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Abstract
The present work consists of two independent parts devoted to the study of topological
monodromy maps of strata of (half-)translation surfaces. As the name suggests, topo-
logical monodromies provide some important topological data for such strata (Lemma
2.4.1), considered by many authors as the loci of fundamental dynamical actions.
Inspired by Calderon–Salter’s description of the images of the topological monodromy
maps of non-hyperelliptic strata of translation surfaces ([Cal20], [CS21] and [CS22]),
we estimated the size of the respective kernels in low genera and in particular in the
case of the non-hyperelliptic strata Hodd(4) and H(3, 1) in genus 3 and Heven(6) in
genus 4. We prove that the kernel contains a non-abelian free group of rank 2.
In the second part, we study the topological monodromy maps of strata of half-
translation surfaces, a generalisation of the concept of translation surface. Here, we
improve Walker’s result [Wal09] and provide a promising candidate for the image of
the topological monodromies as subgroups of the mapping class groups.
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Chapter 1

Introduction

Monodromy kernels for strata of low genus translation surfaces

Translation surfaces and their moduli spaces naturally arise in the interplay of topology,
algebraic geometry, dynamics and number theory as shown through the work of Veech
[Vee78], Masur [Mas82], Thurston [Thu88] and many subsequent authors. The moduli
spaces of Riemann surfaces have a contractible cover and, for this reason, the topology
is understood; see, for example, the work of Harer–Zagier [HZ86] and Maclachlan
[Mac71]. Much less is known about the topology of the moduli spaces of translation
surfaces.

We analyze the fundamental group of some covering spaces of the stratum compo-
nents Hodd(4), H(3, 1) and Heven(6) of the moduli space of translation surfaces, the
Teichmüller strata of blown-up translation surfaces.

Theorem A. The fundamental groups of the Teichmüller strata of blown-up transla-
tion surfaces of Hodd(4), H(3, 1) or Heven(6) contain a rank 2 non-abelian free group.

We achieve the result by studying the (pronged) topological monodromy maps, ho-
momorphisms from the orbifold fundamental groups onto the images in the respective
mapping class groups of surfaces with non-empty boundary components. Topological
monodromies have kernels isomorphic to the fundamental groups of Teichmüller-like
covers. We prove that, in these cases, the monodromies are far from being isomor-
phisms, as the kernels contain a non-abelian free group of rank 2.

The orbifold fundamental groups of the stratum components involved in the statement
of Theorem A are closely related to Artin groups. Looijenga–Mondello showed that
the stratum components Hodd(4) and H(3, 1) are orbifold classifying space [LM14,
Corollary 1.2] and the groups πorb

1 (Hodd(4)) and πorb
1 (H(3, 1)) are infinite-cyclic central

extensions of the inner automorphism groups of some Artin groups [LM14]. We prove
the same for Heven(6).
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Theorem B. The stratum component Heven(6) has a contractible cover. Moreover,
the orbifold fundamental group is an infinite-cyclic central extension of the inner au-
tomorphism group of the Artin group of type E8.

Translation surfaces. Let Σ denote a closed oriented surface of genus g and let
Z ⊂ Σ be a finite set of points. A translation structure on Σ is an atlas of charts with
values in C where the transition maps of Σ \ Z are translation, points in Z are cone
type singularities and the holonomy π1(Σ \ Z) → SO(2) is trivial. In particular, the
complex structure on Σ \ Z can be extended to Σ by Riemann’s removable singularity
theorem and the metric around each point p ∈ Z can be given by cyclically gluing
half-planes around p. The flat metric can be represented by polygons in C.

Equivalently, a translation structure on Σ can also be given by pairs of the form (X,ω),
where X is genus g Riemann surface and ω is a non-zero holomorphic one form on X.
The finite set Z is identified with Zω = {p ∈ X | ωp ≡ 0}. Since the holonomy around
every cone singularity is trivial, the number kp of half-planes glued around each point
p ∈ Z is even and the multiplicity of ω at p is kp

2 + 1.

Strata of translation surfaces. The moduli space of genus g translation surfaces is
the set of all translation structures (X,ω) of Σ up to isomorphisms. The whole moduli
space can be stratified in orbifolds H(k1, . . . , kn) characterized by the combinatorial
data given by the orders of ω at its zeros.

Even though the topology of the strata of translation surfaces is poorly understood, our
knowledge has improved in the past years. Costantini–Möller–Zoachhuber gave a recur-
sive computable formula for the Euler characteristic of the moduli space of translation
surfaces [CMZ22]. Further, Zykoski has constructed a finite simplicial complex with
the same homotopy type of the strata H(k1, . . . , kn), motivated by Harer’s construc-
tion of a simplicial complex those quotient by the mapping class group is homotopic
equivalent to the moduli space of Riemann surfaces [Zyk22].

Kontsevich–Zorich showed that each stratum has at most 3 connected components and
in every genus some components are hyperelliptic [KZ03]. Namely, hyperelliptic compo-
nents consist of translation surfaces (X,ω) where X is a hyperelliptic Riemann surface
and τ ∗(X,ω) = (X,−ω) where τ is the hyperelliptic involution of X. These connected
components are orbifold classifying spaces for finite extensions of braid groups; see
[LM14, Section 1.4] for a proof. Much less is known about the non-hyperelliptic stra-
tum components and, in particular, whether or not there exists a contractible cover.
Natural candidates to consider are Teichmüller-like parameter spaces; see Section 2.4
for details. Their fundamental groups are isomorphic to the kernels of the topological
monodromy maps.

Monodromy maps. The mapping class group Mod(Σ,Z) is the group of all
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orientation-preserving self-diffeomorphisms of Σ that leave the set of marked points
invariant, up to isotopies relative to the set of marked points. If C is a connected com-
ponent of a stratum H(k1, . . . , kn), then any (orbifold) homotopy class of loops based
at (X,ω) gives rise to some self-diffeomorphism of X that preserves the zeros of ω.
These data are recorded by the (labelled) topological monodromy map

ρ̃C : πorb
1 (C) → Mod(Σ,Z).

Calderon–Salter’s work resulted in a complete description of the images of the mon-
odromy maps associated with all non-hyperelliptic connected components of the strata
H(k1, . . . , kn) for g ≥ 5. In other words, the orbifold fundamental groups of all non-
hyperelliptic connected components are projected onto subgroups of the mapping class
groups called framed mapping class groups [CS22].

The kernel of the punctured monodromy. If C is hyperelliptic then Im ρ̃C is iso-
morphic to the symmetric mapping class group SMod(Σ,Z), and ker ρ̃C is finite [Cal20,
Section 2.1]. It is natural to ask whether or not the topological monodromy is injective
or if the kernel is small enough so to have a description of the commensurability class
of the orbifold fundamental groups. Analogously, it is natural to ask if Teichmüller-like
covers of stratum components are universal covers, as the orbifold fundamental groups
are orbifold deck transformation groups. For this reason, we are interested in esti-
mating the size of the kernels of the monodromies ρ̃C for non-hyperelliptic connected
components. This thesis’s first main result is that the kernel is large in some cases.

Theorem C. Let ρ̃Hodd(4), ρ̃H(3,1) and ρ̃Heven(6) be the labelled topological mon-
odromy maps of the non-hyperelliptic connected components Hodd(4), of H(3, 1) and
of Heven(6), respectively. The kernels of the monodromies into Mod(Σ,Z) contain a
rank 2 non-abelian free group.

It turns out that Theorem C is an example of a more general phenomenon related to
geometric homomorphisms from Artin groups to mapping class groups.

Geometric homomorphisms. If Γ is a finite, connected and undirected simple graph
with V(Γ) = {v1, . . . , vn} as its set of vertices, an Artin group is a group that admits a
presentation of the following form

AΓ =
〈
a1, . . . , an

∣∣∣∣∣∣ aiajai= ajaiaj if vi and vj are adjacent
aiaj = ajai otherwise

〉
. (1.1)

Roughly speaking, a geometric homomorphism AΓ → Mod(Σ,Z) arises as the corre-
spondence between the vertices of the defining graph Γ and a family of simple closed
curves on the surface Σ. The standard Artin generators in the presentation (1.1) map
to Dehn twists about curves that respect the intersection pattern given by the defining
graph; see Figure 1.1.



Chapter 1: Introduction 6

Figure 1.1: The map sending every standard generator ai to the Dehn twist Tγi
deter-

mines a geometric homomorphism for the Artin group AE6 .

Possibly, there might exist relations between Dehn twists that do not hold for stan-
dard generators of Artin groups or, in other words, geometric homomorphisms might
have non-trivial kernels. However, there is no known algorithm that can solve the
word problem for a generic Artin group (for further details, see, for example [McC17,
Conjecture 5.2]), and this is the main obstruction to characterize kernels of geometric
homomorphisms.

Wajnryb proved that if the graph Γ contains E6 as a subgraph, any geometric homo-
morphism cannot be an injection [Waj99]. In particular, Wajnryb found an element
w given explicitly in terms of the standard generators in the presentation (1.1) and
adopted the following strategy: as every inclusion of graphs induces a monomorphism
of the respective Artin groups [Van83], it is enough to find a non-trivial element w
in AE6 which can be written in the mapping class group of genus 3 surface as a braid
relator of Dehn twists. The group AE6 is a spherical-type Artin group, a class of groups
for which the word problem has been solved by means of their Garside structure. Our
next result builds on Wajnryb’s work and Theorem C can be thought of as a corollary
of the following theorem.

Theorem D. Let Γ be any finite and undirect simple graph with E6 as a subgraph.
Any geometric homomorphism of AΓ in the mapping class group of a surface with non-
empty boundary has a large kernel that contains a non-abelian free group F2 of rank
2. Indeed, there is some g ∈ AΓ such that F2 is generated by the Wajnryb element w
and its conjugate g−1wg.

Theorem D follows from the acylindrical hyperbolicity of spherical-type Artin groups
modulo their center or, equivalently, the inner automorphism group InnAΓ. Here, the
Ping-Pong strategy can be adopted to detect non-abelian free groups.

Acylindrical hyperbolicity. Let InnAΓ denote the inner automorphism group of
the spherical-type Artin group AΓ or, equivalently, the quotient of AΓ by its infinite-
cyclic center. Calvez–Wiest proved that the group InnAΓ acts acylindrically on a
δ-hyperbolic graph, which is known in the literature as the additional length graph
CAL(Γ) [CW16a, Theorem 1.3].
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Calvez–Wiest found a group element κ ∈ AΓ representing a loxodromic isometry of
CAL(Γ) that acts weakly properly discontinuously. By Osin’s criterion [Osi15, Theorem
1.2] the existence of the Calvez–Wiest element κ is enough to conclude the acylindrical
hyperbolicity of InnAΓ.

We prove that the infinite order Wajnryb element acts elliptically on CAL(Γ) and a
classical result shows that the image of w in InnAΓ cannot fix κ ∈ InnAΓ in the
Gromov boundary of the additional length graph [AC21, Lemma 25]. The following is
due to Abbott–Dahmani and is the key ingredient we need to prove Theorem D.

Proposition. [AD19, Proposition 2.1] Let G be a group acting acylindrically hyper-
bolic on a geodesic δ-hyperbolic space X. Suppose σ ∈ G is elliptic and γ ∈ G is
loxodromic. If

1. the set A10δ(γ) = {x ∈ X | d(x, γx) ≤ infy∈X d(y, γy) + 10δ} is not preserved by
any non-trivial power of σ and

2. the diameter of Fix50δ(σ) = {x ∈ X | d(x, σnx) ≤ 50δ for all n ∈ Z} is finite,

then there is some n ∈ Z such that the group generated by σ and γn is a non-abelian
free group of rank 2.

We conclude that there exists a positive integer n such that the group generated by
κ−nwκn and w is a non-abelian free group of rank 2.

Projective strata. We now explain how Artin groups arise in the context of the
non-hyperelliptic components of the strata mentioned in Theorem C.

The multiplicative group C∗ acts on the cotangent bundle of each Riemann surface
X by multiplication. The action preserves the multiplicity at the cone points of each
holomorphic 1-form and is well-defined on each connected component C of a stratum
H(k1, . . . , kn). The resulting quotient is denoted by PC and is known as a projective
stratum of translation surfaces.

Looijenga–Mondello proved that the orbifold fundamental groups of PHodd(4) and
PH(3, 1) are the inner automorphism groups of the E6-type and E7-type spherical
Artin groups, respectively [LM14]. We prove that the same holds for PHeven(6), which
has an orbifold fundamental group isomorphic to the inner automorphism group of the
E8-type spherical Artin group. A result of Pinkham implies that the monodromy map
of PHodd(4) is geometric [Pin74], meaning that standard Artin generators representing
classes of elements in Inn(AE6) are mapped to some Dehn twists. The same holds for
the monodromy of PH(3, 1) and of PHeven(6).

Theorem E. The topological monodromies ρPH(3,1) and ρPHeven(6) map the classes of
the standard generators to Dehn twists.
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Theorem E and Pinkham’s result are then enough to conclude that the kernels of the
monodromies associated with the strata Hodd(4), H(3, 1) and Heven(6) contain a copy
of a non-abelian free group F2 of rank 2.

Monodromy of some strata of quadratic differentials

Abelian differentials on Riemann surfaces of genus g ≥ 1 can be represented via families
of polygons in C with edges paired and identified via translations. A generalisation can
be made in such a way that edges are identified via half-translations z 7→ ±z+c. The re-
sulting surfaces are half-translation surfaces. Meromorphic quadratic differentials with
at least simple poles are to half-translation surfaces what holomorphic abelian differ-
entials are to translation surfaces. That is, there exists a one-to-one correspondence
between equivalence classes of quadratic differentials and half-translation surfaces. If
we do not allow simple poles, the moduli space of genus g quadratic differentials Qg

has a Teichmüller-like cover T Qg which is the cotangent bundle of the the classical
Teichmüller space Tg.

We define T Qg to be the set of triples (X,ϕ, q) where (X,ϕ) is an element of the Tg

and q is a non-zero holomorphic differential on X that is not a square of an abelian
differential. Both T Qg and Qg can be stratified by the orders of the zeros of the
quadratic differentials: if k = (k1, . . . , kn) is a partition of 4g − 4, then Q(k) and
T Q(k) are the spaces of holomorphic and marked holomorphic quadratic differentials
with n zeros with multiplicities given by k, respectively. The notation (kr1

1 , . . . , k
rn
n ) is

used to denote multiple zeros of the same order.

Lanneau proved that each stratum of quadratic differentials Q(k) in genus g ≥ 3
is either connected or has two connected components, one of which is hyperelliptic
or, equivalently, consists of hyperelliptic Riemann surfaces and quadratic differentials
preserved by the hyperelliptic involution [Lan08]. Later, Walker proved that the com-
ponents of the Teichmüller strata T Q(2g, k1, . . . , kn) are exactly 22g − 1 if all the ki

are even, while the components of the Teichmüller strata T Q(rg, k1, . . . , kn) are at
most r2g if r = 1, 3 divides all the ki. More generally, Walker proved that the spaces
T Q(k1, . . . , kn) with all the ki even have at least 22g − 1 components [Wal09, Theorem
1], but the bound is not always sharp. We prove the following.

Theorem F. Let L be a non-hyperellipitc stratum component in Q(k) and r = gcd(k).

a) If r is even, the connected components of T L are at least (r/2)2g(22g − 1).

b) If r is odd, the connected components of T L are at least r2g − ((r + 1)/2)2g.

Theorem F has been proved using the (non-labelled) topological monodromy map as-
sociated to any stratum component of Q(k1, . . . , kn), each of which is a good orbifold.
Once again, the (orbifold) homotopy class of loops based at a point Q0 = (X,ϕ, q) in a
Teichmüller cover T L of L give rise to an element in the mapping class group Mod(Σ)
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of a closed and connected orientable surface of genus g. In other words, there exists a
homomorphism

ρL : πorb
1 (L, Q0) → Mod(Σ)

from the orbifold fundamental group of L at Q0, and the index of its image in Mod(Σ)
coincides with the number of connected components of T L (Lemma 2.4.1). The above
theorem follows from the characterisation of a subgroup of Mod(Σ) containing the
image of ρL. The subgroup of Mod(Σ) we have considered is the stabilizer of the
winding number function associated to the horizontal line field of Q0. Calderon–Salter
used a similar argument to compute the number of connected components of the non-
hyperelliptic Teichmüller strata of abelian differential [CS21]. Hyperelliptic stratum
components have not been considered in the above theorem, since the number of Te-
ichmüller connected components is infinite.

Some filling multicurve systems of a closed surface can be upgraded into an actual
marked flat structure by a well-known construction attributed to Thurston–Veech
[Thu88]. Any curve in the system corresponds to a vertical or horizontal cylinder
on the flat surface and can be sheared to obtain Dehn twists via the topological mon-
odromy. Starting from a filling multicurve system containing simple curves in the
Humphries generating set of Mod(Σ), we construct marked quadratic differentials in
T Q(k), where k = (13, k1, . . . , kn) and (k1, . . . , kn) is a partition of 4g − 7 that can be
obtained from a labelled graph as follows.

Suppose Cg is one of the planar graphs shown in Figure 1.2 when g is odd, or in Figure
1.3 when g is even. The vertices of Cg are labelled by the integers 1 and 2, while some
edges have labels δi, . . . , δd for d = g−3

2 if g is even or d = g−4
2 if g is odd. The labels of

the vertices of Cg form a partition of 4g− 7. A new partition of 4g− 7 can be obtained
from Cg by applying a finite number of the following two elementary edge-collapses.
We either replace an unlabelled edge and its endpoints labelled by l1, l2 ∈ N with a new
vertex having as a label l1 + l2 and edges inherited by the endpoints of the collapsed
edge, or simultaneously collapse two edges with the same label.

Theorem G. Suppose g ≥ 5 and (k1, . . . , kn) is a partition of 4g − 7 obtained from
Cg by applying a finite number of elementary collapses. If k = (13, k1, . . . , kn), then
T Q(k) is connected.

We have also considered the composition of the monodromies ρL with the symplectic
representation ψg : Mod(Σ) → Sp(2g,Z). A complete description of the topological
monodromy images is not available yet and one of the intermediate steps Calderon–
Salter achieved to describe the image of topological monodromies of non-hyperelliptic
strata of abelian differentials is that of describing the image of the fundamental groups
in the symplectic group Sp(2g,Z). The composition ψg ◦ ρL defines the symplectic
monodromy of L based at Q0 that we denote by ρZL. Here, the (orbifold) homotopy
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Figure 1.2: The Cg graph if g is odd.
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Figure 1.3: The Cg graph if g is even.

class of loops based at a point Q0 ∈ T L give rise to automorphisms of H1(X,Z) that
preserves the algebraic intersection number. Gutiérrez Romo’s result on plus and minus
Rauzy–Veech groups [Gut17] implies that, for certain strata of quadratic differentials,
the symplectic image of ρZL is the entire ambient group Sp(2g,Z). More precisely,
in genus g ≥ 4, the image of ρZL is the full symplectic group Sp(2g,Z) if L is in a
stratum component having at least three singularities (zeros or poles), not all of even
order. However, in the case where all the ki’s are even, Walker’s classification of the
connected components of the Teichmüller strata T Q(2g, k1, . . . , kn) implies that the
symplectic image Im(ρZL) is the full stabilizer of the Rauzy-Veech co–cycle RV ∗

Q0 at Q0.
The Rauzy-Veech co–cycle RV ∗

Q0 is induced by the winding number function at Q0.
Here, we improve Walker’s result. Note that the strata of Corollary 1 are connected,
according to Lanneau’s description.

Corollary 1. Let g ≥ 6 and k = (24, k1, . . . , kn) be a partition of 4g − 4 such that all
the ki’s are even. Then the image of the symplectic monodromy ρZQ(k) is the stabilizer
of the Rauzy–Veech co-cycle RV ∗

Q0 .

Winding number function can also be used to show that, if r is even, the symplectic
image Im(ρZL) does not always coincide with the stabilizer of a Rauzy–Veech cycle.

Corollary 2. Let g ≥ 3 and L a non-hyperelliptic connected component of Q(k) if
k = (k1, . . . , kn) and all the ki are divisible by 4, the index [Sp(2g,Z) : Im ρZL] is at
least 22g(22g − 1).



Chapter 2

Translation surfaces

§ 2.1 | Equivalent definitions
Translation surfaces are defined via families of polygons in the complex plane or, equiv-
alently, as abelian differentials on closed Riemann surfaces. The first section of this
chapter sets the foundational knowledge required to define strata of translation surfaces
and their topology. Mutatis mutandis, the same theory can be applied to define strata
of half-translation surfaces.

Definition via polygons

Let P = {P1, . . . , Pn} be a finite collection of polygons in the complex plane C and let
S be the set of sides of P , each given with an orientation. Suppose the collection S
comes with pairings {s, t} for s, t ∈ S with the following three conditions satisfied:

1. each side s ∈ S appears in exactly one pair;
2. two sides of each pair are parallel and of the same length;
3. for each pair, the polygon of one oriented side lies on the left of the side, and the

polygon corresponding to the other oriented side lies to the right.
Then, a translation surface is a closed Riemann surface obtained by identifying the
sides of the polygons in P by complex translations in C respecting the given pairing.

a a

b

b

c

c

d d

e

e

Figure 2.1: An example of a genus 2 translation surface. Opposite sides are identified
via the appropriate translations. Here, the orientation of each edge is given by the
natural orientation inherited by the complex plane. The thinner curves on the surface
are the images of the sides of the polygon after the identification.
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The above construction topologically determines a closed orientable surface. An atlas
of charts is naturally defined and the changes of coordinates are complex translations.
Note that a translation surface does not need to be connected. However, from now on,
we will only consider connected translation surfaces.

The third property guarantees that the resulting closed Riemann surface is oriented.
Figure 2.2 shows an example of a non-orientable Riemann surface obtained from a
polygon. Each of the sides s and t, oriented using the orientation of C, lies on the same
side of the polygons they bound. We can find a simple arc γ connecting the middle
points of s and t. The thickened arc γ is a homeomorphic image of the Möbius band.
Hence, the polygon in Figure 2.2 does not define an oriented surface.

a a b

b c cd

d

Figure 2.2: A non-orientable connected translation surface defined by two polygons.
Opposite sides with no labels are identified.

Any Riemann surfaceX is conformally isomorphic to the quotient of a simply connected
Riemann surface X̃, the universal cover of X, by a group of conformal automorphisms
which acts freely and properly discontinuously on X̃. The metric of X̃ descends to a
metric on X, that might be spherical, flat or hyperbolic depending on the genus of X
[Jos13, Corollary 4.4.1].

Theorem 2.1.1 (Uniformitazion Theorem). Any simply connected Riemann surface
is conformally isomorphic either to the complex plane, the Riemann sphere CP1, or the
unit open disk with the hyperbolic metric.

If g = 1, the Riemann surface X is a torus and its universal cover is the complex plane.
In this case, X has a flat metric: the sectional curvature vanishes everywhere. If g ≥ 2,
then X has a hyperbolic metric.

Intriguingly, translation surfaces define a flat metric on the complement of finitely many
points of a Riemann surface, regardless of the genus. A polygonal representation of a
translation surface defines an atlas of charts in C on the underlying Riemann surface,
such that changes of coordinates are translations. Every non-vertex point comes with a
centred chart in C, where a neighbourhood is conformally mapped to an open ball of C.
Since translations preserve the standard flat Euclidean metric on C, the complement
of the vertex-points set inherits a flat metric.

The same does not hold if the open ball is centred at one of the points corresponding to



Chapter 2: Translation surfaces 13

a vertex of the polygons. In this case, the metric is given by cyclically gluing circular
sectors around a common point, addressed as a cone point. The total angle around
a cone point might not be 2π. In this case, the Euclidean metric inherited by the
complex plane cannot be extended to the whole Riemann surface unless g = 1.

Proposition 2.1.2. [AM24b, Lemma 2.1.2] The angle around a cone point of a trans-
lation surface is an even multiple of π. In particular, if Z = {p1, . . . , pn} is the set of
cone points of a translation surface, the angle around each pi can be written in the
form 2(ki + 1)π for some ki ∈ N.

Every translation surface comes with a partition of 2g − 2.

Proposition 2.1.3. [AM24b, Theorem 2.1.3] Let the angles at the cone points
p1, . . . , pn of a genus g translation surface be 2(k1 + 1)π, . . . , 2(kn + 1)π, respectively.
Then ∑n

i=1 ki = 2g − 2 holds.

We introduce a notion of isomorphism between translation surfaces in order to define
their moduli spaces later on. The following equivalence relation preserves the partition
k1, . . . , kn.

Let P1 and P2 be a pair of polygon collections defining translation surfaces. The
collections P1 and P2 are flat equivalent if one can be obtained from the other by a
finite sequence of scissor moves (Figure 2.3). A scissors move is performed by cutting
one of the two polygons along a straight segment joining two vertices and gluing back
the two cut pieces along identified sides via a translation.

b

a
a

b

Figure 2.3: A scissor move for a translation surface of genus 2. Opposite sides with no
labels are identified. The orientation of each side is naturally inherited by C.

Scissor moves only change the underlying Riemann structure up to a bilohomorphism.
If two translation surfaces are flat equivalent, they are also conformally equivalent.

Definition via abelian differentials

If g ≥ 1, translation surfaces can equivalently be defined as abelian differentials. In
this section, we show that the two definitions are equivalent. Once this equivalence
is established, we will use the terms abelian differential and translation surface inter-
changeably.
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An abelian differential is a pair (X,ω) where X is a Riemann surface and ω is a
holomorphic 1-form. Two pairs (X1, ω1) and (X2, ω2) are flat equivalent is there exists
a bilohomorphism I : X1 → X2 such that I∗ω2 = ω1.

An abelian differential is a holomorphic section of the cotangent bundle of its Riemann
surface X. The cotangent bundle is usually referred to as the canonical bundle KX .
In local coordinates, the 1-form ω can be written in the form f(z)dz where f is a
holomorphic map. The set of abelian differentials on X is a complex vector space that
will be denote by Ω(X). If X has genus g, then the complex dimension of Ω(X) is g.

Before making the correspondence between translation surfaces and abelian differentials
explicit, we recall some properties of abelian differentials. Firstly, a 1-form ω on a
Riemann surface X vanishes with order k in a point p ∈ X if there exists a local chart
z centred in p such that ω can locally be written as zkf(z)dz for f holomorphic and
f(0) ̸= 0. Also, if ω is not identically zero, its zeros are isolated and the vanishing
locus of ω is a discrete closed set of X. As X is compact, the 1-form ω has only finitely
many zeros and can define a divisor on X. See Section 2.5 for more details on divisors.
The following is a straightforward application of the Riemann–Roch Theorem, and it
can also be obtained as a corollary of Proposition 2.1.5.

Proposition 2.1.4. Any non-zero ω ∈ Ω(X) vanishes in finitely many points p1, . . . , pn

with orders k1, . . . , kn, such that ∑n
i=1 ki = 2g − 2.

Any abelian differential on a Riemann surface X defines a translation surface structure
on the same Riemann surface X, and viceversa. In the upcoming pages, we are going
to describe explicitly the following correspondence.

Proposition 2.1.5. There is a one-to-one correspondence Translation surfaces
modulo scissor moves


 Abelian differentials

modulo flat equivalence

1:1

so that cone points p1, . . . , pn with angles 2(k1 +1)π, . . . , 2(kn +1)π correspond to zeros
of holomorphic 1-forms with multiplicities k1, . . . , kn, respectively.

Translation surfaces can also be defined via a third equivalent definition we will only
use below to prove Proposition 2.1.5. In particular, a translation surface is an oriented,
compact and connected surface with a flat metric on the complement of finitely many
points. The metric around the remaining points is given by cyclically glueing an even
number of half-planes. The changes of coordinates are complex translations. For more
details, see, for example, [Wri15].

Any pair (X,ω) defines an atlas of charts on X \ Z, where Z is the set of the zeros
of ω, such that the changes of coordinates are translations and the metric is flat. Let
p ∈ X be a non-zero point of ω and pick a simply connected open neighbourhood Uα
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of p which does not intersect any zeros of ω. Let wα : Uα → C be a chart centered at
p, such that ω|Uα

= fwαdwα. Without loss of generality, we can suppose that fwα does
not vanish on wα(Uα). Then, we define the chart

zα : wα(Uα) → C

wα(q) 7→
∫ wα(q)

0
fwα(τ)dτ.

The chart zα is well-defined by Cauchy’s integral theorem since Uα is simply connected,
and the integral is independent of the path chosen to connect 0 and wα(q). Let fzα

be the new coordinate chart of ω associated with the chart zα. As the 1-form ω is
well-defined, we have that

fzα(wα(q)) dzα

dwα

(wα(q)) = fwα(wα(q)) for any q ∈ Uα.

From the definition of the chart zα we obtain dzα

dwα
(wα(q)) = fwα(wα(q)) ̸= 0 and

therefore fzα ≡ 1. Suppose now that Uα and Uβ are two overlapping simply-connected
domains. Since by the above argument both fzα and fzα are constantly equal to 1,
then dzα

dzβ
≡ 1 and there is a constant c ∈ C such that

zα(q) + c = zβ(q) for any q ∈ Uα ∩ Uβ.

In these coordinates, the metric on the complement of the vanishing points of ω is flat
and is given locally by the form |ω| = |dz|

Now let p ∈ X be a vanishing point of ω of order k and choose a chart z : Up → C
centred at p. We can write ω locally around p as fzdz where fz(z) = zkg(z), g is
holomorphic and g(0) ̸= 0. The map

hα : z(Up) → C

z(q) 7→ (k + 1)
∫ z(q)

0
zkg(τ)dτ,

has a zero of order k + 1 at 0. Consider a (k + 1)st holomorphic root of h and denote
it by w. In particular, we have that

dw

dz
= w−kfz(z)

and the new coordinate chart fw for ω is fw(w) = wk. Hence, the metric around p is
given by |ω| = |wkdw| and can be concretely described, as follows. Divide the w-plane
in 2(k + 1) sectors of equal angle, with the convention that four sectors have a ray
along either the positive or negative real axis. The metric |wkdw| is the pullback of
the flat metric of C by the map w 7→ wk+1, where C, divide in sector, is pulled back
isometrically to k+ 1 copies of the upper half plane and (k+ 1) copies of the lower half
plane, glued isometrically along the half-infinite rays.
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Figure 2.4: Two pairs of four half-planes representing a neighbourhood of a vanishing
point.

The following is a result about triangulating a Riemann surface X with the metric in-
duced by a holomorphic 1-form ω ∈ Ω(X). The triangulation is defined using geodesics
with endpoints in the zeros of ω, that are called saddle connections. A saddle connec-
tion on an abelian differential (X,ω) is a geodesic in the metric induced by ω joining
(non necessarily distinct) zeros of ω with no zeros in the interior.

Proposition 2.1.6. [AM24b, Proposition 2.5.1] Let γ be an arc in X joining two
zeros p1 and p2 of ω ∈ Ω(X). There exists a unique saddle connection in the homotopy
class of γ relative to the endpoints. Moreover, any abelian differential (X,ω) admits a
triangulation in saddle connections.

The following tool will be used to prove Proposition 2.1.5. Let Σ be a connected closed
oriented surface with finitely many marked points. The flip graph is a graph with
vertices in one-to-one correspondence with the triangulations of Σ by triangles having
vertices at the marked point. Two vertices share an edge if the respective triangulations
differ by a flip move. A flip move is performed replacing the shared side of two adjacent
triangles with the other diagonal of the quadrilateral they define.

Theorem 2.1.7 ([Mos88]). The flip graph of a connected closed oriented surface is
connected.

We are now ready to prove the main proposition of this section.

Proof of Proposition 2.1.5. Any abelian differential can be triangulated by saddle con-
nections, which means that it can be represented by a collection of polygon. More
precisely, if γ is a saddle connection that bounds a triangle, the corresponding side of
the polygonal representation is given by the complex number

∫
γ ω. Conversely, any

polygonal representation of a translation surface defines a Riemann surface structure
X on a connected closed oriented surface, and an holomorphic 1-form by locally pulling
back the Euclidean form dz from C to X via the local coordinates. The resulting 1-form
is well defined as the coordinates changes are complex translations.

Suppose two abelian differentials (X1, ω1) and (X2, ω2) are flat equivalent via a bilo-
morphism I : X1 → X2. Consider triangulations τ1 and τ2 in saddle connections for
both (X1, ω1) and (X2, ω2), respectively, so that every triangle is realised by geodesics.
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Then, the pullback via I of τ2 can be obtained by a finite sequence of flip moves from
τ1, by Theorem 2.1.7, so that all intermediate triangulations are realised by saddle
connections. In particular, any flip move relates polygonal representations by a scissor
move. Conversely, if two translation surfaces are equivalent via a scissor move, then
they are also flat equivalent, since the cutting and pasting operations do not change
the underlying holomorphic structure.

§ 2.2 | Strata of translation surfaces
In this section, we define the strata of translation surfaces and their topology. Recall
that any genus g translation surface comes with a partition of 2g − 2 by Proposition
2.1.3 or, equivalently, by Proposition 2.1.4.

Let k1, . . . , kn be a partition of 2g−2 for some integer g ≥ 1. The stratum H(k1, . . . , kn)
is the set of all translation surfaces with exactly n cone points with total angles 2(k1 +
1)π, . . . , 2(kn+1), modulo scissor moves. Equivalently, by Proposition 2.1.5 the stratum
H(k1, . . . , kn) is the set of all genus g abelian differentials (X,ω) such that ω ∈ Ω(X)
has exactly n zeros of order k1, . . . , kn, modulo flat equivalence.

Before defining the topology on the strata H(k1, . . . , kn), we recall the definition of
the moduli spaces Mn

g of genus g Riemann surfaces with n marked points. The two
families of moduli spaces given by Mn

g for g ≥ 1, n ≥ 0 and by H(k) for k1 . . . , kn

partition of 2g − 2, are good orbifolds.

If X is an orientable smooth manifold with empty boundary and G a subgroup of the
self-diffeomorphism group Diff(X) of X, the quotient X/G is a good orbifold if G acts
properly. That is, for any compact set K ⊂ X, we have that {g ∈ G | gK ∩K ̸= ∅} is
compact in G with the compact-open topology inherited by Diff(X).

Note that, by the Quotient Manifold Theorem, if G is a Lie group then the quotient
X/G is a manifold provided the G-action on X has no non-trivial element of G fixing
a point of X. In other words, the space X/G is again a manifold if the action is free.
The orbit space X/G is also a smooth manifold of dimension dimX − dimG and the
quotient map p : X → X/G is a smooth submersion and a principal G-bundle.

Let now Σ be a closed oriented surface of genus g ≥ 1 with a finite set of marked
points Z ⊂ Σ of cardinality n ≥ 0. The mapping class group Mod(Σ,Z) of the pair
(Σ,Z) is the group Diff+(Σ,Z) of orientation preserving self-diffeomorphisms of Σ that
set-wise preserve Z, up to isotopes of Σ leaving Z invariant. The easiest infinite order
mapping classes are the Dehn twists, represented by diffeomorphisms of Σ supported
on the tubular neighborhood of some simple closed curve, as in Figure 3. Two Dehn
twists Tγ1 and Tγ2 about the simple closed curves γ1 and γ2 commute if and only if γ1

and γ2 are disjoint, and satisfy the braid relation Tγ1Tγ2Tγ1 = Tγ2Tγ1Tγ2 if and only if
the geometric intersection number of γ1 and γ2 is 1.
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α

β

Tα

Tα(β)

Figure 2.5: The picture on the left represents the action of a Dehn twist about the
curve α on the arc β supported on an annulus. On the bottom right-hand side, the
family of red simple closed curves represents the Humphries generating set, consisting
of Dehn twists about the 9 curves shown. The top right-hand side of the picture shows
the action of the Dehn twists about the red curve α on the blue curve β that intersects
α once.

Let us fix a pair (Σ,Z) of a closed oriented surface of genus g and a finite set of
points Z ⊂ Σ of cardinality n ≥ 0. A marking of a genus g Riemann surface X is
an orientation-preserving diffeomorphism ϕ : Σ → X. The Teichmüller space T (Σ,Z)
is the set of equivalence classes of pairs (X,ϕ) where X is a closed genus g Riemann
surface and ϕ : Σ → X is marking, where (X1, ϕ1) and (X2, ϕ2) are equivalent if there
exists a bilohomorphism I : X1 → X2 so that

• ϕ−1
2 ◦ I ◦ ϕ1|Z = idΣ|Z and

• ϕ−1
2 ◦ I ◦ ϕ1 : Σ → Σ is isotopic to idΣ relative Z.

Teichmüller spaces can be given a natural topology in terms of Fenchel–Nielsen coor-
dinates. We briefly describe the topology of T (Σ,Z) and refer the reader to [FM12,
Part 2] for further details. There is a maximum total of 3g − 3 + n simple closed
curves cutting a closed genus g surface in subsurfaces with the diffeomorphic type
of (possibly degenerate) pair of pants or, in other words, spheres with at least one
boundary component and exactly three between marked points and boundary com-
ponents. Let us fix [(X,ϕ)] ∈ T (Σ,Z) and a collection {γ1, . . . , γ3g−3+n} of simple
closed curves cutting Σ in (possibly degenerate) pair of pants. The length parame-
ters (lγ1([(X,ϕ)]), . . . , lγ3g−3+n([(X,ϕ)]) ∈ R3g−3+n

≥0 , given by the lengths lγi
([(X,ϕ)]) =

lX(ϕ(γi)) on X for i = 1, . . . , 3g− 3 + n, are well-defined on T (Σ,Z). Moreover, every
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curve γi defines a twisting parameter θγi
([X,ϕ]) ∈ R, recording how the pair of pants

glue together in X.

Theorem 2.2.1 (Fenchel–Nielsen coordinates). Let Σ be a closed, oriented Riemann
surface of genus g and Z ⊂ X a finite set of n points. The map

FN : T (Σ,Z) → R3g−3+n
≥0 × R3g−3+n

[(X,ϕ)] 7→ (lγi
([(X,ϕ)]), θγi

([X,ϕ]))3g−3+n
i=1

is a bijection.

We endow T (Σ,Z) with the R3g−3+n
≥0 ×R3g−3+n topology given by the Fenchel–Nielsen

coordinates. In particular, each Teichmüller space is contractible.

Relative diffeomorphisms between pairs of closed genus g surfaces and finite subsets
of points (Σ,Z) and (Σ′,Z ′) induce isomorphism of groups Mod(Σ,Z) ∼= Mod(Σ′,Z ′)
and homeomorphisms T (Σ,Z) ∼= T (Σ′,Z ′). Without loss of generality, we will denote
by Modn

g and T n
g the mapping class group and the Teichmüller space of a genus g

closed surface with a finite set of marked points of cardinality n. If n = 0, then we will
suppress the superscript n and write Modg and Tg instead.

The mapping class groups Modn
g act on T n

g by precomposiiton on the marking. In
particular, the mapping class groups Modn

g are discrete groups acting properly on T n
g

[FM12, Theorem 12.2]. The orbit spaces Mn
g = T n

g /Modn
g are called moduli spaces of

Riemann surfaces and are good orbifolds parametrizing isomorphism classes of genus
g Riemann surfaces with n marked points.

Analogously, we define Teichmüller strata of translation surfaces, so to give each stra-
tum H(k1, . . . , kn) a well-defined topology and good orbifold structure. Let Σ be a
closed, oriented surface of genus g. If k1, . . . , kn ∈ Z+ is a partition of 2g− 2, a marked
translation surface (X,ϕ, ω) consists of a genus g abelian differential (X,ω) with pre-
scribed order of the zeros given by the partition k1, . . . , kn

1, and a marking ϕ : Σ → X.
The Teichmüller stratum of translation surfaces T (k1, . . . , kn) is the set of marked
translation surfaces, up to homotopy. In particular, the marked translation surfaces
(X1, ω1, ϕ1) and (X2, ω2, ϕ2) are equivalent if there exists a bilomorphism I : X1 → X2

so that

• I∗ω2 = ω1;

• ϕ−1
2 ◦ I ◦ ϕ1 : Σ → Σ is isotopic to idΣ.

As for the definition of mapping class groups and Teichmüller spaces, we will omit the
dependence of the definition of T (k1, . . . , kn) from the choice of Σ, since diffeomor-
phic surfaces induce bijections and, ultimately, homeomorphisms with respect to their

1From now on, we will write that such an abelian differential is of type k1, . . . , kn.



Chapter 2: Translation surfaces 20

topology defined in the following.

Let Z ⊂ Σ be a finite set of cardinality n. Suppose the relative homology group
H1(Σ,Z;Z) has a relative symplectic basis given by simple closed curves γ1, . . . , γ2g

and arcs γ2g+i, . . . , γ2g+n−1 such that each γ2g+i joins pi and pn. In particular, the arcs
γ2g+i, . . . , γ2g+n−1 can be homotoped to be disjoint except at the endpoints, while the
simple closed curves γ1, . . . , γ2g have intersection numbers given by i(γi, γi+1) = 1 if i is
odd and zero otherwise. Let us fix a triangulation τ of Σ with n vertices corresponding
to the set Z. The subset Uτ ⊂ T (k1, . . . , kn) of all equivalence classes of marked
translation surfaces (X,ω, ϕ) with marking ϕ taking the edges of τ to saddle connections
of (X,ω), is going to be a local patch for T (k1, . . . , kn).

Proposition 2.2.2. The map

holτ : Uτ → C2g+n−1

[(X,ω, ϕ)] 7→
{ ∫

ϕ(γi)
ω

}2g+n−1

i=1

is injective and has an open image.

Proof. Suppose the marked translation surfaces (X1, ω1, ϕ1) and (X2, ω2, ϕ2) are equiv-
alent. Let Φ be the diffeomorphism ϕ2 ◦ ϕ−1

1 : X1 → X2. If T is a triangle of the
triangulation ϕ1(τ) bounded by saddle connections in (X1, ω1), then Φ(T ) is a triangle
of the triangulation ϕ2(τ) bounded by saddle connections in (X2, ω2), up to isotopy rel-
ative endpoints. In particular, we can suppose the triangles T and Φ(T ) to be affine, as
the holonomy of the respective edges is the same by hypothesis. Hence, by Proposition
2.1.5 there exists a bilohomorphism I : X1 → X2 isotopic to Φ such that I∗ω2 = ω1. In
particular, the marked translation surfaces (X1, ω1, ϕ1) and (X2, ω2, ϕ2) are equivalent.
To see that holτ (Uτ ) is open in C2g+n−1, we notice that a complex number z is in
holτ (Uτ ) if and only if the coordinates of z corresponds to the sides of non-degenerate
triangles in τ , which is an open condition in C2g+n−1.

Theorem 2.2.3. Let k1, . . . , kn be a partition of 2g − 2 for g ≥ 1. The Teichmüller
stratum T (k1, . . . , kn) is a complex manifold of dimension 2g + n− 1.

Proof. Let T be the set of all triangulations of Σ with vertices n vertices corresponding
to the set Z. By Proposition 2.1.6, the family of sets {Uτ }τ∈T covers T (k1, . . . , kn).
We will show that the family {holτ : Uτ → C2g+n−1}τ∈T defines an atlas of charts
of T (k1, . . . , kn). Suppose two triangulations τ1 and τ2 with triangles bounded by
curves {γ1, . . . , γ2g+n−1} and {δ1, . . . , δ2g+n−1} are such that the corresponding sets
Uτ1 and Uτ2 have non-trivial intersection. The complex coordinates {

∫
ϕ(γi) ω}2g+n−1

i=1

and {
∫

ϕ(δi) ω}2g+n−1
i=1 differ by the action of a matrix in GL2g+n−1(C). Indeed, the
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triangulations τ1 and τ2 are connected in the flip graph of (Σ,Z) and any flip move
acts linearly on some saddle connection.

Theorem 2.2.3 proves that the changes of coordinates are linear maps, as any flip move
of a triangulation induces a reflection in C2g+n−1. In particular, each T (k1, . . . , kn) is
an (X,G)-manifold, where X = C2g+n−1 and G = GL2g+n−1(C).

Lemma 2.2.4. Let X and Y be smooth manifolds, F a discrete subgroup of Diff(Y )
and G < F a subgroup of Diff(X). If f : X → Y is continuous and G-equivariant,
then X/G is a good orbifold if Y/G is.

Proof. Let K be compact in X. Since Y/G is a good orbifold and f(K) is compact in
Y , the inclusions

{g ∈ G | gK∩K ̸= ∅} ⊂ {g ∈ G | f(gK∩K) ̸= ∅} ⊂ {g ∈ F | gf(K)∩f(K) ̸= ∅} < ∞

imply that X/G is a good orbifold, since the set {g ∈ G | gf(K) ∩ f(K) ̸= ∅} is finite
by hypothesis.

Proposition 2.2.5. The mapping class group Modg acts properly on the Teichmüller
strata T (k1, . . . , kn).

Proof. We only need to show that the Modg-equivariant function f : T (k1, . . . , kn) →
Tg mapping the equivalence class of triples [(X,ϕ, ω)] in the equivalence class of pairs
[(X,ϕ)] is well-defined and continuous. Equivalent markings in T (k1, . . . , kn) respect
the same condition of equivalence of markings stated for Tg. Hence, the continuous
function f is well-defined and Modg-equivariant [Vee90].

Corollary 2.2.6. The strata of translation surfaces H(k1, . . . , kn) are good orbifolds.

We might expect that, as for Mg, the strata of translation surfaces are connected.
Surprisingly, this is not always the case. The following two definitions introduce the
classification of connected components of strata of translation surfaces, also called the
stratum components.

An abelian differential (X,ω) is hyperelliptic if there exists a self-bilohomorphism τ of
X such that τ 2 = idX , the quotient X/⟨τ⟩ is bilohomorphic to the Riemann sphere
CP1 and τ ∗ω = −ω holds.

A translation surface is hyperelliptic if it admits a polygonal representation that is
symmetric with respect to the π-rotation of the complex plane. More precisely, this is
the case if the π-rotation preserves the shape of the polygons, it reverses the orientation
of the sides and the quotient by the π-rotation provides a polygonal representation
of CP1. In this case the π-rotation is a bilohomorphic involution and, as the sides
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of the polygonal representation change orientation, the holonomy vectors
∫

γi
ω are

mapped to their inverses −
∫

γi
ω. Any holomorphic 1-form is closed but not exact and

Ω(X) is naturally a subspace of the first cohomology H1(X,C), which is isomorphic to
Hom(π1(X),C) via the map ω 7→ (γ 7→

∫
γ ω). We can then conclude that the action

by the pullback of the involution defined by the π-rotation maps ω to −ω.

If (X,ω) is a hyperelliptic abelian differential, then X is a hyperelliptic Riemann surface
and the hyperelliptic involution τ acts on any other holomorphic 1-form ω ∈ Ω(X) by
pullback as − Id. To see this, note that τ acts linearly on Ω(X) and can only have
±1 as eigenvalues since it is an involution. However, any involution acting on a C-
vector space is diagonalizable and the dimension d1 of the eigenspace relative to the
eigenvalue 1 and the dimension d−1 of the eigenspace relative to the eigenvalue −1 add
up to g. One can use a version of the Lefschetz fixed point theorem for differential
sheaf cohomology to show that the number of fixed points of τ , that is 2g + 2, is the
same as 1 − Trace(τ ∗ : Ω(X) → Ω(X)) + 1 = 2 − (d1 − d−1). Hence, we obtain that g
is equal to both d−1 − d1 and d1 + d−1 so that g = d1.

The classification of stratum components also relies on spin structures associated with
holomorphic 1-forms whose zeros have even order. Recall that a divisorD on a Riemann
surface X is a finite formal sum

D =
n∑

i=1
kipi,where pi ∈ X and ki ∈ Z for any i = 1 . . . , n.

The degree deg(D) of the divisor D is the sum ∑n
i=1 ki. The divisor D is effective if

each of the ki’s are non-negative. The divisor D is canonical if there exists ω ∈ Ω(X)
with zeros p1, . . . , pn of order k1, . . . , kn, respectively. In this case, the canonical divisor
D will be denoted by div(ω).

If X is a closed Riemann surface, there is a one-to-one correspondence Divisors on X
modulo linear equivalence


Meromorphic sections of line bundles on X

modulo isomorphism

1:1

so that effective divisors correspond to holomorphic sections and the sum of two divisors
corresponds to the tensor product of the respective sections [Jos13, Chapter 5].

If (X,ω) is an abelian differential in a stratum of the form H(2k1, . . . , 2kn), the divisor
div(ω)/2 corresponds to a section of some line bundle L on X such that L⊗2 is the
canonical cotangent bundle KX of X. The line bundle L is a spin structure of (X,ω)
and its parity is the complex dimension h0(X,L) mod 2 of the space of holomorphic
sections X → L.

The following theorem is due to Kontsevich–Zorich [KZ03]. They proved that any
stratum H(k1, . . . , kn) has at most three connected components that are denoted by
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Hhyp(k1, . . . , kn), Hodd(k1, . . . , kn) and Heven(k1, . . . , kn), whenever defined. The stra-
tum components Hhyp(k1, . . . , kn) consists of hyperelliptic translation surfaces and are
only defined if the partition (k1, . . . , kn) is of the form (2g−2) or (g−1, g−1). The other
stratum components Hodd(k1, . . . , kn) and Heven(k1, . . . , kn) are called non-hyperelliptic
components and are distinguished by the parity of the spin structures. These are de-
fined only if the terms of the partition (k1, . . . , kn) are all even. A non-hyperelliptic
stratum component might still contain hyperelliptic translation surfaces and a stratum
component is said to be totally non-hyperelliptic if it does not contain hyperelliptic
translation surfaces.

Theorem 2.2.7 (Classification of stratum components). The strata of translation
surfaces in genus g = 2 are connected. The only non-connected strata in genus g = 3
are H(4) and H(2, 2), which have exactly a hyperelliptic a totally non-hyperelliptic
odd spin structure component. If g ≥ 4, then

• the strata H(2g − 2) have three connected components, namely Hhyp(2g − 2),
Hodd(2g − 2) and Heven(2g − 2). The non-hyperelliptic strata are totally non-
hyperelliptic;

• if g − 1 is even, the strata H(g − 1, g − 1), have three connected components,
namely Hhyp(g − 1, g − 1), Hodd(g − 1, g − 1) and Heven(g − 1, g − 1);

• if g−1 is odd, the strata H(g−1, g−1), have two connected components, namely
Hhyp(g − 1, g − 1) and a non-hyperelliptic component Hnonhyp(g − 1, g − 1);

• all the other strata of the form H(2k1, . . . , 2kn) have two connected components,
distinguished my the parity of the spin structure.

The remaining strata are non-empty and connected.

§ 2.3 | Orbifold fundamental groups and mon-
odromy maps of the strata

Kontsevich–Zorich have classified the connected components of the strata of abelian
differentials. The next natural question we might want to answer is how to describe
the fundamental groups. However, when studying good orbifolds, orbifold fundamen-
tal groups retain many more symmetries than the classical fundamental groups. In
the first subsection, we define orbifold fundamental groups for good orbifolds and list
the properties we will use in the upcoming chapters. The second subsection will be
devoted to the description of the monodromy maps associated to strata of translation
surfaces: the topological monodromy, the labelled topological monodromy and the
pronged topological monodromy.
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Orbifold fundamental groups

Let X/G be a good orbifold and x0 ∈ X. The orbifold fundamental group of X/G at
x0 is the group πorb

1 (X/G, x0) of pairs (g, γ), where g ∈ G and γ is a homotopy class
of arcs in X relative the endpoints, connecting x0 with g · x0. The group operation is
given by the composition law

(γ1, g1)(γ2, g2) = (γ1 ∗ (g1 · γ2), g1g2),

where the operation ∗ stands for the usual concatenation of paths. As for the clas-
sic fundamental groups, orbifold fundamental groups with different base points are
isomorphic.

Suppose that X̃ is the universal cover of X. Then X/G is an orbifold classifying
space for a group π if X̃ is contractible and πorb

1 (X/G, x0) is isomorphic to π for some
(or equivalently for any) x0 ∈ X. Alternatively, we say that X/G is K(π, 1). Such
property holds for some stratum components of translation surfaces, namely for the
hyperelliptic stratum components, for Hodd(4), H(3, 1) [LM14, Theorem 1.1] and for
Heven(6) (Theorem B).

If G is a discrete group acting properly and freely on a manifold X by diffeomorphisms,
then the quotient map p : X → X/G is a covering map, the orbifold fundamental group
ofX/G at x0 ∈ X is isomorphic to π1(X/G, p(x0)) and to the deck transformation group
of the cover X̃ → X/G. The map X̃ → X/G is not a covering map if G does not act
freely on X, but the deck transformation group Deck(X̃ → X/G) can still be defined.

Proposition 2.3.1. Let X/G be a good orbifold and x0 ∈ X. Then πorb
1 (X/G, x0) is

isomorphic to Deck(X̃ → X/G).

Proof. Let x̃0 ∈ X̃ be a lift of x0. If γ is an homotopy class of arcs from x0 to g · x0

for some g ∈ G, then there exists a unique lift γ̃ of γ such that γ̃(0) = x̃0. Similarly,
there exists a unique lift dγ : X̃ → X̃ of the universal covering map p : X̃ → X such
that dγ(x̃0) = γ̃(1). The map dγ commutes with X̃ → X/G and is an element of
Deck(X̃ → X/G). We want to show that

πorb
1 (X/G, x0) → Deck(X̃ → X/G)

(γ, g) 7→ dγ

is an isomorphism of groups. It is easy to see that for any two pairs (γ1, g1), (γ2, g2) ∈
πorb

1 (X/G, x0), the deck transformation dγ1∗(g1·γ2) is the composition dγ1 ◦ dγ2 , since the
unique lift associated to γ1 ∗ (g1 · γ2) is γ̃1 ∗ (dγ1 · γ̃2). If dγ = id then γ̃(1) = x0

and γ̃ is a loop in X̃, which is simply connected and therefore γ is homotopic to the
constant path. Surjectivity can be proved as follows. If d is a deck transformation of
X̃ → X/G, then consider the homotopy class γ̃ of arcs from x̃0 to d(x̃0). Since d is a
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deck transformation, there is g ∈ G such that p(γ̃)(1) = g · x0.

Suppose X is both path-connected and simply connected. In this case, the orbifold
fundamental group πorb

1 (X/G, x0) is isomorphic to G via the map projecting any pair
(γ, g) to g. Indeed, the kernel of the projection (γ, g) 7→ g is the fundamental group of
X based at x0, while a group element g is in the image if there exists a path from x0

to g · x0.

The orbifold fundamental group of a good orbifold, in general, retains more information
about the group action than the fundamental group. For example, if τ is a reflection
in C, the quotient group C/⟨τ⟩ is a proper good orbifold since τ has a one-dimensional
fixed locus. The orbifold C/⟨τ⟩ has an orbifold fundamental group isomorphic to Z2

since C is connected and simply connected. However, the quotient C/⟨τ⟩ is also simply
connected: if, for example, τ(z) = z, then C/⟨τ⟩ is homeomorphic to the closure of the
upper half-plane in C.

Another example comes from the moduli space of Riemann surfaces Mg, that has a
contractible universal cover and the orbifold fundamental group πorb

1 (Mg, (X,ϕ)) is
isomorphic to Modg. However, the moduli space Mg is simply connected [Mac71].

The orbifold fundamental group of a good orbifold can be expressed as the classical
fundamental group of a specific topological space. We first recall the notion of semi-
simplicial set. Let {Sn}n∈N be a sequence of sets. Each set Sn is given with the discrete
topology and called the set of n-simplices. If there are functions di

n : Sn+1 → Sn for
any n ∈ N and i = 0, . . . , n + 1 such that di

n ◦ dj
n+1 = dj

n ◦ di
n+1 for i < j, then the

semi-simplicial set of the collection {Sn}n∈N is the geometric realization

( ∞∐
n=0

Sn × ∆n
)
/ ∼,

where ∆n is the standard n-simplex and (σ, ιit) ∼ (diσ, t) for all σ ∈ Sn, t ∈ ∆n−1 and
ιi : ∆n−1 → ∆n inclusion of the ith face.

Let now G be a topological group and EG the semi-simplicial set obtained as follows.
The n-simplices are the ordered (n+ 1) tuples of elements of G of the form [g0, . . . , gn]
and such n-simplices are naturally attached to the (n− 1)-simplices [g0, . . . , ĝi, . . . , gn],
where ĝi denotes that this vertex has been deleted. The group G acts on the simplices
by left multiplication on the vertices

g · [g0, . . . , gn] = [gg0, . . . , ggn].

The semi-simplicial complex EG is contractible. Indeed, there is a homotopy drag-
ging every point x ∈ [g0, . . . , gn] to the vertex [e] of the identity element, along the
straight segment in [e, g0, . . . , gn] from x to [e]. Moreover, the group G acts freely and
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simplicially on EG. Hence, if BG denotes the orbit space EG/G, the quotient map
EG → BG is a fiber bundle with fibers diffeomorphic to G. The associated long exact
sequence can be used to show that πn(BG, ∗) ∼= πn−1(G, e) for every point ∗ ∈ BG.
If now X/G is a good orbifold, the Borel construction XG is the orbit space obtained
form the diagonal G-action on EG×X.

Proposition 2.3.2. Let X/G be a good orbifold and p ∈ X. If X is connected, the
orbifold fundamental group πorb

1 (X/G, p) is isomorphic to π1(XG).

Proof. The universal cover of XG is homeomorphic to the product EG× X̃ since EG
is contractible. Moreover, if g ∈ G and d ∈ Deck(X̃ → X), then (g, d) is deck
transformation of EG× X̃ → XG. Let x be in EG. The homomorphism

πorb
1 (X/G, p) → π1(XG, [(x, p)])

(g, γ) 7→ (g, dγ)

is an isomorphism. While injectivity is immediate, surjectivity follows from the exis-
tence and uniqueness of lifts of EG× X̃ → XG.

Corollary 2.3.3. Let X/G be a good orbifold and p ∈ X. If X is connected, there is
an exact sequence

π2(XG) → π1(G, e) → π1(X, p) → πorb
1 (X/G, p) → π0(G) → 1.

Proof. The claim follows from Proposition 2.3.2, since the map XG → BG is a fiber
bundle with fibers diffeomorphic to X.

Monodromy maps

Hyperelliptic connected components are topologically well understood.

Theorem 2.3.4. [LM14, Introduction] The strata Hhyp(2g− 2) and Hhyp(g− 1, g− 1)
are isomorphic, as good orbifolds, to the quotient of configuration spaces of points on
CP1 by the action of the group of (2g+ 1)st and (2g+ 2)nd roots of unity, respectively.

The topology of the non-hyperelliptic stratum components proves to be more intricate
to study, and few results are available in the literature. However, topological monodromy
maps can help describe the isomorphism type of orbifold fundamental groups.

Morphisms of good orbifolds induce group homomorphisms between orbifold fundamen-
tal groups. Let X/G and Y/F be good orbifolds and let us fix the points x0 ∈ X and
y0 ∈ Y . Suppose there exists a group homomorphism φ : G → F and a φ−equivariant
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continuous map f : X → Y . Then, the map f induces a group homomorphism

πorb
1 (f) : πorb

1 (X/G, x0) → πorb
1 (Y/F, y0)

(γ, g) 7→ (f(γ), ϕ(g)).

Let now T0 be a marked translation surface in some Teichmüller stratum T (k1, . . . , kn)
and let C be the unique connected component of H(k1, . . . , kn) containing (X,ω). Since
the forgetful map T (k1, . . . , kn) → Tg is continuous [Vee90] and Modg-equivariant, there
exists an induced πorb

1 -homomorphism

ρC : πorb
1 (C, T0) → πorb

1 (Mg, (X,ϕ)) ∼= Modg,

the topological monodromy. The image of the topological monodromy map of a stratum
component C describe the maximal subgroup of Modg acting on T C so that its quotient
is C and Calderon–Salter described Im(ρC) for non-hyperelliptic connected components
in genus g ≥ 3 as higher-spin mapping class groups [CS22].

If ξ is a vector field on a Riemann surface X vanishing on a set of finitely many points
Z, for any homotopy class γ of oriented smooth loops in X \ Z, we denote by ϕξ(γ)
the winding number of γ with respect to the vector field ξ. The integer ϕξ(γ) counts
the number of times the tangent vector dγ turns about ξ.

Let Σ be a genus g Riemann surface and Z a finite set of n marked points on X. If
ϕ : Σ → X is a marking for X, the mapping class group Mod(Σ,Z) is isomorphic
to Mod(X,ϕ(Z)) through the isomorphism induced by ϕ. If ξ is a vector field on X

vanishing on ϕ(Z), then the mapping class group Modn
g acts of the winding number

function ϕξ as
f · ϕξ(γ) = ϕξ(f−1(γ))

for any homotopy class of smooth curves in X \ ϕ(Z) and f ∈ Modn
g . The framed

mapping class group Modn
g (ϕξ) is the stabilizer of ϕξ in Modn

g .

Proposition 2.3.5. Let ξ be a non-vanishing vector field on Σ\Z. Then, the following
properties hold for the winding number function ϕξ.

(1) (Normalization) If z a non-essential curve on Σ \ Z, then ϕs(z) = 1;

(2) (Twist-linearity) if δ and γ are oriented simple closed curves and Tδ(γ) is the
Dehn twist of γ about δ, then ϕξ(Tδ(γ)) = ϕξ(γ) + ϕξ(γ)i(γ, δ), where i(γ, δ)
denotes the algebraic intersection pairing;

(3) (Homological Coherence) if the curves γ1, . . . , γm bound a subsurface S ⊂ Σ \ Z
such that S lies to the left of each curve, then

n∑
i=1

ϕξ(γi) = χ(S).
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Any translation surface (X,ω) can be associated with a non-vanishing horizontal unit
vector field ξω on the complement of the zeros of ω. Indeed, for any x ∈ Σ \ Z, one can
define ξω(x) to be the unique unit tangent vector such that ω(ξω(x)) is a positive real
number. Moreover, if ϕ : Σ → X is a marking, then the vector field ξ can be pulled
back by ϕ to Σ \ Z.

Note that the horizontal foliation of a translation surface inherited by its polygonal
representations consists of the integral curves of its non-vanishing horizontal unit vector
field. At each cone point pi with multiplicity ki, the winding number of a small loop
γi oriented counterclockwise around pi has ϕξ(γi) = ki + 1, that is the number of
half-planes glued around pi or, equivalently, the number of tangency points between
the integral curves of ξ and dγi. In particular, the function ϕξ is not well-defined for
homotopy classes of oriented curves on Σ, as the value of a small essential loop in Σ\Z
is 1, while the value of any γi is ki + 1. However, if r = gcd(k1, . . . , kn), then the r-spin
structure ϕξ mod r is well-defined on the set of homotopy classes of oriented curves
on Σ [Cal20, Section 4.1].

Consider the forgetful map F : Modn
g → Modg realized by forgetting the marked points.

If ξ is a vector field on Σ as above, then the r-spin mapping class group Modg(ϕξ) is
the image through F of the associated framed mapping class group Modn

g (ϕξ).

Theorem 2.3.6. Let C be a non-hyperelliptic connected component of a stratum
H(k1, . . . , kn) in genus g ≥ 3 and T C its Teichmüller cover in T (k1, . . . , kn). Let
T0 = (X,ω, ϕ) be a marked translation surface in T C. The image of the topological
monodromy

ρC : πorb
1 (C, T0) → Modg

is the r-spin mapping class group Modg(ϕξ) associated to the vector field ξ on (X,ω, ϕ).
The index of Modg(ϕξ) is finite.

§ 2.4 | Finer Teichmüller covers
The topology of the non-hyperelliptic stratum components can be understood from
the orbifold structure. Generally, the monodromy ρ : πorb

1 (X/G, x0) → G, given by
(γ, g) 7→ g, provides some useful topological data.

Lemma 2.4.1. Let X/G be a good orbifold and x0 ∈ X. Let ρ : πorb
1 (X/G, x0) → G

be the associated monodromy in G. Then:

• X has [G : Im ρ] many connected components;

• the kernel of ρ is isomorphic to the fundamental group of the unique connected
component of X containing the base point x0.

Proof. If Ω is the connected component containing x0, the cardinality of the orbit set
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{f · Ω | f ∈ G} coincides with the number of connected components of X and by the
Orbit-Stabilizer theorem this is the index of the stabilizer of Ω in G. If f acts trivially
on Ω there exists a path connecting x0 to f · x0. Hence, the group element f is in the
image of the monodromy ρ. Viceversa, if f ∈ Im ρ then there is a path in Ω connecting
x0 to f · x0 and for any x ∈ Ω there exists a path δ with endpoints x and x0. The
concatenation δ ∗ γ ∗ (f · δ) connects x with f · x and we can conclude that f stabilizes
Ω. To prove the second claim, suppose (γ, f) ∈ πorb

1 (X/G, x0) and ρ(γ, f) = idG, then
f = idG and γ is the homotopy class of a loop based at x0; vice-versa, any loop γ in
X based at x0 can be seen as an element in ker ρ as (γ, idG).

By Theorem 2.3.6, the images of the topological monodromy ρC are higher-spin map-
ping class groups and have finite index. The Calderon–Salter result turns out to
be a topological statement on the connected components of the Teichmüller non-
hyperelliptic strata in genus g ≥ 3. Then, by the previous lemma, it is natural to
ask if the topological monodromies ρC of non-hyperelliptic stratum components are
injective or, equivalently, the connected components of T C are simply connected.

In the first subsection, we prove that any connected component of the Teichmüller
lifts T C of non-hyperelliptic strata in genus g ≥ 3 is far from being universal, as the
fundamental groups contain a non-abelian free group of rank 2. We will define two
additional covering maps, the Teichmüller strata of labelled translation surfaces T C̃
and the Teichmüller strata of blown-up translation surfaces T Ĉ. Both T C̃ and T Ĉ fit
in a sequence of covers

T Ĉ → T C̃ → T C → C

and both come with their own monodromy maps. The kernel of the monodromy
associated with T C̃ is known to have a non-trivial kernel, as it contains a copy of Z.
However, we don’t know if the Large Kernel Theorem holds in general or, in other
words, if the kernel of the monodromy associated with T C̃ contain a non-abelian free
group of rank 2. Nothing about the kernels of the monodromy of T Ĉ is known.

Teichmüller strata of labelled translation surfaces

Even if T C is not connected, one might restrict to a connected component and hope
that, as in the case of the Teichmüller cover Tg for the moduli space of Riemann surfaces
Mg, the component is simply-connected and therefore a universal cover for C. This is
never the case if g ≥ 3.

Theorem 2.4.2 (Large Kernel Theorem for ρC). If g ≥ 3 and C is a non-hyperelliptic
stratum component, than π1(T C, T0) contains F2, a non-abelian free group of rank 2.
In particular, the kernel of the monodromy ρC contains a copy of F2.

To prove Theorem 2.4.2, we will define a new orbifold structure. Let Σ be a closed,
oriented Riemann surface of genus g and Z = {p1, . . . , pn} ⊂ X a finite set of points. If
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k1, . . . , kn ∈ Z+ is a partition of 2g− 2, a labelled marked translation surface (X,ω, ϕ)
consists of a genus g abelian differential (X,ω) with prescribed order of the zeros given
by the partition k1, . . . , kn, and a marking ϕ : Σ → X such that ordϕ(pi) ω = ki for
i = 1, . . . , n. The Teichmüller stratum of labelled translation surfaces T lab(k1, . . . , kn)
is the set of marked translation surfaces up to homotopy fixing Z point-wise. That is,
two labelled marked translation surfaces (X1, ω1, ϕ1) and (X2, ω2, ϕ2) are equivalent if
there exists a bilomorphism I : X1 → X2 so that

• I∗ω2 = ω1;

• ϕ−1
2 ◦ I ◦ ϕ1|Z = idΣ|Z and

• ϕ−1
2 ◦ I ◦ ϕ1 : Σ → Σ is isotopic to idΣ relative Z.

The topology of each of the labelled Teichmüller strata T lab(k1, . . . , kn) can be de-
fined analogously as the topology of the Teichmüller strata T (k1, . . . , kn) via pe-
riod coordinates. The action of the mapping class group Modn

g on a labelled Teich-
müller stratum T lab(k1, . . . , kn) does not necessarily fix points-wise the labelled points
Z = {p1, . . . , pn}. However, the pure mapping class group PMod(Σ,Z), the set of
orientation-preserving self-diffeomorphisms of Σ that pointwise preserve Z up to iso-
topy relative Z, fixes Z pointwise. Similarly as in the previous cases, we will de-
note PMod(Σ,Z) by PModn

g . The pure mapping class group PModn
g acts properly

on T lab(k1, . . . , kn) and the orbit space T lab(k1, . . . , kn)/PModn
g coincide with a finite

cover of the stratum H(k1, . . . , kn).

We denote by Hlab(k1, . . . , kn) the space of translation surfaces (X,ω) of type
(k1, . . . , kn), such that (X1, ω1) is equivalent to (X2, ω2) if and only if there exists
a bilohomorphism I : X1 → X2 that preserves point-wise the set of singularities and
such that I∗ω2 = ω1. The space Hlab(k1, . . . , kn) is the quotient of T lab(k1, . . . , kn) by
the action of PModn

g .

Suppose k = (k1, . . . , km) is a partition of 2g− 2, such that every ki appears exactly ri

times. The notation (kr1
1 , . . . , k

rm
m ) stands for

(k1, . . . , k1︸ ︷︷ ︸
r1 times

, . . . , km, . . . , km︸ ︷︷ ︸
rm times

),

and ∑m
i=1 ri = n. The product of the symmetric groups ∏m

i=1 Sym(ri), denoted by
Sym(k), acts on the Teichmüller space T lab(k) permuting the labels on the set Z. The
shot exact sequence

1 → PModn
g → Modn

g → Sym(n) → 1

is split and we can consider PModn
g ⋊ Sym(k) as a subgroup of Modn

g . Then,
the quotient of the labelled Teichmüller space T lab(k1, . . . , km) by the action of
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PModn
g ⋊ Sym(k) corresponds to the stratum H(k). The symmetric group Sym(k)

acts freely on T lab(k) and therefore the quotient map T lab(k) → T lab(k)/ Sym(k) is a
finite covering map. Hence, the forgetful functions T lab(k) → T (k) are covering maps
with deck transformation groups Sym(k).

The finer orbifold structure of H(k) given by the Teichmüller spaces T lab(k) define
new topological monodromies. Let T̃0 ∈ T lab(k) be a marked translation surface. The
forgetful map T lab(k) → T n

g is continuous and equivariant with respect to the inclusion
of PModn

g ⋊ Sym(λ) in Modn
g . Then, there exists an induced πorb

1 -homomorphism

ρ̃C : πorb
1 (C, T̃0) → Modn

g ,

the labelled topological monodromy.

The image of the labelled topological monodromy ρ̃C is a subgroup of the semidirect
product PModn

g ⋊ Sym(k). Let C̃ be a connected component of Hlab(k1, . . . , kn) lying
over some stratum components C. If T̃0 = (X,ϕ, ω) ∈ T lab(k) is a labelled marked
translation surface with image T0 ∈ T (k) and such that (X,ω) ∈ C̃, there is a short
exact sequence

1 → πorb
1 (C̃, T̃0) → πorb

1 (C, T0) → Sym(k) → 1

induced by the homomorphism πorb
1 (C, T0) → Sym(k) mapping each (γ, f) ∈ πorb

1 (C, T0)
to the respective permutation of f ∈ Modn

g on the labels of Z [Boi13]. The orbifold
fundamental group πorb

1 (C̃, T̃0) can be then thought of as a finite index subgroup of
πorb

1 (C, T0). The restriction of the labelled topological monodromy ρ̃C to the copy of
πorb

1 (C̃, T lab
0 ) has its image in the pure mapping class group PModn

g ◁Modn
g , as any two

marked translation surfaces (X,ϕ1, ω) and (X,ϕ2, ω) in T lab(k) that are connected by
an arc differ by the action of the mapping class ϕ−1

1 ϕ2 ∈ PModn
g .

The kernel of topological monodromy ρC is isomorphic to the fundamental group of
T C, Similarly, the kernel of the labelled topological monodromy ρ̃C is isomorphic to
π1(T C̃, T̃0), where T C̃ denotes the set of labelled marked translation surfaces (X,ω, ϕ) ∈
T lab(k) such that (X,ω) ∈ C̃.

Calderon–Salter have described the images of the labelled topological monodromies
and proved that these have infinite index if g ≥ 5 [CS22, Theorem A].

Theorem 2.4.3. Let C be a non-hyperelliptic connected component of a stra-
tum H(k1, . . . , kn) in genus g ≥ 5 and C̃ a connected component lying over C in
Hlab(k1, . . . , kn). Let T̃0 ∈ T C̃ be a labelled marked translation surface and ξ the
associated horizontal vector field. The image of the labelled topological monodromy

ρ̃C : πorb
1 (C, T̃0) → Modn

g
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and its restiction
ρ̃C : πorb

1 (C̃, T̃0) → PModn
g

are, respectively, the framed mapping class group Modn
g (ϕξ) and the stabilizer of the

absolute framing ϕξ in PModg, denoted by PModg(ϕξ). The index of both Modg(ϕξ)
and PModg(ϕξ) is infinite.

We will prove that the fundamental groups of each connected component of T C, when
C is a non-hyperelliptic stratum component in genus g ≥ 3, are infinite and contain a
non-abelian free group of rank 2. Let us consider the following commutative diagram.

1 π1(T C, T0) πorb
1 (C, T0) Modg(ϕξ) 1

1 ker(F ) Modn
g Modg 1.

ρC

ρ̃C

F

The vertical map on the left is the restriction of ρ̃C to the kernel of ρC and detects
loops in the connected component of the basepoint T0 ∈ T C that drag the set of
marked points Z back on the reference topological surface Σ. Indeed, the kernel of the
forgetful map F : Modn

g → Modg restricted to PModn
g , is the fundamental group of the

configuration space of n = |Z| un-ordered points of Σ.

Let Σ be a closed and oriented surface of genus g. Denote by Conf(Σ, n) the configura-
tion set of n ordered points on Σ, that is the set {(p1, . . . , pn) ∈ Σn | pi ̸= pj for i ̸= j}.
If Z is a finite set of n points on Σ, the pure surface braid group of the pair (Σ,Z)
is the group π1(Conf(Σ, n),Z) denoted by PBn

g . The surface braid group SBn
g of the

pair (Σ,Z) is the fundamental group π1(Conf(Σ, n)/ Sym(n), [Z]). The pure surface
braid group PBn

g is the fundamental group of the configuration set of n ordered points
on Σ, based at Z, while the surface braid group SBn

g is the fundamental group of the
configuration set of n un-ordered points on Σ.

γ1 γ2

γ3

γ3

Figure 2.6: A surface braid on a genus 4 surface. The sum of the isotopy classes of the
curves γ1, γ2, γ3 and γ4 is trivial in homology.

Theorem 2.4.4. [FM12, Theorem 9.1] Let Σ be an oriented closed surface of genus
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g ≥ 2. Then, the following sequence is exact

1 → SBn
g → Modn

g
F−→ Modg → 1

and the restriction of F to PModn
g is PBn

g .

Any loop in a configuration space Conf(Σ, n) identifies a collection of simple closed
loops on Σ. The inclusion of PBn

g in PModn
g can be described as follows. Let σ ∈ PBn

g

be a pure surface braid and γ1, . . . , γn the loops traced by σ, such that each γi is based
at a distinct point pi ∈ Z. For every i = 1, . . . , n, let γL,i and γR,i be the curves
obtained from γi by pushing γ off itself to the left and the right, respectively. Then,
the push map P : PBn

g → PModn
g given by P(σ) = ∏n

i=1 TγL,i
T−1

γR,i
is injective and fits

inside the Generalized Birman exact sequence.

The restriction of the labelled topological monodromy ρ̃C to the normal subgroup
π1(T C, T0) defines a group homomorphism π1(T C, T0) → SBn

g as in the commuta-
tive diagram above. A priori, the homomorphism might be trivial, and no loop in T C
might drag non-trivially the set of points Z back. Our goal is to show that π1(T C, T0)
is non-trivial, so to conclude that the connected components of T C are not universal.
We will prove more: the image of π1(T C, T0) in SBn

g contains a non-abelian free group
of rank 2 and the monodromies ρC have the so called Large Kernel Property. Without
loss of generality, since πorb

1 (C̃, T0) is a finite index subgroup of πorb
1 (C, T0), we will con-

sider the restriction of the monodromy ρ̃C to the subgroup of π1(T C, T0) ∩ πorb
1 (C̃, T̃0),

which can be described as the fundamental group π1(T C̃, T̃0) of the Teichmüller cover
of C̃ based at some point T̃0.

The image in PBn
g of the fundamental group π1(T C̃, T̃0) can sometimes be explic-

itly described. Let Σ be an oriented closed surface of genus g and consider the
first homology group H1(Σ,Z). The Abel–Jacobi map is the group homomorphism
AJ∗ : PBn

g → H1(Σ,Z) given by AJ∗(σ) = ∑n
i=1[γi] mapping any homotopy class of

loops σ in Conf(Σ, n) to the sum of the homology classes of the simple closed loops
γ1, . . . , γn on Σ that are defined by σ ∈ PBn

g .

The kernel of the Abel–Jacobi map AJ∗ : PBn
g → H1(Σ,Z) consists of all the surface

braids in PBn
g that define simple closed loops on Σ so that the sum of their homol-

ogy classes is trivial or, in other words, simple closed loops that bound an immersed
subsurface in Σ. Note that, if n = 1 the configuration space is Σ. Hence, the pure
surface braid group PB1

g is the fundamental group π1(Σ) and the Abel–Jacobi map is
the abelianization map of π1(Σ). In particular, the kernel of AJ∗ is the commutator
group [π1(Σ), π1(Σ)].

Proposition 2.4.5. Let C be a non-hyperelliptic connected component of a stratum of
the form H(2g− 2) or H(k, . . . , k) for some k ∈ Z+ in genus g ≥ 5. If T̃0 = (X,ϕ, ω) is
marked abelian differential in T C̃, the image of π1(T C̃, T̃0) via ρ̃C in PBn

g is the kernel
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AJ∗.

Proof. Let σ ∈ PBn
g be a pure surface braid. We will prove that P(σ) ∈ PModn

g if
and only if ∑n

i=1[γi] is trivial in H1(Σ,Z). Note that this is enough to prove the claim,
as the image of ρ̃C restricted to π1(T C̃, T̃0) is the intersection PBn

g ∩ PModn
g (ϕξ) by

Theorem 2.4.3. By successive use of twist-linearity, it can be shown that

ϕξ(P(σ)(α)) =
n∑

i=1
(ϕξ(γL,i) − ϕξ(γR,i))i(γi, α) + ϕξ(α) = −i(

n∑
i=1

kiγi, α) + ϕξ(α)

for any simple closed loop α on Σ\Z, where the last equality follows from homological
coherence (Proposition 2.3.5). Indeed, the curves γL,i and γR,i bound a pair of pants,
together with a small loop around the cone point pi. If n = 1, then ϕξ(P(σ)(α)) =
ϕξ(α) for any simple closed loop α if and only if i(γ1, α) = 0 for any α, that is if
γ1 ∈ [π1(Σ), π1(Σ)]. If ki = k for all i = 1, . . . , n, then i(∑n

i=1 kiγi, α) = k · i(∑n
i=1 γi, α)

and ϕξ(P(σ)(α)) = ϕξ(α) for any simple closed loop α if and only if i(∑n
i=1 γi, α) = 0

for any α, that is ∑n
i=1 γi is homologically trivial and σ ∈ kerAJ∗.

Proof of Theorem 2.4.2. The commutator [π1(Σ), π1(Σ)] is a non-abelian free group of
infinite rank [Put22, Theorem B]. Hence, the homomorphism ρ̃C : π1(T C, T0) → PBn

g

maps isomorphically a subgroup of π1(T C, T0) to [π1(Σ), π1(Σ)]. We only need to show
that there exists a copy of [π1(Σ), π1(Σ)] in the image of ρ̃C|π1(T C,T0). Let γ be the
homotopy class of a loop in Σ based at a point pi ∈ Z such that γ ∈ [π1(Σ), π1(Σ)].
Then, by the same argument in the above Proposition 2.4.5, the respective σ ∈ PBn

g

is in PModn
g (ϕξ), and therefore in the image of ρ̃C|π1(T C,T0).

Teichmüller strata of blown-up translation surfaces

The labelled Teichmüller space T C̃ has infinitely many connected components by The-
orem 2.4.3, which are counted by the index of the monodromy ρ̃C (Lemma 2.4.1). The
connected components of the labelled Teichmüller space T lab(k) are not universal: the
fundamental groups π1(T C̃, T̃0) are infinite [BSW22, Corollary 3.10].

Theorem 2.4.6 (Weak Large Kernel Theorem for ρ̃C). Every connected component
of T lab(k) in genus g ≥ 3 that covers a non-hyperelliptic connected component has an
infinite fundamental group.

We define a covering map for the Teichmüller spaces T lab(k) that has blown-up trans-
lation surfaces as fibers. Let us describe the blow-up process locally first. For more
details, see [BSW22, Section 3]

An oriented real blow up of a point p ∈ C is new topological space Bp together with
a continuous map cp : Bp → C, called collapsing map, so that the preimage of p is
homeomorphic to the unit circle while the inverse image of any other point is a single
point. The blow-up of a triangle T in C is obtained by replacing every vertex with an
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edge, in such a way that the resulting space is a hexagon with two types of edges, those
corresponding to edges of triangles and those corresponding to vertices of the triangle.
There are collapsing maps identifying the new edges with the vertices blown up.

Let (X,ω) be a translation surface triangulated in saddle connections. Let B(X,ω) be
the surface obtained by blowing up each vertex of each triangle of the triangulation,
so to have a decomposition of B(X,ω) in hexagons. The boundary components of the
blown-up surface are denoted by ∂iBl(X,ω). Note that this is equivalent to locally blow
up the singularities of (X,ω). A blow-up of (X,ω) is the surface B(X,ω) together with
a choice of angular coordinates given by maps αi : ∂iBl(X,ω) → S1 for i = 1, . . . , n.
We say that B(X,ω) is of type (k1, . . . , kn) if (X,ω) is.

In the new surface B(X,ω), every cone point pi of (X,ω) is being replaced with a
circle given by gluing together the edges of the blown-up triangles corresponding to
the vertices of the triangle. The total angle around pi measures 2π(ki + 1). The metric
of B(X,ω) does not depend on the choice of the triangulation. There exists a collapsing
map c : B(X,ω) → X given by identifying the boundary components ∂iBl(X,ω) with
the respective singularity pi.

Suppose g ≥ 2 and k1, . . . , kn is a partition of 2g − 2 and let (X,ω) and (X ′, ω′)
be translation surfaces of type (k1, . . . , kn). The blow-ups B(X,ω) and B(X ′, ω′) are
said to be equivalent if there exists a bilohomorphism I : X → X ′ such that I∗ω′ =
ω, together with a diffeomorphism Ĩ : B(X,ω) → B(X ′, ω′) fitting in the following
commutative diagram

B(X,ω) X

B(X ′, ω′) X ′,

c

Ĩ I

c′

that moreover preserves the angular coordinates. In other words, if αi : ∂iB(X,ω) → S1

and α′
i : ∂iB(X ′, ω′) → S1 are the angular coordinates of B(X,ω) and B(X ′, ω′)

for i = 1, . . . , n, then α′
i ◦ Ĩ|∂iBl(X,ω) = αi for every i = 1, . . . , n. we denote by

Hpr(k1, . . . , kn) the set of equivalence classes of blown-up translation surfaces of type
(k1, . . . , kn)2.

Let us denote by Σ̃ a surface of genus g and n boundary components denoted by
∂1Σ̃, . . . , ∂nΣ̃. We equip every boundary component with angular coordinates given
by a orientation-reversing maps βi : ∂1Σ̃ → R/(2π(ki + 1)Z). Let (Σ,Z) be the
pair consisting of a surface Σ of genus g obtained from Σ̃ by capping the boundary
components by open disks, and a finite set Z given by marking every added disk with
a unique point pi. If (X,ϕ, ω) is a marked translation surface of type (k1, . . . , kn) on

2The superscript "pr" stands for "pronged". Indeed, fixing angular coordinates is the same as fixing
a prong for every cone point.



Chapter 2: Translation surfaces 36

(Σ,Z), a marked blown-up translation surface of (X,ϕ, ω) is a pair (Bl(X,ω), ϕ̃) where
ϕ̃ : Σ̃ → Bl(X,ω) is an orientation-preserving diffeomorphism mapping every ∂1Σ̃ to
∂iBl(X,ω), such that αi ◦ ϕ̃ ≡ βi mod 2π for every i = 1, . . . , n and the following
diagram commutes

Σ̃ Bl(X,ω)

Σ X,

ϕ̃

Cap c

ϕ

where the map Cap : Σ̃ → Σ is the capping map.

Let Σ̃ and (Σ,Z) be as above. If (Bl(X1, ω1), ϕ1) and (Bl(X2, ω2), ϕ2) are the blow-
up of the marked translation surfaces (X1, ϕ1, ω1) and (X2, ϕ2, ω2), respectively, then
(Bl(X1, ω1), ϕ̃1) and (Bl(X2, ω2), ϕ̃2) are equivalent if (X1, ϕ1, ω1) and (X2, ϕ2, ω2) are
equivalent via a bilohomorphism I : X1 → X2 and there exists a diffeomorphism
Ĩ : Bl(X1, ω1) → Bl(X2, ω2) preserving the angular coordinates such that

• ϕ̃2
−1 ◦ Ĩ ◦ ϕ̃1|∂Σ̃ = id∂Σ̃ and

• ϕ̃2
−1 ◦ Ĩ ◦ ϕ̃1|∂Σ̃ is isotopic to idΣ̃ relative the boundary.

The Teichmüller strata T pr(k) is the set of equivalence classes of blown-up marked
translation surfaces of type k = (k1, . . . , kn).

The topology of T pr(k) can be defined as follows [BSW22, Section 3]. Let us fix
(X,ϕ, ω) ∈ T lab(k) and a marked blow-up (B(X,ω), ϕ̃) ∈ T pr(k). If τ is a triangu-
lation in saddle connections of (X,ω), we denote by τ̃ the respective decomposition
in hexagons of B(X,ω), pulled back by the marking ϕ̃ : Σ̃ → B(X,ω). The edges
of τ lift to arcs in τ̃ with endpoints lying on ∂Σ̃ that decompose Σ̃ in hexagons.
If ε > 0, we define Uτ̃ ,ε to be the set of marked blown-up translation surfaces
(B(X ′, ω′), ϕ̃′) ∈ T pr(k1, . . . , kn) on which there is a triangulation τ ′ in saddle connec-
tions of (X ′, ω′) lifting to an hexagonal decomposition τ̃ ′ of Σ̃ such that the following
two properties are satisfied:

• the arcs in the two hexagonal decompositions are pairwise homotopic;

• if γ and γ′ are homotopic arcs from ∂iΣ̃ to ∂jΣ̃ that belong to the decompositions
τ̃ and τ̃ ′, respectively, there exist intervals Ii ⊂ ∂iΣ̃ and Ij ⊂ ∂jΣ̃ of length ε

containing the endpoints of γ and γ′ and such that γ is homotopic to γ′ through
a family of paths each of which has one endpoint in Ii and one endpoint in Ij.

The subsets Uτ̃ ,ε come with injective holonomy maps holτ̃ : Uτ̃ ,ε → C2g+n−1 as for the
Teichmüller manifolds T (k) and T lab(k).

There exists a well-defined map T pr(k) → T lab(k) which takes any (Bl(X,ω), ϕ̃) and
returns (X,ϕ, ω). Continuity can be checked on local charts, where the restriction
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Uτ̃ ,ε → Uτ is local diffeomorphism given by the capping map Cap : Σ̃ → Σ performed
by glueing open punctures disks to the boundary components, that induces an isomor-
phism H1(Σ̃, ∂Σ̃;Z) ∼= H1(Σ,Z;Z) in cohomology.

Let Diff+
pr(Σ̃, ∂Σ̃) be the group of orientation-preserving self-diffeomorphisms f : Σ̃ →

Σ̃ fixing set-wise the boundary components and such that the restriction to each ∂iΣ̃ is
a rotation by a multiple of 2π with respect to the angular coorinates given by the maps
βi : ∂1Σ̃ → R/(2π(ki + 1)Z). The group Modpr(Σ̃) is the group of diffeomorphisms in
Diff+

pr(Σ̃, ∂Σ̃) up to isotopy relative the boundary.

On a tubular neighbourhood of a boundary component ∂iΣ̃, one might define a diffeo-
morphism fi which rotates ∂iΣ̃ by 2π and extends by the identity of the rest of the
surface. The equivalence class of the map fi is an element of Modpr(Σ̃) such that fki+1

i

is a full Dehn twist about the boundary component ∂iΣ̃.

Let Diff+(Σ̃, ∂Σ̃) be the group of self-diffeomorphisms f : Σ̃ → Σ̃ fixing point-wise
the boundary components. The group Mod(Σ̃) is the group of diffeomorphisms in
Diff+(Σ̃, ∂Σ̃) up to isotopy relative the boundary.

Proposition 2.4.7. [BSW22, Lemma 3.3 and Section 4.3]. Let FT be the free abelian
group generated by fi for i = 1, . . . , n and PR the product ∏n

i=1 Z/(ki + 1)Z. The
capping map Cap : Σ̃ → Σ induces a short exact sequence

1 → FT → Modpr(Σ̃) → PMod(Σ,Z) → 1,

while the action of Modpr(Σ̃) of the angular coordinates β1, . . . , βn induce the short
exact sequence

1 → Mod(Σ̃) → Modpr(Σ̃) → PR → 1.

Theorem 2.4.8. The map T pr(k) → T lab(k) is a covering map with a deck transfor-
mation group isomorphic to FT . In particular, the connected components of T pr(k)
are covering manifolds for the stratum H(k).

The spaces Hpr(k) are manifolds for the Quotient Manifold Theorem. Indeed, the
spaces Hpr(k) are the quotient of T pr(k) by Mod(Σ̃). The action of Mod(Σ̃) on T pr(k)
is proper since T pr(k) → T lab(k) is continuous and equivariant with respect to the
surjective homomorphism Mod(Σ̃) → PMod(Σ,Z) induced by capping Σ̃ with open
punctured disks. Moreover, the action is also free as Mod(Σ̃) is torsion-free [FM12,
Corollary 7.3]. Hence, the orbifold fundamental group πorb

1 (Ĉ, T̂0) of a connected com-
ponent Ĉ of Hpr(k), based at some T̂0 ∈ T pr(k) and lying over a stratum component
C, is isomorphic to the fundamental group π1(Ĉ, [T̂0]).

The new orbifold structure of Hlab(k), given by the Teichmüller spaces of blown-up
marked translation surfaces T pr(k), provides us with finer topological monodromies.
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Let T̂0 ∈ T pr(k) be a blow-up of a marked translation surface and let C̃ be the connected
component of its projection in Hlab(k). The orbifold structure T pr(k)/Modpr(Σ̃) of
Hlab(k) defines a homomorphism

ρ̂C : πorb
1 (C̃, T̂0) → Modpr(Σ̃),

the pronged topological monodromy.

Let Ĉ be a connected component of Hpr(k) lying over some connected component
components C̃. If T̂0 ∈ T pr(k) is a blow-up of a marked translation surface with image
T̃0 ∈ T lab(k) such that (X,ω) ∈ Ĉ, there is an exact sequence

1 → π1(Ĉ, [T̂0]) → πorb
1 (C̃, T̃0) → PR′ → 1

induced by the action each (γ, f) ∈ πorb
1 (C̃, T̃0) on angular coordinates of T̃0, where

PR′ is the subgroup of PR consisting of elements (z1, . . . , zn) ∈ PR such that the
sum of the zi corresponding to even ki is even [CS22, Corollary 7.6]. In particular, the
fundamental group π1(Ĉ, T̂0) is a finite index subgroup of πorb

1 (C̃, T̃0). The restriction
of the pronged topological monodromy ρ̂C to the copy of π1(Ĉ, T̂0) has its image in the
boundary-preserving mapping class group Mod(Σ̃) ◁Modpr(Σ̃), as any two blow-up of
marked translation surfaces (B(X,ω), ϕ1), (B(X,ω), ϕ2) ∈ T pr(k) connected by an arc
differ by the action of the mapping class ϕ−1

1 ϕ2 ∈ Mod(Σ̃).

The kernel of topological monodromy ρ̃C is isomorphic to the fundamental group of
T C̃. Similarly, the kernel of the pronged topological monodromy ρ̂C is isomorphic
to π1(T Ĉ, T̂0), where T Ĉ denotes the set of blown-up marked translation surfaces
(B(X,ω), ϕ1) ∈ T pr(k) such that B(X,ω) ∈ C̃.

Similarly as for the labelled case, Calderon–Salter have described the images of the
pronged topological monodromies if g ≥ 5 [CS22, Theorem B]. Let ξ̃ be the unit
horizontal non-vanishing vector field of a blown-up translation surface B(X,ω), defined
as the pullback of ξ by the collapsing map c : B(X,ω) → X. If ϕ̃ : Σ̃ → B(X,ω) is a
marking, then we denote by ϕξ̃ the winding number function on Σ̃ of the pullback of ξ̃
by the marking ϕ.

Theorem 2.4.9. Let C̃ be a connected components of Hlab(k) lying over a non-
hyperelliptic stratum component of H(k) in genus g ≥ 5. If Ĉ is a connected component
lying over C̃ in Hpr(k) and T̃0 ∈ T Ĉ, the image of the pronged topological monodromy

ρ̂C : πorb
1 (C̃, T̂0) → Modpr(Σ̃)

and its restriction
ρ̂C : π1(Ĉ, [T̂0]) → Mod(Σ̃)

are, respectively, the stabilizers of the relative framing ϕξ̃, denoted by Modpr(Σ̃)[ϕξ̃]



Chapter 2: Translation surfaces 39

and Mod(Σ̃)[ϕξ̃], respectively. In particular, the index of both the images are infinite.

Let us consider the following commutative diagram:

1 π1(T C̃, T̃0) πorb
1 (C̃, T̃0) PModn

g (ϕξ) 1

1 FT Modpr(Σ̃) PMod(Σ,Z) 1.

ρ̃C

ρ̂C

The vertical map on the left detects loops in the connected component of the basepoint
T̃0 ∈ T C that change the angular coordinates of a blown-up marked translation surface
lying over T lab

0 .

Proof of Theorem 2.4.6. The image of the map π1(T C̃, T̃0) → FT is cyclic and gener-
ated by a loop with image in FT given by ∏n

i=1 fi [CS22].

It is not known if the Large Kernel Theorem holds for the monodromy associated to the
non-hyperelliptic components C̃ or Ĉ, that is, to the homomorphisms ρ̃C : πorb

1 (C̃, T̃0) →
PMod(Σ,Z) and ρ̂C : πorb

1 (Ĉ, [T̂0]) → Modpr(Σ̃). In other words, it is not known if the
connected components of the Teichmüller manifolds T lab(k) and T pr(k) contain a non-
abelian free group of rank 2. We only know that the connected components of T lab(k)
are infinite. In the following chapters, we will prove that the connected components of
T pr(k) associated to the non-hyperelliptic components Hodd(4), H(3, 1) and Heven(6)
have a large fundamental group, containing a non-abelian free group of rank 2. To
prove it, we will need the definition of projective strata.

§ 2.5 | Projective strata
Strata of translation surfaces can be projectivized: any non-zero complex number z
acts on the abelian differential (X,ω) by multiplication on the 1-form, that is

z · (X,ω) = (X, zω).

We will denote by P(k1, . . . , kn) the quotient of H(k1, . . . , kn) by the above C∗ action.

Via polar coordinates z = ρeiθ, any non-zero complex number z can be seen as the
composition of a rotation, given by eiθ, and (possibly) a dilation or contraction given by
ρ. The above C∗-action on abelian differentials corresponds, at the level of polygonal
representations, to rotating and scaling the sides. To see this, we recall that the sides
of the polygonal representations are given, up to complex translations, by the period
coordinates

∫
γ ω where γ belongs to a fixed relative symplectic basis. Hence, the action

of a non-zero complex number z changes the period coordinates, from
∫

γ ω to z
∫

γ ω,
thus acting on the whole polygonal representation.
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C∗
by rotation↷
and scaling

 Translation surfaces
modulo scissor moves


 Abelian differentials

modulo flat equivalence


by left↶

multiplication
C∗1:1

Proposition 2.5.1. The C∗-action is continuous on Teichmüller strata T (k).

Proof. Note that the C∗-action is well-defined on every local chart Uτ . Hence, without
loss of generality, the continuity of the group action map Φ : C∗ × T (k) → T (k) given
by Φ(z, (X,ω, ϕ)) = (X, z · ω, ϕ) can be checked on the single charts, where it restricts
to a multiplication map on the period coordinates.

Any projective stratum is also a good orbifold. Indeed, every P(k) is the quotient
of a smooth manifold by the proper action of a discrete group. Specifically, there is
a subgroup of the mapping class group Modn

g acting on the smooth manifold PT (k),
defined as the orbit space T (k)/C∗, so that the resulting quotient is P(k). Let us prove
that P(k) is indeed a good orbifold.

Proposition 2.5.2. The spaces of the form PT (k) are (2g + n− 2)-manifolds.

Proof. We claim that the action of C∗ on each T (k) is free and proper. Since the action
is free and well-defined on local charts Uτ , we can check properness locally. However,
the map Φ : Uτ × C∗ → Uτ × Uτ given by Φ(x, λ) = (x, λx) is proper,3, meaning that
the map is closed and has compact fibers.

Since the punctured complex plane C∗ acts freely and properly on each Teichmüller
stratum component T C, by the Quotient Manifold Theorem T C/C∗ is a smooth mani-
fold of dimension dim C −1. Moreover, the quotient map qC : T C → T C/C∗ is a smooth
submersion and every qC is a principal C∗-bundle.

The relation between the orbifold fundamental groups of a stratum component C and
its projectivization PC is summarized below in Proposition 2.5.3.

Proposition 2.5.3. Let C be a stratum component and PC its projectivization. The
following is a short exact sequence

0 → π1(C∗) → πorb
1 (C) → πorb

1 (PC) → 1.

Proof. Let us fix a base point (X,ϕ, ω) ∈ T C. Suppose GC is the subgroup of Modn
g

of all the mapping classes obtained as the composition ϕ−1ϕ′ where (X,ϕ′, ω) ∈ T C is
the endpoint of a path in T C starting at (X,ϕ, ω). Note that GC acts on both T C/C∗

and T C so to obtain the orbit spaces PC and C, respectively. Moreover, the map
qC is a fiber bundle. From the long exact sequence it induces, we can conclude that
the corresponding map on fundamental groups is surjective since C∗ is connected. In

3This is an equivalent condition to the notion of properness previously given
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particular, the map qC is GC-equivariant and induces a surjection πorb
1 (C) ↠ πorb

1 (PC)
on the orbifolds fundamental groups given by (γ, ϕ) 7→ (qC(γ), ϕ). Indeed, we can apply
a weaker version of the 5-lemma to the commutative diagram below

0 π1(T C) πorb
1 (C) GC 0

0 π1(PT C) πorb
1 (PC) GC 0.

(qC)∗

ρC

πorb
1 (qC)

ρPC

The kernel of πorb
1 (qC) is isomorphic to π1(C∗) and generated by a loop in a fiber of qC,

as it can be seen by the long exact sequence associated.

The projective stratum components PC parameterize the isomorphism classes of pairs
(X,D), where X is a closed Riemann surface and D is an effective canonical divisor
with prescribed multiplicities provided by the stratum component C.

Two pairs (X1, D1) and (X2, D2) are equivalent in PC if there exists a bilohomorphism
I : X1 → X2 such that I∗D2 = D1. If C is a stratum component, its projectivization PC
can be projected in Mn

g , the moduli space of pointed Riemann surfaces. Sometimes,
the projection is an isomorphism of orbifolds. We first recall the following result.

Proposition 2.5.4. Let f : M → N be a continuous bijection between manifolds
without boundary. If dimM = dimN , then f is a homeomorphism.

Proof. Locally, the continuous map f is a homeomorphism by the Invariance Domain
Theorem. Bijective local homeomorphisms are global homeomorphisms.

Proposition 2.5.5. Let C be a connected component of the stratum H(k1, . . . , kn),
such that all the k′

is are different. The forgetful map PC → Mn
g defined by mapping

(X,∑n
i=1 kipi) to (X, (p1, . . . , pn)) is an orbifold isomorphism onto its image, provided

the dimension of the image is dim(PC).

Proof. The forgetful map is induced by the Modn
g -equivariant continuous map P(T C) →

T n
g given by mapping the triple (X,ϕ,∑n

i=1 kipi) to (X,ϕ, (p1, . . . , pn)). However, any
bijective continuous map between manifolds of the same dimension and without bound-
ary is a homeomorphism.
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Geometric homomorphisms

The projective stratum components PHodd(4), PH(3, 1) and PHeven(6) have an orbifold
fundamental group that can be described using spherical-type Artin groups, defined
below. Their topological monodromy maps factor through geometric homomorphism
(see Subsection 3.3).

§ 3.1 | Spherical-type Artin groups
Artin groups are finitely presented groups where a finite simplicial graph, an undirected
finite graph with no multiple edges nor loop-edges, gives the generators and the rela-
tions. If Γ is a finite simplicial graph and V(Γ) = {v1, . . . , vn} is its set of vertices, an
Artin group is a group that admits a presentation of the following form:

AΓ =
〈
a1, . . . , an

∣∣∣∣∣∣ aiajai= ajaiaj if vi and vj are adjacent
aiaj = ajai otherwise

〉
. (3.1)

Any two standard generators ai and aj share a braid relation if the respective vertices
are adjacent. If a pair of vertices is not connected by an edge, the corresponding stan-
dard generators must commute. An Artin group is of type Γ is the defining simplicial
graph is isomorphic to Γ.

Artin groups have a more general definition given by labeling the edges of Γ and allow-
ing relations between generators with adjacent vertices to share a braid-like relation of
the form aiajai · · · = ajaiaj . . . where the lengths of both sides of the equality corre-
spond to the label of the edge vi and vj share. Here, we will only consider the class of
Artin groups given by the above definition or, using a more common name in literature,
we will only consider small-type Artin groups and refer to them as Artin groups for
simplicity.

The mapping class group of a disk with n marked points is an Artin group, isomorphic
to the An−1-type Artin group where An−1 is a simplicial graph with n− 1 arranged in
a single chain pf vertices as in Figure 3.1. The group AAn−1 is commonly known as the
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braid group Bn.

The braid groups are spherical-type Artin groups: if we add the extra relations a2
i = 1

for every i = 1, . . . , n − 1 to the presentation of Bn, the result is a group isomorphic
to the symmetric group Sym(n) [FM12, Section 9.3]. In other words, the resulting
quotient is a finite group if we impose standard generators to be involutions. Spherical-
type Artin groups are those Artin groups that project to a finite group whenever we
add the extra relations a2

i = 1 for every i ∈ |V(Γ)|. The quotient of AΓ by the
subgroup normally generated by the squares of the standard generators is a Coxeter
group, denoted by WΓ.

Theorem 3.1.1 ([Hum90]). Let Γ be a connected finite simplicial graph. The Artin
group AΓ is spherical-type if and only if Γ is one of the graphs in Figure 3.1.

Figure 3.1: The simplicial graph of every possible spherical-type Artin group. The E6-
type, E7-type and E8-type describe the orbifold fundamental group of the projective
components PHodd(4), PH(3, 1) and PHeven(6).

Even though Artin groups are easy to define, they are often poorly understood. Some
of the basic conjectures remain wide open about general Artin groups. There are four
basic conjectures about those Artin groups that have a defining simplicial graph that
is connected. It has been conjectured [GP12] that: every Artin group is torsion-free;
that every non-spherical Artin group has trivial center; that every Artin group has a
solvable word problem; that Artin groups satisfy the K(π, 1) conjecture, meaning that
every AΓ is the fundamental group of an aspherical space. For spherical-type Artin
groups, all the above conjectures hold.

Hyperplane arrangements

Whenever WΓ is a finite Coxeter group, the classes of the standard generators of AΓ

in WΓ have a geometric interpretation as reflections of a finite-dimensional real vector
space, and WΓ is isomorphic to a reflection group [Hum90]. More specifically, the
simplicial graphs in Figure 3.1, called Dynkin diagrams, are paired with root systems.

A root system Φ is a configuration of vectors that span an Euclidean vector space V
and have the following properties: the only scalar multiples of α ∈ Φ are ±α; the set
Φ is closed under reflection through the hyperplane perpendicular to any α ∈ Φ; the
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projection of β ∈ Φ onto the line through α ∈ Φ is an integer or half-integer multiple
of α, for any α, β ∈ Φ. There exists a subset of a root system that is closed under
addition and, at the same time, for any multiple of any α ∈ Φ contains exactly one
vector in {α,−α}. Moreover, any vector in the subset cannot be written as the sum of
two other elements.

The new subset of vectors in Φ is a basis for V and their configuration can be described
by a Dynkin diagram: vectors are in one-to-one correspondence with vertices and edges
connect vertices representing vectors that make an angle of 2π/3, while no edge is drawn
in case two vectors are orthogonal. There are only finitely many types of root systems,
up to isomorphism, and the Dynkin diagrams in Figure 3.1 describe some of them.

Let Γ be one a of the Dynkin diagrams between An, Dn and Em for n ∈ N and m =
6, 7, 8. The Γ-hyperplane arrangement {Hα}α∈ΦΓ is the collection of hyperplanes so
that each Hα is orthogonal to the vector α ∈ ΦΓ of the root system ΦΓ associated to
Γ. The complement of the union of hyperplanes V \∪α∈ΦΓHα is a union of contractible
cones and has trivial fundamental groups. Nevertheless, the complexified complement
of hyperplanes

MΓ = (V \ ∪α∈ΦΓHα) ⊗R C

have non-trivial fundamental groups, and this is because the real codimension of the
hyperplanes increased by 1. The following is due to Brieskorn [Bri73, Proposition 1].
Note that any reflection group WΓ acts faithfully on the respective MΓ.

Proposition 3.1.2. Let Γ be a of Dynkin diagrams between An, Dn and Em for n ∈ N
and m = 6, 7, 8. If x0 is a point in the orbit space MΓ/WΓ, then the fundamental group
π1(MΓ/WΓ, x0) is isomorphic to the Artin group AΓ.

In 1972, Deligne proved that spherical-type Artin groups are K(π, 1) [Del72].

Theorem 3.1.3. The complexified complement of hyperplanes MΓ are aspherical if
AΓ is of spherical-type.

Garside structure

Let G be group generated by a finite set S such that S∩S−1 is empty. The submonoid
generated by S is denoted by G+ and its elements are called positive words. The
submonoid generated by the inverse generating elements of G is denoted by (G+)−1.
Suppose G+ trivially intersects (G+)−1. The prefix order on G is the partial order
(G,⪯) where a ⪯ b if and only if a−1b ∈ G+ or, in other words, if b can be written as
a product between of a positive word in G and a.

Suppose A is the set of elements in G+ that cannot be written as a product of other
non-trivial elements of G+. The monoid G+ is Noetherian if for every positive word
x ∈ G+ we have that sup{n ∈ N | x = a1 . . . an, ai ∈ A} is finite or, in other words, if
there is an upper bound to the lengths of all the possible ways x can be written as a
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word in A. The group G is Garside if the following properties are satisfied: the monoid
G+ is Noetherian; the prefix order admits greater common divisors and lower common
multiples; there exists an element ∆ ∈ G+ that fixes G+ by conjugation and the set
{s ∈ G | 1 ⪯ s ⪯ ∆} of simple elements is finite and generates G.

Theorem 3.1.4 ([DDG+15]). Let G be a finitely generated Garside group. For every
x ∈ G there exists k ∈ Z and n ∈ N so that x can be uniquely written as x = ∆ks1 . . . sn,

where each si ̸= ∆ is a simple element and for every pair {si, si+1} of adjacent simple
elements the greater common divisor between sisi+1 and ∆ is exactly si.

For any x ∈ G, let us consider its unique representation x = ∆ks1 . . . sn. The power
of ∆, or in other words the integer k, will be denoted by inf(x); the number of simple
elements needed to write x, or in other words the integer n, by sup(x). Similarly,
there exists a suffix order on a Garside group G that provides the group with right
normal forms, where elements in G can be uniquely written in the form t1 . . . tn∆k with
ti simple elements different from ∆; see [AC21, Section 2] for more details. In what
follows, we will only adopt the prefix order.

Theorem 3.1.5. [BS72, Théorème 7.1] Any spherical-type Artin group AΓ is Garside.
The center of AΓ is infinite cyclic and generated by a power of ∆.

The Brieskorn–Artin algorithm has been implemented on SageMath, an open source
Python mathematics software system. The Artin group’s class can be called using
the comand sage.groups.artin.ArtinGroup(coxeter_matrix, names) and the left
normal form of an element by left_normal_form(element). Later, we will provide
an example on how to use the SageMath Artin group implementation on a specific
example.

Lastly, in a Garside group G, we say that x ∈ G absorbs y ∈ G if either sup(y) = 0 or
inf(y) = 0 and both the equalities sup(xy) = sup(x) and inf(xy) = inf(x) hold. In this
case, y is absorbed by x and we say that the group element x is absorbable. Absorbable
elements are not classified but, for example, in the braid group B4 any n-th powers of
a generator absorb the n-th power of a non-adjacent generator. More precisely, we can
write σn

1σ
n
3 = (σ1σ3)n, and observe that σn

1 absorb σn
3 . Absorbable elements define an

infinite graph we use to prove the Large Kernel Theorem E.

§ 3.2 | Plane curve singularities
Every compact Riemann surface is a complex algebraic curve that can be embedded
into a projective plane as the vanishing locus of a homogeneous polynomial. For low-
genus strata of translation surfaces, the underlying Riemann surfaces can be described
explicitly as the zero loci of polynomials. For this reason, in this section, we intro-
duce the definition of versal deformation spaces of plane curve singularities inspired by
the work of Cuadrado–Salter [PS21]. The main reference for this section is [AGV88,
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Chapter 3]

A plane curve singularity is the germ of a complex holomorphic function f : C2 → C
at the origin, that has an isolated critical point in (0, 0) ∈ C2. In other words, we
consider an equivalence class of holomorphic functions that define the same germ in the
origin and with the partial derivatives that vanish simultaneously only at (0, 0) ∈ C2.
Recall that a pair of functions defines the same germ in a point x if they coincide in a
neighbourhood of x.

Milnor proved [Mil68] that, in the general case when the dimension of the domain of
f is n ≥ 2, there exist ε > 0 small enough, such that the restriction of the normalized
function f/|f | to the set S2n−1 \ (f−1(0) ∩ S2n−1) is a locally trivial fibration. For
plane curve singularities, the diffeomorphic type of the fibers is that of a connected
oriented compact surface with non-empty boundary, called Milnor fibers. The number
of boundary components is the number of branches of f , while the first Betti number
coincides with the multiplicity of f at the origin.

A deformation of a plane curve singularity f : C2 → C is the germ of a holomorphic
function F : C2 ⊕Cµ → C such that F (•, 0) = f. Roughly speaking, a deformation F is
versal if any other deformation can be obtained from F up to a change of coordinates.
Formally speaking, the deformation F is versal if for any deformation G : C2 ⊕Cm → C
there exist ψ : Cm → Cµ and g : C2 ⊕ Cm → C2 holomorphic such that G(z, w) =
F (g(z, w), ψ(w)) for any (z, w) ∈ C2 ⊕ Cm.

Proposition 3.2.1. [GLS07] Up to a change of coordinates, there exists a unique
versal deformation F : C2 ⊕ Cµ → C of a plane curve singularity f : C2 → C, such
that the dimension µ is the multiplicity of f in the singularity at the origin.

The multiplicity of the germ f is the dimension of the algebra C{x, y} of convergent
power series in two complex variables, quotient by the ideal (fx, fy) generated by the
partial derivatives of f . A versal deformation of f can be constructed as follows. Let
g1, . . . , gm ∈ C[x, y] be polynomials projecting to a C-basis of C{x, y}/(fx, fy). The
deformation

F (p, s) = f(p) +
µ∑

i=1
sigi(p)

of f given by the parameters s = (s1, . . . , sµ) ∈ Cµ and p = (x, y) ∈ C, is versal. The
restriction of the projection map πf : C2 × Cm → Cm to the vanishing locus of the
deformation F has algebraic curves as fibers, since each s ∈ Cµ defines the vanishing
locus of F (•, s) in C2. The set of s ∈ Cµ defining singular curves is the discriminant
locus, denoted by Df . The discriminant locus is an algebraic variety and in particular,
a hypersurface. We will denote by Uf the set of s ∈ Cm such that the fiber π−1

f (s) is
smooth. The set Uf is the versal deformation space of the plane curve singularity f .

Proposition 3.2.2. Let f : C2 → C be a plane curve singularity and πf : V(F ) → Cm
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the restriction of the projection to the vanishing locus of the versal deformation F .
Then, there are δ, ε > 0 such that the restriction of πf to the set

Vf = {(p, s) ∈ C2 × Cµ | ∥p∥ < δ, ∥s∥ < ε, s /∈ Df , F (p, s) = 0}

is a locally trivial fibration with fibers diffeomorphic to the Milnor fibers of f .

Any root system associated with a Dynkin diagram Γ of type An, Dn, E6, E7 or E8 for
n ∈ N≥3 comes with plane curve singularity fΓ, as in the table below. We denote by
FΓ the versal deformation of fΓ.

Root system Germ fΓ

Type An x2 + yn+2

Type Dn y(x2 + yn−2)
Type E6 x3 + y4

Type E7 x(x2 + y3)
Type E8 x3 + y5

The reason why we associate a Dynkin diagram as in Figure 3.1 to a plane curve singu-
larities is explained below. The following is a Theorem of Arnol’d [Arn73, Propositions
9.1-9.3].

Theorem 3.2.3. Let Γ be one of the Dynkin digrams of type An, Dn, E6, E7 or E8 for
n ∈ N≥3. The versal deformation UfΓ is homeomorphic to MΓ. In particular, the versal
deformation space UfΓ is an Eilenberg–MacLane space K(π, 1) for the Artin group AΓ.

The isomorphism of Theorem 3.2.3 is given by a basis of polynomials f1, . . . , fm ∈
C[x1, . . . , xn] generating the algebra of polynomials that are invariant under the action
of WΓ. In particular, the map τΓ : Cn → Cn such that τΓ(x) = (f1(x), . . . , fm(x))
induces an homeomorphism between Cn/WΓ and Cn such that MΓ is mapped homeo-
morphically to UfΓ .

If f is a plane singularity, the locally trivial fibration πf : Vf → Uf of Theorem 3.2.2
induces a homomorphism ρΓ : π1(Uf ) → Mod(Σ̃) where Σ̃ has the diffeomorphic type
of the smooth fibers of πf . We will refer to such a homomorphism as the Γ-monodromy.
Rigorously, if γ : S1 → Uf is a smooth loop, then the pull-back γ∗(Vf ) → S1 is a bundle
over the circle. Any bundle over the circle is a mapping tori, and in particular there
exists a mapping class f ∈ Mod(Σ̃) such that the quotient of Σ̃ × [0, 1] by the relation
(q, 0) ∼ (f(q), 1) is diffeomorphic to γ∗(Vf ). The assignment [γ] 7→ f is a well-defined
homomorphism.

A consequence of the Picard–Lefschetz formula [AGV88, Part I, page 26] is the following
theorem. Recall that the fundamental groups π1(UfΓ) are isomorphic to Artin groups.

Theorem 3.2.4 (Geometric monodromy of UfΓ). The standard generators of π1(UfΓ)
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are mapped to Dehn twists through the Γ-monodromy ρΓ.

Sketch of the proof. There exists a line L in Cµ that is in general position with Df

and intersects the discriminant locus in exactly µ points [AGV88, Part I, page 71].
The set L \ Df coincides with the complement of the critical points of a perturbation
fs = F (−, s) of f , such that f−1

s (0) is smooth. The restriction of πf : Vf → Uf to
L \ Df coincides with the fibration of the non-singular level manifold of fs over the set
of non-critical points. Hence, the inclusion of L \ Df in Uf induces an epimorphism of
fundamental groups and the monodormy ρΓ can be pulled-back to the homomorphism
π1(L\Df ) → Mod(Σ̃) that is the monodromy of the fibration associated to the fs. Note
that π1(L \ Df ) is a non-abelian free group. In a neighborhood of a (non-degenerate)
critical point, the function fs can be written in local coordinates as f(x, y) = x2 + y2

as a consequence of the complex Morse lemma. The fibers are open cylinders that
degenerate to a cone in the origin, and a plane loop around the origin gives rise to a
Dehn twist about the core curve [AGV88, Part I, Introduction].

§ 3.3 | Large Kernel Theorem
In this section we prove Theorem D.

Geometric homomorphisms

Let Ω be a finite family of isotopy classes of non-essential simple closed curves on Σ̃,
such that the geometric intersection number of each pair of curves in Ω is at most 1.
In other words, two isotopy classes of curves in Ω can either be represented by curves
that can be homotoped to be disjoint or have geometric intersection 1. The intersection
graph ΓΩ of Ω is the graph with set of vertices in one-to-one correspondence with Ω and
edges connecting any pair of intersecting curves. Then, any pair of Dehn twists about
curves in Ω either commute or satisfy the braid relation. The subgroup of the mapping
class group Mod(Σ̃) generated by {Tγ | γ ∈ Ω} is a quotient of the Artin group AΓΩ

of type ΓΩ. A geometric homomorphism is a homomorphism AΓ → Mod(Σ̃) mapping
standard generators to Dehn twists about isotopy classes of curves as in the family Ω.
The defining graph is an intersection graph. This is the case for the Γ-monodromies
ρΓ of Theorem 3.2.4.

The An and Dn type Artin groups can be embedded into the mapping class group
of some surfaces via a geometric homomorphism [PV96, Théorème 1]. In particular,
Perron–Vannier considered the Γ-monodromies ρΓ of Theorem 3.2.4. Wajnryb proved
that for the E6-type Artin group this is never the case [Waj99, Theorem 3].

Theorem 3.3.1. Any geometric homomorphism of an Artin group AΓ is not injective
if Γ contains E6 as a subgraph.

Wajnryb used the following strategy. First, he found a non-trivial element w ∈ AE6
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that maps trivially in the mapping class group of a surface of genus 3 and one boundary
component via a geometric homomorphism with the set of curves Ω having intersection
graph E6. The result can be extended to Artin groups with defining graph Γ containing
E6. Indeed, in his PhD thesis, Van der Lek proved that if AΓ1 and AΓ2 are two Artin
groups and the Dynkin diagrams Γ1 is a full subdiagram of the Dynkin diagram Γ2, then
the inclusion of diagrams induces a monomorphism of AΓ1 into AΓ2 [Van83]. Hence, if
AΓ → Mod(Σ̃) is a geometric homomorphism and Σ1

3 ⊂ Σ̃ is an embedded subsurface
of genus 3 and one boundary component, the following diagram commutes

AE6 Mod(Σ1
3)

AΓ Mod(Σ̃),

where the vertical map on the right hand-side is the homomorphism induced by the
inclusion Σ1

3 ⊂ Σ̃, while the horizontal homomorphisms are geometric homomorphisms.

With respect to Figure 1.1, the Wajnryb element w can be written as a word in the
alphabet {a1, b} ⊂ A(E6), where b = a4a5a3a4a2a6a5a3a4 is contained in the subgroup
of AE6 isomorphic to B6 and generated by a2, . . . , a6. The element b has the following
braid representation.

Figure 3.2: Braid representation of b.

The image of b via the geometric homomorphism ρE6 is represented by a diffeomorphism
which maps the simple closed curve γ1 to a simple closed curve β that intersects γ1

once; see Figure 3.3.

Hence, the Dehn twists Tγ1 and Tβ satisfy the braid relation and the Wajnryb element

w = a1a
b
1a1 · (a−1

1 )ba−1
1 (a−1

1 )b = [a1, a
b
1a1b] ∈ [AE6 , AE6 ],

acts trivially on Σ1
3 as a mapping class. The notation ab

1 stands for ba1b
−1. The image of

w by ρE6 is precisely Tγ1TβTγ1 ·T−1
β T−1

γ1 T
−1
β which is the identity mapping class. Wajnryb

proved that the group element w is non-trivial by applying the Garside algorithm, which
can be checked on SageMath as follows. The method .left_normal_form() returns a
tuple of simple generators in the left normal form. The first element is a power of ∆.
In particular g ∈ AE6 is trivial if and only if g.left_normal_form() returns the tuple
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Tγ4

T γ5
T γ3

Tγ6Tγ2

T γ4

T γ4

Tγ5Tγ3

Figure 3.3: The red curve in the first surface on the left top corner is γ1. The figure
describes the diffeomorphism ρE6(b) acting on γ1. The last curve on the bottom left
side is β.

(1,). That the projection of the element g ∈ AE6 in InnAE6 is trivial if and only if
sup(g) = 0, or if the tuple given by the method g.left_normal_form() appears with
non-trivial terms from the second onward.

1 A = ArtinGroup ([’E’ ,6])
2 a1 = A([2]) #In sage notation , s2
3 a2 = A([1]) #In sage notation , s1
4 a3 = A([3]) #In sage notation , s3
5 a4 = A([4]) #In sage notation , s4
6 a5 = A([5]) #In sage notation , s5
7 a6 = A([6]) #In sage notation , s6
8 b = a4*a5*a3*a4*a2*a6*a5*a3*a4
9 w = a1*b*a1*b^-1*a1*b*a1^-1*b^-1*a1^-1*b*a1^-1*b^-1

10 w. left_normal_form ()
11

12 ((s1 ^ -1*( s2^-1*s3^-1*s1^-1*s4^-1) ^2* s3 ^ -1*( s5^-1*s4^-1*s2^-1*
13 s3^-1*s1^-1*s4^-1*s3^-1*s5^-1*s4^-1*s2^-1*s6^-1) ^2* s5^-1*s4^-1*
14 s3^-1*s1^-1)^3, #Power of Garside element
15 s1*s3*s2*s4*s5*s6*s1*s3*s4*s5*s1*s3*s4*s1*s3*s2*s1 , # Simple generators
16 s5*s6*s2*s4*s5*s3*s4*s1*s3*s2*s4*s5*s6*s5*s4*s1*s3*s2*s4*s5*s1
17 *s3*s4*s1*s3*s2*s1 ,
18 s1*s3*s2*s4*s5*s6*s1*s3*s4*s5*s1*s3*s4*s1*s3*s1 ,
19 s4*s5*s3*s4*s1*s3*s2*s4*s5*s6*s5*s4*s3*s2*s4*s5*s1*s3*s4 ,
20 s4*s5*s6*s3*s4*s5*s1*s3*s4 ,
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21 s4*s5*s3*s4*s1*s3*s2*s4*s5*s6*s5*s4*s3*s2*s4*s5*s1*s3*s4*s2)

Listing 3.1: The Wajnryb element is non-trivial in both the Artin group of type E6

and the inner automorphism group InnAE6 .

We also remark that the Wajnryb element w is pure or, in other words, that is contained
in kernel of the homomorphism AE6 → WE6 . The triviality of w in WE6 can be checked
by the method .coxeter_group_element() on Sage.

Acylindrical hyperbolicity

Let S be the set of simple and absorbable elements of a spherical-type Artin group
AΓ, as defined in Section 3.1. The vertices of the additional length graph CAL(Γ) are
in one-to-one correspondence with the left cosets of the subgroup of AΓ generated by
the Garside element ∆. Two vertices, corresponding to the cosets g1⟨∆⟩ and g2⟨∆⟩,
are adjacent if one can be obtained from the other by the left multiplication of some
element in S \ {∆}. The graph comes equipped with the metric where each edge has
length one and AΓ acts by isometries on the graph CAL(Γ). Calvez–Wiest proved that
CAL(Γ) is a δ-hyperbolic geodesic metric space if AΓ is spherical [CW16b, Theorem
A] and InnAΓ is an acylindrically hyperbolic group for its action on CAL(Γ) [CW16a,
Theorem 1.3]. More precisely, they proved the following theorem.

Theorem 3.3.2. If AΓ is a spherical-type Artin group, the isometric action of InnAΓ

on CAL(Γ) is cobounded and non-elementary. Moreover, for every ε > 0 there is a
positive real numbers R(ε) such that for each x, y ∈ CAL(Γ) with d(x, y) > R(ε), the
set

Γε(x, y) = {g ∈ InnAΓ | d(x, gx) < ε, d(y, gy) < ε}

is finite.

The content of Theorem 3.3.2 effectively presents the definition of acylindrical hyper-
bolicity. Recall that an isometric action of a group G on a metric space X is cobounded
if there is a ball B ⊂ X such that G ·B = X; if X is a geodesic and hyperbolic metric
space, the action of G is non-elementary if there exists a pair of independent loxo-
dromic isometries g1, g2 ∈ G. An isometry is loxodromic if the map n 7→ gnx is a
quasi-isometry between the Cayley graph Cay(Z) and the orbit of some (equivalently
any) point x ∈ X, that is, distances are only linearly distorted.

It follows from a more general theorem about acylindrical hyperbolic groups [Osi15,
Theorem 1.1] that every g ∈ InnAΓ is either a loxodromic or an elliptic isometry of
CAL(Γ). If the action by an isometry g has bounded orbits, then g is elliptic. Any
loxodromic element g ∈ InnAΓ is also weakly properly discontinuous: for every ε > 0
and x ∈ CAL(Γ) there exists some n ∈ Z such that the set

{g ∈ G | d(x, gx) < ε, d(κnx, gκnx) < ε}
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is finite. More generally, if a group G is acylindrically hyperbolic with respect to the
action on a geodesic hyperbolic metric space X, then every loxodromic element also
satisfies the weakly properly discontinuous condition. The existence of a loxodromic
and weakly properly discontinuous group element is also a sufficient property to show
that a non virtually-cyclic group is acylindrically hyperbolic [Osi15, Theorem 1.2].
Calvez–Wiest proved Theorem 3.3.2 by showing that

κ = a4a1a3a2a4a5a4a1a3a2a6a5a5a6a2a3a1a4a5a4a2a3a1a4 (3.2)

projects to a loxodromic and weakly properly discontinuous isometry in InnAE6 .

There is no known sufficient and necessary criterion to determine if a given isometry
of an acylindrically hyperbolic group is loxodromic or elliptic. Nevertheless, Antolin–
Cumplido gave a sufficient condition for an isometry of the additional length graph to
have bounded orbits [AC21, Theorem 2]. We will describe this criterion below.

A parabolic subgroup P of an Artin group A(Γ) is the conjugate of a subgroup generated
by some strict subset of the standard generators. If P is not a direct product of non-
trivial parabolic subgroups, we say that it is irreducible. The complex of irreducible
parabolic subgroups P(Γ) is defined to have irreducible parabolic subgroups as vertices.
A set of vertices {P1, . . . , Pn} is an n-simplex if one of the following properties is satisfied
for all i ̸= j:

• Pi ⊂ Pj or Pj ⊂ Pi;

• Pi ∩ Pj = {1} and [Pi, Pj] = 1.

The complex P(Γ) can detect elliptic isometries of CAL(Γ).

Theorem 3.3.3. [AC21, Theorem 2] Suppose AΓ is an irreducible spherical-type Artin
group with more than two standard generators. The elements preserving some simplex
of P(Γ) act elliptically on CAL(Γ). In particular, the normalizers of parabolic subgroups
act elliptically on CAL(A).

Later, we are also going to use a technical lemma borrowed from Antolin–Cumplido
paper [AC21, Lemma 25]. This lemma gives the following estimate for g ∈ AE6 infinite
order element in the normalizer of a proper standard parabolic subgroup and x ∈
CAL(E6):

d(gκnx, κnx) ≥ d(x, κnx) +K, (3.3)

for some constant K > 0 and |n| big enough.

We now prove Theorem D and construct a non-abelian free subgroup of rank 2 in the
kernel of any geometric homomorphism of Artin group with defining graph containing
E6. Recall that κ ∈ InnAΓ is the loxodromic isometry of CAL(E6) in (3.2). In view
of the Abbott–Dahmani result [AD19, Proposition 2.1], we show that the Wajnryb
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element w is an elliptic isometry of C(E6), that none of its powers preserve the quasi-
axis A10δ(κ) and that Fix50δ(w) is a bounded set. It will follow that there is a power
n ∈ Z such that the subgroup ⟨w, κn⟩ is a non-abelian free group of rank 2.

Proof of Theorem D. Let Ω be a collection of isotopy classes of non-essential simple
closed curves on a connected and compact orientable surface Σ̃ that pairwise intersect
at most once, and suppose that the intersection graph ΓΩ contains E6 as a subgraph.
The hypotheses of the Abbott–Dahmani result [AD19, Proposition 2.1] are satisfied
for w and κ by Lemma 3.3.4, Lemma 3.3.5 and Lemma 3.3.6 below. However, the
loxodromic isometry κ is not in the kernel of ρE6 . Nevertheless, if we denote by wκn

the conjugate κ−nwκn, the group ⟨w,wκn⟩ is contained in the kernel of the geometric
homomprhism associated to Ω and it is also isomorphic to F2, as any combination of
letters in {w,wκn} that represents a trivial word is also a combination of letters in
{w, κn}.

Lemma 3.3.4. The projection of w in InnAE6 is an elliptic isometry of the additional
length graph CAL(E6).

Proof. We would like to apply the Antolin–Cumplido criterion from Theorem 3.3.3. It
is enough to show that the subgroup ⟨a1, b⟩ normalizes the parabolic subgroup ⟨a2, a5⟩.
The action of b by conjugation on AE6 permutes a2 and a5 (see Figure 3.4). Since a1

is in the centralizer of both a2 and a5, we can conclude that the group generated by a1

and b preserves the 2-simplex {⟨a2⟩ , ⟨a5⟩} of the complex P(E6).

Figure 3.4: Braid representation of the conjugacy action of b on ⟨a2, a5⟩.

Lemma 3.3.5. No non-trivial power of the Wajnryb element w ∈ A(E6) preserves the
10δ-quasi fixed axis A10δ(κ) of κ.

Proof. Let x ∈ A10δ(κ) be a vertex of CAL(E6). If we suppose that w, or any of its non
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trivial power, preserves A10δ(κ) we would have that

d(wκnx, κnx) ≤ d(wκnx, κnwx) + d(κnwx, κnx) (triangular inequality)
= d(wκn

x,wx) + d(wx, x) (κ is an isometry)
≤ d(wκn

x, x) + 2d(wx, x) (triangular inequality)
≤ inf

y∈CAL(E6)
d(y, κy) + 10δ + 2d(wx, x), (definition of A10δ(κ))

for any n ∈ Z, where the last inequality follows from the fact that also κ preserves
A10δ(κ). However, the inequality (3.3) implies that it cannot happen, as κ is loxo-
dromic.

Every spherical-type Artin group has a finite-dimensional K(π, 1) space given by the
complement of a hyperplane arrangement associated with the respective Coxeter group
[Del72] and a finite-dimensional CW complex that isK(π, 1) has torsion-free fundamen-
tal groups [Hat02, Proposition 2.45]. In particular, the Artin group AE6 is torsion-free.
However, the group InnAE6 has torsion elements but the Wajnryb element w is not a
periodic isometry of CAL(E6).

In order to prove the following lemma, we recall that standard generators {a1, . . . , an}
of an Artin group AΓ are related by length-preserving relations and in particular the
map

deg : AΓ → Z

an1
i1 . . . a

nk
ik

7→
k∑

j=1
nk

is a homomorphism. The commutator subgroup of AΓ is exactly the kernel of the
length homomorphism deg : A(Γ) → Z [MR06, Proposition 3.1].

Lemma 3.3.6. The projection of the Wajnryb element w in InnAE6 is not torsion.

Proof. Suppose there is some m ∈ Z such that wm is central in AE6 and can be written
as ∆k for some integer k. The degree deg(w) is zero and therefore we can write w as
a commutator. However, the Garside element of AE6 is ∆ = (a1a3a5a2a4a6)6 and has
positive length. Hence, we have that

0 = deg(wm) = deg(∆k) = k · deg(∆)

and k is then forced to be equal to zero. Since AE6 is torsion-free, the only possibility
for the mth-power of w to be trivial is that m = 0.

The set Fix50δ(w) is then necessarily bounded.



Chapter 3: Geometric homomorphisms 55

Lemma 3.3.7. Let G be a group acting acylindrically on a δ-hyperbolic space X. If
there exists K > 0 such that FixK(g) is unbounded, then g has finite order.

Proof. Let x, y ∈ FixK(g) be two points of X such that d(x, y) is greater than the
constant R(K) from the definition of acylindrical hyperbolicity of a group (Theorem
3.3.2). Then, the set ΓK(x, y) is finite and contains any power of g.



Chapter 4

Monodromy kernels in low genus

The main result of this chapter is about the monodromies of the projective non-
hyperelliptic stratum components PHodd(4), PH(3, 1) and PHeven(6). We prove that
such monodromies are geometric homomorphism in the sense of Subsection 3.3 and
we observe that PHeven(6) is an orbifold classifying space for the inner automorphisms
group Inn(AE8). The same K(π, 1) result has been proved by Looijenga–Mondello for
the projective stratum components PHodd(4) and PH(3, 1). By the Large Kernel Theo-
rem for spherical-type Artin groups containing AE6 (Theorem D), we will immediately
deduce Theorem C.

Proof of Theorem C. The Dynkin diagrams EΓ for Γ = E6, E7, E8 contain E6 as a
subgraph and by Thereom D any geometric homomorphism AE8 → Mod(Σ̃) has the
Large Kernel Property. The copy of the non-abelian free group of rank 2 of Theorem
D embeds in InnAΓ and the monodromy ρPC of C = Hodd(4),H(3, 1) and Heven(6) has
the Large Kernel Property as ker ρPC contains a copy of F2.

The monodromy ρC : πorb
1 (C) → Mod(Σ,Z) factors through a homomorphism from

Inn(AΓ) to the mapping class group Mod(Σ,Z). Indeed, the following diagram com-
mutes

πorb
1 (C)

��ww
πorb

1 (PC) //Mod(Σ,Z),

where ρC is the vertical map and the oblique one is induced by the principal C∗-bundle
qC : T C → P(T C). The horizontal map is the monodromy ρPC. If the Large Kernel
Property holds for the monodromy ρPC, then the Large Kernel Property also holds for
the monodromy ρC.

The proof of Theorem A also follows from Theorem D. Before proceeding, however, it
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is useful to introduce the definition of a cylinder shear.

A cylinder ξ on a translation surface is an isometric embedding of an Euclidean cylinder
whose boundary is a union of saddle connections. In particular, the interior of ξ does
not contain any singular point.

If an embedded cylinder ξ is isometric to (R/aZ) × [0, b] for some a, b ∈ R+, the core
curve of ξ is the isotopic class of the simple closed curve (R/aZ)×{t} for some t ∈ (0, b).

Suppose ξ is a horizontal cylinder on a translation surface (X,ω), so that the cylinder
ξ can be represented as a rectangle [0, b] × [0, a] embedded in a defining polygon of
(X,ω) with a pair of sides identified. Suppose that the ratio between its height a and
its weight b is R. If t ∈ [0, R], a cylinder shear along ξ is the result of the continuous
action given by the matrix

St =
1 t

0 1


acting on the embedded parallelogram of the polygon representative. Analogously, by
taking a suitable conjugate of St one can define a cylinder shear along non-horizontal
cylinders.

=

Figure 4.1: A full cylinder shear action on an L-shaped translation surface of genus 2,
where opposite sides of the polygon are identified via a translation.

Let now ϕ : Σ → X be a marking of (X,ω). The full shear SR acts on (X, f, ω)
preserving the translation structure of X, as the resulting polygon differs from the
initial one by a scissor move, as in Figure (4.1). However, the matrix SR changes the
marking ϕ by a Dehn twist along the core curve of the cylinder ξ.

A cylinder shear is an orbifold loop induced by the continuous deformation of a conju-
gate of St on a cylinder for t ∈ [0, R] or, in other words, it is an element (δ, f) ∈ πorb

1 (C)
where C is the stratum component containing (X,ω) and δ is a continuous path in T C
with endpoints (X,ϕ, ω) and (X,ϕ ◦ T−1

γ , ω) for some simple closed curve γ isotopic to
the core curve of cylinder sheared. The cylinder shear is mapped via the topological
monodromy map of the connected component containing (X,ω) to the Dehn twist Tγ

about the core curve of the sheared cylinder.

We will see in the next sections that the generators of the orbifold fundamental groups
of PHodd(4), PH(3, 1) and PHeven(6) can be thought of as cylinders shears. More
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(a) Marked translation surface in T Hodd(4) (b) Marked translation surface in T (3, 1)

(c) Marked translation surface in T Heven(6)

Figure 4.2: Marked translation surfaces giving cylinder shears as generators for the
orbifold fundamental group of the respective projective stratum components. The blue
and red curves are horizontal and vertical cylinders, respectively.

precisely, every class of a standard generators in Inn(AΓ) is the image of a cylinder
shear in πorb

1 (C) as in Figure 4.2.

Proof of Theorem A. The Wajnryb element w has been given in terms of standard
generators of Artin groups. The class of the Wajnryb element in the kernel of ρPC can
then be lifted in πorb

1 (C) so that each class of a standard generator in Inn(AΓ) is lifted
to a cylinder shear. The core curves of cylinders can be chosen to have an intersection
graph as in Figure 4.2. In other words, the marked translation surfaces in Figure 4.2
can be chosen to be the base points of the orbifold fundamental groups. Let us denote
by Cw such a lift of w in πorb

1 (C). The F2 copy of Theorem D in the kernel of ker ρPC is
generated by the class of w and a conjugate wg for some g ∈ AΓ. Hence, the F2 copy
of Theorem C is generated by Cw and one of its conjugates. The image of Cw via the
pronged monodromy map ρĈ is trivial, since the Wajnryb element w returns a trivial
mapping class, via the geometric homomorphism, even in the mapping class group of
a surface with boundary components. Hence, the orbifold loop Cw is in the kernel of
the pronged monodromy map ρĈ and therefore in the fundamental group of T Ĉ.

§ 4.1 | Genus g = 3
The following result about Hodd(4) is known by experts and can be also proved using the
same techniques we will adopt in Section 4.2 for Heven(6). It appears as a consequence
of Pinkham’s thesis [Pin74] and can also be found in [Ham18, Introduction].
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Theorem 4.1.1. Let {ξ1, . . . , ξ6} be a collection of embedded cylinders of a translation
surface (X,ω) ∈ Hodd(4) such that the family of the associated core curves have an
E6-type intersection graph. Then, there exists a surjective homomorphism AE6 →
πorb

1 (PHodd(4)) so that each standard generator of AE6 is mapped to a full cylinder
shear and the kernel is the center of AE6 .

Figure 4.3: An S-shaped translation surface in Hodd(4). The red and blue segments
represent the core curves of vertical and horizontal cylinders ξi, respectively. Their
intersection graph is E6.

The homomorphism of Theorem 4.1.1 is well-defined. Every pair of adjacent stan-
dard generators in AE6 is mapped to a cylinder shears along embedded cylinders
with core curves intersecting once; every pair of standard generators that commute
is mapped to cylinder shears along disjoint flat cylinders. Theorem 4.1.1 shows that
πorb

1 (PHodd(4)) is generated by a finite family of orbifold loops coming from cylinder
shears in πorb

1 (PHodd(4)).

We now prove that the monodromy of PH(3, 1) is geometric. Recall that every genus 3
non-hyperelliptic Riemann surface X can be embedded in CP2 as the vanishing locus of
a smooth plane quartic [Mir95, Chapter VII, Proposition 2.5]. The embedding of X in
CP2 is defined as the unique projective embedding, up to linear change of coordinates,
that corresponds to the linear system of positive canonical divisors on X. By abuse
of notations, we identify every genus 3 non-hyperelliptic Riemann surface X with its
image in CP2.

A flex of a smooth quartic X is a point p ∈ X where the intersection multiplicity of X
with its tangent space is exactly 3. A smooth and non-hyperelliptic plane quartic X
with a flex point p can always be reparametrized in such a way that p is the point at
infinity [0 : 0 : 1] and its vanishing polynomial is of the form

Qs = x3z + y3x+ s1xyz
2 + s2xz

3 + s3y
4 + s4y

3z + s5y
2z2 + s6yz

3 + s7z
4 ∈ C[x, y, z],

for some s = (s1, . . . , s7) ∈ C7 [Shi93, Proposition 1].
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However, there are some strata H(k1, . . . , kn) for n ̸= 1 where all the underlying Rie-
mann surfaces are non-hyperelliptic. This is the case if all the odd numbers in the par-
tition (k1, . . . , kn) appear an odd number of times. At its core, this can ultimately be
deduced by observing that every positive canonical divisor on a hyperelliptic Riemann
surface is the pullback of a divisor on the Riemann sphere CP1 [Har77, Chapter IV,
Proposition 5.3] and apply the Riemann–Hurwitz formula [Mir95, Chapter V, Lemma
1.16]. The stratum H(3, 1) is totally non-hyperelliptic.

Proposition 4.1.2. Let (X,ω) be a translation surface in H(3, 1). Then X has a flex
in the zero of ω of order 3. Hence, the Riemann surfaces at each point in H(3, 1) are
vanishing loci V(Qs) of quartics of the form Qs, up to isomorphism.

Proof. Since X is a genus 3 projective smooth curve, the positive canonical divisors
associated with an abelian differential in H(3, 1) coincide with divisors coming from
lines in CP2 that intersect X in two points. One of these points, say p, has multiplicity
3; then the respective line in CP2 is necessarily the tangent line to X in p. In particular,
X has a flex at p and is isomorphic to the vanishing locus of a quartic Qs.

On the other hand, every smooth vanishing locus V(Qs) comes with an abelian differ-
ential in H(3, 1) as follows. The vanishing loci V(Qs) are compact Riemann surfaces
and the points at infinity can be removed to get a genus 3 surface with two points
removed. Equivalently, we can evaluate the homogeneous polynomial Qs at z = 1 to
get a polynomial qs ∈ C[x, y] and the respective affine vanishing locus V(qs) in C2.
Since every vanishing locus V(qs) is the zero level set of a holomorphic function, the
two complex derivatives ∂xqs and ∂yqs satisfy ∂xqsdx + ∂yqsdy = 0. Moreover, the
derivatives ∂xqs and ∂yqs cannot simultaneously vanish since V(qs) is smooth. Hence,
the abelian differential

ωs(x0, y0) =


dx

∂yqs(x0,y0) if ∂yqs(x0, y0) ̸= 0

− dy
∂xqs(x0,y0) if ∂xqs(x0, y0) ̸= 0

is well-defined and non-vanishing at every point (x0, y0) ∈ V(qs). The volume form ωs

can be holomorphically extended to be zero on the two points at infinity [1 : 0 : 0] and
[0 : 1 : 0], where ωs vanishes with multiplicity 3 and 1, respectively.

Looijenga observed that a line intersecting V(Qs) with multiplicity 3 is determined
solely by the parameter s [Loo00, Introduction]. In particular, up to a rescaling factor,
the abelian differential ωs is the unique holomorphic 1-form on V(Qs) such that the
pair (V(Qs), ωs) is a translation surface in H(3, 1). In what follows, we are going to
denote by Mflex

3,2 the moduli space of non-hyperelliptic genus 3 Riemann surfaces with
2 marked points given by a flex p ∈ X and the unique point of intersection between
TpX and X with multiplicity 1 (Figure 4.4). The next result is a direct consequence
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of the above discussion and Proposition 2.5.5.

Figure 4.4: A quartic X with a flex in p.

Proposition 4.1.3. There exists an orbifold isomorphism between PH(3, 1) and
Mflex

3,2 . In particular, there exists an isomorphism θ1 : πorb
1 (PH(3, 1)) → πorb

1 (Mflex
3,2 )

that commutes with the monodromies ρflex : πorb
1 (Mflex

3,2 ) → Mod3,2 and ρPH(3,1) :
πorb

1 (PH(3, 1)) → Mod3,2 of the respective moduli spaces.

The collection of parameters s ∈ C7 representing smooth quartics Qs is an Eilenberg–
Maclane space for the spherical-type Artin group AE7 : the versal deformation space of
the germ fE7 = x3 + y3x [Arn73, Proposition 9.3]. Indeed, suppose the C-algebra of
WE7-invariant polynomials in C[x1, . . . , x7] is generated by some homogeneous polyno-
mials q1, . . . , q7 with degrees di = deg(qi) uniquely determined by the finite group WE7 .
The basis {q1, . . . , q7} maps (in a neighbourhood of zero) the quotient space C7/WE7

to C7 by the isomorphism τE7 : C7/WE7 → C7 of complex manifolds. In particu-
lar, the image of the hyperplane arrangement ∪i∈IHi modulo WE7 is the hypersurface
Π = {s ∈ C7 | V(Qs) is singular} defined as the vanishing locus of a weighted homo-
geneous polynomial with weights given by the degrees (d1, . . . , d7) of the homogeneous
polynomials {q1, . . . , q7}; see, for example, [OS88, Introduction] or [AGV88, Chapter
3]. The intersection of the space {(p, s) ∈ C2 × (C7 \ Π) | p ∈ V(qs)} with a sufficiently
small closed polydisk D2 × D7 in C2 × C7 is the versal deformation space VfE7

, while
its image in C7 \ Π is UfE7

.

The proof of Theorem C for H(3, 1) relies on the existence of a surjective homomor-
phism

θ : π1(UfE7
) → πorb

1 (PH(3, 1))

such that the two monodromies ρE7 : π1(UfE7
) → Mod2

3 and ρPH(3,1) : πorb
1 (PH(3, 1)) →

Mod3,2 fit inside the following commutative diagram

π1(UfE7
) πorb

1 (PH(3, 1))

Mod2
3 Mod3,2 .

θ

ρE7 ρPH(3,1)

Cap

(4.1)
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Let us define θ : π1(UfE7
) → πorb

1 (PH(3, 1)). We do so by composing two homomor-
phisms, where one of them has already been given in Proposition 4.1.3. In what follows,
we construct a surjective homomorphism θ2 : π1(UfE7

) → πorb
1 (Mflex

3,2 ). Then, the com-
position θ−1

1 ◦ θ2 will be the homomorphism θ we need in order to prove Theorem
C.

A pair of smooth quartics Qs and Qt might define the same isomorphism class of a
Riemann surface. This is the case if and only if the parameters s and t are related by
a weighted projective relation [Shi93, Proposition 1]. In particular, the vanishing loci
V(Qs) and V(Qt) are isomorphic if and only if there exists λ ∈ C∗ such that

(s1, s2, s3, s4, s5, s6, s7) = (λt1, λ3t2, λ
4t3, λ

5t4, λ
6t5, λ

7t6, λ
9t7). (4.2)

The above relation is well-defined on Π. Indeed, the defining weighted polynomial of
Π has weights compatible with the weights of the relation in (4.2); we can see it by
noticing that the weights given in (4.2) coincide with half the degrees (d1, . . . , d7) of
the homogeneous polynomials q1, . . . , q7 [Hum90, Section 3.7]. In particular, the above
relation is also well-defined on C7 \ Π and therefore on UfE7

.

Topologically, the weighted projective space obtained from the quotient of UfE7
by the

relation in (4.2) can be realized as a subspace of the moduli space of genus 3 Riemann
surfaces with 2 boundary components. We will denote it by Mflex,∂

3,2 .

Lemma 4.1.4. The quotient map l : UfE7
→ Mflex,∂

3,2 induces a surjective homomor-
phism l∗ : π1(UfE7

) → π1(Mflex,∂
3,2 ) on the respective fundamental groups.

Proof. The weighted projective relation defined in (4.2) on C7 pulls back to a projective
relation on the quotient C7/WE7 via the isomorphism τE7 : C7/WE7 → C7. In other
words, the isomorphism τE7 induces a homeomorphism between the weighted projective
space defined by (4.2) and CP6 modulo the induced linear action of WE7 .

Then, the quotient map l can also be seen as the map

l : C
7 \ ∪i∈IHi⧸WE7

−→ P(C7 \ ∪i∈IHi)⧸WE7 ,

where P(C7 \ ∪i∈IHi) is the projectivization of the space C7 \ ∪i∈IHi.

The map l descends from the fiber bundle C7 \ ∪i∈IHi → P(C7 \ ∪i∈IHi) via the free
action of the finite group WE7 and has connected fibers. In particular, the map l is a
fiber bundle with connected fibers and the induced homomorphism on the fundamental
groups is surjective by applying the long exact sequence associated with l.

The Teichmüller cover of Mflex,∂
3,2 will be denoted by T flex,∂

3,2 in the following.

Proposition 4.1.5. Let ρflex : πorb
1 (Mflex

3,2 ) → Mod3,2 be the monodromy of Mflex
3,2 and
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let ρ : π1(C7 \ Π) → Mod2
3 denote the monodromy of C7 \ Π. There exists a surjective

homomorphism θ2 : π1(C7 \ Π) → πorb
1 (Mflex

3,2 ) that commutes with the respective
monodromies. In particular, the following diagram commutes

π1(C7 \ Π) πorb
1 (Mflex

3,2 )

Mod2
3 Mod3,2 .

θ2

ρ ρflex

Cap

Proof. The surjective homomorphism l∗ : π1(UfE7
) → π1(Mflex,∂

3,2 ) is induced by the
quotient map, and in particular it is induced by a bundle map between surface bundles
with isomorphic fibers. Therefore, the monodromies of UfE7

and Mflex,∂
3,2 must commute

through l∗.

The group Mod2
3 is torsion-free and therefore the orbifold structure of Mflex,∂

3,2 is not
singular. In particular, the orbifold fundamental group of Mflex,∂

3,2 can be identified
with its fundamental group π1(Mflex

3,∂ ). In other words, if ρflex
∂ is the monodromy of the

moduli space Mflex,∂
3,2 , the diagram

π1(UfE7
) π1(Mflex

3,∂ )

Mod2
3

l∗

ρ ρflex
∂

must commutes.

Suppose now T flex,∂
3,2 and T flex

3 are the Teichmüller covers of Mflex,∂
3,2 and Mflex

3 , re-
spectively. There exists a map T flex,∂

3,2 → T flex
3 given by collapsing the lengths of the

boundary components to zero. In particular, this map is the restriction of the classic
projection given on the respective global Teichmüller spaces where the preimage of T flex

3

is exactly T flex,∂
3,2 . Hence, the induced map π1(T flex,∂

3,2 ) → π1(T flex
3 ) on the fundamental

groups is surjective.

Consider the images of ρflex
∂ in Mod2

3 and of ρflex in Mod3,2. Every marking of a Riemann
surface in Mflex

3 appears as the image of a marking associated with a Riemann surface
in Mflex,∂

3,2 . Then, the restriction of the homomorphism Cap : Mod2
3 → Mod3,2 on

im ρflex
∂ is surjective onto im ρflex and the homomorphism πorb

1 (Mflex,∂
3,2 ) → πorb

1 (Mflex
3 )

must be surjective too.

Our final goal is to prove Theorem C. In particular, we will show that the monodromy
ρPH(3,1) is geometric. We are going to prove Theorem C using the following lemma.
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Lemma 4.1.6. Every surjective endomorphism of Inn(AE7) is an isomorphism.

Proof. Both AE7 and the automorphism group Aut(AE7) are residually finite [Bau63,
Theorem 1] because AE7 is linear [CW02]. Hence, the subgroup Inn(AE7) of Aut(AE7)
is both finitely generated and residually finite. In particular, we can conclude that
every surjective endomorphism of Inn(AE7) is an isomorphism [BH99, Chapter III,
Proposition 7.5].

Since UfE7
is an Eilenberg–Maclane space for the Artin group AE7 , the fundamen-

tal group π1(UfE7
) is isomorphic to AE7 . Moreover, the orbifold fundamental group

πorb
1 (PH(3, 1)) is isomorphic to Inn(AE7).

Let us consider the surjective homomorphism θ : π1(UfE7
) → πorb

1 (PH(3, 1)) as the
composition

π1(UfE7
) θ2−→ πorb(Mflex

3,2 ) θ−1
1−−→ πorb

1 (PH(3, 1)).

The group Inn(AE7) is centerless. Therefore, the kernel of the homomorphism θ :
A(E7) → Inn(AE7) contains the subgroup ⟨∆⟩. This implies that the induced map

θ : Inn(AE7) → Inn(AE7)

is a well-defined surjective endomorphism of A(E7)∆ and therefore an isomorphism by
Lemma 4.1.6.

Since θ commutes with the monodromies ρE7 : π1(UfE7
) → Mod2

3 and ρPH(3,1) :
πorb

1 (PH(3, 1)) → Mod3,2 through the capping homomorphism Cap : Mod2
3 → Mod3,2,

we can conclude that ρPH(3,1) is geometric since ρE7 is.

As in the case of the projective stratum PHodd(4), the orbifold fundamental group of
PH(3, 1) is generated by orbifold loops coming from cylinder shears, where the cylinders
are described in Figure 4.2.

Figure 4.5: A correspondence between the E7 Dynkin diagram on some closed curves
on Σ3,2. Each vertex corresponds to a simple closed curve on the punctured surface on
the right-hand side. The geometric homomorphism sends each standard generator of
AE7 to the corresponding Dehn twist.
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§ 4.2 | Genus g = 4
In this section, we describe the image of the minimal stratum component Heven(6) in
M4,1. A general reference is [Mir95, Chapter VII, Section 4].

Each genus g pointed closed Riemann surface (X, p) comes with a sequence of g integers
Gp(X) called the Weierstrass gap sequence. A positive integer n is a Weierstrass gap
number in Gp(X) if and only if there is an abelian differential (X,ω) with a zero at p of
order n− 1. The complement Sp(X) of a gap sequence Gp(X) in N is called a non-gap
sequence and it is a semigroup of N that contains 0 and has a finite complement. In
other words, the set Gp(X) is a numerical semigroup.

Given an arbitrary numerical semigroup S in N, we denote by MS
g,1 the moduli space

of pointed Riemann surfaces (X, p) such that the non-gap sequence at p ∈ X is exactly
S . If X is hyperelliptic and p is preserved by the hyperelliptic involution of X, the
Weiestrass gap sequence Gp(X) is {1, 3, 5, . . . , 2g − 1}. We will show the following.

Proposition 4.2.1. Let S be the semigroup generated by 3 and 5. Then, a pointed
Riemann surface (X, p) is in MS

4,1 if and only if (X, 6p) ∈ PHeven(6).

Suppose X is a non-hyperelliptic Riemann surface of genus 4. Then, the equivalence
class of the canonical divisors KX induces a holomorphic embedding X → P3 of X
as a smooth degree 6 curve. A consequence of Max Noether’s Theorem for algebraic
surfaces is that X is the complete intersection of an irreducible quadric Q and an
irreducible cubic C in P3. Irreducible quadric on P3 can either be smooth or singular
cones. In the first case, the Segre embedding can be use to show that Q is isomorphic
to P1 × P1. Otherwise, the irreducible quadric Q is a cone and, up to some change of
coordinates, the vanishing locus of the homogeneous polynomial x2

0 − x1x2 in P3. The
following can be found in [Bul13, Section 4.3].

Lemma 4.2.2. Let (X, 6p) ∈ PH(6) and suppose X is a non-hyperelliptic smooth
degree 6 curve in P3 that is a complete intersection of an irreducible quadric Q and an
irreducible cubic C. Then,

• if Q is smooth, the Weierstrass gap sequence of (X, p) is Gp(X) = {1, 2, 3, 7};

• if Q is a cone, the Weierstrass gap sequence of (X, p) is Gp(X) = {1, 2, 4, 7}.

Proof of Proposition 4.2.1. Suppose (X, 6p) ∈ PHeven(6). By Lemma 4.2.2, there are
only two possible Weierstrass gap sequences in p. However, the spin structure L = 3p
on X is even and h0(X,L) is greater of equal than 2. The dimension h0(X,L) of the
space of holomorphic differentials vanishing to order at least g − 1 at p is the number
of Weierstrass gap numbers 1 = γ1 < γ2 < · · · < γg that are at least g [Gun66,
Chapter 7, Theorem 14]. Hence, there are at least 2 Weierstrass numbers bigger than
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4 if L = 3p is even. In particular, the Weierstrass gap sequence of (X, p) can only be
Gp(X) = {1, 2, 4, 7} and (X, p) is in MS

4,1, where S is the semigroup generated by 3
and 5.

Viceversa, if a pointed Riemann surface (X, p) is in MS
4,1 there is an abelian differential

on X vanishing on p with multiplicity 6. Since the Weierstrass gap sequence of X at p
is {1, 2, 4, 7}, the Riemann surface X cannot be hyperelliptic. By the above argument,
the spin structure L = 3p is necessarily even and therefore (X, p) ∈ PHeven(6).

A description of the pointed Riemann surfaces in the stratum component PHeven(6) is
available in [Che19, Section 4.5] and [Bul13, Section 4.3]. For completeness, we briefly
include such a description in the present note.

Lemma 4.2.3. Let S be the semigroup generated by 3 and 5. Then, the moduli
space MS

4,1 is an orbifold of dimension 7.

Sketch of the proof. Let (X, p) be a non-hyperelliptic pointed Riemann surface of genus
4 and suppose that (X, p) ∈ MS

4,1. By Lemma 4.2.2, we can find an irreducible quadric
cone Q and an irreducible cubic C in P3 such that X is the complete intersection of
Q and C. Since 7 is a gap number for X in p, there exists an abelian differential ω
that has order 6 in p. The complex line bundle associated with ω has intersection
multiplicity 6 with X in p, and consequently the curve X is cut out by a ruling l1 of Q
in p coming from ω, with intersection multiplicity 3. There are also two rulings tangent
to X in points q1 and q2 different from the singular point of Q.

Figure 4.6: The cubic C on the cone Q with the tangent points p, q1, q2.

After a suitable change of coordinates, the tuple (X, p, q1, q2) is determined solely by
the cubic equation that cuts out X from Q. After imposing the tangency requirements
of the rulings, we end up with 8 free non-trivial complex parameters, where any λ ∈
C8 \ {0} represents a tuple (X, p, q1, q2). However, any two cubic equations define the
same isomorphic type of variety up to the action of a matrix in GL4(C). The subgroup
of GL4(C) preserving Q and the three rulings is then isomorphic to C∗. The locus in
C8 \ {0} parametrizing singular curves is a hypersurface and the moduli space MS

4,1 is
covered by its complement in C8 \ {0} by the action of C∗.
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The following is a consequence of Proposition 2.5.5, Proposition 4.2.1 and Lemma 4.2.3.

Corollary 4.2.4. Let S be the semigroup generated by 3 and 5. The orbifolds
PHeven(6) and MS

4,1 are isomorphic.

We now revise some results on the moduli spaces MS
g,1 for S semigroup in N due to

Pinkham [Pin74]. In general, it is even hard to establish whether these moduli spaces
are empty or not. On the other hand, we do have some results in low genera; see, for
example, [MN04].

Suppose S is the semigroup in N with {a1, . . . , ak} as a minimal generating set and
consider the monomial curve CS = {(ta1 , . . . , tak) ∈ Ck | t ∈ C}. Every monomial
curve CS has an isolated singularity at the origin and the 1-dimensional algebraic torus
C∗ acts naturally on the parameter t ∈ C of CS . Pinkham proved that the moduli
space MS

g,1 is a quotient of a versal deformation space associated to the monomial
curve CS [Pin74, Proposition 13.9].

Theorem 4.2.5. Suppose fΓ is the germ of the irreducible complex analytic map
associated to a root system and such that CS is its zero level set. The C∗ action on
CS can be extended to UfΓ , in such a way that πfΓ is C∗-equivariant and UΓ/C∗ is
isomorphic to MS

g,1.

The above isomorphism is given as follows. Suppose FΓ(•, s) = fΓ(•) + ∑m
i=1 sigi(•)

is the perturbation of fΓ that defined the associated versal deformation space. Then,
each s ∈ UfΓ is mapped to the vanishing locus V(FΓ(•, s)), before projectivizing the
Riemann surface and marking the added point at infinity.

In case S is generated by {3, 5}, the monomial curve CS is, up to change of coor-
dinates, the vanishing locus of f = x3 + y5, germ associated to the root system E8.
Theorem B is a consequence of Theorem 3.2.3 and Corollary 4.2.4.

Proof of Theorem B. A good orbifold is K(π, 1) if covered by a contractible manifold
and Heven(6) is K(π, 1) if PHeven(6) is. The projective stratum component PHeven(6)
is covered by the versal deformation space associated to the root system E8, that is a
K(π, 1) manifold and therefore covered by a contractible manifold.

We now show that the orbifold fundamental group of PHeven(6) is isomorphic to the
inner automorphism group of the Artin group associated with the E8 root system. In
particular, the kernel of the monodromy is very large and contains a non-abelian free
group of rank 2.

Recall that we get the short exact sequence

1 → π1(C∗) → π1(UfE8
) → πorb

1 (PHeven(6)) → 1 (4.3)



Chapter 4: Monodromy kernels in low genus 68

from the fiber bundle associated with the Borel construction. By Theorem 3.2.3, the
fundamental group of UfE8

is the Artin group AE8 and its quotient by a cyclic normal
subgroup is isomorphic to πorb

1 (PHeven(6)).

Lemma 4.2.6. Every cyclic normal subgroup of AE8 is central.

Proof. Let a ∈ AE8 be the generator of an infinite cyclic normal subgroup. For every
g ∈ AE8 there is an n ∈ N such that gag−1 = an holds. Standard generators ofAE8 share
only length-preserving relations. Therefore, there exists a well-defined homomorphism

deg : AE8 → Z

assigning the standard generators length 1. The following inequality shows that n must
be equal to 1, provided g ̸= id:

deg(a) = deg(gag−1) = deg(an) = n deg(a).

Therefore, the normal subgroup ⟨a⟩ is central.

Let Φ be the root system E8 and denote by VΦ the open complement in R8 of the
hyperplanes family {Hα | α ∈ IΦ} associated to Φ. The Artin group AE8 has an
interpretation as a fundamental group by Theorem 3.2.3. Let us pick a chamber C ⊂ VΦ

and a point p ∈ C. The fundamental group of the complexification of VΦ, denoted by
VΦ, modulo the Coxeter groupWΦ and based at the point represented by p is isomorphic
to AE8 .

We now construct the Garside element ∆Φ as the homotopy class of a loop in VΦ/WΓ,
where Γ is the Dynkin diagram associated to Φ. The following construction is due
to Brieskorn [Bri71] and can also be found in [Loo08, Section 2]. For every x ∈ VΦ,
we define Cx to be the either VΦ, if x is not contained in any hyperplane Hα, or the
intersection of all open half-spaces H+

α containing the chamber C and bounded by Hα

if x ∈ Hα. The set
U = {x+ iy | y ∈ Cx}

is an open subset of VΦ and it is star-like with respect to any point in iC. Therefore,
the set U is contractible. As a result, there is a unique homotopy type of arc γΦ

between p and −p entirely contained in U. Since −idVΦ ∈ WΓ in case Φ = E8, the arc
γΦ projects to a loop in VΦ/WΦ. The Garside element ∆E8 can be interpreted as the
homotopy class of [γΦ] in VΦ/WΦ.
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The arc γΦ can be taken to be the composition δ ∗ σ of the following path segments

σ : [0, 1] → U δ : [0, 1] → U

t 7→ h(t)p t 7→ ih(t)p,

where h(t) = (1 − t) + it.

R2 + iR2 R2 + iR2

× ×

p p

−p

p

Figure 4.7: An example of the path segments σ (on the left of the picture) and of δ
(on the right-hand side of the picture) in the case Γ = A3. The colored area represents
the complexified chamber C + iC.

Proposition 4.2.7. The image by τE8 of the homotopy class of the loop [γE8 ] in
VE8/WE8 generates the fundamental group of the C∗-fiber associated to the quotient
map UfE8

→ PHeven(6).

Proof. Let R be the root system E8. We want to show that the homotopy class of the
loop τR(γR) generates the fundamental group of the C∗-fiber associated with the quo-
tient map UR → PHeven(6). The punctured complex plane C∗ acts on UE8 component-
wise with weights given by the degrees d1, . . . , d8 of the homogeneous polynomials
f1, . . . , f8. In particular, the great common divisor of d1, . . . , d8 is 2 and the the fiber
Op = {(λd1p1, . . . , λ

d8p8) | λ ∈ C∗} of p ∈ UR is homeomorphic to C∗/Z2 where the
underlying relation is given by z ∼ −z. The fundamental group of Op is isomorphic
to Z and generated by the image of any arc in C∗ tracing an angle of π. The arc γR

traces an angle of π between the endpoints p and −p and therefore the image

τE8(γR) : [0, 1] → U

t 7→
{

(h(2t)d1f1(p), . . . , h(2t)d8f8(p)) if t ∈ [0, 1
2 ]

(id1h(2t− 1)d1f1(p), . . . , id1h(2t− 1)d8f8(p)) if t ∈ [1
2 , 1].

represents a generator of the fundamental group of the C∗-fiber Op.

We obtain the following result from the short exact sequence in (4.3).

Corollary 4.2.8. The orbifold fundamental group of PHeven(6) is isomorphic to the
inner automorphism group Inn(AE8). Then, the group πorb

1 (Heven(6)) is a central ex-
tension of Inn(AE8).



Chapter 4: Monodromy kernels in low genus 70

As in the case of the projective strata PHodd(4) and PH(3, 1), the orbifold fundamental
group of PHeven(6) is generated by orbifold loops coming from cylinder shears, where
the cylinders are described in Figure 4.2.

Figure 4.8: A correspondence between the E8 Dynkin diagram and some closed curves
on Σ4,1. Each vertex corresponds to a simple closed curve on the punctured surface on
the right-hand side. The geometric homomorphism sends each standard generator of
AE8 to the corresponding Dehn twist.

§ 4.3 | Final remarks
The description of the projective strata PHodd(4), PH(3, 1) and PHeven(6) as quotients
of versal deformation spaces of plane curve singularities allowed us to carry out the
proof of the main theorems in the first part of this thesis. A partial description is
also available in higher genus, at least for minimal strata thought of as subloci of the
moduli spaces of pointed Riemann surfaces in the sense of Proposition 2.5.5.

Bullock proved that in genus g ≤ 5 the projective strata can be described as the
Pinkham’s moduli spaces MS

g,1 of pointed Riemann surfaces with a prescribed gap
sequence [Bul13]. The moduli spaces MS

g,1 can be thought of as quotients of versal
deformation spaces [Pin74, Proposition 13.9], which might not be associated to plane
curve singularities and, therefore, challenging to describe topologically. For example,
we only know that PHeven(8) in genus 5 is the quotient of a versal deformation space
of certain complete intersection monomial curve, since the numerical semigroup S

associated is free in the sense of [AM24a]. On top of this, in genus g ≥ 6 there are loci
within both PHodd(2g − 2) and PHeven(2g − 2) consisting of different gap sequences.

A much more attainable problem to solve is that of a full description of the kernels of
ρHodd(4), ρH(3,1) and ρHeven(6). In genus 3, the Teichmüller strata T Hodd(4) and T (3, 1)
project to the complement of the hyperelliptic locus H3 in the classical Teichmüller
space T3, since both strata are totally non-hyperelliptic. Harris proved that Tg \Hg has
the homotopy type of an infinite wedge of 2g−5 dimensional spheres [Har21, Corollary
3.2]. In genus 3, this is an infinite wedge of circles and has and non-abelian free
group of infinite rank as fundamental group. We don’t know if the Wajnryb element
projects to a loop wrapping around the codimension 1 connected components of the
hyperelliptic locus H3, but we conjecture that one between π1(T odd(4)) and π1(T (3, 1))
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is commensurable to a non-abelian free group. It might be possible to detect loops in
Teichmüller strata by projecting to complements of hypersurfaces in Tg. Chen–Möller
have a list of hypersurfaces that some strata avoid [CM13].



Chapter 5

Topological monodromies of some
strata of half-translation surfaces

§ 5.1 | Preliminaries on line fields
In this section, we revise the main properties of line fields and associated winding
number functions. For more details, see [LP20, Section 1].

Line fields and winding number functions

Let Σ̃ be an oriented, compact, connected genus g surface with n ̸= 0 boundary
components. The projective tangent bundle PT Σ̃ fibers through the fiber bundle
π : PT Σ̃ → Σ̃. The fiber at a point p in Σ̃ is isomorphic to the circle S1 and con-
sists of all the lines through the origin in TpΣ̃.

A line field is a continuous section η : Σ̃ → PT Σ̃ of π : PT Σ̃ → Σ̃. Every line
field η defines a cohomology class [η] ∈ H1(PT Σ̃;Z) by taking the Poincaré–Lefschetz
dual of the homology class [η(Σ̃)] ∈ H1(PT Σ̃, ∂PT Σ̃;Z). Note that the we can use
the Poincaré–Lefschetz duality since the surface Σ̃ is compact. The fiber bundle π :
PT Σ̃ → Σ̃ induces a short exact sequence of cohomology groups

0 → H1(Σ̃;Z) π∗
−→ H1(PT Σ̃;Z) ι∗

−→ H1(S1;Z) → 0,

where the homomorphism ι∗ is induced by the inclusion of the fiber in PT Σ̃.

Through the assignment η 7→ [η], Lekili–Polishchuk proved that the set of homotopy
classes of (unoriented) line fields on Σ̃ are in one to one correspondence with the
cohomologes in the preimage (ι∗)−1(ξ), where ξ ∈ H1(S1;Z) is the cohomology class
that integrates to 1 on S1 [LP20, Lemma 1.1.2]. Hence, we can think of a (homotopy
class of) line field on Σ̃ as a cohomology class in H1(PT Σ̃;Z).

Suppose now γ : S1 → Σ̃ is an oriented simple closed curve on Σ̃ and consider its lift
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−→γ : S1 → PT Σ̃. The winding number of γ with respect to the line field η is the value

ϕη(γ) := ⟨[η], [−→γ ]⟩

where ⟨·, ·⟩ : H1(PT Σ̃;Z) × H1(PT Σ̃;Z) → Z is the natural pairing. Note that the
value ϕη(γ) only depends on the the homotopy class of η and on the isotopy class of
γ. The following proposition appears in Humphries–Johnson’s work [HJ89], but can
also be found in Calderon–Salter’s work for winding number functions associated to
non-vanishing vector fields on Σ̃ [CS22, Lemma 2.4].

Proposition 5.1.1. Let η : Σ̃ → PT Σ̃ be a line field. Then, the following properties
hold for the winding number function ϕη(·).

(1) (Normalization) If z not a essential curve nor a boundary components on Σ̃, then
ϕs(z) = 2;

(2) (Twist-linearity) if δ and γ are oriented simple closed curves and Tδ(γ) is the
Dehn twist of γ about δ, then ϕη(Tδ(γ)) = ϕη(γ) + ϕη(γ)i(γ, δ), where i(γ, δ)
denotes the algebraic intersection pairing;

(3) (Homological Coherence) if the curves γ1, . . . , γm bound a subsurface S ⊂ Σ̃ such
that S lies to the left of each curve, then

n∑
i=1

ϕη(γi) = 2χ(S).

Proof. Suppose v : Σ̃ → T Σ̃ is a non-vanishing vector field on Σ̃ and ϕv is the winding
number function of v. Then, the function ϕv respects twist-linearity and if z is a
non-essential curve, then ϕv(z) = 1. Moreover, if γ1, . . . , γm are simple closed curves
bounding a subsurface S ⊂ Σ̃ and such that S lies to the left of each curve, then∑n

i=1 ϕv(γi) = χ(S). If η is the line field on Σ̃ induced by the vector field v, the winding
number function ϕη takes only even values and ϕη(γ) = 2ϕv(γ) for any simple closed
curve γ [LP20, Lemma 1.1.4]. The claim holds for line fields induced by vector fields.

Suppose now that η is a line field not induced by a vector field. The cohomology group
H1(Σ̃;Z) acts on the coset (ι∗)−1(ξ) and therefore on the set of of homotopy classes
of unoriented line fields. Since the action is transitive [LP20, Lemma 1.1.2], there
exists c ∈ H1(Σ̃;Z) such that η + c is a line field induced by a vector field. Hence,
the Proposition holds for η + c. For any simple closed curve γ the winding number
functions ϕη and ϕη+c are related by the equality

ϕη+c(γ) = ϕη(γ) + i(c, [γ])

and the claim holds for the line field η too.
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A closed surface Σ can be obtained from Σ̃ by capping every boundary component with
a disk. After capping, a closed curve on Σ̃ that is isotopic to a boundary component
δ will be trivial in homology. By Proposition 5.1.1, if the winding number of δ is not
equal to 2 the function ϕη is ill-defined on the set of isotopy classes of oriented simple
closed curves of the capped surface Σ. More generally, suppose Σ̃ has n boundary
components δ1, . . . , δn oriented such that Σ̃ lies on the right and ϕη(δi) = ki + 2 for
some positive integers k1, . . . , kn. Pick any pair of closed curves γ1 and γ2 on Σ̃ with
the property that their isotopy classes coincide on Σ. Then, there exists an embedded
sphere with m + 2 ≤ n + 2 boundary components in Σ̃ given by the curves γ1, γ2 and
some δi1 , . . . , δim . By homological coherence the winding numbers of γ1 and γ2 differ
by a multiple of r = gcd(k1, . . . , kn), since ϕη(γ1) − ϕη(γ2) = − ∑m

j=1 kij
holds. Hence,

post-composing the winding number function ϕη by the quotient map Z → Zr yields
a well-defined map ϕr

η : S → Zr on the set S of isotopy classes of simple closed curves
on Σ.

Any winding number function ϕr
η is uniquely determined by the values taken on a fixed

symplectic basis B = {α1, β1 . . . , αg, βg} on Σ. Recall that a symplectic basis is a set
of primitive vectors in H1(Σ;Z) such that i(αi, αj) = i(βi, βj) = 0 and i(αi, βj) = δij

for any i, j = 1, . . . , g.

Lemma 5.1.2. Let B be a symplectic basis of vectors in H1(Σ;Z). A winding number
function ϕr

η as above is completely determined by the values taken on B. Moreover,
given a vector v ∈ Z2g

r , there exists a line field η on Σ̃ such that ϕr
η(B) = v.

Proof. We can find c ∈ H1(Σ̃,Z) such that η + c is a line field induced by a non-
vanishing vector field on Σ̃. Then, we have that ϕr

η+c = ϕr
η + ⟨c, ·⟩ holds. The winding

number function ϕr
η+c is completely determined by the values taken on the vectors in B

by [CS21, Lemma 2.4] and so is ϕr
η. The second claim follows from the correspondence

of homotopy class of line field on Σ̃ and the coset (ι∗)−1(ξ) = H1(Σ̃;Z) + ξ [LP20,
Lemma 1.1.2]. The freedom of the choice given by the group H1(Σ̃;Z) returns all the
possible values for the vector ϕr

η(B).

If r = 2, the function ϕ2
η can be extended to a homomorphism from H1(Σ,Z2) to Z2.

Indeed, if any two sets of multicurves in Σ are homologous modulo 2, then their lifts in
PTΣ differ by a 2−→z summand, where z is a non-essential curve [Joh80, Theorem 1A].

Proposition 5.1.3. Let η be a line field on Σ̃ such that the values taken by the bound-
ary components δi, . . . , δn of Σ̃ via the winding number function ϕη are all divisible by
4. If r = 2, then ϕ2

η can be extended to a homomorphism ϕ2
η : H1(Σ,Z2) → Z2.

Extended quadratic forms

Any line field on Σ̃ defines a map Ωη : H1(Σ̃;Z4) → Z4, that we will refer to as a
Z4-extended quadratic form on Σ̃ [LP20, Proposition 1.2.2]. The map Ωη is neither
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linear nor a quadratic form, but for any a, b ∈ H1(Σ̃;Z4) the relation

Ωη(a+ b) = Ωη(a) + Ωη(b) + 2i(a, b)

holds. Indeed, for any finite collection γi, . . . , γm of oriented simple closed curves on
Σ̃, we can define a lift for the homology ∑m

i=1[γi] ∈ H1(Σ̃;Z4) to H1(PT Σ̃;Z4) by
considering the class

m̃∑
i=1

[γi] :=
m∑

i=1
[−→γi ] +m[z],

where z is as in Proposition 5.1.1. Such a lift is usually referred to as a Johnson lift
in the context of non-vanishing vector fields, where the coefficients of the respective
homologies are taken in the field Z2 [Joh80, Section 3]. For simplicity, we will use the
same terminology here.

It is important to notice that the Johnson lift of homologies from H1(Σ̃;Z4) to
H1(PT Σ̃;Z4) is only well-defined up to a 2[z] summand. That is, changing the rep-
resentatives in the homology classes of the curves γi, . . . , γm will produce a lift in
H1(PT Σ̃;Z4) that can differ by a 2[z] summand. However, the function

Ωη(
m∑

i=1
[γi]) := ⟨[η],

m̃∑
i=1

[γi]⟩

vanishes on 2[z] and the value Ωη(∑m
i=1[γi]) is well defined in Z4 [LP20, Proposition

1.2.2].

Under some hypothesis, a line field on Σ̃ defines a Z4-extended quadratic form also
on the capped surface Σ. This is true is the corresponding zeros of the quadratic
differential associated have order divisible by 4.

Proposition 5.1.4. Let δi, . . . , δn be distinct simple closed curves on Σ̃ isotopic to
each of the boundary components of Σ̃ and suppose that ϕη(δi) ≡ 2 mod 4 for each
i = 1, . . . , n. Then, the winding number function ϕη defines a map Ωη : H1(Σ;Z4) → Z4

such that
Ωη(

m∑
i=1

[γi]) = 2m+
m∑

i=1
ϕη(γi) mod 4

for any finite collection of oriented simple closed curves γi, . . . , γm on Σ and

Ωη(a+ b) = Ωη(a) + Ωη(b) + 2i(a, b) (5.1)

for any a, b ∈ H1(Σ;Z4).

Proof. Let Ω̃η : H1(Σ̃;Z4) → Z4 be the Z4-extended quadratic form on Σ̃ defined by η
via the Johnson lift. In particular, the above properties are satisfied. Recall now that
the homology group H1(Σ;Z4) is the quotient of H1(Σ̃;Z4) by the boundary classes.
The requirement that ϕη(δi) ≡ 2 mod 4 for each i = 1, . . . , n implies that Ω̃η is trivial
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on the boundary classes and therefore induces a Z4-extended quadratic form Ωη on the
capped surface Σ.

The following lemmas are technical results needed to proceed with the proof of Theorem
5.3.1 in the next Section. We include them here for the sake of completeness.

Lemma 5.1.5. Let B = {α1, β1, . . . , αg, βg} be a symplectic basis of vectors in
H1(Σ;Z4). A Z4-extended quadratic form Ω on Σ is completely determined by the
values taken on B. Moreover, every Z4-extended quadratic form on Σ comes from a
line field on a fixed surface with boundary components Σ̃.

Proof. If v is a vector in H1(Σ;Z4), it can be written as the sum v = ∑g
i=1 aiαi +

biβi for some ai, bi ∈ Z4. In particular, the value Ω(v) can be rewritten as the sum∑g
i=1 aiΩ(αi) + biΩ(βi) + 2aibi by the property (5.1) proved in Proposition 5.1.4. The

last claim follws directly form Lemma 5.1.2.

Line fields and quadratic differentials

The winding number of a curve γ can also be given by counting with sign the number
of U-turns the line field makes relatively to the tangent field of γ, as ϕη(γ) coincides
with the signed intersection of [η(Σ̃)] with the lift of γ in PT Σ̃ as defined above.

The definition of winding number has only been given for line fields of surfaces with
non-empty boundary, and not for closed surfaces with points removed. However, line
fields on punctured closed surfaces exist but the Poincaré–Lefschetz theorem that we
used to define [η] can only be used if the underlying manifold is compact. Hence, in
what follows, we will refer to the winding number of a curve γ with respect to a line
field on a punctured closed surface as the number of U-turns made by the lift −→γ with
respect to the line field, similarly as defined in [Chi72, Definition 1.1].

Formally speaking, suppose Z is a finite set of points on Σ and let η be a line field on
the complement of Z. A C∞-embedding γ : S1 → Σ defines a pullback diagram

Eγ PTΣ

S1 Σ

F

pγ π

γ

where Eγ = {(θ, (l, p)) ∈ S1 ×PTΣ | γ(θ) = p}. By the universal property of pullbacks,
there exists a unique map ηγ : S1 → Eγ such that F ◦ηγ = η◦γ. Moreover, if −→γ denotes
the lift of γ in PTΣ, there exists a unique map Zγ : S1 → Eγ such that F ◦ Zγ = −→γ
by the same principle. Both the maps ηγ and Zγ can be seen as classes [ηγ] and
[Zγ] in π1(Eγ). In particular, it can be proved that the kernel of the homomorphism
pγ

∗ : π1(Eγ) → Z is cyclic and that [ηγ][Zγ]−1 ∈ ker pγ
∗ .
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The number of U-turns made by the lift −→γ with respect to the line field η is exactly
[ηγ][Zγ]−1. That is, the winding number of γ for a line field on the complement of
finitely many points on Σ is [ηγ][Zγ]−1. If all the above maps are pointed continuous
maps between pointed topological spaces, and in particular are pointed in p ∈ Σ \ Z,
the winding number function we get is a map of sets π1(Σ \ Z, p) → Z that can be
extended ϕη : H1(Σ \ Z;Z) → Z .

Let (X, q) be a holomorphic quadratic differential and Zq the set of zeros of q :
X → K⊗2

X . Consider an isotopy class of an orientation-preserving diffeomorphism
ϕ : (Σ,Z) → (X,Zq) or, in other words, a marking. The quadratic differential (X, q)
comes with a line field ηq defined on the complement of Zq, where every point p ∈ X\Zq

is mapped to the unique line lp of the horizontal foliation on X defined by q as the set
of smooth paths in X whose tangent vectors at each point evaluate positively under q.
The differential map dϕ−1 pushes the line field ηq forward to a line field d(ϕ−1)∗(ηq) on
Σ\Z. In particular, if the quadratic differential (X, q) lies in the stratum Q(k1, . . . , kn)
and ξi is a free loop around the singularity pi with order ki, the winding number of ξi

is ki + 2 if pi is a zero of q. If Q0 ∈ T Q(k) is a marked quadratic differential, we will
denote by ϕr

Q0 the winding number associated.

γ2

γ1

a b

b a ξ1

Figure 5.1: The first picture from the left is a quadratic differential in the stratum
Q(8). Edges with no labels are identified via a translation. The thinnest horizontal
lines represent some of the leaves of the horizontal foliation. The red line γ1 has winding
number ϕq(γ1) = 0, while the blue line γ2 has winding number ϕq(γ2) = 1. The leaves
of the horizontal foliation around the singularity p1 are depicted on the picture on the
right-hand side, where it can be checked that the winding number function of ξ1 is 10.
Note that it corresponds to the number of tangency points of ξ1 with the leaves of the
foliation.

We will now explain how a line field on a marked quadratic differential (X,ϕ, q) defines
a winding number function modulo r = gcd(k) and Z4-extended quadratic form on Σ
when 4 divides r. To do that, we will compare the induced winding number function of
such a line field with the winding number function of a blown-up quadratic differential.
Mutatis mutandis, the construction is similar to the one made for abelian differentials
[BSW22, Section 3].

Let Σ̃ have δ1, . . . , δn as boundary components. We equip every boundary component
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a b

b a

Figure 5.2: The blow-up of a quadratic differential. On the top right hand side, a
polygonal representation of a quadratic differential has been cut in triangles. The
picture at the bottom show how to turn the triangles in hexagon, where the new blue
edges correspond to blow ups of the vertices.

δi with angular coordinates given by a orientation-reversing maps βi : δi → R/(π(ki +
2)Z). Let (Σ,Z) be the pair consisting of a surface Σ of genus g obtained from Σ̃ by
capping the boundary components by open disks, and a finite set Z given by marking
every added disk with a unique point pi. If (X,ϕ, q) is a marked translation surface of
type (k1, . . . , kn) on (Σ,Z), a marked blown-up quadratic differential of (X,ϕ, q) is a
pair (Bl(X, q), ϕ̃) where ϕ̃ : Σ̃ → Bl(X, q) is an orientation-preserving diffeomorphism
mapping every δi to ∂iBl(X, q), such that αi ◦ ϕ̃ ≡ βi mod 2π for every i = 1, . . . , n
and the following diagram commutes

Σ̃ Bl(X, q)

Σ X,

ϕ̃

Cap c

ϕ

where the map Cap : Σ̃ → Σ is the capping map.

Let Q0 = (X,ϕ, q) be a marked quadratic differential of type k with horizontal line
field ηQ0 and winding number ϕQ0 . The blown up quadratic differential Bl(X, q) comes
with a line field η̃Q0 such that ηQ0(c(p)) ≡ η̃Q0(p) for any p ∈ Bl(X, q). Let us
choose a marking ϕ̃ : Σ̃ → Bl(X, q) lying over ϕ : Σ \ Z → X. The line fields
d(ϕ−1)∗(ηQ0) and d(ϕ̃−1)∗(η̃Q0), respectively defined over Σ \ Z and Σ̃, define winding
number functions where each curve around a point in Z or boundary curve is a multiple
of r by hypothesis. Both the line fields define winding number function modulo r on
the closed surface Σ that necessarily coincide. In particular, by Proposition 5.1.4, the
associated Z4-extended quadratic form ΩQ0 on Σ is well-defined if 4 divides r.
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§ 5.2 | Improved lower bound on the number of con-
nected components

For the rest of the note, we will refer to line fields induced by non-vanishing vector
fields as trivial. A line field η is trivial if and only if its winding number function ϕη

has only even values [LP20, Lemma 1.1.4]. Hence, a line field is non-trivial if and only
if there exists at least one simple closed curve with odd winding number.

The mapping class group Mod(Σ̃) acts on the set winding number functions ϕη of line
fields. If f ∈ Mod(Σ̃) and γ is the isotopy class of a simple closed curve on Σ̃, then

f · ϕη(γ) = ϕη(f−1(γ)).

The following results characterizes orbits of winding number functions.

Proposition 5.2.1. [LP20, Theorem 1.2.4] Suppose g ≥ 2 and δ1, . . . , δn are boundary
components of Σ̃. Non-trivial line fields η1 and η2 on Σ̃ are in the same orbit of the
mapping class group Mod(Σ̃) if and only if ϕη1(δi) = ϕη2(δi) for every i = 1, . . . , n.

The subgroup of mapping classes in Modg that stabilize a winding number function ϕr
η

modulo r on a closed and connected oriented surface Σ will be denoted by Modg[ϕr
η].

Here, we suppose that r = gcd(k1, . . . , kn) where ϕη(δi) = ki + 2 for every i = 1, . . . , n.

Proposition 5.2.2. Let η be a non-trivial line field on Σ̃ such that k1 +2, . . . , kn +2 ∈
Z+ are the values of ϕη given by the boundary loops δ1, . . . , δn of Σ̃, respectively. If
r = gcd(k1, . . . , kn) is even, the index [Modg : Modg[ϕr

η]] is (r/2)2g((r/2)2g − 1). If r is
odd, the index [Modg : Modg[ϕr

η]] is r2g − ((r + 1)/2)2g.

Proof. By the Orbit-Stabilizer theorem, the index of Modg[ϕr
η] is given by the cardi-

nality of the orbit of ϕr
η under the action of Modg. By Proposition 5.2.1, the claim

follows by counting the number of winding functions modulo r associated with line
fields that are not trivial. Since any winding number function is uniquely determined
by the values taken on a fixed symplectic basis, by Lemma 5.1.2 there is a total of r2g

possibilities for winding number functions modulo r associated to line fields. Trivial
line fields have even winding number functions. Then, there are (r/2)2g winding num-
ber functions associated with trivial line fields if r is even, and ((r + 1)/2)2g if r is
odd.

Theorem F will be proved by means of the topological monodromy map. For this
reason, we will now define the topology of the Teichmüller strata T Q(k). A holo-
morphic quadratic differential q on a genus g Riemann surface X defines a unique
Teichmüller mapping h : X → Y with initial quadratic differential q and stretch fac-
tor (1 + ∥q∥)/(1 − ∥q∥), where ∥q∥ =

∫
X |q| [FM12, Section 11.4]. The assignment
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(X, q, ϕ) 7→ (Y, h ◦ ϕ) gives the set of all genus g marked holomorphic quadratic differ-
entials T Qg the structure of cotangent bundle of the Teichmüller space Tg. The space
T Qg can be then stratified in subvarieties T Q(k) of complex dimension 2g + n − 2.
[Vee90]. More precisely, one can assign local cohomological coordinates to T Q(k)
starting from the following classic construction.

Proposition 5.2.3. [Lan04, Construction 1] Let (X, q) be a meromorphic quadratic
differential with only simple poles, if any. If q is not the square of an abelian differential,
there exists a unique minimal canonical (possibly ramified) double cover π : X ′ → X

where X is endowed with an abelian differential ω and π∗(q) = w2. The set of critical
values of π is the set of singularities of Q of odd degrees.

On the complement of the set Zq of singularities of (X, q), the double branched cover
π : X ′ → X is regular and corresponds to the conjugacy class of a normal subgroup
N ◁π1(X \Zq) of index 2. If ϕ : Σ → X is a marking for (X, q), then the image ϕ−1

∗ (N)
under the homomorphism induced by ϕ−1 is a normal subgroup of π1(Σ\Z) of index 2,
where Z = ϕ−1(Zq). Again by the Galois correspondence, there exists a double cover
πtop : Σ′ \ Z ′ → Σ \ Z corresponding to the conjugacy class of the normal subgroup
ϕ−1

∗ (N). Moreover, the marking ϕ has two lifts ϕ′
1, ϕ

′
2 : Σ′ \ Z ′ → X ′ \ Zω, where Zω

is the set of singularities of one of the two roots of ω2 and π ◦ ϕ′
i = ϕ ◦ πtop holds for

i = 1, 2. Notice that both ϕ′
1 and ϕ′

1 can be extended to Σ′.

The marked abelian differentials (X ′, ϕ′
1, ω) and (X ′, ϕ′

1, ω) are points in the Teichmüller
strata of abelian differentials T (l1, . . . , lm), where (l1, . . . , lm) is a partition of 2g′ − 2
if g′ is the genus of X ′ and the numbers (l1, . . . , lm) are obtained from (k1, . . . , kn) by
the following rule: each even ki returns a pair of singularities of order ki/2; each odd
ki returns a single zero of order ki + 1 and associates a regular point to a pole.

If ι is the involution generating the deck transformation group of πtop, its induced map
in homology ι∗ : H1(Σ′,Z ′;C) → H1(Σ′,Z ′;C) splits the vector space H1(Σ′,Z ′;C)
into the direct sum V1 ⊕ V−1 of invariant and anti-invariant vectors of ι∗, respectively.
If τ is a triangulation of Σ where the vertices correspond to the points in Z and ϕ(τ)
is a collection of saddle connections, there exists a triangulation τ ′ of Σ′ obtained by
lifting the edges of τ via πtop. The images of the edges are still mapped to saddle
connections under the markings ϕ′

1 and ϕ′
2 and the vertices of τ ′ correspond to the

points in Z ′. Note that τ ′ is set-wise fixed by the involution ι. Then, by construction,
the marked abelian differentials T1 = (X ′, ϕ′

1, ω) and T2 = (X ′, ϕ′
2, ω) coming from the

marked quadratic differential (X,ϕ, q) are contained in the intersection Uτ ′ ∩hol−1
τ ′ (V−1)

and, since the two markings ϕ′
1 and ϕ′

2 differ by the action of the involution ι, we have
that holτ ′(T1) = − holτ ′(T2). Note that the choice of −ω instead of ω as a square root
of π∗(q) would have produced the same pair of points in cohomology. By choosing one
of the two lifts, ϕ′

1 or ϕ′
2, we get a local mapping T Q(k) → T (l).
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Fix a component L of a stratum Q(k) and a marked quadratic differential Q0 =
(X, f, q). Then, we can define a topological monodromy map ρL : πorb

1 (L, Q0) →
Modg as induced by T L → Tg. Recall that the group πorb

1 (L, Q0) is the set of all
homeomorphisms of the universal cover T̃ L that commute with T̃ L → Mg. The
following is an application of Lemma 2.4.1.

Lemma 5.2.4. Let L be a component of a stratum Q(k1, . . . , kn) for g ≥ 2 and Q0 a
marked quadratic differential in T L. The image Im ρL of the topological monodromy
is the stabilizer in Modg of the connected component of T L containing Q0.

The winding number ϕQ0 induced on a punctured closed surface of genus g by a marked
quadratic differential (X,ϕ, q) can be extended modulo r = gcd(k1, . . . , kn) to be a
function on the set S of isotopy classes of simple closed curve of a closed genus g
surface when the orders of the singularites of q are all divisible by r. More precisely,
the winding numbers of cycles in Σ \ Zq that encircle the singularites of q, all differ
from the non-essential cycle in PT (Σ\Zq) by the orders ki, as explained in the previous
section. In these cases, the winding number function ϕQ0 induces a map ϕr

Q0 : S → Zr.

Lemma 5.2.5. Let Q0 = (X, f, q) be a marked quadratic differential in T L and L a
component of Q(k1, . . . , kn). If r = gcd(k1, . . . , kn), the winding number function ϕr

Q0

of any smooth, oriented simple closed curve on Σ is constant on each component of
T L.

Proof. Fix a smooth, oriented simple closed curve γ on Σ. The map ϕr
•(γ) : T L → Zr

returning the winding number of γ modulo r with respect to the line field d(f−1)∗(ηq)
is a continuous map since the horizontal line field ηQ0 depends continuously on Q0.
However, a continuous map into a discrete space must be constant on the connected
components.

Proof of Theorem F. By Lemma 5.2.5, winding numbers modulo r are invariants for
the connected components of T Q(k1, . . . , kn). By Lemma 5.2.4, we only need to count
the cardinality of the orbit of winding numbers modulo r by the action of the mapping
class group Modg, which is given by Proposition 5.2.2.

§ 5.3 | The case 4|r
The symplectic group Sp(2g,Z) acts of the set of Z4-extended quadratic forms Ωη. If
M ∈ Sp(2g,Z) and a ∈ H1(Σ,Z4), then

M · Ωη(a) = Ωη(M−1(a)).

Let us denote by Sp(2g,Z)[Ωη] the stabilizer of a Z4-extended quadratic form Ωη in
the symplectic group Sp(2g,Z). In this section, we prove that that the image of the
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symplectic monodromy ρZL of a non-hyperelliptic connected component of a stratum of
quadratic differentials in genus g ≥ 3 is contained in some Sp(2g,Z)[Ωη] whenever 4
divides r. Once the containment has been proved, Corollary 2 will follow from Theorem
5.3.1.

Theorem 5.3.1. Let Ωη be a Z4-extended quadratic form induced by a non-trivial
line field on surface Σ̃ with boundary. Then, the index [Sp(2g,Z) : Sp(2g,Z)[Ωη]] is
22g(22g − 1) if g ≥ 2.

Proof. By the Orbit-Stabilizer Theorem, the index of Sp(2g,Z)[Ωη] is the same as the
cardinality of the orbit {M · Ωη | M ∈ Sp(2g,Z)}. A Z4-extended quadratic form is in
the orbit of Ωη if and only if is not even, that is if its image is not contained in 2Z4.

Suppose M · Ωη is even. If ϕη is the winding number function that induces Ωη, then
M · ϕη is even too as it differ by 2 modulo 4 from M · Ωη. Therefore, if f ∈ Modg

is a mapping class with image in Sp(2g,Z) the matrix M , we have that the line field
f · η is trivial by Proposition 5.2.1. If Ω is a Z4-extended quadratic form that is not
even, then there exists a line field η′ on Σ̃ such that Ω = Ωη′ . In particular, its winding
number function η′ is non-trivial and by Proposition 5.2.1 there exists a mapping class
f ∈ Modg such that η = f · η′. Then, if M ∈ Sp(2g,Z) is the image of a mapping class
f , we have M · Ωη′ = Ωη.

Hence, we only have to count the number of Z4-extended quadratic forms that are
not even. By Lemma 5.1.5, any two Z4-extended quadratic form are equal if and
only if they coincide on a fixed symplectic basis B. Hence, there are 42g Z4-extended
quadratic form on Σ in total. The even Z4-extended quadratic form are 22g, as the only
values taken are even. Hence, the orbit {M · Ωη | M ∈ Sp(2g,Z)} counts 22g(22g − 1)
elements.

Proof of Corollary 2. Because of Lemma 5.2.4 and Theorem 5.3.1, we only need to
show that the stabilizer in Modg of ΩQ0 contains the stabilzer of ϕ4

Q0 . However, this
follows from the surjectivity of the symplectic representation ψg : Modg → Sp(2g,Z)
of the mapping class group.

§ 5.4 | The Rauzy–Veech cycle
In this section, we introduce the Rauzy–Veech cycle and prove Corollary 1.

In 2009, Walker proved that the connected components of the Teichmüller strata of the
form T Q(2g, k1, . . . , kn) are classified by non-zero vectors inH1(Σ,Z2) [Wal09, Theorem
1]. When r is even, one can associate each component of the stratum T Q(k1, . . . , kn)
with a non-zero vector in H1(Σ,Z2) via the following assignment. First, we pick an
arbitrary marked quadratic differential Q and consider the canonical double cover π :
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T → Q associated to Q. Here, T is the square of an abelian differential and the
canonical double cover pulls back the quadratic differential Q to T . The canonical
double cover π : T → Q is not ramified and has a holonomy representation holQ :
π1(Q) → Z2. The holonomy holQ can be extended to the homology group H1(Σ,Z2)
since Z2 is abelian and is defined as follows. If we consider the connection on the
tangent space of Q induced by the flat metric of the respective quadratic differential,
the holonomy holQ([γ]) of the cycle [γ] returns 0 ∈ Z2 if the parallel transport along γ
brings a vector back to itself and 1 ∈ Z2 if a vector is brought back to its opposite.

The Rauzy–Veech cycle RVQ associated to Q is the cycle in H1(Σ,Z2) that is dual to
the cohomology class of holQ. Notice that the Rauzy–Veech cycle is the dual cycle of
the winding number function ϕQ modulo 2. Indeed, if γ is a simple closed curve on
Σ and has non-trivial holonomy, then its winding number is necessarily odd. On the
other hand, if γ has trivial holonomy, its winding number is even.

If Q is given together with a polygonal representation as a half-translation surface,
the Rauzy–Veech cycle RVQ can be constructed as follows. Consider the family of
saddle connections of Q that bound the polygonal representation of Q. Here, we
suppose that our polygonal representation consists of only one polygon and all vertices
are singular. Hence, the cycles θ1, . . . , θ2g+n−1 obtained by joining the midpoints of
the paired sides of Q form a natural basis for the homology of Q modulo 2, relative
to the singular points. Suppose θi corresponds to a pair of edges a half-translation
identifies. Then, the winding number of θi must be odd, as the holonomy is non-trivial.
On the other hand, a cycle θi corresponding to a pair of edges a pure translation
identifies has even winding number and ϕ2

Q(θi) = 0 mod 2. Given the epimorphism
p∗ : H1(Σ \ Z;Z2) → H1(Σ;Z2), the Rauzy–Veech cycle RVQ is the cycle

RVQ =
2g+n−1∑

i=1
ϕ2

Q(p∗(θi))p∗(θi).

Theorem F and Corollary 2 show that, in general, the dual of the Rauzy–Veech cycle is
not the correct invariant to classify the components of Teichmüller strata of quadratic
differentials, as there might be roots of the dual vector RV ∗

Q if r is, for example,
even. However, in some cases where r = 2, the dual of the Rauzy–Veech cycle is the
right invariant and we are able to show that the symplectic monodromy image is full
inside the stabilizer in Sp(2g,Z) of the winding number function ϕ2

Q modulo 2, which
corresponds to the stabilizer of RV ∗

Q. The first step towards the proof of Corollary 1 is
the following construction, known as the Thurston–Veech construction [Thu88].

Let α = {α1, . . . , αs} and β = {β1, . . . , βt} be transverse multicurves that fill Σ into
n disks D1, . . . , Dn. The cellularization given by the curves in α and β defines a
dual cellularization in squares. Here, each disk Di corresponds to a point pi ∈ Di,
and for any two adjacent disks Di and Dj we construct an arc in Di ∪ Dj from pi
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to qj that passes through the common edge. If we declare each square to be a flat
unit square, we get a flat metric with cone angles given by (ki + 2)π, where ki + 2
is the number of components of α (equivalently of β) that bound the disk Di for
each i = 1, . . . , n. The half-translation surface structure on Σ has the curves in α

and β as vertical and horizontal cylinders, respectively. Moreover, the Thurston–Veech
construction returns a translation surface structure if and only if there exists a coherent
way of orienting the multicurves so that their geometric intersection coincides with the
algebraic intersection. We will denote by Q(α, β) the marked quadratic differential
obtained from multicurves α and β via the Thurston-Veech construction.

Figure 5.3: A half-translation surface in Q(14) in genus 2. Opposide sides with no
arrows are identified via the appropriate complex translations.

Let us consider a genus g ≥ 5 closed surface Σ and two sets of multicurves {α1, . . . .αg}
and {β1, . . . , βg} that form a symplectic basis B on Σ. Moreover, let γi be a simple
closed curve that intersects once βi and βi+1 for every i = 1, . . . , g − 1 and has trivial
geometric intersections with the rest of the curves in B. If we fix τ ∈ Modg to be
the hyperelliptic involution that fixes the chain of curves {α1, β1, γ1, β2 . . . , βg, αg}, the
two multicurves {α1, α2, τ(α2), . . . , αg−1, τ(αg−1), αg, γ1, . . . .γg−1} and {β1, . . . , βg} fill
the surface Σ. However, it is always possible to coherently orient the multicurves so
that the geometric and algebraic intersection coincide [CS21, Lemma 6.13]. Then, we
replace β1 and β3 by a simple closed curve b as in Figure 5.4. Note that β1, β3 and b

bound a pair of pants and the geometric intersection of b with α2 is 2, whereas their
algebraic intersection is 0 no matter the orientation we choose.
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α1
α2 α3 α4 α5

αg−1

αg

τ(αg−1)
τ(α5)τ(α4)τ(α3)

τ(α2)

b
γ1 β2 γ2γ2 γ3 γ4 γg−1

β4 β5 βg−1 βg

Figure 5.4: A set of multicurves on Σ, where there is no possible way to orient the
multicurves so that the geometric and algebraic intersection of each pair coincide.

If we denote by α the multicurve {α1, α2, τ(α2), . . . , αg−1, τ(αg−1), αg, , γ1, . . . .γg−1} and
by β the multicurve {b, β2, β4, . . . , βg}, the half-translation surface Q(α, β) represents
a marked quadratic differential in the Teichmüller stratum T Q(22g−2). Indeed, the
multicurves α and β fill Σ into 2g − 2 disks D1, . . . , D2g−2 that are bound by exactly
4 arcs of the curves in α (or equivalently in β).

Remove from α any subcollection of curves in the set {τ(α2), . . . , τ(αg−1), α6, . . . , αg}.
The remaining curves in α, together with the multicurve β, still fill Σ and no possible
orientation can make the geometric and algebraic intersection between α2 and b coin-
cide, thus yielding us a proper quadratic differential. Suppose we ignore exactly one
curve in α that is not one between α1, . . . , α5 of any of the γi’s. The number of disks
cut is now 2g − 3, where 2g − 4 disks correspond to singularities of order 2 (or, equiv-
alently, with cone angle 4π) as before and one of them is of order 4 (or, equivalently,
with cone angle 6π).

More generally, the Thurston–Veech construction can be used to obtain a marked
quadratic differential in any Teichmüller stratum T Q(24, k) where k is any parti-
tion of 4g − 8 in even natural numbers, by removing a subcollection of curves in
{τ(α2), . . . , τ(αg−1), α6, . . . , αg} from α. Indeed, the even partitions of 4g − 8 are in
one-to-one correspondence with the partitions of 2g−4, and the correspondence can be
made explicit dividing any integer in an even partition of 4g − 8 by 2. The integers in
the partition (12g−4) can be labeled by the corresponding disks of the Thurston-Veech
construction obtained by filling Σ with α ∪ β. Starting from the partition (12g−4), it
is possible to obtain any other partition of 2g − 4 by iteratively summing any two in-
tegers which corresponding disks are adjacent or, equivalently, by removing one curve
between {τ(α2), . . . , τ(αg−1), α6, . . . , αg} from α.

Proposition 5.4.1. Let g ≥ 5 and k be a partition of 4g − 6. Then, there exists
a multicurve α̂ of α containing α1, . . . α5 and any γi for i = 1, . . . , g − 1 such that
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Q(α̂, β) ∈ T Q(24, k). In particular, the image of the monodromy

ρQ(24,k) : πorb
1 (Q(24, k), Q(α̂, β)) → Modg

contains the group generated by the Dehn twists about the curves in α̂ ∪ β.

Proof. The multicurve α̂ can be obtained as above by ignoring a subset of curves
in {τ(α2), . . . , τ(αg−1), α6, . . . , αg}. The marking associated to the marked quadratic
differential Q(α̂, β) maps the curves in α̂ to vertical cylinders and the curves in β to
horizontal cylinders. Then, the Dehn twists about any curve in α̂ ∪ β is given by
cylinder shears as in Chapter 4.

Each of the marked quadratic differentials of the form Q(α̂, β) comes with a non-
trivial line field, as there is no coherent way to orient the curves in α̂ ∪ β so to match
the algebraic and geometric intersections and the flat metric of the Thurston–Veech
construction is not coming from a translation surface structure. In the following, the
admissible group will be the subgroup T [α̂, β] of Modg[ϕ2

Q(α̂,β)] generated by the Dehn
twists about the curves in α̂ ∪ β.

Lemma 5.4.2. Let Q(α̂, β) be the marked quadratic differential obtained from the
Thurston–Veech construction via the sets of multicurves α̂ and β. Then, the Rauzy–
Veech cycle RVQ(α̂,β) associated with Q(α̂, β) is the cycle [β1 + β3] ∈ H1(Σ;Z2).

Proof. Recall that the winding number function ϕQ(α̂,β) modulo 2 is uniquely deter-
mined by the values taken on the symplectic basis B by Lemma 5.1.2. Its mod 2
version is denoted by ϕ2

Q(α̂,β). Any curve in α̂ is a cylinder and, in particular, has a
trivial winding number. Also the curves α6, . . . , αg have a zero winding number, since
[αi +αi+1] and [γi] represent the same cycle in H1(Σ;Z2) for any i = 6, . . . , g−1 and by
homological coherence it is possible to inductively prove that ϕ2

Q(α̂,β)(αi) ≡ 0 mod 2.
Again by homological coherence, we have that ϕ2

Q(α̂,β)(β1) ≡ ϕ2
Q(α̂,β)(β3) holds and must

return an odd winding number. Indeed, the winding number ϕ2
Q(α̂,β) is uniquely deter-

mined by the values on B and cannot be trivial. Therefore, the homomorphism ϕ2
Q(α̂,β)

is the dual of the cycle [β1 + β3] ∈ H1(Σ;Z2).

We can now prove Corollary 1. We will prove that the stabilizer in Sp(2g,Z) of the
winding number function ϕQ(α̂,β) modulo 2 associated to the marked quadratic differen-
tial Q(α̂, β) is generated by transvections Tv where v is a primitive vector represented
by the simple closed curves in α̂ ∪ β. In other words, we will prove that ψg(T [α̂, β])
coincides with Sp(2g,Z)[ϕ2

Q(α̂,β)]. We remind the reader that for any v, w ∈ Z2g repre-
sented by isotopy classes of simple closed curves on Σ we have Tv(w) = w + i(w, v)v,
where i(w, v) is the algebraic intersection between v and w. Moreover, any Dehn twist
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Tγ is mapped to the transvection about the cycle of γ via the symplectic representation
ψg [FM12, Proposition 6.3].

Before proving Corollary 1, we observe that it is possible to find a mapping class
hi ∈ T [α̂, β] such that hi(α4) = αi for i = 6, . . . , g. Then, the Dehn twists Tαi

for i = 6, . . . , g are elements of T [α̂, β] since Tαi
can be written as the compo-

sition hTα4h
−1. We first can consider h6 to be the composition of Dehn twists

Tγ6Tβ5Tβ6Tγ6Tα5Tβ5Tγ5Tβ4 [FM12, Proof of Theorem 4.14] and note that by twist-
linearity in Proposition 5.1.1, the Dehn twist Tα6 acts trivially on ϕ2

Q(α̂,β) and, more im-
portantly, the Dehn twist Tα6 is contained in the admissible subgroup T [α̂, β] generated
by the Dehn twists about the curves in α̂∪β. Iteratively, one can use the mapping class
hi = Tγi+2Tβi+1Tβi+2Tγi+2Tαi+1Tβi+1Tγi+1Tβ1 in T [α̂, β] to show that ∏i

j=6 hj(α4) = αi for
any i = 6, . . . , g. Hence, we have shown that the transvections T[αi] for i = 2, . . . , g
are contained in ψg(T [α̂, β]). The transvections T[βj ] and T[γk] for j = 2, 4, 5 . . . , g
and k = 2 . . . , g − 1 are already in ψg(T [α̂, β]) by construction. Note also that
T[β1+β3] = T[b] ∈ ψg(T [α̂, β]).

Proof of Corollary 1. The stabilizer Sp(2g,Z)[α1] of the cycle [α1] ∈ H1(Σ;Z2) in
Sp(2g,Z) is generated by finitely many transvections [DDPR25, Theorem 2]. In par-
ticular, we have

Sp(2g,Z)[α1] = ⟨T[α1], T[αi], T[βi], T[γj ] | i = 2, . . . , g, j = 1, . . . , g − 1⟩.

Since the symplectic group Sp(2g,Z) acts transitively on the symplectic bases, there
exists M ∈ Sp(2g,Z) such that M([α1]) = [α1 + α3] and M([β3]) = [β1 + β3] that fixes
the all the other cycles in B other then α1 and β3. Under the inner automorphism
induced by M , the group Sp(2g,Z)[α1] is isomorphic to the stabilizer of the cycle
[α1 + α3] ∈ H1(Σ;Z2) and

Sp(2g,Z)[α1 + α3] =
〈
T[α1+α3], T[αi], T[β1+β3], T[βj ], T[γ1+α3], T[γk]

∣∣∣∣∣∣
if i = 2. . . . , g
if j = 2, 4, 5 . . . , g
if k = 2 . . . , g − 1

〉
.

The vector field Z2g
2 , endowed with the algebraic intersection number, is isomorphic to

Hom(Z2g
2 ,Z2) via the symplectomorphism v 7→ i(v, •), under which the cycle [α1 + α3]

is mapped to the dual of [β1 +β3] or, in other words, to ϕ2
Q(α̂,β). Any symplectic matrix

fixing [α1 + α3] must necessarily stabilize ϕ2
Q(α̂,β), and viceversa, since

M · i(v, w) = i(v,M−1w) = i(Mv,w)

holds for any v, w ∈ Z2g
2 . Then, we have that M ∈ Sp(2g,Z)[α1 + α3] if and only if

M stabilizes the homomorphism ϕ2
Q(α̂,β). To show that the image of T [α̂, β] under the

symplectic representation ψg is the stabilizer Sp(2g,Z)[ϕ2
Q(α̂,β)], we only need to prove
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that both the transvections T[γ1+α3] and T[α1+α3] are in ψg(T [α̂, β]).

Step 1: T[γ1+α3] ∈ ψg(T [α̂, β]). We orient all the curves in α̂ ∪ β but b so that the
pairwise algebraic intersection is 1. In particular, we obtain that [γ1 + α1 + α2] = 0
and [γ2] = [α2 + α3] in H1(Σ;Z) with integer coefficients1. The reader can check
that the composition of transvections M = T[β2]T[γ1]T

−1
[γ2]T[β2] maps the cycle [α2] to

−[α1 + α2 + α3]. Then, the self-symplectomorphism MT[α4]M
−1 = T−[α1+α2+α3] =

T[α1+α2+α3] is in ψg(T [α̂, β]).

Step 2: T[α1+α3] ∈ ψg(T [α̂, β]). Let δ be the simple closed curve as in Figure 5.5 whose
homology class is [α1 + α3]. By the lantern relation in Modg [FM12, Proposition 5.1],
we have that

Tα2TδTc = Tγ1Tγ2Tα2Tα3 ,

where c is a simple closed curve in Figure 5.5. The image of such a relation in Sp(2g,Z)
implies that T[δ] = T[α1+α3] is in ψg(T [α̂, β]) if and only if T[c] is. But [c] = [α1 +α2 +α3]
and we are done by the previous step.

α1

γ1 γ2 α3

δ

c

α2

Figure 5.5: The curves involved in the lantern relation of the Step 2 in the proof of
Corollary 1.

§ 5.5 | Proof of Theorem G
In this last section we show how to obtain Theorem G using the Thurston–Veech
construction adopted to prove Corollary 1. The possible partitions k of 4g − 4 for
which we prove T Q(k) to be connected are of the form k = (13, k1, . . . , kn) and can
be derived recursively from the graph Cg in Figures 1.3 and 1.2 by applying a finite
number of elementary edge-collapses. We recall that that an elementary edge collapse
is one of the following two operations. An elementary collapse of an unlabeled edge
e consists in replacing the edge e and its endpoints v1 and v2, labelled by l1 and l2,
respectively, by a new vertex v with label l1 + l2. The new vertex v is adjacent to any

1Here, to keep the notation as simple as possible, we did not make any distinction in notation
between cycles with Z2 or Z coefficients. However, we will always specify the coefficients considered.
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other vertex on the graph that previously shared an edge with one of v1 or v2. If e is
an edge with a label δi for some i = 1, . . . , d, by an elementary collapse of e we mean
the edge collapses of e together with the unique other edge labelled by δi.

In the appendix, we include a Python code that can be used to check whether or not
a given partition can be obtained form the partition associated with Cg by a finite
number of elementary edge-collapses.

Proof of Theorem G. Let α = {α1, α2, γ1, . . . , γg−1} and β = {b, β1, . . . , βg} be the mul-
ticurves on Σ shown in Figure 5.6. Note that the Humphries generating set of Modg

is given by the Dehn twists about the curves in α ∪ β \ {b} [Hum79]. The algebraic
and geometric intersection between b and α2 cannot coincide, whatever orientation we
choose to give them. Hence, the multicurves α and β can be upgraded to a marked
half-translation surface structure on Σ that is not a translation surface structure. In
particular, any marked quadratic differential obtained via the Thurston–Veech con-
struction via a family of multicurves containing α∪β produces a surjective topological
monodromy and, by Lemma 5.2.4, a connected Teichmüller stratum.

α1
α2

b γ1 β2 γ2γ2 γ3 γ4 γg−1

β4 β5 βg−1 βg
β1 β3

Figure 5.6: The multicurves α and β. The flat structure obtained from them produces
a marked quadratic differential in T Q(13, 4g − 7).

Suppose now we add to α the isotopy classes of the curves
{α3, . . . , αg, τ(α2), . . . , τ(αg)}, where τ is the hyperelliptic involution associated
with the chain α1, β1, γ1, β2 . . . , βg, αg, as in the Figures 5.7 and 5.8. The curves
δ1, . . . , δd, where d = g−3

2 if g is even and d = g−4
2 if g is odd, can be added to β so to

obtain a marked quadratic differential in T Q(12g−2, 2g−1) if g is odd and T Q(12g−4, 2g)
if g is even.

Indeed, the disks that the curves in the Figures 5.7 and 5.8 fill Σ into are bounded
by a total of 6 or 8 arcs and represent singularities of order 1 or 2, respectively, in
the associated marked quadratic differentials. The graph Cg is then defined as follows.
Every vertex corresponds to a disk identified by the curves in the Figures 5.7 and 5.8
that is bounded by at least one arc of a curve not in α or β. The label of a vertex
is either 1 or 2 depending by the order of the singularity in the associated marked
quadratic differential. Two vertices are adjacent if and only if the respective disks are
bounded by the same arc. An edge has as label δi if the vertices it connects represent
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α3 α4 α5
αg−1

αg

τ(αg−1)
τ(α5)τ(α4)τ(α3)

τ(α2)

δ1 δd

Figure 5.7: The green curves represent the curves we add to the collection α ∪ β, if g
is odd.

α3 α4 α5
αg−1

αg

τ(αg−1)
τ(α5)τ(α4)τ(α3)

τ(α2)

δ1 δd

Figure 5.8: The green curves represent the curves we add to the collection α ∪ β, if g
is even.

disks bounded by an arc of the curve δi. An elementary edge-collapse of Cg corresponds
to the deletion of the curves associated to the collapsed edge.



Appendix A

Python code for the partitions of Cg

Planar graphs can be implemented in Python. Here, we display our approach. The
two methods collapse_edge(self, v1, v2), where v1, v2 are adjacent vertices,
and collapse_edges_with_label(self, target_label), where target_label is an
integer i representing the label δi, correspond to the two possible elementary edge-
collapses.

1 import networkx as nx
2 import m a t p l o t l i b . pyplot as p l t
3 import uuid
4 import i t e r t o o l s
5 from i t e r t o o l s import combinations , product
6
7 c l a s s Vertex : #Vertex c l a s s
8 d e f __init__ ( s e l f , id , l a b e l=None ) :
9 s e l f . i d = i d

10 s e l f . l a b e l = l a b e l
11
12 d e f __repr__( s e l f ) :
13 r e t u r n f " Vertex ( i d={ s e l f . i d } , l a b e l ={ s e l f . l a b e l }) "
14
15 c l a s s PlanarGraph : #Graph c l a s s
16 d e f __init__ ( s e l f ) :
17 s e l f . v e r t i c e s = {}
18 s e l f . adjacency = {}
19 s e l f . e d g e _ l a b e l s = {}
20
21 d e f add_vertex ( s e l f , id , l a b e l=None ) :
22 i f i d i n s e l f . v e r t i c e s :
23 r a i s e ValueError ( f " Vertex { i d } a l r e a d y e x i s t s . " )
24 s e l f . v e r t i c e s [ i d ] = Vertex ( id , l a b e l )
25 s e l f . adjacency [ i d ] = s e t ( )
26
27 d e f add_edge ( s e l f , v1 , v2 , l a b e l=None ) :
28 i f v1 not i n s e l f . v e r t i c e s or v2 not i n s e l f . v e r t i c e s :
29 r a i s e ValueError ( " Both v e r t i c e s must e x i s t . " )
30 key = t u p l e ( s o r t e d ( ( v1 , v2 ) ) )
31 i f key i n s e l f . e d g e _ l a b e l s :
32 r a i s e ValueError ( f " Edge {v1}−{v2} a l r e a d y e x i s t s . " )
33 s e l f . e d g e _ l a b e l s [ key ] = l a b e l
34 s e l f . adjacency [ v1 ] . add ( v2 )
35 s e l f . adjacency [ v2 ] . add ( v1 )
36
37 d e f g e t _ v e r t i c e s ( s e l f ) : #Returns a l i s t o f ( id , l a b e l ) p a i r s f o r a l l v e r t i c e s .
38 r e t u r n [ ( v . id , v . l a b e l ) f o r v i n s e l f . v e r t i c e s . v a l u e s ( ) ]
39
40 d e f get_edges ( s e l f ) : #Returns a l i s t o f ( v1 , v2 , l a b e l ) t r i p l e s f o r a l l edges .
41 r e t u r n [ ( v1 , v2 , l b l ) f o r ( v1 , v2 ) , l b l i n s e l f . e d g e _ l a b e l s . i tems ( ) ]
42
43 d e f remove_vertex ( s e l f , i d ) :
44 i f i d not i n s e l f . v e r t i c e s :
45 r a i s e ValueError ( f " Vertex { i d } does not e x i s t . " )
46 f o r neighbor i n l i s t ( s e l f . adjacency [ i d ] ) :
47 s e l f . remove_edge ( id , ne ighbor )
48 d e l s e l f . v e r t i c e s [ i d ]
49 d e l s e l f . adjacency [ i d ]
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50
51 d e f _generate_unique_id ( s e l f ) : #Generates a new v e r t e x i d that doesn ’ t a l r e a d y e x i s t s .
52 w h i l e True :
53 new_id = s t r ( uuid . uuid4 ( ) )
54 i f new_id not i n s e l f . v e r t i c e s :
55 r e t u r n new_id
56
57 d e f remove_edge ( s e l f , v1 , v2 ) :
58 key = t u p l e ( s o r t e d ( ( v1 , v2 ) ) )
59 i f key not i n s e l f . e d g e _ l a b e l s :
60 r a i s e ValueError ( f " Edge {v1}−{v2} does not e x i s t . " )
61 d e l s e l f . e d g e _ l a b e l s [ key ]
62 s e l f . adjacency [ v1 ] . remove ( v2 )
63 s e l f . adjacency [ v2 ] . remove ( v1 )
64
65 d e f update_vertex_label ( s e l f , id , new_label ) :
66 s e l f . v e r t i c e s [ i d ] . l a b e l = new_label
67
68 d e f update_edge_label ( s e l f , v1 , v2 , new_label ) :
69 key = t u p l e ( s o r t e d ( ( v1 , v2 ) ) )
70 s e l f . e d g e _ l a b e l s [ key ] = new_label
71
72 d e f n e i g h b o r s ( s e l f , i d ) : #Returns a d j a c e n t edges
73 r e t u r n s e l f . adjacency . ge t ( id , s e t ( ) )
74
75 d e f edges ( s e l f ) :
76 r e t u r n [ ( v1 , v2 , l a b e l ) f o r ( v1 , v2 ) , l a b e l i n s e l f . e d g e _ l a b e l s . i tems ( ) ]
77
78 d e f c o l l a p s e _ e d g e ( s e l f , v1 , v2 ) : #Elementary edge−c o l l a p s e ( u n l a b e l e d )
79 key = t u p l e ( s o r t e d ( ( v1 , v2 ) ) )
80 i f key not i n s e l f . e d g e _ l a b e l s :
81 r a i s e ValueError ( f "No such edge : {v1}−{v2} " )
82
83 new_label = s e l f . v e r t i c e s [ v1 ] . l a b e l + s e l f . v e r t i c e s [ v2 ] . l a b e l
84 n e i g h b o r s = {}
85 f o r neighbor i n s e l f . adjacency [ v1 ] :
86 i f ne ighbor != v2 :
87 k = t u p l e ( s o r t e d ( ( v1 , ne ighbor ) ) )
88 n e i g h b o r s [ ne ighbor ] = s e l f . e d g e _ l a b e l s [ k ]
89 f o r neighbor i n s e l f . adjacency [ v2 ] :
90 i f ne ighbor != v1 :
91 k = t u p l e ( s o r t e d ( ( v2 , ne ighbor ) ) )
92 n e i g h b o r s [ ne ighbor ] = s e l f . e d g e _ l a b e l s [ k ]
93
94 # Remove v1 and v2 and t h e i r edges
95 s e l f . remove_vertex ( v1 )
96 s e l f . remove_vertex ( v2 )
97
98 # Create new v e r t e x
99 new_id = s e l f . _generate_unique_id ( )

100 s e l f . add_vertex ( new_id , new_label )
101
102 # Reconnect to former n e i g h b o r s with p r e s e r v e d l a b e l s
103 f o r neighbor , l a b e l i n n e i g h b o r s . i tems ( ) :
104 s e l f . add_edge ( new_id , neighbor , l a b e l )
105
106 r e t u r n new_id
107
108 d e f c o l l a p s e _ e d g e _ m u l t i p l e ( s e l f , V) : #M u l t i p l e e lementary edge−c o l l a p s e ( u n l a b e l e d )
109 w h i l e l e n (V) !=0:
110 new_vertex=s e l f . c o l l a p s e _ e d g e (V [ 0 ] [ 0 ] , V [ 0 ] [ 1 ] )
111 V=[ t u p l e ( new_vertex i f x == V [ 0 ] [ 0 ] or x == V [ 0 ] [ 1 ] e l s e x f o r x i n tup ) f o r tup i n V

[ 1 : ] ]
112
113 d e f f ind_edges_with_label ( s e l f , t a r g e t _ l a b e l ) :
114 r e t u r n [ ( v1 , v2 ) f o r ( v1 , v2 ) , l b l i n s e l f . e d g e _ l a b e l s . i tems ( ) i f l b l == t a r g e t _ l a b e l ]
115
116 d e f c o l l a p s e _ e d g e s _ w i t h _ l a b e l ( s e l f , t a r g e t _ l a b e l ) : #Elementary edge−c o l l a p s e ( l a b e l e d )
117 l=s e l f . f ind_edges_with_label ( t a r g e t _ l a b e l )
118 s e l f . c o l l a p s e _ e d g e ( l [ 0 ] [ 0 ] , l [ 0 ] [ 1 ] )
119 l=s e l f . f ind_edges_with_label ( t a r g e t _ l a b e l )
120 s e l f . c o l l a p s e _ e d g e ( l [ 0 ] [ 0 ] , l [ 0 ] [ 1 ] )
121
122 d e f c o l l a p s e _ e d g e s _ w i t h _ l a b e l _ m u l t i p l e ( s e l f , l a b e l s ) : #M u l t i p l e elementary edge−c o l l a p s e (

l a b e l e d )
123 f o r l i n l a b e l s :
124 s e l f . c o l l a p s e _ e d g e s _ w i t h _ l a b e l ( s t r ( l ) )

Listing A.1: The classes and methods used to define vertices and planar graphs.

The graphs constructed can be displayed using the method draw.
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1 d e f draw ( s e l f , l a y o u t=" p l a n a r " , w i t h _ l a b e l s=True ) :
2 G_nx = nx . Graph ( )
3
4 # Add nodes with l a b e l s
5 f o r v_id , v e r t e x i n s e l f . v e r t i c e s . i tems ( ) :
6 G_nx . add_node ( v_id , l a b e l=v e r t e x . l a b e l )
7
8 # Add edges with l a b e l s
9 f o r ( v1 , v2 ) , l a b e l i n s e l f . e d g e _ l a b e l s . i tems ( ) :

10 G_nx . add_edge ( v1 , v2 , l a b e l=l a b e l )
11
12 # Layout o p t i o n s
13 i f l a y o u t == " s p r i n g " :
14 pos = nx . s p r i n g _ l a y o u t (G_nx)
15 e l i f l a y o u t == " kamada_kawai " :
16 pos = nx . kamada_kawai_layout (G_nx)
17 e l s e :
18 t r y :
19 pos = nx . planar_layout (G_nx)
20 except nx . NetworkXException :
21 p r i n t ( " Warning : Not planar , u s i n g s p r i n g l a y o u t . " )
22 pos = nx . s p r i n g _ l a y o u t (G_nx)
23
24 # Draw nodes and l a b e l s
25 node_labels = {v . i d : v . l a b e l f o r v i n s e l f . v e r t i c e s . v a l u e s ( ) } i f w i t h _ l a b e l s e l s e None
26 nx . draw (G_nx, pos , l a b e l s=node_labels , node_color=" l i g h t b l u e " , node_size =100 , f o n t _ s i z e =5)
27
28 # Draw edge l a b e l s
29 e d g e _ l a b e l s = nx . g e t _ e d g e _ a t t r i b u t e s (G_nx, ’ l a b e l ’ )
30 nx . draw_networkx_edge_labels (G_nx, pos , e d g e _ l a b e l s=edge_labels , f o n t _ c o l o r=" red " )
31
32 p l t . t i t l e ( " Planar Graph " )
33 p l t . a x i s ( " o f f " )
34 p l t . show ( )

The graphs Cg can be constructed using the following two definitions, distinguished by
the parity of g.

1 d e f G_odd( g ) :
2 G=PlanarGraph ( )
3 j =3∗ i n t ( ( g−3) /2)
4
5 G. add_vertex ( ’ 1 ’ , 2 )
6 G. add_vertex ( ’ 2 ’ , 2 )
7 G. add_vertex ( ’ 3 ’ , 2 )
8 G. add_edge ( ’ 1 ’ , ’ 2 ’ , " " )
9 G. add_edge ( ’ 2 ’ , ’ 3 ’ , " " )

10
11 f o r i i n range ( 1 , i n t ( ( g−3) /2) ) :
12 G. add_vertex ( s t r (3∗ i +1) , 1 )
13 G. add_vertex ( s t r (3∗ i +2) , 1 )
14 G. add_vertex ( s t r (3∗ i +3) , 2 )
15 G. add_edge ( s t r (3∗ i ) , s t r (3∗ i +1) , " " )
16 G. add_edge ( s t r (3∗ i +1) , s t r (3∗ i +2) , s t r ( i ) )
17 G. add_edge ( s t r (3∗ i +1) , s t r (3∗ i +3) , " " )
18
19 G. add_vertex ( s t r ( j +1) , 1 )
20 G. add_vertex ( s t r ( j +2) , 1 )
21 G. add_edge ( s t r ( j +2) , s t r ( j ) , ’ ’ )
22 G. add_edge ( s t r ( j +1) , s t r ( j +2) , s t r ( i n t ( ( g−3) /2) ) )
23
24 f o r i i n range ( 1 , i n t ( ( g−3) /2) +1) :
25 G. add_vertex ( s t r ( j +3∗ i ) , 1 )
26 G. add_vertex ( s t r ( j +3∗ i +1) , 1 )
27 G. add_vertex ( s t r ( j +3∗ i +2) , 2 )
28 G. add_edge ( s t r ( j +3∗ i ) , s t r ( j +3∗i −1) , " " )
29 G. add_edge ( s t r ( j +3∗ i +2) , s t r ( j +3∗ i ) , " " )
30 G. add_edge ( s t r ( j +3∗ i +1) , s t r ( j +3∗ i ) , s t r ( i n t ( ( g−3) /2)−i +1) )
31
32 G. add_vertex ( s t r (3∗ g−6) , 1 )
33 G. add_edge ( s t r (3∗ g−6) , s t r (3∗ g−7) , " " )
34 r e t u r n G
35
36 d e f G_even ( g ) :
37 G=PlanarGraph ( )
38 j =3∗( i n t ( ( g−4) /2) +1)
39
40 G. add_vertex ( ’ 1 ’ , 2 )
41 G. add_vertex ( ’ 2 ’ , 2 )
42 G. add_vertex ( ’ 3 ’ , 2 )
43 G. add_edge ( ’ 1 ’ , ’ 2 ’ , " " )
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44 G. add_edge ( ’ 2 ’ , ’ 3 ’ , " " )
45
46 f o r i i n range ( 1 , i n t ( ( g−4) /2) +1) :
47 G. add_vertex ( s t r (3∗ i +1) , 1 )
48 G. add_vertex ( s t r (3∗ i +2) , 1 )
49 G. add_vertex ( s t r (3∗ i +3) , 2 )
50 G. add_edge ( s t r (3∗ i ) , s t r (3∗ i +1) , " " )
51 G. add_edge ( s t r (3∗ i +1) , s t r (3∗ i +2) , s t r ( i ) )
52 G. add_edge ( s t r (3∗ i +1) , s t r (3∗ i +3) , " " )
53
54 G. add_vertex ( s t r ( j +1) , 2 )
55 G. add_edge ( s t r ( j ) , s t r ( j +1) , " " )
56
57 f o r i i n range ( 1 , i n t ( ( g−4) /2) +1) :
58 G. add_vertex ( s t r ( j +3∗i −1) , 1 )
59 G. add_vertex ( s t r ( j +3∗ i ) , 1 )
60 G. add_vertex ( s t r ( j +3∗ i +1) , 2 )
61 G. add_edge ( s t r ( j +3∗i −1) , s t r ( j +3∗i −2) , " " )
62 G. add_edge ( s t r ( j +3∗ i ) , s t r ( j +3∗i −1) , s t r ( i n t ( ( g−4) /2)−i +1) )
63 G. add_edge ( s t r ( j +3∗ i +1) , s t r ( j +3∗i −1) , " " )
64
65 G. add_vertex ( s t r (3∗ g−7) , 1 )
66 G. add_edge ( s t r (3∗ g−8) , s t r (3∗ g−7) , " " )
67 r e t u r n G
68
69 d e f get_G ( g ) :
70 i f g%2==0:
71 G=G_even ( g )
72 e l s e :
73 G=G_odd( g )
74 r e t u r n G

Any graph obtained from Cg by an elementary edge-collapse carries a combina-
torial data given by a partition of 4g − 7. The partition can be obtained by
get. partition(G) if G is the graph obtained from Cg.

1 d e f g e t _ p a r t i t i o n (G) :
2 l=G. g e t _ v e r t i c e s ( )
3 f o r i i n range ( 0 , l e n ( l ) ) :
4 l [ i ]= l [ i ] [ 1 ]
5 r e t u r n s o r t e d ( l + [ 1 , 1 , 1 ] )

Suppose k is a partition of 4g − 7. To test whether or not it can be obtained from
Cg we should know the number of edge-collapses to perform. Let us denote by n the
number of edge-collapses we need. The order in which one can apply the edge collapses
does not change the final result. It only matters the number of labelled and unlabelled
edge-collapses. If n1 is the number of unlabelled edge collapses and n2 is the number
of labelled edge collapses, we have that n = n1 + 2n2.

1 d e f find_n1_n2_pairs ( n ) :
2 p a i r s = [ ]
3 f o r n2 i n range ( n // 2 + 1) :
4 n1 = n − 2 ∗ n2
5 p a i r s . append ( ( n1 , n2 ) )
6 r e t u r n p a i r s

Finally, the following function checks is a given partition of 4g − 7, given as a list of
positive integers, can be obtained from Cg.

1 d e f is_part_in_Cg_even ( l , g ) :
2 i f g%2==1:
3 r a i s e ValueError ( f " g i s not even " )
4 i f sum( l ) !=4∗g −4:
5 r a i s e ValueError ( f " l non a p a r t i t i o n o f 4g−4" )
6
7 i f g%2==0:
8 r=i n t ( ( g−3) /2)
9 e l s e :

10 r=i n t ( ( g−4) /2)
11
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12 G=get_G ( g )
13 S=[( v1 , v2 ) f o r ( v1 , v2 ) , l a b e l i n G. e d g e _ l a b e l s . i tems ( ) i f l a b e l == " " ] #U n l a b e l l e d edges
14 T= l i s t ( range ( 1 , r +1) )
15
16 f o r m i n find_n1_n2_pairs (3∗ g−8−l e n ( l ) +4) :
17 f o r P i n [ [ l i s t ( s ) , l i s t ( t ) ] f o r s , t i n product ( combinations ( S , m[ 0 ] ) , combinations (T, m

[ 1 ] ) ) ] :
18 G. c o l l a p s e _ e d g e _ m u l t i p l e (P [ 0 ] )
19 G. c o l l a p s e _ e d g e s _ w i t h _ l a b e l _ m u l t i p l e (P [ 1 ] )
20 i f g e t _ p a r t i t i o n (G)==s o r t e d ( l ) :
21 G. draw ( l a y o u t=" p l a n a r " )
22 r e t u r n True
23 e l s e :
24 G=get_G ( g )
25 r e t u r n F a l s e
26
27 d e f is_part_in_Cg_odd ( l , g ) :
28 i f g%2==0:
29 r a i s e ValueError ( f " g i s not odd " )
30 i f sum( l ) !=4∗g −4:
31 r a i s e ValueError ( f " l non a p a r t i t i o n o f 4g−4" )
32
33 i f g%2==0:
34 r=i n t ( ( g−3) /2)
35 e l s e :
36 r=i n t ( ( g−3) /2)
37
38 G=get_G ( g )
39 S=[( v1 , v2 ) f o r ( v1 , v2 ) , l a b e l i n G. e d g e _ l a b e l s . i tems ( ) i f l a b e l == " " ] #U n l a b e l l e d edges
40 T= l i s t ( range ( 1 , r +1) )
41
42 f o r m i n find_n1_n2_pairs (3∗ g−7−l e n ( l ) +4) :
43 f o r P i n [ [ l i s t ( s ) , l i s t ( t ) ] f o r s , t i n product ( combinations ( S , m[ 0 ] ) , combinations (T, m

[ 1 ] ) ) ] :
44 G. c o l l a p s e _ e d g e _ m u l t i p l e (P [ 0 ] )
45 G. c o l l a p s e _ e d g e s _ w i t h _ l a b e l _ m u l t i p l e (P [ 1 ] )
46 i f g e t _ p a r t i t i o n (G)==s o r t e d ( l ) :
47 G. draw ( l a y o u t=" p l a n a r " )
48 r e t u r n True
49 e l s e :
50 G=get_G ( g )
51 r e t u r n F a l s e
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