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Abstract

This thesis develops and applies statistical modelling techniques for complex spatial and spatio-

temporal geophysical datasets, with a particular focus on the estimation and assessment of landslide

hazard and surface deformation. The bulk of this thesis’s methodological framework is grounded in

Bayesian inference, utilising the integrated nested Laplace approximation (INLA) for efficient compu-

tation. The models employed are of the latent Gaussian class, wherein observations are conditioned

on an unobserved latent field that captures residual spatial or spatio-temporal variation. This latent

field is represented via a Matérn Gaussian Random Field, approximated through the Stochastic Par-

tial Differential Equation (SPDE) approach. Domain-specific covariates - geographical, geological and

meteorological - are incorporated within the hierarchical structure. In doing so, the thesis explores

landslide hazard in terms of where landslides occur, when they occur, and how large they are.

The statistical approaches developed span a range of modelling strategies, including susceptibility

models (presence/absence), Poisson and log-Gaussian Cox processes (LGCPs), functional generalised

additive models (FGAMs), and a custom space-time SPDE smoother implemented within the Mixed

GAM Computation Vehicle with Automatic Smoothness Estimation package (mgcv), which is a flex-

ible framework for modelling non-linear relationships within GAMs. This enables the integration

of high-resolution environmental covariates and a functional precipitation predictor, with various

continuous distributions used to model landslide size.

Chapter 2 introduces a unified landslide hazard framework through a Hurdle model, jointly mod-

elling occurrence (via a Bernoulli process) and size (via a log-Gaussian model for planimetric ex-

tent). This enables the creation of hazard maps that provide probabilistic estimates of large-event

exceedances, along with their associated uncertainty.

Chapter 3 presents an updated landslide susceptibility model for Scotland, developed for the

British Geological Survey (BGS). It includes a proposed LGCP extension and provides the first data-

driven landslide susceptibility framework for the BGS, benchmarked against their previous heuristic

model, GeoSure.

Chapter 4 addresses a key methodological challenge: the influence of mesh resolution and inte-

gration scheme in SPDE-based point process models with fine-scale covariates. Motivated by issues

encountered in the BGS application, a series of simulation studies explores the effects of mesh specifi-

cation, culminating in a case study where a marked LGCP is fitted to a Japanese landslide inventory

using landslide size as the mark.
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Chapter 5 explores the temporal dimension of landslide hazard through a spatio-temporal model of

surface deformation in a region of China over a two-month period. This chapter introduces a functional

precipitation predictor and transitions from a Bayesian to a frequentist framework, motivated by

limitations in earlier precipitation representations. It implements, for the first time, a space-time

SPDE Matérn smoother within mgcv, enabling flexible modelling of deformation using high-resolution

covariates and functional data analysis techniques.
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Chapter 1

Introduction

This thesis explores statistical methodologies for spatial and spatio-temporal modelling of landslide

hazard. Landslide hazard is originally conceived as a function of the spatial propensity of landslide

events (susceptibility) and the temporal frequency at which they occur (Guzzetti et al., 1999). This

definition was later modified in order to account for the intensity associated to a population of

landslides (Crozier, 2005). To put it simply, landslide hazard refers to the where, the when and the

how large. Each of these aspects can be defined and measured in various ways, and in this work,

we explore statistical-based modelling approaches to represent the three aspects of landslide hazard,

independently and jointly.

Landslide hazard assessment is crucial in providing a comprehensive evaluation for mitigation

measures and evacuation plans. Perhaps one of the most notable landslide hazard risk management

schemes in place is that of the Slope Safety System in Hong Kong, China. With an annual average

of 2300mm of rainfall a year, and extreme rainfall events with intensities exceeding 100mm per hour

occurring frequently in the summer, the risk of rainfall-induced landslides and debris flows is very

high. In the aftermath of two destructive landslides in 1972, the Geotechnical Control Office set

up the Slope Safety System. The system was designed to develop multiple initiatives, such as early

warning mechanisms, community participation, and enforcement of geotechnical standards, to reduce

landslide risk in a holistic way. The Slope Safety System has reduced the annual fatalities due to

landslides by over 50% and there have been no fatalities in almost a decade (Malone, 1997).

Landslide susceptibility refers to the likelihood of landslide occurrence in a given study area,

and is often evaluated by subdividing the area into zones based on factors influencing slope sta-

bility (Shano et al., 2020). Throughout this work, we use the terms susceptibility and occurrence

1



CHAPTER 1. INTRODUCTION 2

probability interchangeably. A wide range of techniques has been used throughout the literature in the

evaluation of landslide susceptibility, broadly classified into qualitative and quantitative approaches.

Qualitative approaches, such as landslide inventory (Reichenbach et al., 2018) and terrain analysis,

rely on expert (heuristic) evaluation techniques, which are based on the evaluator’s knowledge and

experience (Corominas et al., 2014). Quantitative approaches include statistical, deterministic, and

probabilistic methods. Evolving from simple limit equilibrium models (Montgomery and Dietrich,

1994) to increasingly complex statistical and deep learning approaches, the expansion in the com-

plexity and number of techniques has been matched by an ever-increasing number of publications in

the scientific literature (Dong et al., 2023).

This development of data-driven tools or landslide analysis has progressively addressed a range of

themes, driven by research focused on performance-oriented solutions such as machine (Goetz et al.,

2015) and deep (Azarafza et al., 2021) learning. In parallel, significant advances have emerged from

targeted studies on: i) uncertainty estimation (Tanyas and Lombardo, 2020), sampling strategies

for ii) stable (Steger et al., 2016) and iii) unstable (Chang et al., 2023) slopes, iv) space-time ex-

tensions (Lombardo et al., 2020), as well as v) bias capture and removal (Steger et al., 2021), and

vi) variable selection (Budimir et al., 2015) among others. Despite these advances, relatively lit-

tle research has focused on adapting multivariate frameworks for hazard modelling, as opposed to

susceptibility analysis.

The intensity of a single landslide—reflecting its potential impact—can be expressed in terms of its

velocity, (Pudasaini and Krautblatter, 2021), kinetic energy (Chang et al., 2017) or force (Tang et al.,

2014). However, whenever the scale of the study involves large geographic regions, such intensity-

related measures are impossible to retrieve due to the costs involved with the geotechnical data

acquisition (Van den Bout et al., 2021). For this reason, few recent alternatives have been proposed

to express landslide intensity over entire landscapes. Specifically, Lari et al. (2014) have proposed an

intensity measure for rock falls under the assumption that failure sources are distributed according

to a Poisson exponential family. Similarly, Lombardo et al. (2018) proposed a doubly stochastic

structure (via a Log-Gaussian Cox Process - LGCP) to model the expected number of landslides per

mapping unit. Note that from a purely statistical point of view, the LGCP tries to model a random

intensity function that generates the observed point pattern. It is important here to differentiate the

intensity function of the LGCP from the landslide intensity (a function of magnitude and velocity).

Other alternatives include Taylor et al. (2018) who explored the possibility of expressing intensity as

a function of landslide length-to-width ratios as a proxy indicator of the run-out characteristics. More
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recently, Lombardo et al. (2021) presented a data-driven solution to the landslide intensity estimation

by fitting a log-Gaussian model to global landslide planimetric areal data. This is where this thesis

starts to build on the literature; specifically, in Chapter 2 we propose a Hurdle model to combine the

probability of landslide occurrence with the expected planimetric extent. To our knowledge, this is

the first joint probability model designed to statistically capture these two components of landslide

hazard.

In this broad context, it becomes evident that no single solution exists to predict landslides and

associated characteristics. One of the main determinants of the choice among these solutions has

to do with data availability. In fact, most landslide inventories are expressed as point locations,

these being diagnostic of where the failure mechanism occurred (Martha et al., 2013). Therefore, the

information on the planimetric area is not included as part of the inventory metadata. This is not

the case for landslide polygonal inventories (Guzzetti et al., 2012), which are more complex to define.

Notably, deep-learning automated solutions have improved the situation in recent years, especially in

addressing the need for multi-temporal landslide mapping (Bhuyan et al., 2023).

An exploration into a scenario where we had available the point locations and the polygonal

landslide inventory is outlined in Chapter 3. With both data types available, we propose a model

comparison between the original model (heuristic), a susceptibility model (areal), and a point process

model (point/geostatistical) for debris flows occurring across Scotland. This work is part of a project

in defining a new data-driven landslide susceptibility model for the British Geological Survey (BGS).

On a whole, this work aims to integrate geostatistical and point-based data with environmental

variables, often defined over geomorphologically meaningful discretisations of the study area, to ensure

that landslide processes are represented in a geologically coherent manner. This thesis contributes

to the analysis of such data–often at regional to large scale–by employing modelling approaches

commonly used in environmental applications, while incorporating statistical techniques tailored to

capture the complexity of landslide phenomena.. A central objective is to present model outputs in

a format that is interpretable and useful for geoscientists, with a strong emphasis on preserving the

intrinsic structure and resolution of the original data. This is specifically covered in Chapter 4.

While exploring the way high-resolution data could be implemented in the modelling archetype,

the question of sufficient representation arose. In particular, that of dynamic environmental covari-

ates such as precipitation and temperature. In the models explored in Chapters 2, 3 and 4, these

covariates were reduced to a summary statistic such as mean annual precipitation. This prompted

an exploration into statistical models that would preserve the functional nature of these dynamic
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variables, specifically precipitation, and is described in Chapter 5.

This research aims to provide a comprehensive statistical assessment of landslide hazard, inte-

grating the three fundamental components in a way that has not been previously achieved using

statistical methods. The motivation behind this work was to develop and present a robust statisti-

cal framework for landslide hazard that could serve both methodological and practical purposes. We

sought to employ a variety of statistical models to explore how landslides can be represented, with the

dual objective of identifying potentially optimal approaches and improving upon existing statistical

applications and implementations encountered. This motivation is particularly evident in Chapter 5,

where we introduced a space–time stochastic partial differential equation (SPDE; Lindgren et al. 2011)

smoothing term within the Mixed Generalised Additive Model Computation Vehicle with Automatic

Smoothness Estimation package (mgcv), following the limitations we faced with modelling functional

data using the integrated nested Laplace approximation (INLA; Rue et al. 2009). The timing of this

research is especially pertinent given the creation and popularisation of the INLA methodology and

the SPDE approach - developments that were simply not available in previous years, when such anal-

yses would have been computationally prohibitive. This context is further strengthened by the work

presented in Chapter 3, in which the BGS enhanced the National Landslide Database using satellite

imagery to support a data-driven landslide susceptibility model. This advancement replaced a heuris-

tic standard which had remained unchanged for two decades. The remainder of this introduction

highlights a brief literature review with a focus on the geomorphological background, key statistical

concepts, and modelling frameworks that are used throughout the rest of the thesis. Where necessary,

these ideas are expressed more precisely as needed.

1.1 Geomorphological background

Reichenbach et al. (2018) critically review an extensive database of 565 peer-reviewed articles from

1983 (note that the first key paper on the instability of slopes due to the geological structure was writ-

ten by Neuland (1976)) to 2016 that include statistically-based landslide susceptibility models. The

review finds that there is a significant heterogeneity of thematic data types, modelling approaches (lo-

gistic regression, neural network analysis and data overlay) and model assessment and prediction, with

only a handful of studies assessing the model uncertainty. Their recommendations can be summarised

as follows: reduce the existing geographical bias by concentrating efforts in landslide susceptibility

modelling in areas that have not been investigated before, by using multiple and complementary
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mapping techniques, use geomorphological and multi-temporal inventories to test the predictive per-

formance of the models, select an appropriate mapping unit with full knowledge of advantages and

limitations of selection, to combine multiple model attempts to create an ‘optimal’ susceptibility

zone, thus reducing model errors; and finally, to fully investigate the performance of the susceptibility

model by taking into account model errors, distribution of model outcomes and model uncertainties.

The review concludes by outlining future challenges that could arise within the literature, the most

notable perhaps being that the susceptibility is not, as previously assumed, stationary (Samia et al.,

2017) and that the period of validity for susceptibility models may be in question. Reichenbach

et al. (2018) can therefore be considered a guide on how to construct an investigation into landslide

susceptibility by critical evaluation.

Expanding on the idea that susceptibility may not be stationary, Samia et al. (2017) aims to

quantify landslide path dependency by using a follow-up landslide fraction, which incorporates the

number of follow-up landslides and total landslides in a younger period, the area of interest and the

area affected by landslides in an older period. They show that path dependency has an exponential

response over time. In the study area, Collazzone, a municipality in central Italy, susceptibility in-

creases by a factor of 15 immediately after an earlier landslide and decreases back to pre-landslide

values in approximately 25 years. Landslide size and shape play a role in the probability of follow-up

landslides, with larger and rounder landslides having a higher chance. Other geological covariates

are seen to have an effect on predicting follow-up landslides, an example being topographic wetness

index (TWI)—areas that were found to be wetter had a higher slope instability and hence positively

influenced the chance of a follow-up landslide. A logistic regression model to predict follow-up land-

slide occurrence based on geographical/geological covariates predicted landslide occurrence with 60%

confidence. How the output of this model might affect landslide susceptibility moving forward in

statistical landslide hazard modelling is yet to be determined.

Finding data on landslides can be challenging, with inventory options including areal maps, land-

slide catalogues, the media/news, etc. Kirschbaum et al. (2015) present a new available global land-

slide catalogue (GLC) that provides a foundation for the evaluation of spatial and temporal trends in

landslides from 2007 to 2013. The GLC considers mass movements triggered by rainfall which have

been recorded in disaster databases, reports, the media or other sources. This new catalogue utilises

a satellite-based precipitation record to identify patterns in rainfall, extreme enough to be aligned

with landslide reports. The study found a clear relationship between the majority of the GLC points

and extreme rainfall (classified as greater than the 90th percentile) and that the GLC could be used
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to define new extreme rainfall thresholds, giving the ability to locate areas where perhaps landslides

have been under-reported. The precipitation analysis indicated that extreme rainfall - the type to

trigger landslides - may be better monitored by using a daily threshold, and that sampling should

be taken in a very small window of accumulation to account for areas where the weather changed

dramatically.

Having reviewed the construction of landslide hazard models and data inventories, we now turn

to modelling techniques. Guzzetti et al. (2005) proposes a probabilistic model applied in the Staffora

River basin, Italy, to predict the location, frequency and size of landslides. The paper has worked

through the probability of landslide size (frequency-area distribution), the probability of landslide

occurrence (mean recurrence and Poisson probability model) and the spatial probability of the slope

failures and so, after assuming independence, these probabilities were multiplied together to achieve

landslide hazard (the probability that a mapping unit will be affected by landslides that are greater

than a certain size, during a certain time and because of certain environmental variables). The

probability of the landslide size was calculated using a multi-temporal inventory map spanning 45

years where 2390 landslide were recorded. The inventory map paved the way for the estimated

frequency of landslide occurrence in each slope unit over the 45 years to be calculated. Once the

estimated landslide frequency was calculated, Guzzetti et al. (2005) used this alongside the rate

of landslide occurrence over the time period for each slope unit (SU, hereafter) and the landslide

recurrence (the expected time between each subsequent failure) for each SU to estimate the exceedance

probability by using a Poisson probability model. The exceedance probability of having more than one

landslide in each SU relies on the assumption that the underlying failure process remains stationary.

Although landslide hazard has been defined by occurrence probability and explained by environ-

mental variables, there is no account for any spatial dependency - any pattern in the land that may

influence the instability of the slopes. Lombardo et al. (2018) aims to account for the latent spatial

effects in landslide modelling, specifically when looking at multiple debris flow scenarios from a pre-

cipitation trigger - as was the case in Messina, Sicily. This is done by treating each landslide triggering

location as part of a random point pattern, which is different to the usual presence-absence structure

used by Guzzetti et al. (2005). Lombardo et al. (2018) use a Poisson probability distribution for event

counts in small-area slope units, thus extending the binary scenario to the effect that the distribution

characterises the random number of events in a given unit, which can be modelled continuously over

space. The paper investigates four possible models of the log-Gaussian Cox Process (LGCP) type,

see Section 1.6, with a latent spatial effect and the inclusion of linear or non-linear covariates. These
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four models are compared to a baseline model following the logistic regression approach, which helps

to highlight the differences and advantages of the Poisson process approach. The model with the

latent spatial effect demonstrated superior predictive performance.

In Lombardo et al. (2019b), the authors provide a detailed tutorial on fitting a Cox point process

model for landslide spatial prediction using the integrated nested Laplace approximation (INLA; Rue

et al. 2009). This work follows the novel approach described in Lombardo et al. (2018) and outlines

three key steps for preparing and constructing the dataset: (i) compiling a point database of landslide-

triggering locations, (ii) selecting a relevant set of covariates to explain landslide distribution, and

(iii) defining appropiate mapping units for model implementation. The tutorial also covers data

pre-processing, including the standardisation and grouping of covariates, aggregation of landslide

counts at the mapping unit level, and construction of an adjacency graph structure to fit a Besag

model (Besag et al., 1991) for the latent spatial effect. Throughout this research, the treatment of

latent spatial effects is adapted to suit different data structures. These methodological variations are

further discussion in Section 1.5 and elaborated upon within each project presented in this thesis.

Expanding on Lombardo et al. (2018), Lombardo et al. (2019a) proposes a Poisson point process

for earthquake-induced landslide susceptibility, noting that the Poisson distribution is consistent over

all spatial resolutions. A log Gaussian Cox process was used to model landslide patterns caused by

the seismic shaking of the Lushan (2013) and Wenchuan (2008) earthquakes. From the estimated

landslide intensity, landslide susceptibility was calculated. The analysis found that the latent spatial

effect captured the spatial distribution of a landslide trigger and was a good proxy for ground-shaking

information.

Lombardo et al. (2021) extends the traditional approach towards landslide susceptibility (Bernoulli

distribution) and the approach to model landslide intensity (Lombardo et al., 2018) by modelling the

size of landslides in a given mapping unit using a specific class of models - namely, latent Gaussian

models, see Section 1.3. This was implemented using the log-Gaussian probability distribution to

explain which characteristics of earthquake-induced landslides influence the largest landslide in the

mapping unit and which influence the sum of the landslide areas in the mapping unit. The models

were applied to a global dataset of earthquake-induced landslides, and spatial information was added

to the modelling procedure in the same manner as previous studies, although the latent spatial effect

was excluded. The reason behind this choice came from the large geographical extent and distribution

of landslides (see Figure 1 in Lombardo et al. (2021)). Since the lack of spatial effects when modelling

data with a strong spatial component will likely underestimate the uncertainty, the authors rely on a
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Bootstrap procedure to assess the uncertainty of parameter estimates.

1.2 Bayesian statistics

Bayesian statistics is named after the 18th-century minister Thomas Bayes, who, in 1763, presented

a paper that was marked the first use of concepts now considered foundational to the Bayesian

framework (O’Hagan, 2004). However, it was not until the 1950s that Bayesian methods began to

gain broader acceptance and application. Bayesian statistics is a data analysis approach grounded

in Bayes’ theorem. Unlike frequentist methods, it utilises prior information—whether derived from

existing data or based on expert knowledge—to estimate quantities of interest. These quantities,

typically model parameters denoted by θ, are treated as random variables. The goal is to infer their

posterior distribution, π(θ | y), given the observed data y. Bayes’ theorem expresses this as:

π(θ | y) = π(y | θ)π(θ)
π(y)

where π(y | θ) is the likelihood of the data, π(θ) is the prior distribution of the model parameters

and π(y) is the marginal likelihood. The likelihood function represents the probability of observing

the data given specific parameter values, and the priors represent the ‘best guess’ for the true values

of the model parameters as probability distributions. However, the marginal likelihood π(y) is often

computationally intractable. As a result, the posterior is typically expressed up to a proportionality

constant by focusing on the numerator:

π(θ | y) ∝ π(y | θ)π(θ).

The main distinction between frequentist and Bayesian methods is that the Bayesian approach uses

prior information. This is a strength and also a source of controversy. Prior information is, in

principle, subjective. If my prior information differs from yours then we will ultimately have different

posterior distributions. This raises the question of whether science can ever be entirely objective.

Additionally, in the aim to reflect the nature of the data as closely as possible, subjectivity in the

prior distribution is minimised by basing the prior information on factual and expert reasoning and

through the accumulation of data, possible variability in the prior can be resolved (O’Hagan, 2004).

Through Bayes’ theorem, the prior information is weighted. If the prior is unclear or weak, then it

will get a negligible weight and the posterior will be based solely on the data. The converse is likewise

true.
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One of the main advantages of the Bayesian approach is that, by incorporating prior informa-

tion—even if subjective—it often more accurately reflects the nature of the problem. Additionally,

the computation tools now available for Bayesian statistics allow for more complex problems to be

tackled than in a frequentist setting. Lastly, the idea of ‘uncertainty’ is wholly covered in a Bayesian

approach. ‘Uncertainty’ may refer to inherent randomness or to incomplete knowledge. Bayesian

methods address both, whereas frequentist approaches typically account only for the former (O’Hagan,

2004).

1.3 Latent Gaussian Models

Bayesian inference is particularly suitable for a subclass of structured additive regression models

known as latent Gaussian models (LGMs). For LGMs, the response is assumed to belong to the

exponential family with a flexible prior structure that allows for localised dependencies and quan-

tification of uncertainty (Sigrist, 2022). Throughout this thesis, we assume that observations are

conditionally independent given a latent field and a set of hyper-parameters (Blangiardo et al., 2013).

For instance, if y is the vector of observations with components y(s), s ∈ S, where S is the study

region, x with components x(s), s ∈ S, is a latent Gaussian random field (GRF) and θ is the vector

of hyper-parameters, a latent Gaussian field can be hierarchically represented as follows:

y | x,θ1 ∼
∏
s∈S

ϕ(y(s) | x(s),θ1)

x | θ2 ∼ N(µx(θ2),Q−1
x (θ2))

θ = (θ1,θ2)⊤ ∼ π(θ). (1.1)

where ϕ(·) is the specified probability mass function or density characterising the observations.

The latent Gaussian random field x describes the underlying dependence and trends in the data,

which can be on a spatial or spatiotemporal scale. For a finite number of locations, the GRF is

characterised by a mean vector µx(θ2) and precision matrix Qx(θ2). The vector of hyper-parameters

θ2 accounts for the variability and the strength of dependence of the random field (Blangiardo et al.,

2013), while θ1 accounts for additional hyper-parameters in the likelihood.

The GRF is characterised by a flexible linear predictor with an additive structure that accom-

modates spatial and temporal descriptors. In a spatiotemporal context, this linear predictor can be
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expressed as:

η(s, t) = α+
M∑

m=1
βmwm(s, t) +

K∑
k=1

fk(zk(s, t)) + u(s, t) (1.2)

Above, s ∈ S (the study region), t ∈ T (some set of time points), α is an intercept, and

(w1(s), ..., wM (s))T is a subset of covariates available in the data with linear coefficients β =

(β1, ..., βM )T . The functions f = {fk(·), ..., fK(·)} are non-linear effects defined in terms of covariates

(z1(s), ..., zK(s))T . The specific form of the functions fk(·) in this work is that of a Gaussian random

walk of order 1 (RW1) or a Gaussian random walk of order 2 (RW2). The RW1 for a Gaussian vector

x = (x1, ..., xn)⊤ is constructed assuming independent Gaussian increments (Krainski et al., 2018).

Specifically,

∆xi = xi − xi−1 ∼ N(0, τ−1),

where the index i is the position of the covariate associated with yi used to define the model under

the assumption that covariate values are ordered increasingly. The density for x is derived from its

n− 1 increments as

π(x | τ) ∝ τ
n−1

2 exp
{−τ

2
∑

(∆xi)2
}

= τ
n−1

2 exp
{−1

2 xT Qx

}
where Q = τR and R is a matrix reflecting the neighbouring structure.

The term u(s, t) is the spatiotemporal random effect, typically characterised by a Gaussian process

with a stationary or non-stationary Matérn covariance structure (Matérn, 1986b) evolving in time

according to some pre-specified structure, typically following an autoregressive structure. In general,

the covariance can be a function of the distance between these locations only or it can be a location-

dependent function that varies across space (see Section 1.5). In a purely spatial application, the

notation t can be dropped from the terms in the linear predictor, and the spatial random effect is

simply u(s).

1.4 The Integrated Nested Laplace Approximation

LGMs offer a flexible framework for modelling spatial and spatio-temporal phenomena, as they can

effectively capture local correlation structures and quantify associated uncertainty Sigrist (2022). As

seen in the linear predictor, covariates and smooth effects can be incorporated in a linear or non-

linear way. However, this introduces a strong dependency between the latent field and the model’s

hyper-parameters Rue et al. (2009), which can complicate inference methods. Markov Chain Monte
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Carlo (MCMC) methods are a commonly used inference technique, but the strong dependency often

means slow convergence and high computational costs. To combat this, Gaussian approximations can

be introduced. Rue et al. (2009) reviews two approximation methods: variational Bayes (VB) and

expectation-propagation (EP). These approaches ultimately have iterative solutions which, although

designed to be faster than MCMC, often do not result in significant computational savings. Another

approximation approach is the integrated nested Laplace approximation (INLA; Rue et al. 2009),

which is now described in detail.

From the posterior marginals, π(xi | y), i = 1, ..., n, approximate conditional densities can be used

to construct nested approximations. The approximate marginal posterior of hyper-parameters θ is

noted as

π̃(θ | y) ∝ π(x,θ,y)
πG(x | θ,y)

∣∣∣∣
x=µ(θ)

(1.3)

where πG(x | θ, y) is the Gaussian approximation to the full conditional of x, π(x | θ, y), and is

found from a second-order expansion of the likelihood around its mode, µ(θ) (Rue et al., 2009).

The posterior marginals for θ can then be approximated from 1.3 by integration with respect to θ.

Marginal conditional posteriors of the elements of x are found from the joint Gaussian approximation

xj | θ, y ∼ N((µ(θ))j , (Q−1
x (θ))jj)

where θ needs to be integrated out to find the marginal posterior of xj . Specifically,

π̃(xj | y) =
∫
πG(xj | θ, y)dθ ≈

K∑
k=1

πG(xj | θk, y)π̃(θk | y)δk (1.4)

where θk are K integration points and δk are corresponding area weights (Van Niekerk et al., 2023).

By using the Gaussian marginal derived from π̃G(x | θ, y), the density of xi | θ, y can be ap-

proximated and numerically integrated with respect to the hyper-parameters, and thus the posterior

marginals of the latent field can be obtained. Here, difficulties in controlling the error of the ap-

proximations occurred because the points for integration could not be chosen in an automatic and

adaptive way. Rue et al. (2009) addresses these issues by reapplying the Laplace approximation to

the conditional posterior marginals of the latent field, and proposes a faster correction to the Gaussian

approximation π̃(xi | θ, y).

The Laplace approximation should only be applied to near-Gaussian densities (Rue et al., 2017).

In the case of having the product of a Gaussian density and a non-Gaussian density, Rue et al.

(2017) conditions on some well-behaved function that writes the conditional marginal posterior of

this function as an integral of densities that are almost Gaussian. Here, this non-Gaussian density is
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conditioned into a correction of a Gaussian prior, which, when computed, is close to Gaussian. Al-

though this substitution increases complexity—since numerical integration must be performed across

multiple values, the same concept can be applied to LGMs. Therefore, LGMs consist of a vector of

hyperparameters and a latent Gaussian random field that encodes the model’s structure. The Laplace

approximation requires a Gaussian approximation of the denominator, so the hyperparameters have

a condition that is approximated as a Gaussian Markov Random Field (GMRF), but the condition on

the latent field is slightly more challenging. Integration over the conditioned hyperparameters would

incur an exponential computational cost from the dimension of the required integration and the latent

field needs to be approximated in a subset of its range i = 1, ..., n, where n can be extremely large. To

overcome this, a central composite design (Box and Wilson, 1951) is employed to balance efficiency

and computational costs. This is done by placing the integration points on a sphere, suitably located

for the joint posterior of the hyperparameters, and equally weighting the points to determine the

relative weight to the central point given a Gaussian posterior. To approximate the latent field n

times, a Taylor expansion around the mode of the Laplace approximation is used. This way, the

posterior marginals for the latent field are approximated by a mixture of skew-Normal distributions.

In the classical formulation, the marginal posteriors of the linear predictors are calculated within

the marginal posterior distributions of the latent field. However, in the recent update by Van Niekerk

et al. (2023), a low-rank variational Bayes correction to the mode can be calculated to solve for the

posterior distributions of the linear predictors.

1.5 The Stochastic Partial Differential Equation approach

Gaussian fields were previously introduced in general terms. In this section, we explore in more

detail this and dissect the idea of the stochastic partial differential equation approach in the context

of spatial statistics. Let s be any location in a study area D and let u(s) be the random spatial

effect at that location (like the term in 1.2 if t is dropped). As mentioned in Section 1.3, u(s) is a

stochastic process, meaning it varies continuously in a random way over space. If u(s) is assumed to

be Gaussian, then it is said to be a continuously indexed Gaussian field (GF). This implies that it is

possible to collect these data at any finite set of locations within the study region. The process u(s)

is usually assumed isotropic and stationary, meaning that there is a constant mean and a covariance

that depends only on the distance between points and not on their relative positions. Lindgren et al.

(2011) represent a GF with Matérn covariance (Matérn, 1986b) as a Gaussian Markov Random Field
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(GMRF). The GMRF provides a sparse representation of the GF through a sparse precision matrix.

This representation is done through a solution of the SPDE using the finite element method.

Before presenting the solution, we first review the Matérn covariance function—one of the most

widely used families in spatial statistics due to its flexible local behaviour and ability to model varying

degrees of smoothness (Guttorp and Gneiting, 2006a).. It is defined as

RM (h) = σ2

2ν−1Γ(ν)(κh)νKν(κh),

where ν is a positive smoothness parameter, κ is a positive scale parameter, σ2 is the variance of

the corresponding random field, Kν is the Bessel function of the second kind of order ν and Γ is the

Gamma function. This formulation controls both the differentiability of the process (via ν) and the

correlation range (via κ). As stated in Lindgren et al. (2011), a Gaussian Matérn field solves the

SPDE

(κ2 − ∆)
α
2 u = W,

where ∆ is the Laplacian, W is Gaussian white noise and α = ν + d/2. Lindgren et al. (2011) shows

that as the smoothness parameter ν increases, the precision matrix in the GMRF representation

becomes less sparse. They also demonstrate how the method applies to irregular spatial grids, which

are typical in real-world applications.

The SPDE approach approximates this covariance structure by approximating the precision matrix

and finding an SPDE whose solution has the desired covariance structure. Lindgren et al. (2011) show

how to find the solution by discretising the study region with a triangulation mesh and representing

the stochastic process as a sum of basis functions multiplied by a set of coefficients that form a

GMRF for which there are already methods for fast computation and for which the dependencies are

defined by the triangulation of the spatial domain. The construction of a mesh is vital in representing

the spatial process and affects the speed and accuracy of the estimation. A sensitivity analysis for

how the required estimates vary over different mesh constructions is often conducted. A Delaunay

triangulation is typically used, as it maximises the minimum interior angle, smoothing the transitions

between small and large triangles. Extra vertices are added heuristically to try to minimise the total

number of triangles needed to meet shape and size constraints.

The finite element representation of the SPDE solution (Brenner, 2008) can be written as

u(s) =
K∑

k=1
ψk(s)wk (1.5)
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for chosen basis functions ψk and some Gaussian distributed weights wk. The number of vertices

in the triangulation is defined here by K. The associated weights determine the value of the field at

each vertex, while values within the interior of the triangles are obtained by linear interpolation. To

obtain a finite-dimensional solution, the distribution of the representation weights must satisfy the

stochastic weak formulation of the SPDE (equation 7 in Lindgren et al. (2011)) for a given set of

basis functions. Building on this, Lindgren et al. (2022) refine the SPDE approach by constructing

precision matrices in a manner that ensures robustness to the choice of spatial neighbourhood-defining

graphs.

1.6 Spatial Point Processes

Spatial point processes describe short-range interactions that explain the spatial configuration of

observed points (Illian et al., 2008). These points reflect the underlying processes driving the spatial

pattern, including geophysical properties of the study area. A Poisson point process is a type of spatial

process where the number of points within a given region follows a Poisson distribution (Baddeley

et al., 2007). A spatial Poisson process with a spatially varying random intensity λ(s) is known

as a Cox process (Møller et al., 1998). This type of process is doubly stochastic, as it arises from

an inhomogeneous Poisson process with a random intensity measure. When the logarithm of this

random intensity is modelled as a Gaussian process, the resulting model is known as a log-Gaussian

Cox process (LGCP; Bachl et al. (2019)). A key property of LGCPs is that the distribution is

completely characterised by the intensity measure, making parameter estimation easy to interpret

Møller et al. (1998). The random intensity function for a Cox process can be expressed as

Λ(s) = exp(η(s)), (1.6)

and taking the logarithm yields the LGCP formulation:

log(Λ(s)) = η(s). (1.7)

Here, η(s) corresponds to the linear predictor defined in (1.2), with time t omitted.

As the class of LGMs include LGCPs, INLA can be used for fitting and Illian et al. (2012)

developed a framework for this. By discretizing the observation window into N = nrow × ncol grid

cells, sij where i = 1, ..., nrow and j = 1, ..., ncol, the point pattern is then represented by the observed

number of points, yij , in a grid cell. It is from the definition of an LGCP that the observed number of

points in a grid cell can be considered as independent Poisson random variables yij ∼ Poi(Λij) where
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Λij =
∫

sij
λ(s)ds is the cell intensity. As the individual intensities for all grid cells are computationally

infeasible to calculate, the approximation below is used

Λij ≈| sij | exp(zij),

where zij is a value that represents the GRF Z(s) within each cell sij , and | sij | is the area of each

grid cell. If the formulation of grid cells is fine enough and the latent Gaussian field is appropriately

defined, this approximation is useful (Waagepetersen, 2004) and converges to the true solution as the

grid cell size tends to zero.

The role of the lattice (collection of grid cells) is to approximate the latent GRF and to approximate

the locations of the points. As the quality of the likelihood approximation depends on the size of the

grid (the finer the grid, the less information is lost), a very fine grid is desired for the approximation of

the point locations. But having a very fine grid to approximate the GRF involves a high computational

cost, and is not necessary. Therefore, Simpson et al. (2016) propose moving away from lattice-based

methods towards a more flexible approach that can integrate local changes to the resolution of the

likelihood approximation by having a finite-dimensional continuously specified GRF. The likelihood

can be written as

log π(y | Z) =| Ω | −
∫

Ω
exp{Z(s)}ds +

n∑
i

Z(Si),

which consists of a stochastic integral and the spatial field evaluated at the points of the data,

which can be computed by using the SPDE models, while the integral can be approximated by a

deterministic integration rule: ∫
Ω
f(s)ds ≈

p∑
i=1

α̃if(s̃i),

where the s̃i’s are a set of fixed deterministic nodes and the α̃i are associated fixed weights. The

log-likelihood approximation can then be written as

log π(y | z) ≈ C −
p∑

i=1
α̃i exp{

n∑
j=1

zjϕj(s̃i)} +
N∑

i=1

n∑
j=1

zjϕj(si)

= C − α̃T exp(A1z) + 1TA2z, (1.8)

where C is a constant, [A1]ij = ϕj(s̃i) the matrix of values of the latent Gaussian field at the integration

nodes, and [A2]ij = ϕj(si) is the evaluation of the latent Gaussian field at the observed points.

Therefore, we have p integration points, used to approximate the log-likelihood integral term, n mesh

nodes, and N number of observed points. The form of Equation 1.8 is Poisson in the sense that the

approximate likelihood consists of N + p independent Poisson random variables.
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1.7 Data and software

The focus of my research lies in the statistical aspects of the models chosen and the theory imple-

mented and extended. However, I was awarded the Jim Gatheral Travel Scholarship 2023, which

allowed me to visit my external supervisor, Dr Luigi Lombardo, at the University of Twente. During

this visit, the aim was to become acquainted with the process of data extraction necessary for my

projects and consequently the refinement of the data.

I was introduced to the Geospatial Computing platform (Crib) for the Department, in which appli-

cations such as Geographic Resources Analysis Support System (GRASS), a geographic information

system (GIS) and QGIS are located. I learned how to navigate GRASS GIS as this is important for

the calculation of the resolution of the data. I was also taught how to use Google Earth Engine (GEE).

From this, one can write JavaScripts to extract geographical/geological information from anywhere in

the world, by defining the area of interest and specifying which mapping system to use (e.g. Shuttle

Radar Topography Mission, Climate Hazards Group InfraRed Precipitation with Station data, etc.).

One can then import this extracted information into GRASS GIS. Transforming the information from

raster to vector and into the correct coordinate plane is also something I learned how to do. There

exist scripts to pass into the console that first removes the flat areas in the area of study and then

generate the slope unit (or some such desired resolution of data) in vector format, most commonly

using an open-source software named r.slopeunits (Alvioli et al., 2016), and one can also input the

raster maps of the geographical information and extract the values of the spatial information at this

desired resolution.

Alongside the physical data extraction software used for this research, the computing aspect and

the main tool utilised is R, a programming language specifically designed for statistical computing,

and RStudio, the integrated development environment for R. Implementing the inference technique,

INLA, in R is convenient as it is implemented in the R-INLA library (Bivand et al., 2015). Other

key libraries that were used include inlabru, built for Bayesian spatial modelling using integrated

nested Laplace approximations and INLAspacetime - a package to implement certain spatial and

spatiotemporal models using the cgeneric interface in the INLA package. Lastly, the resulting

hazard map production for model results was done through ArcGIS Pro.

The analyses presented in this work are available at: https://github.com/BryceErin. We

can provide the data and code for Chapter 2 and 3, the code for the simulation studies presented

in Chapter 4 and the code for the space-time SPDE smoother. For information on the Japanese

https://github.com/BryceErin
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landslide data and the Chinese surface deformation data, contact the authors.



Chapter 2

A Hurdle model

This chapter presents a Hurdle model that jointly estimates the probability of landslide occurrence and

its size, measured by planimetric extent. The approach produces a unified landslide hazard map and

provides probabilistic estimates, along with uncertainty quantification, for exceedance probabilities at

high extent levels. The work in this Chapter has been published as:

Bryce, E., Lombardo, L., Van Westen, C., Tanyas, H. and Castro-Camilo, D., 2022. Unified land-

slide hazard assessment using hurdle models: a case study in the Island of Dominica. Stochastic

Environmental Research and Risk Assessment, 36(8), pp.2071-2084.

2.1 Introduction

Dominica is situated within the Atlantic hurricane belt and, as such, is highly vulnerable to high-

intensity weather events, as evidenced by its long extreme-event history, stretching as far back as the

Great Hurricane of 1780. In addition, the island’s infrastructure and population are concentrated

along the coastal areas, particularly in the south and west, where their situation and building condi-

tions hardly help withstand one extreme natural hazard after another. In this chapter, the focus is

on the aftermath of Hurricane Maria, which originated from a wave leaving the west coast of Africa

on 12th September 2017. The wave moved westward across the Atlantic, creating deep convection,

and consolidated into a tropical depression 580 nautical miles east of Barbados on the 16th Septem-

ber (Pasch et al., 2018; Fobert et al., 2021). By the evening of the 18th, Maria had intensified and hit

the Island of Dominica twelve hours later as a category five hurricane (Pasch et al., 2018), causing a

total of 9,960 landslides on the island, 8,576 of which were classified as debris slides (Van Westen and

Zhang, 2018). The infrastructure and transport sectors were the main avenues of the USD 930.9 mil-

18
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lion in damages incurred by Maria, with the agriculture and tourism sectors not far behind (ACAPS,

2018). This prompted a plea by Dominica’s prime minister for the funds to make Dominica a fully

climate-resilient nation, determined to protect their island (Gibbens, 2019).

The Government of the Commonwealth of Dominica, in conjunction with the Caribbean Disaster

Emergency Management Agency and the Caribbean Development Bank, commissioned a post-disaster

needs assessment from Hurricane Maria in order to estimate the total damage, the damages per sector,

and to identify recovery needs (ACAPS, 2018). The reconstruction of the destroyed infrastructure

was funded by a loan from the World Bank and was a part of the project ”Enhancing Resilient

Reconstruction in Dominica”. The project promoted the idea that Dominica could limit the damage

from natural hazards by improving the uptake of resilient building practices, aiming to accelerate

short-term recovery and strengthen long-term resilience to climate-related risks. Landslide hazard

assessment is critically valuable to this programme. It can help define land-use capability, detect

areas where intervention is needed to stabilise slopes, and identify appropriate mitigation measures.

To help tackle the above challenges, this article builds a joint probability model to map the Island

of Dominica by susceptibility and size of landslides. The model is able to detect unstable areas

that could potentially host large landslides, which is key to identifying regions in need of hazard

mitigation. The model belongs to the class of hurdle models, i.e., it is a two-part model that specifies

a Bernoulli likelihood for landslide occurrence and a Gaussian likelihood for landslide log-sizes given

a positive occurrence. The observations (presence/absence for the Bernoulli likelihood and log-sizes

for the Gaussian likelihood) are assumed to be conditionally independent given a Gaussian latent

process that drives the trends, dependencies and non-stationary patterns observed in the data. This

latent process is therefore characterised by a linear predictor as defined in Section 1.3. This flexible

additive structure is utilised to model the covariates’ influence using fixed and random effects, which

are also known as linear and non-linear effects in terms of their influence. The spatial dependence

between locations is hereby characterised using a Gaussian Process with Matérn covariance structure.

The Matérn family of covariance functions is widely used in spatial statistics due to its flexible local

behaviour and interesting theoretical properties (Guttorp and Gneiting, 2006b; Stein, 2012). The

Matérn covariance is represented accurately by the stochastic partial differential equation approach

(SPDE; Lindgren et al., 2011). Under a Bayesian framework, we assume relatively weak but highly

interpretable Gaussian priors for all the model components and hyperparameters involved and fit our

model using the integrated nested Laplace approximation (INLA; Rue et al., 2009). INLA uses the

Laplace approximation to compute posterior distributions of interest. It is developed for the vast
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class of latent Gaussian models and implemented in the R-INLA library (Bivand et al., 2015).

Throughout this chapter, the term susceptibility will be used interchangeably with the probability

of occurrence (see Lombardo et al., 2020; Titti et al., 2021). As for the notion of hazard, this further

extends the concept of susceptibility by looking at measurable quantities of hazardous processes, such

as size and frequency (Guzzetti et al., 1999). However, the literature on statistical applications in

landslide science has never presented a model where the susceptibility is combined with the expected

size of landslides, which is proposed here for the first time.

The remainder of this chapter is organised as follows. Section 2.2 introduces the variables consid-

ered for modelling. Section 2.3 outlines aspects of the methodology specific to this case study, with

the basis and theory of much of the framework detailed in Chapter 1. In Section 2.4, the results of

the model are summarised and a critical discussion provided in Section 2.5.

2.2 Data

After hurricane Maria, the Global Facility for Disaster Reduction and Recovery sponsored the

CHARIM (Caribbean Handbook on Risk Information Management; link here) project, intending

to build a comprehensive natural hazard assessment. As part of this assessment, a team from

the University of Twente (NL) mapped a large-scale landslide inventory for the whole island (see

Figure 2.1a), primarily using five scenes of Pléiades satellite images with a resolution of 0.5m,

dated on the 23rd September and 5th October 2017, made available through UNITAR-UNOSAT

(https://www.unitar.org/). Additionally, a series of Digital Globe Images were used after they were

gathered for the Google Crisis Response. All the images were visually inspected by image interpre-

tation experts. As a result, landslides were mapped as polygons, separating scarp, transport and

accumulation areas, and classifying the landslides according to their types.

The inventory features 9960 landslides, with a cumulative planimetric area of 11.4 km2, covering

1.5 % of the Island of Dominica. To aggregate the landslide information over space, a Slope Unit

partition of Dominica was opted for (see Figure 2.1b). A Slope Unit (SU, hereafter) encompasses

the geographic space between ridges and streamlines. In other words, they are half-basins of a

given order (Amato et al., 2019) extracted by maximising areas with homogeneous aspects and are

particularly suited to support landslide models for they approximate the morpho-dynamic behaviour

of landslides well (Carrara et al., 1991). To partition the Island of Dominica into SUs, r.slopeunits

was initially used, an open-source software developed by Alvioli et al. (2016). Later, this was refined

www.charim.net
https://www.unitar.org/sustainable-development-goals/united-nations-satellite-centre-UNOSAT
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through manual editing in GIS to obtain a total of 3335 SUs.

Figure 2.1: Summary of the data used in this work. Panel a) shows the landslide inventory over the

shaded terrain. Panel b) shows the SU delineation over the aspect map. The area marked as “Zoom”

in panel b) highlights the consistency of SU boundaries with changes in aspect. Panels c) and d)

report the geological and land-use maps, respectively.

A two-step procedure was used to build the hurdle model at the SU scale. First, assigned to

each SU was the sum of all planimetric landslide areas intersecting the SU itself. Then, to build a

binary dataset, a landslide presence was assigned to SUs with positive landslide aggregated areas.

Conversely, a landslide absence was assigned to SUs unaffected by slope failures. Finally, to build a

dataset of landslide sizes per SU, SUs with positive landslide aggregated areas were extracted.

Covariates available for analysis are detailed in Table 2.1 They are a mixture of geographical and

geological characteristics and constitute the morphology of Dominica’s landscape. All the geographical

variables are continuous, while the geological and land-use types are represented as proportions of

each SU; for example, a SU could be 50% forest, 20% bare and 30% quarry.
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Table 2.1: Summary of the Dominica dataset, including the responses and initial covariates’ set.

Variable Acronym Type Units

Landslide size AL(s) Continuous response m2

Landslide occurrence OL(s) Binary response 0=No, 1=Yes

SU area SUA Continuous explanatory m2

SU perimeter SUP Continuous explanatory m

SUP / SUA SUP/A Continuous explanatory 1/m

SUP /
√

SUA SU
P/

√
A

Continuous explanatory Unit-less

SU maximum distance SUMD Continuous explanatory m

SU maximum distance to area ratio SUMD/A Continuous explanatory 1/m

SUMD /
√

SUA SU
MD/

√
A

Continuous explanatory Unit-less

Distance to nearest stream mean and SD D2S µ and σ Continuous explanatory m

Eastness mean and SD EN µ and σ Continuous explanatory Unit-less

Elevation mean and SD EL µ and σ Continuous explanatory masl

Northness mean and SD NN µ and σ Continuous explanatory Unit-less

Planform curvature mean and SD PLC µ and σ Continuous explanatory 1/m

Profile curvature mean and SD PRC µ and σ Continuous explanatory 1/m

Relative slope position mean and SD RSP µ and σ Continuous explanatory Unit-less

Slope mean and SD SLO µ and σ Continuous explanatory Degrees

Topographic wetness index mean and SD TWI µ and σ Continuous explanatory Unit-less

2.3 Modelling framework

2.3.1 Hurdle model specification

As mentioned in Section 2.1, the aim is to build a hurdle model to detect areas of higher landslide

susceptibility and sizes. The approach models the probability of observing a landslide in a SU using a

Bernoulli distribution. Given that a landslide was observed, it also describes landslide log-sizes using

a Gaussian distribution. It is assumed that the observations (presence/absence for the Bernoulli

likelihood and log-sizes for the Gaussian likelihood) are conditionally independent given a latent

Gaussian structure that drives the trends, dependencies and non-stationary patterns observed in the

data. Both parts of the hurdle model belong to the class of latent Gaussian models.
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To consider the models in terms of the latent Gaussian hierarchical representation;

y | x,θ1 ∼
∏
s∈S

ϕ(y(s) | x(s),θ1)

x | θ2 ∼ N(µx(θ2),Q−1
x (θ2))

θ = (θ1,θ2)⊤ ∼ π(θ).

where ϕ(·) is the Bernoulli probability mass function for landslide susceptibility or the Gaussian den-

sity for landslide log-sizes. The latent Gaussian random field x describes the underlying dependence

and trends in the data. For a finite number of locations, the GRF is characterised by a mean vector

µx(θ2) and precision matrix Qx(θ2). The vector of hyper-parameters θ2 accounts for the variability

and the strength of dependence of the random field (Blangiardo et al., 2013), while θ1 accounts for

additional hyper-parameters in the likelihood. So, for instance, if ϕ(·) is the Gaussian density, then

θ1 is equal to the Gaussian precision, which is the inverse of the variance.

Furthermore, this hierarchical representation is simplified into the form of a linear predictor; an

additive sum of the model components, defined as

ηBern(s) = α+
M∑

m=1
βmwm(s) +

K∑
k=1

fk(zk(s)) + u(s)

ηGauss(s) = α+
M∑

m=1
βmwm(s) +

K∑
k=1

fk(zk(s)) + u(s) (2.1)

Above, s ∈ S (the study region), α is an intercept, and (w1(s), ..., wM (s))T is a subset of covariates

available in the data with linear coefficients β = (β1, ..., βM )T . The functions f = {fk(·), ..., fK(·)} are

non-linear effects defined in terms of covariates (z1(s), ..., zK(s))T . The specific form of the functions

fk(·) in this work is that of a Gaussian random walk of order 1 (RW1). Finally, the term u(s) is the

spatio random effect, typically characterised by a Gaussian process with a stationary or non-stationary

Matérn covariance structure (Matérn, 1986b). See Section 1.3 and 1.5 for more details.

Landslide susceptibility is modelled with a Bernoulli distribution. Specifically, y(s) = OL(s) ∈

{0, 1} and ϕ(y(s) | ηBern(s)) ≡ Bern(p(s)), where p(s) = Pr{OL(s) = 1}; see Figure 2.2(a) for the

spatial distribution of OL(s). Note that there are no hyperparameters for the Bernoulli likelihood,

i.e., the vector θ1 is empty. The probability p(s) is related to the linear predictor η(s) through the

logit link, so p(s) = exp{ηBern(s)}/(1 + exp{ηBern(s)}).

The landslide size distribution is positively skewed, with extremely large values elongating the

right tail. In cases like this, it is standard practice to use a monotonic transformation such as the

natural logarithm to obtain a roughly symmetric, Gaussian-like distribution (Lombardo et al., 2021).
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Given that a landslide has occurred in the SU s ∈ S, the log-size is modelled using a Gaussian

distribution such that; y(s) = log{AL(s)} | OL(s) = 1 and ϕ(y(s) | ηGauss(s),θ1) ≡ N(ηGauss(s), τ−1),

where θ1 = τ . Figure 2.2(b) shows the spatial distribution of log{AL(s)}. The linear predictor is

linked to the Gaussian mean via the identity link. The global precision hyperparameter τ (reciprocal

of the standard deviation) determines the concentration of all values y(s) around their mean η(s),

s ∈ S.

The linear predictors ηBern(s) and ηGauss(s) follow the general form as described in Equation 2.1.

Nonetheless, their specific form depends on the influence of the covariates in Table 2.1 over the land-

slide susceptibilities and sizes. Therefore, variable selection is conducted using a stepwise forward

procedure for most of the covariates in both parts of the hurdle model. This procedure was based

on numerical techniques such as the Deviance Information Criterion and the Watanabe-Akaike in-

formation criterion (DIC and WAIC, respectively; Meyer, 2014, Gelman et al., 2014), and graphical

methods such as the probability integral transform (PIT; Gneiting et al., 2007) and fitted versus

observed plots. Due to their definition or interpretability, some covariates were not tested this way.

Instead, they were included or excluded based on expert opinion. Specifically, expert advice was

considered for land-use types and lithology types (included linearly as they are represented as a pro-

portion of a SU and therefore, their sum is constrained to 1); mean Eastness and mean Northness

(included linearly as they are complementary measurements representing the sine and cosine of the

aspect of a SU); mean slope (included non-linearly based on previous analysis, see, e.g., Tanyaş et al.,

2022); and the standard deviations of all covariates (included linearly since non-linear standard devi-

ations lack reasonable interpretation). All the covariates related to the perimeter were excluded due

to collinearity issues. The selected covariates and the specific form they enter into the linear predictor

equation for each model are detailed in Table 2.2.

2.3.2 Prior specification

Here the form of the third layer of the hierarchical representation in Equation 1.1 is described, i.e.,

the prior distributions for the likelihood hyperparameters θ1 = τ (the Gaussian precision) and the

hyperparameters of the model components in the linear predictor, θ2 = (α,β, τ 0,σ
2, r)⊤. Here, α is

a vector of length two that contains the intercept for both likelihood models, β is a vector of length

48 that contains the fixed effects for both likelihood models and τ 0 is a vector of length ten that

contains the RW1 precision parameters for both likelihood models; see Table 2.2. The vectors σ2

and r have length two and contain, respectively, the marginal variances and range parameters of the
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Table 2.2: Summary of selected covariates for both likelihood models.

Likelihood Fixed effects Random effects

Bernoulli SUMD, SUMD/A, SUMD/
√

A, D2Sµ,

D2Sσ, ENµ, ENσ, NNµ, NNσ, ELσ,

PLCµ, PLCσ, PRCσ, RSPµ, RSPσ,

SLOσ, TWIµ, TWIσ, RGA, YPC,

YPV, YPI, BAY, IGO, IPL, IGY,

OPL, PBA, PPD.

SUA, ELµ, SLOµ, PRCµ.

Gaussian SUMD/A, SUMD/
√

A, D2Sσ, ENµ,

ENσ, NNµ, NNσ, ELσ, PLCµ, PLCσ,

PRCµ, PRCσ, RSPµ, RSPσ, SLOσ,

TWIσ, YPV, BAY, OPL.

SUA, SUMD, D2Sµ, ELµ,

SLOµ, TWIµ.

Matérn covariance of u(s) in the linear predictors for both likelihoods.

Non-informative priors are a common choice when little expert knowledge is available. This

approach is used here to define prior distributions over the fixed effects and the intercepts. Specifically,

a zero-mean Gaussian prior with a precision of 0.001 is chosen for all fixed effects and intercepts. Prior

information with different strengths can also be defined using the penalised complexity (PC) prior

approach (Simpson et al., 2017). This procedure penalises excessively complex models by placing

an exponential prior on a distance to a simpler base model, which helps to stabilise the estimation.

Priors then shrink model components toward their base models, thus preventing over-fitting. For the

precision τ of the log-size observations, a weakly informative prior is set such that the probability of

observing a standard deviation (1/τ) larger than the empirical standard deviation for the response is

0.01. For the precision parameters of the random walks of order 1, weak prior distributions were set

where the probability that the standard deviations (1/τ0,k) corresponding to SUA, SUMD and TWI

are greater than 5, 0.5 and 0.1, respectively is 0.01. For the precision parameters of the remaining

random walks of order 1, relatively weak prior distributions were set where the probability that the

standard deviations of the random walks are greater than the empirical standard deviation of the

response is 0.01. Due to the lack of prior knowledge, this choice made sense since, a priori, the effects

on the linear predictor can only be interpreted relative to the likelihood and the implicit scaling in

the likelihood.
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For both Matérn range parameters, the selection was guided using the empirical variogram and

set a prior distribution where the probability that the range is smaller than 25km is 50%. Finally, for

the Matérn marginal variances, a prior distribution where the probability that the variance is larger

than 0.25 is 50% was set. As the triangulation mesh is vital when representing the spatial process, the

sensitivity of the parameter estimates were studied in changes made to the mesh. It was found that

a mesh with 4, 600 nodes was a good compromise between the accuracy and speed of the algorithm

(see Figure 2.2c).

Figure 2.2: a) Observed landslide presence/absence data; b) Observed landslide planimetric area,

aggregated at the SU level as the sum of all landslides; c) Triangulation mesh (gray) with SU centroids

(blue) used to discretise Dominica Island and fit the spatial effect u(s) in Equation 2.1. The inner

boundary (red) delimits the island, whereas the extension to the outer boundary (black) avoids

possible boundary effects.

2.4 Results

2.4.1 Model-level results and interpretation

This section presents the results of the hurdle model in terms of the statistical findings and the

implications for landslide hazard assessment.

Figure 2.3 shows the posterior means and corresponding 95% credible intervals of the fixed effects
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for the Bernoulli and Gaussian models. The selected covariates show relatively moderate positive

and negative influences on landslide log-sizes and occurrences. The extent to which a covariate,

significant or not, contributes to the model can be summarised by the size of the posterior mean

regression coefficient. For the Bernoulli model, out of the 29 covariates used linearly, eight appeared

to be significant; SUMD/A, ENµ, PLCµ, PLCσ, PRCσ, RSPσ, SLOσ and IPL, with mean regression

coefficients of -0.731, 0.228, -0.190, 0.693, -0.815, -0.217, 0.521 and 0.793, respectively. From here,

the contribution becomes less distinguishable.

For the Gaussian model, out of 19 covariates used linearly, eight appeared to be significant, which

indicates that the model is 95% certain of the role (either positive or negative) of the given covariate

with respect to the landslide log-size. From the plot in Figure 2.3 it is shown that the significant

covariates are SUMD/A, SUMD/
√

A, ELσ, PLCµ, PRCσ RSPµ, SLOσ and TWIσ, with mean regression

coefficients of -0.835, 0.165, 0.146, -0.269, -0.244, -0.322, 0.439 and -0.148, respectively. It is important

to notice that even if an effect is not significant, the effect size of the corresponding covariate may

be large. Therefore, non-significant effects do not imply that the model is not influenced by the

corresponding covariates (Lombardo et al., 2021).

Figure 2.4 displays the posterior means and corresponding 95% credible bands of the random

effects for both models. One can see the highly non-linear influence of most of these covariates on

landslide log-sizes and occurrences. For example, looking at the plot for landslide susceptibility, it

is clear that SUA has a moderate non-linear effect, with a positive effect peaking at approximately

0.67km2. ELµ displays a slight concave effect, with a positive effect on landslide susceptibility between

0 and 0.4 m/1000. Also shown is that PRCµ has a relatively linear and mild effect over landslide

occurrences, while SLOµ is among the most significant non-linear effects with very narrow credible

intervals. As expected, steeper slopes are more at risk.

For landslide sizes, SUA has a moderate non-linear effect, with a negative effect for smaller areas

and an increasing and eventually positive effect for larger areas. SUMD seems to have a mild concave

and then convex effect on landslide log-size before becoming relatively linear. D2Sµ is relatively

linear when considering the credible bands, with negative effects at small distances. ELµ has an

overall negative effect on landslide size except for the range 0 - 0.4 m/1000. SLOµ steepness is again

among the most significant effects with very narrow credible intervals. As expected, larger slopes -

those above 30 degrees - are more at risk. Finally, TWIµ has a convex relation with landslide log-size.

Figure 2.5 show the posterior mean estimates at the mesh nodes of the spatial fields for both

models. The spatial field covers almost the entirety of the island for the Bernoulli model, except for
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the north-eastern coastlines. This is well in line with observations of Maria passing over Dominica

and discharging such an amount of rainfall that most of the shallow material draping over the island

has become prone to fail. The same cannot be observed in the case of the spatial field estimated for

the Gaussian model. In this case, large landslides appear to share a high degree of spatial dependence

in the centre of the island.

To assess the ability of the Bernoulli model to classify landslides correctly, the left panel of

Figure 2.6 shows the receiver operating characteristic (ROC) curve. It is constructed by plotting the

true positive rate (TPR, also called sensitivity) versus the false positive rate (FPR, also calculated as

1-specificity). The TPR boils down to the number of unstable SUs that have been correctly classified

divided by the total number of unstable SUs. As for the FPR, this measure is calculated as the

number of misclassified stable SUs divided by the total number of stable SUs. The input to the

Bernoulli model has a dichotomous nature, whereas the output is a probability. Therefore, to match

the output to the input, one needs to use a probability threshold. The way a ROC curve is constructed

is by selecting a large number of these thresholds and storing the TPR and FPR at each iteration.

The greater the area under the ROC curve (AUROC), the better the model and its classification

abilities (Zou et al., 2005). The Bernoulli model has an AUROC of 0.927, so it is safely affirmed that

the model does an excellent job of distinguishing between both classes.

To assess the goodness of fit of the Gaussian model, the middle and right panels of Figure 2.6

show a histogram of the probability integral transform (PIT) values and a plot of observed versus

predicted values, respectively. PITs are commonly used to assess model calibration, i.e., the statistical

consistency between the predictive distribution and the observations (Gneiting et al., 2007). If a model

is well-calibrated, then the observations should be indistinguishable from a random draw from the

model. For a large number of observations, the PITs histogram serves as a tool to empirically check

for uniformity. As expected, large landslide sizes seem to be underestimated by the Gaussian model.

Nonetheless, the PITs in Figure 2.6 are not too far from the way a histogram of uniform numbers

might look, and it seems fair to assume that the model is decently calibrated. The observed versus

predicted values plot shows a relatively good performance for moderate landslide sizes, although there

seems to be a greater bias for landslide sizes below the first quartile.

The advantage of a statistical model over other data-driven approaches is that the association be-

tween dependent and independent variables can be clearly interpreted. This is particularly useful for

examining the geomorphological reasonability of a given model. Below, a few examples are presented

of the interpretation for those covariates that behave close to the assumptions from the mechanical
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Figure 2.3: Posterior means (dots) of fixed linear effects (except the intercept) with 95% credible

intervals (vertical segments) for the Bernoulli and Gaussian models. The horizontal grey dashed lines

indicate no contribution to the landslide occurrence or size, respectively.

perspective. In this case, the interpretation should cover a dual aspect of the hurdle model, both from

the landslide occurrence and size perspectives. As previously mentioned, Figure 2.3 reports the pos-

terior distribution of the regression coefficients estimated for the Bernoulli and the Gaussian models.

There, among the lithological classes, ignimbrites (IGO, IPL, IGY) positively contribute to increasing

the mean probability of landslide occurrence, with only IPL being significant among the three. From

an interpretative standpoint, ignimbrite is a pyroclastic flow deposit largely comprised of pumice with

subordinate ashes. Thus, a positive contribution to the landslide occurrence is reasonable because

its mineral structure is prone to weathering, and it is well known to promote slope instabilities (e.g.,

Chigira and Yokoyama, 2005). An analogous situation can be seen in gravel and alluvium materials

(RGA). These are unconsolidated deposits, inherently susceptible to slope instabilities anytime the

landscape evolution has set them to drape over steep topographies.

Interestingly enough, most of the lithotypes selected for the Bernoulli model do not appear in the

Gaussian case. There, Older Pleistocene volcanics are also reported with a significant and negative

contribution to the estimated landslide sizes. Irrespective of the Bernoulli or Gaussian framework,

no land-use class plays a role in explaining the landslide occurrence or size.

Another point in common between the Bernoulli and the Gaussian models is the role of SUMD/A.

This covariate expresses how elongated a given SU is. The larger the value, the more stretched the

SU appears, whereas the smaller the value, the more rounded the SU is. Thus, the posterior mean

negative value reported for both models may indicate that narrow SUs are not only less prone to fail,
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Figure 2.4: Posterior means (dark blue curves) of random effects with 95% pointwise credible intervals

(light blue shaded area) for the Bernoulli and Gaussian models.
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but also the lesser availability of material does not allow for large landslides to be generated.

As for the non-linear effects shown in Figure 2.4, observed are two noteworthy behaviours. SUA

appears to influence both the Bernoulli and Gaussian models with a negative effect for very small

SUs, while the contribution becomes increasingly positive for larger SUs. Similarly to the elonga-

tion/roundness (SUMD/A) effect mentioned above, this can be interpreted as if larger SUs can host

more and larger landslides compared to very small SUs. There, the conditions required for a failing

mechanism to occur are much more unlikely to manifest simply because of the smaller extent. The

other interesting effect corresponds to SLOµ. In both models, the slope steepness behaves as a sig-

moidal function. This is likely because no shallow flow-like landslide can occur at low steepness values.

Conversely, at medium steepness values, there is a sudden increase in the effect of this covariate, which

is to be expected, up to the point where an asymptotic level is reached or even a decrease. A decrease

can be interpreted as if very steep topographic conditions cannot host soil, which is washed away by

normal erosional processes. Thus, the absence or near-absence of soil implies that no landslide can

manifest or that, at best, a small one will mobilise the thin detrital layer draping over the stable

bedrock.

Figure 2.7 presents the findings in terms of posterior means and width of the 95% credible inter-

vals (CI) for landslide susceptibility and sizes (in log-scale) across the island. There, large portions of

the areas characterised by higher landslide probability (central north and southern coastlines) coin-

cide with areas where larger landslide sizes are expected. Conversely, the north-eastern coast seems

consistently small in landslide size and probability of occurrence.

From the uncertainty plots, areas with higher occurrence probability (0.86 to 1) have overall small

95 % CI width, implying that these areas are well estimated with relatively small uncertainty. It is

also shown that areas with moderate occurrence probability (0.47 to 0.86) display higher uncertainty,

while areas with the smallest occurrence probability (0 to 0.47) show a mixture of small and moderate

uncertainty. Large landslide sizes are estimated with relatively small uncertainty, and the higher

uncertainties seem to occur where the landslides are small to moderately sized.

2.4.2 Unified landslide hazard assessment

The Bernoulli model addresses the island’s susceptibility under extreme conditions, such as those

induced by Maria. It estimates how prone a given location is to host slope failures, but it is blind to

how large landslides may become once they initiate and propagate downhill. To compensate for this

limitation, the Gaussian model provides information on the expected size of landslides per slope unit,
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Figure 2.7: Map of Dominica showing posterior mean and width of the 95% credible interval for

landslide susceptibility (panels (a) and (b)) and landslide log-size (panels (c) and (d)).

again under extreme meteorological stress. But once more, the model is blind to which slope was

effectively prone to fail. So far, the results of the two models have been implemented and presented

independently of each other. This framework is already more than enough to satisfy the requirements

of the most accepted landslide hazard definition (see Guzzetti et al., 1999), taking aside the temporal

dimension. Nevertheless, much more can be done to provide for the first time a unified version of the

landslide hazard for the purely spatial context. In this subsection, a new and unified (data-driven-

specific) landslide hazard assessment is described by combining the two elements of the proposed

hurdle model.

The motivation to provide a unified framework stemmed from the need to provide end-users with

spatially distributed information regarding how likely each slope would be to release specific landslide

sizes if expected to be unstable under analogous extreme conditions to those brought by Maria. Small

landslides should carry the least hazard; thus, they should be of little interest. Conversely, as the

landslide size increases, the expected hazard should proportionally follow. So, to quantify the hazard

for moderate and relatively large landslides within the range of observed landslide sizes, the two

parts of the hurdle model are used to compute the probability of observing landslide sizes above the

empirical 50%, 75%, 90% and 95% quantiles. Specifically:

Pr(log{AL(s)} > u) = Pr(log{AL(s)} > u | OL(s) = 1)Pr(OL(s) = 1), (2.2)
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for u = F̂−1
log(AL)(0.5), F̂−1

log(AL)(0.75), F̂−1
log(AL)(0.90) and F̂−1

log(AL)(0.95), where F̂log(AL) is the empiri-

cal cumulative distribution function of landslide log-sizes. Note that this procedure can be performed

for any landslide size u of interest. The focus here is on the empirical 50%, 75%, 90% and 95%

quantiles to illustrate how the model can be used to predict the probability of exceeding medium

to large landslides. The exceedance probabilities Pr(log{AL(s)} > u) in (2.2) and their uncertain-

ties can be easily computed using posterior samples from both the Gaussian and Bernoulli models.

Specifically, a Monte Carlo (MC) procedure is followed and N = 500 samples are generated from the

posterior predictive distributions (PPDs) of the Gaussian and Bernoulli models. The PPDs account

for uncertainty in the data and the model fitting. The empirical estimates are then computed of the

probabilities on the right side of (2.2) to obtain one estimate of Pr(log{AL(s)} > u). Finally, this

procedure is replicated M = 1, 000 times to obtain MC mean estimates and confidence intervals for

Pr(log{AL(s)} > u), computed as the 2.5% and 97.5% quantiles of the MC estimates. Figure 2.8

shows plots of the exceedance probabilities and the width of the associated 95% confidence intervals

for the four quantiles detailed above. It is interesting to observe how the exceedance probability of

the landslide sizes changes from one hazard map to the other. As one should expect, the slopes prone

to releasing median landslide sizes are quite numerous, and their number decreases towards larger

landslides. To briefly touch on risk perspectives (although not explicitly integrated into the hurdle

model), landslides greater than 90% of the landslide area distribution are particularly likely to occur

in the southernmost sector of the island. There, the village of Berekua appears to be potentially vul-

nerable, the location indicated approximately on Figure 2.8 by the yellow star. The same situation

can be seen slightly northwestward for the much larger settlement of Roseau, the location indicated

approximately on Figure 2.8 by the white star. This type of consideration would not be possible in

the simple binary case, where the corresponding susceptibility map highlights most of the island as

unstable (see Figure 2.7a). Note that the confidence intervals in Figure 2.8 measure the accuracy of

the Monte Carlo approximation and should not be interpreted as a measure of the dispersion in the

posterior predictive distribution of the exceedance probabilities.

2.5 Discussion

A complete landslide hazard assessment should address three components: where, when (or how

frequently) and how large landslides may be. The three components mentioned above have always

been addressed separately in the scientific literature produced so far (for non-physically-based models).
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Figure 2.8: Maps displaying exceedance probability estimates (top) and a measure of their uncertainty

(bottom) for landslide sizes above the 50%, 75%, 90% and 95% empirical quantiles. The computations

were based on N ×M = 5 × 105 predictive posterior samples of the Gaussian and Bernoulli models.

The white and yellow stars indicate the settlements of Roseau and Berekua, respectively.
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In this work, two of the three were combined, leaving the temporal characteristic out of the scope

because of the limited access to long-time series of landslide inventories triggered in response to

hurricanes within the Island of Dominica. Despite this limitation, the model proposed represents a

substantial improvement with respect to traditional presence/absence susceptibility models because

those are blind to the actual threat that a landslide may pose, depending on its size.

This could be a stepping stone for further experimentation in the hope that one day this unified

hazard line of research may impact international guidelines for disaster risk reduction. In this work,

focus was on the landslide inventory generated by Maria because of the large sample size and the

availability of data on a wide variety of geographical and geological variables, with no missing values.

However, further effort can be made to implement an extension in space-time of the hurdle framework.

Another potential improvement would be to extend this hurdle model to different modes of slope

failures and propagation. Currently, only shallow flow-like landslides are modelled that either started

as debris slides or flows, which generally evolved into debris flows due to the high water content of

the moving mass. However, extensions of the model could be implemented to distinguish various

landslide classes, including deep-seated ones, which have completely different failure mechanisms and

propagation behaviour.

Ultimately, the integration of actual rainfall data is also envisioned. Unfortunately, in the specific

case of Maria, no reliable rainfall data is available. However, other inventories in data-rich conditions

could help integrate rainfall into the modelling strategy, which in turn could enable testing for a

near-real-time application of the hurdle model.



Chapter 3

A data-driven landslide susceptibility

model for Scotland

This chapter presents the first data-driven model for landslide susceptibility in Scotland, developed

using a national landslide inventory compiled by the British Geological Survey. We begin by fitting

a Bernoulli model to estimate the probability of landslide occurrence, providing a comparison to an

existing heuristic model. Building on this, we propose an extension using a log-Gaussian Cox process

model. The work in this chapter has been published as

Bryce, E., Castro-Camilo, D., Dashwood, C., Tanyas, H., Ciurean, R., Novellino, A. and Lombardo,

L., 2025. An updated landslide susceptibility model and a log-Gaussian Cox process extension for

Scotland. Landslides, 22(2), pp.517-535.

3.1 Introduction

The British Geological Survey (BGS) are a renowned organisation for knowledge in geological con-

ditions across the UK and I was fortunate to work with them on a project to mitigate landslide

risk across Scotland. The project was funded through the National Centre for Resilience Project

Grant Award (NCRR2023-001) and the BGS International NC program ‘Geoscience to tackle Global

Environmental Challenges’, NERC reference NE/X006255/1 with the aims to update the National

Landslide Database (NLD), build a new landslide prediction model, and implement this to produce

exposure risk maps. My role involved building a new landslide prediction model, as the previous

(named GeoSure) was built for assessment purposes based mainly on ground movement and sub-

sidence across the UK due to different geological conditions. The differences in data availability

37
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and modelling approaches between GeoSure and my proposed model are compared throughout this

chapter. Perhaps the most notable difference is that the GeoSure modelled the causative factors of

landsliding using a heuristic approach requiring expert judgement.

GeoSure is a susceptibility model with five classifications ranging from low to high susceptibility,

but with no quantification assigned to these classes. I firstly proposed a landslide prediction model

with a similar methodological framework to the case study of Dominica (see Chapter 2), which involves

modelling the probability of observing a landslide, in a given geographical unit previously defined, by

using a Bernoulli distribution and inference techniques described in Section 1.4.

Although an efficient way to model landslides, assigning a binary response (presence/absence)

at the given geographical unit removes the count aspect of landslides, as there could be multiple

landslides in the unit, and we are only using a binary classifier. Therefore, a log-Gaussian Cox

Process, Section 1.6, was proposed in order to account for this. The two model results are compared

in Section 3.4, and interpretability and usefulness are examined for cross-validation measures in

Section 3.5.

3.2 Data

The target of our study is Scotland, a main landmass surrounded by multiple smaller islands covering

an area of ∼ 80, 000km2 (Figure 3.1). Most of the British landmass is dominated by a gentle topog-

raphy with a slope angle of less than five degrees, characterising 90% of the total territory (Cigna

et al., 2014). Conversely, the Scottish landscape is characterised by over 50% upland environments

formed as a result of an interaction between glacial incisions and post-glacial isostatic uplift (Firth

and Stewart, 2000). Scotland’s diverse bedrock formations are covered by a thin or patchy cover of

superficial deposits such as glacial till, hummocky morainic deposits as well as weathered bedrock.

Notably, most shallow flow-like landslides take place in such superficial materials (Palamakumbura

et al., 2021). The impact of ice erosion has created several recognisably distinct landscapes across

Scotland including the western ice-scoured landscape, weathered bedrock and solifluction deposits in

the far east, ice-scoured lowlands and extensively modified valleys, troughs, and mountains. Land-

use in Scotland is quite homogeneous, with a large percentage of its surface dedicated to agriculture

(∼70%), with woodland corresponding to most of the remaining cover, according to the CORINE

Landcover map (CLC) As for the built-up areas, these occupy a minor extent, with urban classes

accounting for less than 3%. The main cities are spread across the central belt, and communications
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among centres are ensured by a road network relying on a few main transport arteries. In places, the

lack of diversions away from these key routes makes them sensitive to the occurrence of landslides.

The Scottish road and rail networks are regularly affected by debris flows, with the most well-known

example of this being the Rest and Be Thankful (RABT). The RABT was closed in October 2023

after being hit by seven landslides in just a few days, whilst in the same storm event, ten people were

airlifted to safety after becoming stuck between landslides on the A83 and A815. Previous heavy

rainfall events have led to a debris flow that affected the Fort William to Mallaig train line as well

as the A830 highway in 2016 in an area previously considered to be of low debris flow susceptibil-

ity (Palamakumbura et al., 2021). Whilst each one of these events was relatively small in scale, the

impacts on local communities and businesses can be significant. The village of Ardfern, for instance,

remained inaccessible a month after a 6000-tonne landslide blocked the A816, rendering it impassable.

The potential for these types of landslides to increase with future climate change highlights the need

for modern, up-to-date LSMs.

The BGS National Landslide Database (NLD) is a continuously updated source of landslide infor-

mation. For this study, we extracted Debris Flow (DF) locations because they are the most common

landslide type in Scotland, and they cause the largest impact on infrastructure routes. The NLD

has changed the way landslides have been collected. Initially, BGS would collect information sourced

from news reports, individual and transport institution reports, whilst recent developments have seen

the use of social media and earth observations from satellite scenes (Pennington et al., 2015). This

combined search is meant to ensure that any potential bias in the spatial distribution of landslides is

minimised. Understanding bias is important when dealing with a spatially distributed process, such

as landslides. The inclusion of earth observations is intended to limit the skew towards transporta-

tion routes and urban areas that can be produced by collecting data purely from social media posts

and reports from transport infrastructure operators. To further understand the implications of such

potentially biased sources, we suggest reading the work of Lima et al. (2021) or Lin et al. (2021).

To avoid propagating such biases, one could use two potential solutions. The first is in introduc-

ing bias-related covariates in the model fitting, which are then zeroed out in the model prediction

phase (Lima et al., 2017). The second and alternative solution is to solve the issue at the source by

introducing an independent mapping procedure. The strategy of the BGS includes the use of freely

available Sentinel-2 satellite images and an approach similar to NASA’s Sudden Landslide Identifica-

tion Product (SLIP) tool (Fayne et al., 2019) to automatically map potential debris flow locations.

This combined approach ensures that the NLD reflects the standards of quality (Galli et al., 2008)
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Figure 3.1: Terrain overview of Scotland summarised both cartographically and as the two probability

density plots for elevation and steepness. The three photos were taken from the BGS field collection

of debris flows. NEXTMap Britain elevation data from Intermap Technologies; Photo number 1 is a

BGS image P001177© UKRI 1990; Photo number 2 is a previous BGS image; Photo number 3 is a

BGS image P757938© UKRI 2009.
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and completeness (Tanyaş et al., 2022) required for a suitable landslide prediction modelling protocol.

The resulting inventory features 1,854 DFs across the Scottish mountainous terrain. These DFs have

been digitally recorded with a point whose X and Y coordinates correspond to the highest position

visible on the source area. The reason behind such a choice is to represent the most likely location

where the failure was initiated (Scheip and Wegmann, 2022). Notably, this may be an approximation

because laboratory experiments have proven that DFs may exhibit retrogressive behaviour (Sosio

et al., 2007). However, as one faces the limitation of being only able to examine the scarp left by the

DF, choosing the highest point along a polygon perimeter is the most reasonable approach (Lombardo

et al., 2014). Nevertheless, this level of detail is to be accounted for whenever the mapping unit of

interest is expressed at high resolution. At the level of a coarse spatial partition, the assignment

of a stable/unstable label would not change. In this research, we opted to partition Scotland into

Slope Units (SUs) and therefore, no substantial changes are expected for both the susceptibility and

intensity models.

To represent the DF information over space, we chose the SU partition of Scotland, which can

be seen in Figure 3.2. A Slope Unit (SU) encompasses the geographic space between streams and

ridges (Amato et al., 2019), and a number of analytical tools to extract them from digital elevation

models (DEMs) have been developed over time. From the first inception by (Carrara et al., 1991),

SUs have been manually mapped (Guzzetti et al., 1999) and later obtained via the Inverse DEM

method (Turel and Frost, 2011). Recently, though, a robust computational scheme has been intro-

duced by (Alvioli et al., 2016) in the form of a GRASS GIS (Neteler and Mitasova, 2002) script named

r.slopeunits. In this work, we opted to use r.slopeunits, parameterising it with the following

values:

• Flow accumulation threshold = 1,000,000

• Circular variance = 0.3

• Minimum area = 25,000

• Clean size = 10,000

The resulting procedure produced a total of 153,282 SUs, whose geographic overview and frequency

area distribution are shown in Figure 3.2.

Notably, SUs are irregular polygonal objects whose spatial extent largely exceeds the resolution

of common terrain and thematic covariates. For this reason, SUs require an aggregation step to
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Figure 3.2: Panel A shows the aspect distribution over the entirety of the Scottish landscape. Panel

B highlights the Slope Unit delineation over a small area to provide an overview of the partition and

the typical mapping unit sizes. Panel C is the frequency-area distribution of the Slope Units over the

whole of Scotland.

express both dependent and independent variables for each polygon. The dependent one corresponds

in our case to the landslide presence and absence, to be assigned at the intersection between landslide

identification points and SUs. This aspect concerns the susceptibility model only. In fact, for the

LGCP model, the point pattern theoretical foundation requires the locations to be kept with their

original details (Bagchi and Illian, 2015). The aggregation at the SU level becomes part of the

modelling protocol only as a post-processing routine. To assign covariate values, we compute the mean

and standard deviation of each variable within the boundaries of an SU polygon. These summary

statistics are denoted by the suffixes µ and σ in Table 3.1, which lists all covariates selected to explain

the spatial distribution of landslides in Scotland. An exception is made for rainfall, for which no

summary statistics were calculated due to the coarse spatial resolution (1 km) of the precipitation

data. For the lithological covariates, aggregation was carried out by identifying the predominant class

within each SU.
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Table 3.1: Summary of the BGS dataset, including the responses and initial covariates’ set.

Variable Acronym Type Units Resolution

DF inventory occurrence ODF(s) Binary response 0=No, 1=Yes N/A

DF inventory count CountDF(s) Continuous response Unit-less N/A

SU area SUA Continuous explanatory m2 50m and 5m

Local relief, 1000m buffer LR Continuous explanatory m 10m

Annual precipitation mean (1999-2019) Precµ Continuous explanatory mm 1000m

Annual precipitation maximum (1999-

2019)

Precmax Continuous explanatory mm 1000m

Planform curvature mean and standard

deviation

PLC µ and σ Continuous explanatory 1/m 10m

Profile curvature mean and standard devi-

ation

PRC µ and σ Continuous explanatory 1/m 10m

Slope mean and standard deviation SLO µ and σ Continuous explanatory Degrees 10m

Quaternary domains Quat Categorical explanatory Unit-less 1:10,000-

1:1,000,000

Superficial deposits Super Categorical explanatory Unit-less 1:625,000

Bedrock Bedrock Categorical explanatory Unit-less 1:625,000

3.3 The models

As mentioned above, two modelling archetypes were implemented: to model landslide susceptibility

as per international standards, the probability of observing at least one DF in a SU was predicted by

using a Bernoulli distribution. For the LGCP, the DF rate of occurrence is modelled per SU by using

a Poisson distribution with a random intensity function that approximates the LGCP likelihood of

the landslide points distributed across the space. In both cases, it is assumed that the observations

(presence/absence in the susceptibility case or counts in the LGCP case) are conditionally independent

given a latent Gaussian process (see Section 1.3), where these models can flexibly capture local

correlation structure and uncertainty. As a result, the covariates can be modelled flexibly in terms of

their influence on DF occurrence or intensity.

The LGCP is a spatial Poisson process with a spatially varying intensity, λ(s), and modelled as a

Gaussian process in the log scale (Bachl et al., 2019). The intensity of the point process is linked to
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the linear predictor as follows:

log λ(s) = η(s)

η(s) = α+
J∑

j=1
βjxj(s) +

K∑
k=1

fk(zk(s)) + u(s),

where s = {s1, ..., sn} are the spatial units that discretise the study region, α is an intercept and

(x1(s), ..., xJ(s))T are environmental covariates that might influence, in a linear way, the variable of

interest, with coefficients β = (β1, ..., βJ)T . The functions f = {fk(.), ..., fK(.)} are non-linear effects

defined in terms of environmental covariates (z1(s), ..., zK(s))T . The specific form of the functions

fk(.) can be those of a Gaussian random walk of order 1 or 2, for example (RW1; Krainski et al.

(2018)). Lastly, the term u(s) is a Gaussian Random Field (GRF) approximated via the stochastic

partial differential equation approach (SPDE; Lindgren et al., 2011).

We model DF susceptibility with a Bernoulli distribution, thus y(s) = ODF(s) ∈ {0, 1} and y(s) |

ηBern(s) ≡ Bern(p(s)), where p(s) = Pr{ODF(s) = 1}. The probability p(s) is related to the linear

predictor η(s) through the logit link, so

p(s) = exp{ηBern(s)}
1 + exp{ηBern(s)} . (3.1)

The sum of the susceptibility model components, ηBern(s), follows the general model structure of

Equation 1.2, with its specific form depending on the influence of the covariates on the DF suscepti-

bility. To find the most appropriate way to express the influence of each covariate, as well as whether

each given covariate provides useful information to the model, we conduct a dual-stepped variable

selection. This is performed by testing each covariate in a linear and nonlinear form, as well as in-

troducing these two realisations as part of a standard stepwise forward procedure (Steyerberg et al.,

1999). This procedure calculates the DIC and WAIC. Out of all the covariates listed in Table 3.1,

the selected ones and their specific form as part of the susceptibility model are detailed below in

Table 3.2.

Table 3.2: Selected covariates to be used in the susceptibility model.

Fixed effects Random effects Categorical effects

SLO σ, Precmax LR, SLO µ Quat

The spatial rate of DF occurrences per SU (DF intensity) is modelled via an LGCP. This model

has a doubly stochastic nature consisting of an inhomogeneous Poisson point process whose random
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intensity surface is expressed in the logarithmic scale, allowing it to be modelled with a Gaussian

likelihood (Illian et al., 2008). As outlined in Section 1.6, Illian et al. (2012) proposed a method to

approximate the number of points in a grid cell and by assuming that the lattice of grid cells is fine

enough, this converges to the true LGCP likelihood.

With this polygonal data, rather than defining a regular lattice over the domain and losing inter-

pretability (recall the definition of the SU is to discretise the space in such a way that the conditions

for landsliding make geological sense - we would like to maintain this interpretability), we use the SU

partition as a proxy for the grid cell and say that the SU map of polygons is fine enough. This can

be further broken down as the number of points in each SU following a Poisson distribution with its

mean represented by the intensity of the cell. This intensity is then approximately equal to the area

of each cell multiplied by the exponential value of the latent field in each cell.

This process ensures that the number of DFs occurring in a SU can be considered rather than

simplified into the binary classification typical of susceptibility studies. In other words, the suscep-

tibility case keeps the zeroes exactly in the same form as the LGCP. However, the positive value is

compressed to one, denoting slope instability. Conversely, the LGCP framework allows modelling the

numerosity of the slope failures rather than being limited to the presence/absence situation. The

selected covariates and their specific form of entry underwent the same variable selection procedure

described for the susceptibility model. Out of all the covariates listed in Table 3.1, the selected ones

and their specific form as part of the LGCP model are detailed below in Table 3.3.

Table 3.3: Selected covariates to be used in the LGCP model.

Fixed effects Random effects

SLO σ, PRCσ LR, SLO µ, Precmax

3.4 Results

This section reports the outcome of the modelling protocol. Due to the dual set of experiments,

the susceptibility and intensity results will be presented separately, first by showcasing the covariate

effects, then converting the model estimates into map form.
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3.4.1 Susceptibility

The marginal effects of the covariates selected and displayed in Table 3.2 are presented in Figure 3.3.

There, the influence of the local relief (LR) appears as the most dominant covariate among all the

selected ones. LR is computed as the difference between the maximum and minimum elevation values

within a single SU. Therefore, this is commonly interpreted as a proxy for gravitational potential,

a property intrinsically linked to DF predisposition, see Iverson (1997). Specifically, the inferred

pattern indicates a negative contribution of the relief up to 200m. From this elevation difference to

approximately 250m, the LR contribution to the DF occurrence probability rapidly increases and

transitions to an approximate linear and positive trend up to 600m.

Figure 3.3: Posterior means (dark blue curves) of random effects with 95% pointwise credible intervals

(light blue shaded area) (top row). Posterior means (dots) of fixed linear effects (except the intercept)

with 95% credible intervals (vertical segments) and of categorical quaternary effects (bottom row).

The horizontal grey dashed lines indicate no contribution to the DF occurrence.
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Figure 3.3 additionally highlights the contribution of the average steepness per SU SLO µ. Slope

steepness is also a measure of variation in elevation. The LR estimates differences over a large

neighbourhood, whereas steepness values are computed as the first-order derivative between two

adjacent grid cells. Therefore, the LR and SLO µ can be considered as the two sides of the same

morphometric coin. A closer look at the latter marks a contribution to the susceptibility with a

negligible effect up to approximately 15 degrees of mean steepness per slope unit. After which, the

trend becomes positive and approximately linear up to the limit of 25 degrees. Interestingly, 21

degrees are empirically referred to by Iverson (1997) as a potential threshold for a slope to become

prone to DFs. Moving to the fixed effects, two were selected as such. The first is the SLO σ, another

parameter capable of capturing topographic roughness. Its contribution to the susceptibility model

appears positive (mean βSLOµ = 0.710) and significant (95% of the regression coefficient distribution

shares the same sign). A lower and still linear contribution is also estimated for the 20-year maximum

rainfall amount computed per SU (mean βPrecmax = 0.009). In this case, though, the covariate misses

significance by a slight margin, with the 97.5 percentile of the regression coefficient distribution being

markedly positive while the 2.5% appears negative. Nevertheless, the mean is still quite far away

from the zero line shown in the plot, thus implying a non-negligible contribution to the model, on

average, which is as expected for a covariate that should be linked to the DF genetic process. As

DF records were not accompanied by their temporal information in the inventory metadata, we

could only opt for a general meteorological representation of the Scottish landscape, rather than

a precise measure of the trigger pattern in space and time. Ultimately, the bottom-right panel of

Figure 3.3, presents the categorical effect of the morphology left by the last Quaternary glaciation

retreat (addressed as Quaternary). Among all the landforms, only the Incised Valleys have been

estimated with a positive and significant contribution to the DF occurrence probability. This is

geomorphologically sound, and a result commonly retrieved in other DF susceptibility studies tailored

to flow-like landslides in Scottish terrains (Ballantyne, 1986). All the remaining quaternary classes

appear not to be statistically significant, nor do their regression coefficient appear to be large enough

to cause notable variations to the susceptibility pattern, on average.

The sum of all mean susceptibility model components, together with the global intercept and

after the logit transformation, produces the estimated susceptibility map shown in the left panel

of Figure 3.4. Furthermore, the variability estimated for each of the regression coefficients shown in

Figure 3.3, leads to the uncertainty estimates mapped in the central panel of Figure 3.4. What stands

out is that the model produces susceptibility patterns for which the central sector of Scotland appears
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to be largely prone to DFs. Conversely, the southernmost, easternmost and northernmost districts

generally present non-susceptible characteristics. However, each of these districts is associated with

a different probabilistic pattern when we include uncertainty-oriented considerations. The northern

and eastern districts show very low mean susceptibility values associated with very low uncertainty

values. Therefore, this is a portion of the landscape that is largely secure from a risk assessment

perspective. As for the southern case, low susceptibility values are generally accompanied by high

uncertainty levels. In turn, this may indicate a potential danger and require further attention rather

than considering this district safe. Making such a consideration is crucial, and it is also the reason

why Bayesian statistics is so widely adopted across virtually any scientific field. However, for a

science such as geomorphology, intrinsically connected to environmental policies, producing separate

maps and commenting on their relative patterns is not ideal. This is the case because traditionally,

decision-makers do not have formal statistical training and, at times, a geoscientific one (Betcherman

1993). Therefore, reading and interpreting the map’s probabilistic indication could be difficult. For

this reason, here we propose a simple yet informative alternative to conveying the full probabilistic

prediction, in the form of mean values and uncertainty estimates around those. Our approach is to

perform a first post-processing step where the mean posterior estimates are binned into a few classes.

Here, we choose three for simplicity, to be plotted according to a standard traffic light criterion,

corresponding to low (green), medium (yellow) and high (red) susceptibility values. We export all

SUs belonging to a given class in a separate file, reporting the width of the 95% credible interval (CI)

for each unit. We then plot each file separately, assigning a monochromatic colorbar whose intense

colours correspond to SUs with low uncertainty and faded colours for SUs with high uncertainty. By

plotting the three files together, we produce a unified probabilistic overview of the model in map

form. We believe this to be a solution to a common problem between scientists and policymakers,

and further consideration on this topic will be provided in Section 3.6.
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Figure 3.4: Mean DF susceptibility based on the presence/absence observations (left), the associated

width of 95% CI (middle), and the combined mean susceptibility graded by its uncertainty (right).

3.4.2 LGCP

The marginal effects for the variables selected and shown in Table 3.3 are presented in Figure 3.5.

Interestingly, the selected covariates boil down to those of the same nature as those selected in the

susceptibility case. Specifically, meteorological and terrain characteristics control the variation of the

DF intensity. However, the situation for the LGCP model is flipped as compared to the susceptibility

one. In fact, the annual rainfall maxima over a period of 20 years appear to be much more closely

linked to the response variable and morphometric characteristics that come after it. We recall once

more that the intensity of an LGCP model can be considered a rate of DF occurrences in a given

neighbourhood. Therefore, the spatial information this parameter conveys is ideally more complex

than the simpler binary case tackled in a susceptibility task. This may be partially the reason behind

the dominant contribution of rainfall extremes (the maximum among the yearly sums taken over a

period of 20 years) towards the intensity. We would like to stress once more something partially

referred to in the susceptibility case. Such a rainfall covariate should not be interpreted in the same

way as in landslide early warnings (Guzzetti et al., 2020), where the rainfall is measured in a much
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narrower time window, comparable to the landslide failure process. In fact, the DF inventory we

used does not report the landslide date and time of occurrence, therefore hindering the possibility

of building temporal or spatiotemporal models. Conversely, the DF data representation we use

is purely spatial and thus the rainfall interpretation needs to be simplified and summarised to a

spatial context only. As a result, the maximum values among the annual accumulated ones over

two decades exclusively reflect the geographic tendency of the Scottish landscape to be exposed to

intense precipitation. Going back to the estimated effect, the first panel of Figure 5 highlights a

gradual positive trend, distinguishable into two main near-linear segments. The first one starts at an

approximate maximum of 1,000mm and continues with a similar incremental rate up to 2,100mm.

Up to this point, the contribution still appears to decrease the expected rate of DF occurrences per

SU. Conversely, from this point to around 2,500mm the effect shifts to a positive contribution to

the estimated DF intensity, after which, it reaches a sort of plateau up to 4,500mm. The second

largest contributor to the landslide intensity appears to be SLO µ. Different from the susceptibility

case, here the mean SU steepness appears to be much more relevant, behaving according to a marked

non-linear trend. This time, the effect is negative overall up to ten degrees, while showing a positive

incremental trend that continues until 27 degrees. The third panel of Figure 3.5 shows the non-linear

effect of local relief (LR) on DF intensity, which, as mentioned before, is a diagnostic of higher energy

potential. The effect is negative up to 200m before increasing its positive effect until a spike at

around 250m. From here, the effect is shortly negative in its influence before regaining a positive

trend until 600m. The final panel of Figure 3.5 shows the linear effects of the standard deviation of the

profile curvature and the standard deviation of the slope per SU, with profile curvature being negative

(βPRCσ = −0.319) and significant and the latter being positive (βSLOσ = 0.520) and significant. The

variation in the profile curvature per slope is something that we can interpret in terms of roughness.

In other words, large variations would imply a rough terrain where the curvature measured across

the vertical direction changes frequently in a stepped-like manner. Conversely, low variations would

imply a relatively smooth surface. For this reason, we interpret a negative regression coefficient as

an additional topographic information to that carried by SLO µ. Specifically, SUs with high average

steepness values but with the same being largely kept constant across the vertical profile are prone to

host large numbers of DFs. A justification for this may be assumed in the geotechnical interpretation

of large curvature variations. In fact, mostly hard materials have the capacity to produce stepped-like

landscapes, and they are mostly not capable of releasing shallow landslides but rather rockfalls or

topples (Frattini and Crosta, 2013). As for constant- or near-constant steep slopes, these are diagnostic
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of soft unconsolidated materials or soils draping over the bedrock. Thus, these are naturally the ideal

hosts for DFs (Iverson, 1997).

Figure 3.5: Posterior means (dark blue curves) of random effects with 95% pointwise CI (light blue

shaded area) for the LGCP (panel a, b and c). Posterior means (dots) of fixed linear effects (except

the intercept) with 95% CI (vertical segments) for the LGCP (panel d). The horizontal grey dashed

lines indicate no contribution to the DF occurrence.

Analogously to the susceptibility case, the sum of all mean LGCP model components, together

with the global intercept and, after the exponential transformation – required to convert the intensity

from the log to the linear scale – produce the estimated mean DF intensity map shown in the left

panel of Figure 3.6. What stands out is that the DF intensity is mostly concentrated on the West

Coast and central Scotland. Something to be stressed here is that the patterns arising between the

susceptibility and the intensity are quite similar. This being said, the information contained in the

two maps is not the same. In fact, the susceptibility purely contains information on the occurrence

probability whereas the intensity contains information closer to the requirement of hazard modelling.

In fact, if we assume a mean DF size (area or volume), then a higher rate of DFs per SU would

lead to a higher expected hazard. Conversely, if we consider an average DF size in the context of
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susceptibility, the associated map will not account for the number of events, and therefore, for the

expected hazard in a given SU. Another interesting element in maps shown in Figure 3.6 corresponds

to the variability in the mean intensity estimates, shown in the central panel. What we see here is

that the variation is minimal. This is comforting information because it generally indicates that the

expected intensity or hazard associated with a given SU is robust. As for the last panel, the similarity

that characterised susceptibility and intensity in their respective first two maps ceases to hold here.

In fact, the pattern of the combined intensity/uncertainty highlights has less variability than what

is shown for the susceptibility. This, in turn, may indicate that not only is the intensity mapping

more informative than its susceptibility counterpart, but that the model is also more certain about

its output. As a result, an ideal use of such a map may be more effective for decision makers.

Figure 3.6: Mean DF intensity (left), the associated width of 95% credible intervals (middle), and

the combined mean intensity graded by its uncertainty (right) aggregated across the Scottish SUs.

3.5 Model performance

In this section, an overview of the model performance is provided, spanning the fitting and cross-

validation routines implemented for the susceptibility and LGCP models, respectively. The left panel
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of Figure 3.7 shows the goodness-of-fit for the susceptibility case, through a ROC curve with an AUC

of 0.97. We recall here that the ROC curve is a measure of the true positive rate (unstable SUs

predicted by the model to be unstable, as a fraction of the total number of unstable SUs) against the

false positive rate (stable SUs predicted by the model to be unstable, as a fraction of the total number

of stable SUs) (Bewick et al., 2004). Such a value is an indication of an extremely high explanatory

power (outstanding according to the classification proposed by Hosmer (2000). To test whether this is

due to overfitting, I implemented a 10-fold cross-validation (CV). This procedure involves sub-setting

the dataset into ten random portions, each one made of 10% of all data. As a result, the union of the

ten subsets returns the whole Scottish territory. The 10-fold prediction skill is graphically shown in

the right panel, where the ten receiver operating characteristic (ROC) curves appear to showcase a

limited, if not negligible, spread. This attests to the model’s robustness. Aside from pure modelling

considerations, going back to the susceptibility map, such high predictive power reflects the ability

of the model to constrain the unstable labelling to the yellow region highlighted in Figure 4, where

essentially most of the Scottish SUs that host at least one DF take place.

Figure 3.7: ROC curve and AUC value for the susceptibility model fit (left panel) and the 10-fold

cross validation ROC curves and associated AUC values for the susceptibility model (right panel).

Validation and model assessment are generally complex for LGCP models, as the interest is in

the position of the points in space rather than some value at said point. However, as the Poisson

approximation to the LGCP likelihood was used, the same 10-fold cross-validation technique can
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be used to divide the SUs and examine the DF counts as a function of the model’s resulting mean

intensity, thus creating an approximation for cross-validation for the LGCP. Looking at the results of

the assessment counterpart for the LGCP, the performance also appears good, albeit less outstanding.

The left panel of Figure 3.8 shows the observed count per SU versus the fitted count per SU, obtained

by multiplying the SU mean intensity by the corresponding SU area. The agreement between the

two parameters appears to hold for small counts. However, it shows an increasing deviance for

large counts. This is most likely because very high counts are much less represented in the model.

Therefore, small to medium counts are relatively easy to model because the LGCP learns from the

available data. As for the medium to high counts, their small numbers hinder the ability of the LGCP

to reflect them in the fitted results. The prediction skill of the LGCP is presented in the right panel

of Figure 3.8, where the observed counts are plotted against their predicted counterparts in the same

10-fold division manner as the susceptibility case. The plot shows a similar behaviour as compared to

the fit, with low to medium counts being suitably estimated. However, the prediction of medium to

high counts is not as good. This attests once more to the model’s robustness, where little variations

are experienced when changing the modelled data. Similar to the susceptibility case, if we look at

the locations where high mean DF intensity is shown in Figure 3.6, a high predictive power means

that the region from SW to NE where high DF rates per SU are observed is consistently recognised.

Figure 3.8: Observed versus fitted counts for LGCP model (left panel) and observed versus 10-fold

predicted counts for LGCP model (right panel).
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3.6 Discussion

Here we reflect on the noticeable effects of using one modelling procedure (susceptibility case) and

the other (intensity case). The susceptibility model produced exceptionally high goodness-of-fit and

predictive performance diagnostics (see Figure 3.7). When we first observed the outstanding classi-

fication (Hosmer, 2000) in the left panel, we assumed it to be potentially due to some clustering or

spatial structure within the covariates. If that were the case, implementing a spatial cross-validation

routine would have been capable of breaking down or reducing the contribution of any spatial struc-

ture, thus producing spatially unbiased predictive performances. As a result, we would have also

noticed a marked decrease in the estimated classification metrics. However, the right panel still

shows outstanding predictions. For this reason, we further investigated whether this could be due

to some potentially biased covariates, as per Steger et al. (2021). To do so, we circled back and

generated five single-variable models, one for each covariate selected in our benchmark susceptibility.

Interestingly, extremely high performance is obtained solely using LR or SLO µ. These are not co-

variates that should be sensitive to any mapping criterion. In other words, when looking for biasing

covariates, one should expect a property to explain a large portion of the DF distribution, this being

the case because the covariate itself may be sensitive to the way local geological surveys are carried

out to report landslides. For instance, Moreno et al. (2024) found that the effectively surveyed area

(a layer expressing proximity to road networks) correlates well with the presence/absence of landslide

data in South Tyrol (Italy), a bias they removed from the model by zeroing out the associated re-

gression coefficient. In our case, we have no reason to assume that the inclusion of the LR and SLO

µ is closely associated with any mapping practice behind the Scottish DF inventory. Despite this

being an uncommon result, we believe our model to be reliable and the effect of these two terrain

characteristics to be realistic. We support this argument by benchmarking our model against the

GeoSure model, and by comparing the covariate effects estimated as part of the intensity procedure.

Analogous susceptibility patterns can, in fact, be seen also in the GeoSure map (Figure 3.9). At the

time of the GeoSure heuristic development, most of the DFs we used were not available, especially

those that had been mapped in response to public notice. Therefore, it is highly unlikely that the

public would report DFs, depending on the terrain arrangement, and it is rather more reasonable

to assume that the slope geometry may largely contribute to the genesis of DF in Scotland. An

additional verification can be seen in the intensity model. There, a more reasonable performance is

obtained, far from being outstanding. This actually brings another point of discussion. After many
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years of data-driven methodological development, outstanding performances have become common-

place among many susceptibility contributions. For instance, outstanding performance diagnostics,

e.g. AUC > 0.95, are nowadays reported frequently in a number of articles adopting advanced spatial

statistics (?), machine (Di Napoli et al., 2020) and deep (Lv et al., 2022) learning. Therefore, the

point we are trying to raise here is questioning whether the susceptibility framework shouldn’t be

considered largely solved (Ozturk et al., 2021), whenever heavily non-linear models are tasked with

distinguishing the distribution of landslides purely in space. Conversely, the data-driven estimation of

landslide intensity (Lari et al., 2014), whether it is spatially (Moreno et al., 2024), temporally (Nava

et al., 2023), or spatiotemporally (Fang et al., 2024) addressed it is still at an infancy stage where

few contributions are available and much may still be gained from a common geoscientific effort.

Here, the GeoSure DF susceptibility layer against the DF susceptibility produced are compared.

Figure 3.9 allows for such comparison by reporting in panel (a) the original GeoSure raster at 50m

resolution. Because our model is expressed at the SU scale, we opted to aggregate the 50m infor-

mation over SUs, following two separate criteria: the first (panel (b)) assigns the most frequent DF

susceptibility class, while the second (panel (c)) assigns the worst-case scenario. In other words, the

first criterion calculates how many 50m pixels fall among the five GeoSure categories (VL = very

low, L = Low, M = medium, H = high, VH = very high), and assigns to each slope unit the most

representative class. The second approach assigns the highest class, irrespective of its numerosity per

SU. We recall here that the definition of susceptibility refers to the probability of having at least one

landslide occur. For this reason, we also included the second approach to account for at least one

high probability pixel. What immediately stands out is that the probability patterns of our mean DF

susceptibility and the pixel-based GeoSure largely match across Scotland. The same consideration ap-

plies when looking at the GeoSure majority aggregation per SU, but it is not the case for the GeoSure

worst-case scenario. As for the match at the local level, GeoSure tends to polarise the susceptibility

estimates either in the VL to L classes or in the H to VH classes, leaving the intermediate class less

represented. This is mostly an effect due to the expert-based structure behind the current GeoSure

maps, and it becomes particularly evident in the Zoom1 of panel (a), where the effect of the slope

steepness map largely controls the susceptibility classes, with no other apparent contribution coming

from other predictors. The same is true for Zoom2 of the same panel. There, the effect of a geological

type that has received a negative weight flattens out the susceptibility, which mostly falls in the VL

category. By comparison, our mean DF susceptibility provides a richer description of the process, not

only because it includes the uncertainty, but also because its patterns appear more realistic. Another
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interesting element to consider has to do with the pixel structure of a susceptibility map, and this

reasoning goes well beyond the specific case and rather applies to any similar gridded map versus a

SU-based one. In fact, if one selects grids as the mapping unit of choice, the most common effect is to

obtain “salt and pepper” looking maps. This is again visible in Figure 9 panel (a), where the zooms

highlight single pixels falling in the VH susceptibility class being entirely surrounded by pixels falling

in the L or even VL classes. This constitutes a problem for decision-makers because slope stabilisation

practices cannot be applied to single grid cells but rather to the whole slope they belong to. This

‘salt and pepper’ effect propagates to the susceptibility in panel (c). Risk-oriented applications are

often tailored towards worst-case scenarios, and here, what becomes evident is that almost every SU

in Scotland hosts at least one VH susceptibility pixel. However, not every slope in Scotland fails and

luckily so, which in turn points to the limited realistic representation of a landscape in grid-based

models.

Firstly, we note that the data is as complete and representative as possible. Therefore, modelling

the higher DF counts is unlikely to be improved with this methodology as there is no way to gain

more data on higher counts if none exist. However, we can extend the data framework to account for

a larger domain - the whole of GB, for example - and in this way we can gather more information on

the spread of DF count and its dependence on the covariate set we chose.

Secondly, the covariate information and the modelling methodology are purely spatial. This is an

informative start, but extending the point process modelling towards spatio-temporal structures could

explain varying patterns of DF intensity. However, some degree of variation to the model should be

implemented. For instance, the covariates should be revisited. Presently, we use an aggregate of the

maximum daily precipitation over a 20-year period, calculating averages on an annual basis. Rainfall

has a high correlation with DF intensity, but with a spatial model, we can only account for one

statistic (the average of the maxima) to describe the whole rainfall pattern. If we used a spatio-

temporal LGCP model, we could use a function to describe the pattern of rainfall over a period of

time that might influence the slope instability, prior to and past the DF event. This would improve

prediction ability and provide a model that is interpretable over time. In turn, this could open up

towards a new generation of early warning systems for Scottish DFs. However, it should be stressed

that not all the data points we used have an associated date, and ideally, we would want the complete

data. The geoscientific community is working hard to improve this, mainly in the form of automated

mapping procedures, thanks to the high orbital frequency modern satellites offer.

Overall, the DF susceptibility and DF intensity maps both capture the areas in which to focus
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Figure 3.9: GeoSure DF susceptibility (panel a), aggregated on the basis of a majority criterion per

SU (panel b), and according to the highest class per SU (panel c). Panel d shows a reduced version

of the DF susceptibility built in this work and already mapped in Figure 3.4.

in terms of a higher DF risk. The LGCP model intensity map, however, perhaps pinpoints these

areas with a higher degree of accuracy due to the nature of the point process modelling approach.

Both models do well in terms of model performance, although validation measures for point-process

models are generally complex and more along the lines of a residual analysis to compare variations

of the model. Using the DF count per SU allowed us to implement the same 10-fold CV scheme that

was used to validate the susceptibility model. An improvement here could be conducting a leave-

one-group-out cross-validation (Liu and Rue, 2022). When one SU is removed, the underlying spatial

correlation between SUs can still be closely approximated by the surrounding SUs. Removing a group

of SUs at a time would better test the model’s prediction abilities by accounting for the absence of

this spatial correlation when a group of SUs are removed.

A final improvement to the model can be achieved with the integration of information from the
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BGS National Geotechnical Database on the geographical distribution of physical properties of a wide

range of rocks and soils present in GB. Presently, the information is relatively coarse across space,

which makes its integration into the model difficult at this time. BGS is continuously updating its

records and databases, which in the future could be used in a model for DF prediction. We conclude

the discussion by pointing out an interesting aspect in the landslide predictive patterns coming from

our susceptibility and intensity models, as well as the susceptibility produced for the GeoSure system.

The general patterns of the three corresponding maps look similar at a broad examination. The main

areas where landslides are expected follow two trends, one North to South on the West coast, and

another one South-West to North-East starting from the West coast and extending across the central

belt. This is interesting because both our models rely on underlying spatial effects, whereas the

GeoSure map is purely driven by an expert-based weighting system informed by knowledge of the

debris flow initiation process.

3.7 Challenges in modelling debris flow intensity with LGCPs

A key issue emerged during the LGCP extension: in the initial implementations, the spatial intensity

of the point pattern was almost entirely absorbed by the SPDE-based random effect. As a result, the

inclusion of environmental covariates had little to no influence on the fitted intensity, which exhibited

an unrealistic block-like pattern (see right panel of Figure 3.10). To address this in the context of

the BGS project, we adopted a count-based approximation to the LGCP likelihood, as described in

Section 3.3. However, this problem resurfaced in the subsequent spatio-temporal case study, where

the same modelling structure was extended. Chapter 4 is therefore devoted to a detailed examination

of this phenomenon—its causes, consequences, and possible strategies to mitigate its impact.
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Figure 3.10: Debris flow intensity of LGCP model explained by random spatial effect only (left panel)

and DF intensity of LGCP model explained by an environmental covariate only (right panel).



Chapter 4

Mess with the mesh: High-resolution

covariates for point process models in

INLA

This chapter investigates a methodological challenge that arises when implementing the SPDE ap-

proach in point process models using high-resolution covariates. The issue is first examined through a

series of simulation studies, and a practical solution is presented through a case study where a marked

point process model is fitted to a Japanese landslide inventory.

4.1 Introduction

In this chapter, we revisit a challenge encountered in the log-Gaussian Cox process (LGCP) extension

for modelling debris flows across Scotland, outlined in Section 3.7. The problem is encountered

specifically in point process models when the spatial resolution of the covariate information does not

match, or varies rapidly between, the triangulation mesh defined for use with the stochastic partial

differential equation (SPDE) approach.

Spatial point patterns are commonly characterised by an intensity function, defined as the expected

number of events per unit area. This intensity is typically modelled as a function of spatial covariates

to account for spatial heterogeneity, with any residual spatial structure captured via a spatial random

effect. Within the SPDE approach, the latent Gaussian random field (GRF) is approximated by the

solution to an SPDE, represented as a weighted linear combination of basis functions. These basis
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functions are constructed to approximate the Matérn covariance structure (Matérn, 1986b), with

the associated Gaussian weights indexed by the vertices of a triangulation mesh (see Section 1.5 for

details). The mesh plays a critical role in discretising the continuous spatial domain, thereby enabling

practical computation in models defined over continuous space.

Spatial covariates are similarly discretised by evaluating their values at specific integration points

—-typically the mesh nodes—- and interpolating between these points to approximate their continu-

ous spatial pattern. This ensures consistency between the representation of the spatial field and the

covariates across the domain. However, this discretisation introduces a critical issue: when covariates

exhibit rapid spatial variation, the interpolation may poorly represent their true behaviour, and dif-

ferent choices of integration points can lead to substantially different covariate values being included

in the model.

The above highlights a broader concern—frequently misunderstood—about the relationship be-

tween mesh resolution and parameter estimates in spatial models (see, e.g., Dambly et al. 2023, Dovers

et al. 2024). While the mesh specification must be carefully defined, it should not exert enough in-

fluence to fundamentally alter the estimated effect of covariates. In this chapter, we formally explore

the problem observed in our LGCP debris flows model, generalise it through simulation, and present

a case study application where we successfully implement a marked point process model using high-

resolution covariate data. Our aim is to clarify misconceptions surrounding the role of the mesh in

SPDE-based point process models and to raise awareness of the restrictions of combining fine-scale

explanatory data with spatial discretisations.

4.2 Problem outline

This section clarifies the implications of evaluating both the covariates and the Gaussian Random

Field (GRF) at a finite set of integration points, as is standard in spatial point process modelling. A

key underlying assumption is that these integration points adequately represent the spatial variation

of covariates and latent effects across the entire study domain. Thus, the validity of model inference

depends crucially on the spatial resolution and distribution of these points.

We consider a spatial point process model of the form:

N(A) ∼ Poisson
(∫

A
λ(s)ds

)
log(λ(s)) = η(s), (4.1)
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where s = {s1, ..., sn} are the spatial units that discretise a study region, A, λ(s) is the intensity of

the point pattern, and η(s) is a structured additive predictor:

η(s) = α+
M∑

m=1
βmwm(s) +

K∑
k=1

fk(zk(s)) + ω(s), (4.2)

where α is an intercept and (w1(s), ..., wM (s))T are covariates that might influence, in a linear way,

the variable of interest, with coefficients β = (β1, ..., βM )T . The functions f = {fk(·), ..., fK(·)} are

non-linear effects defined in terms of covariates (z1(s), ..., zK(s))T . The specific form of the functions

fk(·) can be those of a Gaussian random walk of order 1 or 2, for example (RW1/RW2; Krainski et al.

(2018)). Finally, the term ω(s) is a spatially structured random effect governed by a GRF. The GRF

is approximated using the SPDE formulation, with the solution expressed as:

ω(s) =
n∑

i=1
ωiϕi(s),

where {ϕi(s)}n
i=1 are a set of basis functions needed to approximate the Matérn covariance, ωi are

associated Gaussian weights and n is the number of vertices in the triangulation mesh. Denoting

Y = N(A), the likelihood of the model in (4.1) is

π(Y|λ) = exp{|A| −
∫

A
λ(s)ds}

∏
si∈Y

λ(si).

Therefore, the exponent term is evaluated on the domain while the product term is evaluated at the

observed points of the process. The corresponding log-likelihood is defined as

log π(Y|λ) = |A| −
∫

A
λ(s)ds +

∑
si∈Y

log λ(si)

= C +
∫

A
exp

{
β0 + βT X(s) + ω(s)

}
ds +

∑
si∈Y

{
β0 + βT X(si) + ω(si)

}

≈ C +
∫

A
exp

β0 + βT X(s) +
n∑

j=1
ωjϕj(s)

 ds +
∑

si∈Y

β0 + βT X(si) +
n∑

j=1
ωjϕj(si)

 ,

where the integral over the domain has been approximated using a quadrature rule:∫
A
f(s)ds ≈

p∑
i=1

α̃if(s̃i)

with s̃i denoting the integration points and α̃i their associated weights. Therefore, we have

∫
A

exp

β0 + βT X(s) +
n∑

j=1
ωjϕj(s)

 ds ≈
p∑

i=1
α̃i exp

β0 + βT X(s̃i) +
n∑

j=1
ωjϕj(s̃j)

 .
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This approximation highlights the fundamental modelling assumption often not mentioned explicitly,

which is that the spatial variability of both the covariates and the latent field is sufficiently captured

by the values at a finite number of integration points. In practice, this raises important considerations

for model design:

• If integration points are too sparse or poorly placed, key covariate patterns or spatial depen-

dencies may be missed, leading to biased or imprecise inference.

• Increasing the number of integration points can improve approximation accuracy, but at the

cost of higher computational complexity and slower model fitting.

The mismatch between covariate resolution and the mesh leads to biased estimates because the

integration scheme may not capture fine-scale covariate variation accurately. This can distort the

estimated effect sizes and compromise inference (imprecision), especially for covariates with short

spatial ranges. Thus, ensuring alignment between mesh resolution and covariate structure is crucial for

valid interpretation. This trade-off is particularly critical in applications where covariates exhibit fine-

scale variability, or where spatial units (e.g., slope units or hydrological catchments) are defined based

on criteria relevant to the system being modelled, e.g. geomorphological criteria as in the example

discussed here. While it is tempting to increase spatial resolution to capture local detail and resolve

the issue, doing so may compromise computational feasibility, especially in Bayesian frameworks with

latent Gaussian models. A careful balance between spatial accuracy and computational tractability

must therefore be maintained.

In the following sections, we explore the impact of integration point resolution on model estimates

and propose guidance for effective mesh and integration scheme design.

4.3 Simulation study 1: sensitivity to mesh alignment and covariate

range

This simulation study investigates how the positioning of the triangulation mesh affects parameter

estimates in spatial point process models, particularly in relation to the spatial correlation range of

covariates. The aim is to assess the robustness of model estimates when the mesh domain is shifted

relative to a fixed spatial grid.

We define six triangulation meshes over a regular grid covering the domain (−100,−50, . . . , 550, 600)×

(−100,−50, . . . , 550, 600). Each mesh is systematically shifted relative to the grid cells—either to the
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left, right, above, or below—to examine the sensitivity of model outputs to the mesh domain. This

set-up is illustrated in Figure 4.1. The left panel displays the six meshes, with red boundary lines high-

lighting the domain shifts applied to each configuration. The right panel visualises the corresponding

integration domains, where differences across meshes are reflected in the spatial arrangement of the

integration nodes, shown in distinct colours.

Figure 4.1: Simulation study 1: shifted meshes and location of each mesh node.

To explore how covariate smoothness interacts with mesh alignment, we simulate three covariates

as Gaussian random fields with increasing spatial range: 10 (short-range), 50 (medium-range), and

600 (long-range). The covariates are simulated in the following way:

1. Define a 2D triangular mesh over the bounding polygon (square with corners from (0, 0) to

(500, 500)) and max.edge = c(10,40) to discretise the spatial domain for the GRF. Note that

this is a different mesh from the ones defined in Figure 4.1.

2. Define a Matérn SPDE model.

3. Define a projection matrix to map all integration points (mesh nodes and coordinates of covari-

ate).

4. Define the precision matrix of the Matérn field.

5. Using the precision matrix, sample from a multivariate normal distribution through inla.qsample.

6. Project the sampled field across the integration points.
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Once this is done, each covariate is then used to simulate a spatial point pattern with log-linear

intensity function:

log(λi) = β0 + β1Xi,

where β0 = −6.5, β1 = −0.8, Xi is the i−th covariate, and i = 1, 2, 3; Figure 4.2 shows the resulting

covariate fields and corresponding point patterns.

Figure 4.2: Simulation study 1: covariate fields and simulated point patterns for short (left), medium

(middle), and long (right) spatial range.

We fit an inhomogeneous Poisson point process model to each of the three datasets using all six

mesh configurations. Figure 4.3 summarises the results. The first column displays the estimated

covariate effects, β̂1, while the second column displays the estimated intercepts, β̂0, with horizontal

dashed lines indicating the true values. Although only the domain of integration is adjusted, notable

variation is observed in the estimated covariate effects, particularly for Covariate 1, which has the

smallest spatial range. Estimation accuracy improves moderately for Covariate 2 (intermediate range)

and becomes most stable for Covariate 3 (largest spatial range). These results highlight the sensitivity

of parameter estimation to the specification of the integration domain. Even minor shifts in the

locations of the integration points—such as displacement by a single grid cell—can lead to clear

differences in the estimated values and hence conclusions drawn from the modelling results. It is

clear that in the estimation of the intercept, the shifting of the domain of integration plays a role

(variability in estimation throughout first and second datasets). For the third dataset, the estimation

of the intercept is relatively consistent for each mesh, although still less than the true value.

Interestingly, the most accurate estimates for both the covariate effect and intercept do not con-

sistently correspond to the covariate with the largest spatial range (Covariate 3), contrary to what

might be intuitively expected. This discrepancy is likely influenced by the interplay between the
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spatial range of the covariate and the mesh structure itself—a relationship explored further in the

subsequent simulation study.

Figure 4.3: Simulation study 1: estimated covariate effects (left column) and intercepts (right col-

umn) across six mesh configurations, for each of the three spatial ranges. Dashed lines indicate true

parameter values.

4.4 Simulation study 2: impact of mesh resolution on parameter

recovery

This simulation study explores how triangulation mesh refinement influences parameter estimation

in spatial point process models. In particular, we investigate how mesh resolution interacts with the

spatial smoothness of covariates and the inclusion of a latent Gaussian random field (GRF) defined

via a Matérn SPDE.

We define three meshes of increasing resolution using fm subdivide(mesh, n), with n = 2,

yielding approximately n1 = 261, n2 = 2233 and n3 = 19765 nodes. Figure 4.4 shows the resulting
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triangulations. The refinement increases the number of integration points by subdividing each triangle

into (n+1)2 sub-triangles. We simulate three spatial covariates with increasing correlation range—10,

Figure 4.4: Simulation study 2: three triangulation meshes, increasing in resolution from left to right.

50, and 600 units—using inla.qsample(). The spatial random effect is represented by a realisation

of a GRF, simulated in the same manner as the covariates, with a range of r = 300 and a standard

deviation of σ = 1. The intensity of each point pattern corresponds to:

log(λi) = β0 + β1Xi + ωi,

where β0 = −7.5, β1 = −1.3, Xi is the i−th covariate, ω is the spatial random effect and i = 1, 2, 3.

Figure 4.5 illustrates the three covariates (from small range to large range) with their associated point

patterns and the GRF. Model fits using each of the three meshes are summarised in Figure 4.6. We

Figure 4.5: Simulation study 2: simulated point patterns, covariate fields and Matérn field.

examine estimates of β1, β0, and the GRF hyperparameters r and σ.

Covariate 1 (short spatial range): The coarser meshes (Mesh 1 and 2) yield wildly inaccurate

posterior mean estimates of the regression coefficients and hyperparameters:

• Mesh 1: β̂1 = −813.93, β̂0 = −329.87, r̂ = 2.07, σ̂ = 132.03.
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• Mesh 2: β̂1 = −290.46, β̂0 = −96.45, r̂ = 1.12, σ̂ = 803.43.

• Mesh 3: β̂1 = −1.27, β̂0 = −6.84, r̂ = 319.16, σ̂ = 0.79.

Covariate 2 (medium range):

• Mesh 1 still performs poorly: β̂1 = −1392.12,, β̂0 = −403.58, r̂ = 34.00, σ̂ = 18.70.

• Mesh 2 improves significantly: β̂1 = −1.38, β̂0 = −6.93, r̂ = 453.00, σ̂ = 0.85.

• Mesh 3 remains accurate: β̂1 = −1.31, β̂0 = −6.89, r̂ = 444.05, σ̂ = 0.82.

Interestingly, Mesh 3 slightly overestimates the range here, indicating that a finer mesh may not

always yield the best result when the underlying field is smoother.

Covariate 3 (long range):

• Mesh 1 again breaks down: β̂1 = −2438.42,, β̂0 = −46.97, r̂ = 0.87, σ̂ = 5279.51.

• Meshes 2 and 3 show reduced accuracy compared to Covariate 2, possibly due to over-refinement:

– Mesh 2: β̂1 = −1.63, β̂0 = −6.83, r̂ = 658.62, σ̂ = 0.96.

– Mesh 3: β̂1 = −1.56, β̂0 = −6.88, r̂ = 578.01, σ̂ = 0.95.

This study shows that accurate estimation requires matching mesh resolution to the spatial scale

of variation in both covariates and the underlying GRF. For fine-scale features, coarse meshes lead

to biased estimates and unstable hyperparameter recovery. Over-refinement, on the other hand,

can reduce stability for smoother fields. These findings emphasise the need for careful mesh design

tailored to the spatial properties of the data. Specifically, this refers to the prior.range(ρ0, pρ)

argument when defining a SPDE which defines the probability P (ρ < ρ0) = pρ, where ρ is the

real spatial range of the random field, and the prior.sigma(σ0, pσ) argument which defines the

probability P (σ > σ0) = pσ, where σ is the true marginal standard deviation of the field. These

spatial properties alongside suitable mesh triangulation metrics (max.edge, min.angle, cutoff,

offset) are imperative to match mesh to data.
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Figure 4.6: Simulation study 2: estimated parameters across three mesh resolutions for each simulated

point pattern.

4.5 A case study: Japanese landslide inventory

This section presents a real-world case study demonstrating the application of a marked log-Gaussian

Cox process (LGCP) to model spatial point pattern data using high-resolution environmental covari-

ates in conjunction with the SPDE approach. Building on the considerations and simulation studies

from earlier in the chapter, we apply these methods to a Japanese landslide inventory dataset, with
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the goal of capturing both the spatial distribution and associated magnitudes of landslide events.

A key motivation for this analysis is to illustrate how high-resolution covariate data can be effec-

tively integrated into a point process framework without allowing the mesh specification to unduly

influence model inference. As discussed in the introduction to this chapter, careful attention must be

paid to the role of the properties of the triangulation mesh in SPDE-based models, particularly when

explanatory variables exhibit fine-scale spatial variation.

A marked point process extends a spatial point process by associating each point, i.e. each event

location s ∈ S ⊂ R2 with an auxiliary variable or mark m(s). Marks can be categorical or continuous

and provide additional information about each event (Illian et al., 2008). We have defined the LGCP

in (4.1) and (4.2) provides the expression for the linear predictor. In a marked LGCP, the marks

m(s) are modelled conditionally on location. In our case, the marks represent landslide sizes, which

we assume to follow a log-Skew-Normal distribution. That is,

m(s) | s ∼ log-Skew-Normal(µ(s), σ2, ν) ⇔ log(m(s)) | s ∼ Skew-Normal(µ(s), σ, ν), (4.3)

where σ2 denotes the variance and ν controls the skewness. The location parameter µ(s) may depend

on the same covariates and latent field used in the intensity component of the model, allowing for

a coherent joint modelling of occurrence and size. This distribution allows asymmetric heavy-tailed

behaviour in the log-marks, which is appropriate for landslide sizes. In this way, we can focus on

two core components of landslide hazard assessment as defined by Guzzetti et al. (1999): the spatial

distribution of landslide occurrences and their size.

Given the computational demands associated with fitting LGCPs to large, high-resolution

datasets, we focus on regional subsets of the Japanese territory rather than the full domain. For

each subset, we implement a manual integration scheme by refining the mesh to better align with

the spatial resolution of the covariate data, which is provided at the catchment level. This approach

forces the model to evaluate environmental covariates and the latent spatial effect at a granularity

that appropriately reflects the available data. Although this process is computationally intensive and

prevents a global analysis, it illustrates the feasibility and utility of combining high-resolution spatial

covariates with LGCPs at irregular spatial discretisations—something not commonly addressed in

the literature ( Liu and Vanhatalo, 2020; Diggle et al., 2013).

The remainder of this section is organised as follows: Section 4.5.1 describes the dataset used

in this analysis, Section 4.5.2 outlines the refined integration scheme, and Section 4.5.3 presents the

modelling results.
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4.5.1 Data

Japan, an island nation in the north-west Pacific Ocean, spans a total land area of approximately

377,000km2, of which around 70% is mountainous (Yoshimatsu and Abe, 2006). Geologically, the

country lies within the seismically active Ring of Fire—a tectonic belt characterised by subduction

zones, deep oceanic trenches, and volcanic arcs. These features render Japan especially susceptible

to natural hazards, including earthquakes, volcanic eruptions, and landslides. The socio-economic

consequences of some of these events have been substantial, e.g. the Tohoku earthquake and tsunami

of 2011, which triggered the Fukushima Daiichi nuclear disaster (Klein, 2023).

Landslides in Japan are commonly triggered by seismic activity, heavy rainfall, or a combination of

both. Notable events include the 1984 Otaki earthquake, which triggered a high-velocity mudslide on

Mount Ontake that killed 29 individuals. Similarly, Tropical Storm Talas in 2011 resulted in extensive

infrastructural damage due to bedrock and soil failure from intense precipitation (Oku et al., 2014).

These climatic and geological conditions highlight the relevance of spatial modelling of landslide risk.

As noted earlier, this study focuses on a subset of Japan, specifically the central region. This choice

was motivated by both computational and practical considerations. Japan is divided into approxi-

mately 300,000 catchments, and modelling the entire domain would be computationally prohibitive

for the purposes of illustrating the mess with the mesh issue. Moreover, the central region exhibits

a high concentration of landslide occurrences, making it a particularly relevant and informative area

for focused analysis.

Figure 4.7 displays our area of study, the central region of Japan, and the zoom panels highlight

the catchment scale. The catchment is an area of land which contributes water to a nominated point

on the earth’s surface (Bren, 2023), and a form that divides the study area in a way that preserves the

geomorphological conditions relevant to land sliding processes (Amato et al., 2019). The catchments

are represented as irregular spatial polygons defined using r.watershed (GRASS Development Team,

2024) through Geographic Resources Analysis Support System (GRASS), a Geographic Information

System (GIS).

The available explanatory covariates encompass a range of geographical and geological predictors.

Notably, the dataset includes aggregated annual rainfall statistics, which serve as key indicators for

rainfall-induced landslides, and mean surface velocity, a critical predictor for landslides triggered by

seismic activity. Mean surface velocity reflects the maximum rate of ground movement, with higher

values typically observed near earthquake epicentres and along fault lines. These elevated velocities
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Figure 4.7: Main study subset of Japan with two example panels illustrating landslide point patterns

from two of the 100 subsets used for model fitting.

are associated with an increased risk of structural damage and slope failure. Elevation is another

important covariate, as mountainous regions inherently present greater susceptibility to landslides

due to steeper terrain and gravitational forces. Figure 4.8 displays the spatial distribution of mean

elevation and mean surface velocity across the catchments in central Japan.

The geographical and geological covariates included in the models were chosen using a stepwise for-

ward selection procedure, allowing for both linear and non-linear effects (treated as fixed or random;

see Chapter 1). At each step, model performance was assessed by comparing the fitted values for

the mean count of landslides and for landslide size against their observed counterparts. This itera-

tive approach helped determine whether a given covariate meaningfully improved the model. While

information criteria such as the Deviance Information Criterion (DIC) and the Watanabe-Akaike In-

formation Criterion (WAIC) are commonly used to guide covariate inclusion in standard regression

models (Meyer, 2014; Gelman et al., 2014), their applicability to point process models is limited due to

the ambiguity surrounding sample size (Choiruddin et al., 2021). In point process contexts, locations
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Figure 4.8: Spatial distribution of mean elevation (left) and mean surface velocity (right) across

catchments in central Japan. These covariates are key predictors in landslide susceptibility modelling,

with elevation capturing topographic variation and surface velocity reflecting seismic-related ground

movement.

where points (events) have been observed as well as locations where no points have been observed

carry informational value, and it is unclear how to quantify the amount of information that a point

pattern reflects. In standard regression sample size is used to define these criteria, but this is not

directly translatable into the context of point processes. The final set of selected covariates, listed

in Table 4.1, are all included non-linearly using a Gaussian random walk of order two (RW2) with

penalised complexity (PC) priors (Simpson et al., 2017) set to be weakly informative such that the

probability that the standard deviations (1/τ) are greater than 1, is 0.01. We assume that the same

spatial covariates influencing the occurrence of landslides also govern the distribution of landslide

sizes.

4.5.2 Refined integration scheme

Figure 4.9 illustrates the design and progressive refinement of the manual integration scheme. The top-

left panel shows the initial relatively coarse mesh, in which individual triangles do not adequately align

with the underlying catchment boundaries, highlighting inadequate spatial resolution for accurate

integration over such fine-scale units. The subsequent panels demonstrate a progressive refinement
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Table 4.1: Selected geographical and geological covariates used in the landslide marked point process

for central Japan.

Variable Acronym Units

Elevation mean Elevµ m

Minimum curvature mean MinCvµ 1/m

Maximum curvature mean MaxCvµ 1/m

Aspect mean Aspµ Degrees

Relief mean Rlfµ m

Surface velocity mean SVelµ m/s

Maximum rainfall mean RnMaxµ mm

of the integration scheme, achieved by incrementally increasing the number of integration points

within each triangle. This refinement is implemented using the function fm subdivide(mesh, n)

as described in Section 4.4. This strategy is particularly recommended when applying the SPDE

approach to spatial point process models involving high-resolution environmental covariates, as it

improves spatial accuracy without necessitating a complete remeshing of the domain.

4.5.3 Results

Figures 4.10 to 4.12 display the estimated mean intensity surfaces for landslide occurrences, the

corresponding estimated total counts, and QQ plots comparing observed and fitted log-landslide sizes

for nine marked LGCPs fitted to subsets of our study area. These figures highlight the two key outputs

of interest: the spatial intensity of events and the distribution of landslide sizes. As this case study

is not the primary focus of the chapter, the results are presented as surface summaries, and detailed

diagnostic assessments, such as residual analysis or formal validation, are omitted. Nonetheless, the

models demonstrate good performance in capturing both the spatial pattern of landslide events and

the distribution of log-transformed sizes. Overall, these results effectively demonstrate the successful

integration of high-resolution spatial covariates into a marked point process model using the stochastic

partial differential equation (SPDE; Lindgren et al., 2011) - integrated nested Laplace approximation

(INLA; Rue et al., 2009) framework.



CHAPTER 4. MESS WITH THE MESH 76

Figure 4.9: Illustration of increasing mesh refinement over a subset of the study area.

4.6 Discussion

In this chapter, we have identified and systematically examined the conditions under which the so-

called mess with the mesh arises in spatial point process models using the SPDE-INLA framework.

This issue stems from a mismatch between the spatial resolution of spatial covariates and the integra-

tion scheme induced by the triangulation mesh. Through two carefully designed simulation studies,

we demonstrated how this mismatch can lead to substantial bias in the estimation of regression

coefficients. The first simulation focused on shifts in the domain of integration, while the second

explored the effects of mesh refinement. Both highlight how sensitive parameter estimates can be to

the discretisation choices inherent in SPDE-based models.
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To address these challenges in practical applications—such as landslide hazard modelling with

high-resolution environmental data—we propose three key guidelines: (i) smooth the covariate surface

when preserving fine-scale variability is not critical, to reduce sensitivity to mesh geometry; (ii) use

the fm subdivide function to manually refine the integration scheme without altering the original

mesh, ensuring better alignment between mesh triangles and the resolution of the covariates; and (iii)

incorporate basic model validation checks, such as comparing the expected and observed number of

events across the domain, to assess the adequacy of the integration scheme. The first guideline requires

the modeller to consider the purpose of their analysis. Fine-scale variability should be preserved

when the covariate resolution carries important information for the interpretation or prediction of the

process (e.g., when small-scale patterns drive hazard occurrence). Conversely, in exploratory analyses

or when the precise resolution is not essential, covariates can be smoothed without compromising the

study’s objectives.

Our recommendations are illustrated in a case study from central Japan, where we successfully

implemented a marked log-Gaussian Cox process using high-resolution covariate data. Overall, this

chapter underscores the importance of aligning spatial discretisation strategies with the scale of

environmental information and offers practical solutions to improve the robustness of point process

modelling in applied spatial statistics.
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Figure 4.10: Estimated mean intensity fields with noted observed versus estimated landslide count

(left column) and the QQ plot for the observed versus fitted landslide size distribution (right column)

for subsets 1-3.
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Figure 4.11: Estimated mean intensity fields with noted observed versus estimated landslide count

(left column) and the QQplot for the observed versus fitted landslide size distribution (right column)

for subsets 4-6.
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Figure 4.12: Estimated mean intensity fields with noted observed versus estimated landslide count

(left column) and the QQplot for the observed versus fitted landslide size distribution (right column)

for subsets 7-9.



Chapter 5

Spatio-temporal functional regression

for landslide hazard modelling: the

spatio-temporal SPDE as a smoothing

penalty

This chapter extends previous landslide hazard analyses by incorporating the temporal dimension

through spatio-temporal surface deformation data. It introduces a functional representation of daily

precipitation as a predictor, enabling finer temporal resolution than traditional summary metrics.

Building on Scalar-on-Function Regression (SoFR) within the mgcv framework, the chapter embeds a

spatio-temporal Gaussian process in the linear predictor using a custom SPDE-derived penalty. This

represents a novel integration of functional data analysis with separable spatio-temporal smoothing in

a frequentist GAM setting.

5.1 Introduction

The work presented in this thesis so far has primarily addressed the question of where a landslide

occurs and how large the associated landslide hazard is. In this chapter, we extend the analysis to

include the temporal dimension. Specifically, we examine spatio-temporal measurements of ground

surface deformation over a nineteen-month period in an area of the Sichuan province, China. Sur-

face deformation refers to the extent of ground change, in this case sinking, and provides essential

81
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information for landslide hazard assessment by revealing patterns of ground displacement that can

indicate slope instability. We also revisit how precipitation is incorporated as a covariate in the model.

Specifically, in Chapter 4, precipitation was represented using summary statistics, such as mean or

maximum annual values, which are simplifications of a much richer, temporally detailed dataset.

Here, we use daily precipitation data to construct a functional representation over time, capturing

variation at a finer temporal resolution than the observed surface deformation. We aim to model

precipitation as a continuous function across the days preceding and between surface deformation

observations, to achieve a more nuanced characterisation of the deformation process, improving upon

models based on aggregated precipitation metrics.

To implement a regression model with a functional predictor and a scalar response, we draw on

the framework of Functional Data Analysis (FDA), focusing in particular on Scalar-on-Function Re-

gression (SoFR). SoFR assumes that each observed function represents an individual, self-contained,

and complete data point (Crainiceanu et al., 2024). Rather than summarising a functional pre-

dictor using a single value, SoFR models assume a smooth relationship between the predictor and

the response across the entire domain of the function. Estimation and inference are carried out

using a Generalised Additive Model (GAM) with penalised regression splines, where the degree of

smoothness is selected automatically via generalised cross-validation or restricted maximum likeli-

hood (REML) (Wood, 2011). This approach is typically implemented in R using the mgcv package.

As a result, we temporarily depart from our Bayesian inference framework in favour of a frequen-

tist approach. This decision is motivated by the current limitations of INLA in handling functional

covariates. While it is possible to include functional predictors in INLA by projecting them onto a

set of basis functions and incorporating the resulting scores into the model—either linearly or non-

linearly—this approach still involves a form of dimensionality reduction. Consequently, the functional

predictor is not modelled as a continuous process, but rather through a finite set of coefficients, leading

to a single estimated effect.

A key advantage of the Bayesian modelling framework in INLA is the seamless integration of

the Stochastic Partial Differential Equation (SPDE) approach, which provides a computationally

efficient way to model residual spatial dependence via Gaussian Random Fields (GRFs) (Lindgren

et al., 2011). This approach is particularly effective in capturing unexplained spatial correlation

between observations while maintaining scalability through sparse precision matrices. In contrast,

frequentist approaches offer several alternatives for modelling spatial effects. These include modelling

spatial dependence using Gaussian Processes (GPs) estimated via maximum likelihood or restricted
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maximum likelihood (REML; Haskard et al. 2007), employing penalised spline smoothers within the

Generalised Additive Model (GAM) framework (Wood, 2017), and more recently, estimating SPDE

models through likelihood-based methods on finite element meshes (Bolin and Kirchner, 2020).

The mgcv package offers a flexible framework for specifying complex regression models with smooth

effects, including spatial and spatio-temporal components via tensor product smooths in a frequen-

tist framework. However, while it includes low-rank approximations to Gaussian processes (e.g., via

bs = "gp"), it does not allow for the explicit specification of general, user-defined covariance struc-

tures—particularly those that are non-stationary or non-separable in space and time. Spatio-temporal

effects in mgcv are typically modelled using separable tensor product smooths (e.g., te(x, y, t)),

which are analogous to separable spatio-temporal Gaussian processes. While this approach allows for

interaction between space and time through a multiplicative structure, it is limited in its ability to

capture more complex, non-separable dynamics where spatial and temporal dependencies interact in

a non-multiplicative fashion. Moreover, the Gaussian process (GP) smooths available in mgcv (e.g.,

via bs = "gp") are restricted to specific kernel families and rely on data-driven smoothing estimation,

rather than the explicit specification of covariance structures or priors, as is typical in fully Bayesian

GP models.

Given the spatio-temporal nature of our data, we adopt a space-time SPDE framework (Cameletti

et al., 2013), which allows for joint modelling of spatial and temporal dependence in a separable,

structured way. We build on the work of Miller et al. (2020), who showed that spatial SPDEs

can be expressed as smooth penalty matrices and implemented within the GAM framework using

mgcv. In this chapter, we extend their approach to the spatio-temporal setting, demonstrating how

the precision matrix derived from a spatio-temporal SPDE can be used as a penalty matrix within

mgcv to construct a custom smoother that embeds a spatio-temporal Gaussian process in the linear

predictor.

To our knowledge, this is the first implementation of a SoFR model in which the linear predictor

includes a spatio-temporal Gaussian process specified through an SPDE-derived penalty matrix. This

integration within the mgcv framework bridges functional data analysis with SPDE-based smoothing

in a computationally efficient and modular way. It introduces a novel class of models relevant in,

e.g. complex environmental and geostatistical applications, where both functional predictors and a

spatio-temporal structure play a central role.

The remainder of this chapter is organised as follows. Section 5.2 presents the available data and

outlines the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground surface



CHAPTER 5. SPATIO-TEMPORAL FUNCTIONAL REGRESSION 84

deformation. Section 5.3 introduces the functional representation of precipitation, the proposed space-

time SPDE smoother, and details its implementation within the mgcv framework. Section 5.5 reports

the model results, and Section 5.6 concludes with a discussion of the key findings and future directions.

5.2 Data

Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique used to measure

ground surface deformation with high spatial resolution and accuracy. It operates by comparing radar

signals during multiple passes over the same area at different times. The reflected signals contain

phase information that corresponds to the distance between the satellite and the ground. By analysing

the phase difference between two or more SAR images taken at different times, InSAR can detect

minute changes in the Earth’s surface—often on the order of millimetres. We have 163 images (He

et al., 2025). This inventory features ground surface deformation extracted through InSAR, across

a region in Sichuan, China on every 12th day between April 2017 and November 2018. Figure 5.1

illustrates a sample of three temporal observations of surface deformation across the space. The

Figure 5.1: Surface deformation measurements across the region in Sichuan, China for three time

points. T1) day zero, T2) day 12 and T3) day 24.

spatial information of the study area was aggregated through a Slope Unit (SU, hereafter) partition,

calculated through r.slopeunits (Alvioli et al., 2016). The SU encompasses the geographic space

between streams and ridges (Amato et al., 2019), providing a unit for interpretation purposes, and

we have a total of 23,140 SUs. Figure 5.2 provides a visual representation of these SUs through

geographical and geological predictors. From the available covariates, we selected a subset based

on expert knowledge rather than relying on automated stepwise procedures. This choice reflects the

primary aim of the analysis: to explore the integration of a functional covariate and a spatio-temporal
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SPDE smoother. Table 5.1 summarises the chosen covariates and specifies whether each was modelled

with a linear or smooth effect. These covariates include both geographical and geological features

that characterise the morphological complexity of the Chinese landscape. Geographical variables

are treated as continuous, while geological characteristics are incorporated as categorical factors.

Figure 5.3 displays the functional representation of precipitation over time for each SU.

Figure 5.2: Slope Unit discretisation of the region in Sichuan, China with geographical descriptors,

a) lithology classes, b) average standardised slope angle, and c) average standardised distance to the

nearest fault-line.

Figure 5.3: Functional precipitation measurements for each Slope Unit.
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Table 5.1: Selected covariates for inclusion in the model and their associated form of entry.

Variable Units Acronym Effect

Precipitation mm Precip functional

Slope mean Degrees Sloµ smooth

Mean distance to nearest fault-line m Dist2Faultsµ smooth

Mean distance to nearest river m Dis2Riverµ smooth

Lithology class n/a Lith linear - factor

Profile curvature mean 1/m ProfCµ linear

Planar curvature mean 1/m PlanCµ linear

5.3 Methodology

Let Y (s, t) be the surface deformation in s ∈ S ⊂ R2, i.e. the set of 23, 140 slope units, and t ∈ T =

{0, 12, 24, ..., 588}, the discrete time points at 12-day intervals. We assume

log Y (s, t) ∼ N(µ(s, t), σ2),

where µ(s, t) is the mean surface deformation and σ2 is the variance. The linear predictor is given by

η(s, t) = α+
M∑

m=1
βmxm(s, t) +

K∑
k=1

fk(wk(s, t)) + z(s, t) + u(s, t), (5.1)

and is linked to the mean using the default identity link: µs(t) = ηs(t). In 5.1, α is an intercept

and (x1(s), . . . , xM (s))⊤ are the linear effect covariates described in Table 5.1 with fixed coefficients

β = (β1, . . . , βM )⊤. The functions f = {fk(·), . . . , fK(·)} are smooth effects defined in terms of the

smooth effect covariates (w1(s), . . . , wK(s))⊤ in Table 5.1, the term z(s, t) is the precipitation (see

Section 5.3.1), and u(s, t) is the random spatio-temporal effect (see Section 5.3.2).

5.3.1 Precipitation term

We now examine the precipitation covariate in more detail, as it enters the model as a functional

predictor. We observe daily precipitation, denoted Xs(p), where s ∈ S is a slope unit and p ∈ P =

{0, 1, 2, . . . , 588} indexes daily time points. For each deformation observation at time t ∈ T, we define

the local precipitation domain as

Pt = {p ∈ P : t− δ < p ≤ t},
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where δ specifies the number of days used to construct the functional precipitation predictor (e.g.,

δ = 12 for a 12-day precipitation history). Thus, for each t ∈ T, precipitation is treated as a function

defined on the interval Pt, representing a temporally resolved history of precipitation leading up to

the deformation observation. This construction allows us to incorporate precipitation in the model

using a Functional Generalised Additive Model (FGAM) term:

z(s, t) =
∫

Pt

F (Xs(p)), p)dp =
∫ t

t−δ
F (Xs(p)), p)dp,

where F (x, p) is a smooth bivariate function capturing the interaction between the magnitude of

precipitation and its timing, and Xs(p) is the observed functional predictor. Following McLean et al.

(2014), we approximate F (x, p) using a tensor-product of B-spline bases:

F (x, p) =
Kx∑
j=1

Kp∑
k=1

αj,kBX
j (x)BP

k (p) (5.2)

where BX
j (x) and BP

k (p) are spline basis functions defined over the domains of precipitation magnitude

and time, respectively. Substituting into the integral yields:

z(s, t) =
Kx∑
j=1

Kp∑
k=1

αj,k

∫
P

BX
j (Xs(p))BP

k (p)dp (5.3)

Since precipitation is recorded at discrete time points, we approximate the integral numerically:

z(s, t) ≈
Kx∑
j=1

Kp∑
k=1

αj,k

n∑
i=1

BX
j (Xs(pi))BP

k (pi)vi, (5.4)

where {pi}n
i=1 ⊆ Pt are the daily observation points within the interval Pt, and vi are numerical

integration weights (Scheipl et al., 2015). This formulation corresponds to a tensor-product smooth

over the space of functional covariates and their temporal support, where αj,k are the coefficients to

be estimated.

5.3.2 Space-time SPDE penalty smoother

This section outlines how the SPDE approach translates into a smoothing penalty, beginning with

the spatial case and then extending to the spatio-temporal setting relevant to our model for surface

deformation in China.

An SPDE relates differential operators D (e.g., first or second derivatives, gradient, or Laplacian

operators) to a stochastic process, typically white noise. Specifically, it takes the form Df = ϵ, where

ϵ is Gaussian white noise. Lindgren et al. (2011) proposed a computationally efficient approximation



CHAPTER 5. SPATIO-TEMPORAL FUNCTIONAL REGRESSION 88

to solutions of such SPDEs by leveraging the Finite Element Method (FEM; Brenner 2008). FEM

discretises the spatial domain S using a triangulated mesh, whose vertices define a finite-dimensional

basis for representing the spatial field. Let ψk(s) denote a set of piecewise linear basis functions

associated with the K vertices of the mesh. The spatial field u(s), which is a realisation of a Gaussian

Random Field (GRF), is then approximated as

u(s) ≈
K∑

k=1
ψk(s)wk,

where the weights wk ∼ N(0, Q−1) are Gaussian random variables, and Q is a precision matrix

encoding the spatial dependence structure. The values of the field at mesh vertices are determined

by the weights, while values in the interior of the mesh elements are obtained via linear interpolation

of the basis functions.

To generate a GRF with Matérn covariance (Matérn, 1986a), the SPDE formulation defines the

differential operator as

D = τ(κ2 − ∆)α/2, (5.5)

where ∆ is the Laplacian, τ is a scaling parameter, κ controls the spatial range, and α = ν − d/2,

with ν being the smoothness parameter of the Matérn class and d the spatial dimension (here, d = 2).

For computational convenience, we assume α = 2, which yields a linear differential operator (Zhang,

2004). The FEM approach yields a sparse precision matrix Q that approximates the inverse of the

Matérn covariance matrix. As shown by Miller et al. (2020), this precision matrix is equivalent to the

penalty matrix derived from a smoothing spline formulation, thereby linking the SPDE representation

to penalised smoothing in GAMs.

Smoothing penalties in GAMs are often formulated through the basis-penalty approach (Ramsay

et al., 1997), where the roughness of a function is penalised to avoid overfitting. The general form of

such a penalty is

J(β, λ) = λ

∫
{Df}2ds = λ⟨Df,Df⟩,

where D is a differential operator, β are the model parameters, and λ is a smoothing parameter. The

role of the penalty is to favour smooth solutions by penalising high curvature or irregular behaviour

in f . Hence, an SPDE of the form Df = ϵ implies a Matérn penalty of the form:

⟨Df,Df⟩ = τ

∫
(κ2f − ∆f)2ds,

as shown by Miller et al. (2020). We now generalise this to the spatio-temporal case.
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Following Lindgren et al. (2022), the SPDE governing the spatio-temporal process is:(
a+ δ

δt

)
(κ2 − ∆)α/2f =

√
(2a)
τ

Wf,

where W is spatio-temporal white noise, and f(s, t) is now a function of both space and time. Defining

L = κ2 − ∆, the differential operator becomes

Dst = τ

(
a+ ∂

∂t

)
L. (5.6)

Under this operator, the corresponding spatio-temporal penalty in strong form is

⟨Dstf,Dstf⟩ = τ

∫
T

∫
S

(
a+ ∂

∂t

)2
(Lf)2 , ds, dt. (5.7)

To evaluate this, we first expand the operator:(
a+ ∂

∂t

)2
= a2 + 2a ∂

∂t
+

(
∂

∂t

)2
. (5.8)

Separately, using Green’s identity, Miller et al. (2020) show that

⟨Lf, Lf⟩ = κ4⟨f, f⟩ + 2κ2⟨∇f,∇f⟩ + ⟨∆f,∆f⟩. (5.9)

Substituting (5.8) and (5.9) into (5.7) gives:

⟨Dstf,Dstf⟩ = τ
{
a2

(
κ4⟨f, f⟩ + 2κ2⟨∇f,∇f⟩ + ⟨∆f,∆f⟩

)
+ 2a

〈
∂f

∂t
, (Lf)2

〉
+

〈(
∂f

∂t

)2
, (Lf)2

〉}
.

This decomposition, illustrated in Figure 5.4 consists of three components:

• Spatial smoothing (first line),

• Spatio-temporal interaction (second line),

• Non-linear space-time coupling (third line).

Because this formulation is given in strong form, it requires sufficient smoothness of f , specifically

that f ∈ C2(S) ∩ C1([0,T]), i.e., twice differentiable in space and once in time (Sullivan, 2020).

In practice, this regularity may be too restrictive for real data. As a result, the SPDE approach is

typically implemented in weak form (variational formulation), in which we multiply by a test function

v(s, t), integrate over space and time, and (if needed) apply integration by parts (Bakka et al., 2018).

This transfers derivatives from f to v, and only requires that f be weakly differentiable, relaxing the

smoothness assumptions. In the following, we explore this variational formulation.
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⟨Dstf,Dstf⟩

Spatial Smoothness

κ4⟨f, f⟩ + 2κ2⟨∇f,∇f⟩

+⟨∆f,∆f⟩

Spatio-Temporal Interaction〈
∂f
∂t , (Lf)2

〉 Non-linear Coupling〈(
∂f
∂t

)2
, (Lf)2

〉

Space-Time Penalty Operator

(linear spatial penalty)

(temporal derivative × spatial)
(non-linear interaction)

Figure 5.4: Decomposition of the space-time penalty operator ⟨Dstf,Dstf⟩ into spatial, spatio-

temporal interaction, and non-linear coupling components.

Variational Formulation of ⟨Dstf,Dstf⟩

To derive the weak form of the spatio-temporal penalty, we multiply the strong form operator by a

test function v(s, t) and integrate over space and time. The resulting variational expression is:∫
T

∫
S

(
a+ ∂f

∂t

)
(Lf) · v ds dt,

where L = κ2 − ∆ and v is a test function defined over space and time. In the following, we consider

the weak formulation for each dimension separately.

Spatial part. We begin with the spatial inner product∫
S
(Lf) · v ds = κ2

∫
S
f · v ds −

∫
S

∆f · v ds.

Applying Green’s identity under homogeneous Neumann boundary conditions, the second term be-

comes:

−
∫
S

∆f · v ds =
∫
S

∇f · ∇v ds,

so the weak form of the spatial operator is:∫
S
(Lf) · v ds = κ2

∫
S
f · v ds +

∫
S

∇f · ∇v ds.

In the finite element setting, we represent f and v using basis functions ψi, ψj as:

f =
∑

i

fiψi, v =
∑

j

vjψj .
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This yields the FEM system matrix:

K = κ2C +G1,

where

• Cij = ⟨ψi, ψj⟩ =
∫
S ψiψj ds (mass matrix),

• (G1)ij = ⟨∇ψi,∇ψj⟩ =
∫
S ∇ψi · ∇ψj ds (stiffness matrix).

For α = 2, the second-order penalty is:

Qs = KC−1K = (κ2C +G1)C−1(κ2C +G1) = κ4C + 2κ2G1 +G2,

where G2 = G1C
−1G1 approximates the inner product ⟨∆ψi,∆ψj⟩.

Temporal part. We now consider the temporal operator:∫
T

(
a+ ∂f

∂t

)
(Lf) · v dt.

Assuming the spatial part Lf · v is already handled via the FEM matrices, this becomes a standard

inner product in time. In practice, we discretise time with a uniform grid t1, . . . , tT and time step

∆t, and model the temporal evolution of f(t) using a first-order autoregressive process:

f(tk) = ϕf(tk−1) + ε(tk), ε(tk) ∼ N(0, Q−1
s ), (5.10)

with ϕ = 1 − a∆t. The innovation term ε(tk) inherits the spatial precision structure. The differential

operator
(
a+ ∂

∂t

)
corresponds to a backward finite difference:(

a+ ∂

∂t

)
f(tk) ≈

(
a+ 1

∆t

)
f(tk) − 1

∆tf(tk−1).

FEM Implementation

We now assemble the full spatio-temporal precision matrix. Let:

• Qs = κ4C + 2κ2G1 +G2: spatial precision matrix,

• Qt = 1
∆t2 + a2I: temporal precision matrix (based on AR(1) prior structure).

Then the full precision matrix is given by a Kronecker product:

Q = τQt ⊗Qs = τ

( 1
∆t2 + a2I

)
⊗

(
κ4C + 2κ2G1 +G2

)
. (5.11)

This formulation enables scalable computation for spatio-temporal models using sparse precision

matrices and separable structures, while still allowing for interaction between spatial and temporal

components through the joint penalty formulation.
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5.4 Fitting the Matérn space-time SPDE and functional predictor

in mgcv

The mgcv package in R allows the definition of custom smoothers through user-supplied smooth.construct

functions. These return the model matrix X (evaluations of basis functions), a list of penalty matrices

S, and additional components required for smoothing parameter estimation.

In this section, we describe how to implement the space-time SPDE model with a functional

covariate using a constructor smooth.construct.spde.st.smooth.spec. Let the response vector be

{yi}n
i=1 and assume an n × nc matrix of scalar covariates Xc. The functional covariate is denoted

Xs(p), observed at a grid of daily time points p.

Step-by-step Implementation

1. Construct the spatial mesh: Define a triangulation over the spatial domain using

INLA::inla.mesh.2d, which determines the spatial basis functions {ψk(s)}.

2. Define the temporal precision matrix: Specify the AR(1) temporal dependence via its pre-

cision matrix Qt, with entries derived from a backward difference approximation of (a+ ∂/∂t).

3. Compute FEM matrices: Use INLA::inla.mesh.fem to compute the standard FEM matri-

ces:

• Mass matrix C =
∫
ψiψj ds,

• Stiffness matrix G1 =
∫

∇ψi · ∇ψj ds,

• Higher-order matrix G2 = G1C
−1G1.

4. Assemble the space-time penalty: Construct the space-time SPDE penalty matrix using

the Kronecker product (see (5.11)):

Sspde = τ Qt ⊗ (κ4C + 2κ2G1 +G2).

5. Build the SPDE model matrix: Use INLA::inla.spde.make.A(mesh, loc, group) to

obtain the projection matrix A that maps the latent field to observation locations. The linear

predictor associated with the SPDE component is then given by Aw, where w contains the

latent weights.
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6. Represent the functional covariate: Represent the daily precipitation process Xs(p) over

its local support window Pt = {p ∈ P : t− δ < p ≤ t} using (5.2)-(5.4).

7. Combine all model terms: The full model matrix is then:

X = [Xc A Z],

where Xc is the matrix of scalar covariates, A is the SPDE model matrix (step 5.), and Z

corresponds to the design matrix for the functional covariate obtained from the discretised

FGAM integral. The full list of penalty matrices includes both:

• Sspde: space-time SPDE penalty,

• Sfgam: penalty matrix associated with smoothness of F (x, p).

Both are passed to mgcv for joint estimation of smoothing parameters.

5.5 Results

This section presents the results of our regression model in terms of the statistical findings, and

particular attention is given to the precipitation effect and the spatio-temporal SPDE smoother.

Figure 5.5 shows the fitted means and the corresponding standard error intervals of the linear effects.

The variable ProfCµ shows a positive association with surface deformation, though the large standard

error suggests considerable uncertainty. In contrast, PlanCµ appears to have a negligible effect. All

lithology classes are associated with positive estimated effects, with L2 and L4 standing out as the

most influential. However, the standard error intervals for all lithology classes are wide and span both

negative and positive values, indicating a lack of statistical significance at conventional levels. It is

important to note that non-significance does not imply a true absence of effect, but rather reflects

uncertainty in estimation. Figure 5.6 displays the fitted means and the corresponding standard error

intervals of the smooth effects. It is essential to note that the variables were standardised before

inclusion, which is reflected in the x-axis labels. We can see the highly non-linear influence of most

of these covariates on surface deformation. For example, steeper slope angles are associated with

increased deformation. While this may seem counterintuitive, it is consistent with findings that low-

angle slopes may be more susceptible to vertical deformation during early failure (Sun et al., 2022).

The effect of Dist2Faultsµ is extremely variable and exhibits marked non-linearity.
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Figure 5.5: Estimated fixed effects of selected covariates on log-surface deformation, with fitted means

and corresponding standard error intervals. The left-hand plot displays PlanCµ and ProfCµ and the

plot on the right shows the lithology categories.

This complexity likely reflects the diverse geological and structural factors influencing surface de-

formation near active fault zones, such as lithology, near-surface fault geometry, kinematic variability

along strike and interaction between faults at depth (Bloom et al., 2022). As such, this effect is

less indicative of a general trend and more suggestive of underlying spatial heterogeneity. Finally,

proximity to rivers is associated with greater deformation, which is plausibly due to increased pore

water pressure reducing shear strength in slope materials.

Figure 5.7 displays the result of our functional precipitation covariate. The left-hand panel shows

a 3D surface plot representing the interaction between the two components of the functional term

introduced in Section 5.3.1: the basis matrix for precipitation values, BX , and the basis matrix for

time, BP , denoted in the figure as precip.omat and precip.tmat. The resulting surface captures the

combined influence of precipitation intensity and timing on surface deformation. We observe both

peaks and troughs across the surface, indicating spatial and temporal regions where precipitation

exerts a stronger or weaker effect on deformation. The right-hand panel in Figure 5.7 translates this

interaction into a spatial contour map, showing the overall effect of precipitation across the study

region. The plots show the estimated regression coefficient surface for the functional precipitation

predictor, expressed as a smooth function of precipitation magnitude and its temporal basis. The

surface represents how precipitation at different magnitudes and times contributes to the modelled

log-surface deformation.
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Figure 5.6: Estimated smooth effects of selected covariates on log-surface deformation, with fitted

means and corresponding standard error intervals. All covariates were standardised prior to mod-

elling, as reflected in the x-axis scales. The plots highlight non-linear relationships, including increased

deformation with steeper slopes and proximity to rivers, and complex variation associated with dis-

tance to faults.

The north and north-eastern areas exhibit a stronger precipitation-related deformation signal,

while the south-western and eastern areas show a weaker influence. Notably, the high-effect regions

(peaks) in the surface plot align with darker areas in the contour map, while low-effect regions (valleys)

correspond to lighter contours. This output exemplifies the advantage of using a functional predictor:

rather than summarising precipitation with a single coefficient or smooth term, the model yields a

nuanced surface that reveals spatially varying and temporally structured effects.

Figure 5.8 displays the spatio-temporal SPDE smooth effect for the first 12 time points across

the region in Sichuan, China. Due to the computational cost of fitting the model, the fields are

displayed at a relatively coarse resolution for efficiency. Despite this, meaningful spatio-temporal

structure is evident. For instance, stronger spatial coherence is observed at time points 2, 6, 8 and

12, whereas time points 1 and 4 exhibit weaker spatial structure. There is no clear temporal trend in

the residual spatio-temporal dependence, suggesting that the underlying surface deformation process

may not follow a regular spatio-temporal pattern within this domain. This could be influenced by

the geometry of the study area, which consists of slope units arranged within a rectangular region,

distinct from typical spatial domains such as coastlines or natural landforms. Nonetheless, the spatio-

temporal SPDE smoother successfully captures structured residual variation, as demonstrated by the

evolving spatial fields over time.

Figure 5.9 presents model diagnostics by comparing observed and fitted values of log-surface defor-
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Figure 5.7: Functional effect of precipitation on log-surface deformation. Left: 3D surface plot showing

the estimated smooth function F (x, p), representing the interaction between precipitation magnitude

(x) and time index (p) based on tensor-product basis evaluations BX and BP . Right: Spatial contour

map displaying the aggregated influence of precipitation across the study region in Sichuan, China.

Darker areas indicate regions where precipitation has a stronger effect on deformation, while lighter

areas indicate weaker influence.

mation at three selected spatio-temporal instances. These examples are shown for brevity and clarity.

Overall, the model captures the general spatial pattern of deformation well. However, discrepancies

remain in the extreme values, particularly in regions highlighted in yellow and dark blue at each time

point. These areas indicate under- or over-estimation in the tails of the distribution, suggesting that

while the model performs well on average, further refinement may be needed to improve accuracy for

extreme deformation events.

As a general model diagnostic, Figure 5.10 presents three checks. The left panel shows a QQ plot

comparing the empirical quantiles of observed log-surface deformation to those of the fitted values.

The model aligns well with the identity line overall, but deviates in the upper tail—consistent with

Figure 5.9—indicating that extreme deformation values are underestimated. The central panel dis-

plays a histogram of deviance residuals, which shows approximate symmetry around zero, suggesting

no systematic bias in the model’s predictions. However, the presence of heavy tails hints at a few

poorly fitted observations, likely corresponding to extreme values. The right panel is a QQ plot of

the residuals against the theoretical quantiles under the fitted log-Gaussian distribution. Mild tail

deviations further suggest that the model may not fully capture the distributional structure of the
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Figure 5.8: Spatio-temporal random fields from the SPDE smoother for the first 12 time points. Each

panel shows the spatial variation in the latent field at a given time, capturing residual spatio-temporal

dependence not explained by the covariates. Coarser resolution was used for computational efficiency.

The spatial patterns vary across time, with stronger structure visible at certain time points (e.g., 2,

6, and 12), indicating dynamic unexplained effects across the region.

residuals, especially at the extremes.

5.6 Conclusion

This work introduces the first implementation of a space-time SPDE smoother within the mgcv frame-

work, accompanied by a rigorous mathematical development and practical guidance for implementa-
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Figure 5.9: Observed (left column) versus fitted values (right column) of log-surface deformation

across three points in time for the region.

tion in R. A key innovation lies in enabling the inclusion of a functional covariate—precipitation—within

a scalar-on-function regression (SoFR) framework, leveraging the strengths of both functional data

analysis and the SPDE approach to spatio-temporal modelling.

Beyond the functional precipitation effect, the model integrates a suite of geographic and geolog-

ical predictors, combining linear and non-linear components to flexibly model surface deformation.

This unified framework yields interpretable results while capturing latent spatio-temporal structure

through the SPDE-derived smoother.
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Figure 5.10: Model diagnostics for the log-Gaussian regression model of surface deformation. Left:

QQ plot comparing observed and fitted values, in original scale, indicating good overall fit but under-

performance in the upper tail. Middle: Histogram of deviance residuals, approximately symmetric

around zero, though with heavy tails suggesting some outlier influence. Right: QQ plot of residuals

versus theoretical quantiles under the fitted log-Gaussian distribution, showing deviations in the tails,

consistent with mild misfit in the extremes.

While the model successfully recovers broad patterns in the deformation field, it shows limitations

in capturing extreme values—an issue revealed both in the residual diagnostics and fitted-versus-

observed comparisons. This limitation motivates future extensions toward heavier-tailed response

models, such as those based on the Generalised Pareto Distribution (GPD), which may better accom-

modate the tail behaviour characteristic of surface deformation data.

Another avenue for development involves incorporating a non-separable space-time Matérn co-

variance structure. The current separable formulation simplifies implementation and interpretation

but may not fully capture the complex interactions between space and time inherent to landslide pro-

cesses. Non-separability could provide a more faithful representation of event dynamics and improve

model fidelity in hazard contexts.



Chapter 6

Discussion, conclusion, and future

work

6.1 Discussion

This thesis provides a comprehensive exploration into landslide hazard assessment modelling, captur-

ing the where, when, and how large. In this chapter, we reflect critically on the choices and modelling

approaches made, the limitations of methodologies and data, and potential alternatives or extensions.

6.1.1 On the modelling framework

To begin this discussion, we first evaluate the choice to use a predominantly Bayesian framework.

This framework gave us access to flexible hierarchical models, allowing for the inclusion of both co-

variate effects and latent spatial/spatio-temporal effects in complex models. In addition, the inclusion

of prior information is useful for high-risk regions where learning from sparse events is vital. Further-

more, Bayesian models provide full posterior distributions for all model parameters, facilitating the

derivation of credible intervals for landslide occurrence probabilities or event sizes, offering richer in-

formation for decision-making processes. This is particularly relevant since uncertainty quantification

is a critical component in the quantification and communication of landslide risk. Perhaps, the most

significant advantage of the Bayesian framework, as utilised throughout this thesis, is that integrated

nested Laplace approximation (INLA; Rue et al., 2009) may be used in this framework, which enables

computationally efficient and accurate inference for complex latent Gaussian models (LGMs).

INLA has become an increasingly prominent tool in particular in the field of spatio-temporal

100
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modelling (e.g., Rue et al. 2009; Lindgren et al. 2011; Bakka et al. 2018), and continues to evolve

to accommodate a broad range of model complexities. One of the primary advantages of INLA over

traditional Bayesian inference methods such as Markov Chain Monte Carlo (MCMC) lies in its com-

putational efficiency. While MCMC relies on iterative sampling schemes that can be computationally

intensive and time-consuming, particularly in high-dimensional or hierarchical models, INLA employs

deterministic approximations based on Laplace approximations and numerical integration to provide

accurate posterior estimates at a fraction of the computational cost. For these reasons, we chose

INLA for inference on large spatial/spatio-temporal landslide inventories.

Despite its many advantages, the INLA framework has a number of limitations. Its applicability

is restricted to models within the class of latent Gaussian models, and unlike more general MCMC-

based methods, it cannot be used to estimate parameters for arbitrary models. In particular, INLA

may struggle with models involving strong non-Gaussian latent features or complex dependencies

among hyperparameters. Moreover, Bayesian inference more broadly is sensitive to the choice of prior

distributions. Selecting appropriate priors can be challenging, especially when prior information is

scarce or subjective, and conducting thorough sensitivity analyses is often necessary to ensure the

robustness of the results.

Furthermore, the interpretability of Bayesian outputs can pose a barrier for practitioners more

familiar with frequentist paradigms. While posterior distributions and credible intervals may be more

intuitive to some scientists, their understanding of probability is often grounded in point estimates

and p-values. This mismatch can complicate the communication of Bayesian results to non-specialist

audiences (BiostatMatt, 2025). Lastly, while posterior predictive checks offer a powerful framework

for model validation, they can be more complex to implement and difficult to consistently interpret

compared to traditional residual diagnostics used in frequentist approaches.

As a final point of evaluation, the direction of this research progressed toward incorporating spatial

point process modelling and functional data into landslide hazard models (Chapter 5). This involved

extending the framework of susceptibility to accommodate spatial point pattern data, enabling a more

detailed representation of event locations and their relationship with environmental covariates. While

the inclusion of functional predictors was initially explored within the INLA framework, it proved

more practical to employ the mgcv package and work to implement a key aspect of the previous

framework, the SPDE approach. Consequently, although R-INLA was the primary fitting tool for

most of the models presented, the shift to an alternative framework underscores the dynamic nature

of landslide hazard modelling. It also highlights the importance of methodological flexibility, as the
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ability to draw on both approaches - Bayesian and frequentist - proved advantageous.

We next evaluate a key modelling choice: the use of the stochastic partial differential equation

(SPDE) approach to capture underlying spatial or spatio-temporal variability in the data. This

method provides an efficient approximation to a Gaussian random field with a Matérn covariance

structure and is conveniently implemented within the R-INLA framework, making it a natural choice

for much of the work presented in this thesis.

An alternative considered during the early stages of analysis for the Japanese landslide inventory

was the Besag model (Besag, 1974), commonly used for areal data. This model defines spatial depen-

dence through an intrinsic conditional autoregressive (ICAR) structure, in which information is shared

between neighbouring regions via a sparse precision matrix derived from a neighbourhood adjacency

structure. While computationally efficient and well-suited to modelling local spatial dependencies,

the Besag model is limited in its ability to capture long-range spatial correlations. Furthermore, as

it is defined over discrete spatial units, it is incompatible with point process models that operate in

continuous space, which became a focus of this research. Other possible alternatives include spatial

basis function representations such as fixed-rank kriging (Cressie and Johannesson, 2008; Gabriel

et al., 2016) or Gaussian predictive processes (Banerjee et al., 2008); however, these approaches were

not implemented in this work due to the demonstrated adequacy of the SPDE approach and its

established validity in point process models.

Lindgren et al. (2011) established an explicit connection between Matérn Gaussian random fields

(GRFs) and a class of SPDEs, enabling computationally efficient representations through Gaussian

Markov random fields (GMRFs) with sparse precision matrices. The parameters of the Matérn co-

variance function govern key characteristics of the field, including its smoothness, spatial range,

and marginal variance. While alternative covariance structures - such as rational quadratic or non-

stationary kernels - can be specified within a full Gaussian process framework using MCMC, they

generally do not yield sparse precision matrices, making them less computationally efficient and more

complex to implement.

In terms of computational resources, the Hurdle model in Chapter 2 had a run-time in the region

of less than ten minutes with the associated unified exceedance probabilities also running quickly

(less than ten minutes) despite the posterior sampling undertaken. The susceptibility model and the

approximation to the LGCP fitted in Chapter 3 also had a run-time in the region of less than ten

minutes. The simulation studies of Chapter 4 ranged in run-times to less than one minute (coarse

mesh and smooth covariate) to within the hour (fine mesh and fine-scale covariate), while the multiple
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marked LGCPs fitted to local subsets of Japan all ran within ten minutes. The space-time model of

Chapter 5 had to be run through an external Geospatial Computing platform (Crib) and the model

took between 24 and 48 hours to run. This is because mgcv deals with dense matrices rather than

sparse, and as such, the space-time SPDE smoother involved multiple Kronecker products of dense

matrices.

As outlined previously, the research evolved toward spatial point process modelling, primarily due

to the availability of precise landslide occurrence coordinates. This was the case for both the debris

flow data across Scotland provided by the British Geological Survey (BGS) and the Japanese landslide

inventory. In both datasets, covariates were defined over irregular spatial units—slope units (SUs)

for Scotland and catchments for Japan - allowing point occurrences to be aggregated into counts

per unit where appropriate. This aggregation facilitated the development of a log-Gaussian Cox

process (LGCP) approximation for the BGS dataset. While Poisson count models offer advantages in

terms of computational efficiency and ease of interpretation, spatial point process models operate over

continuous space, providing higher spatial resolution and more detailed inference. Additionally, point

process models support extensions to include ‘marks’, such as landslide size, enabling joint modelling

of occurrence and size. Given the aim of characterising landslide hazard in terms of both frequency

and intensity, the point process framework was deemed more suitable for this research in comparison

to joint models at the spatial units.

We would like to highlight the comparisons; between the point process approach to other spatial

modelling used for landslides in the literature and throughout this research, and the representation

and approximation of the Gaussian random field through the SPDE (and INLA) to other options -

e.g. using a covariance function to characterise the fields and MCMC to estimate it (Simpson et al.,

2012).

6.1.2 The Hurdle model

We now evaluate the modelling choices made for the Hurdle model proposed for landslide occurrence

and size on the Island of Dominica after Hurricane Maria in 2017, outlined in Chapter 2. Notably,

here we model two aspects of landslide hazard: the spatial distribution and ‘intensity’, characterised

by planimetric extent. The lack of a temporal aspect was due to the limited access to long-time series

of landslide inventories triggered in response to hurricanes across the Island. However, for the purpose

of this work, short-time series of the 2017 landslides would have been sufficient for a unified landslide

hazard assessment. A second limitation of these data is the lack of a rainfall predictor. This was
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due to the weather stations failing during Maria and only a few providing reliable data (Dominica

Meteorological Service, 2019). From the stations that were able to record rainfall measurements, over

500mm were recorded, with amounts increasing from 5 : 00pm on the 18th (Dominica Meteorological

Service, 2019), this endangered the upper catchments to be susceptible to debris flows that could

be triggered with rainfall thresholds substantially lower than before the hurricane (ReliefWeb, 2018).

Lastly, it was noted that out of the landslides that occurred on Dominica, 8,576 were debris slides,

1,010 were debris flows and 374 were rock falls (ReliefWeb, 2018). If this classification had been

available, it would have been possible to model the three landslide types separately, offering greater

insight into which covariates influence each type and where on the Island each class is most likely to

occur following a hurricane. Thus making it clearer as to which safety measures should be prioritised

and where. Another consideration is whether the log-Gaussian distribution was the most suitable

choice for modelling landslide size. It was selected based on the approximately bell-shaped nature of

the observed data; however, given the interest in exceedance probabilities and the potential presence

of heavy tails, further exploration of alternative distributions - such as the generalised Pareto - may

be warranted to better capture the underlying variability and extremes.

The model performance measures undertaken in this study were a receiving operator characteristic

(ROC) curve for the predicted probability of landslide occurrence, a probability integral transform

(PIT) histogram and an observed versus predicted values scatter-plot for the log-landslide sizes. These

measures were chosen for their robustness to class imbalance (ROC curve-many landslide absences

in comparison to presences), checking for over- or under-prediction of the landslide log-sizes, and to

visualise the comparison between observed and fitted values (PIT Histogram and observed versus

fitted plot).

6.1.3 The BGS data

We now evaluate the modelling choices made for the updated landslide susceptibility model for the

debris flow data across Scotland by the BGS and the LGCP extension, outlined in Chapter 3. The

development of the statistical methodology for this chapter was, to some extent, constrained by

the nature of the available data. However, the application presented in this chapter is noteworthy

as it is the first data-driven landslide susceptibility model proposed for a world-leading independent

research organisation. Available were the debris flow point coordinates and a binary presence/absence

indicator for the SU, with stakeholder interest focused solely on landslide susceptibility. Consequently,

this chapter addresses only one component of landslide hazard - its spatial distribution - while the
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exclusion of temporal and intensity dimensions reflects the constraints imposed by the nature of the

project. Although not all debris flow points had associated temporal information at the time of data

collection, restricting the analysis to only those with complete timestamps would have substantially

reduced the inventory size, resulting in a model that would not realistically represent Scottish debris

flows.

A secondary data limitation is that mean annual averages of the maximum daily precipitation

over a 20-year period were used as a rainfall predictor. This single-statistic summary is a reduction of

a much richer and temporally detailed dataset. Ideally, precipitation as a continuous function would

offer critical insight into ground conditions, saturation properties, and rainfall intensity patterns -

factors that are central to understanding and modelling the conditions leading to landslide initiation.

While this limitation constrained the scope of the current chapter, it motivated a valuable line of

inquiry for subsequent research presented in Chapter 5: how can precipitation be incorporated as a

functional predictor within the available modelling frameworks?

The decision to present an LGCP extension to the landslide susceptibility arose from the availabil-

ity of the debris flow point coordinates, and a personal interest to work with a more complex model.

This choice certainly created a domino effect. A significant amount of time was spent working with the

BGS data and grappling with the mess with the mesh issue (see Chapter 4), before realising that this

was not a problem isolated to just this dataset. Rather, it was a common challenge often overlooked

when dealing with high-resolution data and the SPDE approach. Due to time constraints and limited

success in fully implementing the LGCP, we ultimately chose to fit an LGCP approximation using

Poisson regression instead. While this approach allowed us to provide more detailed information on

debris flow patterns across Scotland, it was not the complex model initially desired. Nevertheless,

this path led to a deeper investigation into the mess with the mesh issue, which ultimately paved the

way for successful point process model fitting with high-resolution landslide point pattern data.

The model performance measures undertaken for this study were a ROC curve and ROC curves

for a 10-fold cross-validation (CV) procedure, applied to the predicted probabilities of debris flow

occurrence. Additionally, we employed an observed versus fitted debris flow count scatter plot, as

well as observed versus fitted plots from the 10-fold CV implementation for evaluating the predicted

intensity of the debris flow point pattern (via the LGCP approximation). The strengths and limita-

tions of ROC curves and observed versus fitted plots have been discussed earlier; however, it is worth

noting here that, in this context, the use of a goodness-of-fit measure with broad interpretability

proved advantageous.
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In the cross-validation (CV) implementations, the dataset was randomly partitioned into ten sub-

sets. For each iteration, the model was trained on nine of these subsets and subsequently used to

predict over the one subset that was left out. This process was repeated such that each subset served

as the validation set exactly once. Ten-fold CV provides a robust assessment of model generalisability,

as the model is evaluated on unseen data in each iteration. However, a key limitation of ten-fold CV is

its underlying assumption that data points are independent and identically distributed (i.i.d.). In the

context of landslide hazard modelling, this assumption is often violated due to spatial autocorrelation.

This spatial dependence can lead to overly optimistic estimates of model performance. Additionally,

the debris flow dataset used in this study is characterised by a pronounced presence/absence imbal-

ance, with a large number of absences and relatively few presences. When folds are selected randomly,

this imbalance can introduce bias into the model evaluation. This limitation also motivated the use

of an LGCP, since in spatial point process modelling, the absence of events across the space carries

as much weight as the locations where events do occur. Another drawback of ten-fold CV is that it

does not assess the model’s ability to generalise to entirely new geographic regions - a capability that

is particularly relevant for national-scale applications. As an improvement, a spatial cross-validation

technique such as leave-group-out cross-validation (LGOCV) explicitly accounts for spatial structure

in the data and provides a more realistic assessment of predictive performances across space (Adin

et al., 2024).

Validation measures for spatial point processes are complex due to their continuity in space: when

a randomly selected area of the study region is used for prediction, it may either contain all, some,

or none of the observed points. Removing a point, or several, alters the pattern and consequently

the data. With geo-statistical data, points can be removed and the model fitted without these, but

if points are removed in a point pattern, the nature of the observation is changed (one pattern is one

observation). Therefore, an effective assessment for spatial point processes is a Bayesian approach

to residual analysis (Baddeley et al., 2005). This proposes approaches to evaluating Gibbs processes

however, rather than LGCPs. During the initial stages of the BGS analysis, residual analysis was

employed to compare model fits under varying combinations of covariates and the inclusion of a spatial

random effect. However, with the emergence of the mess with the mesh issue, the modelling approach

was simplified to a Poisson regression. This change enabled the use of a ten-fold cross-validation

(CV), which, for the sake of consistency with the susceptibility model, was adopted as the primary

validation method.
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6.1.4 The mess with the mesh

We now evaluate the modelling choices made in relation to the mess with the mesh analysis presented

in Chapter 4. This chapter highlights a common issue that arises when implementing the SPDE

approach to point process models using high-resolution spatial data, illustrated through an application

in landslide hazard modelling. Specifically, we present a spatial marked LGCP model to describe the

spatial distribution and associated intensity of landslides across Japan. The primary objective of

this chapter was to draw attention to the mesh-related issue and to demonstrate how it can emerge

under certain data conditions; thus, the application itself served a largely illustrative role rather

than being the central focus. As such, the omission of a temporal dimension - while it could have

further enriched the analysis - was not considered critical, given that relevant temporal data were

not available. Instead, the analysis was used to effectively demonstrate the nature of the mess

with the mesh problem. Similarly, the precipitation predictor was again simplified to a maximum

rainfall average statistic. While this is a limitation from an application perspective, it is consistent

with the illustrative purpose of the study. In this vein, formal goodness-of-fit measures were not

comprehensively undertaken. Instead, model adequacy was evaluated using QQ plots comparing

the distribution of observed versus fitted landslide sizes across subsets, as well as a plot of mean

landslide intensity overlaid with observed landslide point locations, accompanied by a summary of

observed versus estimated landslide counts by subset. These diagnostic tools were deemed sufficient

to demonstrate the feasibility and effectiveness of implementing a spatial point process model with

high-resolution covariate data using the SPDE approach.

An important point of discussion concerns the design of the simulation studies used to illustrate the

mesh-related issue. Simulation study one demonstrates the sensitivity of model results to the definition

of integration points, showing how slight shifts in the domain of integration can lead to substantial

variation in the estimated regression coefficients for model covariates. This was evaluated using three

point process models, each with an intensity function explained by a single covariate, differing in

spatial range from fine (short-range) to coarse (long-range). A single covariate was intentionally

selected to isolate the effects of shifting integration domains, avoiding the additional complexity

introduced by a spatial random effect. However, the inclusion of covariates with differing spatial

ranges may have inadvertently introduced complexity beyond the intended focus of domain shifts.

Simulation study two demonstrates how the inclusion of a spatial random effect can further am-

plify the variability in regression coefficient estimates. However, as shown in Simulation study one,
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the underlying issue does not stem from the inclusion of the spatial random effect itself. Rather, it

arises from the definition of the integration points, which are fundamental to the likelihood formu-

lation. All model components - both covariate effects and the spatial random field - are evaluated

at these integration points. This study underscores the extent to which parameter estimates for the

spatial field can vary depending on the resolution of the mesh used to approximate the domain. In

particular, it highlights the sensitivity of spatial model inference to mesh construction, reinforcing

the importance of aligning mesh resolution with both the scale of spatial variation and the underlying

data characteristics.

A final point to note is that the marked LGCP model presented is not a global model. Due to the

nature of the mess with the mesh issue (we are working with high-resolution covariate data) and in the

interest of computational efficiency, the modelling approach involved fitting local models to subsets

of the data, from which a broader, global effect was inferred. While this approach is not ideal for

representing landslide hazard at a national scale, it was a reasonable compromise given that, as noted

above, the primary objective was not the application itself but rather to highlight the challenges of

using high-resolution spatial covariates within the SPDE framework.

6.1.5 On the space-time SPDE smoother

Here, we critically evaluate the modelling decisions made in Chapter 5, where a spatio-temporal

model was developed to analyse surface deformation across a region in Sichuan, China. This work

develops a space-time SPDE smoothing term within the mgcv framework and employs rainfall as a

functional predictor through scalar-on-function regression (SoFR). The motivation for constructing a

custom SPDE smoothing term in mgcv stemmed from the desire to integrate rainfall as a functional

predictor within a frequentist modelling framework, while also retaining elements of Bayesian spatial

modelling. Notably, the choice to adopt functional data analysis and SoFR - rather than adapt the

INLA framework to accommodate the functional nature of the covariate - was informed by initial

attempts to incorporate functional rainfall within INLA. These attempts consistently yielded only

a single, time-invariant estimate of the effect, rather than a continuous functional representation

across time and space. As a result, we redirected our efforts toward the mgcv framework, where we

implemented the space-time SPDE smoother.

We also explored alternative spatio-temporal modelling approaches using INLA, developing models

with both separable and non-separable space-time covariance structures. In these models, rainfall was

included as a covariate via a random effect, modelled using a second-order random walk (RW2; see
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Section 1.3). These exploratory models provided useful insight into the behaviour of space-time fields

under different modelling assumptions and highlighted the contrast between incorporating rainfall

as a smooth functional predictor versus a random non-linear effect. Although these models are not

discussed in detail in the final version of the thesis, they contributed to the broader evaluation of

modelling strategies for surface deformation and informed the decision to pursue the mgcv-based

approach.

Due to the structure of the custom smooth.construct function developed for the space-time

SPDE smooth term - specifically, its reliance on multiple penalty matrices constructed via Kronecker

products - the model is computationally intensive. As a result, although surface deformation obser-

vations and rainfall data were available for the period 2017 to 2021, it was more practical to model

a shorter temporal window, focusing on only nineteen months of data. To further accommodate the

computational demands and dataset size, the bam function (designed for handling large datasets) was

used in place of gam within the mgcv framework.

6.2 Conclusion

This thesis presents a range of statistical methodologies for landslide hazard assessment, with a

primary focus on Bayesian hierarchical modelling. It addresses both methodological and practical

challenges associated with capturing latent spatial structures characteristic of landslide-prone envi-

ronments. These structures are represented through carefully selected, domain-relevant covariates,

and, in the final case study, extended to incorporate a functional process that varies across both space

and time.

This thesis provides a comprehensive overview of landslide hazard modelling, outlining the pro-

gression of statistical models. These models include susceptibility (presence/absence), the joint hurdle

model, point process approaches, spatio-temporal models, and accounting for landslide distributions

through various likelihood functions. Alongside this exploration is an account for modelling challenges

that may arise with high-resolution covariate data, such as the landslide inventories available, and a

new avenue into converting the SPDE approach for use in a frequentist framework.

Throughout the work, we build on the definition of ‘landslide hazard’ by Guzzetti et al. (1999);

at first considering the spatial distribution and associated intensity, and improving on the modelling

aspects such that a full assessment of landslide hazard may be presented in the final case study-that

of the where, when and how large of a landslide process (ground surface deformation). The case
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studies included in this work each bring a unique aspect to the assessment of landslide hazard. The

Hurdle model enables the simultaneous estimation of both the probability of landslide occurrence and

its expected planimetric extent, supporting probabilistic hazard maps with quantifiable uncertainty

and exceedance probabilities. Applied to post-hurricane data from the Island of Dominica, this study

demonstrates the potential of landslide hazard assessment in a post-disaster risk scenario.

The second applied contribution involves the development of a data-driven debris flow suscepti-

bility model for Scotland, in collaboration with the British Geological Survey (BGS). A comparison

with the previous heuristic GeoSure model highlights the practical benefits of probabilistic methods in

operational hazard mapping, particularly in assigning risk probabilities to road and traffic networks.

The log-Gaussian Cox process (LGCP) extension revealed important implementation challenges when

applying point process models with the SPDE approach to high-resolution data. These challenges -

centred on the specification of the domain of integration - are systematically explored through sim-

ulation studies and resolved through recommended guidance applicable to broader spatial modelling

contexts. The relevance of this work is highlighted through its application to a subset of Japan’s

landslide inventory, extending the framework to a marked spatial point process to model this mark,

the landslide size.

The final contribution of this thesis marks a shift towards a frequentist functional data approach,

designed to more effectively capture the complexity of precipitation as a key predictor. To support

this, a novel space-time SPDE smoother was developed within the mgcv framework, integrating a core

element of the INLA methodology - the SPDE approach for modelling spatial and temporal variation

- into a frequentist setting. The resulting case study, which models surface deformation across a

region in Sichuan, China over a nineteen-month period, effectively concludes the thesis’s exploration

on the where, when, and how large of landslides.

In summary, this thesis has integrated methodological development with landslide application,

presenting a novel statistical tool and providing broader insights into the modelling and assessment

of landslide hazard through a range of landslide inventories.

6.3 Future work

In this section, we outline possible extensions to the current work.

Perhaps the most crucial potential extension for this work is in the validation of the point process

models, which, as previously noted, is not straightforward. Cronie et al. (2024) propose a statistical
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framework for validating point processes by thinning the process into training and validation sets.

However, further investigation is needed to assess whether this approach preserves the notion of

‘sample size,’ since technically a point process is a single realisation. As the thinning process involves

splitting the observed pattern into separate training and validation sets, this may substantially alter

the properties of the point process and thus affect the validity of model assessment.

Another avenue for potential improvement is exploring different link functions for the data.

Throughout this thesis, we modelled the mean of the response variable, µ, as a function of a lin-

ear predictor, η, typically using canonical link functions such as the logit link for Bernoulli models

(e.g., in the Hurdle model and BGS susceptibility) and the identity link for continuous outcomes such

as landslide log-sizes and surface deformation. However, in cases of imbalanced classification—such

as rare landslide occurrence - the use of alternative link functions like the complementary log-log

(cloglog) link may be more appropriate, as it accommodates asymmetric response behaviour and is

better suited for rare event modelling. More generally, custom link functions can be introduced to

reflect skewness or other characteristics of the data, provided they remain invertible and differen-

tiable (McCullagh, 2019). This flexibility is particularly relevant in latent variable models, where

skewness or heavy tails may be more naturally captured in the latent process.

A secondary direction for future research involves the implementation of spatial cross-validation

techniques, particularly leave-group-out cross-validation (LGOCV) for the surface deformation FGAM,

as well as Bayesian residual analysis for the marked LGCP applied to landslide occurrence and size.

These approaches would allow for a more rigorous evaluation of model robustness beyond hazard

estimation, providing diagnostic measures that are both methodologically sound and practically in-

terpretable.

More specifically, an important improvement to the BGS landslide susceptibility model would be

to recover the subset of debris flow data that includes temporal information and use it to develop a

spatio-temporal marked point process model. This would allow for a full log-Gaussian Cox process

(LGCP) implementation rather than relying on a Poisson approximation, while incorporating the

insights gained from the mess with the mesh study to ensure appropriate integration over space and

time. For the spatio-temporal FGAM for surface deformation, defining a non-separable space-time

SPDE smoother would be the next natural extension of this work. Separability in the space-time

covariance structure is more convenient for implementation but for application purposes, particularly

landslide modelling, observations in space and time are likely to be dependent and non-separable

in their influence on occurrence. Thus, deriving a differential operator corresponding to the non-



CHAPTER 6. DISCUSSION, CONCLUSION, AND FUTURE WORK 112

separable covariance function represents a promising direction for enhancing this work.

Non-separable space-time models in R-INLA have been introduced by Bakka et al. (2020) through

a diffusion-based extension of the Matérn field, known as the Diffusion-based Extended Matérn Field

(DEMF). This approach constructs a stochastic process grounded in diffusion equations, such as

the heat equation, leading to inherent space-time covariance non-separability. The DEMF model is

defined by the equation (
γt
δ

δt
+ Lαs/2

s

)αt

u(s, t) = δεQ(s, t),

where u(s, t) is the spatio-temporal process (typically appearing in the linear predictor), δεQ(s, t)

denotes temporally uncorrelated but spatially structured noise, and Ls = γ2
s − ∆ is the spatial

differential operator. The parameters (αs, αt) control the smoothness in space and time, respectively,

while (γs, γt) are positive scale parameters. The corresponding differential operator is

Dnst =
(
γt
δ

δt
+ Lαs/2

s

)αt

.

From here, one could calculate
∫

T

∫
S{Dnstf}2dsdt as the smoothing penalty for implementation in

mgcv.

These extensions provide a theoretical insight into the further capabilities of landslide hazard mod-

elling, and succinctly conclude the extent of this research.
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Besag, J., York, J. and Mollié, A. (1991) Bayesian image restoration, with two applications in spatial

statistics. Annals of the Institute of Statistical Mathematics 43, 1–20.

Bewick, V., Cheek, L. and Ball, J. (2004) Statistics review 13: receiver operating characteristic curves.

Critical Care 8, 1–5.

Bhuyan, K., Meena, S. R., Nava, L., van Westen, C., Floris, M. and Catani, F. (2023) Mapping

landslides through a temporal lens: an insight toward multi-temporal landslide mapping using the

u-net deep learning model. GIScience & Remote Sensing 60(1), 2182057.

BiostatMatt (2025) Bayesian vs. frequentist intervals: Which are more natural to scientists? https:

//biostatmatt.com/archives/1812.

https://biostatmatt.com/archives/1812
https://biostatmatt.com/archives/1812


BIBLIOGRAPHY 115
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