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Abstract

The video game industry state-of-the-practice ad hoc behaviour authoring techniques produce
transparent and highly controllable autonomous agent artificial intelligence (Al) representations,
but show limitations in adaptive and human-like behaviour design. Machine learning (ML)
methods can cope with such constraints, but the black-box nature, high training costs in terms
of data volume and time, as well as incompatibility with iterative workflows, make ML models
unsuitable for commercial game development. To address the shortcomings of both these ap-
proaches, we investigate a non-disruptive, modular design approach to integrating small-scale
learning models featuring performance and execution guarantees, as well as embedded human

designer intent, into behaviour tree (BT) architecture for autonomous video game agents.

We deployed the proposed design in the environment of a published, commercial video game
60 Seconds!, which we instrumented for agent training and evaluation using an off-the-shelf
game engine, BT and a learning library. After quantitative analysis of the mass-scale gameplay
telemetry dataset of 8,244,111 trajectories from real game users, we clustered the player popu-
lation with respect to estimated play skill, using a gameplay context-based score metric. Output
agent models were then developed and trained in the game’s environment by applying the de-
sign, guided by game context-relevant segmentation of logic and behaviour of the top play skill

persona model, derived from the trajectory data of the 7% top-scoring player cluster.

The output agent’s gameplay performance was benchmarked against that of a reference agent,
and experimentally evaluated in a normalised game scenario against 18,947 human players.
It was found to be valid in the context of the game environment, functional, and capable of
pursuing gameplay objectives in unseen scenarios with competency. However, it was unable to
outperform human players due to the suboptimal performance of its trained learning models.
We determined that software stability issues of the learning library used, limited observation
space, and egocentric data adversely affected agent training. While further work to improve the
training process is necessary, the successful application of the context-guided agent design in
a commercial video game environment confirmed its potential for industrial applications. By
contributing the design, the mass-scale dataset, and the tools used in our research, we enable the

context-guided agents to be deployed in alternative contexts.
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Chapter 1
Introduction

Summary. In this chapter, we present the premise and goals of our research work. First, we
outline the state of video game Al and the reasons for the limited use of learning models in
industrial game agent Al. The design proposal for integrating the learning model into the ad
hoc behaviour architecture, adhering to the reality of industrial development pipelines, follows.
Finally, we elaborate on the contributions of our research and detail the structure of this disser-

tation.

1.1 Premise

1.1.1 AI and Games

Humans have been playing games since the dawn of civilisation [109]. It was only natural that
the invention of digital computers was soon followed by the development of the first computer
games'. Automated game playing was a source of human fascination long before the digital
age, with contraptions such as the hoax chess automaton Mechanical Turk [106] and early 20"
century electro-mechanical carnival arcades [174] capturing the imagination of crowds world-
wide. When Alex Bernstein implemented a fully functional chess-playing program on an IBM
704 mainframe in 1957 [155], building on prior work of Alan Turing [247], human players were
finally able to compete against artificial opponents. For the next half a century, chess would
come to serve as a benchmark for Al development, driving the ambition to create a program
that could match, and ultimately surpass, human play skill. The milestone moment arrived in
1997 when IBM'’s purpose-built Deep Blue supercomputer defeated the reigning world chess

champion, Garri Kasparov [106].

By that time, the video game industry’s commercial development and publishing pipeline was

I'Since the 1970s, also called video games, due to the emergence of game consoles connected to television
sets [3]. We will be using both these names interchangeably.
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already 30 years in the making [273]. Al in computer games evolved from simple sequential
logic behaviours of the early arcade titles to sophisticated multi-agent decision-making sys-
tems for large state spaces found in modern strategy games. However, goals and methods of
game Al deviated from those of academic Al research. The industry has been focussed on re-
fining player experience and enjoyment, taking advantage of manual authoring and rule-based
solutions, as well as tricks and optimisations [145,261] to create approximated illusions of in-
telligence, rather than complete models of human-like behaviour [59, 196, 247]. This resulted
in the so-called “gap” between the industry and the academia [189,270]. It was not until the
early 2000s that the academic community started to recognise the potential of computer games
for use in research towards achieving human-level Al [141]. Classic board games such as chess,
originally considered the “drosophila for Al research” [154], were no longer a challenge for
contemporary computing. Video games became prime candidates to serve as the next universal
Al benchmark [246,270]. Research interest in game Al intensified in the 2010s, as ML gained
traction and Al for playing video games started to achieve impressive results in complex game

environments.

1.1.2 Towards Learning Agents in Commercial Video Games

Despite the recent research achievements in developing autonomous learning agents using video
games, there has been limited adoption of relevant learning techniques for producing agents in
modern video game development. The game industry’s Al community has been more con-
cerned with iterating on existing technology to address practical problems of contemporary
game projects [191,197]. The safety of established, proven Al methods and business considera-
tions make the industry hesitant to adopt a “high risk-high gain” model and incorporate new Al
techniques into runtime environments of commercial games [270]. Limited domain knowledge
transfer has been hindering the potential to generalise and scale research findings for practical
applications in video game development [247]. Although the last decade brought the industry
and academic experts closer, constructive dialogue to rectify the “gap” is still in its infancy [267].
Al solutions targeting video games remain focussed on the context of video game development,
or even specific gameplay problems. On the other hand, academic researchers are more invested
in universally applicable General Game Playing (GGP) methods [246], with no requirements
for prior knowledge of an underlying state data model. However, such solutions suffer from
high costs and a limited flexibility of training output models. Even research achievements that
might appear relevant for the game industry, such as AlphaStar winning in Starcraft I [256],
are prohibitively expensive to produce in terms of infrastructure, training time, and requirements
for pre-existing, massive training datasets [202]. Similar to IBM’s Deep Blue [215], they are
purpose-built, and their generalisation to address commercial video game production challenges

within a reasonable time horizon is unlikely.
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Although few commercial games have used data-driven models for runtime agent behaviours,
learning has found successful applications in game production workflows. ML-driven game an-
alytics and player modelling [64,102], as well as asset generation [221,270], are now an industry
standard. The common denominator of these scenarios is the capacity for human expert cura-
tion and co-authoring of the data-driven model, and its outputs, at production time [148, 226].
In runtime environments, uncontrollable, non-deterministic, and potentially erroneous model
outputs introduce the likelihood of undesired Al behaviours, violating the context of the game
environment, and degrading player experience [143,196]. Such risks are unacceptable in com-
mercial game titles, and discourage developers from choosing data-driven, black-box solutions
over manual authoring of transparent Al model representations [194], even if applied learning
could result in better models of human-like behaviours [270]. From an industrial perspective,
maximising control over training and providing guarantees of reliable execution is required to
make data-driven models a viable option for scenarios where applying autonomous learning
agents in runtime game environments would provide an added value. Documented examples
of such scenarios include agents for game playing and automated playtesting [23, 184], which
could be trained with human-generated data to effectively model human-like Al behaviours.
This would allow for the greatly automated and enhanced functional, exploratory, and even ex-
perience game testing with artificial players. Combined with targeted player modelling, such
agents could be used in Al-assisted design, enabling developers to observe and analyse specific
in-game behaviours, and to adjust game environments to accommodate playstyles of different
types of players [12,85]. Such developments could contribute not only to tailoring production
time content, but also to a streamlined production of data-driven, dynamic game experience bal-

ancing solutions in live, commercial games [177].

Research on developing autonomous game agents with controllable learning is ongoing in both
the academia and the industry. However, academic research has been constrained by limited
technical domain knowledge of game development and access to commercial game environ-
ments [85, 270], while industrial studies remain sparse. A promising solution to this chal-
lenge is to integrate learning logic into state-of-the-practice ad hoc Al representations, such
as BTs [29,72,211,265,285]. This approach is potentially applicable in the game industry, as
it combines and leverages the advantages of both techniques, and incorporates human expert
authorial control and design intent embedding, in compatibility with established game devel-
opment Al workflows. To our knowledge, at this point in time, industry viable case studies,
involving commercial development workflows and environments that would demonstrate an in-
tegration of learning logic into ad hoc Al representations with execution and performance guar-

antees, are not available.
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1.2 Thesis Overview

1.2.1 Statement

Commercial video game playing Al relies on ad hoc behaviour authoring solutions, which do not
model human-like behaviours as well as ML, but provide greater design control, transparency
and reliability in terms of performance and execution, in comparison to data-driven models. We
assert that expert-curated learning models, trained with real player data, can be integrated into
the industry state-of-the-practice ad hoc Al architecture with performance and execution guar-
antees, to achieve approximately similar or better gameplay performance than human players in

unseen game environments.

1.2.2 Proposal

We postulate that to adhere to the established game industry development practices and work-
flows, striving for determinism and authoring control, non-automated human involvement, and
maximised manual modification capabilities [59, 194, 211, 270, 285] must remain part of the
game-playing Al design process, even when learning techniques are involved. We apply these
assumptions and contribute to the work towards practical applications of learning Al in video
games by proposing and investigating a design approach for video game playing, autonomous
agent Al, featuring optimal design intent embedding and safe behaviour flow execution based
on reliable neural network controllers with performance and execution guarantees. Our proposal
constitutes a data-driven, industry-applicable solution which addresses domain requirements and
builds upon prior research work in the field. The designed behaviour flow is structured using
hierarchical ad hoc authoring, based on the principles of subsumption architecture [27,28], gen-
eralised by behaviour trees (BT) [42,44]. Layering behaviour flow through informed context
guidance and decomposition provides measures for modular integration of learning logic in-
stances into the ad hoc flow. Performance and execution guarantees of learning model logic
are established on the basis of safety control, embedded through ad hoc-driven redundancies
for neural network components [30,234]. Human-like behaviour of designed agents is achieved
by employing a combination of Reinforcement Learning (RL) and Imitation Learning (IL) algo-
rithms in integrated learning models, trained using a game environment, and gameplay trajectory

data sourced from real players of the game.

The ambition of the proposed design, designated as context-guided design, is to empower game
designers in taking advantage of the adaptive properties of learning Al, while maintaining high-
level control of the designed flow and execution of agent behaviours. From a design perspective
it is intended to offer a familiar, human readable representation of an Al model, while sup-

porting context-based segmentation of learning, and flexible ad hoc authoring for iterative Al
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development and deployment. The proposed design is original and was informed by the in-
dustry requirements and prior research work in the field. It features an original contribution to
the structure of a BT learning node, which expands the concept with industry-applicable safety

redundancies.

1.2.3 Objectives

The primary objectives of this thesis were to present the context-guided design proposal, and to

investigate its application in the real world conditions of a commercial game environment:

* Formulate an industry-applicable context-guided design, and its deployment workflow.
* Deploy a context-guided agent in a commercial game environment.
» Evaluate the deployed agent in new scenarios of the commercial game environment.

* Analyse the training and operations of the deployed agent instance.

To support the work towards primary objectives of this thesis, and facilitate the anticipated scope

of research and development, we identified a set of secondary goals to attain:

* Interface with and set up the game environment for agent simulation and evaluation.

* Acquire gameplay telemetry dataset from the game environment.

Establish an evaluation metric of gameplay performance in the game environment.

» Extract relevant data from the gameplay telemetry dataset to use in imitative training of

context-guided agents.

* Deploy evaluation scenarios in the game environment.

1.2.4 Questions

On the basis of the premise, the proposal, and primary objectives outlined for our research, we

set out to address the following questions in this thesis:

* RQ1: can models with execution and performance guarantees of learning logic be inte-
grated into the game industry, state-of-the-practice, ad hoc behaviour Al architecture for

applied use in video game playing Al?

* RQ2: how well can a trained context-guided learning agent perform in unseen game en-
vironment scenarios, in comparison to human players, in approximately similar gameplay

conditions?



CHAPTER 1. INTRODUCTION 6

1.2.5 Plan

We chose to explore our proposal in the format of an industrial case study, using the environ-
ment of a commercial video game 60 Seconds! (Robot Gentleman, 2015), industry state of the
practice workflows, and off-the-shelf solutions. Plan for our research work was aligned with the
identified objectives, and the conditions and features of the selected game environment. This
afforded us opportunities to access to the game’s mass-scale, gameplay telemetry dataset, gen-
erated by the game’s large player base, and adopt a data-driven and quantitative approach in
our work. The author’s extensive, over 15-year background in commercial video game develop-
ment supported the practical perspective of this investigation. This, combined with the identified

objectives, informed the plan for our research work:

* Formulate an industry-applicable context-guided design and its deployment workflow.

* Instrument the game environment to support the simulation of autonomous agents and

conduct evaluations with real and artificial players.
* Collect and process gameplay telemetry dataset generated by players of 60 Seconds!.
* Establish a game score metric to evaluate gameplay performance in the game.
* Conduct an analysis of game scores recorded by players of the game.
» Extract a top-skill persona trajectory dataset from the gameplay telemetry dataset.

» Design and deploy a context-guided agent instance, trained with the top-skill persona data,

in the instrumented game environment.

* Deploy new game environment scenarios for experimental evaluation with context-guided

agents and human players.
» Evaluate the deployed context-guided agent in experimental conditions.

* Analyse the training process and the evaluation results of the deployed context-guided

agent instance.

1.2.6 Structure

This thesis is structured into the following chapters and appendices, which present the complete

line of inquiry and content of our research work:

* Chapter 1: Introduction: introduces readers to the general premise of our work of inte-
grating learning into video game agent Al ad hoc architecture, and presents the goals of

our research.
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e Chapter 2: Game Environment: presents the environment of the commercial video

game 60 Seconds! used in our research work.

* Chapter 3: Background: explores the background of our research through a literature
review and discussion of relevant work in the context of video game design, computer

game Al, and machine learning.

* Chapter 4: Context-Guided Agents: establishes the foundations of our research by in-
troducing our methodological approach, procedure applied, and evaluation planned, as
well as presenting the learning agent design proposal, discussing the game environment
instrumentation, and documenting gameplay telemetry dataset collection and processing.

Chapter 4 addresses research question RQ1 from a theoretical perspective.

* Chapter 5: Game Score Study: proposes a game context-derived game score metric and
uses it to conduct statistical analysis of the gameplay telemetry dataset, in order to quan-

titatively interpret and extract relevant data to produce a top-skill play persona dataset.

* Chapter 6: Agent Study: details and conducts analysis of the process and results of de-
signing, training, and experimentally evaluating the deployed context-guided agent model.
Chapter 6 addresses research question RQ2, and provides an empirical response to re-

search question RQ1.

* Chapter 7: Conclusions: summarises the process and the outputs of our research work,

and discusses its challenges, contributions, and perspectives for follow-up investigations.

* Appendix A: Data: provides supplementary information about the data used in our re-

search work.

» Appendix B: Evaluation: features additional documentation about the experimental eval-

uation conducted in the commercial game environment.

» Appendix C: Software: provides information about the setup, requirements, and opera-

tions of the software developed for our research work.

» Appendix D: Additional Results: presents supplementary results in support of our re-
search work, including calculations, tables, and figures that were not included in the main
body of the thesis.

1.2.7 Research Contributions

Contributions made in the course of our work include:
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Chapter 4: Context-Guided Agents

e C1: industry-applicable context-guided learning agent design and deployment workflow

proposal.
* (C2: extension of the BT learning node concept, featuring additional safety redundancies.

* (C3: a mass-scale, processed gameplay telemetry dataset from the game 60 Seconds! that

was used in our research, and later shared with the research community.

Chapter 5: Game Score Study

* C4: game score metric for quantitatively measuring play skill in terms of gameplay per-

formance in the scavenge segment of the game 60 Seconds!.

» CS: analysis of game scores measured for the gameplay telemetry dataset from the scav-

enge segment of the game 60 Seconds!.

Chapter 6: Agent Study

* C6: analysis of the training process of a context-guided learning agent, capable of playing
the scavenge segment of the game 60 Seconds!, developed on the basis of the context-

guided agent design.

1.2.8 Research Outputs

Outputs produced in the course of our work include:

e O1: implementation of a BT learning node, integrating Unity Machine Learning Agents

learning capacity into PadaOne Games BT library Behavior Bricks.

* O2: instrumentation of the scavenge segment of the commercial video game 60 Seconds!
for enhanced gameplay telemetry data acquisition, simulating autonomous agent opera-

tions, and experimental evaluations with human players.

* 03: standalone simulator software for simulating autonomous agents, based on the scav-

enge segment of the 60 Seconds! gameplay environment.

* O4: k-nearest neighbours classifier of play skill in the scavenge segment of the game 60

Seconds!.

* OS: a trained context-guided learning agent, capable of playing the scavenge segment of
the game 60 Seconds!, developed on the basis of the context-guided agent design, using

game industry off-the-shelf solutions.
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* 06: a published game Al book series Game Al Uncovered chapter presenting the context-

guided learning agent design and deployment workflow [88].

1.2.9 Reproducible Results

This thesis was written to facilitate as complete reproduction of procedures and results pre-
sented, as possible. IATEX, Python, and Jupyter Notebook source files, as well as supplementary
data files, used in our work, are part of the digital supplement to the dissertation. Most of the
C# code written to extend the environment of the game 60 Seconds!, and the binary version of
the agent simulator environment developed on the basis of the game, are also provided. How-
ever, the complete set of project files for the agent simulator environment, as well as the game’s
original C# source files, including some that were extended for the purposes of our research,
could not be shared publicly and are not included in the digital supplement to the dissertation.
Developers of the game have agreed to make them available upon specific requests, for research

purposes only.

The processed telemetry dataset used in our research will be shared online. Developers of the
game have consented for the academic community to reuse the data contained in the dataset in
other research projects. Information about accessing the processed gameplay telemetry dataset

is provided in Appendix A: Data.



Chapter 2
Game Environment

Summary. This chapter presents the environment of the commercial video game that we chose
to use in our research. We first discuss the structure of the game, and then examine the scavenge
portion of the game, whose foraging gameplay was the focus of our investigation. Finally,

additional elements of the game are discussed.

2.1 Overview

2.1.1 Goals

The objective of this chapter is to present the environment of the video game 60 Seconds! and
discuss its features that were of interest in our research. After reading this chapter, readers will

understand the structure and the gameplay context of the game environment.

2.1.2 Structure

The contents of this chapter are divided into the following sections:

* The Game: outlines the premise of the game, technology used and its commercial avail-

ability.
* Structure: discusses the flow of the game, based on the scavenge and survival segments.

* Scavenge: examines features of the scavenge portion of the game, including its gameplay

context, rules of play, setup parameters, and presentation.

* Survival: provides a brief outline of the gameplay context of the survival portion of the

game.

* Game Types: details different types of gameplay available in the game.

10
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2.2 The Game

60 Seconds! 1s an action-adventure video game, challenging players to survive a nuclear apoc-
alypse. The game was originally developed using the Unity game engine', and has been com-
mercially available for Windows and OSX desktop users of the video game digital distribution
platform Steam?
of £5.993. Between May 2015 and July 2019 it was priced at £6.99. Since its original release,

the game has been discounted several times for limited time periods.

since May 2015. The game is a premium title purchased with a single payment

As of September 2025, the desktop version of the game was purchased by over a million players
on Steam. The game’s audience is consistent with Steam’s user demographic, which includes
players of various ages®, sex, ethnic backgrounds and nationalities. Age ratings for 60 Seconds!
are PEGI 12 and ESRB T. The game is also available for mobile and console platforms, and an
enhanced edition of the game, 60 Seconds! Reatomized (Robot Gentleman, 2019) is available
for purchase on digital PC, console and mobile storefronts. Total game sales across all platforms
exceed 5 million units as of 2025. Our research only uses data collected from users of the Steam
PC and OSX 2015 version of the game.

2.3 Structure

A single playthrough of the game is divided into two gameplay sections linked by the common
premise of surviving the nuclear apocalypse: scavenge and survival. Each of them features a
distinct game loop, involving different player interactions and objectives. Scavenge is an action
sequence, which tasks players with collecting and depositing collectable items in the safety of
a fallout shelter, within the titular 60 seconds. If completed successfully, the game progresses
to the turn-based survival gameplay segment. Survival takes place in the fallout shelter stocked
with supplies collected by the player during scavenge. Each turn in the survival gameplay,
equivalent to a single day in the game, challenges players with catering to the needs of surviving
characters, resolving daily situations by optimal decision-making, and making the best use of
available supplies. A single playthrough concludes if all adult characters perish or if one of
multiple story endings is reached. Regular playthrough always begins with scavenge, which is
then followed by survival. Alternative game types allow players to limit their gameplay to either

scavenge or survival section of the game.

I'A generalist game development engine created by Unity Technologies, extensively used by the game industry.

ZValve’s Steam service has a community of over 132 million monthly active users, as of January 2023, and is
available worldwide, except for countries excluded from the platform by United States imposed embargoes. Current
data available at: https://partner.steamgames.com/.

30r equivalent in local currencies, including $ 8.99 and €8.99.

“But not younger than 13, as restricted by the Steam user agreement.
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2.4 Scavenge

2.4.1 Gameplay

In scavenge players navigate a humanoid, bipedal avatar in a randomised, three-dimensional
(3D) environment e, foraging items and attempting to reach an exit area, before the time #;.4, = 60
s runs out. The fail state s is triggered if the avatar is not present in the exit area at the end of the
tscqv collection time, no matter how many items were collected. Conversely, the success state s,,
is triggered when #,.,, runs out, and the avatar is located within the exit area. Since players have
a limited carrying capacity, they need to regularly approach the exit and deposit their current
inventory load. They are not able to collect more items until they do so. Collectable items have
different weights, which directly impacts player carrying capacity. Depending on the difficulty
level of the game, before a player can start collecting items, they get an opportunity to explore
the environment in a short time period f.y,, preceding the actual collection fs,,. The game
requires strategising survival and foraging in a semi-unknown environment. Because of that,
the exploration factor plays an important role in scavenge. Players are challenged to maximise
time spent on the move, balance limited inventory load, and adaptively min-max exploration (for
discovery of new targets) and foraging. Reaching the exit area in time but with none or few items
could be considered a poor result as it will negatively impact the player’s starting conditions in

the subsequent, survival, stage of the game.

2.4.2 Mechanics

Navigation in scavenge is restricted to a flat, two-dimensional (2D) surface, even though the
game’s presentation is 3D. Players control their avatar via virtual navigation mapped to one of
the supported input device combinations: mouse, keyboard, keyboard with mouse or a gamepad.
The mappings cover the player permitted navigation action space, including vertical axis move-
ment (forward and backwards), horizontal axis movement (left and right strafe) and rotation
around the avatar’s yaw axis. By default, the horizontal and vertical velocity of the avatar is
vstarr = 0 5. By continuously moving on a specific axis, the velocity for the avatar builds up
with an acceleration of a = s%, until reaching the velocity limit for a specific axis. The avatar’s
maximum velocity for horizontal axis movement and backwards vertical axis movement is uni-
form at vjq, = 4 5, while the maximum forward velocity is v fqc = 7 5. Avatar’s movement is
continuously illustrated by a looping 3D run animation, which plays for as long as the velocity
of the avatar is greater than zero. The velocity of the avatar is reduced to zero, and its movement
in the environment and running animation are stopped if no navigation input is provided or if
the player inputs a movement blocking avatar interaction. Collisions with environment elements
are possible (with walls and props) and result in slowing down the avatar, relative to the scale of

the physics reaction triggered by the collision. Bigger and more sturdy obstacles can effectively
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stop the avatar, while smaller ones can be pushed out of the way by the avatar’s body. Designers

of the game defined individual physics parameters of each prop present in the environment.

Figure 2.1: Scavenge gameplay screen.

Player can interact with the game space via context-sensitive interaction functionality. If trig-
gered, it can invoke one of two available interactions: collecting an item or depositing all carried
items. Scavenge environment E is populated with a set of items T to be collected. To collect an
item, the player must position their avatar facing an item, within its individually defined inter-
action range. Player’s avatar has a i = 4 slot carry capacity for items, defined as inventory by
the game’s designers. It constitutes a fixed maximum size set of items I. Each item found in the
game space has a weight w associated with it, which translates into how many inventory slots
it occupies. Successfully collecting an item will play the appropriate 3D animation, update the
game space state and insert the collected item into the inventory set by blocking a number of
slots corresponding to the item’s weight. Attempting to pick up an item that does not fit into the
inventory will fail and produce an audio-visual cue for the player. There are 21 unique types of
items available in the game. They occupy a single inventory slot (13 item types), two inventory
slots (5 item types) or three inventory slots (3 item types). Most items only have one collectable
instance present in an environment, but two special items (soup and water) can appear more
than once in a single game session. Three family members to be rescued are also classified as

collectable items in terms of game design and follow the same collection rules, as any other item.

Once one or more ifems are placed in the inventory, its slots can only be freed up by depositing
collected items in the exit area deposit, designated as collected items set C. To deposit current

inventory, the player must position their avatar inside the exit area’s interaction range and front-
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facing the exit area visual object. Successful depositing will empty the avatar’s inventory set
I, making room for new items, and transfer all its contents to the collected items set C. Item
collection and depositing are only possible in the 60-second gameplay time frame, while the
exit area is available. Completing a scavenge game requires the player’s avatar to enter the exit
area before the time runs out. Meeting this condition triggers the success state s,,, illustrated by
the success cutscene’. The game then progresses into the survival gameplay section. Failing to
make it to the exit area triggers the failure state s, illustrated by the failure cutscene. The game

then terminates the ongoing game session.

2.4.3 Setup

A scavenge game can be parametrised with a selection of game setup parameters, including:

The game’s setup parameters include:

* Game type: scavenge, full, scavenge challenge. Game type choice is the first player-made
decision for configuring new gameplay. It influences available level selection, as well as

item collection rules.

* Difficulty level: easy, normal, hard. Difficulty choice in scavenge translates into the
amount of exploration time 7,,, the player gets to inspect the environment (for easy f.y, =
20 seconds, for normal 7,,, = 10 seconds, for hard #,,, = 0 seconds), before the actual time
of t = 60 seconds of scavenge item collection begins. During the exploration period, the
exit area remains locked. At that time, the player can navigate the avatar at reduced ve-
locity of Vppax = 4 5, they are unable to interact with collectable items in the environment.
They are, however, able to discover the layout and placement of items, as well as position

their avatar favourably for when the actual item collection begins.

* Character selection: Ted or Dolores. While the two available avatar characters are dif-
ferent presentation-wise, they do not operate differently in terms of gameplay behaviour.
However, when playing as Ted players get to collect Dolores, but not Ted, and vice versa.
This introduces a minor change to ifem collection, as Ted’s inventory weight (w; = 3) is
different from Dolores’s (w; = 2). This affects the set of items T to be collected and makes

scavenging with Dolores potentially more challenging.

» Extended item set: true or false. This parameter is beyond player control and is automat-
ically true for any game played after August 2018, when the developers introduced a new
content update to the game, expanding the original item set. Featuring an additional item

does affect the set of ifems T and the total weight that can be collected.

SCutscene is either a film sequence embedded within a game or a scripted, animation sequence implemented in
the game engine, whose goal is to enrich the game’s narrative with a presentation segment that does not involve
player’s input and control.
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* Level: scavenge level range L = [0, 19] in scavenge and full type games, custom levels
in scavenge challenge type games. Selected with no player input, either pseud-randomly
for the available level range in scavenge and full type games, or specifically in scavenge

challenge type games.

2.4.4 Environment

Scavenge gameplay takes place in a stylised 3D environment structured as a simple, closed-
circuit maze. Scavenge environments are inspired by a quasi-realistic layout of a suburban,
American house. There are n, = 20 base variations of the scavenge environment; however, its
general architecture remains uniform with 8 room types, 7 of which are fully traversable and
may contain collectable items. An instance of the environment, with a specific combination of

design elements and variants, established manually or procedurally, is identified as a game level.

Figure 2.2: Game environment architecture and traversal graph; Al and A2 are conditionally
connected with G, depending on which room placement is occupied by the exit.

Architecture has 8 room placements defined, each with a specific identifier. Certain room types
can only be inserted into specific placements, while others can be put in more than one. Some
rooms have versions that differ in terms of obstacle, decoration and item positioning. Each room
type can only appear once during a single playthrough. Possible room designs are outlined in
table 2.1 on page 16.

For each environment variation, room placements and versions may be different. The player’s
starting position is fixed in all environment variations and is found in the G placement, which

serves as a nexus, providing access to all other rooms. Other rooms are not directly connected to
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Room type | Allowed room placement ids | Number of versions Function
Shelter Al, A2 3 Exit
Hall G 3 Start, traversable
Bathroom B,C,D,E,F 1 Traversable
Bedroom B,C,D,E,F 1 Traversable
Kids’ room B,C,D,E,F 1 Traversable
Kitchen B,C,D,E,F 1 Traversable
Living room B,C,D,E, F 1 Traversable
Toilet Al, A2 3 Traversable

Table 2.1: Rooms available in the game’s environment architecture.

each other. The exit is always located in the shelter room type, placed in node A1 or A2. The po-
sitions of collectable items appearing in the game are pseudo randomised® for each playthrough,
utilising a large set of possible valid position markers, manually defined, and placed by game de-
signers for each room version. Unless a specific environment variation is forced (in game modes,
such as scavenge challenge), the scavenge environment variation is chosen pseudo-randomly

from the available designs for each newly started scavenge playthrough.

While traversing the room-based environment, the player is continuously challenged by physi-
cal obstacles that may impede their progress. Some objects can be knocked out of the way, but
will slow players down, while others will block the avatar’s movement completely. The envi-
ronment resembles a simple, rectangular maze. However, the necessity of travelling multiple
times between the exit and foraging points of interest makes it challenging from an abstract

route planning perspective, rather than finding a way out, as is the case with traditional mazes.

The representation and dynamics of 3D game space are abstracted in terms of the Unity Engine’s
implementation of the Cartesian coordinate system and its approximated model of Newtonian
physics. Distances and positions are expressed in Unity units #, whose relevant value range is
relative to the parameters chosen for a specific game project and sizing of imported 3D graphical
assets. Unity recommends defining u = 1 m. In 60 Seconds!, the u is fixed across all of its 3D

environments with # = 5.1282 m, due to variance in 3D assets used.

2.4.5 Presentation

The viewport camera, providing the game’s presentation, is anchored to the player avatar, con-
tinuously following it from behind at a fixed distance and observing a 45°downwards angle with
respect to the environment’s flat, ground surface. The camera rotation is synchronised and con-
tinuously updated to match the avatar’s rotation. The rotation speed is dependent on player input
sensitivity settings and can effectively be anywhere in the range [0.0, ] 2. The camera is posi-

tioned in a way that allows the player to clearly see the immediate surroundings of their avatar

6Using Unity’s built-in random implementation, based on the Xorshift 128 algorithm, which is used for all
pseudo randomised elements in the game.
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and to get a partial view of what lies further ahead, but with walls and other tall obstacles effec-
tively obscuring full view. Collectable items are displayed with highlighted silhouettes, which
are visible even through solid obstacles, offering additional guidance. The exit area is marked
with special, visual guidance cues. The player’s view contains screen space user interface el-
ements that provide information about the game’s progress, including the regularly refreshed
countdown timer and the visualisation of the current state of the avatar’s inventory. Additional
notifications appear as the player interacts with the game space and as time flows. Player is made
aware of reaching the midpoint of the scavenge playthrough by an increase in music intensity

and alarming visual cues.

Figure 2.3: Scavenge gameplay camera positioning.

2.5 Survival

2.5.1 Gameplay

In survival players take on a custodian role, trying to keep their avatar character, as well as all
the characters they rescued during scavenge, alive and healthy. Gameplay progresses day by
day in a turn-based fashion, where each day represents a single turn. Every day tasks the player
with rationing consumable supplies to the surviving characters (food, water, and medicine), op-
tionally planning an expedition to scavenge supplies in the outside world, and making decisions
in response to events that unfold. The latter often necessitates the use of previously scavenged
supplies. Event resolution is always shown on the very next day, and depending on the context
and the decision made by the player, it can lead to negative or positive effects that impact the
game state. The game failure state is triggered if no control characters (adults - Ted and Dolores)
remain alive, or if a story scenario concluding with a fail state is reached. The success state is
achieved by successfully completing one of the storylines, conveyed through a string of spe-
cific events. Survival game space is a claustrophobic fallout shelter, presented in the form of a
2D screen, which changes to reflect a variety of developments that take place during gameplay.
Players interact with the world and their characters via a multi-layer graphical user interface

(GUI) abstraction of a journal, which presents the events of the game.
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Figure 2.4: Survival gameplay screen.

2.5.2 Mechanics

The starting survival conditions are directly dependent on the contents of the collected item set
C. Whatever and whomever was collected by the player in the scavenge section of the game will
be included in the survival segment. While more supplies can be obtained from survival events,
large and varied C is key to increasing chances of succeeding in the game. Players progress
through survival day by day. A day is equivalent to a turn. There are no time limits, so players
can take as long as they need to finish a single day, and an entire survival session. Developers
of the game stated that a single survival game session is expected to last approximately 30-60
minutes. The game saves the state of gameplay automatically upon the start of each new day,
allowing players to exit their current session and come back to it later. There is only one save
file available, so players are unable to manually reload an earlier segment of their playthrough
or to have more than one active game session in progress. This enforces a commitment to the
consequences of decisions made earlier, in the course of the gameplay session. Completing
the survival game mode with a success or fail state concludes a single gameplay session and

provides players with an end summary of their progress.

2.6 Game Types

By design, a full game playthrough of 60 Seconds! includes both scavenge and survival seg-

ments. However, developers provided other ways to play the game:

* Tutorial: a guided tour of scavenge and survival gameplay features for new players.

* Scavenge: a game of scavenge, with no survival follow-up.
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* Survival: a game of survival, with no scavenge segment. Starting conditions are de-
termined based on pseudo-randomisation from the game design’s predefined values to

simulate results of a scavenge run.

» Scavenge Challenge: a game of scavenge, with no survival segment, using a predefined
collection goal, and optionally a custom environment and altered gameplay rules. Players
are required to collect a specific set of ifems in the shortest time possible. Completing a

scavenge challenge awards players special visual awards for use in the survival segment.

2.7 Gameplay Telemetry Data Collection

In an effort to conduct data-driven investigations of player gameplay, the developers of 60 Sec-
onds! integrated a data collection mechanism into the scavenge segment of the game. This
enabled the development studio to remotely crowdsource gameplay telemetry data from the
game by recording scavenge trajectories when the Steam PC version of the game was played by
its users. Developers did not implement a data collection mechanism for the survival segment
of the game. Full discussion of the data collection procedure, acquired datasets, and the ethics

involved follows in the Gameplay Telemetry Dataset section of Chapter 4.

2.8 Summary

The gameplay of the scavenge section of the commercial video game 60 Seconds! can be de-
scribed as a virtual foraging task in a simple, maze-like environment with dynamically altered
architecture, procedurally populated with collectable items, as well as obstacles impeding the
progress of the player avatar. It features a large enough state space and play skill requirements
to generate interesting challenges for the game’s players, and potentially for autonomous game-
playing agents. The commercial nature of the game, its use of the state-of-the-practice develop-
ment workflows, and a pre-existing data collection mechanism in the scavenge segment of the

game made it a valid target environment for a game industry-relevant case study.



Chapter 3
Background

Summary. In this chapter, we establish the background of our research by conducting a litera-
ture and subject matter review. We first investigate the context of video game design and game
Al, and then explore the capacity of learning models and their integration into autonomous agent
Al in video games. Finally, we present a summary of the most relevant points, leading up to our

research work.

3.1 Overview

3.1.1 Goals

The objective of this chapter is to explore the background context of our research and present
relevant past work. After familiarising themselves with this chapter, readers will be equipped to

follow the line of inquiry presented in this thesis.

3.1.2 Structure

The contents of this chapter are divided into the following sections:

* Video Game Design: discusses the basic premise and goals of video game design and
outlines the role that Al plays in it.

* Video Game AI: describes selected areas of video game Al, relevant to our research,

including game-playing Al, player modelling and automated playtesting.

* Behaviour Trees: documents the structure and functioning of behaviour trees, the state of

the practice game industry ad hoc authoring technique.

* Learning for Video Game Playing: introduces the methods of ML, and then explores

efforts to incorporate learning models into video games.

20
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* Digest: presents a summary of the discussed background topics to provide a foundation

for understanding the themes explored in our research work.

3.2 Video Game Design

3.2.1 Designing for Fun

Although video games can be considered software projects, the process and goals of their devel-
opment are different from those of other computer programs [169]. Video games are designed
to provide a fun, enjoyable, and playful interactive experience for their players cite Koster2013,
Sicart2014. Some games are rigorously modelled as formal systems and can be effectively quan-
tified [123], but for others it is hard to classify player enjoyment and engagement in terms of
functional requirements, as reception of a game’s content is subjective [4, 102]. One way to
measure how captivating a game experience may be is to observe if the players find themselves
in a state of flow, understood as a full immersion in the game’s virtual environment and game-
play [49]. Triggering such an attention-absorbing state requires optimal balancing of challenges,
achievements and failures experienced by the player [10, 18]. The challenge element of video
game experience is often cited as the key trigger of intrinsic player motivation to solve puzzles
embedded in a game’s environment [151,239] and to "succeed" in the context of the game’s
rules [109]. Creating satisfactory game challenges aimed at capturing specific, directed experi-
ences in controlled environments requires a playful and systematic approach from game design-
ers [78]. The complexity of game development makes crafting games a complicated process,
which often requires an individual approach to authoring specific game mechanics, systems,
and features [19, 124]. To support the manual labour of multidisciplinary domain experts in this
process, and to decrease the risks involved in game production, data-driven solutions to many
problems faced by game designers have been proposed, developed, and integrated into indus-
try workflows [64, 102]. However, overreliance on procedural solutions, especially in scenarios
where their output compromises authored experiences, has been known to be detrimental to the

quality of games and their gameplay [226].

3.2.2 Al in Video Games
What is AI?

The birth of Al as a field in the 1950s carried an ambition to make computers capable of intelli-
gent decision-making, comparable to that of humans and animals [160]. The original perspective
on how to achieve this was a model-based, symbolic approach of embedding the problem to be
solved in a state space, which was to be traversed or searched [270]. This way of implementing

Al enjoyed focus for decades in a variety of forms, but always required and assumed human
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expert participation to drive the process of establishing knowledge representation of a prob-
lem and a framework to solve it. This, and other limitations in scaling symbolic approaches,
as well as difficulty in expressing biologically plausible intelligence, introduced frustrations,
which motivated researchers to explore alternative techniques, inspired by biology and other
natural systems [160]. One of the investigated techniques was the Artificial Neural Network
(ANN) - a non-linear data structure evoking the principles of neurology [156]. It was eventually
combined with ML, whose methods generate a solution to a problem by processing data without
explicit instructions, in a supervised or unsupervised manner. As early as 1959, Arthur Samuel
presented the first instance of ML in the form of RL-based self-learning AI, which taught itself
to play checkers by iteratively improving its results via perceived error reduction [214]. With
the increase in computer processing power, large-scale data collection and optimising the han-
dling of underlying ANNSs in the last two decades, ML has produced impressive results, and has

enjoyed a reinvigorated interest in research, engineering, and business.

What is Game AI?

Game Al originated as a specialisation of symbolic Al, but it was never aimed at producing ac-
tual intelligence, but rather a convincing illusion of intelligence [160]. Ever since the first com-
puter games were created, Al has been an integral part of the video game experience, driving the
behaviours of non-player characters and player-like, artificial opponents. Be it in adversarial,
zero-sum games, such as digital adaptations of chess, or in arcade games that throw waves of
enemies at the player. Fifty years of game development saw an evolution of complexity and
believability of video game Al and environments in which it operates [160, 164]. Despite these
advancements, the purpose of computer game Al remains the same: to support and refine the ex-
perience and entertainment value a game offers to its players [59]. Al solutions in video games
achieve this by producing approximated illusions, rather than complete models, of intelligence
in the service of gameplay [196]. Such illusions are crafted by combining algorithmic solutions,
data from fully or partially observable game environments, target scenario context-specific op-

timisations, and optimal asset creation [270].

Game AI Development

Game developers create virtual game environments and populate them with challenges for play-
ers, many of which involve the use of Al techniques [197,247]. As the complexity, costs and
risks associated with commercial video game production and the development of game environ-
ments continue to rise [1,16,23,194,218], the business perspective dictates a restrained approach
towards experimentation in game development. This has not stopped some in the game industry
from pursuing cutting-edge Al concepts, which have resulted in notable breakthroughs. Highly
praised for original interweaving of Al and gameplay, these milestone titles influenced tech-

nology advancement trends in the entire game industry [267]. Now a state of practice, BTs
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were once a novel technique popularised by the first two instalments of the Halo series (Bungie,
2001-2004). Sufficiently believable human-like agent simulation based on utility Al introduced
in the Sims (Maxis, 2000) stood out [96], before more complex societal and building simulation
games like Dwarf Fortress (Bay 12 Games, 2006-2022) emerged as a genre. Experiments in sen-
sor driven logic of opponents in Thief: The Dark Project (Looking Glass Studios, 1998), goal-
oriented planning based on the simplified Stanford Research Institute Problem Solver (STRIPS)
algorithm for enemy teams in F.E.A.R. (Monolith Productions, 2005), smart companion Al of
Elizabeth in BioShock Infinite (Irrational Games, 2013) and the macro and micro level behaviour
direction of the titular antagonist in the Alien: Isolation (Creative Assembly, 2014) are widely
considered hallmarks of advanced character control Al [160,270]. Higher level use of Al for
player experience management via gameplay balancing and pacing has been explored with the
Al director architecture in Left 4 Dead (Valve Corporation & Turtle Rock Studios, 2008) and
other meta Al solutions [272].

Recent developments of technology and pipelines used in the game industry have expanded the
range of problems addressed by Al in modern video games. Al solutions are now not only used
for game playing but are also commonly applied in game production workflows for generating
content both in design-time and runtime [221,226], modelling players [64,69] and supporting the
game design process in a myriad of ways through Al-assisted design [93,218]. More granular
taxonomies of game Al specialisations have been proposed, but ultimately, two main types of

Al used in game development are Al for player experience and Al for game production [270].

3.3 Selected Fields of Video Game Al

While video game Al has many applications in modern games, our research is concerned with
the following topics: game-playing Al, player modelling, and automated playtesting. We outline

each of them below.

3.3.1 Game Playing Al

Game-playing Al can be defined as the decision-making logic of artificial participants of game-
play, taking place in a game environment. Game-playing logic can drive autonomous agents,
strategic opponent bots imitating human gameplay, and systems simulating the logic of the
game’s world. When controlling NPC behaviours, it is commonly identified as the “AI” in
games by the player audience and considered ‘“character AI” by some game developers [164].
Developing game-playing Al requires a multi-layered approach, achieved by combining spe-
cialised Al areas of decision-making, navigation (spatial actions), animation handling (visual

actions) and meta Al (player experience management and interweaving of gameplay systems
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with Al) [160, 164].

The objective of game-playing Al is to generate sequences of decisions and output agent ac-
tions which players will see as valid in the context of the game’s virtual environment. Ideally,
players should be able to interpret these sequences as believable behaviours, which enrich their
experience and consistently reinforce the context of the game. Not all game agents are expected
to exhibit human-like behaviours, but when they do, their believability is usually preferred over
maximising agent operational efficiency [100, 180]. This is a challenge, as achieving valid and
efficient behaviours is often easier than producing believable behaviours in multi-dimensional
and complex virtual environments [189]. While game environments are abstractions, the ap-
proximated models of reality they offer correspond to the real world [191] and virtual agent be-
haviours are expected to approximate what one may expect to see in the real world [56,158,283].
At the same time, attempts at enforcing strictly realistic human-likeness are not optimal if the
target project is not designed as a serious game or real-world simulation. Such efforts can po-
tentially compromise the player’s gameplay experience, which does not necessarily benefit from
increased realism, and should always be a priority for game Al [59,196]. These factors make the
development of agent behaviour Al a non-trivial endeavour. The deployment of agent behaviours
capable of adapting to changing conditions warrants a generic approach to both valid decision-
making under uncertainty and the execution of output actions. Accommodating imitation of
subjective decision-making and potential human biases is also desired, as perfectly performing
or repetitive Al behaviours are detrimental to the gameplay experience. Embedding of human
distortion in the process is relevant if the behaviour approximation is to be consistent with the
psychology of how people judge their circumstances and make their choices [86, 125,126, 133].
Objective evaluation of the believability of artificial behaviours is yet another challenge, which
has been explored with the use of external human observers, Turing Tests and data-driven mod-
els of believability [245].

Industry standard game playing Al is implemented using a variety of techniques, predominantly
symbolic based, including rule-based systems, sequential scripting, search algorithms, utility
methods, action planning systems, and state graph-based solutions, such as finite-state machines
(FSMs) and BTs [25,203,270]. All these approaches support the embedding of design intent
through expert-curated logic deployment, often combined with optimal structuring of environ-
ment and asset placement. Some solutions, such as BTs, are frequently fully controlled by hu-
man designers. Others involve designer-guided automation. One such example is the A* search
algorithm commonly used for navigation pathfinding in game environments, which requires a
navigation mesh asset that is automatically generated on the basis of parameters provided by hu-
man designers [198]. To address the increasing complexity and scale of video game playing, Al

solutions have seen forays into evolutionary, automated and learning solutions, but few of these
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can be considered more than an avant-garde, at this time [241]. Game developers continue to
rely on well-established, human-defined forward model-based methods, capable of servicing the
majority of agent behaviour challenges encountered in contemporary game design. What those
solutions lack in terms of algorithmic flexibility is balanced out by ensemble coupling of dif-
ferent types of algorithms and optimal content creation, with an understanding of the gameplay

context and the boundaries of technology used [59,270].

3.3.2 Player Modelling

Player modelling is a specialised subset of user modelling [61, 268], focussed on producing
computational models of video game players, based on player characteristics and gameplay
telemetry data generated from player interactions with a game environment [64]. Player char-
acteristics, manifested through cognitive, affective, and behavioural patterns, undergo a process
of detection, monitoring and interpretation [7, 63, 173]. By mathematically function mapping
them against gameplay interactions, player models enable dynamic prediction of future player
states and actions from previously unseen data [69]. Models can be generated for an individual
player, as well as archetypes known as play personas, representing a cluster of players manifest-
ing common characteristics [33,249]. Player modelling plays a vital role in the interdisciplinary
fields of games user research and game analytics, derived from data science [64, 68,236]. Al
techniques have enhanced player modelling, supporting processing of high volume and multi-
layered telemetry datasets with supervised and unsupervised ML approaches [190,270]. Models
generated by applying unsupervised learning to quantitative datasets can provide an insightful
representation of the players of the game. They might even contain information that would not
be identifiable in top-down, model-based approaches commonly guided by the intuition of a hu-

man analyst [69].

Inference capabilities and the form of a standalone player representation make computational
models a useful tool for data-driven enhancement of the game production process pre- and post-
launch, as well as dynamic game balancing in runtime. They have already found applications in
predicting player experience [91,220], behaviour [61,62,150] and gameplay performance [204].
A common use case has also been personalising and creating new game content through Pro-
cedural Content Generation (PCG) [188,221], and adjusting gameplay flow or game difficulty
to accommodate distinct types of players [162,167,281]. Player modelling has found extensive
use in online multiplayer games. Microsoft has been using the TrueSkill solution in games cre-
ated by their internal studios to facilitate data-driven, skill-based matchmaking [98,161]. Player
behaviour monitoring to detect cheating or toxic interactions on the basis of supervised learning
models was applied in For Honor (Ubisoft Montreal, 2017) [34]. Proliferation of Games-as-
a-Service (GaaS) business model! has encouraged game studios to actively pursue data-driven

!GaaS model considers game release as an intermediate stage, rather than a closing act of the game’s production.
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solutions in their development pipelines, based on big data mining and analytics, leading to
player profiling and modelling, and subsequent fine-tuning of games and their design towards
identified user behaviours and habits [64,246].

3.3.3 Automated Playtesting

Automated playtesting is a variant of game-playing AI, commonly considered a part of Al-
assisted design [235,236,277]. Conventional game playtesting is a time-consuming and ex-
pensive process of quality assurance (QA) executed manually by human testers. It involves
functional, exploratory, and experience testing in order to validate the game and detect any
outstanding technical or quality issues. The increasing complexity and scale of modern game
environments have rendered such a traditional approach insufficient [1]. Game-playing Al for
automated playtesting is intended to procedurally imitate human players playing the game in a
flexible, scalable, and cost-effective manner [270]. This translates well into a process of training

agent-based Al to execute human-like gameplay [23].

Automation of playtesting can be as simple as making an agent, or multiple agents [93, 152],
follow a fixed sequence of actions, or as sophisticated as deploying a curiosity-driven algorithm
[219] to control an adaptive agent’s exploration of the game’s environment [229]. While in many
cases simpler, scripting or rule-based approaches are applied [237] more intricate automation
of playtesting can be traced as far as 1999, when Al players were configured to play against
each other in the strategy game Sid Meier’s Alpha Centauri (SMAC, 1999) [25]. Despite its
advantages and potential to scale up testing efforts [218], integration of automated playtesting
into industry workflows has only picked up speed over the last several years [233]. Ad hoc,
scripted approaches have been augmented with search-based methods driven by such algorithms
as A* [229,277] and MCTS [104, 168]. Recent embrace of data-driven techniques in game
development [64,69] have encouraged adopting data-based approaches to automated playtesting,

incorporating player modelling, and even learning [12, 85].

3.4 Behaviour Trees

The state of the practice ad hoc behaviour modelling solution for video game Al is the BT. BT
is a stateless data structure, based on a directed, rooted tree flow processing. It updates the
relevant traversal path through a tree during a single compute frame, at a regular time interval
and invokes logic embedded within traversed tree nodes [45]. The transparent structure of BTs
effectively generalises the concepts of subsumption architecture, sequential composition, and
decision trees [27,28,244]. A BT can be defined as T =< N,E, T >, where N is the set of all the

Further monetization and development efforts are undertaken by updating the game with free or paid downloadable
content (DLC) updates and offering varied subscription services.



CHAPTER 3. BACKGROUND 27

tree nodes, E is the set of tree node connecting edges, and T € N is the tree’s root node [275]. The
root has no parents and only one child node. Other nodes always have a parent node and may
contain child nodes. The update “tick” signal is propagated by parent nodes to their child nodes,
according to a specific node type propagation logic. Every node has a behaviour associated with
it, which represents the logic executed when the node is updated. Node behaviour execution
yields a success, failure or a still-running response, reported to the node’s parent. The running
result indicates that the node’s behaviour logic requires additional computation frames to com-
plete its execution. Nodes with children, called composites, embed composite behaviours, which
affect the tree traversal. Commonly used composites include sequences (executes all children
nodes, until one fails) and selectors® (executes all children nodes, until one succeeds or con-
tinues running). Childless, tree-terminating nodes, called leaf nodes, carry action behaviours,
which constitute low-level logic that affects the game environment. BTs also feature condition
nodes for testing specific conditions to affect the tree traversal, and decorator nodes, which
combined with other types of nodes inject additional functionality, on top of the base node’s
behaviour (a common decorator example is an inverter, which negates the result returned by the
base node). Advanced BT features also include parallel nodes for splitting the update signal to
support a multi-path tree traversal, nesting subtrees within trees, dynamic runtime tree linking

and data sharing resources, across nodes in a tree [36].

Root tree node
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A - action node
6 7
C — condition node

) ? — selector composite node
Has target item?  Select target > — sequence composite node
item

Figure 3.1: An example of a game-playing Al behaviour tree. BT instructs the agent to collect
all items in the environment. When no items are left, the agent will move to the exit. The order
of node execution is indicated by node numbering.

Since their first documented use for agent Al in the early instalments of the Halo series (Bungie,
2001-2004), BTs have become the de facto standard for implementing agent behaviours in video
games, superseding FSMs as the ad hoc method of choice for many game developers [44]. Char-

acterised by their modularity, reactivity, scalability, and readability, BTs also found applications

2 Also known as fallback nodes.
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in robotics, simulations, and dialogue tree implementations [15, 45, 110, 111]. Their robust-
ness and safety were observed through years of the game industry’s research and development
work [36, 197] as well as their formal investigation by academics [42,45,234]. These features
and their capacity to function as a rule-based system for knowledge representation [15] have
encouraged experiments with dynamic restructuring and synthesis of BTs. This line of inquiry
was carried out by both game industry Al experts and the academia [146, 179,270]. Academic
researchers focussed on automation and using evolutionary techniques, such as genetic pro-
gramming (GP), to automatically or semi-automatically generate and select improved versions
of BTs for robot manipulation tasks, filling in the gaps resulting from the limits and risks of man-
ual behaviour authoring [15, 110]. The modern embrace of ML shifted automated BT creation
towards learning from demonstration (LfD) and learning from observation (LfO) using traces
from human experts to generate new BT structures [212], improve existing trees with follow-up
user demonstrations [110, 111], or to identify optimal tree execution paths [57]. In these ap-
proaches, the involvement of human designers has been restricted to producing reliable data for
BT generation and providing critical assessment, as well as potential editing, of the generated
structures. Previous attempts at automatic generation found limited success in practice [275],
partially due to the fact that developers versed in manual labour and a high level of control over
their output are likely to be sceptical of automation and modelling approaches which obfuscate
design transparency [194,270].

3.5 Learning for Video Game Playing

3.5.1 Whatis Learning?

An alternative, procedural approach to forward model-based, symbolic solutions widely used in
games Al is to generate a model without explicitly defining how to do it. This can be achieved
with ML. Tom Mitchell proposed a definition for learning, which states that "(...) a computer
program is said to learn from experience E with respect to some class of tasks 7" and performance
measure P, if its performance on 7, as measured by P, improves with experience E" [163]. Thus,
more experience leads to improved problem solving in ML. Experience accumulation varies for
different types of ML tasks. Supervised learning uses labelled training data to create a mathe-
matical function mapping between input values and output variables to solve problems such as
classification and regression. Unsupervised learning operates on unlabeled data to establish a
structure of information contained within the data, tackling issues such as clustering and dimen-
sionality reduction. Combinations of the two exist to execute semi-supervised learning, which is
capable of handling partially labelled data [82]. Another approach is learning based on experi-
ence, known as RL, where a software agent explores an environment using permitted actions in a

trial-and-error fashion, receives feedback on its performance from a reward function, and learns
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to maximise its future reward [17]. Learning can be conducted online to adapt to the flow of new
data from the environment incrementally and dynamically, or offline to train models using pre-
viously collected datasets, with more flexibility in terms of time and resources involved [160].
There are many algorithmic approaches to ML, applicable in different contexts. In the last
decade, statistical methods have been overtaken by the neurology-inspired ANNs, whose scal-
ing with the use of modern hardware has allowed generating complex structures with hidden
layers, providing a significant increase in power and processing capabilities. This advancement
introduced a new learning paradigm called Deep Learning (DL), where a neural network’s depth
is determined by the number of hidden layers it contains [87]. It has been key to making ML a

valuable tool for a wide range of research, engineering, and business projects.

3.5.2 Learning and Autonomous Agents

Agent representation was originally envisioned in the form of the Von Neumann machine, a the-
oretical machine capable of pursuing the goal of self-reproduction [257]. The concept was later
built upon by John Conway to develop the cellular automaton known as the Game of Life [80]. It
simulates individual cells pursuing survival, which are interacting with the environment in which
they exist. This metaphor of embedding intelligence within an individual object residing in an
environment, which can exhibit agency and reactivity, gained popularity across different fields,
including games. The objective of an agent-based Al is to simulate a system, present in an envi-
ronment and capable of collecting data from it, which is then able to determine what actions to
perform to fulfil its goals, given the environment’s state [149]. In contrast to top-down, systemic
Al, which attempts to simulate larger scale phenomena, agent Al is focussed on a bottom-up
approach of representing a single instance of an object with agency [160]. While agent Al in
commercial games commonly serves the gameplay and is meant to enrich the experience pro-
vided by the game, research into Al for games has been more concerned with producing agents
capable of playing games, in lieu of a human player [270]. Researchers have been experiment-
ing with integrating learning solutions to support that goal in many different ways, but perhaps

the most relevant approaches for developing agent-based Al are RL and IL.

Reinforcement Learning

The original RL work by Arthur Samuel investigated a self-learning system, which was effec-
tively an agent playing against another version of itself to improve and win in a game of check-
ers [214]. The nature of RL, and the string of recent successes of RL-based game-playing agent
Al [166, 256, 264] made it a go-to technique for simulating agents, operating in an uncertain
environment. The basic premise of RL is to maximise the agent’s accumulated reward, consis-
tent with the agent’s goals, by exploring an environment through interaction, and balancing it

with exploitation of actions the agent had successfully tried before. Learning from interaction
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to achieve a goal can be modelled as a Markov Decision Process (MDP), featuring an agent
interacting with an environment in a sequence of discrete time steps . At each time step, the
agent perceives an environment state S; and then selects an action A from the set of available
actions Ag; to perform it. In the next time step, a quantified, positive or negative, reward R; | is
given to the agent by the reward function R(S,A), and an updated state of the environment S, |
is observed. The agent’s behaviour is defined as policy 7, which maps observed states of the
environment to the agent’s actions and the probability of their execution. The policy is updated
on the basis of reward signals, which can encourage or discourage specific actions. Reward sig-
nals are immediate, while a reward function predicts potential rewards in the long run, given the
state the agent finds itself in at a given time [238]. It is, in fact, the long-term cumulative reward
that an optimal policy, learned via RL, is expected to maximise. A policy can be trained online
by directly interacting with the target environment and acquiring experience for immediate con-
sumption, or offline to utilise a previously collected batch of data.

The basic premise of RL has evolved over many years of active research. One of the key devel-
opments introduced was the temporal-difference (TD) learning, which combined a Monte Carlo
approach and dynamic programming to learn from experience in solving prediction problems.
TD methods are capable of updating their value estimations based on other learned estimates,
with no prior environment model [238]. Using TD together with neural networks has led to
the exploration of Deep Reinforcement Learning (DRL) [165], which has delivered unprece-
dented results in many scenarios, including complex game environments [15,77,97,264] with
multi-agent setups [192,256]. However, for effective operations, both RL and DRL require a
substantial amount of training time and data [99], establishing an optimal reward function, as
well as addressing the problems of long-horizon decision-making and large decision spaces with
sparse rewards [122]. Despite increasing compute budgets and attempts at optimising RL with
a variety of approaches, such as reward function adjustment [121, 129,217], and task complex-
ity decomposition via Hierarchical Reinforcement Learning (HRL) [95, 183, 185], these issues

remain an ongoing challenge [119].

Imitation Learning

Some RL tasks, especially those with sparse rewards and long-time horizons, require manual
adjustment of the reward function to achieve the desired behaviour execution by a RL agent.
This can be complicated and difficult. However, if the end behaviour can be demonstrated by
a human expert, or an alternative agent model [94], the agent can then learn an optimal policy
by imitating the expert’s steps, with consideration of all steps taken, instead of just individual
actions [243]. This approach, known as IL, was inspired by the capacity of animals to imitate
each other’s behaviours [79] and the activity of mirror neurons, which are involved both during
the learning of a task, as well as its execution [135]. The concept of imitation was effectively

applied in robotics using the notion of high-level representations known as movement primi-



CHAPTER 3. BACKGROUND 31

tives to encode temporal behaviour [74]. Just like in RL, the environment in IL is modelled as
an MDP. Instead of operating with an explicit reward function, an imitating agent learns from a
set of expert demonstrations T = (g, ag, S1, a1, ..., Sy, dp) recorded as trajectories representing
the optimal policy pi*. This can either be achieved by direct imitation of the expert policy, or by
learning its reward function to indirectly imitate the expert behaviour [117].

Direct learning is commonly facilitated using Behavioural Cloning (BC), which is based on
training the model in a supervised manner to maximise distribution matching of the expert
trajectory data. It achieves an optimal policy by mapping state-action pairs from the expert
demonstrations to the control input [181]. The simplicity and effectiveness of BC have made it
a popular method for IL tasks, despite the fact that it suffers from the compounding errors prob-
lem, originating in sequenced state deviations increasing over time. This may eventually lead
to an agent’s mistake, which could put it in a state that was not covered by the expert data, and
result in undefined behaviour [266]. This is especially true for large spaces that require long-
term planning. Interactive demonstrator algorithms, such as the Dataset Aggregation (DAgger),
incorporate additional expert feedback for each state to produce coping strategies in error sce-
narios [205]. Directly learned policy is valid for as long as the learned action-state mappings
remain valid in the context of the environment. [181].

Indirect learning extracts the reward function from the expert demonstrations via Inverse Re-
inforcement Learning (IRL) under the assumption that behaviour trajectories examined are ap-
proximately optimal with respect to the targeted reward function [175]. For a set of expert
demonstrations D = (71, T2, ..., T,,) and the reward function R(S;,A;) policy 7, is learned via RL
in each step of an iterative process of fine-tuning reward function parameters, until 7, approx-
imates the expert policy 7w [108]. Well trained IRL models have the potential to generalise
well to unseen scenarios and may even outperform the expert in large state spaces at the cost
of increased complexity and computation load [181]. More recently, Ho & Ermon proposed
Generative Adversarial Imitation Learning (GAIL), which combines the properties of Gener-
ative Adversarial Networks (GANs) with an IRL like approach to constrain the behaviour of
an agent to be approximately optimal with respect to an unknown reward function, without re-
covering that function. GAIL applies a discriminator D to differentiate between state-action
pairs originating from the expert trajectories, and a generator G to imitate the expert policy by
maximising reward signals from the discriminator. The procedure follows a minimax optimi-
sation approach, which seeks to achieve an optimum D* that would minimise the state-action
distribution discrepancy between the expert policy 7+ and generated policy 7, in terms of the
Jensen-Shannon divergence [101]. It is potentially able to service large, high-dimensional envi-
ronments better than BC, which has a quadratic dependency on the planning horizon, whereas
GAIL’s dependency is linear. It also performs well with limited or incomplete trajectories but

can be considered mode-seeking and thus difficult to train in certain scenarios [259,266].
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3.5.3 Policy Context Decomposition

Humans intuitively approach planning for task execution as a process of breaking down tasks
into actionable subgoals, often extending far into the future [103]. Autonomous learning agents
are expected to do the same, to be able to effectively operate in complex environments and solve
challenges that warrant executing long sequences of actions [95]. Despite an increase in avail-
able compute budgets, currently used solutions have a limited task horizon and generally do not
scale well to large state and action spaces. This results in suboptimal performance of standard
algorithms in such scenarios unless additional policy context decomposition techniques are in-
volved [185].

Attempts to address this issue through automated decomposition of long-horizon tasks into a
hierarchy of subproblems to be solved in shorter time horizons have been made with HRL [200].
The hierarchical structure generated by HRL exhibits a temporal abstraction property that man-
ifests in higher-level policy execution via higher-level actions, which persist for longer periods
of time. Lower-level policy, on the other hand, is relegated to a shorter horizon, lower-level ac-
tions [185]. Thus, HRL solves a complex problem by decomposing it into simpler subproblems
to be solved. This approach has been proven to outperform standard RL in a variety of scenarios,
due to achieving more efficient exploration through subtask granularity [51,171]. Further HRL
improvements have been investigated, such as options in HRL and feudal learning. The former
works to optimise the HRL hierarchy by generalising tasks into reusable, functional archetypes
that other actions would be able to execute [285]. The latter utilises the concept of decoupling
end-to-end learning and taking advantage of a manager-submanager relationship, where sub-
managers receive commands from managers and service them by maximising their learning in
the context of the given command [54,254]. Alternative approaches to leveraging a macro-micro
hierarchical structuring have also been investigated [48, 142], indicating a consistent interest in

an intuitive task decomposition, provided by context-relevant, hierarchical structuring.

While in many cases generalist, large-scale ML models are preferred [172], smaller-scale, spe-
cialised models, trained or fine-tuned to local context, may service scenarios with specific run-
time and handling requirements better [47]. The decomposition strategy for such cases is often
based on deploying an ensemble of small-scale models [60,170,172]. Their strategically limited

scope enables the shrinking of the action space to afford a more efficient learning [129].

3.5.4 General Game Playing

In the course of the Dagstuhl 2012 Artificial and Computational Intelligence in Games seminar
participating game Al researchers identified general game Al, or GGP, as one of the key research

directions for game Al [269]. GGP operates under the assumption that games share common
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characteristics, which can be discovered with the use of generalist learning algorithms. As such,
GGP is not intended to target the local context of any particular game. It learns gameplay
policy from high-level inputs, such as screen scraping and general interaction with the virtual
environment through external interfaces, rather than taking advantage of internal Application
Programming Interfaces (API), and the full observability of a game state [247,270,277]. In a
number of cases, RL-based learning in GGP was reinforced with IL methods to bootstrap policy
learning and provide human styling to gameplay behaviour [15,256].

Many highly publicised, recent successes of game-playing Al were the product of GGP. Experi-
ments with universally applicable GGP solutions in real game environments were made possible
with Al testbeds, such as the VizDoom framework for Doom (id Software, 1993) [132], Poga-
mut software for Unreal Tournament 2004 (Epic Games, 2004) [81], which spawned the 2K
BotPrize competition, Project Malmo for Minecraft [115] and the release of the OpenAl Gym
framework [26]. Significant milestones in the field included two Al controlled bots passing a
game-based Turing test’ in Unreal Tournament 2004 in 2012 [216,270], DeepMind’s model-
free DRL algorithms mastering a suite of classic Atari 2600 console games solely from raw
pixel input in 2013 [165, 166, 215], DeepMind’s AlphaGo beating a Go world champion in
2016 [231,232]* and DeepMind’s AlphaStar reaching grandmaster level in a specific setup of
the highly complex real time strategy game StarCraft Il (Blizzard Entertainment, 2010) [256].
Similar architectures allowed OpenAl Five to excel at a ten-player multiplayer online battle
arena (MOBA) game Dota 2 (Valve Corporation, 2013) in 2019 [15].

Although GGP is a promising research direction with valuable output that could support further
work towards Artificial General Intelligence (AGI) [246], it is unlikely to be applicable in com-
mercial game runtime environments within a reasonable time horizon. Reasons for this include

high deployment costs and incompatibilities with established industry workflows [194,202,277].

3.5.5 State of Practice
Reluctance

Design and production of video games is not an easy undertaking. Modern game development
cycles can take anywhere from a few months to many years, depending on project scope. In-
creasing complexity and budgets create constraints in the adoption of new, untested solutions in
game projects, and large multidisciplinary teams involved make human factor a key considera-
tion when planning long-term development [194,211]. Industry standard behaviour authoring
methods generate human-readable and easily modifiable Al representations, allowing for rapid
change and iterative, incremental development [111]. Despite a wish for “emergent” behaviours

and adaptive properties of behaviour Al [25, 146], game designers are invested in retaining au-

3 A variant of the classical Turing test, in which game playing behaviour is observed by a panel of individuals,
who must correctly identify it as generated by a human or an Al
4AlphaGo combined RL, DL and Monte Carlo Tree Search (MCTS)
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thorial control over behaviour logic and achieving stable, deterministic output to facilitate testing
and debugging of game environments [122]. Game developers are not interested in Al that is
left to its own devices, but rather AI whose operations they can understand and whose process-
ing they can guide in a desired direction [270]. These requirements are currently not directly
addressed by standard ML models, whose monolithic representations, as well as high train-
ing data and time costs, are not compatible with the iterative development workflows of game
Al [8,241]. Although video games are not critical systems, and the severity of bugs they ex-
hibit might seem trivial, there is a high degree of scrutiny of technical issues from the audiences
and critics. Problematic Al immediately stands out and can easily break the player’s sense of
immersion, negatively impacting their play experience [143]. Automating Al development for
users, who are used to manual labour and deterministic output with well-established toolsets,
is another factor that provokes suspicion and scepticism in embracing non-transparent model

representations [194].

Learning for Runtime Logic

Despite these issues, adaptive learning solutions were applied for runtime behaviour Al in a lim-
ited number of commercial games. Notable and documented cases included training of agent be-
haviour models through players’ feedback in the Creatures (Millennium Interactive, 1996) [89],
and later in Black & White (Lionhead Studios, 2001) [279]. Strategy games have experimented
with ANNSs in a variety of ways, such as the use of multi-layer perceptrons for the unit reac-
tion system in Supreme Commander 2 (Gas Powered Games, 2010) [279]. The longest-running
learning solution in a commercial title is the Drivatar system, which has been deployed in the
Forza Motorsport series (Microsoft Game Studios, 2005-2024) to imitate driving behaviours of
human players through generating their artificial personas [105]. More recently, the developers
of Gran Turismo Sport (Polyphony Digital, 2017) have succeeded in developing an Al capable
of outperforming champion-level human players using off-policy, model-free DRL trained with
full observability of the game state [264]. Al behaviours in Age of Empires IV (Relic Entertain-
ment, 2021) and Halo Infinite (343 Industries, 2021) were also trained with the use of ML meth-
ods [241], and Little Learning Machines (Transitional Forms, 2023) allows players to personally
oversee the training of their RL-driven virtual companions [32]. While a few other examples of
games using learning in some capacity exist [279], thousands of new games are released every
year, and only a handful of commercial titles have featured applied learning for runtime logic
in the last 30 years. Contemporary industry work towards learning integrations has been mostly
concerned with expanding Al for game production toolsets [270]. Some interest in ML agent
development stems from the latter, as it covers automated game playtesting, which has already
proven to improve the quality and speed of game production [23,97, 112, 194, 229]. Further
experimentation in that area may intensify due to the recent integration of RL agent interfaces in
widely used game engines, such as Unity [55,118, 140, 144,271,278] and Godot [11, 134,207].
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Learning for Production Workflows

While runtime behaviours generated with learning models are not common in commercial games,
industry production workflows have been extensively using ML-based methods for many years.
Game analytics and player modelling using large-scale datasets and ML-based processing are
now a common feature of production toolsets for games [64, 102]. This is especially the case
in online multiplayer games where data-driven solutions have provided scalability to skill-based
matchmaking via systems like the TrueSkill [98, 161], as well as anomaly detection in player
behaviours in competitive games, such as For Honor [34] and Counter-Strike Global Offen-
sive (Valve, 2012) [241], to identify instances of toxic interactions and cheating. Visual im-
provements in games, ranging from automated upscaling of low resolution graphical assets,
which assisted the development team of Dead Space [85], sophisticated animation blending and
controlling solutions found in AAA games> of the likes of Hitman (10 Interactive, 2016), For
Honor, and FIFA 22 (EA Vancouver, 2021), to real time upscaling of display using NVIDIA’s
Deep Learning Super Sampling can already be considered industry standards [241]. The same
can be said about offline methods for player profiling and modelling, and subsequent fine-tuning
of games and their design towards user behaviours and habits [64, 131, 150, 225, 246]. Proce-
dural approach to expanding game development toolsets with Al assisted design [22,277] and
algorithmically generated content [221,226] has also enjoyed more focus and integration inter-
est, in response to a string of commercially successful titles built around PCG, such as Spelunky
(Mossmouth, 2008), Minecraft (Mojang, 2011), and No Man’s Sky (Hello Games, 2016) [269].
Combined with offline learning, it offers an industry-relevant scenario where output content can
be validated with high confidence, at production time, to ensure quality guarantees of the in-
game content.

The widespread adoption of design time learning solutions, and their integration into existing
game development workflows is a testament to the capacity of the game industry to swiftly
invest and deploy technologies that provide a concrete benefit to the game production pro-
cess [221,270].

Learning for Automated Playtesting

Automated playtesting is a field that could benefit from applied learning [184]. While it may
operate in runtime conditions of a game, it is technically part of the production workflow and
is not necessarily constrained by the same factors as the game’s environment, targeted towards

user-grade hardware. While there have been a number of interesting, academic projects in the

>AAA or triple-A is a nomenclature derived from the credit industry’s bond ratings [16] denoting large video
game publishers or studios producing high budget games, often comparable to those of Hollywood blockbuster film
budgets. AAA video games tend to have a high level of polish and a large amount of assets, due to big development
teams involved (hundreds or even thousands of developers). Independent or indie studios are lean development
teams, sometimes individuals, who create small to medium sized video games with focus on experimentation and
innovation. In many ways their approach is comparable to that of independent filmmakers and musicians.
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area [6, 104,282], they have had a limited influence on the state of the practice methods applied
in the industry. The primary reason is that most of them utilise simple scenarios, which do not
correspond to the complexity of environments found in commercial games [85]. However, the
industry has also been active in the area. Research and development (R&D) groups in larger
video game companies have been using their accumulated, massive user gameplay telemetry
and behaviour datasets for automated playtesting projects using learning solutions, but formal
documentation of their efforts is relatively sparse. Only recently, some of these R&D teams
started sharing their results more openly. Electronic Arts (EA) has been especially active in
presenting their work towards automated game playing and playtesting agents trained with the
use of ML. Some of the games they investigated included the FIFA series (EA, 1993-2022) [71],
The Sims Mobile (Maxis, 2017-2019) [25,229,277], Battlefield 1 (DICE, 2016) [97,210], Bat-
tlefield 2042 (DICE, 2021) and Dead Space (Motive Studio, 2023) [85], Plants vs. Zombies 2
(PopCap Games, 2013) [13], as well as unnamed open-world games [21,22,24,218,219]. Other
game industry entities which have published their research include Ubisoft [134,207,250], Sony
[147,264], Ninja Theory [56, 283], Microsoft [1, 158, 186] Tencent [107,260], and King [92].
It is highly likely that other parties in the game industry are working towards developing au-
tomated playtesting infrastructures, but the commercial nature of these projects prevents those

involved from sharing their results prematurely.

Industry work in the field of learning agents for playtesting has explored a variety of techniques
in production environments, targeting both RL and IL methods. RL is usually applied in the form
of DRL to maximise the capacity of a trained agent [12, 134,264,277], but IL is preferred when
human-like styling is desired, or large demonstration datasets are available [21,22,71,107,219].
Method selection is also based on the agent’s target mode of operations, as an agent can exhibit
play-to-win behaviours, human-like gameplay behaviours, or maximised environment explo-
ration and bug searching behaviours [21,277].

RL solutions have been proven to be effective and scalable in automated playtesting scenar-
ios for game environments [85]. However, their training carries a high compute and time cost,
especially in large-scale DRL, and should ideally be conducted offline to respect realistic bud-
get, infrastructure, and workflow constraints [134]. Further optimisations such as model de-
composition to streamline training [147] and multi-task training approaches to improve model
transferability and reuse [260] were found to provide additional advantages for industry-grade
RL solutions. Multiple projects took advantage of the on-policy Proximal Policy Optimisation
(PPO) algorithm, which provides stability [12, 13, 260] and steady improvement on IL boot-
strapped policy [84].

IL methods were found to be suitable for solving complex problems in game environments,
in a human-like manner, but standard algorithms such as BC have shown their limitations in

large state spaces [71]. IL can also experience issues with behaviour generalisation, resulting
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from limited or biased input data [22]. This can be mitigated by using a more sophisticated
data-driven approach, involving larger demonstration datasets and an advanced algorithm, such
as GAIL [218]. Combining IL and RL can lead to even more promising outputs, especially
if demonstrations are used to bootstrap reinforcement training. This results in faster and more

accurate RL training, introduces styling and maximises agent exploration behaviours [21,24,97].

While the majority of the industry work examined takes advantage of direct access to game
state data, some teams investigated generalist approaches using high-level pixel inputs [1, 186].
This is unlike research conducted outside the industry, which is more inclined to pursue GGP
methods [15,256]. Since the discussed research was conducted in game production environ-
ments, industry workflow and practical considerations were of utmost importance [134]. This
led to a determination that learning is not suitable to address all gameplay testing scenarios [12].
In fact, learning techniques were found to achieve better results when combined with heuris-
tic or otherwise script-based Al [13,24], especially when an existing solution was strategically

augmented with learning capabilities [85].

3.5.6 Combining Learning and Ad Hoc Techniques

Output learning models are black boxes, and iteratively evolving their underlying logic often
requires full model retraining [194,274]. This severely limits their immediate applicability in
fields where flexible control, modularity and transparency are preferred, as is the case with
video game agent Al. Work on hierarchical model structuring, such as HRL, has led to partially
optimising output behaviour policy complexity by decoupling long-term decision-making and
action learning [138, 185], but it has not resulted in a solution to the model transparency and
control issues that are relevant for game developers. However, games and robotics-focused re-
search have shown that these issues could be alleviated by embedding learning within manually
authored ad hoc control structures, such as BTs [15,212,274]. This integration approach was
initially investigated from a holistic perspective of learning complete machine segments of Hier-
archical Finite State Machines (HFSM) [265], and BT subtrees [43, 146], as well as optimising
existing BTs using predefined constraints [176]. However, a more direct and effective solution
to embedding a specific learning capacity within an ad hoc structure was established in the form
of a neural network controller, represented by an ad hoc compatible learning component. In BTs
such a structure can be expressed as a tree learning node, as proposed by de Pontes Pereira &
Engel [285]. It allows the inherent robustness and modularity of BTs to be partially transferred
to the contained learning models [234]. First investigations towards such embeddings originated
in robotics [45,244]. Experimentation in game environments followed soon after and involved
investigations into replacing BT composite nodes with their RL policy driven equivalents for
learned execution path selection [57,76], as well as using leaf nodes containing RL neural net-
work controllers to facilitate specific low-level actions [285].
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Follow-up investigations took advantage of the capacity of the learning node to accommodate
different policy learning techniques and mix them according to local context requirements.
Zhang et al. proposed the use of a hybrid method of LfO and experiential learning to gen-
erate agents, who were able to learn tactical skills from both expert trajectories and trial and
error experimentation, to be used in the domain of Computer Generated Forces (CGFs) [274].
Trained-query nodes were discussed by Sagredo-Olivenza et al. for robust incorporation of
models learned from human expert trajectories into BTs [211,212]. Similarly, a data-driven
framework for IL-based model integration was deployed by Buche et al. with the intent to be
used in practice [29,30]. Li et al. explored a DRL approach using the options framework to train
an agent to operate in a Unity 3D environment [144]. A thorough, practical use case involving
macro, strategic action extraction from expert demonstrations to reduce action space. Later, em-
bedding micro, tactical actions trained using RL to competently play Starcraft 2 was presented
by Pang et al. [183].

While the learning node has proven to be an effective way of embedding learning in ad hoc
structures, its recurring implementation suffers from two issues: it offers limited control over
the learning node’s execution and provides no controllable resolution should the node fail to ex-
ecute according to designer’s expectations. Failure of execution may be defined as producing in-
valid output, such as undesired behaviour, or violating execution safety, for instance, because of
performance issues, potentially compromising the execution flow of the entire agent behaviour
logic. Sprague & Ogren [234] presented and formally documented a safe structural approach
to tackle both problems by embedding learning logic in a subtree, featuring additional ad hoc
redundancy to safeguard learning logic execution and performance. Such fallback structuring is
necessary in the context of game industry workflow requirements, as it provides a deterministic,
worst-case behaviour execution scenario, which can be fully controlled by game designers. To
our knowledge, this model of learning integration has not been applied and tested in industry

workflows.

3.6 Digest

Game developers and Al researchers have pursued human-like and adaptive agent Al behaviours
alike in an effort to enhance player experience and solve complex challenges presented by virtual
environments [100]. Ad hoc authoring methods used in commercial video game development
are able to address these challenges within certain parameters, but their shortcomings become
apparent with scale. This warrants specific optimisations to maintain an approximated illusion
of agent intelligence with respect to the context of desired gameplay experience [197, 247],
as well as technical constraints of consumer-grade hardware that games are expected to run
on [134]. While recent advancements in application of learning techniques in game playing

Al [15,231,256,264] have demonstrated a potential to create learning models capable of gener-
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ating competent behaviours in complex video game environments, the high cost of their training
and incompatibility with the domain requirements and industry workflows make them unsuitable
for professional game development at this time [202,247]. This is not likely to change in the near
future, as research motivations and priorities in learning model development differ from those
of the industry, as indicated by the Al research “gap” [189,270]. Non-industry research into
game-playing Al has been mostly concerned with operational efficiency and problem-solving
in an attempt to competently tackle complex puzzles embodied by different game environ-
ments [165, 191, 270]. Although research into the believability of video game-playing Al is
gaining traction, it can still be considered niche [230] in comparison to the popularity of projects
with an algorithmic perspective on learning [191]. The incompatibility of high-profile develop-
ments in learning with game industry pipelines can also be attributed to a limited transfer of
the business and technical domain knowledge of game development to the research commu-
nity [194,270]. The experience-driven nature of video games, combined with a high level of
player agency and game environment complexity, requires servicing both highly deterministic
and controlled behaviours, as well as adaptive, reactive intelligence of agents responding to the
continuously changing state of the game [59]. Unpredictable or erroneous Al behaviour execu-
tion is undesirable, as it may result in violating the context of the target game environment. This
makes industry state-of-the-practice expert curation and authoring an important part of the pro-
cess of delivering convincing and enticing video game agent behaviour [59,194,211,285]. Com-
promising execution and context safety guarantees can disrupt the immersion of a game and, in
consequence, the player experience, failing to deliver on a promise and an illusion of a believ-
able game world [196]. If learning techniques are to become applicable in runtime video game
playing agent Al, then maximising control over model execution and development is required
to ensure these guarantees can be delivered, and unpredictable model outputs minimised. How-
ever, additional consideration in terms of architecting the context flow of agent Al behaviours
is also relevant, if the cost and flexibility of iterating on learning logic are to be optimised to a
level that would be acceptable in commercial video game development. Recent advancements in
learning game-playing Al suggest that ensemble approaches, combining different, complemen-
tary techniques, produce higher quality outputs [111,222,270]. This direction enabled solutions
such as AlphaGo (RL, Deep Learning and MCTS) [231], AlphaStar (supervised learning and
multi-agent RL) [256], and Gran Turismo Sophy (DRL and mixed-scenario training) [264] to
achieve high performance in their target game environments. In all these cases, human involve-
ment was an important part of the training process and was key to achieving satisfactory and
context-relevant outputs. This is consistent with the growing research and practical interest in
investigating the semantic and responsibility gap resulting from the increasing human actor de-
tachment from learning system control [31, 73, 153,228,258]. Applied use of ML in PCG and
other fields of Al for game production confirms that the industry is ready to accommodate learn-

ing in games, provided that its output is controllable and can be scrutinised by a human expert
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at the time of game development [148,221,226,270]. Some attempts to achieve this in compat-
ibility with the game industry requirements for video game playing Al have already been made.
Evolutionary solutions to generating optimal AI model representations, such as BTs based on
functional goals [43,57,275] and human demonstrations [75, 128, 212, 274], relegate human
creators to editing procedurally generated content or providing expert-level training data. An al-
ternative approach is to integrate dedicated learning segments into ad hoc Al representations to
take advantage of their well-researched and robust features, along with the domain expertise of
their effective use [29,72,211,265,285]. The latter is potentially more applicable in the realities
of contemporary game development, as it retains human expert design intent embedding and
authorial control, with respect to the established game development Al workflows. However,
viable industry case studies are required to demonstrate the actual robustness of any proposed
learning integrations [85]. While recent research projects have been investigating this approach,
few of them have presented scenarios that would be relevant to the game industry. However,
synthesising their findings and expanding the learning node safety redundancies proposed by
Sprague & Ogren [234] in a commercial game environment is likely to produce an industry

viable solution to safe and robust learning integration in ad hoc behaviour representations.



Chapter 4

Context-Guided Agents

Summary. This chapter establishes the foundations of our research work. It documents the
chosen methodological approach, the research procedure applied, and the planned evaluation,
followed by the design proposal for integrating learning into video game agent Al. It also dis-
cusses the development work to instrument the game environment, and data work involving the
collection and processing of the mass-scale gameplay telemetry dataset used in our research

work.

4.1 Overview

4.1.1 Goals

In this chapter, we aim to introduce the reader to the principles of our research work and to
present its primary output: the industry-applicable context-guided learning agent design and
deployment workflow proposal. In-depth discussion of the design and its features highlights
original contributions C1 and C2, and provides a response to research question RQ1 from a

theoretical perspective:

* RQ1: can models with execution and performance guarantees of learning logic be inte-
grated into the game industry state-of-the-practice ad hoc behaviour Al architecture for

applied use in video game playing Al?

The application of the proposed design in a commercial game environment is the focus of the
remainder of the thesis. To prepare the game environment of 60 Seconds!, presented in Chapter
2, for our research work, we have instrumented it to support autonomous Al agent operations,
improved data collection, and experimental evaluations with human players. We present the
scope of the instrumentation in this chapter and outline relevant research outputs produced in

the course of our development work, including O1, O2, and O3.

41
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Finally, we discuss the mass-scale gameplay telemetry dataset from the game and document
the extent of the work that went into collecting and processing its data samples. Although the
dataset was prepared for use in training an instance of a context-guided agent, it was packaged

and shared with the research community as part of research contribution C3.

Research contributions and outputs reported in this chapter include:

* C1: industry-applicable context-guided learning agent design and deployment workflow

proposal.
» C2: extension of the BT learning node concept, featuring additional safety redundancies.

* (C3: a mass-scale, processed gameplay telemetry dataset from the game 60 Seconds! that

was used in our research and later shared with the research community.

e O1: implementation of a BT learning node, integrating Unity Machine Learning Agents

learning capacity into PadaOne Games BT library Behavior Bricks.

* 02: instrumentation of the scavenge segment of the commercial video game 60 Seconds!
for enhanced gameplay telemetry data acquisition, simulating autonomous agent opera-

tions, and experimental evaluations with human players.

* 03: standalone simulator software for simulating autonomous agents, based on the scav-

enge segment of the 60 Seconds! gameplay environment.

* 06: a published game Al book series Game Al Uncovered chapter presenting the context-
guided learning agent design and deployment workflow [88].

4.1.2 Structure

The contents of this chapter are divided into the following sections:

» Assumptions: outlines the intentions, methodological approach, procedure applied, and

the anticipated outcome of our research work.

* Context-Guided Agent Design: presents the proposed learning agent design and deploy-

ment workflow, providing a theoretical and practical insight into the design proposal.

* Game Environment Instrumentation: discusses the scope and challenges of the instru-
mentation of the game environment introduced in the course of our research work for the

purposes of enhanced data acquisition, agent simulation, and experimental evaluations.
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* Gameplay Telemetry Dataset: details the structure of the mass-scale gameplay teleme-
try dataset acquired for our research and highlights the data acquisition and processing

procedures applied.

* Conclusions: summarises the design proposal and the work with the game environment
and datasets conducted in the course of this chapter. Finally, it outlines the contributions
documented in the chapter and highlights how its output supports the follow-up work in

consecutive chapters of the thesis.

4.2 Assumptions

4.2.1 Motivation

Applied learning has been gaining traction across different industrial fields, but the game indus-
try has seen limited adoption of learning. Few commercial games have used learning for agent
Al runtime logic, thus far [279]. There are a number of valid reasons for the lack of use of
learning models in game agent Al, including: risk averse business perspective of game develop-
ment studios [270], proven reliability and efficiency of state of the practice ad hoc Al behaviour
authoring techniques [111], and reluctance of game designers to embrace non-transparent learn-
ing models, which are not compatible with the industry’s iterative workflows [194]. However,
there is a growing interest in changing this, and research into viable learning integrations has
intensified over the last few years. Promising use cases, such as automated game playtesting,
are already investigated by academics and the industry [23,112,229]. Game engines used in
the industry, such as Unity and Godot, have been equipped with ML libraries for conducting
RL and IL training for some time [11, 118]. Despite all these conducive factors, there are not
enough industry case studies involving real, commercial game environments to promote ML
models as an appealing and realistic replacement for ad hoc Al representations. This requires
more engagement from the industry. But such commitment is unlikely, unless concerns of game

developers towards learning models are addressed in a convincing fashion.

The focus on human authoring control [59] and observing game development workflow re-
quirements guided our choice to take advantage of the state of the practice BTs for video
game Al authoring BTs [36, 44, 45]. The use of this established technique guarantees com-
patibility with industry workflows, and pre-existing expertise of video game Al developers
[194, 211, 270, 285]. Its tree structure offers an intuitive solution to integrating learning by
encapsulating the learning logic in a dedicated tree node, as confirmed by different research en-
deavours [30,57,72,211,234,274]. To our knowledge, none of these investigations have found
applications that would address the requirements of game industry workflows. This can be ei-

ther attributed to their research-focused objectives or operating within controlled environments,
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which did not represent standard game industry workflows [85]. However, we think that many
of the ideas explored by prior research, especially the concept of safe neural network controllers
integrated into BTs with performance and execution guarantees, as demonstrated by Sprague &
Ogren [234], are relevant to achieving an industry viable approach to integrating learning into
runtime video game agent Al. This motivated us to contribute an original extension to the struc-
ture of a BT learning node, incorporating industry-applicable safety redundancies. It became

the key element of the proposed design.

The author’s knowledge of the domain and its requirements presented an opportunity to expand
on prior work in the field in a meaningful and practical way. This translated into an origi-
nal design proposal, which could be readily introduced into existing industry workflows, while
preserving and taking advantage of the central role and domain experience of a human expert
in the creation process of video game agent Al. This approach is of interest to the industry,
as confirmed by our design proposal being featured in the recently published game AI book
series Game Al Uncovered [88], which constitutes research output Q6 of this thesis. It was
also imperative for the proposed solution to be evaluated in a data-driven manner, in the for-
mat of an industry case study. We assumed it would be best achieved in an environment of a
commercial game, developed using state-of-the-practice tools and workflows. This informed
the decision to deploy, evaluate, and demonstrate the applicability of the proposed design in a
published, commercial game 60 Seconds!. The selected game environment was instrumented
to support inference and training procedures for Al-driven game-playing autonomous agents,
developed using gameplay telemetry data-driven player modelling, and off-the-shelf solutions.
It was made possible by the game’s continued popularity, which contributed to long-term data
collection, resulting in a user-generated gameplay telemetry dataset of millions of samples that

could be used in our research.

We consider our research to be of potential use to both the industry and academia in future inves-
tigations and the development of learning integrations in other game environments. However,
our outputs are also likely to have an immediate use value for the target game environment of
the game 60 Seconds!. The context-guided agent trained during our research could be used to
automatically playtest newly designed environment scenarios. By observing completion ratio,
collection scores, and other values, designers would be able to quantitatively evaluate their work
and adjust the target scenario accordingly. Training a suite of agents with behaviour logic based
on different player personas would allow for a wider scope of testing with respect to differ-
ent types of playstyles. Additional development work could lead to integrating player models
for supporting Al-assisted design, or even dynamic tailoring of environments to balance them

against a particular player’s play skill.
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4.2.2 Design Principles

In this chapter, we propose a non-disruptive, robust design approach to safe and context-guided
integration of small-scale, context-segmented learning models into BT-based behaviour Al ar-

chitecture of autonomous video game agents.

Key assumptions of the proposed design include:

* Non-disruptive, robust design: design that is compatible with the game industry state of
the practice ad hoc workflows, without disrupting a game’s pre-existing development and

runtime environments.

» Context-guidance: context is understood here as the context of agent Al behaviour flow;
guidance implies human curated authoring, rather than automated generation of the be-

haviour flow context.

» Safe integration of learning: safe integration of learning assumes that it must provide
performance and execution guarantees, protecting the underlying architecture from fail-
ures that may be caused by an attempted execution of the learning logic. Learning logic
is assumed to be modelled in a format that is easy to incorporate into standardised indus-
try workflows, such as learning models expressed as neural networks, accessible in the

context of an ad hoc behaviour flow structure.

* Small-scale, context-segmented learning models: the scope of learning logic in the
design is assumed to be contained through domain expert-driven task decomposition, with
respect to the behaviour context, resulting in a segmentation of learning into multiple,

smaller models, strategically embedded in the BT.

4.2.3 Methodology

We employed a practical and data-driven perspective, based on assumptions derived from the
current state of the field, discussed in Chapter 3: Background, and the conditions and require-
ments of the game industry. This significantly influenced the selection of our research and

development methods, as detailed in the following sections.

Industry Case Study

To address the tangible needs of the game industry, we decided to pursue key deliverables of our
research work, with respect to a specific, commercial game environment and its workflow. We
chose to demonstrate the deployment of the proposed design in the format of an industry-relevant
case study, informed by the real-world domain requirements. The concrete, but abstract, work-

oriented and user-centred nature of the proposal for our design and its deployment was consistent
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with the practical vector of our research and scenario-based design approaches [35,206]. It was
also expected to fulfil the requirements of being applicable, replicable and generalisable. The
practical approach of employing an industry-relevant case study was reinforced by the author’s
game industry experience in developing video games and their Al. The perspective of a profes-
sional game developer allowed us to approach our work in accordance with industry workflows
and with respect to real industry requirements, resolving the common research issue of limited

domain expertise encountered in many other academic projects [191].

Not General Game Playing

While GGP is an exciting research field, it is unlikely to lead to advances in commercial video
game agent Al in the near future, due to high deployment costs and incompatibility with es-
tablished industry workflows [194,202,247]. The practical focus of our research was to solve
specific challenges in the examined video game environment, while generalising it to be relevant
for similar scenarios of the contemporary and near-future game industry. In this instance, a GGP
approach would have likely generated additional distractions and failed to produce results ap-
plicable in commercial video game production. Instead, we chose to take full advantage of our
access to the underlying, discrete world and flow representations of the investigated video game
environment. Such an approach may be constrained to the context of the target game environ-
ment [246,270], but we mitigated this risk by conducting a requirements analysis with respect to
standard industry workflows. Furthermore, the applicable, replicable, and generalisable format
of our design ensures the scope and focus of our work does not suffer from limiting our design

deployment to a single game environment.

Quantitative Approach

We have chosen to structure our research around quantitative, data-driven measures, supporting

its intended, practical perspective:

* Mass-scale, remote crowdsourcing of numerical, gameplay telemetry data.

* Quantifying of gameplay performance, expressed as play skill, observed in the sourced

data samples.
* Applying statistical analysis to investigate the sourced dataset.

* Developing and training data-driven learning models using sourced data.

We were invested in exploring a numerical representation of gameplay data acquired directly
from the game environment for objective analysis and modelling, as is the case in game analyt-
ics [64,102]. Remotely crowdsourcing data from users enabled them to contribute their trajecto-

ries by interacting with a familiar game environment in a natural way, in the comfort of their own
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play setups. Measuring the subjective human experience of users was beyond the scope of our in-
vestigation, and so we chose not to acquire additional qualitative data from them [7,64,102,150],
due to the risk of it compromising the natural flow of the game environment and adversely af-
fecting the quantitative data collection process. Additionally, it would have likely introduced
player self-reporting bias to the sourced data [4,248], as first-person reporting is susceptible to

self-deception and memory limitations [269] resulting from the memory-experience gap [127].

We decided against trimming statistically detectable outliers to counter data non-normality, in
order to avoid excluding user-generated scores, which were valid in the context of the game.
To avoid inflating the risk of an increased Type I error rate, we decided against variance testing
for normality test selection [280]. When normality was desired, but samples violated normality
assumptions, we used data extrapolation via bootstrapping m by n resampling [58,66, 193], with
appropriate sample size estimation for m, and n = 1499, as suggested for a 1% margin of error
by Davidson & MacKinnon [52]. We also employed bootstrap hypothesis testing. Confidence
intervals were established using the percentile method, due to its computing efficiency and "(...)
wide applicability combined with near-exact accuracy." [67], in comparison to alternative meth-

ods, such as the bias-corrected interval calculation [66, 120].

For value reporting, we used confidence intervals, where possible. Our work also made use of
standardised effect size estimation [40], and normalised sample sizing [9,39]. For score distribu-
tion distance measurements, we chose to apply the central tendency measure differences. Where
normalised measuring of distances between different score distributions was required, we opted
to use the Kantorovich distance! symmetric method [208,255], which is more generalisable than
Jensen-Shannon divergence [136], satisfies the triangle inequality, and can be considered a valid,
objective metric, whose values do not suffer from variance, shape or modality changes [182]. It
has been used in a variety of fields, including Al research [187,224].

Approximated Models

The final output of our research work was planned to be a context-guided agent model, based on
a player behaviour persona [102] modelling gameplay behaviours sampled from a set of game-
play telemetry samples, originating from a selected group of players.

Virtual game environments provide abstracted depictions of the real world [137,223]. Even se-
rious games that attempt to accurately simulate it are at best approximated models of reality [2].
This implies that gameplay telemetry data generated in games and any output that is generated
on the basis of such data are also approximated. Thus, the choice to use a game environment in
our research committed our work and any results it would produce to embrace the approximation

of the world as delivered by the game. Additional approximations were likely to be introduced

I Also known as the Earth Mover’s Distance or the Wasserstein distance
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in the course of the development work on the game instrumentation, as the sensory interaction
of agents with the game environment was bound to differ from that of a human player. We did
not consider embracing approximations as a constraint, as this approach supports consistency
between the output generated in the course of our research and the game environment, in which
it can be competently evaluated. It is also consistent with similar work done in the field [33,249].
Additionally, we did not intend to target critical applications in our research, making the focus
on approximated models reasonable and acceptable in the context of our work. However, if our
outputs were to be used outside of the context of the investigated video game, their approximated

nature would have to be appropriately accounted for.

Experiments in the Game Environment

For the evaluation of our trained agents, we chose to conduct experimental evaluations in the
game environment. This enabled us to take advantage of the instrumented game environment
for the purposes of simulating Al-driven agent operations in evaluation scenarios, as well as
the game’s data collection pipeline for recording evaluation gameplay trajectories. Additionally,
this created an opportunity to conduct online evaluations with real, human players. By deploy-
ing evaluation scenarios in the live version of the game and remotely sourcing trajectories from
participating users, the experiment was contained in the familiar context of the game’s environ-
ment. Users were able to participate in the evaluation in the comfort of their own play setups,
without being distracted by the elements of a controlled experiment setup or the presence of an

evaluator.

4.2.4 Research Procedure
Overview

The line of inquiry of the planned research was divided into a sequence of steps, incorporating
practical, analysis and evaluation work, following the outlined methodological assumptions and

incremental progress towards reaching our research goals:

* Context-guided agent design

* Game environment instrumentation

* Gameplay data collection and processing
* Game score study

» Agent study
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Context-Guided Agent Design

We first defined the scope of the proposed design and outlined its features to establish the theo-
retical foundation and a starting point for our work, which informed the structure and procedures
involved in each of the consecutive research steps. The design proposal was conceived with re-
spect to prior work in the field, explored in Chapter 3: Background, and to achieve the envisioned

research and industrial objectives. The procedure for generating the design involved:

 Defining the requirements for the design, derived from our research assumptions and the

domain context.

* Architecting the structure and flow of the design proposal, based on the integration of

learning models into subsumption architecture, generalised by BTs.

« Establishing the theoretical grounding of the key design characteristics: context-guidance,

small-scale learning, safe learning integration and agent perception.
* Documenting a deployment workflow for the proposed design, compatible with the state
of the practice industry methods, the design itself, and our research goals.
Game Environment Instrumentation

We then moved to the preliminary, practical stage of preparing the environment for our research
work. We examined the game environment targeted for the deployment of the proposed design

and instrumented it to fulfil the requirements of our research:

» Refining the game’s data collection pipeline scope and functionality, based on the conclu-

sions drawn from the review and work with the pre-existing data collection pipeline.

* Instrumenting the game environment to support training and simulation of autonomous

agents, controlled by Al through BTs and learning models.
* Implementing experimental evaluation flow for online evaluations with human users, and
offline evaluations with agents.
Data Collection and Processing

In parallel to the instrumentation of the game environment, we had begun our practical work on
the data pipeline. This involved both refining pre-existing functionality and developing a data

processing solution to make acquired data usable in our research:

* Inspection of the existing gameplay telemetry dataset and its sample format.
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* Identifying raw data collection problems and resolving them for the benefit of our re-

search, and continued developer data sourcing.

e Implementing a processing pipeline to transform raw data into a usable research dataset

in a multi-step procedure of reformatting, clean-up, normalisation, and inference.

* Conducting data collection and processing procedures with the established data pipeline

to accumulate a dataset to be used in our research.

Game Score Study

Game score study is an analytical investigation of the population dataset, using the proposed
game score metric for evaluating samples from the gameplay telemetry dataset. Statistical anal-
ysis of emergent distributions and clustering of a selectively sampled population to establish a
top play skill player persona, informed further work towards generating learning models that

would be applicable in the context of the game’s environment:

* Proposal of a quantifiable measure of game score exhibited in gameplay telemetry dataset

samples, derived from the game environment and its design context.

» Sampling of the population dataset for use in further analysis and practical work, with

respect to parameters observed in Chapter 4: Context-Guided Agents.

* Statistical analysis of population-wide game score distributions and investigation into

properties of the game score metric.

* Establishing the concept of play skill and applying it to cluster the game sample population

dataset.

» Extracting the top-skill persona dataset to use it in training our agent models.

Agent Study

Agent study covers the practical work stages of training and benchmarking the context-guided
agent with experimental evaluation to measure its play skill. It concludes with an analysis of
the results obtained to address relevant research questions and review the context-guided agent’s

performance, design, and deployment.

The training portion of the Agent Study chapter includes:

* Design and development of the context-guided agent model, combining BTs and context-

segmented small-scale learning models, trained to model a top-skill player persona.
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» Design and development of a reference agent, to provide a comparison case for the context-
guided agent model.

* Benchmarking of the context-guided and reference agents.
The evaluation portion of the Agent Study chapter includes:

* Online experimental evaluation, deployed in the instrumented, commercial version of the

game for the human player live audience to play new, unseen game scenarios.

» Offline experimental evaluation deployed in the agent simulator environment to simulate

the context-guided agent playing the same, unseen scenarios as human players.
The analysis portion of the Agent Study chapter includes:

* Analysis of gameplay performance of the context-guided and reference agents during

benchmarking.

* Analysis of gameplay performance of the context-guided agent and human players during

experimental evaluation.

* Review of the context-guided agent’s design, deployment, and learning.

Evaluation

The planned evaluation of the trained context-guided agent involved conducting offline and on-
line experiments, as detailed in the Experiments in the Game Environment section. In both
cases, evaluation participants were expected to play the same set of new, unseen scenarios of
the instrumented version of the 60 Seconds! game environment. Agents were evaluated in the
offline experiment, conducted in the agent simulator environment. Human players were evalu-
ated in the online experiment, conducted in the instrumented, commercial version of the game,
distributed through the developer’s Steam update pipeline. This allowed us to conduct a nor-
malised, comparative analysis of the gameplay performance, measured as play skill, for both
agents and humans, in the same scenarios, and approximately similar gameplay conditions. In
an effort to integrate the online evaluation into the natural flow of 60 Seconds!, the experiment
was presented as part of one of the game modes, in the default interface of the game, as detailed
in the Experimental Evaluations section. The ethics of data collection in the game environment,
including the special case of sourcing data in the course of the online, experimental evaluation,
is discussed in the Ethics section.

Our proposal to use the commercial game environment for online, experimental evaluations with
a real player audience was approved by the University of Glasgow College of Science and En-

gineering Ethics Committee in November 2016, under ethics application number 300150079.
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The approved application covered three online experiments to collect data that would be used
for player gameplay performance estimation, agent development, and dynamic environment ad-
justment. Ultimately, we only planned for the first of these experiments to be conducted as part

of the evaluation in this thesis.

4.3 Context-Guided Agent Design

4.3.1 Requirements
Assumptions

The requirements for our design approach were derived from the state of the practice game de-
velopment workflows, to ensure a realistic and practical approach to the formulated proposal.
We were also invested in preventing any game environment-specific assumptions from contami-
nating the design, which could have adversely impacted its capacity for potential generalisation.
To that end, the identified requirements were an expression of the needs of the industry and its

experts, by making the proposed design applicable, replicable, and generalisable.

Applicable

Design must be applicable in an actual video game environment, providing a real solution to a
real problem. Its integration cannot destructively disrupt the standardised production workflow
and runtime architecture of the game. If any augmentation of the targeted game environment is
necessary for the purposes of the design’s integration, it should be carried out as an increment

to the pre-existing architecture, without compromising its original functionality.

Replicable

Design must be easily replicable, leading to reliable, repeatable results when applying the sce-
nario in both design time and gameplay runtime execution. This should also allow for conduct-
ing iterative development and flexible revisioning of the output produced, within the target game

environment.

Generalisable

Design must be specific enough to address domain problems but abstracted to a point which
would allow it to be adaptable to a variety of scenarios and game environments, without com-

promising the standards of its integration or the target environment.
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4.3.2 Architecture

To address the outlined requirements for robust integration of learning into standardised game
industry development workflows for game agent Al, we proposed to structure the design around

the following key concepts:

Context-Guidance

Human-curated control over behaviour flows through ad hoc authoring with a layered, hierar-
chical approach to separating the context of decision-making and action execution with an in-
termediate proxy layer between the two. The context-guided structuring of the proposed design

is visualised in figure 4.1 on page 54.

Safe Learning Integration

Direct integration of learning logic into BT's as learning subtrees, featuring a dedicated learning
node, supported by auxiliary ad hoc nodes. Learning logic is expected to be modelled in the
format of an artificial neural network, which can be developed and trained according to specific
domain and design requirements. The template structure of dedicated learning nodes includes ad
hoc nodes to provide control and guarantees over their performance and execution. In addition,
a fallback, ad hoc logic node is present to take over the behaviour flow in case the learning
logic fails to execute within safety constraints. The fallback logic provides a guarantee of a
worst-case scenario execution, while also serving as a potential starting point for an incremental

implementation of a learning subtree before the actual learning logic is fully trained.

Small-Scale Learning

Isolation of the scope of learning logic to the relevant context, equivalent to task decomposition,
in an effort to optimise training time and data requirements, while increasing the accuracy of the
learning model output. This results in multiple, smaller, and specialised learning models, instead
of a single, monolithic learning model. This approach allows utilising a variety of learning
techniques or model parametrisations in different contexts of the same behaviour logic, while

encouraging modularity, increasing design control, and potentially decreasing training costs.

4.3.3 Context-Guidance

The hierarchical, subsumption architecture and decision tree properties of a BT organically cre-
ate assumptions about directing the flow of the behaviour logic. The highest level of abstraction
is occupied by flow directing decision-making, while the leaf nodes found on the lowest levels of
the tree correspond to actual interactions in the game’s environment [43,45,179]. By combining

these inherent properties of BTs with a structuring optimisation strategy of context separation,
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Root node

Macro layer
(strategic decision-making)

A —ad hoc logic node Proxy layer
L - learning subtree (macro-micro connections)

Micro layer é
(low-level action execution)

Figure 4.1: Context-guided architecture with a presentation of the default context layering of
macro, micro and proxy layers.

inspired by the HRL task decomposition [185,200] and an intuitive human drive towards seg-
menting complexity [75, 103] we observe three context layers in a context-guided BT: macro,
proxy and micro. The macro layer features strategic and more abstract decision-making logic
and is found just below the tree’s root node. The micro layer represents lower-level actions to be
executed by the agent in the environment and is located at the bottom of the tree. The optional
proxy layer facilitates authoring control over connections between the macro and micro layers.
The separation of task layers and observing a decision-making macro layer has been explored in
the field, as the issue of combining learning reactive actions and temporally modelled decisions,
which suffer from sparse rewards, remains an ongoing challenge [200,263,276]. As such, the
role of the proposed layers is to provide a disciplined, context-guided framework to support flow
planning and positioning of learning subtrees by human designers, who are expected to provide
a valid contextual separation of the agent’s behaviour flow. Layered optimisations of the kind
are usually efficiently embedded in the learning models themselves, as was the case with HRL
and IL in multiple projects [108, 138, 142, 185], at the price of transparency and iterative control
over their logic. Our assumption that video game Al domain experts should remain at the centre
of the Al creation process and have as much authoring control over the agent decision-making
logic model, as possible [59, 194,211] influenced our decision to delegate the context flow sep-
aration to a human designer. Similar sentiment was expressed by de Pontes Pereira & Engel,
who argued that a BT can be modelled as a specialisation of an option-based HRL, but instead
of treating the manual division of behaviours as an issue to be solved through automation, one
should observe it as an opportunity to take advantage of prior and expert knowledge of the prob-
lem [285].

This approach also tasks the designers with deciding which behaviours are to be modelled us-
ing learning logic. Ultimately, the goal of context-guidance is to maximise the utilisation and

potential of the learning subtrees, strategically incorporated in the BT’s flow structure. Context-
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relevant positioning of learning subtrees in conjunction with their small-scale learning targets
will allow for the feature of adaptive behaviours where they are most required. While macro
and micro layers can contain both ad hoc and learning nodes, the proxy layer should only use
ad hoc logic to guarantee fully deterministic and controllable connections between the context
of what the agent decides and what the agent does. Our design does not enforce a specific vol-
ume of learning, instead leaving the exact balancing of the presence of learning subtrees in the
architecture at the discretion of a human designer. Greater utilisation of learning may produce
a more adaptive agent, but at the price of decreased design flexibility and flow context control.
The modularity of the outlined design is intended to make it possible to scale up the presence
of learning logic easily and organically. This involves designers starting out with a simple, ad
hoc implementation of the intended agent behaviour logic, before replacing it with a learning
model, but retaining the original ad hoc implementation as a safety fallback in the event that the

corresponding learning subtree fails to execute.

4.3.4 Safe Learning Integration

The proposed design assumes that the execution of learning logic is potentially unsafe and unre-
liable [234]. In the best-case scenario, learning logic will produce output that is approximately
accurate, with respect to design expectations. In the worst-case scenario, learning logic fails to
execute and may compromise the execution of the entire agent behaviour logic. This risk and
lack of execution determinism are key issues, which make learning models too unstable to be
confidently used in professional game development [194,270]. Ad hoc safeguards and fallback

logic are necessary to create performance and execution guarantees for integrated learning.

Such an approach can be achieved by packaging learning logic within a BT subtree, featuring a
dedicated learning BT node and ad hoc safety control logic. This was formally proven to pro-
vide the required safety by Sprague & Ogren [234], making it an optimal solution to address the
issues with integrated learning. The execution of a learning tree follows the regular BT struc-
turing flow. First, the execution safety controller evaluates conditions, defined by designers, to
determine if the subtree should proceed with execution. If not, it is aborted. Otherwise, per-
formance safety controller tests key processing requirements, also defined by designers. Failed
performance safety testing leads to the execution of ad hoc fallback logic, instead of the primary
learning logic. If both execution and performance safety tests are passed, the dedicated learning

node can run.

To accommodate a broader range of game development-relevant scenarios, we modified the
original design of Sprague & Ogren [234] and addressed its two shortcomings: a limited scope
of performance safety control and a lack of ad hoc fallback logic execution guarantees. Our

version of the learning subtree is presented in figure 4.2 on page 56.
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The original design limited performance safety control to a single time response control test.
Inspired by the Lyapunov design methods for safety [14, 38], we assumed that performance
testing should be structured to potentially support multiple stability and safety tests, compatible
with the target domain. In our interpretation, any condition which is expected to invoke ad
hoc logic, instead of the learning logic, should be part of the performance safety controller. A
practical example of such a condition is hardware testing to avoid learning performance issues
on slower machines and diverting execution to lightweight, fallback ad hoc logic, instead.

Our design also features a revised composite flow of the learning subtree, which supports ad
hoc fallback logic execution in the event of learning logic failure, which was not originally the
case. This was a critical change, as the output expectation must always be met, even if only the

worst-case version of the output can be produced.

Parent tree
node

ad hoc logic

1
Execution safety 5 6

controller Learning logic

|
|
|
|
|
|
|
|
Fallback :
|
|
|
|
|
|
|
|
|

4 A — ad hoc logic node
L — learning logic node
? — selector composite node |
~ —inverter decorator node |

Performance safety
controller

Figure 4.2: Learning subtree design, derived from the formalised definition of safe BT neural
network controller by Sprague and Ogren [234]. Order of node execution is indicated by node
numbering.

The proposed and documented extension of the learning node constitutes the research contribu-
tion C2.

4.3.5 Small-Scale Learning

Each learning subtree embedded in the BT architecture may operate independently of others,
representing an individual instance of learning logic, contained within the learning node. It
is the responsibility of a human expert to conduct manual task decomposition, according to
the intended and pursued behaviour context of the agent and delegate the appropriate learning
context to each subtree. This practice is to be supported by context-guidance-driven structuring

of the BT architecture. While the design is concerned with manual context decomposition,
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the process is inspired by research into automated task decomposition within learning models
[55, 60, 122,209]. Isolation of the scope of learning in each subtree to the relevant context is
motivated by the potential reduction in training time and data requirements. It is also likely to
result in increasing the accuracy of the learning model output, as is the case with the accuracy of
individual task learning in automated multi-task learning [5,37]. The small-scale learning output
will utilise multiple, smaller and specialised learning models, instead of a single, monolithic
learning model, supporting modularity and authoring control. This approach will also allow
mixing learning techniques applied in different learning subtrees, instead of enforcing a single

strategy for policy learning.

4.3.6 Agent Perception

We assume an agent to be an object with capacity for autonomous operations in a video game’s
virtual environment e. Agent’s interactions with the environment follow a specified policy 7,
expressed as a finite set of actions A, sequenced with an underlying stochastic or deterministic
logic model, executed with respect to the state of the environment s and discrete timestep ¢t €
{to,11,...,1, }. The game’s environment can be formally modelled as an MDP [195], which is a
common practice in games’ research [122,238,270]. In such a case, the MDP is described by
the tuple < S, A, P, R > where:

* S - a finite set of states {so,s1,...,5,}, considered state space or information about the

environment’s conditions.

* A - a finite set of actions {ag,ay,...,a,}, considered action space or ways in which the

agent can interact with the environment.

* P(s, s’, a) - the state transition function expressed as the probability of transitioning from
state s to s’ upon executing action a. It fulfils the Markov property, which states that
future states of the process depend solely on the present state, rather than the sequence of
states that came before. This implies that the current state s provides complete and valid

information about the environment.

* R(s, s’, a, r) - the reward function given transition from state s to s’ through execution of
action a. It specifies the immediate reward r, or otherwise a signal, provided to the agent

when a transition from state s to s’ occurs through action a.

Assuming the game environment e is fully observable, and its world model defined by P and
R is known, estimation of transition probabilities P and reward r calculation are directly avail-
able. This allows to maximise the reward function R for achieving an optimal and fault-proof

policy for agent interactions A, using model-based approaches. However, given an optimised
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reward function R, this would result in a maximally efficient agent operating with a machine-
like precision, rather than exhibiting human-like gameplay behaviour. This is desired for certain
classes of agents, which play for performance [270]. In our research, we were interested in
agents playing for experience, which do not necessarily strive to maximise their reward function
yield. Instead, they are prepared to imitate human gameplay behaviour style, which requires
learning previously demonstrated or identified stylistic elements. In such a case, it is intuitive to
assume that agent perception should also imitate that of a human, and as it would not permit full
observability of the environment, despite the fact that full state information might be available.
Hence, we had chosen to model the agent’s behaviour flow as a generalisation of an MDP in the
form of a Partially Observable Markov Decision Process (POMDP) [24]. While we still con-
sider the game environment to be a fully observable MDP, interfacing with it from a perspective
of a POMDP effectively emulates human-like sensory perception of the surrounding world. It is
also computationally beneficial, as an agent interacting with a completely observable MDP and
receiving full information about the current state s may lead to run-away observational complex-
ity, excess of data volume, and high costs of collecting observations [21,23,277]. As the agent
does not directly observe the environment’s state s, its decisions are made under uncertainty,
on the basis of a partial environment state s information derived from a set of observations Q
received by the agent at a regular timestep . A POMDP is described by the tuple < S, A, P, R,
®, o, ¥ > where:

» § - state space, similar to MDP.

* A - action space, similar to MDP.

* P(s, s’, a) - state transition function, similar to MDP.
* R(s, s’, a, r) - reward function, similar to MDP.

» Q - afinite set of observations o € Q, received upon transition to new state s’, as a result

of action a.

* O - set of conditional observations probabilities for receiving observations Q, expressed
as the probability O(o, s’, a) of receiving observation o €  upon transition to new state

s’, as a result of action a.

v - discount factor y € [0, 1], where ¥y = 0 promotes immediate rewards over more dis-
tant rewards. The greater the 7, the more valued maximising the expected sum of future

rewards is.

A POMDP modelled decision process begins with an initial belief by about the true state of the
environment, which may be updated after the agent takes action a and observes o. In accordance

with the Markovian property, formulating the next belief state b’ requires only information about



CHAPTER 4. CONTEXT-GUIDED AGENTS 59

the previous belief state b. As a result, training the agent’s environment interaction policy 7, on
such predictions, rather than direct state data, results in a more natural response to the changes
in the environment, instead of machine-like efficiency. This approach can further be supported
by choosing to model the perception of the state of the environment using low-dimensional

observations.

4.3.7 Deployment Workflow
Assumptions

The deployment of a context-guided agent model instance, architected on the basis of a design
targeting a specific game environment, is structured as an iterative workflow, repeating particular
stages of the process in development-evaluation cycles. This is consistent with the game industry
development workflows and supports continuous evaluation and fine-tuning of the output model
until a satisfactory level of quality is achieved. The flow of the deployment workflow involves

the following steps:

 Step 1: Design behaviour context.

Step 2: Establish learning subtrees.
 Step 3: Implement context architecture.
 Step 4: Implement learning logic.

» Step 5: Acquire data.

 Step 6: Train learning models.

The sequential flow of these stages is presented in figure 4.3 on page 60. We discuss each of the

stages in the sections below.

Step 1: Design Behaviour Context

The deployment workflow of a context-guided agent begins with identifying the context of the
intended behaviour flow, to inform the development of the agent’s behaviour context architec-

ture. This process involves conducting a requirements analysis of the target environment by:

» Specifying goals that an agent is expected to pursue and achieve in the environment.

» Reporting interactions that an agent may perform in the environment.
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Figure 4.3: Context-guided design deployment workflow.

Mapping the identified behaviour objectives to the macro layer, the available interactions to the
micro layer, and proposing how they connect via the proxy layer, follows. The designed map-
ping will only be validated after an initial model is deployed. Hence, competent identification
of the behaviour context will greatly benefit from an expert-level understanding of the game
environment. However, this may not be possible due to the game’s production being at an early
stage, where complete knowledge of the environment and its representation is still unavailable.
If that is the case, up-to-date information about the environment should provide data necessary
to proceed with the workflow, while ongoing exploration and discovery, organically taking place
during development, is expected to provide revisions of knowledge and be iteratively integrated
into the design of the behaviour context.

Step 2: Establish Learning Subtrees

While the designed behaviour context is a blueprint to fully implement the context architecture
using ad hoc authoring, it does not yet provide information about integrating learning into the
behaviour flow. The next step is to identify and describe behaviour context flow segments, which

would benefit from being modelled with learning logic. This is achieved in three steps:

* Identifying flow segments that should feature learning.

* Selecting learning policy strategies and techniques for the identified learning subtrees.
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* Determining data requirements for the identified learning subtrees, and their chosen learn-

ing policy approaches.

To identify flow segments of interest, each of the mappings in the macro and micro layers should
be assessed with respect to their intended functionality, and the potential advantages of achieving
that functionality with learning. Likely candidates for learning integration include instances of
flow that:

* Need to be highly adaptive.

» Cannot be effectively represented by ad hoc logic, either due to constraints on ad hoc logic
flow, or because of the prohibitive explosion of complexity that would result from scaling

it up.
* Are expected to produce imitative output, on the basis of demonstration data.

If any of these conditions are met, a human designer needs to decide if the examined case is
convincing enough to integrate learning. While not all flow logic should be modelled with
learning, it is important to remember that the risks of including too much learning are limited.
The worst-case deployment scenarios of failing to produce an effective enough learning sub-
tree or discovering that learning was not necessary for a particular piece of flow logic have a
low impact. In both these cases, an ad hoc fallback logic should already be in place, providing
an optimal ad hoc solution to the problem, or at the very least a functional one, which can be
used in further development. Confirmed learning subtrees can employ different learning policy
generation approaches to achieve their goals. Acceptable techniques can encompass anything
that is technically supported by the targeted game development and runtime environment. These
choices need not be limited to a single method. Combining different techniques to produce a
higher quality of output has been found to produce promising results [111,222,270], and the
natural decomposition of the context of tasks and their associated learning logic found in the
context-guided design supports this methodology. It is important to make informed decisions
about the policy generation, since they determine data requirements for the learning models in-

volved, and the scope of the technical work required to implement the context architecture.

Data requirements for each of the learning subtrees can then be inferred from the context of the
desired behaviour, and on the basis of the selected policy generation strategy. The pinpointed
requirements should provide enough information to describe the necessary volume and sourcing
of the data, and structure data collection procedures to be conducted in Step 4 of the deployment

workflow.



CHAPTER 4. CONTEXT-GUIDED AGENTS 62

Step 3: Implement Context Architecture

With design foundations laid down, the technical part of the deployment can commence. Es-
tablishing a behaviour context architecture encompasses BT flow structuring and implementing
game environment-specific solutions to facilitate that flow. While the technical execution of
these two tasks will vary across different gameplay solutions and tools used, the implementation

process will remain the same and involve:

* Implementing functionality to interface with the game environment through BTs.
* Implementing ad hoc BT flow (macro, proxy, and micro layers).
* Implementing stubs of learning subtrees in the ad hoc BT flow.

* Implementing ad hoc fallback logic for each learning subtree.

Once the implementation reaches a stage of maturity where testing becomes possible, an iterative
cycle of testing and fine-tuning can begin. The implemented context architecture should already
support the pursuit of the full scope of the identified behaviour goals for the agent, representing
a valid behaviour context. These assumptions need be evaluated in the game’s environment,
with respect to the requirements of the target environment, identified in step 1. If confirmed
to be valid, the output of the context architecture implementation constitutes a stable, ad hoc
version of the intended behaviour model. Detected behaviour context violations may warrant an

architecture revision by repeating one or all the steps 1-3, until all issues are resolved.

Step 4: Implement Learning

After achieving a stable behaviour context, expressed as an ad hoc flow with learning subtree
stubs in place, the intended learning logic can be integrated into the architecture. For each learn-
ing subtree, a dedicated learning node should be implemented, with respect to the local set of
technical factors, such as the project architecture, tools used, and the specifics of the target game
environment. A single-node implementation might suffice if the same learning technique is used
across many learning subtrees. For varied scenarios, a range of learning node specialisations,

which could address local training and inference requirements, may be required.

Additional technical work may be required beforehand, if the target environment is not ready to

accommodate learning processing:

* Implementing relevant training and inference logic in code, to facilitate learning logic

execution.

* Connecting the output of a context-guided agent model to an actual agent object, operating

in the game’s environment.
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Step 5: Acquire Data

Different learning methods have varied data requirements. Depending on what methods were
chosen for dedicated learning nodes, featured in the established behaviour context, appropriate
data sourcing must be applied. In some cases, especially involving RL techniques, data will be
collected from training-time observations of the agent, and as such, the data collection process
would have already been part of the learning implementation in Step 4. In such cases, deploy-
ment can forego Step 5. Otherwise, appropriate data acquisition and transformation procedures
must be applied to generate valid datasets for use in target learning models. It is beyond the
scope of this workflow to explore this process, but it can be as simple or as complex as required.
The only requirement for the data is to be usable in the targeted game environment and to be
compatible with the learning subtrees’ policy generation strategy that is supposed to take advan-
tage of the collected data. The output of this step is expected to be a dataset, or datasets, of valid

training data for all the learning subtrees found in the context architecture.

Step 6: Train Learning Models

The final, and potentially the most labour-intensive step of the workflow, tasks the designer with
iteratively training learning models, embedded within the learning subtrees of the implemented
context architecture. Each iteration of training generates an output agent model, which can
then be evaluated in the context of the game environment. The evaluation is aimed at validat-
ing whether the agent’s behaviours can be considered competent, operational, valid and of high
enough output quality, in terms of the intended behaviour context. Multiple training passes are
likely to be required, since varied parametrisation and timing of the training process impact pol-
icy generation. The time necessary for training each of the learning subtrees may be different,
and the training process might involve local partitioning to validate learning models separately.
However, a holistic perspective should be adopted to consider all the relevant factors of the in-

tended behaviour context.

Validation of the behaviour context in Step 6 mirrors the testing procedures used in Step 3. Any
issues with the underlying behaviour context detected at this point would require backtrack-
ing the deployment process to repeat Steps 1-3 to revise the design. Problems resulting from the
training process itself would simply prompt another iteration of the learning training-testing pro-
cess. A data-driven approach should be applied to quantitatively compare different agent output
model revisions with respect to the output fitness. This enables automating the iterative training-
testing cycles, and potentially even procedural, incremental improvement of the output models
using evolutionary algorithms. Quantitative comparisons may focus exclusively on output fit-
ness, but ultimately, the main focus should be on the game context-derived measures of success,
and other factors that root the agent behaviour model in the context and reality of the game en-

vironment. The evaluation itself should take place in the game environment to fully align with
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the investigated context. A truly holistic evaluation of the quality of the intended behaviour can
be considered a subjective endeavour, and as such requires involvement from a human expert.
Especially that repeating quality concerns might need an expert perspective to target the issue,
and fix the underlying cause, leading to repeating all or selected deployment learning steps. Af-
ter the trained gameplay policy reaches the desired level of quality, the learning training work is

complete, and the final output model is ready.

Output Model

The final output of the deployment workflow is a context-guided agent behaviour model, archi-
tected with an ad hoc established behaviour context, including integrated learning logic, trained
with respect to the valid input data. The produced behaviour model is expected to be applica-
ble in the game environment it was developed and trained for, and fulfil the objectives of the

behaviour context, as outlined by human experts at early stages of the deployment workflow.

4.3.8 Summary

We have presented the context-guided agent design proposal, which combines the concepts of
ad hoc authored context-guidance, safe learning integration into BTs, and small-scale learning
models. The documented design is based on the established and reliable BTs, a formally proven
safe approach to integrating learning into BTs and addressing the practical requirements of the
state of the practice workflows. The presented design proposal constitutes a theoretical response
to the research question RQ1 and constitutes the research contribution C1. An empirical re-
sponse to RQ1 will follow in Chapter 6: Agent Study.

4.4 Game Environment Instrumentation

4.4.1 Overview

Developers of 60 Seconds! provided us with full access to the game’s project assets, as well
as its codebase and data collection pipeline. This also included previously collected gameplay
telemetry datasets. This direct access allowed us to instrument the game for the purposes of our
research. Instrumentation work included the improvement of the data acquisition flow, deploy-
ment of experimental evaluations in the live version of the game and implementing support for
autonomous agent training and simulation. Any code developed and deployed in the course of
our work was intended to seamlessly and non-disruptively integrate into the game environment.
This was the case for both the code we developed ourselves and any external libraries integrated

by us. In the latter case, we took advantage of the off-the-shelf nature of the game’s engine
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and only used solutions that were compatible with the game project and were available free of

charge.

4.4.2 Data Collection

60 Seconds! was originally equipped for scavenge gameplay telemetry data logging by its devel-
opers. A functional data collection pipeline for automatic crowdsourcing of data samples from
the players of the game was already in place. However, in the course of our investigation of the
pre-existing gameplay telemetry dataset, we identified a number of issues with the implemen-
tation of the data collection in the game’s executable. We assisted the developers in resolving
the problems discovered, without breaking or changing the underlying data collection mecha-
nism. The revised data collection implementation was introduced in the commercial version of
the game and released to its players as a free, automatic, online update. This resulted in play-
ers generating corrected gameplay trajectories, which would later be acquired using the original
data collection pipeline and used in our work. We discuss the data collection issues and how
they were addressed in the course of our game instrumentation work in the Gameplay Telemetry

Dataset section.

The survival section of the game was not outfitted with a similar data collection mechanism,
and the developer had no plans to implement it. Since that was the case, we were not at liberty
to modify the survival segment of the game. The lack of access to survival data informed our

decision to limit our research focus to data from the scavenge segment of the game.

4.4.3 Agent Training and Simulation
Overview

60 Seconds! did not support Al-driven, autonomous agents in any capacity. It was originally
designed as a single player experience, controlled solely by the player’s input. Learning was
also not an original feature of the game’s development environment. To be able to carry out
our research investigation, we had to integrate off-the-shelf libraries for Al behaviour ad hoc
authoring with BTs and ML model training and inference into 60 Seconds!. We then modified
the game environment to support the operations of autonomous agents. Finally, we deployed a
standalone agent simulator for training and inference of agent Al behaviours, based on the game

environment of 60 Seconds!.

Learning Models

Support for native learning integration into Unity game engine projects was developed by Unity

Technologies in the form of a free-of-charge Unity Machine Learning Agents (ML-Agents)
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toolkit version 0.30.0 [118]2. Since it was authored by the makers of the engine itself and ef-
fectively leveraged the internal implementation of Unity, we opted for using this solution in our
research. It is still in active development, but already contains an array of stable, state-of-the-art
learning features. Training is facilitated via the open-source Python library PyTorch, which is
a standard tool for ML practitioners from different fields of research [177]. Model inference in
the engine environment is facilitated using the Barracuda inference engine. ML-Agents supports
training learning models via Deep RL (PPO, Soft Actor Critic, Multi Agent Posthumous Credit
Assignment, self-play) and IL (BC and GAIL). Models generated by training are stored in the
Open Neural Network Exchange (ONNX) format. The library was previously used in other re-
search projects [55, 140, 144,271,278]. To take advantage of ML-Agents we have developed
agent representations that were compatible with the library’s API. We then interfaced these cus-
tom agent implementations with our dedicated BT learning node implementation. This allowed
us to control the flow of training and inference signals between ML-Agents and a BT driving the

logic of an autonomous agent Al.

BT Authoring

We have chosen the Behavior Bricks BT implementation by PadaOne Games>

, associated with
the Group of Artificial Intelligence Applications at the University of Madrid*, to integrate BT
support into the game. Our decision was motivated by the fact that this library is a native and
a stable Unity solution, available free of charge, which features functionality compatible with
the game industry state of the practice BT requirements. Apart from the basic BT flow logic,
this includes a responsive visual editing tool for trees with support for real-time debugging.
Initially, it was also our understanding that Behaviour Bricks included an implementation of a
BT learning node. Having discovered its support was discontinued, we developed an ML-Agents
compatible implementation of a dedicated learning node on the basis of the Behaviour Bricks
codebase and the assumptions of safe learning integration outlined in our design proposal. We
intend to share this implementation with the developers of Behaviour Bricks, as well as the

development community at large. This part of our work constitutes research output O1.

Autonomous Agent Support

We anticipated that introducing autonomous agent functionality into 60 Seconds! would be a
relatively straightforward process, based on selective mapping of interaction signals from player
input to Al model decision-making logic. Unfortunately, the game’s architecture was based on
an assumption that player input is the sole driver of the player avatar operating in the game en-

vironment. This resulted in a tight coupling of avatar interactions and player input logic code

Zhttps://github.com/Unity-Technologies/ml-agents
3https://gaia.fdi.ucm.es/research/bb/
“https://gaia.fdi.ucm.es/



CHAPTER 4. CONTEXT-GUIDED AGENTS 67

through continuous processing of the input-logic loop. A forward model of the game’s simula-
tion was not present. Decoupling these features and introducing a partial, forward simulation
model required a significant intervention in the game environment codebase. We took care to
ensure these modifications were non-disruptive, as it was an important assumption of our de-
sign work. This had proven more labour-intensive than expected. In the end, we were able to
achieve our goals without disrupting the functionality of any of the game’s pre-existing systems.
However, due to the way that player input was coupled with the camera control in the original
code, it was necessary to introduce an alternative solution to handle viewport control and inter-
actions separately for artificial agents. The camera model implemented for autonomous agents
approximately replicated the functionality and behaviour of the game’s original camera. Ad-
ditionally, it was expanded to act as a vision sensor for autonomous agents that would imitate
human-like observation of points of interest in the game environment. Specifically: items to be
collected. Observed items could then be registered to be used in Al decision-making logic. For
the purposes of simulation preview, we also introduced an alternative, top-down camera option

to provide an elevated overview of the entire game environment.

Figure 4.4: Top-down camera implemented in the agent simulator for convenient simulation
preview.

Avatar interactions in the game were investigated with respect to object interactions and navi-
gation. Object interactions, including collecting and depositing items, were not as coupled with
other systems as navigation. This made it possible to facilitate forward model-based object in-
teraction requests and querying with minimal facade code. This allowed us to directly use the
pre-existing avatar interaction model, designed for human player input. Navigation reimple-
mentation had proven more challenging. Aside from system decoupling, we had to consider the
pre-existing assumptions of the game’s physics system, as well as servicing two types of naviga-
tion input: absolute position vector values from gameplay trajectories, and Al decision-making.
Navigation step recording frequency for gameplay trajectory data samples was set to fp = 10 Hz

(data recorded every 100 ms), which was not as precise as the player input capture, running at
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a frequency of fp ~ 60 Hz (data recorded approximately every 16.66 ms). Hence, for gameplay
trajectory replays, we introduced discrete navigation steps that agents would move between,
masking lower frequency recordings using interpolation. For Al decision-making we wanted to
approximate the human player input frequency and allow for a more reactive navigation. We
decided against direct simulation of raw player inputs, as this would require a non-trivial de-
velopment of the avatar navigation and steering system in the pre-existing game environment.
Furthermore, we predicted that such an approach would later force us to spend a substantial
amount of time, effort and compute on training learning models that could cope with navigation
in relatively complex environments. So instead, we opted to approximate the human navigation
dynamics by generating a navigation mesh for the investigated game levels and finding optimal
navigation points on it using Unity’s implementation of the A* pathfinding algorithm®. While
this approach decreased the number of navigation blunders and collisions that a human player
was likely to cause, we were able to balance the implementation to make it accurate enough,
but not perfect. By removing the navigation as a dimension in learning model training, we also
reduced the complexity of planned learning tasks. This allowed our learning investigation to
be focussed on decision-making, rather than having an agent learn environment operations that

could be solved with more reliable and less computing-intensive methods.

Agent Simulator

With the support for autonomous agents in place, we moved to develop a configurable simulation
environment to execute agent training and inference scenarios. The simulator was implemented
in the form of a partial game environment extracted from 60 Seconds!, restricted to the selected
scavenge game type functionality. The simulator was designed to be configurable, making it
possible to parametrise executed scenarios with respect to a range of input variables. The main

features of the simulation environment are:

e Human-controlled gameplay of scavenge games to play the game.

» Simulating agent behaviours in inference mode, on the basis of previously trained learning

models or BT assets, with respect to the parameters provided.
* Generating new gameplay trajectories in Al inference or human play mode.
* Replaying previously recorded scavenge gameplay trajectories.

* Generating Unity compatible demonstrations, used for IL in ML-Agents, from previously

recorded scavenge gameplay trajectories.

* Training agent ML models in training mode, on the basis of parameters supplied, to gen-

erate new learning models using ML-Agents.

>Using Unity’s NavMesh Agent component.
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The simulator was deployed using Unity engine version 2023.2.20f1 as a standalone, Microsoft
Windows 64-bit based executable. It can be executed without ownership of the original version
of the game 60 Seconds!. Please be aware that assets contained within the agent simulator
environment are covered by copyright, and as of 2025 are the property of Robot Gentleman sp.
Z 0.0.

The simulation environment scenarios are configured using parameters provided in JavaScript
Object Notation (JSON) text files, featuring relevant settings for the simulator environment, the
procedure, and the simulated agent. Additional configuration is possible on the executable’s
level to service non-display batch mode via Unity’s headless mode execution. Running multiple
instances of the simulator in parallel is supported in both visual and batch mode. The execution
speed of the simulation environment can be configured in the range [0.0, 10.0] to compress in-
ference time, at no loss of processing steps. Training learning agents via ML-Agents is possible
in combination with the PyTorch based control. For ML training, hyperparameters are config-

ured using YAML setup files, required by ML-Agents.

Although we were able to apply Unity, the game environment developed in it, as well as ML-
Agents for our research, we encountered a number of issues during our work on the simulator.
The constraints of Unity’s physics system, extensively used in the gameplay logic of 60 Seconds!
for collision detection and navigation, limited the simulator. We originally planned to allow the
simulator execution speed to be increased without restrictions, but found Unity’s physics system
to become unstable and produce unreliable outputs if the execution speed was increased by more
than a factor of 10.0. In such a case, agents would no longer properly detect collisions with the
environment and other objects in it, miss interaction opportunities, and as a result generate in-
valid behaviours or violate the consistency of the game’s environment. This slowed down agent
training. We partially addressed this problem by employing an execution setup that combined
multiple instances of the simulator on a single machine, in a non-display batch mode. However,
our work with learning agent training was further hindered by central processing unit (CPU)
bottlenecks caused by the implementation of ML-Agents [55], and its parametrisation overriding
execution speed defined by the simulator’s configuration files. Since that was the case, when
training learning models, the simulation execution speed must be configured via ML-Agents
parametrisation. The structuring of the context agent design also implied that more than one
ML model would be used at the same time. While this caused no issues for inference scenarios,
training multiple models in a single environment was not possible. This informed the training
pipeline for context agents to execute individual training for each of the models, while other
models operated in inference mode, or were absent, and their logic was facilitated by ad hoc

fallback representations.

The presented simulation environment, developed on the basis of the commercial game 60 Sec-
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onds!, constitutes research output Q2. The use and configuration of the simulator are docu-
mented in Appendix C.

4.4.4 Experimental Evaluations

To run experimental evaluations with human players, we augmented the scavenge challenge
game mode in the commercial version of 60 Seconds! to make it a deployment driver for the
planned evaluation trials. This allowed us to take advantage of the original, unaltered setup of
the game, which was familiar to its users, and reach the game’s large userbase, capable of gener-
ating valid gameplay telemetry data in their natural play environment. Deploying experimental
evaluations as scavenge challenges made it intuitive to extract and isolate sample datasets from
individual experimental trials. To frame research challenges as part of the ongoing update pub-
lishing pipeline of the game, developers agreed to release them as instalments of the Rocket
Science DLC. Rocket Science was an open-ended update package, which delivered new, free-of-
charge scavenge challenges to the players of 60 Seconds! on a semi-regular basis. Completing

each challenge unlocked a cosmetic reward.

Figure 4.5: Scavenge challenge selection, including experimental evaluations.

The chosen approach made it possible to utilise the natural flow of the game, and get users
involved with our research, without special recruitment or training. Research challenges were
available in the context of the game’s regular scavenge challenges. They were presented using
the same GUI, making them easily reachable to potential participants. Presentation of research
challenges differed from the standard challenge presentation format at the point of providing
challenge details. For regular scavenge challenges, only their goals were outlined, while exper-
imental evaluations featured complete information about their research context. The scope of
the information presented was documented in Appendix B. Additionally, the research challenge
user interface included informed participation consent and age verification check boxes, which
had to be checked to start any given experiment. Those controls were included to ensure that
only willing players over 16 years of age took part and contributed their gameplay data in re-
search challenges. Participants were also free to opt out of contributing to the data collection

outside of the research challenge interface. The opt-out was accessible from the game’s main



CHAPTER 4. CONTEXT-GUIDED AGENTS 71

menu user interface setting section.
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Figure 4.6: Experimental evaluation consent and information form.

Research challenges replicated the flow and setup of regular scavenge challenges. Players were
placed in a scavenge environment, designed by the author, and given a collection goal to fulfil
within the 60-second timeframe. Collection goals were either defined as a list of ifems to col-
lect or as a general objective of acquiring as many items as possible, within the time limit. In
the former case, an experiment was completed as soon as the player had collected all the items
listed. Otherwise, the challenge continued until the timer had run out. Players were given an

exploration time of .y, = 5 s, before the #.q, = 60 s collection period.

-

Figure 4.7: Scavenge challenge game session.

To allow for designing independent, as well as repeated measures evaluation trials, we intro-
duced additional setup functionality for deploying scavenge challenges with a sequence of en-
vironments. It made it possible for experiments to involve any number of environments or
environment variations, chosen in a pre-designed manner or at random. In such cases, only after
playing all the environments was the experiment reported as complete. Scavenge challenges
yielded a visual reward, in the form of a wearable survival character hat, which was issued to
a player after they completed the challenge. Research challenges took advantage of this fea-
ture and provided users with a unique visual reward for each completed experiment. No other

gratification was provided to the participants.
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4.4.5 Game Environment Changes

While we attempted to minimise the number of modifications introduced to the game environ-
ment in the course of our instrumentation work, some changes were necessary. Most notably,
the use of ML-Agents required us to upgrade the Unity engine version used by the game from
version 5.6.6f2 (released in 2018) to 2023.2.20f1 LTS (released in 2024). This was a signifi-
cant change, covering an upgrade of several key systems and warranted a thorough review of
the game’s functionality. It included technical adjustments and code changes in different parts
of the game’s codebase, necessary to remove deprecated API calls and adhere to the changed
development environment setup. Before proceeding with our research work, we confirmed that
the original functionality of the game remained unchanged. Another significant intervention into
the game environment was a result of introducing the autonomous agent support, discussed in
the Autonomous Agent Support section, combined with the support for learning model training
and inference. Introducing a navigation mesh to facilitate agent navigation required generat-
ing navigation mesh assets for each of the game levels used by agents. Revisions of the data
collection code of the game, referenced in the Data Collection section, also contributed to the
programming work involved in instrumentation of the game environment for the purposes of our

research.

4.4.6 Summary

The instrumentation work required to conduct our research constituted a significant program-
ming effort, but despite complications, it was completed successfully and without disruptions
to the game’s functionality. Additional information about the software used, solutions imple-
mented, as well as the agent simulator created for the purposes of our research can be found in
Appendix C. Research outputs O1, 02, and O3 were documented as part of the instrumentation

of the game environment of the commercial game 60 Seconds!.

4.5 Gameplay Telemetry Dataset

4.5.1 Overview

The mass-scale gameplay telemetry dataset used in our research was crowdsourced from the
user population playing the scavenge segment of the game 60 Seconds!. In May 2016, the
developers of the game deployed a data collection pipeline to remotely source gameplay data
from the scavenge segment of the game. They intended to use the collected data to analyse
gameplay trajectories of their players, and to potentially use the results of their investigation in
future design work for the game. The developers’ consent to use the data collection pipeline

and output in our work afforded us the opportunity to conduct our research and to assist them
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in improving their data collection mechanism. As referenced in the Data Collection section
of the Game Environment Instrumentation discussion, collected data was limited to gameplay

trajectories from the scavenge segment of the game.

4.5.2 Raw Data
Overview

We designated the samples collected from users as raw data. We found the raw data sample
format that had been originally implemented by the developers to be ill-structured for analysis.
To make it usable in our research, we deployed and applied a multi-step transformation and
clean-up procedure to the collected raw game samples. This procedure produced a dataset of

processed game samples that we were able to analyse in a normalised manner.

Format

The game sample data was recorded in a plain, textual ANSI format for human readability. Data
points collected for game samples were aggregated in a continuous string of relevant data groups
and data points, separated with appropriate tags and a common separator symbol. Data groups

contained in a game sample included:

* Game setup and progress: game parametrisation and progress information, including
such parameters as game type and difficulty, important timestamps and the data on the

end state reached.

* Room setup: environment’s architecture, randomisation information of room positional

and type data.

» Item setup: positional and type data for all items placed and available for collection in

the game’s environment.

 Navigation trace: positional data records for player avatar, sampled at f = 100 ms, time

stamped.

* Collections log: all recorded instances of ifems picked up by the player avatar, time

stamped.
* Deposits log: all recorded instances of player depositing carried items, time stamped.

* Collisions log: all recorded instances of player avatar colliding with a collidable object in

the game’s environment, time-stamped.

The structure of the developer-deployed data sample format, referred to as the raw data sample

format in this thesis, is documented in Appendix A.
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Collection

Developers of the game implemented data sample collection as a decentralised, client-side-
driven process. The instance of the game running on the user’s desktop computer was respon-
sible for recording the sampled data, serialising it into a textual file and then transmitting that
file to the developer’s secure, online storage via a dedicated web service. If the transmission had
failed, the sample file remained on the user’s computer’s local storage until the next time the

game was run, and another attempt at file transfer could be made.
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Figure 4.8: Scavenge gameplay telemetry data collection pipeline flow chart.

Data logging was triggered at the start of the scavenge gameplay and continued until the game
was over. Readily available game setup data was immediately captured, while emerging infor-
mation was recorded continuously. Interaction events invoked by the player avatar were logged
point to point, and the navigation trace was sampled at a frequency of f = 100 ms. Playthrough
completion information was added at the conclusion of gameplay. At this point, the full game
sample was serialised into a file and stored offline, on the user’s hard drive. An attempt to trans-
mit the generated file to the developer server was made as soon as the local file input-output

operations were completed.

The data collection procedure was automatically invoked for any started scavenge game, in any
game mode. Abandoning or restarting a playthrough was possible through an in-game on-screen
user interface, accessible when the game was paused. In such cases, the game sample was still
recorded but appropriately tagged as aborted by the user. As a result of such interruption, certain
pieces of data, most importantly the full navigation trace, would not have been recorded in com-

parison to a finished game. External interruptions, such as system or hardware-level shutdown
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of the game application, were not handled by the game data logging, effectively resulting in a

complete loss of the sample and any data collected for it.

Revisions

In the course of our research work, we assisted in improving the data collection mechanism and
revising the format of the raw game sample data. This was necessary to eliminate issues with the
data collection implementation, as well as the raw data sample format. Due to problems encoun-
tered, only samples recorded in the final format version, available since 2017, were considered
valid for use in our research and were used in our work. We detailed the extent of updates that

had been introduced to the data collection pipeline in the Data Collection Errors section.

4.5.3 Processed Data

Format

The processed game sample data was a product of extracting the original, raw sample data and
processing it in a series of steps to generate a structured JSON file. JSON is a widely adopted
open standard file and data interchange format. It was chosen as the target format to simplify
the process of handling the data, interfacing it with third party analytics libraries and code, and
to later simplify sharing our dataset with the research community. In comparison to raw data,
processed data has an enforced data group structure. All data points contained within a data
group are individually tagged, according to the JSON format standard. No custom separators or
non-standard aggregations are necessary. While all relevant data content from raw samples is
replicated in the processed samples, some data elements were found to be redundant and were

removed.

The structure of processed game samples is documented in Appendix A.

Game Design Data

To introduce normalised game context values into our data processing pipeline, and later analy-
sis work, we extracted all relevant game design values from the game 60 Seconds!. The values
were sourced from the game’s implementation and design documentation, provided by the de-
veloper. All extracted design values were numerically indexed to normalise their representation
and potential references. Extracted game design values were serialised using the JSON file for-
mat and each game design value category was stored in a dedicated file. Stored value collections

included:

* Difficulty data: identification and basic setup of each difficulty level that can be selected

for a specific game.
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* Game type data: identification of all game types that can be played and influence the
conditions of a specific game.

» Item data: details of each item type available to be collected in the game.

* Environment data: layout details for all environments found in the game.

The structure and contents of game design data files are documented in Appendix A.

Processing

Initial investigation of the raw dataset shared by the developer, as well as the format of data
samples recorded, revealed that we would not be able to use them directly without additional
intervention. In order to make the acquired raw data usable in our research work, raw game

samples were subject to a multi-step transformation process involving the following stages:

» Reformatting
* Clean-up
* Normalisation

e Inference

To optimise processing, the transformation stages were not called sequentially but rather invoked
for specific portions of the process. This allowed us to rapidly recognise any issues manifested
at each step of the process. If the process was completed with no issues, a processed JSON data
file was generated. Any error detected immediately halted the transformation process. In such a
case, no output was generated for the processed game sample, and the discovered problem was

reported in the processing log.

The data processing pipeline was fully implemented using Python. Our implementation exten-
sively used the Anaconda scientific computing package for configuring the operating environ-

ment, combined with custom functionality to support data extraction and processing.

Reformatting

When working with the raw dataset, we quickly encountered problems with sampling and op-
erating on subsets of data. This motivated us to introduce an alternative serialisation of game
sample data into a well-structured and serviced storage format. Raw game samples were first
read into memory and parsed into textual tokens. Following the iteration of the known structure

of raw data files, we then encoded each data element into a JSON file stream.
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Figure 4.9: Gameplay telemetry data processing pipeline flow chart.

Normalisation
Only a limited portion of each raw data sample was altered during the reformatting stage, but in
some cases, specific data elements were subject to normalisation procedures to produce revised

data representation. This included:

 User identifier: Steam user identifier was obfuscated using a hashing algorithm with a
secret key input to anonymise users in research datasets, while preserving their unique

reference identifiers.

* Game design value inference: some data elements, rooted in the game’s design context,
were compressed to a numerical format. This allowed for the removal of redundant data,
while still referencing relevant game design data values in a globally normalised fashion.
Referenced values included identifiers for in-game objects, environments and game setup
data.

* Raw timestamps: raw data timestamps recorded directly from the game were expressed
in terms of internal game time, measured from the launch of the game application to its
closure. In order to operate on a comparable time frame for navigation and interaction
traces, we normalised their timestamps to a clamped time range [0, #,,4], where t,,; rep-

resents the normalised conclusion time of a specific game sample.

Clean-up
Reformatting and normalisation stages resolved a range of issues, significantly reducing the
number of raw data sample processing errors. However, we were not able to address all the

issues present. This included:

» Raw data sample serialisation with an obsolete file format.
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» Data samples with no player avatar navigation trace.

* Data samples originating from non-Steam versions of the game, likely pirated.

The first two issues resulted in key portions of the sample data being missing, rendering such
samples unusable. In the last case, we were unable to identify the user who generated the game
sample. Considering the scale of the raw dataset, we decided that it was optimal to maintain the

policy of full sample rejection if any of these issues were found in a data sample.

Inference

To complement the data found in raw samples, the processing routine was concluded with an
inference stage, covering the derivation of complementary game setup, interaction and naviga-
tion information. While some of the data we inferred could have been captured at the time of
in-game data logging, we decided against extending the data collection to accommodate that.
We assumed it would have altered the data collection functionality in a way that could have af-
fected non-experimental samples. It would have also resulted in increased sizes of raw data files,
significantly increasing an already large dataset. All inferred data was included in the output,

processed file, and was used in our analysis work.

The first part of the inference focused on filling in missing description data of the game setup.
The second part extended game samples with additional data, such as traversal and timing in-
formation inferred from the analysis of navigation log sequences. We also inferred a collection
of player interaction and navigational behaviour data for specific gameplay stages of scavenge,

derived from the game’s design and game’s progression cues, provided to the player:

* Preparation: exploration time before collection begins. Allotted time based on the diffi-

culty chosen - zox, =08, foxp = 5 8 OF feyp = 10 s.

* Early game: game flow from the beginning of the collection period at # = O s, until the

game’s mid-point, where ¢ = 30 s.

* Late game: game flow from the game’s mid-point #,,, = 30 s, until the conclusion of

scavenge gameplay att = 60 s.

Not all valid game samples underwent full inference processing. In some cases, inference had

to be cancelled, because it was not possible to normalise the sample data:

* Tutorial mode games: tutorial games did not follow the game’s regular scavenge ruleset,
such as enforcing the time limit and could not be compared against games abiding by that

time limit.
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* Paused games: pausing a game violated the natural flow of gameplay and may have
indicated cheating behaviours. It also resulted in a loss of objective mapping of time spent
in the gameplay environment, introducing discrepancies when comparing paused games

with non-paused games.

Samples with cancelled inference were not used in our analysis work. However, they remained

in the dataset for potential future use in an alternative research context.

4.5.4 Data Handling Challenges

Data Volume

Due to the large volume of data contained in the mass-scale gameplay telemetry dataset, pro-
cessing and exploration of relevant data had proven to be time-consuming. While operating
on sampled subsets of data was feasible, any actions applied to the full game sample population
dataset, or its larger portions, involved substantial amounts of time and compute. This constraint

affected the amount of time we spent on data handling in the course of our research work.

Data Collection Errors

The data collection functionality, originally deployed in 2016, had suffered from several issues,
which compromised collected data samples. These problems were only identified in the course
of our data collection and processing work. While this allowed us to assist developers in refining
the functionality and data formats, the work involved consumed a significant amount of time.
Our initial efforts to salvage the existing dataset were not successful. It was not until the fourth

iteration of the data collection mechanism, deployed in January 2017, that it had proven reliable.

We advised and assisted developers on resolving the following problems:

 Server-side dating: introducing server-side, reliable game sample file dating. Originally,
developers trusted the player’s system to provide a valid date and time of sampling. This
had proven unreliable, as many players manually changed their system dates, most likely

to circumvent application license protection.

» Separator issues: fixing missing separators between data elements, which corrupted data

file formatting.

* Data group tagging: improving sample data file structuring by including identification
tags for aggregated data groups. Prior lack of tags resulted in mixing of data groups in

some edge cases.

* Environment state: expanding the scope of player interactions recorded in data samples,

originally only limited to those invoked by the player avatar.
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* Unfinished games: adding support for recording unfinished games, aborted by players
before the gameplay was concluded in accordance with the game’s designed flow and a

fail or a win state.

Data Collection Gaps

Due to a number of server-side outages of the developer-hosted data transmission web service,
the raw sample data collection suffered from several interruptions. As a result, some of the game
samples generated by users were not uploaded to the online storage and were not included in the
final sample dataset. We were unable to estimate the exact number of samples that were lost to

these outages.

Withheld Data Files

It is likely that more raw game samples were not acquired due to user-side connectivity issues.
Players without an Internet connection or playing offline may have never had their game traces
uploaded. However, since Steam users are required to stay online to download and update their
game library, we believe the number of such cases is limited. Nevertheless, this problem may
have contributed to increasing data collection gaps, as well as the significance of the unknown

player experience issue.

Unknown Player Experience

Since the raw sample data collection was not running at the time of the game’s original release,
it is likely that the final dataset was missing full game histories for an unknown number of
recorded users. Additional reasons for missing games included data collection gaps and with-
held data files. This could have been a significant issue if we were to analyse and compare
individual player track records. However, since we were interested in analysing the population
and its subsets, we assumed that the scale of the dataset and approximations, derived from trends

exhibited by the user population, mitigated the impact of missing samples.

Hardware Issues

Due to the variance of the Steam user population, the range of hardware configurations used by
players was most likely very wide. Successful recording of a game sample indicated that the
computer used to play the game met the minimum hardware requirements of 60 Seconds!, as
outlined by the developer. However, we cannot assume that all the game samples were recorded
with the game running optimally. 60 Seconds! allows users to manipulate their in-game tech-
nical settings. A wrong technical configuration may result in subpar performance of the game.

This could cause technical issues, such as frame rate drops, impacting the user experience and
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potentially user performance. We were not able to identify games suffering from such prob-
lems due to the lack of hardware information tracking. However, this had no impact on the data
recording itself, since scavenge sampling frequency is bound to the game’s time flow and other

data points were recorded point to point.

Uncontrolled Data Collection Environment

Since players had their games recorded in their natural play environments, we were unable to
exercise any control over their real-world play conditions. This made our experimental evalua-
tion trials with real users inherently less controlled and vulnerable to interruption. However, the
lack of control over the play environment was consistent with our intentions, as we assumed that
users interacting with the game in a natural way generate realistic data. Minimal environment
control, the absence of an observing and controlling party and no direct contact between the re-
searcher and the player limited the impact of external factors on generated data. We also believe
player motivations to play the game were natural, as they operated in an environment and the
context of the game they knew, of their own volition. We assumed this approach to be valid for
our research since the data collected was neither sensitive nor mission-critical, and our research

work was focused on approximated data models.

Account Swapping

One of the issues resulting from the lack of full control over the data collection environment
was that some users could have shared their Steam account with other users. This manifested
in abnormally varied player skill and a high number of game sessions, originating from a single
user account. To avoid contaminating the dataset with such unreliable data, all user accounts
suspected of serving more than one player were classified as outliers and excluded from the

dataset.

Lack of Qualitative User Data

We decided to focus on quantitative, data-driven methodology for our research and did not seek
to acquire additional qualitative data from users. This stopped us from collecting user data that
might have provided alternative insight into user behaviours, but it also reinforced our approach
of not introducing additional bias to the users involved and the data acquired. Since that was the

case, we did not consider it a limitation from the perspective of our research work.

Explicit User Consent and Age Verification

Conducting experimental evaluations using modified versions of the game’s environment re-
quired explicit consent from the users involved. To address this, we integrated consent forms

into the game’s on-screen user interface. These forms asked players to confirm their intention
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to participate in an experiment and to verify that their age is above 16. These forms also pro-
vided information about the nature of our research, the goals and flow of the experiment and the
researcher’s contact details. Without providing explicit consent and age confirmation, players
were not allowed to participate in any of our experimental trials. This was the only point of de-
viation from the natural flow of the game. Documentation of evaluation consent and information

forms can be found in Appendix B.

User Data Collection Concerns

Despite the limited impact of research instrumentation and observation, we assumed some of
the users participating in our experimental trials may have had concerns about being rated or
compared to other players. Since our intention was to evaluate play skill exhibited in game sam-
ples, and to use it in further analysis, this was a valid concern we had to address. Experimental
trial forms integrated into the game’s user interface included information that individual data
samples were to be anonymised and processed into a large dataset. We indicated there was no

way for us, or third parties, to link individual game samples to specific users.

Data Processing Errors

A minor number of data processing errors were traced to user-side technical problems. This
was only discovered during our data processing and analysis work. Local file input-output and
transmission errors corrupted game sample files to a point, where we were not able to salvage
their contents. As discussed before, we decided that the most optimal approach was to reject any
data files that exhibited non-fixable errors. Since the number of excluded samples was relatively
small for the size of our dataset, it was deemed acceptable. We incorporated selected sample

rejection as part of the data cleaning procedure.

Data Confidentiality

Keeping user data confidential was a priority for the research and development team. It was
achieved through a strict protocol of data handling. All data collected in the game was uploaded
to the developer’s secure, online storage. When downloaded for offline data storage and process-
ing, the data resided exclusively on dedicated servers and workstations, physically located in the
developer’s offices. The game sample dataset was not distributed outside of the developer’s net-
work, and access to it was restricted to selected personnel. No user personal information was
stored in the dataset. It was not possible to identify users from processed data, as samples were
anonymised by identifier obfuscation through a one-way SHA-256 hashing function. As a re-
sult, the processed dataset contains no real identifiers or quasi-identifiers. We decided against
applying more advanced privacy measures, such as k-anonymity [213], as additional suppres-

sion or generalisation of data samples would have limited our analysis capabilities. At the same
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time, the risk of identifying specific users from their recorded gameplay telemetry was deemed

minimal.

Data Variance

With a large volume of collected data samples in uncontrolled environments, it was possible
for the dataset to exhibit unexpected variance. We assumed this to be a risk and conducted our
data analysis employing regular dataset sampling and testing methods to identify and process

potential data skew.

4.5.5 Ethics

The Steam version of the game requires players to agree to the custom End User License Agree-
ment (EULA) before launching 60 Seconds! for the first time. The EULA, presented in Ap-
pendix B, contains a permission for collecting gameplay telemetry data for the purposes of
analytics and research. This allowed developers to deploy the original data collection function-

ality and start accumulating game samples for internal use.

Utilising the developer’s gameplay telemetry dataset in our research was deemed ethically ap-
propriate, since it was sampled from an unaltered game, covered by the game’s EULA. However,
conducting experimental evaluation trials in a modified game environment necessitated addi-
tional scrutiny. As referenced in the Evaluation section, it was approved by our college’s ethics
committee. This led to an appropriate framing and presentation of the experimental procedure
within the game environment, as well as integrating relevant consent forms. As documented in
the Experimental Evaluations section, we had included consent and age verification checks, as

well as information about the nature of our experiments, into the game’s environment.

Data used for our research was subject to a data handling protocol agreed upon by the developers
and the author. Raw datasets used for research work were never exposed to third parties and
were stored securely on server storage controlled by the developers. Processed datasets were

anonymised and stored on server storage, operated by the developer of the game.

4.5.6 Summary

In the course of our data collection and processing work, we have revised the data collection
functionality in the game 60 Seconds! and developed a processing procedure to transform ac-
quired data samples into gameplay trajectories that would be usable in our research. The estab-
lished pipeline allowed us to collect a raw game sample dataset of 11,925,961 samples from the
live audience of the commercial version of the game 60 Seconds!. Data was collected between

January 2017 and May 2022. The accumulated raw game sample dataset was then transformed
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using our processing pipeline in May 2022. The output processed dataset contained 8,244,111
valid game samples for 808,659 unique users. Approximately 30.87% of raw trajectories were
rejected, due to samples originating from non-Steam users (19.23% of collected samples), ob-
solete file format (11.18% of collected samples) and other processing errors (0.46% of collected

samples).

The processed gameplay telemetry dataset, generated in the course of our collection and pro-
cessing work, constitutes the research contribution C3, and one of the primary outputs of our

thesis. More information about the dataset is provided in Appendix A.

4.6 Conclusions

This chapter established the foundations of our research and initiated the preparatory work re-
quired for the empirical, analysis and evaluation efforts carried out in Chapter 5: Game Score

Study and Chapter 6: Agent Study. Content documented in this chapter includes:

* Methodology, procedures, and requirements of the planned research work.

» Evaluation of the context-guided agent model, taking advantage of the instrumentation of

the game environment.

» Context-guided agent design and deployment workflow proposal, to be used for develop-

ing the target agent model in Chapter 6: Agent Study.

e Instrumentation of a commercial game environment of the game 60 Seconds! to conduct

data collection and processing, experimental evaluations, and training of agent AI models.

* Processed gameplay telemetry dataset to be investigated in Chapter 5: Game Score Study

and later used to train agent models in Chapter 6: Agent Study.

This chapter has addressed research question RQ1 from a theoretical perspective, by demon-
strating a design approach for integrating learning into the game industry state of the practice
ad hoc behaviour Al architecture, while providing industry viable execution and performance

guarantees of integrated learning.

In the course of this chapter, we have documented the following research contributions:

* C1: industry applicable context-guided learning agent design and deployment workflow
proposal; presented in the Context-Guided Agent Design section.

» C2: extension of the BT learning node concept, featuring additional safety redundancies;

presented in the Safe Learning Integration section.
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* (C3: a mass-scale, processed gameplay telemetry dataset from the game 60 Seconds! that
was used in our research and later shared with the research community; presented in the

Gameplay Telemetry Dataset section.



Chapter 5
Game Score Study

Summary. This chapter documents the investigation of the gameplay telemetry dataset, with
respect to the game context-derived score metric. The proposed metric was used to quantify
play skill exhibited in the recorded samples and to conduct a statistical analysis of the game
score distributions to extract a baseline dataset. Finally, we clustered gameplay trajectories from
the baseline dataset to establish a top play skill persona that could be used in the training of

context-guided agents.

5.1 Overview

5.1.1 Goals

The objective of this chapter is to conduct a statistical analysis of the gameplay telemetry dataset
in order to quantitatively investigate the play skill exhibited by the game’s players and use it to
establish the ground truth for modelling the game’s top play skill persona. We achieve this by
proposing a game score metric to objectively, quantitatively measure gameplay performance in
individual play sessions, recorded in the gameplay trajectory dataset. We expressed the subgoal
of observing play skill variations based on gameplay performance aligned score metric as a local

research question RQG, to be addressed in this chapter:

* RQG: is there an observable, quantifiable difference between the gameplay performance-
based play skill exhibited in gameplay trajectory samples from the scavenge segment of

the game 60 Seconds!?

The score metric constitutes research contribution C4. By applying it in the investigation of the
gameplay telemetry dataset, we aim to derive relevant observations about game score distribu-
tions that would lead to clustering a normalised, baseline subset of the population dataset, with
respect to play skill identified. Producing a play skill classifier constitutes research output O4

and will allow us to produce the top-skill play persona dataset. The analysis conducted in this

86
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chapter constitutes the research contribution C5.

Research contributions and outputs reported in this chapter include:

* C4: game score metric for quantitatively measuring play skill in terms of gameplay per-

formance in the scavenge segment of the game 60 Seconds!.

» CS: analysis of game scores measured for the gameplay telemetry dataset from the scav-

enge segment of the game 60 Seconds!.

* O4: k-nearest neighbours classifier of play skill in the scavenge segment of the game 60

Seconds!.

5.1.2 Structure

The chapter is divided into the following sections, detailing the investigation of the gameplay

trajectory samples, with respect to the game scores recorded:

* Game Score: defines a game score metric for quantification of play skill in each recorded

gameplay telemetry trace and establishing the basis for numerical analysis in our research.

* Game Score Exploration: explores the gameplay telemetry sample population with re-

spect to game score distributions observed in the dataset.

* Baseline Dataset: extracts a normalised, baseline dataset from the gameplay telemetry

sample population to investigate the game score distributions further.

* Play Skill: investigates the concept of play skill in the game and conducts clustering on

the baseline dataset to identify different levels of play skill.

 Top-skill Persona: extracts a persona gameplay trajectory dataset, representative of the

ground truth for generating a top play skill persona game-playing agent model.

5.2 Game Score Metric

5.2.1 Play Skill

The element of tension and solution governs game playing. Tension is uncertainty, and players
strive to "succeed" in order to resolve it [109]. Player proficiency in achieving success should
be estimated with respect to the context of the game by defining a task success metric, derived
from the context of the user’s interactions [248] or aligned with the game’s gameplay goals [64].

Such an estimation of a player’s gameplay performance can be considered indicative of their
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play skill in the game environment. In multiplayer games, establishing user play skill can be
based on comparing them against other players, as is the case with the Elo rating system for
Chess [70]. In single-player games with custom game environments, it is usually necessary to
derive a local play skill metric based on the game context, unless an alternative, data-driven

approach can be applied.

Sources of uncertainty in games are varied, ranging from incomplete information to chance fac-
tors. Skill-based games predominantly rely on play skill, and chance has limited or no influence
on their outcomes [65]. Use of chance elements in video games to maintain uncertainty across
multiple playthroughs and promote replayability is standard practice in the game industry [78].
It is most commonly achieved through randomisation of the state of the game environment. Im-
pact of chance differs from game to game, but the mere presence of randomness does not imply
a game is not skill-based [46].

5.2.2 Play SKkill in 60 Seconds!

Our investigation into play skill observed in gameplay trajectories from 60 Seconds! was lim-
ited to the scavenge segment of the game, since only the data from that portion of the game was
available to us. As stated in the Data Collection and the Gameplay Telemetry Dataset sections
in Chapter 4: Context-Guided Agents, developers of the game had not implemented a data col-
lection mechanism for the survival segment of the game. As we were not allowed to instrument
survival, it was beyond the scope of our research to obtain and use data from that portion of the

game.

The majority of uncertainty the player is faced with in each playthrough of scavenge stems from
the imposed time pressure, while trying to balance out environment exploration, strategising
item collections and deposits, and ensuring the safety of the avatar before the time runs out.
Player interactions are in no way influenced by chance. The starting state of the environment is a
result of random level selection and randomised object placement in the level. This is a common
feature of many skill-based games, which vary their start state to enhance replayability [46]. It
may be perceived as unpredictable by inexperienced players. However, since there is a fixed
number of levels and object placement locations for each of the levels, there is a finite number
of environment randomisation combinations. The player will eventually be able to observe
repeating environment combinations, reducing uncertainty generated by randomness. Thus, we
considered the scavenge segment of 60 Seconds! to be pre-dominantly skill-based. And so, we
assumed the scavenge play skill had the potential to be a relevant measure for investigating the

game and its dynamics.
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5.2.3 Metric Proposal

Scavenge gameplay performance in 60 Seconds! was not directly quantified by the game itself.
To quantify and measure it in terms of play skill, we had to define a custom measure of play skill
for the game. We proposed to derive a quantifiable and normalised custom measure to score
player-generated gameplay trajectories with respect to the game’s design context and values
[102], which were available to us from the game data assets. The devised metric was based on
measuring the player’s success using completion score s, and collection score s.,;, and then
combining them into a full score metric s for each game trajectory recorded. Full game score,

and its completion and collection components, were all normalised to a value range of (0.0, 1.0).

5.2.4 Completion Score

The completion objective of the game’s scavenge section is measured as a binary value, which
provides an inherently objective identification of the outcome as a success, or failure [248],
which corresponds to a game session ending with a failure or a success state. There is no addi-
tional qualification for the degree of failure or success. A success is objectively and intrinsically
desirable as a manifestation of the player’s competence in the game. It also provides extrin-
sic motivation in the form of rewarding the player with progression into the survival section of
60 Seconds! [102]. A failure concludes the game with a fail state. Based on that, we quantified
them as minimum and maximum values on the normalised value range, assigning the completion

score of s¢om = 0.0 to a game that was not completed, and s¢,,,, = 1.0 to a completed game.

5.2.5 Collection Score

Scavenge gameplay sees players foraging and depositing actions as many items, as possible,
within the time limit #,.,,. Each type of ifem has a weight w assigned to it, which consumes
the player’s limited inventory space i = 4. While game progression is not possible without
completion, on its own, it does not represent the full extent of play skill exhibited. Hence, we
required a complementary success metric [248]. We could not directly convert the number of
items collected into an objective score value, as varying weights make some items potentially
more valuable than others. However, since these weight values are rooted in the game’s context

and gameplay mechanics, we decided to use them to establish a valid collection metric.

We initially investigated an alternative approach that would have combined the cost of item
collection in scavenge based on weight, and its utility value in survival. Although we had access
to survival design data, it was not possible to objectively estimate ifem utility, beyond the number
of times it appeared as an option in different events. However, for many events the value of item

use was not constant, as its effects could vary based on the game state, affected by the player’s
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decisions and randomness. Another way to define a custom metric was to derive it in a data-
driven fashion from the gameplay trajectory dataset. While this would have been the preferred
option, we decided against it due to the limitations of the dataset. Since we did not have access
to any survival gameplay trajectories, it was impossible to determine how specific item sets C
collected in scavenge would have impacted player gameplay performance in survival. Without
such a grounding, we would have had to estimate values of items based on their collection counts
recorded in the dataset. This metric would have suffered from a potential bias of how players
perceive the value of an item, versus how valuable it truly is from the perspective of gameplay.
With the information at our disposal, we were unable to estimate or even confirm whether such
a bias was present in individual trajectories. Thus, we decided to use a relatively simple metric,
directly rooted in the game’s design context.

To calculate the collection score, we had to consider the set of items collected C by the player
from the set of all items available to be collected T in a scavenge environment e. To arrive at a
normalised collection score, we divided the sum of weights of items collected C by the sum of

weights of all items to be collected T

ek
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3
I
—_
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1=
=
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This base formula is applicable to scavenge and full type games, as long as they follow a uniform
setup routine. That was the case in 60 Seconds!. The default set of collectable items available
T,; was always weighted the same, since the environment was populated with the same number
of items for every scavenge and full game session. The only discrepancies originated due to

specific game setup parameters:

* Extended item set: an additional item, the harmonica, was included in 7, increasing the

sum of weights of all items to be collected by w = 1.

* Character selection: depending on the avatar character selection, a different character,
with a different weight w, is added to T. If 7ed is selected, Dolores becomes a collectable

item with a w = 2. If Dolores is selected, Ted becomes a collectible item, with a w = 3.

However, alternative setups were possible. Changing the number of items to be collected could
have effectively skewed comparisons of the collection score between two samples with different
values of 7. To normalise the collection score for such comparisons, we introduced the normali-
sation factor s, by dividing the sum of weights of all irems to be collected T from a given sample

by the default item weight sum T;:

Sp= —.
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To calculate a normalised collection score for a sample with a T = T, the revised s.,; calculation

formula was proposed:

Scoln = Scol *Sn-

While the collection score could technically reach the maximum value of 1.0, it is unlikely for
players to score that high. Most scavenge environments in the game were designed so that it

would not be possible for players to collect all the items from T in the available scavenge time

tSCdV'

5.2.6 Full Score

The full score s was calculated as the arithmetic mean of collection score s.,; and completion

SCOI€ Scom:

_ Scom 1 Scol
—

We initially considered utilising a weighted average for the full score, prioritising collection
over completion score. However, the game’s context offered no objective indication of how to
weigh them against each other. Because all our assumptions were either based on numerically
objective measures or game design data, we decided to quantify them equally. Full score, as

well as its completion and collection components, were recorded for each scored game sample.

5.2.7 Scoring Game Samples

All valid game samples from the processed gameplay telemetry dataset were scored, as long as it
was possible to infer additional, relevant information from their original trajectories. The game
sample scoring procedure followed the score calculation methods outlined above. We integrated
the scoring procedure into the processing pipeline, incorporating the score calculation as the
final inference step. Instead of being deployed individually, scoring was included in the pipeline
to reduce processing time and handling overhead. Scores calculated for each game sample were
recorded as part of that sample, becoming an integral part of the processed gameplay telemetry

dataset.

5.2.8 Dataset Sampling

The processed gameplay telemetry dataset augmented with game scores was then prepared for
selective sampling with respect to the requirements of different stages of our analysis work. The

implemented sampling mechanism enabled us to extract data subsets with respect to multiple
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parameters provided.

We identified a list of global parameters to be enforced for all valid subset sampling, in order
to exclude outliers observed in the course of our dataset processing work. Identified global

parameters include:

* Game not paused: only games that were not paused could be used for analysis, due to

sample issues discussed before, and the resulting lack of full inference and score data.

* Game finished: only games featuring a valid conclusion could be used for analysis, since

games that were not finished did not contain full inference and score data.

* Movement recorded: only games with a navigation trace that recorded a non-zero player
avatar movement could be considered, as the opposite indicated a complete lack of player’s
gameplay engagement, either due to a software problem or a focus interruption on the

user’s side.

Data subsets used for analysis were stored individually and are part of the digital supplement to

the dissertation. They are documented in Appendix A.

5.2.9 Summary

We have proposed a game score metric, derived from the design context of the scavenge segment
of the game 60 Seconds!, to quantitatively measure play skill exhibited in individual game ses-
sions, including those recorded in gameplay trajectory data samples. While the proposed metric
is a custom measure, it is objectively rooted in the design and values established by the develop-
ers of the game. Beyond these pre-existing assumptions, no additional qualification of the play
skill context was introduced to prevent the inclusion of unfounded assumptions and ensure the
validity of the metric. As a simple point value, the measure can be numerically handled in a
straightforward manner, facilitating further analysis and supporting the data-driven, quantitative
nature of our research. For insight into a specific component of the score, we can refer to either
the completion or collection score values, rather than the full score. The proposed game score

metric constitutes the research contribution C4.

5.3 Game Score Exploration

5.3.1 Assumptions

The first goal of our work with the processed gameplay telemetry dataset was to conduct a top-
down exploration of the game score data sample population. This initial inquiry was expected

to direct our follow-up investigation, allowing for an informed utilisation of game scores as an
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analysis and evaluation measure. We began by defining inclusion criteria for what was con-
sidered a valid dataset, representative of the population. Selected parameters were to be used
to sample this population dataset from the origin gameplay telemetry dataset, and to allow us
to analyse the distributions of full, collection and completion game scores. Conclusions drawn
from this initial exploration were expected to shape our inquiry into the nature of completed and

not completed game distributions.

5.3.2 Sampling

We initiated the exploration of processed data by extracting game samples that would be used
for the analysis, from the complete origin dataset ORIG, to create the population dataset POP
(see table 5.1 on page 93). Although invalid data was rejected during processing, the dataset
ORIG still contained data points that would not have been useful in analysis, due to their lack
of inference data. This included paused, unfinished, or unrecorded movement game samples.
To make the newly produced dataset representative of the entire, relevant sample population,
we decided against prematurely enforcing strict sampling parametrisation. Sampling was only
parametrised with respect to game type, in an effort to extract reasonably normalised sample
collection. Dataset POP targeted full and scavenge games, since these two game types follow
the same gameplay ruleset, making their game samples comparable. They also happened to
compose the most numerous game sample subset in dataset ORIG, totalling 4,717,520 samples
(57.22% of dataset ORIG). Game samples of game types tutorial and scavenge challenge were
excluded in the process. The former had no inference data to be analysed, due to a completely
different gameplay flow. The latter uses an alternative ruleset and offers a different gameplay

experience, which is not directly comparable with full and scavenge games.

Dataset created POP
Sampled dataset ORIG
Sample size 4,717,520
Values s
Sampling parameter Value

Game type Full or scavenge
Paused False
Finished True
Game move distance d>0
Measurement Value
Min datasetPOPmin
Max datasetPOPmax
Mean datasetPOPmean
Median datasetPOPmedian
Mode datasetPOPmode

Standard deviation

datasetPOPstdv

Table 5.1: Sampling parameters and description of full score dataset POP.
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5.3.3 Full Score

When we first proposed the game score metric, we assumed that its full score s component would
serve as the primary quantifiable measure for analysis. However, preliminary, visual observa-
tions (see figure 5.1 on page 94) of the full score distribution of dataset POP samples revealed a
bimodality of the distribution. Two distinct peaks were observed, one for completed and one for
uncompleted games. The disconnect and the resulting shift were introduced due to the binary,
discrete nature of the completion score and how it was weighed against the collection score.
In terms of full score, a game that was not completed would have never scored higher than s
= 0.5, and a completed game would have never scored lower than s = 0.5. We considered a
single value to be a valid choice to reduce the dimensionality of score measurement. However,
the presence of a bimodal distribution, which disrupts a direct interpretation of emerging distri-
butions, prompted us to reconsider and analyse score data with respect to the collection score
instead. We were still able to follow through with our full score handling assumptions, since full
score and collection score were expressed in a uniform, normalised value range. The departure
from the intended reduction of dimensionality resulted in observing two game sample-dependent

variables: completion score and collection score.

10K '
84 Completed games (3311398 samples)
—— Not completed games (941055 samples)
i
8K 4

6K

4K A

Game sample count

24 2K A
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ok & . . . . .
0 . . ; . 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 Full score
Full score

Max not completed score
Min completed score

sample size n = 4717520

(b) Full score distributions of completed and not

(a) Population full score distribution.
completed games.

Figure 5.1: Dataset POP population full score kernel density distribution estimation visualisa-
tions.

5.3.4 Collection Score

The inspection of the dataset POP collection scores distribution (see table 5.2 on page 95) re-
vealed that the range of scores recorded s.,; = [0.0, 0.98] approximately covered the permitted
game collection score range. Despite that, an observable number of data points approached cen-

tral tendency with 50% of sample scores located in the range s.,; = [0.4, 0.54]. Visualisations of
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Dataset POP
Sample size 4,717,520
Values Scol
Measurement Value
Min 0.0
Max 0.98
Mean 0.46
Median 0.48
Mode [0.5]
Standard deviation 0.11

Table 5.2: Sampling parameters and description of the collection score dataset POP.

the underlying data distribution (see figure 5.2 on page 95) indicated the existence of a negative,
left skew, caused by a concentration of lower scores. While the general shape of the distribution
seemed to approach normality, the observed skew and the volume of outliers detected (2.64%
of dataset POP data points) had the potential to affect the character of the distribution. These
factors and the apparent lack of equality between mean (mpopc,; = 0.46) and median (Mpopco;
= (0.48) central tendency measures of the dataset suggested that the collection score distribution
POP was non-normal, non-symmetric, and skewed. To determine if the observed outliers had
any significant impact on the POP collection scores, we continued the investigation of the nature
of the distribution. Based on our research assumptions, we did not trim detected outliers, as they
appeared to be valid data points. Left-skewed concentration of lower scores was representative
of beginner-level players, who were still learning to play the game, and in the process achieved

low scores. This was consistent with a learning curve dynamic.

POP -

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Collection score sample size n = 4717520 Collection score somple size n = 4717520

(a) Distribution with data outliers. (b) Kernel density distribution estimation.

Figure 5.2: Dataset POP population collection score distribution visualisations.

We first reviewed whether the distribution was normal, to inform further analysis method selec-

tion. We confirmed its non-normality visually with a quantile-quantile (QQ) plot (see figure D.1
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on page 209), and quantitatively using the Shapiro-Wilk test [83,201] (& = 0.01, n = 4,717,520,
p=.001, s =0.98). We compared the distribution against 80 distributions in the SciPy library and
found no match'. To investigate the potential non-symmetry of POP we calculated the Fisher-
Pearson coefficient of skewness [284], arriving at a non-zero, negative value Spop = -0.81. We
conducted a two-sided skewness and kurtosis statistics-based test of distribution normality as-
sumptions [50] and confirmed under conditions examined (o = 0.01, s = 4,717,520, p = .001, s

=-632.97) the presence of a non-normal distribution skew.

Dataset created POP-NO
Sampled dataset POP
Sample size 4,592,880
Values Scol
Sampling parameter Value

Scol

Scol > OFpop—1 & Sco1 < OFpop—2

Measurement Value
Min 0.21
Max 0.73
Mean 0.47
Median 0.48
Mode [0.5]
Standard deviation 0.09

Table 5.3: Sampling parameters for dataset POP-NO.

To establish if the source of the skewness was caused by the presence of outliers we repeated
POP sampling but excluded outlier values beyond upper outer fence OF pop—> and lower outer
fence OF pop—1 of POP (see table 5.3 on page 96). We assumed the means of POP mppp and
POP-NO mpopyo to be equal, which would have indicated the outliers had no significant effect
on the collection score distribution POP. In such a case, extreme collection scores would not bias
the distribution, rendering its mean less reliable for evaluating the central tendency of collection
scoring. Since POP was in violation of normality assumptions, and POP-NO was sampled from
it, we decided to extrapolate both these datasets via bootstrap m by n resampling with replace-
ment (see table 5.4 on page 97) with m = 1499 resamples at Cochran calculated subsample sizes
of npopp = 16,530 for POP and nppopgyo = 16,528 for POP-NO. The resampled data samples
were then used to calculate the standardised mean difference, using the Cohen d standardised
effect size measure. The outputted values formed distribution POP-B, which approached nor-
mality per the Central Limit Theorem. This allowed us to conduct an assumption-free analysis
on the source data and test if outliers had an impact on the collection score distribution mean,
expressed as Cohen d dpppp between POP and POP-NO.

!'Using distribution fitter code authored by Thomas Cokelaer [41].
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Source data Bootstrapped distribution POP-B 99% Clpopnos
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP 16,530 | Cohend 1499  -0.08 -0.08 0.01 -0.12 -0.04 -0.12 -0.08
POP-NO 16,528

Table 5.4: m by n bootstrapping for testing the standardised difference of means between POP
and POP-NO.

We tested the alternative hypothesis of inequality of means between POP and POP-NO using
a o = 0.01 significance level two-tailed test with resample size m = 1499. Bootstrap hypothe-
sis testing was applied to establish and compare confidence intervals of the resulting Cohen d
value distribution POP-B using the percentile method. Confidence intervals were found to be
Clpopnvog = [-0.12, -0.08] for the POP-B value distribution, and Clpppyon = [-0.04, -0.0] for
the distribution under null hypothesis. Under conditions examined, the test results (p = .001)
rejected the null hypothesis, indicating that the outlier influence on the mean collection score in
POP was statistically significant. However, the values in the interval Clpppyop represented an

effect size below what was considered a small effect (d = 0.2), by Cohen [40].

Source data Bootstrapped distribution POP-BMSE 99% Clpopymse
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP 16,530 MSE 1499 0.02 0.02 0.0 0.02 0.02 0.02 0.02
POP-NO 16,530

Table 5.5: m by n bootstrapping for MSE calculation of POP and POP-NO.

To evaluate the bias of the outliers, we estimated the mean squared error (MSE) confidence in-
terval between datasets POP and POP-NO. Once again, we utilised bootstrap m by n resampling
with replacement (see table 5.5 on page 97) with m = 1499 resamples at a uniform, Cochran
calculated subsample size of n = 16,530 to maintain consistency for MSE calculations. The
resampled data produced distribution POP-BMSE, with confidence interval Clpppgysg = [0.02,
0.02], which featured a small MSE in relation to the collection score range (see table 5.5 on

page 97).

In the investigation of the POP collection score distribution, we observed a left skew, caused by a
limited number of valid data points that manifested as low collection score outliers. We asserted
they were generated by beginner-level players, who were at the bottom of the learning curve
of the game. The outliers were found to have a significant effect on the distribution mean, but
with an effect size below what is considered small. It was also confirmed that the bias of these
outliers was minimal. This supported the notion that we would be able to use the distribution in

our further analysis without additional normalisation to compensate for the abnormal skew.



CHAPTER 5. GAME SCORE STUDY 98

5.3.5 Completion Score

The binary nature of the completion score divided the data samples into completed and un-
completed games. We decided that the most transparent and intuitive way of expressing the
dynamics of completion was to use the probability of completing the game P(com). Since we
were operating on high-volume datasets, representative of the general population, we observed
the frequency of completed games in the sample dataset D as a valid estimate of P(com) in
D. Leveraging this assumption we estimated the 99% confidence interval of global probability
of completion in dataset POP by extrapolating the data with m by n bootstrapping, producing
dataset Clpopgp With m = 1499 resamples at n = 16,530 sample size (see table 5.6 on page 98).
We then calculated its confidence interval Clpppgp = [0.76, 0.77] using the percentile method.
The decision to establish confidence intervals using bootstrapping for P(com) was consistent

with our research assumptions.

Source data Bootstrapped distribution POP-BP 99% Clpoppp
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP 16,530 | P(com) 1499 0.77 0.77 00 076 0.79 0.76 0.77

Table 5.6: m by n bootstrapping for establishing the 99% confidence interval Clpppgp of P(com)
for dataset POP.

To complement these results, we were interested in observing the breakdown of the comple-
tion probability values across discrete regions of the dataset POP collection score values to see
how the probability of completion matched against the collection scores achieved. We assumed
that achieving higher collection scores would be correlated with higher completion scores. To
that effect, we isolated collection score bins, totalling n.,pop = 312 across dataset POP, and
calculated their individual P(com) values. The output distribution POP-CB of completion prob-
abilities of POP collection score bins (see table 5.7 on page 99) had half its data points estimated
to be greater than Mpopcp = 0.76, reinforcing the notion of consistency in high probabilities of
completion. Additionally, visualisations of POP-CB (see figure 5.3 on page 99) presented with a
rising trend in probability value, which increased with each subsequent bin of higher collection
score. A noticeable anomaly presented itself in the 12 bins in the low collection score range of
Scol = [0.03, 0.1] reporting higher completion scores (S¢o, >= 0.5) than expected. Closer exam-
ination revealed these to be games where players minimally engaged in collection, and in most
cases quickly proceeded to the exit. It is indicative of a fraction of beginner-level players (0% of
POP dataset samples) who were likely still learning the rules of the game and figuring out how

to strategise their interactions in the limited time provided.

Due to the non-Gaussian properties of the dataset POP, we applied the non-parametric Spear-

man’s correlation coefficient to investigate a potential correlation between the completion prob-
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ability and collection score values. The calculated value p = 0.87 indicated a strong, positive,

monotonic correlation between the rising completion probability and mean values of specific

collection score bins in dataset POP, supporting our assumption of a meaningful correlation of

the sampled data.

Dataset created POP-CB
Sampled dataset POP
Sample size 312
Values P(com)
Measurement Value
Min 0.32
Max 1.0
Mean 0.73
Median 0.76
Mode [1.]
Standard deviation 0.14

Table 5.7: Sampling parameters and description of P(com) values distribution for the popula-
tion’s collection score bins of dataset POP.
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Figure 5.3: Visualisation of dataset POP P(com) values for the population’s collection score

bins.

We examined the completion score distribution of the POP dataset and committed to the use

of an intuitive value of the probability of completing the game P(com) to represent completion.

P(com) exhibited a rising trend, and its values strongly, positively correlated with rising mean

collection scores, supporting the assumption of higher play skill manifesting jointly in terms of

both completion and collection scores.
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5.3.6 Completed and Not Completed Games

Sampling and Statistical Comparison

Dataset created POP-C Dataset created POP-NC
Sampled dataset POP Sampled dataset POP
Sample size 3,650,367 Sample size 1,067,153
Values Scol Values Scol
Sampling parameter Value Sampling parameter Value
Scom 1.0 Scom 0.0
Measurement Value Measurement Value
Min 0.0 Min 0.0
Max 0.98 Max 0.89
Mean 0.47 Mean 0.44
Median 0.48 Median 0.46
Mode [0.5] Mode [0.5]
Standard deviation 0.1 Standard deviation 0.12

Table 5.8: Sampling parameters and description of datasets POP-C and POP-NC.

To individually examine, and then compare, completed and not completed game sample data,
we selectively sampled the population dataset POP into completed games dataset POP-C and
not completed games dataset POP-NC (see table 5.8 on page 100). Although the sample count
for completed games was significantly higher (3.42 times more completed than not completed
samples), the general shape of distributions of POP-C and POP-NC appeared similar (see fig-
ure 5.4 on page 100). Both approximately approached a left-skewed normal distribution, and

their shapes resembled the shape of the POP collection score distribution.
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(a) Kernel density estimations of distributions. (b) Distribution boxplots.

Figure 5.4: Selectively sampled collection score distributions for completed POP-C and not
completed POP-NC game samples.

To repeat our analysis procedure used for the POP collection scores distribution, and to inform

our method selection, we visually observed violations of normality assumptions in QQ plots of
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both POP-C and POP-NC (see figure D.2 on page 210), which were also confirmed quantita-
tively with the Shapiro-Wilk test for POP-C (a = 0.01, sample size n = 3,650,367, p = .001, s
= 0.98) and POP-NC (a = 0.01, sample size n = 1,067,153, p = .001, s = 0.96) under condi-
tions examined. Both POP-C and POP-NC were observed to have approximately symmetrical
data distributions, which did not conform to the notion of parametric skewness. To numerically
interpret the symmetry of POP-C and POP-NC we calculated the Fisher-Pearson coefficient of
skewness for both of them, arriving at negative, non-zero values for POP-C Spppw =-0.72 and
POP-NC Spopr, = -0.88. These results, indicating a left skew, were quantitatively confirmed
with two-sided skewness and kurtosis statistics based tests for POP-C (a = 0.01, sample size n
=3,650,367, p=.001, s =-508.72) and POP-NC (& = 0.01, sample size n = 1,067,153, p =.001,
s =-321.72), which indicated a non-normal distribution skew in both investigated datasets, under

conditions examined. This contradicted the assumptions of symmetry in POP-C and POP-NC.

One observable difference between the two distributions was an upwards value shift of the POP-
C values, discernible from the statistical description of central tendency measures of the exam-
ined distributions (mpopw > mpopr and Mpopw > Mpopr), as well as their boxplot visualisations.
Despite this shift, both POP-C and POP-NC exhibited their primary density peaks at approxi-
mately similar collection score value points. Standard deviation values and visual spread of both
distributions suggested high dispersion of data, with the range of scores recorded encompass-
ing nearly the entire collection score range. However, the coefficients of variation for POP-C
CVpopw = 0.22 and POP-NC CVppp;, = 0.27 indicated limited data spread, relatively similar
in both cases, caused by a high concentration of average scores around central tendency. The
two distributions also contained observable amounts of outliers (2.11% of data points in POP-C,
and 3.3% of data points in POP-NC), just like their source distribution POP. To determine the
relevance of these outliers in these selectively sampled, non-normal datasets, we repeated the
procedure of outlier investigation, previously applied to distribution POP, involving bootstrap
resampling and confidence interval testing. First, POP-C and POP-NC distributions were sam-

pled with their outliers excluded (see table 5.9 on page 102).

For the purposes of validating the assumption of outliers present in the distributions significantly
influencing their value distributions, we assumed the absence of a significant effect would trans-
late into the equality of means between the mean of POP-C mpppy and the mean of POP-C-NO
mpopwno, as well as the mean of POP-NC mppp;, and the mean of POP-C-NO mpoprno. To
investigate this notion, we extrapolated them via bootstrap m by n resampling with replace-
ment using m = 1499 resamples, to compensate for the normality violations present in the two
distributions. The resampled data samples were then used to calculate the standardised mean
difference, using Cohen d standardised effect size measure. Output values formed distributions
POP-C-B (see table 5.10 on page 102) and POP-NC-B (see table 5.11 on page 102), both of
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Dataset created
Sampled dataset
Sample size npopwno
Values

Sampling parameter

SCORE STUDY

POP-C-NO
POP-C
3,573,245
Scol

Value

Scol

Scol > OF_pop-w &
Scol < OF2—pop—w

Measurement Value
Min 0.21
Max 0.74
Mean 0.48
Median 0.48
Mode [0.5]
Standard deviation 0.09

Dataset created
Sampled dataset
Sample size npopryo
Values

Sampling parameter

POP-NC-NO
POP-NC
1,031,983
Scol

Value

Scol

Scol > OF_pop-n &
Scol < OFZ—POP—N

Measurement Value
Min 0.17
Max 0.74
Mean 0.46
Median 0.47
Mode [0.5]
Standard deviation 0.1

102

Table 5.9: Sampling parameters and description of datasets POP-C-NO and POP-NC-NO, de-
rived from POP-C and POP-NC, respectively, with their outliers excluded.

which approached normality per the Central Limit Theorem.

Source data Bootstrapped distribution POP-C-B 99% Clpopws
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP-C 16,513 | Cohend 1499  -0.06 -0.06 001 -0.1 -0.03 -0.1 -0.06
POP-C-NO 16,511

Table 5.10: m by n bootstrapping for testing the standardised difference of means between POP-
C and POP-C-NO.

Source data Bootstrapped distribution POP-NC-B 99% Clpoprp
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP-NC 16,334 | Cohend 1499 -0.1 -0.1 0.01 -0.14 -0.07 -0.14 -0.1
POP-NC-NO 16,325

Table 5.11: m by n bootstrapping for testing the standardised difference of means between POP-
NC and POP-NC-NO.

We analysed them under the alternative hypothesis of outliers impacting the collection score dis-
tribution mean, expressed as Cohen d dpopwp between POP-C and POP-C-NO not being equal
to 0, and Cohen d dpopr g between POP-NC and POP-NC-NO not being equal to 0. The result-
ing Cohen d value distribution POP-C-B (see figure D.3 on page 210) did not appear to have
their standardised mean difference values converging around the measured distance of d; = 0.
We formally tested the hypothesis with a significance level two-tailed test (&« = 0.01, sample size
n = 1499), using the bootstrap hypothesis testing method. The confidence interval of the output
distribution POP-C-B Clpppwnop = [-0.1, -0.06], and the confidence interval of the distribution
under the null hypothesis Clppopwnon = [-0.03, 0.0] were established. The null hypothesis was
rejected (p = .001) under the conditions examined, indicating the outlier influence on the mean
collection score in POP-C was significant. Yet, the full range of Clppopwyon values was classi-
fied below the small effect size (d = 0.2), according to Cohen [40].
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The visualisation of POP-NC Cohen d value distribution POP-NC-B (see figure D.3 on page 210)
indicated that it was not contained within the confidence interval Clpppiyon = [-0.04, 0.0] un-
der the null hypothesis. We conducted a two-tailed bootstrap hypothesis test (& = 0.01, sample
size n = 1499). Under conditions examined, the null hypothesis was rejected (p = .001), indi-
cating the outlier influence on the mean collection score in POP-NC was significant, as was the
case with POP-C. Again, the value range of Clppp;non Was found to be in the effect size range
classified below what is considered a small effect size (d = 0.2) by Cohen [40].

Source data Bootstrapped distribution POP-WBMSE 99% ClpopwsumsE
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP-C 16,513 MSE 1499 0.02 0.02 00 0.02 0.02 0.02 0.02
POP-C-NO 16,513

Table 5.12: m by n bootstrapping for MSE calculation of POP-C and POP-C-NO.

Source data Bootstrapped distribution POP-LBMSE 99% ClpopramsE
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP-NC 16,334 MSE 1499  0.03 0.03 0.0 0.02 0.03 0.02 0.03
POP-NC-NO 16,334

Table 5.13: m by n bootstrapping for MSE calculation of POP-NC and POP-NC-NO.

To determine the extent of the bias of outliers in the completed and not completed collection
score distributions, we calculated the MSE confidence intervals between the base distributions,
including outliers, POP-C and POP-NC, and their respective samples excluding outliers, POP-
C-NO and POP-NC-NO. The bootstrap m by n resampling with replacement was used in both
cases, with m = 1499 resamples at a uniform, Cochran calculated subsample size for each boot-
strapping to maintain consistency for MSE calculations. The resampled data produced com-
pleted games derived distribution POP-WBMSE (see table 5.12 on page 103), with confidence
interval Clpopwpmse =[0.02, 0.02], and not completed games derived distribution POP-LBMSE
(see table 5.13 on page 103), with confidence interval Clppprmse = [0.02, 0.03], both of which

indicated a small MSE in relation to the collection score range.

Exploration of the completed POP-C and not completed POP-NC game score distributions re-
vealed they were non-symmetrical and featured non-normal left skews. Just like in their source
dataset POP, these skews were caused by low-score outliers, contributed by players with lower
play skill. They were found to significantly impact the mean collection score, but their effect
size was below small, and bias was found to be minimal. This confirmed that we would be able
to use these distributions in our further analysis without additional normalisation to compensate
for an abnormal distribution skew. It was observed that the examined distributions were both
characterised by a high dispersion of data, accounting for a wide range of scores achieved. This

suggested that for both completed and not completed games, players’ scores varied, and a high
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collection score did not always imply completion would follow. We also observed a limited
data spread, which was consistent with a high concentration of data points around the central
tendency. This supported the notion that the majority of players eventually advancing on the
learning curve beyond beginner play skill, and reaching an approximately similar, average play
skill level. Future investigation focussed on tracking user progression in terms of play skill
could analyse how many of the low-score data points in the dataset were representative of early
games of users, who later advanced on the learning curve. However, this would require verify-
ing which users had a continuous and preferably complete set of playthroughs recorded in the

dataset, which was beyond the scope of our research.

Collection Score Difference

The visual presentation of completed and not completed collection score distributions POP-C
and POP-NC (see figure 5.4 on page 100) suggested a similarity between the two. On the con-
trary, statistical descriptions (see table 5.8 on page 100) revealed differences between central
tendency measures of these distributions, potentially indicating the existence of a significant
difference between them, with POP-C collection scores being higher. To validate that assump-
tion numerically and formally, we moved to investigate the equality of means of POP-C (mpopw )
and POP-NC (mpopy) collection score datasets. Previously detected normality violations of both
distributions prompted us to use bootstrap hypothesis testing for the task, based on bootstrap m
by n resampling with replacement of relevant data with m = 1499 resamples. Standardised
mean difference, expressed as Cohen d standardised effect size measure, was calculated for
each resampled dataset. The output values formed distribution POP-COL-B (see table 5.14 on
page 104), approaching normality per the Central Limit Theorem. We analysed it under the
assumption that POP-C distribution exhibited higher collection scores than those of POP-NC.
We expressed this claim as the alternative hypothesis of Cohen d dpopcp standardised collection

score mean difference between POP-C and POP-NC being greater than 0.

Source data Bootstrapped distribution POP-COL-B 99% Clpopcs
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP-C 16,513 | Cohend 1499 0.23 0.23 0.0l 0.19 0.26 0.19 0.23
POP-NC 16,511

Table 5.14: m by n bootstrapping for Cohen d calculation between POP-C and POP-NC.

We formally tested the hypothesis with a right-tailed test, using the bootstrap hypothesis test-
ing method (o = 0.01, resample size m = 1499). The Cohen d distribution POP-COL-B (see
figure D.4 on page 211) standardised mean difference values, contained within the confidence
interval Clpopcp = [0.19, 0.23] were far removed from the confidence interval under null hy-
pothesis Clpopcpy = [-0.03, 0.0]. Test results (p = .001) rejected the null hypothesis under
conditions examined, indicating the collection score distribution of POP-C scored higher than
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that of POP-NC. The effect size of Clppopcp Was classified above small effect size (d = 0.2),
according to Cohen [40].

As intuitively assumed, collection scores achieved in completed games were found to be signifi-
cantly higher under conditions examined, which supported the notion of the established, positive
correlation between rising collection and completion scores. This suggested that at higher play
skill levels, players could be expected to score higher in terms of both completion and collection,

in comparison to lower play skill levels.

5.3.7 Summary

We examined the origin dataset ORIG and selectively sampled it to produce an actionable dataset
POP. In our exploration of dataset POP we detected a bimodality of the full score s distribution
caused by the binary nature of the completion score. This informed our decision to investigate
the collection scores of completed and not completed games’ distributions, rather than use the
full score in our further analysis. We observed learning curve dynamics in both the collection
scores and probability of completion distributions. Collection score distributions’ left skew,
caused by low scores from beginner-level players, and a high concentration of scores around
the central tendency, which was positioned approximately in the middle of the permitted score
range, suggested the game’s balance enabled a progression from beginner to a higher play skill
level. Most players were able to achieve scores that were approximately average, with some
highly skilled users advancing beyond the average. Completion was not an issue for players,
as the majority of recorded games were completed. This was consistent with the simplicity
of achieving completion in the game, which only required the player to proceed to the exit
area. However, few players attempted completion without collection, and it was more likely
for a completed game to be scored higher in terms of collection. We found a strong correlation
between the rising completion probability and mean collection scores, further supporting the

learning curve dynamic and an observable play skill improvement.

5.4 Baseline Dataset

5.4.1 Assumptions

Each game session of 60 Seconds! can be configured with respect to several game setup param-
eters. Some, or all, of them could be considered independent variables potentially impacting
the conditions of play, and in consequence, game scores. To establish a normalised baseline
for further investigations, we set out to identify a default set of parameter values used for game
setup. The default value selection was expected to approximate the default game setup flow. A

secondary consideration was the volume of samples with specific parametrisation found in the
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processed sample dataset. We assumed the character of the baseline score data distribution might
be different from that of the population score dataset POP, due to selective sampling. However,
we anticipated that the baseline dataset would exhibit similar characteristics to those observed

in the population POP dataset.

5.4.2 Sampling

We examined each of the game setup parameters individually, with respect to the context of
the game and the contents of the processed gameplay telemetry dataset, narrowing down the

inclusion criteria for the baseline dataset:

* Game type: only scavenge and full game types were considered, as they follow the stan-
dard ruleset and conditions of gameplay. This makes them preferable from the perspective
of the proposed game score metric. Since most samples were generated in full games (n =
4,245,215, 89% of dataset POP samples), this game type was chosen as the default.

* Difficulty: when players open the game launch screen, they are presented with a difficulty
level set by default to the normal difficulty. This likely contributed to the fact that most
full game samples from dataset POP (n = 2,024,363, 47% of samples) were played in
normal difficulty. This positioned the normal to be considered the default difficulty.

* Character selection: as with difficulty, the character choice is pre-selected to Ted, when
presented. While the player can manually change this parameter, the proposed selection
likely contributed to the fact that the majority of full, normal game samples from dataset
POP were played with that character selected (n = 1,010,060, 89% of samples). This
informed our choice to designate the pre-selected value of 7ed to be the default value for
this parameter. The choice also influenced the normalisation of 7,;. We did not alter this
parameter in the live version of the game to be randomised, as it was beyond the scope
of modifications agreed upon with the developer. However, the remastered version of the
game, which was released later, did in fact feature a random selection of the playable

character to avoid defaulting to only one of them.

» Extended item set: the majority of samples from dataset POP, parametrised as full, normal
and Ted character games, were played with the extended item set (n = 1,130,503, 55%
of samples). The sample volume, automatic enforcement, as well as the preference to

normalise 7; made an active extended ifem set the default value for this parameter.

e Level: all game levels for the full game type have an equal chance of being pseudo-
randomly chosen to be played, and players have no influence on that selection. All scav-
enge levels had an approximately similar sample count parametrised for full, normal, Ted

character and extended item set games from dataset POP (see figure 5.5 on page 107).
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Since that was the case, we decided to use samples from the full level range for the pur-
poses of our research. for each level in the game, there is a fixed number of ifem placement
points, where items can be pseudo-randomly positioned. There are more placement points
available than there are ifems to position. The number of placements is approximately
similar across all levels, but placement positions and the amount of specific ifem place-
ments vary, due to differences in environment staging. For every game, the same number
of items of a specific type are placed. While there is a finite number of item placement
combinations for each level, differences between levels make accounting for them a com-
plex endeavour. Since the placement points are specific to each of the levels, based on our
assumptions of approximated modelling, we assumed the impact of pseudo-random item
placement, influencing the starting state of the environment, would have been embedded
within and represented by the level itself.

50000 1
40000

30000

Sample count

20000 -

10000

0
012 3 456 7 8 91011121314151617 1819
Level Id sample size n = 1010060

Figure 5.5: Sample counts for game levels parametrised for full, normal, Ted character and
extended item set games from dataset POP.

Using the identified set of default parameter values, we then sampled dataset POP to produce
the baseline dataset BAS (see table 5.15 on page 107)

Dataset created BAS Sampled dataset BAS S:ﬁp::dsi(;:t%ﬁ 101 (])3623
Sampled dataset POP Sample size npsg 1,010,060 Valugs S
Sample size 1,010,060 Values Scol com
Sampling parameter Value Measurement Value M.easuremem Value
- Min 0.0
Game type 1 (full) Min 0.0 Max 1.0
Difficulty id 1 (normal) Max 0.86 ’
, Mean 0.78
Extended item set True Mean 0.47 Median 1.0
Default character True (Ted) Median 0.49 Mode [1' ]
Level id [1,20] Mode [0.46511628] L )
. Standard deviation 0.42
Standard deviation 0.1

Table 5.15: Default game setup variable sampling parameters for dataset BAS and statistical
description of its s.,; and s, values’ distributions.
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5.4.3 Collection Score

We assumed the baseline dataset collection score distribution would exhibit similar properties to
that of the general population. To inform further analysis method selection, and to compare the
baseline distributions to those of the POP dataset, we investigated normality of BAS collection
score distribution visually using the QQ plot (see figure 5.6 on page 108) and quantitatively
with the Shapiro-Wilk test (o = 0.01, sample size n = 1,010,060, p = .001, s = 0.96) under the

conditions examined.
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(a) Comparison of collection score distributions us- (b) Dataset BAS collection score distribution QQ
ing boxplots for datasets POP and BAS. plot.

Figure 5.6: Dataset BAS collection score distribution visualisations.

Visual inspection of the collection score value distributions of the population dataset POP and
baseline dataset BAS suggested that collection scores achieved in dataset BAS were higher than
those recorded in dataset POP. To compare their unevenly sized and non-normal collection score
data, we extrapolated both datasets using bootstrap m by n resampling with replacement (see ta-
ble 5.16 on page 109) with m = 1499 resamples at Cochran calculated subsample sizes of npop
= 16,530 for dataset POP, and npas = 16,320 for dataset BAS. The resampled data samples were
then used to calculate the standardised mean difference, using the Cohen d standardised effect
size measure. The output values formed the distribution BAS-COL-B, which approached nor-
mality per the Central Limit Theorem. This allowed us to conduct an assumption-free analysis
of the source data, under the alternative hypothesis of the higher value of the mean of the col-
lection score distribution BAS, over the collection score distribution POP, expressed as Cohen d
dpass-

The confidence intervals of the resulting Cohen d values distribution BAS-COL-B (see fig-
ure D.5 on page 211) Clgasp = [0.06, 0.09], and the distribution under null hypothesis Clgsspy
= [-0.03, -0.0] were established. The full data range of distribution BAS-COL-B was found to
be outside the boundaries of the confidence interval Clpsspy. Bootstrap hypothesis right-tailed

test (o = 0.01, resample size m = 1499) rejected the null hypothesis, under conditions examined
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Source data Bootstrapped distribution BAS-COL-B 99% Clgpsp
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP 16,530 | Cohend 1499 0.09 0.09 0.0l 0.06 0.13 0.06 0.09
BAS 16,320

Table 5.16: m by n bootstrapping for Cohen d between collection score distributions POP and
BAS.

(p =.001). This suggested that the collection score distribution of the baseline distribution BAS
was significantly higher than the collection score distribution of the population dataset POP. The
range of standardised mean difference values in Clpssp all represented effect size below small
significance (d = 0.2), according to Cohen [40].

5.4.4 Completion Score

The completion probability P(com) for the population dataset POP was estimated to be within a
99% confidence interval Clpopgp = [0.76, 0.77]. By bootstrapping the P(com) data for baseline
dataset BAS with m = 1499 resamples by n = 16,320, we produced the distribution BAS-BP.
Using the percentile method, we established the completion probability of dataset BAS to be
within the 99% confidence interval Clgaspp = [0.77, 0.78] (see table 5.17 on page 109).

Source data Bootstrapped distribution BAS-BP 99% Clgaspp
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
BAS 16,320 | P(com) 1499 0.78 0.78 00 077 0.79 0.77 0.78

Table 5.17: m by n bootstrapping for establishing the 99% confidence interval Clgsspp of P(com)
for dataset BAS.

The completion probability confidence interval Clgsaspp for baseline dataset BAS appeared to
be approximately similar to Clpppgp for population dataset POP. To determine if this was the
case, we proposed the alternative hypothesis of a difference between the completion proportions
of dataset BAS and dataset POP being non-zero. To compare the completion scores from the
unevenly sized datasets POP and BAS, we had conducted a bootstrapped, two-tailed, proportion
mean difference hypothesis test (o = 0.01), involving m = 1499 for Cochran calculated sample
sizes for the datasets involved (see table 5.18 on page 110, and figure D.6 on page 212). The null
hypothesis was not rejected under conditions examined (p = .951), indicating that completion

probabilities in datasets POP and BAS were statistically similar.

To compare the breakdown of the completion probability values in dataset BAS collection
scores, we repeated our steps from the Game Score Exploration work with dataset POP and
established collection score bins in dataset BAS, totalling n.,p45 = 201. We then calculated their
individual P(com) values (see table 5.19 on page 110) generating output distribution BAS-CB

(see figure 5.7 on page 111). Similarly to POP, we observed anomalous fluctuations of data,
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Source data Bootstrapped distribution BAS-COM-B 99% Clgascoms
Data n Statistic m Mean Median SD Min Max | Lower Bound Upper Bound
POP 16,530 | Proportion mean difference ~ 1499 0.67 0.67 098 -236 3.59 -2.49 2.29
BAS 16,320

Table 5.18: m by n bootstrapping for proportion difference calculation between completion score
distributions POP for the population and BAS for the baseline.

which were more scattered than those in POP. Some of them could have been attributed to be-
ginner players, as was the case in POP, but additional spikes were visible for higher values of
Scoi- Despite these fluctuations of data, BAS-CB appeared to exhibit a positive correlation be-
tween high collection score and completion probability for the given score bin, similar to what
we observed in dataset POP. To quantitatively confirm this observation, we calculated the Spear-
man’s correlation coefficient ppas = 0.61. The result suggested a strong, positive correlation
between the collection score value associated with a given score bin and the rising probability

of completion.

Dataset created BAS-CB
Sampled dataset BAS
Sample size 312
Values P(com)
Measurement Value
Min 0.32
Max 1.0
Mean 0.73
Median 0.76
Mode [1.]
Standard deviation 0.14

Table 5.19: P(com) values for dataset BAS collection score bins.
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Figure 5.7: Visualisation of dataset BAS P(com) values for the baseline collection score bins.

To formally determine whether the observed correlation was similar to the trend exhibited in
dataset POP we formulated a hypothesis of the lack of equivalence of the correlation coefficients
of the two datasets. The alternative hypothesis was expressed as ppop # pPpas. Using Fisher’s
r to z two-tailed transformation test (& = 0.01) we compared the values of ppop and ppas and
found that under the conditions examined, the null hypothesis was rejected (p = .001). Despite
both datasets exhibiting a strong positive correlation in terms of score bin collection score value
and the completion probability associated with that score bin, their respective correlations were

statistically different, under conditions examined.

5.4.5 Summary

We successfully sampled the baseline dataset BAS from dataset POP, using an informed se-
lection of inclusion criteria, based on optimal game setup parameter values, derived from the
game’s context. While we could have furthered this optimisation by narrowing the inclusion
criteria even more and increasing control over identified variables, it would have required addi-
tional investigation, which was beyond the scope of this thesis. The emergent baseline dataset
BAS was considered representative of the population and suitable for completing our research
objectives. While its collection score distribution appeared similar to that of POP, we found the
collection scores of BAS to be higher. We had controlled for the level selection and included
data from all possible level environments in BAS, which meant randomness was not a factor in
this difference. However, limiting the difficulty level to normal likely influenced the scores, po-
tentially removing lower scores from beginner players on easy difficulty and lower scores from
failed attempts by more advanced players challenging themselves on hard difficulty. Restrict-

ing the game type to full might have also had an impact, though limited, since fewer samples
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were excluded compared to the difficulty sampling. Additional investigation would be required
to accurately identify the degree of influence of each of these factors. However, since the ef-
fect size of higher collection scores in BAS was below small, and the numerical difference was
minimal, we considered the baseline dataset to be a satisfactory representation of the investi-
gated population. The significant similarity of completion probabilities in BAS and POP further
confirmed this. Like POP, BAS also featured a strong, positive, monotonic correlation between
the rising collection score and the probability of completing a game, indicating learning curve
dynamics. However, in the case of BAS more completion probability fluctuations were present,
which caused it to be quantitatively dissimilar to POP. While we attributed such anomalies to
beginners in POP, BAS fluctuations appeared in higher collection score bins. This suggested
that perhaps the beginner play skill level covers a broader range of collection scores than what

was observed for the POP completion probability fluctuations.

5.5 Play Skill

5.5.1 Assumptions

The game’s design does not directly indicate how to measure gameplay performance, expressed
as play skill. While it is in the player’s best interest to maximise collection score, the only ob-
jective requirement the game enforces is to complete the scavenge phase, in order to progress to
the survival portion of the game. Reaching the failure state nullifies all the collection progress
accumulated by the player. In terms of completion, good skill is hence equivalent to reaching
the success state. For collection, the definition of good skill had to be established with respect
to the collected data and formulating definitions of high and low scores, based on the proposed
score metric. Having measured the difference between the sampled datasets of completed and
not completed games, we were able to conclude that quantitatively, the distribution of completed
games POP-C exhibits better gameplay skill in terms of the collection score than not completed
games from POP-NC. While this has confirmed that differences between score distributions are
measurable, it did not inform how to classify games with respect to collection play skill. Further
data-driven investigation was necessary to derive a practical method of score result interpreta-

tion.

To identify play skill mapped score groups, we decided to conduct clustering on the normalised
baseline dataset BAS, which we considered representative of the general population. Our as-

sumptions about clustering collection score data were:

* Number of clusters was to be limited, to enable manual labelling them with relevant game-

play skill context descriptions (high score, low score, etc.).
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* Since we expected a few clusters, we were interested in applying unsupervised methods

that could be parametrised with predefined cluster count configurations.

* Final decision on cluster count and positioning was to be derived from quantitative and

qualitative evaluation of the generated cluster data.

5.5.2 Sampling

Both completed and not completed games had to be considered for score clustering, as we were
interested in establishing a global mapping of gameplay skill against score groups. For the

purposes of the play skill investigation, we used the previously extracted baseline dataset BAS.

Dataset created BAS Value
Sampled dataset POP Min 0.0
Sample size 1,010,060 Q1 0.42

Median 0.49
Sampling parameter Value Q3 0.54
Confidence interval 99% Max 0.86
Margin of error 1%

(a) Sampling parameters for dataset BAS (b) Quartile description for dataset BAS.

Table 5.20: Dataset BAS sampling and description details.

5.5.3 Play Skill Clustering

Clustering Approach

In our research, the focus was on clustering the collection score from the dataset BAS. The most
computationally economical and optimal way to address this was to approach the data as a one-
dimensional set of collection score values. The assumption that few clusters would be generated,
allowed us to investigate simpler clustering methods for the task. Initial examination of the data
was performed using quartile statistics to provide an overview of the dataset’s clustering poten-
tial. For the primary clustering method, we considered two unsupervised learning algorithms:
Jenks natural breaks optimisation [113] and k-means [178]. While the former is very applicable
to one-dimensional data, the scale of the dataset BAS (n = 1,010,060) had proven the algorithm
to be computationally uneconomical. Standard SciPy implementation of the k-means algorithm
did not fare much better, as it is not commonly used for single-dimensional data. However, an
optimised version of the algorithm proposed by Gronlund et al. can solve k-means clustering

for single-dimensional data in polynomial time [90]. We chose to apply this solution in our work.

Since cluster counts were selected manually, we incorporated quantitative evaluation using two

numerical metrics. First, the elbow method heuristic [242] using the sum of squares errors with
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Euclidean distance calculation was included for preliminary numerical and visual determina-
tion of cluster quality. Second, for cluster similarity assessment, we applied the Davies-Bouldin
index (DBI) to cover within and between cluster distance evaluation [53]. These evaluation
methods can be applied to any clustering process, as they do not require a priori knowledge of

the ground-truth labels and the necessary input is limited to the clustered data itself.

While our decision to take advantage of one-dimensional data and simpler clustering methods
suited the purposes of our research and agent training, it also limited the amount of interesting
and potentially useful observations we could have derived from a more sophisticated clustering
approach. We assumed that the complexity of useful observation mapping would be executed
as part of the learning model training in the Agent Study. Clustering was a means to an end,
paving the way to classify play skill and use it to identify gameplay trajectories in the dataset that
would be relevant for agent training. We initially considered but decided against clustering play
skill based on both collection and completion scores. Instead, we focussed solely on the latter
and reviewed completion probabilities for identified clusters. This was motivated by the inherent
limitation of the completion score, caused by its binary value representation. However, if the
investigation into the dataset had a wider scope and was more focussed on players, rather than
individual game trajectories, it would have been preferable to cluster multidimensional data. We
still would have defaulted to unsupervised methods to operate with minimal assumptions about
the underlying model. However, more advanced clustering methods could have been involved,
supporting the discovery of behavioural patterns in longitudinal studies of the user population.
Such a follow-up investigation could result in producing more refined player personas to use in
agent training, incorporating not only estimated gameplay performance data but also long-term

behavioural aspects of user operations.

Quartile Statistics

For the quartile statistical approach, we chose to observe the quartiles of the dataset BAS, natu-
rally clustering the dataset into four groups. Median was selected as a reference point of division
over the mean, due to negative skew and outlier bias present in the distribution. Since there was
not enough data to identify what constitutes a high score in the context of game design, it was
reasonable to assume the higher-scoring 50% of the population would provide an approximated
representation of better gameplay skill, equivalent to higher collection scores. Following that

logic, we assigned the following labels to the clustering categories that emerged:
* Low - bottom 25% (Min - Q1 value range of dataset BAS).
* Average low - bottom, middle 25% (Q1 - Q2 value range of dataset BAS).

* Average high - upper, middle 25% (Q2 - Q3 value range of dataset BAS).
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* High - top 25% (Q3 - Max value range of dataset BAS).
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Figure 5.8: Distribution of manually assigned collection score categories in dataset BAS.

Visual examination of the plotted quartile ranges indicated a limited spread of the middle 50%
of data points. Despite enjoying a high concentration of samples, it spanned a considerably
smaller value range than low and high scores. For low scores, an upwards tendency was visible,
with the median positioned in the upper part of the low score range. Bottom half of the low
score range featured a discernible number of outliers. On the other hand, the high score range
had a visible outlier concentration at the top of its value range. These observations make sense
if considered in the context of the game’s difficulty curve. The extended range of low scores
could be associated with new players learning the rules of gameplay. High concentration of
data points in the central range of the dataset was representative of an average gameplay skill,
which most players seem to achieve. Finally, high score outlier trail could have been attributed
to a few expert players, who pushed the boundaries of collection gameplay. The median of the
dataset BAS collection score was found to be M,,; = 0.49, and the maximum score achieved
was established to be s.,; = 0.86. As discussed earlier, the game’s design makes it impossible to
collect all items present in an environment, making it unrealistic for the collection score value
of s.,; = 1.0 ever to be reached. This made the maximum score recorded from the population a
reference for the highest score attainable. It appeared that the game was balanced in a way to
make it easy enough for most game samples to end with an approximately average score, but

challenging enough to demand high gameplay skill to earn higher scores.

Unsupervised Clustering

Quartile-based, manual clustering into four score groups provided initial information about the

dynamics of gameplay skill in collected samples, while also opening space for additional in-
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quiry. More detailed clustering of the average low and average high score ranges appeared to be
desirable, due to a large concentration of data points. Since clusters identified through quartile
clustering appeared reasonable in the context of the game, we decided to use them to inform
further clustering work. This motivated setting the minimal cluster count for unsupervised clus-
tering to ki, = 4, on par with quartile-based clustering. At the same time, with respect to our
clustering goals, we wanted to limit the maximum cluster count to a number that would be ra-
tional from a discretisation perspective. We anticipated that clustering into more groups would
provide a better data fit. Still, we wanted to both avoid overfitting and stop data granularisation
from reaching a point where descriptive labelling of clusters would no longer be possible. The
worst-case scenario was producing so many clusters that their number would be comparable
to that of discrete game score bins (n = 312 score bins in dataset POP). The best case was to
have just enough clusters so they could be labelled in terms of gameplay skill context and easily
understood and remembered by humans. Because of this we decided to tie our optimal cluster
count range to “the magical number seven, plus or minus two”, well established in psychology
as the average information processing capacity limit for humans [159]. In accordance with this

premise, the maximum cluster count was set to kg, = 9.
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Figure 5.9: Numerical evaluation of k-means generated cluster counts in dataset BAS.

We then moved to execute the unsupervised clustering process with the use of a single dimension
k-means algorithm for each cluster count in the range k = [K;uin, Kmax]. The cluster count k was
the only parameter to be configured for the clustering process. Each considered cluster count
had a dataset BAS based model fitted via the method applied. The generated labels and cen-
troids were stored for further analysis, along with the calculated evaluation values of the DBI,
and the sum of square errors (SSE). Visual inspection of the clustering evaluation value plots
(figure 5.9 on page 116) revealed that k = 7 presented the most optimal elbow and numerical

result, indicating the best cluster separation.
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Figure 5.10: Dataset BAS collection scores clustered with one dimensional k-means algorithm
using k = 7 clusters.

Having committed to the value of k = 7, we then visually plotted the segmentation of the dataset
distribution into clusters identified (figure 5.10 on page 117). The clustering process produced
well-distributed clusters. With minimised intra-cluster and maximised inter-cluster variances,
they provided an optimal and granular representation of play skill. The middle range of the
dataset BAS was partitioned into four clusters. The bottom and top collection score clusters were
approximately similar to their quartile-based counterparts. To assign interpretation in the context
of play skill, we organised the identified clusters into three groups associated with perceived
macro gameplay skill level: low, average and high. In continuation of our approach from quartile
clustering, each of the clusters produced via k-means was individually labelled to denote the

micro play skill level (see table 5.21 on page 118).

5.5.4 Probability of Completion

We assumed the frequency of completion derived from the large population of dataset POP £,
= 0.77 could serve as a valid estimate of global completion probability P(com). To compare it
against the completion performance of players belonging to specific play skill clusters we cal-
culated the probability of achieving completion for specific play skill clusters. The rising value
of P(com) in each consecutive skill cluster suggested a trend of the probability of completion
increasing with play skill improvement (see table 5.21 on page 118). Due to the non-Gaussian
properties of the score datasets, we used the non-parametric Spearman’s correlation coefficient
to investigate a potential correlation between the two. The calculated value p = 0.96 indicated

a strong, positive, monotonic correlation between completion probability and mean collection
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score of specific clusters in dataset BAS. This supported an intuitive notion that lower-scoring

players were less likely to complete a game, in comparison to more skilled players.

Collection skill level | Cluster index k Description P(com)
Low 1 Very low 0.54
2 Low 0.69
3 Average low 0.75
Average 4 Average 0.78
5 Average high 0.79
. 6 High 0.81
High 7 Very high 0.8

Table 5.21: Annotations for clusters identified in dataset BAS.

5.5.5 Play SKkill Classification

Based on our clustering work with the k-means algorithm, we extrapolated centroid and la-
belling data for identified clusters. We were able to use them to develop a k-nearest neighbours
collection play skill classifier in Python, to be applied to other collection game score datasets,
originating from the game 60 Seconds!. The collection play skill classifier, included in the dig-
ital supplement to the dissertation, constitutes research output Q4. Play skill classes, derived
from the previously established play skill clusters, were used in our further work on establishing

a top-skill persona model.

5.5.6 Summary

By applying the selected sampling criteria for producing dataset BAS, outlined in section Sam-
pling, we committed to the default collection total weight available 7; = 43. This was the result
of normalising the collection score s.,; calculation with respect to the chosen values of the char-
acter selection, and extended item set game setup parameters. Using such a normalised dataset,
we were able to cluster s.,; collection scores and identify k = 7 clusters, or levels, of collec-
tion play skill exhibited in gameplay trajectories. This enabled us to develop a collection play
skill classifier, required for our further work. Our investigation into play skill identification has
addressed the local research question RQG. Differences between the play skill exhibited in dif-
ferent gameplay trajectory samples from the game 60 Seconds! were found to be observable and
quantifiable, and it was possible to classify them with respect to the collection score clusters.
Thus, we were able to classify collection gameplay performance with respect to varied collec-
tion scores observed in the data samples of the normalised, baseline dataset BAS. The delivery
of a working classifier constitutes research output O4. However, as mentioned in the Clustering
Approach section, our clustering approach was economical, and only used single-dimensional
collection score data. While we consider it valid and sufficient for the purposes of our research,
applying a more complex clustering approach to multidimensional data would have likely pro-

vided us with additional, interesting information about the ways users play the game.
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5.6 Top-Skill Persona

5.6.1 Assumptions

To maximise the performance potential of our trained agent models we considered extracting
high play skill gameplay trajectories that could be used in the training procedure a priority. We

assumed the following was of importance to produce a performing agent model:

* High collection play skill exhibited in gameplay trajectories.
* High rate of game completion, exhibited in gameplay trajectories.

* A selection of gameplay trajectories that would benefit an IL based training procedure.

5.6.2 Sampling

Based on our assumptions, we decided to extract a dataset with gameplay trajectories classified
as samples of the very high play skill, which were also successfully completed. In some cases,
this could have introduced an unwanted bias to the data. However, we were operating under the
assumption that our decentralised, segmented learning model design and its deployment con-
ditions would have prevented such an issue. The chosen sampling approach also increased the
likelihood that gameplay trajectories extracted would exhibit constructive gameplay behaviours
that could contribute to the emergence of skilful gameplay of trained agents. To sample the top-
skill persona dataset TOP we applied our regular sampling approach to dataset BAS, combined
with the use of inclusion criteria based on classification, utilising the classifier developed in our
prior work (see table 5.21 on page 118). The median of s.,; values in dataset TOP M7op = 0.62
was noticeably higher than the corresponding value of baseline dataset BAS s.,; Mpas = 0.49,

which was expected of gameplay trajectories with the highest collection scores recorded.

Dataset created TOP
Sampled dataset BAS
Sample size 76,406
Values Scol
Sampling parameter Value
Play skill Very high
Scom 1.0
Measurement Value
Min 0.59
Max 0.86
Mean 0.63
Median 0.62
Mode [0.60465116]
Standard deviation 0.03

Table 5.22: Sampling parameters and description of the collection score data from dataset TOP.
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5.6.3 Summary

By selectively sampling dataset TOP from the baseline dataset BAS we were able to extract a
collection of gameplay trajectories, which were representative of the top-skill persona, in the
game environment conditions investigated. Sampling incorporated additional data produced by
the play skill classifier, which identified samples exhibiting high play skill. These highest scor-
ing game samples of the dataset BAS constituted 7% of the entire dataset. They were deemed

suitable to be used for training context-guided agent models in our further work.

5.7 Conclusions

In this chapter we have conducted a quantitative analysis of the gameplay telemetry dataset with

respect to the proposed game score metric. Content documented in this chapter included:

* Game score metric proposal for quantitatively measuring gameplay performance in the

scavenge segment of the game 60 Seconds!.
* Investigation of game score distributions and exploring their characteristics.
* Normalised baseline dataset sampling and analysis.

* Investigation of the concept of play skill and developing a method of play skill classifica-

tion.

Establishing a top-skill persona on the basis of selective sampling of gameplay trajectories

with classification, to be used in agent model training in Chapter 6: Agent Study.

This chapter has addressed the local research question RQG through the analysis of the game-
play trajectory sample population, identifying observable differences in game score variations
between these samples, and eventually proposing a solution to the classification of different lev-

els of play skill, exhibited in the recorded trajectories.

In the course of this chapter, we have documented the following research contributions and

outputs:

* C4: game score metric for quantitatively measuring play skill in terms of gameplay per-
formance in the scavenge segment of the game 60 Seconds!; presented in the Game Score

section.

» CS: analysis of game scores measured for the gameplay telemetry dataset from the scav-

enge segment of the game 60 Seconds!; presented in Chapter 5: Game Score Study.

* O4: k-nearest neighbours classifier of play skill in the scavenge segment of the game 60

Seconds!; presented in the Play Skill Classification section.



Chapter 6

Agent Study

Summary. This chapter documents the process of designing, training, and evaluating the
context-guided agent model. We first outline the plan for conducting the study and then review
the process of designing, training, and benchmarking the context-guided agent model. Exper-
imental evaluation of the gameplay performance of context-guided agents and human players

follows. In the course of the chapter, we analyse and discuss relevant results.

6.1 Overview

6.1.1 Goals

The objective of this chapter is to document and discuss the deployment and evaluation of a
context-guided agent model in a real game environment. The development of the agent model
was based on the design proposed and modelled after the top-skill persona dataset, extracted in

Chapter 5: Game Score Study. The chapter will address the following research questions:

* RQ1: can models with execution and performance guarantees of learning logic be inte-
grated into the game industry, state of the practice, ad hoc behaviour Al architecture for

applied use in video game playing AI?

* RQ2: how well can a trained context-guided learning agent perform in unseen game en-
vironment scenarios, in comparison to human players, in approximately similar gameplay

conditions?
This chapter also documents the following research contributions and outputs:

* C6: analysis of the training process of a context-guided learning agent, capable of playing
the scavenge segment of the game 60 Seconds!, developed on the basis of the context-

guided agent design.

121
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* OS: a trained context-guided learning agent, capable of playing the scavenge segment of
the game 60 Seconds!, developed on the basis of the context-guided agent design, using

game industry off-the-shelf solutions.

6.1.2 Structure

The Agent Study chapter is divided into the following sections, detailing the agent development,

evaluation and analysis work:

 Study Plan: outlines the plan for conducting the Agent Study.

* Agent Training: documents the design, deployment and benchmarking of the context-

guided learning agent and reference agent models.

* Agent Evaluation: presents the experimental evaluation conducted online with human

players, and offline with the context-guided agent.

» Agent Review: investigates the results of agent training and evaluation to examine the per-
formance of the deployed context-guided agent model, and the relevance of the proposed

context-guided learning agent design.

* Conclusions: summarises the training, evaluation and analysis work conducted in this

chapter, and then highlights the key takeaways and contributions delivered.

6.2 Study Plan

6.2.1 Overview

In the course of the Agent Study we applied the proposed context-guided agent design in prac-
tice and conducted a formal investigation of its viability through experimental evaluation and
analysis of the results produced. This approach segmented the study into a three-stage structure,
supporting tangible, practical objectives of producing a working agent model and analysing its

output: Agent Training, Agent Evaluation, and Agent Review.

6.2.2 Agent Training

The Agent Training stage of the Agent Study details the deployment and benchmarking of the
context-guided agent model. The structure of the deployment was directly derived from the de-
ployment workflow proposed for the context-guided agent design in the Deployment Workflow

section of Chapter 4: Context-Guided Agents and covers the following points:

» Step 1: Design behaviour context.
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 Step 2: Establish learning subtrees.
» Step 3: Implement context architecture.

* Step 4: Implement learning logic.

Step 5: Acquire data.
* Step 6: Train learning models.

Benchmarking of the context-guided agent model was to be done after its deployment. In ad-
dition to benchmarking context-guided agents, we required a reference agent to compare them
against. The selection of the reference model and its individual benchmarking was also a part of

the work done in the Agent Training stage. Benchmarking is discussed in the following sections:

* Benchmarking Procedure: outlines the benchmarking procedure used for the reference

and context-guided agents.

* Reference Model Selection: discusses the selection of the reference agent, to be com-

pared with the context-guided agent.

* Reference Agent Benchmarking: documents the execution and results of the reference

agent benchmarking.

* Context-Guided Agent Benchmarking: discusses the selection of model revisions for
use in the context-guided agent and compares the results of the context-guided agent’s

benchmark against those of the reference agent.

* Agent Versus Agent: discusses the benchmarking procedures of the context-guided agent
and its output gameplay performance, with respect to the reference agent.

6.2.3 Agent Evaluation

The Agent Evaluation stage of the study covers the experimental evaluation of the context-
guided agent model trained and deployed during the Agent Training stage. The evaluation of
the trained context-agent model was intended to take advantage of the extensive instrumenta-
tion of the game environment, discussed in the Experimental Evaluations section in Chapter 4:
Context-Guided Agents, and be conducted both offline and online. The offline part of the exper-
iment was targeted at measuring the play skill exhibited by simulated agent models in the agent
simulator environment. In contrast, the online part of the experiment was to crowdsource play

skill measurements from the large audience of the game’s human players.

The Agent Evaluation stage was structured to follow formal experiment reporting, and features

the following sections:
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* Goals: defines the objectives of the evaluation.

* Setup: discusses the setup of both the online and offline parts of the experiment and

highlights their differences.

* Procedure: provides a walkthrough of the procedure for both the online and offline parts

of the experiment.

* Results: reports how the evaluation was conducted, and presents the results obtained in

the course of the offline and online parts of the experiment.

* Agent Versus Humans: investigates the gameplay performance of human players in the
crowdsourced, online evaluation, and how it compares against that of the context-guided

agent.

6.2.4 Agent Review

The Agent Review brings together relevant data collected and developments made in the course
of the Agent Training and Agent Evaluation. It reviews the deployed context-guided agent,
discusses conditions and challenges encountered, decisions made, and how they shaped the

output of the agent training process.

6.3 Agent Training

6.3.1 Assumptions

To deploy a context-guided agent, we applied the set of design requirements specified in the
context-guided agent design Requirements section of Chapter 4: Context-Guided Agents. The
trained, output agent models were expected to be functional and valid in the context of the game

environment of 60 Seconds!.

Hardware

We intended to conduct all our training, learning and inference procedures on a single, off-the-
shelf machine that could realistically be used in a contemporary game development studio. The
hardware chosen for all offline computations was a single Microsoft Windows 11 Pro worksta-
tion, equipped with an AMD Ryzen 9 3900x 12-core central processing unit (CPU) clocked at
3792 MHz, 64 gigabytes of Random Access Memory (RAM), and NVIDIA GeForce RTX 3080
Ti graphics processing unit (GPU).



CHAPTER 6. AGENT STUDY 125

Approximations in Agent Training

As discussed in the Approximated Models section of Chapter 4: Context-Guided Agents we
assumed we would be working with approximated model representations, resulting from both
the characteristics and dynamics of game environments, as well as the nature of our research.
In that regard, additional considerations were taken into account for observability of the game
environment, agent navigation abstraction, and the simulator environment limitations, during

agent training.

Observability of the Game Environment

In the Agent Perception section in Chapter 4, we stated that agents were not supposed to be
omniscient and were only provided with partial observability of the environment, to simulate
human-like sensory perception. The observability capacity of each of the agent models was
modelled after the environment visibility afforded by the player-controlled avatar’s camera view-
port. This enabled agents to detect points of interest, which had been registered within the cam-
era’s viewport, as the agent navigates the game level (see figure 6.1 on page 125). At the start
of each gameplay session, the agent was also made aware of the location of the exit. To make
long-term use of registered points of interest and other game session data in behaviour logic,
we equipped agents with a memory representation. It was implemented to extend the agent’s

model representation in the game environment. Points of interest observable by agents included:

collectable items, the level exit, and room areas.

(a) Agent game camera view. (b) Agent top-down camera view with the approxi-
mate field of view in the level of the agent’s game
camera.

Figure 6.1: Agent’s perception of ifems in the environment. Ifems visible within the agent’s
camera’s viewport are considered spotted (marked green). Those outside the viewport are not
(marked red) until the agent faces them and they enter the camera’s viewport.

To further support the agent’s perception of the environment in terms of time, we introduced the
concept of game flow stages, tracked with respect to the time elapsed in a game session. The

developers had already used the game’s Ul and audio to signal the player about the passage of
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time using thresholds defined for different stages of the game sessions. We mapped their time
ranges to proposed flow stages: exploration, early game, mid game, late game, and very late
game. This discretisation of the game time would later be used in the logic of BT nodes and

learning models.

Agent Model

As discussed in the Agent Perception section in Chapter 4, the game environment is modelled
as an MDP, while the behaviour flow of agents operating in that environment is modelled as a
POMDP. While technically we could afford full access to the underlying game environment’s
state information, agents are only allowed to acquire data that can be perceived by them in the
context of the environment, thereby simulating an approximated human-like perception. The
extent of their observability of the game environment was discussed in the Observability of the

Game Environment section.

Agent Q executes its interaction policy 7, in a game environment e, characterised by the envi-
ronment’s current state s,, which belongs to the environment’s finite state space S,. The state
of the environment contains information about game state, game time, physical space, physical
objects simulated in the environment, itfem placement, exit placement, and the agent’s full, real
state sp. The environment’s state can be altered by a state transition function Pe(s, §’c, a.), trig-
gered by invoking an action a, from its permitted action space A.. Action space A, contains two
subsets of actions: those that can be invoked by an agent A,,, and those which are only triggered
by the environment control logic A,,. The control logic of 60 Seconds! invokes actions from A,y
independently of the agent’s operations, by means of a sequenced game loop policy 7. They
include placing collectable items in the environment, starting the game, unlocking the ability to
collect items (after the exploration period), ending the game, controlling time progression, and
simulating the physical state of objects in the environment. Agents cannot trigger any actions
from A.y, but can invoke all the actions from the action subset A.,: repositioning the avatar,

collecting an item, depositing items, colliding with an object in the environment.

Agent Q operates with respect to two states: its real, complete state s, which is part of the state
space Sp, and its belief state about the environment by. The former features complete informa-
tion about the agent, and is technically part of the environment state s.. It is fully accessible to
the environment for the purposes of servicing the gameplay of the game. Meanwhile, the agent
relies on its formulated belief state by, which is an agent’s prediction of s.. It is based on partial
information collected by the agent from observations Qg of the environment e, received as a
result of a state transition, triggered by an action agp from the agent’s individual action space Ag.
Finite set of observations Qg simulates what a human player would be able to register by inter-

facing with the game visually and gameplay-wise: data about items spotted in the environment,
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exit information, time left in the game, inventory state, information about previous deposits, and
current behaviour context state. Ao is defined with respect to the agent-specific implementation
of features and behaviour logic. Minimal action space of an agent facilitates calling into the
environment action subset A.,, and passively observing the environment’s space, based on the

agent’s position and orientation in the environment.

Incorporating additional behaviour logic, including data-driven models, into the agent’s model
augments the outlined model by expanding the agent’s observation space €2, action space Ap,
and potentially its state space Sp. This is not mutually exclusive with modelling learning logic
as a POMDP individually, which might make it easier to express the local properties of a data-

driven model.

Navigation Abstraction

For our agent models, we decided to embrace an abstracted modelling of the agent’s navigation
in the form of A* pathfinding on a navigation mesh to approximate human player navigation, as
outlined in the Autonomous Agent Support section of Chapter 4: Context-Guided Agents. As a
game industry standard solution, it was applicable in the context of our work and solved the issue
of moving the agent around the game environment. Modelling human-like navigation through
learning is a challenging research direction, which has been pursued by other teams working
on learning in games [56, 158,283]. One of the reasons for this is that humans are often able to
easily distinguish bots playing a game, rather than humans, solely based on unnatural navigation
patterns exhibited by agents. However, given a limited navigation space, an expert trajectory
dataset for navigation styling, and a big enough compute budget, this is a solvable problem
when combining RL and IL [243]. To avoid expending our resources on perfecting a learning-
based navigation model, we chose to focus our learning efforts on the agent’s decision-making.
Agents were only allowed to attempt navigation to previously discovered points of interest. This
included room areas, which were introduced as representations of individual room spaces within
the game’s environment. Targeting and visiting areas supports the agent’s exploration process,

which increases the likelihood of spotting additional items to be targeted for collection.

Semi-Automated Training Pipeline

We considered it beyond the scope of this thesis to develop a training pipeline that would sup-
port full automation of the learning-evaluation-revision process. While such an approach, based
on sequenced logic, genetic algorithms, or other methods, would have benefitted learning model
training, its engineering cost was deemed too high. We expected the development of a fault and
interruption-proof solution for an end-to-end learning model deployment to involve too many
factors outside of our control. Especially, the pipeline we were working towards involved differ-

ent, interconnected off-the-shelf solutions and libraries, whose flow had yet to be tested. Thus,
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we assumed we would only produce a limited number of functional learning models during
agent training, using a semi-automated pipeline and a conservative compute budget. This deci-
sion was also motivated by the assumptions of the context-guided agent design and industrial
requirements. Training of small-scale models for context-guided agents was expected to gen-
erate a lower training cost than training monolithic, holistic learning models. Shorter training
times involve smaller compute budgets and encourage rapid iteration in the form of model re-
visioning and retraining. Such an approach would be empowering for teams, where individuals
or groups could focus their work on selected segments of the learning logic within an agent’s

behaviour architecture.

6.3.2 Agent Deployment
Overview

We followed the deployment plan of the context-guided agent design proposal Deployment
Workflow in Chapter 4: Context-Guided Agents to produce a working context-guided agent
model. The following sections detail the work process and deliverables of each individual work

step executed.

Design Behaviour Context

On the basis of the game environment and gameplay specifications, presented in the Game
Environment chapter, we outlined objective-based behaviours that a player, and by extension
an Al agent, playing in the scavenge game environment of 60 Seconds! would be expected to

achieve:

» Navigate: relocate to points of interest in the navigable game level space, with as little

interruption of the movement as possible.

» Explore: discover points of interest, such as collectable items, in the game environment,

to be targeted later.

* Collect: target and collect relevant items in the environment, with respect to the weight of

the avatar’s inventory.

* Deposit: deposit collected irems at the exit location, but only one or more items have been

collected.

* Evacuate: complete the game successfully by navigating to the exit location, before the

time runs out.

By implementing the navigation mesh-based avatar movement as part of the game environment

instrumentation, we ensured the agent’s capacity to handle the navigation aspect of playing the
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game and achieving other gameplay objectives required to pursue targeted context architecture
and learning implementations, according to the context-guided agent design. We assumed that
an agent should always operate in a single behaviour context, matching one of the proposed
objective-based behaviours. This introduced some constraints, as not all behaviours were appro-

priate for the avatar to execute at any moment in the game:

* Explore: only valid during the exploration stage of a scavenge game, before item collec-

tion becomes possible, or if the agent has no potential target items spotted.

* Collect: only valid after the exploration stage, when item collection is possible, and when

the avatar’s inventory is not full.

* Deposit only valid after the exploration stage, when the avatar’s inventory contains at least

one item.

» Evacuate: valid at all times, but only reasonable in the later stages of the game, to leave

enough time for item collection.

We also assumed a fallback idle behaviour should be available to enable the agent to await the
end of the game, if they had evacuated with time to spare, and were forced to remain stationary
at the exit location for the remainder of the game session. It was designated as the default, worst-
case behaviour choice, since the player should strive to remain in constant motion, to make the

most of the gameplay time available.

The adopted behaviour context design implied the following gameplay logic had to be imple-

mented for an Al agent to operate autonomously in the game’s environment:

 Selecting the next scavenge behaviour (SNSB) to pursue.

 Selecting the next target item (SNTI) to be collected.

 Selecting the next room area (SNTA) to be explored.

» Sequence of actions taken to explore the environment.

» Sequence of actions taken to collect an item in the environment.

» Sequence of actions taken to deposit items from the avatar’s inventory.

» Sequence of actions taken to evacuate to the exit to complete a game session.

This separation of logic informed an intuitive segmentation of the architecture into macro, proxy,
and micro layers. Strategic, macro decision-making was embodied by the behaviour selection
logic, while the lower-level action sequences for each of the behaviours occupied the micro
layer. Connections between the two, facilitated by additional ad hoc scaffolding or conditions,

emerged as the proxy layer.
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Establish Learning Subtrees

The premise of the context-guided agent design encourages positioning learning logic where it
can deliver more value than ad hoc solutions. To facilitate that, we investigated the gameplay
logic required for our Al agent using the previously established game behaviour context. In the
process, we identified several action sequences for each of the gameplay behaviours defined.
The presence of sequential execution indicated that causality and ordering of individual tasks
was relevant. This presented a potential learning challenge, especially in a more complex envi-
ronment with sparse rewards. Thus, we considered all action sequences to be candidates for ad
hoc authoring; however, in the cases of scavenge behaviour and next target item selection logic,
their ad hoc implementations would have likely warranted an intuition-driven, heuristics-based
approach. A data-driven logic model was expected to be a preferable alternative, potentially
offering a more optimal solution to these problems. And so, we decided to implement the SNSB
and SNTI logic as learning subtrees in our context-guided agent architecture. SNTA was also
considered, but due to its limited impact on the completion and collection objectives, we de-
cided against implementing it as the third learning subtree. The behaviour of the context-agent
model was planned to be styled using data from the top-skill persona gameplay trajectories.
This suggested IL as a policy learning technique to be used for both SNSB and SNTI. With
the amount of expert data we had at our disposal, we assumed that, in combination with RL,
we could effectively bootstrap learning, providing both behaviour styling and leaving room for
more open-ended training. Commonly used and tested learning algorithms supported by ML-
Agents considered for the task included PPO for RL, and either BC or GAIL, or the combination
of the two, for IL.

Implement Context Architecture

To facilitate the implementation of the outlined context architecture, we created a BT asset
using the Behavior Bricks BT library, discussed in the BT Authoring section of Chapter 4:
Context-Guided Agents, which mapped the identified gameplay behaviours and their associated
gameplay logic onto a BT structure. We implemented additional BT nodes and conditions in
the game’s code to be able to express that logic fully in terms of a BT. This included action
nodes that would later be used as an ad hoc fallback for the learning logic, embedded in the

context-guided agent’s BT:

* SNSB: next behaviour selection logic was implemented using a heuristic-based approach,

derived from the constraints identified in the Design Behaviour Context section.

* SNTI: next target item selection was implemented by randomly selecting one of the items

that the agent spotted in the environment.

The context architecture was developed to be relatively lightweight, simplify testing and debug-

ging. It relied on the behaviour selection logic deciding which behaviour should be executed
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next, and then entering the tree branch that represented an action sequence associated with the
selected behaviour. Until that behaviour was concluded, processing was contained to the be-
haviour’s branch. The implementation process of the context architecture using ad hoc author-
ing was both an engineering and design task, comparable to typical implementation procedures

in commercial game production.

Ad Hoc Behaviour Model

The implementation of the context architecture, presented in the Design Behaviour Context and
Implement Context Architecture sections, was concluded with a fully functional, ad hoc au-
thored agent behaviour model, based on a BT. To investigate the validity and competence of
the ad hoc behaviour model, we conducted a series of test sessions in the environment of the
Unity editor. In the process, we identified a series of issues with the underlying implementation,
most of which originated in the setup of Unity’s navigation system. All problems detected were
resolved, enabling the ad hoc agent to play the game. The BT we used for the ad hoc behaviour

model is presented in figure 6.2 on page 131.

A - action node
Root tree node
D - decorator node
? - selector composite node
¢ -> - sequence composite node
A 4
?

Select next
scavenge behaviour

Is scavenge
behaviour
deposit?

Is scavenge
behaviour
idle?

Is scavenge Is scavenge
behaviour behaviour
explore? evacuate!

Is scavenge
behaviour
collect?

5] >
Idle Move
to exit

Move Rotate Deposit Select next Move to Select next Move to Rotate to Collect
to exit to exit items area to explore target area target item targetitem targetitem targetitem

Figure 6.2: Ad hoc behaviour agent model expressed as a BT, featuring the implement behaviour
context.

Implement Learning: Overview

After validating the ad hoc behaviour model, we were able to use it as a basis for the context-

guided agent model, which would incorporate learning logic. We first took the ad hoc model BT
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and replaced the ad hoc logic for SNSB and SNTI with learning nodes. Each of the replaced ad
hoc logic action nodes was placed inside the relevant learning subtree to provide fallback func-
tionality in the event of learning failure. The learning process was conducted when a learning
node in the BT was ticked, according to the flow of the tree logic. Upon tick, a learning node
update requested a decision to be made by the associated learning model. This triggered the
model’s observation collection, followed by action generation, which was then processed by the
gameplay code. The architecture and the general flow of the agent’s logic remained intact, as
pictured in figure 6.3 on page 132. To be able to facilitate the learning process using ML-Agents,
we had to expand our original instrumentation of the game environment to accommodate cases
such as ours, where two learning models could be active in inference mode at the same time.
We were unable to achieve the same in training mode due to the lack of Unity’s support for
training more than one model at a time. This additional effort had an advantageous side-effect,
as it made the code-side implementation of reward signals and observation acquisition more
centralised. We also made the values of reward signals configurable outside of code, in the
agent settings data file, to enable a more flexible manipulation of their values during training.
Learning episodes for both the SNSB and SNTI models were set to match the length of a single
scavenge gameplay session. This resulted in both models having to handle sparse, long-term

rewards. Sufficient short-term rewards were also necessary to encourage the model’s learning

progress.
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Figure 6.3: Context-guided behaviour agent model expressed as a BT incorporating learning
subtrees. The presented ad hoc BT is representative of the context-guided architecture designed
for the behaviour context of the game. SNSB and SNTI learning nodes have replaced ad hoc
action nodes and facilitate learning. An example of layering architecture with macro, micro, and
proxy layers is provided.
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Implement Learning: SNSB

The SNSB learning model was designed with an action space Asysp featuring a single discrete
action branch, with the set of n = 5 supported actions representing selections of different scav-
enge behaviours that the context-guided agent model was expected to service: idle, explore,
collect, deposit, and evacuate. Since these actions were mutually exclusive, it was possible to
express them within a single discrete action branch, with each of the actions mapped to a specific
integer value. The integer values used corresponded to the behaviour type enumerator value, de-
fined for the agent in code. Agent’s action selection triggered the next scavenge behaviour to be

executed by the agent.

SNSB was a decision-making model, guiding the agent’s operations from the macro level. This
informed the selection of observation values that were expected to generate a holistic perspective
of the agent’s situation in the context of the gameplay with respect to the state of the agent sq,
and its belief state about the environment bg. SNSB’s observation space Qgysp featured n = 12

vectors:

* Current scavenge behaviour (integer, derived from the behaviour type enumerator value)
 Previous scavenge behaviour (integer, derived from the behaviour type enumerator value)
 Target item type (integer, derived from the game’s item type enumerator value)

 Target item distance (float)

* Target item weight (float)

» Agent’s current inventory weight (float)

* Agent’s inventory maximum weight (float)

* Time left in the game (integer)

* Current flow stage of the game (integer, derived from the flow stage enumerator value)

* Agent’s avatar distance to exit (float)

* Number of areas left to visit (integer)

* Spotted item count (integer)

SNSB’s reward function Rgysp combined local objective, global objective, and behaviour va-
lidity reward signals. The majority of SNSB reward signals were mapped to local objectives of
specific behaviours, which emitted reward signals in the course of a learning episode, following

an action-observation mapping. Global objectives (collection and completion) were rewarded
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accordingly at an end of a learning episode, based on the criteria defined within Rsysp. Addition-
ally, since the SNSB model had the capacity to select an invalid behaviour, rewards promoting
valid and discouraging invalid choices of behaviours in the context of the environment state s,
were also issued. Reward values were configured in the model’s input configuration file, which
is presented in table D.1 on page 212. Pseudocode for the SNSB’s reward function Rgysp can
be reviewed in table D.4 on page 218.

Implement Learning: SNTI

The SNTI learning model was designed with an action space Agy7; that featured a single dis-
crete action branch. It supported a set of n = 21 actions, each corresponding to a collectable item
type, whose integer value was derived from the game’s ifem type enumerator value. The agent’s
action choice was translated into the type of ifem they wanted to target. Since it was assumed
that the agent could only observe a single target at any given time, a discrete branch represen-
tation was valid here. The actual target item was then retrieved from the collection of spotted

items, maintained in the model’s gameplay logic, on the basis of prior observations osyr;.

SNTI’s goal was to make a local target selection decision, which was considered part of the
micro layer of the behaviour context. This informed the decision to focus its observation space
on item related data, and forego more general information, which was observed for SNSB. Still,

SNTIs observation space Qgy7; featured as many as n = 89 vectors, which included:

* Current target item type (integer, derived from the game’s ifem type enumerator value)
* Time left in the game (integer)

» Agent’s distance to exit (float)

* Agent’s current inventory weight (float)

* Agent’s maximum inventory weight (float)

* Specific item type observations for each of the 21 item types present in the game.: item
type (integer), distance to the closest instance of the particular item type (float), item’s

weight (float), and the number of previously collected instances of the item (integer).

Primary reward signals of the SNTI’s reward function Rgy7; were concerned with effective target
selection. Similarly to SNSB, SNTI was able to select an invalid target irem. Thus, successful
target selection for an item that would fit in the agent’s inventory was rewarded, whereas failed
target selection was penalised. Additional rewards were provided for the agent performing a
successful itfem collection, as well as collecting the first instance of a specific item type. The

collection global objective was also promoted by a reward signal at the end of each session, with
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value tied to the actual collection performance recorded. Reward values were configured in the
model’s input configuration file, which is presented in table D.1 on page 212. Pseudocode for

Rsnt1 can be reviewed in table D.5 on page 218.

Acquire Data

Although we had already aggregated the gameplay trajectory dataset to be used for IL, it was still
necessary to generate a Unity-compatible demonstration file for each of the trajectories, to be
used as the input data for the IL process via ML-Agents. Demonstration files had to be generated
individually for SNSB and SNTI, as these two models had a distinct set of observations, rewards,
and actions. The process was conducted using the gameplay trajectory replay feature of the
agent simulator environment, configured to output demonstration files. Initially, we attempted
to encode all our trajectories into a single file: one for SNSB, and one for SNTI. In the process
of training our learning models, we found out that trajectories encoded into Unity’s proprietary
demonstration format were unusable. Through trial and error, we were able to deduce that the
root cause of the problem was the number of trajectories encoded into a single demonstration
file. The issue manifested sooner with SNTT training, as the demonstration files for SNTI were
larger than those generated for SNSB. It was likely a result of SNTI’s larger observation space.
We established that we could encode no more than 100 trajectories into a single demonstration
file before the software stability of the learning library became compromised. This resulted
in repeating our data acquisition step and generating 765 demonstration files for each of the
learning models to be trained, each with only 100 episodes encoded. However, as we would find
out during subsequent model training, we were also forced to limit the number of demonstration

files used in training our models, due to the software stability problems with ML-Agents.

Train Learning Models

Due to the constraints of ML-Agents, which required individual training of each of the learning
models involved, the training of SNSB and SNTI was planned accordingly. Each of the models
was trained separately, with its context-guided agent BT learning node active and set to training
mode, participating in the learning process. The other, inactive model still had its learning node
tick in the BT, but due to it being offline, it would automatically fail, and use its ad hoc, fallback
logic instead. This way, training was normalised with respect to what we assumed would be
the worst-case scenario provided by the ad hoc, fallback logic. To further normalise the training
conditions of both models, we configured both training scenarios with game setup parameters
equivalent to those used to sample the baseline dataset BAS in the Baseline section of Chapter

5: Game Score Study:
* Game type: scavenge and full game type ruleset.

* Difficulty: normal.
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» Extended item set: true, per default setup of levels used.
* Character selection: 7ed

* Level: full range L = [1, 20] of scavenge levels available.

We then configured rewards for each of the models. We attempted to encourage learning through
consistent and positive, but granular, feedback. Penalties were only applied when invalid ac-
tions or actions that did not make sense in the context of the game environment were taken.
The end of each episode rewarded achievement of completion and collection of objectives. Ex-
treme, negative states, where not a single irem was collected, or completion was not achieved,
were penalised. Reward configuration for SNSB and SNTI can be reviewed in table D.1 on
page 212. The hyperparameter configuration for SNSB and SNTI covered the setup of PPO,
BC, and GAIL. For initial hyperparameter value setup in each of the scenarios, we referred to
the official Unity ML-Agents documentation, and applied the suggested, optimal values provided
for each of the algorithms [251]. However, due to the specifics of our learning scenarios, we

introduced some modifications:

* Batch size: since the action spaces of both SNSB and SNTI were discrete, we decreased
the batch size to be smaller, from 1024 to 128.

* Maximum steps: the number of learning steps was doubled to 1,000,000, following initial
RL only tests, which suggested a larger number of steps might be required to generate

better models.

* BC and GAIL strength: since we intended the applied IL algorithms to have a significant
influence on the learning process, we increased the strength of BC and GAIL to 0.1, from
the default value of 0.01.

The first model version, and the hyperparameter configuration associated with it, was labelled
A000 (see hyperparameter values D.2 on page 215). In the course of our training work, we
produced two more revisions of both the SNSB and SNTI models, labelled A100 (see hyperpa-
rameter values D.3 on page 217) and A200 (see hyperparameter values D.6 on page 221). The
agent simulator environment was configured to conduct semi-automated training for the indi-
vidual scenarios of SNSB and SNTI using 10 CPU-bound simulator environments running in

parallel, jointly contributing to the learning process.

The first attempt at training AOOO failed on startup, due to errors generated by ML-Agents, per-
taining to the BC configuration. We were unable to track the exact reason for this, but we
were able to deduce that the problem originated in the encoding of our demonstration files.

Neither Unity’s official nor unofficial community channels provided an explanation. Unity’s
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official channels refrained from assisting users who had applied ML-Agents in custom environ-
ments [253]. Because of this development, we had to reluctantly remove BC as one of our IL
algorithms and only apply a combination of PPO and GAIL. Additional problems related to IL
appeared in our second attempt at training A0OO, despite removing BC from our learning con-
figurations. No instances of the agent simulator environment were able to complete startup to
begin training. All of them eventually crashed, but not before spending several hours on what
appeared to be loading input demonstration files. No errors were produced, but by trial and error,
we were able to conclude that the issue originated with the size and number of demonstration
files. We repeated the data acquisition step and, as discussed in the Acquire Data section, found
out that we had to limit the number of gameplay trajectories from the top-skill persona dataset
used for training. The number of demonstrations was limited to 180 for AOOO SNSB, and 100
for AOOO SNTI, to ensure uninterrupted training.

A000 | A100 | A200
Buffer size 10,240 | 5120 5120
Extrinsic strength 1.0 0.1 1.0
GAIL strength 0.1 0.9 0.5
Hidden units (network) 128 64 64
Hidden units (extrinsic) 128 64 64
Hidden units (curiosity) 128 64 64
Encoding size (curiosity) 256 128 128

Table 6.1: Hyperparameter configuration changes between iterations of SNSB and SNTI models
A000, A100, and A200.

The first iteration AOOO produced a model that appeared to be able to play the game. Reward
values achieved during training, as well as collection and completion scores, looked promising,
but we assumed there was room for improvement. Especially, the computational cost incurred
due to a long training time, which exceeded 36 hours, was prohibitive. This informed the hyper-
parameter configuration of the second iteration, A100. To decrease the complexity of the trained
network and, consequently, its training time, we halved a selection of hyperparameter values,
including the buffer size, hidden unit count, and curiosity encoding size. We also decided to
experiment with radically increasing the GAIL signal strength, while minimising the strength of
extrinsic rewards (see table 6.1 on page 137). Other hyperparameters were copied from A000.
While A100 was trained in less than 7 hours, its performance was underwhelming. The A100
SNSB model became fixated on completion, ignoring collection objectives. The A100 SNTI
model scored negatively in terms of the cumulative and extrinsic rewards. To cope with this
drop in performance, while still attempting to keep the training time lower, we increased the
extrinsic signal strength and decreased the strength of GAIL, producing configuration A200.
Other hyperparameters remained unchanged from A100. The improvement was minimal, while
the length of the training increased to more than 17 hours. Due to the iteration limits involved,

we concluded our model training at that point.
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The general results and training times of models A000, A100, and A200 are presented in ta-
ble D.7 on page 221. Visual presentation of training progression in terms of key measures is
shown in figure D.7 on page 222 for the SNSB models, and in figure D.8 on page 222 for the
SNTI models.

Test Behaviour Context with Learning

Having trained SNSB and SNTTI learning models A000, A100, and A200, we expanded the agent
simulator environment to incorporate these models as embedded assets. This made it possible
to generate an instance of the context-guided agent with functional learning logic of SNSB and
SNTI operating in the environment’s executable. We then simulated the context-guided agent’s
operations in inference mode in the game environment and observed its behaviour. The agent’s
behaviour appeared to be valid in terms of the game’s context and was concerned with pursuing
the game’s objectives with a varying degree of success. Quality checking of the behaviour

context was left to be conducted later, during agent benchmarking.

6.3.3 Agent Benchmarking
Procedure

Benchmarking was conducted as follows:

* Selecting the reference model to be used for comparison with the context-guided agent

model.
* Benchmarking the reference model to determine its gameplay performance.

* Benchmarking of the trained context-guided agent models to compare their gameplay per-
formance and select the best performing one to be used in further benchmarking and in

the experimental evaluation.

* Selection of the context-guided agent model to be evaluated and comparing its gameplay

performance to that of the reference agent.

Benchmarking of all agent models was conducted in normalised conditions, based on the game

setup parameters used to sample baseline dataset BAS:

* Game type: scavenge and full game type ruleset.
* Difficulty: normal.

* Extended item set: true, per default setup of levels used.
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¢ Character selection: 7Ted

* Level: full range L = [1, 20] of scavenge levels available.

All agent models were simulated in the inference mode, in the agent simulator environment.
They were all tasked with playing every game level from the configured level range 50 times
with the execution speed of the simulator multiplied by 10. Each agent model generated 1000
gameplay trajectories, which were then processed, using our data processing pipeline, to be
analysed with respect to the collection and completion scores achieved.

Reference Model Selection

While we planned for an experimental evaluation with human players, whose gameplay we were
ultimately trying to model and simulate with the context-guided agent model, it was desirable to
compare its performance with that of an alternative agent implementation before conducting the
experiment. Since one of the key steps in developing a context-guided agent, according to the
proposed design, was the deployment of an ad hoc authored behaviour model, we chose to use
it as our baseline model. Intuitively, the context-guided agent model was expected to surpass
its ad hoc, fallback base. If it failed, that would have implied the output of the context-guided
agent’s learning model was no better than that produced by a manually authored solution, at a
much lower training cost. Thus, the agent model we chose to be our reference model was the ad
hoc behaviour model developed in the course of the context-guided agent training, which was

discussed in the Ad Hoc Behaviour Model section.

Reference Agent Benchmarking

Data processing of the gameplay trajectories produced by the reference model benchmarking
resulted in the creation of dataset REF (see table 6.2 on page 139). Statistical description of
dataset REF revealed its median collection score to be M = 0.33. The collection play skill of the
model was classified as Low. Completion probability of REF was found to be P(com) = 0.57.

Dataset REF Dataset REF
Sample size 1000 Sample size 1000
Values Scol Values Scom
Measurement Value Measurement Value
Min 0.0 Min 0.0
Max 0.54 Max 1.0
Mean 0.32 Mean 0.57
Median 0.33 Median 1.0
Mode [0.27906977] Mode [1.]
Standard deviation 0.06 Standard deviation 0.5

Table 6.2: Statistical description of the s.,; and s, value distributions of the reference model
benchmarking results aggregated in dataset REF.
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Context-Guided Agent Benchmarking

Data processing of the gameplay trajectories generated by benchmarking the trained context-
guided agent models resulted in the creation of datasets CA0O, CA1, and CA2 for model itera-
tions A00O, A100, and A200, respectively. Statistical description of the datasets (see table D.8
on page 224) revealed the collection results to be consistently lower for all model iterations than
those achieved by the reference model (see figure 6.5 on page 141). Even worse results were
recorded for their completion probability P(com) (see table 6.3 on page 140), which did not

exceed the value of P(com) = 0.15 for any of the models tested.

SNSB | SNTI | Dataset | M., M P(com)
A000 | A000 CAO0 023 | 0.12 0.13
A100 | A100 CAl 023 | 0.12 0.15
A200 | A200 CA2 023 | 0.13 0.12

Table 6.3: General benchmarking results for context-guided agent model iterations A000, A100,
and A200 aggregated in datasets CAO, CA1, and CA2 respectively. Presented values include
collection score median M, probability of completion P(com) and full score median M;.
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Figure 6.4: Visual comparison of collection score distributions for benchmarked learning model
iterations A000, A100, and A200, recorded in datasets CAO, CA1, and CA2, respectively.

To establish whether it was only one of the models in each iteration pair affecting the scores,
we decided to benchmark all SNSB and SNTI models individually. Each of them was paired
with fallback logic in place of the other learning model. First, using the same benchmark pro-
cedure, we simulated SNSB models A000, A100, and A200, with the SNTI model deactivated
and instead calling SNTI fallback and ad hoc logic. Then, we benchmarked SNTI models A000,
A100, and A200, with the SNSB model deactivated. Visual comparison of the results of all
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these benchmarks, presented in figure 6.5 on page 141 indicated that SNSB models were under-
performing and compromising both the completion and collection objectives of the game. SNTI
only benchmarks delivered better completion and collection scores. However, their collection
scores were still lower than those of the reference agent. This suggested that all the trained
SNTI models selected their targets in a less optimal manner than random logic. SNTI A000
paired with fallback SNSB produced the highest completion probability P(com) = 0.51, median
collection score M,,; = 0.26, and median full score M; = 0.53 from the model combinations

benchmarked (see table 6.4 on page 141).

SNSB SNTI Dataset | M., | P(com) M
A000 Fallback CABO 0.23 0.11 0.12
A100 Fallback CABI1 0.23 0.11 0.12
A200 Fallback CAB2 0.21 0.14 0.12
Fallback A000 CAIO 0.26 0.51 0.53
Fallback A100 CAIl 0.23 0.48 0.16
Fallback A200 CAI2 0.26 0.49 0.17

Table 6.4: Benchmarking results for individual SNSB models paired with fallback SNTI logic,
and vice versa. Presented values include collection score medians M,,,;, probabilities of comple-
tion P(com) and full score medians M;.
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Figure 6.5: Visual comparison of collection score distributions and probability of completion
recorded for benchmarked SNSB and SNTI models in datasets CAO-CAI2.

Context-Guided Agent Selection

Benchmarking results confirmed that all investigated combinations of SNSB and SNTI mod-
els were capable of playing the game by achieving non-zero collection and completion scores.

However, their competency varied and was consistently below that of the reference model. The
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deployed SNSB models, representative of high-level pursuit of both collection and completion
objectives, were unable to direct the agent effectively. They scored lower on both completion
and collection, in comparison to SNTI models with SNSB fallback. We concluded that SNSB
learning was insufficient, and further evaluation of an SNSB model would not provide additional
information in our research. However, since the context-guided agent design does not enforce
the number of learning models deployed in an agent, we decided to continue our work with a
single learning model: the highest-scoring SNTI model, AO00. We paired it with SNSB ad hoc

fallback, as we did for benchmarking.

Summary

While the trained context-guided agent model did not appear to have surpassed the reference
agent in terms of gameplay performance, it had proven to be functional. We successfully applied
the context-guided agent design in practice, in a commercial game environment, and success-
fully deployed an agent valid in the context of the game’s environment. As such, we considered
the trained and operational context-guided agent model to be a practical response to research

question RQ1. It also constituted research output OS.

6.3.4 Agent Versus Agent
Assumptions

We assumed the context-guided agent would be able to achieve higher or similar collection and
completion game scores (sqo;c and P, c, respectively) to the reference agent (s.,;z and Peomr,
respectively). This led us to formulate hypothesis H; _ggr of the context-guided agent achieving

higher collection scores, and a higher probability of completion, than the reference agent:

Ho_reF: Scoic < Scoir OF Peomc < Peomr
Hi_reF: Scoic >= Scoir and Peome >= Peomr

Comparing Agent Models

To test hypothesis H|_rgFr, we established the context-guided agent’s collection and comple-
tion scores’ value distributions to be equivalent to those exhibited in dataset CAIO. Reference
agent’s collection and completion scores’ value distributions were equivalent to those exhibited
in dataset REF.
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Figure 6.6: Visual comparison of collection score distributions for the context-guided agent
using the SNTI learning model A0OO, and the reference, BT agent.

We moved to compare these collection score distributions visually and quantitatively. A differ-
ence between the two was observable in visualisation, with the reference model scoring higher
(see figure 6.6 on page 143). Since both datasets were generated in the agent simulator, we
assumed their value distributions to be normal. Review of their QQ plots confirmed this (see
figure D.9 on page 223). Based on the visual observation of the score difference, and the col-
lection score component of hypothesis H;_ggr, we put forward local hypothesis Hi_rgr_c,
stating that the mean of collection scores in the reference agent generated dataset REF mggr o
was higher than the mean of collection scores mcajoco generated by the context-guided agent in
dataset CAIO:

Ho_RrEF—c: MREFcol <= MCAIOcol
H\_RreF—c: MREFcol > MCAIOcol

Different sample sizes for normal datasets REF and CAIO informed the decision to test the hy-
pothesis using one-sided, Welch’s t-test (o = 0.01, sample sizes nggr = 1000 and ncazo0 = 10,00).
Test results (p = .001, s = 29.2) rejected the null hypothesis Hy_ggr—c, under conditions exam-
ined. In the investigated scenario, the reference agent was found to significantly outperform the

context-guided agent in collection scores achieved.

We then compared the completion scores of the reference and the context-guided agents. The
completion probability of the reference agent P(comggr) = 0.57 appeared to be higher than the
completion probability of the context-guided agent P(comcajo) = 0.51. Based on this observa-
tion, and the completion score component of hypothesis H; _ggr, we put forward local hypothe-

sis H)_ggr_w, stating that the probability of completion of the reference agent P(comggr) was
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higher than the probability of completion of the context-guided agent P(comcayo):

Ho_rer—w: P(comger) <= P(comcar)
H, _rer—w: P(comggr) > P(comcapo)

To test the hypothesis we conducted a one-sided, proportion z-test (o = 0.01, sample sizes
nrer = 1000 and ncajo = 1000). Test results (p = .004, z = 2.65) rejected the null hypothesis
Ho_car0-w, under conditions examined. In the investigated scenario the reference agent was

found to significantly outperform the context-guided agent in completion scores achieved.

Summary

Since both hypotheses H;_grr_c and H;_gpr_w were not rejected, we were able to conclude
that hypothesis H|_ggr of the context-guided agent achieving higher collection and comple-
tion scores than the reference agent was rejected. Thus, context-guided learning agents did not
achieve approximately similar or better game scores than reference agents, in the same game

environment conditions.

6.4 Agent Evaluation

6.4.1 Overview
Goals

The goal of the context-guided agent model evaluation was to experimentally evaluate the game-
play performance of the context-guided agent model, in order to determine whether it could cope
with unseen game environments in the game 60 Seconds!, and address research question RQ2.
The training of the evaluated context-guided agent was presented in the Agent Training section.
The evaluation was conducted with the use of the quantifiable game score metric, defined in the
Game Score section of Chapter 5: Game Score Study. Evaluation was divided into an offline
trial, which evaluated the agent model, and an online trial, which evaluated human players. Both
parts of the experiment were conducted in normalised conditions of the game environment of 60

Seconds!, using a set of new game levels designed for the purposes of the evaluation.

Report

All relevant information about the setup, procedure, and results of the experimental evaluation
is reported in the sections below. Supplementary documentation for the online evaluation is

provided in Appendix B.
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6.4.2 Setup
Design

Gameplay performance was measured in an experimental evaluation trial, challenging players to
face previously unseen game environments in the form of new game levels. A single evaluation
session in the trial required players to play through the presented levels without interruption.
Five levels, each with a different and unique layout, were created to be played in the course of
the evaluation. New levels were based on the standard, shared environment architecture used in
the original game levels. All of them were constructed from pre-designed room prefabricates,
created by the game’s developers. It was done to root new environments in a familiar, spatial and
gameplay context, preventing any potential overhead that could have been caused by departing
from the game’s familiar setup. In contrast to regular game levels, which are pseudo-randomly
populated with items to be collected, every evaluation level had its own, fixed item type and
positioning setup, which was repeated for all playthroughs of a level. On each level, the player
was given the standard 7., = 60 s collection time, and 7.y, = 5 s exploration time, similar to
the game’s scavenge challenges. The total weight of items to be collected in each evaluation
level was set to T = 41. Playthrough of each level in the trial generated a gameplay telemetry
trajectory data sample, which could later be used to analyse the gameplay performance of the

player.

The same evaluation trial design was deployed in two, approximately similar setups:

* Online: in the instrumented, commercial game environment of the game 60 Seconds! for

human players.

* Offline: in the agent simulator version of the game environment for Al agents.

Online: Human User Evaluation

To benchmark the context-guided agent against that of “human experts”, it was trained to imi-
tate [248], we had prepared an experimental evaluation trial deployment for the live audience of
the commercial version of the game 60 Seconds!. This was made possible by the instrumentation
of the game environment for the purposes of conducting online experimental evaluations, doc-
umented in the Experimental Evaluations section in Chapter 4: Context-Guided Agents. The
experiment was approved by the University of Glasgow College of Science and Engineering

Ethics Committee, as detailed in the Evaluation section in Chapter 4: Context-Guided Agents.

New game levels designed for the evaluation were presented to users in the familiar interface and
format of scavenge challenges, taking advantage of their intrinsic play motivation and familiarity

with the game. The gameplay in the trial was identical to the one experienced and known to
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players from the standard game sessions, and did not alter the rules of scavenge, or the control
over the player’s avatar. The only features manipulated for the purposes of research-driven
evaluation were the new level designs used for evaluation, and the delivery method of presenting
these levels in a sequence, rather than individually. The online evaluation was designed as a
randomised controlled experiment. Every player taking part in the experiment was randomly

assigned to one of three groups:

* Group 1: participant played a sequence of five evaluation levels in a predetermined, as-

cending order 1-5.

* Group 2: participants played a sequence of five evaluation levels in a predetermined,

descending order 5-1.

* Group 3: for each participant, the order of the sequence of five evaluation levels was

individually randomised.

Randomised control was introduced to provide enough variance to minimise any population
bias resulting from playing evaluation levels in a specific order. We also assumed the first level
allocated to a participant would be considered a calibration scenario. The number of users that
would be involved in the trial was purposefully undetermined at the time of evaluation and
proposal. Since the experiment delivery was planned to use a live game, the experiment was
open-ended, and we intended to acquire as many samples from the players willing to participate

as possible.

Offline: Agent Evaluation

An offline version of the experimental, evaluation trial was deployed in the agent simulator, pre-
sented in the Agent Simulator section of Chapter 4: Context-Guided Agents, to evaluate the play
skill of the context-guided agent model. No changes to the environment conditions designed for
the evaluation were introduced, with the exception of those discussed in the Game Environment

Changes section of Chapter 4: Context-Guided Agents.

The offline evaluation was planned to be executed after the online evaluation had concluded.
The number of valid, online evaluation sessions recorded was expected to inform the number
of agent evaluation sessions to be simulated. Since we understood that Al agents would not
exhibit any bias, resulting from the specific ordering of the sequence of levels played, all offline

evaluation sessions were planned to be simulated in a predetermined, ascending order, 1-5.
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6.4.3 Procedure
Online: Human User Evaluation

All active players of the game were considered as potential participants of the evaluation and
were able to learn about it by following the standard communication channels of the game’s de-
veloper. No special equipment or setup was required to take part. Every user interested in taking
part was able to easily access the experimental evaluation through the scavenge challenge mode
of play, present in the game. Upon first access to the evaluation, they were greeted with the
consent and information page, where they were introduced to the procedure for the evaluation
trial. If they had consented to take part in our evaluation and confirmed their age to be 16 or
above, they were allowed to participate in the trial. Players were able to opt out of their consent
at a later date through the appropriate option, present in the game’s settings menu. Failure to
provide consent or verify their age prevented players from accessing the evaluation trail. They
would also not receive digital, in-game rewards that were only given only to players who had

participated in the evaluation trial.

Before the trial began, each player was presented with an information screen explaining the dif-
ferences between the evaluation and original gameplay, as well as the goal of the evaluation. The
screen also featured consent and age verification check box controls. Information was provided
in textual form, embedded in the game’s user interface, localised for the active language version
of the game, including English, Polish, French, German, Italian, Spanish, Portuguese Brazilian,
Japanese, Simplified Chinese, Korean, and Russian. All other trial-related textual content was
also translated accordingly. Leaving the information screen initiated the evaluation gameplay
and began logging research data. At the end of the evaluation trial, data logging was deacti-

vated, and the participant was presented with a debriefing screen.

The online data collection pipeline was used to crowdsource the gameplay telemetry data from
users, who chose to participate in the evaluation. Upon completing the evaluation, gameplay
trajectories logged for each of the levels they played were uploaded to the developer’s server

storage.

Offline: Agent Evaluation

The offline evaluation was executed after the conclusion of the online evaluation. All gameplay
trajectory data samples were generated in the agent simulator environment, running the context-
agent model in inference mode at 10 times the regular execution speed. Simulation was executed
on local hardware, described in the Hardware section. Since agent simulations were executed
offline, there was no need to upload data samples through the game’s online data collection

pipeline, as was the case with the online part of the experiment.
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6.4.4 Results
Online: Human User Evaluation

The online part of the experimental evaluation was initiated on the 21% of May 2019, when the
game’s update containing the evaluation challenge was uploaded by the developers of the game
(update 1.403 Rocket Science!). The online evaluation was concluded on the 29™ of April 2022,
when the developers of the game deactivated research data logging. There were 94,735 valid
gameplay trajectories generated for all evaluation levels by 18,947 unique users, who played
through the evaluation without interruption. Since evaluation levels had a total collectable item
weight set to 7T = 41, which was different from the established 7; = 43 (see Play Skill Clas-
sification section of Chapter 5: Game Score Study), scores recorded during evaluation were
normalised accordingly. We transformed the data collected during the online experiment using
the data collection and processing pipeline and aggregated valid player samples in the following

datasets:

* EHA: player scores from all evaluation samples recorded.

EHS1 - EHSS: player scores achieved with respect to the sequence playthrough order.
First playthroughs were placed in dataset EHS1, second playthroughs in EHS2, and so on.

EHL1-EHLS: player scores achieved in specific level environments.

* EH: player scores from all playthroughs, but with the first, calibration playthrough ex-
cluded for each participant (see table 6.5 on page 151).

Offline: Agent Evaluation

Upon the completion of the online part of the experimental evaluation, we recorded the number
of users who contributed valid gameplay trajectories. This informed the number of evaluation
sessions to be simulated in the agent simulator environment for the offline part of the experiment.
A total of 94,735 gameplay trajectories were generated for all evaluation levels by 18,947 virtual
users. While each virtual user was technically an instance of the context-guided agent, individual
recordings streamlined our organisation of the collected data for further analysis. We repeated
the score normalisation routine, applied earlier to the scores from the online evaluation, for
offline evaluation scores. Data from the offline experiment was transformed using the processing

pipeline and aggregated into the following datasets:

* EAA: agent scores from all evaluation samples recorded.

* EAS1 - EASS: agent scores achieved with respect to the sequence playthrough order.
First playthroughs were placed in dataset EAS1, second playthroughs in EAS2, and so on.
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 EAL1-EALS: agent scores achieved in specific level environments.

* EA: agent scores from all playthroughs, but with the first, calibration playthrough ex-
cluded for each virtual user (see table 6.6 on page 151).

6.4.5 Agent Versus Humans
Assumptions

We assumed the evaluated context-guided agent would achieve higher or similar collection and
completion game scores (Sqo;c and Py, respectively) to human players (sq.o;g and Py, re-
spectively) participating in the evaluation. This led us to formulate hypothesis H; _gp>, and null
hypothesis Hy_gp2:

HOfRQZ: ScolC < ScolH OF Peomtt < Peomn

HlfRQZ: ScolC >= Scot and Peope >= Peomn

Description of Human Player Evaluation Scores

We assumed that human players participating in the online evaluation would score less in the
first calibration playthrough of their evaluation session. Due to the way datasets EHA and EH
were aggregated, we were able to express that assumption in the form of the hypothesis Hy_car

of the collection scores in EHA being lower than those found in EH in terms of central tendency:

Hy_car: collection scores in EHA are higher than or equal to those in EH

H | _c4;: collection scores in EHA are lower than those in EH

Visual examination of differences between collection score value distributions of the five game
playthroughs played in order by the participants of the online experiment in each evaluation
session (see figure 6.7 on page 150) supported the notion that the first game in the sequence

exhibited lower collection scores.
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Figure 6.7: Collection score value distributions for each of the five game playthroughs during
each online evaluation session, aggregated in datasets EHS1-EHSS.

To determine if that was the case, we compared the collection score distributions in datasets
EHA and EH. To inform our method selection for the comparison, we visually inspected QQ
plots for both distributions (see figure D.10 on page 223), which suggested normality violations
in both datasets. We then quantitatively tested their normality using Shapiro-Wilk tests for EHA
(o =0.01, n =94,735) and EH (o = 0.01, n = 75,788). Both EHA (p = .001, s = 0.93) and
EH (p =.001, s = 0.92) violated normality assumptions under conditions examined, confirming
our visual observations. Normality violations in the collection score distributions of EHA and
EH informed our decision to use a one-tailed, non-parametric Mann-Whitney U test to com-
pare these distributions. Test results (o = 0.01, ngys = 94,735, ngg = 75,788, p = .001, s =
3,485,101,330.5) rejected the null hypothesis, under conditions examined. The collection score
distribution of EHA was found to exhibit significantly smaller values than the collection score
distribution of EH. This indicated that calibration playthroughs suffered from lower gameplay
performance, likely caused by the lack of immersion and focus, which only improved for the
subsequent sessions. Hence, calibration playthroughs were excluded from further analysis. EH

was used as dataset representative of the online evaluation samples (see table 6.5 on page 151).
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Dataset EH Dataset EH
Sample size 75,788 Sample size 75,788
Values Scol Values Scom
Measurement Value Measurement Value
Min 0.0 Min 0.0
Max 0.7 Max 1.0
Mean 0.46 Mean 0.89
Median 0.47 Median 1.0
Mode [0.46511628] Mode [1.]
Standard deviation 0.1 Standard deviation 0.31

151

Table 6.5: Statistical description of the s.,; and s, value distributions generated by the online
evaluation playthroughs, with the calibration playthrough excluded, aggregated in dataset EH.

Description of Agent Evaluation Scores

Since we excluded calibration playthroughs from the online evaluation results for human partic-
ipants, we applied the same approach to the agent score data from the offline evaluation. This
resulted in dataset EA being representative of the offline evaluation samples that were deemed

relevant for further analysis (see table 6.6 on page 151).

Dataset EA Dataset EA
Sample size 75,788 Sample size 75,788
Values Scol Values Scom
Measurement Value Measurement Value
Min 0.0 Min 0.0
Max 0.51 Max 1.0
Mean 0.3 Mean 0.59
Median 0.31 Median 1.0
Mode [0.310,438,07] Mode 1]
Standard deviation 0.05 Standard deviation 0.49

Table 6.6: Statistical description of the s.,; and s, value distributions generated by the offline
evaluation playthroughs, with the calibration playthrough excluded, aggregated in dataset EA.

In preparation for method selection for comparing agent scores with those of human participants,
we reviewed EA’s QQ plot, which suggested the distribution was normal (see figure D.11 on
page 223). We conducted a Shapiro-Wilk test to quantitatively confirm it (& = 0.01, sample size
n=175,788, p=.001, s = 0.98), but the test results revealed it to be non-normal, under conditions

examined.

Comparison of Agents and Humans

Results from the online and offline parts of the experimental evaluation supplied us with data to
conduct a normalised comparison of the measured gameplay performance of the context-guided
agent and human players. This was required to provide a formal response to RQ2, to determine
how well trained context-guided agents operate in unseen environment scenarios, in normalised
conditions, in comparison to human players. Examination of the median collection score M,,,;

and completion probability P(com) values in EH and EA suggested that human players per-
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formed better in collection and completion, in the normalised conditions of the experiment (see
table 6.7 on page 152). Visual inspection of the collection score value distributions in EH and

EA also supported this notion (see figure 6.8 on page 152).

Experiment Dataset | M., | Collection play skill | P(com)
Online - humans EH 0.47 Average 0.89
Offline - agents EA 0.31 Low 0.59

Table 6.7: Results from the online and offline parts of the experimental evaluation, aggregated
in datasets EH and EA. Presented values include collection score medians M,,,;, probabilities of
completion P(com) and full score medians M.
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(a) Collection score distribution density. (b) Collection score boxplots.

Figure 6.8: Visual comparison of collection score distributions from results of the online and
offline experimental evaluation, aggregated in datasets EH and EA, respectively.

Based on the visual and quantitative observations of the collection score difference, as well as the
collection score component of hypothesis Hj_gg2, we put forward local hypothesis Hy_gp2—c,
stating that the median of collection scores of human participants in dataset EH Mgy, was

higher than the median of collection scores of the agent in dataset EA Mgaco;:

Ho_ro2—c: MEH:01 <= MEAcoI
Hi_ro2—c: MEHco1 > MEAco!

Since collection score value distributions in datasets EH and EA were found to be non-normal,
we chose a one-tailed, non-parametric Mann-Whitney U test (o = 0.01, sample sizes ngy =
75,788, npgy =757,88) to compare the two distributions. Test results (p =.001, s =5279830675.5)
rejected the null hypothesis Hy_gg>—c, under conditions examined. This indicated that human

players significantly outperformed the context-guided agent in collection scores achieved during



CHAPTER 6. AGENT STUDY 153

the experimental evaluation.

We then compared the completion scores of humans who participated in the evaluation, and the
evaluated context-guided agent model. The completion probability of human players P(comgp)
= (0.89 appeared higher than the completion probability of the context-guided agent P(compa) =
0.59. Based on this observation, and the completion score component of hypothesis H; _ggo, we
proposed a local hypothesis Hj_gpo—w, stating that the probability of completion of evaluated
human players was higher than the probability of completion of the evaluated context-guided
agent:

Ho_rga—w: P(comgy) <= P(comg,)
H|_ro2-w: P(comgp) > P(comgy)

To test the hypothesis we conducted a one-sided, proportion z-test (& = 0.01, sample sizes ngy
= 75,788 and ngs = 75,788). Test results (p = .001, z = 131.82) rejected the null hypothesis
Ho_rg2—w, under conditions examined. In the investigated scenario, evaluated human players

significantly outperformed the context-guided agent in terms of completion scores achieved.

Summary

Since both local hypotheses, Hl — RQ2 —C and H1 — RQ2 — W, were not rejected, we were
able to conclude that hypothesis H1 — RQ2 of the context-guided agent achieving higher col-
lection and completion scores than the human players was rejected. Our findings indicated that
context-guided learning agents did not achieve approximately similar or better game scores than
those of human players, in approximately similar game environment conditions of unseen game
scenarios. The recorded game score data showed that while the agents were able to achieve
non-zero scores, their collection and completion scores were on average datasetEHEAcolcomd-
iffpercent% lower than those reached by human players. This translated into Low play skill, in

contrast to human players performing Average.

6.5 Agent Review

6.5.1 Overview

In the course of the study, we demonstrated that the proposed context-guided agent design and
deployment workflow can be successfully applied in the context of a commercial game environ-
ment. By following the workflow we architected, implemented, and trained a context-guided
agent model, which was capable of valid operations in the context of the game’s environment

and pursuing the game’s gameplay objectives. However, quantitative analysis of the data col-
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lected during experimental evaluation and benchmarking of the trained context-guided agent
revealed it to exhibit limited competence in playing the game. It scored lower than an ad hoc
agent playing standard game levels, as well as human players playing an experimental set of
levels in controlled conditions. Its collection play skill was classified as Low in both benchmark
and evaluation, which could be considered on par with a beginner human player. The evaluated
agent featured only one of the two learning models we set out to train. Due to quality issues de-
tected with all trained iterations of the SNSB learning model, we decided to replace its learning
logic with ad hoc fallback.

We set out to review and discuss the results of the study with respect to the output context-guided
agent: its design, training process and the evaluated output quality. We based the review on areas
that could have had an influence on the agent’s performance. For each of them, we identified
potential issues, phrased them as questions, and addressed them as part of the review. Examined

areas included:

» Agent design and implementation
 Learning logic design and implementation
* Learning data quality

* Training learning models

6.5.2 Agent Design and Implementation

We conducted the study under the assumption that the proposed context-guided agent design
and deployment workflow would work in practice. One of the study’s goals was to test this
assumption and execute on the proposed theory to empirically address research question RQ1.
Any underlying problems with the design proposal, applying the design, or relevant engineering

work would have prevented the context-guided agent instance from operating, as planned.

Is the proposed context-guided agent design applicable in practice?

As demonstrated in the Agent Training section, by following the context-guided agent design
proposal and its deployment workflow, described in the Deployment Workflow section of Chap-
ter 4: Context-Guided Agents, we were able to deploy a context-guided agent instance, which
integrated learning with ad hoc logic. It was found to be functional and valid in the context of
the target game’s environment. This constitutes a validation of the context-guided agent design

proposal.
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Were any mistakes made when designing the behaviour context of the context-guided agent
in the study?

While designing the behaviour context of the context-guided agent can be considered a subjec-
tive task, left at the discretion of the human expert involved, it can be validated against the target
gameplay environment. Both the ad hoc reference agent, as well as the output context-guided
agent produced in the study, were able to play the game, and pursue its gameplay objectives,
achieving non-zero scores. Thus, the designed behaviour context and the resulting agent’s de-

sign could be considered valid.

Were there any underlying engineering problems in the agent behaviour logic implemen-

tation that could have affected the output context-guided agent?

Although we had encountered several technical issues during the development of the context-
guided agent logic, we resolved all of them before agents involved in the study were bench-
marked and evaluated. If any engineering problems had persisted, we would have observed
failures or inconsistencies with the behaviour of all agents deployed, including the ad hoc refer-
ence agent. Since that was not the case, it is unlikely that the context-guided agent’s performance

was affected by behaviour logic-related engineering issues.

6.5.3 Learning Logic Design and Implementation

Incorporating learning logic in the developed agent was a key part of applying the proposed
design. Invalid design decisions concerning the positioning of the learning logic in the context
of the agent’s behaviour were likely to diminish the quality of the agent’s output. Even with
the right design decisions, using unsuitable methods for training learning logic could have intro-
duced risks of producing suboptimal models. Additionally, although learning was successfully
integrated into BT architecture in our implementation of learning nodes, its software stability

was untested, due to reliance on the ML-Agents external library.

Was learning suitable in the behaviour context designed for the context-guided agent?

As part of the context-guided design proposal in the Establish Learning Subtrees section of
Chapter 4: Context-Guided Agents, we established that logic, which is required to be adaptive,
data-driven, and could not be represented well with ad hoc authoring, would benefit from a
learning-based representation. Although we deployed a working ad hoc logic-based reference
agent, its decision-making was implemented using randomisation and intuition-driven heuris-
tics, as discussed in the Implement Context Architecture section. Further sequential logic-based
improvements to the ad hoc logic model would have likely involved more intuition-based trial
and error to refine the heuristics and replace randomisation. A data-driven approach was prefer-

able to capture the multidimensionality of the choices made by the agent in the context of the
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game’s environment. With an expert gameplay trajectory dataset available for imitation, learn-
ing was considered a viable and suitable option for the context-guided agent. This approach was
also supported by the length of learning episodes, which matched the length of an entire game
session, and featured sparse rewards, issued in the context of multiple global and local gameplay

objectives.

Were learning subtrees positioned properly in the context of the agent’s behaviour logic?

While we found learning suitable in the behaviour context of the designed context-guided agent,
its applicability was only considered for the agent’s high-level decision-making logic. We
wanted to avoid training a navigation model, as discussed in the Navigation Abstraction section.
The navigation approximation provided by the navigation mesh and A* pathfinding, combined
with ad hoc steering logic, was considered sufficient for the purposes of the agent simulation
in our research. The proxy layer ad hoc connections between the macro and micro layers of
the ad hoc representation were better serviced using BT nodes. This only left three pieces of
functionality to be potentially outfitted with learning: SNSB, SNTI, and SNTA. As described
in the Establish Learning Subtrees section, SNTA was deemed the least impactful in terms of
the collection and completion objectives, of the three. SNSB had a direct impact on both these
objectives, while SNTI was key to maximising informed collection. As such, we considered the
decision to model SNSB and SNTT using learning as the most optimal approach in the explored
scenario. Multiple learning models used in an agent were consistent with the context-guided

design proposal.

Were the learning algorithms used for training learning models suitable for the task?

As discussed in the Establish Learning Subtrees section, algorithms considered for both learning
models included PPO for RL, together with BC and GAIL for IL. Such a combination was found
to produce good results in prior research conducted in game environments [24, 84,271] and ap-
peared to be suitable for the requirements of the context-guided agent. We originally wanted to
avoid excessive bias from the demonstration gameplay trajectories through optimal balancing of
BC and GAIL for IL [130, 139], while maximising bootstrapping of RL through applying BC
to shorten training time considerably. However, even the worst-case scenario of BC overfitting
training data was considered acceptable, as SNSB and SNTI were not holistic models. Thus,
overfitting would have only occurred in an isolated domain of strategic decision-making, rather
than in the full context of the environment. However, as described in the Train Learning Mod-
els section, we discovered that the ML-Agents software stability became unreliable when BC
was enabled and consistently crashed the training process. We were forced to exclude BC and
rely solely on PPO and GAIL, instead. This resulted in prohibitive training times to produce
higher quality output (see table D.7 on page 221), as was the case with the highest scoring SNTI
model from iteration AOOO, which took 24 hours 18 minutes 47 seconds to train. Models with
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decreased complexity of the network via relevant hyperparameter adjustment (see table 6.1 on
page 137) incurred lower training cost but also delivered substantially lower quality of output.
Thus, PPO and GAIL had shown that, given more time, they were capable of delivering bet-
ter models. Functionally, they were suitable for the task, but from an industrial perspective,
they were far from optimal. If it were not for the involuntary exclusion of BC from the suite
of learning algorithms used, policies learned would have likely benefited from demonstration-
based pretraining. This would have led to shorter training times and potentially higher-quality

policy outputs.

Was the learning integration software stability sufficient to train learning models?

We were able to successfully integrate the learning functionality serviced by ML-Agents and
PyTorch into the game environment, and the BT ad hoc architecture used to model behaviours
of designed agents. For as long as we were operating in the realm of Unity’s simple sample
environments and scenarios, ML-Agents learning operated as expected. However, using IL in
the game environment introduced software stability issues that substantially impacted our work.
Previously discussed problems with BC resulted in the exclusion of an algorithm we considered
essential for achieving optimal results. Moreso, in the process of training our GAIL-based
models, discussed in the Training Learning Models section, we found out that demonstrations
encoded in Unity’s proprietary format, enforced for IL training data in ML-Agents, were highly
unreliable, and potentially unusable. In some cases, they took extremely long to be loaded upon
training startup, in others, they would crash the training. This forced us to limit the number
and size of demonstrations used, as outlined in the Acquire Data section. Furthermore, we were
unable to train more than one model simultaneously, which further increased the training time.
These problems consumed a substantial amount of computing and engineering time, introducing
limitations that directly affected the quality of learning model training. Unity did not provide
support beyond their sample scenarios, as indicated in the Training Learning Models section.
While we were able to train functional learning models in a commercial game environment
using the library, the process was expensive, and we found its output to be suboptimal. It is worth
noting that all prior research work with ML-Agents we consulted was conducted in controlled,
research-specific environments, rather than commercial game environments [55, 140, 144,271,
278]. We cannot categorically state there were no issues related to our own integration work
that could have affected the flow of the training using ML-Agents. However, the problems we
encountered, the volume of issues experienced by other users, and the lack of complex learning

scenarios trained using the library appear to be indicative of a problem with ML-Agents, itself.
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6.5.4 Learning Data Quality

The learning model is as good as the data it was trained on. We understood that even with the
most reliable and effective learning pipeline, suboptimal provision of training data could have
had a significant negative impact on the trained policy. For the most part, input data was under
our control. The action, observation and reward spaces defined for the SNSB and SNTI models
had to be examined. Additionally, a review of both the quality and quantity of the demonstration

data used with IL was necessary.

Was the quality of demonstration data used for SNSB and SNTI optimal?

The design of the context-guided agent assumed its training would involve imitation of a top-
skill persona, established through game score exploration and clustering in the Top-skill Persona
section of Chapter 5: Game Score Study. We accumulated the training dataset by encoding
gameplay trajectories of the top-skill persona, which constituted the top-scoring 7% of all games
recorded in our research, into Unity’s proprietary demonstration format. This approach was
consistent with the notion that the quality of the training dataset is more important than its
volume, and that approximately the top performing 5% of the demonstrations should be used as
training input [130]. To ensure high quality of the data, our demonstrations were sourced from
actual human experts, rather than simulated users. The latter is a common practice in IL research
focussed on autonomous agents [94]. Thus, we considered our expert demonstration data to be

of the highest possible quality and representative of the top play skill in the context of the game.

Was the quantity of demonstration data used for SNSB and SNTI optimal?

While the quality of the training input data was considered more important than quantity, we
expected to use all of the 765 demonstrations featuring 76,406 encoded episodes, for model
training. Availability of high-quality data, as well as the requirements of BC [139] informed our
motivation to do so. Unfortunately, as discussed in the Training Learning Models section, issues
with ML-Agents not accepting more than 180 demonstrations for SNSB, and 100 demonstrations
for SNTI, resulted in using only a part of the demonstration data prepared. Due to a limited
number of model training iterations, we were unable to assess if this constraint influenced the
quality of the end policy. However, prior industry research found that for training agents with
human play styling using human expert demonstrations, fewer demos might be sufficient [24].
This is also consistent with the characteristics of GAIL-driven IL [101].

Was the action space optimally defined for SNSB and SNTI?

Due to different objectives and the SNSB and SNTI logic, we defined individual, discrete action

spaces for each of them. Action spaces for both models were directly mapped to the gameplay
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objectives and possible decision states outlined in the Implement Learning section. By restrict-
ing the defined action spaces to specific decisions that these models were capable of making,
we reduced the potential of the policy to make continuous value-based choices that would have
been invalid in the context of the game environment. Due to the structure of the game, there
were still decision states that were valid, but would not make sense in specific game states. Such
edge cases were addressed by guiding the model away from nonsensical decision states using
appropriate negative reward signals. This approach shifted the risk of action space problems to
reward signal balancing. We discussed the specifics of the action space of each of the models in
the Implement Learning: SNSB and Implement Learning: SNTI sections. We chose to represent
available actions in the simplest possible way, which adhered to gameplay objectives, as well as
the action input of the ANN. This was considered the most optimal approach in the investigated

scenario.

Was the observation space optimally defined for SNSB and SNTI?

We were operating under the assumption that an egocentric representation of the environment
features would provide sufficient observation space for the agent’s operations. This notion was
compatible with our assumption of the agent’s partial observability of the environment, dis-
cussed in the Observability of the Game Environment section, and in the Agent Perception
section of Chapter 4: Context-Guided Agents. Such an approach approximated human-like
sensory perception. For SNSB the observation space was defined using high-level information
about the game and agent state, totalling 12 vectors. For SNTI the observation space was de-
fined with respect to all types of collectable items, totalling 89 vectors. Despite the fact that the
SNSB network was updated more often than that of SNTI, the demonstration file size for the
latter was substantially larger (approximately 4.34 times larger). Since the action-observation
mapping was only recorded at the time of the update, we concluded that the larger observation
space size was the factor that contributed to a larger volume of data flowing through the ANN,
which manifested through greater sizes of the SNTI demonstration files. As demonstrated in
the Context-Guided Agent Benchmarking section, we were able to train a SNTI model iteration
A000, whose output was approaching acceptable quality. That was not the case for the SNSB
model. We concluded that the observation space for the SNSB model was too small and likely
contributed to the limited performance of the trained SNSB policy. To improve it, the obser-
vation space would need to be increased, potentially incorporating observation data of SNTI,
and more. Such an improvement would result in greater demonstration file sizes, which were
already problematic in terms of the ML-Agents software stability. Another strategy would be
to combine allocentric and egocentric information to enhance the action-observation mappings
made by the ANN [84]. Since SNTI models also delivered suboptimal performance, restructur-
ing of its observation space would also be warranted. An alternative approach to SNTI could

feature recording observations of all ifems in the environment, not just the closest spotted item,
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of the given type. When designing the observation spaces for SNTI and SNSB we decided to
encode all positioning data as egocentric distance values. Each of them represented distances
between the position of a given target and the position of the avatar. This decreased the size of
the observation space, as only one floating point value was required, instead of three to represent
coordinates in 3D space. However, it is possible that the latter would inform the mappings of

the learned policy better, for both models.

Were the reward signals for SNSB and SNTI optimal?

The structuring chosen for the action space, derived from its mapping to gameplay objectives,
resulted in introducing both positive and negative reward signals for the agents. Negative re-
wards were used to discourage the policy from selecting decision states that were nonsensical
in the context of the gameplay, as well as to motivate agent progression through minor pe-
nalisation. Rewards issued included short-term, local objective-based rewards, and long-term,
global objective rewards given at the end of an episode. Reward configuration for SNSB and
SNTI can be reviewed in table D.1 on page 212. Despite this division, all rewards were sparse.
Models were only updated, prompting an observation-action processing step, when their learn-
ing nodes in the BT were ticked. On average, SNSB made approximately 1892.51 steps per
episode, while SNTI made 1878.45 steps in a single episode. Total episode time was #, = 70
s during agent benchmarking, and 7, = 65 s during agent evaluation. In comparison, Unity’s
default RL setup for ML-Agents triggers the observation-action processing step 10 times a sec-
ond [252]. We intentionally triggered processing steps only when the behaviour context invoked
the relevant learning model to avoid recording intermediate states. This was expected to shield
the learned policy from absorbing invalid or nonsensical state mappings, originating from inter-
mediate states. Based on the results of the deployed context-guided agent, we concluded that
our overcautious approach may have deprived networks in training of a richer data flow per
episode. At the same time, we found that the chosen reward values and their balancing in terms
of gameplay provided a consistent increase in cumulative reward values for model iterations,
which performed better in terms of pursuing completion and collection objectives (see table D.7

on page 221).

6.5.5 Training Learning Models

The quality of the process of training a learning model has the capacity to impact the quality of
the output policy. This prompted us to review the way we trained our models, and to investigate

the model quality produced, and the costs it generated.
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Was the process of training learning models optimal?

The pipeline, which facilitated the learning model training in our research work, was deployed
on the basis of engineering and data work, informed by the requirements of Unity, ML-Agents,
the game environment, and the agent simulator. It enabled us to semi-automatically train models
by connecting training data, crowdsourced from millions of users and then processed for use in
the game, with the agent simulator environment and the learning libraries involved. This was
a multi-step process with several potential points of failure. We were able to apply it in prac-
tice to produce functional learning models in a commercial game environment, which can be
considered a practical validation scenario of the pipeline and the process of conducting learn-
ing with it. However, the lack of full automation prevented us from hands-off generation of
new iterations of models by revising their hyperparameters, reward values, as well as action
and observation spaces. As described in the Semi-Automated Training Pipeline section, de-
ployment of a more advanced pipeline was deemed too expensive and beyond the scope of this
thesis. Multiple problems encountered during our work with off-the-shelf learning solutions and
Unity-based environments supported the high-cost argument. Long training times, incurred by
multiple models trained, contradicted our perspective of cheap and quick training of small-scale
learning models, in the investigated configurations. Software stability issues and troubled IL
demonstration generation, discussed in the Train Learning Models section, would have likely
disrupted an automated solution and necessitated manual interventions. An automated approach
would also not have resolved the data issues identified in earlier review sections. Instead, it
could have potentially propagated them further. Considering these challenges and the additional
engineering cost required, we chose to use a semi-automated solution, optimal for the purposes
of the investigated scenario. However, this approach resulted in the production of a limited num-

ber of model iterations.

Was the performance of trained learning models optimal?

The results of the agent benchmarking, analysed in the Agent Versus Agent section, and the
experimental evaluation, analysed in the Agent Versus Humans section, indicated that although
they were found functional, trained learning models used in the context-guided agent did not
achieve optimal performance. Unless the rewards for learning are accurately defined, the cu-
mulative reward is not necessarily representative of a policy’s good performance in a learned
task [116]. And so, during model training, we also tracked the policy performance with respect
to custom metrics of collection, completion, and full game scores. This enabled us to observe
differences between scores achieved in the course of training and benchmarking of individual
models. Since the training data supplied was uniform for all iterations of a specific type of
model, differences in the performance of output models were solely the result of varied hyper-

parameter configurations.



CHAPTER 6. AGENT STUDY 162

The set of demonstrations used to train the SNSB model generated mean cumulative reward in
the range Rgysp = [37.74, 42.24], while the SNTI training demonstration set recorded mean cu-
mulative reward in the range Rgy7; = [32.44, 35.14]. Given that these reward value ranges were
generated by top-skill player trajectories, we assumed they were representative of the upper
bound of cumulative reward values achievable in training. None of the trained model itera-
tions of SNSB and SNTI produced a cumulative reward that would be contained within these
ranges. Models that with the highest cumulative reward values, including SNSB A000 (r =
20.05), SNSB A200 (r = 19.72) and SNTI A000 (r = 15.39), also produced the highest collec-
tion scores. Examination of the training results revealed that SNSB and SNTI model iterations
A000 and A200 achieved approximately similar values in terms of extrinsic and cumulative re-
wards (see table D.7 on page 221). GAIL rewards appeared to have had a negligible impact
on cumulative rewards achieved by these models. Only iteration A100, whose hyperparameter
configuration featured maximised GAIL strength and minimised extrinsic strength (see table 6.1
on page 137), exhibited an elevated GAIL reward value for both SNSB and SNTI. However,
this did not boost its performance. Instead, policies of both A100 models became fixated on
pursuing the completion objective. This led to achieving high completion scores at the price
of zero or near-zero collection scores. GAIL reward collapsed in iteration AOOO and fluctuated
in all other iterations for both SNSB and SNTI (see figure D.7 on page 222 and figure D.8 on
page 222).

SNSB and SNTI models from each iteration were benchmarked in tandem, as described in the
Context-Guided Agent Benchmarking section. In all cases they produced approximately similar
results, characterised by low completion probability and collection score classified as Low (see
table 6.3 on page 140). Benchmarking of individual SNSB and SNTI models from each itera-
tion, paired with an ad hoc fallback in place of the other model, revealed that the SNTI A00O
model achieved the best results in terms of collection score median, completion probability, and
full score median. Other models delivered varied results, but all of them suffered from low full
scores, indicating that they regularly scored better in collection or completion, but not both. On
the basis of individual model benchmarking results, we replaced the SNSB learning model of
the context-guided agent with its ad hoc fallback, also used by the reference agent. We expected
the completion probability P(com) of the reference and context-guided agents to be compara-
ble in such a configuration. That was not the case, with the ad hoc agent achieving a higher
completion probability. This indicated that the SNTI model, believed to primarily influence the
collection objective, also impacted the completion objective. The way the behaviour context was
architected for deployed agents, as described in the Implement Context Architecture section, the
next scavenge behaviour was not selected until the previous one had been concluded. Some
behaviours took longer to complete than others. The further away from the avatar the target

item selected by SNTI was, the longer it took for the BT to process the collection behaviour,
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and for the SNSB to be invoked. Suboptimal, ill-timed selection of the next target by the SNTI
was capable of sending the agent far away from the exit, minimising its chances of achieving
completion. Since interrupting running behaviours was not supported by the implementation
of the context architecture, suboptimal target choices resulted in lower collection and comple-
tion scores. While this can be considered a constraint of the way the context architecture was
implemented as a BT, it would not have been an issue if SNTI had provided optimal targeting.
We believe that in the investigated scenario model, learning failed to capture and leverage the
relationship between the placement of collectable items, the exit, and the avatar. For SNTI, in-
cluding allocentric data about items could have potentially supported a better mapping of such

relationships.

We concluded that all trained models delivered suboptimal output. Additional model iterations,
with a greater scope of hyperparameter revisions and a potential observation space restructuring,
would be required to produce potentially more optimal policies. The best-performing models
observed during training were the ones driven by extrinsic signals from RL. This implied that
IL played a limited role in boosting their performance. This was also supported by low GAIL
rewards recorded. While increasing the complexity of the trained network was beneficial in
terms of model performance, as shown by SNTI A000, the likely source of our training issues
was the configuration affecting GAIL. Based on our prior issues with IL in ML-Agents, we
were, however, unable to rule out additional, undetected problems with the library affecting the

learning process, or encoding demonstrations from our trajectories.

Was the cost of training learning models optimal?

We set out to create an agent model that could be considered industry viable. Thus, the en-
vironment, design and deployment workflow, as well as the intended goals of the agent, were
defined in line with industrial requirements. The process of the context-guided agent’s devel-
opment was considered similar to that of a typical game agent. The differences in the process
originated in learning, training, and deployment. Ad hoc solutions to game Al are controllable
and transparent, which reduces the risks of agent behaviours generating low-quality output. The
agent’s low-quality output is a problem, as well as a factor that extends the development pro-
cess, in order to refine the behaviour model and its output. Learning’s opaque nature increases
the risks associated with a prolonged refinement process of the learning model’s output. We at-
tempted to reduce these risks using learning model decomposition through context segmentation
in the context-guided architecture, which was also expected to service the agent’s individual task
learning more effectively and efficiently [47]. However, the cost of such risk reduction during
context-guided agent development incurred additional costs in terms of data preparation, model
training, and model output analysis. Problems and constraints we faced rendered learning data

preparation a suboptimal process, which consumed more time and effort than expected.
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Deploying any data-driven model involves data preparation, but the unexpected amount of work
it generated during our research made it more effort-consuming than anticipated. ML-Agents
necessitated transforming our gameplay trajectories into binary demonstration assets by replay-
ing each trajectory in the agent simulator environment and recording demonstration data in the
process. The speed of this transformation was bound by the maximum, reliable simulation exe-
cution speed of the agent simulator s = 10. We were unable to sidestep this process and directly
extract and use relevant data from the processed trajectories to generate demonstrations, as it
was not supported by Unity at the time of our work. This prevented us from creating demon-
strations in a more controlled and efficient manner. It also locked us in a workflow that caused
multiple and time-consuming problems with demonstration encoding during both the data ac-
quisition stage, described in the Acquire Data section, and the model training stage, discussed
in the Train Learning Models section. What we encountered were likely software issues orig-
inating in ML-Agents, rather than problems specifically related to learning. Had we used an
alternative environment, such as the Godot Reinforcement Learning Agents [11], which sup-
ports transparent encoding of demonstrations using JSON files, we would have been able to
generate demonstrations without the constraint of invoking a proxy environment built on top of
a game engine. Unfortunately, due to the fact that 60 Seconds! was originally made with Unity,

using an alternative learning library was beyond the scope of our research work.

For the most part, our learning model training was automated and did not require manual in-
tervention, provided no issues were encountered. However, long training time caused by issues
with IL and over-reliance on RL, combined with software stability problems of the learning li-
brary, introduced additional costs in terms of time, effort, and compute. In our research, the
most problematic of the three was time. As Crankshaw ef al. stated: "(...) a trained model is
useless, unless it can be evaluated quickly and reliably" [47]. Long training times delayed the
evaluation of trained models. Due to Unity’s constraints in loading ONNX model files, the agent
simulator environment was unable to consume newly generated model assets and use them for
implemented agents. This forced us to rebuild the agent simulator environment with new model
assets embedded every time training was completed. The only alternative was to test them in the
Unity editor, which supported direct and automatic insertion of newly trained models. However,
they could only be evaluated in a single environment instance at a time. This needlessly compli-
cated automation and introduced constraints in the training pipeline, making it less optimal than

originally envisioned.

Output analysis for models that had been trained and benchmarked was complicated by software
issues unrelated to learning and the context-guided architecture. These issues generated distrac-

tions from identification of relevant problems, as unreliable software had to be considered and
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excluded as a potential culprit. Thus, the output inspection required a human expert with an
understanding of the context of the game, the learning process and its input data, the architec-
ture of the agent, as well as the learning integration. In the case of our research, a single person
with full knowledge of engineering and design was involved. While we were eventually able
to identify actual problems with the context-guided agent itself, such as the limited observation
space of SNSB, it took more time and effort than anticipated. In the real-world conditions of the
industry, this would present additional issues, as the engineering and design roles would likely
be delegated to two or more developers, with different areas of expertise. The resulting commu-
nication and coordination overhead would have negatively impacted the process of analysis and

potential rectification of problems identified.

6.5.6 Summary

In the review of the deployed context-guided agent, we found the context-guided design to be
applicable in practice. We concluded that the deployed context-guided agent’s behaviour context
was valid and did not suffer from engineering issues. Learning was determined to be suitable
for the designed behaviour context of the agent, positioned optimally, and chosen learning algo-
rithms were deemed appropriate for the tasks for which they were selected. However, software
stability issues of the ML-Agents learning library negatively affected the agent’s learning model
training process and forced us to exclude BC as one of the used algorithms, resulting in longer
training times. The quality of the supplied demonstration data was high and representative of the
skill of the best-performing human players of the game. The quantity of demonstrations had to
be limited due to the learning library software stability issues, but it was deemed sufficient due
to the lower input data requirements of GAIL. While the action space for trained models was
considered optimal, the observation space appeared to be too small and likely suffered from the
lack of an allocentric data representation. We declared the choice of rewards to be suitable, but
their sparse nature, combined with few observation-decision steps during each learning episode,
was potentially a factor that limited the flow of data through the neural network, and, in con-
sequence, learning. The policies of trained models were found to deliver suboptimal output.
Further revisions and restructuring of the model observation space were suggested as a remedy.
Still, the semi-automated nature of the learning model training pipeline limited the number of
model iterations we were able to produce. While sufficient for the investigated scenario, in com-
bination with encountered software stability issues of ML-Agents it contributed to the higher
than expected learning model training cost. We determined such a cost level to be problematic

in industrial scenarios.

The analysis conducted in this section constitutes research contribution C6.
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6.6 Conclusions

In this chapter, we have applied the proposed, context-guided design in a practical setting of
a commercial game 60 Seconds! and experimentally evaluated it in the context of the game’s
environment. By deploying a functional and valid, context-guided agent model, we addressed
research question RQ1 from an empirical perspective. We then performed quantitative and qual-
itative analysis of the results obtained throughout agent training and evaluation and delivered an
answer to research question RQ2. We found that context-guided agent training and deployment
are possible in a commercial game environment, using the proposed design. The agent was ca-
pable of operating with respect to the gameplay objectives of the game in both seen and unseen
environments. However, it was unable to outperform human players in controlled, experimental

conditions, in terms of gameplay performance, under the conditions investigated.

In the course of the chapter, we have documented the following research contributions:

* C6: analysis of the training process of a context-guided learning agent, capable of playing
the scavenge segment of the game 60 Seconds!, developed on the basis of the context-

guided agent design; presented in the Agent Review section.

e OS: atrained context-guided learning agent, capable of playing the scavenge segment of
the game 60 Seconds!, developed on the basis of the context-guided agent design, using
game industry off-the-shelf solutions; presented in the Context-Guided Agent Benchmark-

ing section.



Chapter 7
Conclusions

Summary. This chapter discusses the output of our research and its key conclusions. We first
summarise the research documented in the thesis and then report the outcomes of our work. A
presentation of contributions delivered, challenges encountered, and identified limitations of our
research follows. Finally, we discuss the potential for future work in this area and the application

of the proposed context-guided agent design in industrial scenarios.

7.1 Overview

7.1.1 Goals

In this thesis, we set out to investigate whether expert-curated learning models could be inte-
grated into the industry state-of-the-practice ad hoc Al architecture with learning model perfor-
mance and execution guarantees. We expressed this assertion in the form of the context-guided
design proposal for video game playing, autonomous agent Al, featuring optimal design in-
tent embedding and safe behaviour flow execution involving reliable neural network controllers.
To approach the investigation from a practical and data-driven perspective of an industry case
study, an agent instance based on the proposed agent design was deployed in the environment
of the commercial video game 60 Seconds!. It was trained using a mass-scale gameplay teleme-
try dataset crowdsourced from real users of the game, and game industry state-of-the-practice

workflows and off-the-shelf solutions.

Our research goals were expressed through the following research questions:

* RQ1: can models with execution and performance guarantees of learning logic be inte-
grated into the game industry state-of-the-practice ad hoc behaviour Al architecture for

applied use in video game playing AI?

* RQ2: how well can a trained context-guided learning agent perform in unseen game en-
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vironment scenarios, in comparison to human players, in approximately similar gameplay

conditions?

7.1.2 Procedure

Our work commenced with an examination of the environment of the target, commercial game
60 Seconds!, and a review of prior research in fields relevant to our investigation. We then for-
mulated the context-guided agent design proposal, featuring BT based ad hoc architecture and
context-segmented, small-scale learning models, with respect to the domain requirements of the
state of the practice game industry workflows. The next step involved instrumenting the target
game environment to support autonomous agent Al training and simulation, training learning
models, conducting experimental evaluations with the live audience of the game, and collecting

and processing data for the purposes of our research.

Using the game’s instrumentation, we acquired and processed gameplay trajectory data for our
research from the mass-scale, gameplay telemetry dataset, crowdsourced from over 800 thou-
sand unique users of the game. To quantify gameplay skill exhibited in the collected gameplay
trajectories, we proposed a custom game score metric, derived from the game’s design context.
This enabled us to conduct an exploratory, statistical analysis of the gameplay trajectory sample
population. By selective sampling of the population dataset, we extracted the baseline dataset,
featuring trajectories characterised by normalised gameplay conditions. The baseline dataset
was then used to cluster game scores, identify play skill classes, and create a scavenge collec-
tion play skill classifier. The classifier was applied to extract the gameplay trajectory dataset,

representative of a top play skill persona from the game.

We then moved to design, train, and deploy the context-guided agent, on the basis of the pro-
posed design, deployment workflow, and collected data. First, the context-guided behaviour
context was designed with respect to the context of the game environment. It informed the de-
velopment of the base BT architecture. Second, the learning subtrees were positioned in the
context-guided agent’s architecture, and the training of multiple learning models was conducted
using the top play skill persona trajectories. On the basis of our conclusions from the training
process and benchmarking the gameplay performance of the trained agent models, we selected
one instance of a context-guided agent to be evaluated. As part of the experimental evalua-
tion, human players played a sequence of unseen game levels, designed for the purposes of the
evaluation, in an instrumented, commercial version of the game. The context-guided agent was
challenged to play the same levels, in approximately similar conditions, in the agent simula-
tor environment. The results of agent benchmarking and evaluation with human participants
were used to analyse the gameplay performance of the context-guided agent. We concluded the

analysis with a review of the agent’s design, deployment, and training.
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7.1.3 Results

In this thesis, we proposed and demonstrated the practical application of the context-guided
agent design, which integrates learning logic, with performance and execution guarantees, into
the game industry state of the practice, the BT architecture for video game agent Al. The
context-guided agent instance was successfully deployed in the instrumented environment of
the commercial video game 60 Seconds!, incorporating learning models trained using top play
skill persona data crowdsourced from the mass-scale dataset of real user gameplay trajectories.
Gameplay performance of the agent was measured using a quantitative game score metric, de-
rived from the game’s context. The capacity of the context-guided agent to competently play the
game was evaluated during its benchmarking in standard game levels and experimental evalua-
tion in unseen game levels. On the basis of their results, we determined that the context-guided
agent was able to play the game, pursuing gameplay objectives, and achieving non-zero game
scores. It was not able to outperform human players in the conditions examined. We concluded
that despite suboptimal output of the deployed agent’s learning models, the context-guided agent
design had proven valid and applicable in the investigated game environment. In the course of
the analysis and review of the agent training, we determined that trained learning models were
compromised by suboptimal observation space design, sparse observation-action step recording,

a limited number of model iterations, and learning library software stability issues.

The deployed context-guided agent was able to competently operate in unseen scenarios of the
game environment, which fulfilled the assumptions and objectives of its design. Moreover, the
result of the suboptimal agent training best illustrated the value of the context-guided agent
design. First, the worst-case output guaranteed by the context-guided architecture, achieved
through ad hoc fallback logic, still delivered a functional and valid game agent Al. In the case of
the deployed context-guided agent, it delivered higher quality output than any combination of the
trained learning models. Second, the benefits of learning context-segmentation isolating points
of failure were demonstrated when we decided not to use any of the SNSB learning models in
the deployed agent. Since all trained SNSB policies severely reduced the agent’s collection and
completion scores, ad hoc fallback logic was a better alternative. Selective removal of learning
would not have been possible had we trained a single monolithic learning model to facilitate
the agent’s entire Al logic. Third, the process of further, iterative improvement of the deployed
agent’s behaviour Al can be learning or human intent-driven, making it adaptable to different
workflow approaches used in the industry. Commercial game developers might be more willing
to experiment with learning, knowing that a potential failure to deliver a high-quality learning
policy would not result in a non-functional model. This makes the context-guided agent design

potentially applicable in viable scenarios for the game industry, as well as in other contexts.
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7.1.4 Outcome

In the course of our research work, we addressed the following research questions, formulated

on the basis of our thesis statement and research objectives outlined in Chapter 1: Introduction:

RQ1: can models with execution and performance guarantees of learning logic be inte-
grated into the game industry state of the practice ad hoc behaviour Al architecture for

applied use in video game playing AI?

We confirmed it to be possible from theoretical and empirical perspectives by documenting,
applying in practice, and then successfully experimentally evaluating an industry-applicable

context-guided learning agent design and deployment workflow proposal.

The design proposal was presented in the Context-Guided Agent Design section of Chapter 4:
Context-Guided Agents and was based on the researcher’s extensive game industry experience,
supported by theoretical grounding through literature review conducted in Chapter 3: Back-
ground, which covered both academic and industrial publications. This original design for safe
integration of data-driven models into BTs was established on the basis of prior research into
the reliability of BTs [42], formal proofs of performance and execution guarantees provided by
a dedicated learning BT node [234], and game industry requirements. The safety of learning
integration was ensured by an original extension of the BT learning node concept, featuring
additional safety redundancies to facilitate multiple safety tests and runtime fallback to ad hoc
logic. The node extension was detailed in the Safe Learning Integration section in Chapter
4: Context-Guided Agents. The holistic design approach and synthesis of research and indus-
try perspectives enabled us to evaluate the design in a practical setting, specifically within the
commercial game environment of 60 Seconds!, which was instrumented for autonomous agent
operations and experimental evaluations involving Al agents and human players. Agents were
trained using RL and IL, with imitation training data sourced from the mass-scale gameplay
telemetry dataset generated by the real users of the game. In the course of preparing data for use
in our research, documented in the Gameplay Telemetry Dataset section in Chapter 4: Context-
Guided Agents, we produced a processed trajectory dataset, which constituted another original

contribution of this thesis, and will be shared with the research community.

The practical application of the design in the commercial game environment was demonstrated
and experimentally evaluated in Chapter 6: Agent Study. It confirmed that trained context-
guided agents were able to operate competently in the target game environment, with respect to
the gameplay objectives and rules of the game in both seen and unseen environment scenarios.
Analysis of the design, training, and evaluation process in the Agent Review section in Chapter
6: Agent Study confirmed the applicability of the proposed design for video game playing Al,

supporting the empirical evidence accumulated in the course of work conducted in the Agent
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Study.

RQ2: how well can a trained context-guided learning agent perform in unseen game en-
vironment scenarios, in comparison to human players, in approximately similar gameplay

conditions?

We experimentally evaluated the gameplay performance of trained context-guided learning agents
and human players in approximately similar gameplay conditions, in unseen game environment
scenarios. The agents were found to play the game competently, achieving non-zero scores
in pursuit of game objectives. This translated into Low play skill, representative of beginner
players. However, the normalised, quantitative comparison of game scores revealed that human
players significantly outperformed agents in terms of collection and completion scores. On av-

erage, they achieved datasetEHEAcolcomdiffpercent% higher collection and completion scores.

We conducted the experimental evaluation in the instrumented game environment of the com-
mercial game 60 Seconds!. Context-guided agent instances played the game in the context of the
agent simulator environment, whereas human participants took part in the experiment playing in
the regular environment of the commercial game, on their own computers. Although the eval-
uated context-guided agent featured the best-performing learning model trained, the analysis of
its operations found it to deliver suboptimal output. Despite this, it was still able to achieve
non-trivial results. We expect that further improvements to the learning model training would
likely provide additional gains in terms of the agent’s performance. Experimental evaluation
was detailed in the Agent Evaluation section, and the analysis of its results was documented in

the Agent Versus Humans section, both in Chapter 6: Agent Study.

7.1.5 Takeaway

We set out to conduct our research in a format that would connect research and industrial per-
spectives. It was made possible by the author’s background in game development, our unprece-
dented access to a commercial game environment, and its mass-scale gameplay telemetry dataset
for the purposes of our research. This allowed us to incorporate industrial requirements, work-
flows, and real user data in our investigation. Additional motivation stemmed from the chance
to train agents that could be readily applicable in the context of a commercial game environ-
ment, in order to support its continued development. This would not be the case with a custom
environment, created only for the purposes of our work. Such an opportunity allowed us to face
real-world challenges and problems encountered in game development, and to determine how
learning aligns with it. We were able to successfully demonstrate that integrating learning mod-
els for runtime operations is possible in a commercial game environment. The resulting, trained

game-playing agent instance can be incorporated to service automated playtesting scenarios in
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the game 60 Seconds!.

The focus on a single environment made the deployed agent’s applicability non-universal, but
this was offset by the generalisable nature of the proposed design. It has already garnered
interest from the industry and was shared with the research and industry Al community as a
publication [88]. Furthermore, the safety redundancies proposed for the learning node concept
can be reused in alternative design approaches to learning integrations into ad hoc Al repre-
sentations. We were able to achieve our research objectives while creating added value for the
industry due to the industry case study format of this investigation and the potential continuity
that our research contributions and outputs afford. At the same time, this generated constraints
and resulted in limitations. One of our primary motivations was to keep a human expert at the
centre of the design process for Al behaviours, even when learning was involved. This is at odds
with the nature of data-driven model training, which does not promote transparency and is not

easily incorporated into iterative workflows that are standard in the industry.

In the process of integrating learning into the target game environment, we experienced many
similar issues that others had faced before. There is a reason why there are so few games with
runtime, data-driven models: it is usually much easier and more economically viable to address
development challenges with simpler and more reliable solutions. It is also necessary to plan
learning integration early, during game production, in order to architect the game appropriately
and establish a forward model for streamlined simulation of the environment. That was not the
case with 60 Seconds!, which resulted in extensive work to circumvent the tight coupling of
the game loop, presentation, and input logic, which is not uncommon in game development.
Hence, developers have valid reasons to be sceptical of learning. Especially that integrating
and servicing learning models requires large amounts of data, long training times, and expert
knowledge. Despite the fact that we had data and know-how, the output of our learning mod-
els was suboptimal due to problems encountered during their training. Had they been based
on monolithic, black box models, we would not have been able to roll the agent out to operate
competently enough in the game environment. However, by combining algorithmically simpler
BT structures and learning, we produced an operational agent whose underlying logic can now
be further iterated upon, due to the inherent transparency of BTs. We found that rooting learning
in the established and reliable architecture of BTs reduced the risks involved. This was further
supported by the behaviour context segmentation into small-scale learning models. As proven
by our issues with the trained learning models, the ad hoc logic fallback embedded in our design
allowed the agent to operate competently, making the potentially worst-case quality scenario
acceptable. It also supported an iterative approach to developing Al behaviours, which is not
the case with monolithic, black-box learning models. And yet, further work towards improving

iterative revisioning and training pipeline automation is required to make such solutions viable
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in the long term, and for different production scales.

Learning is unlikely to become a universal solution in game development. Due to the experience-
driven nature of video games, many challenges in game development will potentially always be
solved with simpler means. However, for those problems that call for and could substantially
benefit from the specific properties of learning, ways to realistically embed learning into games
are desired. While we were able to resolve some issues encountered, our case study was just the

first step in demonstrating learning compatibility with industrial workflows.

7.2 Highlights

7.2.1 Contributions

In the course of our work, we delivered several research contributions. Each of them was in-
strumental in furthering the progress of our research and providing additional value, which we

intend to share with the research community:

C1: industry applicable context-guided learning agent design and deployment workflow

proposal

We formulated and documented a proposal for designing and deploying context-guided learning
agents, with respect to the requirements of the game industry and prior research work in the
field. The proposed design was later applied in the practical scenario of a commercial game
environment. The design proposal is presented in the Design Proposal section in Chapter 4:
Context-Guided Agents.

C2: extension of the BT learning node concept, featuring additional safety redundancies

To provide industry-applicable performance and execution guarantees to learning logic embed-
ded within ad hoc AI BT architectures, we proposed an extension of the BT learning node con-
cept by Sprague & Ogren [234], incorporating additional safety redundancies. The contribution

is presented in the Safe Learning Integration section in Chapter 4: Context-Guided Agents.

C3: a mass-scale, processed gameplay telemetry dataset from the game 60 Seconds! to be
used in our research, and later shared with the research community

The data-driven perspective of our work was supported by using the mass-scale gameplay
telemetry dataset, generated from gameplay trajectories crowdsourced from real players of the
game. To be able to use the collected data in our research, we developed a processing pipeline,

which transformed raw trajectories into usable, well-structured data samples. Our work with the
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gameplay telemetry dataset is explored in the Gameplay Telemetry Dataset section of Chapter
4: Context-Guided Agents. Additional documentation of the dataset is provided in Appendix A.
A subset of the gameplay telemetry dataset used in our work is part of the digital supplement to
the dissertation. The entire processed gameplay telemetry dataset will be shared online with the

research community.

C4: game score metric for measuring play skill in terms of gameplay performance in the

scavenge segment of the game 60 Seconds!

The game 60 Seconds! did not originally feature any quantitative metric for measuring play skill
exhibited by players during gameplay. To be able to numerically model and analyse data from
the gameplay telemetry dataset, we derived a set of formulas, rooted in the game’s context and
design values, to structure a metric for normalised quantification of play skill. The proposed

game score metric is outlined in the Game Score section of Chapter 4: Context-Guided.

CS: analysis of game scores measured for the gameplay telemetry dataset from the scav-
enge segment of the game 60 Seconds!

In order to be able to extract useful data and apply it in our work, we conducted a study to identify
relevant properties of the game sample population dataset. The study was structured with respect
to the proposed game score metric and factors derived from the game’s context, culminating in
the analysis of the play skill observed in the normalised baseline dataset, selectively sampled
from the population dataset. The investigation of game scores found in the gameplay telemetry

dataset is presented in Chapter 5: Game Score Study.

C6: analysis of the training process of a context-guided learning agent, capable of playing
the scavenge segment of the game 60 Seconds!, developed on the basis of the context-guided

agent design

Following the design, deployment, and evaluation of the context-guided agent in Chapter 6:
Agent Study we conducted an extensive analysis of the process of the agent’s training, and
its outputs. The study provides a review of the practicalities of deploying a context-guided
agent, as well as the procedures, challenges, and opportunities afforded by attempts to integrate
learning models into industrial workflows. The study can be found in the Agent Review section
in Chapter 6: Agent Study.
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7.2.2 Outputs

O1: implementation of a BT learning node, integrating Unity Machine Learning Agents

learning capacity into PadaOne Games BT library Behavior Bricks

To integrate learning into the ad hoc structure of an off-the-shelf BT solution, we had to imple-
ment a learning node that was compatible with the ML-Agents learning library, Behavior Bricks
BT library, and our autonomous agent API. Implementation of the learning node is discussed in
the BT Authoring section of Chapter 4: Context-Guided Agents. The learning node implemen-
tation is a part of the digital supplement to the dissertation and will also be shared online with

the research and game development communities.

02: instrumentation of the scavenge segment of the commercial video game 60 Seconds!
for enhanced gameplay telemetry data acquisition, simulating autonomous agent opera-

tions, and experimental evaluations with human players.

To take advantage of an environment and gameplay telemetry data from a commercial game,
we instrumented the game 60 Seconds! to support online, experimental evaluations with the
game’s live audience, delivered seamlessly through the familiar interface of the game. Since
the game 60 Seconds! did not implement any form of agent Al, the game’s environment was
upgraded to support game playing, autonomous agent Al, using off-the-shelf BT and learning
libraries. We also augmented the game’s data collection pipeline to resolve pre-existing data
acquisition issues and deployed additional measures for enhancing the data collection process.
The game instrumentation work is documented in the Game Environment Instrumentation sec-
tion of Chapter 4: Context-Guided Agents, and selected parts of its codebase are included in the

digital supplement to the thesis.

03: standalone simulator software for simulating autonomous agents, based on the scav-

enge segment of the 60 Seconds! gameplay environment.

We isolated the relevant portion of the game to create a dedicated agent simulator environment
and equipped it with a configuration pipeline to enable training and simulating agents for re-
search purposes. The simulator was used to fulfil our research objectives and will later be shared
with the academic community. The instrumentation of the game environment for agent train-
ing and simulation is discussed in section Agent Training and Simulation section of Chapter 4:
Context-Guided Agents. Additional documentation of the simulator can be found in Appendix
C. The agent simulator environment is a part of the digital supplement to the dissertation and

will also be shared online with the research community.
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04: k-nearest neighbours classifier of play skill in the scavenge segment of the game 60

Seconds!

Following unsupervised play skill-based game score k-means clustering of gameplay trajectory
dataset, we created a k-nearest neighbours classifier to identify the scavenge collection play skill
exhibited in a given game data sample. The classification of play skill was established in the

Play Skill Classification section of Chapter 5: Game Score Study.

0OS: a trained context-guided learning agent, capable of playing the scavnege segment of
the game 60 Seconds!, developed on the basis of the context-guided agent design, using

game industry off-the-shelf solutions

To put assumptions of the proposed design of the context-guided agent model to test, we imple-
mented an instance of the agent in the instrumented game environment of 60 Seconds!, using the
Unity game engine, ML-Agents learning library, and the Behavior Bricks BT library. The agent’s
architecture was based on a BT flow, which incorporated small-scale learning models embedded
in a learning node structure, as proposed in our design. Learning models were trained using
PPO and GAIL, with demonstrations generated from real user gameplay trajectories. The de-
sign, deployment and benchmarking of the context-guided agent were presented in the Agent
Training section of Chapter 6: Agent Study. The agent was capable of playing the game and
pursuing collection and completion gameplay objectives. The deployed context-guided agent,
and its variants, can be simulated in the agent simulator environment, included in the digital

supplement to the thesis.

06: a published game Al book series Game AI Uncovered chapter presenting the context-
guided learning agent design and deployment workflow

The design proposal has already been shared publicly with the research community and the
industry in the format of a chapter in a recently published game Al book series Game Al Uncov-
ered [88].

7.2.3 Challenges
Data Handling

The opportunity to use a crowdsourced, mass-scale gameplay telemetry dataset in our research
provided us with a large quantity of data but also presented multiple challenges in order to make

it usable in our work. Some of the challenges encountered during our data work included:

* Data volume: processing and exploration of the large volume of data, contained in the

mass-scale gameplay telemetry dataset, was time-consuming and computationally inten-
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sive. This was the result of the quantity and quality of raw data, as well as the multi-step

data transformation process involved.

* Collection and processing pipeline: the original data collection pipeline, implemented
by the developers of the game, was functional, but limited. Some of its problems were
not discovered until we carried out preliminary processing and analysis of the collected
data. The trial-and-error procedure for improving the collection pipeline took a substantial
amount of time and effort before raw data samples could be considered valid for further
processing. Despite improvements introduced to the data collection pipeline, raw game-
play trajectories still required a substantial amount of processing, to be transformed into
usable data samples for our research work. The prolonged period of implementation and
validation of the collection and processing pipeline delayed our progress towards the de-

velopment and analysis stages of our work.

» Data crowdsourcing: crowdsourcing of gameplay trajectory data samples from the users
in their natural play setting and within the known environment of the game, reduced con-
trollable environment and researcher intervention bias, but introduced uncontrollable fac-
tors on the user side. We were not able to detect if more than one person played the game
on a single account, potentially contaminating individual user trajectory datasets. While
some gameplay violation patterns, such as cheating, were observable within the trajecto-
ries themselves, it was not possible to detect all issues of this kind. However, we assumed
such undetected instances to be minimal in comparison to the volume of the collected
dataset, and as such, we did not expect them to skew the results of our work. At the
same time, server-side infrastructure failures, client-side hardware problems, and client-
side connectivity issues resulted in the loss of an unknown amount of crowdsourced data.
We were unable to technically resolve such issues, as they were beyond our control. It
was also not possible to accurately estimate the exact number of data samples lost and
the impact their absence had on the collected dataset. Thus, we assumed that due to the
large volume of the collected data and the focus of our research on approximated model

development, any such data gaps would not skew our results.

* Ethical considerations: since our data was crowdsourced using a commercial game,
available to a worldwide, live audience on a third-party distribution service, ethical con-
siderations were of utmost importance. This included the issue of safe data storage, which
was provided by the developers of the game. Collected data confidentiality was ensured
through anonymisation of user identifiers. Additionally, a data collection opt-in mecha-
nism had to be implemented in the live version of the game, and research project infor-
mation had to be presented for experimental evaluations involving real users of the game.
This resulted in an increased workload in terms of engineering and testing of the instru-

mented game environment.
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The full discussion of challenges encountered during the data collection stage of our work is
presented in the Data Handling Challenges section of Chapter 4: Context-Guided Agents.

Instrumenting the Game Environment

Since the game 60 Seconds! was not equipped for autonomous agent simulation and servicing
learning models, relevant work had to be carried out as part of our research. It required a non-
disruptive development and integration approach to ensure the pre-existing functionality of the
game environment would remain intact. There were several challenges we faced during this

process:

* Lack of a forward model: the way the game’s control loop was implemented introduced
challenges in our work towards augmenting the environment to support autonomous agent
operations. The lack of a forward model and the tight coupling of the player input model
with gameplay features prevented us from directly mapping agent signals to pre-existing
simulation logic. We had to create control abstractions and approximated models of hu-
man player navigation and perception to facilitate player-like agent gameplay. Develop-
ment of these features introduced a significant number of changes to the game’s codebase.
We had to ensure all these modifications would not disrupt the game’s original function-
ality. Our work also entailed generating additional data assets, such as navigation meshes
for each of the levels present in the game. Engineering and testing efforts involved, dis-
cussed in the Autonomous Agent Support section of Chapter 4: Context-Guided Agents,

were carried out throughout the course of our entire research work.

* Game engine and environment upgrades: to be able to integrate and use the ML-Agents
learning library in the agent simulator environment, we were forced to upgrade the engine
used by the game. This caused a number of issues with the underlying implementation of
the game environment, which had to be resolved and thoroughly tested. Possibly the most
problematic of them was the modification of the engine’s physics system, which altered
the original game’s physics configuration and flow. We discussed this portion of our work

in the Game Environment Changes section of Chapter 4: Context-Guided Agents.

* Game engine limitations: during the development of the agent simulator environment,
we discovered that Unity’s physics simulation, used extensively in 60 Seconds! to facil-
itate gameplay, could become unstable and produce unreliable outputs. The issue mani-
fested consistently if the execution speed of the simulation was increased by more than a
factor of 10.0. This forced us to restrict the maximum permitted execution speed of the
agent simulator environment for both inference and training of agents. Since we simulated
agent gameplay hundreds of thousands of times during our research, agent inference and

training timeframes were significantly affected. The issue persisted in both display and
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batch mode execution. We detail this problem in the Agent Simulator section of Chapter
4: Context-Guided Agents.

Agent Training

Design and deployment of a context-guided agent instance was a key process in our research,
which depended on our prior data and development work, as well as the ML-Agents learning
library. It was also relatively fragile, with multiple potential points of failure. We had to face the

following challenges during agent training:

* Constrained model revisioning: our decision to conduct agent training using a semi-
automated training pipeline was justified with respect to the assumptions of our research
and the potential cost of implementing a fully automated solution. If the learning software
used was stable and reliable, a semi-automated pipeline would have likely been sufficient
for the purposes of the scenario examined. However, unexpected problems experienced
when using ML-Agents substantially impacted our capacity for flexible and efficient learn-
ing model training. Recurring stability issues and the lack of support for BC resulted in
extended training times, which could have been considered prohibitive. For instance, if
we were to revise observation space or reward values for any of the trained models, it
would have entailed an extended process of encoding all demonstrations, followed by a
long learning process. Based on our results, in the worst-case scenario, it would take days
for a trained model to be ready for evaluation in the game environment. These factors con-
tributed to a more expensive model revisioning, which prevented us from iterating further
on SNSB and SNTI models. We outlined the semi-automated training pipeline assump-
tions in the Semi-Automated Training Pipeline section and discussed its performance in

the Agent Review section, both found in Chapter 6: Agent Study.

* Unreliable learning software: since the game environment was implemented using the
Unity game engine, we made an intuitive decision to use Unity’s ML-Agents learning
library in our research work. It was compatible with the game environment, included
state-of-the-art learning features, and appeared to be well supported. Unfortunately, we
found that using it in custom environments, such as ours, resulted in a range of unex-
pected, critical issues, which affected the quality of agent training. Context-guided agent
design assumes multiple learning models may be included in the architecture, but only
one model can be trained at a time in ML-Agents. It was necessary to structure our train-
ing workflow around this constraint. Human-like play styling was expected to be derived
from gameplay trajectories using BC and GAIL. However, learning crashed for every at-
tempted configuration of BC, which forced us to exclude it from agent training altogether.
Encoding gameplay trajectories into demonstration binary files was a single-threaded pro-

cess, which required replaying each of the available trajectories in the agent simulator
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environment. This was necessary, as ML-Agents generates demonstrations with a heuris-
tic approach, which typically requires a human to play each learning episode in the Unity
editor. We were able to successfully automate the process and encode all available trajec-
tories, but the learning library crashed when demonstration files were too large or there
were too many of them. This significantly constrained the number of gameplay trajecto-
ries used for training. Since developer assistance for custom environments was limited,
we were unable to resolve software issues encountered in the course of our work. While
ML-Agents is currently at version 0.30.0 and is still in development, the problems we en-
countered suggest that, in its current state, it cannot be considered a reliable solution to
facilitate learning. We documented and discussed the relevance of issues experienced with
ML-Agents in the Train Learning Models and Agent Review sections of Chapter 6: Agent
Study.

7.2.4 Limitations

Although we were able to accomplish our research goals, we identified a number of limitations

of our research, which affected our work and its outputs.

Suboptimal Agent Performance

We were hoping that in the course of our work, we would be able to deploy a context-guided
learning agent with the capacity to surpass human players in terms of gameplay performance.
This was not the case. The trained context-guided agent achieved significantly lower collection
and completion scores than human players in the experimental evaluation. It was also not able
to outperform the ad hoc reference agent, which employed heuristics and randomisation-based
logic. In the analysis of the agent’s training in the Agent Review section of Chapter 6: Agent
Study we found these shortcomings were the result of the suboptimal output of the trained
learning models. As discussed in the Agent Training section, issues with the ML-Agents learning
library adversely affected agent training and resulted in lower quality and higher training cost of
the models produced. Potentially relevant problems were also discovered in the hyperparameter
configuration and observation space design of our learning models. However, the fact that the
context-guided agent was functional, capable of pursuing gameplay objectives, and achieved
non-zero game scores in the game environment confirmed that its design was valid. The problem
of learning model quality was not caused by the agent’s deployment but rather by factors that
could be addressed externally by an alternative learning library and internally by deploying an
automated and rapid learning model revisioning infrastructure. A follow-up investigation would

be required to pursue this line of inquiry at scale.
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Training of Multiple Models

The context-guided agent design assumes that more than one learning model can be incorpo-
rated into the agent’s BT architecture. The agent developed in the course of our work was
equipped with two models. While using multiple, smaller-scale learning models provides con-
text segmentation advantages, it was also found to introduce a degree of redundancy. For each
model involved, we had to individually design action and observation spaces, define reward sig-
nals, prepare training data, and iterate on its learning configuration. If our small-scale, context-
segmented models were quick and cheap to train, this redundancy would have been acceptable,
and perhaps even negligible. However, due to problems with the ML-Agents learning library,
which resulted in longer learning model training times, the cost of handling multiple models
became an issue. Additionally, ML-Agents only supported training one learning model at a time.
This generated additional constraints in the process of training and benchmarking our agent
models and the potential automation of the agent deployment workflow. While in the conditions
of our investigation, the presence of multiple learning models manifested as an issue, we believe
it to be a critical feature of the context-guided design. A follow-up investigation would be re-
quired to present a scenario in which this feature is not impacted by technical factors that are

not linked to the design.

Play Skill Metric

While we found the proposed play skill metric to be sufficient for the purposes of our inves-
tigation, an alternative approach could have potentially served us better. In the course of the
game score analysis, we discovered that our metric suffered from bimodality, caused by the bi-
nary nature of completion scores. This limited the applicability of the full score in our work
and resulted in shifting our focus to individual analysis of collection and completion scores. At
the same time, while the mapping of collection scores with respect to item weight values was
considered quantitatively objective, it was not necessarily an accurate valuation for items. If that
were the case, it would translate into an unreliable measure of success. An intuitive alternative
could be established using a data-driven approach of calculating specific item value from data
found in user-generated gameplay trajectories based on item collection popularity across the
entire population dataset, or a selected baseline. It would have been consistent with the quanti-
tative approach of our research. Additional insights about item relevance to continued gameplay
could have been derived from survival trajectories, had we had access to those. However, that
was not the case, and since we operated on the assumption that the game’s design data was
a reliable source of information, we decided to limit the scope of our investigation to a game

context-derived metric.
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Approximated Play Data

Our research assumptions involved working with approximated representations of reality. This
provided us with a degree of freedom in terms of how we conducted our modelling work, but
in some cases, it presented the risk of introducing inaccuracies. Combined with a potentially
imprecise play skill metric, this could have resulted in unreliable data analysis. Although we
accounted for different factors and strived for consistent investigation of the data in Chapter 5:
Game Score Study, we did not incorporate random effects in our analysis. We also decided
to use a simple clustering approach, targeting a one-dimensional dataset, in order to produce
scavenge play skill clusters. Had the scope of our investigation been wider, and covered user
data patterns in longitudinal studies, our approach would not have sufficed. It also prevented us
from observing more nuanced data trends, which could have potentially benefited our research in
producing more refined player personas. However, in line with our approximation assumptions,
we expected that behavioural data patterns relevant to our work would emerge in the course
of using gameplay trajectories as training data for learning models in Chapter 6: Agent Study.
Because trained models delivered suboptimal output due to several potential factors, we were
unable to objectively evaluate whether the expected behavioural patterns materialised during

agents’ operations.

Domain Expert Requirement

By integrating learning into BT architecture, we made our design proposal relevant to the state of
the practice game industry workflows. However, proper deployment of a context-guided agent
requires an expert versed in BT Al design, learning model development, and the game’s context.
While intended and consistent with the assumption of maximised human authoring control, this
constraint could limit the design’s applicability in certain circumstances. Even if an expert is
available, the context of the desired agent gameplay behaviours may not be fully understood
or even known. The design was structured to service exactly such a scenario. Implementing
BT fallback logic, before the actual learning logic is deployed, supports continued iterative
development of the agent’s Al, until the targeted context is fully understood. Even if the expert
involved is no longer available, the latest ad hoc version of the logic is expected to deliver

acceptable output.

Single Game Context

Context-guided learning agents design, and deployment workflow proposal was intended to be
generalisable, replicable and applicable to different game environments. In the course of our
research work, we had only deployed and tested it in the game environment of 60 Seconds!,
as targeting other game contexts was considered to be beyond the scope of our investigation.

We consider the context-guided agent design to be generalisable and applicable in any game



CHAPTER 7. CONCLUSIONS 183

environment, as long as it supports ad hoc-based behaviour architectures and learning. At the
same time, the fact that we deployed the agent for a specific game environment allowed it to
provide tangible industrial value, as it can now be used by the developers of the game, and
provide a demonstration of the effectiveness of the context-guided design. However, since it
was not tested in other game environments, its potential to be readily applicable in alternative

contexts should be validated in follow-up investigations.

Limited Game Data Access

Due to the fact that developers of the game 60 Seconds! only instrumented it to support data
collection in the scavenge segment of the game, it prevented us from taking advantage of data
that could have been recorded in the second half of the game: survival. Since the developers had
no plans to outfit survival with data collection, we did not include it in the scope of our investi-
gation. This created a potential gap, as 60 Seconds! can be considered a holistic experience. The
player first scavenges their house for supplies and then attempts to survive with them in their
fallout shelter. The starting state of the survival segment of the game is directly impacted by
the player’s performance during scavenge gameplay. Had we had access to data about survival
performance, following specific scavenge playthroughs, we would have been able to create more
sophisticated, data-driven models of player behaviours and strategies for both segments of the
game. At the same time, this would have increased the complexity of our data work, as player
retention is easier to achieve in the relatively short, 60-second-long scavenge gameplay. For
survival, which can last up to an hour, data collection of full trajectories would introduce addi-
tional sourcing, storage, and processing issues. Even partial survival trajectory data, indicating
whether a player was able to succeed or perform better with a specific set of items could provide
valuable insights towards modelling what constitutes better gameplay performance in scavenge,

as well as valuation of specific items.

Quantitative Focus

The data-driven perspective of our research and the remote crowdsourcing of data from users in-
formed the decision to forego qualitative data sourcing and analysis in our work. We believe this
choice was valid in the conditions of our investigation, as it prevented qualitative data collection
from adversely affecting the quantitative data collection process. Quantitative gameplay teleme-
try data was recorded in the background, with no visible change or disruption to the familiar
flow of the game. Qualitative data collection would have had to be overt, making it potentially
distracting to the players of the game. However, extending the scope of our work with qualitative
data could have provided additional insights about player behaviours, which cannot necessarily
be inferred from gameplay telemetry. Incorporating qualitative responses from game industry

experts on the perceived quality of the proposed context-guided agent design could also provide
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an outside, non-functional perspective on the advantages and disadvantages of the proposed

design.

Post-Launch Data Paradox

In our research work, we used a mass-scale gameplay telemetry dataset, which was collected
after the launch of the game, and would not typically be available to developers at the time of
the game’s production. Even if extensive playtesting sessions were organised before the game’s
launch, it would be unlikely for them to involve hundreds of thousands of users and generate
millions of data samples. This informed our motivation to reduce data requirements for agent
model training using context segmentation. However, this does not solve the underlying issues
of limited data availability before the game’s launch. To address the issue, gameplay telemetry
could be sourced from a limited group of players and used to train simple agent models. These
trained agents would then generate more trajectories by playing the game. However, such an

approach creates its own set of issues that were beyond the scope of our investigation.

7.3 Future Work

Expanded Player Modelling

The scope of our research work was limited to modelling a single, top-play skill persona. While
this was sufficient for the purposes of our research, the gameplay telemetry dataset used in our
work contains enough data to expand persona and user modelling to a full spectrum of user play
skill models and potentially play style models. Generating context-guided agent behaviour Al
for each of these models would allow us to investigate the potential of the design to scale up, in
the context of the same game environment. Additional information about user decision-making
and behaviours could also be acquired by employing qualitative methods to complement the
available gameplay telemetry. This would allow for an increase in the dimensionality of mod-
elling behaviour templates. Deploying more sophisticated modelling techniques, such as mixed
effect models, to control for randomisation found in the gameplay of 60 Seconds! could support
a more accurate representation of player behaviours. It would also alleviate some of the limita-
tions of our research, identified earlier. An improvement to the clustering methods used would
also provide a benefit over the techniques used in our work. We settled on clustering the game
score with respect to one dimension. By investigating the multi-dimensional representation of
the population dataset, we would potentially arrive at more in-depth observations about the play-
ers and their gameplay. This could directly benefit the developers of the game, as they would
be able to produce agent models trained on player personas incorporating different aspects of
behavioural modelling. Such an approach could result in artificial players who operate not only

with respect to varied play skills, but also different operational strategies, persistence, drive to
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exploration, and others.

Play Skill Estimation

Further improvements to data modelling could be achieved by exploring alternative approaches
to play skill measuring, discussed earlier. Attempts at data-driven collection score calculations
could be made with the already available data and infrastructure. If an opportunity to incorporate
at least partial data from survival gameplay trajectories would emerge, it could expand the scope
of player modelling for 60 Seconds! that would be useful for its developers. Exploring and
comparing such a different method against the used score metric could provide a scenario for
structured improvement of the adopted modelling strategy and potentially arriving at player

models that would better align with real player gameplay behaviours and performance.

Improved Learning Model Training Pipeline

Further development of the learning model training pipeline used in our research work is re-
quired to improve its reliability and effectiveness. Foremost, alternative learning libraries should
be considered to replace ML-Agents. A preferred replacement would be game engine agnostic
and not require the game environment to be instanced for training. Instead, it should allow the
creation of abstract representations of problem spaces for the lightweight training of individual,
small-scale models. The model training and deployment process would also benefit from further
automation to enable hands-off revisioning of the learning configuration and its evolution using
genetic algorithms. Infrastructural improvements of the learning model workflow would also
require localised streamlining of the model revisioning to address issues such as those encoun-
tered in our work. The ability for rapid, iterative revisioning of the trained model is essential to
decrease the risks associated with training costs and uncertainty. This also applies to revisioning
of observation and action spaces, as well as balancing reward functions. Otherwise, constraints

on the speed and volume of models trained will continue to limit attempts at applied learning.

Applied Use of Trained Agents

Ultimately, trained agent models are expected to be put to use by the developers of the game:
either as bots to play their game in a specific setup, or as Al components that would assist in fur-
ther development of the game. The former is more likely for multiplayer titles or single-player
games involving symmetric opponents. For 60 Seconds!, likely use scenarios would involve au-
tomated playtesting of new game levels by agents trained with different player personas. They
need not be limited to play skill personas, but with expanded player modelling, could feature
personas trained on multidimensional behavioural data. This could be achieved by either pro-
ducing a suite of behaviourally varied agents or a single, adaptive agent featuring dynamically

swapping behavioural models. Such agents could be immediately deployed to playtest any new
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game environment scenarios, authored manually or generated procedurally. With additional
infrastructural work, these agents could be evolved to provide Al-driven design assistance in
generating entirely new scenarios for the game. Models established for these agents could also
be extracted to serve as live estimators for the performance or behaviours of human players of
the game. This could ultimately lead to developing systems for dynamic balancing of the player
experience via model-informed manipulation of the game’s environment, such as changing its

layout or contents.

Alternative Video Game Environments

Validating the context-guided design in alternative game environment contexts is a desired next
step if the proposed design is to be considered useful for industrial applications. Further game
industry case studies, ideally investigating games with different gameplay than that of 60 Sec-
onds!, could provide useful insight into a wider applicability of context-guided learning agent
design. However, transfer learning scenarios could also be explored to determine if once trained
agent models might be of use in other games. A prime candidate for such a follow-up is Robot
Gentleman’s second game, 60 Parsecs! (Robot Gentleman, 2018), which has approximately
similar gameplay objectives and environment to 60 Seconds! but features different content and

presentation.

Industrial Applicability

Experiments with the deployment of the design in alternative game industry contexts should
ultimately lead to applied use in commercially released video games. Even with enough interest
for this to happen, additional development work would likely be required in order to enhance the
automation of the training and deployment workflow and align it with pre-existing pipelines and
the interests of game developers. However, the direct applicability of the design and the already

manifested interest of the industry are promising for future applications of the design.

Applications of the Gameplay Telemetry Dataset

Data from the gameplay telemetry dataset used for our research was directly applicable to the
context of the game environment it was sourced from. However, many other applications of that
data are possible. By sharing the dataset and its documentation with the research community we
are hoping to see other researchers use it for both video game related investigations, as well as
other projects.
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7.4 Closing Statement

Cautious business perspective of the game industry decision makers, and the scepticism of game
Al developers towards the feasibility of learning in game environments, has been delaying a
wider pursuit of learning agent Al in video games. After what we experienced first-hand with
the current state of learning support in the mainstream, game industry solutions, we cannot
say we do not agree with their reservations. There is still a long way to go before learning
agents become commonplace in games, but at a time when Al research and development are
gaining traction on an unprecedented scale, it is a direction worth exploring. Video games
have the potential to play an important role in the continued development of Al. Their varied
and complex virtual worlds are an excellent proving ground for both entertainment and real-
world applications of learning agents. With enough convincing case studies of learning model
applicability and non-disruptive integration into industry workflow pipelines, game developers
will be able to creatively use and push the boundaries of learning. Our context-guided learning
agent design proposal, and its successful application in a commercial game environment is one

such case study. We are hoping that more will follow.
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Data

Summary. The Data appendix provides supplementary information about the data used in our

research work.

A.1 Dataset and Digital Supplement Access

Up-to-date information about accessing the processed gameplay telemetry dataset used in our
research work, the digital supplement to the thesis, and any additional relevant resources will be

provided at the following online sources:

* https://gotojuch.com/contextguidedagents/

* https://github.com/viadomx/ContextGuided Agents

The shared dataset contains processed gameplay telemetry data files, organised in directories
indexed by individual user identifiers. All files in a user directory are trajectories generated by
that particular user. Additional instructions on how to unpack and access the dataset may be

provided.

A.2 Design Data

To support the data-driven processing in our research work, design values from 60 Seconds!
were transcribed to dedicated JSON files. It allowed us to load these files during processing
and access specific values of interest. As a part of the processing pipeline, we also used design
values to simplify data representation by referencing indexed design objects, stored in the design
data JSON files. Design data files include:

* Difficulty data: identification and basic setup of each difficulty level that can be selected

for a specific game.
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* Game type data: identification of all game types that can be played and influence the

conditions of a specific game.
» Item data: details of each item type available to be collected in the game.

* Environment data: layout details for all environments found in the game.

Design data files can be found at: /data/design. Programmatic access to design data values is
possible from Python code (/source/processing/game_design_data.py), as long as design data

functionality dependencies are imported, and data files are accessible.

A.3 Raw Data Sample Structure

Raw gameplay telemetry data samples are stored in textual files, which contain a sequence
of game session values separated by semicolons. Values can be numbers (integer or floating
point), booleans (recorded as textual strings "True" or "False"), textual strings, 3D position
vectors (recorded as three floating point values, separated with commas, enclosed in brackets),
and four-dimensional vectors to represent quaternion-based rotation (recorded as four floating
point values, separated with commas, enclosed in brackets). The structure of a raw gameplay
telemetry data file is enforced by data sections, identified with textual tags, which are followed

by a specific type of data. Tags used in raw data files include:

* No tag: game session information, always found at the start of the data file. Format: file
version identifier (string, values in range "0001"-"0004"), recording date (string, YYY YM-
MDD format), user identifier (string), game level identifier (string), game was finished flag
(boolean, true for properly finished game, false for game that was prematurely aborted),
game session run time (float), fixed layout (integer, O for not fixed, 1 for fixed), exploration
time (integer), scavenge time (integer), game session end time (float), exit position (3D

vector), recording end time (float, only recorded for human controlled game sessions).

« ROOMS: spawned room archetypes, legacy data from when 60 Seconds! supported ran-
domised level layout. Format: number of rooms (integer), recording timestamp (float),
list of rooms. Each room is represented by: position (3D vector), rotation (quaternion),

room variant identifier (string, for example: "AShelter2").

* ITEMS: items spawned in the game level. Format: recording timestamp (float), number of
items (integer), list of navigation steps. Each item is represented by: position (3D vector),

rotation (quaternion), item type identifier (string, for example: "suitcase").

* MOVEMENT: navigation steps of the avatar in the environment. Format: number of

steps (integer), start of recording timestamp (float), list of navigation steps. Each nav-
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igation step is represented by: timestamp (float), avatar’s position (3D vector), avatar’s

rotation (quaternion).

COLLECTED: items collected during the game session. Format: number of items (in-
teger), recording timestamp (float), list of items. Each collected item is represented by:
collection timestamp (float), item’s position (3D vector), item’s rotation (quaternion), item

type identifier (string, for example: "suitcase").

DROPS: deposits made by the avatar. Format: number of deposits (integer), list of deposit

timestamps (float).

COLLISIONS : collisions with environment objects caused by the avatar during the game
session. Please note that collisions are only recorded for human-controlled game sessions.
Format: number of collisions (integer), list of collisions. Each collision is represented
by: collision timestamp (float), position of the collided object (3D vector), rotation of the

collided object (quaternion), identifier of the collision object (string, for example: "chair").

While the raw gameplay telemetry dataset is not shared, new raw trajectories may be gen-

erated with the use of the agent simulator. Processing raw trajectories is facilitated with the

/source/processing/game_processing_.py script.

A.4 Processed Data Sample Structure

Processed gameplay telemetry data samples are stored in JSON files, which contain normalised

and structured game session data, as well as additional inference and scoring data. Some values

are compressed during the processing of raw data samples to decrease file size, without losing

relevant data. For example, 3D vectors are compressed into 2D vectors. The structure of a

processed data sample is:

game: game session information.

items: items spawned in the game level.

collected: irems collected during the game session.
deposits: deposits made by the avatar.

nav: navigation steps of the avatar in the environment.

collisions: collisions with environment objects caused by the avatar during the game ses-

sion.

Game session information contains both the general game session data, as well as inferred and

calculated values. They include:



APPENDIX A. DATA 191

* game_id: game identifier(string).

 user_id: user identifier (string).

* date: recording date (string, YYYY-MM-DD format).

* time: recording time (string, HHMMSS).

* game_time: actual execution time of the game session (float).

* level_id: level identifier(integer), referencing the relevant level design data.

« finished: was game finished flag (integer, 1 for properly finished game, O for game that
was prematurely aborted).

* won: was the game session completed successfully (boolean).
* paused: was the game paused (boolean).

« game_type_id: game type identifier(integer), referencing the relevant game type design

data (/data/design/game_type_data.json).
 prep_time: exploration stage time (integer).
* run_time: collection stage time (integer).
* total_time: game session total time, including exploration and collection times (integer).

* elapsed_time: actual game session total time, which includes startup and conclusion mar-

gins (float).
* start_position: the starting position of the avatar (2D vector).
* exit_position: the position of the exit (2D vector).

* last_second_deposit: was an automatic deposit made at the conclusion of a successful

game session because the avatar’s inventory was not empty(boolean).

« difficulty: identifier of the game session’s difficulty level (integer), referencing the rele-
vant difficulty design data (/data/design/difficulty_data.json).

* default_character: was the default character (7ed) used in the game session (boolean).
 extended_item_set: was the extended item set used in the game session (boolean).
* items_count: number of ifems collected during the entire game session (integer).

* items_count_early_game: number of items collected during early game (integer).
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* items_count_late_game: number of items collected during late game (integer).

* items_value: total weight of items collected during the game session (integer).

* items_value_early_game: total weight of items collected during early game (integer).
* items_value_late_game: total weight of items collected during late game (integer).

* items_distribution: for each real time second of the collection stage of the game session,
a flag denoting if a collection interaction was performed at a given time, or not (60 char-
acter string, each character is either O or 1, with the former denoting no collection, and the

latter meaning that a collection was made).

* items_order: items collected during the game session, listed in the order of collection

(string, each character represents the type of item collected, value range: "A"-"W")

* items_collection_ratio: ratio of collected ifems count to total number of spawned items
(float).

* items_spawned_count: number of items spawned for the game session (integer).
* items_spawned_value: total weight of items spawned in the game session (float).
* deposits_count: total number of deposits during the game session (integer).

* deposits_early_game: number of deposits during early game (integer).

* deposits_late_game: number of deposits during late game (integer).

* deposits_avg_load: average deposit weight in the game session (float).

* deposits_distribution: for each real time second of the collection stage of the game ses-
sion, a flag denoting if a deposit interaction was performed at a given time, or not (60
character string, each character is either O or 1, with the former denoting no deposit, and

the latter meaning that a deposit was made).
* interactions_count: interaction count during the entire game session (integer).
* interactions_early_game: interaction count during early game (integer).
* interactions_late_game: interaction count during late game (integer).
* collisions_count_game: number of collisions during late game (integer).
* collisions_early_game: number of collisions during early game (integer).

* collisions_late_game: number of collisions during late game (integer).
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* collisions_early_game_ratio: ratio of collision count during early game to total collision

count (float).

* collisions_late_game_ratio: ratio of collision count during late game to total collision

count (float).
* move_time_prep: move time during the exploration stage (float).
* move_time_game: move time during the entire game (float).
* move_time_early_game: move time during early game (float).
* move_time_late_game: move time during late game (float).

* move_time_ratio_prep: ratio of movement time during exploration stage to total explo-

ration time (float).

* move_time_ratio_early_game: ratio of movement time during early game to total move-

ment time during the game (float).

* move_time_ratio_late_game: ratio of movement time during late game to total move-

ment time during the game (float).

* move_time_ratio_game: ratio of time spent on moving during the game to total game

time (float).
* pause_game_time: length of game being paused (float).
e pause_game_ratio: ratio of time the game was paused to total game time (float).
* interaction_game_time: time spent on interactions during the game (float).

* interaction_game_ratio: ratio of time spent on interactions during the game to total game

time (float).
* move_distance_prep: move distance during the exploration stage (float).
* move_distance_game: move distance during the collection stage (float).
* move_distance_early_game: move distance during early game (float).
* move_distance_late_game: move distance during late game (float).

* move_distance_ratio_early_game: ratio of movement distance during early game to to-

tal movement distance (float).

* move_distance_ratio_late_game: ratio of movement distance during late game to total

movement distance (float).
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traversal_prep: sequence of rooms visited by the during the exploration stage (string,

each character denotes the type of room, visited, value range: "A"-"F").

traversal_game: sequence of rooms visited by the player during the collection stage

(string, each character denotes the type of room visited, value range: "A"-"F").

traversal_game_distribution: for each real time second of the collection stage of the
game session, the room in which the avatar was at the time (60 character string, each
character denotes the type of room, in which the was at a given second, value range:
"A"-"F").

traversal_exploration_ratio: ratio of movement time during the exploration stage to total

exploration time (float).
evaluation_completion: completion score achieved in the game session (float).
evaluation_collection: collection score achieved in the game session (float).

evaluation: full score achieved in the game session (float).

Items data contains a list of items spawned in the game level. Each entry contains the following

data:

local_index: index based on the entry’s position in the list (integer).
item_id: item identifier(integer), referencing the relevant irem design data.
position: position of the item (2D vector).

rotation: rotation of the ifem (quaternion).

Collected data contains a list of items collected during a game session. Each entry contains the

following data:

local_index: index based on the order of collection (integer).
item_id: item identifier(integer), referencing the relevant iterm design data.

position: position of the collected irem (2D vector).

Deposits data contains a list of deposits made during a game session. Each entry contains the

following data:

local_index: index based on the ordering of deposits (integer).

timestamp: deposit interaction timestamp (float).
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Nav data contains a list of an avatar’s navigation steps during a game session. Each entry con-

tains the following data:

* local_index: index based on the order of collection (integer).
* timestamp: navigation step timestamp (float).
* position: position of the avatar during the navigation step (2D vector).

* rotation: rotation of the avatar during the navigation step (quaternion).

Collisions data contains a list of collisions caused by the avatar during a game session. Each

entry contains the following data:

* local_index: index based on the order of collisions (integer).
* timestamp: collision timestamp (float).
* position: position of the collided object (2D vector).

* rotation: rotation of the collided object (quaternion).

A.5 Sampled and Generated Datasets

In the course of our work in Chapter 5: Game Study and Chapter 6: Agent Study we sam-
pled the processed gameplay telemetry dataset to produce context relevant game score subsets.
Additional gameplay telemetry data samples generated during benchmarking and experimental
evaluation were also sampled. All game score datasets produced for our analysis work were
stored as JSON files and are part of the digital supplement to the thesis. They can be found
at: /data/datasets. The structure of game score datasets is uniform and is based on single or
multi-dimensional subsets of data, which hold consistently ordered sample values. Each of the

datasets listed contains the following data columns, unless stated otherwise:

* "evaluation": full game score value for each sampled gameplay trajectory.

* "evaluation_collection": collection game score value for each sampled gameplay trajec-
tory.

* "evaluation_completion": completion game score value for each sampled gameplay tra-

jectory.
Stored game score datasets include:

* Dataset POP: relevant population dataset used in our analysis.
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« Dataset BAS: baseline dataset, normalised with respect to game setup parameters. Sur-
plus data columns for each sampled gameplay trajectory: "game_type_id", "extended_item_set",

"default_character", "level_id" and "difficulty".

» Dataset TOP: top-skill persona dataset. Surplus data columns for each sampled gameplay
trajectory: "game_type_id", "extended_item_set", "default_character", "level_id" and "dif-

ficulty".
* Dataset REF: reference agent model benchmarking dataset.
» Dataset CA0: context-guided agent model iteration AOOO benchmarking dataset.
» Dataset CA1: context-guided agent model iteration A100 benchmarking dataset.
» Dataset CA2: context-guided agent model iteration A200 benchmarking dataset.

» Dataset CABO: context-guided agent model SNSB A000 and SNTT fallback benchmark-

ing dataset.

* Dataset CAB1: context-guided agent model SNSB A100 and SNTI fallback benchmark-

ing dataset.

» Dataset CAB2: context-guided agent model SNSB A200 and SNTI fallback benchmark-
ing dataset.

* Dataset CAIO: context-guided agent model SNSB fallback and SNTI AOOO benchmark-

ing dataset.

* Dataset CAIl: context-guided agent model SNSB fallback and SNTI A100 benchmark-

ing dataset.

» Dataset CAI2: context-guided agent model SNSB fallback and SNTI A200 benchmark-
ing dataset.

* Dataset EHA: human player scores from all online evaluation samples recorded.

* Datasets EHS1 - EHSS: human player scores achieved with respect to the sequence
playthrough order in the online evaluation. First playthroughs were placed in dataset
EHSI1, second playthroughs in EHS2, and so on.

» Datasets EHL1-EHLS: player scores achieved in a specific level environment of the
online evaluation. Scores from the first-level environment were placed in dataset EHL1,

second in EHL2, and so on.

» Dataset EH: player scores from all online evaluation playthroughs, but with the first cali-
bration playthrough excluded for each participant.
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Dataset EAA: agent scores from all offline evaluation samples recorded.

Datasets EAS1 - EASS: agent scores achieved with respect to the sequence playthrough
order in the offline evaluation. First playthroughs were placed in dataset EAS1, second
playthroughs in EAS2, and so on.

Datasets EAL1-EALS: agent scores achieved in specific level environments of the offline
evaluation. Scores from the first-level environment were placed in dataset EAL1, second
in EAL2, and so on.

Dataset EA: agent scores from all offline evaluation playthroughs, but with the first cali-

bration playthrough excluded for each virtual user.

Additional datasets can be extracted from the processed gameplay telemetry dataset using the

script located at /source/processing/game_data_retrieval.py. Examples of using the script to

source datasets /data/datasets/sourced/game_type.py and

/data/datasets/sourced/game_full_scav_normalised.py are provided below.

Game Type Dataset Retrieval

python game_data_retrieval.py True True DesignPath ProcessedDataPath TargetPath True 3 evaluation evaluation_collection
evaluation_completion True game_type 2 paused 0 finished 1 # game_type_full won game_type_full 2 game_type_id 1 won 1 #
game_type_full_lost game_type_full 2 game_type_id 1 won 0 # game_type_scavenge_won game_type_scavenge 2 game_type_id 2
won 1 # game_type_scavenge_lost game_type_scavenge 2 game_type_id 2 won 0 # game_type_scavenge_challenge_won
game_type_scavenge_challenge 2 game_type_id 4 won 1 # game_type_scavenge_challenge_lost game_type_scavenge_challenge 2
game_type_id 4 won 0

Game Full Scav Normalised Retrieval

python game_data_retrieval.py True True DesignPath ProcessedDataPath TargetPath True 8 evaluation evaluation_collection

evaluation_completion game_type_id extended_item_set default_character level_id difficulty True game_full_scav_normalised

5 game_type_id 1 game_type_id 2 paused 0 finished 1 move_distance_game GREATER 0 # game_full_scav_normalised_won

game_full_scav_normalised 1 won 1 # game_full_scav_normalised_lost game_full_scav_normalised 1 won 0



Appendix B

Evaluation

Summary. The Evaluation appendix features additional documentation about the experimental

evaluation conducted in the game environment of 60 Seconds!.

B.1 60 Seconds! EULA

60 Seconds!
Copyright (c) 2015 Robot Gentleman

4% END USER LICENSE AGREEMENT ***

IMPORTANT: PLEASE READ THIS LICENSE CAREFULLY BEFORE INSTALLING AND
USING THIS SOFTWARE.

1. LICENSE

By receiving, installing or using 60 Seconds! ("Software") produced by Robot Gentleman sp. z
0.0. ("Developer"), from a digital or physical source, you agree to this End User User License
Agreement ("Agreement") and confirm that it is a legally binding and valid contract for you.
You agree to abide by the intellectual property laws and all the terms and conditions of this

Agreement.

Unless provided with a different license agreement signed by the Developer, your use of the

Software signifies the acceptance of this license agreement and warranty.

Subject to the terms of this Agreement, the Developer grants you a limited, non-exclusive, non-
transferable license, without right to sub-license, to use the Software in accordance with this

Agreement and any other written agreement with the Developer.

198
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If you disagree with any of the sections of this Agreement, please do not install the Software on

your computer.

2. DISTRIBUTION

The Software and the license provided must not be copied, shared, distributed, re-sold, offered
for re-sale, transferred or sub-licensed in whole or in part, save for a single copy that may be kept
by you for archiving or backup purposes. For information about redistribution of the Software

please contact the Developer.

3. USER AGREEMENT

3.1 Usage Restrictions

You shall use the Software in compliance with all applicable laws and not for any unlawful pur-
pose. Displaying, distributing and otherwise using Software in combination with material that
is pornographic, racist, vulgar, obscene, defamatory, libellous, abusive, promoting hatred or dis-
crimination or displaying prejudice based on religion, ethnic heritage, race, sexual orientation

or age is strictly prohibited.

3.2 Copyright Restriction

The Developer retains sole and exclusive ownership of all rights, title and interest in and to the
Software, as well as Intellectual Property rights associated with the Software and this Agree-
ment. Copyright law and international copyright treaty provisions protect the Software both as a
whole, as well as its individual elements and products or services that it may provide. All rights

not expressly granted in this Agreement are considered to be reserved for the Developer.

3.3 Limitation of Responsibility

You will indemnify and if need be defend the Developer, its employees, agents and distributors
against any and all claims, proceedings, demands and costs resulting from or in any way con-

nected with your use of the Software.

In no event or circumstances (including, without limitation, negligence) will the Developer, its
employees, agents or distributors be liable for any consequential, incidental, indirect, special or

punitive damages whatsoever (including, without limitation, damages for loss of profits, loss of
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use, business interruption, loss of information or data, or pecuniary loss), in connection with or
resulting out of or related to this Agreement, use of the Software or inability to use the Software
or any other circumstances whether based upon contract, tort or any other theory including neg-

ligence.

The Developer’s full liability, without exception, is limited to the customers’ reimbursement of
the purchase price of the Software, proven by a sales confirmation or receipt, in an event of a
justified refund request, when the Software was purchased directly from the Developer and not
a distributor, third party service or a different vendor. If the refund is granted, you are obliged
to return the refunded copy of the Software and all accompanying materials, products and other

elements to the Developer.

3.4. Data collection

The Software may collect anonymous, numerical data for analytics, research and other appli-
cations and transfer them back to the Developer. By accepting this Agreement, you allow the

Developer to use the Software for data collection purposes.

3.5 Warranties

Except if expressly stated in writing and signed by the Developer, the Developer makes no
promises or warranties in respect to this Software and expressly excludes all other warranties,
expressed or implied, oral or written, including, without limitation, any implied warranties of

merchantable quality or fitness for a particular purpose.

3.6 Governing Law

This Agreement shall be governed by the law of Poland. You hereby irrevocably attorn and
submit to the non-exclusive jurisdiction of the courts of Poland therefrom. If any provision shall
be considered unlawful, void or otherwise unenforceable, then that provision shall be deemed

severable from this License and not affect the validity and enforceability of any other provisions.

3.7 Termination

Failure to comply with the terms and conditions of this Agreement will result in automatic and
immediate termination of this license. Upon termination of this license for whatever reason, you
agree to immediately cease your use of the Software and destroy all copies of the Software or

send them back to the Developer, under this Agreement. Any financial obligations incurred by
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you in obtaining or using the Software shall not be reverted or returned with the expiration or

termination of this license.
4. DISCLAIMER OF WARRANTY

THIS SOFTWARE AND THE ACCOMPANYING FILES ARE SOLD "AS IS" AND WITH-
OUT WARRANTIES AS TO PERFORMANCE OR MERCHANTABILITY OR ANY OTHER
WARRANTIES WHETHER EXPRESSED OR IMPLIED. THIS DISCLAIMER ALSO CON-
CERNS ALL FILES GENERATED AND EDITED BY THE Software.

B.2 Online Evaluation Information

Rocket Science! research information and consent

This challenge is developed as a part of Dominik Gotojuch’s self-funded research at the School
of Computing Science, University of Glasgow, and is supervised by Professor Roderick Murray-

Smith and Doctor John Williamson.

This challenge will feature a series of trials, each taking place on a custom level. On each of
these levels you will be tasked with collecting items in the same way and with the same control
scheme as found in the standard gameplay of "60 Seconds!". However, the layout and structure
of challenge levels will differ from the standard level design in "60 Seconds!"

The aim of this research is to learn how to design better game levels based on data generated by
players going through this experimental challenge. This will let us predict player performance

for different level layouts and adjust these layouts appropriately.

The only information collected in this challenge is the player’s navigation, timing and interac-
tion data. Your anonymity will be preserved at all times. Acquired data will be processed and
analysed with a focus on behavioural patterns, performance measuring and establishing player

experience profiles.

Trials for this research will be conducted until the project is concluded in 2022. Each trial will
be explained to you, using the standard interface of "60 Seconds!" before the actual gameplay
begins. You will be rewarded for your participation, upon completion of individual research
trials, with in-game digital content. These rewards will only be exclusively available to those

who choose to participate in research trials.
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Taking part in this research is entirely voluntary and you may withdraw at any time. With-
drawal will be possible from the Other tab in the Settings menu. Please note you have to be
16 or older to participate. For questions or comments please contact the researcher Dominik
Gotojuch (d.gotojuch. Iresearch.gla.ac.uk) or the project supervisor Professor Roderick Murray-
Smith (Roderick.Murray-Smithglasgow.ac.uk).

I consent to take part in this research
I'am 16 or older

Complete a chain of challenge levels. Scavenge as many supplies as possible and get to the

shelter in time in each one!
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Software

Summary. The Software appendix explains the setup, requirements and operations of the soft-

ware developed for our research work.

C.1 Setup

The conditions of our processing work can be recreated on a Windows-based machine by in-

stalling and configuring the following:

* Anaconda - install the application version 2023.09 or higher ! and import Anaconda con-

figuration files located at /software/anaconda.

» Miktex - install the application version 24.1 2,

C.2 Agent Simulator Environment

C.2.1 Running

The agent simulator environment is a standalone, Windows-based application made in Unity
2023.2.20f1 game engine, based on the game environment of the game 60 Seconds!. The sim-
ulator was written in C#, and features new code, as well as the extended codebase and assets
from 60 Seconds!. Shared codebase is located at /source/simulator. The binary version of the
agent simulator is available in the digital supplement to the dissertation at: /software/simulator.
The simulator requires the following JSON configuration files to run: simulator settings, pro-
cedure settings, and agent settings. By default, the simulator will attempt to load all three files
from the /software/simulator/Context Agent Simulator_Data/StreamingAssets/simulator subdi-

rectory. If any of these files are missing, the simulator will use default values for the simulation

! Available at: https://anaconda.org/anaconda/anaconda/files?version=2023.09
2 Available at: https://miktex.org/download
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configuration. If any of these files are invalid, the simulator will either fail to start or start and
display relevant errors in the game environment’s development console. Development console
messages are only available when the simulator is running in display mode. To run the simulator
in headless batch mode, the -batchmode argument must be used with the executable. Each run
of the agent simulator generates a log file, which is stored in the /software/simulator/Context

Agent Simulator_Data/StreamingAssets/simulator/logs subdirectory.

C.2.2 Simulator Settings
Simulator settings include:

* ProcedureSettingsFilepath: configuration data file containing research procedure setup
to be used.

» AgentSettingsFilepath: configuration data file containing the agent parameters to be
used.

* LevelsDataFilepath: data file containing game design-based item definitions.
» ItemsDataFilepath: data file containing game design-based level definitions.
* GameTypeDataFilepath: data file containing game design-based game type definitions.

* DifficultyDataFilepath: data file containing game design-based game difficulty defini-

tions.

C.2.3 Procedure Settings
Procedure settings include:

» SimulationMode: simulation processing mode. Options include USER (regular, human-
controlled gameplay), TRAINING (learning model training), INFERENCE (BT or context-
guided agent inference), TRAJECTORY_REPLAY (replaying of processed gameplay tra-
jectories)

e Userld: custom user id to be stored in generated trajectories.

* SeriesCount: number of simulation series to be run in the course of a single simulation

run. If set to 0, the simulation will continue forever until it is terminated.
* SeriesStartIndex: series starting index. Must be smaller than SeriesCount.

* Levels: list of names of levels to be played in each series. The number of levels is equiv-
alent to the number of sessions in a series. Available levels include level_scavenge_1 -

level_scavenge_20, level_spacel_1 - level_spacel_5.
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 Difficulty: game difficulty selection for games in the simulation run. Values include
EASY, NORMAL, and HARD.

* GenerateDemos: flag to allow generation of Unity demonstration files used for IL. Can
only be used in TRAINING simulation mode. Available values: True, False.

* DemoPath: absolute path to the directory where newly generated demonstration files will

be stored.

* GenerateTrajectories: flag to allow generation of raw gameplay trajectories from each

simulation session. Available values: True, False.

* TrajectoriesPath: absolute path to the directory where newly generated raw trajectory

files will be stored.

C.2.4 Agent Settings

Agent configuration is only relevant if the simulation mode’s value is not USER. Agent config-

uration includes:

» AgentType: type of the simulated agent. Available agent types include TRAJECTORY
(trajectory replaying agent), BT (BT-driven agent), and CONTEXT (context-guided ar-
chitecture agent).

» AgentVariant: agent model variant used for simulation. Available agent variants include
SNSB_A000_SNTI_A000, SNSB_A100_SNTI_A100, SNSB_A200_SNTI_A200.

* Character: character selection for games in the simulation run. Available values: TED,
DOLORES.

* RunSpeed: execution speed of the simulation. Permitted value range: [0.001, 10.0].

* GameGUlIActive: flag to display or hide in-game GUI in display mode. Available values:
True, False.

* AnimateNavigation: flag to animate the avatar’s navigation in display mode. Available

values: True, False.

» ActiveLearningBehaviours: list of activated learning behaviours. Applicable to CON-
TEXT agents. If a learning behaviour is not listed, it will be inactive and fallback ad hoc
logic will be used in its place. Available values: SelectNextTargetltem, SelectNextScav-

engeBehaviour.

* SNTIRewardOnltemCollected: SNTI reward signal value. Available values: float.
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* SNTIRewardOnEndSessionCollectionCount: SNTI reward signal value. Available val-

ues: float.

* SNTIRewardOnEndSessionNoCollection: SNTI reward signal value. Available values:
float.

* SNTIRewardOnSelectedItemWillFitInInventory: SNTI reward signal value. Available

values: float.

* SNTIRewardOnSelectedItemWillNotFitInInventory: SNTI reward signal value. Avail-

able values: float.

* SNTIRewardOnSelectedItemIsFirstOfItsType: SNTI reward signal value. Available

values: float.

* SNTIRewardOnSuccesfulTargetSelection: SNTI reward signal value. Available values:
float.

* SNTIRewardOnFailedTargetSelection: SNTI reward signal value. Available values:
float.

* SNTIRewardOnChangingTargetSelection: SNTI reward signal value. Available val-

ues: float.
* SNSBRewardOnAreaVisited: SNSB reward signal value. Available values: float.
* SNSBRewardOnltemSpotted: SNSB reward signal value. Available values: float.

* SNSBRewardOnltemsDroppedIntoShelter: SNSB reward signal value. Available val-

ues: float.

* SNSBRewardOnltemsDroppedIntoShelterWeight: SNSB reward signal value. Avail-

able values: float.
* SNSBRewardOnltemCollected: SNSB reward signal value. Available values: float.

* SNSBRewardOnEndSessionEvacuated: SNSB reward signal value. Available values:
float.

* SNSBRewardOnEndSessionNotEvacuated: SNSB reward signal value. Available val-

ues: float.

* SNSBRewardOnEndSessionCollectionCount: SNSB reward signal value. Available

values: float.
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SNSBRewardOnEndSessionNoCollection: SNSB reward signal value. Available val-

ues: float.

SNSBRewardOnEvacuateDuringVeryLateGame: SNSB reward signal value. Avail-

able values: float.

SNSBRewardOnValidBehaviour: SNSB reward signal value. Available values: float.

SNSBRewardOnlInvalidBehaviour: SNSB reward signal value. Available values: float.

C.2.5 System Requirements

Agent Simulator minimum requirements for Windows machines, based on the minimal require-

ments for Unity standalone player, version 2023 LTS:

* Operating system version: Windows 10 version 21H1 (build 19043) or newer.

CPU: x86, x64 architecture with SSE2 instruction set support.

* Graphics API: DirectX10, DirectX11, and DirectX12 capable GPUs.

Additional requirements: Hardware vendor officially supported drivers

* For development: IL2CPP scripting backend requires Visual Studio 2019 with C++ Tools
component or later and Windows 10+ SDK.

C.2.6 Learning Model Trainig

Training of learning models using the agent simulator environment was conducted in the Ana-
conda environment. The Anaconda environment configuration file used in the process is in-
cluded in the digital supplement to the dissertation and can be found at: /software/anaconda/AnacondaML
To start a learning session using the agent simulator environment and ML-Agents, a learning
script is required. Alternatively, a custom mlagents-learn command, referencing the agent sim-
ulator environment and a hyperparameter configuration file, may be used. Hyperparameter con-
figuration files used in our research work, as well as models produced using these configurations,

are available at /data/models/.

Please note that while training new learning models using the agent simulator environment is
supported, it is not possible to use these models for inference in the agent simulator environ-
ment binary. Unity does not support streaming of ONNX files. Embedding of such files in the

simulator would require full access to the simulator project files in the Unity Editor.
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C.2.7 Learning Node

The learning node implemented in the course of our research work for use with ML-Agents is

located at /software/learning_node/, along with the relevant Behavior Bricks package.

C.3 Data Processing Pipeline

The data processing pipeline used in our research work was implemented in Python and executed
in the Anaconda environment. The Anaconda environment configuration file for data processing
can be found at: /software/anaconda/AnacondaThesisEnvironmentConfig.yaml. Python source
files can be found at: /source/processing/. While the processed gameplay telemetry dataset only
contains processed data samples, the agent simulator environment can be used to generate new,
raw samples from human or Al-controlled playthroughs of the game. These samples can then
be processed using the data processing pipeline. Processing batch scripts used in our research

work are available at: /source/processing.

C.4 Jupyter Notebooks

Analysis and data work presented in Chapter 5: Game Score Study and Chapter 6: Agent Study
were carried out in Jupyter Notebooks, with Python source file dependencies. Chapter 5: Game
Score Study Jupyter Notebook can be found at: /notebooks/game_score_study.ipynb. Chapter
6: Agent Study Jupyter Notebook can be found at: /notebooks/agent_study.ipynb. Jupyter Note-
books were executed in the same Anaconda environment configuration as the data processing
pipeline. Batch script to run our notebook environment is available at:

/source/thesis/run_jupyter_notebooks.bat.

C.5 Thesis Generation

Using the resources contained within the digital supplement to the dissertation, it is possible to
recreate the flow of analysis conducted in the course of our research work. This can be achieved
by running the batch script to initiate the notebook environment, launching the flow notebook at
/notebooks/thesis_flow.ipynb, and following instructions contained within it.

Execution of the notebook logic will generate results, stored at /data/results.json, and the ma-
jority of figures included in our thesis. Note that some figures were originally created as
static images, and as such cannot be procedurally recreated. The thesis generation batch script
/source/thesis/run_thesis_pipeline.bat will call the thesis pipeline, which will feed generated

data to thesis source files (located at: /fext), and compile them using IATEX.
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Additional Results

Summary. The Additional Results appendix presents supplementary results in support of our
research work, including calculations, tables and figures that were not included in the main body
of the thesis.

D.1 Chapter 5: Game Score Study
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Figure D.1: Dataset POP population collection score distribution QQ plot.
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Figure D.2: QQ plots for POP-C and POP-NC distributions, revealing normality violations in
both distributions.
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Figure D.3: Standardised mean difference bootstrapped distribution histograms of POP-C-B and
POP-NC-B, with confidence intervals for the bootstrapped distribution and distribution under
null hypothesis marked.
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Figure D.4: Standardised mean difference bootstrapped distribution histogram of POP-COL-B,
with confidence intervals for the bootstrapped distribution and distribution under null hypothesis
marked.
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with confidence intervals for the bootstrapped distribution and distribution under null hypothesis
marked.
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Figure D.6: Completion proportion mean difference bootstrapped distribution histogram of
BAS-COM-B, with confidence intervals for the bootstrapped distribution and distribution un-
der null hypothesis marked.

D.2 Chapter 6: Agent Study

"AgentType": "CONTEXT",
"AgentVariant" : "",
"Character": "DAD",

"RunSpeed" : 10.0,
"CameraMode" : "GAME",
"GameGUIActive" : "False",
"AnimateNavigation" : "False",

"ActiveLearningBehaviours": ["SelectNextTargetItem",
"SelectNextScavengeBehaviour"],
"SNTIRewardOnItemCollected" : 1.0,
"SNTIRewardOnEndSessionCollectionCount" : 1.0,
"SNTIRewardOnEndSessionNoCollection" : -5.0,
"SNTIRewardOnSelectedItemWillFitInInventory" : 0.1,
"SNTIRewardOnSelectedItemWillNotFitInInventory" : -0.1,
"SNTIRewardOnSelectedItemIsFirstOfItsType" : 0.1,
"SNTIRewardOnSuccesfulTargetSelection" : 0.1,
"SNTIRewardOnFailedTargetSelection" : -0.1,
"SNTIRewardOnChangingTargetSelection" : -0.1,
"SNSBRewardOnAreaVisited" : 1.0,
"SNSBRewardOnItemSpotted" : 0.25,
"SNSBRewardOnItemsDroppedIntoShelter” : 1.0,
"SNSBRewardOnItemsDroppedIntoShelterWeight" : 0.25
"SNSBRewardOnItemCollected" : 1.0,
"SNSBRewardOnEndSessionEvacuated" : 1.0,
"SNSBRewardOnEndSessionNotEvacuated" : -5.0,
"SNSBRewardOnEndSessionCollectionCount" : 1.0,
"SNSBRewardOnEndSessionNoCollection" : -10.0,
"SNSBRewardOnEvacuateDuringVeryLateGame" : 1.0,
"SNSBRewardOnValidBehaviour" : 0.1,
"SNSBRewardOnInvalidBehaviour" : -2.0

Table D.1: Agent configuration file with reward values used for training and inference of all
SNSB and SNTI models.

default_settings: null
behaviors:
SelectNextTargetItem:
trainer_type: ppo
hyperparameters:
batch_size: 128
buffer_size: 10240
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learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
shared_critic: false

learning_rate_schedule:

beta_schedule: constant

epsilon_schedule: linear

network_settings:
normalize: false
hidden_units: 128

num_layers: 2

vis_encode_type: simple

memory: null
goal_conditioning_type:
deterministic: false
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
network_settings:
normalize: false
hidden_units: 128

num_layers: 2

linear

hyper

vis_encode_type: simple

memory: null

goal_conditioning_type: hyper

deterministic: false

curiosity:
gamma: 0.99
strength: 0.02
network_settings:
normalize: false
hidden_units: 256

num_layers: 2

vis_encode_type: simple

memory: null

goal_conditioning_type: hyper

deterministic: false

learning_rate: 0.0003

encoding_size: 256
gail:

gamma: 0.99

strength: 0.1

network_settings:
normalize: false
hidden_units: 128
num_layers: 2

vis_encode_type: simple

memory: null

goal_conditioning_type: hyper

deterministic: false

learning_rate: 0.0003

encoding_size: 128
use_actions: false

use_vail: false

demo_path: /demos/SNTI/

init_path: null
keep_checkpoints: 10

checkpoint_interval: 500000

max_steps: 1000000
time_horizon: 64
summary_freq: 10000
threaded: true
self_play: null

behavioral_cloning: null

SelectNextScavengeBehaviour:

trainer_type: ppo
hyperparameters:
batch_size: 128
buffer_size: 10240
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
shared_critic: false

learning_rate_schedule:

linear

213
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beta_schedule: constant
epsilon_schedule: linear
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
curiosity:
gamma: 0.99
strength: 0.02
network_settings:
normalize: false
hidden_units: 256
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 256
gail:
gamma: 0.99
strength: 0.1
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
use_actions: false
use_vail: false
demo_path: /demos/SNSB/
init_path: null
keep_checkpoints: 10
checkpoint_interval: 50000
max_steps: 1000000
time_horizon: 64
summary_freqg: 10000
threaded: true
self_play: null
behavioral_cloning: null
env_settings:
env_path: /environments/ContextAgentSimulator
env_args: null
base_port: 5005
num_envs: 10
num_areas: 1
seed: -1
max_lifetime_restarts: 10
restarts_rate_limit_n: 1
restarts_rate_limit_period_s: 60
engine_settings:
width: 84
height: 84
quality_level: 5
time_scale: 10.0
target_frame_rate: -1
capture_frame_rate: 0
no_graphics: true

environment_parameters: null
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checkpoint_settings:
run_id: Context_Al100
initialize_from: null
load_model: false
resume: false
force: true
train_model: false
inference: false
results_dir: results

torch_settings:
device: null

debug: false

Table D.2: Hyperparameter configuration for the training of SNSB and SNTI models in iteration
A000.

default_settings: null
behaviors:

SelectNextTargetItem:
trainer_type: ppo
hyperparameters:

batch_size: 128
buffer_size: 5120
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
shared_critic: false
learning_rate_schedule: linear
beta_schedule: constant
epsilon_schedule: linear
network_settings:
normalize: false
hidden_units: 64
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
reward_signals:
extrinsic:
gamma: 0.99
strength: 0.1
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
curiosity:
gamma: 0.99
strength: 0.02
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
gail:
gamma: 0.99
strength: 0.9
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple

memory: null
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goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
use_actions: false
use_vail: false
demo_path: /demos/SNTI/
init_path: null
keep_checkpoints: 10
checkpoint_interval: 500000
max_steps: 1000000
time_horizon: 32
summary_freqg: 10000
threaded: true
self_play: null
behavioral_cloning: null
SelectNextScavengeBehaviour:
trainer_type: ppo
hyperparameters:
batch_size: 128
buffer_size: 5120
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
shared_critic: false
learning_rate_schedule: linear
beta_schedule: constant
epsilon_schedule: linear
network_settings:
normalize: false
hidden_units: 64
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
reward_signals:
extrinsic:
gamma: 0.99
strength: 0.1
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
curiosity:
gamma: 0.99
strength: 0.02
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
gail:
gamma: 0.99
strength: 0.9
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
use_actions: false
use_vail: false
demo_path: /demos/SNSB/
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init_path: null
keep_checkpoints: 10
checkpoint_interval: 50000
max_steps: 1000000
time_horizon: 32
summary_freqg: 10000
threaded: true
self_play: null
behavioral_cloning: null
env_settings:
env_path: /environments/ContextAgentSimulator
env_args: null
base_port: 5005
num_envs: 10
num_areas: 1
seed: -1
max_lifetime_restarts: 10
restarts_rate_limit_n: 1
restarts_rate_limit_period_s: 60
engine_settings:
width: 84
height: 84
quality_level: 5
time_scale: 10.0
target_frame_rate: -1
capture_frame_rate: 0
no_graphics: true
environment_parameters: null
checkpoint_settings:
run_id: Context_Al00
initialize_from: null
load_model: false
resume: false
force: true
train_model: false
inference: false
results_dir: results
torch_settings:
device: null

debug: false
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Table D.3: Hyperparameter configuration for the training of SNSB and SNTI models in iteration

A100.

function SelectNextAction (nextBehaviour, previousBehaviour) :

if nextBehaviour == idle:

if previousBehaviour evacuate:
add reward for valid behaviour
else:
add reward for invalid behaviour
else if nextBehaviour == deposit:
if is inventory empty:
add reward for invalid behaviour
else:
add reward for valid behaviour
else if nextBehaviour == evacuate:
if flow stage == very late game:
add reward for evacuated during very late game
add reward for valid behaviour
else if flow stage == late game:
add reward for valid behaviour
else:
add reward for invalid behaviour
else if nextBehaviour == explore
if flow stage == explore:
add reward for valid behaviour
else:
if spotted items count ==
add reward for valid behaviour
else:

add reward for invalid behaviour
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else if nextBehaviour == collect:
if inventory full or if flow stage == explore:
add reward for invalid behaviour
else:

add reward for valid behaviour
function RewardLocalObjectives():

if new area visited:

reward += new area reward

if new item spotted:
reward += new item spotted reward

if deposit made:
reward += deposit reward

reward += (weight deposited % deposit weight reward)

if item collected:

reward += item collected reward
function RewardGlobalObjectives() :
if game completed:

if game completed successfully:
reward += game completed reward
else:
reward += game not completed reward

if any items deposited:
reward += (deposited items count x deposit reward)
else:

reward += no deposits reward

Table D.4: SNSB reward function pseudocode.

function SelectNextAction (nextTargetItemType, previousTargetItemType):

if nextTargetItemType was spotted and nextTargetItemType != previousTargetItemType:

add reward for valid target selection

if will nextTargetItemType fit into inventory:
add reward for item that will fit not fit into inventory

if nextTargetItemType was not collected before:
add reward for collecting first item of its type
else:
add reward for item that will not fit into inventory
else:

add reward for invalid target selection

function RewardLocalObjectives():

if item collected:

reward += item collected reward

function RewardGlobalObjectives():

if any items deposited:

reward += (deposited items count x deposit reward)
else:

reward += no deposits reward

Table D.5: SNTI reward function pseudocode.

218
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default_settings: null
behaviors:

SelectNextTargetItem:
trainer_type: ppo
hyperparameters:

batch_size: 128
buffer_size: 5120
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
shared_critic: false
learning_rate_schedule: linear
beta_schedule: constant
epsilon_schedule: linear
network_settings:
normalize: false
hidden_units: 64
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
curiosity:
gamma: 0.99
strength: 0.02
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
gail:
gamma: 0.99
strength: 0.5
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
use_actions: false
use_vail: false
demo_path: /demos/SNTI/
init_path: null
keep_checkpoints: 10
checkpoint_interval: 500000
max_steps: 1000000
time_horizon: 32
summary_freqg: 10000
threaded: true
self_play: null
behavioral_cloning: null

SelectNextScavengeBehaviour:
trainer_type: ppo
hyperparameters:

batch_size: 128
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buffer_size: 5120
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
shared_critic: false
learning_rate_schedule: linear
beta_schedule: constant
epsilon_schedule: linear
network_settings:
normalize: false
hidden_units: 64
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
curiosity:
gamma: 0.99
strength: 0.02
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
gail:
gamma: 0.99
strength: 0.5
network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory: null
goal_conditioning_type: hyper
deterministic: false
learning_rate: 0.0003
encoding_size: 128
use_actions: false
use_vail: false
demo_path: /demos/SNSB/
init_path: null
keep_checkpoints: 10
checkpoint_interval: 50000
max_steps: 1000000
time_horizon: 32
summary_freqg: 10000
threaded: true
self_play: null
behavioral_cloning: null
env_settings:
env_path: /environments/ContextAgentSimulator
env_args: null
base_port: 5005
num_envs: 10
num_areas: 1
seed: -1
max_lifetime_restarts: 10
restarts_rate_limit_n: 1
restarts_rate_limit_period_s: 60
engine_settings:
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width: 84
height: 84
quality_level: 5
time_scale: 10.0
target_frame_rate: -1
capture_frame_rate: 0
no_graphics: true
environment_parameters: null
checkpoint_settings:
run_id: Context_A200
initialize_from: null
load_model: false
resume: false
force: true
train_model: false
inference: false
results_dir: results
torch_settings:
device: null

debug: false

Table D.6: Hyperparameter configuration for the training of SNSB and SNTI models in iteration
A200.

Model Training time Scol Scom s Extrinsic reward | GAIL reward | Cumulative reward
SNSB A000 | 12 hours 58 minutes 54 seconds | 0.19 | 0.14 | 0.17 20.5 0.25 20.05
SNSB A100 2 hours 27 minutes 6 seconds 0 1 0.5 -21.94 12.41 -219.4
SNSB A200 | 13 hours 15 minutes 58 seconds | 0.19 | 0.13 | 0.16 19.72 0.9 19.72
SNTI A000 24 hours 18 minutes 47 seconds | 0.23 | 0.53 | 0.38 15.39 0.02 15.39
SNTI A100 4 hours 14 minutes 37 seconds 0.04 | 0.87 | 0.46 -0.35 0.26 -3.49
SNTI A200 4 hours 15 minutes 43 seconds 0.09 | 091 0.5 -3.05 0.16 -3.05

Table D.7: Results of training SNSB and SNTI models A000, A100, and A200, expressed in
mean collection scores, mean completion scores, mean full scores, mean extrinsic reward, mean
GAIL reward, and mean cumulative reward achieved after training for one million steps.
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Figure D.7: Visual comparison of the mean values achieved by SNSB learning models A000,
A100, and A200 during training. Graphs were generated in Tensorboard.
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Figure D.9: QQ plots for collection score value distributions, produced by the reference and
context-guided agent models during benchmarking.

1.0 1.0
8034 $os
s : .
é 0.6 E 06
% 0 % 0a
% 0.2 %j 0.2
o o

0.0 L. 0.0 o

-4 -2 0 2 4 -4 -2 0 2 4
Theoretical quantiles Theoretical quantiles
(a) Dataset EHA QQ plot. (b) Dataset EH QQ plot.

Figure D.10: QQ plots for collection score value distributions in dataset EHA, featuring all
online evaluation samples, and dataset EH, containing samples from user playthroughs 2-5.
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Dataset CAO0 Dataset CA0
Sample size 1000 Sample size 1000
Values Scol Values Scom
Measurement Value Measurement Value
Min 0.02 Min 0.0
Max 0.44 Max 1.0
Mean 0.22 Mean 0.13
Median 0.23 Median 0.0
Mode [0.23255814] Mode [0.]
Standard deviation 0.06 Standard deviation 0.34
Dataset CAl Dataset CAl
Sample size 1000 Sample size 1000
Values Scol Values Scom
Measurement Value Measurement Value
Min 0.0 Min 0.0
Max 0.4 Max 1.0
Mean 0.22 Mean 0.15
Median 0.23 Median 0.0
Mode [0.23255814] Mode [0.]
Standard deviation 0.06 Standard deviation 0.36
Dataset CA2 Dataset CA2
Sample size 1000 Sample size 1000
Values Scol Values Scom
Measurement Value Measurement Value
Min 0.0 Min 0.0
Max 0.49 Max 1.0
Mean 0.24 Mean 0.12
Median 0.23 Median 0.0
Mode [0.25581395] Mode [0.]
Standard deviation 0.05 Standard deviation 0.33

Table D.8: Statistical description of the s.,; and s.,, value distributions of benchmarking
context-guided agent models A00O, A100, and A200.
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