed-effects model was conducted to evaluate the effects of Emoji Type,
Reliability, and their interaction on participants' trust ratings. The model included
random intercepts for participants. The Type III ANOVA with Satterthwaite’s
method found Emoji Type did not significantly affect trust ratings (F(2, 1176.91) =
0.86, p = 0.423). Reliability did not show a significant main effect on trust ratings
(F(1, 38.43) = 0.51, p = 0.480). The interaction between Emoji Type and
Reliability was also non-significant (F(2, 1176.91) = 0.57, p = 0.567). These
findings did not support H2 or H3; facial emojis did not significantly differ from

icon-based emoijis or no emoijis in influencing implicit trust ratings.

4.3.6 Al Performance Ratings

A linear mixed-effects model was conducted to evaluate the effects of Reliability,
Emoji Type, and their interaction on participants' ratings of Al performance. The
model included random intercepts for participants. The Type III ANOVA with
Satterthwaite’s method revealed Emoji Type had a significant main effect on Al
performance ratings (F(2, 1180.53) = 7.11, p < 0.001). However, Reliability did
not have a significant effect (F(1, 40.34) = 0.18, p = 0.674). Neither did the
interaction between Reliability and Emoji Type was not significant (F(2, 1180.53)
= 1.27, p = 0.283).

Post hoc comparisons with Tukey's adjustment were conducted to explore the
significant effect of Emoji Type. The key findings are that the High-Reliability Face
Emoji versus the High-Reliability No Emoji produced a significantly higher rating (B
= 3.478, p = 0.037).High-Reliability Icon Emoji versus High-Reliability No Emoji
also produced a significant significantly higher rating (B = 4.441, p = 0.002). All
other comparisons were not significant (all p > 0.05). This outcome provided
partial support for H4; emoji use modestly increased perceptions of Al teammate
performance, although this effect was minimal and not clearly moderated by
reliability conditions
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Figure 14. A Boxplot showing the AI Teammate Performance Means and SD
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4.3.7 Human Performance Ratings

A linear mixed-effects model was conducted to examine the effects of Reliability,
Emoji Type, and their interaction on participants' human performance ratings. The
model included random intercepts for participants. The Type III ANOVA with
Satterthwaite’s method found Emoji Type had no significant effect on human
performance ratings (F(2, 1179.35) = 2.26, p = 0.104). Reliability also did not
reach statistical significance (F(1, 40.05) = 3.84, p = 0.057). The interaction
between Reliability and Emoji Type was also non-significant (F(2, 1179.35) =
0.70, p = 0.498). This outcome provided no support for H4; emoji did not lead to
increased perceptions of Human teammate performance.

4.3.8 Questionnaire Data

To complement the experimental data, we also collected questionnaire data to
gain further insight into the results. We used the Trust in Automation
Questionnaire (Korber, 2019) and The Godspeed Questionnaire (Bartneck et al.,
2009). To complete the analysis, we once again implemented LMMs using the

Ime4 in R-Studio (Bates et al., 2015), as participants gave responses at multiple
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points throughout the experiment. The model was the same as the previous one;

the questionnaire ratings were the response variables.

4.3.8.1 Trust in AI Questionnaire.

The TiA consists of six subscales, each targeting a specific aspect of trust,
including reliability, understanding/predictability, familiarity, the intention of
developers, propensity to trust, and overall trust in automation. Each subscale can
be analysed independently, making it possible to focus on specific areas of
interest. However, for a comprehensive assessment of trust in automation, it is
recommended that the entire questionnaire be used. Due to the multidimensional
nature of trust, calculating a total sum rating across all items is not advised, as it
may lead to ambiguous interpretations. We slightly altered the scale to measure
trust in Al instead; the questions remained the same, but we replaced the word

automation with Al

A linear mixed-effects model was conducted to examine the effect of Reliability
and Emoji Type on trust ratings. The model included Reliability (High or Low) and
Emoji Type (Face, Icon, or No Emoiji) as fixed effects and participant as a random

effect. Figure 15 is a visualisation of these findings.

A linear mixed model (LMM) was fitted to investigate the effects of Reliability and
Emoji Type on participants' perceived Trust. A Type III ANOVA with
Satterthwaite's method revealed a significant main effect of Reliability on Trust
F(1, 40.684) = 6.69, p = 0.0134. However, Emoji Type and interactions were not
significant (p > 0.05).

For the subsection Intentions of Developers, the LMM analysis showed that
Reliability significantly influenced participants' perception of developers' intentions,
F(1, 41.016) = 4.29, p = 0.0448. However, Emoji Type and interactions were not
significant (p > 0.05).

In the Familiarity subsection, there was a significant main effect of Reliability on
Familiarity, F(1, 40.673) = 16.87, p = 0.0002. However, Emoji Type and

interactions were not significant (p > 0.05).
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Figure 15. Trust in AI Questionnaire Mean ratings by subsection with standard
error bars.
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For Propensity to Trust, the analysisﬁe;ilcl;ywed a significant main effect of Reliability,
F(1, 41.59) = 4.89, p = 0.0326. However, Emoji Type and interactions were not
significant (p > 0.05). No significant results were found for the Reliability of AI
subsection and Understanding subsection (all p > 0.05). This result provides
limited support for H2, as the presence of emojis did not significantly increase

explicit trust ratings overall.

4.3.8.2 The Godspeed Questionnaire

The analysis of the Godspeed questionnaire data revealed significant effects of
Emoji Type on likeability and anthropomorphism. Figure 16 visualises these

ratings.

A linear mixed-effects model was conducted to evaluate the effects of Reliability,
Emoji Type, and their interaction on participants' likeability ratings. The model
included random intercepts for participants. A Type III Analysis of Variance
(ANOVA) with Satterthwaite's method yielded the following results. Reliability did
not have a significant main effect (F(1, 41.03) = 1.64, p = 0.208), but there was a
significant main effect of Emoji Type (F(2, 720.12) = 7.16, p < 0.001). The
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interaction between Reliability and Emoji Type was not significant (F(2, 720.12) =
0.55, p = 0.577).

Figure 16. The Godspeed Questionnaire mean rating by subsection with
standard error bars.
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Pairwise comparisons using the Tukey method indicated that Face Emoji Low
Reliability was rated significantly higher than No Emoji Low Reliability (8 = 0.34, p

= 0.026). No other pairwise comparisons were significant (all p > 0.05).

For the Anthropomorphism subsection, the linear mixed-effects model showed
that reliability had a significant main effect (F(1, 40.87) = 4.38, p = 0.043).
However, the main effect of Emoji Type was not significant (F(2, 459.19) = 0.48,
p = 0.619). The interaction between Reliability and Emoji Type was also non-
significant (F(2, 459.19) = 1.21, p = 0.299). These findings suggest that reliability
influences anthropomorphism ratings, but the type of emoji does not significantly

impact them.

For Perceived Intelligence, the Type III ANOVA yielded no significant results (all p
> 0.05). These findings provided limited support for H5; reliability and emoji use
did significantly enhance participants' Godspeed perceptions of Al teammates but

only for Anthropomorphism and Likeability.
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4.4 Discussion

4.4.1 Overview

Integrating Al into HATs has reshaped collaborative problem-solving across
healthcare, digital forensics, and cybersecurity. By combining the computational
precision of Al with human creativity and judgment, HATs offer opportunities for
enhanced decision-making. However, effective collaboration hinges on trust
calibration, where users balance reliance on AI with healthy uncertainty. This
study examined how emotional intelligence (EI) cues, represented through emoijis,
influence trust, performance, and team dynamics in HATs. While the findings
provide valuable insights, they also reveal the complexities of applying emotional

elements in task-oriented collaborations.

4.4.2 Task Performance

Contrary to H1, emoji use did not enhance actual task performance, suggesting
that in contexts emphasizing task accuracy and reliability, emotional cues alone
may be insufficient for performance improvements. This finding highlights that
effective human-Al collaboration in performance-critical tasks may rely more
heavily on functional reliability and clear communication rather than purely social

or emotional enhancements.

4.4.3 Trust and Influence

Our findings provided no support for H2, as emojis did not significantly enhance
explicit trust ratings. Similarly, H3 was not supported; facial emojis did not elicit
greater trust compared to icon-based emojis or no emojis. These results diverge
from previous expectations that emojis would enhance trust through greater
emotional engagement (Beattie et al., 2020). It appears that explicit trust in Al
systems within HATs is primarily driven by cognitive evaluations of reliability rather
than social or affective enhancements. These findings align with prior research
suggesting that while emotional cues enhance the social appeal of Al, their ability
to shape explicit decision-making is limited in task-focused environments where
accuracy and performance take precedence (de Visser et al., 2020; Schmidt et al.,

2020).
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The experimental task, a geographic guessing activity, required precision and
minimal emotional relevance, which could reduce emoijis' salience in shaping
influence ratings. In contrast, contexts where relational factors are more
prominent, such as healthcare (Fadhil et al., 2018) or education, may offer a more
meaningful test of emojis' impact on decision-making. Future studies should
investigate whether the influence of emotional cues varies depending on task

complexity or the degree of emotional engagement required.

This findings also align with prior research emphasising the dominance of
reliability and transparency over relational cues in fostering trust (Bansal et al.,
2019; von Eschenbach, 2021). The findings challenge the assumption that
incorporating emotional elements like emojis into Al systems fosters trust and
improves collaboration. Despite their potential to enhance user engagement,
emojis did not appear to alter participants' perceptions of Al trustworthiness

significantly.

These findings could be because trust in Al systems, especially in high-stakes
fields like digital forensics or cybersecurity, is grounded in the AlI's ability to deliver
reliable and accurate results with little emotion. Emojis may have limited value in
these contexts unless paired with transparent Al explanations that help users
understand decision-making processes (Bansal et al., 2021; Bansal et al., 2019;
Bansal et al., 2021). Additionally, the specific nature of tasks in HATs, demanding
precision and high cognitive effort, might overshadow the emotional cues
conveyed by emojis. The experimental task does not require any emotions. In
other situations where emoijis are useful, emotion is often needed, such as health
care (Fadhil et al., 2018), suggesting that the application of emojis may be

context-specific.

Interestingly, participants rated low-reliability AI systems as more familiar and
trustworthy than highly reliable systems when paired with human-like features, a
paradox inconsistent with earlier studies and our previous chapter (Waytz et al.,
2014; Bansal et al., 2021). Users may perceive low-confidence Al as more
collaborative because it prompts them to form accurate mental models of the

system's limitations, facilitating more effective trust calibration. Although a

138|Page



different explanation for this behaviour could be due to the rise of ChatGPT 3.0
during the period of data collection, much media was showing the limitations of
ChatGPT and talking about serious issues with it, for this reason participants could
be more familiar with AI that performance poorly and this may have confounded

the variable.

The Trust in AI Questionnaire further revealed increased trust in developers'
intentions in low-reliability conditions. This suggests that while emojis alone may
not influence explicit trust ratings, they might indirectly shape relational factors
like perceived developer intentions or user familiarity with the AI. These findings
reinforce the importance of combining relational cues with robust explainability

mechanisms to ensure trust calibration aligns with the AI's capabilities.

4.4.4 Teammate Performance Ratings

Hypothesis 4 posited that emojis would influence performance ratings for Al and
human teammates. The findings partially supported this hypothesis. Face and icon
emojis significantly increased Al teammate performance ratings, suggesting that
relational cues can enhance perceptions of Al contributions within the team. This
aligns with research suggesting that anthropomorphic cues often inflate Al
performance ratings (Kulms & Kopp, 2019). However, the heightened scrutiny
faced by highly reliable Al systems further illustrates the complexities of trust
calibration: when reliable systems fail, users react more negatively to these

violations of expectations (Cheng et al., 2022).

For human performance ratings, neither emoji type nor reliability produced
significant effects. This does not align with broader theories that affective signals
foster a more collaborative and cohesive atmosphere (Glikson & Woolley, 2020)
and suggests that it could be important to focus on actively improving team

cohesion through team building to improve relationships in HATSs.

Collectively, these findings highlight emojis' dual impact: while they enhance
perceptions of Al teammates, their influence on Human performance evaluations

remains limited. Future research could explore how combining emojis with other
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affective signals, such as tone of voice or explanation styles, might amplify their
impact.

4.4.5 Godspeed Perceptions

H5 received some support; emoji usage significantly enhanced participants’
Godspeed perceptions, for likeability face emoji use increased rating. Interestingly,
the Godspeed Questionnaire revealed higher anthropomorphism ratings for low-
reliability systems, supporting theories that users attribute human-like traits to
systems that behave unpredictably (Waytz et al., 2014). While this
anthropomorphism may foster engagement, it raises concerns about miscalibrated
trust: users may over-rely on relational cues instead of critically evaluating the
system's limitations. The findings emphasise the need for multi-layered trust
calibration strategies that integrate relational elements like emojis with

transparent feedback about system reliability.

Emojis also appeared to mitigate negative perceptions of low-reliability Al,
softening the impact of errors and making the system's behaviour more relatable
(Berretta et al., 2023). While this suggests a compensatory role for emojis, their
effectiveness is contingent on transparent communication and consistent

performance, as highlighted in the introduction.

4.4.6 AI Reliability

As expected, participants in the high-reliability condition achieved higher
percentages of correct answers, demonstrating that reliability directly improves
task performance. However, reliability did not significantly influence trust or
influence ratings, suggesting that trust calibration depends on a complex interplay

of technical and relational factors.

4.4.7 Ethical Considerations

The findings raise ethical questions about using relational cues like emojis in
HATs. While emojis can enhance likeability and familiarity, their potential to foster
misplaced trust or emotional over-reliance requires careful consideration. For

example, despite its technical deficiencies, the tendency to perceive low-reliability
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AI as more collaborative underscores the importance of ensuring that relational

design does not obscure transparency about system limitations.

Moreover, the observed elevation in human performance ratings due to emoji use
highlights the potential for team dynamics to be unintentionally skewed. While
fostering positive interactions is beneficial, over-emphasising relational cues could
lead to unfair blame for Al teammates or diminished recognition of their

contributions.

4.4.8 Limitations and Future Research

This study had several limitations. The relatively small sample size and the focus
on university participants may limit the generalizability of the findings, and using a
controlled, online experimental setting may not fully capture the complexity of
real-world HAT interactions. Additionally, the task focused on geographic
guessing, which may not reflect situations where emotional cues play a more
prominent role, such as in healthcare or customer service, potentially reducing

their impact on trust calibration and decision-making.

Future research should focus on larger, more diverse samples and investigate the
effects of emojis in real-world HATs where interactions are more dynamic and
emotionally complex. Expanding research to tasks requiring higher emotional
intelligence, such as healthcare or education, could provide deeper insights.
Additionally, exploring other emotional cues like voice tone and combining them
with explainable features may enhance trust calibration and performance.
Longitudinal studies would also be valuable in understanding how trust in Al

evolves with repeated human-AI teaming.

4.4.9 Conclusion

The study reveals nuanced insights into the relationship between trust,
performance, and emotional cues in HATs. While emojis had a modest effect on
human performance ratings, they did not significantly influence trust in Al
systems. These results emphasise that while emojis and other emotional cues

might benefit specific contexts, they are insufficient for trust calibration in high-
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cognitive-load tasks, where reliability and transparency play a more pivotal role.
For HATs to thrive, emphasis must be placed on creating transparent, reliable Al
systems rather than focusing solely on emotional appeal. We also found that using
face emoijis increased likeability across both reliability conditions; emojis may have
played a compensatory role, making the Al seem more approachable despite

reliability levels.

The findings of this chapter contribute to a growing understanding of trust
calibration in HATs, demonstrating that while emojis enhance the perceived
likability and anthropomorphism of Al teammates, they have a limited impact on
explicit trust and performance ratings. This aligns with the Chapter 3 findings that
reliability and structural design elements (such as anthropomorphic cues) often
influence trust calibration more than affective enhancements alone. The study's
results thus reinforce that while affective cues like emojis might support team
cohesion and social perception, their influence on trust in high-stakes, task-

oriented collaborations remains secondary to transparency and reliability.

Moreover, these findings extend the bibliometric trends identified in Chapter 2 by
illustrating how interdisciplinary perspectives on trust are essential for
understanding and designing practical HATs. This chapter positions affective cues
within a broader framework, showing that while they can enhance likability, their
role in HATs is limited without simultaneous emphasis on reliable and transparent
Al functionality.

Throughout Chater 3 and 4, we have been applying the same solution randomly to
all participants, and users will likely have unique preferences about a system.
Chapter 5 will further explore trust calibration by investigating how an AI
teammate that matches user preferences will impact dynamics within a HAT. The
cumulative insights from Chapters 2, 3, and 4 reveal that a well-calibrated trust
framework in HATs may require cognitive and affective elements to be applied
selectively based on context. This holistic approach will provide a foundation for

practical recommendations to enhance collaboration in diverse HATSs.
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Chapter 5 The Perfect Teammate! The Effects
of Social Alignment in Al on Trust in Human-
AI Teams.

This chapter explores the role of adaptability of social alignment in AI design and
its effects on trust, influence, and performance within HATs. Building upon the
foundational discussions of trust calibration from Chapter 1 and the experimental
findings on Al characteristics from Chapters 3 and 4, this chapter examines how
aligning AI behaviour with individual user preferences impacts team dynamics. In
prior chapters, trust in HATs was influenced by reliability and anthropomorphism,
revealing that design elements can significantly shape user perceptions and
collaborative outcomes. This chapter extends these insights by investigating
whether configuring Al to match user preferences from the outset improves trust

calibration and team performance.

To understand adaptability’s role, this study contrasts Al that aligns with user
preferences, Al that operates contrary to these preferences, and a neutral control
condition. This chapter addresses critical questions about trust calibration’s
complexity in HATs by examining trust, influence, and performance ratings across
high and low-reliability settings. The chapter’s findings contribute to the ongoing
discussion of how adaptability in the case of social alignment can promote or
hinder trust in AL. This chapter will give insights into the impact of socially aligned
AI on trust and perceived performance, allowing us to infer whether it is an
appropriate action to take when designing AI to be within a HAT. This paper was
presented in abstract form at the Multidisciplinary Perspectives on Human-Al
Team Trust Workshop at HHAI24.

5.1 Introduction

The concept of HATs has attracted considerable attention as researchers attempt
to understand the complex dynamics that emerge when AI agents collaborate with
humans. HATs present opportunities to redefine teamwork and position Al as
more than just a tool but as a genuine collaborator. However, effective
collaboration requires addressing challenges like trust calibration, role alignment,

and adaptive behaviours. This chapter builds upon previous findings to explore
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how adaptive AI behaviours, specifically those aligned with user preferences, can

foster trust and enhance team performance.

The following sections review key literature on HATSs, exploring the role of trust,
adaptive Al, social alignment and reliability within HATs. By investigating these
topics, this chapter aims to contribute to a deeper understanding of how Al can be

designed to evolve from supportive tools to teammates by becoming more social.

5.1.1 Human-Agent Team Literature

HATSs operate at the intersection of human and Al collaboration, offering unique
opportunities and challenges. While researchers have sought to replicate dynamics
from human-only teams, this approach has shown limited success due to
fundamental differences in how humans and Al interact (McNeese et al., 2021;
Berretta et al., 2023). For instance, key human team attributes such as
interdependence and role differentiation require careful adaptation to
accommodate Al's unique capabilities and limitations (Rix, 2022; Chai et al., 2017;
Siemon et al., 2021).

One critical distinction between human teams and HATs is how humans perceive
and respond to Al teammates. Research shows that Al can influence team
dynamics in unexpected ways. For instance, low-confidence AI may enhance team
accuracy by prompting humans to develop a more accurate mental model of its
capabilities, which is different from the typical dynamic seen in human teams
(Bansal et al., 2021; Bansal et al., 2019). In addition, Al teammates are often held
to different standards than humans, receiving disproportionate blame for failures
and being treated as tools rather than collaborators (Merritt et al., 2011; Ong et
al., 2012). These biases underscore the need for user-centric design strategies
that foster trust and increase appropriate blame in HATs, as an Al system that is a
scapegoat could lead to reduced team performance in HATSs.

A recurring theme in the literature is the importance of clear and effective
communication. In human teams, members rely on explicit and implicit cues to
adjust roles and responsibilities dynamically. For example, when a member is
refocused on a new task in @ human team, this is often explained and talked
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about within the team. This causes issues with AI systems that are still receiving
updates as these updates may not be efficiently communicated to the other team
members and will harm team performance (Bansal et al., 2019). The need to
focus on the communication of updates aligns with findings from Berretta et al.
(2023), who emphasise the need for a socio-technical perspective that views Al as
a collaborative partner rather than a mere tool to allow for more seamless

management of these issues.

Despite these insights, gaps remain in understanding how specific design choices,
such as personalising Al behaviours to align with user preferences, impact trust
and performance in HATs. Previous chapters have shown that humanising Al
through features like anthropomorphic cues can increase trust in low-reliability
conditions, but emotional cues like emojis have little impact on trust. This
highlights the need for further investigation into how individual differences shape
human-Al interactions and the potential benefits of tailoring Al behaviours to meet

user needs.

These challenges lead directly to our research focus for this chapter which is
understanding how preference-aligned Al can enhance trust and performance in
HATs. By addressing this gap, we aim to uncover principles that support AI’'s

transition from a functional tool to a true teammate.

5.1.2 Trust Calibration in HATs

Trust is a cornerstone of practical HATSs, influencing how humans and Al
collaborate to achieve shared goals. Our previous chapters have deeply delved
into trust and trust calibration, so here we will provide a brief overview.
Calibrating trust involves achieving a delicate balance: too much trust can result in
overreliance, where users ignore Al errors, while too little trust can lead to
underutilisation and missed opportunities (de Visser et al., 2020; Kamar, 2016).
Successful trust calibration depends on Al reliability, transparency, and
adaptability

As trust is a complex concept, we have chosen to define it to avoid confusion. In
this study, similarly to our other chapters, we define trust as a willingness to
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accept vulnerability and rely on AI, even in uncertain situations (Rousseau et al.,
1998; Ulfert et al., 2023). Defining trust this way ensures our experimental design
mirrors what is appropriate for this type of trust and is best practice in trust

research across disciplinary borders (Ulfert et al., 2023).

Our earlier chapters demonstrated that humanising Al could influence trust when
reliability is low, but the effects were less profound when in high-reliability
conditions. This tells us that the relationship between Al behaviour and trust is
complex, shaped by user expectations and individual differences. This chapter
extends these findings by focusing on the role of preference-aligned Al
behaviours, investigating how they contribute to trust calibration and team

dynamics.

5.1.3 Adaptive Social AI

Humans typically have an innate ability to adapt our behaviour in response to
others. This process, known as social adaptation, allows for more intricate and
personalised interactions (Terziev & Stoyanov, 2018). We can do this in multiple
ways, such as instinctively changing our actions through tone and manner of
speaking to meet the perceived needs of those we socialise with or over longer
periods, we can develop knowledge about what behaviours align with another

person’s preferences (Tanevska et al., 2020).

In everyday life, this capacity for social adaptation is crucial for navigating diverse
interpersonal dynamics. In HRI, social adaptation can be applied to robots,
enabling them to align their behaviours with user preferences and interaction
styles and Tanevska et al., (2020) found that the robot's adaptability impacted the
participants' interaction efficacy. More work is needed to understand the impact of
social adaptability on non-embodied AI, as designing Al with adaptive capabilities
and systems can mirror human tendencies to adjust dynamically to the needs of

others, fostering smoother and more natural collaborations.

In human teams, social adaption is integral to organisational socialisation,
enabling individuals to learn and align with an organisation’s norms, values, and
behaviours (Chao et al., 1994; Fang et al., 2011; Van Maanen & Schein, 1977).
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This alignment promotes effective interactions, trust, and shared goals, which are
critical for team cohesion and performance. When discussing social alignment in
AI, we refer to the system’s ability to adjust its behaviour, communication style, or
decision-making processes to match the preferences, expectations, and dynamics
of the team/user it supports. Parallelling the personalisation seen in human teams,
where understanding and respecting individual styles fosters inclusion and mutual
understanding (Saks & Gruman, 2014; Tasselli et al., 2018). Personalisation in Al
systems, such as adaptive user interfaces or context-aware assistance, can create
a foundation for smoother interactions and higher initial rapport (Liu et al., 2003;
Strauss, 2017). When Al aligns with user preferences, it improves functional
efficiency and contributes to a more cohesive and socially compatible team

environment.

Little research exists on personalised social adaption, although much work on
dynamic adaptability in HATs offers insights. Dynamic adaptation further
enhances Al’s capacity for social alignment. Research highlights the importance of
adaptive autonomy, where Al systems adjust their level of independence based on
contextual demands (Ahmad et al., 2017; Hariri et al., 2015; Hauptman et al.,
2023; Zhao et al., 2022). For example, in cybersecurity incident response, Al
systems can autonomously handle tasks like threat detection, but when the
situation requires nuanced judgment or ethical considerations, such as
containment or eradication decisions, the AI can dynamically scale back its
autonomy to collaborate with human operators (Hauptman et al., 2023). Such
adaptability mirrors how human team members adjust their roles and behaviours
in response to team needs (Pulakos et al., 2006), which could lead to collaboration

and partnership between humans and Al.

In summary, social adaptation offers a promising framework for examining and
enhancing HAT dynamics. Further research is needed to explore the unique
challenges and opportunities inherent in HATs. Organisations could foster more
effective and cohesive collaboration in HATs by designing AI agents with adaptive

social alignment.
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5.1.4 Summary

In summary, HAT research underscores the complexities of integrating Al within
human teams, where effective collaboration relies on understanding
interdependence, trust calibration, and social dynamics. Studies reveal that Al's
confidence levels and personalised behaviours can significantly impact team
performance and member interactions, shaping how effectively humans and Al
work together. As this study explores, we gain insights into the potential benefits
of socially adapted Al in fostering trust and cohesion in HATs by aligning AI
behaviours with user preferences. These findings contribute to a broader
understanding of how Al can evolve from supportive tools to genuine team
members, paving the way for future research into adaptive, user-centric AI design

in collaborative settings.

While extensive research has explored HATS, a significant gap exists in
understanding the impact of Al adaptability, specifically, how aligning Al social
behaviour to individual user preferences influences team performance and trust.
Current studies have focused on general dynamics within HATSs, such as trust
calibration and the effect of Al confidence levels on team accuracy (Bansal et al.,
2021; de Visser et al., 2020). However, these studies often examine static Al
behaviours rather than systems that adjust according to user preferences from the
outset. This distinction is critical as personalised, preference-based adaptation in
AI may foster deeper trust and enhance team cohesion by aligning more closely

with individual team members’ expectations.

5.1.5 Study Aims

In this experiment, we focus on Al designed to initially align with individual user
preferences for communication rather than one that adapts throughout the
experiment. By matching the Al’s behaviour to user preferences from the outset,
we can examine the effectiveness of a pre-configured, personalised Al in
enhancing human-AI interaction and team performance without the added
complexity of real-time adaptation. This approach allows us to isolate the impact
of preference-matched AI and investigate whether aligning with user preferences

beforehand can positively influence performance, trust, and team dynamics.
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By initially configuring the AI to reflect user preferences, this study provides a
controlled approach to testing the potential of hon-adaptive, personalised AI. This
can serve as a stepping stone for future research on adaptive Al, helping to clarify
the specific benefits and limitations of preference alignment as a standalone
feature. If successful, this static personalisation may offer an accessible, less
resource-intensive approach to enhancing Al usability in real-world applications,
where real-time adaptation is not always feasible. Based on our conclusions, the

following hypotheses are proposed:

H1: Teams working with AI agents that adapt to user preferences will
demonstrate higher actual task performance accuracy compared to teams working

with non-adaptable AI agents.

H2: Participants collaborating with adapted AI agents will report higher levels of

trust compared to those working with non-adaptable Al agents.

H3: Participants collaborating with adapted Al agents will report higher perceived

AI performance than those working with non-adaptable AI agents.

H4: Teams paired with misaligned AI agents (i.e., agents that behave contrary to
user preferences) will report lower trust and influence ratings compared to those

working with adapted Al agents, irrespective of system reliability.

5.2 Methodology

5.2.1 Participants

The study included 31 participants with a mean age of 25.71 years. Participants
identified with two genders: female (n = 17), male (n = 13), and one participant
chose not to disclose their gender (n = 1). The sample was ethnically diverse,
comprising individuals from 7 different ethnic backgrounds. The study received full
ethical clearance from the MVLS Ethics Committee (application: 200230229) at the

University of Glasgow.
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5.2.2 Study Design

To examine our hypothesis about adaptable Al, we used a between-within-
subjects design (3x2 configuration) where participants interacted with an Al
teammate that either was adapted to their preferences (Positive Adapting), was
the opposite of their preferences (Negative Adapting) or a random control
(Control). Within these groups, the participants interacted with two different
reliability levels: high (90%) and low (60%) reliability. This experiment also
examines how Al differences can impact preferences toward a human teammate.
For this reason, we used another simulated human teammate who worked within
the team and was 30% reliable; participants were led to believe this was a real
human teammate, mimicking chapters 3 and 4. Participants worked with their
teammates to complete 40 trials over ten blocks (4x10, n=40). We collected 1163
explicit trust ratings, 1165 influence ratings, 1168 Al performance ratings and

1167 human performance ratings. Figure 17 shows a visualisation of the design.

Figure 17. The experimental design.
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5.2.3 Materials
5.2.3.1Developing Response Stimuli

The study employed a Wizard of Oz experimental method to ensure optimal
control. Participants were led to believe they were collaborating with an AI and a
human teammate when, instead, they were interacting with responses produced
by ChatGPT 3.5 (OpenAl., 2024). To gain these responses, we would provide
ChatGPT with the following prompt: “Here are the coordinates to a location on
Google Maps “55.86699001827868, -4.256383277724846" in the style of someone
playing GeoGuessr Could you guess where this location is. Please keep a friendly
tone”, Once we had the first response, we would ask ChatGPT to either shorten or
lengthen the response depending on its length, “Please make this response

shorter/longer”. Finally, we asked ChatGPT to make the long/short response more
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formal in tone: "Please make this response more formal in tone”. We had to
modify some of the responses to correct them lightly. For the human response,
we used the prompt "Here are the coordinates to a location on Google Maps
"55.86699001827868, -4.2563832777248467, in the style of someone playing
GeoGuessr could you guess where this location is”.. We lightly edited the human
responses to ensure they were different from the AI responses and were of an

appropriate length.

5.2.3.2Decision-Making Task

The task involved presenting participants with random locations extracted from
Google Earth. Participants were tasked with determining the continent, country,
and city associated with each location, with the final decision resting on the
participant, who assumed the role of the ‘team leader’. The experiment was set up
with the AI and human teammates giving different answers 95% of the time,
meaning the participant had to choose between the teammates each time. The
experiment comprised four blocks; two blocks were high-reliability AI, and two
were low-reliability AI; the order of the reliability was randomised throughout the

experiment to avoid order effects.

Figure 18. This is an example of the interface used. In the experiment, the
pictures were fr_om Google Maps, but to avoid copyright, we used a personal

/
0

Please rate the performance of Alex

Terrible Perfect
Please rate the perfromance of Pixie

L 1

Terrible Perfect
How much did Pixie influence you?

Not At All Completely
How much do you trust Pixie?

Not At All Completely

Alex

Pixie

This looks like it could be Tobermory, on the Isle of Mull
in Scotland. The colorful buildings along the waterfront

Hmm, this kind of looks like it could be
somewhere in Cornwall, maybe a small harbor

Continent: Europe
Country: United Kingdom

and the hilly backdrop give it away as a possibility. The
setting includes the waterfront with its charming,
colorful facades, surrounded by lush greenery and the
characteristic Scottish overcast sky. The mix of
greenery and the coastal setting also matches what
you’d expect from a small Scottish harbor town.

town like Fowey or Mevagissey? The colorful
buildings along the water and the greenery
around it give off that sort of vibe. I’'m not
entirely sure, though, it definitely feels coastal
and charming!

City: Glasgow Cityf

Submit Answers

Lastly, a time constraint of 120 seconds per location was enforced, meaning

participants had to rely on their teammates’ responses to submit the location in
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time. The introduction of time scarcity as an environmental factor can significantly
impact the outcomes of team tasks, often necessitating rapid decision-making (Hu
et al., 2015; Kelly & Karau, 1999). This constraint could increase reliance on Al,
requiring human teammates to make choices based on implicit attitudes rather
than thoroughly deliberating on the task. To emphasise this factor, we ensured
that the human and Al teammates mainly provided different answers, requiring
participants to choose which teammate they trusted the most. This setup aimed to
mimic real-world scenarios where rapid decision-making is often necessary,
potentially increasing reliance on Al. The task was designed to be difficult for the
participants so we could assess the impacts of reliability and humanness under a

high cognitive load. Figure 18 shows the user interface in the experiment.

5.2.3.3 Questionnaires

Screening Questionnaire and Assighment (Supplementary Material 3) To
assign participants to one of three experimental conditions, Positive Adaptive,
Negative Adaptive, or Control, we developed a screening questionnaire designed
to assess four subsections of preference of teammate communication style:
formality and friendliness of teammates, and long (in-depth) or short (brief) in
detail. Given the absence of pre-existing validated measures for these specific
preferences, we designed a novel 20-item questionnaire, with 5 items dedicated to
each of the four dimensions. The items were presented on a slider scale, anchored
at “strongly disagree” (0) and “strongly agree” (100), to encourage participants to
avoid the neutral option (“neither agree nor disagree”). This design choice was
deliberate to reduce response bias and ensure clearer group categorisation,

making it easier to match participants to appropriate experimental conditions.

Participants were assigned to groups using a custom Python script that processed
their preference scores. The script began by reading the participants’ mean scores
from a CSV file using the Pandas library, which facilitated data manipulation and
analysis. Each participant was randomly assigned to Positive Adapting, Negative
Adapting or Control. For Positive Adapting, the Al's behaviour matched the
participant’s stated preferences, aiming to provide an environment aligned with
their preferred interaction style and response length. For NA, the AI's behaviour

was the opposite of the participant’s preferences, and the intention was to explore
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the effects of non-alignment. For example, a participant who scored higher on
friendly and short preferences would be assigned to the Formal Long group in the
Negative adapting. In the control condition, participants were randomly assigned
to one of the four groups without checking the scores on the screening form. This
methodological approach allowed for the systematic and randomised assignment
of participants to different experimental conditions. The process was automated to
ensure consistency and reproducibility in participant assignment. The groups were
balanced regarding individual preferences for formality, friendliness, and
communication length, ensuring that any outcome differences were due to the

adaptive condition and not pre-existing preference biases.

To validate these scales, we requested participants to complete the questionnaire
upon registering for the study, which occurred before their participation, meaning
several participants completed the screening but not the experiment. This
approach enabled us to gather a preliminary sample of n = 43 participants,
allowing for an initial validation of the questionnaire’s functionality. For this
purpose, we employed R-Studio, utilising the tidyverse (Wickham et al., 2019) and
psych (Revelle, 2016) packages to calculate Cronbach’s alpha for each category.
The results revealed that the extended response of teammate preference scale
provided a Cronbach’s alpha of 0.814, the short response scale a Cronbach’s alpha
of 0.846, the friendly scale a Cronbach’s alpha of 0.804, and the formal scale a
Cronbach’s alpha of 0.906, each indicating a satisfactory level of internal
consistency. These outcomes provide us with preliminary confidence in the
questionnaire’s effectiveness. Nevertheless, a more comprehensive validation

process would be advantageous for future studies.

In the final assignment, the PA condition included only participants with friendly
preferences, with slightly more individuals preferring long-form responses than
short-form. The NoA condition was composed mainly of participants with formal
preferences, especially those preferring short interactions. The Control group
contained a relatively even mix of participants across all interaction styles, with no
category strongly overrepresented.
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This distribution strategy was intentional, designed to ensure a clear operational
distinction between matched (PA), mismatched (NoA), and neutral (Control)

conditions.

PtTM (Merritt et al., 2013): A series of 6 questions where participants rated on a

7-point Likert scale how likely they are to trust machines.

The Godspeed Questionnaire (Bartneck et al., 2009): This questionnaire
assesses human perceptions of Al across five dimensions: anthropomorphism,
animacy, likeability, perceived intelligence, and perceived safety. Each dimension
is rated using a set of bipolar scales (e.g., from “very human-like” to “not human-
like at all”) on a 7-point Likert scale. As we were using disembodied AI, we
removed the animacy/perceived safety subsections as they are not relevant and

replaced the term ‘robot’ with ‘AI".

Trust in Automation Questionnaire (Korber, 2019): The Trust in Automation
Questionnaire (TiA) is implemented as a self-report survey where participants rate
their perceptions of an automated system across several dimensions (Trust,
Familiarity, Understanding, Intentions of developers, Reliability of Al and
Propensity to Trust). Participants respond to a series of statements using a Likert

scale (e.g., 1 = strongly disagree to 7 = strongly agree).

Questions During Each Trial: During each task trial, participants rated which
teammate had influenced their decision-making on a visual analogue scale (Sung
& Wu, 2018) with two endpoints, ‘Human’ and ‘AI’. When participants selected
‘Human,’ it was assigned a value of 0; if they chose ‘Al,’ the value was 100.
Participants had the freedom to click anywhere along the scale. For instance, if
their influence leaned slightly more towards Al than human teammates, they
might press the scale at around 60. This influence rating served as an implicit
measure of trust (Duffy, 2015; McAllister et al., 2006), with greater influence
indicating higher levels of trust. This implementation is applied to all sliders on the
experimental interface. Participants also provided performance ratings for the Al

and human teammates with two anchoring points of ‘Terrible” and ‘Perfect’ after
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each trial. Finally, participants also rated their confidence in their answer, with the

anchoring points of ‘Not At All' and ‘Completely’.

5.2.4 Procedure

Participants were initially contacted through the University of Glasgow participant
pool. Once they had registered interest in the study, the researcher emailed them
the link to the screening questionnaire to assign them to a condition. Once

participants completed the questionnaire, they could book in for the experiment.

Once participants arrived at the experiment, they were instructed to sit at a
computer-equipped table, and an information sheet explaining the experiment’s
premise was provided. They were also given a consent form to sign if they found
the provided information acceptable. Once the consent form was signed,

participants completed the PtTM Questionnaire (Merritt et al., 2013).

Following this, participants familiarised themselves with the experiment’s
instructions, which were all displayed throughout the experiment setup to ensure
consistency across all participants. They then engaged in a sample trial. The task
entailed participants identifying the location of a screenshot from Google Earth by
specifying the Continent, Country, and City/State of the screenshot. Participants
were designated as team leaders and were tasked with providing the final decision
regarding the location. To assist them in this task, they collaborated with a human
teammate and an AI teammate, both of whom offered written advice to aid the
participant in pinpointing the location (Figure 18). At the end of each trial,
participants filled in the four sliders and were then shown the correct answer.
Each trial had a time limit of 120 seconds, which the participants were made

aware of. Between each block, there was a 60-second break.

The task spanned four blocks, with each block comprising ten trials, resulting in a
total of 40 different location identifications made throughout the study. At the end
of each block participants completed the Godspeed Questionnaire (Bartneck et al.,
2009) and the Trust in Automation (Kdérber, 2019). Once the experiment was

finished, participants were provided with a physical debrief explaining the
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experiment, which had contact information for the researcher if participants

decided to withdraw after the experiment.

5.2.5 Developing Linear Mixed Model for Analysis

We selected a linear mixed-effects model (LMM) due to its ability to handle a
hierarchical data structure. Our data includes multiple observations (trials) nested
within participants, introducing non-independence. LMMs appropriately account for
this by including random intercepts for participants. LMMs also allow us to model
fixed effects for experimental conditions (e.g., adaptability and reliability) while
controlling for individual variability through random effects. The design involves
repeated trust and performance ratings across multiple trials, making LMMs
suitable for capturing within-subject variability. Alternative methods, such as
traditional ANOVA, would not adequately account for participant-level random

variability and could inflate Type I error rates.

To perform this analysis on the Al performance, human performance, trust ratings
and influence ratings taken on every trial and the questionnaires at each block, we
utilised LMMs using the Ime4 in R-Studio (Bates et al., 2015) and used ImerTest
(Kuznetsova et al., 2017) to complete Type III ANOVA with Satterthwaite's
method for degrees of freedom to extract p-values. When developing the model
we implemented trial as a random effect but found it had little variance and

reduced the model's fit.

5.2.5.1 Model Specification

To analyse the impact of reliability and adaptability on performance across

different measures, we utilised the following linear mixed model:
Yij = Bo + pradapt; + Byrel; + ps(adapt; X rel;) + ugj + e
In this model, this is the breakdown of each component:

« y;; Is the response variable for the ith observation of the jth participant.

e B, is the intercept.
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e Byadapt; is the coefficient for the fixed effect of reliability.
« p,rel; is the coefficient for the fixed effect of humanness.

o Bs(adapt; x rel;) is the coefficient for the interaction between Adaptability
and Reliability.

« u,; represents the random effect for participant j, which accounts for the
variation in the intercept across participants.

« e;; is the residual error term for the ith observation of the jth participant

5.2.5.2 Post-Hoc Analysis

To further explore all possible pairwise comparisons and better understand the
interactions between conditions, we conducted post hoc analyses using estimated
marginal means with the emmeans package (Lenth, 2024). We applied Tukey’s

method to control the family-wise error rate during multiple comparisons.

5.3 Results

5.3.1 Condition Performance

Across conditions, performance did differ; to assess performance, we focused on
the number of correct answers submitted by the participant. Trials where both
teammates gave the same answer were removed. In the Control condition,
individuals who received information from a high-reliability source performed
significantly better, with 67% correct responses, compared to just 51% for those
exposed to a low-reliability source. The Negative Adapting condition followed a
similar trajectory. Participants in the high-reliability group achieved 55% accuracy,
while their low-reliability counterparts dropped to 46%. In the Positive Adapting
Condition, participants again benefited from high-reliability cues, reaching 64%

accuracy, whereas those in the low-reliability group scored 53%.
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These results are displayed in Figure 19 and suggest that higher reliability is
associated with higher percentage correctness across all conditions, with the
Control and Positive Adapting Conditions showing the highest overall performance.
The difference between high and low reliability is consistent across all conditions,
with the Negative Adapting Condition showing the lowest overall scores.

Figure 19. A bar plot illustrating the percentage of correct responses across
three conditions. Reliability levels further break down each condition.
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A mixed-design ANOVA was conducted to examine the effects of Adaptive and
Reliability on percentage correctness. The analysis revealed no significant main
effect of Condition, F(2, 28) = 2.12, p = .139. There was a significant main effect
of Reliability, F(1, 28) = 19.12, p < .001 showing that participants performed
better in the high-reliability condition compared to the low-reliability condition.
The interaction was not significant, F(2, 28) = 1.15, p = .332.Post Hoc Tukey HSD

Pairwise contrasts revealed that within the Control condition, participants
performed significantly better in the high-reliability condition (p < .0001,
difference = 14.73%). In the Negative Adapting condition, performance was also
significantly higher under high reliability (p = .0196, difference = 7.67%).
Similarly, the Positive Adapting condition showed significantly better performance
under high reliability (p = .0002, difference = 11.91%). Between conditions,
under high reliability, participants in the Control condition performed significantly
better than those in the Negative Adapting condition (p = .0466, difference =
11.34%). Other between-condition comparisons were not significant (p > .05).

Under low reliability, no significant differences were found between conditions.
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5.3.2 Descriptive Statistics

This section provides an overview of the means and standard deviations within the
data for Trust, Influence, Al Performance, and Human Performance. These
statistics are reported for each experimental condition Positive Adapting, Negative
Adapting, and Control and across reliability (High and Low). Table 13 displays the

information.

Table 13. Descriptive Statistics for AI & Human Performance Ratings, Trust
and Influence Ratings.

Measure Reliability Condition M SD
Control 74.85 17.41
High Negative Adapting 64.18 14.83
Positive Adapting 73.25 18.06

Trust
Control 68.72 19.34
Low Negative Adapting 60.74 15.01
Positive Adapting 70.60 17.18
Control 74.92 18.62
High Negative Adapting 64.22 15.65
Positive Adapting 73.27 17.38
Influence

Control 68.25 20.57
Low Negative Adapting 60.91 16.58
Positive Adapting 71.38 16.89
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Measure Reliability Condition M SD

Control 74.51 15.63

High Negative Adapting 67.06 12.69

Al Positive Adapting 72.55 16.14
Performance Control 69.56 17.70
Low Negative Adapting 63.99 13.98

Positive Adapting 70.98 17.08

Control 65.87 18.58

High Negative Adapting 65.06 16.11

Human Positive Adapting 63.58 18.30
Performance* Control 70.82 18.01
Low Negative Adapting 69.62 13.14

Positive Adapting 68.12 17.71

* Human performance remained at 30% in all conditions, and the high and low reliability
related to AI performance, as we wanted to see how this may impact the perceived
performance of the human teammate.

5.3.3 Propensity to Trust Machines, Trust and Influence
This section presents the results of analyses examining the relationships between
participants’ scores on the PMT (S. M. Merritt et al., 2013) and the trust and

influence scores (0-100) given on each trial. Pearson correlation coefficients were

computed to evaluate these relationships.
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Figure 21. This is a scatter plot illustrating the relationship between mean
propensity to trust scores and mean trust scores. A linear regression line
indicates the trend in the data, suggesting a strong positive correlation
between propensity to trust and trust ratings.
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The first analysis investigated the correlation between the mean propensity to
trust score and the mean trust score. The results revealed a significant positive
correlation, indicating that a higher propensity to trust was associated with higher
trust scores (r(28) = 0.553, t(28) = 3.509, p = 0.002). This relationship is visually
depicted in Figure 21, which shows a scatter plot of the data with a linear
regression line highlighting the trend.

Figure 20. This scatter plot displays the relationship between mean propensity
to trust scores and mean influence scores. A linear regression line shows the
overall trend in the data, indicating a significant positive correlation between
propensity to trust and influence score.

Correlation: r =0.531, p = 0.00253
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The second analysis examined the relationship between propensity to trust and
influence scores. The findings also showed a significant positive correlation,
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suggesting that participants with a higher propensity to trust rated greater levels
of influence from the AI ( r(28) = 0.531, t(28) = 3.316,p = 0.003). Figure 20
illustrates this correlation with a scatter plot and a corresponding linear regression

line, demonstrating the positive relationship between these variables.

5.3.4 Trust Ratings

A Pearson correlation coefficient was computed to assess the relationship between
mean trust and influence scores. The results indicated a strong positive correlation
(r(28) = 0.892, t(28) = 10.264, p<0.001). This suggests that higher levels of
trust are associated with higher levels of influence. Figure 22 shows the
correlation.

Figure 22. This scatter plot displays the relationship between mean trust
scores and mean influence scores. A linear regression line shows the overall
trend in the data, indicating a significant positive correlation between
propensity to trust and influence score.
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5.3.4.1 Influence (Implicit) Ratings

A linear mixed-effects model was conducted to examine the effects of condition
and reliability on trust ratings, with participants as a random effect. The model
included a main effect for conditions (Positive, Control, and Negative), a main
effect for reliability (High, Low), and their interaction. Figure 23 shows a box plot
of these results. We applied ANOVA to the model to extract significant results and

used Satterthwaite's method for degrees of freedom.
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The results for influence ratings showed a significant main effect of Adaptability,
(F(2, 27.06) = 3.87,p = 0.0333), indicating that influence ratings varied across the
three conditions. Additionally, Reliability had a significant effect (F(1, 1132.42) =
16.92, p <0.001), with higher ratings observed under the High Reliability
condition. The interaction between Adaptability and Reliability was not significant

(F(2, 1132.42) = 2.40, p = 0.0915).

Figure 23. Boxplot illustrating influence ratings based on different conditions,
with reliability indicated by colour. Significant differences among conditions
are marked for clarity. The y-axis represents influence ratings, while the x-axis
categorises the data by condition.
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Post-hoc comparisons revealed that under high reliability, influence scores in the
Control condition were significantly higher than in the Negative adaptation
condition (B = 0.747, SE = 0.278, p = .029). Additionally, under low reliability, the
Positive Adapting Condition had significantly higher influence scores than the
Negative Adapting condition (B = 0.724, SE = 0.278, p = .035). No other
significant differences between conditions were observed (p > .05). All
comparisons are available in These findings suggest that the Negative Adapting
condition significantly reduces influence ratings compared to other conditions,
particularly under both high and low reliability. Table 14 shows these results.
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Table 14. Emmeans Post Hoc Analysis for Influence Ratings Using HSD P
adjustment.

. Adapting .
Reliability _ B SE df t P adj
Comparisons

Control — Negative 10.67 3.97 329 2.69 0.0292

High Control — Positive 1.71 3.64 329 0.47 0.8856

Negative — Positive  -8.96 3.98 33.1 -2.254 0.0769

Control — Negative 7.3 396 32.7 1.84 0.1725

Low Control — Positive -3.04 3.64 32.8 -0.836 0.6836

Negative — Positive  -10.34 3.97 32.8 -2.607 0.0354

Note. Bold result indicates significance.

5.3.4.2 Trust Ratings (Explicit)

A linear mixed-effects model was conducted to examine the effects of condition
and reliability on trust ratings, with participants as a random effect. The model
included a main effect for conditions (Positive, Negative and Control), a main
effect for reliability (High, Low), and their interaction Figure 24 shows a box plot
of these results. We applied ANOVA to the model to extract significant results and

used Satterthwaite's method for degrees of freedom.

The mixed-effects model revealed a significant main effect of Adaptability on trust
ratings, (F(2, 27.06) = 3.44, p = 0.0465). This indicates that trust ratings differed
across the three conditions. The effect of Reliability was also significant, (F(1,
1130.34) = 19.83, p < 0.001), with higher trust ratings observed under High
Reliability conditions. However, the interaction between Adaptability and Reliability
was not significant (F(2,1130.34)=1.40,p=0.246), suggesting that the relationship

164 |Page



between Adaptability and trust ratings did not vary significantly based on the level

of Reliability.

Figure 24. Boxplot illustrating trust ratings across different conditions, with
colours representing reliability levels. Markers indicate significant differences
between conditions. The y-axis reflects the trust score, while the x-axis
categorises the data by condition.
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Post-hoc comparisons (Table 15) revealed that trust scores in the Control
condition were significantly higher under high reliability than in the Negative
Adapting condition (B = 0.744, SE = 0.292, p = .042).

Table 15. Emmeans Post Hoc Analysis for Trust Ratings Using HSD P
adjustment.

Adapting
Reliability _ B SE df t P adj
Comparisons

Control — Negative 10.62 4.18 31.5 2.543 0.042
High Control — Positive 1.64 3.83 31.5 0.429 0.90

Negative — Positive  -8.98 4.18 31.7 -2.147 0.096

Low Control — Negative 8.06 4,18 315 1.93 0.147
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Control — Positive -1.75 3.83 31.5 -0.457 0.892

Negative — Positive  -9.81 4.18 31.5 -2.351 0.063

Note. Bold result indicates significance.

These findings suggest that the Negative Adapting condition significantly reduces

trust ratings compared to other conditions, particularly under high reliability.

5.3.5 AI Performance Ratings

A linear mixed-effects model was conducted to examine the effects of condition
and reliability on Al performance ratings, with participants as a random effect. The
model included a main effect for condition (Positive, Negative and Control), a main
effect for reliability (High, Low), and their interaction. Figure 25 shows a box plot
of these results. We applied ANOVA to the model to extract significant results and
used Satterthwaite's method for degrees of freedom.

Figure 25. Boxplot displays AI performance scores for the three conditions,
Positive Adapting Condition, Control, and Negative Adapting Condition, with
colour coding based on reliability. Significant differences between conditions
are highlighted with markers. The y-axis indicates AI performance scores,
while the x-axis represents the conditions.

o
o

100 cwe o
.| ¢
> °
[ ] N - LY
$ ° o " s
S i
. 2 24 R
75 ooy "‘ Voo ® e
o ? op-»8— w
£ ‘a.“ o"l‘.
E 8 -',‘. . .‘!::.r::.

Yoo... + %, = o
§ l‘.‘os'v; = ,: Reliability
© .

E B3 High
2
[
a
<

°
A °
3, v ° 9
::.' .: o o0 . E Low
e | % °
L °
o..‘. ° o
°
°
° ° .0 o °
°
° ¢ o‘.
00

Control Negative Adapting Condition Positive Adapting Condition
Condition

25

The analysis for Al ratings revealed that the main effect of Adaptability was not
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significant (F(2, 27.03) = 2.52, p = 0.0990), suggesting no overall difference in Al
ratings across the three conditions. However, the main effect of Reliability was
significant (F(1, 1135.40) = 13.07, p < 0.001), with higher ratings observed in the
High Reliability condition. The interaction between Adaptability and Reliability was
not significant (F(2, 1135.39 )= 1.52, p = 0.2193), indicating that the effect of
Adaptability on Al ratings did not differ by Reliability level. Post-hoc comparisons

revealed no significant differences.

5.3.6 Human Teammate Performance Ratings

A linear mixed-effects model was conducted to examine the effects of condition
and reliability on Human performance ratings, with participants as a random
effect. The model included a main effect for condition (Positive, Negative and
Control), a main effect for reliability (High, Low), and their interaction. Figure 26
shows a box plot of these results. We applied ANOVA to the model to extract
significant results and used Satterthwaite's method for degrees of freedom.

Figure 26. Boxplot representing human teammate performance scores across
the conditions, with colours denoting reliability. Significant comparisons are
marked, providing insight into differences in performance. The y-axis shows
performance scores, while the x-axis categorises the conditions.
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The model results for human performance ratings showed that neither Adaptability
(F(2, 27.14) = 0.29, p = 0.747) nor the interaction between Adaptability and

Reliability were significant (F(2, 1134.50) = 0.02, p = 0.9790), respectively,
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indicating that performance ratings did not vary across conditions. However,
Reliability had a significant main effect, (F(1,1134.51) = 25.16, p < 0.001), with
higher ratings observed in the Low Reliability condition. Post-hoc comparisons

revealed no significant differences.

These findings suggest that while human performance scores were generally
higher under low reliability, the condition (Positive, Negative and Control) did not

significantly influence human performance ratings.

5.3.7 The Godspeed Questionnaire

Our study conducted LMMs for the subsections of the Godspeed questionnaire as
participants completed them four times throughout the experiment, so we still

needed to control for the variability between participants

Figure 27. Mean Godspeed Scores for Anthropomorphism, Likeability, and
Perceived Intelligence by Condition and Reliability

Condition Control ® Negative Adapting Condition - Positive Adapting Condition

Anthropomorphism Likeability Percieved Intelligence
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Figure 27 displays the mean Godspeed scores for three dimensions,
Anthropomorphism, Likeability, and Perceived Intelligence, across different
conditions and two levels of reliability (Low and High). For Anthropomorphism,
scores are generally higher in the High-Reliability condition, with the Positive

Adapting Condition showing the highest score (4.8). In the Likeability dimension,
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scores are higher in the High-Reliability condition for all conditions, with the
Control condition reaching the highest score (5.5). Perceived Intelligence scores
are consistently high across conditions and reliability levels, with slightly higher

values in the High-Reliability condition.

These results suggest that reliability and condition influence participants’

perceptions of anthropomorphism, likeability, and perceived intelligence.

5.3.7.1 Likeability

A linear mixed-effects model was conducted to examine the effects of condition
(Positive, Negative, and Control) and reliability (High, Low) on likeability ratings,
with participants as a random effect. The model included main effects for
condition and reliability, as well as their interaction. To gain p-values, we used a
Type III ANOVA on the model.

The Type III ANOVA using Satterthwaite's method revealed a significant main
effect of Reliability on likeability ratings, (F(1, 705.01) = 5.25, p = 0.0222). This
suggests that likeability ratings were influenced by the level of reliability, with
higher ratings in the High Reliability condition. However, the main effect of
Adaptability was not significant (F(2,28.00)=0.28,p=0.7568), indicating no
differences in likeability ratings across the three conditions. The interaction
between Reliability and Adaptability was also not significant, (F(2, 705.01) = 0.13,
p = 0.8787), suggesting that the effect of Reliability on likeability did not vary

across conditions.

Post hoc comparisons revealed no significant differences between any of the
conditions (all p>0.05).These findings suggest that while likeability ratings were
slightly lower under low-reliability conditions, the specific conditions (Positive,

Negative and Control) did not significantly impact likeability scores.

5.3.7.2 Anthropomorphism

A linear mixed-effects model was conducted to examine the effects of condition
(Positive, Negative, and Control) and reliability (High, Low) on anthropomorphism

ratings, with participants as a random effect. The model included the main effects
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of condition and reliability, as well as their interaction. To gain p-values, we used
a Type III ANOVA on the model.

The Type III ANOVA using Satterthwaite's method showed a significant main
effect of Reliability on anthropomorphism ratings, (F(1, 458.01) = 9.86, p =
0.0018), indicating higher anthropomorphism ratings in the High Reliability
condition. The main effect of Adaptability was not significant (F(2, 27.98) = 0.72,
p = 0.4957), suggesting no differences in anthropomorphism ratings across the
three conditions. Additionally, the interaction between Reliability and Adaptability
was not significant (F(2, 458.00) = 0.52, p = 0.5920), indicating that the effect of
Reliability on anthropomorphism did not depend on adaptability.

Post hoc tests did not reveal any significant pairwise differences between the
conditions (all p > 0.05).These findings suggest that while anthropomorphism
ratings were lower under low-reliability conditions, the specific condition (Positive,

Negative and Control) did not significantly impact anthropomorphism scores.

5.3.7.3 Perceived Intelligence

A linear mixed-effects model was conducted to examine the effects of condition
(Positive, Negative, and Control) and reliability (High, Low) on perceived
intelligence ratings, with participants as a random effect. The model included main
effects for condition and reliability, as well as their interaction. To gain p-values,
we used a Type III ANOVA on the model.

The Type III ANOVA using Satterthwaite's method revealed a significant main
effect of Reliability on perceived intelligence ratings (F(1, 585.01) = 13.89, p <
0.001), indicating that higher perceived intelligence ratings were associated with
the High Reliability condition. The main effect of Adaptability was not significant
(F(2, 28.01) = 0.25, p = 0.7784), showing no differences in perceived intelligence
across conditions. The interaction between Reliability and Adaptabiluty was also
not significant (F(2, 585.01) = 2.34, p = 0.0977).

Post hoc comparisons showed no significant differences between the conditions

(all p>0.05).These findings suggest that while perceived intelligence ratings were
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lower under low-reliability conditions, the specific condition (Positive, Negative and

Control) did not significantly impact perceived intelligence scores.

5.3.8 Trust in AI Scores

Our study conducted LMMs for the Trust in Al questionnaire subsections as
participants completed them four times throughout the experiment, so we still

needed to control for the variability between participants.

Figure 28 displays the mean trust scores for six dimensions, Familiarity, Intentions
of Developers, Propensity to Trust, Reliability of AI, Trust, and Understanding,

across different conditions and two levels of reliability. Error bars indicate standard
errors. Although there is some difference between means the analysis revealed no

significant main effects or interactions.

Figure 28. Bar plot depicting the mean trust scores across different reliability
levels for various conditions. The data is further segmented by subsection, for
comparison of trust levels across conditions and reliability ratings.
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5.4 Discussion

The primary goal of this research chapter was to explore how Al social

adaptability and reliability impact trust, influence, and team performance in HATSs.
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Specifically, the study examined how participants perceived and interacted with Al
under three conditions: Positive Adaption (Al tailored to user preferences),
Negative Adaptation (Al that operates counter to user preferences), and Control
(AI without specific adaptation to user preferences). Additionally, the study
considered the impact of high and low reliability in each condition, aiming to

better understand trust dynamics in human-AlI collaboration.

In this chapter, we observed nuanced interactions between Al adaptability, trust,
and performance, leading to mixed support for our hypotheses. Hypothesis 1,
which predicted higher performance accuracy in the Adapting condition compared
to the Negative Adapting condition, received partial support as participants indeed
scored higher in these conditions; however, performance ratings by participants
did not consistently align with actual performance, limiting conclusive support for
this hypothesis. Hypothesis 2, predicting lower trust in the Negative Adapting
condition, was supported, with lower influence and trust ratings reflecting a
sensitivity to AI misaligned with user preferences. Conversely, Hypothesis 3, which
suggested that AI adaptability would enhance trust regardless of reliability, was
not upheld, as trust scores were not significantly higher in the Positive Adapting
Condition than in the Control condition. Interestingly, participants rated their
human teammate’s performance more favourably when the Al's reliability was

low, pointing to the impact of team dynamics on perceived performance.

5.4.1 Trust Ratings

Our findings reveal a strong positive correlation between trust and influence
ratings, indicating a meaningful relationship between implicit and explicit trust
measures in this experiment. Specifically, influence ratings allow us to accept
Hypothesis 2, as participants displayed lower trust in the Al in the Negative
Adapting condition. Influence ratings were significantly higher in the Control and
Positive Adapting Conditions compared to the Negative Adapting condition,
suggesting that participants were more influenced by an Al aligned with their
preferences. Interestingly, however, participants appeared even more sensitive to
the Al's behaviour when it contradicted their preferences, as shown by more
significant trust erosion in the Negative Adapting condition. This finding aligns with

recent research suggesting that user-contradicting AI systems lead to trust erosion
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due to cognitive dissonance and discomfort. For instance, Glikson and Woolley
(2020) highlight that unexpected or contradictory Al behaviours can elicit negative
emotional responses. This supports the idea that socially misaligned AI may

disrupt trust and heighten user sensitivity to the Al's actions.

Our results also indicate that preference-opposing adaptation has a more
significant impact on reducing trust than preference-supporting adaptation has on
building it. This aligns with the trust asymmetry effect, where negative
experiences disproportionately impact trust, making rebuilding challenging
(Schaefer et al., 2016; Zhu et al., 2021). In our study, trust ratings closely
mirrored influence ratings and, with participants expressing more trust in the
Adapting and Control conditions than in the Negative Adapting condition. This
supports the notion that participants were more reactive to an Al that contradicted
their preferences, potentially because humans weigh negative experiences more
heavily than positive ones (Jones-Jang & Park, 2023). These findings offer insights
into the emotional dynamics when Al behaviour diverges from user expectations.
This sensitivity may be especially pronounced in HATs operating in trust-critical

environments, such as healthcare or autonomous vehicles.

Moreover, while these findings support Hypothesis 2, they do not conclusively
support Hypothesis 3, which predicted that Al adaptability in the Positive Adapting
Condition would lead to higher trust scores irrespective of reliability. Although the
TiA questionnaire showed some marginally significant results, it ultimately failed to
support Hypotheses 2 or 3 definitively. Nonetheless, mean trust scores across
questionnaire subsections remained consistently lowest in the Negative Adapting
condition, which warrants further investigation. The trend of decreased trust with
misalignment aligns with findings by Rahwan et al. (2019) and Hengstler et al.
(2016), who demonstrated that autonomy-supportive Al systems, those that align
closely with user needs and behaviours, tend to enhance trust. Misaligned AI
adaptations, conversely, can undermine users’ perceived control and autonomy,
eroding trust more significantly than reliability discrepancies alone. This sensitivity
to Al alignment mirrors socialisation theories in human teams, where initial
alignment with norms and expectations promotes rapport and trust (Chao et al.,
1994; Saks & Gruman, 2014).
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In this context, the principle of adaptive personality in human teams offers a
valuable lens. As Chao et al. (1994) and Van Maanen & Schein (1977) suggested,
adaptive socialisation involves modifying behaviour to align with team norms,
enhancing integration and trust. Just as adaptive socialisation helps align team
members’ behaviours with organisational culture, socially adaptive Al in HATs
could support alignment with user preferences, fostering smoother collaboration.
This parallels research on adaptive autonomy in Al, where agents dynamically
adjust their autonomy to match team needs (Hauptman et al., 2023). While our
study focused on initial preference-matching rather than dynamic adaptation, the
importance of alignment for trust building aligns well with these adaptive
frameworks. Such an approach suggests that personalised, preference-matched Al
may be a practical foundation for real-world HATs, where dynamic adaptation may

not be feasible.

5.4.2 AI and Human Performance Ratings

Our findings for Hypothesis 1 reveal that the percentage of correct answers was
highest in the Adapting and Control conditions and lowest in the Negative
Adapting condition, particularly in the high-reliability condition. Specifically,
participants in the Negative Adapting condition scored around 10% lower than in
the Adapting and Control conditions, supporting Hypothesis 1 that preference
alignment positively influences performance. This finding is consistent with studies
showing that AI, which aligns with user preferences, can enhance performance by
fostering smoother, more intuitive interactions (Liu et al., 2003; Strauss, 2017).
The parallel between performance and trust results is particularly intriguing: both
indicate that an AI's alignment, or lack thereof, with user preferences significantly
impacts outcomes. This suggests that the mismatch between user expectations

and the Al's behaviour drives declines in trust and performance.

Interestingly, participants’ performance ratings did not vary significantly across
conditions or by reliability, indicating a discrepancy between actual and perceived
performance (Bansal et al., 2019; Chavaillaz et al., 2016). This suggests that
participants may not accurately assess performance differences based on
reliability, possibly due to cognitive biases or the influence of unrelated factors like

Al likability and perceived intelligence. For instance, participants rated the AI more
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favourably on traits like likability, anthropomorphism, and perceived intelligence in
high-reliability conditions, suggesting that reliability influenced their perceptions
more than adaptive behaviour. This aligns with studies on anthropomorphism and
perceived intelligence in AI, which indicate that perceived reliability can influence
user perceptions even when it does not necessarily reflect actual performance ((de
Visser et al., 2016; Roy & Naidoo, 2021; Waytz et al., 2014). These discrepancies
underscore that adaptive preferences alone may not enhance perceived
performance, suggesting a nuanced interplay between reliability, adaptation, and

perceived attributes.

However, trial Al performance ratings from the experiment did not fully support
Hypothesis 1, indicating that the effects of adaptability on performance are
complex and may not straightforwardly translate into perceived performance
gains. Likewise, our findings did not provide evidence for Hypothesis 3, which
posited that adaptability to user preferences or opposition to those preferences
would directly impact perceived performance. This may suggest that adaptability
alone, while valuable in specific contexts, might not significantly influence

performance perceptions without concurrent reliability signals.

An unexpected finding was that participants rated their human teammate’s
performance higher when the AI’s reliability was low. This suggests a
compensatory effect where lower-performing AI may inadvertently enhance
perceived human performance. This effect may stem from comparison bias or a
shift in expectations: as the Al's performance dips, participants may adjust their
perceptions, viewing human contributions as comparatively more substantial
(Jones-Jang & Park, 2023). This result resonates with findings on team dynamics,
where perceived performance can be influenced by contrasting behaviours within
the team (Glikson & Woolley, 2020).

In summary, the percentage of correct answers supports Hypothesis 1 by
indicating that preference alignment with the AI positively impacts performance,
though this effect does not extend to participants’ performance ratings. The
observed discrepancies between actual and perceived performance highlight the

complex role of Al adaptability, user expectations, and reliability in shaping
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performance perceptions. Future research could explore how relative reliability
within HATs influences perception and trust and whether training on adaptive Al
behaviours could help mitigate these biases, ultimately creating more balanced

perceptions of Al and human team members.

5.4.3 Limitations

While the findings of this chapter provide important insights into the impact of Al
social alignment on trust and performance within human-AI teams, several
limitations should be acknowledged. First, although participants were assigned to
conditions based on their self-reported communication preferences, the
distribution across preference types was not fully balanced across experimental
groups. Specifically, the Adapted AI (PA) condition primarily included participants
with friendly preferences, while the Non-Adapted AI (NoA) condition consisted
mainly of participants with formal preferences. This uneven distribution may
confound the interpretation of results, as some effects attributed to alignment

could be partially influenced by baseline differences in interaction preferences.

Second, while the manipulation of AI alignment (adapted vs. non-adapted) was
effective, it is possible that some participants may not have fully noticed or
interpreted the AI's communication style as intended. Future research could

incorporate manipulation checks to assess perceived alignment more directly.

Third, the measures of trust and performance were captured over a relatively
short interaction period. As trust in Al is known to evolve over time, longitudinal or
repeated-interaction designs may provide a more comprehensive picture of how

social alignment affects sustained collaboration.

Finally, this study focused on only four binary interaction traits (e.g., friendly vs.
formal, short vs. long). Real-world communication preferences are likely more
nuanced and dynamic. Future studies could explore more flexible and adaptive Al
models that adjust to individual communication patterns over time, rather than
relying on static assignments.
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Addressing these limitations in future work would strengthen the generalizability
of the findings and help refine guidelines for designing socially aligned Al

teammates.

5.4.4 Conclusions

This chapter’s findings highlight that Al adaptability, when designed to align or
misalign with user preferences, significantly affects trust and team dynamics
within HATs. Results indicate that user preference alignment enhances trust and
influence ratings, while misalignment detrimentally impacts trust, underscoring the
asymmetrical effect of negative experiences on trust calibration. Furthermore,
adaptability’s impact on perceived human teammate performance, mainly when
low AI reliability, emphasises the importance of relative reliability of AI teammates

and role clarity in team dynamics.

These insights advance the thesis’s exploration of how various Al design factors,
reliability, human likeness, and adaptability influence HAT performance. This
chapter also raises questions about adaptability’s role as a foundational design
strategy versus a dynamic trait, suggesting that adaptability alone may not suffice
to build optimal HATs without reliable, context-aware support. The concluding
chapter will synthesise findings from each experimental chapter, discussing
practical implications for designing adaptive, reliable AI teammates that enhance

trust and cohesion in real-world, high-stakes applications.

177|Page



Chapter 6 Conclusions

6.1 Introduction

Integrating Al as a teammate within HATs represents a fundamental shift in how
technology supports and collaborates with human users. This thesis has explored
critical dimensions of this shift, focusing on the dynamics of trust,
anthropomorphism, and SI within HATs. Through a detailed bibliometric analysis
of trust research, experimental studies on the impact of Al characteristics on
human collaboration, and the exploration of theoretical frameworks, this work has
aimed to illuminate the complex relationship between humans and Al agents as

evolving teammates rather than mere tools.

Central to this thesis is the idea that for AI to function as an effective teammate, it
must move beyond transactional roles, incorporating qualities that foster trust,
mutual understanding, and team cohesion. Chapters have progressively examined
how HATSs are shaped by trust calibration (de Visser et al., 2020; Lee & See, 2004)
, the role of anthropomorphism in facilitating human-like interactions (de Visser et
al., 2016; Glikson & Woolley, 2020), and the potential for socially intelligent Al
systems to enhance collaborative outcomes (Dautenhahn, 1995; Kox et al., 2022;
Nass et al., 1994a; Williams et al., 2022; Zadeh et al., 2019). By addressing these
interrelated aspects, this thesis has highlighted the need for a human-centric
approach in HAT design that emphasises technical capability, social adaptability,

and ethical considerations.

This concluding chapter synthesises the primary findings across these domains,
reflecting on the unique contributions and limitations of the research. It also
identifies future directions essential for advancing the field of HATs. These include
investigating long-term trust dynamics, refining Al's social capabilities and
developing ethical frameworks to govern the growing role of Al in human teams.
The insights drawn from this research are intended to guide theoretical and
practical advancements in designing Al teammates that align with human
expectations and values, ensuring productive and trustworthy HATs in a rapidly

evolving technological landscape.
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6.2 Summary of Key Findings

This research explored the dynamics of trust, reliability, perceived performance,
and ethical considerations that influence HATs. We can comprehensively
understand how these factors interact and shape user experiences and team

outcomes by integrating the results across multiple chapters.

6.2.1 Trust

Trust emerged as the foundational component for successful collaboration in
HATs. The literature review in Chapter 1 set the stage, emphasising that trust is
central to human-machine collaboration, with calibrated trust being vital for
productive interactions (de Visser et al., 2020; Hoff & Bashir, 2015; Lee & See,
2004; Muir, 1994). Trust is not static but dynamic, requiring users to continuously
adjust their confidence based on the system's actions and experiences (Glikson &
Woolley, 2020; Li et al., 2023; Reinhardt, 2023). This dynamic process was
confirmed in the experimental chapters, where trust ratings were influenced by

system reliability, adaptability, and the presence of relational cues.

Chapter 2's bibliometric analysis broadened our understanding of trust research by
mapping the scope of existing studies, highlighting the central role of trust in
various contexts, and contextualising human-AI teaming within this expansive
field. This helped us better appreciate the position of human-AlI trust research
within the larger body of trust literature and understand the importance of

defining and measuring trust appropriately.

In Chapter 3, trust was significantly enhanced in low-reliability conditions when Al
systems were anthropomorphised. This suggests that in situations where Al
reliability is compromised, human-like features can help users feel more
comfortable and mitigate the negative impact of unpredictability, which supports
previous research (Bittner et al., 2019; de Visser et al., 2016; Roy & Naidoo,
2021; Seymour & Van Kleek, 2021; Ztotowski et al., 2015). Conversely, in high-
reliability conditions, trust was less influenced by anthropomorphism, highlighting
that trust is fundamentally rooted in the system's technical performance. These

findings reinforce that users calibrate their trust based on system reliability,
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adjusting their expectations according to the AlI's perceived ability to perform
effectively (Heyder et al., 2023; Jensen et al., 2021; Troshani et al., 2021).

Chapter 4 further explored the impact of EI on trust, using emojis to evoke
emotional intelligence (Beattie et al., 2020; Fadhil et al., 2018). While these
affective cues enhanced user perceptions of the Al's likeability, they did not
significantly impact the actual trust ratings or performance outcomes in task
settings. These findings suggest that cognitive rather than emotional factors
primarily drive trust in HATs. However, the findings in Chapter 4 are not strong
enough to conclude with confidence. Future work could use newly developed
measures to investigate the role of emojis (Shang et al., 2024). It is also possible
that emojis could potentially play a more significant role in fostering trust in
specific contexts, such as high-stakes environments or emotionally charged tasks
if emojis are aligned explicitly with an emotional state (Beattie et al., 2020; Boutet
et al., 2021; Fadhil et al., 2018; Rajan et al., 2023).

Chapter 5 emphasised the importance of Al adaptability in trust formation. The
research found that trust was significantly lower in the Negative Adapting
condition, where the Al's behaviour conflicted with user preferences, highlighting
the importance of alignment between user expectations and Al behaviour. This
finding is aligned with the “trust asymmetry effect” (Poortinga & Pidgeon, 2004;
Zhu et al., 2023), where negative experiences disproportionately impact trust
compared to positive interactions. Overall, trust in Al systems requires a careful
balance of technical reliability and adaptability, with misalignment causing more

harm than alignment benefits.

In conclusion, trust is the cornerstone of effective collaboration in HATs, and this
research highlights its dynamic and context-dependent nature. As established in
the literature review, calibrated trust is essential for productive HATs, with users
continuously adjusting their trust based on the AI system's reliability, preference
alignment, and anthropomorphised features. This was corroborated across the
experimental chapters, where trust ratings were found to be strongly influenced
by system performance and the presence of anthropomorphism or preference

alignment. In low-reliability conditions, anthropomorphic features helped mitigate
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trust erosion, but in high-reliability contexts, trust was more firmly anchored in the

Al's technical performance.

Additionally, while emotional cues, such as emojis, enhanced the Al's likeability,
they did not significantly impact trust outcomes. This suggests that cognitive
factors may outweigh emotional ones in driving trust in HATs; however, this area
of work needs further investigation. Finally, adaptability was identified as a critical
factor, with misalignment between the AI's behaviour and user expectations
significantly reducing trust. Overall, these findings reinforce the idea that trust in
AI systems requires a delicate balance of reliability, adaptability, and alignment
with user needs, carefully considering when and how anthropomorphic cues can
play a role in fostering trust (Chen & Park, 2021; Jensen et al., 2021; Kim & Song,
2021; Kulms & Kopp, 2019; Seymour & Van Kleek, 2021; Troshani et al., 2021).

6.2.2 Reliability

The research consistently identified reliability as a critical determinant of trust,
performance, and user perceptions. In Chapter 3, system reliability was the most
significant factor influencing trust and performance ratings. Al systems perceived
as reliable boosted user confidence, regardless of whether they were
anthropomorphic. This finding reaffirms that technical performance remains the
cornerstone of trust in HATs (Glikson & Woolley, 2020; Henrique & Santos, 2024;
Lahusen et al., 2024; Ryan, 2020).

Reliability emerged as a consistent and pivotal factor in shaping trust,
performance, and user perceptions across the research. As highlighted in Chapter
3, system reliability was the most significant influence on trust and performance
ratings, with reliable AI systems boosting user confidence regardless of whether
they featured anthropomorphic traits. This underscores the central role of

technical performance in fostering trust in HATS.

Chapter 5 further demonstrated that reliability remains crucial even when
considering adaptability. In the Negative Adapting condition, where Al behaviour
conflicted with user preferences, performance ratings were notably lower,
particularly when the system's reliability was high. This finding suggests that

181|Page



reliability not only forms the bedrock of trust but also serves as an anchor for
performance evaluations, with misalignment between user expectations and Al
behaviour detracting from trust and perceived effectiveness. These findings build
upon older work that found reliability to be a driver of trust in automation and
robotics (Chavaillaz et al., 2016; Desai et al., 2012).

Overall, these findings affirm that in HATS, reliability is a critical driver of trust and
performance, with adaptability and anthropomorphism serving as complementary
factors that enhance the experience without overshadowing the foundational
importance of reliability, which builds on previous works in hot HATs and human
teams (Hariri et al., 2015; Hauptman et al., 2023; Klarner et al., 2013; Pulakos et
al., 2006; Zhao et al., 2022).

6.2.3 Al Perceived Performance

Al's perceived performance was intricately linked to system reliability and human-
like features. Chapter 3 found that in low-reliability conditions, anthropomorphic
features led to higher trust but also resulted in lower performance ratings. This
indicates that while anthropomorphic designs can improve the initial perceptions
of an Al's trustworthiness, they may also elevate expectations about its
performance, which, when unmet, can lead to negative evaluations (Poortinga &
Pidgeon, 2004; Zhu et al., 2023).

In contrast, high-reliability systems consistently achieved better task performance,
regardless of whether they were anthropomorphic. This highlights a fundamental
takeaway: while anthropomorphic cues can enhance perceived trustworthiness in
specific contexts, technical accuracy and consistency are far more critical in
shaping actual performance perceptions (Chavaillaz et al., 2016; de Visser et al.,
2016; Glikson & Woolley, 2020). This reinforces findings from HRI that reliability
drives actual performance outcomes, while human-like features may influence
more subjective dimensions, such as likeability and familiarity (Honig & Oron-
Gilad, 2018; Reeves et al., 2020).

Chapter 4's examination of emojis revealed that while these emotional cues
influenced perceptions of human teammates' performance, they had no
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substantial impact on Al performance ratings in task-based settings. This suggests
that while emotional cues can improve team cohesion and perceptions of Al
“likeability”, they are not significant drivers of perceived Al performance,
particularly in scenarios that demand high cognitive focus (Flathmann et al.,
2023). It is evident that system reliability remains the most critical factor in

determining how users evaluate the AI's performance in collaborative tasks.

6.2.4 Human Teammate Performance

The findings across these chapters, supported by broader research, offer valuable
insights into human teammate performance in HATs , revealing how trust,
adaptability, and team dynamics shape perceptions and outcomes. A notable
observation is the compensatory effect of Al reliability: human performance
ratings can increase when Al reliability is low. This phenomenon, noted in
Chapter 5, aligns with research suggesting that when one team member (human
or Al) underperforms, others are viewed as more capable by comparison (Glikson
& Woolley, 2020; Endsley, 2023). This dynamic underscores that the performance
of human teammates is closely tied to the relative performance of the Al,
reflecting the nuanced interplay of team roles and expectations (McNeese et al.,
2021).

Additionally, the relationship between trust and team dynamics plays a crucial role
in shaping perceptions of human performance. When trust in the AI erodes, as in
the Negative Adapting condition explored in Chapter 5, participants rely more
heavily on their human teammates, enhancing their perceived performance. Trust
dynamics influence how other team members are valued (McNeese et al., 2021).
These findings align with broader studies emphasising the importance of trust
calibration for effective collaboration in HATs; misplaced trust can distort
perceptions and lead to over- or under-reliance on Al (de Visser et al., 2020;
Hauptman et al., 2023).

While emotional cues like anthropomorphic design or affective communication
from AI enhance its perceived likeability and trustworthiness, they have limited
direct impact on human teammate evaluations. This aligns with research indicating

that affective cues in Al influence trust in the Al itself rather than the wider team
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(Waytz et al., 2014; Fadhil et al., 2018). Furthermore, these emotional cues often
do not compensate for broader task-related dynamics like reliability or role clarity,
which remain the primary determinants of trust and perceived performance
(Janhunen et al., 2024; McNeese et al., 2021).

Human performance ratings remained consistent across experimental conditions
regarding actual contribution, even when the Al's behaviour varied. This reflects
the influence of comparative dynamics and role interdependence over objective
measures. When AI reliability decreased, humans were perceived as stepping into
a more critical role despite no changes in their actual behaviour. This finding
aligns with team theories emphasising the importance of clear roles and
interdependence for effective collaboration (Chai et al., 2017; Saks & Gruman,
2014). Moreover, as noted in recent reviews, transparency and role clarity are

essential for fostering effective HAT performance (McNeese et al., 2018, 2021).

6.2.5 Conclusion of Findings

This research reveals that trust in HATs is primarily shaped by system reliability,
with adaptability and relational cues playing supplementary roles. Reliability is the
foundation for trust and perceived performance, while AI's adaptability helps
maintain trust when aligned with user preferences. However, misalignment and
overly anthropomorphic or emotional cues risk creating challenges by
miscalibrating user trust. These findings highlight the need for balanced Al
designs prioritising transparency, reliability, and ethical considerations to foster

effective and sustainable human-agent collaborations in diverse contexts.

6.3 Contributions to the Field

This thesis significantly contributes to HATSs, trust in Al, and human-AI
collaboration by developing new theoretical insights, offering practical design
guidance and introducing novel methodologies for studying and measuring
human-AlI interactions. By addressing trust, anthropomorphism, and social
alignment, this work extends beyond existing literature to establish a

comprehensive foundation for understanding Al as a teammate rather than a
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mere tool. It also explores the impact of having multiple human team members,

setting the stage for future advancements in collaborative workplace AI.

6.3.1 Theoretical Contributions

This thesis expands on existing frameworks of trust in HATs by examining trust as
a dynamic, context-sensitive construct specifically suited to HATs. Previous
studies, such as those by Lee and See (2004), focused on trust calibration in
automation, emphasising the need for trust to align with system reliability and
transparency. Building on this foundation, this thesis demonstrates that trust in Al
teammates requires a nuanced approach considering the social and psychological

dimensions of human-machine interactions.

Trust in HATs is shown to hinge not only on reliability and transparency but also
on AlI's anthropomorphism and preference alignment, which can lead to more
collaborative and effective relationships. In expanding the notion of trust to reflect
the unique demands of HATS, this work provides a more precise investigation to
inform the design of Al systems capable of fostering sustainable trust with human
collaborators. It also highlights the issues of humanising Al, as it can lead to
increased levels of trust when reliability is low, resulting in overtrust in the system
(Robinette et al., 2016). For these reasons, it is essential to take a steady
approach to developing Al that is more human and capable of social alignment to
ensure that the system's robustness justifies the positive impacts on trust and
likeability.

This thesis also contributes to the theoretical understanding of anthropomorphism
and user alignment within HATS, integrating insights from the CASA paradigm
(Nass et al., 1994) to explore how human-like qualities in AI can foster trust.
While anthropomorphism has been widely studied, this work extends the
application of anthropomorphic cues to HATSs, investigating the conditions under
which such cues enhance collaboration. The findings reveal that moderate
anthropomorphism, manifested through human-like language and nonverbal cues,
can enhance user trust and promote collaboration. This study supports previous
research on the benefits of SI in team settings (Boyatzis et al., 2017; Williams et

al., 2022; A. Zhang & Patrick Rau, 2022) and establishes the need for a balanced
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approach to anthropomorphism, where Al is designed to convey human-like
qualities while avoiding discomfort or manipulation. This balanced perspective
aligns with the work of Troshani et al. (2021) and Glikson and Woolley (2020),
who emphasise anthropomorphism's contextual and ethical considerations,

particularly in fostering emotional connections without misleading users.

Finally, this work is unique as it also considers the presence of a human
teammate. Contextual factors like Al reliability, adaptability, and emotional
presentation influence human teammate performance in HATs. Ratings of human
performance often reflect relative Al performance and team dynamics rather than
an objective assessment of human contributions akin to the halo effect (Lachman
& Bass, 1985; Naquin & Tynan, 2003; Nicolau et al., 2020). This underscores the
importance of designing Al systems that foster clear roles and balanced dynamics
to enhance team collaboration.

These insights underscore the importance of anthropomorphism and social
alignment in Al, adding a new dimension to HAT theory by emphasising that Al
teammates should be designed for functional efficiency and to support emotional

engagement and social cohesion within teams.

6.3.2 Practical Implications

This thesis offers actionable insights for designing and implementing Al in
collaborative settings. The empirical findings suggest that specific design
principles, such as optimal levels of anthropomorphic language and the strategic
use of social alignment, can encourage trust and engagement. These
recommendations provide practical information for developing Al teammates who

align with human social expectations and optimise team dynamics.

From a practical perspective, Al developers and designers are encouraged to
adopt anthropomorphic features judiciously, focusing on transparency and
reliability as foundational design principles. For instance, the findings demonstrate
that while anthropomorphic design can increase user trust and likeability, it must
not obscure the AI's actual capabilities or limitations. This aligns with
recommendations by Hauptman et al. (2023) and Schelble et al. (2022),
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advocating for transparent communication of Al strengths and boundaries to avoid

ethical dilemmas such as over-trust or misuse of Al in critical settings.

Ethically, this work underscores the responsibility of designers to ensure that
anthropomorphic Al promotes informed collaboration rather than manipulation. By
creating systems that appear “human-like”, there is a risk of users overestimating
Al capabilities or forming inappropriate emotional connections, as highlighted by
Waytz et al. (2014). This calls for a balanced approach that respects user
autonomy while enhancing team dynamics. These findings support a broader
discourse on the ethical integration of Al, emphasising the need for systems that
are both user-centric and grounded in ethical transparency, ensuring that

anthropomorphism serves as a tool for collaboration rather than deception

As demonstrated in studies by Fussell et al. (2008) and Pelau et al. (2021),
nonverbal cues can significantly enhance user engagement when applied
judiciously. However, this research goes further by empirically testing the
influence of these cues within the unique context of HATs, where the balance of
trust and comfort is essential to avoid over-reliance or discomfort. These insights
are particularly relevant for AI developers and designers, providing a roadmap for
integrating anthropomorphic features and user alignment into Al systems to

enhance trust calibration and overall team effectiveness.

Additionally, this thesis emphasises the need for user-centric adaptability in Al
teammates, contributing to a growing body of research advocating for Al systems
responsive to user preferences and team dynamics. By demonstrating that
adaptable Al teammates who align their communication style to mimic user
preferences are perceived as more trustworthy and practical, this work supports a
user-centred approach to Al design. These findings echo calls from Berretta et al.
(2023) and Schelble et al. (2022) for adaptive Al systems that enhance
engagement and collaboration by aligning with team members' needs. The
emphasis on adaptability highlights a practical pathway for future HATs, where
AI's responsiveness to social and contextual cues strengthens team cohesion and

reduces friction in collaborative environments.
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6.3.3 Ethical Contributions

Across all chapters, ethical and contextual considerations emerged as critical when
designing HATSs. Using anthropomorphic features and emotional cues like emojis
raised concerns about the potential for miscalibrating trust, particularly in low-
reliability conditions. For instance, Chapter 4 demonstrated that emojis could
soften negative perceptions of Al but did not improve trust or performance.
Emotional anthropomorphism can foster pseudo-intimacy, encouraging users to
form emotional attachments to AI that lack depth or authenticity, potentially
leading to inappropriate reliance on critical domains such as healthcare or finance
(Placani, 2024). Therefore, ethical design principles must prioritise transparency
and reliability, ensuring that anthropomorphic cues or adaptability do not obscure

an Al system's actual capabilities.

Additionally, educating users about the limitations of Al systems is essential.
Through clear communication of Al's scope and constraints, user empowerment
can reduce over-reliance and promote informed collaboration. For instance,
incorporating ethical design features, such as explainable Al, can enhance user
understanding and encourage the appropriate use of emotional cues in
contextually relevant ways without overshadowing the system's technical
attributes (Endsley, 2023; Kim et al., 2023; Nasir et al., 2024; Ribeiro et al.,
2016).

6.3.4 Methodological Contributions

Methodologically, this thesis advances the study of trust in Al by using bibliometric
analysis to map the interdisciplinary landscape of trust research. By tracing trust
research across psychology, computer science, and organisational behaviour, this
analysis reveals the evolution and interconnections within trust literature,
highlighting shifts from interpersonal trust to trust in automated and Al systems
(Rousseau et al., 1998; Glikson & Woolley, 2020). This approach provides a
foundational understanding of trust research and equips future researchers with a
framework to explore interdisciplinary linkages and trends in trust and AI. By

identifying key themes and influential works, this analysis offers a comprehensive
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view of the trust landscape, establishing a basis for future studies examining trust
within HATs.

The experimental methodologies employed in this thesis also contribute to HAT
research. These studies introduce a controlled framework for examining trust
calibration in HAT contexts by systematically varying anthropomorphic features
and nonverbal cues such as emojis. These experiments build on the work of
Glikson and Woolley (2020) and Robinette et al. (2016) by providing replicable
designs that other researchers can adapt to explore additional anthropomorphic

design and SI variables.

This thesis advances theoretical frameworks, practical design principles, and
methodologies for understanding and improving human-AI collaboration. By
positioning trust, anthropomorphism, and Al social alignment as integral to
practical HATSs, this work not only addresses some of the critical challenges in Al
teammate design but also sets a foundation for future research that aims to create
AI systems that are trustworthy, adaptable, and ethically designed for productive
HATSs. Finally, the work focuses on the ratings of other human teammates to

understand further how AI can influence team dynamics.

6.4 Limitations

While this thesis offers valuable insights into the development of HATS, trust in Al,
and the roles of anthropomorphism and SI, several limitations should be
considered. These limitations relate to the context and generalizability of findings,
methodological constraints, and challenges inherent to studying complex human-
Al interactions. Recognising these limitations provides a basis for refining future

research and enhancing the practical application of these findings.

One significant limitation concerns the contextual constraints of the experimental
studies, which were conducted in controlled environments that may not fully
capture the complexity of real-world HATs. Rix (2022) and Berretta et al. (2023)
highlight that studies in controlled settings often struggle to replicate the diverse,
dynamic conditions encountered in practical applications. While controlled

experiments allow for precision in examining specific variables (such as
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anthropomorphism and nonverbal cues), they inherently limit the ability to
generalise findings to broader contexts where human-AI collaboration is subject to
changing environmental factors, varying task demands, and differing
organisational cultures. Consequently, the applicability of these findings to highly
dynamic settings, such as emergency response or complex team-based decision-
making scenarios, may be restricted.

Another limitation relates to measuring trust and SI in Al, which are inherently
complex constructs. Despite efforts to develop and apply specific metrics, such as
adaptability and emotional cues, measuring these qualities remains challenging
due to the absence of standardised frameworks. As outlined by Lee and See
(2004), existing measures of trust in automation are generally designed for
simple, transactional interactions. They may only partially capture the relational
dynamics of trust in HATSs, where trust is continually calibrated and influenced by
social factors. This limitation underscores the need for more robust, context-
sensitive tools to accurately measure trust in AI teammates, especially as trust in
AI may evolve differently from trust in human teammates. Moreover, the
development of standardised metrics for SI in AI remains in its infancy, which
restricts the ability to conduct comparative studies and hinders the broader

applicability of these findings.

Finally, a notable methodological limitation is the reliance on short-term
interactions in experimental settings. Trust and SI in HATs are dynamic constructs
that evolve through repeated interactions, feedback, and observed behaviour, as
highlighted in studies by Robinette et al. (2016) and Williams et al. (2022). This
thesis, however, primarily focuses on short-term trust calibration and immediate
reactions to anthropomorphism and social cues. While these findings offer
valuable insights into initial trust formation, they may not fully capture the long-
term dynamics of trust in HATSs, which is critical for applications where human-Al
interactions occur over extended periods. Longitudinal studies are needed to
explore how trust and perceptions of SI evolve in Al teammates over time,
providing a more comprehensive understanding of sustained human-AI

collaboration.
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In summary, while this thesis substantially contributes to studying human-AI
collaboration, these limitations highlight the field's complexity and scope.
Addressing these limitations in future research will be essential for advancing the
theoretical and practical understanding of HATS, particularly in creating Al
teammates that are trustworthy, adaptable, and ethically designed to support

effective human-Al collaboration across diverse settings.

6.5 Future Directions

The findings and limitations of this thesis highlight several promising avenues for
further research in HATS, particularly in areas of trust dynamics, anthropomorphic
design, SI, and ethical Al development. By pursuing these directions, future
studies can deepen our understanding of human-Al collaboration and contribute

to creating effective, adaptable, and ethically designed Al teammates.

One pressing area for future research is the exploration of trust dynamics over
extended periods. This thesis has focused primarily on short-term interactions,
offering insights into the initial stages of trust calibration and anthropomorphic
influence. However, trust in HATS is not static; it evolves through repeated
interactions and may fluctuate based on AI performance, adaptability, and
reliability over time (Robinette et al., 2016; Williams et al., 2022).

Longitudinal studies that track trust over time and in varied real-world settings
would provide a more comprehensive understanding of how sustained human-AI
collaboration impacts trust. For instance, future research could examine how initial
trust formation and subsequent trust breaches or repairs influence long-term
collaboration. Such studies could utilise a mixed-methods approach, combining
quantitative trust metrics with qualitative assessments to capture the complexity
of trust evolution in HATs. These insights would be particularly valuable for
designing Al teammates suited for long-term, high-stakes settings, such as

healthcare and defence, where sustained trust is crucial.

SI in AI remains an underexplored area, particularly regarding how Al systems
perceive and respond to subtle social cues from human teammates. Future studies

should examine how AI can be equipped with context-sensitive SI, enabling it to
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respond to human emotions, adapt its behaviour dynamically, and foster better
alignment with team goals (Williams et al., 2022). For example, research could
focus on developing Al systems that recognise user frustration or satisfaction and
adjust their level of guidance or collaboration accordingly. Additionally, studies
could investigate how AI systems that exhibit self-awareness about their
limitations (e.g., expressing uncertainty when their confidence is low) affect user
trust and reliance. This line of research would benefit from interdisciplinary
approaches, drawing on insights from psychology, human-computer interaction,
and machine learning to create socially intelligent Al that enhances team cohesion

and effectiveness.

Finally, future research should aim to test the principles of HATs in real-world,
dynamic environments to validate and expand upon the findings of this thesis.
While controlled experiments offer valuable initial insights, field studies in
operational settings, such as healthcare, emergency response, or remote
teamwork, can reveal how Al teammates function under real-world pressures and
unpredictability (Rix, 2022; Berretta et al., 2023). Field studies could assess how
AlI's adaptability, anthropomorphism, and SI impact team performance, situational
awareness, and user trust in high-stakes environments. Such research could also
examine how human teams adjust their behaviour and strategies based on Al
actions, providing critical insights into the reciprocal dynamics of human-AI
interaction. These studies would not only validate theoretical insights but also
inform the design of Al systems that are robust and responsive in complex,

dynamic team settings.

6.6 Conclusion

This thesis has undertaken an in-depth exploration of the evolving landscape of
HATSs, investigating the foundational elements necessary for Al to transition from
functional tools to trusted teammates. By examining trust, anthropomorphism,
and SI, this work contributes to a nuanced understanding of how AI can integrate
meaningfully within human teams. Drawing on interdisciplinary insights, this

research presents a comprehensive framework for human-Al collaboration,
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underscoring the critical importance of calibrated trust, balanced

anthropomorphism, and adaptable SI.

The findings of this thesis affirm that Al's effectiveness as a teammate relies on
far more than technical capability alone. Trust is shown to be the cornerstone of
successful HATSs, requiring not only reliability but also dynamic responsiveness and
transparency. By empirically examining how Al design elements, such as
anthropomorphic language and nonverbal cues, impact trust and performance,
this research provides actionable insights for developers, offering design
guidelines that humanise AI without overstepping into discomfort or manipulation.
These insights extend to ethical considerations, advocating for a principled

approach to Al that fosters trust without undermining user autonomy or consent.

In addition to its theoretical and practical contributions, this thesis introduces
novel methodological approaches, including a bibliometric analysis that maps trust
research across disciplines, and experimental frameworks that quantify the effects
of social cues on human-Al interactions. These methodologies strengthen the
findings presented here and provide a replicable basis for future studies aiming to
refine the roles of trust and SI in HATSs. By setting a foundation in these areas,
this work opens pathways for future research to examine trust dynamics over
time, refine adaptive Al behaviour, and consider diverse cultural perspectives in
HAT design.
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Subsection

Accompanying Material

Supplementary Material 1. The Godspeed Questionnaire

Question

| Anthropomorphism

Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales

Fake

Machinelike

Unconscious

Artificial

Natural

Humanlike

Conscious

Lifelike

"Likeability

Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales

Cold

Dislike

Unfriendly

Unkind

Unpleasant

Awful

Warm

Like

Friendly

Kind

Pleasant

Nice

“Perceived
Intelligence

Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales
Please rate your
impression of the Al
on these scales

Incompetent

Ignorant

Irresponsible

Unintelligent

Competent

Knowledgeable

Responsible

Intelligent
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Please rate your Foolish Sensible
impression of the Al
on these scales
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Supplementary Material 2. Trust in Automation Questionnaire with Changes

Subsection Question
Familiarity I know similar Als. Strongly Disagree Strongly
Agree
I have already worked with a  Strongly Disagree Strongly
similar Al Agree
Intention of The developers are Strongly Disagree Strongly
Developers trustworthy. Agree
The developers take my well-  Strongly Disagree Strongly
being seriously. Agree
Propensity to  I'd rather trust an Al than Strongly Disagree Strongly
Trust not. Agree
One should be careful with Strongly Disagree Strongly
unfamiliar Als. Agree
Al generally works well. Strongly Disagree Strongly
Agree
Reliability/ The Al is capable of Strongly Disagree Strongly
Competence interpreting situations Agree
correctly.
The AI works reliably. Strongly Disagree Strongly
Agree
An Al malfunction is likely.* Strongly Disagree Strongly
Agree
The Al is capable of taking Strongly Disagree Strongly
over complex tasks. Agree
The AI might make random Strongly Disagree Strongly
errors. Agree
I am confident about the AI's  Strongly Disagree Strongly
capabilities.* Agree
Trust in AL I can rely on the AL Strongly Disagree Strongly
Agree
I trust the Al Strongly Disagree Strongly
Agree
Understanding The Al's state was always Strongly Disagree Strongly
/Predictability  clear to me. Agree
The Al reacts unpredictably. * Strongly Disagree Strongly
Agree
I understand why things Strongly Disagree Strongly
happen. Agree
It is difficult to identify what  Strongly Disagree Strongly
the Al will do next. * Agree
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Supplementary Material 3. User Preference Questionnaire
Subsection Questions

I prefer teammates who communicate Strongly Strongly
Short L o : .

their ideas in brief and concise messages. Disagree Agree

When receiving feedback, I appreciate Strongly Strongly

short and to-the-point comments. Disagree Agree

In team meetings, I value when Strongly Strongly

discussions are kept short and focused. Disagree Agree

I believe effective communication often Strongly Strongly

means saying less, not more. Disagree Agree

Quick, succinct responses in team chats  Strongly Strongly

or emails are more productive for me. Disagree Agree

I appreciate when teammates provide Strongly Strongly
Long detailed explanations in their Disagree Agree

communications.

When receiving feedback, I find more Strongly Strongly

value in thorough and elaborate Disagree Agree

comments.

In team meetings, I prefer detailed Strongly Strongly

discussions that cover topics extensively.  Disagree Agree

I believe that comprehensive Strongly Strongly

communication prevents Disagree Agree

misunderstandings.

I prefer receiving emails or messages Strongly Strongly

from teammates that are detailed and Disagree Agree

informative.

I feel more comfortable in a team when Strongly Strongly
Friendly my teammates are open and Disagree Agree

approachable.

I appreciate teammates who make an Strongly Strongly

effort to engage in casual conversations.  Disagree Agree

I believe that sharing personal stories Strongly Strongly

strengthens a team's bond. Disagree Agree

I prefer working with teammates who Strongly Strongly

show warmth and friendliness. Disagree Agree

Teammates who joke and laugh make Strongly Strongly

the work environment more enjoyable for Disagree Agree

me.

I value professionalism and a formal tone  Strongly Strongly
Formal : N X

in all team communications. Disagree Agree

I believe that keeping personal and Strongly Strongly

professional lives separate improves team Disagree Agree

efficiency.

I prefer teammates who focus strictly on  Strongly Strongly

work-related topics during discussions. Disagree Agree

I respect teammates more when they Strongly Strongly

maintain a formal demeanour. Disagree Agree
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A clear distinction between work and Strongly Strongly
personal interaction with teammates is Disagree Agree
important to me.

217 |Page



	Thesis cover sheet
	2025baileyphd

