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Abstract

This thesis proposes a framework for doing two-stage modelling in spatial

epidemiology, whose main goal is to understand the association between a

covariate of interest, which is modelled in the first stage, and health out-

comes, which is modelled in the second stage using the first-stage model

predictions as inputs. A two-stage modeling framework has the advantage

of being more computationally efficient than a joint modelling approach

when the first-stage model is already complex in itself, and avoids the

potential problem of unwanted feedback effects, which happen when the

second-stage data affect first-stage model inference. Chapter 1 discusses

the motivation behind this research. The specific data application of this

thesis links dengue incidence and climate variables, particularly temper-

ature, relative humidity, and rainfall, in the Philippines. Dengue is an

infectious disease caused by Aedes mosquitoes, and which poses signifi-

cant socioeconomic and disease burden in many tropical and subtropical

regions of the world.

In a two-stage modelling framework, the first stage fits the model for the

main covariate of interest, whose association with the health outcome is

investigated. In the data application, the first-stage fits climate models,

which are then used to predict the true climate field over the entire spatial

domain. The data limitation, which poses challenges on the accuracy of

model inference and predictions, is the sparsity in the data from weather

stations. This data problem is overcome by incorporating additional data

sources (referred to as proxy data), albeit more biased but with wider spa-

tial coverage, and then combining the different data sources in a process

called data fusion, whose main goal is the improvement of model accu-

racy. Chapter 3 presents an initial exploration of a data fusion Bayesian



model estimated using integrated nested Laplace approximation (INLA).

Chapter 4 presents a flexible model specification of the data fusion model,

which is shown to outperform benchmark approaches in terms of the accu-

racy of model predictions and parameter estimates. The proposed model

specifies both a time-varying random field to account for the additive bias

and a constant multiplicative bias parameter in the proxy data. Chapter 4

also presents the results from applying the proposed data fusion model on

the meteorological data in the Philippines. The results of leave-group-out

cross validation show that the data fusion model outperforms benchmark

approaches.

Chapter 5 presents results from an extensive analysis on the link between

climate and dengue occurrence in the Philippines. The predicted climate

fields from Chapter 4 are used as inputs to the health model. To account

for the uncertainty in the predictions from the climate models, a resam-

pling approach is used, which generates samples from the first-stage model

posteriors and where each sample is used as an input to the second-stage

model. The final posterior estimates of second-stage model parameters

are then computed using Bayesian model averaging. The results show

that temperature has a non-linear relationship with dengue occurrence.

In particular, temperature is generally positively related to dengue, but

very hot conditions tend to have a negative impact. Moreover, the rela-

tionship between rainfall and dengue varies in space, depending on the

climate type of the area. For areas with uniform and low variation in the

amount of rainfall all year round, rainfall is negatively associated with

dengue, while for areas with pronounced dry and wet season, rainfall is

positively related with dengue. This is potentially explained by the fact

that consistent rainfall tends to wash away mosquito breeding sites, while

sporadic rainfall during dry season tends to create more breeding sites.

Chapter 6 investigates the correctness of the two approaches for doing

two-stage modelling used in Chapter 5, particularly the crude plug-in

approach, which simply plugs in the posterior mean of the first-stage



(climate) model parameters to the second-stage (health) model, and the

resampling approach. I used the simulation-based calibration (SBC) ap-

proach, which tests the self-consistency property of Bayesian models, to

validate the correctness of the aforementioned approaches. Results show

that the crude plug-in method indeed underestimates the posterior un-

certainty in the second-stage model parameters, while the resampling ap-

proach is correct. This chapter also proposes a new approach for doing

uncertainty propagation, called the Q uncertainty method, which intro-

duces a new model component called the error component. The Q
−1

matrix essentially encodes the uncertainty in the first-stage latent param-

eters. In addition, I proposed a low rank approximation of the Q matrix,

which can be useful for large spatio-temporal applications. I also used

the SBC method to validate the correctness of the proposed method. Re-

sults of model validation on toy spatial models show that the Q method

can be correct, but the accuracy of the posterior approximations and

the computational benefits of the method depends on the coarseness of

the mesh for the error component and the dimension of the first-stage

model latent parameters. The main reasons for the computational bottle-

neck with the proposed method is that the predictor expression of the Q

method involves non-linear model components, which does not fit quite

conveniently in the INLA framework.

Finally, Chapter 7, the conclusion chapter, highlights the main contri-

butions of this thesis and outlines potential directions for future work.

In addition, I reemphasize current approaches for fitting conditional la-

tent Gaussian models, and provide ideas on a new approach for fitting

such models. Whereas the previous chapters highlight the problem of

spatial misalignment, the final chapter discusses the issue of time mis-

alignment. I provide ideas and initial results from using INLA to fit

Mixed-Data-Sampling (MIDAS) models, which provide a framework for

fitting a regression model on time series data with varying frequencies.
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3.8 Plot of bias and RMSE for the Matèrn range parameter ρ . . . . . . . 84

3.9 Plot of bias and RMSE for the temporal autoregressive parameter ς . 84

3.10 Plot of bias (purple) and RMSE (yellow) for β0 . . . . . . . . . . . . 85

3.11 Plot of bias (purple) and RMSE (yellow) for β1 . . . . . . . . . . . . 85

3.12 Plot of correlations of true and estimated bock-level values x(Bi, t) for

all scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.13 Plot of bias and RMSE for bock-level estimates x̂(Bi, t) for all scenarios 86

3.14 Plot of biases and RMSEs for γ1 for all scenarios . . . . . . . . . . . . 87

3.15 Plot of biases and RMSEs for γ0 for all scenarios . . . . . . . . . . . . 88

3.16 Plot of biases and RMSEs for variance parameters of the second-stage

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Meteorological data sources for the Philippines: a sparse network of

weather synoptic stations and an outcome of a numerical weather

forecast model called Global Spectral Model. The measurements are

monthly aggregated values of temperature for August 2019. . . . . . 97

4.2 Scatterplot of the observed values at the weather stations versus in-

terpolated outcomes of the GSM for three meteorological variables:

temperature, relative humidity, and log-transformed rainfall. The plot

shows the discrepancies in the values between the two data sources. . 99

4.3 (a) simulated true field x(s) (b) simulated observed data at finite point

locations (c) comparison of observed values w1(s) and true values of x(s)100

4.4 (a) simulated w2(B) (b) comparison of observed values w2(B) and

x(B) = 1
|B|
∫
B
x(s)ds . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 (a) simulated w3(B) (b) comparison of observed values w3(B) and

x(B) = 1
|B|
∫
B
x(s)ds . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 (a) simulated w2(B) with the grid centroids, (b) point-referenced val-

ues w2(g), (c) data for model fitting using approach (4) . . . . . . . . 103

4.7 Comparison of predicted fields x̂(s) using the four different modelling

approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xviii



LIST OF FIGURES

4.8 (a) comparison of the bias in the predicted fields x̂(s) (b) comparison

of the posterior uncertainties in the predicted field x̂(s) . . . . . . . . 104

4.9 (a) comparison of the bias in the predicted fields x̂(s) (b) comparison

of the posterior uncertainties in the predicted field x̂(s) . . . . . . . . 105

4.10 Average BMA weights for the conditional INLA models, conditional

on α12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.11 Comparison of the average squared errors with respect to the resolution

of the proxy data and the data fusion approach . . . . . . . . . . . . 106

4.12 Comparison of the average posterior uncertainty respect to the resolu-

tion of the proxy data and the data fusion approach . . . . . . . . . . 107

4.13 (a) dense simulation grid, (b) a simulated true field x(s), (c) a simu-

lated proxy data w2(gj), (d) a simulated error field α0(g) . . . . . . . 115

4.14 (a) simulated observed values at 10 stations versus true values, (b)

simulated proxy data versus true values, (c) simulated observed values

at 10 stations versus proxy data values. . . . . . . . . . . . . . . . . . 115

4.15 Spatial location of stations: (a) a sparse network, (b) a denser network

but with an undersampled region, (c) a dense uniformly distributed

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.16 Comparison of squared errors for the simulated data in Figures 4.13

and 4.14. The errors from the proposed model are generally the smallest.118

4.17 Comparison of the posterior uncertainty for the simulated data in Fig-

ures 4.13 and 4.14. The posterior uncertainty from the proposed model

are the smallest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.18 Plots of the (a) log average squared errors (b) average posterior uncer-

tainty and (c) average scaled DS scores from 500 simulated datasets

with respect the number of stations, the priors used, and the modelling

approach: stations-only model, regression calibration model, and pro-

posed data fusion model. The posterior uncertainty from the proposed

model is smallest. The stations-only model has the highest average

squared error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xix



LIST OF FIGURES

4.19 Average model averaging weights from 500 simulated datasets for dif-

ferent α1 values in fitting the proposed data fusion model with respect

to the sparsity of the stations data and the priors used. The correct

value of α1 has the highest weight. . . . . . . . . . . . . . . . . . . . 120

4.20 Plot of average relative errors and average posterior uncertainty from

500 simulated datasets for σe1 . . . . . . . . . . . . . . . . . . . . . . . 121

4.21 Comparison of the estimated temperature fields and corresponding

posterior uncertainties (log scale) for August 2019. The posterior un-

certainties from the proposed data fusion model are smaller. . . . . . 124

4.22 Estimated error field for the temperature model for August 2019. The

estimated error fields at the specific stations correspond to the additive

bias shown in Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.23 Plot of observed temperature values versus predicted values using the

proposed data fusion model for (a) weather stations, (b) GSM data,

and (c) calibrated GSM data. The blue line is the smooth local regres-

sion curve, while the red line is the identity line. . . . . . . . . . . . . 125

4.24 Comparison of estimated relative humidity fields for August 2019 and

January 2020: (a) stations-only model, (b) regression calibration model,

and (c) proposed data fusion model. There is more smoothing in the

estimated fields using the stations-only model. . . . . . . . . . . . . . 128

4.25 Posterior uncertainty of the estimated relative humidity fields in Figure

4.24. The posterior uncertainty in the estimated field from using the

stations-only model is much higher. . . . . . . . . . . . . . . . . . . . 128

4.26 Estimated marginal posterior of α1, π(α1|Y), for the rainfall data fu-

sion model. The posterior mean is 0.6733, while the 95% credible

interval estimate is (0.5607, 0.8353). . . . . . . . . . . . . . . . . . . . 130

4.27 Comparison of estimated log rainfall fields for August 2019 (wet sea-

son) and January 2020 (dry season) between (a) stations-only model,

(b) regression calibration model, and (c) proposed data fusion model.

The figures show that the western section of the country has a pro-

nounced dry and wet season. . . . . . . . . . . . . . . . . . . . . . . . 131

xx



LIST OF FIGURES

4.28 Posterior uncertainty of the estimated log rainfall fields in Figure 4.27

for three approaches: (a) stations-only model, (b) regression calibra-

tion model, (c) proposed data fusion model. The posterior uncertainty

in the estimated fields from the proposed data fusion model is the

smallest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.29 Illustration of the LGOCV approach. The model is fit on the training

set (red) after excluding the leave-out set (blue and green), and then

predictions are made on the testing point (green). . . . . . . . . . . . 133

4.30 Comparison of LGOCV results for temperature from three models:

stations-only model, regression calibration model, and the proposed

data fusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Time series plot of the number of dengue cases in the Philippines from

January 2016 to January 2021 . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Plot of standardized incidence ratios (SIR) of dengue in the Philippines

from August 2019 to November 2019 . . . . . . . . . . . . . . . . . . 144

5.3 (a) Plot showing the 19 disconnected graphs for the iCAR model. Out

of the 19 graphs, 12 of them are singletons (isolated islands), (b) pre-

diction grid, (c) mesh used for the SPDE approximation . . . . . . . 147

5.4 Plot showing the posterior means and 90% credible intervals for the

following parameters: (a) γ1 (b) γ2 (c) γ5; for the model with tem-

perature and log rainfall as climate covariates. The first vertical line

shows the estimates for the plug-in method, while the rest of the lines

show the estimates for the resampling method for different number of

resamples, from 1 to 15. . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5 Comparison of (a) posterior mean and (b) posterior standard devia-

tion, of the space effects ψ(Bi) between the plug-in method and resam-

pling method, for the dengue model with temperature and log rainfall

as climate covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xxi



LIST OF FIGURES

5.6 Plot of the estimated structured time effects ν(t) with the 95% credi-

ble intervals between the plug-in method and resampling method: (a)

temperature and log rain as climate covariates (b) relative humidity

as covariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.7 Estimated space-time interaction effect υ(Bi, t) for five provinces. Four

of them are contiguous provinces which exhibit the same temporal

structure pre-pandemic, and which also agrees with the trend in the

SIRs. The fifth province (located in the north) has a decreasing trend

in the SIRs for the same time period, and is also accounted for by the

space-time effect. The temporal structure during the pandemic varies

for the five provinces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.8 Comparison of classical SIR estimates and model-based SIR estimates

from the health model with temperature and log rainfall as climate

covariates: (a) plug-in method (b) resampling method . . . . . . . . . 162

5.9 Model-based estimates of dengue risks from August 2019 to November

2019, for both plug-in method and resampling method on the dengue

model with temperature and log rainfall as climate covariates . . . . . 162

5.10 Comparison of the posterior standard deviations in the estimated risks
ˆλ(Bi, t) between three approaches: classical approach based on the

asymptotic (Gaussian) distribution of the SIR, model-based estimates

from the plug-in approach, model-based estimates from the resampling

approach. The model here has temperature and log rainfall as climate

covariates. The broken lines are the means of the values for each

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.11 Probability of exceedence, i.e., P
(
λ(Bi, t) > 1

)
from August 2019 to

November 2019, for both plug-in method and resampling method on

the dengue model with temperature and log rainfall as climate covariates164

6.1 Two-stage modelling framework for uncertainty propagation . . . . . 171

6.2 Simulated data for the two-stage model in Section 6.3.1: (a) spatial

locations of the data (b) simulated µ(s) (c) simulated second-stage

field E
[
y(s)|µ(s)

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xxii



LIST OF FIGURES

6.3 Meshes used for the simulation experiments: (a) mesh for the full Q

(b) slightly coarser mesh for the low rank Q method (c) very coarse

mesh for the low rank Q method . . . . . . . . . . . . . . . . . . . . 187

6.4 ECDF difference plot of pk for γ0 and γ1 using Algorithm 6.2 out of

1000 data replicates for the two-stage Gaussian spatial model (Section

6.3.1) using different approaches: (a) plug-in method (b) resampling

method (c) full Q method (d) low rank Q (mesh A) (e) low rank Q

(mesh B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5 Comparison of the posterior mean and posterior SD of E
[
y(s)|µ(s)

]
=

γ0 +γ1µ(s) for the two-stage Gaussian model in Section 6.3.1 from dif-

ferent approaches: plug-in method, resampling method, full Q method,

low rank Q (mesh A), low rank Q (mesh B) . . . . . . . . . . . . . . 190

6.6 Estimated marginal posterior CDFs of γ0 and γ1 for a simulated dataset

from the two-stage Gaussian model in Section 6.3.1 using four methods

of uncertainty propagation: plug-in, resampling, full Q method, low

rank Q (mesh A), and low rank Q (mesh B) . . . . . . . . . . . . . . 190

6.7 Comparison of the estimated marginal posterior CDFs of γ0 and γ1 for

different fixed values of the log precision of the error component with

the full Q uncertainty method using the simulated data example in

Section 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.8 ECDF difference plot of pk for γ0 and γ1 using Algorithm 6.2 out

of 1000 data replicates for the classical specification of the two-stage

Poisson spatial model (Section 6.3.2.1) and using different approaches:

(a) plug-in method (b) resampling method (c) full Q method (d) low

rank Q (mesh A) method (e) low rank Q (mesh B) method . . . . . . 193

6.9 ECDF difference plot of pk for γ0 and γ1 using Algorithm 6.2 out of

1000 data replicates for the new specification of the two-stage Poisson

spatial model (Section 6.3.2.2) and using different approaches: (a)

plug-in method (b) resampling method (c) full Q method (d) low rank

Q (mesh A) method (e) low rank Q (mesh B) method . . . . . . . . 195

xxiii



LIST OF FIGURES

6.10 Simulated quantities from the classical model specification of the two-

stage Poisson model in Section 6.3.2.1 . . . . . . . . . . . . . . . . . . 196

6.11 Marginal posterior CDFs of γ0 and γ1 for a simulated dataset from

the two-stage Poisson spatial model: (a) classical specification and (b)

new specification; and using different estimation approaches: plug-in,

resampling method, full Q method, low rank Q (mesh A) method, and

low rank Q (mesh B) method . . . . . . . . . . . . . . . . . . . . . . 196

6.12 Comparison of the posterior uncertainty in (a) λ(s) and (b) λ(B) from

a simulated data of the two-stage Poisson spatial model (new specifica-

tion) using different approaches: plug-in method, resampling method,

full Q method, low rank Q (mesh A) method, and low rank Q (mesh

B) method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.13 (a) weather stations in the Philippines (b) plot of dengue cases by

province for August 2018 (c) plot of the standardized incidence ratios

(SIR) of dengue by province for August 2018 . . . . . . . . . . . . . . 199

6.14 (a) mesh for the full Q method (b) mesh for the low rank Q method . 201

6.15 (a) estimated RH field (b) posterior uncertainty of RH field . . . . . . 201

6.16 (a) 95% CI of RR associated with 1 standard deviation change in

relative humidity (b) 95% CI for γ0. Shown in broken lines ( )

are the lower and upper limit of the 95% CI. The black dot (·) is the

posterior mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.17 (a) 95% CI width of RR associated with ω-units change in RH (b) 95%

CI width for γ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.18 (a) Posterior mean of λ(B) from the classical model specification (b)

Posterior SD of λ(B) from the classical model specification . . . . . . 204

7.1 Illustration of the weights values for the three constraint functions . . 227

7.2 Simulated data from a constrained MIDAS model with the exponential

Almon polynomial as constraint function . . . . . . . . . . . . . . . . 227

7.3 Posterior estimates of model parameters. Shown in blue line is the

true value, while the shaded lines show the 95% credible intervals. . . 228

xxiv



LIST OF FIGURES

7.4 Posterior estimates of the lag weights, wi. The line segment is the 95%

credible interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.5 Observed versus predicted values of the response variable y . . . . . . 228

7.6 Posterior estimates of model parameters. Shown in blue line is the

true value, while the shaded lines show the 95% credible intervals. . . 229

7.7 Posterior estimates of the lag weights, wi. The line segment is the 95%

credible interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.8 Observed versus predicted values of the response variable y . . . . . . 230

A.1 Plot of average relative errors and average posterior uncertainty from

500 simulated datasets for two hyperparameters: (a) marginal stan-

dard deviation σξ of the spatial field and (b) range parameter ρξ of the

spatial field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.2 Plot of average relative errors and average posterior uncertainty from

500 simulated datasets for the fixed effects: (a) β0 and (b) β1. . . . . 238

A.3 Comparison of estimated spatial fields ξ̂(s, t) for August 2019 among

the three approaches: stations-only model, regression calibration model,

and the proposed data fusion model. The estimated spatial fields are

roughly similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.4 Estimated spatial fields ξ̂(s, t) for log relative humidity, August 2019

and January 2020, for two approaches: (a) stations-only model, (b)

proposed data fusion model. . . . . . . . . . . . . . . . . . . . . . . . 240

A.5 Estimated error fields for the GSM log relative humidity data, August

2019 and January 2020, using the proposed data fusion model. . . . . 240

A.6 Plot of observed relative humidity values versus predicted values using

the proposed data fusion model for (a) weather stations and (b) GSM

data, and (c) calibrated GSM data. The blue line is the smooth local

regression curve, while the red line is the identity line. . . . . . . . . . 240

A.7 Estimated spatial fields ξ̂(s, t) for log rainfall, August 2019 and January

2020, for two approaches: (a) stations-only model and (b) proposed

data fusion model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

xxv



LIST OF FIGURES

A.8 Estimated error fields for the GSM log rainfall data for August 2019

and January 2020 using the proposed data fusion model. . . . . . . . 241

A.9 Plot of observed log rainfall values versus predicted values using the

proposed data fusion model: (a) weather stations, (b) GSM data, (c)

calibrated GSM data. The blue line is the smooth local regression

curve, while the red line is the identity line. . . . . . . . . . . . . . . 242

A.10 Comparison of LGOCV results for relative humidity from three models:

stations-only model, regression calibration model, and the proposed

data fusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.11 Comparison of LGOCV results for log rainfall from three models:

stations-only model, regression calibration model, and the proposed

data fusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B.1 Pairwise correlation among the block-level estimates of the climate

variables: temperature, relative humidity, and log rainfall . . . . . . . 245

B.2 Plots showing the posterior means and 90% credible intervals of the

fixed effects (except γ1, γ2, and γ5) for the dengue model with temper-

ature and log rainfall as covariates. The first vertical line shows the

estimates for the plug-in method, while the rest of the lines show the

estimates for the resampling method for different number of resamples,

from 1 to 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B.3 Plots showing the posterior means and 90% credible intervals of the

fixed effects for the dengue model with relative humidity as climate

covariate. The first vertical line shows the estimates for the plug-in

method, while the rest of the lines show the estimates for the resam-

pling method for different number of resamples, from 1 to 15. . . . . 247

B.4 Comparison of (a) posterior mean and (b) posterior standard devia-

tion, of the space effects ψ(Bi) between the plug-in method and resam-

pling method, for the model with relative humidity as climate covariate 247

B.5 Comparison of classical SIR estimates and model-based SIR estimates

from the health model with relative humidity as climate covariate . . 248

xxvi



LIST OF FIGURES

B.6 Posterior uncertainty of model-based estimates of dengue risks from

August 2019 to November 2019, for both plug-in method and resam-

pling on the dengue model with temperature and log rainfall as climate

covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

B.7 Predicted climate fields (posterior means), x̂(s, t), for January and

August 2019: (a) temperature (b) relative humidity (c) log rainfall . . 251

B.8 Posterior standard deviation of the predicted climate fields, x̂(s, t), for

January and August 2019: (a) temperature (b) relative humidity (c)

log rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B.9 Predicted block-level climate values, x̂(B, t), for January and August

2019: (a) temperature (b) relative humidity (c) log rainfall . . . . . . 252

B.10 Comparison of (a) posterior mean and (b) posterior standard devia-

tion, of the space effects ψ(Bi) between the plug-in method and resam-

pling method, for the dengue model with temperature and log rainfall

as climate covariate, using the stations-only climate model as input . 254

B.11 Plot of the estimated structured time effects ν(t) with the 95% credible

intervals between the plug-in method and resampling method (using

the stations-only climate model as input): (a) temperature and log

rainfall as climate covariates (b) relative humidity as covariate . . . . 254

B.12 Comparison of (a) posterior mean and (b) posterior standard devia-

tion, of the space effects ψ(Bi) between the plug-in method and resam-

pling method, for the dengue model with temperature and log rainfall

as climate covariate, using the stations-only climate model as input . 256

B.13 Comparison of classical SIR estimates and model-based SIR estimates

(using the stations-only climate model as input) from the health model

with temperature and log rainfall as climate covariates . . . . . . . . 256

B.14 Comparison of classical SIR estimates and model-based SIR estimates

(using the stations-only climate model as input) from the health model

with relative humidity as climate covariate . . . . . . . . . . . . . . . 257

xxvii



LIST OF FIGURES

B.15 Model-based estimates of dengue risks from August 2019 to November

2019, and from using the plug-in method and resampling method, and

temperature and log rainfall as climate covariates, using the stations-

only climate model as input . . . . . . . . . . . . . . . . . . . . . . . 258

B.16 Posterior standard deviation of the model-based estimates of dengue

risks from August 2019 to November 2019, and from using the plug-in

method and resampling method, and temperature and log rainfall as

climate covariates, using the stations-only climate model as input . . 259

B.17 Probability of exceedence, i.e., P
(
λ(Bi, t) > 1

)
from August 2019 to

November 2019, and from using the plug-in method and resampling

method, and temperature and log rainfall as climate covariates, using

the stations-only climate model as input . . . . . . . . . . . . . . . . 259

C.1 Results of the KS goodness-of-fit test for uniformity (at 10% signif-

icance level) of the normalized ranks pk of the SPDE (mesh nodes)

weights out of 1000 data replicates and using Algorithm 6.2. The red

points show the mesh nodes which fail the KS test for uniformity . . 263

C.2 Histogram and ECDF difference plot of the normalized ranks pk for

β0, β1, and τe1 = 1/σ2
e1 out of 1000 data replicates using Algorithm 6.2 263

C.3 Histogram and ECDF difference plot of the normalized ranks pk for

ω1, ω2, and ω3 out of 1000 data replicates using Algorithm 6.2 . . . . 263

C.4 Histogram and ECDF difference plot of the normalized ranks pk for ρξ

and σξ out of 1000 data replicates using Algorithm 6.2 . . . . . . . . 264

C.5 Histogram and ECDF difference plot of the normalized ranks pk for

β0, β1, and τe1 = 1/σ2
e1 out of 1000 data replicates using Algorithm 6.3

and using PC prior for the Matérn parameters . . . . . . . . . . . . . 264

C.6 Histogram and ECDF difference plot of the normalized ranks pk for

ω1, ω2, and ω3 out of 1000 data replicates using Algorithm 6.3 and

using PC prior for the Matérn parameters . . . . . . . . . . . . . . . 264

xxviii



LIST OF FIGURES

C.7 Histogram and ECDF difference plot of the normalized ranks pk using

Algorithm 6.2 for the second-stage model parameters γ0 and γ1 out of

1000 data replicates for the two-stage Gaussian spatial model (Section

6.3.1) using INLA-SPDE and with different approaches: (a) plug-in

method (b) resampling method (c) full Q method (d) low rank Q

method (mesh A) (e) low rank Q method (mesh B) . . . . . . . . . . 265

C.8 Histogram and ECDF difference plot of the normalized ranks pk using

Algorithm 6.3 for the second-stage model parameters γ0 and γ1 out of

1000 data replicates for the two-stage Gaussian spatial model (Section

6.3.1) using INLA-SPDE and with different approaches: (a) plug-in

method (b) resampling method (c) full Q method (d) low rank Q

method (mesh A) (e) low rank Q method (mesh B) . . . . . . . . . . 266

C.9 Comparison of the estimated posterior CDFs of the second-stage model

parameters γ0 and γ1 for different values of the log precision of the error

component in the low rank Q uncertainty method (mesh A) using the

simulated data example in Section 6.3.1 . . . . . . . . . . . . . . . . . 267

C.10 Comparison of the estimated posterior CDFs of the second-stage model

parameters γ0 and γ1 for different values of the log precision of the error

component in the low rank Q uncertainty method (mesh B) using the

simulated data example in Section 6.3.1 . . . . . . . . . . . . . . . . . 267

C.11 Results of the KS goodness-of-fit test for uniformity (at 10% signif-

icance level) of the normalized ranks pk of the SPDE (mesh nodes)

weights out of 1000 data replicates and using Algorithm 6.2. The red

points show the mesh nodes which fail the KS test for uniformity . . 268

C.12 Histogram and ECDF difference plot of the normalized ranks pk for

β0, β1, and τe1 = 1/σ2
e1 out of 1000 data replicates using Algorithm 6.2 268

C.13 Histogram and ECDF difference plot of the normalized ranks pk for

ω1, ω2, and ω3 out of 1000 data replicates using Algorithm 6.2 . . . . 268

C.14 Histogram and ECDF difference plot of the normalized ranks pk for ρξ

and σξ out of 1000 data replicates using Algorithm 6.2 . . . . . . . . 269

xxix



LIST OF FIGURES

C.15 Histogram and ECDF difference plot of the normalized ranks pk for

β0, β1, and τe1 = 1/σ2
e1 out of 1000 data replicates and using PC prior

for the Matérn parameters using Algorithm 6.3 . . . . . . . . . . . . 269

C.16 Histogram and ECDF difference plot of the normalized ranks pk for

ω1, ω2, and ω3 out of 1000 data replicates and using PC prior for the

Matérn parameters using Algorithm 6.3 . . . . . . . . . . . . . . . . . 269

C.17 Histogram and ECDF difference plot of the normalized ranks pk using

Algorithm 6.2 for the second-stage model parameters γ0 and γ1 out

of 1000 data replicates for the classical specification of the two-stage

Poisson spatial model (Section 6.3.2) using INLA-SPDE and with dif-

ferent approaches: (a) plug-in method (b) resampling method (c) full

Q method (d) low rank Q method (mesh A) (e) low rank Q method

(mesh B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

C.18 Histogram and ECDF difference plot of the normalized ranks pk using

Algorithm 6.3 for the second-stage model parameters γ0 and γ1 out

of 1000 data replicates for the classical specification of the two-stage

Poisson spatial model (Section 6.3.2) using INLA-SPDE and with dif-

ferent approaches: (a) plug-in method (b) resampling method (c) full

Q method (d) low rank Q method (mesh A) (e) low rank Q method

(mesh B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

C.19 Histogram and ECDF difference plot of the normalized ranks pk using

Algorithm 6.2 for the second-stage model parameters γ0 and γ1 out of

1000 data replicates for the new specification of the two-stage Poisson

spatial model (Section 6.3.2) using INLA-SPDE and with different ap-

proaches: (a) plug-in method (b) resampling method (c) full Q method

(d) low rank Q method (mesh A) (e) low rank Q method (mesh B) . 272

xxx



LIST OF FIGURES

C.20 Histogram and ECDF difference plot of the normalized ranks pk using

Algorithm 6.3 for the second-stage model parameters γ0 and γ1 out of

1000 data replicates for the new specification of the two-stage Poisson

spatial model (Section 6.3.2) using INLA-SPDE and with different ap-

proaches: (a) plug-in method (b) resampling method (c) full Q method

(d) low rank Q method (mesh A) (e) low rank Q method (mesh B) . 273

C.21 Simulated quantities from the new specification of the two-stage Pois-

son spatial model in Section 6.3.2 . . . . . . . . . . . . . . . . . . . . 274

C.22 Comparison of (a) the posterior mean and (b) posterior standard de-

viation of λ(B) from a simulated data of the two-stage Poisson spa-

tial model (classical specification) in Section 6.3.2 using different ap-

proaches: the plug-in method, resampling method, full Q method, low

rank Q (mesh A) method, low rank Q (mesh B) method . . . . . . . 274

C.23 Comparison of the posterior mean for (a) λ(s) and (b) λ(B) from a

simulated data of the two-stage Poisson model (new specification) in

Section 6.3.2 using different approaches: the plug-in method, resam-

pling method, full Q method, low rank Q (mesh A) method, and low

rank Q (mesh B) method . . . . . . . . . . . . . . . . . . . . . . . . 274

C.24 Histogram and ECDF difference plot of the normalized ranks pk for γ0

and γ1 out of 1000 data replicates using INLA-SPDE and the plug-in

method for the two-stage Gaussian model . . . . . . . . . . . . . . . . 275

C.25 Histogram and ECDF difference plot of the normalized ranks pk for γ0

and γ1 out of 1000 data replicates using NUTS and the plug-in method

for the two-stage Gaussian model . . . . . . . . . . . . . . . . . . . . 275

C.26 Histogram and ECDF difference plot of the normalized ranks pk for γ0

and γ1 out of 1000 data replicates using INLA-SPDE and the resam-

pling method for the two-stage Gaussian model . . . . . . . . . . . . 275

C.27 Histogram and ECDF difference plot of the normalized ranks pk for

γ0 and γ1 out of 1000 data replicates using NUTS and the resampling

method for the two-stage Gaussian model . . . . . . . . . . . . . . . . 275

xxxi



LIST OF FIGURES

C.28 Histogram and ECDF difference plot of the normalized ranks pk for

γ0 and γ1 out of 1000 data replicates using the full Q method for the

two-stage Gaussian model . . . . . . . . . . . . . . . . . . . . . . . . 276

C.29 Histogram and ECDF difference plot of the normalized ranks pk for γ0

and γ1 out of 1000 data replicates using INLA-SPDE and the plug-in

method for the two-stage Poisson model (classical specification) . . . 276

C.30 Histogram and ECDF difference plot of the normalized ranks pk for γ0

and γ1 out of 1000 data replicates using NUTS and the plug-in method

(classical specification) . . . . . . . . . . . . . . . . . . . . . . . . . . 276

C.31 Histogram and ECDF difference plot of the normalized ranks pk for γ0

and γ1 out of 1000 data replicates using INLA-SPDE and the resam-

pling method for the two-stage Poisson model (classical specification) 276

C.32 Histogram and ECDF difference plot of the normalized ranks pk for

γ0 and γ1 out of 1000 data replicates using NUTS and the resampling

method for the two-stage Poisson model (classical specification) . . . 277

C.33 Histogram and ECDF difference plot of the normalized ranks pk for

γ0 and γ1 out of 1000 data replicates using the full Q method for the

two-stage Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . 277

C.34 Comparison of marginal posteriors of γ0 and γ1 using four uncer-

tainty propagation approaches: (a) classical model specification (b)

new model specification . . . . . . . . . . . . . . . . . . . . . . . . . 278

C.35 (a) 95% CI of RR associated with 1 SD change in relative humidity

(b) 95% CI for γ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

C.36 Posterior means of λ(B) using the new specification of the Poisson model278

C.37 Posterior standard deviations of λ(B) using the new specification of

the Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

xxxii



List of Tables

3.1 Simulation scenarios in the simulation study . . . . . . . . . . . . . . 78

3.2 Priors specification for first-stage model parameters . . . . . . . . . . 79

3.3 Priors specification for second-stage model parameters . . . . . . . . . 79

3.4 Coverage probabilities (in %) of second-stage model parameters for all

scenarios. M1 = Method 1, M2 = Method 2. . . . . . . . . . . . . . . 89

4.1 Marginal log-likelihood values conditional an α1 and the corresponding

BMA weights for the temperature data fusion model . . . . . . . . . 123

4.2 Posterior estimates of fixed effects for the temperature model – stations-

only model versus proposed data fusion model . . . . . . . . . . . . . 123

4.3 Posterior estimates of fixed effects for the relative humidity model –

stations-only model versus proposed data fusion model . . . . . . . . 127

4.4 Posterior estimates of fixed effects for the log rainfall model – stations-

only model versus proposed data fusion model . . . . . . . . . . . . . 130

5.1 Marginal log likelihood (MLik), WAIC, and −
∑

log CPOi for different

dengue models with temperature and log rainfall as climate covariates 156

5.3 Marginal log likelihood (MLik), WAIC, and −
∑

log CPOi for different

dengue models with relative humidity as climate covariate . . . . . . 160

6.1 Summary of computational time (in seconds) for the different ap-

proaches on the data illustration for the two-stage Poisson model . . 198

A.1 Posterior estimates of hyperparameters for the temperature model –

stations-only model versus proposed data fusion model . . . . . . . . 238

A.2 Posterior estimates of the regression calibration model for temperature 238

xxxiii



LIST OF TABLES

A.3 Marginal log-likelihood values conditional an α1 and the corresponding

BMA weights for the relative humidity data fusion model . . . . . . . 239

A.4 Posterior estimates of hyperparameters for the relative humidity model

– stations-only model versus proposed data fusion model . . . . . . . 239

A.5 Posterior estimates of the regression calibration model for relative hu-

midity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.6 Posterior estimates of hyperparameters for the log rainfall model –

stations-only model versus proposed data fusion model . . . . . . . . 241

A.7 Posterior estimates of the regression calibration model for the log rainfall242

B.1 Comparison of hyperparameter estimates between the plug-in method

and the resampling method for the dengue model with temperature

and log rainfall as the climate covariates . . . . . . . . . . . . . . . . 245

B.2 Comparison of hyperparameter estimates between the plug-in method

and the resampling method for the dengue model with relative humid-

ity as the climate covariate . . . . . . . . . . . . . . . . . . . . . . . . 246

B.3 Posterior estimates of fixed effects for temperature model . . . . . . . 250

B.4 Posterior estimates of fixed effects for log relative humidity model . . 250

B.5 Posterior estimates of fixed effects for log rainfall model . . . . . . . . 250

B.6 Posterior estimates of hyperparameters for temperature model . . . . 250

B.7 Posterior estimates of hyperparameters for log relative humidity model 251

B.8 Posterior estimates of hyperparameters for log rainfall model . . . . . 251

B.9 Marginal log likelihood (MLik), WAIC, and −
∑

log CPOi for different

dengue models with temperature and log rainfall as climate covariates,

using the stations-only climate model as input . . . . . . . . . . . . . 253

B.11 Comparison of hyperparameter estimates between the plug-in method

and the resampling method for the dengue model with temperature

and log rainfall as the climate covariate, using the stations-only climate

model as input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

B.12 Marginal log likelihood, WAIC, and −
∑

log CPOi for different dengue

models with relative humidity as the climate covariate, using the stations-

only climate model as input . . . . . . . . . . . . . . . . . . . . . . . 255

xxxiv



LIST OF TABLES

B.14 Comparison of hyperparameter estimates between the plug-in method

and the resampling method for the dengue model with relative humid-

ity as the climate covariate, using the stations-only climate model as

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

C.1 Posterior estimates of first-stage model parameters: posterior mean,

posterior standard deviation (SD), and 95% credible intervals . . . . . 277

C.2 Posterior estimates of second-stage model (classical specification) . . 277

C.3 Posterior estimates of second-stage model (new specification) . . . . . 277

xxxv



LIST OF TABLES

xxxvi



Chapter 1

Introduction

1.1 Overview

This thesis presents a two-stage modelling framework for statistical modelling. This

approach is relevant for addressing complex modelling problems by decomposing them

into stages, thereby mitigating the computation burden that would arise from doing

model inference and prediction when done otherwise. Two motivating examples in

the area of spatial epidemiology are presented in Section 1.2. In such applications, the

first stage fits a model for covariates of interest, such as climatic factors and pollutant

concentrations. This stage may involve the integration of multiple data sources – for

example, data from monitoring stations, outputs from numerical models, and satellite

imagery. The second stage then models the health outcome, using the predictions

from the first-stage model as inputs. While the two-stage modelling approach offers

computational advantages, it necessitates the appropriate propagation of model un-

certainty from the first stage to the second stage. Thus, this thesis examines the

uncertainty propagation problem in two-stage models. It also proposes an approach

for integrating multiple data sources – an essential feature of the first-stage model

– through a process known as data fusion. A concrete data application is presented

in the context of exploring the link between climate and dengue, an overview of

which is provided in Section 1.2.1. Section 1.3 elaborates on the two-stage modelling

framework, and Section 1.5 outlines the main objectives of this thesis.

1



1. INTRODUCTION

1.2 Motivating examples

1.2.1 Climate and dengue

Dengue fever, an infectious disease caused by the dengue arbovirus and commonly

transmitted by two mosquito species (Aedes aegypti and Aedes albopictus), poses a

strong public health threat across tropical regions. This infectious disease imposes a

substantial socioeconomic and disease burden in many tropical and subtropical areas

around the world (Murray et al., 2013). Over half of the world’s population live in

areas at risk of the disease. From 1990 to 2019, the estimated increase in dengue

incidence is 85.5%; and from 2021, the number of global cases has been reported to

double each year (eClinicalMedicine, 2024). It is estimated that by 2085, 50-60% of

the world population will be at risk of dengue due to climate change scenarios, holding

all risk factors constant (Hales et al., 2002). According to the European Centre for

Disease Prevention and Control, dengue is the most significant mosquito-borne viral

disease affecting humans globally. Each year, tens of millions of cases are reported,

leading to an estimated 20 000 to 25 000 deaths, mainly among children (ECDC,

2023).

Dengue is classified as a neglected tropical disease (NTD), a group of diseases

caused by pathogens and primarily affecting impoverished areas in tropical countries

(WHO, 2023b). Aedes mosquitoes breed in small water bodies – even as small as

containers, car tyres, etc., in and around houses. This allows the virus to be easily

transmitted and spread among and within communities in urban locations despite

the relatively limited flight range of the vector. Its complex epidemiology presents

significant challenges for public health control. It is important to understand and

identify risk factors of dengue, in order to inform public health policy aimed at

controlling disease transmission and predicting future outbreaks.

The pathogen of dengue is transmitted between human hosts by mosquito vectors;

thus, dengue is considered a vector-borne disease and is also classified as an indirectly

transmitted disease (McMichael, 2003). Since pathogens for indirectly transmitted

diseases exist in the external environment during their life cycles, this class of dis-
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eases is susceptible to climatic factors. The association between dengue and climate

variables, particularly temperature, rainfall, and relative humidity, has been exten-

sively studied in the literature (Abdullah et al., 2022; Colón-González et al., 2021;

Couper et al., 2021; Murray et al., 2013; Naish et al., 2014; Xu et al., 2017); details

are presented in Section 5.3.

Figure 1.1: Time series plot of the number of dengue cases in the Philippines from January 2016 to January 2021

Figure 1.1 shows a plot of the monthly number of dengue cases in the Philippines

from January 2016 to January 2021. The plot shows seasonality in dengue incidence,

where the cases are generally higher during rainy season - which corresponds to

months June to November (PAGASA, 2023). Around July 2019, the country declared

a national dengue alert and dengue epidemic due to a surge in cases and deaths (BBC,

2019). Thus, it is noticeable from the plot that there is an unusually high number of

cases around August to October 2019. In fact, for the entire year 2019, the number

of cases was higher compared to the previous years. Another important observation

is that during 2020, which is the start of the COVID-19 pandemic, the number of

reported cases is very low. The decline in cases was a global phenomenon due to the

pandemic and the low reporting rate (WHO, 2023a). This can be explained by two

primary reasons. Firstly, there was a reduced mobility of the population and several

studies have shown that a reduced household movement is associated with a reduced

transmission (Stoddard et al., 2013). Secondly, this was a result of reporting hesitancy

because of the fear of contracting the COVID-19 virus when visiting a health center

or a hospital (Seposo, 2021). Moving forward, in 2023, there was an upsurge in the

dengue cases globally, with a simultaneous occurrence of multiple outbreaks even in
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regions previously unaffected by dengue (WHO, 2023a).

Figure 1.2 shows a map of annual (2016 to 2020) total number of dengue cases in

the country. It is apparent that 2019 had the most number of cases. It also shows

specific areas with the most recorded cases. In particular, the region badly hit by the

2019 dengue epidemic is the island in the western central part of the country, which is

referred to as the Western Visayas region. Additional areas that can be identified in

the plot are several contiguous provinces in the north, referred to as the Calabarzon

region, and several areas located in the south. These were specific areas identified by

the Health Department of the country which needed immediate emergency attention

(BBC, 2019).

Figure 1.2: Plot of total dengue cases yearly (2016 – 2020) in the Philippines

Furthermore, Figure 1.3a shows the location of the weather synoptic stations in

the Philippines. There are 57 stations which is very sparse relative to the size of

the archipelago. Figure 1.3b shows an output of the Global Spectral Model (GSM),

a weather forecast model maintained by the Japan Meteorological Agency. They

provide forecast outputs of up to 132 hours four times a day (with initial times 0000,

0600, 1200, and 1800 UTC) within 4 hours of the initial time, and up to 264 hours

twice a day (with initial time 0000 and 1200 UTC) within 7 hours of the initial time.

The data from the weather forecast model have a very wide spatial coverage and are

also observed at higher frequency in time.

The questions of interest are the following:

• Can observations from weather synoptic stations and simulated outcomes from

the weather forecast model be combined to produce more accurate predictions

of the latent process of interest—such as the true temperature field—compared

to approaches that rely solely on data from the stations?
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(a) Weather synoptic stations (b) Sample GSM outcomes

Figure 1.3: Climate data sources for the Philippines: (a) 57 weather synoptic stations (b) Global Spectral Model
(GSM), a numerical weather prediction model maintained by the Japan Meteorological Agency

• Can we provide a link, using statistical approaches, between the climate vari-

ables and dengue? What is the impact of temperature, relative humidity, and

rainfall on dengue incidence?

• How do we correctly propagate the uncertainty in the climate models into the

health model?

1.2.2 Air pollution and respiratory diseases

Another relevant application is linking air pollution and respiratory diseases. In the

United Kingdom, air pollution remains a public health problem and is known to cause

premature deaths (Lee et al., 2017). The link between air pollution and respiratory

diseases is well-established in the literature (Nascimento et al., 2016; Simkovich et al.,

2019; Tran et al., 2023). A commonly used approach to perform analysis is to use

spatio-temporal areal unit studies which use population-level data (Greven et al.,

2011; Lee et al., 2009, 2017).

Figure 1.4a shows the locations of the stations under the Automatic Urban and

Rural Network (AURN) in England and Wales. These stations record the concentra-

tion of certain pollutants such as nitrogen dioxide (NO2), ozone (O3), and particles

less than 10 µm (PM10) and 2.5 µm (PM2.5). In addition to data from stations,

dispersion models – which are based on deterministic differential equations that sim-

ulate the spread of pollutants in the atmosphere – are also commonly utilized. An
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example is the Air Quality Unified Model (AQUM), which is a weather and chemical

transport model that provides hourly estimates of pollutant concentrations in a 12

km2 grid all over England (Lee et al., 2017). Figure 1.4b shows the locations from

where the output of the numerical model is simulated. It obviously has a very wide

spatial coverage compared to the network of monitoring stations. Figure 1.4c shows

a sample outcome of the numerical model for NO2 concentration for the month of

January 2007.

(a) Monitors in England and Wales (b) AQUM data locations (c) Sample AQUM Data

Figure 1.4: Air pollution data sources for England

The questions of interest are the following:

• How can we combine the AURN and AQUM data to yield more accurate es-

timates and predictions of the true concentration of certain air pollutants in

England, compared with relying solely on AURN data?

• Can we provide a link, using statistical approaches, between health outcomes,

which are usually observed as counts at the level of Local Unitary Authorities,

and air pollution concentration, which are point-referenced?

• How do we correctly propagate the uncertainty in the air pollution model into

the health model?
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1.3 Two-stage modelling framework

A two-stage modelling framework is widely used in different areas of statistical mod-

elling, such as longitudinal data analysis, survival analysis, and spatial statistics.

For instance, in survival analysis, it is common practice to first model longitudi-

nal biomarkers, which are biological characteristics or medical signs – such as blood

sugar level and cholesterol levels – and subsequently use the estimated trends of these

biomarkers as inputs in a survival model (Rustand et al., 2024; Ye et al., 2008). In

the area of spatial statistics, a two-stage framework is often used to address a spatial

misalignment problem, e.g., when the response variable and covariates have different

spatial supports (Gryparis et al., 2009; Szpiro et al., 2011). This is discussed in more

detail in the context of spatial epidemiology in Section 1.3.1.

1.3.1 Two-stage modelling in spatial epidemiology

An example in spatial epidemiology (Blangiardo et al., 2016; Cameletti et al., 2019;

Lee et al., 2017; Liu et al., 2017) is shown in Figure 1.5, where the objective is to

understand the link between case counts of a disease and exposure variables, such

as pollution and toxin levels, and meteorological variables. The case counts are ob-

served in areas/blocks/polygons, while the exposure variable is a spatially continuous

phenomenon, measured at a finite number of spatial locations (e.g. weather stations,

monitoring stations). The first step involves fitting a spatial model (first-stage model)

that is used to predict the exposure surface on a fine grid. Given the predictions on

the grid, spatial averages are then computed over blocks consistent with the spatial

support of the health data. The next step is to fit another spatial model (second-stage

model) to link the health outcome variable and the block-level estimates of exposures.

A simple formulation of this two-stage model is as follows:

First stage : x(s) = β0 + β1z(s) + ξ(s) (1.1)

w(si) = x(si) + ϵ(si), ϵ(si)
iid∼ N

(
0, σ2) i = 1, . . . , nw (1.2)

Second stage : y(Bj)
∣∣µBj

iid∼ Poisson
(
µBj

)
, µBj

= E
[
y(Bj)

]
(1.3)
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1. INTRODUCTION

Figure 1.5: A two-stage modelling framework in spatial epidemiology: linking health outcomes, such as areal data on
case counts of a disease, and pollution and/or meteorological variables observed at finite number of spatial locations
or stations. First stage: fitting a spatial model for the true exposure surface. Second stage: fitting the health model.

log
(
µBj

)
= γ0 + γ1x(Bj) (1.4)

x(Bj) = 1
|Bj|

∫
Bj

x(s)ds, j = 1, . . . , ny (1.5)

where x(s) is the first-stage latent process of interest, e.g., true temperature field or

true pollution concentration field, z(s) is a known covariate and is available for the

whole spatial domain, ξ(s) is a random (spatial) field to account for extra variation in

the data unexplained by z(s), w(si) is the observed value of x(·) at a spatial location

si, ϵ(si) is a measurement error term, and y(Bj) denotes the observed count of the

disease in block Bj which is assumed to follow the Poisson distribution. The above

model assumes that the health outcomes y(Bj) are linked to x(s) via the spatial

averages x(Bj) = 1
|Bj|

∫
Bj
x(s)ds, where |Bj| is the size of block Bj (Equation (1.5)).

The model unknowns are γ0, γ1, β0, β1, σ2, and the parameters in the assumed model

for ξ(s).

The first stage would fit Equations (1.1) and (1.2) in order to obtain the estimated

values of x(s), say, x̂(s). This allows us to obtain the spatial averages x̂(Bj), defined

8
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as

x̂(Bj) = 1
|Bj|

∫
Bj

x̂(s)ds = 1
|Bj|

∫
Bj

(
β̂0 + β̂1z(s) + ξ̂(s)

)
ds, (1.6)

where β̂0, β̂1, and ξ̂(s) are estimated values, say, the posterior means. The second

stage then fits the model where x̂(Bj) is an input in Equation (1.4) in order to obtain

the posterior estimates of γ0 and γ1.

One might wonder, why we do not fit Equations (1.1) – (1.5) simultaneously?.

Firstly, fitting the above model simultaneously, also referred to as a joint modelling

approach or fully Bayesian approach, can be computationally challenging and ex-

pensive (Gryparis et al., 2009; Liu et al., 2017). A joint modelling approach may

not be a practical approach especially with the increase in the volume of available

and accessible data nowadays, which implies that fitting the first-stage model can be

complex in itself. Secondly, given that the first-stage model is already computation-

ally demanding, doing multiple health effect analyses or running multiple candidate

epidemiological models, which require refitting the first-stage model several times in

a joint modelling framework, will be computationally expensive (Blangiardo et al.,

2016; Liu et al., 2017). Thirdly, a potential problem with a joint modelling approach

is that it could cause potential ‘feedback’ effects wherein the data y(Bj) influence and

distort the model for x(s), which consequently may compromise the
(
x(Bj), y(Bj)

)
relationship (Gryparis et al., 2009; Shaddick and Wakefield, 2002; Wakefield and

Shaddick, 2006). This could happen when the data to inform about x(s) are sparse

(Gryparis et al., 2009) or due to model misspecification (Yucel and Zaslavsky, 2005).

One way to ‘cut’ the feedback between the two stages is by introducing a cut function

in an MCMC algorithm (Plummer, 2015). The cut function essentially simplifies the

full conditional distribution of a graphical model into smaller modules that inter-

act more weakly than in a full Bayesian analysis (Bayarri et al., 2009; Spiegelhalter

et al., 2003). However, this approach may not converge to a well-defined limiting

distribution unless tempered transitions are introduced (Plummer, 2015). Also, it is

well-known to be difficult to implement and computationally expensive (Chakraborty

et al., 2023). Fourthly, performing a two-stage modelling approach has an intuitive

physical interpretation since there is a clear one-directional relationship between x(·)
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and y(·), e.g., climate and pollution levels affect disease risks but not the other way

around.

Although a two-stage modelling framework is simpler, since it breaks down the

problem into two separate but connected stages, there is one important issue that

needs to be addressed: the problem of uncertainty propagation, which is elaborated

in Section 1.3.1.1. The uncertainty propagation is intrinsic in a joint modelling ap-

proach, but not in a two-stage modelling framework and hence needs to be specifically

addressed here.

1.3.1.1 Uncertainty propagation problem

When adopting a two-stage modelling approach, it is important to account for the

uncertainty in the first-stage model results when fitting the second-stage model. This

is referred to as the uncertainty propagation problem. The problem is due to the fact

that the predicted values x̂(Bj), shown in Equation (1.6), from the first-stage model

are subject to some uncertainty due to estimation error or model misspecification

error. This uncertainty must be considered and correctly propagated from the first

stage to the second stage. The problem of uncertainty propagation in a two-stage

modelling framework is formally discussed in Chapter 6

There are two existing and commonly used approaches to performing two-stage

Bayesian modelling: 1) a crude plug-in method which does not account for the un-

certainty in x̂(Bj), and 2) the posterior sampling approach (Blangiardo et al., 2016;

Cameletti et al., 2019; Lee et al., 2017; Liu et al., 2017). A crude plug-in method,

which simply plugs-in the posterior means from the first-stage model into the second-

stage model, would potentially underestimate the true posterior uncertainty of the

second-stage model parameters; on the other hand, the posterior sampling approach

does account for the first-stage model uncertainty but can be computationally expen-

sive. The posterior sampling approach generates several samples from the first-stage

model posteriors, and then each sample is used as an input to the second-stage model.

The final posterior estimates of the second-stage model parameters are then computed

using Bayesian model averaging.

One of the goals of this work is, therefore, to validate the correctness of the two
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aforementioned approaches. Another goal is to propose a new method for uncertainty

propagation which does not do resampling, and hence is potentially more computa-

tionally efficient. This method is called the Q uncertainty method, and is introduced

in Chapter 6.

1.3.1.2 Combining multiple data sources x(s)

Another aspect of the two-stage modelling framework that this work investigates is

the use of several data sources to estimate an unknown field x(s) (see Equation (1.1)).

The primary data source to estimate the field x(s) are direct measurements at a finite

number of point locations. In the context of environmental sciences and meteorology

in particular, data on e.g. air quality, environmental pollution, surface temperature,

or rainfall are collected through a network of monitoring stations and weather stations

(Arab et al., 2014; Blangiardo et al., 2016; Chien and Yu, 2014; Greven et al., 2011;

Jaya and Folmer, 2022; Lawson et al., 2016; Lee et al., 2015, 2017). These data

are used for prediction, and to improve the understanding of the spatio-temporal

dynamics of the underlying processes and the impact of these variables on potential

outcomes of interest, such as health outcomes. However, due to high maintenance

costs, the monitoring networks are typically spatially sparse (Lawson et al., 2016).

Increasingly, data from additional sources derived from satellite images or outcomes

of numerical models with a high spatial resolution are available. These can be used

jointly with the stations data to improve the accuracy of predictions in a process

that combines information from different data sources and is often referred to as data

fusion or data assimilation (Bauer et al., 2015; Gettelman et al., 2022; Lawson et al.,

2016). The goal is to exploit the better spatial resolution of the additional data to fill

gaps in areas only sparsely covered by the stations in order to predict and map the

variables into space with more accuracy at smaller scales than based on the stations

data alone. However, a general issue that is common in attempts to combine data

from more than one source is that the various data streams differ in their quality.

Satellite data and outcomes of numerical models, specifically, are often biased due to

calibration issues, and these biases have to be accounted for in the modelling process.

Moreover, while the data from the stations are point-referenced, simulated outcomes
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Figure 1.6: Extended two-stage modelling framework to emphasize two things: data fusion challenge in the first
stage, and the uncertainty propagation from the first-stage model to the second-stage model.

from numerical models or remote-sensed data are considered areal data on regular

grids (Bruno et al., 2016). Thus, in order to optimize the integration of different data

sources, two important aspects need to be considered: the flexibility of the model to

account for the disparity in the accuracy levels of the different data sources, and the

efficiency of the model to overcome the problem of spatial misalignment.

Figure 1.6 shows an extension of Figure 1.5 to account for the two aforementioned

vital components of the two-stage modelling framework that this work investigates.

Firstly, the proposed framework specifies a data fusion model in the first stage to

obtain more accurate predictions of the latent field of interest x(s). Figure 1.6 assumes

three data sources for the first-stage model: the point-referenced data (source A), such

as stations data, and two additional data sources which are areal and of different

resolutions (sources B and C). Secondly, it emphasizes the need to propagate the

uncertainty from the first-stage model to the second-stage model. The first-stage
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model follows Equations (1.1) – (1.2), while the second-stage model follows Equations

(1.4) – (1.5), similar to Figure 1.5.

1.4 Research Gaps

The following is a summary of the challenges and/or gaps in the literature that this

thesis aims to address.

1. Firstly, this work extends the proposed model in Cameletti et al. (2019) which

addresses a spatial misalignment problem to link health and air pollution data.

The model in Cameletti et al. (2019) uses a two-stage modelling framework

to link health and air pollution. This thesis then extends their approach by

incorporating a data fusion model in the first-stage model. This is a more

realistic and potentially better model since in many real-life scenarios, the data

coming from stations are typically sparse, and we want to use proxy data, such

as outcomes from numerical models and/or remote-sensed data, to improve

model accuracy. This is addressed in Chapter 3.

2. This thesis adopts the Bayesian melding model, which is an approach to perform

data fusion and is formally presented in Section 2.7.1 of Chapter 2. It assumes

that all observed data are a function of the same latent process. In many recent

studies that adopted the same idea, such as Moraga et al. (2017), Zhong and

Moraga (2023), and Forlani et al. (2020), calibration biases for the proxy data

are not accounted for. Accounting for these biases, particularly both an additive

and multiplicative bias, is important since there are more data coming from the

biased proxy data and we want to avoid these data to dominate parameter

estimation. This work uses the Bayesian model averaging with INLA as the

estimation approach since it provides numerical stability. All materials and

results which tries to address the challenges and gaps in this research area are

shown in Chapter 4.

3. The next research gap this work tries to address is the validation of commonly

used methods for doing two-stage modelling, particularly a plug-in method and

13
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posterior resampling method. These two methods are used to link dengue and

climate in the Philippines, which are presented in Chapter 5. The two afore-

mentioned methods are formally discussed in Chapter 6. Both are validated

using the simulation-based calibration (SBC) method, which is a method to

test for the self-consistency property of Bayesian models. To the best of my

knowledge, no published work has applied this approach to validate uncertainty

propagation methods in two-stage modelling applications. A formal discussion

of the SBC method is also presented in Chapter 6 .

4. This study addresses another gap in the literature by proposing a novel method

for uncertainty propagation in two-stage models, called the Q uncertainty

method. The new approach tries to address the limitations of the two baseline

methods. Unlike the plug-in method which ignores the posterior uncertainty of

the first-stage model, the proposed method accounts for the first-stage model

uncertainty via the Q matrix. This matrix is then incorporated in the predictor

expression of the second-stage model. Moreover, unlike the posterior sampling

method which fits the second-stage model multiple times, the proposed method

fits the second-stage model once, and can therefore be more computationally

efficient.

5. Finally, a research gap this thesis addresses is to provide additional empiri-

cal evidence in the literature on the link between climate and dengue in the

Philippines. I use a novel Bayesian spatio-temporal model that incorporates

a complex specification for structured and unstructured effects in space and

time, including their interactions. The model specifies a spatial effect which

accounts for the archipelagic geography of the country. Moreover, the climate

predictions used as input to the dengue model are based on the climate data

fusion models presented in Chapter 4. This extends much of the existing work

in the literature, particularly for the Philippines, where analyses have primarily

relied on sparse data from weather stations. All the details of the methodology

and results are presented in Chapter 5.
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1.5 Objectives of the thesis

The objectives of this PhD work are as follows:

1. The first primary objective is to propose a data fusion approach in a two-

stage spatio-temporal model. To achieve this objective, I start with the case

of a simple measurement error process and investigate the performance of the

integrated nested Laplace approximation (INLA) and the stochastic partial

differential equations (SPDE) approach through a simulation study. The first

objective is an initial exploration of doing data fusion in the context of two-

stage spatio-temporal modelling. The focus is on exploring the capabilities of

the INLA-SPDE method to fit the proposed data fusion model. Here, I do not

intend to compare the performance of the data fusion model with benchmark

models, such as a stations-only model. This will be dealt with in Objective (2).

The issue of uncertainty propagation is not yet formally dealt with as well. In

order to account for the uncertainty in the first-stage model in this initial stage

of the work, I use the posterior sampling approach. All relevant materials and

results addressing Objective (1) are provided in Chapter 3.

2. The second primary objective is to extend the proposed data fusion model

addressed in Objective (1) to provide flexibility in accounting for the biases in

the different data sources. The following are the specific goals:

• To propose a flexible data fusion model extending the capabilities of the

proposed data fusion model in Objective (1)

• To conduct a simulation study to compare the performance of the following

approaches: a stations-only model, a regression (statistical) calibration

model, and the proposed data fusion model

• To apply the proposed model on the meteorological data in the Philippines

(motivating example in Section 1.2.1)

• To compare the performance of the proposed data fusion model and the

two aforementioned benchmark approaches in the data application using

the leave-group-out cross-validation (LGOCV)
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The second primary objective also focuses on the data fusion problem, i.e., the

first-stage model of the two-stage modelling framework presented in Section 1.3.

Here, I perform a proper comparison between the proposed method and bench-

mark approaches. I then present an extensive analysis on a data application

motivated by meteorological data in the Philippines. All relevant materials and

results addressing Objective (2) are presented and discussed in Chapter 4.

3. The third primary objective is to link climate and dengue in the Philippines (see

motivating example in Section 1.2.1). In particular, I investigate three climate

variables: temperature, relative humidity, and rainfall. Here, I explore both a

stations-only model and a data fusion model as input in the health (second-

stage) model. In order to account for the uncertainty in the first-stage models,

I use the posterior sampling approach, which is also used in Objective (1). All

materials and results for this chapter are presented and discussed in Chapter 5.

This chapter does not propose any methodological innovation; rather it provides

an extensive case study, which showcases the proposed framework in Figure 1.6.

4. The fourth primary objective is to evaluate the correctness of commonly used

two-stage modelling approaches and to propose a new method to do uncer-

tainty propagation in two-stage Bayesian hierarchical models. In particular,

the following are the specific objectives:

(a) To evaluate the correctness of two existing and commonly used approaches

for doing two-stage modelling: a crude plug-in approach and posterior

sampling approach

(b) To propose a variation in the implementation of the simulation-based cal-

ibration approach, which is the approach used to perform the model vali-

dation in (a)

(c) To propose a new approach for doing uncertainty propagation in two-stage

Bayesian hierarchical models

(d) To propose a low-rank approximation of the proposed method in (c)

(e) To demonstrate a comparison of the different uncertainty propagation ap-
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proaches on toy two-stage spatial models

(f) To illustrate the proposed methods on a simple spatial model to link cli-

mate and dengue in the Philippines (motivating example in Section 1.2.1)

The fourth main objective of this research focuses on the uncertainty propaga-

tion problem presented in Section 1.3.1.1 (also see Figure 1.6). To validate the

different approaches for two-stage modelling, I use the simulation-based cali-

bration (SBC) approach, which is an approach for testing the self-consistency

property of Bayesian models. This chapter proposes a methodological innova-

tion in doing two-stage modelling. The proposed methods are also validated

using the SBC method. All relevant results and materials which investigates

Objective (4) are presented and discussed in Chapter 6.
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Chapter 2

Statistical methods

This chapter presents statistical concepts and methods that are relevant in this PhD

thesis. Section 2.1 presents the problem of spatial misalignment, and a related prob-

lem called the change of support problem (COSP). Section 2.2 discusses classical

models for point-referenced spatial data, while Section 2.3 discusses some classical

models for areal data. The former is relevant for the first-stage model in Figure 1.6,

while the latter is relevant for the second-stage model. The generalized linear model

(GLM) or generalized linear mixed model (GLMM) specification of the spatial mod-

els are discussed in Section 2.4. As mentioned in Section 1.5, I perform Bayesian

inference on the models in this PhD thesis, particularly using the integrated nested

Laplace approximation (INLA) approach. Section 2.5 discusses the INLA methodol-

ogy, both the classical and modern INLA, which are presented in Sections 2.5.2 and

2.5.3, respectively. Another important method is the stochastic partial differential

equations (SPDE) method, which I use to estimate Gaussian fields of the Matérn

type. This is discussed in Section 2.6. Finally, some data fusion approaches are

discussed in Section 2.7.

2.1 Problem of spatial misalignment

Chapter 1 introduced the two-stage modelling framework for this PhD thesis. A

motivation for doing this is that the spatial data for analysis have different spatial

supports, i.e., they are spatially misaligned. This was discussed in Section 1.3.1 and
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was clearly seen in the motivating examples in Sections 1.2.1 and 1.2.2. In particular,

the response variable in the first stage is point-referenced while the response variable

in the second stage is areal. The point-referenced data, denoted by w(si), i = 1, ..., nw

are assumed to follow a latent stochastic process and are observed at finite loca-

tions {s1, s2, . . . , sn}, while the areal data y(·) are observed at the blocks/polygons

Bj, j = 1, ..., ny. This scenario is just one of the various types/examples of spatially

misaligned data.

The problem of spatial misalignment necessitates doing inference and/or predic-

tion on a spatial scale different from that of the observed data. This problem is

referred to as the change of support problem (COSP) in spatial statistics (Gelfand

et al., 2010; Gotway and Young, 2002). The term spatial support refers to the geomet-

rical size, shape, volume, and orientation of the units or regions associated with the

measurements (Schabenberger and Gotway, 2017). If the data are point-referenced,

and the target spatial support are also points, e.g., a prediction grid, this is referred

to as kriging (Cressie, 1988; Montero et al., 2015). If the data are point-referenced

while the target spatial support consists of areas/block/polygons, this is referred to

as block kriging or up-scaling. This is discussed further in Section 2.2.5, since this

type of COSP is relevant in this PhD work. Additional types and examples of COSP

are presented in Gotway and Young (2002).

Suppose that x(s) is the unknown first-stage field. We wish to upscale x(s) to

x(Bj), which represents the block-level value of x(s). This is relevant in this appli-

cation, since one way to perform the two-stage modelling, as shown in Figure 1.6, is

to estimate x(Bj), and then plug-in that value into the second-stage model. x(Bj) is

related to x(s), but has different statistical and spatial properties. An intuitive way

to upscale is via spatial averaging. The spatial averages of the process are meaning-

ful if x(s) is an intensive spatial quantity. Intensive spatial variables are variables

that do not have values proportional to the spatial support (Pebesma and Bivand,

2023). This means that if an area is split into smaller areas, the values of the variable

are not split similarly, i.e., values may vary within but on average remain the same.

Examples of intensive variables are temperature, air pollution concentration, and

population density. On the other hand, variables whose values are associated with

20



2. Statistical methods

a physical size are called extensive variables. An example of an extensive variable

is population count, since if an area is split into smaller areas, the population count

needs to be split too. The split of the values is not necessarily done proportional

to the sub-areas since population is rarely uniform over space, but the sum of the

population count across all subareas need to equal that of the total.

In this PhD thesis’s motivating examples (see Section 1.2), x(s) refers to climate

fields and air pollution concentration fields, which are intensive spatial variables.

Thus, the up-scaled value x(Bj), which is the spatial average of x(s), is given by

x(Bj) =
∫
Bj

λ(s)µ(s)ds, (2.1)

where λ(s) is an intensity function which weights the values of µ(s), and such that∫
Bj
λ(s)ds = 1 (Gelfand et al., 2010; Pebesma and Bivand, 2023).

2.2 Classical models for geostatistical data

This section presents classical methods for geostatistical or point-referenced data.

This is relevant for the first-stage model in the framework presented in Figure 1.6.

Suppose w =
(

w(s1) w(s2) · · · w(snw)
)⊺

, s ∈ Rd, is the observed data for

a continuously-indexed spatial process. The process is observed at a finite set of

locations {s1, . . . , snw}. A commonly assumed model structure for w(si) is given by

w(si) = µ(si) + ξ(si) + ϵ(si), i = 1, . . . , nw (2.2)

where µ(si) is a large-scale trend, ξ(si) is a random small-scale variation, and ϵ(si)

is a measurement error. Cressie (2015) proposed an additional term to account for

micro-scale variation in w(si). But in this review, we focus on the model specification

in Equation (2.2). Also, note that Equations (1.1) and (2.2) are equivalent when

x(si) = µ(si) + ξ(si).

The large-scale trend µ(si) is assumed as a function of a fixed set of covari-

ates z(si) =
(

z(si1) z(si2) · · · z(sip)
)⊺

and a vector of parameters β, particularly,

µ(si) = z(si)⊺β. The variation and covariation in w(si) is explained by the stochastic
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properties of ξ(si) and ϵ(si).

ξ(si) is typically assumed a stationary process with a covariance function, say,

cξ(·). These are formally defined in Section 2.2.1. Moreover, the measurement error

ϵ(si) is a white noise process with mean 0 and variance V[ϵ(si)] = σ2
ϵ . ξ(s) and

ϵ(si) are assumed independent. The sum µ(s) + ξ(s) is referred to as the signal, and

comprises the model terms which are spatially structured either in a deterministic or

stochastic fashion (Schabenberger and Gotway, 2017). This is the main interest in

applications of spatial prediction, not w(si) which is the noisy version of the signal.

On the other hand, the term ξ(s) + ϵ(s) is sometimes referred to as the error process

of the model. However, for some applications, ξ(s) can be part of the mean process

to account for local stochastic fluctuations of the process. This explains the famous

adage ‘one modeler’s mean function is another modeler’s covariance structure’.

Thus, a classical model specification for w is given by

w = Zβ + ξ + ϵ

E[w] = Zβ

V[w] = V[ξ + ϵ] ≡ Σ(θ) = Σξ(θξ) + σ2
ϵ Inw

(Σξ)ij = cξ(si, sj),

(2.3)

where (Σξ)ij denotes the (i, j)th element of Σξ(θξ), θξ are the parameters of the covari-

ance function cξ(·), Inw is an identity matrix of dimension nw × nw, θ =
(
θξ σ2

ϵ

)⊺

,

Z is the matrix of known covariates with ith row as z(si), ξ =
(
ξ(s1) · · · ξ(snw)

)⊺

,

and ϵ =
(
ϵ(s1) · · · ϵ(snw)

)⊺

.

2.2.1 Model specification for ξ(s)

The stationary assumption on ξ(si) facilitates and simplifies inference. A restrictive

kind of stationarity, called strict stationarity, means that the (joint) probability distri-

bution of
(
ξ(s1) ξ(s2) · · · ξ(snw)

)⊺

is the same as
(
ξ(s1 + h) ξ(s2 + h) · · · ξ(snw + h)

)⊺

,

for any h ∈ Rd. A less restrictive kind, called weak stationarity or second-order sta-

tionarity, assumes that ξ(si) has a constant mean and that the covariance between
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ξ(si) and ξ(si + h) only depends on h, i.e., Cov
(
ξ(si), ξ(si + h)

)
= cξ(h), for any

h ∈ Rd. Second-order stationary implies that the covariance function is a function

only of the difference or spatial lag between two locations.

A third kind of stationarity, which arose in the traditional kriging literature, is

called intrinsic stationarity and is satisfied if V
[
ξ(si + h) − ξ(si)

]
= 2γ(h). Intrinsic

stationarity does not provide a probability model (likelihood) for the data (Banerjee

et al., 2014). The function γ(h) is called the semivariogram and is related to the

covariance function cξ(·) via

cξ(h) = cξ(0) − γ(h).

Given cξ(·), γ(·) can be easily recovered; hence, weakly stationarity implies intrinsic

stationarity. However, the converse is not true, unless the lim∥h∥→∞ γ(h) exists, where

∥h∥ is the length of h.

Another common model assumption is that cξ(·) or γ(·) depends only on ∥h∥,

which is referred to as isotropy. An extensive list of isotropic covariance functions

and isotropic semivariograms, and their properties, are in Banerjee et al. (2014).

Examples are the exponential, Gaussian, and Matérn covariance functions / semivar-

iograms.

2.2.2 Estimation approaches

This section describes classical estimation approaches for the spatial model given in

Equation (2.3). If θ is known, the generalized least squares estimator for β, denoted

by β̂gls is

β̂gls =
(

Z⊺Σ(θ)91Z
)91

Z⊺Σ(θ)91w.

If ξ and ϵ are assumed to be Gaussian, then β̂gls is equivalent to the maximum

likelihood estimator for β. This implies that β̂gls is a consistent estimator for β. For

the non-Gaussian case, the consistency property is not guaranteed. Conditions to

ensure the consistency of β̂gls are discussed in Schabenberger and Gotway (2017).

If θ is unknown, there are two main approaches: an iterative reweighted general-

ized least squares approach, and a likelihood-based approach. The first one iteratively
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estimates β and θ. Given an initial estimate of β, the θ is estimated using the resid-

uals w − Zβ. The ‘updated’ estimate of β is given by

β̂egls =
(
Z⊺Σ(θ̃)91Z

)−1Z⊺Σ(θ̃)Z,

where θ̃ is the estimated value for θ. The process repeats by estimating θ using

the ‘updated’ residuals. The iteration stops when there are minimal changes in the

estimates of β and θ. β̂egls is called the estimated generalized least squares estimator

(EGLS) for β. Under certain regularity conditions, β̂egls is a consistent estimator for

β. A main concern with this approach is the impact of using estimated covariance

parameters in the plug-in expression for β̂egls. This ignores extra uncertainty from

estimating the covariance parameters and can lead to understimated standard errors.

The parameters θ are estimated based on the assumed semivariogram or covari-

ance function. A classical approach is to fit a parametric semivariogram model to the

empirical semivariogram using least squares method. One way to obtain the empiri-

cal semivariogram is the Matheron estimator, which provides an unbiased empirical

estimate and visualization of the semivariogram. However, this gives unstable esti-

mates when data is sparse, and is highly sensitive to outliers. A robust but biased

estimator is the Cressie-Hawkins estimator. Given the empirical semivariogram, the

estimate for θ is then derived using the least squares approach based on the assumed

parametric model for γ(h). The derivation of the (weighted) least squares estimator

for γ(h) is detailed in Cressie (1985). Another approach for estimating θ is the use of

generalized estimating equations and composite likelihood approaches, both of which

can be viewed as generalizations of the least squares approach (Schabenberger and

Gotway, 2017). Both approaches derive an unbiased score function as a function of

θ, and do not rely on an exact likelihood model for the data, but nevertheless give a

consistent estimator for θ under certain regularity conditions.

The second approach maximizes the likelihood function given the distributional

assumption of the data, which is typically Gaussian. The maximum likelihood ap-

proach simultaneously estimates β and θ, unlike the EGLS estimator. Since Σ(θ) is a

nonlinear function of θ, then nonlinear optimization techniques, such as the Newton-

24



2. Statistical methods

Rhapson or Quasi-Newton, are used to obtain maximum likelihood estimates. The

size of the optimization problem is substantially reduced using profiling techniques.

The MLE for β takes the same form as β̂egls, except that θ is evaluated at its MLE.

An advantage of this approach is that it provides the variance-covariance matrix of

the parameter estimates based on the Hessian matrix. The drawback of this approach

is that the MLE for θ is biased. The bias arises from a loss of degrees of freedom

due to the simultaneous estimation of β and θ. Correction for bias is done using

the restricted maximum likelihood estimation (REML) technique. A disadvantage of

both the ML and REML technique is that the computation of the standard errors

for β̂ involves plugging in the estimated covariance parameters.

2.2.3 Spatial prediction

The terms prediction and estimation are distinct concepts, although both are related.

The former is used when the goal is to determine the value of a random quantity,

while the latter is used to determine the value of a fixed quantity. In the classical

geostatistical model in Equation (2.3), the goal is either to estimate E[w(s0)] or to

predict w(s0), where s0 ∈ R2 denotes a new point location of interest. This section

presents classical approaches for doing spatial prediction.

The derivation of the optimal approach for prediction starts with specifying a loss

function. The most commonly used loss function is the squared-error loss function,

since statistical properties are easily examined in such scenarios. An important result

is that the predictor which minimizes the expected squared error loss, also termed

the mean-squared prediction error, is the conditional expectation of w(s0) given the

observed data. In the Gaussian case, the conditional expectation and conditional

variance, which quantifies the uncertainty in the prediction, have closed-form expres-

sions. This framework for doing spatial prediction is referred to as kriging.

In traditional kriging, the derivation of the optimal predictor usually restricts to

the class of unbiased and linear predictors; hence, the optimal predictor is usually

called best linear unbiased predictor (BLUP). When the mean of w(·) is known, the

optimal linear predictor, under squared-error loss, is called the simple kriging pre-

dictor. With the Gaussian assumption on the data, the simple kriging predictor is
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equivalent to the conditional mean of a Gaussian random field; hence, it is the best

predictor in the class of both linear and non-linear estimators (under squared-error

loss). If the data is not Gaussian, the simple kriging predictor is only the best in the

class of linear functions of the data.

When the mean of w(·) is unknown, one typically starts by estimating the mean

using ordinary least squares, and then perform simple kriging on the residuals. How-

ever, this approach underestimates the uncertainty in the predictions, since the un-

certainty from estimating the mean in the first stage is not taken into account in the

second stage. The predictor is unbiased but is not the BLUP.

Moreover, when the mean of w(·) is unknown but constant over space, the BLUP

is referred to as the ordinary kriging estimator. When the mean is not constant,

an approach for fitting Equation (2.3) is via trend surface models, which models the

mean using a highly parametrized fixed effects structure. The issue with trend surface

models is that it requires a large number of regression coefficients to capture even

simple spatial structure. An alternative is to do localized estimation, such as kernel

estimation, and is also referred to as non-parametric regression. Such models depend

on the kernel function, the degree of the local polynomial, and the bandwidth. A

third approach extends the ideas from simple kriging, which derives the BLUP also

under squared error loss but accounts for the unknown mean structure in the data.

This approach is referred to as universal kriging. The universal kriging predictor is a

function of β̂gls.

The discussion of the previous classical kriging methods tacitly assumes that the

variance-covariance structure of the data is known, i.e., the covariance parameters

are known, and the variance of the measurement error is also known. However, in

practice, this is not the case. The implication of substituting an estimate of θ in

the kriging predictor is that the obtained predictor is no longer the BLUP, but only

an estimate of it, which is referred to as the EBLUP. Moreover, substituting the

estimate for θ in the variance expression of the BLUP only provides an estimate

of the prediction error of the BLUP, not the actual prediction error of the EBLUP.

Strategies to provide a correction for the prediction errors when covariance parameters

are estimated were proposed in Harville and Jeske (1992), Kackar and Harville (1984),
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and Prasad and Rao (1990).

Kriging approaches honor the data, i.e., the predicted surface passes through the

data points. In some applications, the goal is to make inference on the signal of the

model, i.e., to predict a less noisy version of the data that removes measurement

error. In such a case, the prediction is often viewed as a filtering problem, since it

predicts a filtered version of the data which removes random noise, i.e, the aim is to

recover the signal from the noisy observations.

The ideas above extend to scenarios with more complex structures. One example

is spatial prediction for binary data, which is referred to as indicator kriging. It views

the binary data as a transformation of a latent continuously-indexed spatial process.

Another extension is cokriging, which performs linear prediction based on more than

one interrelated spatial processes. An in-depth discussion of other kriging methods

are in Cressie (2015), Wackernagel (2003), Chiles and Delfiner (2012), Stein (2012);

Waller and Gotway (2004).

2.2.4 Mixed models

Another classical framework for fitting spatial models and doing spatial prediction is

by introducing random effects. In this framework, we can write Equations (2.3) as

w = Zβ + Uα + ϵ

E[α] = 0,V[α] = G

E[ϵ] = 0,V[ϵ] = R

, (2.4)

where U is a known matrix and α is a k× 1 vector of random effects. A special case

is when U is an identity matrix so that each element of α, which in this case is of

dimension nw, is uniquely mapped to an element of w. In relation to Equation (2.3),

we have ξ ≡ Uα. Equation (2.4) explicitly estimates β and α, also referred to as

the fixed effects and random effects, respectively. The model in Equation (2.4) is a

general form of a linear mixed model (LMM).

The development of estimation strategies for Equation (2.4) starts by assuming

that G and R are known. The first approach obtains optimal estimates using least
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squares theory (Henderson, 1950). The second approach assumes a Gaussian distribu-

tion for α and ϵ, and then maximizes the joint likelihood of the random components

to obtain the MLEs of β and α. Not surprisingly, the MLE for β is equivalent to the

generalized least squares estimator for β using the known form of V[w]. Also, the

obtained MLE for α is the BLUP under a squared error loss.

When G and R are unknown, the estimation of Equation (2.4) is typically done by

assuming Gaussianity of α and ϵ and assuming a parametric model for the elements

of G and R, so that both matrices are parameterized by a set of few parameters, say

θ. It is then straightforward to fit the model using maximum likelihood estimation

or restricted MLE approach. The estimators for β and α then take the EGLS form.

A difficulty in this approach is the identifiability between the parameters describing

G and R.

A special case of Equation (2.4) is when R = σ2
ϵ I and G = σ2I, which under

the squared error loss yields an objective function closely related to the objective

function minimized in spline smoothing. For s ∈ R1, truncated line functions (basis

functions) of degree p are usually used, while for s ∈ Rd, radial basis functions are

typically used as the spline basis. For all cases, the connection between the spline

smoothing models and Equation (2.4) is that the spline basis functions are specified

in the U matrix, while α are viewed as the spline coefficients. An excellent discussion

of this topic is given in Ruppert et al. (2003). Since V[α] = σ2I, then the spatial

structure in the signal is encoded in the spline basis U, which depends on the spatial

configuration of the data and the knots. If U is assumed to contain additional spatial

dependence, the computational demand increases quickly. The number of knots also

has an impact on the computational requirements.

Another special case of the LMM framework is to rewrite Equation (2.3) as follows:

w = Zβ + ξ + ϵ

ξ ∼ N(0,Σξ), ϵ ∼ N(0, σ2
ϵ I),

(2.5)

where Cov[ξ, ϵ] = 0. Here, it is also assumed that Σξ is parameterized by a few set

of parameters θξ via the assumed covariance function under the weak stationarity

assumption. The moments of Equation (2.5) are equal to the moments of Equation
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(2.3), i.e., E[w] = Zβ and V[w] = Σξ(θξ) + σ2
ϵ I. The solutions for β̂ and α̂ are

based on Henderson’s mixed model equations, so that β̂ takes the form of the GLS

estimator for β, and α̂ is the BLUP for α under a squared error loss. The form of

the predictor for w(s0) is equivalent to the universal kriging predictor with filtered

measurement error, which is not a surprise.

2.2.5 Change of support for w(s)

As seen from the motivating problems in Sections 1.2.1 and 1.2.2, the change of

support problem involves changing the support of a point-referenced spatial process

of the first-stage model to the spatial support of the second-stage model which is an

areal process. In the traditional geostatistical framework, this is referred to as block

kriging.

In the following description of the block kriging method, we assume that w(si) =

µ + ξ(si), where ξ(si) is a weakly stationary process. This is a simplification from

Equation (2.3), which assumes a non-constant mean and that w(si) has a measure-

ment error. Suppose w(Bj) denotes the block-level (average) measurement of w(s)

over Bj. This quantity is defined as w(Bj) = 1
|Bj|

∫
Bj

w(s)ds. Similar to the previous

kriging approaches, a squared error loss function is used and the optimal estimator

is restricted to the class of linear unbiased estimators. The optimal predictor for

w(Bj) has a similar form as the ordinary kriging predictor, except that we need

Cov
[
w(Bj),w(si)

]
, i = 1, . . . , nw, instead of Cov

[
w(s0),w(si)

]
, i = 1, . . . , nw (Chiles

and Delfiner, 2012; Journel and Huijbregts, 1976). In particular, Cov
[
w(Bj),w(si)

]
is defined as

Cov
[
w(Bj),w(si)

]
= 1

|Bj|

∫
Bj

c(u − si)du. (2.6)

The corresponding block kriging variance is also similar to the variance of the ordinary

kriging predictor, except that we need Cov
[
w(Bj),w(Bj)

]
instead of Cov

[
w(si),w(si)

]
.

In particular, Cov
[
w(Bj),w(Bj)

]
is defined as

Cov
[
w(Bj),w(Bj)

]
= V

[
w(Bj)

]
= 1

|Bj|2

∫
Bj

∫
Bj

c(u − v)dudv. (2.7)

The previous description of block kriging assumes a constant mean, no measure-
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ment error for w(si), and known covariance function parameters. For scenarios when

the previous assumptions are not met, block kriging can easily accommodate addi-

tional model requirements using the same approaches discussed in Sections 2.2.2 and

2.2.3.

The integrals in Equations (2.6) and (2.7) are approximated using the covariance

function or its estimated version, say ĉ(·, ·). In particular, the block Bj is first dis-

cretized into a set of regular points, say uj, j = 1, . . . , nBj
. The approximations to

Equations (2.6) and (2.7) are then computed as follows:

Cov
[
w(Bj),w(si)

]
≈ 1
nBj

nBj∑
j=1

c(uj − si)

Cov
[
w(Bj),w(Bj)

]
≈ 1(

nBj

)2

nBj∑
i=1

nBj∑
j=1

c(ui − uj)

(2.8)

The above quantities can also be computed using the semivariogram (Cressie, 2015).

With a Gaussian assumption on w(si), things become simpler. Suppose the data

follows w ∼ N
(
µ,Σ(θ)

)
, where the (i, j)th element of Σ(θ) is c(si, sj). Suppose

the desired prediction on blocks is given by w⊺
B =

(
w(B1) w(B2) · · · w(Bm)

)
.

It follows that wB ∼ N
(
µB,ΣB(θ)

)
since the Gaussian distribution is closed under

affine transformations. Here, the jth element of µB is µBj
= 1

Bj

∫
Bj

w(s)ds, the

(j, j)th element of ΣB(θ) is given in Equation (2.7), and the (j, k)th element of ΣB(θ)

is Cov
[
w(Bj),w(Bk)

]
= 1

|Bj| × |Bk|

∫
Bj

∫
Bk
c(u − v)dudv. It then follows that the

joint distribution of w and wB is given by

 w

wB

 ∼ N

( µ

µB

 ,

 Σ(θ) Σs,B(θ)

Σ⊺
s,B(θ) ΣB(θ)

), (2.9)

where Σs,B(θ) is the matrix of cross-covariances between the elements of w and wB,

whose elements are given in Equation (2.6). The required integration to obtain the

elements of µB,Σs,B(θ), and ΣB(θ) can be done using Monte Carlo simulation, such

as in Equations (2.8). Given Equation (2.9), the conditional distribution of the blocks

given the observed points can then be derived using the properties of the multivariate

normal distribution.
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2.3 Classical models for areal data

This section presents classical ideas in modelling spatial dependence for areal data. In

such datasets, the spatial dependence is specified via a neighborhood structure of the

blocks. This section discusses two classical models: the simultaneous autoregressive

(SAR) model and the conditional autoregressive model (CAR).

Suppose y(B) denotes the areal spatial process. In the presentation below, we

assume that y(B) is Gaussian, although the motivating examples of this PhD thesis

specify y(B) as a Poisson random variable.

The first model, called the SAR model, was introduced by Whittle (1954). It is

given by

y = Xβ + Bϵ + ν, (2.10)

where y =
(

y(B1) · · · y(Bny)
)⊺

, ϵ = y − Xβ, B is a matrix of spatial dependence

parameters with diagonal elements equal to zero, ν is a random vector with E[ν] = 0,

and V[ν] is a diagonal matrix with elements σ2
1, . . . , σ

2
ny . Equation (2.10) can be

written as

(I − B)(y − Xβ) = ν, V(y) = (I − B)−1Σν(I − B⊺)−1, (2.11)

assuming that (I − B) is non-singular. A parametric form is assumed for B given by

B = ρW. The matrix W is a matrix whose values, denoted by wjk, are computed

using spatial proximity measures. A basic measure is wjk = 1 if areas j and k are

adjacent or share a common boundary, and wjk = 0 otherwise. The SAR model can

now be written as

y = Xβ + ϵ, ϵ = ρWϵ + ν.

This model can be straightforwardly estimated using least squares theory and maxi-

mum likelihood methods. In order for the model to be well-defined, I− ρW needs to

be non-singular.
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The development of the SAR model starts by specifying a joint model for the data.

Another approach is to start with conditional models instead, i.e., the conditional

distribution of y(Bj) given its neighbours, say, δj. This led to the so-called conditional

autoregressive model (CAR), which was introduced by Besag (1974). The set of

conditional distributions
{
π
(
y(Bj)|δj

)}
have a so-called local specification, i.e., the

outcome on the jth areal unit depends only on its set of neighbors. Under this

assumption, the outcomes y is also referred to as a Markov random field, the Markov

property being that the conditional distribution of y(Bj) given the observed data is

the same as π
(

y(Bj)|δj
)

. Brook’s Lemma provides the theoretical results to obtain

a proper joint distribution given only information on the full conditionals (Brook,

1964).

Banerjee et al. (2014) provides a useful theoretical discussion of the CAR model.

The form of the joint distribution of y is given by

π
(

y(B1), ..., y(Bny)
)

∝ exp
{

− 1
2σ2 y⊺(Dw − W)y

}
, (2.12)

where W is the spatial proximity matrix, Dw is a diagonal matrix with jth diagonal el-

ement as the number of neighbours of area Bj, and σ2 is such that V
[
y(Bj)|y(Bk), k ̸=

j
]

= σ2. Equation (2.12) takes the form of a Gibbs distribution. Geman and Geman

(1984) has shown that if π
(

y(B1), ..., y(Bny)
)

follows the Gibbs distribution, then

y is a Markov random field. This is essentially the converse of the Hammersley-

Clifford Theorem, which shows that the unique joint distribution, if it exists, given

the conditional models π
(

y(Bj)|δj
)

, takes the form of a Gibbs distribution (Besag,

1974).

Equation (2.12) is an improper distribution due to the singularity of Dw − W.

Nonetheless, even if the joint distribution is improper, all the conditional distribu-

tions are proper. This specification is also called the intrinsically autoregressive (IAR)

model or intrinsic CAR model. A solution to the impropriety of the joint distribution

in (2.12) is to incorporate a new parameter ρ and define Σ−1 = Dw − ρW. Posi-

tive definiteness of Σ−1 is assured when |ρ| < 1. Given this specification, the full
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conditionals are now given by

y(Bj)|y(Bk), k ̸= j ∼ N

(
ρ
∑
k

wjky(Bk)
wj+

,
σ2

wj+

)
,

where wj+ denotes the number of neighbours of the jth area. Here, the conditional

mean of y(Bj) can be interpreted as a proportion on the average of its neighbors.

Moreover, if ρ = 0, then the y(Bj)’s are independent.

In practice, a CAR specification is incorporated in a model as random effects. In

other words, the use of the CAR model is relegated to the prior distributional speci-

fication of the random effects in a Bayesian hierarchical framework. Hence, working

with a proper joint distribution is not necessary. In fact, an improper specification of

the joint distribution enables a wide breadth of spatial patterns in the data (Banerjee

et al., 2014).

2.4 GLM and GLMM specification

This section aims to discuss classical spatial models for non-Gaussian data. This is

relevant to this PhD thesis as the health models (second-stage model) involve count

data as the response variable. To simplify the exposition, we assume that the response

variable y(·) is a point-referenced spatial process. Extending this to the case of an

areal process is straightforward. The models and ideas in this section are also relevant

for the first-stage model.

For non-Gaussian data, the spatial model for y(s) is appropriately specified as a

generalized linear model (GLM), which is written as

y(si) ∼ F(y; ·), g
(
µy(si)

)
≡ g
(
E
[
y(si)

])
= z(si)⊺β, (2.13)

where F is a member of the exponential family of distributions, g(·) is the link function

which is a monotonic function of the mean µy(si), and z(si) is a vector of known

covariates with coefficients β. An excellent discussion on the theory of generalized

linear models is in McCullagh (2019). An important element of GLM is that the

variance of the data is a function of its mean. This relationship is encoded in the
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so-called variance function.

Under the assumption of independence of the data in Equation (2.13), the variance

of y =
(

y(s1) · · · y(sn)
)

is specified as V[y] = ψVµ, where Vµ is a diagonal

matrix with elements equal to the variance function evaluated at µy, and ψ is a

scaling parameter of F(·). Extending Equation (2.13) in order to account for spatial

correlations, the form of V[y] is modified as follows:

V[y] = σ2V1/2
µ R(θ)V1/2

µ , (2.14)

where R(θ) is a correlation matrix whose elements are determined from an assumed

covariance function (Section 2.2.1), under the assumption of weak stationarity in the

spatial process. The constant σ2 is the so-called dispersion parameter under the case

when ψ = 1, which is true for commonly used distributions such as the binomial and

Poisson family. The above specification is also referred to as a marginal specification,

since the marginal mean E
[
y(si)

]
is viewed as a function of fixed, non-random param-

eters (Schabenberger and Gotway, 2017). Note that the model specified in Equation

(2.3) also follows a marginal specification.

2.4.1 Conditional specification

The primary difficulty when working with non-Gaussian spatial data in the GLM

framework is that the joint distribution for data with mean given in Equation (2.13),

variance given by Equation (2.14), and marginal distributions of the form F(·), may

not exist. In many cases, no valid joint distribution exists that satisfies the previ-

ous three requirements. An alternative model specification that eases this difficulty

is called the conditional specification, which assumes a spatially-varying latent pro-

cess and then specifies the moments conditional on this process. The conditional

specification takes the following form:

y(si)|β, ξ(si) ∼ F(y; ·)

g
(
E
[
y(si)|β, ξ(si)

])
= z(si)⊺β + ξ(si)

V
[
y(si)|β, ξ(si)

]
= σ2ν

(
µ(si)

)
.

(2.15)
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The conditional formulation leads to a generalized linear mixed model (GLMM),

since ξ(si) is viewed as a random effect and is part of the linear predictor expression.

Equation (2.15) is also referred to as a hierarchical model. The first level of the

hierarchy describes how the data depend on the latent process; while the second

level specifies the model of the latent process. In a Bayesian framework, there is a

third level which specifies the prior distribution of all model parameters. In Equation

(2.15), ν(·) is the variance function while σ2 is a dispersion parameter.

With (Gaussian) linear models, the marginal and conditional specifications give

the same inference. However, in a GLM, the two specifications have different interpre-

tations. Under the conditional model, we have E[y(si)] = Eξ
[
g−1
(

z(si)⊺β + ξ(si)
)]

,

where Eξ[·] is taken with respect to the distribution of ξ(si). On the other hand, for

the marginal model, E[y(si)] = g−1
(

z(si)⊺β
)

. The advantage of using the conditional

specification is the assumption that the data are independent conditional on ξ(s) or

any other random effects for that matter.

The use of a conditional specification for the spatial non-Gaussian data provides

computational advantage via the assumption of conditional independence in the data.

However, a disadvantage is that doing inference for some parameters, e.g. the fixed

effects β, requires integrating out ξ(si) or any other random effects, which can be

numerically difficult (Breslow and Clayton, 1993).

2.4.2 Frequentist estimation approaches

A classical estimation method for GLMs is the quasi-likelihood approach (Wedder-

burn, 1974). With this approach, inference is performed based only on the first

two moments of the data, not on a full likelihood. The parameter estimates, which

are derived from the score functions, have nice asymptotic properties. While quasi-

likelihood approaches were first developed for independent data, McCullagh (2019)

extended the approach to dependent data, and then Gotway and Stroup (1997) ex-

tended the approach particularly for spatial GLMs. The quasi-likelihood function is

a function only of the mean structure, such as in Equation (2.13), and the variance

structure, as in Equation (2.14). Its derivative with respect to β yields the quasi-

likelihood score functions, which are also known as generalized estimating equations
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(GEE). Asymptotic properties of estimators based on the GEE in the context of spa-

tial models are discussed in McShane et al. (1997). Gotway and Stroup (1997) pro-

posed to iteratively estimate β and the variance parameters, say θ, using a reweighted

generalized least squares approach in a spatial context.

Another classical method is the so-called pseudo-likelihood (PL) approach, which

is an efficient and flexible approach for fitting GLMM (Wolfinger and O’connell, 1993).

Essentially, the PL approach linearizes the problem by obtaining the first-order Taylor

series expansion of the link function. This yields the so-called pseudo data, which also

has a form for its conditional mean and conditional variance-covariance structure, as

well as the marginal form. This simplifies the problem to a general linear regression

model with spatially-correlated errors for the marginal case, and to a linear mixed

model in the conditional case. Thus, the obtained estimators take the GLS form

and are also the BLUP. The PL approach is only one of the methods in the class of

so-called linearization methods which essentially derive a pseudo-model for the data

whose properties depend only on the first two moments.

Another commonly used estimation approach is the so-called penalized quasi-

likelihood (PQL) approach proposed by Breslow and Clayton (1993). It uses a Laplace

approximation on the log-likelihood, and then uses the Fisher scoring algorithm to ob-

tain the parameter estimates. The derived solutions from the PQL approach coincide

with that of the pseudo-likelihood approach.

A popular alternative is the use of Bayesian methods. The Bayesian framework

is briefly presented in Section 2.4.3. A thorough discussion of the integrated nested

Laplace approximation (INLA) method, which this PhD thesis is mainly using for

Bayesian model inference, is presented in Section 2.5.

2.4.3 Bayesian framework

As discussed in Section 2.4.1, the conditionally-specified model in Equation (2.15)

is a hierarchical model, where the first level specifies the model for the data y(si)

conditional on the fixed effects β and the random effects ξ(si). The second level then

specifies the model for the random effects ξ(si), which depends on a set of parameters,
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say θξ. The third level specifies the prior distribution of θ =
(
θξ σ2

)⊺

, where σ2 is

a scaling parameter of the likelihood (first stage) model.

The desired posterior distribution is as follows:

π(β, ξ,θ|y) = π(β, ξ,θ,y)
π(y) = π(y|β, ξ,θ)π(ξ|θ)π(β,θ)∫ ∫ ∫

π(y|β, ξ,θ)π(ξ|θ)π(β,θ)dξdβdθ
, (2.16)

with π(·) denoting the relevant distribution, either the likelihood model, the random

effects model, the prior distributions, etc.

The Bayesian approach has several advantages over competing approaches, such

as the frequentist approaches discussed in Section 2.4.2. It has a more philosophically

sound foundation, has a unified approach to data analysis, and can formally incorpo-

rate domain expertise or external empirical evidence into the analysis (Banerjee et al.,

2014). In particular, a unified approach for data analysis means that there are no

separate theories of estimation, hypothesis testing, multiple comparisons, etc., since

Bayesian analyses follow directly from the posterior distribution. Other advantages

include the fact that all inferences are conditional on the observed data, rather than

hypothetical or unobserved datasets (in contrast to frequentist approaches, which

rely on repeated sampling); Bayesian answers are more interpretable to nonspecial-

ists; and Bayes procedures possess a range of desirable optimality properties (Carlin

and Louis, 2008).

The main bottleneck with Bayesian inference is that the integrals in Equation

(2.16) are not tractable in closed form for most realistic problems. Even with conju-

gate priors in a Bayesian hierarchical framework, which allows partial analytic evalu-

ation of the integrals in Equation (2.16), the presence of some (nuisance) parameters,

such as spatial random effects, causes some integrations to be intractable.

There have been enormous developments in the computational tools available for

doing Bayesian inference. A survey of these methods is nicely summarized in Green

et al. (2015). A classical and staple method for doing simulation-based inference is

via Markov chain Monte Carlo (MCMC) integration methods. MCMC techniques

include the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953)

and the Gibbs sampler (Gelfand and Smith, 1990; Geman and Geman, 1984). These
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classical MCMC techniques have evolved in the last several years. These include the

use of Langevin drift instead of random walk proposals, which provide a substantial

speed-up in convergence at the extra price of computing the gradient. This approach

is referred to as the Metropolis-adjusted Langevin algorithms (MALA) (Roberts and

Tweedie, 1996). Another important computational tool is the Hamiltonian Monte

Carlo (HMC) method, which introduces an auxiliary variable called the momentum

and then simulates from the augmented target distribution according to Hamilton’s

equations (Neal, 2012).

The main issue with MCMC approaches is that they are inefficient in the context

of highly complex models (Green et al., 2015). This motivated the development of

approximate methods such as the ABC method (Wilkinson, 2013), variational Bayes

(VB) (Jaakkola and Jordan, 2000), empirical likelihood (Owen, 2001), and integrated

nested Laplace approximation (INLA) (Rue et al., 2009).

As discussed in Section 1.5, this PhD thesis will mainly use INLA to perform

Bayesian inference. The INLA method is a deterministic approach for doing Bayesian

inference, and is particularly well-suited for latent Gaussian models, which are for-

mally presented in Section 2.5.1. Performing MCMC with latent Gaussian models

can be painfully slow (Rue et al., 2009). For spatial applications in Bayesian hier-

archical models, where commonly the size of the second-stage (latent) parameters

is large, INLA method generally computes accurate approximations of the posterior

marginals, which take hours for MCMC algorithms to compute.

There are several advantages to the use of INLA over other approximate meth-

ods. The posterior variance using the VB method has been shown to be significantly

smaller than the true value in some applications of latent Gaussian models (Rue

et al., 2009). It is not unusual for the VB methodology to underestimate the pos-

terior variance (Wang and Titterington, 2005). There are several remedies for the

limitations of the VB methodology, but the solutions are case-specific (Rue et al.,

2009). Another approximation method, which is an exotic example of variational

approximation, is the so-called expectation-propagation (EP) method (Minka, 2013).

While the VB method tends to underestimates the posterior variance, the EP method

tends to overestimates the posterior variance (Bishop, 1995). Both the VB and EP
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methods are faster than the MCMC approach, but are generally slower than the

approximation provided by the INLA method. Although the developments in ap-

proximation methods keep on growing due to their efficient programming, benefits

from avoiding simulations, and the ability to deal with complex models, a general

criticism against these methods is the overall incapacity to diagnose and quantify the

amount of approximation errors involved (Green et al., 2015).

2.5 Integrated nested Laplace approximation

This section discusses the details of the INLA method. Section 2.5.1 starts with a

discussion of latent Gaussian models, which is a class of Bayesian hierarchical models

for which the INLA methodology is well-suited. Section 2.5.2 discusses the original

INLA approach, while Section 2.5.3 discusses estimation algorithms that have super-

seded the classical approach in the current implementation in the R-INLA maintained

by the original developers of INLA. This new methodology is more efficient than the

classical INLA. Section 2.5.4 then discusses the iterated INLA approach, which is a

recent development that allows the fitting of models with nonlinear components in

the predictor expressions. Since the INLA approach has been developed as a general

model fitting approach not limited to spatial modelling, exposition in the following

sections is general, and not in a spatial context.

2.5.1 Latent Gaussian models

Latent Gaussian models are a subset of the class of Bayesian additive models with a

structured additive predictor (Rue et al., 2009). Suppose yi is the response variable

with distribution function which is a member of the exponential family, and mean

E[yi] which is linked to an additive predictor ηi through a link function g(.), i.e.,

g
(
E[yi]

)
= ηi. The general form of ηi is

ηi = α +
nβ∑
k=1

βkzki +
nf∑
j=1

f (j)(uji) + ϵi. (2.17)
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In Equation (2.17), α is the intercept, {βk} are the coefficients of known covariates

zki,
{
f (j)(·)

}
are unknown functions of covariates uji, and ϵi is an error term. The

covariate uji can be the spatial location or time index for an observation i, so that

the f (j)(uji) terms take care of the spatial, temporal, or spatio-temporal dynamics

in the model. The functions f (j)(·) also could account for non-linear relationship

between a covariate and the response. It can be modelled using parametric nonlinear

terms, nonparametric forms such as a random walk model, or Gaussian processes.

All unknown quantities in Equation (2.17), namely α, {βk},
{
f (j)(·)

}
, and {ϵi} are

assumed to be Gaussian; hence, this model specification is termed latent Gaussian

model. The aforementioned parameters are referred to as the latent parameters, which

could depend on another set of parameters called hyperparameters.

Just like any Bayesian hierarchical model, latent Gaussian models are conveniently

specified as a three-stage hierarchical model. In the first stage, the yi’s are assumed

to be conditionally independent given the latent parameters, say x, and the model

hyperparameters, say θ. With the assumption of conditional independence, the joint

distribution of y =
(

y1 y2 · · · yn

)⊺

given x and θ is given by

y|x,θ ∼
n∏
i=1

π(yi|x,θ),

where xi denotes the set of latent parameters linked to yi. In the second stage, the

model for the latent parameters, particularly {ηi}, α, {βk},
{
f (j)(·)

}
which are the

elements of x is specified, i.e., π(x|θ) is multivariate normal with mean zero and

precision matrix Q(θ). Finally, in the third stage, the distribution of the vector of

hyperparameters θ is specified. The joint posterior distribution of x and θ is

π(x,θ|y) ∝ π(θ)π(x|θ)
n∏
i=1

π(yi|xi,θ) (2.18)

∝ π(θ)|Q(θ)|91/2 exp
{

− 1
2x

⊺Q(θ)x +
n∑
i=1

log
{
π(yi|xi,θ)

}}
. (2.19)

If it is further assumed that the latent Gaussian vector x has Markov properties,

i.e. for some j ̸= k, xj and xk are conditionally independent given x−jk, then x is

referred to as a Gaussian Markov random field (GMRF). A useful consequence of the
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assumption is that the (j, k)th element of Q(θ), denoted by Qjk, is equal to 0 if and

only if xj and xk are conditionally independent given x−jk. This makes inference

computationally efficient, as working with a sparse matrix Q(θ) is less costly than

working with a dense matrix. The cost of factorizing a dense n× n matrix is O(n3),

whereas the computational cost when working with GMRFs decreases to O(n3/2) (Rue

and Held, 2005).

It is usually useful to distinguish the hyperparameters which are directly linked

to y (like shape or precision parameters), say θ1, and those which are linked to the

latent field x, say θ2. The latent Gaussian model can now be written as follows:

y|x,θ1 ∼
n∏
i=1

π(yi|x,θ1)

x|θ2 ∼ N
(
0,Q−1(θ2)

)
θ = {θ1,θ2} ∼ π(θ).

The primary goal is then to obtain the following marginal posteriors: π(xj|y) and

π(θj|y), where xj and θj are the jth elements of x and θ, respectively.

Running an MCMC algorithm for latent Gaussian models can exhibit poor perfor-

mance since the components of the latent field x have strong dependence with each

other, and since θ and x are also strongly dependent, especially if the dimension

of the latent parameters is large. There are several approaches to overcome these

difficulties but MCMC sampling still remains a challenge under these scenarios (Rue

and Held, 2005). These challenges are overcome with the use of an efficient Bayesian

computational approach called Integrated Nested Laplace Approximation (INLA).

2.5.2 Classical INLA

INLA aims to estimate the marginal posterior distributions via the following nested

integrals:

π(xi|y) =
∫
π(xi|θ,y)π(θ|y)dθ (2.20)

π(θi|y) =
∫
π(θ|y)dθ−j (2.21)
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Approximating π(xi|y) and π(θi|y) first requires approximations of π(θ|y) and

π(xi|θ,y), denoted by π̃(θ|y) and π̃(xi|θ,y), respectively. These are discussed in

Sections 2.5.2.1 and 2.5.2.2, respectively. Equation (2.20) is computed via numerical

integration, which is discussed in Section 2.5.2.4.

2.5.2.1 Approximating π(θ|y)

The approximation for π(θ|y) is given by

π̃(θ|y) ∝ π(x,θ,y)
π̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

, (2.22)

where π̃G(x|θ,y) is the Gaussian approximation to the full conditional of x, and

x∗(θ) is the mode of the approximation for a given θ. The approximation is done

by performing a Taylor series approximation on log π(yi|xi,θ) (see Equation (2.19))

about x0i up to a second order for i = 1, . . . , n. This gives an approximation of the

form

log π(yi|xi,θ) ≈ bixi − 1
2cix

2
i , (2.23)

where both bi and ci depends on x0i. This approximation is most accurate when the

expansion is done around the modal value x∗
i , which can be searched using iterative

optimization methods such as the Newton-Raphson method. Note that this Gaussian

approximation is performed conditional on θ; thus, the mode of the approximation

is written as x∗(θ).

From Equation (2.23), π(x|θ,y) can then be written as follows:

π(x|θ,y) ∝ π(x|θ)π(y|x,θ)

≈ exp
{

− 1
2x

⊺Q(θ)x
}

exp
{ n∑

i=1

(
bixi − 1

2cix
2
i

)}
≈ exp

{
− 1

2x
⊺Q(θ)x − 1

2

n∑
i=1

cix
2
i

}
exp

{ n∑
i=1

bixi

}
= exp

{
− 1

2x
⊺
[
Q(θ) + diag(c)

]
x + b⊺x

}
.

(2.24)

Since Equation (2.24) is the canonical form of the multivariate Gaussian distribu-

tion, then π(x|θ,y) is approximated as Gaussian with mean
[
Q + diag(c)

]−1
b and
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variance matrix
[
Q+diag(c)

]−1. The Gaussian approximation to the full conditional

of x is then given by

π̃G(x|θ,y) ∝ exp
{

− 1
2
(
x − x∗(θ)

)⊺[Q(θ) + diag(c)
](
x − x∗(θ)

)}
. (2.25)

An important property of the approximation in Equation (2.25) is that it inher-

its the Markov property of the GMRF x since we are simply adding constants on

the diagonal terms and the off-diagonal terms remain unchanged. Also, the approx-

imation is exact if π(x|θ,y) is Gaussian. Rue and Martino (2007) showed that the

approximation in Equation (2.22) is accurate for a wide variety of models in the latent

Gaussian family.

2.5.2.2 Approximating π(xi|θ,y).

In the classical INLA framework, there are three ways to approximate π(xi|θ,y):

using Gaussian approximations, another Laplace approximation, and a simplified

Laplace approximation.

The Gaussian approximation is the fastest and cheapest computationally, but it

suffers from errors in the location and/or errors due to lack of skewness (Rue and

Martino, 2007). Given Equation (2.25), π̃(xi|θ,y) is obtained by marginalizing the

approximate joint distribution. The extra difficulty in marginalizing π̃G(x|θ,y) is

the computation of the marginal variances from the sparse precision matrix
[
Q(θ) +

diag(c)
]
. Rue et al. (2009) provides a recursive process to obtain the marginal vari-

ances from the precision matrix.

The second approach provides more accurate approximations via another Laplace

approximation given by

π̃(xi|θ,y) ∝ π(x,θ,y)
π̃GG(x−i|xi,θ,y)

∣∣∣∣
x−i=x∗

−i(xi,θ)
,

where π̃GG(·|·) is the Gaussian approximation of π(x−i|xi,θ,y) and x∗
−i(xi,θ) is the

modal configuration. This method is computationally expensive since this has to be

done for each xi, and which requires the location of the mode and the factorization of a

(nx−1)×(nx−1) matrix, where nx is the dimension of x. One way to ease computation
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is by avoiding the optimization by approximating the modal configuration as

x∗
−i(xi,θ) ≈ Eπ̃G

(x−i|xi), (2.26)

where the expectation is computed with respect to the conditional density derived

from π̃G(x|θ,y) in Equation (2.25). Other modifications can be found in Rue et al.

(2009).

The third approach, called the simplified Laplace approximation, is less compu-

tationally expensive than the Laplace approximation and more accurate than the

Gaussian approximation. It performs a Taylor expansion on the numerator and de-

nominator of Equation (2.22) up to the third order, thus correcting for location and

skewness error of the Gaussian approximation. The details of this approach can be

found in Rue et al. (2009).

2.5.2.3 Approximating π(θj|y)

Instead of providing a parametric form for π̃(θ|y), the INLA framework explores

the approximate density to identify the evaluation points that would later be used

for numerical integration when approximating the posterior marginal of xi, which is

discussed in Section 2.5.2.4. The key thing is that once π̃(θ|y) is obtained, π̃(θi|y) can

be determined by numerical integration, i.e., by summing out the other components.

The strategy used to explore π̃(θ|y) is as follows:

Step 1: Locate the mode of π̃(θ|y) with respect to θ.

Step 2: Suppose θ∗ is the mode of π̃(θ|y). Compute the negative Hessian matrix H at

θ∗. If the density were Gaussian, then H− is the covariance matrix of π̃(θ|y).

Step 3: Reparametrize θ in terms of z via θ(z) = θ∗ + VΛ1/2z, where H−1 = VΛV⊺,

the eigendecomposition of H−1.

Step 4: Explore log π̃(θ|y) using the z-parameterization. The goal of this step is to

identify values in the θ-space with high probability mass. These points will be

used for doing numerical integration when approximating π(xi|y) and π(θi|y).
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If the dimension of θ is small, it is feasible to build a grid of θ-values where the

density π̃(θ|y) is high. However, the computational cost of the grid approach grows

exponentially with the size of θ. Another strategy, proposed in Rue and Martino

(2007), is to approach the integration problem as a design problem. The goal is

to identify a smaller number of integration points, using θ∗ and H as guide. This

approach is referred to as CCD strategy.

The integration points identified using the grid exploration of π̃(θ|y) can be used

to implement better algorithms to approximate π(θj|y). For instance, the integra-

tion points can be used to construct an interpolant, and then perform numerical

integration from this interpolant.

Martins et al. (2013a) proposed to approximate π(θ|y) by a multivariate normal

distribution by matching the mode and the curvature at the mode of π̃(θ|y), and

then obtaining π̃(θj|y) from it. The computation is straightforward since θ∗ and H

are already available. To correct for skewness, the joint multivariate normal distribu-

tion is approximated as a sum of mixture of normals with possibly different scaling

parameters. However, this approach becomes unstable when the number of hyper-

parameters is large. To remedy this, Martins et al. (2013a) proposed a method to

directly approximate π̃(θj|y) without using integration algorithms. They proposed

the following structure:

π̃(θj|y) =


N(0, σ2

j+), θj > 0

N(0, σ2
j−), θj ≤ 0

. (2.27)

The parameters σ2
j+ and σ2

j− are estimated using the result that if θ is a multivariate

Gaussian, then the marginal of θi can be viewed as a function of θi and θ−i evaluated

at the conditional mean E(θ−i|θi). Hence, for each θj, the conditional mean E(θ−i|θi)

will be computed, which depends only on θ∗ and H−1, both already available.
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2.5.2.4 Approximating π(xi|y)

Finally, Equation (2.20) can be integrated numerically via

π̃(xi|y) =
K∑
k=1

π̃(xi|θk,y)π̃(θk|y)∆k, (2.28)

where {θk}k=1,...,K are the K integration points obtained from the grid exploration of

π̃(θ|y), and {∆k}k=1,...,K are the corresponding integration weights. A special case is

to evaluate Equation (2.28) at the mode of π̃(θ|y), which is referred to as empirical

Bayes strategy.

2.5.2.5 Linear combination of the latent field

It may be of interest to obtain posterior marginals of specific linear combinations of

the latent parameters x. Suppose that it is of interest to obtain v = Ax, where A is

a k × nx matrix, k is the number of linear combinations, and nx is the dimension of

x.

There are two approaches to obtain the posterior marginals of v. The first is

to create an enlarged latent field x̃ = (x,v), and then use INLA to fit the enlarged

model. If there are several linear combinations of interest, this can make the precision

matrix less sparse, hence making the computations costly. The second approach is to

perform post-processing on the results of the original model, which does not include

v in the latent field. The joint density π(v|θ,y) can be approximated as Gaussian

with mean and variance given by

E[v|θ,y] = AE[x|θ,y]

V[v|θ,y] = AV[x|θ,y]A⊺

where E[x|θ,y] and V[x|θ,y] are the mean and variance of the Gaussian approxi-

mation to π(x|θ,y) given in Equation (2.25). Afterwards, θ is integrated out from

π̃(v|θ,y) using the same numerical integration as Equation (2.28). This approach is

faster, but less accurate than the first approach.
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2.5.3 Modern INLA

The modern formulation of INLA provides faster computation and more accurate

inference (Van Niekerk et al., 2023). In the classical formulation, the latent field

consists of x =
{

{ηi}, α, {βk}, {f (j)(·)}
}

, i.e., the linear predictors ηi = g
(
E
[
yi|x,θ

])
are considered latent parameters. In the new specification, the latent parameters

exclude {ηi}. This implies that the dimension of the new latent field is significantly

smaller. Suppose we denote by χ =
{
α, {βk}, {f (j)(·)}

}
. The n linear predictors

η =
(
η1 η2 · · · ηn

)⊺

are linked to χ via η = Aχ, where A is a known sparse

matrix and, as before, χ ∼ N
(
0,Qχ(θ)−1

)
. Thus, the new specification still falls

under the class of latent Gaussian models.

This also implies some modifications in the implementation of the approximations

to the posterior marginals π(χj|y) and π(θj|y). In particular, Equation (2.18) is now

expressed as

π(χ,θ|y) ∝ π(θ)π(χ|θ)
n∏
i=1

π
(

yi|(Aχ)i,θ
)
,

where (Aχ)i refers to the ith row of Aχ.

Marginal posterior π(θj|y)

The marginal posterior π(θ|y) is still approximated via Equation (2.22), except

that we are now working with χ instead of x. As opposed to Equation (2.24), the

Gaussian approximation of π(χ|θ,y) is now expressed as:

π(χ|θ,y) ∝ π(χ|θ)π(y|χ,θ)

≈ exp
{

− 1
2χ

⊺Qχ(θ)χ
}

exp
{ n∑

i=1

(
bi(Aχ)i − 1

2ci(Aχ)2
i

)}
= exp

{
− 1

2χ
⊺
[
Qχ(θ) + A⊺DA

]
χ + b⊺Aχ

}
,

(2.29)

where D is a diagonal matrix whose elements are c1, . . . , cn, and that the elements of

b and c are determined similar to Section 2.5.2.1. Equation (2.29) is the canonical

form of a multivariate Gaussian so that we have

χ|θ,y ∼ N
(
µ∗(θ),

[
Qχ(θ) + A⊺DA

]−1
)
, (2.30)
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where µ∗(θ) is the mode of the Gaussian approximation, which depends on b and D.

The precision matrix Qχ(θ) + A⊺DA is sparse. It depends on the Markov properties

of the latent field χ through Qχ(θ), and the non-zero entries of A⊺A.

The conditional marginal posterior of χj are calculated from Equation (2.30).

Similar to the classical INLA framework, a search strategy is performed on π̃(θ|y)

to identify the integration points. Similar approaches in Section 2.5.2.3 are used to

obtain the marginal posteriors π̃(θj|y).

Marginal posterior π(χj|y)

A numerical integration is performed, similar to the classical INLA framework in

Section 2.5.2.4, to obtain the marginal posteriors of χj:

π̃(χi|y) =
K∑
k=1

π̃(χi|θk,y)π̃(θk|y)∆k,

where {θk}k=1,...,K are the K integration points obtained from the grid exploration

of π̃(θ|y) and {∆k}k=1,...,K are the corresponding integration weights.

Marginal posterior π(ηj|y)

In the classical INLA framework, the marginal posteriors π(ηj|y) are automati-

cally approximated since the {ηj} are part of the latent field. However, in the new

INLA framework, these need to be calculated in a different step.

The approximation is based on the fact that η = Aχ, i.e., η is a linear function

of χ, which is approximately Gaussian conditional on θ based on Equation (2.30).

This implies that we have

η|θ,y ≈ N
(

AE(χ|θ,y),AV(χ|θ,y)A⊺
)
, (2.31)

where the quantities E(χ|θ,y) and V(χ|θ,y) are available from Equation (2.30).

A bottleneck of the above approximation is that in order to obtain V(χ|θ,y), it

requires the inversion of Qχ(θ) + A⊺DA, which can be expensive to calculate and

store. Van Niekerk et al. (2023) proposed to store only the selected values in V(χ|θ,y)

which are needed to compute the marginal posteriors of ηj. They also proposed an

efficient approach to calculate the variance of the conditional marginal posterior of
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ηj, conditional on θ.

From Equation (2.31), it is straightforward to calculate the conditional marginal

posteriors π̃(ηj|θ,y), which are also Gaussian. Finally, the approximated marginal

posteriors of ηj are computed by integrating out the uncertainty in θ via numerical

integration, i.e.,

π̃(ηj|y) ≈=
K∑
k=1

π̃(ηj|θk,y)π̃(θk|y)∆k,

where {θk}k=1,...,K are the integration points, and {∆k}k=1,...,K are the corresponding

integration weights.

The posterior means of χ and η may be inaccurate because they are based on the

Gaussian approximation of π(χ|θ,y). A correction to the mean of χ|θ,y is currently

implemented using variational Bayes (Van Niekerk et al., 2023).

2.5.4 Iterated linearised INLA

Lindgren et al. (2024) extends the types of models that can be fitted with INLA, from

models with an additive linear predictor expression, as shown in Equation (2.17),

to models whose predictor expressions involve non-linear function of some latent

parameters.

In the original INLA methodology, η(x) =
(
η1(x) η2(x) · · · ηn(x)

)⊺

is ad-

ditive in the latent Gaussian components. However, suppose that the predictor ex-

pression is non-linear, denoted by η̃(x). Lindgren et al. (2024) proposed to linearize

η̃(x) via a 1st order Taylor series expansion around x0, i.e.,

η(x) = η̃(x0) + B(x − x0), (2.32)

where η(x) is the linearized expression and B is the matrix of derivatives. An im-

portant aspect of the algorithm is the determination of the linearization point, say,

x∗. An iterative approach is used to determine x∗, given in Algorithm 2.1.

All details concerning posterior non-linearity checks and the evaluation of the

accuracy of the approximation is discussed in Lindgren et al. (2024). This approach

is implemented in the inlabru library in R.
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Algorithm 2.1 Iterative method to determine x∗

Step 1: Initialize x = x0. Compute the linearized predictor η(x0).

Step 2: Obtain the posterior πx0(θ|y), where π(·) denotes the obtained posterior
using the linearized predictor.

Step 3: Let (θ1,x1) = (θ̂x0 , x̂0) be the initial candidate linearization point, where θ̂x0

is the mode of πx0(θ|y), while x̂0 is the mode of π(x|y, θ̂x0).

Step 4: Let xα = (1 −α)x1 +αx0, where α is such that ∥η(x1) − η̃(xα)∥ is minimized.

Step 5: Set x0 = xα and go back to Step 1. The iteration is terminated once
convergence is achieved at a given tolerance.

2.5.5 Posterior sampling with INLA

INLA generates posterior samples in two steps, similar to the nested approach via the

nested integrals to obtain the marginal posterior distributions (see Equations (2.20)

and (2.21)).

The first step is to sample hyperparameter values θ from the approximate poste-

rior, as shown in Equation (2.22) and discussed in Section 2.5.2.3. The approximate

posterior, which is obtained either via grid exploration or interpolation, gives a set of

plausible values or evaluation points for θ and their corresponding log-posterior value

or weights. The weights are first normalized across evaluation points, and then the

sampling is done randomly proportional to the weight. The hyperparameter samples

are viewed as samples from a weighted mixture approximation to the true posterior.

The next step is to sample the values of the latent parameters x from the ap-

proximate conditional posterior π̃(x|θ,y). This is straightforward to implement since

x is approximately Gaussian conditional on θ and y, as shown in Equation (2.25)

and Equation (2.30) for the classical INLA and modern INLA, respectively. The

posterior sampling strategy is efficient since the latent field is a GMRF, which yields

sparse precision matrices for the approximate distributions. Moreover, it uses sparse

Cholesky factorization, which works efficiently even for high-dimensional latent pa-

rameters, and it restricts numerical integration to a low-dimensional hyperparameter

space.
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2.6 SPDE Approach

Lindgren et al. (2011) proposed an efficient computational approach to estimate Gaus-

sian fields of the Matérn class. The approach is based on the fact that Matérn fields,

which have covariance function of the form

c(s1, s2) = σ2

2ν−1Γ(ν)
(
κ ∥s1 − s2∥

)ν
Kν

(
κ ∥s1 − s2∥

)
(2.33)

are the stationary solutions to the following linear fractional stochastic partial differ-

ential equation (SPDE) (Whittle, 1954):

(κ2 − ∆)α/2τx(s) = W(s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (2.34)

where ν > 0 defines the mean-square differentiability or smoothness of the field,

κ > 0 is a scaling parameter, σ2 is the marginal variance, and ∥·∥ is the Euclidean

distance in Rd. Kν(·) is the modified Bessel function of the second kind and of order

ν, (κ2 − ∆)α/2 is a pseudodifferential operator, W(s) is Gaussian white noise with

unit variance, and ∆ is the Laplace operator defined by ∆ =
∑d

i=1
∂2

∂x2
i

.

The smoothness parameter ν is usually fixed at some value since this is poorly

identified in many applications. The scaling parameter, κ, is related to the range

parameter ρ, which is the distance at which the correlation is around 0.1. The

empirically derived relationship is ρ ≈
√

8ν
κ

. The variance σ2 is given by

σ2 = Γ(ν)
Γ(ν + d/2)(4π)d/2κ2ντ 2 .

According to Whittle (1954), the random field is Markovian when α = ν + d/2 is

an integer. For instance, when d is even, we get Matérn models with ν ∈ N. When

ν = 1, we get the thin plate spline model. On the other hand, when d is odd, we

get Matérn models with ν ∈ 1
2N. This includes Gaussian fields with the exponential

covariance when ν = 1/2.
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2.6.1 Finite element representation of the SPDE

The solution to the SPDE in Equation (2.34) is approximated via a finite element

representation given by

x(s) =
K∑
k=1

ψk(s)wk, (2.35)

where {ψk}k=1,...,K are some basis functions which are chosen to be piecewise linear

functions, while {wk}k=1,...,K are Gaussian-distributed weights. Equation (2.35) is

defined on a triangulation in Rd. This method for solving the SPDE is referred to

as finite element method (FEM) (Ciarlet, 2002). The three corners of a triangle are

called the vertices. The observed locations are usually used as the initial vertices,

and then additional vertices are added given some constraints such as maximum edge

length and minimum interior angles. A special triangulation is the so-called Delaunay

triangulation which maximizes the minimum interior angles. The triangulation is

also referred to as the mesh, while the vertices are also referred to as the nodes.

In Equation (2.35), K is the number of mesh nodes, while the basis function ψk(s)

takes value equal to 1 at the node k and 0 at the other nodes. The weights {wk}

are interpreted as the values of the field at the mesh nodes, while the values at

the interior of the triangles are determined by linear interpolation. Thus, Equation

(2.35) provides a continuously-indexed but finite-dimensional solution to the SPDE.

The Gaussian weights {wk} characterize the full distribution of the solution.

2.6.2 Finite-dimensional solutions of the SPDE

The solution to the SPDE in Equation (2.34) via the basis function representation

in Equation (2.35) is obtained by satisfying the stochastic weak formulation of the

SPDE given by ∫
ϕj(s)(κ2 − ∆)α/2x(s)ds d=

∫
ϕj(s)dW(s), (2.36)

for suitable test functions
{
ϕj(s)

}
and where d= denotes ‘equal in distribution’. For

α = 1, the test functions are chosen as ϕk = (κ2 − ∆)1/2ψk, while for α = 2, the test

functions are ϕk = ψk. The solutions from the previously defined test functions are

referred to as the least squares and Galerkin solution, respectively.
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Substituting Equation (2.35) on Equation (2.36) and assuming that α = 1 or

α = 2 yields the following system of linear equations:

∫
ψj(s)(κ2 − ∆)

(∑
k

ψk(s)wk
)
ds d=

∫
ψj(s)dW(s). (2.37)

The right-hand side of Equation (2.37) has the following property:

∫
ψj(s)dW(s) ∼ N

(
0,
∫
ψj(s)ds

)
,

while the left-hand side of Equation (2.37) can be computed.

Suppose w =
(
w1 . . . , wK

)⊺

, and the matrices C, G, and K are defined as

follows:

Cij =
∫
ψi(s)ψj(s)ds

Gij =
∫

∇ψi(s),∇ψj(s)d(s)

(Kκ2)ij = κ2Cij +Gij.

When α = 2, and s ∈ R1 or s ∈ R2, Equation (2.37) becomes the (normal)

equation Kκ2w ∼ N
(
0,C

)
; which then implies that

w ∼ N
(
0,K−1

κ2 CK−1
κ2

)
.

Thus, the Galerkin solution for w has precision matrix Kκ2C−1Kκ2 .

An important result in Lindgren et al. (2011) is the following: Suppose s ∈ R1 or

s ∈ R2. The solution to the SPDE in Equation (2.34) is fully specified by the weights

w ∼ N
(
0,Q−1

α,κ2

)
, where the precision matrix Qα,κ2 depends on α and is a function

of κ2. The form of Qα,κ2 is as follows:

Q1,κ2 = Kκ2

Q2,κ2 = Kκ2C−1Kκ2

Qα,κ2 = Kκ2C−1Qα−2,κ2C−1Kκ2 , for α = 3, 4, . . .

(2.38)
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The above result holds only in R1 and R2. Also, the finite-dimensional representation

of the result holds only for α = 1, 2, 3, . . . ,, which corresponds to ν = 1
2 ,

3
2 ,

5
2 , . . . in

R1 and ν = 0, 1, 2, . . . in R2. The reason for restricting α ∈ N is that in such scenarios,

the power spectrum of the stationary solution of the SPDE in Equation (2.34) is the

reciprocal of a positive symmetric polynomial, which makes the random field Markov.

The matrices C and G are sparse since Cij and Gij are non-zero only when ψi and

ψj share common triangles. However, C−1 is not sparse, which makes Qα,κ2 dense.

To make the precision matrix sparse, C is replaced by the diagonal matrix C̃, where

C̃ii =
∫
ψi(s)ds. Due to the sparse structure of Qα,κ2 , the finite-dimensional solution

of the SPDE is a GMRF. The sparsity in Qα,κ2 provides great computational benefits.

The solution given in Equations (2.38) is only an approximation since these are

solved using a subset of test functions. Nonetheless, for a given triangulation, this ap-

proximation converges (weakly) to the full SPDE solutions. Other asymptotic results

of this approximate GMRF representation of the Matèrn field are in Lindgren et al.

(2011). Moreover, since the solution to the SPDE is a GMRF, then incorporating

the Matérn field as part of the latent parameters in the LGM in Equation (2.17) fits

in the INLA framework.

Important extensions of the classical SPDE approach, as discussed above, are

as follows: solutions of the SPDE on manifolds such as spheres, construction of

non-stationary locally isotropic Gaussian fields by allowing spatially-varying SPDE

parameters, a more complex version of the SPDE in Equation (2.34) in order to

construct oscillating fields, generalizing non-stationary SPDE to non-isotropic fields,

and to generalize the SPDE to non-separable space-time models.

2.7 Data fusion

This final section presents existing data fusion models, which are relevant for the

materials in Chapter 4. As seen in the motivating examples in Sections 1.2.1 and 1.2.2,

data used to conduct exposure assessment in an environmental health study usually

come from various sources. Most studies use data from a network of monitoring

stations. However, since the network is typically sparse due to high maintenance
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costs of the stations, it will be difficult to capture spatial heterogeneity of the true

exposure surface. In particular, for air pollution applications, networks are typically

located in urban areas where the level of pollution is typically high. This leads to

biases when fitting models to assess the impact of exposure on health as the exposure

surface will be over estimated (Lawson et al., 2016).

A solution to this problem is the use of additional sources of information which

provide more detailed spatial and temporal information. Two specific sources are

satellite images and simulated outcomes from numerical models. These two data

sources are also referred to as proxy data. Satellite images are remotely sensed data

and provide global coverage. Although both aforementioned data sources provide rich

spatial and temporal information, they are biased. Remotely sensed data, such as

satellite images, are subject to retrieval errors; while numerical models are sensitive

to model misspecification of the underlying process, the input data, model initializa-

tion, and the discretization of the continuous field. Combining data from monitoring

stations and proxy data is referred to as data fusion or data assimilation (Lawson

et al., 2016).

2.7.1 Bayesian melding

An approach to data fusion, called Bayesian melding, assumes that both the point-

referenced data and the proxy data have a common latent spatial process (Fuentes

and Raftery, 2005). Suppose that w(s) is the observed outcome from the station at

location s, x̃(B) is the outcome of the proxy data in grid cell B, and x(s) is the true

latent process, e.g., the true temperature field. The Bayesian melding model in a

purely spatial context is based on the following equations:

x(s) = µ(s) + ξ(s) (2.39)

w(s) = x(s) + e(s) (2.40)

x̃(s) = α0(s) + α1(s)x(s) + δ(s) (2.41)

x̃(B) = 1
|B|

∫
B

x̃(s)ds. (2.42)
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Equation (2.39) postulates that the latent spatial stochastic process is decomposed

into a mean process µ(s), which is typically a function of fixed covariates, and a

residual process ξ(s) which is spatially correlated. Equation (2.40) states that the

observed value at location s follows the classical error model, i.e., the observed value

is a sum of the true values x(s) and a random error term e(s), which is assumed as

e(s) iid∼ N
(
0, σ2

e

)
. Equation (2.41) postulates a conceptual point-referenced model for

the proxy data. The underlying point-level outcome x̃(s) is a linear function of x(s),

where α0(s) and α1(s) are additive and multiplicative biases, respectively, and δ(s)

is a random noise assumed as δ(s) iid∼ N
(
0, σ2

δ

)
. The model specification implies that

the proxy data are biased and more noisy compared to the observed values from the

stations. The biases α0(s) and α1(s) are assumed to vary in space. Moreover, both

are usually parametrized as fixed effects to avoid identifiability issues when estimating

x(s) (Lawson et al., 2016). Finally, equation (2.42) defines the observed value of x̃(B)

as a spatial average of x̃(s) over |B|, where |B| denotes the size of block B. The idea

of assuming a common latent spatial process for the observed data at different spatial

scales was also used in Wikle and Berliner (2005) McMillan et al. (2010), and Sahu

et al. (2010).

2.7.2 Calibration technique

Another statistical approach for data fusion fits a regression model where the out-

comes of the numerical forecast model are used as predictors, while the observational

data are the response variable. This class of approaches is referred to as (statistical)

calibration technique (Lawson et al., 2016). For example, Chen et al. (2021) used

this approach to estimate chlorophyll-A concentration over eutrophic lakes, Lee et al.

(2017) to model air quality, and Berrocal et al. (2010b) to model ozone concentration.

One calibration technique model proposed in Berrocal et al. (2010b) specifies the

following calibration model:

w1(s) = α0(s) + α1(s)w2(Bs) + e(s), e(s) iid∼ N(0, σ2
e). (2.43)

Here, α0(s) and α1(s) are spatially-varying additive and multiplicative biases, respec-
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tively, while w2(Bs) is the value of the numerical forecast model at the grid B which

contains the point location s. This is also the same model proposed in Berrocal et al.

(2010a) and Berrocal et al. (2012). In particular, they specify a bivariate continu-

ous spatial process between α0(s) and α1(s) via a linear model of coregionalization

(Gelfand et al., 2004).

Obviously, there is a computational advantage with the regression calibration

approach, since it only uses the values w2(Bs) linked to the stations data w1(s) to

fit the model, and then uses the full data w2(B) for predictions. This reduces the

computational cost, especially if there are only few stations. However, a limitation of

the approach is that it assumes that the observed measurements w1(s) are the gold

standard, even though they are very likely to have instrumental errors. Also, since

w2(B) is used as a predictor, then it cannot contain missing values (Lawson et al.,

2016). However, remote-sensed data can be missing due to cloud cover and highly

reflective surfaces. In addition, the resolution of the predicted latent surface for the

quantity of interest depends on the resolution of w2(B). The statistical calibration

approach is also referred to as a downscaling approach since it allows point-level

predictions even if w2(B) represents an areal average.

2.7.3 Other approaches

A similar idea to the Bayesian melding model was proposed in Moraga et al. (2017).

Given a zero-mean process ξ(s) with a stationary covariance function, the model for

the data outcomes w1(s) and w2(B) is given by

w1(s)|ξ(s) ∼ N
(
µ(s) + ξ(s), σ2

e

)
w2(B) = 1

|B|

∫
B

(
µ(s) + ξ(s)

)
ds.

(2.44)

However, the model in Equation (2.44) does not account for the measurement

error in w2(B). The same model specification is used in Zhong and Moraga (2023).

Although it uses the same idea as the melding model in Equations (2.41) to (2.42),

where both w1(s) and w2(B) have a common latent process, it does not incorpo-

rate bias parameters such as α0(s) and α1(s). In a joint modelling framework, the
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data coming from w2(B) can dominate the parameter estimation since there are con-

siderably more outcomes from this data source compared to w1(s) (Lawson et al.,

2016). The calibration parameters in Equation (2.41) impose a restriction on this by

accounting for a higher measurement error from this data source.

Forlani et al. (2020) proposed another data fusion model, but instead of assuming a

single latent process for the observed outcomes, they assumed several latent processes,

which are shared across all the data sources. For instance, suppose w1(s), w2(s), and

w3(s) are three data sources with mean µ1(s), µ2(s), and µ3(s), respectively. Then

the proposed model is as follows:

µ1(s) = β1 + ξ1(s)

µ2(s) = β2 + λ2ξ1(s) + ξ2(s)

µ3(s) = β3 + λ3ξ1(s) + λ4ξ2(s) + ξ3(s)

(2.45)

The parameters β1, β2, and β3 are fixed effects while ξi(s), i = 1, 2, 3 are spatial

effects which are shared among the three data sources, and with λj, j = 2, 3, 4 as

unknown scaling parameters. This approach is also closely related to the so-called

coregionalization model (Schmidt and Gelfand, 2003). The melding model in Equa-

tions (2.39) to (2.42) assumes a single latent process which has a clear interpretation

as the true process, and that the different data sources are error-prone realizations

of the true process with varying levels of accuracy. However, the model in Equations

(2.45) deviates from this general principle.

One bottleneck with the melding model is that it requires considerable computa-

tional effort because of the change-of-support integral in Equation (2.42). A model

which tries to overcome this difficulty was proposed in Sahu et al. (2010). The model

is specified as follows:

x(s) = x̃(B) + ν(s)

w1(s) = x(s) + e(s)

w2(B) = α0 + α1x̃(B) + ψ(B),

(2.46)

where x̃(B) is considered as the true areal process and is defined on the same grid
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resolution as w2(B), ν(s) is a Gaussian error, and ψ(B) is a discrete spatial ef-

fect which is commonly estimated using a conditionally autoregressive model (Besag,

1974). McMillan et al. (2010) added further simplification by eliminating x(s) in

Equation (2.46). A limitation of both models is that they consider the underlying

true process as discrete and that they can only provide gridded predictions of the

true process. This approach is also referred to as upscaling since the point-referenced

data are coarsened to areal level (Lawson et al., 2016).
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Chapter 3

Data fusion with INLA-SPDE: an

initial exploration

This chapter proposes a framework for doing data fusion in a two-stage spatio-

temporal model. As discussed in Section 1.2, the first stage involves modelling a

continuously-indexed spatial process, such as temperature and air pollution concen-

tration; while the second stage fits the health model where the first-stage model

predictions are inputs in the model. Moreover, as explained in Section 1.3.1.2, there

are usually multiple data sources available to estimate the latent process of inter-

est. It is advantageous to combine the different data sources in order to improve the

predictions; a process which is referred to as data fusion (Lawson et al., 2016). Esti-

mating the first-stage latent field using only data from the stations may be inferior

to a model which considers, additionally, outcomes from proxy data, since these data

provide wider spatial coverage, although biased (Lawson et al., 2016).

The main goal of this chapter is to provide an initial exploration of a data fusion

model based on the Bayesian melding model (Section 2.7.1), and estimated using

INLA (Section 2.5.2) and the SPDE method (Section 2.6). The reason for using

the INLA-SPDE method is that both provide fast and accurate inference for spatio-

temporal models (Lindgren et al., 2011; Rue et al., 2009). For this chapter, I start

with constant calibration biases for the proxy data and investigate the performance

of the INLA-SPDE approach under this scenario using an extensive simulation study.
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I defer to Chapter 4 the discussion of a flexible model specification and a comparison

with benchmark approaches. Although this chapter only presents an initial explo-

ration of a data fusion model, this chapter also looks at the broader two-stage mod-

elling framework shown in Figure 1.6. The specific gap in the literature this chapter

addresses is the incorporation of a data fusion model into the approach proposed by

Cameletti et al. (2019) for linking spatially misaligned health and air pollution data

within a Bayesian framework. In this work, I employ a data augmentation strategy

with the INLA-SPDE approach.

As explained in Section 1.2, the main outcome of interest, which is disease count,

is measured and available in areas or blocks; while the first-stage latent process is

point-referenced. A naive approach to this point-to-area COSP is to ignore the biased

proxy data, and then use the simple average of the outcomes from the stations inside

a block, possibly with the use of distance-based or population-based weights (Bruno

et al., 2016). However, this approach does not work when there are blocks without

stations, or if the values exhibit strong spatial heterogeneity (Krall et al., 2015; Lee

et al., 2015). Another classical approach is to perform block kriging (see Section

2.2.5) in the first stage using the stations data. However, this require inversion of

large dense matrices, which can be computationally expensive especially for large

datasets.

In this chapter, the point-to-area COSP is done by computing spatial averages

of the first-stage (data fusion) model predictions over the blocks (see Equation (2.1)

of Chapter 2), and then applying standard statistical methods to regress the health

outcomes against the estimated block-level values (Bruno et al., 2016).

The issue of uncertainty propagation is not yet dealt with formally in this chapter.

In order to account for the uncertainty in the first-stage model, I used the posterior

sampling approach (Cameletti et al., 2019). Essentially, this requires sampling several

times from the estimated posterior distributions of the first-stage model. The spatial

averages are then computed for each sample, and are used as inputs in the second-

stage model. Thus, it requires fitting the second-stage model several times. The

final posterior estimates of the second-stage model parameters are then obtained by

Bayesian model averaging. The issue of uncertainty propagation is discussed more
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formally in Chapter 6.

This chapter is structured as follows. Section 3.1 discusses the proposed data

fusion model. The model assumptions and the estimation approach are discussed in

Sections 3.1.1 and 3.1.2, respectively. The discussion of the uncertainty propagation

approach is in Section 3.2.3. The extensive simulation study is presented in Section

3.3. Finally, I end this chapter with a summary of important results and conclusions

in Section 3.4.

3.1 Proposed data fusion model

3.1.1 Model assumptions

I extend the assumed latent process in Equation (1.1) in Chapter 1 in a spatio-

temporal context. The latent process of interest, say, true pollution field or climate

field, is given by

x(s, t) = β0 + β1z(s, t) + ξ(s, t)

ξ(s, t) = ςξ(s, t− 1) + ω(s, t), |ς| < 1, t = 2, ..., T.

This follows the spatio-temporal model proposed in Cameletti et al. (2013) for par-

ticulate matter concentration in the North-Italian region Piemonte. Here, x(s, t) is

the true outcome of the latent process at location s and time t, z(s, t) is a covariate,

β0 is the intercept of the model, and β1 is the unknown coefficient of z(s, t). The

spatio-temporal dependence in the model is induced by ξ(s, t), which evolves in time

as an autoregressive (AR) process of order 1, with |ς| < 1 as the AR parameter, and

ξ(s, 1) ∼ N
(

0, σ2
ω/(1 − ς2)

)
, which is the stationary distribution of ξ(s, t). The term

ω(s, t) is a temporally-independent Gaussian random field with mean 0 and Matèrn

covariance function, i.e.,

Cov
(
ω(si, t), ω(sj, u)

)
=


0 t ̸= u

Σi,j t = u

,
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with Σi,j = σ2
ω

2ν−1Γ(ν)
(
κ ∥si − sj∥

)ν
Kν

(
κ
(

∥si − sj∥
))

(see also Section 2.6). Here,

∥·∥ is the Euclidean distance in R2, si and sj are two spatial locations, σ2
ω is the

marginal variance, ν is a mean-squared differentiability parameter, and κ is a scaling

parameter. The interpretation of the spatio-temporal structure of the model is in

terms of σ2
ω and the range parameter ρ, which is the distance at which the correlation

is around 0.1. The empirically derived relationship between ρ and κ is ρ =
√

8ν
κ

.

More details are found in Section 2.6.

Following Equation (2.40) of the Bayesian melding model, the observed values at

nM stations is given by:

w(si, t) = x(si, t) + e(si, t), e(si, t)
iid∼ N

(
0, σ2

e

)
, i = 1, . . . , nM , (3.1)

where w(si, t) is the observed value at a station in location si at time t. This equa-

tion follows the classical error model in which the observed values are error-prone

realizations of the true values of the latent process, and where the error process is a

white noise, i.e., e(si, t)
iid∼ N

(
0, σ2

e

)
.

Here, I treat the proxy data as point-referenced at the centroids. This is a simpli-

fication of the Bayesian melding model, since Equation (2.41) is solely used to model

the proxy data, instead of using both Equations (2.41) and (2.42). This assumption

is reasonable when high-resolution proxy data are available; otherwise, performing

stochastic integrals over such rasters can be computationally prohibitive.

Suppose that x̃(gj, t) denotes the observed value of the proxy data at the grid

cell with centroid gj, j = 1, . . . , nG, and at time t. The assumed model for x̃(gj, t) is

given by:

x̃(gj, t) = α0 + α1x(gj, t) + δ(gj, t), δ(gj, t) ∼ N
(
0, σ2

δ

)
. (3.2)

This simplification avoids the integration of the conceptual point-referenced model

for the proxy data, given in Equation (2.42). In Equation (3.2), I assume a constant

additive and multiplicative bias, denoted by α0 and α1, respectively. The assump-

tion of a time-varying and spatially-structured additive bias, which provides more
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flexibility, is presented in Chapter 4. The proposed model is not a full Bayesian

melding approach, since both the proxy data and the stations data are considered

point-referenced. The (statistical) regression calibration method (see Section 2.7.2)

also eliminates the need to evaluate stochastic integrals, since it uses the proxy grid

cell linked to a station at point location si as a predictor (Berrocal et al., 2010b; Law-

son et al., 2016), or the estimated values of the proxy data obtained, say, via bilinear

interpolation (Lee et al., 2017).This is also a simplifying assumption in Forlani et al.

(2020). Even with the simplification, the proposed model follows the same principle

as the Bayesian melding model, i.e., both data sources are a function of the same

latent spatial process, and that one data source is more biased than the other.

3.1.2 Model estimation

Suppose that the data from the stations at time t is given by

w⊺
t =

(
w(s1, t) w(s2, t) . . . w(snM

, t)
)⊺

, t = 1, . . . , T.

Moreover, suppose that the proxy data at time t is given by

x̃⊺
t =

(
x̃(g1, t) x̃(g2, t) . . . x̃(gnG

, t)
)⊺

, t = 1, . . . , T.

Since both wt and x̃t are error-prone realizations of the latent process x(s, t),

I define the vector of the latent (unknown) values for both the stations and proxy

data at time t as xt =
(
xt,S xt,P

)⊺

, where xt,S and xt,P denote the vector of

true values at the stations and at the grid centroids of the proxy data at time t,

respectively. The vector of true exposures for all t = 1, . . . , T is then denoted by

x =
(
x⊺

1 x⊺
2 . . . x⊺

T

)⊺

. Similarly, I define ξ =
(
ξ⊺1 ξ⊺2 . . . ξ⊺T

)⊺

, where ξ⊺t =(
ξ⊺t,S ξ⊺t,P

)
, with ξt,S and ξt,P as the vector of spatio-temporal random effects at the

stations and at the grid centroids of the proxy data at time t, respectively. Finally,

ω =
(
ω⊺

1 ω⊺
2 . . . ω⊺

T

)⊺

is the vector of values of the random field ω(s, t), where

ω⊺
t =

(
ω⊺
t,S ω⊺

t,P

)
; and z =

(
z⊺

1 z⊺
2 . . . z⊺

T

)⊺

the vector of a single covariate,
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where z⊺
t =

(
z⊺
t,S z⊺

t,P

)
. This can easily be generalized to the case of more than one

covariate.

The proposed data fusion model is as follows:

wt = xt,S + et, et ∼ N
(
0, σ2

eInM

)
, t = 1, . . . , T (3.3)

x̃t = α01nG
+ α1xt,P + δt, δt ∼ N

(
0, σ2

δ InG

)
, (3.4)

xt = β01nM +nG
+ β1zt + ξt, (3.5)

ξt = ςξt−1 + ωt, ωt ∼ Matèrn field, t = 2, . . . , T (3.6)

where InM
and InG

are identity matrices of dimension nM × nM and nG × nG, re-

spectively, and 1nG
and 1nM +nG

are vectors of 1’s of dimension nG and nM + nG,

respectively.

As discussed in Section 3.1.1, ωt is a temporally-independent Gaussian vector

with mean zero and covariance matrix Σt, whose elements are computed using the

Matérn covariance function (see Equation (2.33)).

In the system of equations above, the latent vector xt,S is present in Equations

(3.3) and (3.5). Also, xt,P is present in Equations (3.4) and (3.5). In order to make

sure that the values of xt,S and xt,P are equivalent for the different equations when

fitting the joint model, xt,S in Equation (3.3) is assumed to be an (almost) identical

‘copy’ of xt,S in Equation (3.5). Similarly, xt,P in Equation (3.4) is assumed to be an

(almost) identical ‘copy’ of xt,P in Equation (3.5), with α1 as a scaling parameter. To

create these ‘copies’, the latent field xt is extended to χt =
(
x⊺
t x∗⊺

t

)⊺

, t = 1, . . . , T ,

where x∗
t =

(
x∗⊺
t,S x∗⊺

t,P

)⊺

is a copy of xt. The prior specification for the extended

latent field at time t, π
(
χt

)
, will ensure that x∗

t is an identical copy of xt. In

particular, x∗
t,S and x∗

t,P will be defined later in such a way that E
(
x∗
t,S

)
= xt,S and

E
(
x∗
t,P

)
= α1xt,P . This is the same approach in Martins et al. (2013a) and Ruiz-

Cárdenas et al. (2012), and is called a data augmentation approach. The copy trick

allows us to use a latent effect in multiple model components, appropriately scaled,

to propagate dependence and uncertainty consistently while avoiding duplication of

parameters.
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Since xt on the left-hand side of Equation (3.5) is unknown, xt is transposed on

the right-hand side of the equation. The remaining vector of zeroes in the left-hand

side are referred to as ‘pseudo-zeroes’. This gives the following re-expression of the

joint model:

wt = x∗
t,S + et, et ∼ N

(
0, σ2

eInM

)
, t = 1, . . . , T (3.7)

x̃t = α01nG
+ x∗

t,P + δt, δt ∼ N
(
0, σ2

δ InG

)
, (3.8)

0t = 9

xt,S

xt,P

+ β01nM +nG
+ β1zt + ξt, (3.9)

ξt = ςξt−1 + ωt, ωt ∼ N
(
0,Σt

)
, t = 2, . . . , T (3.10)

The model parameters are θ =
{
σ2
e , σ

2
δ , α0, α1, β0, β1, ς, σ

2
ω, κ
}

. The posterior

distribution of interest is π
(
χ, ξ,θ

∣∣w, x̃,0), given by

π
(
χ, ξ,θ

∣∣w, x̃,0) ∝ π
(

w
∣∣χ, ξ,θ)π(x̃∣∣χ, ξ,θ)π(0∣∣χ, ξ,θ)π(ξ∣∣θ)π(θ)π(χ).

The first two are straightforward since wt

∣∣χ, ξ,θ iid∼ N
(
x∗
t,S, σ

2
eInM

)
and x̃t

∣∣χ, ξ,θ iid∼

N
(
α01nG

+ x∗
t,P , σ

2
δ InG

)
. This implies that

π
(

w
∣∣χ, ξ,θ

)
=

T∏
t=1

π(wt

∣∣χ, ξ,θ) ∝ (σ2
e)9

nM T
2 exp

{
9

1
2σ2

e

T∑
t=1

(
wt − x∗

t,S

)⊺(
wt − x∗

t,S

)}
,

π
(
x̃
∣∣χ, ξ,θ

)
=

T∏
t=1

π(x̃t

∣∣χ, ξ,θ) ∝ (σ2
δ )9

nGT
2 exp

{
9

1
2σ2

δ

T∑
t=1

(
x̃t − α01nG

− x∗
t,P

)⊺(
x̃t − α01nG

− x∗
t,P

)}
.

The pseudo-zeroes follows 0t
∣∣χ, ξ,θ ∼ N

(
9xt+β01nM +nG

+β1zt+ξt,
1
τ0
InM +nG

)
,

where τ0 is a precision parameter and is fixed at a large value because of the absence of
measurement error in the pseudo-zeroes. Since π

(
0
∣∣χ, ξ,θ) =

∏T
t=1 π(0t

∣∣χt, ξt,θt),
then

π
(

0
∣∣χ, ξ,θ

)
∝
(

1
τ0

)9
(nM +nG)×T

2
exp

{
9

τ0

2

T∑
t=1

(
xt − β01nM +nG − β1zt − ξt

)⊺(
xt − β01nM +nG − β1zt − ξt

)}
.

The form of the distribution of ξ
∣∣θ uses the fact that ξt

∣∣ξt−1 ∼ N
(
ςξt−1,Σ

)
, t =

2, . . . , T , and that ξ1 ∼ N
(

0, 1
1−ς2Σ

)
. This means that π

(
ξ
∣∣θ) = π(ξ1

∣∣θ)
∏T

t=2 π(ξt
∣∣ξt−1,θ),
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so that

π
(
ξ
∣∣θ) ∝

∣∣∣ 1
1−ς2 Σ

∣∣∣9 1
2 exp

{
9

1
2ξ

⊺
1

(
1

1−ς2 Σ
)−1

ξ1

}
×

T∏
t=2

∣∣Σ∣∣9 1
2 exp

{
9

1
2

(
ξt − ςξt−1

)⊺
Σ

−1(
ξt − ςξt−1

)}
.

The distribution of the extended latent field χ is as follows:

π
(
χ
)

=
T∏
t=1

π(χt) =
T∏
t=1

π
(
x∗
t,S

∣∣xt,S)π(x∗
t,P

∣∣xt,P)π(xt).

Since x∗
t,S and x∗

t,P are independent copies of xt,S and xt,P , respectively, then both

are assumed to be Gaussian centered on xt,S and α1xt,P and with very high precision,

i.e., x∗
t,S

∣∣xt,S ∼ N

(
xt,M ,

1
τx∗

)
and x∗

t,P

∣∣xt,P ∼ N

(
α1xt,P ,

1
τx∗

)
, where τx∗ is fixed at

some large value. π
(
xt
)

is then assumed to be independent Gaussian centered at zero

but with fixed high value for variance (low precision), i.e., xt ∼ N

(
0,

1
τ x

)
, where

τx is a small value. Although the precision is very low, the pseudo-zeroes have very

high precision, and so the value of xt in Equation (3.9) is forced to be close to its

true value. This is necessary since we want to accurately estimate the latent field xt.

Finally, the components of θ are assumed independent, i.e., π(θ) =
∏H

i=1 π(θi),

where H is the number of parameters in θ.

The joint model specified in Equations (3.7) – (3.10) is a correct representation

of Equations (3.3) – (3.6) which does not violate latent Gaussianity; hence, allowing

the use of INLA for inference.

3.1.2.1 SPDE representation

The Matérn field in the data fusion model is estimated using the SPDE approach

(see Section 2.6). The discretization at an arbitrary location s at time t is given by

ωD(s, t) =
K∑
k=1

ψk(s)wkt, (3.11)

where
{
ψk
}

∀k are basis functions, and
{
wkt
}

∀k,t are Gaussian-distributed weights. In

Equation (3.11), the basis functions are not indexed by t since the same mesh is used

for all time points. The weights
{
wkt
}

∀k,t, on the other hand, vary for different time

points; hence, the weights are indexed by t. Equation 3.11 provides a continuously-
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indexed but finite-dimensional approximation to the Matérn field ω(s, t), as discussed

in Section 2.6.

Suppose that ωD
t denotes the vector of values at the mesh nodes at time t. It

follows that ωD
t ∼ N

(
0,Q

−1

s

)
, where Qs is a sparse precision matrix of dimension

K ×K. Equation (3.6), now defined on the nodes of the mesh, is then expressed as

ξDt = ςξDt−1 + ωD
t , ωD

t ∼ N
(

0,Q
−1

s

)
, t = 2, . . . , T,

ξD1 ∼ N
(

0, 1
1−ς2 Q

−1

s

) (3.12)

where ξDt is a K-dimensional vector of spatio-temporal random effects at the K

mesh nodes at time t. The joint distribution of the (T × K)-dimensional vector

ξD =
(
ξD⊺

1 . . . ξD⊺
T

)⊺

is ξD ∼ N
(
0,
(
Q

−1

s ⊗ Q
−1

T

))
, where QT is the precision

matrix for the autoregressive process of order 1, the form of which is given in Rue

and Held (2005).

Since ξ and ω are estimated in a mesh whose nodes may be different from the

spatial locations of the data, there needs to be a linear mapping from the mesh nodes

to the locations of the data. This is done by incorporating a projection or mapping

matrix, say B, which is a sparse (nM + nG) ×K matrix, so that

xt = β01nG+nM
+ β1zt + BξDt , t = 1, . . . , T, or

x(si, t) = β0 + β1z(si, t) +
K∑
k=1

bikξtk,

where ξtk is the kth element of the vector ξDt and bik is the (i, k)th element of the

mapping matrix B.

The data fusion model, in its SPDE representation, is then given by

wt = x∗
t,S + et, et ∼ N

(
0, σ2

eInM

)
, t = 1, . . . , T

x̃t = α01nG
+ x∗

t,P + δt, δt ∼ N
(

0, σ2
δ InG

)
0t = 9

xt,S

xt,P

+ β01nM +nG
+ β1zt + BξDt

ξDt = ςξDt−1 + ωD
t , ωD

t ∼ N
(
0,Q

−1

s

)
, t = 2, . . . , T

(3.13)
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The joint model specified in Equations (3.13) is a latent Gaussian model and,

therefore, can be fitted using the INLA method. The latent parameters are
{
β0, β1, ξ

D,ωD
}

and the SPDE weights
{
wkt
}

∀k,t. The hyperparameters are
{
σ2
e , σ

2
δ , σ

2
ω, ρ, ς

}
.

3.2 Application in spatial epidemiology

The models and estimation strategies discussed in Sections 3.1.1 and 3.1.2 are con-

sidered the initial step in a two-stage modeling framework (see Figure 1.6). There

are two main model structures: one for the environmental process of interest, such

as pollution concentration, climate conditions, etc., which is referred to as the first-

stage model, and where the data fusion model presented in Section 3.1 is relevant;

and another model to link the predictions from the first-stage model and observed

health outcomes, which is referred to as the second-stage model.

3.2.1 Second-stage model

The second-stage model specifies the model for the health outcomes as the response

variable and the spatial average of x(s, t) in area Bi at time t, denoted by x(Bi, t),

as input to the model. I assume that the (true) block-level value of x(·, t) at block

Bi at time t, denoted by x(Bi, t), is a spatial average over Bi, i.e.,

x(Bi, t) = 1
|Bi|

∫
Bi

x(s, t)ds. (3.14)

Equation (3.14) is a special case of Equation (2.1), where all points s in Bi are

equally weighted. The observed count at a block Bi at time t, denoted by y(Bi, t), is

assumed to be a Poisson outcome with mean E
[
y(Bi, t)

]
= µy(Bi, t), i.e.,

y(Bi, t) ∼ Poisson
(
µy(Bi, t)

)
, µy(Bi, t) = E(Bi, t) × λ(Bi, t), (3.15)

where E(Bi, t) is the expected number of cases in area Bi at time t (Shaddick et al.,

2023; Waller and Carlin, 2010; Waller and Gotway, 2004). λ(Bi, t) is the disease risk
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modelled as

log
(
λ(Bi, t)

)
= γ0 + γ1x(Bi, t) + φit,

where γ0 is the intercept, γ1 is the coefficient of the block-level exposure x(Bi, t), and

φit is a spatio-temporal random effect for block Bi and time t. The spatio-temporal

random effect accounts for extra variation in the respnse variable that cannot be

explained solely by the covariates, and accounts for unmeasured factors that vary

across space and/or time. A conditional independence assumption (see Section 2.4.1)

given the effects is assumed for the Poisson outcome, i.e.,

Y (Bi, t)
∣∣γ0, γ1, φit

ind∼ Poisson
(
µy(Bi, t) = E(Bi, t) × λ(Bi, t)

)
. (3.16)

The spatio-temporal random effect term can take several forms, following Knorr-Held

(2000) and Blangiardo and Cameletti (2015). A general form is given by

log
(
λ(Bi, t)

)
= γ0 + γ1x(Bi, t) + ϕi + ψi + ζt + νt + υit, (3.17)

where ϕi is an iid spatial random effect, i.e., ϕi
iid∼ N

(
0, σ2

ϕ

)
, ψi is a structured spatial

random effect such as the conditional autoregressive process (Besag et al., 1991)

discussed in Section 2.3, ζt is an iid temporal random effect, i.e, ζt
iid∼ N

(
0, σ2

ζ

)
, νt

is a structured temporal random effect such as the random walk model, and υit is

a spatio-temporal interaction effect. For the interaction effect, Knorr-Held (2000)

proposed four types, depending on which of the two spatial and time effects, either

the structured or the unstructured, interact. These different ways to specify the

spatio-temporal structure of the model do not violate latent Gaussianity, and hence

all posterior marginals of the model parameters can be estimated using the INLA

method (Blangiardo and Cameletti, 2015).

Here, the latent parameters are
{
γ0, γ1,φ

}
, where φ is the vector of all the

spatial effects, temporal effects, and their interaction. The hyperparameters are all

the model constants used to parameterize the components of φ, say θφ. For instance,

if a random walk model of order 1 is used for the temporal effect, then the variance
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parameter for the random walk process is included in the hyperparameter vector.

The posterior distribution of interest is

π
(
γ0, γ1,φ,θφ

∣∣y) ∝ π
(

y
∣∣γ0,γ1,φ,θφ

)
π
(
φ
∣∣θφ)π(γ0, γ1,θφ

)
,

where y =
{

y(Bi, t)
}

∀i,t. π
(

y
∣∣γ0, γ1,φ,θφ

)
has a simple form since the elements of y

are independent conditional on all model unknowns. The form of π
(
φ
∣∣θφ) depends

on the model specified for the elements of φ and has a straightforward structure

(Blangiardo and Cameletti, 2015). Lastly, π
(
γ0, γ1,θφ

)
are assumed to be a product

of the individual priors.

3.2.2 Computing block-level estimates

I explore two methods to compute the spatial averages introduced in Cameletti et al.

(2019). The first method considers all the prediction grid cells which overlap with

block Bi. Suppose that x̂
(
s∗
j , t
)

denotes the posterior mean of x
(
s∗
j , t
)
, and h

(
s∗
j , Bi

)
is the proportion of the area of block Bi which overlaps with the grid cell with centroid

s∗
j . The first method is computed as follows:

Method 1: x̂
(
Bi, t

)
=
∑
∀j

x̂
(
s∗
j , t
)
h
(
s∗
j , Bi

)
. (3.18)

The first method computes the value of x̂
(
Bi, t

)
as a weighted mean of the predicted

values in the grid cells that overlap with the block Bi, where the weights are the

proportion of the block Bi that overlap with the grid cells. On the other hand, the

second method uses only the grid cells whose centroids are inside block Bi. The

computed value of x̂
(
Bi, t

)
using the second method is then a simple mean, i.e.,

Method 2: x̂
(
Bi, t

)
= 1

#(s∗
j ∈ Bi)

∑
sj∈Bi

x̂
(
s∗
j , t
)
, (3.19)

where #(s∗
j ∈ Bi) is the number of grid cells whose centroids are inside block Bi.

In the simulation study performed in Cameletti et al. (2019), the results show

that the choice of either Method 1 or Method 2 does not have a substantial effect on
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the risk parameter γ1 in terms of the bias and RMSE. However, this would depend

on the amount of local spatial variability. Method 1 averages across more points, so

this method can give more stable estimates if there is high spatial variability within

and between areas.

3.2.3 Uncertainty propagation

One approach to propagate uncertainty from the first-stage to the second-stage model

is to sample several times from the estimated posterior predictive distribution of the

latent field, π̂
(
x(s∗

j , t)
∣∣w, x̃), ∀s∗

j in the prediction grid and ∀t, and then compute the

spatial averages for each sample using either Equation (3.18) or (3.19). The spatial

averages are then used as an input in the second-stage model, which is fit multiple

times. The final parameter estimates of the second-stage model are then computed

using the combined results from all samples, via model averaging (Blangiardo et al.,

2016; Cameletti et al., 2019; Lee et al., 2017; Liu et al., 2017). Algorithm 3.1 sum-

marizes the steps to propagate uncertainty from the first-stage to the second-stage

model.

Algorithm 3.1 Uncertainty propagation approach

Repeat the following J times:

Step 1: Simulate from the posterior predictive distribution of the latent field,
π̂
(
x(s∗

j , t)
∣∣w, x̃), ∀s∗

j in the prediction grid and ∀t.

Step 2: Compute block-level exposures, x̂(Bi, t), ∀Bi in the study region and ∀t, using
the two methods in Equations (3.18) and (3.19), and using the obtained
samples in Step 1.

Step 3: Fit the second-stage model using INLA as described in Section 3.2.1, using
the computed block-level values in Step 2 as input.

Step 4: Store all posterior results from Step 3.

After completing all J cycles, all samples from step 4 in Algorithm 3.1 are com-

bined or pooled together to approximate the posterior distribution of the second-stage

model parameters, i.e., performing Bayesian model averaging. As an example, for the
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parameter γ1, the final posterior marginal is computed as

π̂
(
γ1
∣∣w, x̃) = 1

J

J∑
j=1

π̂
(
γ1
∣∣w, x̃,x∗

j

)
, (3.20)

where x∗
j is the jth sample from the estimated posterior π̂

(
x(s∗

j , t)
∣∣w, x̃) (see Step 1

of Algorithm 3.1). Equation (3.20) is an approximation to

π
(
γ1
∣∣w, x̃) =

∫
π
(
γ1
∣∣w, x̃,x)π(x∣∣w, x̃)dx, (3.21)

which integrates out the uncertainty in the first-stage posterior distribution π
(
x
∣∣w, x̃).

3.3 Simulation Study

The performance of the proposed two-stage method is investigated using a simulation

study. The study region used is the Belo Horizonte region in Brazil, which is available

in the spdep package in R (Bivand and Piras, 2015), and is the same study region

used in Cameletti et al. (2019) on which the extensions done in this work are based.

This study region is used since it has few areas (98 of them), which makes it more

computationally manageable. Figure 3.1, which is a simulated spatio-temporal data,

shows the study region map.

3.3.1 Simulating from the first-stage model

For the Matèrn covariance function parameters, the spatial variance σ2
ω is set to

1.5, while the range parameter ρ is 1.89, which corresponds to around 46% of the

maximum distance in the 100 × 100 simulation grid. The autoregressive parameter

ς is set to 0.7. The single covariate z(s, t) was generated from N(µ = 0, σ = 1). The

fixed effects are β0 = 0 and β1 = 2. The simulated values of x(Bi, t), as shown in

Equation (3.14), is computed as follows:

x(Bi, t) = 1
|Bi|

∫
Bi

x(s, t)ds ≈ 1
#(s ∈ Bi)

∑
∀s∈Bi

x(s, t).
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Figure 3.1: Sample data for a spatio-temporal analysis: count data (top row), stations data (middle row), proxy
data (bottom)

3.3.2 Simulating from the second-stage model

I assume a simple form for the log risks, as follows:

log
(
λ(Bi, t)

)
= γ0 + γ1x(Bi, t) + ϕi + νt, (3.22)

75



3. DATA FUSION WITH INLA-SPDE

where ϕi is an iid random effect in space and νt follows a random walk model of order

1 in time, i.e., ϕi
iid∼ N

(
0, σ2

ϕ

)
and νt|νt−1 ∼ N

(
νt−1, σ

2
ν

)
. Here, I assume that φit is

equal to the sum of an unstructured spatial effect and a structured temporal effect.

The latent parameters are
{
γ0, γ1,ϕ,ν

}
, while the hyperparameters are

{
σ2
ϕ, σ

2
ν

}
.

The fixed effects are γ0 = −3 and exp(γ1) = 1.2. The assumed value of γ1 implies

an expected increase of 20% in the relative risk for a one unit increase in x(Bi, t).

The assumed values of the variance parameters of the spatial effect and the temporal

effect are σ2
ϕ = σ2

ν = 0.02. The expected number of cases E(Bi, t) are generated from

a uniform distribution, and are made to be proportional to the size of the block, so

that blocks with bigger surface areas have higher expected number of cases.

3.3.3 Simulation of the stations and proxy data

The stations are simulated by generating a random sample of points from the simula-

tion grid. A non-sparse network was considered and investigated in Cameletti et al.

(2019) - either getting 2%, 10%, or 30% of the points from the simulation grid inside

each block. Their simulation results showed that block predictions are better in terms

of RMSE and correlation with true block-level exposure values when there are more

stations. In this simulation study, I consider two scenarios for the stations data: the

first scenario is a non-sparse network, while the second scenario is a sparse network,

i.e., there are few stations and several areas or blocks without stations inside, and is

carefully chosen in such a way that it resembles real life sparse data. Figure 3.2 shows

a simulated non-sparse network (left) and a sparse network (right) of stations. The

observed values w(si, t), i = 1, . . . , nM follow the classical error model, with the error

term assumed as e(si, t)
iid∼ N

(
0, σ2

e = 0.1
)
. For the proxy data, the bias parameters

are α0 = −1, α1 = 1.5, and σ2
δ = 1.

3.3.4 Prediction grid

The effect of the resolution of the prediction grid on the block-level predictions using

Equations (3.18) and (3.19) has been investigated in Cameletti et al. (2019). Their

simulation results have shown that with a finer prediction grid, the block-level expo-

sure predictions are also more accurate. Hence, in the simulation study in this paper,
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Figure 3.2: Non-sparse network of stations (left) and a sparse network of stations (right)

a prediction grid of 100 × 100 is used for all scenarios. This is also the same grid

resolution used to simulate the true field x(s, t).

3.3.5 Simulation scenarios

There are three simulation settings considered in the study:

1. The sparsity of the stations data: sparse or non-sparse. This is illustrated in

Figure 3.2.

2. Length of time: T = 3, T = 6, or T = 12. Since this simulation study is a

spatio-temporal extension of that in Cameletti et al. (2019), it is important to

investigate the effect of the length of time in terms of the model estimates and

predictions.

3. Prior specification: use of non-informative priors or (weakly) informative priors.

Since the sensitivity of the posterior estimates to the priors is an important

component of Bayesian analysis, the effect of prior specification is therefore

investigated in this simulation study. Only those parameters which are usually

difficult to estimate are given (weakly) informative priors - these include the

parameters of the Matérn field σ2
ω, ρ, and ς; the variance parameters σ2

ν , σ
2
ϕ, σ

2
e ,

and σ2
δ ; and α1, which is the scaling parameter of xt,P .
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There are a total of 12 simulation scenarios. For each scenario, 500 independent

data replicates are generated in order to evaluate the performance of the proposed

method. In fitting the second-stage model, the number of simulations from the pos-

terior predictive distribution of the latent field x(s, t) is J = 100 (see Algorithm 3.1).

For each estimated posterior marginal distribution, 200 random values were simulated

to compute posterior quantities of interest, which include the posterior mean, poste-

rior median, and 95% credible intervals. Table 3.1 shows all the simulation scenarios

and how they are labelled in the figures in the succeeding sections.

Sparsity Priors specification Length of time
3 6 12

No Informative A E I
Non-informative B F J

Yes Informative C G K
Non-informative D H L

Table 3.1: Simulation scenarios in the simulation study

Table 3.2 shows the priors for the first-stage model parameters for the two cases.

Only non-informative priors are used for the fixed effects β0, β1, and α0. The non-

informative priors of the Matèrn parameters are defined in terms of a reparameter-

ization of the parameters of the SPDE in Equation (2.34); a detailed discussion of

which is in Lindgren and Rue (2015). The (weakly) informative priors for ρ and

σ2
ω are the so-called penalized-complexity (PC) priors (Fuglstad et al., 2019; Simp-

son et al., 2017). The PC prior penalizes complexity or additional flexibility in the

model, i.e., the prior tends to prefer the simpler base model. It works on the principle

that a model further away from the base model should be more strongly penalized.

The PC prior is defined using probability statements on the model parameters in the

appropriate scale. For the Matèrn parameters, the PC prior shrinks the model to

the base model with infinite range and zero marginal variance. The PC priors for ρ

and σ2
ω, shown in Table 3.2, are a joint specification, where σω,0 and ρ0 are the upper

and lower limit for σω and ρ, respectively, and α is the tail probability. In fitting the

models in the simulation study, σω,0 and ρ0 are set as equal to the true value, and

α = 0.5.

There are three precision parameters in the first-stage model that are fixed at an

appropriate level. The first one is the precision parameter for the pseudo-zeroes, τ0,
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Parameter Informative Prior Non-informative Prior

β0 - N(0, ∞)

β1 - N(0, ∞)

α0 - N(0, ∞)

α1 N(1.5, 1) N(0, 1000)

σ2
e Inv Gamma(100, 10) Inv Gamma(1, 5e−5)

σ2
δ Inv Gamma(10, 10) Inv Gamma(1, 5e−5)

ρ PC(ρ0, α)* see Lindgren and Rue (2015)

σ2
ω PC(σω,0, α)* see Lindgren and Rue (2015)

ς log
(

1 + ς

1 − ς

)
∼ N(0.7, 0.052) log

(
1 + ς

1 − ς

)
∼ N(0, 0.152)

* These are called penalized-complexity priors, which are weakly informa-
tive priors (Fuglstad et al., 2019; Simpson et al., 2017).

Table 3.2: Priors specification for first-stage model parameters

which is fixed at a large value. The second one is the precision parameter, τx, for

the prior of the latent field xt, which is fixed at a very small value. Finally, for the

conditional distribution of the copies x∗
t,S and x∗

t,P , the precision parameter τx∗ is

also fixed at a large value, so that both mimic xt,S and α1xt,P , respectively.

Parameter Informative Prior Non-informative Prior

γ0 - N(0, ∞)

γ1 - N(0, 1000)

σ2
ϕ PC(σϕ,0, α)* Inv Gamma(1, 5e−5)

σ2
ν PC(σν,0, α)* Inv Gamma(1, 5e−5)

* These are called penalized-complexity priors, which are
weakly informative priors (Fuglstad et al., 2019; Simpson et al.,
2017).

Table 3.3: Priors specification for second-stage model parameters

Table 3.3 shows the priors for the second-stage model parameters for the two

cases. The parameters γ0 and γ1 are given only non-informative priors. The variance

parameters σ2
ϕ and σ2

ν are given the PC priors for the case of (weakly) informative

priors. Here, I also used the true values for σϕ,0 and σν,0, and α = 0.5.
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3.3.6 Model evaluation

The performance of the method is evaluated by looking at the bias and root mean

square error (RMSE) of the parameter estimates. There is a slight difference in the

notation for the formulas for calculating the model performance metrics between the

first-stage and second-stage model parameters. For a first-stage model parameter,

say θ, θ̂ik denotes the kth sampled value from the estimated posterior distribution

of θ in the ith simulated data, i = 1, . . . , nsim and k = 1, . . . , K. For a second-

stage model parameter θ, θ̂ijk denotes the kth sampled value from the estimated

posterior distribution of θ using the block-level estimates x̂(B, t) computed using

the jth simulated values from the marginal posterior distribution of the latent field

x(s, t), j = 1, . . . , J , k = 1, . . . , K, i = 1, . . . , nsim. In the simulation study, nsim =

500, J = 100 and K = 200.

1. Bias - The bias is computed as

bias = 1
nsim

nsim∑
i=1

(
1
K

K∑
k=1

θ̂ik − θ

)
or bias = 1

nsim

nsim∑
i=1

(
1
JK

J∑
j=1

K∑
k=1

θ̂ijk − θ

)

for a first-stage and second-stage model parameter, respectively.

2. Root mean square error (RMSE) - The RMSE is computed as

RMSE = 1
nsim

nsim∑
i=1

√√√√ 1
K

K∑
k=1

(θ̂ik − θ)2 or

RMSE = 1
nsim

nsim∑
i=1

√√√√ 1
JK

J∑
j=1

K∑
k=1

(θ̂ijk − θ)2

for a first-stage and second-stage model parameter, respectively.

The same model evaluation metrics are used for the block-level exposure estimates.

It should be noted that the true values of the block-level exposures vary for the

different data replicates.
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3.3.7 Simulation results

This section presents the results of the simulation study. Section 3.3.7.1 presents

the results for the first-stage model parameters, Section 3.3.7.2 for the block-level

estimates of the first-stage latent field, and Section 3.3.7.3 for the second-stage model

parameters.

3.3.7.1 First-stage model parameters

Figures 3.3 and 3.4 show plots of the biases and RMSEs for the additive and mul-

tiplicative bias in the proxy data, α0 and α1, respectively. These parameters are

important since both account for the biases or systematic errors in the proxy data.

The obtained estimates of these bias parameters is not only used to recover the true

latent process x(s, t), but also to calibrate or de-noise the proxy data. The results

show that the biases are generally close to zero for all scenarios. However, the RM-

SEs are higher when the stations data is sparse (scenarios C, D, G, H, K, L); but

the values are decreasing with more time points. The proposed method is able to

correctly estimate α1, which is usually difficult to estimate, since it is a scaling pa-

rameter of the latent field x(s, t). There is no difference in the bias and the RMSE

for α1 between the use of non-informative prior or (weakly) informative priors.

Figure 3.3: Plot of bias (purple) and RMSE (yellow) for α0

Figures 3.5 and 3.6 show the biases and RMSEs for the measurement error vari-

ance of the stations and proxy data, σ2
e and σ2

δ , respectively. Both parameters are

important since they describe the amount of random noise or the precision of the
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Figure 3.4: Plot of bias (purple) and RMSE (yellow) for α1

two data sources. Accurate estimates of these parameters also imply good estimates

for the latent field x(s, t). For σ2
e , the biases are close to zero for all scenarios, but

the RMSEs are generally higher when the stations data is sparse and when non-

informative priors are used (scenarios D, H, L). This is expected since with few data

from the stations, there is also little information at hand to do the estimation. But for

as long as informative priors are used or there are several time points, the RMSEs are

generally lower, even if the data on the stations is sparse. For σ2
δ , the biases are also

close to zero for all scenarios. The RMSEs are also generally small, and is decreasing

with more time points. The sparsity in the stations data and the specification of

priors does not seem to affect the bias and the RMSE for σ2
δ .

Figure 3.5: Plot of bias (purple) and RMSE (yellow) for σ2
e

Figures 3.7a and 3.7b show the absolute bias and RMSEs for the Matèrn marginal

variance σ2
ω. The biases and RMSEs are clearly smaller when (weakly) informative
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Figure 3.6: Plot of bias (purple) and RMSE (yellow) for σ2
δ

priors are used, which is the expected result since the Matèrn parameters are typically

difficult to estimate. Even if the stations data is sparse, the biases and RMSEs are still

small as long as informative priors are used. This is expected since with few stations,

we would rely on informative priors to correctly estimate the Matèrn parameters.

When non-informative priors are used and there are very few stations, the bias and

RMSEs are expected to be high.

(a) Bias (b) RMSE

Figure 3.7: Plot of bias and RMSE for the Matèrn marginal variance σ2
ω

Figures 3.8a and 3.8b show the absolute bias and RMSE for the Matèrn range

parameter ρ. The patterns here are similar to what Figures 3.7a and 3.7b show.

When the stations data is sparse and the priors are non-informative, the (absolute)

bias and RMSE are expected to be high.

Figures 3.9a and 3.9b show the absolute bias and RMSE for the temporal pa-

rameter ς. For this parameter, the biases and RMSEs are generally close to zero for

all scenarios. The RMSEs are relatively higher when there are fewer time points.

This is expected since ς parametrizes the temporal evolution of the spatial field, so
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(a) Bias (b) RMSE

Figure 3.8: Plot of bias and RMSE for the Matèrn range parameter ρ

that more time points means more information available for estimation. Even with

non-informative priors, for as long as there are relatively more time points, the ς

parameter is relatively well estimated.

(a) Bias (b) RMSE

Figure 3.9: Plot of bias and RMSE for the temporal autoregressive parameter ς

Lastly, shown in Figures 3.10 and 3.11 are the biases and RMSEs for β0 and β1.

For both parameters, the biases are close to zero for all scenarios. However, when

the data on the stations is sparse (scenarios C, D, G, H, K, L), the RMSE of β1 is

relatively larger. The parameter β1 is the coefficient of the covariate of the latent

field x(s, t). Although this information is also available for the high-resolution proxy

data, it is noisier and less correlated with the true values of the latent field. Hence,

this could be the reason for the difficulty in estimating it correctly when the stations

data is sparse. For more time points, the RMSEs for both β0 and β1 are generally

smaller, since more time points means more information available for estimation.
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Figure 3.10: Plot of bias (purple) and RMSE (yellow) for β0

Figure 3.11: Plot of bias (purple) and RMSE (yellow) for β1

3.3.7.2 Block-level estimates

Figure 3.12 shows the average of the correlations between the block-level estimates

x̂(Bi, t) and the corresponding true values for all scenarios. Each point in the plot

corresponds to a block Bi in the study region. Since there are T time points, the

values shown in the plot are the average of the correlations from the T time points,

which are further averaged from all 500 replicates. All the (average) correlations

range from around 0.97 to some value close to 1.0, but using Method 2 for computing

spatial averages generally gave higher correlations than Method 1 for all scenarios.

Also, the correlations are generally higher when there are more time points, which is

true for both methods.

Figures 3.13a and 3.13b show the biases and RMSEs, respectively, in x̂(Bi, t) for

all scenarios. Similar to Figure 3.12, each point in the plot corresponds to a block
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Figure 3.12: Plot of correlations of true and estimated bock-level values x(Bi, t) for all scenarios

Bi. I first compute the bias and RMSE for each block at a given time point. The

values shown in Figures 3.13a and 3.13b are then the average of the values for all

time points T . The biases are generally close to zero; but the spread in the biases

are wider for Method 1 than Method 2. Also, when the stations data is sparse and

the priors are non-informative, the biases are generally larger, especially for scenarios

with fewer time points. This pattern observed for the biases is also true for the

RMSEs. There are a couple of areas with very high RMSEs when using Method 1,

and this is consistent for all scenarios. The RMSEs from using Method 1 are generally

higher compared to Method 2 for all scenarios.

(a) Bias (b) RMSE

Figure 3.13: Plot of bias and RMSE for bock-level estimates x̂(Bi, t) for all scenarios

3.3.7.3 Second-stage model parameters

The main parameter of interest is γ1 since it quantifies the relationship between the

first-stage latent process x(s, t) and the health outcome. Figures 3.14a and 3.14b show

the biases and the RMSEs, respectively, for γ1 for all scenarios. There is no striking
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difference in the biases and RMSEs between the two methods for computing x̂
(
Bi, t

)
.

Moreover, the results show that the bias in γ1 is close to zero for all scenarios. The

RMSE tends to be high for fewer time points, but it becomes smaller for more time

points. This is expected since with more time points, more information is available

to estimate the parameter correctly. Moreover, the sparsity of the stations data does

not affect the quality of estimates for γ1. This is also expected since, as shown in

Figures 3.12 and 3.13, the obtained block-level estimates x̂(Bi, t) are highly correlated

and are close to the true values x(Bi, t), whether the stations data is sparse or not.

Hence, the obtained estimates for γ1 will be similar for either case. Lastly, even with

non-informative priors on γ1, the bias and the RMSE are consistently small. Note

that in the simulation study, the γ1 parameter has a non-informative prior for all the

scenarios, and so all the values shown in Figures 3.14a and 3.14b are computed using

non-informative priors for γ1. The insights for γ1 also holds true for the intercept γ0,

as shown in Figures 3.15a and 3.15b.

(a) Bias (b) RMSE

Figure 3.14: Plot of biases and RMSEs for γ1 for all scenarios

Figure 3.16 shows the biases and RMSEs for the variance parameters σ2
ϕ and

σ2
ν . For the variance of the block-specific effect σ2

ϕ, the biases and the RMSEs are

generally close to zero for all the scenarios. The number of time points does not

seem to unduly affect the biases and RMSEs. This is expected since the model in the

simulation study assumes that the block-specific effect is independent with time, and

so the number of time points in the data does not potentially affect the quality of the

estimates for σ2
ϕ. In addition, this parameter does not seem to be sensitive to the prior

specification and the sparsity of the stations data. For σ2
ν , the biases and RMSEs
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(a) Bias (b) RMSE

Figure 3.15: Plot of biases and RMSEs for γ0 for all scenarios

are generally smaller when there are more time points. This makes sense since σ2
ν is

a parameter of the temporal random effect, and so it is more accurately estimated

when the length of the time series is longer. In addition, the prior specification affects

the precision of the estimates. If the prior distribution is informative, the RMSEs for

σ2
ν are generally lower compared to the case when the prior is non-informative. The

difference in the RMSEs for σ2
ν between the two priors diminishes with more time

points.

(a) Bias in σ2
ϕ (b) RMSE for σ2

ϕ

(c) Bias in σ2
ν (d) RMSE in σ2

ν

Figure 3.16: Plot of biases and RMSEs for variance parameters of the second-stage model
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I also compute the coverage probabilities for the second-stage model parameters,

which are shown in Table 3.4. The coverage probabilities are computed as follows.

Suppose that θ is a model parameter and that θ̂ijk is the kth sampled value from the

estimated posterior distribution of θ for the ith data replicate and jth sample from the

first-stage model (using Algorithm 3.1). Suppose θ̂(2.5)
i and θ̂

(97.5)
i are the 2.5th and

97.5th percentile, respectively, ∀j, k and for a fixed i. The 95% coverage probability

for θ is given by

coverage probability = 1
nsim

nsim∑
i=1

Ii(θ), Ii(θ) =


1 θ̂

(2.5)
i < θ < θ̂

(97.5)
i

0 otherwise
.

The results show that for γ1, all the coverage probabilities are very close to the

nominal value of 95%. There is no difference between the two methods for computing

x̂
(
Bi, t

)
. For the intercept γ0, the coverage probabilities are also reasonably close

to the nominal value, except for the case when the number of time points is very

small. Moreover, the coverage probabilities for the variance of the temporal effect

σ2
ν is higher when (weakly) informative priors are used or when there are more time

points. Finally, for the variance of the spatial effect σ2
ϕ, the coverage probabilities are

consistently high and close to the nominal value for all scenarios.

T Sparse Priors γ0 γ1 σ2
ϕ σ2

ν

M1 M2 M1 M2 M1 M2 M1 M2

3
No informative 85.4 85.2 94.2 93 95.2 93.8 88.4 88.6

non-informative 81.8 81.2 93.6 93.4 94.8 93.4 71.6 71.6

Yes informative 86.4 85.8 94 95 95 95.4 88 88
non-informative 83 82.6 93.2 93.8 94.2 94.6 71.2 71

6
No informative 91.8 91.6 93.6 94 94.2 93 89.8 89.4

non-informative 91.4 91.2 94 94 94 92.6 84.2 83.4

Yes informative 91 90.6 94.4 94 94.2 94 89.6 90.6
non-informative 90 90.4 94.2 94 94.2 93.6 86 85.4

12
No informative 92.6 93.2 94 93.8 94.2 95.2 92.4 93

non-informative 93.4 92.8 94 94.4 94.2 94.6 90 90

Yes informative 94.8 94.6 95.4 93.8 93.6 93.4 92.8 92
non-informative 93.6 94.2 93.4 93.6 93.2 93.4 89.8 89.2

Table 3.4: Coverage probabilities (in %) of second-stage model parameters for all scenarios. M1 = Method 1, M2
= Method 2.
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3.4 Discussion and conclusions

This chapter investigates a data fusion model to combine data from a network of

monitoring stations, which is usually sparse but accurate, and from a proxy data,

which has wide spatial coverage but biased. The data fusion model is the first-

stage model in a two-stage modelling framework, which is primarily motivated by

the epidemiological problem of linking health outcomes and exposure variables, such

as the concentration of certain air pollutants, and where both data have different

spatial supports. This chapter extends the two-stage model proposed by Cameletti

et al. (2019) by incorporating a data fusion model in the first stage. The data fusion

model is estimated using a data augmentation approach with the INLA-SPDE.

The proposed data fusion model is based on the Bayesian melding model, which

assumes a common latent process for the different data sources. However, instead

of treating the proxy data as areal, this work treats them as point-referenced at the

centroids of the grid cells. This makes computation easier, since it avoids estimating

stochastic integrals, especially in scenarios when the proxy data has high resolution.

The data fusion model incorporates an additive and multiplicative bias for the proxy

data, since it is noisier and biased compared to the measurements from the stations.

The current model assumes a constant additive and multiplicative bias, which may

not be flexible in some data applications, since the biases may be varying in space

and time. This model specification, via the calibration biases, ensures that the proxy

data does not dominate model estimation, which can be very likely when the biases

are ignored, since there are more data from the proxy data than the stations data.

The proposed model regards the measurements from the stations as more accurate,

but at the same time allowing for measurement error.

The data fusion model is the first-stage model in the two-stage modelling frame-

work presented in Figure 1.6. The second stage fits a health model where the spatial

averages of the predicted first-stage latent field is an input variable, and the health

outcome is the response variable. Both the first-stage and second-stage models, being

latent Gaussian, are fitted using INLA. I explored two methods proposed in Cameletti

et al. (2019) for computing the block-level estimates of the first-stage latent field. In
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order to account for the uncertainty in the first-stage model, I used the posterior

sampling method, which generates several samples from the estimated posterior dis-

tributions of the first-stage latent field on a fine prediction grid. For each set of

sampled values, I fit the second-stage model using the corresponding block-level es-

timates of the field. All results are then combined using Bayesian model averaging,

in order to obtain the posterior estimates of the second-stage model.

Summary of important results

A simulation study was carried out to assess the performance of the proposed

method under different scenarios. The following settings are considered in the study:

the sparsity of the stations data, number of time points, and the specification of the

priors. It is common to work with sparse stations data, so it is interesting to look

at the effect of the sparsity on the quality of the parameter estimates. Also, it is

important in Bayesian analysis to assess the sensitivity of the results to the priors,

more so in the context of a complex spatio-temporal process with several model

parameters that need to be estimated.

All first-stage model parameters have generally small biases, but there is difficulty

in estimating the Matèrn field parameters if non-informative priors are used. As long

as informative priors are used, the bias and RSMEs are very small even if the data

on the stations is sparse.

For the main parameter of interest, γ1, the proposed framework provides very

good estimates across all scenarios considered in the simulation study. There is no

difference between the two methods of computing the spatial averages in terms of the

bias, RMSEs, and coverage probabilities. Even with non-informative prior on γ1 and

sparse stations data, the estimates for γ1 are close to the true value. Finally, with

more time points, the RMSEs tend to decrease.

The simulation study showed that the sparsity of the stations data can potentially

affect the quality of the parameter estimates, especially for the first-stage model.

When the stations data is sparse, the RMSE of the covariate (fixed) effect is large.

This is also true for the measurement error variance in the stations; but the use of

informative priors can be helpful to accurately estimate the parameter. It makes

sense for these two parameters to be seriously affected under scenarions of sparse
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stations data, since with less stations, there is also less information at our disposal

to accurately estimate them. The RMSEs of the Matèrn parameters and the bias

parameters of the proxy data are also generally higher when the stations data is

sparse. The parameters in the second-stage model seem to be not affected by the

sparsity of the stations data since the proposed method, even with sparse data, was

able to estimate well the latent field, which also means that the corresponding block-

level estimates are close to the true values, at least for most of the areas, as shown

in the correlations, biases, and RMSEs from the simulation results.

The use of (weakly) informative priors gave better parameter estimates, especially

for the Matérn parameters, which are typically difficult to estimate. The autoregres-

sive parameter of the latent field also benefits with the use of informative priors, giving

smaller RMSEs, although there is no substantial difference in the bias between the

use of non-informative and informative prior. In addition, the measurement error

variance in the stations also have lower RMSEs when informative priors are used,

especially for the case when the stations data is sparse. The rest of the parameters

are not too sensitive to the priors.

The number of time points can also potentially affect the quality of the estimates.

As already mentioned, if there are more time points, the RMSEs of the fixed effects in

the second-stage model are smaller. This is also true for the variance of the time effect

in the second-stage model. The bias parameters of the proxy data in the first-stage

model also have better estimates with more time points.

The method for computing block-level estimates of the first-stage latent field does

not show to have an impact on the parameter estimates. The biases in the block-level

estimates for both methods are close to zero, although the first method seems to give

relatively higher biases for certain blocks and also higher RMSEs overall. Moreover,

the second method gave slightly higher correlations between the true block-level val-

ues and the estimated values; although, both methods gave fairly high correlations.

In terms of the quality of the parameter estimates of the second-stage model, both

methods worked equally well.

Limitations of the model

A major limitation of the proposed data fusion model is that both the additive
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3. Data fusion with INLA-SPDE

bias and multiplicative bias are assumed constant. This may not be sufficient or

flexible enough to account for the biases in the proxy data. This is immediately

addressed in Chapter 4.

The use of the full Bayesian melding model, which treats the proxy data as areal,

would also potentially increase the computational costs. Under the full Bayesian

melding model, it is required to evaluate stochastic integrals and to have covariate

information on z(s, t) at a resolution that is finer than the resolution of the proxy

data. The use of a data augmentation approach needs an enlarged extended field, say

χt =
(
x⊺
t,S x⊺

t,P ∗ x∗⊺
t,S x∗⊺

t,P ∗

)⊺

, t = 1, . . . , T ; x∗⊺
t,P ∗ is of larger dimension than x∗⊺

t,P

in the original model, where P ∗ is the resolution of the covariate data z(s, t), which

should be greater than the number of grid cells for the proxy data. Hence, when

the proxy data has a very high resolution, applying the full Bayesian melding model

might amplify the computation effort required. The use of a full Bayesian melding

model is a problem that will be investigated in the next chapter.

Other extensions

The proposed data fusion model is not compared to benchmark models, such

as the use of data solely from stations, since the goal of the current chapter is to

provide an initial investigation of the capabilities of doing data fusion using the INLA-

SPDE methodology, in a two-stage modelling framework. However, it is important

to compare the performance of the proposed model with other existing approaches.

Chapter 4 proposes a flexible data fusion model, whose performance is compared

with benchmark approaches. The data application is on meteorological data from

the Philippines, which is an ideal case study since the weather stations data is very

sparse, while the proxy data is evidently more biased.

Although this chapter considered only two data sources for data fusion, the pro-

posed model and the estimation approach can be easily extended to more than two

data sources. In this context, we only need to introduce a new likelihood model for

each additional data source, and assume that each one is a function of the same latent

process, but with a different set of bias parameters. Even if the new data sources

have different spatial supports, the proposed model and framework are feasible.

Another extension is to look into the problem of uncertainty propagation in two-
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stage Bayesian models. This chapter used a resampling approach to account for the

uncertainty in the first-stage model. Although the approach is intuitive, it needs to

be formally validated. Another method for uncertainty propagation which does not

require resampling is also another methodological innovation. These are explored in

this thesis; the results of which are presented in Chapter 6.

Another extension of the current model is to consider other measurement error

processes. For as long as the latent Gaussian assumption is satisfied, the current

framework of using the INLA-SPDE approach can still be used in such extensions.

The proposed model allows one to obtain estimates of the risks at the level of the

administrative units where the health outcomes are observed. However, one might be

interested to obtain estimates of risks at a fine scale, since this allows one to look at

fine-scale heterogeneity of the risks in space. A recent work has been done on this in

a so-called fusion area-cell spatio-temporal generalized geoadditive-Gaussian Markov

random feld (FGG-GMRF) (Jaya and Folmer, 2022). A new model specification

which incorporates a latent risk surface or intensity field is explored in Chapter 6.

The proposed model assumes a separable covariance function, i.e., the covariance

matrix of the SPDE representation of the first-stage model is a Kronecker product of

the covariance matrix in space, whose elements are computed from the SPDE model,

and the covariance matrix in time, whose elements are computed from the assumed

temporal model. The separability assumption is convenient because it simplifies

computation; but this assumption could be inadequate. An extension of the model

is to assume non-separability, which is currently an active area of research. One

approach of doing this is to start from an SPDE which yields a Gaussian field with a

separability parameter (Lindgren et al., 2020). This parameter determines the type

of non-separability of the spatio-temporal covariance function.

Finally, the current model assumes that the hyperparameters of the latent spatio-

temporal process is constant through time. But these hyperparameters could evolve

at some point, i.e., the Matèrn field parameters could change, or the mean structure

of the model could evolve as well. This is a change-point detection problem, which

is also a promising future work since relatively only few work has been done for

change-point detection in spatio-temporal processes.
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Chapter 4

A flexible data fusion model:

application on meteorological data

in the Philippines

This chapter extends the proposed data fusion model in Chapter 3. In particular,

the model proposed in this chapter flexibly accounts for calibration biases in the

data fusion model, and also defines a single and interpretable latent process for the

different data sources. The novelty is in the specification of a random field for the

additive bias α0(s), which I call an error field. In a spatio-temporal context, I assume

that the error field is a time-varying random field. In addition to a flexible model

specification, the proposed method also allows us to gauge the quality of the different

data sources. The proposed model in this chapter extends the existing data fusion

models presented in Section 2.7.3 in Chapter 2.

The proposed data fusion model is motivated by a data application for meteoro-

logical data in the Philippines. As discussed in Section 1.2.1, there are two primary

meteorological data sources in the country: observational data from a sparse net-

work of weather synoptic stations and simulated outputs from a numerical weather

forecast model called the Global Spectral Model (GSM) (PAGASA, 2023). While

the latter provides broad spatial coverage, it is typically biased due to sensitivity to

model initialization and parameterization. In contrast, the weather stations data,
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which are likely to be less biased, provide limited spatial coverage, leaving key areas

under-sampled, as shown in Figure 1.3 and Figure 4.1. To address these limitations,

I propose using both data sources together through data fusion.

In this chapter, a simulation study compares the performance of the proposed data

fusion model with two benchmark methods: a stations-only model and a statistical

calibration model. In the data application, the predictions from the data fusion

approach and the two benchmark approaches are compared using leave-group-out

cross-validation (Adin et al., 2023; Liu and Rue, 2022). Although the data application

only considers two data sources, the model and framework can easily extend to more

than two data sources and are relevant beyond this specific context.

This chapter is structured as follows. Section 4.1 discusses the meteorological

data problem, which is the motivation for this chapter. A preliminary simulation

study is performed presented in Section 4.2, which informs the proposed data fusion

framework and model in Section 4.3. Section 4.4 discusses the estimation approach,

which is Bayesian model averaging with INLA. Section 4.5 discusses the simulation

study. The results for the real-life data application are in Section 4.6. Finally, I end

this chapter with some discussion and conclusion in Section 4.7.

4.1 Meteorological data from the Philippines

The Philippines is an archipelagic country, covering an area of ca. 300 thousand km2

(see Figure 4.1), situated in tropical Southeast Asia. The eastern part and some

southern parts of the country are mostly classified as tropical rainforest, and are

characterized by the lack of a distinct wet or dry season and with relatively high

rainfall all year round. On the other hand, most of the country’s western section is

classified as tropical monsoon or tropical Savannah, characterized by pronounced dry

and wet seasons (Coronas, 1920; Kintanar, 1984a; PAGASA, 2023). The rainy season

of the country, which also coincides with the hot episode of a year, lasts from June to

November, while the rest of the year is generally considered dry. The dry season is

further categorized into either a cool dry or a hot dry period, where the former lasts

from December to February and the latter from March to May (PAGASA, 2023).
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Figure 4.1: Meteorological data sources for the Philippines: a sparse network of weather synoptic stations and
an outcome of a numerical weather forecast model called Global Spectral Model. The measurements are monthly
aggregated values of temperature for August 2019.

The Philippine Atmospheric, Geophysical and Astronomical Services Administra-

tion (PAGASA) maintains a network of 57 weather synoptic stations that regularly

record several meteorological variables including temperature, relative humidity, and

rainfall. The spatial distribution of the weather stations, shown in Figure 4.1, is

a sparse network relative to the country’s total surface area, with some regions,

especially in the north, being heavily undersampled. Consequently, reconstructing

meteorological variable surfaces based only on the weather stations would therefore

result in high uncertainty in many parts of the country. To remedy this problem of

data sparsity, PAGASA utilizes outcomes from the Global Spectral Model, a numer-

ical weather forecast model maintained by the Japanese Meteorological Agency. The

GSM provides forecast outputs of up to 132 hours four times a day (with initial times

0000, 0600, 1200, and 1800 UTC) within 4 hours of the initial time, and up to 264

hours twice a day (with initial times 0000 and 1200 UTC) within 7 hours of the initial

time. As an illustration, Figure 4.1 shows a map of mean temperature from the GSM

outcomes for August 2019 at a spatial resolution of 0.5 degrees (approximately 55km

× 55 km) corresponding to 924 grid cells. Although the GSM outcomes are gridded,

PAGASA interprets them as point-referenced at the centroids (PAGASA, 2023).
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PAGASA provided the aggregated monthly data from both the weather stations

and GSM for 2019 and 2020, and for the following meteorological variables: mean

temperature (in ◦C), mean relative humidity (in %), and total rainfall (in mm). The

GSM outcomes were first simulated daily, using the 0000 UTC initial time, to produce

forecasts at 3-hour intervals and up to eight forecast horizons. The simulated out-

comes were then aggregated at the monthly level, yielding averages for temperature

and relative humidity and totals for rainfall. The use of a monthly temporal scale is

motivated by its relevance to future work (Chapter 5), where the model predictions

will serve as inputs to an epidemiological model for dengue, as the case counts are

typically available at the monthly level (Abdullah et al., 2022; Naish et al., 2014). The

goal of this chapter is, therefore, to reconstruct monthly surfaces for meteorological

variables, specifically temperature, relative humidity, and rainfall. Here, the focus is

on improving the accuracy of spatial predictions and mapping of these variables in

space, rather than on forecasting future outcomes.

To assess the bias in the GSM outcomes, I interpolate the GSM values on the three

meteorological variables of interest, and predict the values at the weather stations’

locations. I do this by fitting the following geostatistical model:

w(s, t) = β0 + β1z(s, t) + ξ(s, t) + e(s, t).

Here, w(s, t) is the simulated value of the meteorological variable from the GSM at

the grid cell with centroid s, z(s, t) is a known covariate, ξ(s, t) is a spatio-temporal

random effect, and e(s, t) is a random noise, i.e., e(s, t) iid∼ N
(
0, σ2

e

)
. For the single

covariate z(s, t), I used elevation for temperature and relative humidity, and relative

humidity for the log-transformed rainfall. I assume that ξ(s, t) evolves in time as an

autoregressive process of order 1, i.e.,

ξ(s, t) = ϕξ(s, t− 1) + ω(s, t), t = 2, . . . , T,

where |ϕ| < 1, and ω(s, t) is a time-independent Gaussian process with a Matérn

covariance function and which follows the stationary distribution of the process at

time t = 1. I fit this model using INLA and the SPDE method (Lindgren et al.,
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2011; Rue et al., 2009) and then predict the values of E
[
w(s, t)

]
at the weather

stations’ locations using the posterior predictive mean. The predicted values are

then compared with the observed values, which are shown in Figure 4.2. The results

show a general agreement between the two sets of values, but a clear bias is visible.

Figure 4.2 highlights specific weather stations, where it becomes clear, especially

for temperature, that there is a spatially-varying additive bias but no multiplicative

bias, since the GSM outcomes at a specific weather station seem parallel to the

identity line. For the other two meteorological variables, it is also clear that there is

a spatially-varying additive bias, but accounting for a multiplicative bias parameter

with a complex structure might be necessary.

Figure 4.2 also shows that the quality of the GSM outcomes varies among the

three variables. The discrepancy in the outcomes between the GSM and weather

stations for the rainfall data is bigger than for the other two meteorological variables.

The proposed data fusion model, which is discussed in Section 4.3, is able to gauge

the relative quality of the GSM outcomes for the three meteorological variables.

Figure 4.2: Scatterplot of the observed values at the weather stations versus interpolated outcomes of the GSM
for three meteorological variables: temperature, relative humidity, and log-transformed rainfall. The plot shows the
discrepancies in the values between the two data sources.

4.2 Preliminary results

In Chapter 3, I treated the outcomes of the proxy data as point-referenced at the

centroids of the grid cells. This preliminary section explores a comparison of the

full Bayesian melding model (Section 2.7.1), which treats the outcomes of numerical

models as gridded, and the one which treats the outcomes as point-referenced.
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Suppose that the latent field follows the following model: x(s) = 10 + 3z1(s) +

2z2(s) + ξ(s), where z1(s) and z2(s) are predictor variables, and ξ(s) is a random field

which follows the Matérn process with effective range of 2, marginal variance of 4,

and mean-squared differentiability parameter equal to 1. A simulated field is shown

in Figure 4.3a.

Suppose that there are three data sources for the unknown field in Figure 4.3a,

with the following model structures:

(Data source A) w1(s) = x(s) + ϵ1(s)

(Data source B) w2(s) = α02(s) + α12x(s) + ϵ2(s)

w2(B) = 1
|B|

∫
B

w2(s)ds

(Data source C) w3(s) = α03(s) + α13x(s) + ϵ3(s)

w3(B) = 1
|B|

∫
B

w3(s)ds

(4.1)

Data source A, which are point observations, follows the classical error model,

where ϵ1(s) iid∼ N(0, 0.01). The observed locations for w1(s) are shown in Figure 4.3b,

while a comparison of the observed values and true values are shown in Figure 4.3c.

(a) Simulated true field (b) Point locations of w1(s) (c) w1(s) vs true values

Figure 4.3: (a) simulated true field x(s) (b) simulated observed data at finite point locations (c) comparison of
observed values w1(s) and true values of x(s)

Moreover, Data source B is denoted by w2(B) and has a conceptual point-referenced

model denoted by w2(s). The additive bias, α02(s), is simulated from a Matérn field

with effective range of 3 and marginal variance of 1, while the multiplicative bias is

α12 = 0.9. Figure 4.4a shows a simulated w2(B), while Figure 4.4b shows a com-

parison of w2(B) and x(B) = 1
|B|

∫
B
x(s)ds. It shows that the observed values are
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biased and tend to be smaller than the true values due to the multiplicative bias

α12 < 1. Lastly, data source C, denoted by w3(B), is also areal and has a conceptual

point-referenced model given by w3(s). The additive bias, α03(s), is simulated from

the same process as α02(s), while the multiplicative bias is given by α12 = 1.1. In

addition, I assume that w3(B) is observed at a coarser resolution than w2(B). Figure

4.5a shows a simulated w3(B), while Figure 4.5b shows a comparison of w3(B) and

x(B) = 1
|B|

∫
B
x(s)ds. Unlike w3(B), Figure 4.5b shows that w3(B) tend to be larger

than the true values due to the multiplicative bias α12 > 1.

(a) Observed w2(B) (b) Observed vs true values

Figure 4.4: (a) simulated w2(B) (b) comparison of observed values w2(B) and x(B) =
1

|B|

∫
B
x(s)ds

(a) Observed w3(B) (b) Observed vs true values

Figure 4.5: (a) simulated w3(B) (b) comparison of observed values w3(B) and x(B) =
1

|B|

∫
B
x(s)ds

4.2.1 Modelling approaches

I compare four modelling approaches: (1) a model that uses only data from w1(s),

(2) a model that uses all three data sources but assuming a classical error model for

w2(B) and w3(B), (3) a full Bayesian melding model, (4) and a simplification of the
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Bayesian melding model by treating the proxy data as point-referenced. For model

estimation, I assume that only one of the two covariates, specifically z1(s), is known

and available.

The first approach is a standard model and can be easily fitted using INLA-SPDE

(Cameletti et al., 2013). The second approach is similar to the models in Moraga

et al. (2017) and Zhong and Moraga (2023) (see Section 2.7.3), and which can be

straightforwardly fitted using INLA-SPDE as well. On the other hand, the third

approach has more involved predictor expressions in its three likelihood components.

The joint model is given by:

w1(s) = β0 + β1z1(s) + ξ(s) + ϵ1(s), ϵ1(s) iid∼ N
(
0, σ2

ϵ1

)
w2(B) = 1

|B|

∫
B

[
α02(s) + α12 ×

(
β0 + β1z1(s) + ξ(s)

)
+ ϵ2(s)

]
ds

w3(B) = 1
|B|

∫
B

[
α03(s) + α13 ×

(
β0 + β1z1(s) + ξ(s)

)
+ ϵ3(s)

]
ds

ϵ2(s) iid∼ N
(
0, σ2

ϵ2), ϵ3(s
) iid∼ N

(
0, σ2

ϵ3

)
(4.2)

The complication here is due to the fact that the predictor expressions for w2(B)

and w3(B) in Equation (4.2) involve a product of two unknowns: a scaling parameter

and a Gaussian field. Furthermore, this also involves an aggregation of the values

over the blocks B. To fit this model, I used the Bayesian model averaging with

INLA (Gómez-Rubio et al., 2020), which is discussed in more detail in Section 4.4.

Essentially, a grid of values is defined for α12 and α13, and then Equation (4.2) is

estimated conditional on α12 and α13. The final posterior estimates are then computed

using model averaging. For both parameters, I defined a grid of values from 0.7 to

1.2, with a length step of 0.1.

The fourth approach simplifies Equation (4.2) by treating w2(B) and w3(B) as

point-referenced, which yields the following predictor expressions for the joint model:

w1(s) = β0 + β1z1(s) + ξ(s) + ϵ1(s), ϵ1(s) iid∼ N
(
0, σ2

ϵ1

)
w2(g) = α02(g) + α12 ×

(
β0 + β1z1(g) + ξ(g)

)
+ ϵ2(g)

w3(g) = α03(g) + α13 ×
(
β0 + β1z1(g) + ξ(g)

)
+ ϵ3(g)

ϵ2(g) iid∼ N
(
0, σ2

ϵ2

)
, ϵ3(g) iid∼ N

(
0, σ2

ϵ3

)
(4.3)
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Figure 4.6a shows a simulated w2(B) with the grid centroids in black points, while

Figure 4.6b shows the point-referenced version of w2(B), here denoted by w2(g). Fit-

ting the joint model in Equations (4.3) is simpler since it does not perform aggregation

of the latent fields over the block B. Figure 4.6c shows the data points from the three

data sources when using estimation approach (4). However, even with this simplifica-

tion, the prediction expressions in Equation (4.3) still involve a product of a scaling

parameter and an unknown Gaussian field. A Bayesian model averaging approach

with INLA is also used to fit the joint model.

(a) w2(B) and grid centroids (b) w2(g) (c) Point-referenced data

Figure 4.6: (a) simulated w2(B) with the grid centroids, (b) point-referenced values w2(g), (c) data for model fitting
using approach (4)

4.2.1.1 Prior specification

I assign vague priors for all fixed effects, i.e., β0 ∼ N(0,∞) and β1 ∼ N(0, 1000).

I assign PC priors for all the variance parameters and the Matérn field parameters

(Fuglstad et al., 2019; Simpson et al., 2017). In defining the probability statement

for the PC priors in the simulation exercise, I used the true values of the parameters

and a probability value of 0.50. For the multiplicative bias parameters, I assign a

uniform prior.

4.2.2 Results

4.2.2.1 (Simulated) data illustration

Figure 4.7 shows the predicted fields x̂(s), based on the mean of the posterior pre-

dictive distribution on a fine grid, for the different modelling approaches, from the
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simulated data in Figures 4.3 – 4.5. The results show that the predicted fields look

very similar to the truth. Figures 4.8a and 4.8b show a comparison of the bias and the

posterior uncertainties in the predicted field x̂(s), respectively. The bias is defined as

x(s) − x̂(s), while the posterior uncertainty is the posterior standard deviation (SD)

of x(s). The results show that approaches (3) and (4) have generally smaller bias

and smaller posterior uncertainty than the other two approaches. Moreover, the data

fusion approach which does not account for the biases in the proxy data gave very

large biases in some sections of the study region.

Figure 4.7: Comparison of predicted fields x̂(s) using the four different modelling approaches

(a) bias (b) Posterior uncertainty

Figure 4.8: (a) comparison of the bias in the predicted fields x̂(s) (b) comparison of the posterior uncertainties in
the predicted field x̂(s)
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4.2.2.2 Average performance (500 replicates)

This section presents results based on 500 data replicates. Here, I only used Data

source B as the proxy data for model estimation. This simplifies computation, since

I only need to define a grid of values for α12 in fitting the conditional INLA models

and in doing the model averaging.

For model comparison, I mainly looked at the average squared errors and aver-

age posterior uncertainty in the predicted fields x̂(s). The two metrics for model

comparison are formalized in Section 4.5.2.

(a) Average squared error (b) Average posterior standard deviation

Figure 4.9: (a) comparison of the bias in the predicted fields x̂(s) (b) comparison of the posterior uncertainties in
the predicted field x̂(s)

Figures 4.9a and 4.9b show a comparison of the average squared errors and av-

erage posterior uncertainty in the predicted fields, out of 500 data replicates, among

the different modelling approaches. In the figure, I label as Data fusion -full the

approach which performs the full Bayesian melding model, and label as Data fusion

- semi the simplified approach which treats the proxy data as point-referenced at

the centroids. Here, I exclude the second approach (data fusion but not accounting

for the biases in the proxy data), since it gives very high bias, which was illustrated

previously in Figure 4.8a. The results show that the stations-only approach gener-

ally has the highest average squared error and highest average posterior uncertainty;

while the data fusion approach which treats the proxy data as point-referenced gave

the smallest values for the two metrics. Figure 4.10 shows a comparison of the aver-

age BMA weights for the conditional INLA models, conditional on α12, both for the

full Bayesian melding approach and the simplified approach. The results show that
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the model with α12 = 0.9 has the highest average BMA weight, i.e., both estimation

approaches are able to correctly estimate the true value of α12.

Figure 4.10: Average BMA weights for the conditional INLA models, conditional on α12

Next, I looked at the potential impact of the resolution of the proxy data on

the accuracy of the predicted fields. I considered three cases: 9 × 9, 12 × 12, 14 ×

14. Figures 4.11 and 4.12 show the average squared errors and average posterior

uncertainty in the predicted field with respect to the resolution of the proxy data and

modelling approach. The results indicate no substantial differences in the average

squared errors; but notable differences in the posterior uncertainties. In particular,

the posterior uncertainty is generally smaller for the data fusion approach which treats

the proxy data as point-referenced, and is true for the three levels in the resolution

of the proxy data considered.

Figure 4.11: Comparison of the average squared errors with respect to the resolution of the proxy data and the
data fusion approach

The main result in this preliminary investigation is that it is reasonable to treat

the proxy data as point-referenced at the centroids. It has the same performance
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Figure 4.12: Comparison of the average posterior uncertainty respect to the resolution of the proxy data and the
data fusion approach

as the full Bayesian melding model with respect to the average squared error of

the predicted field, and has generally smaller posterior uncertainty. Moreover, the

results also show that even if the proxy data is utilized for model estimation, but

if the additive and multiplicative biases are not accounted for, it will yield model

results similar to (or worse than) the stations-only model. These preliminary results

serve as the basis for the data fusion framework and model proposed in this chapter,

which are discussed in the next section (Section 4.3).

4.3 Data fusion framework and model

4.3.1 Framework

I assume that the latent process, at a spatial location s and time t, s ∈ S, t = 1, . . . , T ,

is denoted by x(s, t). This is observed via two different data sets. The first one is

w⊺
1t =

(
w1(s1, t) w1(s2, t) . . . w1(snM

, t)
)
, si ∈ S,

which are observations from a set of nM stations in locations si, i = 1, . . . , nM , at

times t = 1, . . . , T . The second one is

w⊺
2t =

(
w2(g1, t) w2(g2, t) . . . w2(gnG

, t)
)
, gj ∈ S
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which denotes the proxy data, such as gridded outcomes from a numerical model –

for instance the GSM (see Section 4.1). Here, w2(gj, t) is the value at the grid cell

with centroid gj, j = 1, . . . , nG, and time t. I assume that the two data sources are

aligned in time. If this is not the case, it is always possible to aggregate the data with

higher resolution. It is further assumed that w2t has a much wider spatial coverage

than w1t (nM ≪ nG) but more biased (Lawson et al., 2016), and that both w1t and

w2t are error-prone realizations of the same process of interest xt. This implies that:

w1t = f1(xt,θ1) + e1t

w2t = f2(xt,θ2) + e2t,

(4.4)

where f1(·) and f2(·) are some deterministic functions of the process xt with bias

parameters θ1 and θ2, respectively. The terms e1t and e2t are assumed indepen-

dent error components. Typically, some simplifying assumptions are made on f1(·)

and f2(·) to facilitate model inference. For instance, in the classical INLA approach

(Section 2.5.2) (Rue et al., 2009), it is a requirement for the predictor to be a linear

(deterministic) function of the latent Gaussian parameters; although recently, the

class of models that can be fitted using INLA has been extended to those which are

non-linear in the latent parameters using an iterative INLA approach (see Section

2.5.4), and which can be easily implemented using the inlabru package in R (Lind-

gren et al., 2024). Extending the above framework to more than two data sources

is straightforward, as a new data set would be treated as yet another error-prone

realization of the latent process of interest.

4.3.2 Proposed model

Using Equations (4.4) to represent the two data sources, the following data fusion

model is proposed:

x(s, t) = β⊺z(s, t) + ξ(s, t) (4.5)

w1(si, t) = x(si, t) + e1(si, t), i = 1, . . . , nM , (4.6)

w2(gj, t) = α0(gj, t) + α1x(gj, t) + e2(gj, t), j = 1, . . . , nG. (4.7)
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The latent process of interest, x(s, t), is modelled as a linear function of some

known covariates z(s, t) (including an intercept) and a random field ξ(s, t). The

observed data w1(si, t) from the weather stations are assumed to be unbiased realiza-

tions of the latent process x(s, t) with an additive error term e1(si, t)
iid∼ N

(
0, σ2

e1

)
, i =

1, . . . , nM , as in Equation (4.6). The iid assumption is justified by the fact that the

weather stations are sparsely located in the spatial domain and operate independently

of each other. The data w2(gj, t) from the numerical weather forecast model are as-

sumed to be biased realizations of the latent values x(gj, t), j = 1, . . . , nG. I specify

both an additive and a multiplicative bias for w2(gj, t). I assume that the additive bias

α0(gj, t) varies in both space and time, and refer to it as the error field. On the other

hand, I assume that the multiplicative bias α1 is constant. For temperature, this is

justified based on Figure 4.2. For the other two meteorological variables, a spatially-

varying multiplicative bias could better fit the data. Notice, however, that having a

spatially-varying multiplicative bias in the model would pose a greater computational

challenge as the model would contain a product of two random fields. For this reason,

in this work, I have chosen to consider a constant multiplicative bias. Finally, the

model for w2(gj, t) contains another unstructured error e2(gj, t)
iid∼ N

(
0, σ2

e2

)
.

Both the spatio-temporal field ξ(·, t) in Equation (4.5) and the error field α0(·, t) in

Equation (4.7) are modelled using a Matérn Gaussian space-time field. In particular,

I assume that

ξ(s, t) = ϕ1 ξ(s, t− 1) + ω1(s, t)

α0(s, t) = ϕ2 α0(s, t− 1) + ω2(s, t),
(4.8)

where |ϕ1| < 1 and |ϕ2| < 1 model the temporal dependence in a first order au-

toregressive (AR1) fashion, while ω1(s, t) and ω2(s, t) are time-independent Gaussian

innovation processes with Matérn covariance structure, i.e.,

Cov
(
ωh(si, t), ωh(sj, u)

)
=


0 t ̸= u

Σ(h)
i,j t = u

(4.9)

Σ(h)
i,j = σ2

h

2νh−1Γ(νh)
(κh ∥si − sj∥)νhKνh

(κh ∥si − sj∥), (4.10)
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for h = 1, 2. The model unknowns are the marginal variance σ2
h and scaling parameter

κh. The smoothness parameter νh is fixed to 1 since this is poorly identified in many

applications (Lindgren et al., 2011) (also see Section 2.6). The scaling parameter is

related to the range parameter ρh via the empirically derived relationship ρh ≈
√

8νh
κh

.

I use the SPDE approach to represent the Matérn fields in the model as Gaussian

Markov random fields, which yields a sparse precision matrix, consequently making

the computation efficient (Section 2.6) (Lindgren et al., 2011).

In the data problem, as presented in Section 4.1, the Philippines is an archipelagic

country, consisting of numerous islands that are spatially disconnected. The mod-

els employed in this chapter do not account for these geographical discontinuities or

barriers, since the physical atmospheric processes under study are largely continuous

between land and sea. For example, rainfall is driven by atmospheric circulation and

convection, and cloud movements do not stop at shorelines. A barrier SPDE model

(Bakka et al., 2019) would be more appropriate for other contexts such as mod-

eling disease spread, socio-economic diffusion restricted by geography, or ecological

distributions where animal populations cannot cross water.

The model structure in Equations (4.8) to (4.10) implies that ξt|ξt−1 ∼ N
(
ϕ1ξt−1,Σ

(1)
)

and α0t |α0t−1 ∼ N
(
ϕ2α0t−1 ,Σ

(2)
)

for t = 2, . . . , T , where ξt =
(
ξ(s1, t) . . . ξ(snM

, t)
)⊺

,

α0t =
(
α0(g1, t) . . . α0(gnG

, t)
)⊺

, and that Σ(1) and Σ(2) are dense covariance

matrices whose elements are given in Equation (4.10). Both ξ(s, t) and α0(s, t)

follow the stationary distribution at t = 1, i.e., ξ(s, 1) ∼ N
(

0, σ2
1/(1 − ϕ2

1)
)

and

α0(g, 1) ∼ N
(

0, σ2
2/(1 − ϕ2

2)
)

.

The performance of the proposed model is compared with two benchmark ap-

proaches. The first one, denoted stations-only model, uses only the data from the

stations. This model essentially fits Equations (4.5) and (4.6) only. The second

benchmark model is the regression calibration model discussed in Section 2.7.2. In

the spatio-temporal scenario, I assume that the additive and multiplicative biases in

the calibration model are both spatially and temporally varying. Note that a model

relying exclusively on GSM data is not considered a benchmark model, since the

GSM data, like any proxy data, are inherently biased. This bias has been shown in

Figure 4.2, which shows the discrepancy in the values between the observed values at
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the weather stations’ locations and the corresponding predicted values using a model

fitted solely using GSM data.

4.4 Model estimation

For estimation, I use the integrated nested Laplace approximation (INLA) (Section

2.5.2). The stations-only model and the regression calibration model are standard

spatial models and are straightforward to estimate using INLA (Cameletti et al.,

2013). On the other hand, the proposed model in Equations (4.5) to (4.7) can be

tricky. It is useful to rewrite the model, in vector form, as follows:

w1t = Ztβ + ξt + e1t, e1t ∼ N
(
0, σ2

e1I
)

ξt = ϕ1ξt−1 + ω1t

w2t = α0t + α1(Ztβ + ξt) + e2t, e2t ∼ N
(
0, σ2

e2I
)

α0t = ϕ2α0t−1 + ω2t.

(4.11)

The model specification involves two likelihood components: w1t and w2t. The

latent part of the model includes the fixed effects β, the space-time effects ξt, and

the error field α0t , t = 1, . . . , T . The fixed effects β are given a non-informative

Gaussian prior, while the random fields ξt and α0t follow a Gaussian autoregressive

structure as described in Equations (4.8) to (4.10). The hyperparameters include the

multiplicative bias α1, the parameters linked to ξ1t (σ1, ρ1, and ϕ1), the parameters

linked to α0t (σ2, ρ2, and ϕ2), and the measurement error variance parameters σ2
e1 and

σ2
e2 . The model hyperparameters, except for α1, are given penalized complexity (PC)

priors (Fuglstad et al., 2019; Simpson et al., 2017). PC priors are weakly informative

priors which penalize the complexity of Gaussian random fields by shrinking the

range towards infinity and the marginal variance towards zero. These are defined

and expressed through probability statements of the type P(σ > σo) = ζ1 and P(ρ <

ρo) = ζ2, where ζ1, ζ2 ∈ (0, 1) are probability values chosen by the user, while σo and

ρo are user-defined values of the standard deviation and range parameter, respectively.

The proposed data fusion model falls in the class of models that can be fitted

using INLA since, given the hyperparameters, the latent field is Gaussian. However,
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estimating α1, which acts as a scaling parameter for the Gaussian field Ztβ + ξt, can

be difficult as the optimizer could run into numerical issues. Hence, I explore the use

of a Bayesian model averaging (BMA) approach with INLA (Gómez-Rubio, 2020).

This approach fits the data fusion model conditional on α1, and then averages all

the conditional INLA models to obtain the final posterior estimates. In addition, it

is easy to determine a reasonable set of values for α1: a value of 1 implies that the

numerical model has no multiplicative bias, and the further the value of α1 from 1,

the more serious the multiplicative bias. In the data application, I do not expect

α1 to be very far from 1, particularly for temperature and relative humidity; thus, I

defined a grid of α1 values from 0.5 to 1.5 with a length step of 0.1.

4.4.1 Bayesian model averaging with INLA

Suppose all observed data is denoted by Y, a latent parameter is denoted by xj,

and the hyperparameters are denoted by θ. INLA computes the posterior marginals

based on the following integrals:

π(θi|Y) =
∫
π(θ|Y)dθ−i

π(xj|Y) =
∫
π(xj|θ,Y)π(θ|Y)dθ,

where θ−i denotes the vector of hyperparameters excluding θi. Suppose that θ =(
α1 θ−α1

)⊺

, where θ−α1 includes all hyperparameters excluding α1. The posterior

marginals of x and θ−α1 can then be expressed as

π(·|Y) =
∫
π(·, α1|Y)dα1 =

∫
π(·|α1,Y)π(α1|Y)dα1. (4.12)

The probability density π(·|α1,Y) is a conditional marginal posterior which can be

easily estimated using INLA for a fixed α1. The density π(α1|Y) in Equation (4.12)

can be expressed as π(α1|Y) ∝ π(Y|α1)π(α1), where π(Y|α1) is the conditional

marginal likelihood, and π(α1) is the prior for α1. The computation is done by

specifying a grid of values for α1, say α
(k)
1 , k = 1, . . . , K, and then estimating the

model conditional on each α(k)
1 . Given this ensemble of INLA models, the weights for
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model averaging are computed as:

wk =
π
(

Y|α(k)
1

)
π
(
α

(k)
1

)
∑K

k=1 π
(

Y|α(k)
1

)
π
(
α

(k)
1

) . (4.13)

The marginal posteriors given in Equation (4.12) are then computed as

π
(

· |Y
)

≈
K∑
k=1

π
(

· |α(k)
1 ,Y

)
wk. (4.14)

All other posterior quantities of interest are computed using model averaging. For

example, the predicted x(s, t) field is given by the following

x̂(s, t) =
K∑
k=1

{
E
[
β|α(k)

1 ,Y
]⊺

z(s, t) + E
[
ξ|α(k)

1 ,Y
]}

wk, (4.15)

where E
[

· |α(k)
1 ,Y

]
is evaluated with respect to the conditional marginal posteriors

π
(
β|α(k)

1 ,Y
)

and π
(
ξ|α(k)

1 ,Y
)

. Equation (4.15) is equivalent to

x̂(s, t) =
K∑
k=1

{∫
βπ
(
β|α(k)

1 ,Y
)
wkdβ

}⊺

z(s, t) +
K∑
k=1

{∫
ξπ
(
ξ|α(k)

1 ,Y
)
wkdξ

}

=
{∫

β
[ K∑
k=1

π
(
β|α(k)

1 ,Y
)
wk

]
dβ

}⊺

z(s, t) +
∫

ξ
[ K∑
k=1

π
(
ξ|α(k)

1 ,Y
)
wk

]
dξ

=
{∫

βπ(β|Y)dβ
}⊺

z(s, t) +
∫

ξπ(ξ|Y)dξ

= E[β|Y]⊺z(s, t) + E[ξ|Y],

(4.16)

where E[·|Y] is evaluated with respect to the marginal posteriors which are approx-

imated via Equation (4.14). Equation (4.15) implies that the predicted field x̂(s, t)

can be computed by evaluating the predictor expression for x(s, t) given in Equa-

tion (4.5) using the mean of the conditional marginal posteriors and then getting

the weighted average using the weights wk, while Equation (4.16) implies that it is

equivalent to directly evaluating Equation (4.5) using the mean of the marginal pos-

teriors in Equation (4.14). A disadvantage of the model averaging approach is that

it requires fitting the models conditional on each α1 value, which can be inefficient
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especially for large spatio-temporal datasets.

4.5 Simulation Study

This section presents the results from a simulation study to assess the performance of

the proposed data fusion model compared to two benchmark approaches: a stations-

only model and a statistical (regression) calibration model (discussed in Section 2.7.2).

Similar to Chapter 3, I use the Belo horizonte region in Brazil as the study domain,

whose shapefile is available in the R package spdep (Bivand and Piras, 2015).

I perform the simulation study in a purely spatial context and simulate the process

of interest as:

x(s) = β0 + β1z(s) + ξ(s),

where ξ(s) is a Matérn random field with the following parameters: effective range

ρξ = 2 degrees, marginal standard deviation σξ = 3.16, and smoothness parameter

νξ = 1. The value of the range is such that the spatial correlation becomes negligible

at a distance of ca 222 km which corresponds to half of the maximum distance in the

study region. Moreover, z(s) is a known covariate and is simulated from a Matérn

process with effective range of 3 degrees, a marginal variance of 1, and a smoothness

parameter equal to 1. The fixed effects are β0 = 10 and β1 = 3.

The two observed datasets are simulated using Equations (4.6) and (4.7), respec-

tively, but without the time component. It is assumed that e1(si)
iid∼ N

(
0, σ2

e1 = .25
)

and e2(gj)
iid∼ N

(
0, σ2

e2 = .01
)
. The values of σ2

e1 and σ2
e2 are chosen based on the

empirical results from the temperature model in Section 4.6.1. This implies that the

noise in w2(gj) is mainly attributed to the error field α0(g), which is simulated from

a Matérn process with range ρα0 = 1, marginal standard deviation σα0 = 1, and

smoothness parameter να0 = 1. The range parameter and marginal variance of ξ(s)

is chosen to be higher compared to α0(g) based on the empirical results from the real

data application discussed in Section 4.6. Finally, the constant multiplicative bias

parameter is α1 = 1.1.

Figure 4.13a shows the dense simulation grid. Figure 4.13b shows a simulated

x(s) field, while Figure 4.13c shows a simulated proxy data, which is at a coarser
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(a) Simulation grid (b) x(s) (c) w2(gj ) (d) α0(g)

Figure 4.13: (a) dense simulation grid, (b) a simulated true field x(s), (c) a simulated proxy data w2(gj), (d) a
simulated error field α0(g)

resolution than the simulation grid. In particular, the centroids of the grid cells in

Figure 4.13c is a coarse subset of the points in Figure 4.13a. The corresponding

simulated error field α0(g) is shown in Figure 4.13d.

Figure 4.14c highlights a significant discrepancy between the stations data and

the proxy data values at the stations’ locations for a simulated data with nM = 10

stations whose spatial locations are shown in Figure 4.15a. Figure 4.14c is similar to

Figure 4.2 which shows discrepancies between the two data sources in the real data

application. Moreover, the difference in bias severity between w1(si) and w2(gj) is

illustrated in Figures 4.14a and 4.14b, respectively. The data from the 10 stations

closely align with the true values. On the other hand, w2(gj) exhibits more bias and

an overestimation of the true values due to the multiplicative bias parameter α1 > 1.

(a) w1(si) vs x(si) (b) w2(gj ) vs x(gj ) (c) w1(si) vs w2(si)

Figure 4.14: (a) simulated observed values at 10 stations versus true values, (b) simulated proxy data versus true
values, (c) simulated observed values at 10 stations versus proxy data values.

The main interest is to understand if jointly modelling the two data sources offers

advantages and how these change with the sparsity of the stations data. I therefore

consider three different scenarios for the number of stations. The first scenario con-
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(a) nM = 10 (b) nM = 25 (c) nM = 40

Figure 4.15: Spatial location of stations: (a) a sparse network, (b) a denser network but with an undersampled
region, (c) a dense uniformly distributed network.

sists of only nM = 10 stations with areas severely undersampled (Figure 4.15a). In

the second case, there are nM = 25 stations, and a large area that is undersampled

(Figure 4.15b). The third case has nM = 40 stations uniformly distributed over the

study area (Figure 4.15c). The spatial locations are held constant for all the data

replicates so that the configuration of the stations does not influence the results.

4.5.1 Model definition and estimation

I compare three modelling approaches: stations-only model, a regression calibration

model, and the proposed data fusion model here specified as:

w1(si) = β0 + β1z(si) + ξ(si) + e1(si), e1(si)
iid∼ N

(
0, σ2

e1

)
,

w2(gj) = α0(gj) + α1

(
β0 + β1z(gj) + ξ(gj)

)
+ e2(gj), e2(gj)

iid∼ N
(
0, σ2

e2

)
,

i = 1, . . . , nM ; j = 1, . . . , nG. The main interest here is in predicting the unknown

field x(s) = β0 + β1z(s) + ξ(s). I assign β0 and β1 vague, zero mean, Gaussian

priors. Penalized complexity (PC) priors are used for the variance parameters σ2
e1

and σ2
e2 and the parameters of the random fields ξ(·) and α0(·): ρξ, σξ, ρα0 , and

σα0 . I define two scenarios on how to specify the PC priors. The first scenario,

which I call matching priors, uses the actual values used to generate the data. The

second scenario, which I call non-matching priors, uses σe1o = 1.5, σe2o = 0.5, σξo = 1,

ρξo = 0.5, σα0o = .5, ρα0o = .5, which are arbitrarily chosen values. The probability

value in the PC priors is set to ζ1 = ζ2 = 0.5 for all the parameters. As an example,
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when defining the prior for σ2
e1 , we have P(σe1 > 0.25) = 0.5 for the matching prior

scenario, and P(σe1 > 1.5) = 0.5 for the non-matching prior scenario. Note that the

matching priors are not necessarily more informative than the non-matching priors

and that both cases are weakly informative.

I use the inlabru library (Lindgren et al., 2024) to fit the models. For the pro-

posed model, the Bayesian model averaging approach with INLA is used, as discussed

in Section 4.4. I define a regular grid of α1 values centered on 1, and use a uniform

prior for α1 in computing the weights.

4.5.2 Model assessment

The performance of the three modelling approaches are compared by considering the

accuracy in the predicted field x̂(s) and the estimates of model parameters. To predict

the field, I consider the posterior mean E[x(s)|Y] with the corresponding uncertainty

given by the posterior standard deviation
√
V[x(s)|Y], both evaluated over the grid

shown in Figure 4.13a. The following metrics are used for model assessment:

1. Average squared error of the estimated field over S: 1
|S|

∫
S

(
x(s)−E[x(s)|Y]

)2
ds

2. Average posterior uncertainty of the estimated field over S: 1
|S|

∫
S

√
V[x(s)|Y]ds

3. Average Dawid-Sebastiani (DS) score which is a measure of the closeness be-

tween an observed quantity of interest and the prediction distribution, say F.

The DS score is based on a coherent design criterion and is appropriate for

predictive decision problems (Dawid and Sebastiani, 1999). Suppose EF[y] and

VF[y] are the mean and variance, respectively, of the predictive distribution

F(y). The DS score for a prediction on y is given by

(
y − EF[y]

)2

VF[y] + log
(
VF[y]

)
. (4.17)

4. Relative error of each parameter estimate: e.g.,
∣∣∣∣ β̂ − β

β

∣∣∣∣, where β̂ is the posterior

mean of β, i.e., β̂ = E[β|Y].

5. Posterior uncertainty in the parameter estimates: e.g.,
√

V[β|Y] for β.
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The first metric is a measure of the average discrepancy between the estimated field

x̂(s) and the true field x(s), while the second metric assesses the average uncertainty

in the estimated field. I approximate both integrals using the estimated values on the

prediction grid. The third metric is another proper scoring rule that depends on the

predictive mean and variance of the observed data (Gneiting and Raftery, 2007). As

for the first two metrics, a lower value for the average DS score is preferred. Finally,

the last two metrics look at the bias and uncertainty in the parameter estimates. All

simulation results are computed based on 500 independent data replicates.

4.5.3 Simulation study results

Figure 4.16: Comparison of squared errors for the simulated data in Figures 4.13 and 4.14.
The errors from the proposed model are generally the smallest.

Figure 4.17: Comparison of the posterior uncertainty for the simulated data in Figures 4.13
and 4.14. The posterior uncertainty from the proposed model are the smallest.

Figures 4.16 and 4.17 show a comparison of the squared errors and the posterior

standard deviation of the estimated fields, respectively, among the three different

modelling approaches on the data example in Figures 4.13 and 4.14. The stations’

location are shown as white points. The squared errors are largest for the stations-

only model and smallest for the proposed data fusion model (see Figure 4.16). The

posterior uncertainty in the estimated field is also the smallest for the proposed model

(see Figure 4.17). As expected, the posterior uncertainty is smallest at the stations’
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locations, which is very apparent for the stations-only model and the regression cal-

ibration model. The average squared errors for the stations-only model, regression

calibration model, and the proposed model for this specific case are 0.53, 0.42, and

0.27, respectively, while the average posterior uncertainties are 0.78, 0.93, and 0.55,

respectively. The average DS scores are 0.37, 0.08, and -0.23, respectively.

(a) Log average squared error of x̂(s)

(b) Average posterior uncertainty of x̂(s)

(c) Average DS score

Figure 4.18: Plots of the (a) log average squared errors (b) average posterior uncertainty and (c) average scaled DS
scores from 500 simulated datasets with respect the number of stations, the priors used, and the modelling approach:
stations-only model, regression calibration model, and proposed data fusion model. The posterior uncertainty from
the proposed model is smallest. The stations-only model has the highest average squared error.

Figure 4.18a shows a plot of the log average squared errors of the estimated field

x̂(s) based on 500 data replicates for the different simulation scenarios. The proposed
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data fusion model generally gives smaller log average squared errors, especially when

the data on the stations are very sparse. Moreover, the results show that there is

no substantial difference with respect to the priors. Figure 4.18b shows the results

for the average posterior uncertainty. It shows that the proposed model gives lower

uncertainty estimates and that a higher number of stations is associated with lower

posterior uncertainty. The same figure also shows that the specification of priors

does not influence the results. The results for the DS scores are consistent with the

insights from the previous two scores (see Figure 4.18c). Here, I scale the DS scores by

adding the absolute value of the minimum in order to make the scores non-negative,

and then applying log transformation. Furthermore, it also shows that the scores

tend to decrease with the number of stations especially with the use of non-matching

priors.

Figure 4.19 shows a summary of the model averaging weights of the INLA models

for each α1 value. The conditional INLA model with the highest weight corresponds

to the true value α1 = 1.1, and with weights rapidly decreasing as α1 goes further

away from 1.1. The BMA weights do not vary much between the use of matching

and non-matching priors, and the sparsity of the stations data.

Figure 4.19: Average model averaging weights from 500 simulated datasets for different α1 values in fitting the
proposed data fusion model with respect to the sparsity of the stations data and the priors used. The correct value
of α1 has the highest weight.

Figure 4.20 compares the average relative error and average posterior uncertainty

for the measurement error standard deviation σe1 . The proposed method generally

outperforms the other two approaches, especially when the data from the stations

are sparse.
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Figure 4.20: Plot of average relative errors and average posterior uncertainty from 500 simulated datasets for σe1 .

Figures A.1a and A.1b in Appendix A show the results for the marginal standard

deviation and the range parameter of the spatial field ξ(s), respectively, while Figure

A.2 in Appendix A show the results for the fixed effects β0 and β1. Note that for the

aforementioned parameters, a comparison can only be made between the stations-only

model and the proposed model, since these parameters are not defined and specified

in the regression calibration model, as shown in Equation (2.43) of Chapter 2. The

results show that the proposed method outperforms the stations-only model in terms

of the relative error and posterior uncertainty.

4.6 Results for meteorological data in the

Philippines

In this section, I present the results from applying the three modelling approaches

on the meteorological data in the Philippines. Sections 4.6.1, 4.6.2, and 4.6.3 discuss

the results for temperature, relative humidity, and rainfall, respectively. Section 4.6.4

presents the results of the leave-group-out cross-validation.

4.6.1 Temperature

The mean (standard deviation) temperature in the stations and GSM data is 27.67◦C

(1.87) and 25.68◦C (1.96), respectively. The percentage of missing data from the

stations is only 3.8%; while the GSM data has no missing data. The following form
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is assumed for the fixed effects in the latent process:

Temperature(s, t) = β0 +β1 log
(

Elevation(s, t)
)

+β2Cool(s, t)+β3ClimateType(s, t).

(4.18)

The Cool variable in Equation (4.18) is a binary variable which takes a value of

‘1’ for months December to February and a value of ‘0’ for the other months. The

ClimateType variable is also a binary variable which takes ‘1’ for the eastern section

of the country and ‘0’ for the western section (see Section 4.1 for details).

In defining the three models (the stations-only model, the regression calibration

model, and the proposed data fusion model), I used PC priors for the Matérn field

parameters (Fuglstad et al., 2019; Simpson et al., 2017). The parameter values for

the Matérn PC priors are as follows: ρ1o = ρ2o = 300 km, σ1o = 1.90, and σ2o = 0.01.

The value for the range parameters is one-third the maximum distance of the spatial

domain. The value for σ1o is the standard deviation of the temperature values, while

the value of σ2o is chosen to be some value smaller than σ1o based on preliminary

model results. The variance parameters of e1(si, t) and e2(gj, t) are also given PC

priors, with σe1o = 0.2 and σe2o = 0.01. The probability value of all PC priors is set

to 0.50. The rest of the model parameters are given default non-informative priors.

I defined a grid of values from 0.5 to 1.5 with a length step of 0.1 for the multi-

plicative bias parameter α1, and which I assigned a uniform prior. An ensemble of

INLA models were fitted for a fixed α1, and the BMA weights are computed using

Equation (4.13). The marginal log-likelihoods log π
(

Y|α(k)
1

)
and the corresponding

BMA weights wk are shown in Table 4.1. The results show that the weight of the

model with α1 = 1 is approximately equal to 1, while the weights for the other models

are close to 0. This implies that there is no multiplicative bias which is consistent

with the insights in Figure 4.2a.

Table 4.2 shows the posterior estimates of the fixed effects for the stations-only

model and the proposed data fusion model. Note that these parameters are not

explicitly specified and estimated using the regression calibration model, shown in

Equation (2.43) of Chapter 2. The two models agree on the conclusions: it is colder

at higher elevation, cooler during December to February, and areas in the western
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Table 4.1: Marginal log-likelihood values conditional an α1 and the corresponding BMA weights for the temperature
data fusion model

α1 log π(Y|α1) wk

0.5 -978.295 0.0000
0.6 -914.791 0.0000
0.7 -849.673 0.0000
0.8 -778.493 0.0000
0.9 -697.501 0.0001

1 -688.142 1.0000
1.1 -811.927 0.0000
1.2 -899.762 0.0000
1.3 -949.719 0.0000
1.4 -2265.074 0.0000
1.5 -2329.848 0.0000

Table 4.2: Posterior estimates of fixed effects for the temperature model – stations-only model versus proposed data
fusion model

Stations-only model Proposed model
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
β0 28.664 2.6270 23.510 33.818 28.919 4.603 19.897 37.940
β1, log(Elevation) -0.631 0.094 -0.815 -0.446 -0.709 0.051 -0.808 -0.609
β2, Cool -0.683 0.198 -1.072 -0.295 -0.6178 0.177 -0.965 -0.271
β3, Climate Type 2.183 0.699 0.813 3.553 0.606 0.337 -0.054 1.266

section of the country are cooler. The ClimateType variable is not significant in the

proposed data fusion model, but is significant in the stations-only model. Finally,

the uncertainty in the fixed effects, expect for β0, is smaller for the proposed model.

The posterior estimates of the hyperparameters from the three approaches are

quite similar (see Table A.1 in Appendix A). In the proposed data fusion model, the

estimated range of the spatial field, ρ̂1, is higher than the one for the error field,

ρ̂2, indicating that ξ(s, t) is smoother than α0(g, t). The spatial correlation in the

temperature spatial field and the error field becomes negligible at a distance of around

765 km and 113 km, respectively. Also, the estimated marginal standard deviation

σ̂1 of the spatial field is much larger than that of the error field σ̂2. The estimated

autocorrelation parameters ϕ̂1 and ϕ̂2 in both the spatial field and error field are close

to 1 which suggests a high degree of dependence in time. Moreover, the posterior

estimates of the regression calibration model are shown in Table A.2 of Appendix A.

The 2.5th and 97.5th percentile of the multiplicative bias estimates of the regression

calibration model are 0.9 and 1.1, respectively. These values do not change much

in space and time, which justifies the assumption of a constant α1 in the proposed
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(a) Predicted temperature fields

(b) Posterior uncertainty (log scale)

Figure 4.21: Comparison of the estimated temperature fields and
corresponding posterior uncertainties (log scale) for August 2019.
The posterior uncertainties from the proposed data fusion model are
smaller.

Figure 4.22: Estimated error field for
the temperature model for August 2019.
The estimated error fields at the specific
stations correspond to the additive bias
shown in Figure 4.2.

model.

Figure 4.21a shows that the estimated temperature fields (for August 2019) among

the three approaches are very similar. The dark spot in the northern part of the

country is primarily mountainous which makes it cooler than the other parts of the

country. Moreover, Figure 4.21b shows the corresponding posterior standard devia-

tions (SD) in log scale. The uncertainty is higher for the two benchmark approaches,

especially in the islands in the lower left portion. The average posterior SD of the

estimated fields from the stations-only model, regression calibration model, and the

data fusion model is 1.239, 1.123, and 0.771, respectively. Moreover, the posterior

SD is smaller at the stations’ locations (green points) which is more apparent for the

two benchmark approaches. Figure A.3 of Appendix A shows the estimated spatial

fields, ξ̂(s, t), for the three approaches and for the same month. The spatial structure

looks quite similar as the estimated temperature fields in Figures 4.21a.

Figure 4.22 shows the estimated error field α̂0(gj, t) for the GSM data in August

2019. This plot can be compared to Figure 4.2a which shows the discrepancies in the

values between the weather stations and the GSM outcomes. In particular, Figure
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(a) w1(s, t) vs x̂(s, t) (b) w2(g, t) vs x̂(g, t) (c) w2(g, t) vs ŵ2(g, t)

Figure 4.23: Plot of observed temperature values versus predicted values using the proposed data fusion model for
(a) weather stations, (b) GSM data, and (c) calibrated GSM data. The blue line is the smooth local regression curve,
while the red line is the identity line.

4.22 shows that the estimated additive bias around Baguio station (in blue) is the

highest, indicating that the GSM overestimated the temperature in this region. This

is consistent with Figure 4.2 which shows that the GSM values exceed the observed

data at Baguio station. Similarly, the estimated additive bias around Malaybalay (in

red) is negative, which aligns with the negative bias seen in the GSM outcomes for

this area. For Tanay station (in cyan), the estimated additive bias is close to zero,

which is also consistent with Figure 4.2 which shows little to no bias in the GSM

outcomes at this location.

Figure 4.23a shows a close correspondence between the observed values at the

stations w1(si, t) and the corresponding predicted latent values x̂(si, t) using the pro-

posed data fusion model. Figure 4.23b, which shows a scatterplot between the ob-

served GSM values w2(gj, t) and the corresponding predicted latent values x̂(gj, t),

indicates a strong bias in the GSM values, with several points that are either over-

estimated or underestimated. Finally, Figure 4.23c shows a very close correspon-

dence between the GSM data values w2(gj, t) and the predicted values ŵ2(gj, t) =

α̂0(gj, t) + α̂1x̂(gj, t). This implies that the error field can be effectively used to cali-

brate the GSM outcomes for temperature via x̂(gj, t) =
(

w2(gj, t) − α̂0(gj, t)
)
/α̂1.

4.6.2 Relative humidity

The mean (standard deviation) of the observed relative humidity (RH) is 81.51 (6.06)

for the stations and 83.33 (4.86) for the GSM. The percentage of missing values from

the stations data is only 3.74%. Although the RH variable is bounded from 0 to 100,
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I assumed a Gaussian likelihood for the response variable, which is reasonable since

the range of the RH values in the data is from 61 to 94.36, i.e., none of the values are

equal to the bounds. Also, all the predicted values from the models are well within

the bounds. A model which properly constrains the values can be considered in a

future work.

The predictor expression for the fixed effects in the latent process is as follows:

log
(

RH(s, t)
)

= β0+β1 log Temperature(s, t) + β2

(
log Temperature(s, t)

)2

+ β3 log
(

Elevation(s, t)
)

+ β4ClimateType(s, t).
(4.19)

Elevation and ClimateType are also used as predictors. In addition, I used log

temperature and its quadratic term, as recommended by PAGASA (2023). Such non-

linear relationship between RH and temperature is also established in the atmospheric

science literature (Goody, 1995). A log transformation on temperature is possible

since the Philippines is a tropical country with mean temperature ranging from 16◦C

to 32◦C. I used the predictions generated from the temperature model in Section

4.6.1 as input in Equation (4.19). In the current results, the uncertainty from the

predicted values of temperature are not accounted for, but this can be considered in

a future work.

PC priors are used for the Matérn field parameters. For the range, I used the

same values as in Section 4.6.1. For the marginal standard deviation, I set σ1o = 0.08

and σ2o = 0.01. The variance parameters of e1(si, t) and e2(gj, t) are also given PC

priors, with σe1o = 0.01 and σe2o = 0.004. The probability value in the PC priors

are also set equal to 0.50. The rest of the model parameters are given the default

non-informative priors.

I used the same grid of α1 values as Section 4.6.1 to fit the conditional INLA

models. The results shows that the model with α1 = 1 gave the highest marginal

log-likelihood value and with a weight close to 1, while the rest of the α1 values have

weights close to 0. The marginal log-likelihoods log π
(

Y|α(k)
1

)
and the corresponding

BMA weights wk are shown in Table A.3 of Appendix A.

Table 4.3 shows the posterior estimates of the model fixed effects for the stations-

only model and the proposed data fusion model. The estimates are quite similar,
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although the ClimateType variable is not significant in the stations-only model. The

results show that there is a significant non-linear relationship between temperature

and relative humidity, and that the elevation variable is negatively associated with

relative humidity. Moreover, the ClimateType variable is positively related with

relative humidity, which means that areas in the eastern section of the country have

higher relative humidity, on average, than the western part.

Table 4.3: Posterior estimates of fixed effects for the relative humidity model – stations-only model versus proposed
data fusion model

Stations-only model Proposed model
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
β0 4.451 0.030 4.392 4.509 4.451 0.050 4.353 4.548
β1, log(Temperature) 0.567 0.048 0.473 0.661 0.790 0.039 0.714 0.866
β2, log(Temperature)2 -0.173 0.014 -0.201 -0.145 -0.237 0.012 -0.260 -0.215
β3, log(Elevation) -0.008 0.003 -0.014 -0.002 -0.013 0.002 -0.017 -0.010
β4, Climate Type 0.028 0.0180 -0.007 0.063 0.026 0.009 0.009 0.043

As in Section 4.6.1, the range ρ1 of the spatial field in the latent process ξ(s, t)

is estimated to be larger than the range ρ2 of the error field α0(s, t) (see Table A.4

of Appendix A). Moreover, the estimated marginal variance of the spatial field is

also larger than that of the error field. The estimates of the AR parameter are both

close to 1, although the estimated value of the parameter for the spatial field is

higher than that of the error field. Moreover, Table A.5 of Appendix A shows the

posterior estimates of the regression calibration model for relative humidity. The 2.5th

and 97.5th percentile of the multiplicative bias estimates of the regression calibration

model are 0.96 and 1.02, respectively. The values are close to 1, which justifies the

assumption of a constant α1 in the proposed model, and agrees with the results from

the proposed model.

Figure 4.24 shows the estimated relative humidity fields for two different months:

August 2019 and January 2020. These two specific months were chosen since August

is a rainy month while January is a dry month (PAGASA, 2023). The predicted fields

show very similar structure, although it is apparent that there is more smoothing in

the estimates from the stations-only model. The estimated fields show that in the

eastern section of the country, the level of relative humidity is similar for the two

months. On the other hand, in the western section, particularly in the northwestern

section, relative humidity is very high in August, and very low in January. These
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dynamics in relative humidity is consistent with the climate types in the Philippines

(Coronas, 1920; Kintanar, 1984a; PAGASA, 2023). Figure 4.25 shows the correspond-

ing uncertainty estimates of the estimated relative humidity fields. As expected, the

proposed data fusion model has the lowest posterior uncertainty. The average of

the posterior standard deviation in the predicted fields from the stations-only, re-

gression calibration, and the proposed data fusion model is 0.040, 0.055, and 0.022,

respectively.

The estimated spatial field of the latent process, ξ̂(s, t), for the same two months

are shown in Figure A.4 of Appendix A. The spatio-temporal dynamics observed in

Figure 4.24 are also evident in the estimated spatial fields. The estimated error fields

for the same two months are shown in Figure A.5 of Appendix A. Finally, Figure

A.6 of Appendix A shows different scatterplots that indicate a close correspondence

between the observed and predicted values, and a strong bias in the GSM values.

(a) Stations-only model (b) Regression calibration model (c) Proposed data fusion model

Figure 4.24: Comparison of estimated relative humidity fields for August 2019 and January 2020: (a) stations-
only model, (b) regression calibration model, and (c) proposed data fusion model. There is more smoothing in the
estimated fields using the stations-only model.

(a) Stations-only model (b) Regression calibration model (c) Proposed data fusion model

Figure 4.25: Posterior uncertainty of the estimated relative humidity fields in Figure 4.24. The posterior uncertainty
in the estimated field from using the stations-only model is much higher.
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4.6.3 Rainfall

The mean (standard deviation) of the cumulative monthly rainfall (in mm) is 220.27

(207.69) for the stations data and 166.12 (114.99) for the GSM data. Since the

Philippines has high amounts rainfall and the values are aggregated monthly, there

are very few zeros in the data (1.52% for the stations data and 0% for the GSM).

The predictor expression for the fixed effects is as follows:

log
(

Rainfall(s, t) + 1
)

= β0+β1 log Temperature(s, t) + β2

(
log Temperature(s, t)

)2

+ β3Season(s, t) + β4ClimateType(s, t)

+ β5ClimateType(s, t) × Season(s, t).

(4.20)

The Season variable is binary and takes a value of ‘1’ for June to November

(characterized as a wet period), and a value of ‘0’ for the rest of the year (characterized

as a dry period). As with the relative humidity model, the log temperature and its

squared term are included as predictors, as recommended by PAGASA (2023). I

also used the predictions from the temperature model as input in Equation (4.20),

but without accounting for the posterior uncertainty when fitting the model. An

interaction effect between ClimateType and Season was included to capture the

climate dynamics of the country, as recommended by PAGASA (2023).

As for the previous models, PC priors are used for the Matérn field parameters.

For the range parameters, I used the same values as before, while for the marginal

standard deviations, I set σ1o = 1.35, and σ2o = 0.01. The variance parameters of

e1(si, t) and e2(gj, t) are also given PC priors, with σe1o = 0.5 and σe2o = 0.26. The

probability value in the PC priors is equal to 0.50. The rest of the model parameters

are given the default non-informative priors.

Figure 4.26 shows the estimated marginal posterior distribution of α1, π(α1|Y).

The posterior mean is 0.6733 while the 95% credible interval estimate is (0.5607,

0.8353). Unlike the two previous climate variables, the multiplicative bias parameter

for the GSM outcomes for rainfall is significantly different from 1, implying a more

severe bias for rainfall outcomes. This is expected since Figure 4.2c shows a large
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Figure 4.26: Estimated marginal posterior of α1, π(α1|Y), for the rainfall data fusion model. The posterior mean
is 0.6733, while the 95% credible interval estimate is (0.5607, 0.8353).

discrepancy between the interpolated GSM outcomes and the observed values at the

weather stations for log-transformed rainfall. This also agrees with the insights from

the LGOCV results discussed in Section 4.6.4.

Table 4.4 shows the posterior estimates of the fixed effects for the stations-only

model and proposed data fusion model. The results show that log temperature has

a non-linear association with log rainfall amounts. Moreover, there is a significant

interaction between Season and ClimateType: the western part of the country has

a pronounced dry and wet season, while the eastern part of the country has a less

pronounced dry and wet season and with more or less evenly distributed rainfall for

the whole year. This can be confirmed in Figure 4.27 which shows the predicted log

rainfall fields for two months - August 2019 (rainy month) and January 2020 (dry

month). This climatic pattern is consistent with theory (Coronas, 1920; Kintanar,

1984a; PAGASA, 2023), and are the same seasonal dynamics observed for relative

humidity in Section 4.6.2.

Table 4.4: Posterior estimates of fixed effects for the log rainfall model – stations-only model versus proposed data
fusion model

Stations-only model Proposed model
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
β0 4.427 0.360 3.722 5.132 4.759 0.377 3.931 5.484
β1, log(Temperature) 2.186 0.454 1.296 3.076 1.672 0.430 0.911 2.541
β2, log(Temperature)2 -0.699 0.134 -0.961 -0.437 -0.570 0.122 -0.809 -0.354
β3, Season 0.795 0.306 0.195 1.395 0.444 0.261 -0.020 0.973
β4, Climate Type 1.183 0.146 0.898 1.469 0.657 0.112 0.458 0.873
β5, Climate Type × Season -0.844 0.162 -1.161 -0.527 -0.287 0.099 -0.461 -0.106

Table A.6 of Appendix A shows the posterior estimates of the hyperparameters
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for the stations-only model and the proposed data fusion model. Similar to the

previous meteorological variables, the estimated range ρ̂1 of the spatial field in the

latent process is larger than the estimated range ρ̂2 of the error field. This is also true

for the estimated marginal variances of the two fields. The estimated autocorrelation

parameters of the two fields are very different, with the AR parameter for the error

field being much larger. Table A.7 of Appendix A shows the posterior estimates of

the regression calibration model for rainfall. The 2.5th and 97.5th percentiles of the

multiplicative bias estimates of the regression calibration model are 0.35 and 1.35,

respectively. The values vary significantly in space and time, raising doubt about the

assumption of a constant α1 in the proposed model. This agrees with the exploratory

plot in Figure 4.2c, which is also noted as a limitation of the model for the rainfall

variable. A model that specifies a spatially and temporally-varying multiplicative bias

in the proposed model can be explored in a future work. This can be computationally

difficult since this involves estimating the product of two random fields.

(a) Stations-only model (b) Regression calibration model (c) Proposed data fusion model

Figure 4.27: Comparison of estimated log rainfall fields for August 2019 (wet season) and January 2020 (dry season)
between (a) stations-only model, (b) regression calibration model, and (c) proposed data fusion model. The figures
show that the western section of the country has a pronounced dry and wet season.

(a) Stations-only model (b) Regression calibration model (c) Proposed data fusion model

Figure 4.28: Posterior uncertainty of the estimated log rainfall fields in Figure 4.27 for three approaches: (a)
stations-only model, (b) regression calibration model, (c) proposed data fusion model. The posterior uncertainty in
the estimated fields from the proposed data fusion model is the smallest.

The estimated log rainfall fields from the three approaches look similar (see Figure
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4.27), but the uncertainty in the predictions from the proposed data fusion model is

the smallest as expected, which are shown in Figure 4.28. The estimated spatial fields

from the three modelling approaches for the same two months are shown in Figure

A.7 of Appendix A, while the estimated error fields for the same two months from the

proposed data fusion model are shown in Figure A.8 of Appendix A. Finally, Figure

A.9 of Appendix A shows different scatterplots that indicate the correspondence

between the observed and predicted values, although these are not as strong as the

previous two meteorological variables. In particular, Figure A.9b of Appendix A

shows the severe bias in the GSM values for rainfall.

4.6.4 Leave-group-out cross-validation

This section evaluates the predictive accuracy of the three modelling approaches using

the leave-group-out cross-validation (LGOCV) approach (Adin et al., 2023; Liu and

Rue, 2022). Contrary to the leave-one-out cross-validation method which estimates

the predictive density for an observation at location si at time t by removing the same

observation from the training set, the LGOCV approach computes the predictive

densities by leaving out a set, say Isi
, of data points which includes the testing point

and observations most related to it. The LGOCV is a better alternative than the

leave-one-out cross-validation to evaluate prediction accuracy for structured models

such as multi-level models, time series models, and spatial models (Adin et al., 2023;

Liu and Rue, 2022) as it makes the unobserved data less dependent on the observed

data, which is desirable when the goal of the prediction is extrapolation at unobserved

locations. The LGOCV is efficiently implemented in the INLA library, with the details

of the implementation found in Liu and Rue (2022).

Liu and Rue (2022) proposed two strategies to determine the leave-out sets Isi
:

an automatic procedure based on the estimated correlation of the elements of the

latent field, and a manual or user-defined approach. In this study, I use the latter

strategy and implement the following: for each station si, the leave-out set Isi
for

predicting w1(si, t) consists of the station at the spatial location si and all stations

within its proximity (see Figure 4.29). In particular, four values are considered for

the radius of the leave-out set: 60, 80, 125, and 150 km. Note that the testing point
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Figure 4.29: Illustration of the LGOCV approach. The model is fit on the training set (red) after excluding the
leave-out set (blue and green), and then predictions are made on the testing point (green).

is also considered part of the leave-out set. Also, I remove the observed values for all

time points for each station in Isi
.

In implementing the LGOCV, I use the approximation of the LGOCV predictive

density for INLA models proposed in Liu and Rue (2022). The LGOCV predictive

density for a station at location si and time t is given by π
(
w1(si, t)|Y−Isi

)
. Note

that the training set Y−Isi
includes all data from the GSM and that only data from

stations are left out. In particular, for this specific application, the approximation is

done via the following nested integrals:

π
(
w1(si, t)|Y−Isi

)
=
∫
θ

π
(
w1(si, t)|θ,Y−Isi

)
π
(
θ|Y−Isi

)
dθ

π
(
w1(si, t)|θ,Y−Isi

)
=
∫
π
(
w1(si, t)|η(si, t),θ

)
π
(
η(si, t)|θ,Y−Isi

)
dη(si, t),

where θ denotes the model hyperparameters, while η(si, t) ≡ E[w1(si, t)] = x(si, t).

The details on how the nested integrals are approximated are detailed in Liu and Rue

(2022).
I consider the mean of the predictive density π

(
w1(si, t)|Y−Isi

)
as the predicted

value at a testing point si, where Y−Isi
denotes the training set. Suppose N denotes

the total number of data points from the stations. The following are the posterior
prediction scores to compare the three modelling approaches:

1. LGOCV logarithmic utility (ULGOCV): 1
N

∑
∀i,t

log π
(

w1(si, t)|Y−Isi

)
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2. Root mean squared error (RMSE):
√

1
N

∑
∀i,t

(
w1(si, t) − E

[
w1(si, t)|Y−Isi

])2

3. Mean absolute error (MAE): 1
N

∑
∀i,t

∣∣w1(si, t) − E
[
w1(si, t)|Y−Isi

]∣∣
4. Mean absolute percentage error (MAPE): 1

N

∑
∀i,t

∣∣∣∣∣w1(si, t) − E
[
w1(si, t)|Y−Isi

]
w1(si, t)

∣∣∣∣∣
5. Mean of the SD of predictive density of x(si, t) (MSD): 1

N

∑
∀i,t

√
V
[
x(si, t)|Y−Isi

]
6. Mean Kullback-Leibler divergence (MKLD): 1

N

∑
∀i,t

DKL

(
π
(
x(si, t)|Y−Isi

)∣∣∣∣π(x(si, t)|Y
))

The LGOCV logarithmic utility (ULGOCV) is the mean of the log predictive

densities π
(

w1(si, t)|Y−Isi

)
which is related to the conditional predictive ordinate

(Pettit, 1990). A higher value for the ULGOCV implies better model fit. Moreover,

DKL(·||·) denotes the Kullback-Leibler (KL) divergence metric, so that the MKLD is

the mean of the KL divergence between the predictive density for x(si, t) given the

complete data and the predictive density when excluding Isi
. A smaller value for the

MKLD implies a better model fit.

Figure 4.30 shows a comparison of the posterior prediction scores for the temper-

ature model. The proposed data fusion model generally has the highest ULGOCV

especially when the leave-out set is large. The proposed model also has the smallest

RMSE, MAE, MAPE, MKLD, and MSD. The prediction scores for the stations-only

model and the regression calibration model deteriorate with the size of the leave-out

set, while the scores for the proposed model are stable. The LGOCV results for the

temperature model show that the proposed data fusion model outperforms the other

two approaches, and that the stations-only model fares better than the regression

calibration approach.

Similar results hold for relative humidity (Figure A.10 of Appendix A) and log

rainfall (Figure A.11 of Appendix A). The benefits from doing data fusion is smaller

for rainfall since there is no substantial difference in the scores, particularly for RMSE,

MAPE, and MKLD, especially when the leave-out-sets are small. One potential

reason for this is that the quality of the GSM outcomes for rainfall is lower compared

to the other two meteorological variables, which is apparent from Figure 4.2 and from

the model results, particularly with the estimated value of α̂1 < 1 for the rainfall data

fusion model. Nonetheless, the LGOCV results show that the proposed data fusion
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Figure 4.30: Comparison of LGOCV results for temperature from three models: stations-only model, regression
calibration model, and the proposed data fusion model

model generally outperforms the other two approaches for the three meteorological

variables considered.

4.7 Conclusions

Data fusion, which combines information from different data sources, has the po-

tential benefit to improve model accuracy and prediction quality, while dealing with

varying quality of the data sources (Bauer et al., 2015; Gettelman et al., 2022; Lawson

et al., 2016). This chapter addresses a data fusion challenge motivated by meteoro-

logical data in the Philippines. The proposed model is based on the Bayesian melding

model, which assumes a common latent process across data sources, and extends ex-

isting work in the literature (Forlani et al., 2020; Moraga et al., 2017; Villejo et al.,

2023; Zhong and Moraga, 2023). In particular, I introduce a time-varying random

field to model the additive bias in the numerical forecast model, termed error field,

along with a constant multiplicative bias parameter. The goal of the proposed model

is to perform spatial interpolation at a present time rather than make predictions for

future time points.

The model offers several advantages: it defines a unified latent process for all data

outcomes, accounts for measurement errors for all data sources, provides flexibility
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in addressing biases, accommodates multiple spatially-misaligned data sources, and

gauges the relative quality of the data sources. Although I assume that the multi-

plicative bias parameter α1 is constant, the model can be extended to allow α1 to vary

over space or time, adding complexity but potentially improving accuracy in other

applications. This extension is challenging because it involves estimating the product

of two random fields. Furthermore, the proposed model treats the areal proxy data as

point-referenced at the centroids of the grid cells. A (preliminary) simulation study

was conducted to verify this assumption. The results show that this assumption is

reasonable since the performance of the (full) Bayesian melding model and the sim-

plified version are comparable in terms of the average squared error of the estimated

field, and that the simplified version yields smaller posterior uncertainties.

A simulation study was performed to compare the proposed data fusion model

to two benchmark models: a stations-only model and a regression calibration model.

The main goal was to evaluate the model’s performance under varying levels of data

sparsity and prior specifications. The results showed that the proposed fusion model

achieved lower squared errors and lower posterior uncertainty in the estimated fields,

especially with sparse stations data. The proposed model also has lower Dawid-

Sebastiani scores. In terms of the relative error and posterior uncertainty in the

model parameter estimates, the proposed data fusion model also outperformed the

two benchmark models.

In the data application, where three important meteorological variables are con-

sidered, the proposed model outperformed the stations-only model and the regres-

sion calibration model based on the leave-group-out cross-validation (LGOCV). The

LGOCV results, calculated via the INLA method (Liu and Rue, 2022), showed that

the proposed model provides better predictions with higher log predictive densities,

smaller mean Kullback-Leibler divergence (KLD), and more accurate predictive scores

(RMSE, MAE, MAPE, posterior uncertainty). Notably, the model’s advantage grew

with larger leave-out sets.

While this study considered only two meteorological data sources for the Philip-

pines, the framework can be extended to include additional sources, such as satellite

data or a second numerical forecast model. This would introduce new bias parame-
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ters and error fields, broadening the model’s utility. Future work could also involve

incorporating longer time series data, which could enhance the model’s capabilities.

The proposed data fusion framework, while developed for meteorological data, is

applicable in other fields, such as air quality modelling (see the motivating example in

Section 1.2.2 of Chapter 1). For example, in the UK, combining data from a network

of monitoring stations called the Automatic Urban and Rural Network (AURN) (Lee

et al., 2017), outcomes from a weather and chemical transport model called the Air

Quality Unified Model (AQUM) (DEFRA, 2024; Forlani et al., 2020), and outcomes

of dispersion models like the Pollution Climate Mapping (PCM) model which are

run by Ricardo Energy & Environment (DEFRA, 2024; Forlani et al., 2020), could

improve air quality predictions, which are crucial for public health. Unlike many

existing models that consider one additional data source at a time, the proposed

approach in this chapter allows for the joint use of multiple sources, while accounting

for biases in each.

Another area where the proposed data fusion framework is applicable is in species

distributions modelling. With technological advancements, data collection efforts to

study the natural world have significantly increased, which are accompanied with a

surge in data contributions from the general public, commonly referred to as citizen

science data (August et al., 2015; Belmont et al., 2024). However, there are also

concerns with regards to the quality of these data, particularly due to systemic biases

(August et al., 2015; Koh and Opitz, 2023; Van Strien et al., 2013). These biases stem

from uneven geographical coverage, differences in observer expertise, and variable

effort in data collection. The appropriate use of citizen science data together with

data from well-planned surveys falls within the realm of data fusion. The data fusion

framework proposed in this chapter views these different data sources as realizations

of the same latent process and, therefore, can be extended to the ecological context by

assuming some probabilistic structure in the biases in the citizen science data while

borrowing strength from the accuracy of the outcomes from well-planned surveys.

The INLA and the SPDE approach was used for model inference because they

provide fast and reliable fitting of complex spatio-temporal models (Lindgren et al.,

2011; Rue et al., 2009). A potential challenge in the computational aspect is that
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the multiplicative bias parameter α1 can be hard to identify and, therefore, can lead

to numerical problems. To overcome these, a Bayesian model averaging approach is

used, which allowed the fitting of the data fusion model conditional on fixed values of

α1. This is a viable approach, since there is an intuitive understanding of the plausible

values of this bias parameter. Another approach for fitting the model is to include

the parameter α1 in the latent Gaussian field, and perform a linearization on the non-

linear predictors using a first-order Taylor approximation, and to iteratively do this

by looking for the optimal linearization point. This can be implemented using the

inlabru library (Bachl et al., 2019; Lindgren et al., 2024; Serafini et al., 2023). Since

the convergence of this approach and the properties of the approximation depend

on the non-linear nature of the problem, it can also be computationally challenging

for some cases. The use of a model averaging approach successfully removed the

computational challenges, but the linearized INLA approach, previously described, is

also a viable approach for the problem and will be further explored in a future work.

An immediate forthcoming work is to use the predicted fields from the data fusion

model as input in an epidemiological model, in order to understand the link between

climate data and health outcomes. This introduces another layer of spatial mis-

alignment, since typically data for the health outcomes are areal while the predicted

fields from the climate data fusion models are point-referenced. This is pursued in

the next chapter, Chapter 5, which aims to link climate and dengue incidence in the

Philippines. Moreover, in this two-stage modelling framework, accounting for the un-

certainty in the data fusion model when fitting the health model should be carefully

considered. The problem of uncertainty propagation has been studied in the context

of health modelling (Blangiardo et al., 2016; Gryparis et al., 2009; Lee et al., 2017)

and which generally falls under the area of measurement error models (Berry et al.,

2002). This is formally discussed in Chapter 6.
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Chapter 5

Linking climate and dengue in the

Philippines

5.1 Introduction

Dengue fever is an infectious disease caused by the dengue arbovirus and commonly

transmitted by two mosquito species: Aedes aegypti and Aedes albopictus. Section

1.2.1 explained the public importance of controlling dengue transmission. Relevant

statistics on the global incidence and projections of the disease are also presented in

Section 1.2.1.

This chapter focuses on the Philippines, a tropical country in Southeast Asia

that has consistently been among the nations with the highest dengue incidence in

the region (Undurraga et al., 2017, 2013). In the period 2008 – 2012, the country’s

Health Department reported an annual average of 117,065 dengue cases, and a fatality

rate of 0.55% (Edillo et al., 2015). The last dengue epidemic in the country occurred

in 2019, with 437,563 recorded cases, the highest number ever recorded worldwide

(Ong et al., 2022).

Dengue virus spend part of their life cycle in the external environment; thus, dis-

ease transmission is particularly influenced by climatic factors. Section 5.3 presents

a literature review on the association between dengue and climate variables, partic-

ularly temperature, rainfall, and relative humidity.
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Studies relating dengue to climate factors in the Philippines have mainly employed

relatively simple statistical methodology and limited the analysis to a subarea rather

than the entire country, relying on rather sparse covariate data measured at a small

number of weather stations. These analyses include correlation analysis or classical

linear models such as MANOVA (Dulay et al., 2013; Duque-Lee et al., 2020; Edillo

et al., 2022, 2024; Marigmen and Addawe, 2022a,b; Murphy et al., 2022; Su, 2008),

generalized additive modelling (Carvajal et al., 2018; Cawiding et al., 2025; Cruz

et al., 2024), deterministic climate-dengue risk functions (Xu et al., 2020), general-

ized linear models like a Poisson regression (Francisco et al., 2021; Iguchi et al., 2018),

classical time series approaches such as ARIMA models (Pineda-Cortel et al., 2019),

or spectral analysis methods, which also focus on the temporal and/or seasonal vari-

ations of the relationship between climate and dengue (Francisco et al., 2021; Subido

and Aniversario, 2022; Sumi et al., 2017), or machine learning algorithms (Buczak

et al., 2014; Carvajal et al., 2018). Seposo et al. (2023) employed a mixed modelling

framework, but they only considered unstructured random intercepts in space and

time.

This chapter aims to contribute to the literature on the association between cli-

mate variables and dengue disease. The specific goal is to understand the covariate

effect, rather than to predict future outbreaks or to assess the impacts of climate

change on dengue incidence. The novelty of this chapter lies in the use of a complex

two-stage Bayesian spatio-temporal model that incorporates both structured and un-

structured random effects across space and time, including their interactions. The

models account for the complex spatial structure of the Philippines, which forms an

archipelago consisting of more than 7000 islands, while employing a data-fusion ap-

proach making use of climate data from weather stations and a weather prediction

model.

To assess the association between climate and dengue, I use a two-stage model in

a Bayesian framework (Figure 1.6 in Chapter 1). The first stage fits climate models,

and produces predicted surfaces of the climate variables. The second-stage model is

the health model, where dengue incidence is the outcome variable, and the climate

predictions from the first-stage model are the primary covariates of interest. As
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discussed in Section 1.3, a two-stage modeling framework is typically used in spatial

analysis, particularly in cases where response variable and predictors are spatially

misaligned, and is common in spatial epidemiology (Blangiardo et al., 2016; Cameletti

et al., 2019; Gryparis et al., 2009; Lee et al., 2017; Liu et al., 2017; Szpiro et al., 2011).

In this work, dengue incidence (the response) is areal, while the climate variables are

point-referenced, resulting in spatial misalignment.

Section 1.3 in Chapter 1 presents a justification for the use of a two-stage modelling

framework, rather than a joint modelling approach. To emphasize an important

point, a two-stage modelling framework is appropriate and reasonable in this specific

context for the following reasons: (a) it is computationally efficient, (b) it offers an

intuitive physical interpretation, (i.e. climate affects dengue but not the other way

around) and (c) it avoids potential feedback effects. In this chapter, I use the posterior

sampling approach (Blangiardo et al., 2016; Cameletti et al., 2019; Liu et al., 2017;

Villejo et al., 2023; Zhu et al., 2003) to account for the uncertainty in the climate

predictions.

In most studies examining the relationship between dengue and climate, including

those focusing on the Philippines, data from meteorological stations are the primary

source of climate data. The measurements taken at these stations are considered

the gold standard due to their high accuracy. However, weather station networks

are typically sparse, as is the case in the Philippines (see Figure 1.3a or Figure 4.1).

Models trained on sparse data often produce predictions with high uncertainty and

potential biases (Lawson et al., 2016). To mitigate these challenges, I use the data

fusion models developed in Chapter 4, which were based on two climate data sources:

weather synoptic stations and the GSM forecast model.

For inference, I use integrated nested Laplace approximation (INLA), as it pro-

vides fast and accurate posterior estimates (Rue et al., 2009). In addition, I use the

stochastic partial differential equations (SPDE) approach (Lindgren et al., 2011) to

represent spatial Gaussian Matérn fields in the climate models. The combination of

INLA and the SPDE approach has proven to be a powerful tool for spatial or spatio-

temporal analysis (Bakka et al., 2018; Blangiardo and Cameletti, 2015; Cameletti

et al., 2013; Lindgren and Rue, 2015; Schrödle and Held, 2011).
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This chapter is structured as follows: Section 5.2 presents the data sources and an

initial data exploration. Section 5.3 presents a literature review on the link between

climate and dengue. The proposed models are discussed in Section 5.4. Estimation

strategies are presented in 5.5, which highlights the approach for uncertainty propa-

gation in Section 5.5.2. Results and discussion are presented in Section 5.6, followed

by conclusions and future work in Section 5.7.

5.2 Data

Figure 5.1: Time series plot of the number of dengue cases in the Philippines from January 2016 to January 2021

Data on dengue cases were retrieved from the United Nations Office for the Coor-

dination of Humanitarian Affairs, whose primary mandate is to support humanitarian

organizations worldwide through data collection, information dissemination, funding

and resource mobilization, development of policies to meet the needs of crisis-affected

people, and implementation of campaigns that advocate for humanitarian action. The

data consist of weekly dengue case counts at the provincial level from 2016 to 2020.

Data prior to 2016 were excluded due to differences in surveillance and reporting

practices. Specifically, by 2015, the country’s Health Department mandated nation-

wide reporting to include probable cases, whereas previously only clinically-confirmed

cases were recorded in selected sentinel sites (Seposo, 2021). For the analysis, I aggre-

gate the data to monthly level. Figure 5.1 shows a plot of monthly dengue cases in the

Philippines from January 2016 to January 2021. As noted in Section 1.2.1 in Chapter

1, seasonality is evident, with cases generally higher during the rainy season (June

to November). Notably, there is an unusually high number of cases from August

to October 2019, which was a period of national dengue alert and epidemic (BBC,
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2019). Moreover, during 2020, coinciding with the onset of the COVID-19 pandemic,

the number of reported cases is very low. This global phenomenon (WHO, 2023a)

was attributed to both reduced mobility – several studies have shown that limited

household movement is linked to lower transmission (Stoddard et al., 2013) – and re-

porting hesitancy, as individuals were afraid of contracting COVID-19 when visiting

health facilities (Seposo, 2021).

Figure 1.2 in Chapter 1 shows a plot of the annual (2016 to 2020) total number

of dengue cases in the country. As already noted, 2019 had the highest number of

cases, and it also shows specific areas with the highest number of recorded cases. The

areas with high cases are the same areas identified by the Health Department of the

country as requiring immediate emergency attention (BBC, 2019).

In epidemiological applications, a measure of risk, which accounts for the differ-

ences in the sizes and demographic structure of the provinces or areas, is typically

mapped (Waller and Carlin, 2010; Waller and Gotway, 2004). A common measure

of risk is the standardized incidence ratio (SIR), and is computed as the ratio of ob-

served and expected cases. The expected cases are typically computed using indirect

standardization, which involves applying age-specific rates (incidence proportions)

of a standard population on the study population (Waller and Gotway, 2004). The

age-specific national rates can be used, which are then applied on each age stratum

for each province. However, a limitation of the data is that there are no information

on age-specific rates. Hence, I used internal standardization to compute the expected

cases. This approach uses an estimate for the baseline individual risk based on the

national observed disease rate (Waller and Carlin, 2010). This is further detailed in

Section 5.4.1. Figure 5.2 shows a plot of dengue SIRs for specific months: August

2019 to November 2019. The reason for choosing these specific months is that they

correspond to the period of high incidence of dengue, based on Figure 5.1. The plot

shows, specifically for August 2019, that the area with the highest number of reported

cases (see Figure 1.2 in Chapter 1) is also the area with the highest SIR.

For climate variables, I used the same data from Chapter 4: a sparse network

of weather stations, and outcomes of GSM. For the main results in this chapter, I

used existing climate predictions from the data fusion models in Chapter 4, since
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Figure 5.2: Plot of standardized incidence ratios (SIR) of dengue in the Philippines from August 2019 to November
2019

predicted fields based on sparse stations data either have high uncertainty or more

biased (Lawson et al., 2016). However, the data fusion models cover only years 2019

to 2020, due to data availability constraints. Thus, I also explored the use of longer

monthly time series, albeit for stations only, from 2016 to 2020, for the same climate

variables: temperature (in ◦C), relative humidity (in %), and total rainfall (in mm).

The results from these models are presented in Section B.2 of Appendix B.

5.3 Climate and dengue

Temperature affects the extrinsic incubation period of the pathogen, as well as the re-

productive rate and biting rate of the mosquito (Ewing et al., 2016; Promprou et al.,

2005). Higher temperatures accelerate mosquito breeding and shorten the virus incu-

bation period, allowing mosquitoes to become infectious more quickly (Macdonald. G,

1957). Furthermore, increasing temperatures enhance the mosquito’s biting behavior;

raising the risk of virus transmission. However, there is also a temperature threshold

beyond which mosquito survival decreases. The temperature range shown to be op-

timal for dengue transmission is 21.3–34.0◦C for Ae. aegypti and 19.9–29.4◦C for Ae.

albopictus (Ryan et al., 2019). Rising global temperatures are expected to increase

the risk of mosquito-borne diseases, particularly dengue and malaria. Under worst

climate-change scenarios, a 1◦C increase in global mean temperature could put 2.4

billion people at risk of both diseases by 2100 (Colón-González et al., 2021), with the

higher risk concentrated in densely populated areas of Africa, Southeast Asia and

the Americas. In the Philippines, temperature has been shown to have a positive
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effect on dengue incidence (Cawiding et al., 2025; Francisco et al., 2021; Subido and

Aniversario, 2022). In Seposo et al. (2024), they showed that between 2010 and 2019,

72.1% of reported dengue cases in the Philippines were attributable to temperature,

which implies that it is a significant driver of dengue transmission. Edillo et al.

(2022) looked at the effect of temperature at the vector level, particularly looking

at three development-related phenotypes: percent pharate larvae, hatch rates, and

reproductive outputs. Their results show that temperature, together with season and

latitudinal differences of the islands, significantly influence the phenotypes of Aedes

aegypti. The latitude of a spatial location brings variation in the amount of sunlight

received, which affects the suitability of the breeding sites of mosquitoes. Lastly, Xu

et al. (2020) showed a non-linear association between temperature and dengue.

Increasing rainfall creates more breeding sites for mosquitoes, leading to an in-

crease in the mosquito population and a higher risk of virus transmission (Ewing et al.,

2016; Promprou et al., 2005). However, excessive rainfall can wash away breeding

sites, decreasing the risk of dengue. In consistently wet regions, a decrease in rainfall,

such as during droughts, can cause water stagnation in rivers and lead to increased

water storage, both of which create ideal breeding conditions for Aedes mosquitoes

(McMichael, 2003). In the Philippines, rainfall has also been shown to have a positive

relationship with dengue, with some lagged effect (Francisco et al., 2021). Cawiding

et al. (2025) showed that the effect of rainfall could vary depending on the location.

In western areas of the country, which experience pronounced dry and wet season,

sporadic rainfall could create new breeding sites, thus increasing dengue incidence.

However, for areas in the eastern part of the country, with a uniform amount (low

variation) of rainfall, rainfall tends to flush out stagnant water, reducing mosquito

breeding sites.

Since relative humidity is positively related to rainfall (MetOffice, 2024), it is

also linked to dengue transmission. Virus transmission tends to be higher during

months of high humidity (McMichael, 2003), as increased humidity favours mosquito

survival (Gubler et al., 2001). In contrast, mosquitoes dessicate easily under dry

conditions (Focks et al., 1995; Hales et al., 2002). Xu et al. (2020) showed that

relative humidity is the only factor to be associated with a future seasonal peak of
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dengue in the Philippines.

Other important factors are house structure, human behaviour and general socioe-

conomic conditions (Patz et al., 2000). Dengue transmission is further exacerbated

by ineffective vector and disease surveillance, inadequate public health infrastructure,

population growth, unplanned and uncontrolled urbanization, and increased travel

(ECDC, 2024; Gubler et al., 2014; McMichael, 2003; Murphy and Nathanson, 1994;

Rigau-Pérez et al., 1998).

5.4 Proposed model

This section mainly presents the proposed second-stage (dengue) models. The first-

stage (climate) data fusion models are discussed in Chapter 4. Section 5.4.1 presents

the health model. This section also discusses the formula for computing block-

averages of climate field (Section 5.4.2), specification of spatial and temporal ef-

fects (Section 5.4.3), instrinsic conditional autoregressive specification for discon-

nected graphs (Section 5.4.4), models for interaction effects (Section 5.4.5), and prior

specification for second-stage model parameters (Section 5.4.6). The results from a

stations-only model input, which also covers a longer time series (2016 to 2020), are

provided in Section B.2 of Appendix B.

5.4.1 Poisson model for dengue

Let y(Bi, t) be the number of observed cases in area Bi, i = 1, . . . , N , and time t,

t = 1, . . . , T . The observed cases are assumed to be Poisson distributed with mean

µ(Bi, t). The model is given by:

y(Bi, t) ∼ Poisson
(
µ(Bi, t)

)
E
[
y(Bi, t)

]
= µ(Bi, t) = λ(Bi, t) × E(Bi, t)

log
(
λ(Bi, t)

)
= γ0 + γ1x̂(Bi, t) + γ⊺

2 z2 + φ(Bi, t),

(5.1)

where {γ0, γ1, γ2} are fixed effects, z2 is a set of covariates, x̂(Bi, t) is the block-

level value for a climate variable at time t, and φ(Bi, t) is a spatio-temporal random
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effect. In Equation (5.1), the Poisson mean is expressed as a product of λ(Bi, t)

and E(Bi, t), where λ(B, t) is the risk while E(Bi, t) is the expected cases. E(Bi, t)

are known quantities which are computed using internal standardization (Waller and

Carlin, 2010). In particular, suppose that n(Bi, t) is the population at risk at area Bi

and time t. Moreover, suppose that rt is the constant baseline risk per person at time

t, which is estimated using aggregate population data, i.e., r̂t =
∑

∀Bi
y(Bi, t)∑

∀Bi
n(Bi, t)

, and

is interpreted as the global observed disease rate for time t. The expected number

of cases in Bi at time t is then computed as E(Bi, t) = n(Bi, t) × r̂t. Since we have

log
(
λ(Bi, t)

)
= log

(
µ(Bi, t)
E(Bi, t)

)
, this implies that log

(
µ(Bi, t)

)
= log

(
λ(Bi, t)

)
+

log
(

E(Bi, t)
)

i.e., log
(

E(Bi, t)
)

operates as an offset parameter in the Poisson model.

(a) (b) (c)

Figure 5.3: (a) Plot showing the 19 disconnected graphs for the iCAR model. Out of the 19 graphs, 12 of them are
singletons (isolated islands), (b) prediction grid, (c) mesh used for the SPDE approximation

5.4.2 Block averages of climate variables

Since the climate model is point-referenced, while the health model is areal, the two

models are spatially misaligned. To address this, I use the definition of the average

level of x(s, t) for an area Bi at time t in Gelfand et al. (2010), denoted by x(Bi, t),

as follows:

x(Bi, t) =
∫
Bi

x(s, t)p(s)ds, (5.2)

for a weighting function p(s) such that
∫
Bi
p(s)ds = 1 (see also Equation (2.1) of

Chapter 2). Cameletti et al. (2019) mentioned two ways to approximate Equation

(5.2) (see also Section 3.2.2). The first one is a linear combination based on neighbour-

hood intersections, while the second one is an unweighted (simple) mean of predicted
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values of x(s, t) that lie inside Bi. In this work, I used the latter, so that

x̂(Bi, t) =
∑

∀s∗
i ∈Bi

x̂(s∗
i , t)p(s∗

i ) = 1
#Bi

∑
∀s∗

i ∈Bi

x̂(s∗
i , t), (5.3)

where #Bi denotes the number of prediction points in block Bi and x̂(s∗
i , t) is the

predicted value of the climate variable at spatial location s∗
i and time t. Equation

(5.3) is computed using a fine prediction grid shown in Figure 5.3b.

5.4.3 Spatio-temporal effects φ(Bi, t)

I assume the following form for the spatio-temporal effects:

φ(Bi, t) = ψ(Bi) + ζ(t) + ν(t) + υ(Bi, t)

ψ(Bi) =
[

1
√
τψ

√
1 − ϕv(Bi) +

√
ϕu(Bi)

]
v(Bi) ∼ N(0, 1)

u(Bi) ∼ scaled iCAR on a disconnected graph

ζ(t) iid∼ N(0, σ2
ζ )

ν(t) is a random walk in time of order 2

υ(Bi, t) is in interaction term between space and time

(5.4)

The model specification for ψ(Bi) follows that of Riebler et al. (2016). It provides a

compromise between pure overdispersion, denoted by v(Bi), and spatially-structured

correlation, denoted by u(Bi). The total (marginal) variance of the spatial main

effect ψ(Bi) is 1/τψ, and the proportion of the variance explained by the structured

effect is ϕ. Thus, ϕ is a mixing parameter between the unstructured and structured

spatial effect. The structured effect u(Bi) is defined as an intrinsic conditionally

autoregressive (iCAR) process (Besag et al., 1991) (see also Section 2.3). In particular,

since the Philippines is an archipelago, which means that there are provinces without

neighbours (islands), the iCAR process is defined on a disconnected graph; the details

of which are provided in Section 5.4.4. Similarly, Equation (5.4) also specifies an

unstructured and structured effect in time, denoted by ζ(t) and ν(t), respectively.

I assume a random walk of order 2 for the structured time effect. Finally, υ(Bi, t)
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specifies the interaction term between space and time (see Section 5.4.5 for details).

5.4.4 Specifying the iCAR process on a disconnected graph

Under the assumption of an iCAR model for u(Bi), the joint distribution of the effects

u =
(

u(B1), . . . , u(BN)
)⊺

is then given by:

π(u|σ2
u) =

(
1

2πσ2
u

)(N−1)/2

|Ru|1/2
∗ exp

(
− 1

2σ2
u

∑
i∼j

(
u(Bi) − u(Bj)

)2
)
, (5.5)

where σ2
u is the marginal variance, i ∼ j means that u(Bi) and u(Bj) are neighbours,

| · |∗ is the generalized determinant, and Ru is the structure matrix representing the

neighborhood structure, whose ijth element, denoted by Rij, is given by:

Rij =


ni i = j

−1 i ∼ j

0 otherwise

, (5.6)

where ni denotes the number of neighbours of area Bi. It should be noted that an

iCAR process is defined with respect to a specific undirected graph, a set of vertices

(which here refer to the areas {B1, . . . , BN}), and the edges (which refer to the set of

neighbours).

The problem in the data application is that there are areas or provinces which do

not have neighbours because they are islands. In particular, the entire archipelago

can be viewed as a collection of disconnected graphs, where some of them are single-

tons. In the data, there are 19 disconnected graphs, where 12 of them are singletons.

These are shown in Figure 5.3a. When working on disconnected graphs, the preci-

sion parameters for each connected graph are not comparable, and the presence of

singletons can lead to improper posterior distribution (Freni-Sterrantino et al., 2018).

To circumvent the aforementioned issues, I used the proposed method in Freni-

Sterrantino et al. (2018), which is based on the proposed scaling of intrinsic GMRFs in

Sørbye and Rue (2014). The first step is to define an iCAR model for each connected

graph (not including the singletons). In the data application, there are 7 connected
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graphs. Suppose we denote by Rj the structure matrix for the jth connected graph.

Moreover, suppose s(κ)
ij are the marginal variances, i.e., the diagonal elements of the

generalized inverse of κRj. The geometric mean of the marginal variances are then

computed, given by:

S
(κ)
j = exp

(
1
nj

∑
i

log
(
s

(κ)
ij

))
. (5.7)

Equation 5.7 is computed conditional on κ, where nj refers to the number of nodes

in the jth connected graph. The scaled precision matrix of the jth connected graph

is then given by

τS
(1)
j Rj.

The parameter τ is now interpreted as the common precision parameter for all the

connected graphs. For singletons, a standard Gaussian with precision τ is assumed,

i.e., singletons has a non-spatial random effect. This gives the following scaled pre-

cision matrix, denoted by Qu, for the iCAR with disconnected graph in the data

application:

Qu = τS
(1)
1



R1

. . .

0

0
. . .

0


+ · · · + τS

(1)
7



0
. . .

R7

0
. . .

0


+ · · · + τ



0
. . .

0

0
. . .

1


(5.8)

This specification means that if a block Bi has a neighbour, then u(Bi) shrinks to the

local mean of the graph where it belongs. On the other hand, if a block Bi does not

have a neighbour, then u(Bi) shrinks to the overall or global mean. Also, τ operates

as the precision parameter for all connected components, i.e., it regulates the degree

to which each u(Bi) shrinks to either the local mean or the global mean.

In addition to applying a sum to zero constraint, I also added a separate intercept

for each connected component, as recommended by Freni-Sterrantino et al. (2018).

This implies that random effects for each node within a connected component can

deviate randomly from the local intercept, just as singletons deviate from the global
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(overall) intercept. The size of the deviation only depends on τ and not on the graph

structures of the connected components. Neither the sum-to-zero constraint nor a

separate intercept is required for singletons.

5.4.5 Interaction term υ(Bi, t)

I explored four possible specifications for the interaction term υ(B, t) following Knorr-

Held (2000). These are summarized below:

1. Type I interaction assumes that both unstructured effects in space and time

interact, i.e., υ(Bi, t)
iid∼ N

(
0, σ2

υ

)
. The structure matrix for this interaction is

simply the identity matrix, i.e., Rυ = I, so that υ ∼ N
(
0, σ2

υI
)
.

2. Type II interaction assumes that a structured temporal effect interacts with

an unstructured spatial effect. The structure matrix here is the Kronecker

product of the structure matrices for the iid effect in space and the first-order

autoregressive effect in time. This type of interaction implies that each block Bi

has its own temporal structure, which is independent of the other blocks/areas.

3. Type III interaction assumes an interaction between an unstructured temporal

effect and a structured spatial effect. The structure matrix is the Kronecker

product between the iid effect in time and the iCAR effect in space. This type

of interaction implies that for each time point t, there is a spatial structure,

which is independent of the other time points.

4. Type IV interaction assumes that both structured effects in space and time

interact. This type of interaction specifies a temporal (autoregressive) structure

for each area which depends on the temporal patterns of the neighbouring areas.

5.4.6 Specification of priors

I assigned non-informative priors for the fixed effects, particularly, γ0 ∼ N(0,∞),

γ1 ∼ N(0, 1000), and γ2 ∼ N(0, 1000I). The precision parameters of the time ef-

fects are given the following vague priors: log
(

1/σ2
ν

)
∼ log Gamma(1, 0.00005) and

log
(

1/σ2
ζ

)
∼ log Gamma(1, 0.00005). The variance parameter for the spatial effect
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ψ(Bi) is given a PC prior, particularly, P
(

1/√τψ > 1
)

= 0.01. This prior choice

assumes a probability of 0.99 of having residual relative risks smaller than 1. The

mixing parameter ϕ of the spatial effect ψ(Bi) is also given a PC prior, particularly,

P
(
ϕ < 0.5

)
= 2/3. This gives more mass to values ϕ < 0.5. This is more conserva-

tive since it assumes that the unstructured term accounts for more of the variation

in ψ(Bi) (Riebler et al., 2016). The parameters for the spatio-temporal interaction

effect υ(Bi, t) are given non-informative priors. For the Type I interaction, I specified

log
(

1/σ2
υ

)
∼ log Gamma(1, 0.00005). For the Type II interaction, the variance pa-

rameter has the same prior as Type I, but in addition, I specified a log normal prior

for the transformed AR parameter, similar to the prior choice for ϕ1 of the first-stage

model. For the Type III interaction, both the precision parameters of the unstruc-

tured time effect and structured time effects are also given the log Gamma(1, 0.00005)

distribution. Finally, for the Type IV interaction, the precision parameters and the

AR parameter are also given similar priors as the other interaction types. The prior

distributions for the first-stage model parameters are discussed in Chapter 4.

5.5 Model Estimation

5.5.1 INLA and SPDE approach

I used the integrated nested Laplace approximation (INLA) approach (Rue et al.,

2009) for performing inference. Moreover, I also used the stochastic partial differential

equations (SPDE) approach, which is an efficient method for estimating Gaussian

fields of the Matérn class (Lindgren et al., 2011). Both are discussed in Sections 2.5.2

and 2.6 of Chapter 2, respectively.

5.5.2 Uncertainty propagation

A crude two-stage modelling approach is to first evaluate Equation (5.3) using the

posterior mean of x(s, t) at the prediction grid spatial locations, and then plug-in

the block-averages into the second stage model; the formal steps for this are given in

Algorithm 5.1. However, this will potentially underestimate the posterior uncertainty
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in the second-stage model parameters, since the uncertainty in x̂(s, t) is ignored. In

order to account for the uncertainty, we use a resampling approach, which essentially

generates several samples from the posterior distribution of first-stage parameters,

and then uses each resample as plug-in values to the second-stage model; the formal

steps are outlined in Algorithm 5.2.

Algorithm 5.1 Implementation of the crude plug-in method

Step 1: Suppose β̂0, β̂1 and {ξ̂t}t=1,...,T are posterior means from the first-stage model
(see Section 4.3.2 of Chapter 4). Also, suppose that Bgrid is the projection
matrix from the SPDE mesh nodes (Figure 5.3c) to the point locations of the
prediction grid (Figure 5.3b). Compute the following:

x̂(s∗, t) = β̂0 + β̂⊺
1z(s∗, t) + b⊺

s∗ ξ̂t, (5.9)

where bs∗ is the row in Bgrid which corresponds to the spatial location s∗, and
z(s∗, t) is the set of covariates for the first-stage model (see Equation (4.5) of
Chapter 4).

Step 2: Compute the spatial average given in Equation (5.3) for all Bi and t.

Step 3: Plug in the values of x̂(Bi, t),∀Bi, t, in the second-stage model.

When the first-stage model uses data solely from stations, the crude plug-in

method and resampling method are straightforwardly implemented using Algorithms

5.1 and 5.2, respectively. However, there is a slight modification in the steps when

the data fusion model is used as the first-stage model. The reason is that the data

fusion model is estimated conditional on the multiplicative bias parameter α1 (see

Equation (4.7) in Chapter 4), which in practice is defined on a grid of values centered

on 1.

Suppose that β̂(ℓ)
0 , β̂(ℓ)

1 and {ξ̂(ℓ)
t }t=1,...,T denote the posterior means for the (first-

stage) model which was fitted conditional on α1 = α
(ℓ)
1 . Here, the first-stage model is

indexed by ℓ = 1, . . . , L, where L is the number of α1 values considered. In addition,

suppose that wℓ denotes the weight for the ℓth model, i.e., the model fitted conditional

on α1 = α
(ℓ)
1 . The spatial averages are then computed as:

x̂(Bi, t) = 1
L

1
#Bi

L∑
ℓ=1

∑
∀s∗∈Bi

x̂(ℓ)(s∗, t)wℓ = 1
L

1
#Bi

L∑
ℓ=1

∑
∀s∗∈Bi

(
β̂

(ℓ)
0 +β̂

(ℓ)⊺
1 z(s∗, t)+b⊺

s∗ ξ̂
(ℓ)
t

)
wℓ.

(5.12)

Equation (5.12) implies that the spatial average for block Bi and time t is a weighted
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Algorithm 5.2 Implementation of the resampling method

Repeat steps 1–5 for j = 1, 2, . . . , J :

Step 1: Generate posterior samples of the latent parameters from the first-stage model
(see Section 4.3.2 of Chapter 4).

Step 2: Suppose β̃(j)
0 , β̃(j)

1 and {ξ̃(j)
t }t=1,...,T are the jth posterior samples from the

first-stage model. Compute the following:

x̃(j)(s∗, t) = β̃
(j)
0 + β̃

(j)⊺
1 z(s∗, t) + b⊺

s∗ ξ̃
(j)
t , (5.10)

where bs∗ and z(s∗, t) are the same as in Equation (5.9).

Step 3: Compute the spatial average given in Equation (5.3) for all Bi and t. Here, I
denote the spatial averages by x̃(j)(Bi, t), since these are computed using
posterior samples of the latent parameters, not the posterior means.

Step 4: Plug in the values of x̃(j)(Bi, t), ∀Bi, t, in the second-stage model.

Step 5: Store all the posterior estimates, such as π(j)(γ0|y) and π(j)(γ1|y), with the
superscript (j) denoting that these posteriors are computed using the jth

posterior samples.

Step 6: Combine all results via model averaging, e.g.,

π(γ0|y) = 1
J

J∑
j

π(j)(γ0|y) and π(γ1|y) = 1
J

J∑
j

π(j)(γ1|y). (5.11)

average of the point predictions from each first-stage model estimated conditional on

α1 = α
(ℓ)
1 , ℓ = 1, . . . , L.

A similar idea is implemented with the resampling method, but the spatial av-

erages are computed by further averaging all results across the J posterior samples,

i.e.,

x̂(Bi, t) = 1
J

1
L

1
#Bi

J∑
j=1

L∑
ℓ=1

∑
∀s∗∈Bi

(
β̃

(jℓ)
0 + β̃

(jℓ)⊺
1 z(s∗, t) + b⊺

s∗ ξ̃
(jℓ)
t

)
wℓ,

where β̃(jℓ)
0 , β̃(jℓ)

1 , and {ξ̃(jℓ)
t }t=1,...,T are the jth posterior samples from the first-stage

model fitted conditional on α1 = α
(ℓ)
1 , ℓ = 1, . . . , L.

5.6 Results

This section presents the results for the dengue models, where the input (first-stage)

models are the data fusion models in Chapter 4. The results for a stations-only model
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input, and from a longer time series, can be found in Section B.2 of Appendix B.

Figure B.1 in Appendix B shows a pairwise scatter plot of the three climate

variables. It shows that relative humidity and log rainfall are positively correlated,

while temperature and relative humidity are negatively correlated. On the other

hand, temperature and log rainfall are not correlated. Hence, I considered two health

models: the first model considers temperature and log rainfall as climate variables,

while the second model only has relative humidity as the climate variable. The

results for each are presented in Sections 5.6.1 and 5.6.2, respectively. I considered

the following additional covariates in the model at the province level: population

density (PopDensity), and a binary variable which indicates if a time point is during

the COVID-19 pandemic (covid).

5.6.1 Temperature and log rainfall

The linear predictor of the health model with temperature and log rainfall as climate

covariates is given as follows:

η
(
Bi, t

)
= γ0+γ1 ̂Temperature(Bi, t) + γ2 ̂Temperature

2
(Bi, t) + γ3 log R̂ain(Bi, t)+

γ4ClimateType(Bi, t) + γ5 log R̂ain(Bi, t) × ClimateType(Bi, t)

+ γ6covid + γ7 log PopDensity + φ(Bi, t)
(5.13)

In Equation (5.13), I considered a non-linear effect of temperature, following Xu

et al. (2020). The ClimateType variable is a binary variable which takes a value of

‘1’ for the eastern section of the country, and takes ‘0’ for the western section, as

defined in Chapter 4. The country’s western section has a pronounced dry and wet

season, while the eastern part has relatively high rainfall all year round (Coronas,

1920; Kintanar, 1984a). Moreover, I considered an interaction effect between log

rainfall and climate type. This is based on the results in Cawiding et al. (2025),

which showed that the effect of rainfall varies for different regions of the country

(see Section 5.3). The values ̂Temperature(Bi, t) and R̂ain(Bi, t) are computed using

Equation (5.3); see also Algorithms 5.1 and 5.2.

Table 5.1 shows the marginal log likelihood (MLik), Watanabe-Akaike Informa-
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tion Criterion (WAIC), and the conditional predictive ordinate (CPO) values for the

different models considered. These values are based on the results from the crude

plug-in method (Algorithm 5.1). Results show that Type II interaction model has

the highest MLik, the smallest WAIC, and the smallest CPO value as well. Hence,

the Type II interaction model was considered for further investigation.

Model MLik WAIC CPO
Type I -7368.66 10658.92 14182.67
Type II -6814.81 10526.76 7694.59
Type III -7337.89 10705.02 12526.74
Type IV -11488.96 22881.93 14366.48

Table 5.1: Marginal log likelihood (MLik), WAIC, and −
∑

log CPOi for different dengue models with temperature
and log rainfall as climate covariates

Table 5.2 shows the fixed effects estimates. The results show that temperature

has a non-linear relationship with dengue. In particular, the higher the temperature,

the higher the risk; however, too high temperature leads to a decline in the risk.

Moreover, although the main effect of log rainfall is not significant in the model,

the interaction between log rainfall and climate type is significant and is negative,

with the plug-in approach. The results imply that for a 10% increase in the amount

of rainfall, there is an expected decline in the risks by around 0.43% for areas in

the eastern section of the country, i.e., for areas with uniform amounts of rainfall

and relatively wet all year round, log rainfall and dengue are negatively related. This

agrees with the results from Cawiding et al. (2025), which explained that the constant

amount of rainfall tends to flush out breeding sites for mosquitoes; thus decreasing the

risk of dengue. Note that the resampling approach increased the posterior standard

deviation of the coefficient (γ5) of this interaction effect, causing it to be no longer

significant. Lastly, population density and dengue are positively associated, while

the covid binary variable is not significant. For the case with a stations-only climate

model as input (see Section B.2 of Appendix B), the coefficient of log rainfall is

significant. The results suggest that for areas in the western section of the country,

a 10% increase in rainfall is associated with an increase in the risks by around 0.09%

or 0.07% based on the plug-in method and resampling method, respectively.

The results show that the posterior standard deviations from the resampling

method are generally larger compared to those of the plug-in method, except for
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Plug-in method Resampling method
Parameter Mean SD P5% P95% Mean SD P5% P95%
γ0, Intercept -6.2806 3.0463 -11.4991 -1.9470 -6.3940 3.3271 -12.0272 -1.0479
γ1, Temperature 0.5332 0.2368 0.1545 0.9158 0.5326 0.2665 0.1043 0.9781
γ2, Temperature2 -0.0132 0.0050 -0.0206 -0.0053 -0.0127 0.0053 -0.0218 -0.0042
γ3, log Rain -0.0176 0.0275 -0.0645 0.0242 -0.0207 0.0239 -0.0607 0.0182
γ4, ClimateType 0.3493 0.3479 -0.2184 0.9296 0.2016 0.3578 -0.3920 0.7910
γ5, log Rain × ClimateType -0.0886 0.0543 -0.1786 -0.0075 -0.0689 0.0528 -0.1561 0.0185
γ6, covid -0.1396 0.0922 -0.2879 0.0228 -0.1375 0.0915 -0.2892 0.0127
γ7, log PopDensity 0.2124 0.0934 0.0498 0.3590 0.1998 0.0967 0.0404 0.3585

Table 5.2: Comparison of estimates of fixed effects between the plug-in method and the resampling method for the
dengue model with temperature and log rainfall as climate covariates

coefficients whose credible intervals (CI) contain the null value. Figure 5.4 shows a

clear comparison of the posterior uncertainties for γ1, γ2, and γ5. An attenuation of

the estimated posterior means to the null risk can be observed using the resampling

method. This is also observed in Lee et al. (2017) and Liu et al. (2017), where they

argue that it is due to the posterior predictive distribution from the first-stage model

outweighing the spatio-temporal variation in the data. The same plots for the other

covariates are shown in Figure B.2 of Appendix B.

(a) γ1, Temperature (b) γ2, Temperature2 (c) γ3, log Rain × ClimateType

Figure 5.4: Plot showing the posterior means and 90% credible intervals for the following parameters: (a) γ1 (b)
γ2 (c) γ5; for the model with temperature and log rainfall as climate covariates. The first vertical line shows the
estimates for the plug-in method, while the rest of the lines show the estimates for the resampling method for different
number of resamples, from 1 to 15.

Table B.1 in Appendix B shows the estimates of the hyperparameters. The results

show that the posterior uncertainty is generally higher for the resampling method

compared to the plug-in method. Moreover, the structured effect in time accounts

for more variability in the data compared to the unstructured effect. The mixing

parameter ϕ of the spatial effect is less than 0.5 for the plug-in method, but greater

than 0.5 for the resampling method. This suggests that the variability explained by

the structured spatial effect is smaller compared to the unstructured effect for the

plug-in method, but it is the opposite for the resampling method. The results also

157



5. LINKING CLIMATE AND DENGUE IN THE PHILIPPINES

suggest that each province has its own temporal structure, which is independent of

the other provinces. The time dependence in the interaction effect is strong, since

the estimated autoregressive parameter is close to 1.

Figure 5.5b shows a comparison of the posterior standard deviation of the space

effects ψ(Bi) between the plug-in method and resampling method. The figure shows

that the resampling method give higher uncertainty in the spatial effects. The pos-

terior means of ψ(Bi) are quite similar between the two methods as shown in Figure

5.5a.

(a) Posterior mean (b) Posterior standard deviation

Figure 5.5: Comparison of (a) posterior mean and (b) posterior standard deviation, of the space effects ψ(Bi)
between the plug-in method and resampling method, for the dengue model with temperature and log rainfall as
climate covariates

Figure 5.6a shows a plot of the estimated structured temporal effects with the

corresponding 95% credible intervals. The plot shows that the posterior uncertainty

is very similar between the two methods. Moreover, the plot also shows that the

estimated temporal effect is decreasing during 2020, which is the COVID-19 episode.

This potentially explains why the covid binary variable in the model is not significant,

since the drop in the reported dengue cases during this year is already accounted for

by the structured temporal effect.

Figure 5.7 shows the estimated space-time interaction effect ν(Bi, t) using the

Type II interaction model (see Section 5.4.5) for five provinces. Four of the provinces,

which are contiguous and constitute a major island, have decreasing space-time in-

teraction effect pre-pandemic. This also agrees with the trend in the SIRs for the

same period (shown in the top portion of Figure 5.7). For the fifth province con-

sidered (Ilocos Norte), which is located in the north, the estimated space time effect

shows an increasing trend pre-pandemic, which also agrees with the SIRs. During
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(a) Temperature and log rainfall as covariates (b) Relative humidity as covariate

Figure 5.6: Plot of the estimated structured time effects ν(t) with the 95% credible intervals between the plug-in
method and resampling method: (a) temperature and log rain as climate covariates (b) relative humidity as covariate

the COVID-19 pandemic, the estimated effects vary for the 5 provinces, and which

shows patterns distinct to each province. This figure confirms the Type II interac-

tion in space and time, which means that in addition to the overall temporal effect,

each province exhibits its own temporal structure which is independent of the other

provinces.

Figure 5.7: Estimated space-time interaction effect υ(Bi, t) for five provinces. Four of them are contiguous provinces
which exhibit the same temporal structure pre-pandemic, and which also agrees with the trend in the SIRs. The fifth
province (located in the north) has a decreasing trend in the SIRs for the same time period, and is also accounted for
by the space-time effect. The temporal structure during the pandemic varies for the five provinces.

159



5. LINKING CLIMATE AND DENGUE IN THE PHILIPPINES

5.6.2 Relative humidity

The linear predictor of the health model with relative humidity as climate covariate

has the following form:

η
(
Bi, t

)
= γ0 + γ1R̂H(Bi, t)+γ2ClimateType(Bi, t) + γ3R̂H(Bi, t) × ClimateType(Bi, t)

+ γ4covid + γ5 log PopDensity + φ(Bi, t)
(5.14)

Table 5.3 shows a summary of the metrics to compare the models with different

interaction types. The results show that the Type II interaction has the highest

marginal log likelihood, the smallest WAIC, and the smallest CPO value. Thus,

similar to the model with temperature and log rainfall as climate covariates, the

model with Type II interaction was considered for further investigation. The values

R̂H(Bi, t) are computed using Equation (5.3); see also Algorithms 5.1 and 5.2.

Model MLik WAIC CPO
Type I -7363.05 10652.39 14247.44
Type II -6808.63 10522.15 7756.46
Type III -7326.95 10701.90 12542.34
Type IV -12091.47 23698.59 14558.67

Table 5.3: Marginal log likelihood (MLik), WAIC, and −
∑

log CPOi for different dengue models with relative
humidity as climate covariate

Table 5.4 shows the estimates of the fixed effects. The main effect of relative

humidity is significant and positive. The interaction between relative humidity and

climate type is also significant and negative, both for the plug-in approach and the

resampling approach. This is the same relationship that log rainfall has with dengue,

which is expected since relative humidity and log rainfall are positively correlated.

For areas in the eastern section of the country, a one-unit increase in RH is associ-

ated with a 1.84% or 1.40% decline in the risks based on the plug-in method and the

resampling method, respectively. On the other hand, for areas in the western section

of the country, a one-unit increase in RH is associated with a 1.59% or 1.56% in-

crease in risks based on the plug-in method and the resampling method, respectively.

Moreover, both population density and the covid variable are not significant. The

non-significance of the covid variable is potentially due the temporal random effect

160



5. Linking climate and dengue in the Philippines

accounting for the decline in the dengue risks (see Figure 5.6b). The posterior stan-

dard deviations in the coefficients are generally higher for the resampling approach

compared to the plug-in method. A comparison of the 90% credible intervals, similar

to Figure 5.4, is shown in Figure B.3 of Appendix B.

Plug-in method Resampling method
Parameter Mean SD P5% P95% Mean SD P5% P95%
γ0, Intercept -2.2360 0.8622 -3.6905 -0.8305 -2.1124 0.8681 -3.5365 -0.6733
γ1, RH 0.0170 0.0071 0.0039 0.0294 0.0155 0.0073 0.0035 0.0276
γ2, ClimateType 2.5001 1.4705 0.5529 5.0257 2.2384 1.4407 -0.1160 4.5985
γ3, RH × ClimateType -0.0356 0.0163 -0.0616 -0.0072 -0.0296 0.0167 -0.0577 -0.0021
γ4, covid -0.0668 0.0632 -0.1589 0.0497 -0.0645 0.0680 -0.1777 0.0479
γ5, log PopDensity 0.0953 0.0896 -0.0452 0.2347 0.1035 0.0928 -0.0487 0.2582

Table 5.4: Comparison of estimates of fixed effects between the plug-in method and the resampling method for the
dengue model with relative humidity as climate covariate.

Table B.2 in Appendix B shows the estimated hyperparameters. The results show

that the posterior standard deviations for the hyperparameters are significantly higher

for the resampling method. Figure B.4b in Appendix B shows a comparison of the

posterior SD of the spatial effects ψ(Bi). Here, it is also apparent that the posterior

standard deviation from the resampling method is higher compared to the plug-in

method. The posterior means of ψ(Bi) are provided in Figure B.4a in Appendix

B, which shows that the estimated posterior means between the plug-in method

and resampling method are similar. Finally, Figure 5.6b shows a comparison of the

posterior means and 95% credible intervals for the structured time effect ν(t).

5.6.3 Estimated risks

Figure 5.8 shows a comparison of the observed SIRs, which are viewed as classical

estimates of risks, versus the model-based estimates λ̂(Bi, t) using Equation (5.13),

i.e., the model with temperature and log rainfall as climate covariates. The figure

shows an agreement between the classical estimates and model-based estimates, from

both the plug-in method and resampling method. Figure B.5 in Appendix B shows

the same scatter plots, but from the dengue model with relative humidity as the

climate covariate. The results also show a general agreement between the classical

estimates and the model-based estimates of SIR.

Figure 5.9 shows the estimated risks λ̂(Bi, t) for months August to November
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(a) Plug-in method (b) Resampling method

Figure 5.8: Comparison of classical SIR estimates and model-based SIR estimates from the health model with
temperature and log rainfall as climate covariates: (a) plug-in method (b) resampling method

2019, and from using the plug-in method and resampling method, on the health

model with temperature and log rainfall as climate covariates. Firstly, the plot shows

that both the plug-in method and resampling method have equivalent estimates,

which is expected based on Figure 5.8. Secondly, the plot also agrees with Figure

5.2, which shows the classical SIR estimates. These maps show specific areas with

elevated SIRs. As noted in Section 5.2 and Section 1.2.1 in Chapter 1, the Philippines

declared dengue epidemic during August 2019 due to a surge in dengue cases (BBC,

2019; Santos, 2019; Yeung and Faidell, 2019). The same spatial structure is also

evident when producing the same maps of SIRs based on the health model with

relative humidity as the climate covariate, since Figure B.5 in Appendix B also shows

a general agreement between the model estimates and the classical estimates of SIR.

Figure 5.9: Model-based estimates of dengue risks from August 2019 to November 2019, for both plug-in method
and resampling method on the dengue model with temperature and log rainfall as climate covariates
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Figure B.6 in Appendix B shows the corresponding posterior uncertainty of the

estimated SIRs in Figure 5.9. The results show that there is no difference in the

posterior uncertainty in the predicted SIRs between the plug-in method and the

resampling method. To investigate this further, I looked at the variance-covariance

structure of the different components of the linear predictor (Equation 5.13) across

the different resamples. In particular, for each posterior sample, I first computed the

posterior variance-covariance matrix of the model components. I then averaged the

values for all resamples. Matrix (B.1.1) in Appendix B shows the variance-covariance

structure for the fixed effects (across resamples) of the linear predictor in Matrix

(5.13). Note that most of the covariances are negative. Moreover, Matrix (B.1.2)

in Appendix B shows the variance-covariance matrix for the random effects in the

linear predictor. The results show that most of the covariances are close to zero.

Finally, Matrix (B.1.3) in Appendix B shows the cross-covariance between the fixed

and random effects in the linear predictor, which shows an equal mix of positive

and negative linear association between the components. Since most of the pairs

of components in the linear predictor in Equation (5.13) are negatively correlated

across the resamples, then this potentially explains why the posterior uncertainty in

the dengue risks in the resampling method is similar to the plug-in method. Although

the resampling method generally gives higher uncertainty for individual components

of the linear predictor, the uncertainty in a linear combination of these components

can be washed away because of the latent correlation structure.

Figure 5.10 shows a comparison of the posterior standard deviations in the es-

timated risks ˆλ(Bi, t) between three approaches: a classical approach based on the

asymptotic (Gaussian) distribution of the SIR, model-based estimates from the plug-

in approach, and model-based estimates from the resampling approach. Note that

there are relatively higher uncertainty values for the classical approach, while the

estimates from the model-based plug-in and resampling approaches are almost in-

distinguishable. On average, the classical approach has higher uncertainty estimates

than the model-based approaches (see the broken lines in Figure 5.10).

Finally, Figure 5.11 shows the probability that the dengue risks λ(Bi, t) exceed 1,

i.e., P
(
λ(Bi, t) > 1

)
for August 2019 to November 2019, for both the plug-in method

163



5. LINKING CLIMATE AND DENGUE IN THE PHILIPPINES

Figure 5.10: Comparison of the posterior standard deviations in the estimated risks ˆλ(Bi, t) between three ap-
proaches: classical approach based on the asymptotic (Gaussian) distribution of the SIR, model-based estimates from
the plug-in approach, model-based estimates from the resampling approach. The model here has temperature and
log rainfall as climate covariates. The broken lines are the means of the values for each approach.

Figure 5.11: Probability of exceedence, i.e., P
(
λ(Bi, t) > 1

)
from August 2019 to November 2019, for both plug-in

method and resampling method on the dengue model with temperature and log rainfall as climate covariates

and resampling method. Note that most of the areas with an estimated probability

of exceedence equal to 1 are the same areas badly hit by dengue during the epidemic

(Yeung and Faidell, 2019).

5.7 Conclusions

The main aim of this chapter is to provide additional evidence on the relationship be-

tween climate and dengue in the Philippines. I proposed a Bayesian spatio-temporal

model for dengue, where the effect of climate covariates are considered as fixed ef-
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fects, and which incorporates both structured and unstructured random effects in

space and time, including their interaction, in order to account for extra variabil-

ity in the data unexplained by the climate variables. I used the integrated nested

Laplace approximation (INLA) approach (Rue and Martino, 2007; Van Niekerk et al.,

2023) to perform model inference. The Bayesian modelling framework that this work

employed has not been used based on currently published work which links climate

and dengue in the Philippines (see Section 5.1). Moreover, most of the existing work

only looks at certain regions of the country; while this work looks at the data for the

entire country.

The association between climate and dengue has long been established in the

literature (Hales et al., 2002; McMichael, 2003; Naish et al., 2014). The results in

this chapter agree with existing studies on climate and dengue. Results show that

temperature has a non-linear relationship. In particular, for very high temperature

values, the association becomes negative (Liu et al., 2023), which is explained by

the fact that excessively high temperature can shorten the lifespan of mosquitoes

and reduce their population size (Myer et al., 2020). Moreover, results show that

rainfall has varying effects on dengue, depending on the spatial location of an area,

which is defined based on the climate type of the region. In particular, I segmented

the country into the eastern and western section. In the western section, rainfall

and dengue are positively related, while in the eastern section, the relationship is

negative. The eastern section of the country has a low variation in the amount of

rainfall and is relatively wet all year round. This phenomenon tends to wash away the

breeding sites of mosquitoes, thus explaining its negative relationship with dengue.

On the other hand, for the western section, episodes of wet and dry conditions are

more pronounced. Phenomena of sporadic rainfall during dry conditions create more

breeding sites for mosquitoes, which enhances dengue transmission. This agrees with

the results in Cawiding et al. (2025), who also looked into this spatially varying effect

of rainfall on dengue in the Philippines. Relative humidity, which is highly correlated

with rainfall, also exhibits the same association with dengue.

The spatial and temporal effects in the model capture extra variation in the data

unexplained by the climate variables and other covariates. When it comes to the
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spatial effect, most of the variability in space is explained by the conditional autore-

gressive component, i.e., there are remaining spatial correlations in the data after

accounting for the covariate effects. Similarly, for the temporal effect, the structured

(random walk) time effect accounts for more of the variability in the data compared

to the unstructured effect. In fact, there is a clear decline in the estimated temporal

effects during 2020, which is the start of the COVID-19 pandemic, and also a year of

very low number of reported dengue cases. The covid binary variable in the model

was not significant, most likely since the information is already captured by the ran-

dom walk effect in time. Moreover, an interaction effect between space and time is

shown to be important in the model. In particular, the interaction specifies that each

province has its own temporal structure that is independent of the other provinces. A

more advanced specification of the random effects is to use the variance partitioning

approach proposed in Franco-Villoria et al. (2022). Essentially, it specifies a global

(space-time) precision parameter, which is partitioned into the main effect (combined

space and time) and the interaction effect via a mixing parameter. The variance ex-

plained by the main effect is further partitioned into the space and time effects via

another mixing parameter. This kind of specification enhances model interpretability,

and also allows an intuitive prior specification. This is further discussed in Section

7.7.1.2 in Chapter 7.

This chapter used a two-stage modelling approach to link climate and dengue.

The first stage fits the climate models, and then the second stage fits the health

model for dengue using the climate predictions from the first stage as input. This

is a practical framework for doing analysis since the climate models are complex,

especially the data fusion models. Also, this chapter used climate predictions from

existing data fusion models in Chapter 4. Thus, a joint modelling framework, i.e.,

fitting both climate model and health model, is unnecessary. More important reasons

for not pursuing a joint modelling framework are discussed in Section 1.3.

The use of a two-stage approach requires proper propagation of the uncertainty

from the first-stage model to the second-stage model. In this work, I used the pos-

terior sampling approach. This approach considers different realizations from the

estimated posteriors in the first stage, specifically the climate predictions which we
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input to the second-stage model. This implies a set of estimated health models, one

for each posterior sample. The final posterior estimates for the second-stage model

parameters are then combined using model averaging. The posterior uncertainties

were stable after around 12 resamples. When it comes to the differences in the pos-

terior uncertainties, the resampling method generally gave higher posterior standard

deviations of model parameters compared to the plug-in method. A methodologi-

cal innovation in this area is to consider an uncertainty propagation approach which

does not require resampling from the posteriors and which does not require fitting

the second-stage model several times. This is pursued in Chapter 6.

In this chapter, I computed the block-level estimates of the first-stage latent

process x(s, t), which are then used as a covariate in the second-stage model. A

future work related to the current problem of linking a point-referenced covariate

and an areal response variable is to use a new model specification which defines

a latent intensity field in the second stage. The predictor expression in the sec-

ond stage would take the following form: log
(
µ(B, t)

)
= log

(∫
B
µ(s, t)ds

)
=

log
(∫

B
exp

{
γ0 + γ1x(s, t)

}
ds
)

, where µ(B, t) is the mean of the Poisson count

for block B at time t. This assumes that the mean count at block B at time t is

an aggregation of an intensity field µ(s, t) over B, and where µ(s, t) is non-linearly

related to the first-stage latent process x(s, t). Whereas the model used in this work

specifies the predictor expression in the second-stage as linear with respect to x(s, t),

the new specification is a highly non-linear model. This type of model is straight-

forward to implement using the inlabru library, which extends the class of models

that can be fitted using INLA, specifically models which are non-linear in the latent

parameters (Bachl et al., 2019; Lindgren et al., 2024). This new specification of the

Poisson model is further discussed in Chapter 6 and in Section 7.7.1.3 of Chapter 7.

There are several important indicators of dengue which I did not incorporate in

this chapter. One important index is the Southern Oscillation Index (SOI), which is

an indicator of El Niño and La Niña episodes. The former is an episode of above-

average temperature levels, while the latter implies colder and wetter conditions. A

positive SOI is associated with much warmer and wetter conditions than the average,

which is ideal for breeding of mosquitoes (McMichael, 2003). SOI is shown to be an
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important indicator of dengue transmission, but the magnitude of its effects could

vary for different countries (Hales et al., 1999, 1996; McMichael, 2003). Another ex-

tension of the model is to incorporate lagged effects of the climate variables (Carvajal

et al., 2018; Cruz et al., 2024), which are also shown to be significant indicators of

dengue transmission. This can be pursued in a future work, but I think that this

should be used on data with higher time resolution, such as considering weekly cases

and daily records of the climate indicators. Future models should also consider vector

abundance and biological characteristics of pathogens (Murphy et al., 2022). Finally,

social factors and economic factors are also important indicators in the model. Exam-

ples of social factors are human behaviour, such as water storage practices, and land

use, such as irrigation/forest clearance/livestock and agricultual practices. More-

over, some economic factors are poverty, population displacement/travel, housing,

urbanization, and public health infrastructure (McMichael, 2003). There is a com-

plex interaction among the aforementioned factors and the transmission of infectious

diseases (Foster, 2001), which is something that should be carefully considered for

future work.
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Chapter 6

Validating uncertainty propagation

approaches for two-stage Bayesan

models using simulation-based

calibration

Chapter 1 discussed the motivation for employing a two-stage modelling framework.

Essentially, a two-stage model is either more practical or more appropriate in many

situations due to three important reasons. Firstly, it is more computationally efficient

when the first-stage model is already complex in itself. Secondly, it has an intuitive

physical interpretation since there is a clear one-directional relationship between the

two physical processes, e.g., climate and concentration of pollutants affect disease

risks but not the other way around. Thirdly, it avoid the ‘feedback’ problem which

happens in a joint modelling approach, as explained in Section 1.3.1.

The first main contribution of this chapter is that I evaluate the correctness of

two existing approaches for doing two-stage modelling, particularly the crude plug-in

method and the posterior sampling approach (or resampling approach). These were

used in Chapter 5, and discussed in Algorithms 5.1 and 5.2, respectively. The cor-

rectness of the two aforementioned methods are evaluated using the simulation-based

calibration (SBC) method (Talts et al., 2018), which tests for the self-consistency
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property of Bayesian algorithms. The SBC is a method used to validate a Bayesian

algorithm. It has a frequentist interpretation since it is interpreted as the expected

behavior averaged over all potential data outcomes. Talts et al. (2018) argued that

SBC is an integral part of a robust Bayesian workflow, which includes the following

key three steps: model building, inference, and model checking/improvement (Gel-

man et al., 2020).

The second main contribution is that this chapter proposes a new approach for

uncertainty propagation in two-stage Bayesian models, which is called the Q un-

certainty method and is implemented using INLA. In this work, I illustrate and

validate the correctness of the Q uncertainty method in spatial applications. The

proposed method introduces a new model component, called an error component, in

the second-stage model. The error component is given a Gaussian prior with zero

mean and Q
−1 covariance matrix which encodes the full uncertainty from the first-

stage model. The proposed method has a similar flavor as the prior exposure method

proposed in Cameletti et al. (2019), but here I consider the full covariance structure

of the latent parameters of the first-stage model. This is also similar to the ones in

Chang et al. (2011) and Peng and Bell (2010), which used the posterior results of

the first-stage model as the prior model in the second-stage model, but here I instead

introduce a new model component which accounts for the uncertainty in the first-

stage model parameters. Moreover, I explore a low-rank approximation of the error

component, which can be useful for spatial models with high dimensions, such as

large spatio-temporal models. Thus, there are two versions of the proposed method:

the full Q uncertainty approach and the low rank Q uncertainty approach. I also

validate the correctness of the proposed methods using the SBC method.

Thirdly, this chapter proposes a variation in the original SBC method, which is

motivated by scenarios wherein some model parameters in the first-stage model vi-

olate the self-consistency property, but the primary parameters of interest are the

second-stage model parameters. I implemented both the original SBC and the pro-

posed variation in the simulation experiments.

Section 6.1 formally discusses the two-stage modelling framework and the un-

certainty propagation problem. Section 6.1.1 discusses two current approaches for
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two-stage modeling: the crude plug-in approach and the resampling approach. In

Section 6.1.2, I discuss the proposed methods, which are applied in the INLA frame-

work and are illustrated in the context of spatial applications. Section 6.2 revisits

the self-consistency property of Bayesian models and the SBC method, and presents

the proposed variant of the SBC method. Section 6.3 discusses results from simula-

tion experiments that validates four uncertainty propagation approaches: the crude

plug-in approach, the resampling approach, the full Q approach, and the low rank

Q approach. I start with a two-stage spatial model with a Gaussian likelihood in

Section 6.3.1, and then consider the case of a Poisson likelihood in Section 6.3.2. I

highlight the SBC results for the second-stage model parameters, since these are the

parameters whose posterior uncertainty is potentially underestimated in a two-stage

modelling framework. I then demonstrate the proposed method in a real data appli-

cation in Section 6.4. The data application aims to link relative humidity and the

case counts of dengue fever in the Philippines for August 2018. Finally, I end with

conclusions and future work in Section 6.5.

6.1 Uncertainty propagation problem

Figure 6.1: Two-stage modelling framework for uncertainty propagation

Here, it is assumed that model inference for a physical process of interest is per-

formed in two stages, as shown in Figure 6.1. The observed data is D = {D1,D2},

partitioned into the first-stage data and second-stage data, respectively. First-stage

inference is performed using D1 only, without looking at D2, since for instance,

the health counts are not intended to inform the estimation of exposures or the

health biomarkers causes the probability of survival and not the other way around.
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I model such process using a Bayesian hierarchical model. Suppose that x1 and

θ1 are the latent parameters and hyperparameters linked to D1, respectively. I

partition θ1 into {θ1,x,θ1,D}, for which θ1,x are the hyperparameters linked to x1,

while θ1,D are variance/scaling parameters of the assumed distribution (likelihood)

for the data D1. Also, let Z1 be a set of fixed inputs/covariates. I assume that

D1 ∼ F1(D1|x1,θ1,Z1). Similarly, let x2 and θ2 = {θ2,x,θ2,D} be the latent parame-

ters and hyperparameters linked to D2, respectively, and Z2 be a set of fixed inputs.

The modeling framework in Figure 6.1 assumes that x1 from the first-stage model

is also linked to D2, so that D2 ∼ F2(D2|x1,x2,θ2,Z2). This gives us the full data

model: {D1,D2} ∼ F2(D2|x1,x2,θ2,Z2)F1(D1|x1,θ1,Z1).

Figure 6.1 considers x1, or some function of it, as an input when fitting the second-

stage model. However, in practice, x1 is unknown and needs to be estimated in the

first stage. Hence, its uncertainty due to estimation error or model misspecification

error needs to be correctly propagated into the second stage; otherwise, the standard

errors of the second-stage model parameters may be underestimated. The end goal,

therefore, is to correctly estimate the following posterior distributions:

• The posterior distribution of the first-stage parameters, given by π(x1,θ1|D1).

• The posterior distribution of the second-stage parameters. For the plug-in

method, this is given by π(x2,θ2|D2,x
∗
1), were x∗

1 denotes the posterior mean

of x1 from the first-stage model results. For the resampling method, this is

given by ∫
π(x2,θ2|D2,x1)π(x1|D1)dx1.

When estimating the posterior distribution of the second-stage model, the uncertainty

in x∗
1 needs to be accounted for, which is fundamentally the uncertainty propagation

problem.

6.1.1 Current approaches

This section discusses two existing approaches to fit the two-stage model in Figure

6.1. Although not exhaustive, these approaches serve as benchmarks for comparison
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with our proposed approaches. Related methods, which use first-stage posteriors as

priors for the second stage, are discussed in Section 6.1.2.

1. Plug-in Method – Let µ̂x1 = E[x1|D1] be the posterior mean of x1 estimated

from the first-stage model. The crude plug-in method simply uses this as an

input to the second stage. The linear predictor of the second-stage model is

then:

g
(
E[D2| · · · ]

)
= γ01 + γ1h(µ̂x1 , ·) + Z2γ2, (6.1)

where g(·) is the link function, {γ0, γ1,γ2} are model fixed effects, and h(·) is

a vector-valued function h: x1-space → Rdim(D2). Note that Equation (6.1)

can also include random effects. The estimated uncertainty in the second-stage

posterior distribution, π(γ0, γ1,γ2,θ2|D2, µ̂x1), is possibly underestimated since

it fails to account for the uncertainty in µ̂x1 . This is the approach implemented

in Algorithm 5.1 in Chapter 5.

2. Resampling method – The resampling method, described in Algorithm 6.1,

accounts for the uncertainty in the first-stage model in a natural way, but can

be computationally expensive since it requires fitting the second-stage model

several times. This approach was adopted in Blangiardo et al. (2016); Liu et al.

(2017), and Zhu et al. (2003). A related approach was also implemented in

Lee et al. (2017), where a new value µ̃
(j)
x1 is sampled at each iteration of the

MCMC algorithm, and then the second-stage model is fitted for each sample.

The resampling method was also implemented in Chapter 5 (see Algorithm 6.1).

Algorithm 6.1 Implementation of the resampling method

Repeat steps 1–2 for j = 1, 2, . . . , J :
Step 1: Sample µ̃

(j)
x1 ∼ π̂(x1|D1).

Step 2: Plug-in the sampled values in the second stage model, i.e., plug-in µ̃
(j)
x1 instead

of µ̂x1 in Equation (6.1). Store all posterior marginals, such as
π̂
(
γ

(j)
1 |D2, µ̃

(j)
x1

)
.

Step 3: All J results are then combined using model averaging, e.g.,
π̂(γ1|D2) = 1

J

∑J
j=1 π̂

(
γ

(j)
1 |D2, µ̃

(j)
x1

)
.
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6.1.2 Proposed method – Q uncertainty

In this section, I present the proposed Q uncertainty method for uncertainty propa-

gation. This approach avoids multiple runs of the Bayesian algorithm for the second-

stage model, offering potential computational efficiency over the resampling method.

The method shares similarities with MCMC algorithms used by Chang et al. (2011),

Peng and Bell (2010), and Gryparis et al. (2009), where the second-stage model is fit-

ted using first-stage results as an informative prior. Two implementation approaches

are noted in the literature: one that allows feedback by updating the prior distribu-

tion with second-stage data (Chang et al., 2011; Gryparis et al., 2009), and another

that cuts feedback by fixing the prior at each iteration (Peng and Bell, 2010). Our

method aligns with the latter, as we also cut feedback. It is also related to the prior-

exposure method in Cameletti et al. (2019), but the proposed Q method accounts

for the full uncertainty in first-stage latent parameters. I propose two versions: the

full Q uncertainty method and the low rank Q uncertainty method, the latter being

an approximation useful for large Q matrices, such as in large spatio-temporal ap-

plications. Both methods are implemented within the INLA framework (Rue et al.,

2009; Van Niekerk et al., 2023) and demonstrated in spatial applications.

6.1.2.1 Full Q uncertainty method

The first-stage Bayesian hierarchical model, based on Figure 6.1, is as follows:

D1|x1,θ1,D ∼
n1∏
i=1

π(D1i|x1,θ1,D)

x1|θ1,x ∼ N
(
0,Q

−1

prior(θ1,x)
)

θ1 = {θ1,D,θ1,x} ∼ π(θ1)

(6.2)

Equation (6.2) is a latent Gaussian model since a Gaussian prior is assumed for

the latent parameters x1. For inference, the needed quantities are the posteriors

π(θ1|D1) and π(x1|D1).

The INLA methodology provides a Gaussian approximation to π(x1|θ1,D1) given

by πG(x1|θ1,D1), which is computed from a second-order expansion of the log-
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posterior density around its mode. In particular, πG(x1|θ1,D1) is given by

x1|θ1,D1 ≈ N
(
µ̂x1(θ1),Q

−1

x1(θ1)
)
, (6.3)

where µ̂x1(θ1) is the mean of the Gaussian approximation for a given θ1, and Qx1(θ1)

is a sparse precision matrix which primarily depends on two components: the graph

obtained from the prior of x1 and the graph based on the mapping from x1 to the

linear predictors (Van Niekerk et al., 2023), and is also computed given θ1. The

details are found in Section 2.5.2.

The variance-covariance matrix Q
−1

x1(θ1) in Equation (6.3) encodes the uncertainty

in the latent parameters x1. Its inverse is what we refer to as the Q matrix, i.e.,

Q ≡ Qx1(θ1). This information is then used when fitting the second-stage model. In

particular, in the second-stage hierarchical model, I introduce a new model component

ϵ, which I call an error component. Its prior model is derived from Equation (6.3),

i.e., ϵ ∼ N
(

0,Q
−1

x1(θ1)
)

. In practice, I propose to evaluate Qx1(θ1) at the mode of

π̂(θ1|D1). The predictor in the second stage is then given by

g
(
E[D2| · · · ]

)
= γ01 + γ1h

(
µ̂x1(θ1) + ϵ, ·

)
+ Z2γ2, (6.4)

I call this approach the full Q uncertainty method. As defined in Equation (6.1), the

h(·) function accounts for the unequal dimensions between µ̂x1 and D2. The domain

of the function is the latent x1-space. It then evaluates the first-stage predictor

expression, which yields a vector matching the dimension of the second-stage data

D2. The specific functional form of h(·) depends on the context and data application,

and is consequently defined by the user.

In fitting Equation (6.4), the quantity µ̂x1(θ1) is assumed to be fixed and known.

Since h(·) is generally a linear function of µ̂x1(θ1)+ϵ, it follows that h
(
µ̂x1(θ1)+ϵ, ·

)
is also Gaussian. However, γ1 is also unknown and assigned a Gaussian prior; thus,

Equation (6.4) is not a latent Gaussian model since the predictor involves a product

of two components, each with a Gaussian prior.

One way to fit the model is to linearize the predictor in Equation (6.4) using a

first-order Taylor approximation as implemented in the R library inlabru (Lindgren
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et al., 2024). Another approach is to specify a grid of values for γ1, and then fit

Equation (6.4) conditional on each γ1. All estimates are then combined using model

averaging (Gómez-Rubio, 2020). A third approach is to fit the model using a hybrid

INLA with MCMC or importance sampling approach. Here γ1 is estimated using

sampling, while the rest of the parameters are estimated using INLA (Berild et al.,

2022; Gómez-Rubio and Rue, 2018).

In the INLA framework, the model component ϵ in Equation (6.4) involves a

scaling or precision parameter, say τϵ, for Qx1(θ1). I propose fixing the value of this

scaling parameter at τϵ = 1. Note that fixing this value to higher (lower) values

implies a reduction (increase) in the uncertainty carried over from the first-stage

model to the second-stage model. An approach for determining the optimal value of

τϵ could be pursued in future work.

An application to spatial models

In spatial applications, the linear predictor in the first-stage model is a combina-

tion of fixed effects and a random field. Under the scenario of a Gaussian likelihood

model, a common specification for the function h(·) in Equation (6.4) is as follows:

h
(
x1
)

= Z1β + ξ, (6.5)

where β are fixed effects and ξ is a random field. An efficient method for estimating

the random field is the stochastic partial differential equations (SPDE) approach

(Lindgren et al., 2011). This approach provides a finite-dimensional but continuously-

indexed approximation of Gaussian fields with Matérn covariance function. The

discretization is defined on a mesh and expresses the approximation as

ξ(s) ≈
K∑
k=1

ψkωk, (6.6)

where K is the number of mesh nodes or vertices, {ψk} are basis functions chosen to

be piecewise linear in each triangle, i.e., ψk = 1 at vertex k and ψk = 0 otherwise,

and {ωk} are Gaussian-distributed weights. Using the SPDE approach, we can write

Equation (6.5) as

h
(
x1
)

= Z1β + Aω,
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where the latent parameter vector is x1 =
(
β ω1 . . . ωK

)⊺

, and A is the mapping

matrix from the mesh nodes to the observed data points. With the full Q uncertainty

method, the posterior mean µ̂x1 =
(
β̂ ω̂

)⊺

and the precision matrix Q
−1

x1(θ1) from

the Gaussian approximation in Equation (6.3) are used. The linear predictor in the

second-stage model is then specified as:

g
(
E[D2| · · · ]

)
= γ01 + γ1

{[
Z1 A

](β̂
ω̂

+ ϵ

)}
+ Z2γ2, (6.7)

where γ0, γ1, and γ2 are the model parameters; Z1,Z2 and A are known matrices;

and ϵ is the error component with prior given by ϵ ∼ N
(

0,Q
−1

x1(θ1)
)

.

6.1.2.2 Low rank Q uncertainty method

A potential problem with the specification in Equation (6.7) is that when extending

this to large spatio-temporal data, the dimension of ω̂ scales linearly as the number

of time points, which in effect also applies to the dimension of the error component

ϵ. Thus, I propose a low rank approximation of Q, which then expresses Equation

(6.7) as follows:

g
(
E[D2| · · · ]

)
= γ01 + γ1

{[
Z1 A

] β̂ + ϵβ

ω̂ + Bϵ∗
ω

}+ Z2γ2 (6.8)

= γ01 + γ1

{[
Z1 A

](β̂
ω̂

+

I 0

0 B


ϵβ
ϵ∗
ω

)}+ Z2γ2, (6.9)

where ϵ is implicitly partitioned into
(
ϵβ ϵω

)⊺

, with ϵβ being the fixed effects error

component which is time-invariant, and ϵω is the spatial error component which varies

in time. In Equation (6.8), Bϵ∗
ω is used to approximate ϵω, where ϵ∗

ω is defined on a

coarser mesh compared to the mesh used for ω̂, and B is the appropriate projection

matrix from the coarse mesh to the fine mesh.

The probability model for ϵ∗
ω depends on the distribution of the weights at the

coarser mesh, say ϕ ∈ RM , M ≪ K, K being the dimension of ω̂. The probability
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model for ϵ∗
ω is given by ϵ∗

ω ∼ N
(

0,
(
B⊺QωB

)−1)
as stated in Theorem 6.1.

Theorem 6.1. Suppose that ω is defined on a discretization of dimension RK, i.e.

ω ∈ RK, with probability model ω ∼ N
(
0,Q

−1

ω

)
. Moreover, suppose that we define a

coarser discretization specified via the weights ϕ ∈ RM ,M ≪ K, such that ω = Bϕ.

Then, the precision matrix of ϕ is given by Qϕ = B⊺QωB and the probability model

of ϕ is given by

ϕ ∼ N
(

(B⊺QωB)
−1

B⊺Qωω,Q
−1

ϕ

)
.

Proof. This is simply a generalized least squares problem, i.e., ϕ̂ := argminϕ ∥ω − Bϕ∥2
Q−1

ω
.

This yields E[ϕ̂] = (B⊺QωB)−1
B⊺Qωω and V[ϕ̂] = Qϕ =

(
B⊺QωB

)−1

.

6.2 Simulation-based calibration for model

validation

I validate the uncertainty propagation methods discussed in Sections 6.1.1 and 6.1.2

using the simulation-based calibration (SBC) approach, originally proposed by Talts

et al. (2018) and based on ideas from Cook et al. (2006). The SBC method tests

for the self-consistency property of Bayesian models, which states that the posterior

distribution, averaged over all possible outcomes from the full generative model, is

equal to the prior distribution. Formally, suppose π(θ) is the prior model, π(y|θ)

is the observation density or probability mass function, and π(θ|y) is the posterior

distribution. The self-consistency property is stated as:

π(θ′) =
∫
π(θ′|y)π(y|θ)π(θ)dydθ.

Any discrepancy between the prior model and the data-averaged posterior indicates

an error in the Bayesian algorithm. The SBC method tests this property using

rank statistics. It involves sampling from the data’s generative model and applying

the Bayesian algorithm to each data replicate. Specifically, consider the following
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sequence of samples drawn from the Bayesian model:

θ̃ ∼ π(θ)

ỹ ∼ π(y|θ̃)

{θ1, . . . ,θL} iid∼ π(θ|ỹ).

If the Bayesian algorithm is correct, then for any one-dimensional function of the
parameters, f : Θ → R, where Θ is the θ-space, the rank statistic of the prior sample
relative to the posterior sample, given by

r
({

f(θ1), . . . , f(θL)
}

, f(θ̃)
)

=
L∑

ℓ=1
I
[
f(θℓ) < f(θ̃)

]
, I

[
f(θℓ) < f(θ̃)

]
=


1 if f(θℓ) < f(θ̃)

0 if f(θℓ) ≥ f(θ̃)
(6.10)

should be uniformly distributed across the integers {0, 1, . . . , L}.

Deviations from uniformity in the rank distribution provide insights into errors in

the posteriors. A ∩-shaped rank distribution suggests that the data-averaged poste-

rior is overdispersed compared to the prior, meaning uncertainty is overestimated, vi-

olating Bayesian self-consistency. Conversely, a ∪-shaped rank distribution indicates

underdispersion, where the estimated posterior underestimates the true uncertainty.

Asymmetry in the rank distribution reveals bias in the data-averaged posterior, de-

viating in the opposite direction relative to the prior distribution.

6.2.1 Implementation of SBC for the two-stage model

This section discusses how to implement the SBC in a two-stage modelling framework

following Figure 6.1. I assume that θ1 ∈ Θ1,θ2 ∈ Θ2,x1 ∈ χ1, and x2 ∈ χ2, and

that Θ1,Θ2,χ1, and χ2 are continuous spaces. The assumption of continuous spaces

for the model parameters are crucial for the SBC method in Talts et al. (2018) to

work. For cases when some of the spaces are discrete, an SBC variant is proposed in

Modrák et al. (2023).

Following Equations (6.1), (6.7), and (6.8), the main interest is in the posterior

marginals of γ0 and γ1, since these are the parameters whose posterior uncertainty

are potentially underestimated when the uncertainty in the first stage model is not
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properly propagated to the second stage. I use the individual parameters as test

quantities to check that their uncertainty is correctly calibrated. Testing individual

parameters allows the diagnosis of a large number of problems with posterior approx-

imation (Modrák et al., 2023). However, Modrák et al. (2023) also recommended the

use of test functions which are data-dependent, such as the joint likelihood of the

data, since there are large classes of problems which cannot be detected when the

test quantities are functions only of the parameters. I have not considered such test

functions in this work, which can be done in a future work.

Algorithm 6.2 shows the steps to implement the SBC for the two-stage Bayesian

model in Figure 6.1, where the test quantities are γ0 and γ1. To test for the unifor-

mity of the rank statistic in Equation (6.10), I primarily use the graphical approach

in Säilynoja et al. (2022), which generates simultaneous confidence bands for the

difference between the empirical cumulative distribution function (ECDF) and the

uniform CDF. The method is not sensitive to binning, does not require smoothing,

and provides intuitive visual interpretation.

6.2.2 Variation in the SBC

In this section, I propose a variation of the SBC approach in a two-stage modeling

framework. The motivation here is that the parameters of primary interest are the

fixed effects of the second-stage model, namely γ0 and γ1, and I want to avoid the

influence of certain parameters of the first-stage model which may violate the self-

consistency property for specific priors or model specification. As an example, some

parameters in θ1,x (Figure 6.1) may violate the self-consistency property. Hence,

we propose Theorem 6.2, which derives the distribution of the rank statistic for an

arbitrary unidimensional test function conditional on θ1,x. This is then used as the

theoretical basis for doing the SBC conditional on θ1,x.

Theorem 6.2. Let π(θ1) = π(θ1,x)π(θ1,D) be the prior model, π(x1|θ1) be the latent

model, and π(D1|x1,θ1) be the observation density or probability mass function. Let

χ1 be the latent space, Θ1,x be the θ1,x-space, and Θ1,D be the θ1,D-space, all contin-

uous. Suppose θ1,x ∈ Θ1,x is fixed. Let θ̃1,D be a sample from the prior, i.e., θ̃1,D ∼

π(θ1,D), x̃1 be a sample from the latent model, i.e., x̃1 ∼ π(x1|θ1,x, θ̃1,D), and D̃1
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Algorithm 6.2 Implementing SBC for Figure 6.1 with γ0 and γ1 as test quantities

Do for k = 1, 2, . . . , K :

Step 1: Sample hyperparameter values: θ̃
(k)
1 ∼ π(θ1), θ̃(k)

2 ∼ π(θ2).

Step 2: Sample latent parameter values: x̃
(k)
1 ∼ π(x1|θ̃(k)

1 ), x̃(k)
2 ∼ π(x2|θ̃(k)

2 ).

Step 3: Sample observed data values:

D̃
(k)
1 ∼ π1(D1|x̃(k)

1 , θ̃
(k)
1 ), D̃

(k)
2 ∼ π2(D2|x̃(k)

1 , x̃
(k)
2 , θ̃

(k)
2 ).

Step 4: Perform inference in order to obtain estimated posteriors: π̂(k)(θ1,x1|D1) and
π̂(k)(θ2,x2|D2).

Step 5: Generate L samples from the estimated posterior distributions of γ0 and γ1:

γ
(k)
0,1 , γ

(k)
0,2 , . . . , γ

(k)
0,L ∼ π̂(γ0|D2)

γ
(k)
1,1 , γ

(k)
1,2 , . . . , γ

(k)
1,L ∼ π̂(γ1|D2)

Step 6: Compute the ranks:

r
({
γ

(k)
0,1 , γ

(k)
0,2 , . . . , γ

(k)
0,L
}
, γ̃

(k)
0

)
=

L∑
ℓ=1

I
[
γ

(k)
0,ℓ < γ̃

(k)
0
]
, I

[
γ

(k)
0,ℓ < γ̃

(k)
0
]

=
{

1 γ
(k)
0,ℓ < γ̃

(k)
0

0 γ
(k)
0,ℓ ≥ γ̃

(k)
0

r
({
γ

(k)
1,1 , γ

(k)
1,2 , . . . , γ

(k)
1,L
}
, γ̃

(k)
1

)
=

L∑
ℓ=1

I
[
γ

(k)
1,ℓ < γ̃

(k)
1
]
, I

[
γ

(k)
1,ℓ < γ̃

(k)
1
]

=
{

1 γ
(k)
1,ℓ < γ̃

(k)
1

0 γ
(k)
1,ℓ ≥ γ̃

(k)
1

,

where γ̃(k)
0 and γ̃(k)

1 are prior samples. The ranks are normalized by computing

pk = 1
L

L∑
ℓ=1

I
[
γ

(k)
0,ℓ < γ̃

(k)
0
]

and pk = 1
L

L∑
ℓ=1

I
[
γ

(k)
1,ℓ < γ̃

(k)
1
]

(6.11)

a sample from the observation model, i.e., D̃1 ∼ π(D1|x̃1,θ1,x, θ̃1,D). Suppose that

the approximate posteriors from applying the Bayesian algorithm are π̂(x1|D̃1) and

π̂(θ1|D̃1). Let {x1,ℓ} and {θ1,D,ℓ}, ℓ = 1, . . . , L be independent samples from the pos-

teriors, i.e.,
(
x1,1 x1,2 . . .x1,L

)
iid∼ π̂(x1|D̃1), and

(
θ1,D,1 θ1,D,2 . . .θ1,D,L

)
iid∼

π̂(θ1,D|D̃1). Then, we have the following results:

(1) For any uni-dimensional function f : χ1 → R, the distribution of the rank

statistic

r =
L∑
ℓ=1

I
[
f(x1,ℓ) < f(x̃1)

]
, I

[
f(x1,ℓ) < f(x̃1)

]
=


1 if f(x1,ℓ) < f(x̃1)

0 if f(x1,ℓ) ≥ f(x̃1)
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is U(0, 1, . . . , L).

(2) For any uni-dimensional function f : Θ1,D → R, the distribution of the rank

statistic

r =
L∑
ℓ=1

I
[
f(θ1,D,ℓ) < f(θ̃1,D)

]
, I

[
f(θ1,D,ℓ) < f(θ̃1,D)

]
=


1 if f(θ1,D,ℓ) < f(θ̃1,D)

0 if f(θ1,D,ℓ) ≥ f(θ̃1,D)

is U(0, 1, . . . , L).

Proof of Theorem 6.2 (1):

Proof. Let fℓ ≡ f(x1,ℓ) and f ≡ f(x̃1). Also, let π(f) and π(f |D1) be the pushforward probability

density function of π(x1|θ1,x) and π(x1|D1), respectively. Suppose pℓ = P(fℓ < f), ℓ = 1, . . . , L.

Also, we assume the ordering f1 ≤ f2 ≤ · · · ≤ fL. We then have:

π(r) =
∫

dθ1,DdfdD1π(D1, f,θ1,D|θ1,x)
(

L

r

) r∏
ℓ=1

pℓ

L∏
ℓ=r+1

(1 − pℓ)

=
(

L

r

)∫
dθ1,DdfdD1π(D1, f,θ1,D|θ1,x)

r∏
ℓ=1

[∫ f

−∞
π(fℓ|D1, f,θ1,D,θ1,x)dfℓ

]
×

L∏
ℓ=r+1

[∫ ∞

f

π(fℓ|D1, f,θ1,D,θ1,x)dfℓ

]

The probability measure for generating fℓ depends only on D1 and is independent of the condi-

tioning model configuration. Hence, we can write π(fℓ|D1, f,θ1,D,θ1,x) = π(fℓ|D1) = π(fℓ|D1,θ1,x).

Further, since the model used to simulate data and construct posterior distributions is the same,

then we have π(fℓ|D1,θ1,x) = π(f ′|D1,θ1,x), ℓ = 1, . . . , L. This implies that

π(r) =
(

L

r

)∫
dθ1,DdfdD1π(D1, f,θ1,D|θ1,x)

[∫ f

−∞
π(f ′|D1,θ1,x)df ′

]r[
1 −

∫ f

−∞
π(f ′|D1,θ1,x)df ′

]L−r

We use the fact that

π(D1, f,θ1,D|θ1,x) = π(f,θ1,D|D1,θ1,x)π(D1|θ1,x) (6.12)

= π(f |D1,θ1,x)π(θ1,D|D1,θ1,x)π(D1|θ1,x) (6.13)

= π(f |D1,θ1,x)π(D1,θ1,D|θ1,x). (6.14)

Equation (6.13) is true since f and θ1,D are d-separated given D1. This yields

π(r) =
(

L

r

)∫
dθ1,DdfdD1π(f |D1,θ1,x)π(D1,θ1,D|θ1,x)

[∫ f

−∞
π(f ′|D1,θ1,x)df ′

]r

×
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[
1 −

∫ f

−∞
π(f ′|D1,θ1,x)df ′

]L−r

=
(

L

r

)∫
dθ1,DdD1π(D1,θ1,D|θ1,x)

∫
dfπ(f |D1,θ1,x)

[∫ f

−∞
π(f ′|D1,θ1,x)df ′

]r

×

[
1 −

∫ f

−∞
π(f ′|D1,θ1,x)df ′

]L−r

Let u =
∫ f

−∞ π(f ′|D1,θ1,x)df ′, so that du = π(f |D1,θ1,x)df . Thus,

π(r) =
(

L

r

)∫
dθ1,DdD1π(D1,θ1,D|θ1,x)

∫
du(u)r(1 − u)L−r

=
(

L

r

)
B(r + 1, L − r + 1)

= 1
L + 1

Proof of Theorem 6.2 (2):

Proof. Let fℓ ≡ f(θ1,D,ℓ) and f ≡ f(θ̃1,D). Also, let π(f) and π(f |D1) be the pushforward

probability density function of π(θ1,D|θ1,x) = π(θ1,D) and π(θ1,D|D1), respectively. Suppose

pℓ = P(fℓ < f), ℓ = 1, . . . , L. Also, we assume the ordering f1 ≤ f2 ≤ · · · ≤ fL.

We can write the density of the rank statistic as

π(r) =
∫

dfdx1dD1π(D1,x1, f |θ1,x)
(

L

r

) r∏
ℓ=1

pℓ

L∏
ℓ=r+1

(1 − pℓ).

We use the fact that

π(D1,x1, f |θ1,x) = π(f,x1|D1,θ1,x)π(D1|θ1,x) (6.15)

= π(f |D1,θ1,x)π(x1|D1,θ1,x)π(D1|θ1,x) (6.16)

= π(f |D1,θ1,x)π(D1,x1|θ1,x) (6.17)

Equation (6.16) is true since f and x1 are d-separated given D1.

This yields

π(r) =
∫ (

L

r

)
dfdx1dD1π(f |D1)π(D1,x1|θ1,x)

r∏
ℓ=1

[∫ f

−∞
π(fℓ|D1, f,x1,θ1,x)dfℓ

]
×

L∏
ℓ=r+1

[∫ ∞

f

π(fℓ|D1, f,x1,θ1,x)dfℓ

]

Similar to the argument in Result 1, we have π(fℓ|D1, f,x1,θ1,x) = π(fℓ|D1) = π(fℓ|D1,θ1,x), ℓ =
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1, . . . , L. Also, we have π(fℓ|D1,θ1,x) = π(f ′|D1,θ1,x), ℓ = 1, . . . , L. This yields

π(r) =
(

L

r

)∫
dfdx1dD1π(f |D1,θ1,x)π(D1,x1|θ1,x)

r∏
ℓ=1

[∫ f

−∞
π(f ′|D1,θ1,x)df ′

]r

×

[
1 −

∫ f

−∞
π(f ′|D1,θ1,x)df ′

]L−r

=
(

L

r

)∫
dx1dD1π(D1,x1|θ1,x)

∫
dfπ(f |D1,θ1,x)

[∫ f

−∞
π(f ′|D1,θ1,x)df ′

]r

×

[
1 −

∫ f

−∞
π(f ′|D1,θ1,x)df ′

]L−r

Let u =
∫ f

−∞ π(f ′|D1,θ1,x)df ′, so that du = π(f |D1,θ1,x)df . Thus,

π(r) =
(

L

r

)∫
dx1dD1π(D1,x1|θ1,x)

∫
du(u)r(1 − u)L−r =

(
L

r

)
B(r + 1, L − r + 1) = 1

L + 1

Theorem 6.2 implies a variation in the implementation of the original SBC. In-

stead of sampling from the full data generative model, we fix the value of θ1,x. In

particular, the changes in Algorithm 6.2 only apply to Steps 1 – 3, which are the

steps for generating data from the model. The changes are formalized in Algorithm

6.3. The remaining steps for doing the SBC conditional on θ1,x are the same as the

original SBC, i.e., the model inference is done without knowledge of θ1,x and the test

quantities for the SBC are γ0 and γ1. Moreover, I extend Theorem 6.2 to the case

where we condition on the entire hyperaparameter vector θ1. This is formalized in

Theorem C.1 in Appendix C.

Algorithm 6.3 Data generation mechanism for the SBC conditional on θ1,x

Fix θ1,x ∈ Θ1,x. Do for k = 1, 2, . . . , K :

Step 1: Sample hyperparameter values: θ̃
(k)
1,D ∼ π(θ1,D), θ̃(k)

2 ∼ π(θ2).

Step 2: Sample latent parameter values: x̃
(k)
1 ∼ π

(
x1|θ1,x

)
, x̃

(k)
2 ∼ π

(
x2|θ̃(k)

2
)
.

Step 3: Sample observed data values:

D̃
(k)
1 ∼ π1(D1|x̃(k)

1 , θ̃
(k)
1,D,θ1,x), D̃(k)

2 ∼ π2(D2|x̃(k)
1 , x̃

(k)
2 , θ̃

(k)
2 ).
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6.3 Simulation experiments

This section presents the simulation experiments which compare the different uncer-

tainty propagation approaches on two two-stage models: one with Gaussian obser-

vations (Section 6.3.1) and one with Poisson observations (Section 6.3.2). For each

model, we highlight the SBC results for γ0 and γ1 using both Algorithms 6.2 and 6.3.

6.3.1 A two-stage spatial model with Gaussian likelihood

In the first experiment, the first-stage latent process µ(s) is given by µ(s) = β0 +

β1z(s)+ξ(s), where β0 and β1 are fixed effects, z(s) is a known covariate, and ξ(s) is a

Gaussian field with Matérn covariance function. The error-prone observed outcomes

are D1 ≡
{

w(si), i = 1, . . . , nw
}

, which follows the classical error model, i.e.,

w(si) = µ(si) + e1(si), e1(si)
iid∼ N

(
0, σ2

e1

)
, i = 1, . . . , nw (6.18)

The latent process µ(s) is an input in the second-stage model, i.e.,

y(sj) = γ0 + γ1µ(sj) + e2(sj), e2(sj)
iid∼ N

(
0, σ2

e2

)
, j = 1, . . . , ny, (6.19)

Here, D2 ≡
{

y(sj), j = 1, . . . , ny
}

represents observations at locations different from

where w(si) is measured. This model belongs to the class of measurement error

models because µ(sj) in Equation (6.19) is unobserved and needs to be estimated

using Equation (6.18) (Banerjee and Gelfand, 2002; Berry et al., 2002; Madsen et al.,

2008). Figure 6.2 shows a simulated observed locations for w(si) and y(sj) where

nw = ny = 80. Note that E
[
y(s)|µ(s)

]
= γ0 + γ1µ(s) is also another latent field of

interest.

I used INLA with SPDE representations of the spatial fields to fit this model. The

first- and second-stage latent parameters are x1 =
{
β0, β1, ω1, ω2, . . . , ωK

}
and x2 ={

γ0, γ1
}

, respectively. The
{
ω1, ω2, . . . , ωK

}
are the Gaussian weights of the SPDE

approximation (Lindgren et al., 2011), i.e., ξ(s) ≈
∑K

i=1 ψiωi where ψi, i = 1, . . . , K,

are basis functions as discussed in Section 6.1.2. Moreover, the first-stage hyperpa-

185



6. VALIDATING METHODS FOR UNCERTAINTY PROPAGATION

(a) Spatial locations of data (b) µ(s) (c) E
(
y(s)|µ(s)

)

Figure 6.2: Simulated data for the two-stage model in Section 6.3.1: (a) spatial locations of the data (b) simulated
µ(s) (c) simulated second-stage field E

[
y(s)|µ(s)

]

rameters are θ1 =
{
σe1 , ρξ, σξ

}
, where σ2

ξ and ρξ are the marginal variance and range

parameter of the random field ξ(s), respectively. The second-stage hyperparameter

is θ2 =
{
σe2

}
.

I used Gaussian priors for the fixed effects: β0 ∼ N
(
0, 102), β1 ∼ N

(
0, 52), γ0 ∼

N
(
0, 102), γ1 ∼ N

(
0, 32); and penalized-complexity (PC) prior for σe1 and σe2 (Fuglstad

et al., 2019; Simpson et al., 2017)). A PC prior for σe1 and σe2 penalizes deviation

from the base model of zero variance. The formulation requires the user to specify

a constant σ0 and a probability value α such that P(σei
> σ0) = α, i = 1, 2. This

is equivalent to the prior σei
∼ Exp

(
λ = −(lnα)/σ0

)
, where the rate parameter λ

determines the magnitude of the penalty, with higher values corresponding to higher

penalty. In particular, the PC priors for σe1 and σe2 are specified as P(σe1 > 1) = 0.5

and P(σe2 > 1) = 0.5. For the Matérn parameters, I used a joint normal prior for

log(τ) and log(κ) (Lindgren and Rue, 2015), where

log(τ) = 1
2 log

( 1
4π

)
− log(σξ) − log(κ) (6.20)

log(κ) = log(8)
2 − log(ρξ). (6.21)

In particular, this is given by

log(τ)

log(κ)

 ∼ N

(−0.7547 − log(κ)

1.0397

 ,
20.67 0

0 8.67

).

This prior specification implies that the plausible values for the Matérn parameters

are 0.3 ≤ σξ ≤ 0.8 and 0.6 ≤ ρξ ≤ 1.5. A joint Gaussian prior is used for the

Matérn parameters because it simplifies the implementation of the SBC. The same

prior is used across all Bayesian algorithms considered, as the primary objective of
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this section is to validate the different algorithms using SBC.

In doing the SBC, I fixed the spatial locations of w(si) and y(sj) for all the data

replicates, which is shown in Figure 6.2a. The covariate field z(s) was simulated

from a Matérn process with range of 0.6, standard deviation of 2, and mean-squared

differentiability parameter of 1. This is fixed for all data replicates since z(s) is a

known quantity in the model. The random field ξ(s) was also simulated from a

Matérn process, with range ρξ = 4 and marginal standard deviation σξ = 0.6. It

varies for the different data replicates since this is an unknown quantity which needs

to be estimated.

(a) Full Q mesh (b) Low rank Q mesh A (c) Low rank Q mesh B

Figure 6.3: Meshes used for the simulation experiments: (a) mesh for the full Q (b) slightly coarser mesh for the
low rank Q method (c) very coarse mesh for the low rank Q method

Four uncertainty propagation approaches are compared: plug-in, resampling (with

J = 30 resamples), full Q, and low rank Q uncertainty. The mesh used to fit the

full Q uncertainty method is shown in Figure 6.3a. Here, the maximum triangle

edge lengths for the inner domain and the outer extension are 0.04 and 0.1 units,

respectively. I used the same mesh to simulate and estimate ξ(s). For the low rank

Q approach, I explored two meshes (A and B) with different level of coarseness:

for mesh A (Figure 6.3b), the maximum edge lengths are 0.05 and 0.2 units, while

for the coarser mesh B (Figure 6.3c) (low rank Q mesh B), they are 0.1 and 0.25,

respectively. The number of nodes is 2672 for the full Q mesh, 1228 for mesh A, and

365 for mesh B.

Figure 6.4 shows the ECDF difference plot of the normalized ranks pk for γ0

and γ1 from 1000 data replicates using Algorithm 6.2 (corresponding histograms

are in Figure C.7 of Appendix C). Results show that for the plug-in method, the
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hypotheses of uniform distribution of the ranks pk is rejected for both γ0 and γ1

(Figure 6.4a). In addition, the ∪-shaped histogram (Figure C.7 of Appendix C)

reveals an underestimation of the posterior uncertainty. The resampling method

and the two proposed methods do not show deviations from uniformity, not even

with the low rank Q approach using the coarser mesh B. This suggests that both

the resampling approach and the proposed methods correctly capture the posterior

uncertainty of γ0 and γ1.

(a) Plug-in method (b) Resampling method

(c) Full Q uncertainty method (d) Low rank Q (mesh A) (e) Low rank Q (mesh B)

Figure 6.4: ECDF difference plot of pk for γ0 and γ1 using Algorithm 6.2 out of 1000 data replicates for the two-
stage Gaussian spatial model (Section 6.3.1) using different approaches: (a) plug-in method (b) resampling method
(c) full Q method (d) low rank Q (mesh A) (e) low rank Q (mesh B)

Although the primary focus is on the second-stage model parameters, I also ex-

amined the histogram and ECDF difference plot of the normalized ranks pk for all

first-stage model parameters. Section C.1.1 in Appendix C presents the SBC results

for the first-stage model using Algorithm 6.2. The results show a uniform distribu-

tion of pk for all first-stage model hyperparameters, except for σξ which is slightly

∩-shaped. This motivates the use of Algorithm 6.3, based on Theorem 6.2, where

SBC is applied conditional on θ1,x = {σξ, ρξ}. Moreover, three mesh nodes fail the

Kolmogorov-Smirnov test for uniformity at 10% significance level (see Figure C.1 in

Section C.1.1 of Appendix C).

The results from Algorithm 6.3 are shown in Sections C.1.2 and C.1.4 in Appendix

C. The conclusions are consistent with those from Algorithm 6.2, i.e., the plug-in

method underestimates the posterior uncertainty of γ0 and γ1, while the resampling

method and the proposed methods are also correct, although there may be slight

underestimation with the low rank Q approach. Finally, I also attempted to perform
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the SBC on a non-spatial two-stage model, i.e., similar to Equations (6.18) and

(6.19) but without the spatial field ξ(s). I used both the INLA and no U-turn

sampler (NUTS) (Hoffman et al., 2014). The results, which are given in Section

C.3.1 of Appendix C, also show that the plug-in method underestimates the posterior

uncertainty of both γ0 and γ1, while the resampling and the Q methods are correct.

Note that the Q method is implemented only using the INLA method.

6.3.1.1 Illustration with simulated data

To gain additional insights, I analyze in detail one simulated data from the previous

section with true values of the parameters as follows: β0 = 10, β1 = 3, γ0 = 10, γ1 =

1.5, σ2
e1 = 1, σ2

e2 = 1, σξ = 4, and ρξ = 0.6. Figure 6.2 shows: (a) the spatial locations

for the data w(si) and y(sj), (b) the simulated field µ(s), and (c) the simulated

field E
[
y(s)|µ(s)

]
, which we estimate using the different uncertainty propagation

approaches.

The posterior means of E
[
y(s)|µ(s)

]
(Figure 6.5a) are all very similar and close

to the truth (Figure 6.2c). Posterior standard deviations (Figures 6.5b) are smallest,

as expected, for the plug-in method. The resampling method resulted in the highest

overall uncertainty, while the full Q uncertainty method produced posterior uncer-

tainties nearly identical to those of the resampling method. The posterior uncertainty

from the low-rank Q method is lower than that of the full Q method, but higher than

the uncertainty from the plug-in method.

Figure 6.6 shows the marginal posterior CDFs of γ0 and γ1 from the same sim-

ulated data. The plug-in method has the smallest posterior uncertainty for both

parameters, but the difference is more apparent for γ0. The resampling method

has the highest posterior uncertainty, while the proposed methods provide a middle

ground between the plug-in and resampling method. The posterior estimates from

the full Q method and the low rank Q method are very similar.

Figures 6.7a and 6.7b show a comparison of the estimated posterior CDFs of

γ0 and γ1, respectively, for different fixed values of the scaling parameter log(τϵ) of

the error component using the full Q method, as discussed in Section 6.1.2. The

results show that as the log precision becomes larger, the estimated CDFs for γ0 and
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(a) Posterior mean of E(y(s)|µ(s)) (b) Posterior SD of E(y(s)|µ(s))

Figure 6.5: Comparison of the posterior mean and posterior SD of E
[
y(s)|µ(s)

]
= γ0 + γ1µ(s) for the two-stage

Gaussian model in Section 6.3.1 from different approaches: plug-in method, resampling method, full Q method, low
rank Q (mesh A), low rank Q (mesh B)

Figure 6.6: Estimated marginal posterior CDFs of γ0 and γ1 for a simulated dataset from the two-stage Gaussian
model in Section 6.3.1 using four methods of uncertainty propagation: plug-in, resampling, full Q method, low rank
Q (mesh A), and low rank Q (mesh B)

(a) Comparison with high log precision values (b) Comparison with low log precision values

Figure 6.7: Comparison of the estimated marginal posterior CDFs of γ0 and γ1 for different fixed values of the log
precision of the error component with the full Q uncertainty method using the simulated data example in Section
6.3.1

γ1 approaches the estimated CDFs of the plug-in method. Also, as the log precision

value becomes smaller, the estimated CDFs deviate more from the estimated CDFs of

the plug-in method, i.e., the posterior uncertainty becomes larger. The same insights

are true from the results of the low rank Q method (see Section C.1.5 of Appendix

C).
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In terms of computational time, the crude plug-in method took 2.98 seconds to

fit the second-stage model, while the full Q method took 9.82 seconds. The low

rank Q approach took 13.97 seconds with mesh A, and 5.80 seconds with mesh B.

This suggests that using a coarse mesh with the low rank Q does not always lead to

reduced computational time. A plausible reason for this is that the linear predictor of

the low rank Q method, as shown in Equations (6.8) and (6.9), is more complex and

involves additional operations compared to the linear predictor of the full Q method

in Equation (6.7). The computational advantage of the low rank Q approach becomes

evident from using a coarse enough mesh, similar to mesh B in Figure 6.3c. Lastly,

the resampling method with J = 30, took 36.12 seconds using parallel computing

with the mclapply() function in R.

The results from the SBC provide evidence that the plug-in method underesti-

mates the posterior uncertainty, while the resampling method is correct. The full Q

and the low rank Q methods are also expected to give correct posteriors for γ0 and

γ1. The computational benefits from the low rank Q method potentially depends on

the coarseness of the mesh for the error component.

6.3.2 A two-stage spatial model with Poisson likelihood

In this section, I perform the SBC in a two-stage spatial model with Poisson observa-

tions. I consider two model specifications: the first one, called the classical specifica-

tion, is similar to Equations (1.4) and (1.5) in Section 1.3.1. Here, the second-stage

model specifies the log mean of the Poisson counts in each block as linear with respect

to the block averages of the first-stage field µ(s). This approach is often used in such

spatial misalignment problems since it is straightforward to implement (Blangiardo

et al., 2016; Cameletti et al., 2019; Lee et al., 2017, 2021; Liu et al., 2017; Villejo

et al., 2023; Zhu et al., 2003). The second, named new specification, introduces a

spatially continuous latent intensity field λ(s) for the Poisson counts, which is then

linked to the log mean in a nonlinear way (Lindgren et al., 2024). This approach bet-

ter represents the physical process by assuming that the observed Poisson counts are

function of the averages of a latent intensity field over the areas. Although this results

in a highly nonlinear model, it can be efficiently fitted using an approximate iterative
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method with INLA. This method extends the applicability of INLA beyond the linear

predictor framework to accommodate more complex functional relationships and can

be implemented with the inlabru library in R (Lindgren et al., 2024).

6.3.2.1 Classical specification

The first-stage latent model is similar to the one in Section 6.3.1, so that µ(s) =

β0 + β1z(s) + ξ(s) and the observed data D1 = {w(si), i = 1, . . . , nw} also follows the

classical error model. The latent process µ(s) is an input in the second-stage model

as follows:

y(B) ∼ Poisson
(
µy(B)

)
µy(B) = E[y(B)] = E(B) × λ(B)

log
(
λ(B)

)
= γ0 + γ1

1
|B|

∫
B

µ(s)ds

(6.22)

The above model is closely related to the joint model in Equations (1.1) – (1.5) in

Section 1.3.1, but here we have additional quantities E(B) which are introduced as

an offset in order to account for the different sizes of the blocks B. For example, in

spatial epidemiology where y(B) is the observed disease count, E(B) is the expected

number of cases and are computed using the size and demographic structure of the

population in block B (Lee, 2011). In this specification, λ(B) is interpreted as the

disease rate or risk (Blangiardo et al., 2016; Lee et al., 2017). The second-stage data

is D2 = {y(B), ∀B}. Similar to Section 6.3.1, the first-stage and second-stage model

latent parameters are x1 = {β0, β1, ω1, ω2, . . . , ωK} and x2 = {γ0, γ1}, respectively.

The first-stage model hyperparameters are θ1 = {σe1 , σξ, ρξ}. There are no second-

stage model hyperparameters.

I simulate ξ(s) and z(s) as in Section 6.3.1. The spatial locations of the first-stage

observations and the meshes for the full Q and low rank Q are also as in Section

6.3.1. The configuration of the Poisson blocks is shown in Figure 6.10d.

I used the following priors for the fixed effects: β0 ∼ N(0, 102), β1 ∼ N(0, 52), γ0 ∼

N(−2, 1.52), γ1 ∼ N(0, 0.12). I used the PC prior for σe1 , particularly P(σe1 > 1) =

0.5, and the same joint log Gaussian prior for the Matérn parameters from Section
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6.3.1. Again, four methods of uncertainty propagation are compared: plug-in method,

resampling method, full Q method, and the low rank Q method. In fitting the plug-in

method, I define the following as the h(·) function:

h
(
x̂1
)

= C
[
Z1β̂ + ξ̂

]
, (6.23)

where C is an appropriate aggregation matrix that evaluates the integral in Equation

(6.22). In Equation (6.23), Z1β̂ + ξ̂ is evaluated over a fine prediction grid, i.e., the

Z1 covariate matrix contains the covariate information for all points in the prediction

grid and ξ̂ is the corresponding estimated spatial field. The C matrix has dimension

dim(D2) × ngrid, where dim(D2) is the number of blocks B in the second-stage data

and ngrid is the dimension of the vectorized prediction grid. The C matrix is a user-

defined (sparse) matrix, created by first defining a binary matrix, whose (i, j)th value

is equal to 1 if the jth element of the vectorized prediction grid is inside the ith block,

and then normalizing this matrix so that the row sums are equal to 1. The same C

matrix is incorporated in the linear predictor of the full Q and low rank Q methods.

(a) Plug-in method (b) Resampling method

(c) Full Q uncertainty method (d) Low rank Q (mesh A) (e) Low rank Q (mesh B)

Figure 6.8: ECDF difference plot of pk for γ0 and γ1 using Algorithm 6.2 out of 1000 data replicates for the
classical specification of the two-stage Poisson spatial model (Section 6.3.2.1) and using different approaches: (a)
plug-in method (b) resampling method (c) full Q method (d) low rank Q (mesh A) method (e) low rank Q (mesh
B) method

Figure 6.8 shows the plot of the ECDF differences of pk for γ0 and γ1 using Algo-

rithm 6.2 with 1000 data replicates (corresponding histograms are in Section C.2.3 of

Appendix C). Again, the plug-in method appears to underestimate the true posterior

uncertainty for both parameters, while the resampling and the full Q uncertainty

methods do not show deviations from uniformity. The two versions of the low rank
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Q approach (mesh A and mesh B) show slight deviation from uniformity, but not

as bad as the plug-in method. Results for the first-stage model parameters using

Algorithm 6.2 are shown in Section C.2.1 of Appendix C. As in Section 6.3.1, the

histogram of the normalized ranks pk for σξ is ∩-shaped. Moreover, there are some

mesh nodes which also fail the uniformity test using the KS test at 10% significance

level. Results using Algorithm 6.3 are shown in Section C.2.2 and Section C.2.4 in

Appendix C for the first-stage and second-stage model parameters, respectively. The

results are coherent with those from Algorithm 6.2.

Similar to Section 6.3.1, initial validation was done for a non-spatial two-stage

model, i.e., without the spatial field ξ(s) in the first stage. The results for both

INLA and NUTS are in Section C.3.2 of Appendix C. The results are consistent with

previous results; that the plug-in method underestimates the posterior uncertainty

of both γ0 and γ1, while the resampling and the proposed method are correct.

6.3.2.2 New specification

For the new model specification, the second-stage model is as follows:

y(B) ∼ Poisson
(
µy(B)

)
µy(B) = E

[
y(B)

]
= E(B) × λ(B)

λ(B) = 1
|B|

∫
B

λ(s)ds = 1
|B|

∫
B

exp
{
γ0 + γ1µ(s)

}
ds

(6.24)

The first-stage model is the same as the one used for the classical specification; but

here we assume that µ(s) is linked to another latent intensity field which we denote

by λ(s). I used the same covariate z(s), the same spatial locations for the first-stage

data, and the same configuration of the block/areas for the Poison outcomes as the

classical specification. I also used the same priors for all model parameters, and

compare the same uncertainty propagation methods.

The predictor expression in Equation (6.24) does not follow the general expression

in Equation (6.1). The new model specification is non-linear with respect to both

the first-stage latent parameters, and the second-stage fixed effects γ0 and γ1. To fit

this model, I use the iterative linearized INLA approach, discussed in Section 2.5.4
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in Chapter 2.

Figure 6.9 shows the plot of the ECDF differences of the normalized ranks pk

for γ0 and γ1 using Algorithm 6.2 and from 1000 data replicates. Histograms are

provided in Section C.2.5 of Appendix C. The results show that the plug-in method

underestimates the true posterior uncertainty for both parameters and introduces

bias in the posterior distribution of γ0. The resampling method correctly captures

the posterior for γ1, but shows some bias for γ0, though less severe than the plug-in

method. The full Q and low rank Q methods also show potential bias for γ0 on the

same direction as the plug-in and resampling method. Moreover, the ECDF difference

plot reveals a slight deviation from uniformity for γ1, though less pronounced than

that of the plug-in method. This suggests that the Q-based methods strike a balance

between the plug-in and the resampling method. Results from Algorithm 6.3, shown

in Section C.2.6 of Appendix C, align with the insights from Algorithm 6.2.

(a) Plug-in method (b) Resampling method

(c) Full Q uncertainty method (d) Low rank Q (mesh A) (e) Low rank Q (mesh B)

Figure 6.9: ECDF difference plot of pk for γ0 and γ1 using Algorithm 6.2 out of 1000 data replicates for the
new specification of the two-stage Poisson spatial model (Section 6.3.2.2) and using different approaches: (a) plug-in
method (b) resampling method (c) full Q method (d) low rank Q (mesh A) method (e) low rank Q (mesh B) method

6.3.2.3 Illustration with simulated data

To illustrate the previous insights from the SBC, I simulate a data from both model

specifications. I set the true values of the parameters as follows: β0 = 10, β1 = 3, γ0 =

−3, γ1 = 0.15, σ2
e1 = 1, σξ = 0.6, ρξ = 4. Moreover, I keep the spatial locations of the

first-stage observations as in Section 6.3.1 (Figure 6.2a), and set E(B) = 100 for all

blocks.

Figure 6.10a shows the simulated µ(s). The classical specification aggregates µ(s)
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over the blocks, which is shown in Figure 6.10b. The corresponding λ(B) are in

Figure 6.10c, while the simulated Poisson outcomes are in Figure 6.10d. For the new

specification, I first compute the latent intensity field λ(s), which is then aggregated

over the blocks to yield λ(B). The simulated λ(s), λ(B), and y(B) for the new

specification are shown in Figure C.21 in Appendix C.

Figures 6.11a and 6.11b show the estimated marginal posterior CDFs of γ0 and

γ1 for the classical specification and new specification, respectively. For both model

specifications, the plug-in method evidently has the smallest posterior uncertainty

among the four approaches. The resampling method and the Q-based methods have

very similar posterior results. The posterior median for γ0 using the new model

specification is slightly overestimated, but is well within the 95% credible interval.

The results from this specific simulated data are consistent with the SBC results.

(a) µ(s) (b) µ(B) (c) λ(B) (d) y(B)

Figure 6.10: Simulated quantities from the classical model specification of the two-stage Poisson model in Section
6.3.2.1

(a) Classical specification (b) New specification

Figure 6.11: Marginal posterior CDFs of γ0 and γ1 for a simulated dataset from the two-stage Poisson spatial model:
(a) classical specification and (b) new specification; and using different estimation approaches: plug-in, resampling
method, full Q method, low rank Q (mesh A) method, and low rank Q (mesh B) method

Figures 6.12a and 6.12b show the posterior standard deviations of λ(s) and λ(B),

respectively, using the new model specification and for the different uncertainty prop-

agation approaches. It is evident that the plug-in approach generally has the smallest

posterior uncertainty. The resampling method and the Q-based methods have quite
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(a) SD of λ(s) (b) SD of λ(B)

Figure 6.12: Comparison of the posterior uncertainty in (a) λ(s) and (b) λ(B) from a simulated data of the two-
stage Poisson spatial model (new specification) using different approaches: plug-in method, resampling method, full
Q method, low rank Q (mesh A) method, and low rank Q (mesh B) method

similar results, although the low rank Q method with a very coarse mesh has slightly

smaller uncertainty estimates in some areas. The corresponding posterior means of

λ(s) and λ(B) are shown in Figure C.23 in Appendix C. The posterior means of both

λ(s) and λ(B) from the four uncertainty propagation approaches are very similar to

the simulated truth. Moreover, the results from the classical model specification are

shown in Figure C.22 in Appendix C. The results also show the same insights as the

new model specification, i.e., the plug-in method has the smallest posterior uncer-

tainty, while the resampling method and the Q-based method have similar results.

Table 6.1 shows the computational time (in seconds) for the different estimation

approaches on the simulated data examples. For both the classical and new model

specification, the plug-in method has the fastest computing time. The resampling

method took the longest time for the classical model, while the full Q approach had

a significant reduction in the computational time. In addition, the low rank Q (mesh

A) took longer to run than the full Q method, but the low rank Q (mesh B) was

faster than the previous two. This is consistent with the results from the simulated

data example in Section 6.3.1, which show that the coarseness of the mesh for the

error component is crucial in terms of the reduction in the computational time. On

the other hand, for the new model specification, the full Q method took the longest

computational time. The new model specification is a highly non-linear model, and

introducing an error component all the more increases the model complexity; hence,
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making it plausible for the model fitting to even take longer. On the other hand, the

low rank Q approach (both mesh A and mesh B) significantly reduced the computa-

tional time.

Method Classical specification New specification
Plug-in 3.04 4.64
Resampling 44.11 95.18
Full Q 14.28 110.76
Low rank Q (mesh A) 25.20 76.43
Low rank Q (mesh B) 6.78 20.38

Table 6.1: Summary of computational time (in seconds) for the different approaches on the data illustration for the
two-stage Poisson model

The results for the two-stage Poisson models show that the plug-in method is

expected to underestimate the posterior uncertainty in γ0 and γ1. On the other hand,

the resampling approach is expected to be correct. However, there is a potential bias

for the intercept γ0 with the new model specification. The Q-based methods provide

a middle ground between the plug-in method and the resampling method, but the

gain in the computational time depends on the coarseness of the mesh for the error

component. For the new model specification, which is a highly non-linear model,

using a very fine mesh for the error component may not be recommended since doing

model fitting could potentially take a longer time than the resampling approach.

6.4 Real data application

This section illustrates the proposed method in a real data application, which aims

to link relative humidity (RH) and dengue cases in the Philippines for August 2018.

Relative humidity is known to increase the risks of dengue, since high humidity

enhances reproduction and breeding, and increases survival and lifespan of mosquitoes

(Murray et al., 2013; Naish et al., 2014; Thu et al., 1998). The emphasis in this section

is a comparison of the different uncertainty propagation approaches.

6.4.1 Data

For this application, I used climate data from weather synoptic stations in the Philip-

pines, as discussed in Chapter 4. Shown in Figure 6.13a are the spatial locations of
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the weather stations in the Philippines as maintained by PAGASA. Data on dengue

cases are obtained from the UN Office for the Coordination of Humanitarian Affairs,

as discussed in Chapter 5. Shown in Figure 6.13b is a plot of dengue cases in the

country by province for August 2018. The standardized incidence ratios (SIR) are

shown in Figure 6.13c. The expected cases are derived via internal standardization

(Waller and Carlin, 2010). The SIR indicates the relative excess in the incidence of

the disease with respect to what might have been expected based on the reference

national rates (Schoenbach and Rosamond, 2000).

(a) Weather stations (b) Dengue cases (c) Dengue SIRs

Figure 6.13: (a) weather stations in the Philippines (b) plot of dengue cases by province for August 2018 (c) plot
of the standardized incidence ratios (SIR) of dengue by province for August 2018

I perform the inference in a two-stage modelling framework. The first stage models

RH, while the second stage models the dengue health counts using information from

the first-stage model as an input.

• First-stage model – Suppose µ(s) is the true relative humidity level at an

arbitrary spatial location s. I assume the following latent process:

µ(s) = β0 + β1Elevation(s) + β2Temperature(s) + β3
(
Temperature(s)

)2 + ξ(s),

where ξ(s) is a Matérn field and β =
(
β0 β1 β2 β3

)⊺

are fixed effects. I

assume that the observed values at the weather stations follow the classical

error model, i.e., w(si) = µ(si) + e(si) and e(si)
iid∼ N(0, σ2

e), i = 1, . . . , 57. The

temperature field is assumed to be known using the predicted values from the

climate data fusion models in Chapter 4.
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• Second-stage model – I consider both the classical and new specification in

Section 6.3.2. Suppose y(B) and E(B) are the observed and expected dengue

cases in provinceB, respectively. I assume that y(B) ∼ Poisson
(
µy(B)

)
, µy(B) =

E[y(B)] = E(B) × λ(B). This implies that λ(B) = y(B)
E(B) , so that the disease

risk λ(B) is also interpreted as the model-based estimate of the SIR. For the

classical specification, I assume that

log
(
λ(B)

)
= γ0 + γ1

1
|B|

∫
B

µ(s)ds + ϕ(B),

where ϕ(B) is an area-specific effect, which I model as ϕ(B) iid∼ N
(
0, σ2

B

)
. For

the new specification, the model is given by:

log
(
λ(B)

)
= log

(
1

|B|

∫
B

λ(s)ds + ϕ(B)
)
, λ(s) = exp

{
γ0 + γ1µ(s)

}
.

I used the INLA-SPDE approach to fit the models. The mesh, with 1077 nodes,

used to estimate the the Matérn field ξ(s) is shown in Figure 6.14a. I use vague priors

for the fixed effects and σe, and a joint normal prior (Equations (6.20) and (6.21)) for

the Matérn parameters. In particular, I use

log(τ)

log(κ)

 ∼ N

( 2.71

−4.66

),
4 0

0 1

).

This implies that a plausible range of values for the range parameter is from 110 km

to 800 km, which are consistent with the estimates in Chapter 4. Moreover, I set

the plausible range of values for the marginal standard deviation as 0.2683 to 14.65,

based on the empirical standard deviation of RH which is 5.37.

I compared the posterior estimates of γ0 and γ1 from the four uncertainty prop-

agation approaches under consideration: plug-in, resampling, full Q, and low rank

Q approach. In this case study, there is no strong motivation for the low rank Q

approach, since the dimension of the latent parameters is not large. Nonetheless, I

also explored the low rank Q approach in order to have a full comparison with the

other approaches. Figure 6.14b shows the mesh for the error component of the low

rank Q approach, which has 546 nodes.
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(a) Full Q mesh (b) Low rank Q mesh

Figure 6.14: (a) mesh for the full Q method (b) mesh for the low rank Q method

6.4.2 Results

Figures 6.15c and 6.15d show the estimated posterior mean and standard deviation

of the relative humidity field. The posterior estimates of the parameters are reported

in Table C.1 in Appendix C.

(a) Posterior mean of RH (b) Posterior SD of RH

Figure 6.15: (a) estimated RH field (b) posterior uncertainty of RH field

Figure 6.16a shows the estimated relative risks (RR) and the 95% CI (in dashed
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lines) associated with one standard deviation (SD) change in RH. The results show

that for a one SD change in RH, the risk of dengue approximately doubles. This is

consistent with Chapter 5 and several studies which have shown a positive association

between RH and the risk of dengue (Murray et al., 2013; Naish et al., 2014; Thu et al.,

1998). The width of the CIs from Figure 6.16 does not seem to be too different, but

the linear predictor here is in the log risk scale, which makes these differences not

negligible (see also Chapter 5). Moreover, this is the typical length of the CIs in the

literature (Blangiardo et al., 2016; Lee et al., 2017; Liu et al., 2017).

We also computed the RR for other ω-units change in RH. In particular, we

considered ω = {1, 2, 3, 4, 5.4}, where 5.4 corresponds to one SD in RH. The results

are shown in Figure 6.17a. The figure shows that the CI widths in the RR are not

too different when the magnitude of the change in the RH is small, but the difference

in the CIs become more apparent when the change in RH is large. The posterior

estimates for γ0 and the 95% CI widths for the different uncertainty propagation

approaches are shown in Figure 6.16b and 6.17b, respectively. The actual 95% CIs

are shown in Figure C.35 of Appendix C.

Figures C.34a and C.34b in Appendix C show the estimated marginal CDFs of γ0

and γ1 for the classical and new specification, respectively, while the point estimates

and 95% CI are shown in Tables C.2 and C.3 of Appendix C. The resampling method

and the two proposed methods have slightly larger posterior uncertainty than the

plugin method for γ1. The differences in the posterior uncertainty for γ0 are more

apparent.

Figure 6.16 shows some differences in the posterior results among the four uncer-

tainty propagation approaches. The posterior mean and the lower limit of the 95%

CI of the RR for the resampling method is the lowest among the four uncertainty

propagation approaches. This attenuation to the null risk of one is also observed

in Lee et al. (2017) and Liu et al. (2017), where they argue that it is due to the

posterior predictive distribution of the first-stage model outweighing the spatial (or

spatio-temporal) variation in the data, which results in the estimated effects being

washed away. Even so, we also see that the posterior mean for γ0 from the resampling

method is the highest, so that both parameters balance each other out when calculat-
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(a) 95% CI of RR with 1 SD change in RH (b) 95% CI for γ0

Figure 6.16: (a) 95% CI of RR associated with 1 standard deviation change in relative humidity (b) 95% CI for γ0.
Shown in broken lines ( ) are the lower and upper limit of the 95% CI. The black dot (·) is the posterior mean

(a) 95% CI widths of RR for different ω-units (b) 95% CI width for γ0

Figure 6.17: (a) 95% CI width of RR associated with ω-units change in RH (b) 95% CI width for γ0

ing the log risks, log
(
λ(B)

)
. This is the same observation, although in the opposite

direction, from the results of the Q-based methods, where the posterior mean of γ1

is relatively high, but the posterior mean for γ0 is relatively low. This observed push

and pull between the two parameters explains why the estimated posterior means

of λ(B) for the four uncertainty propagation methods are very similar, as shown in

Figure 6.18a for the classical specification and Figure C.36 in Appendix C for the new

specification. Moreover, the estimated disease risks look very similar to the computed

SIRs in Figure 6.13c. The corresponding posterior SDs are shown in Figure 6.18b for

the classical specification and Figure C.37 in Appendix C for the new specification.

The posterior SDs from the plug-in and resampling method are very similar, which
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is the same result as Chapter 5. The Q-based methods have slightly higher posterior

SDs for some areas in the northern part of the country.

(a) Posterior mean of λ(B) (b) Posterior SD of λ(B)

Figure 6.18: (a) Posterior mean of λ(B) from the classical model specification (b) Posterior SD of λ(B) from the
classical model specification

6.5 Conclusions

This chapter formally addresses the problem of uncertainty propagation in two-stage

Bayesian models. This approach is appropriate for scenarios when there is a clear

one-directional physical relationship between the two models. Also, it is a practical

approach when the first-stage model is already complex in itself; for example, it might

involve fitting a complex data fusion model, such as the data fusion model in Chapter

4. In addition, a two-stage modeling framework avoids potential unwanted feedback

effects that could occur in fully Bayesian approaches (Gryparis et al., 2009; Shaddick

and Wakefield, 2002; Wakefield and Shaddick, 2006). The drawback of the two-stage

modeling framework is that uncertainty is not automatically propagated between the

two models.

In this chapter, I validated different uncertainty propagation approaches for two-

stage models by testing the self-consistency property of Bayesian models using the

simulation-based calibration (SBC) method of Talts et al. (2018). In particular, I

investigated the correctness of two commonly used methods for two-stage modeling:
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the plug-in method and the resampling method. In addition, I also explored a new

method called the Q uncertainty method. This introduces a new model component,

called an error component, in the second-stage model. The error component is given

a Gaussian prior with mean zero and precision matrix Q, derived from the Gaussian

approximation of the latent parameters of the first-stage model. The Q matrix can be

of high dimension (for example, in large spatio-temporal applications); hence, I also

proposed a low rank approximation of the Q matrix. Thus, there are two versions

of the proposed method: the full Q method and the low rank Q method. The Q

uncertainty method is implemented using the INLA methodology.

Another contribution of this chapter is the proposed modification of the SBC

method of Talts et al. (2018) to address challenges specific to two-stage Bayesian

models. The proposed SBC variant is implemented conditional on fixed values of cer-

tain first-stage hyperparameters. This approach ensures that the evaluation focuses

on the second-stage model parameters, avoiding the influence of first-stage parame-

ters that may violate the self-consistency property. I also referred to this proposed

variant as the conditional SBC.

Results from both the original SBC and the conditional SBC in the simulation ex-

periments confirm that the plug-in method underestimates the posterior uncertainty

of the second-stage model parameters, while the resampling method provides correct

uncertainty estimates. The proposed Q-based methods also produce correct posterior

uncertainty estimates, although results indicate that the coarseness of the Q approx-

imation can affect the accuracy of the approximate posteriors and the computational

cost. However, there were some inadequacies when applying the different methods on

the new specification of the Poisson model. In this work, I considered the individual

parameters as test functions. The use of test functions which are data-dependent can

be done in future work.

The computational efficiency of the Q-based methods depends on the coarseness

of the mesh for the error component. For the new specification of the Poisson model,

the full Q method required longer computational time compared to the resampling

method. This is because the Q-based methods introduce an additional model com-

ponent, significantly increasing model complexity and making fitting more computa-
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tionally intensive, particularly for the highly nonlinear Poisson model. Nevertheless,

a sufficiently coarse mesh in the low rank Q method can address this challenge while

maintaining correctness. Moreover, the low rank Q approach may also take longer to

run compared to the full Q method if the resolution of the Q approximation is not

coarse enough. The reason for this is that the predictor expression of the second-stage

model which implements the low rank Q approach involves more matrix operations,

which may potentially increase the computational requirements for model estimation.

Some aspects of the Q uncertainty method require further investigation. Firstly,

I fixed the scaling parameter of the Q matrix to 1, but this choice may not be opti-

mal. If this parameter were estimated rather than fixed, the results showed that the

estimated value of the scaling parameter tends to be very large. This behavior im-

plies an increased confidence in the first-stage posterior estimates, effectively reducing

the uncertainty in the error component, and consequently producing narrower uncer-

tainty estimates for the second-stage model parameters. The simulation experiments

revealed that as the fixed value of the scaling parameter decreases, the posterior un-

certainty of the second-stage model parameters widens and deviates more significantly

from the crude plug-in method. Conversely, when the scaling parameter increases,

the posterior uncertainty narrows, approaching the uncertainty estimates produced

by the plug-in method. Despite this, the SBC results indicated that fixing the scaling

parameter to 1 appears appropriate, as it did not violate the self-consistency property

of the model. Nevertheless, further work is needed to determine whether this choice

is indeed optimal.

Secondly, the low rank Q method requires a more thorough investigation. I hy-

pothesize that the coarser the approximation to the Q matrix, the more likely it

becomes that the self-consistency of the model is violated. I have not properly ex-

plored and investigated the breakdown point of the low rank approximation of Q.

This breakdown point is likely influenced by several factors, including the smooth-

ness of the random field and the relative proportion of variability in the response

variable explained by the fixed covariates versus the random field. A deeper under-

standing of these dependencies is essential to ensure the robustness of the low rank

approximation.
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Thirdly, I used the empirical Bayes approach to fit the models in both the simula-

tion experiments and data application. This implies that the Q matrix is computed at

the mode of the first-stage model hyperparameters. If another numerical integration

strategy is chosen by the user when implementing INLA, such as a grid approach,

there will be several Q matrices, one for each of the integration point for the model

hyperparameter. In this scenario, I propose the use of the weighted average of the

Q matrices, where the weights are the same integration weights from the numerical

integration used to compute the approximated posteriors of the latent parameters.

The SBC method is a computational method for testing the self-consistency prop-

erty of Bayesian models. It is implemented in a specific Bayesian model, prior specifi-

cation, and Bayesian inference algorithm. In this chapter, I validated simple two-stage

spatial models. However, in practice, the models that are investigated are more com-

plex. For the toy models considered in this chapter, results have shown and illustrated

that the crude plug-in method indeed underestimates the posterior uncertainty of the

second-stage model parameters. For more complex models, this underestimation of

the posterior uncertainty will also be highly likely true. Moreover, results also showed

that the resampling method is correct. I think that the resampling method should

also be able to compute the correct posterior uncertainty for more complex models.

However, the only way to exactly know this is to implement the SBC method for

every new Bayesian model specification, new prior specification, and new Bayesian

algorithm. This aligns with the proposal in Talts et al. (2018) that SBC should be an

integral part of a robust Bayesian workflow (Gelman et al., 2020). However, the SBC

method is computationally expensive and might not be a practical route in many

contexts. Therefore, I propose that a more practical approach to perform a two-stage

model analysis is to implement different uncertainty propagation approaches, and

compare the obtained posterior uncertainties. The crude plug-in method is definitely

the easiest strategy, but the results derived from such should only be taken as an

initial understanding of the model. A more comprehensive analysis should involve

doing resampling and other approaches, such as the proposed Q uncertainty method

when the Bayesian inference is done using INLA. Implementing different uncertainty

propagation strategies allows an objective comparison of the estimated posterior un-
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certainties, which would then help uncover interesting model insights and guide both

the statistical and practical interpretation of the results.
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Chapter 7

Conclusions and Future Work

7.1 Main contributions of the theses

This thesis tackles a common framework in spatial epidemiology, which performs

inference in two stages (Blangiardo et al., 2016; Cameletti et al., 2019; Lee et al.,

2017; Liu et al., 2017). The first stage fits the model for the covariate whose effect

on the health outcome is of interest. The second stage then fits the health model

using the predictions from the first-stage as an input to the model. It is argued in

Chapter 1 why a two-stage modelling approach is practical and/or ideal. Firstly,

it offers an intuitive physical interpretation, e.g., climate affects dengue incidence,

and air pollution affects incidence of respiratory diseases, but not the other way

around. Secondly, it is computationally efficient, especially when the first-stage model

is already complex in itself. As an example, the data fusion models presented in

Chapters 3 and 4 were complex models; hence, it is ideal to focus on developing

these models separately from the health model. Doing joint modelling in this context

will be very computationally challenging and expensive. Moreover, doing multiple

health effect analyses or running multiple candidate epidemiological models requires

refitting the first-stage model. A joint modelling framework in this context also is not

practical. Thirdly, a two-stage modelling framework avoids potential feedback effects

which happens in a joint modelling framework (Gryparis et al., 2009; Shaddick and

Wakefield, 2002; Wakefield and Shaddick, 2006).
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This work does not perform a comparison between a two-stage modelling ap-

proach and a joint modelling approach, but assesses the appropriateness of common

approaches used in doing two-stage modelling.

The main contributions of this theses are the following:

1. The first contribution is a proposed model which combines outcomes from mul-

tiple data sources with different accuracy levels and sparsity, a process called

data fusion. The proposed model is based on the Bayesian melding model

(Fuentes and Raftery, 2005), and is an extension of what has been done in the

literature. It has a flexible specification for the different biases and measure-

ment errors in the data outcomes, and also can extend to scenarios with more

than two data sources with varying spatial support and resolutions. This is

tackled in both Chapter 3 and 4. Chapter 3 provides an initial exploration

of the problem using the INLA-SPDE approach; but this model specification

is not flexible enough to account for the biases in the proxy data. Chapter

4 provides a more flexible model specification. This chapter also shows that

the proposed data fusion model outperforms a stations-only model and the re-

gression calibration model. A concrete data application is presented, which is

motivated by a meteorological data problem in the Philippines.

2. The second main contribution of this thesis is the validation of two commonly

used methods for doing two-stage modelling: a plug-in method and the re-

sampling method. These two algorithms are formally presented in Chapter

6 and are extensively applied in Chapter 5 in linking climate and dengue in

the Philippines. I used the simulation-based calibration approach (Talts et al.,

2018), which tests the self-consistency property of Bayesian models, to validate

the two approaches. Results show that the plug-in method underestimates the

uncertainty in the second-stage model parameters, while the resampling method

is correct.

3. The third main contribution of this thesis is a new approach to do uncertainty

propagation in two-stage models. This approach is called the Q-uncertainty

approach. It avoids resampling, and is hence potentially faster, and more im-
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portantly, is able to compute correct uncertainty estimates. Moreover, this work

proposes a low rank approximation of the proposed method, which is beneficial

for large spatio-temporal applications. To validate and assess the correctness

of the proposed method, I also used the simulation-based calibration (SBC)

approach. This is discussed in Chapter 6.

4. The fourth main contribution of this thesis is the proposed variation in the

SBC, which is useful in validating two-stage models. The motivation of the

proposal is that some parameters in the first-stage model may validate the

self-consistency property, but the main parameters of interest are the second-

stage model parameters. The SBC variant is therefore implemented by fixing

certain parameters in the first-stage model. This variant was also referred to

as conditional SBC, since the implementation is conditional on fixed values of

certain parameters. This is presented in Chapter 6.

5. The last main contribution of this work is an extensive case study on the as-

sociation between climate and dengue in the Philippines, which is presented

in Chapter 5. In particular, I looked at three climate variables: temperature,

relative humidity, and rainfall. Results show that temperature has a non-linear

association with dengue. Moreover, rainfall and relative humidity have a spa-

tially varying association with dengue, depending on the climate type of the

region.

7.2 On the proposed data fusion models

Data fusion is defined as the process of combining different data sources to estimate a

quantity of interest. For example, in meteorological applications, we have data from

a network of weather stations which is usually sparse. In addition, there are weather

forecast models and remote-sensed data (via satellites as an example) which provide

wide spatial coverage but can be heavily biased. It is advantageous to combine these

data sources in order to improve predictions, e.g., a more accurate estimate of the

temperature field.
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The proposed data fusion model in this thesis is based on the Bayesian melding

model. The model assumes that the different data sources are outcomes of the same

latent process. This allows all data sources to inform about the true unknown process,

while considering the inherent biases in each data source. Note that the different

data sources can have different spatial supports. In this thesis, instead of treating

the proxy data as areal, they are considered as point-referenced at the centroids.

Chapter 4 provides a justification for this assumption. More formally, suppose x(s)

is the latent process of interest, which is spatially structured, and that there are two

data sources: given by w1(si) and w2(gj), where the former denotes the outcome

from a station at location si, and the latter denotes the outcome of the proxy data

at the grid cell with centroid gj. The data fusion model, in a purely spatial context,

is given by:

w1(si) = x(si) + ϵ(si), ϵ(si)
iid∼ N

(
0, σ2

ϵ

)
w2(gj) = α0(gj) + α1(gj)x(gj) + δ(gj), δ(gj)

iid∼ N
(
0, σ2

δ

)
.

The model components α0(·) and α1(·) are referred to as the additive bias and

multiplicative bias, respectively. Chapter 3 provides an initial exploration of the

model, in a spatio-temporal context, by assuming that both the additive bias and

multiplicative bias are constant. The INLA-SPDE method with a data augmentation

approach are able to correctly estimate the parameters based on the simulation study.

The sparsity of the stations data indeed affects the quality of the parameter estimates,

in terms of the bias and RMSE, unless (weakly) informative priors are used. The

number of time points also has a potential effect on the quality of parameter estimates,

specifically, lower biases and RMSEs with more time points. The main limitation of

the proposed (initial) model in Chapter 3 is that it is not flexible enough to account

for the biases in the proxy data, since both α0(·) and α1(·) are assumed constant.

Chapter 4 proposes a more flexible specification by assuming that the additive

bias α0(·) is spatially varying, and is referred to as an error field. In a spatio-temporal

context, the error field is assumed to vary in time. However, the model still assumes

a constant multiplicative bias α1. The results from a simulation study show that the

proposed model outperforms a stations-only model and a regression calibration model
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when looking at the accuracy of the predicted fields and the parameter estimates. The

data application also shows that the proposed model outperforms the two benchmark

approaches based on the leave-group-out cross validation.

In fitting the data fusion model, I explored both a data augmentation approach

(similar to Chapter 3), an iterative linearized INLA approach (discussed in 2.5.4),

and the Bayesian model averaging approach (BMA) with INLA (Gómez-Rubio et al.,

2020). The data augmentation approach can be numerically unstable, while the

iterative linearized INLA had convergence issues. Thus, the BMA with INLA was

eventually used, since it was numerically stable, and it removes non-linear model

components in the predictor expression when doing model fitting. This approach is

intuitive in the data fusion context since sensible values for the bias parameter α1 can

be specified. If α1 = 1, it implies the absence of multiplicative bias, and if α1 ≪ 1 or

α1 ≫ 1, then the more severe the multiplicative bias. Thus, for model estimation, I

defined a grid of α1 values centered on 1, and then estimated the model conditional

on α1. The final estimates are then obtained by Bayesian model averaging.

To emphasize an important point in Chapter 4, the proposed data fusion model

offers several advantages: it defines a unified latent process for all data outcomes,

accounts for measurement errors for all data sources, provides flexibility in address-

ing biases, accommodates multiple spatially-misaligned data sources, and gauges the

relative quality of the data sources.

7.2.1 Future work

An immediate extension of the model is to assume that α1(s) is also a random field.

Note that if x(s) were known, then the predictor expression for w2(gj) is a spatially-

varying coefficient model. However, if both x(s) and α(s) are random fields or func-

tions of such, then this is a difficult problem, primarily due to identifiability issues.

Strategies to improve identifiability include introducing constraints in the model spec-

ification or introducing additional structure to reduce model complexity.

Another avenue for future work is to continue investigating the meteorological

data problem in the Philippines, particularly by incorporating a third data source,

such as remotely sensed data from satellite imagery. The proposed data fusion model
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is able to combine more than two data sources of different spatial supports; hence, this

extension is straightforward to implement. Another data application of interest is UK

pollution data (Forlani et al., 2020), specifically combining data from a monitoring

network maintained by Automatic Urban and Rural Network (AURN) and data from

two numerical models: Air Quality Unified Model (AQUM) and Pollution Climate

Mapping Model (PCM).

7.3 On the validation of approaches for two-stage

modelling

Chapter 5 discussed the uncertainty propagation problem in a two-stage modelling

framework. Two commonly used methods for doing two-stage modelling are the

crude plug-in method and the posterior sampling method. The former ignores the

uncertainty in the first-stage model, while the latter accounts for the uncertainty by

sampling from the posterior distributions of the first-stage model, and then fitting

the second-stage model using each sample. This thesis validates the correctness of

the two aforementioned approaches by testing for the self-consistency property of

Bayesian models via the simulation-based calibration method (Talts et al., 2018).

I performed the validation of specific Bayesian spatial models, specific prior spec-

ification, and using the INLA approach for Bayesian inference. The results show that

the plug-in method indeed tends to underestimate the uncertainty in the second-

stage model parameters, while the resampling method is correct. This is consistent

with the results from Chapter 5 which looks at the link between climate and dengue

in the Philippines. There is a difference in the posterior standard deviations of the

second-stage model parameters, with the resampling method generally giving higher

posterior uncertainty compared to the crude plug-in method.

The SBC method is implemented for a specific Bayesian model, prior specification,

and algorithm/inferential approach. Chapter 6 employed the SBC method in toy

spatial models, to illustrate the underestimation of posterior uncertainty when using a

crude plug-in method and the correct uncertainty estimation when using the posterior

sampling method. Ideally, the SBC method should be implemented on every Bayesian
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model and algorithm. In fact, Talts et al. (2018) proposed that the SBC should be an

integral part of a robust Bayesian workflow, which includes the following key three

steps: model building, inference, and model checking/improvement (Gelman et al.,

2020). However, in practice, the models we postulate and investigate are complex.

This means that performing SBC is computationally expensive and might not be

feasible or practical in some applications. Thus, a good strategy is to explore different

approaches when doing two-stage modelling, and then compare the results from the

different approaches. The crude plug-in method is definitely the easiest approach,

but the results derived from such an approach should only be used to provide initial

understanding of the model. Implementing other approaches, such as the posterior

sampling approach, should also be considered. A comparison of results from different

two-stage modelling approaches provides a more extensive and deep understanding

of the model.

7.4 On the proposed Q uncertainty method

A main contribution of this thesis is the proposed new approach for doing uncertainty

propagation in a two-stage modelling framework, called the Q uncertainty method.

The main advantage of the method is that it does not do resampling from the first-

stage model posteriors; which means that it does not need to fit the second-stage

model several times. This is done by incorporating both the posterior mean and

posterior variances and covariances of the first-stage latent parameters in the second-

stage model predictor expression. The variances and covariances are encoded in

the Q matrix, and is introduced in the second-stage predictor expression as a fixed

hyperparameter value of a latent vector called the error component. More formally,

this means that the predictor expression in the second-stage model can be generally

written as follows:

g
(

·
)

= γ01 + γ1h(µ̂x1 + ϵ, ·),

where g(·) is the link function, h(·) is a vector-valued function of µ̂x1 , which is

the posterior mean of first-stage latent parameters, and ϵ is the error component,
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which encodes the uncertainty in the first-stage model and is given a Gaussian prior

with mean 0 and precision matrix Q. The unknowns {γ0, γ1} are fixed effects. The

computational bottleneck of the above expression is that it involves a product of

two Gaussian model components, particularly γ1 and the h(µ̂x1 + ϵ, ·). This is not

straightforward to fit in the traditional INLA framework, since the model is tech-

nically not latent Gaussian. There are several ways to fit the model in the INLA

framework, as discussed in Section 6.1.2 and Section 7.5. In this work, I explored

the use of the iterative linearized INLA method (see Section 2.5.4), for which the

accuracy of the posterior approximations and the speed of computation depends on

the degree of non-linearity in the predictor expression (Lindgren et al., 2024).

The SBC results show that the Q method gives correct posterior uncertainty

estimates on the toy spatial models considered in Chapter 6, although there may

be some inadequacies when applied on the new specification of the Poisson model.

This work also proposed a low rank approximation of the Q matrix, which can be

beneficial for large spatio-temporal applications. This is done by defining the error

component on a coarser mesh, and then solving for the best linear mapper between

the two meshes with respect to the variance-covariance structure of the weights at

the nodes of the finer mesh.

The computational benefits from using the Q method depend on the coarseness

of the mesh and the degree of non-linearity in the predictor expression. For the toy

spatial model with a Gaussian likelihood, the low rank Q method with a not coarse

enough mesh took longer to run compared to the full rank Q method. This is expected

since the low rank Q method involves additional operations in its predictor expression.

With the use of an even coarser mesh for the error component, the computational

time was faster than the full rank Q method, without sacrificing the accuracy of the

posterior approximations. For the toy spatial model with a Poisson likelihood and a

classical model specification, both the full rank and low rank Q methods were faster

compared to the resampling method. Also, similar to the Gaussian case, the low rank

Q approach with a not coarse enough mesh took longer to run compared to the full

rank Q method. For the new specification of the Poisson spatial model, however,

the full Q method took longer to run compared to the resampling method. This is
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due to the highly non-linear predictor expression which slows down the convergence

of the iterative linearized INLA approach. Thus, there is no guarantee that the Q

method will always outperform the resampling method in terms of computational

efficiency. The Q method involves non-linear model components, which does not fit

quite conveniently in the INLA framework.

7.4.1 Future work

In the current implementation of the Q uncertainty method, I fixed the scaling pa-

rameter τ equal to 1. This parameter may need to be optimally determined. When

this parameter is fixed to a large value, the posterior uncertainty of the second-stage

model coefficient narrows; while if the scaling parameter is fixed to a value smaller

than 1, the posterior uncertainty widens. This is expected since increasing the scal-

ing parameter also inflates the precision of the first-stage latent parameters, while

decreasing its value inflates the posterior variances and covariances of the first-stage

latent parameters. Fixing the value of the scaling parameter to 1 is reasonable, and

also shows correct posterior aproximations based on the SBC method. If the scaling

parameter were not fixed, it is usually estimated to be very large, which means that

the posterior estimates are very similar to the crude plug-in method. Nevertheless,

further work is needed to assess the optimality of the choice for the scaling parameter

value.

Moreover, a thorough understanding of the low rank Q method needs to be done.

I postulate that the coarser the approximation to the Q matrix is, it becomes more

likely that the self-consistency of the model is violated. I have not properly ex-

plored and investigated the breakdown point of the low rank approximation of Q. As

mentioned in Chapter 6, the breakdown point can be influenced by several factors,

including the smoothness of the random field and the relative proportion of variability

in the response variable explained by the fixed effects versus the random effects.

I used the empirical Bayes approach in the initial development of the method,

which implies that the Q matrix is computed at the mode of the first-stage model

hyperparameters. If another numerical integration strategy is chosen by the user

when implementing INLA, such as a grid approach, there will be several Q matrices,
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one for each of the integration point for the model hyperparameter. In this scenario,

I propose computing the weighted average of the Q matrices, where the weights are

the same integration weights from the numerical integration used to compute the

posteriors of the first-stage latent parameters.

7.5 On fitting conditional latent Gaussian models

Many of the models mentioned in this thesis are not latent Gaussian, i.e., they do not

fall in the class of models in the INLA framework. Examples are the new specification

of the Poisson spatial model discussed in Chapter 6, a data fusion model which

involves a product of two Gaussian model components, and the proposed Q method

which involves the product of γ1 and h(·).

A methodological innovation in this area is to propose a new method for fitting

non-latent Gaussian models in the INLA framework. Here, I work on the assumption

that INLA is a strong choice for doing Bayesian inference, since it is established as

fast and accurate. Other models where this can be useful, in addition to the mod-

els mentioned previously, are the following: spatial autoregressive combined (SAC)

model (Manski, 1993), zero-inflated Poisson model, mixture models, and Bayesian

Lasso.

The following are the existing approaches for fitting conditional INLA models:

a hybrid MCMC-INLA approach (Gómez-Rubio and Rue, 2018), model averaging

with INLA (Gómez-Rubio et al., 2020), importance sampling (IS) with INLA or

an adaptive IS with INLA (Berild et al., 2022), and the linearized INLA (Lindgren

et al., 2024). The idea of the first approach is that INLA is used to fit the model

conditional on the parameters, say θ, which causes the violation of the latent Gaussian

assumption; and then MCMC is used to estimate the posterior distribution of θ. The

problem with this approach is that it is very slow. The second approach creates a grid

of values for θ and then fits the model using INLA conditional on each θ value. All

conditional INLA models are then averaged. However, this is only possible when we

have an idea of the most plausible values of θ. Moreover, this can be computationally

expensive when θ is of high dimension. The third approach can be faster than the
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MCMC-INLA approach because of the non-sequential nature of IS, but it requires

good proposal distributions. The common ground among the three approaches is

that they perform model averaging of all the conditional INLA models; they only

differ on how θ is sampled or determined. Finally, the fourth approach may suffer

from some difficulties in convergence, depending on the degree of non-linearity in the

predictor expression.

7.5.1 Future work

Let y be the observed data; and θ be the model parameters – including both la-

tent model parameters and hyperparameters. The goal is to obtain the posterior

marginals, π(θi|y). Suppose that the model violates latent Gaussianity unless some

parameters are fixed, say, θc. Let θ =
(
θc θ9c

)⊺

, where θc is fixed so that INLA

can then be used for inference. The posterior marginals of interest are then π(θc,i|y)

and π(θ9c,i|y).

My proposal is to fit the conditional models using a batched sequential importance

sampling approach. It is batched since the approach can be easily parallelized. It is

sequential since the goal is that subsequent samples should have increasing (model av-

eraging) weights from a random start. It is based on the importance sampling method,

since high posterior samples of θ should be given higher weights when doing model

averaging. The implementation of the importance sampling is explained in Section

7.5.1.1. The sequence of proposed values for θ are determined using stochastic ap-

proximation (see Section 7.5.1.2), such as the central difference estimation method,

of the posterior distribution of θ. The strength of the proposed method is that,

although sampling is done sequentially and which requires the computation of gra-

dients, the different sequences can be parallelized (see Section 7.5.1.3), and that for

each sequence, the succeeding posterior samples have increasing weights (see Section

7.5.1.4).

7.5.1.1 Implementation of importance sampling approach

Suppose g(θc) is the importance or proposal distribution for θc. Computation of the

posterior marginals π(θ9c,i|y) is given as follows:
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π(θ9c,i|y) =
∫
π(θ9c,i|θc,y)π(θc|y)dθc

=
∫
π(θ9c,i|θc,y)π(θc|y)

g(θc)
g(θc)dθc

≈
∑
j

π
(
θ9c,i|θ(j)

c ,y
)π(θ(j)

c |y
)

g(θ(j)
c )

, θ(j)
c ∼ g

(
θc
)
.

(7.1)

In Equation (7.1), π(θ9c,i|θc,y) is the conditional posterior marginal of θ9c,i, π(θc|y)

is the posterior marginal of θc , and π(θ9c,i|y) is estimated using model averaging.

The exact form of π(θc|y) is unknown; instead, it is known up to a proportionality

constant, given by

π(θc|y) ∝ π(y|θc)π(θc).

Thus, we have

π(θ9c,i|y) ≈
∑
j

π
(
θ9c,i|θ(j)

c ,y
)
w∗(j),

where w∗(j) are the standardised weights w(j) =
π
(
y|θ(j)

c

)
π
(
θ

(j)
c

)
g
(
θ

(j)
c

) .

7.5.1.2 Stochastic Approximation of π(θc|y)

Note that we want good samples from π(θc|y). This can be done by performing a

stochastic approximation on π(θc|y) ∝ π(y|θc)π(θc), whose steps are presented in

Algorithm 7.1.

Algorithm 7.1 Stochastic approximation of π(θc|y)

Step 1: Initialize θc = θ0
c ∈ Rp,θ0

c ∼ g(θc).

Step 2: Obtain an estimated gradient of π(θ0
c |y), ̂∇π(θ0

c |y)

Step 3: Set θ1
c = θ0

c + β ̂∇π(θ0
c |y), for a fixed β which is the learning rate.

Step 4: For j = 2, . . . , N ,

θjc = θj−1
c + β ̂∇π(θj−1

c |y)

Stop if a stopping criterion is met.
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The next bottleneck is how to obtain ̂∇π(θjc |y). This can be done using the central

difference estimation approach, which is presented in Algorithm 7.2. Since π(θjc |y) is

known only up to a constant, the computed ̂∇π(θjc |y) should be normalized.

Algorithm 7.2 Central difference estimation approach to obtain ̂∇π(θjc |y)
Suppose p is the dimension of θc. Let ei be a p-dimensional vector with 1 in the ith
position and 0 elsewhere.

Step 1: Do for i = 1, . . . , p:

Compute L = π

(
θjc − ei

δ

2

)
and R = π

(
θjc + ei

δ

2

)
∂̂π(θjc)
∂θjc,i

= R − L

δ

Step 2: ̂∇π(θjc |y) =
(
∂̂π(θjc)
∂θjc,1

∂̂π(θjc)
∂θjc,2

. . .
∂̂π(θjc)
∂θjc,p

)⊺

The learning rate β in Algorithm 7.1 is pre-determined. But it could also be

adaptively learned. The determination of the value β should be carefully chosen. If

β is too small, it might take very long for the stochastic approximation to converge.

If β is too large, we might not have done a good search over the θc−space. Moreover,

the constant δ is fixed at a small number. A sensible stopping criterion is if there is

a decline in the value of the weight w(j), i.e., stop if

π
(
y|θj+1

c

)
π
(
θj+1
c

)
g
(
θj+1
c

) <
π
(
y|θjc

)
π
(
θjc
)

g(θjc)
.

The algorithm is not quite efficient since it computes the gradient for every sam-

ple/particle. With the assumption that π(θc|y) is unimodal, then a potential solution

is to compute the gradient only at the random start. However, this is still not quite

efficient because of the sequential updates and a random stopping time. Since we are

assured that the weights are increasing, then it might be smart to specify a reasonable

number of steps to take from the random start in a single sequence. A solution then is

to identify the equidistant samples/particles in a sequence given the fixed number of

steps. The benefit of doing this is that we can perform parallel (INLA) computation

(for each sample), and there is no need to specify a stopping rule.
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If the random start is far from the mode π(θc|y), the obtained samples for a

single sequence will eventually have negligible weights. Thus, a waste of memory and

computing time. A solution here is to define a (line) segment from a random start to

our estimated mode, say θ∗
c . The steps are presented in Algorithm 7.3.

Algorithm 7.3 Modified algorithm for obtaining θc samples

Step 1: Initialize θc = θ0
c ∈ Rp,θ0

c ∼ g(θc).

Step 2: Obtain an estimated (normalized) gradient of π(θ0
c |y), ̂∇π(θ0

c |y)

Step 3: Compute the distance, d, between θ0
c and θ∗

c .

Step 4: Compute N equidistant points from 0 to d:

β =
(
β1 β2 . . . βj . . . βN

)
Step 5: For j = 1, . . . , N : θjc = θ0

c + βj ̂∇π(θ0
c |y)

7.5.1.3 Batch processing

The stochastic approximation of π(θ|y) can be easily parallelized. Suppose that we

have the following:

(
θ0,1
c θ1,1

c . . . θt,1c . . . θN1,1
c

)
are the N1 samples from the 1st batch.

...(
θ0,b
c θ1,b

c . . . θj,bc . . . θNb,b
c

)
are the Nb samples from the bth batch.

...(
θ0,B
c θ1,B

c . . . θt,Bc . . . θNB ,B
c

)
are the NB samples from the Bth batch.

Given the samples θ
(t,b)
c , t = 1, . . . , Nb; b = 1, . . . , B, how do I use these to

obtain the posterior estimates of θ?

Estimating π(θ9c|y):

All samples
(
θ0,b
c θ1,b

c . . . θt,bc . . . θNb,b
c

)
, b = 1, 2, . . . , B can be combined
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via model averaging to estimate π(θ9c,i|y). This is given as follows:

π(θ9c,i|y) ≈
B∑
b=1

Nb∑
j=0

π(θ9c,i|θj,bc ,y) wj,b∑B
b=1
∑Nb

j=0 w
j,b

wj,b = π(y|θj,bc )π(θj,bc )
g(θj,bc )

Estimating π(θc|y):

The joint posterior of θc can be estimated as

π(θc|y) ≈
B∑
b=1

Nb∑
j=0

wj,bδ(θc − θj,bc ),

where δ is the Dirac delta function. Another approach is weighted nonparametric

kernel density estimation. The posterior marginals of θc,i are estimated using similar

approaches.

7.5.1.4 Computation of weights

A critical component of the proposed solution is the computation of the weights, given

by wj,b, j = 0, . . . , Nb; b = 1, . . . , B. To do this, I use the fact that for an arbitrary

function h(·) of θc, the Monte Carlo estimator for h(θc) is given by

E
[
h(θc)|y

]
=
∫

h(θc)π(θc|y)dθc ≈ 1∑B
b=1(Nb + 1)

B∑
b=1

Nb∑
j=0

h(θj,bc )wj,b

= 1
B

B∑
b=1

(
1

Nb + 1

Nb∑
j=0

h(θc)j,bwj,b
)
,

which can be written as

E
[
h(θc)|y

]
≈ 1
B

[(
h(θ0,1

c )w0,1

N1 + 1 + . . .+ h(θ0,B
c )w0,B

NB + 1

)
+

B∑
b=1

Nb∑
j=1

h(θj,bc )wj,b
Nb + 1

]
.

Thus, we have

E
[
h(θc|y)

]
≈ 1
B

[
B∑
b=1

h(θ0,b
c )w0,b

Nb + 1 +
B∑
b=1

Nb∑
j=1

h(θj,bc )wj,b
Nb + 1

]
.
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7.5.1.5 Next steps

The next steps from here involve the actual computation of the weights, as discussed

in Section 7.5.1.4. The benchmark approaches here would be the importance sampling

approach (Berild et al., 2022), INLA-with-MCMC approach (Gómez-Rubio and Rue,

2018), and the linearized INLA approach (Lindgren et al., 2024).

7.6 On the problem of time misalignment

Another feature of the data, which I did not consider but is related to the change

of support problem, is time misalignment, i.e., the time dimension of the data are

observed at different frequencies. In this thesis, the dengue cases are observed at the

weekly level, which I aggregated to the monthly level. Moreover, it is possible to re-

quest from PAGASA for daily outcomes of the climate variables. Another example is

in econometric applications, where Gross Domestic Product is commonly calculated

quarterly, while currency exchange rates are constantly fluctuating. In the aforemen-

tioned examples, the dependent variable is low frequency, while the predictor is high

frequency. I propose to address this problem using Mixed Data Sampling (MIDAS)

models (Ghysels et al., 2020).

7.6.1 Mixed Data Sampling

Let t ∈ N index the low frequency observations of a dependent variable yt ∈ R.

Let τ ∈ N index the high frequency observations.

Let xτ ∈ R be the single high-frequency observation.

Let mt denote the number of high-frequency observations pertaining to the tth low-

frequency observation.

Let s(t) =
∑t

j=1 mj denote the total number of high-frequency periods available up

till (and including) the tth low frequency observation.

The stylized MIDAS regression model is given by

yt = g

(
k∑
i=0

wixs(t)−i;β
)

+ εt (7.2)
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∀i, wi = h(γ, i) and
k∑
i=0

wi = 1 (7.3)

The function g : R → R can be parametric, in which case β ∈ Rb is its low-

dimensional parameter vector. When g(z;β) = g(z) = z, ∀z ∈ R, then we have the

so-called distributed lag MIDAS (DL-MIDAS) regression. Furthermore, the function

g : R → R can be non-parametric, in that case β = 1 is imposed. The zero mean

error term εt is independent of xt, and also identically distributed. The normalization

condition
∑k

i=0 wi = 1 is often required for the identification of β and/or g. The func-

tion h(·) is a constraint function which aligns the low-frequency and high-frequency

observations. In particular, we have h(γ, i) : Rd ×N → R, where γ ∈ Rd and i is the

lag index i ∈ {0, 1, . . . , k}. The values wi are constrained to sum to 1 so that β or

g(·) are identifiable.

7.6.1.1 Constraint functions

Since {wi}i=0,...,k are restricted to add to one, it is convenient to represent the func-

tional constraint h(·) in the following form:

wi = h(γ, i) = ψ(γ, i)∑k
j=0 ψ(γ, j)

. (7.4)

The choice of the ψ : Rd × N → R determines the shape of h. Here, d is the

dimension of γ. Three widely used parametric forms of ψ are the following:

1. exponential Almon polynomials: ψ(γ, i) = exp
(∑d

j=1 γji
j
)

2. beta polynomial: ψ(γ, i) = xγ1−1
i (1 − xi)γ2−1, where xi = ξ + (1 − ξ) i− 1

k − 1 and

marginally small quantity ξ > 0. A special case is to fix γ1 = 1, so that d = 1,

and which still provide a flexible constraint (Ghysels and Qian, 2019).

3. hyperbolic scheme polynomial: ψ(γ, i) = Γ(i+ γ)
Γ(i+ 1)Γ(γ) , where Γ(·) is the gamma

function.

Other constraint functions are provided in Ghysels et al. (2016). Figure 7.1 illus-

trates the values of the weights for the three constraint functions. For the exponen-

tial Almon polynomial (see Figure 7.1a), declining weights with respect to the lag
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are guaranteed as long as γ2 ≤ 0. Weights within the vicinity of zero seem to be

reasonable values for the γ parameter (Ghysels et al., 2007). Figure 7.1b illustrates

the weights for the beta polynomial where γ1 is fixed at 1. When γ1 = 1, the weights

are declining when γ2 > 1, and the rate of decline depends on its magnitude, partic-

ularly, higher values of γ2 give rapidly declining weights. Figure 7.1c shows weights

for the hyperbolic scheme polynomial. The reasonable values of γ for this constraint

function is 0 < γ < 1.

For the constrained MIDAS models, the selection of the constraint function h,

the dimension of γ, and the lag order k has to be carefully considered. For the

unconstrained MIDAS, there is no constraint on the parameters; thus, the selection

of k corresponds directly to the selection of number of parameters in this regression.

7.6.2 Proposed estimation approach

The MIDAS model, as introduced in Section 7.6.1, cannot be directly implemented

in INLA. However, model reparameterization can be the strategy in order to use the

INLA framework with the MIDAS model. This involves writing generic models in

the INLA library. A generic model is a way to define latent model components that

are not yet available in the INLA library.

7.6.3 Toy examples

This section presents initial results from simulated toy datasets. Sections 7.6.3.1 and

7.6.3.2 present some results for a constrained MIDAS model with exponential Almon

polynomial constraint and a hyperbolic scheme polynomial constraint, respectively.

7.6.3.1 Constrained MIDAS with exponential Almon polynomials

Here, I simulate a data from a constrained MIDAS model with the exponential Almon

polynomial as the constraint function. I set d = 2, γ1 = 0.006, and γ2 = −0.0005.

Moreover, I assume s(t) = 5, k = 4, β0 = 3, β1 = 1, and σe = 1. Shown in Figure 7.2

is a simulated data from the model, for a time series data of length T = 3000.

Figure 7.3 shows the posterior estimates of three parameters: β0, β1, and τe =

1/σ2
e . The results shows that these parameters are correctly estimated. All the
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(a) exponential Almon polynomial weights

(b) Beta polynomial weights

(c) Hyperbolic scheme polynomial weights

Figure 7.1: Illustration of the weights values for the three constraint functions

(a) High frequency predictor (b) Low frequency response variable

Figure 7.2: Simulated data from a constrained MIDAS model with the exponential Almon polynomial as constraint
function
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posterior means are inside the respective 95% credible intervals. Moreover, Figure 7.4

shows the estimated posterior mean and 95% credible intervals for the weights wi, i =

0, 1, . . . , 4. This shows that the model (lag) weights are also correctly estimated.

Finally, Figure 7.5 shows a close correspondence between the true values and predicted

values of the response varible y.

Figure 7.3: Posterior estimates of model parameters. Shown in blue line is the true value, while the shaded lines
show the 95% credible intervals.

Figure 7.4: Posterior estimates of the lag weights, wi. The line segment is the 95% credible interval

Figure 7.5: Observed versus predicted values of the response variable y
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7.6.3.2 Constrained MIDAS with hyperbolic scheme polynomial

Here, I simulate a data from a constrained MIDAS model with the hyperbolic scheme

polynomial as the constraint function. I also assume k = 4, β0 = 3, β1 = 1, and

σe = 1. The constraint function parameter is γ = 0.5.

Shown in Figure 7.6 are the estimated posterior marginals for the parameters

β0, β1, τe = 1/σ2
e , and γ. The results show that the parameters are correctly esti-

mated. Moreover, Figure 7.7 shows the estimated weights wi, i = 0, 1, . . . , 4. All the

(lag) weights are also correctly estimated. Finally, Figure 7.8 shows a close corre-

spondence between the true values and predicted values of the response variable.

Figure 7.6: Posterior estimates of model parameters. Shown in blue line is the true value, while the shaded lines
show the 95% credible intervals.

Figure 7.7: Posterior estimates of the lag weights, wi. The line segment is the 95% credible interval

7.6.4 Next steps

The next step is to investigate further the capabilities of INLA in fitting other types

of MIDAS regression models, such as models which include a trend component. The
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Figure 7.8: Observed versus predicted values of the response variable y

defined rgeneric functions worked in toy examples. These functions can be trans-

lated into cgeneric functions, i.e., to define these new latent models in C in order to

get the correct speed. Further next steps would be to apply the models in real-life

data, and to build an R package to make these functions accessible to practitioners

and applied users.

7.7 On the link between climate and dengue in

the Philippines

Finally, this thesis extensively looked at the association between climate and dengue

in the Philippines. This is done in a two-stage modelling framework, wherein the

first stage involves fitting climate models, as presented in Chapter 4, and the second

stage involves fitting the health model using the climate predictions as an input

and the dengue incidence as the response variable, as presented in Chapter 5. The

entire process of doing the statistical analysis exactly follows the two-stage Bayesian

modelling framework illustrated in Figure 1.6.

This work postulates a spatio-temporal model with several random effects to

capture extra variation in the data unexplained by the climate covariates and other

fixed effects. The random effects are specified using both structured and unstructured

effects in space and time, and their interaction. The novelty in the application is the

use of a methodological approach which is new and different compared to existing
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published work using Philippines data, as emphasized in Chapter 5. The results

agree with existing studies on climate and dengue. Temperature is shown to have a

non-linear relationship with dengue. An increase in temperature implies an increase

in dengue incidence and risks. However, too high temperature is shown to have a

negative association with dengue. This result is expected since studies have shown

that excessively high temperature can shorten the lifespan of mosquitoes and cause a

reduction in their population size (Myer et al., 2020). Moreover, the results show that

the association between dengue and rainfall and relative humidity varies in space. For

the eastern section of the country, which is relatively wet all year round and with low

variation in the amount of rainfall, the effect of rainfall is negative. On the other hand,

for most western section of the country, which has a pronounced wet and dry season,

the relationship is the opposite, i.e., dengue and rainfall are positively related. These

are exactly the same results shown in Cawiding et al. (2025), and this is explained

by the fact that consistent and low variation in the amount of rainfall tends to wash

away breeding sites of mosquitoes, while intermittent rainfall, especially during dry

season, tends to create more breeding sites.

The extensive analysis in Chapter 6 performed a comparison between a crude

plug-in method and the resampling method. The results show that the posterior

uncertainty in the second-stage mode parameters are generaly larger with the resam-

pling method.

7.7.1 Future work

7.7.1.1 Inclusion of social, economic, and other factors

One extension of the work is to account for social and economic factors of dengue in-

cidence, such as health infrastructure, poverty incidence, housing, and level of urban-

ization. Other factors include human behavior such as travel, water storage practices,

and land use. Another extension is to consider lagged effects of climate variables and

to include covariates at the pathogen-levels, which includes mosquito abundance and

biting rates.
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7.7.1.2 Variance partitioning approach

An innovation in the model specification is to use the variance partitioning ap-

proach proposed in Franco-Villoria et al. (2022). The proposed models are basi-

cally reparametrized versions of the spatio-temporal models in Knorr-Held (2000),

which are based on Kronecker product of intrinsic Gaussian Markov random fields

(IGMRF). This approach introduces a mixing parameter that distributes the total

variability (generalized variance) between the main and interaction effects.

More formally, suppose that ηij is the linear predictor for the ith time point and

jth spatial location. Moreover, suppose that β1i
is the temporal main effect, β2j

is the

spatial main effect, and δij is the interaction effect which is modelled as a Kronecker

product IGMRF. The variance partitioning approach specifies ηij as follows:

ηij = α +
√
τ 91
[√

1 − γ
(√

1 − ϕβ1i
+
√
ϕβ2j

)
+ √

γδij

]
(7.5)

In Equation (7.5), τ is the overall (generalized) variance, which is distributed

between the main effects and the interaction effect via the mixing parameter γ ∈ [0, 1].

The main effect is further distributed between the temporal effect β1i
and the spatial

effect β2j
via the mixing parameter ϕ ∈ [0, 1]. This model specification makes it

easy to quantify the relative contribution of the different random effects components

to the total variance. The advantage of the variance partitioning approach is that

it provides a way of eliciting the prior in a very intuitive way, via the use of the

penalized complexity (PC) prior on γ. This construction guarantees parsimony and

avoids overfitting, since the prior is based on the assumption that the interaction

term shrinks to zero. A Dirichlet prior can also be used for ϕ (Fuglstad et al., 2020),

whose base model assumes equal weights to both the temporal and spatial terms, i.e.,

the prior assumes ignorance about how the variance is distributed.

Equation 7.5 can be further extended to the case when the spatial and temporal

main effects are defined with both unstructured and structured effects, such as the

random walk model and the intrinsic CAR model. Suppose that ϵ1i
is the unstruc-

tured temporal effect, and ϵ2j
is the unstructured spatial effect. The linear predictor
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is now specified as

ηij = α+
√
τ 91
[√

1 − γ
(√

1 − ϕ
(√

1 − ψ1β1i
+
√
ψ1ϵ1i

)
+
√
ϕ
(√

1 − ψ2β2j
+
√
ψ2ϵ2j

))
+ √

γδij

]
.

(7.6)

In Equation 7.6, ψ1 ∈ [0, 1] and ψ2 ∈ [0, 1] are mixing parameters which distributes

the variability of the temporal and spatial main effects, respectively, to the structured

and unstructured effects. A PC prior can also be used on both ψ1 and ψ2 (Riebler

et al., 2016), where the base model is the model without structured effects.

7.7.1.3 New specification of the Poisson model

Another area of future work is the application of the new specification of the Poisson

model, as presented in Section 6.3.2, in a spatio-temporal context, such as Chapter

5. This is given as follows:

y(B, t) ∼ Poisson
(
µ(B, t)

)
E
[
y(B, t)

]
= µ(B, t) = λ(B, t) × E(B, t)

log
(
λ(B, t)

)
= log

(
1

|B|

∫
B

λ(s, t)ds
)

λ(s, t) = exp
{
γ0 + γ1x(s, t) + φ(s, t)

}
,

(7.7)

where y(B, t) is the observed cases, E(B, t) is the expected number of cases, λ(B, t)

is the disease risk, x(s, t) is the covariate of interest, say the temperature field, and

φ(s, t) is the spatio-temporal random effect. Equation 7.7 assumes that the disease

risk at a block B and time t is an aggregation of a continuously-indexed risk/intensity

function λ(s, t) over B at time t. The risk function is then linked to the covariate

field x(s, t) in a non-linear fashion.

Interpreting γ1

Since the specification of the joint model for the health outcomes models the

Poisson outcomes at the intensity level, then it is of interest to look at how we

interpret γ1 under this non-traditional specification. I first consider the case without
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spatio-temporal effects, φ(s, t), for simplicity, i.e,

λ(B, t) = 1
|B|

∫
B

λ(s, t)ds = 1
|B|

∫
B

exp
{
γ0 + γ1x(s, t)

}
ds.

Suppose x(s, t) increases by one unit, then

λ∗(B, t) = 1
|B|

∫
B

exp
{
γ0 + γ1

(
x(s, t) + 1

)}
ds

= 1
|B|

∫
B

exp
{
γ0 + γ1x(s, t)

}
exp{γ1}ds

= exp{γ1}
1

|B|

∫
B

exp
{
γ0 + γ1x(s, t)

}
ds

= exp{γ1}λ(B, t).

We interpret exp{γ1} as the multiplicative change in λ(B, t) for a one unit increase

in x(s, t) for all s ∈ B. Now, suppose x(s, t) is log-transformed. If x(s, t) increases

by a factor of q, then

λ∗(B, t) = 1
|B|

∫
B

exp
{
γ0 + γ1 log

(
x(s, t

)
× q)

}
ds

= 1
|B|

∫
B

exp
{
γ0 + γ1 log

(
x(s, t)

)
+ γ1 log(q)

}
ds

= exp
{
γ1 log(q)

} 1
|B|

∫
B

exp
{
γ0 + γ1 log

(
x(s, t)

)}
ds

= exp
{
γ1 log(q)

}
λ(B, t).

Thus, we say that multiplying x(s, t) by a factor q is associated with a multiplica-

tive change in λ(B) of exp
{
γ1 log(q)

}
.

Specifying the spatio-temporal effect

In specifying the spatio-temporal effects φ(s, t), we can decompose it as follows:

φ(s, t) = φ(c)(s, t) + φ(v)(s, t), (7.8)

where φ(c)(s, t) is the part which is constant within B and φ(v)(s, t) is the part which

varies within. For the notation, we say that φ(c)(s, t) = φ(B, t) when s ∈ B. Exam-

ples of the effects which falls under φ(c)(s, t) are iCAR random effects and area-specific

234



7. Conclusions and Future Work

unstructured effects. Effects which falls under φ(v)(s, t) are any continuously-indexed

spatial processes, such as those which are derived using SPDE approaches.

The form of λ(B, t) is then as follows:

λ(B, t) = 1
|B|

∫
B

λ(s, t)ds

= 1
|B|

∫
B

exp
{
γ0 + γ1x(s, t) + φ(s, t)

}
ds

= 1
|B|

∫
B

exp
{
γ0 + γ1x(s, t) + φ(c)(s, t) + φ(v)(s, t)

}
ds

= 1
|B|

∫
B

exp
{
γ0 + γ1x(s, t) + φ(B, t) + φ(v)(s, t)

}
ds

= 1
|B|

exp
{
φ(B, t)

}∫
B

exp
{
γ0 + γ1x(s, t) + φ(v)(s, t)

}
ds

This implies that the predictor expression is of the following form:

log
(
λ(B, t)

)
= 1

|B|
log
(∫

B

exp
{
γ0 + γ1x(s, t) + φ(v)(s, t)

}
ds
)

+ φ(B, t)

This has an implication when doing model fitting, since the effects which are

constant within a block B can either be included inside the exp(·) term and be

included in the integration scheme, or be excluded from the integral.

7.8 Final Summary

This PhD thesis proposes and applies a framework for two-stage modelling in spatial

epidemiology. In the first stage, I propose the use of data fusion models to improve

model predictions of exposures and covariates whose association with the health out-

come is of interest, such as climate variables and air pollution concentration. Chapter

3 illustrated the use of a data augmentation approach with INLA-SPDE to fit a data

fusion model within a two-stage framework, while Chapter 4 proposed a flexible data

fusion model and demonstrated the benefits of adopting such an approach in terms of

improved prediction accuracy and parameter estimation. However, a key limitation

of these models is that they can be complex and computationally demanding. There

remains considerable scope for improving model specification, enhancing Bayesian al-

gorithms, and accelerating computation – especially in today’s era of abundant data
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to inform physical and environmental processes.

In the second stage, I fit the health model using the first-stage model results/predictions

as inputs. In fitting the second-stage model, the uncertainty from the first-stage

model needs to be correctly propagated; otherwise, the posterior standard devia-

tions of second-stage model parameters will be underestimated. These were formally

discussed in Chapter 6. The validation of Bayesian algorithms in terms of correct un-

certainty propagation was done using the simulation-based calibration method, which

tests for the self-consistency property of Bayesian models. The results showed that

the plug-in method, which ignores the uncertainty, gives incorrect posterior estimates,

while the posterior sampling approach is correct. This PhD work also proposed a new

method for doing uncertainty propagation, called the Q uncertainty method, and, in

addition, a low rank approximation of the method. The advantage of the proposed

method is that it does not require fitting the second-stage model several times; hence,

can be more computationally efficient. However, the benefits from the method de-

pend on the dimension of Q and the non-linearity inherent in the predictor expression

of the second-stage model. In this work, the primary criterion used to validate the

Bayesian algorithms was the self-consistency property of Bayesian models. Exploring

alternative validation strategies, such as employing different test functions within an

SBC framework, is an exciting direction for future research.

Although the two-stage framework proposed in this work was applied in the con-

text of spatial epidemiology – specifically in linking climate and dengue in the Philip-

pines – it is equally relevant in other applications, such as survival analysis, where

longitudinal biological characteristics and biomarkers are first modelled, and the re-

sulting predictions are then used as inputs in a survival model. This PhD thesis

formalizes these ideas, with particular emphasis on uncertainty propagation, which

is of paramount importance. Substantial scopre remains for future research, partic-

ularly in the development of more efficient methods for uncertainty propagation in

two-stage models, and in multi-stage models more generally.
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Appendix for Chapter 4

A.1 Simulation study

(a) σξ

(b) ρξ

Figure A.1: Plot of average relative errors and average posterior uncertainty from 500 simulated datasets for two
hyperparameters: (a) marginal standard deviation σξ of the spatial field and (b) range parameter ρξ of the spatial
field.
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(a) Average relative errors and average posterior uncertainty in β0 (b) Average relative errors and average posterior uncertainty in
β1

Figure A.2: Plot of average relative errors and average posterior uncertainty from 500 simulated datasets for the
fixed effects: (a) β0 and (b) β1.

Table A.1: Posterior estimates of hyperparameters for the temperature model – stations-only model versus proposed
data fusion model

Stations only Proposed model
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
σe1 0.178 0.011 0.158 0.197 0.243 0.010 0.224 0.264
σe2 - - - - 0.022 0.007 0.015 0.043
ρ1 621.888 50.677 528.743 728.144 764.748 59.322 655.597 888.964
σ1 5.121 0.612 4.034 6.438 7.690 0.872 6.133 9.555
ϕ1 0.992 0.002 0.988 0.995 0.998 0.001 0.997 0.999
ρ2 - - - - 112.768 8.076 97.773 129.554
σ2 - - - - 0.668 0.066 0.547 0.807
ϕ2 - - - - 0.937 0.014 0.906 0.960

Table A.2: Posterior estimates of the regression calibration model for temperature

Parameter Mean SD P2.5% P97.5%
σe1 49.893 7.734 36.866 67.233
Range of α0(s, t) 48.011 13.352 26.779 78.911
SD of α0(s, t) 0.444 0.065 0.333 0.589
AR parameter of α0(s, t) 0.777 0.058 0.650 0.875
Range of α1(s, t) 1103.250 104.709 913.898 1325.815
SD of α1(s, t) 0.673 0.087 0.517 0.860
AR parameter of of α1(s, t) 0.999 0.000 0.999 1.000

A.2 Temperature model

Figure A.3: Comparison of estimated spatial fields ξ̂(s, t) for August 2019 among the three approaches: stations-only
model, regression calibration model, and the proposed data fusion model. The estimated spatial fields are roughly
similar.
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A.3 Relative humidity model

Table A.3: Marginal log-likelihood values conditional an α1 and the corresponding BMA weights for the relative
humidity data fusion model

α1 log π(Y|α1) wk

0.5 5955.341 0.0000
0.6 5830.252 0.0000
0.7 6076.597 0.0000
0.8 6136.254 0.0000
0.9 5320.351 0.0000

1 6248.282 1
1.1 6116.906 0.0000
1.2 6101.200 0.0000
1.3 6071.814 0.0000
1.4 6044.122 0.0000
1.5 5847.258 0.0000

Table A.4: Posterior estimates of hyperparameters for the relative humidity model – stations-only model versus
proposed data fusion model

Stations only Proposed model
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
σe1 0.012 0.001 0.011 0.014 0.020 0.001 0.018 0.022
σe2 - - - - 0.003 0.001 0.002 0.005
ρ1 287.577 26.952 238.127 344.148 589.113 67.976 468.374 735.571
σ1 0.087 0.008 0.073 0.103 0.111 0.014 0.087 0.142
ϕ1 0.929 0.012 0.902 0.949 0.970 0.008 0.952 0.983
ρ2 - - - - 117.256 8.956 100.403 135.635
σ2 - - - - 0.040 0.002 0.037 0.045
ϕ2 - - - - 0.855 0.015 0.824 0.883

Table A.5: Posterior estimates of the regression calibration model for relative humidity

Parameter Mean Sd P2.5% P97.5%
σe1 5769.559 673.476 4563.267 7211.298
Range of α0(s, t) 1.663 1.542 0.299 5.758
SD of α0(s, t) 1.935 1.579 0.319 6.099
AR parameter of α0(s, t) 0.914 0.017 0.877 0.943
Range of α1(s, t) 2765.158 443.936 2001.709 3745.046
Range of α1(s, t) 0.105 0.015 0.079 0.137
AR parameter of α1(s, t) 0.993 0.004 0.983 0.998
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(a) Stations-only model (b) Proposed data fusion model

Figure A.4: Estimated spatial fields ξ̂(s, t) for log relative humidity, August 2019 and January 2020, for two
approaches: (a) stations-only model, (b) proposed data fusion model.

Figure A.5: Estimated error fields for the GSM log relative humidity data, August 2019 and January 2020, using
the proposed data fusion model.

(a) w1(s, t) vs x̂(s, t) (b) w2(g, t) vs x̂(g, t) (c) w2(g, t) vs ŵ2(g, t)

Figure A.6: Plot of observed relative humidity values versus predicted values using the proposed data fusion model
for (a) weather stations and (b) GSM data, and (c) calibrated GSM data. The blue line is the smooth local regression
curve, while the red line is the identity line.
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A.4 Rainfall model

(a) Stations-only model (b) Proposed data fusion model

Figure A.7: Estimated spatial fields ξ̂(s, t) for log rainfall, August 2019 and January 2020, for two approaches: (a)
stations-only model and (b) proposed data fusion model.

Figure A.8: Estimated error fields for the GSM log rainfall data for August 2019 and January 2020 using the
proposed data fusion model.

Table A.6: Posterior estimates of hyperparameters for the log rainfall model – stations-only model versus proposed
data fusion model

Stations only Proposed model
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
σe1 0.482 0.019 0.446 0.521 0.501 0.022 0.466 0.549
σe2 - - - - 0.256 0.014 0.229 0.284
ρ1 614.617 62.498 501.641 747.464 584.259 59.817 480.042 711.353
σ1 1.113 0.074 0.976 1.266 1.107 0.065 0.978 1.227
ϕ1 0.601 0.048 0.501 0.692 0.691 0.037 0.611 0.754
ρ2 434.935 66.349 323.066 588.186
σ2 - - - - 0.942 0.095 0.764 1.116
ϕ2 - - - - 0.870 0.023 0.820 0.908
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Table A.7: Posterior estimates of the regression calibration model for the log rainfall

Parameter Mean SD P2.5% P97.5%
σe1 4.467 0.502 3.543 5.515
Range for α0(s, t) 9.012 12.217 1.398 39.452
SD for α0(s, t) 2.291 1.704 0.292 6.588
AR parameter for α0(s, t) 0.257 0.240 -0.276 0.647
Range for α1(s, t) 1083.233 107.018 887.844 1308.788
SD for α1(s, t) 0.410 0.030 0.355 0.473
AR parameter for α1(s, t) 0.820 0.031 0.753 0.874

(a) w1(s, t) vs x̂(s, t) (b) w2(g, t) vs x̂(g, t) (c) w2(g, t) vs ŵ2(g, t)

Figure A.9: Plot of observed log rainfall values versus predicted values using the proposed data fusion model: (a)
weather stations, (b) GSM data, (c) calibrated GSM data. The blue line is the smooth local regression curve, while
the red line is the identity line.

A.5 LGOCV

Figure A.10: Comparison of LGOCV results for relative humidity from three models: stations-only model, regression
calibration model, and the proposed data fusion model
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Figure A.11: Comparison of LGOCV results for log rainfall from three models: stations-only model, regression
calibration model, and the proposed data fusion model
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Appendix for Chapter 5

Figure B.1: Pairwise correlation among the block-level estimates of the climate variables: temperature, relative
humidity, and log rainfall

B.1 Input model: data fusion model

Plug-in method Resampling method
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
σ2
ν , RW2 time 0.0084 0.0091 0.0001 0.0326 0.0726 0.1020 0.0060 0.3063
σ2
ζ , iid time 0.0005 0.0015 0.0000 0.0032 0.0003 0.0009 0.0000 0.0021
σ2
ψ, space 0.0357 0.0471 0.0003 0.1657 0.0400 0.1142 0.0000 0.3363
ϕ 0.2420 0.2420 0.0031 0.8415 0.6801 0.4677 0.0072 1.3654
σ2
υ, interaction 1.1442 0.1304 0.9534 1.4548 0.7028 0.4623 0.0075 1.3630
ρ 0.9070 0.0103 0.8900 0.9289 0.9018 0.0131 0.8751 0.9257

Table B.1: Comparison of hyperparameter estimates between the plug-in method and the resampling method for
the dengue model with temperature and log rainfall as the climate covariates
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Plug-in method Resampling method
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
σ2
ν , RW2 time 0.0127 0.0212 0.0007 0.0627 0.0185 0.1266 0.0003 0.0737
σ2
ζ , iid time 0.0002 0.0003 0.0000 0.0009 0.0003 0.0009 0.0000 0.0016
σ2
ψ, space 0.0000 0.0000 0.0000 0.0000 0.0608 0.2589 0.0000 0.5053
ϕ 0.1850 0.2130 0.0017 0.7741 0.7091 0.4780 0.0110 1.3783
σ2
υ, interaction 1.1861 0.1435 0.9487 1.5098 0.7326 0.4779 0.0117 1.3872
ρ 0.9061 0.0116 0.8831 0.9284 0.9040 0.0120 0.8783 0.9253

Table B.2: Comparison of hyperparameter estimates between the plug-in method and the resampling method for
the dengue model with relative humidity as the climate covariate

(a) γ0, Intercept (b) γ3, log Rain

(c) γ4, Climate Type (d) γ6, covid

(e) γ7, log Population Density

Figure B.2: Plots showing the posterior means and 90% credible intervals of the fixed effects (except γ1, γ2, and
γ5) for the dengue model with temperature and log rainfall as covariates. The first vertical line shows the estimates
for the plug-in method, while the rest of the lines show the estimates for the resampling method for different number
of resamples, from 1 to 15.
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(a) γ0, Intercept (b) γ1, Relative humidity

(c) γ2, Climate Type (d) γ3, RH × Climate Type

(e) γ4, covid (f) γ5, log Population Density

Figure B.3: Plots showing the posterior means and 90% credible intervals of the fixed effects for the dengue model
with relative humidity as climate covariate. The first vertical line shows the estimates for the plug-in method, while
the rest of the lines show the estimates for the resampling method for different number of resamples, from 1 to 15.

(a) Posterior mean (b) Posterior standard deviation

Figure B.4: Comparison of (a) posterior mean and (b) posterior standard deviation, of the space effects ψ(Bi)
between the plug-in method and resampling method, for the model with relative humidity as climate covariate
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(a) Plug-in method (b) Resampling method

Figure B.5: Comparison of classical SIR estimates and model-based SIR estimates from the health model with
relative humidity as climate covariate

Figure B.6: Posterior uncertainty of model-based estimates of dengue risks from August 2019 to November 2019,
for both plug-in method and resampling on the dengue model with temperature and log rainfall as climate covariates
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

γ1x1 γ2x2 γ3x3 γ4x4 γ5x5 γ6x6

γ1x1 1.20517 −0.00111 −0.00725 −0.05684 −0.21671 0.00397
γ2x2 · 0.00049 −0.00001 −0.00005 0.00076 0.00018
γ3x3 · · 0.00018 0.00101 −0.00352 −0.00001
γ4x4 · · · 0.10300 0.02234 0.00311
γ5x5 · · · · 0.80793 0.00035
γ6x6 · · · · · 0.00839


Matrix B.1.1: Variance-covariance matrix across several resamples for the fixed effects components of the linear
predictor of the health model with temperature and log rainfall as climate covariates


ν(t) ζ(t) ψ(B) υ(B,t)

ν(t) 0.05218 0.00006 0.00000 0.00619
ζ(t) · 0.00001 −0.00000 −0.00000
ψ(B) · · 0.00500 0.00107
υ(B,t) · · · 0.93642


Matrix B.1.2: Variance-covariance matrix across several resamples for the random effects components of the linear
predictor of the health model with temperature and log rainfall as climate covariates


γ1x1 γ2x2 γ3x3 γ4x4 γ5x5 γ6x6

ν(t) 0.00471 −0.00000 −0.00000 −0.00019 0.00055 0.00064
ζ(t) −0.00003 0.00000 0.00000 0.00000 −0.00001 −0.00001
ψ(B) −0.01027 0.00012 0.00009 0.00732 0.01425 −0.00000
υ(B,t) 0.02381 0.00023 −0.00020 −0.00854 −0.01481 0.00149


Matrix B.1.3: Cross-covariance matrix across several resamples between the fixed effects and random effects com-
ponents of the linear predictor of the health model with temperature and log rainfall as climate covariates

B.2 Input model: stations-only model

This section presents the results of the two-stage models based on a stations-only

(first-stage) model input. The data used here covers a longer time series, specifically

from 2016 to 2020.

B.2.1 First-stage model results

The model specification, including the predictor expressions, for the stations-only

models is similar to the data fusion models in Chapter 4. I also fitted separate

models for the three climate variables.
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Tables B.3, B.4, and B.5 show the fixed effects estimates for the temperature

model, relative humidity model, and log rainfall model, respectively. These estimates

are very similar to the obtained posterior estimates in Chapter 4. The posterior

estimates of the model hyperparameters for the temperature model, relative humidity

model, and log rainfall model are in Tables B.6, B.7, and B.8, respectively.

Parameter Mean SD P2.5% P97.5%
β0 28.2177 3.2672 21.8140 34.6213
β1, log(Elevation) -0.6077 0.0928 -0.7896 -0.4259
β2, Cool -0.7127 0.1283 -0.9642 -0.4612
β3, Climate Type 2.1549 0.6904 0.8018 3.5080

Table B.3: Posterior estimates of fixed effects for temperature model

Parameter Mean SD P2.5% P97.5%
β0 4.4308 0.0274 4.3771 4.4845
β1, log(Temperature) 0.6926 0.0278 0.6382 0.7471
β2, log(Temperature)2 -0.2106 0.0082 -0.2267 -0.1944
β3, log(Elevation) -0.0128 0.0024 -0.0175 -0.0081
β4, Climate Type 0.0411 0.0159 0.0098 0.0723

Table B.4: Posterior estimates of fixed effects for log relative humidity model

Parameter Mean SD P2.5% P97.5%
β0 3.7415 0.2305 3.2898 4.1931
β1, log(Temperature) 2.9234 0.2925 2.3502 3.4967
β2, log(Temperature)2 -0.8718 0.0854 -1.0392 -0.7044
β3, Season 0.7590 0.1660 0.4337 1.0844
β4, Climate Type 1.1782 0.0866 1.0085 1.3479
β5, Season × Climate Type -0.7313 0.0955 -0.9185 -0.5441

Table B.5: Posterior estimates of fixed effects for log rainfall model

Parameter Mean SD P2.5% P97.5%
σe1 , measurement error SD 0.2238 0.0060 0.2122 0.2358
ρω1 , range of ω1 707.7730 32.0294 647.0915 773.1777
σω1 , marginal SD of ω1 6.0641 0.5621 5.0579 7.2692
ϕ1, AR parameter of ω1 0.9937 0.0011 0.9913 0.9957

Table B.6: Posterior estimates of hyperparameters for temperature model

Figure B.7 shows the predicted climate fields, x̂(s, t) for two months: January

2019 and August 2019. As explained in Section 4.6, the reason for choosing these two

specific months is that January is dry and cold, while August is typically hot and

wet (PAGASA, 2023). This can be confirmed from Figure B.7a, which shows that it
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Parameter Mean SD P2.5% P97.5%
σe1 , measurement error SD 0.0152 0.0004 0.0144 0.0160
ρω1 , range of ω1 339.2946 19.0730 303.4962 378.5705
σω1 , marginal SD of ω1 0.1070 0.0073 0.0936 0.1224
ϕ1, AR parameter of ω1 0.9533 0.0060 0.9407 0.9642

Table B.7: Posterior estimates of hyperparameters for log relative humidity model

Parameter Mean SD P2.5% P97.5%
σe1 , measurement error SD 0.5294 0.0123 0.5057 0.5541
ρω1 , range of ω1 569.3168 32.1078 509.1225 635.5036
σω1 , marginal SD of ω1 1.2168 0.0452 1.1309 1.3088
ϕ1, AR parameter of ω1 0.6636 0.0249 0.6131 0.7110

Table B.8: Posterior estimates of hyperparameters for log rainfall model

is generally colder during January than August. Moreover, Figure B.7c shows that

during January, the western section of the country has low amount of rainfall, but

is the opposite during August. On the other hand, the eastern section has relatively

high amount of rainfall for both months. This agrees with the results from Chapter 4.

Figure B.7b shows the predicted relative humidity fields. The spatial structure in the

relative humidity fields is similar to that of the log rainfall fields. The corresponding

posterior standard deviations of the predicted climate fields are in Figure B.8.

(a) Temperature fields (b) Relative humidity fields (c) log Rainfall fields

Figure B.7: Predicted climate fields (posterior means), x̂(s, t), for January and August 2019: (a) temperature (b)
relative humidity (c) log rainfall

Finally, Figure B.9 shows the block-level estimates, x̂(Bi, t), of the predicted fields

in Figure B.7. These are the values used as covariates in the second-stage model using

the plug-in method.
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(a) Temperature (b) Relative humidity (c) log Rainfall

Figure B.8: Posterior standard deviation of the predicted climate fields, x̂(s, t), for January and August 2019: (a)
temperature (b) relative humidity (c) log rainfall

(a) Temperature (b) Relative humidity (c) log Rainfall

Figure B.9: Predicted block-level climate values, x̂(B, t), for January and August 2019: (a) temperature (b) relative
humidity (c) log rainfall

B.2.2 Second-stage model results

B.2.2.1 Temperature and log rainfall

The predictor expression of the dengue model with temperature and log rainfall as

climate covariates is the same as Equation (5.13) in Chapter 5. Table B.9 shows the

marginal log likelihood (MLik), Watanabe-Akaike Information Criterion (WAIC),

and the conditional predictive ordinate (CPO) values for the different models consid-

ered. These values are based on the results from the crude plug-in method. Similar

to the results in Chapter 5, the Type II interaction model has the highest MLik, the

smallest WAIC, and the smallest CPO value as well, for both input models. Hence,

the Type II interaction model was considered for further investigation.

Table B.10 shows the fixed effects estimates. Results also suggest a non-linear

relationship between temperature and dengue. However, the credible intervals for

the resampling approach, which are wider than the plug-in approach, contain the

null value of zero for the main effect of temperature. Moreover, the results show
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Model MLik WAIC CPO
Type I -27075.13 38978.99 46047.86
Type II -24749.85 38467.45 26564.30
Type III -26973.33 39121.08 42643.34
Type IV -42936.63 97270.81 52331.64

Table B.9: Marginal log likelihood (MLik), WAIC, and −
∑

log CPOi for different dengue models with temperature
and log rainfall as climate covariates, using the stations-only climate model as input

that log rainfall is significant and is positively related with dengue. The interaction

between log rainfall and climate type is also significant and negative, at least for the

plug-in approach. The resampling approach, which has higher posterior uncertainty,

gave wider credible intervals containing zero. Moreover, population density is also

positively related with dengue. Finally, the covid binary variable is not significant in

the model, although the intervals cover mostly negative values. The model insights

are similar to the results from the dengue models with the data fusion models as

input. The results also show that the posterior standard deviations from using the

resampling method are generally larger compared to the plug-in method.

Plug-in method Resampling method
Parameter Mean SD P5% P95% Mean SD P5% P95%
γ0, Intercept -3.6612 1.6296 -6.3025 -1.0625 -2.9708 1.7753 -5.9465 -0.0945
γ1, Temperature 0.2296 0.1174 0.0482 0.4319 0.1775 0.1343 -0.0376 0.4023
γ2, Temperature2 -0.0054 0.0022 -0.0091 -0.0016 -0.0041 0.0026 -0.0085 -0.0000
γ3, log Rain 0.0219 0.0098 0.0042 0.0386 0.0180 0.0100 0.0015 0.0345
γ4, ClimateType 0.0491 0.1980 -0.3012 0.3479 0.0155 0.2094 -0.3345 0.3530
γ5, log Rain × ClimateType -0.0350 0.0190 -0.0715 -0.0025 -0.0253 0.0201 -0.0579 0.0079
γ6, covid -0.0614 0.0729 -0.1789 0.0551 -0.0667 0.0719 -0.1864 0.0493
γ7, log PopDensity 0.1548 0.0859 0.0210 0.3032 0.1459 0.0888 -0.0001 0.2907

Table B.10: Comparison of estimates of fixed effects between the plug-in method and the resampling method for
the dengue model with temperature and log rainfall as climate covariates, using the stations-only climate model as
input

Table B.11 shows the estimates of the hyperparameters. The posterior uncertainty

are generally higher for the resampling method compared to the plug-in method.

Moreover, the variance explained by the structured effects, both in space and time,

are higher compared to the unstructured effects.

Figures B.10a and B.10b show the estimated posterior means and posterior stan-

dard deviations, respectively, of the spatial effect ψ(Bi). The posterior means are

similar, but the posterior standard deviation from the resampling method is gener-

ally higher. Figure B.11a shows the estimated (random walk) time effect. There

is not much difference in the posterior uncertainty between the plug-in method and
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Plug-in method Resampling method
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
σ2
ν , RW2 time 1.3002 0.6353 0.5375 2.9652 1.3114 1.8176 0.1397 4.1670
σ2
ζ , iid time 0.0001 0.0001 0.0000 0.0005 0.0001 0.0001 0.0000 0.0003
σ2
ψ, space 0.3812 0.0839 0.2400 0.5681 0.3839 0.1102 0.2225 0.6361
ϕ 0.8253 0.1582 0.4086 0.9917 0.6652 0.2162 0.1249 0.9998
σ2
υ, interaction 0.6797 0.0469 0.6079 0.7885 0.6658 0.2119 0.1277 0.9998
ρ 0.8632 0.0095 0.8471 0.8836 0.8617 0.0098 0.8418 0.8803

Table B.11: Comparison of hyperparameter estimates between the plug-in method and the resampling method for
the dengue model with temperature and log rainfall as the climate covariate, using the stations-only climate model
as input

resampling method. Moreover, there is a sharp decline in the time effects during the

COVID-19 episode. As argued in Chapter 5, this is potentially the reason why the

covid binary variable is not significant in the model, since the information on the

decline of dengue risks is already accounted for by the temporal random effect.

(a) Posterior mean (b) Posterior standard deviation

Figure B.10: Comparison of (a) posterior mean and (b) posterior standard deviation, of the space effects ψ(Bi)
between the plug-in method and resampling method, for the dengue model with temperature and log rainfall as
climate covariate, using the stations-only climate model as input

(a) Temperature and log rainfall as covariates (b) Relative humidity as covariate

Figure B.11: Plot of the estimated structured time effects ν(t) with the 95% credible intervals between the plug-in
method and resampling method (using the stations-only climate model as input): (a) temperature and log rainfall as
climate covariates (b) relative humidity as covariate
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B.2.2.2 Relative humidity

The linear predictor of the dengue model with relative humidity as climate covariate

is the same as Equation (5.14) in Chapter 5. Table B.12 shows the marginal log

likelihood, WAIC, and CPO values for the different dengue models, according to

the type of space-time interaction. Similar to the model with temperature and log

rainfall as climate covariates, the model with Type II interaction also has the highest

marginal likelihood, smallest WAIC, and smallest CPO.

Model MLik WAIC CPO
Type I -27092.76 38981.69 46160.60
Type II -24747.84 38458.72 26605.39
Type III -26981.77 39103.29 42802.41
Type IV -44263.58 102804.50 Inf

Table B.12: Marginal log likelihood, WAIC, and −
∑

log CPOi for different dengue models with relative humidity
as the climate covariate, using the stations-only climate model as input

Table B.13 shows the estimates of the fixed effects. The coefficient of relative

humidity is significant and positive. The results show that the posterior standard

deviations of γ0 and γ1 are higher for the resampling method compared to the plug-in

method. The rest of the parameters are not significant.

Table B.14 shows the estimates of the hyperparameters. The posterior standard

deviations from the resampling method are significantly higher for the resampling

method compared to the plug-in method. The variation in the data explained by the

structured effect in time is higher compared to the unstructured effect.

Figures B.12a and B.12b show a comparison of the posterior mean and posterior

standard deviation, respectively, for the spatial effect ψ(Bi) between the plug-in

and resampling method. The posterior means are very similar, but the posterior

uncertainty from the resampling method is larger compared to the plug-in method.

Plug-in method Resampling method
Parameter Mean SD P5% P95% Mean SD P5% P95%
γ0, Intercept -2.0783 0.5411 -2.9765 -1.1513 -2.0074 0.6038 -3.0343 -1.0631
γ1, RH 0.0158 0.0036 0.0106 0.0221 0.0125 0.0038 0.0062 0.0188
γ2, ClimateType 0.2789 0.6090 -0.6775 1.3490 0.3241 0.5944 -0.6638 1.3018
γ3, RH × ClimateType -0.0064 0.0071 -0.0166 0.0047 -0.0063 0.0068 -0.0173 0.0049
γ4, covid -0.0628 0.0770 -0.1864 0.0470 -0.0669 0.0719 -0.1832 0.0512
γ5, log PopDensity 0.0810 0.0837 -0.0421 0.2131 0.1210 0.0860 -0.0123 0.2689

Table B.13: Comparison of estimates of fixed effects between the plug-in method and the resampling method for
the dengue model with relative humidity as climate covariate, using the stations-only climate model as input
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Plug-in method Resampling method
Parameter Mean SD P2.5% P97.5% Mean SD P2.5% P97.5%
σ2
ν , RW2 time 0.9660 0.4065 0.3977 1.9708 1.0275 2.0496 0.2895 2.5071
σ2
ζ , iid time 0.0002 0.0001 0.0000 0.0005 0.0190 0.1166 0.0000 0.562
σ2
ψ, space 0.3946 0.0899 0.2612 0.6109 0.2779 0.1815 -0.0000 0.5993
ϕ 0.0305 0.0219 0.0070 0.0884 0.6602 0.3141 0.0000 1.1458
σ2
υ, interaction 0.6863 0.0443 0.6097 0.7830 0.6626 0.3093 0.0000 1.1428
ρ 0.8638 0.0090 0.8468 0.8819 0.8775 0.0236 0.8471 0.9217

Table B.14: Comparison of hyperparameter estimates between the plug-in method and the resampling method for
the dengue model with relative humidity as the climate covariate, using the stations-only climate model as input

Finally, Figure B.11b shows a comparison of the estimated structured time effects

ν(t) between the plug-in method and resampling method. The posterior means from

the two methods are very similar. There is also not much difference in the 95%

credible intervals.

(a) Posterior mean (b) Posterior standard deviation

Figure B.12: Comparison of (a) posterior mean and (b) posterior standard deviation, of the space effects ψ(Bi)
between the plug-in method and resampling method, for the dengue model with temperature and log rainfall as
climate covariate, using the stations-only climate model as input

B.2.2.3 Estimated risks

(a) Plug-in method (b) Resampling method

Figure B.13: Comparison of classical SIR estimates and model-based SIR estimates (using the stations-only
climate model as input) from the health model with temperature and log rainfall as climate covariates
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(a) Plug-in method (b) Resampling method

Figure B.14: Comparison of classical SIR estimates and model-based SIR estimates (using the stations-only
climate model as input) from the health model with relative humidity as climate covariate

Figure B.13 shows a scatter plot between the classical estimates of SIR and the

model-based estimates λ̂(Bi, t) from the model with temperature and log rainfall as

climate covariates, and both for the plug-in method and the resampling method.

Similar to the results in Chapter 5, there is general agreement between the classical

estimates and model-based estimates. Figure B.14 shows the same scatter plots; but

here, the model-based estimates of SIR are based on the dengue model with relative

humidity as climate covariate.

Figure B.15 shows the estimated values λ̂(Bi, t) from the model with temperature

and log-rainfall as climate covariates, for August 2019 to November 2019, and for

both the plug-in method and resampling method. The maps show an agreement

between the plug-in method and the resampling method. Moreover, the areas shown

to have high estimated risks are the same areas with high number of cases during the

dengue epidemic in the country. These maps look very similar to the plot in Figure

5.9.

Figure B.16 shows the posterior uncertainties of the estimated λ̂(Bi, t) in Figure

B.15. Similar to the results in Chapter 5, there is no difference in the posterior

uncertainties between the plug-in method and resampling method. Matrix (B.2.1)

shows the average, across posterior samples, of the variance-covariance structure of

the fixed effects in the predictor expression. Matrix (B.2.2) shows the same, but for

the random effects in the predictor expression, while Matrix (B.2.3) shows the cross-

covariance structure between the fixed and random effects. As argued in Section

5.6.3 of Chapter 5, there is a mix of positive and negative correlations among the
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model components of the predictor expression, which potentially explains why the

uncertainty is not different from the plug-in method. As emphasized in Chapter

5, although the resampling method generally gives higher uncertainty for individual

components of the linear predictor, the uncertainty in a linear combination of these

components can be washed away because of the latent correlation structure.

Finally, Figure B.17 shows the probability of exceedence P
(
λ(Bi, t) > 1

)
from

August 2019 to November 2019, and from using the plug-in method and resampling

method, and temperature and log rainfall as climate covariates. Most of the areas

with P
(
λ(Bi, t) > 1

)
= 1 are the same areas badly hit by dengue during the epidemic.

Figure B.15: Model-based estimates of dengue risks from August 2019 to November 2019, and from using the plug-
in method and resampling method, and temperature and log rainfall as climate covariates, using the stations-only
climate model as input
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Figure B.16: Posterior standard deviation of the model-based estimates of dengue risks from August 2019 to
November 2019, and from using the plug-in method and resampling method, and temperature and log rainfall as
climate covariates, using the stations-only climate model as input

Figure B.17: Probability of exceedence, i.e., P
(
λ(Bi, t) > 1

)
from August 2019 to November 2019, and from using

the plug-in method and resampling method, and temperature and log rainfall as climate covariates, using the stations-
only climate model as input
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

γ1x1 γ2x2 γ3x3 γ4x4 γ5x5 γ6x6

γ1x1 0.12913 0.00053 −0.00053 −0.00081 −0.01790 0.00067
γ2x2 · 0.00052 −0.00000 −0.00001 −0.00053 0.00003
γ3x3 · · 0.00002 0.00002 −0.00057 −0.00000
γ4x4 · · · 0.00309 0.00055 0.00018
γ5x5 · · · · 0.14575 0.00141
γ6x6 · · · · · 0.00347


Matrix B.2.1: Variance-covariance matrix across several resamples for the fixed effects components of the linear
predictor of the health model with temperature and log rainfall as climate covariates and using the stations-only
model as input


ν(t) ζ(t) ψ(B) υ(B,t)

ν(t) 0.03609 0.00003 0.00000 −0.00360
ζ(t) · 0.00000 0.00000 −0.00000
ψ(B) · · 0.29588 0.00030
υ(B,t) · · · 0.53467


Matrix B.2.2: Variance-covariance matrix across several resamples for the random effects components of the linear
predictor of the health model with temperature and log rainfall as climate covariates and using the stations-only
model as input


γ1x1 γ2x2 γ3x3 γ4x4 γ5x5 γ6x6

ν(t) −0.00005 0.00002 −0.00000 −0.00000 0.00054 0.00020
ζ(t) 0.00000 −0.00000 0.00000 −0.00000 0.00000 −0.00000
ψ(B) −0.03934 −0.00028 0.00027 0.00296 0.06052 0.00000
υ(B,t) −0.00426 −0.00012 0.00004 0.00011 −0.00192 0.00004


Matrix B.2.3: Cross-covariance matrix across several resamples between the fixed effects and random effects com-
ponents of the linear predictor of the health model with temperature and log rainfall as climate covariates and using
the stations-only model as input
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Appendix for Chapter 6

Theorem C.1. Let π(θ1) be the prior model, π(x1|θ1) be the latent model, and

π(D1|x1,θ1) be the observation density or probability mass function. Let χ1 be the

latent space, and Θ1 be the θ1-space, and that both are continuous. Suppose θ1 ∈

Θ1 is fixed. Let x̃1 be a sample from the latent field model, i.e., x̃1 ∼ π(x1|θ1),

and D̃1 a sample from the observation model, i.e., D̃1 ∼ π(D1|x̃1,θ1,Z1). Suppose

that the approximate posterior from applying the Bayesian algorithm is π̂(x1|D̃1).

Let {x1,ℓ}, ℓ = 1, . . . , L be independent samples from the posterior distribution, i.e.,(
x1,1 x1,2 . . .x1,L

)
iid∼ π̂(x1|D̃1). For any unidimensional function f : χ1 → R,

the distribution of the rank statistic is given by

r =
L∑
ℓ=1

I
[
f(x1,ℓ) < f(x̃1)

]
, I

[
f(x1,ℓ) < f(x̃1)

]
=


1 if f(x1,ℓ) < f(x̃1)

0 if f(x1,ℓ) ≥ f(x̃1)

is U(0, 1, . . . , L).

Proof. Let π(θ1) be the prior model, π(x1|θ1) be the latent model, and π(D1|x1,θ1) be the obser-

vation density or proability mass function. Let χ1 be the latent space, and Θ1 be the θ1-space, and

that both are continuous.

Suppose θ1 ∈ Θ1 is fixed. Let x̃1 be a sample from the latent field model, i.e., x̃1 ∼ π(x1|θ1),

and D̃1 a sample from the observation model, i.e., D̃1 ∼ π(D1|x̃1,θ1). Note that we hold θ1

fixed when generating the data replicates, but we fit the model assuming that both θ1 and x1 are

unknown. Let {x1,ℓ}, ℓ = 1, . . . , L be independent samples from the posterior distribution π(x1|D1),
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i.e.,
(
x1,1 x1,2 . . .x1,L

)
iid∼ π(x1|D1). Let f : χ1 → R. We define the rank statistic for a specific

data outcome of the Bayesian model as

r =
L∑

ℓ=1
I
[
f(x1,ℓ) < f(x̃1)

]
, I

[
f(x1,ℓ) < f(x̃1)

]
=


1 if f(x1,ℓ) < f(x̃1)

0 if f(x1,ℓ) ≥ f(x̃1)

For conciseness, let fℓ ≡ f(x1,ℓ) and f ≡ f(x̃1). Also, let π(f) and π(f |D1) be the pushforward

probability density function of π(x1|θ1) and π(x1|D1), respectively. Suppose pℓ = P(fℓ < f), ℓ =

1, . . . , L. Also we assume the ordering f1 ≤ f2 ≤ · · · ≤ fL. We then have:

π(r) =
∫

dfdD1π(D1, f |θ1)
(

L

r

) r∏
ℓ=1

pℓ

L∏
ℓ=r+1

(1 − pℓ)

=
(

L

r

)∫
dfdD1π(D1|θ1)π(f |D1,θ1)

r∏
ℓ=1

[∫ f

−∞
π(fℓ|D1, f,θ1)dfℓ

]
L∏

ℓ=r+1

[
1 −

∫ f

−∞
π(fℓ|D1, f,θ1)dfℓ

]
.

The probability measure for generating fℓ depends only on D1 and is independent of the conditioning

model configuration. Hence we can write π(fℓ|D1, f,θ1) = π(fℓ|D1) = π(fℓ|D1,θ1), ℓ = 1, . . . , L.

This implies that

π(r) =
(

L

r

)∫
dfdD1π(D1|θ1)π(f |D1,θ1)

r∏
ℓ=1

[∫ f

−∞
π(fℓ|D1,θ1)dfℓ

]
L∏

ℓ=r+1

[
1 −

∫ f

−∞
π(fℓ|D1,θ1)dfℓ

]
.

Further, since the model used to simulate data and construct posterior distributions is the same,

then we have π(fℓ|D1,θ1) = π(f ′|D1,θ1), ℓ = 1, . . . , L. Consequently, we have

π(r) =
(

L

r

)∫
dfdD1π(D1|θ1)π(f |D1,θ1)

r∏
ℓ=1

[∫ f

−∞
π(f ′|D1,θ1)df ′

]
L∏

ℓ=r+1

[
1 −

∫ f

−∞
π(f ′|D1,θ1)df ′

]

=
(

L

r

)∫
dD1π(D1|θ1)

∫
dfπ(f |D1,θ1)

[∫ f

−∞
π(f ′|D1,θ1)df ′

]r[
1 −

∫ f

−∞
π(f ′|D1,θ1)df ′

]L−r

.

Let u =
∫ f

−∞ π(f ′|D1,θ1)df ′, so that du = π(f |D1,θ1)df . This yields

π(r) =
(

L

r

)∫
dD1π(D1|θ1)

∫
du(u)r(1 − u)L−r

=
(

L

r

)
B(r + 1, L − r + 1) = L!

r!(L − r)!
r!(L − r)!
(L + 1)! = 1

L + 1
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C.1 SBC results for the Gaussian model (Section

6.3.1)

C.1.1 Results for the first-stage model using Algorithm 6.2

Figure C.1: Results of the KS goodness-of-fit test for uniformity (at 10% significance level) of the normalized ranks
pk of the SPDE (mesh nodes) weights out of 1000 data replicates and using Algorithm 6.2. The red points show the
mesh nodes which fail the KS test for uniformity

Figure C.2: Histogram and ECDF difference plot of the normalized ranks pk for β0, β1, and τe1 = 1/σ2
e1 out of

1000 data replicates using Algorithm 6.2

Figure C.3: Histogram and ECDF difference plot of the normalized ranks pk for ω1, ω2, and ω3 out of 1000 data
replicates using Algorithm 6.2
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Figure C.4: Histogram and ECDF difference plot of the normalized ranks pk for ρξ and σξ out of 1000 data replicates
using Algorithm 6.2

C.1.2 Results for the first-stage model using Algorithm 6.3

Figure C.5: Histogram and ECDF difference plot of the normalized ranks pk for β0, β1, and τe1 = 1/σ2
e1 out of

1000 data replicates using Algorithm 6.3 and using PC prior for the Matérn parameters

Figure C.6: Histogram and ECDF difference plot of the normalized ranks pk for ω1, ω2, and ω3 out of 1000 data
replicates using Algorithm 6.3 and using PC prior for the Matérn parameters
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C.1.3 Results for γ0 and γ1 using Algorithm 6.2

(a) Plug-in method

(b) Resampling method

(c) Full Q uncertainty method

(d) Low rank Q uncertainty method (mesh A)

(e) Low rank Q uncertainty method (mesh B)

Figure C.7: Histogram and ECDF difference plot of the normalized ranks pk using Algorithm 6.2 for the second-
stage model parameters γ0 and γ1 out of 1000 data replicates for the two-stage Gaussian spatial model (Section 6.3.1)
using INLA-SPDE and with different approaches: (a) plug-in method (b) resampling method (c) full Q method (d)
low rank Q method (mesh A) (e) low rank Q method (mesh B)
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C.1.4 Results for γ0 and γ1 using Algorithm 6.3

(a) Plug-in method

(b) Resampling method

(c) Full Q uncertainty method

(d) Low rank Q uncertainty method (mesh A)

(e) Low rank Q uncertainty method (mesh B)

Figure C.8: Histogram and ECDF difference plot of the normalized ranks pk using Algorithm 6.3 for the second-
stage model parameters γ0 and γ1 out of 1000 data replicates for the two-stage Gaussian spatial model (Section 6.3.1)
using INLA-SPDE and with different approaches: (a) plug-in method (b) resampling method (c) full Q method (d)
low rank Q method (mesh A) (e) low rank Q method (mesh B)
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C.1.5 Illustration with a simulated data

(a) Comparison with high log precision values (b) Comparison with low log precision values

Figure C.9: Comparison of the estimated posterior CDFs of the second-stage model parameters γ0 and γ1 for
different values of the log precision of the error component in the low rank Q uncertainty method (mesh A) using the
simulated data example in Section 6.3.1

(a) Comparison with high log precision values (b) Comparison with low log precision values

Figure C.10: Comparison of the estimated posterior CDFs of the second-stage model parameters γ0 and γ1 for
different values of the log precision of the error component in the low rank Q uncertainty method (mesh B) using the
simulated data example in Section 6.3.1
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C.2 SBC results for the Poisson model (Section

6.3.2)

C.2.1 Results for the first-stage model using Algorithm 6.2

Figure C.11: Results of the KS goodness-of-fit test for uniformity (at 10% significance level) of the normalized ranks
pk of the SPDE (mesh nodes) weights out of 1000 data replicates and using Algorithm 6.2. The red points show the
mesh nodes which fail the KS test for uniformity

Figure C.12: Histogram and ECDF difference plot of the normalized ranks pk for β0, β1, and τe1 = 1/σ2
e1 out of

1000 data replicates using Algorithm 6.2

Figure C.13: Histogram and ECDF difference plot of the normalized ranks pk for ω1, ω2, and ω3 out of 1000 data
replicates using Algorithm 6.2
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Figure C.14: Histogram and ECDF difference plot of the normalized ranks pk for ρξ and σξ out of 1000 data
replicates using Algorithm 6.2

C.2.2 Results for first-stage model using Algorithm 6.3

Figure C.15: Histogram and ECDF difference plot of the normalized ranks pk for β0, β1, and τe1 = 1/σ2
e1 out of

1000 data replicates and using PC prior for the Matérn parameters using Algorithm 6.3

Figure C.16: Histogram and ECDF difference plot of the normalized ranks pk for ω1, ω2, and ω3 out of 1000 data
replicates and using PC prior for the Matérn parameters using Algorithm 6.3
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C.2.3 Results for γ0 and γ1 of the classical Poisson model

specification using Algorithm 6.2

(a) Plug-in method

(b) Resampling method

(c) Full Q uncertainty method

(d) Low rank Q uncertainty method (mesh A)

(e) Low rank Q uncertainty method (mesh B)

Figure C.17: Histogram and ECDF difference plot of the normalized ranks pk using Algorithm 6.2 for the second-
stage model parameters γ0 and γ1 out of 1000 data replicates for the classical specification of the two-stage Poisson
spatial model (Section 6.3.2) using INLA-SPDE and with different approaches: (a) plug-in method (b) resampling
method (c) full Q method (d) low rank Q method (mesh A) (e) low rank Q method (mesh B)
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C.2.4 Results for γ0 and γ1 of the classical Poisson model

specification using Algorithm 6.3

(a) Plug-in method

(b) Resampling method

(c) Full Q uncertainty method

(d) Low rank Q uncertainty method (mesh A)

(e) Low rank Q uncertainty method (mesh B)

Figure C.18: Histogram and ECDF difference plot of the normalized ranks pk using Algorithm 6.3 for the second-
stage model parameters γ0 and γ1 out of 1000 data replicates for the classical specification of the two-stage Poisson
spatial model (Section 6.3.2) using INLA-SPDE and with different approaches: (a) plug-in method (b) resampling
method (c) full Q method (d) low rank Q method (mesh A) (e) low rank Q method (mesh B)

271



C. APPENDIX FOR CHAPTER 6

C.2.5 Results for γ0 and γ1 of the new Poisson model

specification using Algorithm 6.2

(a) Plug-in method

(b) Resampling method

(c) Full Q uncertainty method

(d) Low rank Q uncertainty method (mesh A)

(e) Low rank Q uncertainty method (mesh B)

Figure C.19: Histogram and ECDF difference plot of the normalized ranks pk using Algorithm 6.2 for the second-
stage model parameters γ0 and γ1 out of 1000 data replicates for the new specification of the two-stage Poisson spatial
model (Section 6.3.2) using INLA-SPDE and with different approaches: (a) plug-in method (b) resampling method
(c) full Q method (d) low rank Q method (mesh A) (e) low rank Q method (mesh B)
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C.2.6 Results for γ0 and γ1 of the new Poisson model

specification using Algorithm 6.3

(a) Plug-in method

(b) Resampling method

(c) Full Q uncertainty method

(d) Low rank Q uncertainty method (mesh A)

(e) Low rank Q uncertainty method (mesh B)

Figure C.20: Histogram and ECDF difference plot of the normalized ranks pk using Algorithm 6.3 for the second-
stage model parameters γ0 and γ1 out of 1000 data replicates for the new specification of the two-stage Poisson spatial
model (Section 6.3.2) using INLA-SPDE and with different approaches: (a) plug-in method (b) resampling method
(c) full Q method (d) low rank Q method (mesh A) (e) low rank Q method (mesh B)
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C.2.7 Illustration with a simulated data

(a) λ(s) (b) λ(B) (c) Y (B)

Figure C.21: Simulated quantities from the new specification of the two-stage Poisson spatial model in Section 6.3.2

(a) Posterior mean (b) Posterior standard deviation

Figure C.22: Comparison of (a) the posterior mean and (b) posterior standard deviation of λ(B) from a simulated
data of the two-stage Poisson spatial model (classical specification) in Section 6.3.2 using different approaches: the
plug-in method, resampling method, full Q method, low rank Q (mesh A) method, low rank Q (mesh B) method

(a) λ(s) (b) λ(B) =
1

|B|
∫

B λ(s)ds

Figure C.23: Comparison of the posterior mean for (a) λ(s) and (b) λ(B) from a simulated data of the two-stage
Poisson model (new specification) in Section 6.3.2 using different approaches: the plug-in method, resampling method,
full Q method, low rank Q (mesh A) method, and low rank Q (mesh B) method
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C.3 SBC results for non-spatial two-stage models

C.3.1 Gaussian model

Figure C.24: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using INLA-SPDE and the plug-in method for the two-stage Gaussian model

Figure C.25: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using NUTS and the plug-in method for the two-stage Gaussian model

Figure C.26: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using INLA-SPDE and the resampling method for the two-stage Gaussian model

Figure C.27: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using NUTS and the resampling method for the two-stage Gaussian model
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Figure C.28: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using the full Q method for the two-stage Gaussian model

C.3.2 Poisson model - classical specification

Figure C.29: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using INLA-SPDE and the plug-in method for the two-stage Poisson model (classical specification)

Figure C.30: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using NUTS and the plug-in method (classical specification)

Figure C.31: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using INLA-SPDE and the resampling method for the two-stage Poisson model (classical specification)
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Figure C.32: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using NUTS and the resampling method for the two-stage Poisson model (classical specification)

Figure C.33: Histogram and ECDF difference plot of the normalized ranks pk for γ0 and γ1 out of 1000 data
replicates using the full Q method for the two-stage Poisson model

C.4 Data application

Mean SD P2.5 P97.5
β0 78.1553 4.1435 70.0341 86.2765
β1 -0.0058 0.0033 -0.0122 0.0006
β2 3.2959 0.6142 2.0920 4.4998
β3 -0.1124 0.0210 -0.1535 -0.0713

1/σ2
e1 0.1448 0.0325 0.0910 0.2181

log(τ) 3.8219 0.6807 2.4272 5.1048
log(κ) -6.1369 0.6244 -7.3248 -4.8675

Table C.1: Posterior estimates of first-stage model parameters: posterior mean, posterior standard deviation (SD),
and 95% credible intervals

Method Mean SD P2.5 P97.5

Plug-in γ0 -8.1913 3.0307 -14.1313 -2.2513

γ1 0.1006 0.0353 0.0313 0.1698

Resampling γ0 -7.9764 3.3459 -14.7697 -1.6871

γ1 0.0981 0.0388 0.0240 0.1758

Full Q γ0 -9.2889 3.1863 -15.5341 -3.0438

γ1 0.1131 0.0371 0.0403 0.1859

Low rank Q γ0 -8.8892 3.1837 -15.1291 -2.6493

γ1 0.1086 0.0371 0.0357 0.1814

Table C.2: Posterior estimates of second-stage model
(classical specification)

Method Mean SD P2.5 P97.5

Plug-in γ0 -9.3117 2.9108 -15.0168 -3.6067

γ1 0.1131 0.0336 0.0473 0.1790

Resampling γ0 -8.6326 3.2423 -15.0377 -2.4195

γ1 0.1048 0.0372 0.0314 0.1788

Full Q γ0 -10.2863 3.0618 -16.2873 -4.2852

γ1 0.1240 0.0354 0.0546 0.1933

Low rank Q γ0 -9.7508 3.0567 -15.7418 -3.7597

γ1 0.1180 0.0354 0.0487 0.1874

Table C.3: Posterior estimates of second-stage model
(new specification)
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(a) Classical model specification (b) New model specification

Figure C.34: Comparison of marginal posteriors of γ0 and γ1 using four uncertainty propagation approaches: (a)
classical model specification (b) new model specification

(a) 95% CI of RR with 1 SD change in RH (b) 95% CI for γ0

Figure C.35: (a) 95% CI of RR associated with 1 SD change in relative humidity (b) 95% CI for γ0

Figure C.36: Posterior means of λ(B) using the new specification of the Poisson model
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Figure C.37: Posterior standard deviations of λ(B) using the new specification of the Poisson model

279



C. APPENDIX FOR CHAPTER 6

280



References

Abdullah, N. A. M. H., Dom, N. C., Salleh, S. A., Salim, H., and Precha, N. (2022).

The association between dengue case and climate: A systematic review and meta-

analysis. One Health, page 100452. 3, 98

Adin, A., Krainski, E., Lenzi, A., Liu, Z., Mart́ınez-Minaya, J., and Rue, H. (2023).

Automatic cross-validation in structured models: Is it time to leave out leave-one-

out? arXiv preprint arXiv:2311.17100. 96, 132

Arab, A., Jackson, M. C., and Kongoli, C. (2014). Modelling the effects of weather

and climate on malaria distributions in west africa. Malaria journal, 13:1–9. 11

August, T., Harvey, M., Lightfoot, P., Kilbey, D., Papadopoulos, T., and Jepson, P.

(2015). Emerging technologies for biological recording. Biological Journal of the

Linnean Society, 115(3):731–749. 137

Bachl, F. E., Lindgren, F., Borchers, D. L., and Illian, J. B. (2019). inlabru: an R

package for Bayesian spatial modelling from ecological survey data. Methods in

Ecology and Evolution, 10(6):760–766. 138, 167

Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J., Krainski, E.,

Simpson, D., and Lindgren, F. (2018). Spatial modeling with r-inla: A review.

Wiley Interdisciplinary Reviews: Computational Statistics, 10(6):e1443. 141

Bakka, H., Vanhatalo, J., Illian, J. B., Simpson, D., and Rue, H. (2019). Non-

stationary gaussian models with physical barriers. Spatial statistics, 29:268–288.

110

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014). Hierarchical modeling and

analysis for spatial data. CRC press. 23, 32, 33, 37

281



REFERENCES

Banerjee, S. and Gelfand, A. (2002). Prediction, interpolation and regression for
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