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Abstract 

 

Sulfonyl fluorides have recently been described as “privileged warheads” in 

chemical biology due to the right balance of reactivity and stability that these 

electrophiles possess. Peptido sulfonyl fluorides (β-PSFs) have shown to be 

particularly potent as proteasome inhibitors in recent years. Tuning the reactivity 

of the sulfonyl fluoride electrophilic trap may be crucial for modulating its 

biological action. 

The first part of this thesis describes the design and synthesis of peptido sulfonyl 

fluoride derivatives containing a substituent on the alpha position with respect to 

the sulfonyl fluoride electrophilic trap. Therefore, the chemical reactivity and 

biological activity of α-substituted sulfonyl fluorides (αSFs) were studied. 

Comparison with the previously described β-substituted sulfonyl fluorides (βSFs) 

was performed as an attempt to get a deeper insight into the importance of the 

immediate structural environment of the sulfonyl fluoride moiety. αSFs proved to 

be more reactive than βSFs towards nucleophilic substitution, including hydrolysis. 

However, it could not be clarified as yet if and how this is translated to the bio-

activity of the resulting α-PSFs since the poor solubility of these molecules 

precluded a proper evaluation. 

The second part of this thesis describes the synthesis of a vinyl sulfonyl fluoride 

moiety as a new dual warhead class. The consecutive attack of the two 

nucleophiles of the proteasome active threonine on the double bond and the 

sulfonyl fluoride was proposed as the inhibition mechanism which should lead to 

the formation of a seven-membered covalent adduct. In vitro studies were 

designed in order to test this hypothesis. Although the formation of the proposed 

seven-membered ring structure could not be unambiguously demonstrated with 

the chosen model systems, the crystal structure confirmed this formation within 

enzymatic environment. Incorporation of vinyl sulfonyl fluoride warhead into 

peptide backbones (PVSF) resulted in strong proteasome inhibitors (IC50 = 99 and 

218 nM). 
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1. Introduction 
 

Proteases are one of the largest families of enzymes found in nature.1 They 

selectively catalyse the hydrolysis of peptide bonds by mediating a nucleophilic 

attack on the carbonyl carbon of the scissile amide bond. To this end, the residues 

which configure the active site of the enzyme either directly perform the 

nucleophilic attack (enzyme-activated nucleophile) or assist it by activating a 

nucleophilic water molecule (enzyme-bound water).2  

Based on the exact mechanism of cleavage and the active residues affecting it, 

proteases are divided into four major classes: aspartic-, serine-, cysteine- and 

metallo-proteases (Figure 1).3 a) Aspartic proteases: two aspartic residues form 

a catalytic diad. The ionised Asp activates a water molecule which acts as the 

nucleophile and the unionised Asp donates a proton to the nitrogen of the scissile 

amide bond. b) Serine proteases: the serine residue provides a hydroxyl group 

which is activated by an Asp and a His residue, effecting the nucleophilic attack. 

c) Cysteine proteases: the cysteine residue provides a thiol group which is 

activated by a His residue. The resulting thiolate is highly nucleophilic and 

performs the attack. d) Metallo-proteases: a zinc cation, which is tetrahedrally 

coordinated, activates a water molecule by ligation. The nucleophilic attack is 

performed by the zinc-bound water. 

Serine proteases represent almost one-third of all proteases4 and nearly 1% of all 

proteins in mammals.5 

 

Figure 1 Active site amino acid residues in the four major classes of proteases.  
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Proteases regulate protein synthesis and turnover. They are therefore involved in 

many physiological processes such as digestion, blood coagulation, cell growth and 

migration, tissue arrangement, immunological defence, inflammation, healing 

and apoptosis.6  

 

1.1 26S Proteasome and the Ubiquitin-Proteasome 

System 

 

The 26S proteasome is a multisubunit protease composed of a core particle (CP), 

termed as the 20S proteasome, and two regulatory particles (RP), denoted as 19S 

particles, which cap the central core particle at both ends.7 This large complex of 

over 2.5 MDa is responsible for the degradation of proteins by an ATP-dependent 

process via the Ubiquitin-Proteasome System (UPS).8 

The UPS is the main cytosolic proteolytic system in eukaryotic cells and is 

therefore essential for the maintenance of protein homeostasis, i.e. the steady 

level of protein concentrations in the cell as a result of a strictly regulated rate 

of synthesis and degradation.9 Selective degradation of proteins via this pathway 

is a highly controlled process regulated at multiple levels by a complex machinery 

of enzymes which mediate the ubiquitination of the target substrate for 

proteasomal recognition. A poly-ubiquitin chain is attached to the target substrate 

by the E1, E2 and E3 enzyme cascade. The tagged protein is recognised and 

unfolded by the regulatory particles (RP) of the 26S proteasome and hydrolysed 

to smaller peptides by the core particle (CP). Ubiquitin units are recycled by 

deubiquitylating enzymes (DUBs) (Figure 2).10  
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Figure 2 Protein degradation via the Ubiquitin-Proteasome System.  

 

The signalling cascade starts with the activation of the 76 amino acid protein 

ubiquitin by the ubiquitin-activating enzyme (E1). This ATP consuming reaction 

results in the formation of a thioester bond between a conserved cysteine residue 

of E1 and the terminal carboxyl glycine residue of ubiquitin. Activated ubiquitin 

is then transferred by a transthiolation reaction onto a cysteine residue of an E2 

enzyme, which is a member of the ubiquitin carrier protein family. Finally, 

ubiquitin is further transferred from E2 to E3 through the generation of a third 

thioester bond and subsequently covalently attached to the substrate upon 

formation of an isopeptide bond between the ubiquitin glycine residue and a lysine 

residue of the protein substrate. Alternatively, ubiquitin can also be directly 

transferred from E2 to the substrate when it is forming a complex with E3. This 

ubiquitination process is repeated, generating a poly-ubiquitin chain which is 

recognised by the 26S proteasome as the signal of the tagged protein to be 

degraded. Out of the 7 lysine residues within ubiquitin only Lys48-based chains 

are recognised by the 26S proteasome as proteolytic signals; modifications of the 

other six residues are involved in non-proteolytic functions of this protein. 

Although most substrates require poly-ubiquitin chains to be formed and non-

forked chains are believed to be more favourable for substrate degradation, the 

precise number of ubiquitin moieties and the structure of the chain required 

remain unclear. After proteasomal hydrolysis, ubiquitin is recycled by 

deubiquitylating enzymes (DUBs).11,12,13 
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Each enzyme class of the UPS pathway is mechanistically distinct and comprises a 

diverse series of enzymes, each of which presents specificity for only one or very 

few substrates, resulting in the selective tagging and degradation of specific 

intracellular proteins.14 

Ubiquitin-activating enzymes E1 

Eight E1 enzymes have been identified in humans to initiate the activation of 

ubiquitin, exhibiting structural domains which are highly conserved within the 

family. All E1 enzymes present an adenylation domain, a catalytic cysteine domain 

which displays the cysteine residue involved in the thioester linkage between the 

enzyme and the ubiquitin, and a carboxyl-terminal ubiquitin-fold domain which 

engages E2.15 

Ubiquitin conjugating enzymes E2 

This family of enzymes comprises of many structurally and functionally 

heterogeneous proteins, all of them characterised by the presence of a conserve 

domain which contains the active cysteine residue essential for binding to 

ubiquitin. Each E2 recognises a small number of E3s and their specific substrate.16  

Ubiquitin-protein ligases E3 

The human genome encodes for hundreds of E3 enzymes and they are the most 

diverse group of proteins of the UPS system. The three major classes of E3 

enzymes are named after their catalytic domains HECT, RING or U-box. These 

defining motifs confer the different types of E3 distinct modes of action, making 

them key components for the target specificity of the degradation pathway.17 

Deubiquitylating enzymes DUBs 

The DUBs are cysteine proteases which disassemble the polyubiquitin chains by 

cleaving the thioester and amide bonds between the glycine residue of the 

ubiquitin subunit and proteins. This recycle the ubiquitin subunits for their 

conjugation to new substrates 18 
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1.2 19S Regulatory Particle: the Proteasome Base 

and the Proteasome Lid 

 

The 19S regulatory particle of the proteasome is a multifunctional complex formed 

by 19 subunits and subdivided into two asymmetric assemblies: the base and the 

lid. The 19S RP is responsible for substrate recognition, unfolding, translocation 

and deubiquitination.19 

The lid particle contains 9 subunits, although the function of only one of them 

(Rpn11) has been identified. Rnp11 is a DUB protein and performs the separation 

of the ubiquitin moieties from the substrate. This early step is crucial for the 

translocation of the substrate into the core particle of the proteasome and 

therefore for the degradation process.19 

The base particle contains 10 subunits: two scaffolding proteins (Rpn1 and Rpn2), 

which confer structural stability to the proteasome, two ubiquitin receptors 

(Rpn10 and Rpn13), which regulate substrate recognition and deubiquitination and 

6 ATPases (Rpt1-6), which are involved in substrate unfolding; hydrolysing ATP by 

pulling the substrate to the channel that leads to the core praticle.19 

 

1.3 20S Proteasome: the Proteolytic Core Particle 

 

The 20S core particle of the proteasome (CP) is a barrel-shaped protease complex 

which forms the core and proteolytic chamber of the 26S complex. It is composed 

of 28 protein subunits, which are arranged as four homo-heptameric rings α7-β7-

β7
’-α7

’ exhibiting a D7 symmetry. The two outer rings are formed by the α-subunits 

whilst the two inner rings are formed by the β-subunits (Figure 3).20  
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Figure 3 Representation of the 28 subunits of the eukaryotic 20S core particle 

of the proteasome. a) Side view of the 20S. b) Top view of the α-ring. 

 

Both α-subunits and β-subunits are structurally similar and contain a sandwich 

motif of two antiparallel β-sheets which are flanked by α-helices on the top and 

the bottom (Figure 4). The four rings form a central channel with three large 

compartments which control substrate translocation to the proteolytic chamber 

of the 20S complex. Two of the cavities are placed at the interface within the α- 

and β-rings and the third one, which presents a maximum diameter of 53 Å, is 

shaped by the β-rings.21  

 

Figure 4 Crystal structure of 20S human proteasome at 2.6 Å resolution 

(PDB: 4R3O). 
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The α-subunits are proteolytically inactive and serve as outer gates for the inner 

compartment, forming a passage of approximately 13 Å at both ends of the barrel. 

The α-helices of these subunits interact with the 19S regulatory complex and 

control the opening of the channel. The N-terminal tails of the α-helices of the α-

subunit are inserted into the pore and their structural rearrangement, which is 

triggered by binding of regulatory proteins to the CP, stabilise the open state.22 

The β-subunits make up the proteolytic chamber in the central cavity of the 20S 

complex. Only three of the seven β-subunits are catalytically active: β1, β2 and 

β5. These three proteolytic centres have different cleavage specificities which 

endow the proteasome with the capability to perform peptide bond hydrolysis 

after the majority of amino acids.23 

The distinct cleavage patterns of the active β-subunits are determined by the 

structure of the substrate binding pockets.24 Based on their proximity to the active 

site the pockets are termed as non-primed (S1, S2, S3,...,) and primed (S1
’, S2

’, 

S3,
’…,). The substrate residues which interact with these pockets are termed as 

P1, P2, P3,..., and P1
’, P2

’, P3
’,…, accordingly (Figure 5). 

 

 

Figure 5 Standard nomenclature for substrate residues and their corresponding 

binding sites. 

 

The architecture of the pockets is shaped by the active site residues and defines 

the size and character of the binding amino acid side chains accepted. The S1 

pocket has the largest effect on cleavage specificity due to its proximity to the 

scissile bond, whilst the S2, S3,…, sites are less discriminatory. In contrast, the 

influence of the interactions between the non-primed residues with the leaving 

group of the substrate have not been accurately understood to date.24 
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The unique cleavage preferences of the β1-, β2- and β5-subunits of the 

proteasome are predominantly attributed to residue 45 of the corresponding S1 

sites. In fact, their S2 pockets do not possess specificity features and the S3 pockets 

are large cavities in all three subunits.25 

β1-subunit 

The S1 pocket of the β1-subunit presents Arg45 which stabilises acidic substrate 

side chains and therefore endows this subunit with a caspase-like activity. 

Additionally this active centre also displays some degree of branched chain amino 

acid preferring (BrAAP) activity.25 

β2-subunit 

Gly45 of the β2-subunit provides this active centre with a spacious S1 pocket, 

which is delimited at the bottom by a glutamate residue. This subunit 

preferentially binds very large residues with a basic character at P1, displaying the 

trypsin-like activity of the proteasome. 25 

β5-subunit 

The β5-subunit possesses a chymotrypsin-like activity as a result of its S1 pocket 

conformation, which is mainly attributed to the Met45. As a result, it favours 

cleavage after hydrophobic residues. Nevertheless, this subunit also exhibits 

branched chain amino acid preferring (BrAAP) and small neutral amino acid 

preferring (SNAAP) activity.25 

Despite their distinctive substrate-binding channel assembly and substrate 

specificity the three subunits share the same catalytic mechanism for peptide 

bond hydrolysis, which is characterised by the presence of an N-terminal threonine 

as the active nucleophile. Therefore, the proteasome belongs to the family of Ntn 

(N-terminal nucleophile) hydrolases.26 

The Ntn hydrolases are proteases with an unusual folding. They are encoded as 

inactive precursors and expose the amino-terminal catalytic residue by 

intramolecular autocatalytic processing of the peptide bond preceding the 

nucleophilic residue. The functional group performing the nucleophilic attack is 

activated by proton transfer to the free N-terminus.27 
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The N-terminal threonine (Thr1) possessed by the β1-, β2- and β5-subunits has a 

hydroxyl group that, upon activation by a proton acceptor via hydrogen bonds, 

performs the nucleophilic attack onto the carbonyl carbon of a peptide bond. The 

proposed proton transfer between the oxygen atom and the nitrogen atom of the 

threonine results in the formation of an acyl-ester intermediate. Finally the acyl-

ester bond is hydrolysed by a molecule of water regenerating the threonine 

residue (Scheme 1).28 

 

 

Scheme 1 Proposed mechanism for substrate hydrolysis by the 20S proteasome.  
 

Recent studies have suggested the Lys33 side chain as an alternative candidate 

for deprotonating the hydroxyl group of the threonine. This new model proposes 

a catalytic triad formed by threonine, lysine and aspartate/glutamate. The amino 

group of the lysine is proposed to act as the proton acceptor and is thought to be 

analogously activated via hydrogen bonding by the aspartate; increasing its pkaH.  

The charged amino terminus of threonine then donates a proton to the amide 

nitrogen of the peptide substrate and in its deprotonated state it activates a water 

molecule for the hydrolysis of the acyl-enzyme (Scheme 2). This mechanism would 

explain the autocatalytic processing of the β-subunit precursors. Since the amino 

terminus of the threonine is part of the peptide bond to be cleaved in the 
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immature active sites, it is not yet exposed and available to take part in the 

splicing. 29 

 

Scheme 2 Recently proposed substrate hydrolysis mechanism in the 20S 

proteasome. 

 

β3, β4, β6 and β7-subunits 

The remaining β-subunits (β3, β4, β6 and β7) are proteolytically inactive but 

contribute to the hydrolysis process by being directly involved in the formation of 

the substrate binding channels. The inactivity of the β3, β4, β6-subunits is due to 

the lack of the catalytic N-terminal threonine which performs the nucleophilic 

attack. In the case of the β7-subunits, which conserve the active nucleophile, the 

absence of the necessary bond cleavage during the maturation process results in 

a glycine-capped threonine.30 

 

1.4 Tissue Specific Proteasomes 
 

Proteasomes present a highly conserved structure; however, substantial variations 

exist in terms of subunit composition, activity and tissue distribution. In 
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mammalian systems three different types of 20S proteasome have been reported: 

constitutive, immune and thymoproteasome. These different properties and 

functions are the result of the replacement of the active β-subunits.31  

While the constitutive proteasome (cCP) is expressed in all tissues, the 

immunoproteasome (iCP) is predominately found in hematopoietic cells, 

particularly in lymphocytes and monocytes, and the thymoproteasome (tCP) is 

exclusively located in cortical thymic epithelial cells.32 

The Immunoproteasome 

The main role of the immunoproteasome is the generation of antigenic peptides 

for presentation to the immune system by major histocompatibility complex class 

I molecules (MHC-I).33 The MHC-I class molecules are proteins anchored to the 

surface of all nucleated cells and play an essential role in the acquired immune 

system.34 The antigenic peptides, which are typically 8-11 amino acids long, are 

derived from the degradation of endogenous or pathogenic proteins by the 

immunoproteasome. These peptides are presented to cytotoxic T cells (CTLs) on 

the surface of MHC-I molecules encoded in the cell surface triggering immune 

responses.33 

The immunoproteasome subunits, also known as interferon inducible subunits 

(β1i, β2i and β5i), are predominantly expressed in hematopoietic cells. However, 

they can replace their constitutive counterparts in non-immune cells upon 

cytokine stimulation by interferon-γ (IFN-γ) and tumour necrosis factor- α (TNF-

α). In addition to antigen processing, the immunoproteasome is also involved in T 

cell differentiation and the control of cytokine production.35 Therefore, its 

function is not restricted to the immune system but extended to inflammatory 

processes and viral infections.36 

The high sequence homology between cCP and iCP subunits of the proteasome 

complexes results in substantial overlapping of their substrate preference and the 

same mechanism of hydrolysis. Despite this, differences in specificity have been 

observed because of the presence of different amino acid residues assembling 

their corresponding binding pockets.37  

The S1 pocket of β1i is smaller and more hydrophobic than the corresponding 

pocket in β1c and therefore favours branched non polar side chains (Leu, Val or 

Ile) instead of negatively charged residues. Additionally, β1i accommodates 
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smaller and more polar amino acids in the S3 site due to a less spacious and more 

polarised pocket.37 

Similarly, the β5i subunit presents a more spacious S1 pocket than the β5c and 

binds less structurally demanding amino acids. Furthermore, the S2 pocket of this 

subunit is shallower, while the opposite holds true for the S3 pocket.37  

In contrast, subunits β2c and β2i present almost identical binding pockets, which 

suggests that β2i may play an additional functional role.37 

The Thymoproteasome 

The thymoproteasome is responsible for the generation of CD8+ T cells during the 

positive selection of developing thymocites in the cortical thymic epithelial 

cells.38 The proteolytic 20S core particle of the thymoproteasome (tCP) is 

homologous to the immunoproteasome (iCP) since it incorporates the inducible 

subunits β1i and β2i, and only replaces the unique subunit β5t, which is essential 

for its function. The S1 pocket of β5t is mostly composed of hydrophilic residues, 

unlike those present in β5c and β5i, resulting in decreased chymotrypsin-like 

activity.38 

 

1.5 Proteasome as an Anticancer Target 

 

As the main pathway for protein degradation in eukaryotes, the ubiquitin-

proteasome system (UPS), regulates critical cellular processes as diverse as cell 

cycle control, transcription, protein quality control and apoptosis. Therefore, it is 

also involved in many pathological conditions in which these physiological 

processes become dysregulated.39 

Since normal functioning of the UPS is essential for cell survival, disruption of this 

process leads to many biological consequences. This includes the accumulation of 

aberrant and polyubiquitinated proteins which are toxic to the cell and 

subsequently induce apoptosis.40 

Apoptosis, also known as programmed cell death, is a controlled form of cellular 

death which is fundamental for multicellular organisms. It is an ATP-dependent 

process in which the cell is shrunk, condensed and partitioned into membrane-
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bound apoptotic bodies which are phagocytosed by surrounding cells.41 The 

involvement of the UPS in apoptosis occurs through multiple pathways, most 

prominently in mediating the degradation of pro-apoptotic factors and regulatory 

proteins which participate in this form of cellular death.42  

Nuclear factor-kappa B (NF-kB) 

NF-kB is a pro-survival transcription factor which mediates immune and 

inflammatory responses and activates genes which encode cytokines, chemokines 

and anti-apoptotic factors. Activation of NF-kB requires the UPS proteolysis of the 

inhibitor factor IkBα. Inhibition of this degradation results in a higher level of IkBα, 

leading to a reduced biosynthesis of the NF-kB-dependent molecules, which are 

implicated in cells survival signalling pathway, and triggers cell death.43  

Tumour suppressor p53 

The tumour suppressor p53 is a short-lived transcription factor which down-

regulates anti-apoptotic proteins, such as the BCL-2 family, whilst also inducing 

the synthesis of several pro-apoptotic proteins. Expression of p53 is largely 

regulated by MDM2, an E3 ligase which modulates its degradation rate. The 

impeded degradation results in stabilisation and accumulation of p53 and 

therefore favours apoptosis.44 

Cyclins and cyclin-dependent kinases (CDKs) 

Progression of the cell cycle is determined by the successive activation of cyclin-

dependent protein kinases (CDKs) upon heterodimerisation by cyclin proteins. 

Levels of the different CDKs remain constant during the cell cycle and it is the 

quantity of cyclin proteins which change in a phase-specific manner during the 

cell cycle acting as the rate limiting factor. Their degradation by the UPS is 

normally a prerequisite for the cell cycle to progress. Inhibition of this process 

leads to dysregulation of cyclin turnover and consequently of cyclin-dependent 

kinase activity. This results in the arrest of the cell cycle at the G2/M and G1/S 

check points and induces cell death.45 

Cancer cells are characterised by an accelerated proliferation rate due to altered 

or defective cell cycle proteins and their inability to undergo apoptosis. As a 

result, these cells accumulate damaged proteins at a much higher rate than 
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normal cells and therefore have an increased dependency on the proteasomal 

degradation.46 Consequently, inhibition of UPS activity has been considered an 

attractive therapeutic anti-cancer target during the last decade. Although not all 

cells respond in the same way to this inhibition, the blockage of the UPS pathway 

has been shown to induce apoptosis preferentially in neoplastic cells with reduced 

cytotoxicity in normal cells.47 The UPS can be blocked at various points but most 

of the presently available inhibitors directly target the 20S proteasome. This is 

currently a clinically validated chemotherapy modality for the treatment of 

specific types of cancer.14  

 

1.6 Other Biological Implications of the 

Proteasome 

 

The UPS pathway is involved in a broad range of physiological processes and as a 

result the system has been implicated not only in cancer but also in the 

pathogenesis of several other diseases. These pathologies include 

neurodegenerative diseases such as Alzheimer’s, Huntington’s and Parkinson’s 

disease which result from the accumulation of toxic proteins. They are also 

implicated in genetic disorders such as cystic fibrosis and hereditary forms of 

hypertension.48 

The proteasome is connected to the stimulation of inflammatory responses by 

degradation of the inhibitory factor IκB, necessary for the activation of the 

transcription factor NF-κB, which is responsible for the expression of many 

inflammatory mediators. Thus, many inhibitors of the proteasome have shown 

anti-inflammatory effects.49 

The important role of the immunoproteasome in the cellular immune response as 

the main producer of antigenic peptides has led to the studied of its inhibitors as 

strong candidates for the treatment of autoimmune disorders such as rheumatoid 

arthritis and multiple sclerosis, as well as potential drugs for the treatment of 

transplant rejection.50 The recent discoveries regarding the selective inhibition of 

the immunoproteasome represent a promising approach for the treatment of 

cancers related to immune system cells, such as lymphomas, where the 
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immunoproteasome is the predominant proteasome species.51 Finally, the effects 

of proteasome inhibitors are being studied for the treatment of and various viral 

and parasitic infections.52 

 

1.7 Proteasome Inhibitors 

 

The identification of the proteasome as an effective therapeutic anticancer target 

led to the development of numerous synthetic compounds based on the structural 

diversity of natural proteasome inhibitors. 

Typically, proteasome inhibitors are peptide-based and contain an electrophilic 

trap that reacts with the hydroxyl group of the N-terminal threonine to form a 

covalent bond.53 Depending on the nature of the electrophile and the type of 

bonding, these inhibitors can be classified as reversible or irreversible. 

Additionally, there are non-covalent inhibitors, known as “tight-binding 

inhibitors”, that, without forming a covalent complex with the active nucleophile, 

also present a long target residence time.54 Although the peptide backbones are 

designed to control the subunit selectivity, the reactive warheads determine the 

target specificity and biological stability of the inhibitors.55 

The major classes of warheads used for covalent proteasome inhibition are 

aldehydes, boronates, vinyl sulfones, β-lactones and α’, β’-epoxyketones. 56 

Recently, the new classes of α-ketoaldehydes and α-ketoamides have been 

introduced to the pool.55 

Due to the very reactive nature of aldehydes low selectivity for the proteasome is 

achieved. Additionally, they also co-inhibit serine and cysteine proteases. 

Aldehydes react reversibly with the active threonine, forming hemiacetals, which 

present a high dissociation rate (Scheme 3). Furthermore, their oxidation to 

inactive carboxylic acids inside the cells results in their efflux by the multi-drug 

resistance carrier.56 
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Scheme 3 Aldehyde warhead and its reaction with the catalytic threonine. 

 

Boronates are very potent inhibitors of the proteasome.39 They form reversible 

tetrahedral adducts with the active threonine but their dissociation rate is so low 

that the inhibition can be considered irreversible (Scheme 4). Boronates were 

initially designed as serine protease inhibitors but due to the stabilisation of the 

tetrahedral adduct by hydrogen bonding with the N-terminal amino group of the 

threonine, the boronic acid moiety presents a higher selectivity for the 

proteasome.57 

 

 

Scheme 4 Boronate warhead and its reaction with the catalytic threonine. 
 

Vinyl sulfones were initially designed for the inhibition of cysteine proteases. The 

active threonine reacts covalently with the vinyl moiety in a 1,4- Michael addition 

of the hydroxyl group to the double bond (Scheme 5).25 Although they display 

lower selectivity and potency than epoxyketones, vinyl sulfones are widely used 

due to their easy synthesis and good stability. Their specificity can be controlled 

by modification of the peptide backbone.58 
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Scheme 5 Vinyl sulfone warhead and its reaction with the catalytic threonine. 
 

β-Lactones are non-peptidic natural products. Reaction of the threonine with the 

β-lactone ring results in the formation of an acyl-enzyme ester (Scheme 6). 

Hydrolysis of this adduct leads to the regeneration of the threonine.51 

 

Scheme 6 β-Lactone warhead and its reaction with the catalytic threonine. 
 

The α’, β’-epoxyketones are the most potent proteasome inhibitors known to 

date. This warhead initially reacts through the carbonyl group in a similar manner 

to aldehyde warhead, forming a hemiacetal. Subsequently, a second nucleophilic 

attack of the N-terminal amino group of the threonine opens the epoxide 

intramolecularly, resulting in the irreversible formation of a six-membered 

morpholino ring (Scheme 7). The dual character of the α’, β’-epoxyketone moiety 

accounts for its great selectivity for the proteasome. Given that the morpholino 

formation requires an N-terminal nucleophile this warhead, in contrast with the 

rest, does not inhibit other proteases.59 
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Scheme 7 Epoxyketone warhead and its reaction with the catalytic threonine. 
 

The α-ketoaldehydes, like the α’, β’-epoxiketones, react with the active threonine 

in a two-step process, exploiting the characteristic mechanism of the proteasome. 

However, the formation of a reversible carbinolamine intermediate, which 

undergoes a condensation reaction, results in an oxazine ring with a Schiff base 

bond (Scheme 8). This warhead represents a unique type of highly selective and 

reversible covalent inhibitors.60 

 

 

Scheme 8 α-Ketoaldehyde warhead and its reaction with the catalytic 

threonine. 

 

Unfortunately, α-ketoaldehydes showed a significantly decreased inhibitory 

potential, For this reason Groll and co-workers replaced the ketoaldehyde 

functionality was by an α-ketoamide. The α-ketoamide forms only one covalent 

bond through its ketone moiety and stabilises its phenyl amide terminus by van 

der Waals interactions within the proteasomal substrate binding channels 

(Scheme 9).55 
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Scheme 9 α-Ketoamide warhead and its reaction with the catalytic threonine. 

 

1.7.1 Proteasome Inhibitors in Clinic 
 

The boronic acid Bortezomib (1) (VelcadeTM) (Figure 6) is a potent and selective 

proteasome inhibitor. It was the first of its class to enter clinical trials, being 

approved by the US Food and Drug Administration (FDA) in 2003 for the treatment 

of relapsed multiple myeloma.61 

 

Figure 6 Structure of the inhibitor Bortezomib (1). 

 

Multiple myeloma is a hematologic type of cancer characterised by the 

accumulation of malignant plasma cells in the bone marrow. Although it is 

treatable with chemotherapy and radiotherapy, it remains incurable due to the 

proliferation of resistant tumour cells.62 Multiple myeloma cells display a 

particularly enhanced NF-κB activity which is responsible for their 

chemoresistance. Furthermore, cells possess an increased expression of the 

immunoproteasome and have shown a great sensitivity towards proteasome 

inhibition.63,64 
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Bortezomib (1) is administered intravenously and binds reversibly but with slow 

dissociation to the proteasome; targeting the β5-subnit of both the constitutive 

and immunoproteasome (β5c IC50 = 7 nM, β5i IC50 = 4 nM).65  Its antitumour activity 

has been attributed to inhibition of the NF-κB pathway which hampers tumour 

growth and cell survival.66,67 Despite the initial success of Bortezomib treatments, 

the high activity of this inhibitor against other proteases is associated with several 

off-target effects, including severe peripheral neuropathy, which has been 

detected in more than 30% of the patients.68 Additionally, prolonged treatments 

lead to the development of drug resistance.69 

The peptide epoxyketone Carfilzomib (2) (Kyprolis®) (Figure 7) was approved by 

the FDA in 2012 as a second generation proteasome inhibitor for the treatment of 

multiple myeloma resistant to a previous Bortezomib chemotherapy. Hematologic 

tumour cells are more responsive to Carfilzomib than solid tumours. This 

irreversible inhibitor preferentially targets the β5-subunit of the constitutive 

proteasome (β5c IC50: 6 nM; β5i IC50: 33 nM).70 The high specificity of Carfilzomib 

for the proteasome over other proteases, in contrast with Bortezomib, results 

from the unique inhibition mechanism of the epoxyketone moiety, as a result, less 

side effects have been recorded during clinical trials.71 

 

Figure 7 Structure of the inhibitor Carfilzomib (2). 

 

Ixazomib (4) (Ninlaro®) (Scheme 10) was approved by the FDA in November 2015 

for the treatment of multiple myeloma patients who have been treated with at 

least one other inhibitor agent. It is a citrate boronate ester which hydrolyses to 

the biologically active boronic acid in the gastrointestinal tract and plasma; 

making it the first orally administered proteasome inhibitor. The better blood 
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distribution of this small molecule has been linked to a higher antitumor activity.72 

The potency of Bortezomib and Ixazomib for the β1, β2 and β5-subunits are 

comparable. However, Ixazomib presents a shorter dissociation half-life which 

results in better tissue penetration and so far the side effects reported are not 

severe. Ixazomib is also in phase I-II clinical trials for the treatment of other 

diseases such as graft-versus-host disease and lupus nephritis.73 

 

 

Scheme 10  Structure of the inhibitor Ixazomib (4). 

 

Oprozomib (5) (OXN 0912) (Figure 8) is an orally available analogue of Carfilzomib 

which is currently in phase I-II clinical trials for the treatment of multiple myeloma 

and solid tumours.74 No data from these studies have been reported yet.75 

 

Figure 8 Structure of the inhibitor Oprozomib (5) (OXN 0912). 
 

The pronounced improvement on reactivity and target selectivity obtained by the 

epoxyketone derived inhibitors has meant this bivalent motif has attracted a great 

amount of attention. Further investigations into the “advantaged” mechanism of 

action of the epoxyketone warhead with the active threonine have subsequently 
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occurred. A very recent study by Schrader76 reported the formation of a 7-

membered ring as the inhibition adduct. This adduct is believed to be formed by 

a nucleophilic attack of the ThrN onto the β-carbon of the epoxide hemiketal 

intermediate (Scheme 11). This finding differs from the earlier stated mechanism 

(Scheme 7) which proposed the formation of a six-membered morpholino ring by 

an epoxide opening reaction at the α-carbon.59  

 

 

Scheme 11 Mechanism of inhibition of the epoxyketone warhead proposed by 

Schrader. 

 

1.7.2 Subunit Specific Inhibitors 

 

All of the previously described inhibitors and most of the ongoing clinical 

candidates are designed to target the β5-subunit of the proteasome, although 

several of them also coinhibit the β1 and β2-subunits at higher concentrations.56 

The β5-subunit is considered to be rate limiting for protein degradation.77 

Consequently, inhibition of the β5-subunit results in the highest levels of cytotoxic 

effects.70 Recent studies have instead shown that the simultaneous inhibition of 

either the β1 or the β2-subunit is necessary to achieve an optimal anti-neoplastic 

response.78,79 

Acquired cell resistance for proteasome inhibitors is a huge drawback for their use 

in chemotherapy. The cellular mechanism for this resistance includes over 

expression of the proteasome and the enhancement of the proteolytic activity of 

the remaining active subunits.50 Together with the undesirable off-target effects, 
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these points have strongly motivated the development of compounds with 

specificity towards a particular β subunit.8  

Furthermore, the discrimination between the counterparts of the different types 

of proteasomes has been identified as the main challenge in the design of the next 

generation of inhibitors. Since they are involved in distinct biological functions 

their inhibitors could offer distinctive clinical applications.80 

In particular, the selective inhibition of the immunoproteasome subunits has been 

investigated in recent years as a potential treatment for autoimmune disorders.51 

Distinguishing between CP and iCP catalytic subunits is also important in 

neoplasms related to immune cells such as lymphomas, where the iCP is the 

predominant proteasome species.80 

ONX 0914 (6) is the first inhibitor that selectively targets the β5i-subunit and is 

currently in preclinical trials (Figure 9). It has been shown to stop the progression 

of inflammatory disorders by reducing the production of pro-inflammatory 

cytokines such as IL-6 and TNF. Its high affinity for β5i is explained by the presence 

of a more bulky group at the P1 position, which is not well accepted in the less 

spacious S1 pocket of the β5c-subunit. As a result, ONX 0914 is effective at much 

lower concentrations than non-specific inhibitors.51 

 

 

Figure 9 Structure of the inhibitor ONX 0914 (6). 
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1.8 Sulfonyl Fluorides 

 

Methanesulfonyl fluoride 7 (MSF) (Figure 10) was first described as a potent 

insecticide by Schrader in 1952. Some years later, Myers and Kemp,81 reported the 

inhibition of rat-brain cholinesterase by MSF and suggested the sulfonylation of an 

active residue of the enzyme as the mechanism of inhibition. In 1962, Fahrney and 

Gold82 extended this research to aromatic sulfonyl fluorides, reporting 

phenylmethane sulfonyl fluoride 8 (PMSF) (Figure 10) as an inhibitor of  α-

chymotrypsin enzyme. Additionally, they proposed the formation of a complex 

between the sulfonyl fluoride and the active residue before the sulfonylation 

reaction.  

 

 

Figure 10 Structures of methanesulfonyl fluoride 7 (MSF) and phenylmethane 

sulfonyl fluoride 8 (PMSF). 

 

Further investigations into the mechanism of sulfonyl fluorides within the active 

sites of different enzymes were performed by Vaz and Schoellman.83 They used 5-

dimethylaminonaphthalene-1-sulfonyl fluoride 9 (Dns-fluoride) (Figure 11) as a 

fluorescent reporter group for the reaction with α-chymotrypsin. Isolation of the 

dye-protein complex proved the reaction to occur selectively with the hydroxyl 

group of the active serine residue.  

 

 

Figure 11  Structure of Dansyl Fluoride (9). 
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Despite the high selectivity of sulfonyl fluorides towards serine proteases, no clear 

discrimination between similar members of this family was reported. Interest in 

these compounds as potential therapeutic agents led to their incorporation into 

small peptides as a first attempt to enhance selectivity.84 

 

 

Scheme 12  Inhibition mechanism of serine proteases by sulfonyl fluorides. 

 

Since then, sulfonyl fluorides have been extensively studied as inhibitors of serine 

proteases (Scheme 12). The crystal structure of different sulfonyl fluorides in 

complex with serine proteases such as α-chymotrypsin, γ-chymotrypsin, elastase 

and subtilisine have been obtained; helping to elucidate the configuration of the 

active centres of these enzymes.1 However, the availability of functionalised 

sulfonyl fluorides was mainly restricted to aromatic sulfonyl fluorides, limiting the 

extrapolation of the conclusions of the studies. 

 

1.8.1 Sulfonyl Fluorides in other Areas of Chemical 

Biology 

 

Sulfonyl Fluorides have recently been described as “privileged warheads in 

chemical biology” due to the right balance of reactivity and stability that these 

electrophiles possess.85  

The size and the electronegativity of the fluorine atom provides the sulfur (VI) 

fluoride bonds with a remarkable stability compared to other sulfonyl halides.86 

The sulfonyl-fluoride bond in SO2-F is remarkably strong with a homolytic bond 

dissociation energy of 229 ± 20 kJmol-1.87 The cleavage of this bond occurs solely 

in a heterolytic manner contributing to the resistance of this functional group to 
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reduction. Sulfonyl fluorides also show a high stability to nucleophilic substitution, 

including hydrolysis.88 Furthermore, they also present a great passivity towards 

thermolysis.86 

These distinctive properties account for the special reactivity of the –SO2-F unit 

which demands very specific conditions. One of the main contributors to the 

activation of this electrophile is the stabilisation of the fluoride as a leaving group 

by proton solvation.89 The important role of the hydrogen bonding network and 

the stabilisation of the fluoride anion in an aqueous environment enhances the 

reactive potential of the sulfonyl fluoride in biological systems, such as a protein 

binding sites.86 Additionally, the controlled reactivity of the sulfonyl fluoride 

electrophile allows specific substitution reactions to be performed at other 

electrophiles contained in the molecule, making further functionalisation possible 

without altering the –SO2-F group.   

This unique reactivity-stability profile, along with the synthetic accessibility of 

sulfonyl fluorides, has been exploited by medicinal chemists in different areas of 

chemical biology, including their incorporation into fluorescence probes and the 

synthesis of inhibitors of a wide range of enzymes. 

Sulfonyl fluoride based activity probes that label specific residues in proteins are 

used to map their binding sites. Examples of this are the 5′-fluorosulfonylbenzoyl 

adenosine 10, which labels NAD and ATP binding sites in proteins90 and 5’-p-

fluorosulfonylbenzoyl-1,N6-ethenadenosine 11 (Figure 12), which targets active 

site nucleophiles of the tyrosine kinase family.91  

 

 

Figure 12  Structures of 5′-fluorosulfonylbenzoyl adenosine 1090 and 5’-p-

fluorosulfonylbenzoyl-1,N6-ethenadenosine 11.91 



27 

Examples of small molecules containing the sulfonyl fluoride warhead for covalent 

modification of active amino acid residues include inhibitors of the fatty acid 

amide hydrolase 1292 and antagonists of the human A3 adenosine receptor 1393 

(Figure 13).  

 

 

Figure 13  General structures of compounds 1292 and 13.93 

 

In addition, incorporation of the sulfonyl fluoride moiety into a library of 1,3,4-

oxadiazoles 14 (Figure 14) for the stabilisation of the transthyretin protein 

resulted in the formation of fluorescent conjugates 15 upon reaction with the ε-

amino group of an active lysine residue suggesting the use of these molecules as 

potential imaging agents.94 

 

 

Figure 14  Structure of a 1,3,4-oxadiazole 14 and the fluorescent conjugate 15 

formed by reaction with the lysine residue at the active site.94 

 

 



28 

1.8.2 Previous Work in the Liskamp Group 

 

PMSF 8 and AEBSF 16 (Figure 15), a more physiologically stable derivative, are 

commonly used in protease inhibitor cocktails to prevent protein degradation 

when working with cell lysates. Based on this reactivity the Liskamp group decided 

to synthesise amino acid based sulfonyl fluorides with the aim of enhancing the 

properties of the sulfonyl fluoride warhead and its applicability as a selective 

serine protease inhibitor.95 

 

Figure 15  Structure of 4-benzenesulfonyl fluoride hydrochloride (AEBSF). 

 

The first synthesis that was performed targeted a simple sulfonyl fluoride derived 

from Taurine 17. Cbz-protection of the taurine N-terminus in water led to the 

sodium sulfonate salt 18, which was reacted with a phosgene solution to obtain 

the sulfonyl chloride 19. The taurine derived sulfonyl fluoride 20 was obtained by 

treatment of the sulfonate salt 18 with DAST in CH2Cl2 or by reaction of the 

sulfonyl chloride 19 with potassium fluoride and 18-crown-6 in acetonitrile 

(Scheme 13).  
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Scheme 13 Synthesis of taurine-derived sulfonyl fluoride 20. 

 

After the development of this synthetic pathway, the route was further extended 

to furnish different side chain-containing amino acids (Scheme 14). The Cbz-

protected amino acids 21a-e were reduced to the corresponding alcohols 22a-e 

in a two-step reaction with isobutylchloroformate and sodium borohydride. 

Treatment of the alcohols with methanesulfonyl chloride and NMM subsequently 

afforded the corresponding mesylates 23a-e. Thioacetates 24a-e were obtained 

by reaction with in situ prepared caesium thioacetate and oxidised to the 

corresponding sulfonate salts 25a-e using aqueous hydrogen peroxide and 

subsequent treatment with sodium acetate. The salts were transformed into 

sulfonyl chlorides 26a-e with a solution of phosgene in acetonitrile. Finally, the 

substitution reaction with potassium fluoride and 18-crown-6 in acetonitrile 

delivered the sulfonyl fluoride derivatives 27a-e, which were also obtained after 

the corresponding treatment of the sodium salts with DAST in CH2Cl2. Yields for 

the different steps of the synthesis are summarised in Table 1. 
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Scheme 14 Synthesis of amino acid-based sulfonyl fluorides starting from N-

protected amino acids. 

 

Table 1 Yields (%) for the synthesis of sulfonyl fluorides 27a-e starting from 

N-protected amino acids. P = Protecting group. 

 P R Amino 

Acid 

22 23 24 26 27 

a Cbz CH3 Ala 82 91 61 65 65 

b Cbz CH(CH3)2 Val 50 65 51 - 40 

c Cbz CH2CH(CH3)2 Leu  58 44 45 76 

d Cbz CH2Ph Phe 80 86 87 67 62 

e Fmoc CH(CH3)2 Val 90 86 71 30 - 

 

To evaluate the potency of the amino acid-based sulfonyl fluorides as irreversible 

inhibitors of serine proteases a biological assay was performed with selected 

compounds 20 and 27a-f (Figure 16) using α-chymotrypsin since this enzyme is 

the best characterised member of this class.96 
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Figure 16  Structures of sulfonyl fluorides 20 and 27a-f. 

 

As expected aliphatic sulfonyl fluorides displayed the weakest inhibition whilst 

Cbz-Phenylalanine 27d was the best inhibitor in the series (Ki = 22 µM, kinact = 0.33 

min-1). These results correlate with the fact α-chymotrypsin preferentially binds 

aromatic residues. Additionally, modifying the protecting group has little 

influence on the inhibition since similar results were obtained for both Fmoc- and 

Cbz-Valine. (Table 2) 

Table 2  Inhibitor constants and kinactivation values of selected sulfonyl fluorides 

(20 and 27a-f) and PMSF. 

Sulfonyl fluoride R Ki (µM) Kinact (min-1) 

27a Cbz-Ala No inhibition nd 

27e Fmoc-Val No inhibition nd 

27c Cbz-Leu 341 ± 35.6 0.053 ± 0.0017 

27b Cbz-Val 255 ± 6.8 0.043 ± 0.006 

20 Cbz-Gly 104 ± 10.7 0.13 ± 0.006 

27d Cbz-Phe 22 ± 1.6 0.33 ± 0.03 

PMSF (8)  13 ± 0.8 0.32 ± 0.04 

 

Considering the size of these small molecule inhibitors, the obtained affinities 

were very favourable. Further improvement by modification of the side chains and 

extension of the sequences to improve selectivity had therefore high potential. 
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This encouraged the group to use amino acid-based sulfonyl fluorides as novel 

electrophilic traps to target the proteasome. 

 

 

Figure 17 Structures of Bortezomib (1), Cbz-Leu3-aldehyde (28, MG132), and 

Epoxomicin (29). 

 

In collaboration with Groll (Technische Universität München) and Overkleeft 

(University of Leiden) a library of peptido sulfonyl fluoride (PSF) inhibitors was 

synthesised using the peptidic sequences of the known proteasome inhibitors 

Bortezomib (1) , MG132 (28) and Epoxomicin (29) (Figure 17) by replacing their 

electrophilic groups with the sulfonyl fluoride moiety. Furthermore, additional 

modifications were performed at the N-terminus.97  

The synthetic strategy began with the deprotection of the amino group of the 

amino acid derived sulfonyl fluoride followed by coupling with the corresponding 

Boc-protected amino acid with BOP and DiPEA. Cycles of deprotection and 

coupling were then repeated until the completion of the desired peptide sequence 

(Scheme 15).97 
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Scheme 15  Systematic synthesis of Peptido Sulfonyl Fluorides (PSF). 

 

Although the syntheses of the PSF were carried out successfully, synthesising the 

N-terminal peptide backbone first and coupling the amino acid derived sulfonyl 

fluoride in the last step displays may be a better alternative to avoid the 

degradation of the sulfonyl fluoride electrophile during repeated coupling and 

work-up steps. 97 

In this study the activity of the PSF inhibitors was determined by a competitive 

labelling reaction with a fluorescent proteasome probe; the inhibitory potency 

was determined for the best compounds (PSF 30-39) (Figure 18) in an enzymatic 

assay. The IC50 values (Table 3) obtained were between 7 nM and 1.7 μM, 

validating the PSFs as very potent proteasome inhibitors. Three of the tested PSFs 

(32, 34 and 37) showed lower values than Epoxomicin and were therefore 

evaluated in vivo using HEK cells and found to have good membrane penetration.97  
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Figure 18  Structure of PSF 30-39. 

 

Table 3  IC50 values of Sulfonyl Fluorides and Epoxomicin for the proteasome 

β5-subunit. 

Compound IC50 (nM) 

Epoxomicin (29) 261 ± 37 

30 350 ± 70 

31 1750 ± 48 

32 7 ± 2 

33 300 ± 40 

34 110 ± 30 

35 800 ± 200 

36 250 ± 70  

37 1150 ± 400 

38 40 ± 10 

39 1570 ± 340 
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Additionally, a set of peptido sulfonyl fluorides were studied for their antimalarial 

activity by Mordmüller, showing inhibition in the low nanomolar range against both 

multidrug-resistant and –sensitive laboratory strains. The most potent sulfonyl 

fluoride 32 suppressed growth of Plasmodium berghei in vivo and showed no 

cytotoxicity in HeLa and HEK 293 (non-carcinoma human embryonal kidney) cell 

lines up to 500 µM. Unfortunately, it presented signs of toxicity in mice.98 

The exact mechanism of inhibition of the proteasome by the sulfonyl fluoride 

electrophile was investigated in collaboration with Groll and his group.99 For this 

study, peptido sulfonyl fluoride analogues of the inhibitors Carfilzomib (2) and 

ONX 0914 (6) were synthesised; replacing the epoxyketone warhead with the 

sulfonyl fluoride moiety (PSF 40, PSF 41). An additional PSF 42 derivative was 

synthesised by extending the PSF 41 sequence by the addition of a homo-

phenylalanine residue (Figure 19). 

 

Figure 19 Structures of Carfilzomib (2), ONX 0914 (6) and the PSF analogues 40, 

41 and 42. 

 

The PSF 40 was used for crystal soaking experiments with yeast proteasome (yCP). 

Furthermore, time-resolved intact protein mass spectra analysis was carried out 

in order to identify short-lived reaction intermediates. The PSF 40 only reacted 



36 

with the β5-subunit whilst β1 and β2 remained unmodified. The obtained crystal 

structures (Figure 20) revealed the formation of an aziridine with the active 

threonine. This intramolecular cyclisation was confirmed by the inverted 

stereoconfiguration of the methyl group in the (S,S)-aziridine-T1 product, which 

implies an SN2 reaction.99  

 

Figure 20  X-ray analysis of the β5 active site after time-dependent soaking 

experiment of yCP crystal with PSF 40. a) Subunit β5 with unmodified 

Thr (T1). b) Aziridine-T1 formation. c) Lys33-T1 crosslink formation. 

d) Superposition of the three structures.99 

 

Further soaking experiments were conducted in order to analyse the stability of 

the aziridine. These results revealed a SN2 ring-opening reaction by attack of the 

amino group of the Lys33 residue, resulting in an intramolecular crosslink and 

proving the presence of a polarity-inversed threonine intermediate. Based on the 

identified reaction intermediates, a three-step mechanism resulting in the 

crosslink of the proteasome active site was proposed (Scheme 16).99 
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Scheme 16 Proposed three-step inhibition mechanism of the PSF compounds at 

the proteasomal active site of subunit β5. 

 

In principle, the formation of the sulfonate adduct with Thr can occur by either 

direct nucleophilic attack of ThrO onto the electrophilic sulphur centre or by 

sulfene formation after proton abstraction. Sulfonylation is followed by an 

intramolecular SN2 displacement by ThrN to yield the aziridine which is then 

opened to form an intramolecular crosslink. This previously unobserved mode of 

action suggests that PSF compounds (the only peptidic proteasome inhibitors 

known so far whose electrophilic trap is shifted by a methylene) are able to take 

advantage of the double nucleophilicity of the terminal threonine.99  

The exploitation of this unique binding mode in order to increase selectivity 

towards the β5 subunit of the immunoproteasome over the corresponding subunit 
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of the constitutive proteasome was investigated. For this purpose, PSF 40, 41 and 

42 were evaluated against various CP types. The ratio between the IC50 was used 

to determine the selectivity of the compounds (Table 4).99 

PSF 40 proved to be a very potent inhibitor but displayed no discrimination 

between the different β5 subunits. Both PSF 41 and 42 exhibited a high selectivity 

towards β5i but PSF 42 presented a 10-fold improvement in potency.99 

The cytotoxic profiles of the PSFs were determined in viability assays against 

THP - 1, which express high amounts of immunoproteasome and HeLa cells and 

compared to the epoxyketone based inhibitors. The results obtained indicated low 

off-target binding profiles for the PSFs 41 and 42, and lower toxicity than ONX 

0914.99 

 

Table 4  In vitro IC50 values (nM) against the β5 subunit of various CP types. 

Compound IC50 yβ5 IC50 β5c IC50 β5i IC50 β5c/ β5i 

40 21 ± 2 28 ± 2 54 ± 10 0.5 

41 15420 ± 635 28460 ± 1305 1134 ± 146 25 

42 1775 ± 476 3927 ± 550 139 ± 34 28 

 

The specificity of the PSFs to target the iCP, together with their low cytotoxicity, 

make these compounds potential anti-inflammatory inhibitors. 

 

1.9  Aim of the Thesis 

The aim of this thesis was to study the effect of the structural modification of the 

sulfonyl fluoride electrophile containing molecules. The right balance of reactivity 

and stability represents the key for rational design and optimisation of inhibitors. 

Understanding how these modifications translate into different chemical 

reactivity and/or biological action was pursued by chemical synthesis and 

systematic biochemical evaluations.  
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2. Synthesis, Reactivity and Biological 

Evaluation of Alpha-substituted 

Sulfonyl Fluorides 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter have been accepted for publication: 

 Herrero Alvarez, N.; van de Langemheen, H.; Brouwer, A. J.; Liskamp, R. M. J. 

"Potential peptidic proteasome inhibitors by incorporation of an electrophilic trap 

based on amino acid derived α-substituted sulfonyl fluorides" Bioorganic Med. 

Chem. 
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The sulfonyl fluoride moiety has been proven to be an outstanding warhead for 

the covalent modification of enzymes.86 The special chemistry of this electrophile 

is highly dependent on its immediate structural environment, therefore, providing 

the possibility of tuning its reactivity.  

Promising results have been obtained by the peptido sulfonyl fluorides (PSFs) as 

powerful proteasome inhibitors. PSFs have shown a high specificity for the β5 

subunit as well as an exceptional mechanism of inhibition. 97,99 Therefore, as an 

attempt to get a deeper insight in how structural modifications affect the potency 

and selectivity of the sulfonyl fluoride inhibitors, it was decided to synthesise 

sulfonyl fluoride derivatives containing a substituent on the alpha position (αPSFs) 

with respect to the sulfonyl fluoride electrophilic trap (Figure 21). 

 

 

Figure 21  Structures of β- and α-sulfonyl fluorides. 

 

2.1 Aims of the Project 
 

The aims of this project were the synthesis of alpha substituted sulfonyl fluoride 

derivatives (α-SFs) as potential peptidic proteasome inhibitors and the study of 

their chemical behaviour and biological activity. Additionally, the comparison with 

the beta substituted sulfonyl fluorides (β-SFs) was desired in order to understand 

how the shift of the substituent from the β to the α-position adjacent to the SF 

moiety correlates with the reactivity and the biological effect of these compounds 

(Structure Activity Relationship).  

This chapter describes four main points: 1) the design of the synthetic route for 

these new molecules, 2) the reactivity and stability studies carried out with both 

α- and β-SF, 3) the incorporation of the electrophilic trap into peptide sequences 

and 4) the efforts towards the biological testing of the final inhibitors. 
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2.2 Synthetic Route: a Racemic Approach 
 

The approach of the Liskamp group for the synthesis of amino acid derived sulfonyl 

fluorides 45 was based on the introduction of the thioacetate moiety 44 into 

natural amino acids 43 which could be further oxidised to a sulfonate and 

subsequently fluorinated, retaining the corresponding side chains and not 

affecting the chiral centre (Scheme 17).95  

 

 

Scheme 17 Synthesis route for amino acid derived β-sulfonyl fluorides. P = 

Protecting group. R = amino acid side chain. 

 

Whereas the β-substituted derivatives were easily accessible starting from 

proteinogenic amino acids, the α-substituted sulfonyl fluorides presented a higher 

synthetic challenge since additional manipulation is required in order to shift the 

side chain to the desired α-position with respect to the sulfur atom. 

The chosen strategy to achieve the α-substituted sulfonyl fluorides involved the 

ring opening of a suitable epoxide 48 and the introduction of the amino 

functionality to access the corresponding amino alcohol 47 (Scheme 18). This 

amino alcohol contains the side chain at the future alpha position and could be 

further functionalised towards the sulfonyl fluoride via the corresponding 

thioacetate 46. 

 

 

Scheme 18 Retrosynthetic strategy for alpha-substituted sulfonyl fluorides. 
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2.2.1 Ring opening of epoxides 
 

Commercial racemic epoxides with intrinsic amino acid side chains were used for 

the initial development of the synthetic route.  

The first attempt to open the epoxide was carried out with a calcium triflate 

catalysed aminolysis (Scheme 19).100 Propylene oxide 50 was reacted with 

benzylamine in the presence of 50 mol % of the catalyst in acetonitrile. The 

corresponding N-benzyl amino alcohol 51 was obtained in 85% yield. Removal of 

the benzyl group was desirable at this stage for two main reasons. Firstly, the 

necessary conditions for benzyl deprotection appeared incompatible with the 

sulfonyl fluoride functionality, particularly when involving palladium chemistry, 

due to the tendency of the sulfur to inactivate catalysts.101 Additionally, Cbz has 

proven to be the most suitable protecting group over the synthesis of sulfonyl 

fluorides and their incorporation into peptide sequences due to its stability under 

the employed conditions and ease to removal with strong acids when required. 

Therefore, the benzylprotected amino alcohol was subjected to removal of the 

benzyl group by treatment with the more active Pearlman’s catalyst and hydrogen 

at 1 atm.102 However, the deprotection reaction failed under the selected 

conditions and after 3 days only starting material was detected by TLC (Scheme 

19). 

 

 

Scheme 19 Calcium triflate-catalysed aminolysis of epoxide and N-debenzylation.  
 

In a second attempt, trying to circumventing the hydrogenolysis step, (±) 

propylene oxide 50 (R = CH3) and (±) benzyloxirane 53 (R = CH2Ph) were treated 

with a 30% solution of ammonia in water.103 This alternative reaction resulted in 

a satisfactory and simple method to access the corresponding amino alcohols 52 

and 54. Amino alcohols were directly protected with benzyl chloroformate (Cbz-
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Cl) and triethylamine, following standard procedures,104 affording Cbz-amino 

alcohols 55 and 56 in 50% and 90% yield, respectively (Scheme 20). 

 

  

Scheme 20 Ammonia ring opening of the epoxide and Cbz protection of the amino 

alcohol. 

 

2.2.2 Introduction of the thioacetate group 
 

Subsequent introduction of the thioacetate group was crucial for the success of 

the synthesis in order to prepare the sulfonyl fluoride moiety. Originally, it was 

attempted to synthesise the thioacetates 59 and 60 from the mesylates 57 and 

58, taking advantage of the good leaving group character (Scheme 21).95 

Mesylates were obtained by reaction of the alcohols 55 and 56 with 

methanesulfonyl chloride and triethylamine in CH2Cl2 in good yields. Following, 

mesylates were treated with a mixture of thioacetic acid and Cs2CO3 in DMF. A 

range of stoichiometries of reagents were explored (up to 3 equivalents) without 

clean and full conversion to the corresponding thioacetates. Instead the 

substitution reaction resulted in a mixture of residual mesylate and several 

unidentified by-products. Although this procedure was successful for the 

preparation of the beta-substituted sulfonyl fluorides, it could not be applied in 

the synthesis of the alpha-substituted sulfonyl fluorides. A possible explanation 

might be the less favourable SN2 substitution reaction as a result of the higher 

steric hinderance of the secondary methylsulfonates.  
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Scheme 21 Attempt to synthesise thioacetate derivatives via a mesylate 

approach.  

 

In a second approach, the thioacetate 60 was directly synthesised by a Mitsunobu 

reaction (Scheme 22).105 The N-terminal protected amino alcohol 56 was treated 

with triphenylphosphine, diisopropylazodicarboxylate (DIAD) and thioacetic acid 

in THF. Even though this reaction generated numerous byproducts it resulted in a 

convenient method to obtain the secondary thioacetate in reasonable yield. 

 

 

Scheme 22 Successful attempt to synthesise the thioacetates by a Mitsunobu 

reaction.  

 

2.2.3 Accessibility to epoxides  
 

Finally, terminal alkenes were investigated to access non-commercial epoxides as 

a potential source to gain access to different amino acid side chains. Firstly, the 

terminal olefin 4-methyl-1-pentene 61 was converted to the corresponding 

bromohydrin 62 with NBS in water and preparation of the amino alcohol 64 was 

attempted via a two-step one-pot reaction strategy with a 30% aqueous ammonia 

solution.103 However, formation of the epoxide under these conditions was not 
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observed probably due to the insufficient basicity of ammonia to deprotonate the 

alcohol (Scheme 23). 

 

 

Scheme 23 Bromohydrin formation and amino alcohol preparation by a two-step 

one-pot reaction strategy. 

 
In a second attempt, the terminal alkene 61 was epoxidised with meta-

chloroperoxybenzoic acid in CH2Cl2 (Scheme 24). 1H NMR of the crude showed the 

successful formation the desired epoxide 63 which was directly opened by use of 

the 30% aqueous ammonia solution. The obtained amino alcohol 64 was directly 

used in the next reaction without further purification and therefore yield was not 

recorded. 

 

  

Scheme 24 Epoxidation reaction with mCPBA and ring opening epoxide. 

 

2.2.4 Final proposed synthesis 
 

Two racemic α-substituted derivatives, with side chains corresponding to leucine 

and phenylalanine, were successfully synthesised, starting either from the 

commercial epoxide (±) 53 or by mCPBA epoxidation of the terminal alkene 61 

(Scheme 25). Ring opening of the epoxide with a 30% aqueous ammonia solution 

allowed the introduction of the amino functionality at the least hindered carbon, 

affording the amino alcohols (±) 64 and (±) 54 which were directly protected with 

benzyl chloroformate and triethylamine in CH2Cl2. The Cbz-protected amino 
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alcohols (±) 56 and (±) 65 were then transformed to the corresponding 

thioacetates (±) 60 and (±) 66 by a Mitsunobu reaction. Further oxidation to the 

sulfonic acids was performed using a 33% aqueous solution of hydrogen peroxide 

in acetic acid and the desired sodium sulfonate salts (±) 67 and (±) 68 were 

obtained in situ after treatment with sodium acetate in water. Finally, 

fluorination with morpholinodifluorosulfinium tetrafluoroborate (XtalFluor-M®, 

69)106 with Et3N.3HF as a promoter in CH2Cl2 led to the desired α-substituted 

sulfonyl fluorides (±) 70 and (±) 71. 

 

 

Scheme 25 Designed synthetic route for alpha-substituted sulfonyl fluorides. 
 

2.3 Preliminary Biological Testing  
 

At this stage it was decided to perform a preliminary biological testing of these 

new sulfonyl fluorides in order to evaluate their potential as serine protease 

inhibitors. 
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The enzyme α-chymotrypsin was selected for this purpose as previous experiments 

with the beta-substituted sulfonyl fluorides resulted in high inhibition.96 The 

racemic α- and the enantiopure β-Cbz-Phenylalanine derivatives, (±) 71 and 

27d,96 were selected for this assay due to the enzyme preference for aromatic 

residues. 

A colorimetric assay was carried out by Arwin Brouwer (Utrecht University) (Figure 

22). Both α-substituted (±) 71 and β-substituted 27d (12.5 µM) were pre-

incubated with α-chymotrypsin (1.0 µM) for 1h in an aqueous phosphate buffered 

saline (PBS) (0.05 M, pH 7.0), before the addition of the substrate Bz-Tyr-pNA 72 

(0.25 mM). Subsequently, the liberation of p-nitroaniline 74 from Bz-Tyr-pNA was 

measured at λ = 405nm over 30 min and used to determine the residual enzyme 

activity.  
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Figure 22 α-Chymotrypsin enzyme assay by monitoring the release of pNA 74 for 

comparison of the inhibitory activity of sulfonyl fluorides (±) 71 and 

27d. [Enzyme] = 1.0 µ, [Substrate] = 0.25 mM, [SF] = 12.5 µM. 
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Satisfactorily, the α-substituted sulfonyl fluoride (±) 71 was capable of decreasing 

the activity of α-chymotrypsin under these assay conditions and displayed an equal 

potency to the β-substituted sulfonyl fluoride 27d.  

 

2.4 Enantioselective Synthesis of α-substituted 

Sulfonyl Fluorides 

 

In light of the preliminary biological results, it was decided to attempt an 

enantioselective synthesis of the α-substituted sulfonyl fluoride warhead for its 

incorporation into potential inhibitors of the 20S proteasome. 

Since the epoxide was identified as a key synthon in the synthesis of amino 

alcohols with the side chain in the desired α-position, it was envisioned to prepare 

the chiral epoxides from natural amino acids (Scheme 26).107 This strategy would 

allow the use of amino acids 75 as a source of both chirality and proteinogenic 

side chains, including the more challenging functionalised residues, avoiding the 

need for further synthetic manipulations. In this approach α-bromo acids 76 can 

be obtained, which after subsequent reduction and treatment with base of bromo-

alcohol 77 will afford epoxide 78. 

 

 

Scheme 26 Proposed synthetic route for preparation of chiral epoxide 78. R = 

Amino acid side chains. 

 

Thus, after diazotisation of amino acid 75 the corresponding bromoacid 76 could 

be obtained, with retention of the configuration by a double inversion mechanism 

(Scheme 27). Nitrous acid is generated in situ from sodium nitrite and sulfuric 

acid and decomposes to nitrosonium ion upon protonation and loss of water. The 

lone pair of the amino group of the amino acid attacks then onto the reactive 
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electrophile NO+ forming the diazonium salt which immediately loses nitrogen gas 

to give an α-lactone. The lactone is finally opened by the bromide ion resulting in 

the bromoacid. 

 

 

Scheme 27 Diazotisation mechanism. The diazonium salt, formed upon attack of 

the amine onto the reactive electrophile NO+, results in the formation 

of an unstable α-lactone, subsequently opened by the bromide anion. 

 

Following this approach the amino acid Leucine 79 was transformed to the 

bromoacid 80. However, isolation of the bromoalcohol 82 was cumbersome due 

to the formation of side-products during the diazotisation reaction as no previous 

purification step of the bromoacid 80 was performed. Therefore, it was decided 

to include an additional step to form the corresponding ester 81, which facilitated 

the purification process (Scheme 28).108 The reduction of the unreactive ester 

was achieved by treatment with NaBH4 in the presence of LiCl to generate LiBH4 

in-situ.109 

Scheme 28 Two-step formation of the alcohol 82 through the ester 81. 
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Next intramolecular epoxidation of the resulting bromoalcohol 82 was attempted 

by treatment with potassium carbonate.107 However, only unreacted starting 

material was observed by 1H NMR and TLC and no generation of the desired 

epoxide 63 was detected, thus, the required reaction conditions had to be 

optimised (Table 5). The use of 18-crown-6 ether to complex the potassium 

cations resulted in formation of the product in good yield (50%). Best results were 

obtained using caesium carbonate110 as a base due to the higher solubility in 

organic solvents with no need for any additive.  

 

 Table 5 Reaction conditions for the epoxide formation. 

 

Entry Base (equiv) Additive (equiv) Conversiona 

1 K2CO3 (2) - 0% 

2 K2CO3 (2) 18-crown-6 (0.3) 50% 

3 Cs2CO3 (2) - 90% 

a: Conversion based on 1H NMR of the crude mixture 

 

Since the chiral epoxide could be prepared using this route, it was applied to two 

different substrates: leucine and phenylalanine (Scheme 29). Leucine 79 and 

phenylalanine 83 were converted into the corresponding α-bromoacids 80 and 84 

by treatment with NaNO2 and KBr in an aqueous acid media. Subsequent 

esterification under acidic conditions provided the esters 81 and 85, which were 

further reduced in the presence of NaBH4, LiCl and ethanol in THF, delivering the 

bromoalcohols 82 and 86 in acceptable yields. Treatment of the bromo-alcohols 

with Cs2CO3 in CH2Cl2 generated the chiral epoxides 63 and 53, which were 

immediately ring-opened by aqueous ammonia. Protection of the amino group of 

the obtained amino alcohols 64 and 54 with the Cbz-group afforded 65 and 56 in 

decent (over 3 steps) yields of 64 and 80%, respectively. Alanine derived Cbz-

protected amino alcohol 55 was obtained upon protection of the commercially 
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available (R)-1-amino-2-propanol 87. The secondary alcohols were converted to 

the corresponding thioacetates by a Mitsunobu reaction. Purification of the 

resulting thioacetates 66, 60 and 59 was difficult and reduced the yields 

considerably. The oxidation of the thioacetates using aqueous hydrogen peroxide 

(33% w/w) and acetic acid followed by treatment with sodium acetate led to the 

corresponding sodium sulfonates 67, 68 and 88, which were subjected to the final 

fluorination reaction with XtalFluor-M® 69, affording the desired α-substituted 

sulfonyl fluorides 70, 71 and 89 in acceptable yields. 

 

Scheme 29 Enantiopure synthetic route of alpha-substituted sulfonyl fluorides. 
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2.4.1 Revision of the fluorination reaction 
 

Introduction of the fluorine starting from the sulfonate salts resulted in moderate 

yields and it proved to be particularly challenging with the α-substituted 

substrates. Therefore, it was decided to perform further investigations into this 

reaction, which resulted in the identification of a main side-product as the methyl 

sulfonate esters 90 and 91 (Scheme 30). Over the course of this research it was 

discovered the contamination of the supplied CH2Cl2 with MeOH. 

 

 

Scheme 30 Fluorination reaction using sodium salts 67 and 68 as substrates and 

CH2Cl2 as solvent. 

 

Conveniently, the methyl ester 90 could be cleaved with tetrabutylammonium 

iodide in acetone,111 providing a tetrabutylammonium salt 92 which is a suitable 

substrate for a repeated fluorination reaction. In a first attempt to avoid the 

methyl ester formation and to establish the possible relation between the CH2Cl2 

and this side reaction DCE was selected as a solvent. These new conditions 

resulted in a dramatic increase of the yield from 11% to 57% (Scheme 31).  

 

Scheme 31 Methyl ester cleavage and fluorination reaction using 

tetrabutylammonium salt 92 as substrate in DCE.  
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The fluorination reaction using DCE as a solvent was then repeated with the 

sodium salts 67 and 68 as substrates in order to reproduce the increase of yields 

(Scheme 32). Since formation of the sulfonate ester was not observed, the yield 

of the reaction was higher than the obtained under the original conditions. 

Nevertheless, the increment was not as high as when using the 

tetrabutylammonium salt 92. This might be due to the impurity of the sodium 

salt, which as contains intermediate species formed during the oxidation reaction 

difficult to remove by chromatographic procedures. Additionally, the better 

solubility of the tetrabutylammonium salt in organic solvents could be an 

important factor. These results suggested the necessity for a less problematic 

oxidation of the sulfonates as well as the suitability of converting the 

corresponding sulfonic acids directly into tetrabutylammonium salts. 

 

 

Scheme 32 Fluorination reaction using sodium salts 67 and 68 as substrate in DCE. 

 

2.4.2 Enantiomeric Excess determination 
 

Peptido amino acid-derived sulfonyl fluorides are designed to maximise the 

interactions with the enzyme binding pockets by mirroring the same residues as 

the natural substrates. Therefore, obtaining the right configuration of the amino 

acid-derived side chains is crucial to mimic the natural peptidic ligand.  

The enantiopure synthesis of the α-substituted sulfonyl fluorides started from L- 

amino acids and involved several stereochemistry inversions. The optical purity of 

the intermediates was measured and compared with literature values when 

available. However, determination of the enantiomeric excess, especially for new 

molecules, was desirable. 
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Due to the possible reactivity of the sulfonyl fluoride moiety towards the surface 

functionalities of the stationary phase of the chiral normal-phased HPLC columns, 

it was decided to determine the enantiomeric excess of the amino acid-derived 

thioacetate. The thioacetate is obtained by a Mitsunobu reaction, which is the last 

step in the synthesis involving an inversion of the configuration as well as the last 

intermediate subjected to purification prior to the fluorination reaction. For this 

purpose the racemate of the leucine-derived thioacetate (±) 66 was analysed 

using numerous combinations of different HPLC columns and mobile phase 

gradients. Analysis were performed by Mr Frank McGeoch. However, no base line 

resolution was achieved under the used conditions. As a result, the 

enantioselectivity of the synthesis could not be established at this point with the 

available resources. 

The best resolution was obtained with an OD-H column and 98:2 hexane:IPA as 

mobile phase (Figure 23).  

 

  

Figure 23 Chiral HPLC analysis of the racemate Cbz-Leu-SOCH3 66 with an OD-

H column using a 98:2 hexane:IPA as mobile phase. 
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2.4.3 Functionalised amino acid side chains 
 

After the successful synthesis of three α-substituted sulfonyl fluorides (70, 71 and 

89) containing a non-functionalised side chain, preparation of a functionalised 

amino acid derivative was attempted to prove it was possible to access more 

complex side chains (Scheme 33). 

 

 

Scheme 33 Synthetic route towards a functionalised α-substituted sulfonyl 

fluoride. 

 

It was envisioned that the same synthetic route could be applied when using an 

appropriate protecting group. For this purpose, serine 93 was subjected to a 

diazotisation reaction and the resulting bromoacid 94 converted to the 

corresponding bromoester 95. After this step, the hydroxyl functional group was 

protected with tert-butyldiphenylsilyl (TBDPS), since this group was expected to 

be compatible with the different conditions applied during the synthesis.112 The 

protected ester 96 was then further reduced to the alcohol 97, which was 

subjected to epoxidation. Although formation of the epoxide 98 was detected by 
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TLC and LC-MS analysis, the corresponding amino alcohol 99 was never obtained 

upon the ring opening epoxide reaction. 

This suggested that the protecting group strategy adopted during the synthesis of 

this derivative was unsuitable for the completion of the route. Therefore, this 

derivative was not further pursued and investigation of a more suitable 

group/groups was postponed. 

 

2.5 Reactivity Studies 
 

At this stage we wished to obtain a general idea of the chemical reactivity of the 

alpha-substituted sulfonyl fluoride warhead with respect to nucleophiles and 

whether this behavior was different from the beta-substituted sulfonyl fluorides. 

For this α-substituted sulfonyl fluorides 70 and 71 were compared with β-

substituted sulfonyl fluoride 27c by reaction with a small set of nucleophiles 

chosen to represent the main categories of active residues existent in enzymes 

(amines, thiols and alcohols). (Table 6) 

As expected, the α-substituted warhead does not differ from the β-substituted 

with respect to their specificity toward the different nucleophiles. Both types of 

sulfonyl fluorides do react with amine nucleophiles such as piperidine and 

benzylamine. However, α-substituted sulfonyl fluorides gave rise to more 

sulfonamide product formation after 24 h. In addition, both categories of sulfonyl 

fluorides do not react with thiols such as benzylmercaptan and mercaptoethanol, 

even in the presence of a base (DiPEA).  
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Table 6 Reactivity of sulfonyl fluorides towards different nucleophiles. 

Reactions were performed using 2.2 eq of the respective nucleophile 

in CH2Cl2 over 24h. Results show the yields of the isolated products 

after silica column chromatography.  

 

 

Entry Piperidine Benzylamine Benzylmercaptan Mercaptoethanol 

70  72% 25% 
No 
reactiona,b 

No 
reactiona,b 

71  70% 30% 
No 
reactiona,b 

No 
reactiona,b 

27c  40% 10%c
 

No 
reactiona,b 

No 
reactiona,b 

a : in the absence of base 

b : in the presence of 2.2 eq of DiPEA 

c : based on starting material recovery 

 

Nucleophilic substitution at sulfonyl fluorides may occur by an elimination-

addition pathway involving formation of a sulfene intermediate after proton 

abstraction or by direct substitution of the fluorine atom or. There is substantial 

controversy in the literature regarding whether the direct substitution occurs in a 

concerted manner or in a stepwise process via a trigonal bipyramidal intermediate 

(TBPI).(Scheme 34). Isotopic exchange experiments to detect this intermediate 

have failed to provide clear evendicences.113 By contrast, the sulfene type 

intermediate is firmly supported for sulfonyl halides bearing acidic protons in the 

α-position.86  
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Scheme 34 Two possible mechanisms for the nucleophilic substitution at the 

sulfonyl center. 

 

Deuterium exchange experiments with the β-SF were carried out in the Liskamp 

group (unpublished data) suggested the sulfene pathway, however, direct 

substitution could not be completely ruled out. 

The indication of a possible higher reactivity of the α-substituted warhead cannot 

be directly attributed to the formation of a sulfene intermediate since abstraction 

of the α-proton with respect to the -SO2F in 70 is assumed to be more difficult 

than in 27c. Nevertheless, the more substituted sulfene would be 

thermodynamically more stable. 

An explanation for these results may be found assuming a trigonal bipyramidal 

intermediate in the direct substitution pathway, which could offer relieve of strain 

going from ca 109o angles in the starting material to ca 120o and therefore allowing 

steric acceleration (Scheme 35).114,115 

 



59 

 

Scheme 35 Possible mechanisms of nucleophilic substitution for α-substituted SF. 

 

1.9 Incorporation of Alpha-substituted Sulfonyl 

Fluorides towards Potential Proteasome 

Inhibitors 

 

To evaluate the inhibitory activity of the alpha-substituted sulfonyl fluorides and 

to compare this with the results previously obtained in the group for the beta-

substituted sulfonyl fluorides, they were incorporated into peptide sequences 

derived from PSF 30, 32 and 40.97 

 

2.6.1 Synthesis of peptide sequences 
 

Cbz-Leu-Leu-OH 103 (Cbz-Leu2-OH) and Cbz-Leu-Leu-Leu-OH 107 (Cbz-Leu3-OH) 

sequences were synthesised in solution in a few steps from the common 

intermediate methyl ester 100, obtained after treatment of L-leucine 79 with 

thionyl chloride in MeOH (Scheme 36). Respective couplings with Cbz-Leu-OH 101 
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and Boc-Leu-OH 104 using BOP and DiPEA in CH2Cl2 led to Cbz-Leu2-OMe 102 and 

Boc-Leu2-OMe 105. Subsequent removal of the Boc-group with TFA in CH2Cl2, 

followed by an additional coupling reaction with Cbz-Leu-OH 101 using BOP and 

DiPEA in CH2Cl2 afforded Cbz-Leu3-OMe 106. Carboxylic acids 103 and 107 were 

obtained after saponification of the methyl esters 102 and 106 with Tesser’s base 

(dioxane/methanol/4N NaOH, v/v/v 4/5/1) and semi-preparative reversed-phase 

HPLC purification.97 

 

 

Scheme 36 Synthesis in solution of Cbz-Leu2-OH 103 and Cbz-Leu3-OH 107. 
 

A morpholino-hPhe-Leu-Phe-OH 116 sequence was prepared by solid phase 

peptide synthesis using Fmoc-chemistry. 2-Cl-Tritylchloride resin was loaded with 

the first amino acid 108 using DiPEA in CH2Cl2. Successive cycles of Fmoc-

deprotection, using a 20% solution of piperidine in DMF and coupling with the 

corresponding Fmoc-protected amino acids (110, 112 and 114), using HCTU and 

DiPEA in CH2Cl2 delivered peptide 115. The carboxylic acid 116 was obtained after 

cleavage of 115 from the resin using a 30% solution of HFIP and semi-preparative 

reversed-phase HPLC purification (Scheme 37).99  
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Scheme 37 Solid phase peptide synthesis of Morph-hPhe-Leu-Phe-OH 116 

. 
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2.6.2 Deprotection of the amino acid derived sulfonyl 

fluorides  

 

As previously discussed, the preparation of peptides as free C-terminal acids 

followed by coupling with the amino acid derived sulfonyl fluoride to the N-

terminus in the last step was preferable. This strategy allows to subject the 

sulfonyl fluoride electrophile to the minimum number of reactions. 

Considering the coupling conditions applied for the incorporation of the sulfonyl 

fluoride warhead into the different peptide backbones, the possibility of 

racemisation due to the acidity of the alpha proton induced by the sulfonyl 

fluoride functionality was the first issue to address. Therefore, a coupling reaction 

using neutral conditions was desirable. 

As a consequence the first challenge was the removal of the Cbz-protecting group. 

The standard procedure is the treatment with a 33% solution of HBr in acetic acid, 

which provides the HCl salt of the amine 118 upon treatment with an ion exchange 

resin. This method demands the use of a base during the coupling. Trying to 

circumventing this problem, the cleavage was attempted by hydrogenation in the 

presence of a 10% Pd/C as an approach to directly obtain the free amine 117. 

However, the hydrogenation did not proceed and starting material 89 was 

completely recovered after the reaction, probably due to catalyst poisoning by 

the sulfur.101 Fortunately, following a recent literature procedure, it was possible 

to obtain the free amine 117 using HBr in acetic acid followed by treatment of 

the HCl salt 118 with Zn powder in THF (Scheme 38).116 
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Scheme 38 Different attempts of Cbz-deprotection of sulfonyl fluoride 89. 

 

2.6.3 Incorporation of the sulfonyl fluoride warhead into 

the peptide sequences 

 

Inhibitor synthesis was achieved using a DCC mediated-coupling of the peptide 

backbones in the presence of 6-chloro-HOBt (HOBt-Cl), with the previously 

liberated amine of the corresponding warheads 118 and 119 (Scheme 39). This 

method provides essentially neutral conditions. The final peptido sulfonyl fluoride 

inhibitors 120-125 were obtained after semi preparative reversed-phase HPLC 

purification in rather low yields. This might be due to possible side reactions both 

before and upon coupling. It is particularly important to mention that the high 

reactivity of α-SFs towards amines, previously discussed, would be consistent with 

a reaction between the free N-terminus generated by the treatment with Zn and 

the sulfonyl fluoride moiety prior to the coupling. However, at this stage avoiding 

the need for basic conditions was the priority and therefore the obtained yields 

were considered acceptable and sufficient to continue with the rest of the studies.  
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Scheme 39 Incorporation of the α-substituted sulfonyl fluorides to yield inhibitors 

120-125. Diasteroisomeric ratios were calculated by 1H NMR when 

possible. 
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2.6.4 Diastereoselectivity of the synthesis 
 

Despite the neutral conditions employed for the coupling of the warheads 70 and 

71 with the respective peptide sequences 103, 107 and 116, all inhibitors 120-

125 were obtained as mixtures of diasteroisomers (Scheme 39). The ratios of the 

mixtures were calculated by 1H NMR based on the proportion of the α-proton next 

to the sulfonyl fluoride when possible. In light of these results, it was decided to 

investigate the influence of the coupling reaction on the epimerisation.  

The racemic warheads (±) 70 and (±) 71 were coupled to Cbz-Leu2-OH 103 

sequence under basic conditions, using BOP and DiPEA in CH2Cl2, as controls for 

resolution studies (Scheme 40). 

 

 

Scheme 40 Coupling reaction with the racemic warheads 70 and 71 using basic 

conditions. 

 

Additionally, the warhead 71 obtained by the enantiopure synthetic route was 

coupled to Cbz-Leu2-OH 103 sequence under basic conditions, using BOP and 

DiPEA in CH2Cl2 (Scheme 41) for comparison with the coupling performed with the 

same warhead 71 under neutral conditions. 

. 

 

Scheme 41 Coupling reaction with the chiral warhead 71 using basic conditions. 
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The diasteroisomeric mixtures of inhibitor 121 obtained by the different reaction 

conditions were evaluated by analytical HPLC. Unfortunately, no base line 

resolution of the diasteroisomers could be achieved with the available HPLC 

columns (Figure 24, 25 and 26). 

However, similar ratios of the diasteroisomers were observed both under basic 

(Figure 25) and neutral conditions (Figure 26) when using the chiral warhead 71. 

This suggested that the epimerisation was probably not taking place during the 

coupling step but was the result of the synthesis of the warhead. A possibly 

explanation might be the increased acidity of the α-proton induced by the 

introduction of the sulfonyl fluoride moiety. On the other hand, an enantiopurity 

lost might occur over the different reactions involving configuration inversion. 

Unfortunately, this could not be proved since the ee could not be conclusively 

established. Consequently, the research was continued with the inhibitors as 

diasteroisomeric mixtures.  

 

 

 

Figure 24 Analytical HPLC analysis of compound 121 obtained by coupling of the 

racemate (±) 71 with 103 under basic conditions. 
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Figure 25 Analytical HPLC analysis of compound 121 obtained by coupling of the 

chiral 71 with 103 under basic conditions. 

 

 

 

 

 

Figure 26 Analytical HPLC analysis of compound 121 obtained by coupling of the 

chiral 71 with 103 under neutral conditions. 
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2.7 Buffer Stability Studies 
 

Since the ultimate environment for the inhibitors will be a biological system, the 

behaviour of α-PSFs 120 and 122 and the β-PSF inhibitors 30 and 32 in an aqueous 

buffer was evaluated at different pHs (Figure 27). 

For this study the different inhibitors were dissolved in DMSO and diluted into 

aqueous phosphate buffered saline (PBS) at pH 6.5, 7.4 and 8.0. The degree of 

hydrolysis under these conditions was monitored by analytical HPLC over 12 

hours. The measurement of the first injection was taken as the reference peak 

and the remaining percentage of inhibitor was plotted against the time (Figure 

28). 

Although all the tested compounds exhibited considerable aqueous stability, the 

α-PSFs 120 and 122 appeared to be more prone to undergo hydrolysis than their 

β-PSF counterparts 30 and 32. Surprisingly, hydrolysis of 120 at acidic pH was 

initially fast and remained at a constant rate afterwards. Half of the 

concentration of the α-PSFs 120 and 122 was consumed at the different pHs after 

5-7 hours, whereas the β-PSF inhibitors 30 and 32 were more stable, and 

depending on the pH their half-life varied between 10-12 hours. 

However, it is important to note that remarkable solubility issues were 

encountered while performing the experiments as reflected by some of the drastic 

decreases of the remaining peptide in solution over the first hour. These issues 

will be further discussed in the next section. 
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Figure 27 Compounds 120, 122, 30 and 32. 
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Figure 28 Buffer stability studies of compounds 120, 122, 30 and 32 at pH 6.5, 

7.4 and 8.0. First measurement (t = 0) is assumed to be 100 % of 

peptide in solution. 

 

 

2.8 Biological Evaluation 
 

In order to determine inhibition of proteasomal activity by α-substituted peptido 

sulfonyl fluorides, the enzyme hydrolysis of the fluorogenic substrate Suc-LLVY-

AMC 126 was monitored at λexc = 360 nm and λem = 460 nm after incubation of the 

enzyme with the compounds 120-125 in a range from 0.002 μM-400 μM (Scheme 

42). Epoxomicin (29) and β-PSF 32 were used as control inhibitors. Assays were 

performed in TRIS buffer at pH = 7.4. Different assay conditions are summarised 

in Table 7. 
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Scheme 42 Hydrolysis of Suc-LLVY-AMC 126 and release of AMC (7-Amido-4-

methylcoumarin) 128. 

 

Table 7 Assay conditions used in the determination of the proteasomal 

inhibition by compounds 102-125. 

 

 

 

 

 

 

 

 

In a first attempt, compounds were dissolved in DMSO and added to the enzyme 

solution, achieving a final DMSO concentration of 9%. After 1h incubation at 25 ºC, 

the substrate 126 was added and the fluorescence was measured. Unexpectedly, 

the inhibitors showed no proteasome inhibition in the used concentration range. 

Strangely, an aleatory response which seemed to be independent of the 

concentration was observed (Figure 29). 

Considering that the sulfonyl fluoride was proposed to be a slow reacting warhead 

during the inhibition mechanism studies,99 the incubation time with the enzyme 

was increased to 2 and 3h, but no improvement was obtained (data not shown). 

Entry DMSO (% v/v) 
Incubation 

time (h) 

Temperature 

(ºC)  

1 9 1 25 

2 9 2 25 

3 9 3 25 

4 9 1 30 

5 9 1 35 

6 20 1 25 
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In view of the solubility issues already experienced during the buffer stability 

studies (Section 2.7), it was believed that the tested compounds could be 

partially precipitating from solution distorting the measurement of their 

proteasome inhibitory activities. Inhibitors had proven to be stable at pH = 7.4 for 

more than 5 hours and therefore, the stability of the compounds during the assay 

was not considered the problem. The assay temperature was increased to 25, 30 

and 35 ºC respectively, as an attempt to favour the solution of the inhibitors. 

Unfortunately, inhibitory activity was detected and no trend in the response could 

be established (data not shown). 

In the last attempt, assays were repeated increasing the final percentage of DMSO. 

However, it was impossible to obtain normal sigmoid inhibition curves for any of 

the α-substituted peptido sulfonyl fluoride inhibitors 120-125 even when using up 

to 20% (Figure 30) This concentration is much higher than the maximum 

percentage recommended to avoid denaturing the enzyme117 and therefore, 

further increases on the DMSO content were not performed. 

Possible explanations for this anomalous behaviour include a complete lack of 

activity of the compounds in the above used concentration range. This might be a 

result of the shift of the amino acid side chain on the α-position with respect to 

the sulfonyl fluoride warhead which might not be well tolerated by the 

proteasome. The inability of the potential inhibitors 120-125 to provide a proper 

alignment of the P1, P2 etc. residues and consequently to fit properly into the 

proteasome binding site may result in a lack of affinity. On the other hand, the 

poor solubility of these compounds may have prevented an adequate 

measurement. Assayed concentration ranges may not have been actually realised 

as a result of the precipitation of the compounds from the solution.  

Unfortunately, due to these limiting factors it was impossible to draw definitive 

conclusions about the proteasome inhibitory activity of the α-PSFs 120-125. 
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Figure 29 Inhibitory response of compounds 120-125 using 9% DMSO and 1h 

incubation time at 25 ºC. No trend observed. 
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Figure 30 Inhibitory response of compounds 120-125 using 20% DMSO and 1h 

incubation time at 25 ºC. No trend observed. 

 

2.9 Summary 
 

During the course of this work, several new amino acid derived sulfonyl fluorides 

have been synthesised containing the side chain of the amino acid in the alpha-

position with respect to the sulfonyl fluoride moiety. 

The preparation of these new molecules was achieved by both a racemic and a 

chiral synthesis, using either alkenes or natural amino acids as starting materials, 

which led to epoxides as synthons for shifting the side chain to the desired 

position. Efforts towards the optimisation of these syntheses were made and 
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significant progress was accomplished. This was of particular interest on the topic 

of the fluorination reaction. 

The chemical reactivity of the α-substituted warheads was studied and compared 

with the previously described β-substituted sulfonyl fluorides. Although the alpha 

sulfonyl fluorides 70 and 71 seemed to be chemically more reactive, this did not 

translate into more (bio)-active peptido sulfonyl fluorides after incorporation into 

peptide sequences. 

Unfortunately, the poor solubility of the resulting αPSFs 120-125 (Figure 31) 

precluded a proper evaluation of their biological activity.  

 

 

Figure 31 Summary of inhibitors 120-125. 
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No significant differences were found between the α- and the β-PSF during the 

buffer stability studies, showing all the tested PSFs a considerable aqueous 

stability. 
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3.  Synthesis, Reactivity and Biological 

Evaluation of Vinyl Sulfonyl 

Fluorides 

 

 

 

 

 

 

 

 

 

 

Part of the content of this chapter has been published:  

Herrero Alvarez, N.; Brouwer, A. J.; Ciaffoni, A.; van de Langemheen, H.; 

Liskamp, R. M. J. “Proteasome inhibition by new dual warhead containing peptido 

vinyl sulfonyl fluoride” Bioorganic Med. Chem. 2016, 24 (16), 3429–3435. 
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Very effective and selective proteasome inhibition has been achieved by inhibitors 

with ‘dual’ warheads. The FDA approval of Carfilzomib (2) and the development 

of OXN 0914 (6) have shown the unique advantages provided by containing two 

intrinsic electrophilic sites in one inhibitor. The capability of these inhibitors to 

exploit the bivalent character of the N-terminal threonine provides target 

selectivity and increased potency prevails over mono-electrophilic proteasome 

inhibitors. This set the stage for the investigation of new inhibitory strategies 

based on the employment of bivalent motifs. 

Inspired by the dual warhead concept, vinyl sulfonyl fluorides (VSF) were designed 

as a new proteasome inhibitor class in which a Michael acceptor electrophilic trap 

is combined with a sulfonyl fluoride electrophile (Scheme 43). Both electrophilic 

traps may then interact by a double covalent binding with both nucleophilic amino 

and hydroxyl moieties of the N-terminal threonine residue present in the active 

site of the proteasome. 

 

 

Scheme 43 Combination of β-sulfonyl fluoride and vinyl sulfone moieties into the 

new vinyl sulfonyl fluoride warhead. 

 

It was hypothesised that its molecular structure would allow a conjugate addition 

leading to a highly reactive sulfene intermediate upon release of the fluorine 

atom. The sulfene would then be attacked by the nucleophilic primary amine of 

the threonine residue in an intramolecular reaction leading to a seven-membered 

ring covalent adduct (Scheme 44). 
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Scheme 44 Proposed mechanism for proteasomal inhibition by the vinyl sulfonyl 

fluoride warhead (VSF).  

 

3.1 Aims of the Project 
 

The aim of this project was to develop the vinyl sulfonyl fluoride warhead and to 

incorporate this new moiety into peptide sequences, leading to peptido vinyl 

sulfonyl fluorides (PVSF). The biological activity of these new PVSFs as potential 

peptidic proteasome inhibitors was subsequently evaluated. Understanding of the 

novel mechanism of action of this dual warhead system was pursued by performing 

a variety of reactivity studies in model systems (vide infra). 

This chapter describes the synthesis of a Leucine-derived vinyl sulfonyl fluoride 

and the efforts to demonstrate the proposed inhibition mechanism (Scheme 44) 

in vitro. Importantly, the X-ray crystal structure of a peptido vinyl sulfonyl 

fluoride within the proteasomal active site revealed the formation of a seven-

membered ring structure. Finally, the proteasomal inhibitory activity of two new 

compounds was quantified. 
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3.2 Synthesis of the Vinyl Sulfonyl Fluoride 

Warhead 

 

The synthetic route towards the desired vinyl sulfonyl fluoride (Scheme 45) was 

designed by adapting a synthesis of vinyl aminosulfonic acids previously described 

by Gennari in 1994.118  

 

 
Scheme 45 Synthesis of Leucine-derived VSF 134. 
 

The sequence started with the Cbz-protection of L-Leucine 79 and subsequent 

reduction of Cbz-Leucine 101 to Cbz-Leucinol 129 was performed in a two-step 

process. First activation of the carboxylic acid with isobutyl chloroformate 

delivered the mixed anhydride which was then reduced to the corresponding 

alcohol using sodium borohydride. Although purification at this stage decreased 

the yield (63 %) compared to previous syntheses, improvement of the yield for the 

next steps was observed. Oxidation of the alcohol to the corresponding aldehyde 

130 was performed by Swern oxidation. Cbz-Leucinal was then transformed into 

the ethyl vinylsulfonate 132 in a good yield (68 %) through a Wittig Horner 
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reaction, obtaining the E isomer (J = 15.0 Hz). The phosphonate reagent for the 

Wittig-Horner reaction 131 was prepared in two steps (Scheme 46). The 

commercially available methanesulfonyl chloride 135 was reacted with ethanol 

and NMM in CH2Cl2 to afford ethyl methanesulfonate 136. Subsequent 

deprotonation with n-BuLi and reaction with diethylchlorophosphate 137 

delivered the desired diethylphosphoryl methanesulfonate 131. This phosphonate 

forms an stabilised ylid by conjugation and reacts with E-selectivity. 

The ethyl ester was cleaved by treatment with tetrabutylammonium iodide in 

refluxing acetone, affording the respective tetrabutylammonium sulfonate 133. 

The conversion of the sulfonate salt into the corresponding vinyl sulfonyl fluoride 

134 was achieved by using XtalFluor-M® 69 in the presence of a catalytic amount 

of triethylamine trihydrofluoride acting as a fluoride source. 

 

 

Scheme 46 Synthesis of the required Wittig-Horner reagent 131. 

 

Two potential PVSF proteasome inhibitors 138 and 139 were synthesised by 

removal of the Cbz-protecting group from VSF 134 with a 33% solution of HBr in 

acetic acid, followed by a coupling reaction with Cbz-Leu2-OH 103 and Cbz-Leu3-

OH 107 using BOP and DiPEA in CH2Cl2 (Scheme 47). Compounds 138 and 139 

were obtained after semi preparative reversed-phase HPLC purification in 26% and 

33% yield respectively and were tested for their biological activities (see 

Section 3.5). In contrast with the inhibitors 120-125 (Section 2.6.3) compounds 

138 and 139 were obtained as single diasteroisomers. 
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Scheme 47 Synthesis of peptido vinyl sulfonyl fluorides 138 and 139. 

 

3.3 Mechanistic Studies 
 

To investigate whether the proposed formation within the enzyme of a seven-

membered ring adduct 141 could be observed by chemo-synthesis, the reactivity 

of the vinyl sulfonyl fluoride 134 was studied in vitro. For this purpose the 

dipeptide H-Thr-Val-N(H)Me 140 was chosen as a model system of the threonine 

residue present in the catalytic site of the proteasome. Different base/solvent 

combinations were used and reactions evaluated by LC-MS analysis (Table 8). 

 

Table 8 Model study: conditions and results. 

 

Entry Solvent Base(3 eq) Formation of 
141(a) 

1 CH2Cl2 DBU - 

2 CH3CN DBU - 

3 CH2Cl2 NMM traces 

4 CH2Cl2 Et3N traces 

5 CH3CN Et3N traces 

a : LC-MS analysis of the crude mixture 
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Although the use of DBU resulted in an immediate decomposition of the VSF 134, 

it was possible to observe two small peaks at m/z 541.4 and 563.5, corresponding 

to the [M+H]+ and [M+Na]+ masses of the 7-membered ring containing molecules 

141 or 142, when using Et3N or NMM (Figure 32).  

 

 

 

 

Figure 32 LC-MS chromatogram of the crude reaction mixture with the peaks 

corresponding to the [M+H]+ and [M+Na]+ mass value of structures 141 

or 142. 

 

Additionally, two small peaks at m/z 561.3 and 587.3 were also detected, 

corresponding to the [M+H]+ and [M+Na]+ masses of a non-cyclic structure 

(Figure 33). Assuming that the Michael addition is the preferred reaction, the 

observed mass value could correspond to structures 143 or 144. Unfortunately, 

these adducts were formed in trace amounts and all attempts to isolate them by 

column chromatography or semi-preparative HPLC failed. Attempts by varying the 

solvent (CH2Cl2 or MeCN) for the reaction were unsuccessful to increase product 

formation. The complexity of the mixture did not allow the identification or 

characterisation of the side products. 
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Figure 33 LC-MS chromatogram of the crude reaction mixture with the peaks 

corresponding to the [M+H]+ and [M+Na]+ mass value of structures 143 

or 144. 

 

It is possible that an in vitro test reaction could give a false indication of the 

biological activity due the absence of other residues present in the catalytic site 

of the proteasome. This is especially important when considering the basic 

residues, which affect the relative nucleophilicity of the threonine nucleophiles 

in the enzyme and thereby determine the sequence of steps in the reaction. Whilst 

the proteasomal mechanism is characterised by the hydroxyl group being 

activated and reacting first, the higher nucleophilicity of the amino group in 

chemical systems would lead to the formation of different structures in this study. 

In addition, formation of a seven membered-ring is not a very favourable reaction 

from a chemosynthetic point of view. 

In order to overcome these problems, it was decided to protect one of the 

nucleophiles to simplify the reaction conditions. As an attempt to mimic the 
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biological conditions and favour the performance of the first possible nucleophilic 

reaction by the hydroxyl group, the amine function was protected.  

The Boc-protected dipeptide 145 was treated with NaH to deprotonate the 

hydroxyl and then reacted with VSF 134 (Scheme 48). Surprisingly, while a 

complete consumption of the VSF was observed, the dipeptide remained 

unreacted. It was thought that the released fluorine anion could be acting as an 

additional nucleophile in the system and interfering in the process.  

 

 
Scheme 48 Attempt of reaction between Boc-protected dipeptide 145 and VSF 

134 using NaH as a base. 

 

With this in mind, the same reaction was performed using CaH2 as a base 

(Scheme 49), envisioning that the calcium cation could act as a fluorine scavenger 

and avoid some of the side reactions. Unfortunately, only unreacted dipeptide 

145 was recovered at the end of the reaction. 

 

 
Scheme 49 Attempt of reaction between Boc-protected dipeptide 145 and VSF 

134 using CaH2 as a base. 

 

 



86 

3.3.1 Simple nucleophiles 
 

Due to the difficulties encountered with the used model system and the failures 

of the previous approaches formation of the seven membered-ring 141 or 142 

chemo-synthesis was no longer pursued. Instead it was decided to simplify the 

model of study and get some insight in the reactivity of VSF 134 with more simple 

nucleophiles. For this study solutions of VSF in CH2Cl2 were treated with an excess 

of different nucleophiles and stirred for 24 h (Scheme 50). 

Firstly, the VSF 134 was reacted with piperidine, leading to a 2:3 ratio of the 

double substituted product 147 and the five-membered ring 148. The unexpected 

five-membered ring was formed by attack of the Cbz-protected nitrogen on the 

sulfene intermediate generated upon attack of the piperidine to the Michael 

acceptor. 

The reactivity of the VSF towards primary amines, which is the type of nucleophile 

present as the catalytic residue in the model system 140, was then evaluated by 

reaction with benzylamine and methylamine. A disubstituted compound resulting 

from a Michael reaction and substitution at the sulfonyl fluoride moiety was 

expected. However, the disubstituted compounds 150 and 152 were only 

detected by LC-MS analysis and instead the β-sultams 149 and 151 were the major 

products formed. 
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Scheme 50 Reactivity studies with VSF 134 and different nucleophiles. Yields 

are from isolated compounds after silica column chromatography. 

 

Finally, moving forward to a bivalent nucleophile more similar to the active 

threonine, the VSF 134 was treated with ethanolamine. The reaction led to the 

clear formation of the β-sultam 153 as the major product. To confirm that the 

alcohol functionality was unreacted in the formed product, the compound 153 

was subjected to reaction with TBDMS-Cl in the presence of imidazole. The full 

conversion to the silyl ether 154 was consistent with the initial hypothesis. 
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3.3.2 Ethenesulfonyl fluoride 
 

Treatment of ethenesulfonyl fluoride 155 (ESF) with amines has been used in the 

past among other strategies to synthesise β-sultam compounds 156 

(Scheme 51).119  

 

Scheme 51 Formation of β-sultams 156 with ESF 155 and primary amines. 
 

Recently, ESF has been described as “the most perfect Michael acceptor ever 

found”.120 Kinetic studies of reactions of ESF with different nucleophiles were 

performed to quantify its electrophilicity. The study confirmed the high 

electrophilicity of the double bond, which reacts with a range of nitrogen, oxygen 

and carbon nucleophiles while the sulfonyl fluoride group remains unaffected 

when using equimolar amounts (Scheme 52).120,121 

 

 

Scheme 52 Examples of the reactivity of ESF 156 with nitrogen, oxygen and 

carbon nucleophiles. 

 

These results supported the observed reactivity of the VSF warhead. Consistent 

with the literature, the reaction mechanism of VSF towards nucleophiles was 

proposed (Scheme 53). The Michael acceptor is attacked by the nucleophile on 
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the β-position, leading to a highly reactive sulfene intermediate, which 

immediately undergoes a second nucleophilic attack. When the second attack on 

the sulfene is performed intramolecularly by the introduced nucleophile molecule 

a cyclic structure results. 

 

 

Scheme 53 Proposed reaction mechanism for the VSF 134 warhead. 
 

Based on these findings it was decided to use the simple ethenesulfonyl fluoride 

156 molecule as suitable models of our warhead unit for the test reactions.  

As an attempt to reproduce the previous results ESF 156 was treated with 

ethanolamine. It was envisioned that opening of the β-sultam 161 and formation 

of the seven-membered ring 162 could occur upon the attack of the hydroxyl 

group, deprotonated by treatment with NaH. Unfortunately, this reaction did not 

take place even when at refluxing temperature (Scheme 55). A possible 

explanation for this may be stereoelectronic factors due to the pseudorotation 

restriction of the four-membered ring. This results in a difficult angle of attack 

which makes unlikely the fission of the sulfonamide bond.122  

 

 

Scheme 54 Reaction of ESF 156 with ethanolamine and attempt to open the β-

sultam 161 with NaH. 

 

Additionally, reaction of ESF 156 with more biological substrates: N-methylated 

threonine 163 and N-methylated dipeptide 164, as the initial model system, were 

attempted (Scheme 55). Nevertheless, the impossibility to dissolve substrates 
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163 and 164 in any of the utilised solvents (Table 9), even upon sonication, 

precluded the reactions to proceed and therefore the β-sultams 165 and 166 to 

be not formed. 

 

Scheme 55 Attempts to form β-sultam 165 and 166 by reaction of ESF 156 with 

N-methylated threonine 163 and N-methylated dipeptide 164.  

 
Table 9 Assayed solvents for the reaction of ESF with 156 with N-methylated 

threonine 163 and N-methylated dipeptide 164.  

 

Substrate Solvent Outcome 

163 
CH2Cl2 No dissolution 

164 

163 
CH3CN No dissolution 

164 

163 
EtOAC No dissolution 

164 

163 
THF No dissolution 

164 

164 Ethanol No dissolution 

164 DMF No dissolution 

164 Methanol No dissolution 
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3.4 Crystal Structure 
 

As a part of our collaboration with Groll and coworkers, a crystallographic binding 

analysis of the peptido vinyl sulfonyl fluoride 139 in complex with the β5-subunit 

of the proteasome was conducted. Resolution of the X-ray structure at 2.3 Å 

revealed the formation of the 7-membered ring structure 167 at the proteasomal 

active site (Figure 34). 

 

 

 

 

Figure 34 Crystal structure of Cbz-Leu4-VSF 139 in complex with the β5 subunit 

of the proteasome obtained by Groll and co-workers. (Work 

unpublished) 

 

The VSF warhead 134 was designed to provide two electrophiles that would react 

with the two nucleophiles of the N-terminal threonine. From a chemosynthesis 

point of view both 7-membered ring molecules 141 or 142 (Figure 35) could be 

formed, however, only molecule 141 was expected to be formed in the 
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proteasome. As proven by previous crystal structures of other inhibitors the 

hydroxyl group of the active threonine acts preferentially as the nucleophile due 

to the hydrogen bond activation, while the amino group only reacts in the 

presence of a second electrophile.70  

Formation of the structure 167 within the enzyme is favoured not only by the 

hydrogen bonding network of the active centre but also by the interactions with 

the binding channels which prolong the residence time of the inhibitor while 

providing the optimal orientation for the reaction to occur. None of these 

interactions can be reproduce during the chemosynthesis which would explain the 

impossibility to isolate molecules 141 or 142.  

Satisfyingly the crystal structure confirmed the proposed inhibition mechanism of 

the VSF warhead and had an enormous biological value. The proof of the 

interaction between the two electrophiles of the VSF and the two nucleophiles of 

the N-terminal threonine validated the PVSF as a new class of proteasome 

inhibitors. This may provide exclusive possibilities in terms of duration and 

selectivity of the inhibition.  

 

 

Figure 35 7-membered ring molecules 141 and 142. 
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3.5 Biological Evaluation 
 

The inhibition of the proteasome activity by the peptido vinyl sulfonyl fluorides 

138 and 139 and the previously synthesised PSF 30 and 32 was determined in a 

dose-response assay (Figure 36). For this purpose the hydrolysis of the fluorogenic 

substrate Suc-LLVY-AMC 126 was monitored at λexc = 360 and λem = 460 nm after 

incubation of the enzyme with the compounds in a range from 0.4 nM-8000 nM for 

1h. 
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Figure 36 Inhibitory curves of human constitutive proteasome by PVSFs 138 

and 139 and PSFs 30 and 32. 

 
PVSF showed a strong proteasome inhibition at the mid nanomolar range. IC50 

values of 218 nM and 99 nM were obtained for compounds 138 and 139, 

respectively. The obtained IC50 For PSFs 30 and 32 were consistent with literature 
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values.97 Nevertheless, surprisingly the inhibitory activity of the PVSFs was 

diminished compared to PSFs 30 and 32. Both PVSF and PSF benefit from 

elongated backbones as previously stated.99 

These results could be due to the sulfonyl fluoride moiety of the VSF warhead 134 

occupying a less favourable P1 position. Although the VSF may be more reactive 

than the β-SF, it is more distant from the P1 side chain and this could lead to 

reduced potency. Therefore, potentially lower IC50 values may be obtained by 

evaluating different amino acid sequences with the vinyl sulfonyl fluoride dual 

warhead.  

 

3.6 Summary 
 

During the course of this work successful introduction of the vinyl sulfonyl fluoride 

moiety 134 into the amino acid L-Leucine was accomplished. 

Although there was an indication of formation of the proposed seven membered-

ring structure 141 by in vitro studies, this formation could not be unambiguously 

demonstrated. This was due to the impossibility of isolation and characterisation 

of the observed adducts. Possibly, formation of a seven-membered covalent 

adduct with the N-terminal threonine can only be achieved within the enzyme 

context due to the preorganised environment.  

The encountered difficulties during the in vitro test reactions were addressed by 

using simplified models of study. Reactivity studies were conducted using the VSF 

warhead 134 and the ESF unit 156. The obtained results were in agreement with 

literature.86,120 

It was possible to resolve the crystal structure of the inhibitor 139 in complex 

with the β5-subunit of the 20S proteasome at the resolution of 2.3 Å, which 

revealed the formation of the 7-membered ring. This finding proved the capability 

of the VSF warhead to exploit the bivalent character of the catalytic threonine 

which is the key to discriminate against other proteases and should therefore 

enhance the inhibitor selectivity. 
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Finally, the incorporation of the new electrophilic trap into peptide backbones led 

to very potent proteasome inhibitors which showed IC50 values of 218 nM and 99 

nM, respectively. 
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4. Conclusions and Future Work 
 

This work was dedicated to tune the structure of the sulfonyl fluoride warhead 

and to study the biochemical consequences of such modifications. 

For this purpose two different types of sulfonyl fluoride containing molecules were 

synthesised and analysed: α-substituted sulfonyl fluorides and vinyl sulfonyl 

fluorides. Incorporation into peptide sequences resulted in two new types of 

inhibitors: α-PSF and PVSF (Figure 37). 

 

 

Figure 37 Overview of warheads 70, 71 and 134 and inhibitors 120-125, 138 

and 139. 
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Chemical reactivity and biological studies proved the sulfonyl fluoride electrophile 

to be very sensitive to the structural modifications. In fact the two new warheads 

exhibited remarkably different properties. 

 α-SFs were chemically more stable than VSF. 

 α-PSFs inhibitors were obtained as a mixture of diasteroisomers while PVSF 

did not show any racemisation or epimerisation issue. 

 α-PSFs solubility problems precluded their biological evaluation whereas 

PVSF were easily tested and displayed a high inhibitory potency. 

Additionally, these modifications decreased the inhibitory potency when 

compared to the previously synthesised β-SF. This may be explained by the 

different alignments within the substrate biding pockets as a result of shifting the 

side chain residue or the electrophile to be attacked (Figure 38).  

Regarding α-peptido sulfonyl fluorides, the near future research efforts will 

involve trying to improve the solubility for example by modifying or removing the 

N-terminal protecting group. An important part of the future work will be the 

exact determination of the racemisation causes and in which stage separation of 

the diastereoisomers should take place. 

Future work for the PVSF will include the screening against off target proteases 

to test the selectivity of these inhibitors, with special attention to cysteine 

proteases, since they are known to react with Michael acceptors. Additionally, 

different peptide sequences will be screened in order to optimise the interactions 

with the substrate binding pockets.  
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Figure 38 Alignments of α-PSFs, β-PSFs and VSF inside the substrate binding 

channel of the proteasome. 
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5.  Experimental Section 
 

General Experimental 

All reagents were obtained from commercial sources and used without further 

purification unless specified otherwise. Air and/or moisture sensitive reactions 

were performed under an atmosphere of nitrogen in flame dried apparatus. 

Tetrahydrofuran (THF) and dichloromethane (CH2Cl2) were purified using a Pure-

SolvTM 500 Solvent Purification System. Petroleum ether (PE) used for reactions 

and column chromatography was the 40–60 °C fraction. Ultra-pure water was 

obtained by using the water purification device Arium Comfort I. 

Thin layer chromatography (TLC) was performed using Merck silica gel 60 glass 

plates F254. TLC plates were visualised under UV light at λ = 254 nm and stained 

using the most appropriated solution (ninhydrin, anisaldehyde, bromocresol green 

or potassium permanganate). Flash column chromatography was performed with 

Silicaflash P60 gel (40–63 μm) from Silicycle (Canada) as solid support. 

All 1H NMR spectra were recorded on Bruker Avance III 400 MHz and 500 MHz 

spectrometers at ambient temperature. Data are reported as follows: chemical 

shift in ppm relative to CDCl3 (7.26) on the δ scale, multiplicity (s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad, app. = apparent or a 

combination of these), coupling constant(s) J (Hz), integration and assignment. 

All 13C NMR spectra were recorded on Bruker Avance III 400 MHz and 500 MHz 

spectrometers at 101 MHz and 126 MHz at ambient temperature and multiplicities 

were obtained using 2D data (HSQC, COSY) and DEPT sequence. Data are reported 

as follows: chemical shift in ppm relative to CHCl3 (77.16) on the δ scale and 

assignment. All 19F NMR spectra were recorded on Bruker Avance III 500 MHz 

spectrometer at 471 MHz at ambient temperature. Chemical shift is reported in 

ppm.  

Optical rotations were recorded using an automatic polarimeter Autopol V.  

High resolution mass spectra (HRMS) were recorded using positive chemical 

ionization (CI+) and positive ion impact (EI+) on Jeol MStation JMS-700 instrument; 

and positive or negative ion electrospray (ESI+/ESI-) techniques on a Bruker 

micrOTOF-Q instrument. 
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Analytical HPLC was performed on a Shimadzu Prominence instrument with a UV-

detector operating at λ = 214 and 254 nm, using a Phenomenex column (Gemini, 

C4, 5 µm, 250 x 4.60 mm), (Gemini, C18, 5 µm, 250 x 4.60 mm) or a Dr. Maisch 

column (Reprosil Gold 200, C18, 5 µm, 250 x 4.60 mm) at a flow rate of 1 mL/min. 

The mobile phase was water/CH3CN/TFA (95/5/0.1, v/v/v, buffer A) and 

water/CH3CN/TFA (5/95/0.1, v/v/v, buffer B). Samples were dissolved in buffer 

A/B (1/2 or 1/3). Preparative HPLC was performed on an Agilent 1260 Infinity 

instrument using a Phenomenex column (Gemini, C18, 10 µm, 250 x 21.2 mm) at 

a flow rate of 12.5 mL/min, using the same buffers and sample preparation as 

described for the analytical HLPC. Analytical LC-MS was performed on a Thermo 

Scientific Dionex Ultimate 3000 LC system coupled to a Thermo Scientific LCQ 

FleetTM Ion trap mass spectrometer using a Dr. Maisch column (Reprosil Gold 120, 

C18, 3 µm, 150 x 4mm) with a linear gradient of 1 mL/min. The mobile phase was 

water/CH3CN/TFA (95/5/0.1, v/v/v, buffer A) and water/CH3CN/TFA (5/95/0.1, 

v/v/v, buffer B). Samples were dissolved in buffer A/B (1/1 or 1/2). The UV 

absorption was monitored at λ = 214 and 254 nm over 10, 40 or 60 min. 

Lyophilisation of peptides or building blocks from aqueous solutions and aqueous 

mixtures containing minor amounts of acetonitrile was performed using a Christ 

Alpha-2-4 lyophiliser equipped with a high vacuum pump. 

Proteasome Enzymatic Assays were performed using the VIVAdetectTM 20S 

Proteasome Assay Kit PLUS (Viva bioscience, UK) and the Enzo Life Sciences® 20S 

Proteasome Assay Kit for Drug Discovery (Enzo Life Science, USA).  

Fluorescence measurements were performed with a Clariostar microplate reader 

(BMG LABTECH, Germany).  
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(±)-N-benzyl amino alcohol 51 

 

A solution of (±) propylene oxide 50 (0.14 mL, 1.0 mmol) and benzylamine (0.22 

mL, 2.0 mmol) were dissolved in acetonitrile (6 mL). Calcium triflate (338 g, 1.0 

mmol) was added and the reaction mixture stirred for 4 hours. Solvent was 

evaporated, water (5 mL) was added and the compound extracted with CH2Cl2 (3 

× 5 mL). The combined organic phases were dried over MgSO4, filtered and the 

solvent removed in vacuo to afford the desired compound (±) 51 (140 mg, 0.85 

mmol, 85%) as a colourless oil which did not require further purification. 

1H NMR (400 MHz, CDCl3) δ 7.31 – 7.19 (m, 5H, CH-Ph), 3.72 (m, 3H, CH2-C3, CH-

C1), 2.40 (dd, 1H, CH2-C2a), 2.07 (dd, 1H, CH2-C2b), 1.05 (d, 3H, CH3-C5) 

Spectroscopic data are in accordance with literature.100 

 

(S)-2-(phenylmethyl)-oxirane 53 

 

 

Bromoalcohol 86(10.7 g, 49.6 mmol) was dissolved in dry CH2Cl2 (150 mL) at RT 

and Cs2CO3 (35 g, 99 mmol) was added. The reaction mixture was stirred for 72 h 

and NMR of the crude showed the completion of the reaction. The mixture was 

filtered through celite and the epoxide containing solution was used directly in 

the next reaction. 

1H NMR (400 MHz, CDCl3) δ 7.37 – 7.17 (m, 5H, CH-Ph), 3.21 – 3.14 (m, 1H, CH-

C2), 2.91 (dd, J = 14.5, 5.4 Hz, 1H, CH2-C1a), 2.88 – 2.84 (m, 1H, CH2-C1b), 2.82 

– 2.78 (m, 1H, CH2-C3a), 2.55 (dd, J = 5.0, 2.7 Hz, 1H, CH2-C3b). 
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Cbz-aminoalcohol 55 

 

 

(R)-1-amino-2-propanol 87 (1 g, 13.3 mmol) was dissolved in dry CH2Cl2 (50 mL) 

and cooled to 0 °C. Benzyl chloroformate (2.3 mL, 16 mmol) and Et3N (9.3 mL, 

66.5 mmol) were then added dropwise. The mixture was warmed to RT and the 

reaction stirred overnight. The mixture was neutralised by addition of a 1 Ϻ KHSO4 

aq. solution (50 mL) and the layers were separated. The organic phase was washed 

with a 1 Ϻ KHSO4 aq. solution (2 x 50 mL), brine (2×50 mL), dried over MgSO4, 

filtered and the solvent removed in vacuo. Purification by silica column 

chromatography (n-hex:EtOAc, 2:1) provided the desired compound 55 (2.22 g, 

10.6 mmol, 80%) as a colourless oil.  

1H NMR (500 MHz, CDCl3) δ 7.46 – 7.29 (m, 5H, CH-Ph), 5.18 (br s, 1H, NH), 5.13 

(s, 2H, CH2-C4), 4.00 – 3.92 (m, 1H, CH-C1), 3.37 (ddd, J = 13.5, 6.5, 3.0 Hz, 1H, 

CH2-C2a), 3.09 (ddd, J = 13.5, 7.6, 5.4 Hz, 1H, CH2- C2b), 2.04 (s, 1H, OH), 1.09 

(d, J = 6.3 Hz, 3H, CH3-C6). 

13C NMR (126 MHz, CDCl3) δ 157.2 (CH-C3), 136.5 (C-C5), 128.6 (CH-Ph), 128.3 

(CH-Ph), 128.2 (CH-Ph), 67.6 (CH-C1), 67.0 (CH2-C4), 48.4 (CH2-C2), 20.8 (CH3-

C6). 

HRMS (ESI positive) calcd for C11H15NNaO3 [M+Na]+ 232.0944, found 232.0944. 

 

(±)-Cbz-aminoalcohol 55 

 

 

(±) Propylene oxide 50 (1.4 mL, 10 mmol) was added to a 30% aq. ammonia 

solution (200 mL) under vigorous stirring. The reaction was stirred at RT overnight. 

Evaporation of the solvent in vacuo and co-evaporation with CHCl3 resulted in the 

corresponding amino alcohol (±) 52, which was dissolved in dry CH2Cl2 (35 mL) and 
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cooled to 0 °C. Benzyl chloroformate (1.7 mL, 12 mmol) and Et3N (7 mL, 50 mmol) 

were then added dropwise. The mixture was warmed to RT and the reaction 

stirred overnight. The mixture was neutralised by addition of a 1 Ϻ KHSO4 aq. 

solution (0 mL) and the layers were separated. The organic phase was washed with 

a 1 Ϻ KHSO4 aq. solution (2 x 50 mL), brine (2 × 50 mL), dried over MgSO4, filtered 

and the solvent removed in vacuo. Purification by silica column chromatography 

(EtOAc:n-hex, 2:84:6) afforded the desired compound (±) 55 (1.6 g, 8 mmol, 

80% over two steps) as a colourless oil. 

(See compound 55 for data) 

 

Cbz-aminoalcohol 56 

 

 

The epoxide containing solution 53 was added to a 30% aq. ammonia solution (930 

mL) under vigorous stirring. The reaction was stirred at RT overnight. Evaporation 

of the solvent in vacuo and co-evaporation with CHCl3 resulted in the 

corresponding amino alcohol 54, which was dissolved in dry CH2Cl2 (185 mL) and 

cooled to 0 °C. Benzyl chloroformate (8.5 mL, 60 mmol) and Et3N (34 mL, 248 

mmol) were added dropwise. The mixture was warmed to RT and the reaction 

stirred overnight. The mixture was neutralised by addition of a 1 Ϻ KHSO4 aq. 

solution (100 mL) and the layers were separated. The organic phase was washed 

with a 1 Ϻ KHSO4 aq. solution (2 x 100 mL) brine (2 × 100 mL), dried over MgSO4, 

filtered and the solvent removed in vacuo. Purification by silica column 

chromatography (EtOAc:n-hex, 2:84:6) afforded the desired compound 92 (11.6 

g, 39.1 mmol, 79% over three steps) as white crystals. 

1H NMR (400 MHz, CDCl3) δ 7.43 – 7.10 (m, 10H, CH-Ph), 5.24 (br s, 1H, NH), 5.10 

(s, 1H, CH2-C4), 4.00 – 3.83 (m, 1H, CH-C1), 3.44 (ddd, J = 14.0, 6.9, 3.0 Hz, 1H, 

CH2-C2a), 3.12 (ddd, J = 14.0, 7.6, 5.2 Hz, 1H, CH2-C2b), 2.79 (dd, J = 13.7, 4.9 

Hz, 1H, CH2-C6a), 2.69 (dd, J = 13.7, 8.3 Hz, 1H, CH2-C6b), 2.35 (br s, 1H, OH). 



104 

13C NMR (126 MHz, CDCl3) δ 136.2 (C-C5, C7), 129.2 (CH-Ph), 128.6 (CH-Ph), 128.4 

(CH-Ph), 128.0 (CH-Ph), 126.6 (CH-Ph), 72.0 (CH-C1), 66.8 (CH2-C4), 46.1 (CH2-

C2), 41.1 (CH2-C6). 

HRMS (ESI positive) calcd for C17H19NNaO3 [M+Na]+ 308.1257, found 308.1257. 

[α]
𝟐𝟑
𝐃

 −1.3 (c 0.21, chloroform). 

 

(±)-Cbz-aminoalcohol 56 

 

 

(2,3-Epoxypropyl)benzene 53 (1.3 mL, 10 mmol) was added to a 30% aq. ammonia 

solution (200 mL) under vigorous stirring. The reaction was stirred at RT overnight. 

Evaporation of the solvent in vacuo and co-evaporation with CHCl3 resulted in the 

corresponding amino alcohol (±) 54, which was dissolved in dry CH2Cl2 (35 mL) and 

cooled to 0 °C. Benzyl chloroformate (1.7 mL, 12 mmol) and Et3N (7 mL, 50 mmol) 

were then added dropwise. The mixture was warmed to RT and the reaction 

stirred overnight. The mixture was neutralised by addition of a 1 Ϻ KHSO4 aq. 

solution (0 mL) and the layers were separated. The organic phase was washed with 

a 1 Ϻ KHSO4 aq. solution (2 x 50 mL), brine (2 × 50 mL), dried over MgSO4, filtered 

and the solvent removed in vacuo. Purification by silica column chromatography 

(EtOAc:n-hex, 2:84:6) afforded the desired compound 56 (2.25 g, 7.9 mmol, 79% 

over two steps) as a white solid. 

(See compound 56 for data) 

Spectroscopic data are in accordance with literature.123 
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(±)-Cbz-mesylate 57 

 

 

(±) Cbz-amino alcohol 55 (1.04 g, 5 mmol) was dissolved in CH2Cl2 (20 mL) and 

cooled to 0 °C. Et3N (0.85 mL, 5.75 mmol) and MsCl (0.45 mL) were added 

dropwise and the reaction mixture was stirred overnight. CH2Cl2 (20 mL) was 

added to the mixture and the organic phase was washed with a 1 Ϻ KHSO4 aq. 

solution (2 x 20 mL), water (2 × 20 mL)and brine (2 × 20 mL). The combined organic 

layers ere dried over MgSO4, filtered and the solvent removed in vacuo. 

Purification by silica column chromatography (acetone:CH2Cl2, 1:992:98) 

afforded the desired compound 57 (1.07g, 3.94 mmol, 79%) as a colourless oil.  

1H NMR (400 MHz, CDCl3) δ 7.31 – 7.19 (m, 5H, CH-Ph), 5.12 (br s, 1H, NH), 5.04 

(s, 2H, CH2-C5), 4.79 (m, 1H, CH-C2), 3.42 (dd, 1H, CH2-C3a), 3.22 (dd, 1H, CH2-

C3b), 2.89 (s, 3H, CH3-C1), 1.18 (d, 3H, CH3-C7). 

Spectroscopic data are in accordance with literature.103 

 

(±)-Cbz-mesylate 58 

 

 

(±) Cbz-amino alcohol 56 (593 mg, 2 mmol) was dissolved in CH2Cl2 (7 mL) and 

cooled to 0 °C. Et3N (0.33 mL, 2.3 mmol) and MsCl (0.18 mL) were added dropwise 

and the reaction mixture was stirred overnight. CH2Cl2 (7 mL) was added to the 

mixture and the organic phase was washed with a 1 Ϻ KHSO4 aq. solution (2 x 7 

mL), water (2 × 7 mL)and brine (2 × 7 mL). The combined organic layers ere dried 

over MgSO4, filtered and the solvent removed in vacuo. Purification by silica 

column chromatography (acetone:CH2Cl2, 2:98) afforded the desired compound 

57 (470 mg, 1.29 mmol, 65%) as a colourless oil.  
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1H NMR (400 MHz, CDCl3) δ 7.30 – 7.16 (m, 10H, CH-Ph), 5.05 (s, 2H, CH2-C5), 4.82 

(m, 1H, CH-C2), 3.53 (dd, 1H, CH2-C3a), 3.35 (dd, 1H, CH2-C3b), 2.97 (m, 2H, CH2-

C7), 2.39 (s, 3H, CH3-C1). 

 

Cbz-thioacetate 59 

 

 

To a solution of triphenylphosphine (5.5 g, 21 mmol) in dry THF (25 mL) at −10 °C 

was added a solution of diisopropyl azodicarboxylate (4.2 mL, 21 mmol) in dry THF 

(12 mL) dropwise. The resulting mixture was stirred at −10 °C for 30 minutes. A 

solution of Cbz-protected amino alcohol 55 (2.2 g, 10.6 mmol) and thioacetic acid 

(1.5 mL, 21 mmol) in dry THF (25 mL) was then added dropwise. The reaction 

mixture was stirred at −10 °C overnight. After evaporation of THF in vacuo, 

triphenylphosphine oxide was precipitated by adding a cold 1:1 mixture of EtOAc 

and PE. The mixture was filtered, the solvent removed in vacuo and the crude 

purified by silica column chromatography (n-hex:CH2Cl2, 1:12:8) affording the 

desired thioacetate 59 (2.2 g, 8.1 mmol, 76%) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δ 7.32 – 7.13 (m, 5H, CH-Ph), 5.09 – 4.97 (m, 2H, CH2-

C6), 4.96 – 4.86 (m, 1H, NH), 3.61 – 3.52 (m, 1H, CH-C3), 3.35 (app dt, J = 14.0, 

5.7 Hz, 1H, CH2-C4a), 3.20 (ddd, J = 14.0, 7.6, 6.3 Hz, 1H, CH2- C4b), 2.21 (s, 3H, 

CH3-C1), 1.21 (d, J = 7.1 Hz, 3H, CH3-C8). 

13C NMR (126 MHz, CDCl3) δ 195.5 (C-C2), 156.3 (C-C5), 136.3 (C-C7), 128.4 (CH-

Ph), 128.0 (CH-Ph), 66.7 (CH2-C6), 46.1 (CH2-C4), 39.7 (CH-C3), 30.6 (CH3-C1), 

18.0 (CH3-C8). 

HRMS (EI positive) calcd for C13H17NO3S [M+H]+ 267.0929, found 267.0933. 
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Cbz-thioacetate 60 

 

 

To a solution of triphenylphosphine (8.8 g, 33.6 mmol) in dry THF (40 mL) at −10 

°C was added a solution of diisopropyl azodicarboxylate (6.6 mL, 33.6 mmol) in 

dry THF (20 mL) dropwise. The resulting mixture was stirred at −10 °C for 30 

minutes. A solution of Cbz-protected amino alcohol 56 (4.8 g, 16.8 mmol) and 

thioacetic acid (2.3 mL, 33.6 mmol) in dry THF (40 mL) was then added dropwise. 

The reaction mixture was stirred at −10 °C overnight. After evaporation of THF in 

vacuo, triphenylphosphine oxide was precipitated by adding a cold 1:1 mixture of 

EtOAc and PE. The mixture was filtered, the solvent removed in vacuo and the 

crude purified by silica column chromatography (n-hex:CH2Cl2, 95:550:50) 

affording the desired thioacetate 60 (3.11 g, 9.05 mmol, 54%) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δ 7.44 – 7.16 (m, 10H, CH-Ph), 5.20 – 5.11 (m, 2H, CH2-

C6), 5.05 – 4.95 (m, 1H, NH), 3.91 (dddd, J = 7.7, 7.2, 7.1, 5.2 Hz, 1H, CH-C3), 

3.55 (ddd, J = 14.2, 5.4, 5.2 Hz, 1H, CH2-C4a), 3.40 (app dt, J = 14.2, 7.1, Hz, 1H, 

CH2-C4b), 2.99 (dd, J = 14.1, 7.2 Hz, 1H, CH2-C8a), 2.92 (dd, J = 14.1, 7.7 Hz, 1H, 

CH2-C8b), 2.32 (s, 3H, CH3-C1). 

13C NMR (126 MHz, CDCl3) δ 195.5 (C-C2), 156.5 (C-C5), 137.9 (C-C7, C9), 129.3 

(CH-Ph), 128.6 (CH-Ph), 128.6 (CH-Ph), 128.3 (CH-Ph), 126.9 (CH-Ph), 67.0 (CH2-

C6), 46.2 (CH2-C4), 44.4 (CH-C3), 38.5 (CH2-C8), 30.9 (CH3-C1). 

HRMS (ESI positive) calcd for C19H21NNaO3S [M+Na]+ 366.1134, found 366.1130. 

[α]
𝟐𝟑
𝐃

 +3.6 (c 0.25, chloroform). 
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(±) Cbz-thioacetate 60 

 

The general procedure was followed on a 10 mmol scale resulting in the desired 

product (1.40 g, 4 mmol, 40%) as a yellow oil. 

(See compound 60 for data) 

 

Bromohydrin 62 

 

 

4-methyl-1-pentene (0.25 mL, 2 mmol) and NBS (356 mg, 2 mmol) were dissolved 

in water (0.8 mL). The reaction was stirred overnight. The mixture was extracted 

with Et2O (2 × 4 mL). The combined organic layers were washed a 10% Na2SO3 aq. 

solution (2 × 4 mL), dried over MgSO4, filtered and the solvent removed in vacuo 

to afford compound 62 (109 mg, 0.6 mmol, 30%) which did not required further 

purification. 

1H NMR (400 MHz, CDCl3) δ 3.81 – 3.72 (m, 1H, CH-C2), 3.45 (dd, 1H, CH2-C1a), 

3.30 (dd, 1H, CH2-C1b), 1.76 (m, 1H, CH-C4), 1.42 (dd, 1H, CH2-C3a), 1.25 (dd, 

1H, CH2-C3b), 0.88 (m, 6H, CH3-C5, C6). 

Spectroscopic data are in accordance with literature.103 
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(S)-2-(2-methylpropyl)-oxirane 63 

 

 

Bromoalcohol 82 (6.6 g, 30 mmol) was dissolved in dry CH2Cl2 (90 mL) at RT and 

Cs2CO3 (21.2 g, 60 mmol) was added. The reaction mixture was stirred for 72 h. 

The mixture was filtered through celite and the epoxide containing solution was 

used directly in the next reaction. 

1H NMR (400 MHz, CDCl3) δ 2.89 (dddd, J = 6.6, 5.4, 4.0, 2.8 Hz, 1H, CH-C2), 2.72 

(dd, J = 5.1, 4.0 Hz 1H, CH2-C1a), 2.40 (dd, J = 5.1, 2.8 Hz, 1H, CH2-C1b), 1.86 – 

1.74 (m, 1H, CH-C4), 1.46 – 1.28 (m, 2H, CH2-C3), 0.96 (d, J = 6.7, 3H, CH3-C5), 

0.94 (d, J = 6.7, 3H, CH3-C6).  

Spectroscopic data are in accordance with literature.124 

 

(±)-2-(2-methylpropyl)-oxirane 63 

 

 

m-CPBA (5.3 g, 24 mmol) was dissolved in CH2Cl2 (140 mL) and added to a solution 

of 4-methyl-1-pentene (2.5 mL, 20 mmol) in CH2Cl2 (40 mL) and the reaction 

mixture stirred at RT overnight. NMR of the crude showed the completion of the 

reaction. The mixture was filtered and the reaction quenched by addition of a 10% 

Na2S2O3 aq. solution (200 mL). The layers were separated and the organic phase 

washed with a 1 Ϻ NaHCO3 aq. solution (1 × 200 mL), brine (1 × 200 mL), dried 

over MgSO4 and filtered. The epoxide containing solution was used directly in the 

next reaction. 

(See compound 63 for data) 

  



110 

Cbz-aminoalcohol 65 

 

 

The epoxide containing solution 63 was added to a 30% aq. ammonia solution (600 

mL) under vigorous stirring. The reaction was stirred at RT overnight. Evaporation 

of the solvent in vacuo and co-evaporation with CHCl3 resulted in the 

corresponding amino alcohol 64, which was dissolved in dry CH2Cl2 (110 mL) and 

cooled to 0 °C. Benzyl chloroformate (5.1 mL, 36 mmol) and Et3N (21 mL, 150 

mmol) were then added dropwise. The mixture was warmed to RT and the reaction 

stirred overnight. The mixture was neutralised by addition of a 1 Ϻ KHSO4 aq. 

solution (100 mL) and the layers were separated. The organic phase was washed 

with a 1 Ϻ KHSO4 aq. solution (2 x 100 mL), brine (2 × 100 mL), dried over MgSO4, 

filtered and the solvent removed in vacuo. Purification by silica column 

chromatography (EtOAc: n-hex, 5:9530:70) afforded the desired compound 65 

(4.8 g, 19.2 mmol, 64% over three steps) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.29 (m, 5H, CH-Ph), 5.18 – 5.06 (m, 3H, NH, 

CH2-C4), 3.80 –3.69 (m, 1H, CH-C1), 3.39 (ddd, J = 14.0, 6.7, 3.0 Hz, 1H, CH2-

C2a), 3.05 (ddd, J = 14.0, 7.7, 5.3 Hz, 1H, CH2-C2b), 1.96 (br s, 1H, OH), 1.80 –

1.73  (m, 1H, CH-C7), 1.39 (ddd, J = 13.5, 8.9, 5.8 Hz, 1H, CH2-C6a), 1.23 (ddd, J 

= 13.5, 8.5, 4.3 Hz, 1H, CH2-C6b), 0.93 (d, J = 6.6 Hz, 3H, CH3-C8), 0.91 (d, J = 

6.6 Hz, 3H, CH3-C9). 

13C NMR (126 MHz, CDCl3) δ 157.2 (C-C3), 136.5 (C-C5), 128.6 (CH-Ph), 128.3 (CH-

Ph), 128.2 (CH-Ph), 69.6 (CH2-C4), 67.0 (CH-C1), 47.5 (CH2-C2), 43.9 (CH2-C6), 

24.6 (CH-C7), 23.4 (CH3-C8), 22.2 (CH3-C9).  

HRMS (ESI positive) calcd for C14H21NNaO3 [M+Na]+ 274.1414, found 274.1414. 

[α]
𝟐𝟑
𝐃

 −5.5  (c 0.77, chloroform). 
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(±) Cbz-aminoalcohol 65 

 

The general procedure was followed on a 10 mmol scale resulting in the desired 

product (2.50 g, 9.1 mmol, 91%)as a yellow oil. 

 

(See compound 65 for data) 

 

Cbz-thioacetate 66 

 

 

To a solution of triphenylphosphine (10 g, 38.4 mmol) in dry THF (45 mL) at −10 

°C was added a solution of diisopropyl azodicarboxylate (7.5 mL, 38.4 mmol) in 

dry THF (23 mL) dropwise. The resulting mixture was stirred at −10 °C for 30 

minutes. A solution of Cbz-protected amino alcohol 65 (4.8 g, 19.2 mmol) and 

thioacetic acid (12.7 mL, 38.4 mmol) in dry THF (45 mL) was then added dropwise. 

The reaction mixture was stirred at −10 °C overnight. After evaporation of THF in 

vacuo, triphenylphosphine oxide was precipitated by adding a cold 1:1 mixture of 

EtOAc and PE. The mixture was filtered, the solvent removed in vacuo and the 

crude purified by silica column chromatography (n-hex:CH2Cl2, 6:42:8) affording 

the desired compound 66 (4.2 g, 13.6 mmol, 71%) as a yellow oil. 

1H NMR (400 MHz, CDCl3) δ 7.44 – 7.29 (m, 5H, CH-Ph), 5.20 – 5.02 (m, 2H, CH2-

C6), 4.98 (br s, 1H, NH), 3.72 – 3.62(m, 1H, CH-C3), 3.46 (app dt, J = 14.0, 4.8 Hz, 

1H, CH2-C4a), 3.32 (app dt, J = 14.0, 7.0 Hz, 1H, CH2-C4b), 2.31 (s, 3H, CH3-C1), 

1.77 – 1.72 (m, 1H, CH-C9), 1.47 – 1.38 (m, 2H, CH2-C8), 0.92 (d, J = 6.6 Hz, 3H, 

CH3-C10), 0.87 (d, J = 6.6 Hz, 3H, CH3-C11). 
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13C NMR (126 MHz, CDCl3) δ 195.7 (C-C2), 156.3 (C-C5), 136.4 (C-7), 128.4 (CH-

Ph), 128.0 (CH-Ph), 66.6 (CH2-C6), 45.5 (CH2-C4), 43.1 (CH-C3), 40.4 (CH2-C8), 

30.6 (CH3-C1), 25.4 (CH-C9), 22.7 (CH3-C10), 21.7 (CH3- C11). 

HRMS (ESI positive) calcd for C16H23NNaO3S [M+Na]+ 332.1282, found 332.1291. 

[α]
𝟐𝟑
𝐃

 +1.5 (c 0.45, chloroform). 

 

(±) Cbz-thioacetate 66 

 

 

The general procedure was followed on a 5 mmol scale resulting in the desired 

product (718 mg, 2.45 mmol, 49%) as a yellow oil. 

(See compound 66 for data) 

 

Cbz-sulfonate salt 67 

 

 

Thioacetate 66 (1.6 g, 4.7 mmol) was dissolved in acetic acid (15 mL) and a 30% 

aq. H2O2 solution (5 mL) was added. The reaction was stirred at RT overnight. 

NaOAc (425 mg, 5.2 mmol) was added and the mixture stirred at RT for 1 h. Co-

evaporation with DMF was repeated until the excess of peroxides was removed 

(checked with starch iodide paper) and lyophilisation of the residual water 

resulted in the desired sulfonate salt 67 as an off-white solid. No further 

purification was performed. 

HRMS (ESI positive) calcd for C14H20NNaO5S [M+Na]+ 360.0852, found 360.0843. 
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(±) Cbz-sulfonate salt 67 

 

The general procedure was followed on a 2.3 mmol scale resulting in the desired 

product (764 mg, 2.2 mmol, 97%) as a white solid. 

(See compound 67 for data) 

 

Cbz-sulfonate salt 68 

 

 

Thioacetate 60 (4.2 g, 13.6 mmol) was dissolved in acetic acid (50 mL) and a 30% 

aq. H2O2 solution (18 mL) was added. The reaction was stirred at RT overnight. 

NaOAc (1.2 g, 15 mmol) was added and the mixture stirred at RT for 1 h. Co-

evaporation with DMF was repeated until the excess of peroxides was removed 

(checked with starch iodide paper) and lyophilisation of the residual water 

resulted in the desired sulfonate salt 68 as an off-white solid. No further 

purification was performed. 

HRMS (ESI positive) calcd for C7H18NNaO5S [M+Na]+ 394.0696, found 394.0693. 
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(±) Cbz-sulfonate salt 68 

 

The general procedure was followed on a 2 mmol scale resulting in the desired 

product (630 mg, 1.7 mmol, 84%) as a white solid. 

(See compound 68 for data) 

 

Cbz-sulfonyl fluoride 70 

 

 

 

Procedure 1: The crude sulfonate salt 67 (1 g, 2.9 mmol) was dissolved in dry 

CH2Cl2 (150 mL). XtalFluor-M 69 (1.26 g, 5.22 mmol) and NEt3·3HF (20 μL, 0.12 

mmol) were added and the reaction was stirred under a nitrogen atmosphere at 

reflux overnight. Evaporation of the solvent in vacuo and purification of the crude 

product by silica column chromatography (EtOAc:n-hex, 5:9530:70) afforded the 

desired sulfonyl fluoride 70 (100 mg, 0.32 mmol, 11%) as a colourless oil followed 

by the sulfonate methyl ester 90 (395 mg, 1.2 mmol, 42%) as a yellow oil. 

Procedure 2: The crude sulfonate salt 67 (300 mg, 0.94 mmol) was dissolved in 

dry DCE (45 mL). XtalFluor-M 69 (353 mg, 1.45 mmol) and NEt3·3HF (6 μL, 0.03 

mmol) were added and the reaction was stirred under a nitrogen atmosphere at 

reflux overnight. Evaporation of the solvent in vacuo and purification of the crude 

product by silica column chromatography (EtOAc:n-hex, 0:12:8) afforded the 

desired sulfonyl fluoride 70 (60 mg, 0.19 mmol, 24%) as a colourless oil. 

Procedure 3: The crude tetrabutylammonium sulfonate salt 92 (300 mg, 0.54 

mmol) was dissolved in dry DCE (25 mL). XtalFluor-M (236 mg, 0.97 mmol) and 
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NEt3·3HF (4 μL, 0.02 mmol) were added and the reaction was stirred under a 

nitrogen atmosphere at reflux overnight. Evaporation of the solvent in vacuo and 

purification of the crude product by silica column chromatography (EtOAc:n-hex, 

0:12:8) afforded the desired sulfonyl fluoride 70 (100 mg, 0.31 mmol, 57%) as a 

colourless oil. 

1H NMR (500 MHz, CDCl3) δ 7.33 – 7.15 (m, 5H, CH-Ph), 5.26 (br s, 1H, NH), 5.08 

(d, J = 12.1 Hz, 1H, CH2-C4a), 5.02 (d, J = 12.1 Hz, 1H, CH2-C4b), 3.72 (ddd, J = 

12.4, 6.9, 2.2 Hz, 1H, CH2-C2a), 3.56 – 3.44 (m, 2H, CH2-C2b, CH-C1), 1.90 – 1.79 

(m, 1H, CH-C7), 1.79 –1.70 (m, 1H, CH2-C6a), 1.56 (ddd, J = 14.2, 8.8, 5.4 Hz, 1H, 

CH2-C6b), 0.89 (d, J = 6.5 Hz, 3H, CH3-C8), 0.88 (d, J = 6.5 Hz, 3H, CH3-C9). 

13C NMR (126 MHz, CDCl3) δ 156.4 (C-C3), 136.1 (C-C5), 128.7 (CH-Ph), 128.4 (CH-

Ph), 128.2 (CH-Ph), 67.3 (CH2-C4), 61.6 (d, J = 9.4 Hz, CH-C1), 40.1 (CH2-C2), 35.6 

(CH-C6), 25.3 (CH-C7), 22.8 (CH3-C8), 21.5 (CH3-C9). 

19F NMR (471 MHz, CDCl3) δ 48.38 (s). 

HRMS (ESI positive) calcd for C14H20FNO4S [M+H]+ 317.1097, found 317.1101. 

[α]
𝟑𝟑
𝐃

 −2.1 (c 2, chloroform). 

 

(±) Cbz-sulfonyl fluoride 70 

 

The general procedure was followed on a 1 mmol scale resulting in the desired 

product (160 mg, 0.5 mmol, 51%) as a colourless oil 

(See compound 70 for data) 
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Cbz-sulfonyl fluoride 71 

 

 

Procedure 1: The crude sulfonate salt 68 (1 g, 2.7 mmol) was dissolved in dry 

CH2Cl2 (140 mL). XtalFluor-M 69 (1.18 g, 4.86 mmol) and NEt3·3HF (20 μL, 0.12 

mmol) were added and the reaction was stirred under a nitrogen atmosphere at 

reflux overnight. Evaporation of the solvent in vacuo and purification of the crude 

product by silica column chromatography (EtOAc:n-hex, 5:9530:70) afforded the 

desired sulfonyl fluoride 71 (140 mg, 0.40 mmol, 15%) as a colourless oil followed 

by the sulfonate methyl ester 91 (400 mg, 1.1 mmol, 41%) as a yellow oil. 

Procedure 2: The crude sulfonate salt 68 (300 mg, 0.85 mmol) was dissolved in 

dry DCE (45 mL). XtalFluor-M (353 mg, 1.45 mmol) and NEt3·3HF (6 μL, 0.03 mmol) 

were added and the reaction was stirred under a nitrogen atmosphere at reflux 

overnight. Evaporation of the solvent in vacuo and purification of the crude 

product by silica column chromatography (EtOAc:n-hex, 0:102:8) afforded the 

desired sulfonyl fluoride 71 (70 mg, 0.20 mmol, 25%) as a solid. 

1H NMR (500 MHz, CDCl3) δ 7.38 – 7.06 (m, 10H, CH-Ph), 5.17 (br s, 1H, NH), 5.06 

– 4.94 (m, 2H, CH2-C4), 3.94 – 3.84 (m, 1H, CH-C1), 3.65 (ddd, J = 14.7, 6.2, 3.0 

Hz, 1H, CH2-C2a), 3.52 (app dt, J = 14.7, 6.9 Hz, 1H, CH2-C2b), 3.34 (dd, J = 14.4, 

4.6 Hz, 1H, CH2-C6a), 2.93 (dd, J = 14.4, 9.5 Hz, 1H, CH2-C6b). 

 13C NMR (126 MHz, CDCl3) δ 156.0 (C-C3), 135.9 (C-C5), 134.5 (C-C7), 129.1 (CH-

Ph), 129.0 (CH-Ph), 128.6 (CH-Ph), 128.3 (CH-Ph), 128.1 (CH-Ph), 127.8 (CH-Ph), 

67.2 (CH2-C4), 63.9 (d, J = 8.8 Hz, CH-C1), 39.5 (CH2-C2), 33.1 (CH2-C6). 

19F NMR (471 MHz, CDCl3) δ 50.56 (s). 

HRMS (ESI positive) calcd for C17H18FNNaO4S [M+Na]+ 374.0833, found 374.0828. 

[α]
𝟑𝟑
𝐃

 +31.2 (c 0.6, chloroform). 
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(±) Cbz-sulfonyl fluoride 71 

 

 

The general procedure was followed on a 1.4 mmol scale resulting in the desired 

product (236 mg, 0.6 mmol, 48%) as a white solid. 

(See compound 71 for data) 

 

(S)-Ethyl-2-bromo-4-methylpentanoate 81 

 

 

L-Leucine 79 (13.2 g, 100 mmol) and KBr (41.6 g, 350 mmol) were dissolved in a 

2.5 Ϻ H2SO4 aq. solution (130 mL) at 0 °C and NaNO2 (8.9 g, 130 mmol) was added 

over 2 h. The reaction mixture was warmed to RT and stirred for 72 h. The mixture 

was extracted with EtOAc (3 × 300 mL). The combined organic extracts were 

washed with brine (1 × 300 mL), dried over MgSO4, filtered and removed in vacuo, 

affording (S)-2-bromo-4-methylpentanoic acid 80 which was used directly in the 

next reaction without further purification. The α-bromo acid (17.6 g, 90.0 mmol) 

was dissolved in a mixture of EtOH (230 mL) and conc. H2SO4 (3 mL) and stirred at 

reflux overnight. Removal of the solvent in vacuo and purification by silica column 

chromatography (PE:CH2Cl2, 9:1) afforded the desired compound 81 (11.1 g, 50 

mmol, 50% over 2 steps) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δ 4.29 – 4.18 (m, 3H, CH-C2, CH2-C7), 1.96 – 1.84 (m, 

2H, CH2-C3), 1.82 – 1.70 (m, 1H, CH-C4), 1.29 (t, J = 7.1 Hz, 3H, CH3-C8), 0.95 (d, 

J = 6.6 Hz, 3H, CH3-C5), 0.90 (d, J = 6.6 Hz, 3H, CH3-C6). 

13C NMR (126 MHz, CDCl3) δ 169.9 (C-C1), 61.7 (CH-C2), 44.6 (CH2-C7), 43.3 (CH2-

C3), 26.2 (CH-C4), 22.2 (CH3-C5), 21.4 (CH3-C6), 13.8 (CH3-C8). 
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HRMS (CI iso-butane) calcd for C8H16O2Br [M+H]+ 223.0334, found 223.0325. 

[α]
𝟐𝟎
𝐃

 −35.8 (c 2.4, chloroform). 

Spectroscopic data are in accordance with literature.108 

 

(S)-2-bromo-4-methyl-1-pentanol 82 

 

 

To a solution of 81 (11.1 g, 50 mmol) in dry THF (180 mL) at RT was added NaBH4 

(4.7 g, 125 mmol) and LiCl (5.2 g, 125 mmol). After stirring for 10 min, EtOH (290 

mL) was added and the reaction mixture was stirred overnight. During the reaction 

additional dry THF (75 mL) was added to achieve adequate stirring. The reaction 

was cooled to 0 °C and quenched by slow addition of a saturated aq. NH4Cl solution 

(250 mL). The layers were separated and the aqueous phase was extracted with 

EtOAc (3 × 300 mL). The combined organic extracts were dried over MgSO4, 

filtered and solvent removed in vacuo. Purification by silica column 

chromatography (n-hex:CH2Cl2, 4:6) afforded the desired bromoalcohol 82 (6.6 g, 

30 mmol, 60%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δ 4.14 (dddd, J = 10.2, 7.0, 4.2, 4.2 Hz, 1H, CH-C2), 

3.75 (dd, J = 12.4, 4.2 Hz, 1H, CH2-C1a), 3.66 (dd, J = 12.4, 7.0 Hz, 1H, CH2-C1b), 

2.20 (br s, 1H, OH), 1.87 – 1.79 (m, 1H, CH-C4), 1.75 (ddd, J = 14.6, 10.2, 5.0 Hz, 

1H, CH2-C3a), 1.50 (ddd, J = 14.6, 8.9, 4.2 Hz, 1H, CH2-C3b), 0.89 (d, J = 6.6 Hz, 

3H, CH3-C5), 0.84 (d, J = 6.6 Hz, 3H, CH3-C6). 

13C NMR (126 MHz, CDCl3) δ 67.7 (CH2-C1), 58.6 (CH-C2), 43.7 (CH2-C3), 26.3 (CH-

C4), 23.0 CH3-C5), 21.3 (CH3-C6). 

HRMS not recorded, sample does not ionise.  

[α]
𝟐𝟎
𝐃

 −41.8  (c 0.7, chloroform). [α]
𝟐𝟐
𝐃

 lit −41.9  (c 1.346, MeOH). 
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(S)-Ethyl-2-bromo-3-phenylpropionate 85 

 

 

L-Phenylalanine 83 (16.5 g, 100 mmol) and KBr (41.6 g, 350 mmol) were dissolved 

in a 2.5 Ϻ H2SO4 aq. solution (130 mL) at 0 °C and NaNO2 (8.9 g, 130 mmol) was 

added over 2 h. The reaction mixture was warmed to RT and stirred for 72 h. The 

mixture was extracted with EtOAc (3 × 300 mL). The combined organic extracts 

were washed with brine (1 × 300 mL), dried over MgSO4, filtered and removed in 

vacuo, affording (S)-2-bromo-benzenepropanoic acid 84 which was used directly 

in the next reaction without further purification. The α-bromo acid (22.0 g, 96.2 

mmol) was dissolved in a mixture of EtOH (250 mL) and conc. H2SO4 (4 mL) and 

stirred at reflux overnight. Removal of the solvent in vacuo and purification by 

silica column chromatography (n-hex:CH2Cl2, 4:1) afforded the desired compound 

85 (16.9 g, 65.7 mmol, 66% over 2 steps) as colourless oil. 

1H NMR (400 MHz, CDCl3) δ 7.36 – 7.13 (m, 5H, CH-Ph), 4.38 (dd, J = 8.5, 7.1 Hz, 

1H, CH-C2), 4.26 – 4.15 (m, 2H, CH2-C5), 3.49 (dd, J = 14.1, 8.5 Hz, 1H, CH2-C3a), 

3.27 (dd, J = 14.1, 7.1 Hz, 1H, CH2-C3b), 1.25 (t, J = 7.1 Hz, 3H, CH3-C6). 

13C NMR (126 MHz, CDCl3) δ 169.5 (C-C1), 136.9 (C-C4), 129.3 (CH-Ph), 128.7 (CH-

Ph), 127.4 (CH-Ph), 62.1 (CH-C2), 45.6 (CH2-C5), 41.2 (CH2-C3), 13.8 (CH3-C6). 

HRMS (ESI positive) calcd for C11H13NaO2Br [M+Na]+ 278.9982, found 278.9991. 

[α]
𝟐𝟎
𝐃

 −8.0  (c 3.7, chloroform). [α]
𝟐𝟐
𝐃

 +0.9 (c 0.632, MeOH). 

Spectroscopic data are in accordance with literature.108 
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(S)-2-bromo-benzenepropanol 86 

 

 

To a solution of 85 (16.9 g, 65.7 mmol) in dry THF (240 mL) at RT was added NaBH4 

(6.2 g, 165 mmol) and LiCl (6.9 g, 165 mmol). After stirring for 10 min, EtOH (380 

mL) was added and the reaction mixture was stirred overnight. During the reaction 

additional dry THF (150 mL) was added to achieve adequate stirring. The reaction 

was cooled to 0 °C and quenched by slow addition of a saturated aq. NH4Cl solution 

(300 mL). The layers were separated and the aqueous phase was extracted with 

EtOAc (3 × 400 mL). The combined organic extracts were dried over MgSO4, 

filtered and solvent removed in vacuo. Purification by silica column 

chromatography (n-hex:CH2Cl2, 2:8) afforded the desired product 86 (10.7 g, 49.6 

mmol, 75%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δ 7.37 – 7.24 (m, 5H, CH-Ph), 4.36 (dddd, J = 7.5, 7.5, 

6.0, 3.7 Hz, 1H, CH-C2), 3.86 (ddd, J = 12.5, 6.5, 3.7 Hz, 1H, CH2-C1a), 3.77 (ddd, 

J = 12.5, 6.5, 6.0 Hz, 1H, CH2-C1b), 3.29 (dd, J = 14.2, 7.5 Hz, 1H, CH2-C3a), 3.21 

(dd, J = 14.2, 7.5 Hz, 1H, CH2-C3b), 2.03 (t, J = 6.5 Hz, 1H, OH). 

13C NMR (126 MHz, CDCl3) δ 138.0 (C-C4), 129.6 (CH-Ph), 129.0 (CH-Ph), 127.4 

(CH-Ph), 66.4 (CH2-C1), 59.2 (CH-C2), 41.7 (CH2-C3). 

HRMS (EI positive) calcd for C9H11OBr [M+H]+ 213.9993, found 213.992. 

[α]
𝟐𝟎
𝐃

 −19.3  (c 0.9, chloroform). [α]
𝟐𝟎
𝐃

 lit−22.6  (c 5, chloroform). 

Spectroscopic data are in accordance with literature.125 
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Cbz-sulfonate salt 88 

 

 

Thioacetate 59 (2.16 g, 8.1 mmol) was dissolved in acetic acid (25 mL) and a 30% 

aq. H2O2 solution (9 mL) was added. The reaction was stirred at RT overnight. 

NaOAc (730 mg, 8.9 mmol) was added and the mixture stirred at RT for 1 h. Co-

evaporation with DMF was repeated until the excess of peroxides was removed 

(checked with starch iodide paper) and lyophilisation of the residual water 

resulted in the desired sulfonate salt 88 as an off-white solid. No further 

purification was performed. 

HRMS (ESI negative) calcd for C11H14NO5S [M-H]- 272.0598, found 272.0578. 

 

Cbz-sulfonyl fluoride 89 

 

 

The crude sulfonate salt 88 (1.4 g, 5 mmol) was dissolved in dry DCE (200 mL). 

XtalFluor-M (2.1 g, 8.5 mmol) and NEt3·3HF (59 μL, 0.4 mmol) were added and the 

reaction was stirred under a nitrogen atmosphere at reflux overnight. Evaporation 

of the solvent in vacuo and purification of the crude product by silica column 

chromatography (EtOAc:n-hex, 4:6) afforded the desired sulfonyl fluoride 89 (230 

mg, 0.89 mmol, 29%) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δ 7.37 – 7.16 (m, 5H, CH-Ph), 5.30 – 5.18 (br s, 1H, NH), 

5.11 – 5.00 (m, 2H, CH2-C4), 3.72 – 3.55 (m, 3H, CH-C1, CH2-C2), 1.47 (d, J = 6.9 

Hz, 3H, CH3-C6). 

13C NMR (126 MHz, CDCl3) δ 156.4 (C-C3), 136.0 (C-C5), 128.7 (CH-Ph), 128.5 (CH-

Ph), 128.2 (CH-Ph), 67.4 (CH2-C4), 58.3 (d, J = 11.7 Hz, CH-C1), 41.6 (CH2-C2), 

12.8 (CH3-C6). 
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19F NMR (471 MHz, CDCl3) δ 46.10 (s). 

HRMS (ESI positive) calcd for C11H14FNNaO4S [M+Na]+ 298.0520, found 298.0506. 

[α]
𝟑𝟑
𝐃

 +16.8 (c 0.6, chloroform). 

 

Cbz-sulfonate methyl ester 90 

 

 

1H NMR (400 MHz, CDCl3) δ 7.46 – 7.21 (m, 5H, CH-Ph), 5.48 (t, J = 6.2 Hz, 1H, 

NH), 5.21 – 5.01 (m, 2H, CH2-C5), 3.86 (s, 3H, CH3-C1), 3.68 (ddd, J = 15.1, 6.2, 

3.0 Hz, 1H, CH2-C3a), 3.59 – 3.51 (m, 1H, CH2-C3b), 3.30 (app ddt, J = 12.5, 7.6, 

3.0 Hz, 1H, CH-C2), 1.90 – 1.79 (m, 1H, CH-C8), 1.72 (ddd, J = 12.5, 9.0, 4.3 Hz, 

0H, CH2-C7a), 1.55 (ddd, J = 14.3, 9.0, 5.4 Hz, 1H, CH2-C7b), 0.95 (d, J = 6.5 Hz, 

3H, CH3-C9), 0.93 (d, J = 6.5 Hz, 3H, CH3-C10). 

13C NMR (126 MHz, CDCl3) δ 156.3 (C-C4), 136.2 (C-C6), 128.6 (CH-Ph), 128.3 (CH-

Ph), 128.1 (CH-Ph), 67.0 (CH2-C5), 59.0 (CH-C2), 55.1 (CH3-C1), 39.9 (CH2-C3), 

35.4 (CH2-C7), 25.2 (CH-C8), 23.0 (CH3-C9), 21.5 (CH3-C10). 

HRMS (ESI positive) calcd for C15H23NNaO5S [M+Na]+ 352.1189, found 352.1179. 
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Cbz-sulfonate methyl ester 91 

 

 

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.12 (m, 10H, CH-Ph), 5.47 (t, J = 5.5 Hz, 1H, 

NH), 5.05 (s, 2H, CH2-C5), 3.76 (s, 3H, CH3-C1), 3.62 – 3.48 (m, 3H, CH2-C3, CH-

C2), 3.30 (dd, J = 14.3, 4.0 Hz, 1H, CH2-C7a), 2.89 (dd, J = 14.3, 8.3 Hz, 1H, CH2-

C7b). 

13C NMR (126 MHz, CDCl3) δ 156.1 (C-C4), 138.3 (C-C8), 136.5 (C-C6), 129.0 (CH-

Ph), 128.7 (CH-Ph), 128.4 (CH-Ph), 128.3 (CH-Ph), 127.80 (CH-Ph), 127.2 (CH-Ph), 

67.0 (CH2-C5), 61.6 (CH-C2), 55.4 (CH3-C1), 39.5 (CH2-C3), 33.1 (CH2-C7). 

HRMS (ESI positive) calcd for C18H21NNaO5S [M+Na]+ 386.1033, found 386.1041. 

 

Cbz-sulfonate salt 92 

 

 

Sulfonate ester 90 (395 mg, 1.2 mmol) was dissolved in acetone (25 mL) and 

tetrabutylammonium iodide (450 mg, 1.2 mmol) was added. The reaction was 

stirred at reflux overnight. Evaporation of the solvent in vacuo provided the 

compound 92 (660 mg, 1.2 mmol, quant) as a yellow oil. The salt did not require 

any further purification and was used directly in the next step. 

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.21 (m, 5H, CH-Ph), 6.67 (s, 1H, NH), 5.15 – 

4.99 (m, 2H, CH2-C4), 3.71 (ddd, J = 13.7, 5.6, 2.4 Hz, 1H, CH2-C2a), 3.40 (ddd, J 

= 13.7, 8.2, 4.9 Hz, 1H, CH2-C2b), 3.32 – 3.26 (m, 8H, CH2-C13), 2.82 (app td, J = 

10.5, 8.2, 2.4 Hz, 1H, CH-C1), 1.83 – 1.74 (m, 2H, CH2-C6a, CH-C7), 1.69 – 1.58 
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(m, 9H, CH2-C6b, C12), 1.50 –1.37 (m, 8H, CH2-C11), 1.00 (t, J = 7.3 Hz, 12H, CH3-

C10), 0.91 (d, J = 5.8 Hz, 3H, CH3-C8), 0.89 (d, J = 5.8 Hz, 3H, CH3-C9). 

13C NMR (126 MHz, CDCl3) δ 156.6 (C-C3), 135.1 (C-C5), 128.3 (CH-Ph), 127.9 (CH-

Ph), 127.7 (CH-Ph), 66.1 (CH2-C4), 59.0 (CH2-C13), 57.2 (CH-C1), 40.8 (CH2-C2), 

36.6 (CH2-C6), 25.3 (CH-C7), 24.1 (CH2-C12), 23.7 (CH3-C8), 21.5 (CH3-C9), 19.8 

(CH2-C11), 13.7 (CH3-C10). 

HRMS (ESI negative) calcd for C14H20NO5S [M-H]- 314.1068, found 314.0981.  

 

(S)-Ethyl-2-bromo-3-hydroxypropionate 95 

 

 

L-Serine 93 (12.6 g, 105 mmol) and KBr (50.0 g, 119 mmol) were dissolved in a 

1.25 Ϻ H2SO4 aq. solution (250 mL) at 0 °C and NaNO2 (13.2 g, 192 mmol) was 

added at over 2 h. The reaction mixture was warmed to RT and stirred for 48 h. 

The mixture was extracted with EtOAc (4 × 300 mL). The combined organic 

extracts were washed with brine (1 × 300 mL), dried over MgSO4, filtered and 

removed in vacuo, affording the corresponding bromo acid 94 which was used 

directly in the next reaction without further purification. The α-bromo acid 95 

(16.5 g, 98.0 mmol) was dissolved in a mixture of EtOH (350 mL) and conc. H2SO4 

(6 mL) and stirred at reflux overnight. Removal of the solvent in vacuo and 

purification by silica column chromatography (CH2Cl2) afforded the desired 

compound 109 (11.9 g, 60.0 mmol, 50% over 2 steps) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δ 4.27 (dd, J = 7.5, 5.4 Hz, 1H, CH-C2), 4.20 (q, J = 7.1 

Hz, 2H, CH2-C4), 3.98 (ddd, J = 12.5, 7.5, 6.5 Hz, 1H, CH2-C3a), 3.87 (ddd, J = 

12.5, 6.9, 5.4 Hz, 1H, CH2-C3b), 2.80 – 2.70 (br s, 1H, OH), 1.25 (t, J = 7.1 Hz, 3H, 

CH3-C5). 

13C NMR (101 MHz, CDCl3) δ 169.0 (C-C1), 63.8 (CH2-C3), 62.4 (CH2-C4), 44.6 (CH-

C2), 13.9 (CH3-C5). 

HRMS (ESI positive) calcd for C5H9NaO3Br [M+Na]+ 218.9627, found 218.9630. 
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TPDPS-(S)-Ethyl-2-bromo-3-hydroxypropionate 96 

 

 

α-bromo ester 95 (300 mg, 1.52 mmol) and imidazole (124 mg, 1.82 mmol) were 

dissolved in dry CH2Cl2 (10 mL) and the mixture cooled to 0 °C. TBDPS-Cl (0.43 

mL, 1.82 mmol) was added dropwise and the reaction mixture was warmed to RT 

and stirred overnight. The mixture was diluted with CH2Cl2 and washed with brine 

(1 × 50 mL). The organic phase was dried over MgSO4, filtered and solvent removed 

in vacuo. The crude product was purified by silica column chromatography 

(CH2Cl2:n-hex, 0:102:8) affording the desired compound 96 (430 mg, 0.99 mmol, 

66%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δ 7.62 –7.57 (m, 4H, Ph), 7.40 – 7.30 (m, 6H, Ph), 4.23 – 

4.15 (m, 3H, CH-C2, CH2-C7), 4.05 (dd, J = 10.3, 8.7 Hz, 1H, CH2-C3a), 3.84 (dd, 

J = 10.3, 5.6 Hz, 1H, CH2-C3b), 1.24 (t, J = 7.2 Hz, 3H, CH3-C8), 0.96 (s, 9H, CH3-

C6). 

 

TPDPS-(S)-2-bromo-3-hydroxypropanol 97 

 

 

To a solution of 96 (430 mg, 0.99 mmol) in dry THF (5 mL) at RT was added NaBH4 

(93 mg, 2.5 mmol) and LiCl (105 mg, 2.5 mmol). After stirring for 10 min, EtOH (6 

mL) was added and the reaction mixture was stirred overnight. The reaction was 

cooled to 0 °C and quenched by slow addition of a saturated aq. NH4Cl solution 
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(15 mL). The layers were separated and the aqueous phase was extracted with 

EtOAc (3 × 25 mL). The combined organic extracts were washed with brine (1 × 25 

mL), dried over MgSO4, filtered and solvent removed in vacuo. The desired 

bromoalcohol 97 (320 mg, 0.81 mmol, 82%) was obtained as a colourless oil and 

did not require any further purification. 

1H NMR (500 MHz, CDCl3) δ 7.62 –7.57 (m, 4H, CH-Ph), 7.42 – 7.27 (m, 6H, CH-Ph), 

4.11 – 4.02 (m, 1H, CH-C2), 3.96 – 3.79 (m, 3H, CH2-C1, C3), 2.02 (t, J = 6.8 Hz, 

1H, OH), 1.00 (s, 9H, CH3-C6). 

13C NMR (101 MHz, CDCl3) δ 135.6, 135.5 (C-C4), 132.9 (CH-Ph), 132.7 (CH-Ph), 

130.0(CH-Ph), 129.9(CH-Ph), 127.9(CH-Ph), 127.8 (CH-Ph), 65.3 (CH2-C1), 64.7 

(CH2-C3), 55.2 (CH-C2), 26.8 (CH3-C6), 19.3 (C-C5). 

HRMS (ESI positive) calcd for C19H25NaO2SiBr [M+Na]+ 415.0699, found 415.0687. 

 

Piperidine substituted compound from 71 

 

 

Cbz-Phe-SO2F 71 (30 mg, 0.085 mmol) was dissolved in CH2Cl2 (1 mL) at RT and 

piperidine (18 μL, 0.187 mmol) was added. The reaction mixture was stirred for 

24h. After evaporation of the solvent in vacuo the crude material was purified by 

silica column chromatography (n-hex:CH2Cl2, 3:7)  affording the substituted 

compound (25 mg, 0.06mmol, 70%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.16 (m, 10H, CH-Ph), 5.55 (br s, 1H, NH), 5.13 

– 5.05 (m, 2H, CH2-C1), 3.56 (app t, J = 5.4 Hz, 2H, CH2-C3), 3.36 – 3.20 (m, 6H, 

CH2-C6, C7, C5a, CH-C4), 2.85 (dd, J = 14.1, 10.3 Hz, 1H, CH2-C5b), 1.68 – 1.52 

(m, 5H, CH2-C8, C9, C10). 

13C NMR (101 MHz, CDCl3) δ 156.3 (C-C4), 136.8 (C-Ph), 136.5 (C-Ph), 129.1 (CH-

Ph), 129.0 (CH-Ph), 128.6, 128.2 (CH-Ph), 127.3 (CH-Ph), 66.9 (CH2-C1), 62.6 (CH-

C4), 47.0 (CH2-C6, C7), 39.4 (CH2-C3), 33.2 (CH2-C5), 26.1 (CH2-C8, C9), 23.9 (CH2-

C10). 
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HRMS (ESI positive) calcd for C22H28N2NaO4S [M+Na]+ 439.1662, found 439.1648. 

 

Benzylamine substituted compound from 71 

 

 

Cbz-Phe-SO2F 71 (30 mg, 0.085 mmol) was dissolved in CH2Cl2 (1 mL) at RT and 

benzyl amine (20 μL, 0.187 mmol) was added. The reaction mixture was stirred 

for 24h. After evaporation of the solvent in vacuo the crude material was purified 

by silica column chromatography (n-hex:CH2Cl2, 1:1) affording the substituted 

compound (10 mg, 0.023 mmol, 27%) as a colourless oil. 

1H NMR (400 MHz, CDCl3) δ 7.43 – 7.09 (m, 15H, CH-Ph), 5.43 (t, J = 6.3 Hz, 1H, 

NH), 5.16 – 5.03 (m, 2H, CH2-C1), 4.64 (t, J = 6.1 Hz, 1H, NH), 4.26 (dd, J = 14.1, 

6.1 Hz, 1H, CH2-C6a), 4.10 (dd, J = 14.1, 6.1 Hz, 1H, CH2-C6b), 3.65 (ddd, J = 

15.0, 6.3, 2.3 Hz, 1H, CH2-C3a), 3.50 (ddd, J = 15.0, 6.3, 6.3 Hz, 1H, CH2-C3b), 

3.31 – 3.20 (m, 2H, CH2-C5a, CH-C4), 2.92 –2.80 (m, 1H, CH2-C5b). 

13C NMR (101 MHz, CDCl3) δ 156.6 (C-C2), 136.7 (C-Ph), 136.4 (C-Ph), 129.2 (CH-

Ph), 129.0 (CH-Ph), 128.7 (CH-Ph), 128.3 (CH-Ph), 128.2 (CH-Ph), 127.4 (CH-Ph), 

67.1 (CH2-C1), 63.7 (CH-C4), 47.6 (CH2-C6), 39.7 (CH2-C3), 33.5 (CH2-C5). 

HRMS (ESI positive) calcd for C24H26N2NaO4S [M+Na]+ 461.1505, found 461.1489. 
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Piperidine substituted compound from 70 

 

 

Cbz-Leu-SO2F 70 (26 mg, 0.08 mmol) was dissolved in CH2Cl2 (1 mL) at RT and 

piperidine (18 μL, 0.18 mmol) was added. The reaction mixture was stirred for 

24h. After evaporation of the solvent in vacuo the crude material was purified by 

silica column chromatography (n-hex:CH2Cl2, 1:13:7) affording the substituted 

compound (22 mg, 0.057mmol, 72%) as an off-white solid. 

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.26 (m, 5H, CH-Ph), 5.64 (t, J = 6.2 Hz 1H, NH), 

5.13 (d, J = 12.3 Hz, 1H, CH2-C1a), 5.09 (d, J = 12.3 Hz, 1H, CH2-C1b), 3.64 (ddd, 

J = 14.9, 6.2, 3.0 Hz, 1H, CH2-C3a), 3.51 (ddd, J = 14.9, 7.5, 6.2 Hz,, 1H, CH2-

C3b), 3.28 (br s, 4H, CH2-C9, C10), 3.05 (app dt, J = 7.5, 3.0 Hz, 1H, CH-C4), 1.84 

– 1.74 (m, 1H, CH-C6), 1.67 – 1.55 (m, 5H, CH2-C11, C12, C13), 1.56 – 1.41 (m, 2H, 

CH2-C5), 0.94 (d, J = 6.6 Hz, 3H, CH3-C7), 0.92 (d, J = 6.6 Hz, 3H, CH3-C8). 

13C NMR (126 MHz, CDCl3) δ 156.4 (C-C2), 136.5 (C-Ph), 128.5 (CH-Ph), 128.1 (CH-

Ph), 128.0 (CH-Ph), 66.8 (CH2-C1), 59.9 (CH-C4), 47.0 (CH2-C9, C10), 39.5 (CH2-

C3), 35.3 (CH2-C5), 26.0 (CH2-C11, C12), 25.2 (CH-C6), 23.8 (CH2-C13), 23.4 (CH3-

C7), 21.5 (CH3-C8). 

HRMS (ESI positive) calcd for C19H30N2NaO4S [M+Na]+ 405.1818, found 405.1816. 

  



129 

Piperidine substituted compound from 27c 

 

 

Cbz-Leu-SO2F 27c (30 mg, 0.09 mmol) was dissolved in CH2Cl2 (1 mL) at RT and 

piperidine (21 μL, 0.21 mmol) was added. The reaction mixture was stirred for 

24h. After evaporation of the solvent in vacuo the crude material was purified by 

silica column chromatography (n-hex:CH2Cl2, 1:13:7), affording the substituted 

compound (16 mg, 0.042mmol, 47%) as an off-white solid. 

1H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.23 (m, 5H, CH-Ph), 5.23 (d, J = 8.9 Hz, 

1H, NH), 5.15 – 5.05 (m, 2H, CH2-C1), 4.11 (app td, J = 8.9, 5.2 Hz, 1H, CH-C3), 

3.24 – 3.12 (m, 5H, CH2-C4a, C5, C6), 3.04 (dd, J = 14.1, 5.2 Hz, 1H, CH2-C4b), 

1.75 – 1.46 (m, 9H, CH2-C7, C8, C9, C10, CH-C11), 0.94 (d, J = 6.1 Hz, 3H, CH3-

C12), 0.92 (d, J = 6.1 Hz, 3H, CH3-C13). 

13C NMR (101 MHz, CDCl3) δ 155.7 (C-C2), 136.4 (C-Ph), 128.5 (CH-Ph), 128.1 (CH-

Ph), 128.0 (CH-Ph), 66.7 (CH2-C1), 52.3 (CH2-C4), 46.5 (CH2-C5, C6), 46.2 (CH-C3), 

42.8 (CH2-C10), 25.5 (CH2-C7, C8), 24.9 (CH-C11), 23.7 (CH2-C9), 22.9 (CH3-C12), 

21.8 (CH3-C13). 

HRMS (ESI positive) calcd for C19H30N2NaO4S [M+Na]+ 405.1818, found 405.1821. 
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Cbz-Leucine 101 

 

 

L-Leucine 79 (7.9 g, 60 mmol) was dissolved in a 2 Ϻ NaOH aq. solution (30 mL, 

60 mmol) and cooled to 0 °C. Benzyl chloroformate (8.5 mL, 66 mmol) and a 2 Ϻ 

NaOH aq. solution (33 mL, 66 mmol) were simultaneously added dropwise to the 

mixture. After 1 h the mixture was warmed to RT and the reaction was stirred 

overnight. EtOAc (100 mL) was added and the mixture was acidified to pH 2 with 

a 1 Ϻ KHSO4 aq. solution (100 mL). The layers were separated and the aqueous 

phase was extracted with EtOAc (3 x 200 mL). The combined organic extracts 

were washed with brine (1 x 200 mL), dried over MgSO4, filtered and the solvent 

removed in vacuo, to afford the product 101 as a colourless oil (14 g, 53 mmol, 

88%).  

1H NMR (500 MHz, CDCl3) δ 9.73 (br s, 1H, COOH), 7.36 – 7.29 (m, 5H, CH-Ph), 

5.21 (d, J = 9.1 Hz, 1H, NH), 5.12 – 5.06 (m, 2H, CH2-C4), 4.42 (app td, J = 9.1, 

4.9 Hz, 1H, CH-C2), 1.82 – 1.72 (m, 1H, CH-C7), 1.70– 1.59 (m, 1H, CH2-C6a), 1.56 

(ddd, J = 13.6, 9.4, 4.9 Hz, 1H, CH2-C6b), 0.96 (m, 6H, CH3-C8, C9). 

13C NMR (126 MHz, CDCl3) δ 177.9 (C-C1), 156.0 (C-C3), 136.0 (C-C5), 128.4 (CH-

Ph), 128.1 (CH-Ph), 127.9 (CH-Ph), 67.0 (CH2-C4), 52.3 (CH-C2), 41.3 (CH2-C6), 

24.7 (CH-C7), 22.7(CH3-C8), 21.6 (CH3-C9).  

HRMS (CI iso-butane) calcd for C14H20NO4 [M+H]+ 266.1392, found 266.1393.  

Spectroscopic data are in accordance with literature.53 
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Cbz-Leu-Leu-OMe 102 

 

L-Leucine 79 (3.93 g, 30 mmol) was dissolved in MeOH (30 mL) and cooled to 0 

°C. SOCl2 (2.17 mL, 30 mmol) was added dropwise and the reaction mixture was 

warmed to RT and stirred overnight. The solvent was removed in vacuo to deliver 

HCl·H-Leu-OMe ester 100 (5.4 g, quant.) as a white solid.  

HCl·H-Leu-OMe ester 100 (2.72 g, 15 mmol) and Cbz-Leu-OH 101 (3.98 g, 15 

mmol) were dissolved in CH2Cl2 (600 mL) and BOP reagent (6.96 g, 15.75 mmol) 

and DiPEA (5.7 mL, 31.5 mmol) added. The reaction was stirred at RT overnight. 

The solvent was removed in vacuo and the residue dissolved in EtOAc (500 mL). 

The mixture was neutralised by addition of a 1 Ϻ KHSO4 aq. solution (500 mL). The 

layers were separated and the organic phase was washed with a 1 Ϻ KHSO4 aq. 

solution (2 × 500 mL), brine (1 × 300 mL), dried over MgSO4, filtered and the 

solvent removed in vacuo. The crude material was purified by silica column 

chromatography (n-hex:EtOAc, 6:13:1) to afford the desired compound 102 

(4.62 g, 12 mmol, 80%) as a white solid.  

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.26 (m, 5H, CH-Ph), 6.46 (d, J = 8.6 Hz, 1H, NH 

next to C5), 5.29 (d, J = 8.5 Hz, 1H, NH next to C3), 5.10 (s, 2H, CH2-C1), 4.59 

(app td, J = 8.6, 5.1 Hz, 1H, CH-C5), 4.23 (app td, J = 8.5, 4.9 Hz, 1H, CH-C3), 

3.72 (s, 3H, CH3-C7), 1.79 – 1.45 (m, 6H, CH2-C8, C12, CH-C9, C13), 1.00 – 0.86 

(m, 12H, CH3-C10, C11, C14, C15). 

13C NMR (101 MHz, CDCl3) δ 173.6 (C-C4), 172.4 (C-C6), 156.6 (C-C2), 136.6 (C-

Ph), 128.9 (CH-Ph), 128.6 (CH-Ph), 128.4 (CH-Ph), 67.5 (CH2-C1), 53.8 (CH-C3), 

52.7 (CH3-C7), 51.1 (CH-C5), 41.9 (CH2-C8), 41.8 (CH2-C12), 25.2 (CH-C9), 25.0 

(CH-C13), 23.3 (CH3-C10), 23.2 (CH3-C11), 22.5 (CH3-C14), 22.3 (CH3-C15). 

HRMS (ESI positive) calcd for C21H32N2NaO5 [M+Na]+ 415.2203, found 415.2184. 

Spectroscopic data are in accordance with literature.53 
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Cbz-Leu-Leu-OH 103 

 

 

Cbz-Leu-Leu-OMe 102 (4.62 g, 12 mmol) was dissolved in dioxane (91 mL), MeOH 

(32 mL) and a 2 Ϻ NaOH aq. solution (7 mL) were added and the reaction was 

stirred at RT overnight. The mixture was acidified to pH 2 with a 1 Ϻ KHSO4 aq. 

solution and solvents were removed in vacuo. EtOAc was added (250 mL) and the 

layers were separated. The aqueous phase was extracted with EtOAc (2 × 250 mL) 

and the combined organic extracts were washed with water (1 × 500 mL) and brine 

(1 × 300 mL), dried over MgSO4, filtered and the solvent removed in vacuo to afford 

in the desired compound 103 (4.30 g, 95%) as a white solid. 

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.21 (m, 5H, CH-Ph), 6.64 (d, J = 8.0 Hz, 1H, NH 

next to C5), 5.42 (d, J = 8.3 Hz, 1H, NH next to C3), 5.10 (s, 2H, CH2-C1), 4.56 

(app td, J = 8.0, 5.0 Hz, 1H, CH-C5), 4.32 – 4.16 (m, 1H, CH-C3), 1.76 – 1.46 (m, 

6H, CH2-C7, C11, CH-C8, C12), 0.92 (m, 12H, CH3-C9, C10, C13, C14). 

13C NMR (101 MHz, CDCl3) δ 175.7 (C-C6), 172.4 (C-C4), 156.3 (C-C2), 128.4 (CH-

Ph), 128.1 (CH-Ph), 127.8 (CH-Ph), 67.0 (CH2-C1), 53.2 (CH-C3), 50.8 (CH-C5), 40.8 

(CH2-C7, C11), 24.7 (CH-C8), 24.4 (CH-C12), 22.6 (CH3-C9), 21.8 (CH3-C10), 21.6 

(CH3-C13, C14). 

HRMS (ESI positive) calcd for C20H30N2NaO5 [M+Na]+ 401.2047, found 401.2033. 

Spectroscopic data are in accordance with literature.53 
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Cbz-Leu-Leu-Leu-OMe 106 

 

 

L-Leucine 79 (3.93 g, 30 mmol) was dissolved in MeOH (30 mL) and cooled to 0 

°C. SOCl2 (2.17 mL, 30 mmol) was added dropwise and the reaction mixture was 

warmed to RT and stirred overnight. The solvent was removed in vacuo to deliver 

HCl·H-Leu-OMe ester 100 (5.4 g, quant.) as a white solid.  

HCl·H-Leu-OMe ester 100 (2.72 g, 15 mmol) and Boc-Leu-OH 104 (3.46 g, 15 

mmol) were dissolved in CH2Cl2 (600 mL) and BOP reagent (6.96 g, 15.75 mmol) 

and DiPEA (5.7 mL, 31.5 mmol) added. The reaction was stirred at RT overnight. 

The solvent was removed in vacuo and the residue dissolved in EtOAc (500 mL). 

The mixture was neutralised by addition of a 1 Ϻ KHSO4 aq. solution (500 mL). The 

layers were separated and the organic phase was washed with a 1 Ϻ KHSO4 aq. 

solution (2 × 500 mL) and brine (1 × 500 mL), dried over MgSO4 and filtered. 

Evaporation of the solvent in vacuo afforded Boc-Leu-Leu-OMe 105 (4.30 g, 

12mmol, 80%) as a white solid.  

Boc-Leu-Leu-OMe 105 (4.30 g, 12 mmol) was dissolved in CH2Cl2 (50 mL) at RT and 

TFA (50 mL) added. The mixture was stirred for 2 h. After evaporation of the 

solvent in vacuo and co-evaporation with CHCl3 (3×50 mL), the crude TFA-salt was 

directly dissolved in CH2Cl2 (480 mL) and Cbz-Leu-OH 101 (3.18 g, 12 mmol), BOP 

reagent (5.57 g, 12.6 mmol) and DiPEA (4.4 mL, 25.2 mmol) were added. The 

reaction was stirred at RT overnight. The solvent was removed in vacuo and the 

residue dissolved in EtOAc (500 mL). The mixture was neutralised by addition of a 

1 Ϻ KHSO4 aq. solution (500 mL). The layers were separated and the organic phase 

was washed with a 1 Ϻ KHSO4 aq. solution (2 × 500 mL) and brine (1 × 500 mL), 

dried over MgSO4, filtered and the solvent removed in vacuo. The crude material 

was purified by silica column chromatography (n-hex:EtOAc, 5:12:1) to afford 

the desired compound 106 (5.15 g, 10.2 mmol, 85%) as an off-white solid. 
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1H NMR (400 MHz, CDCl3) δ 7.41 – 7.27 (m, 5H, CH-Ph), 6.55 (d, J = 8.2 Hz, 1H, 

NH), 6.44 (d, J = 8.2 Hz, 1H, NH), 5.25 (d, J = 8.1 Hz, 1H, NH), 5.10 (s, 2H, CH2-

C1), 4.58 (td, J = 8.2, 4.8 Hz, 1H, CH-C5), 4.46 (td, J = 8.2, 6.0 Hz, 1H, CH-C7), 

4.25 – 4.13 (m, 1H, CH-C3), 3.72 (s, 3H, CH3-C9), 1.78 – 1.42 (m, 9H, CH2-C8, C12, 

C18, CH-C9, C15, C19), 1.01 – 0.78 (m, 18H, CH3-C10, C11, C16, C17, C20, C21). 

13C NMR (101 MHz, CDCl3) δ 173.0 (C-C4), 172.2 (C-C6), 171.4 (C-C8), 156.2 (C-

C2), 136.1 (C-Ph), 128.6 (CH-Ph), 128.3 (CH-Ph), 128.0 (CH-Ph), 67.1 (CH2-C1), 

53.4 (CH-C3), 52.3 (CH3-C9), 51.6 (CH-C7), 50.7 (CH-C5), 41.3, 40.6 (CH2-C10, C14, 

C18), 24.7 (CH-C11, C15, C19), 22.8, 22.7, 22.1, 21.9, 21.8 (CH3-C12, C13, C16, 

C17, C20, C21). 

HRMS (ESI positive) calcd for C27H43N3NaO6 [M+Na]+ 528.3044, found 528.3014. 

Spectroscopic data are in accordance with literature.126 

 

Cbz-Leu-Leu-Leu-OH 107 

 

 

Cbz-Leu-Leu-Leu-OMe 106 (5.15 g, 10.2 mmol) was dissolved in dioxane (84 mL), 

MeOH (30 mL) and a 4 Ϻ NaOH aq. solution (12 mL) were added and the reaction 

was stirred at RT overnight. The mixture was acidified to pH 2 with a 1 Ϻ KHSO4 

aq. solution and solvents were removed in vacuo. EtOAc was added (250 mL) and 

the layers were separated. The aqueous phase was extracted with EtOAc (1 × 250 

mL) and the combined organic extracts were washed with water (1 × 500 mL) and 

brine (1 × 300 mL), dried over MgSO4, filtered and the solvent removed in vacuo 

to afford the desired compound 107 (4.76 g, 9.7 mmol, 95%) as a white solid. 

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.22 (m, 5H, CH-Ph), 7.07 (br s, 1H, NH), 5.56 

(br s, 1H, NH), 5.10 (d, J = 12.1 Hz, 1H, CH2-C1a), 5.05 (d, J = 12.1 Hz, 1H, CH2-

C1b), 4.62 – 4.42 (m, 2H, CH-C5, C7), 4.29 – 4.18 (m, 1H, CH-C3), 1.76 – 1.46 (m, 
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9H, CH2-C9, C13, C17, CH-C10, C14, C18), 0.93 – 0.83 (m, 18H, CH3-C111, C12, 

C15, C16, C19, C20). 

13C NMR (126 MHz, CDCl3) δ 175.2 (C-C8), 172.9 (C-C4), 172.3 (C-C6), 156.5 (C-

C2), 136.0 (C-Ph), 128.6 (CH-Ph), 128.3 (CH-Ph), 128.0 (CH-Ph), (CH-Ph), 67.2 

(CH2-C1), 53.7 (CH-C3), 52.0 (CH-7), 51.0 (CH-C5), 41.2 (CH2-C9), 40.8 (CH2-C13), 

40.6 (CH2-C17), 24.8 (CH-C10), 24.7 (CH-C14), 24.6 (CH-C18), 22.8 (CH3-C11), 22.7 

(CH3-C12), 22.1 (CH3-C15), 21.9 (CH3-C16), 21.7 (C19, C20). 

HRMS (ESI positive) calcd for C26H41N3NaO6 [M+Na]+ 514.2888, found 514.2865. 

 

Morph-hPhe-Leu-Phe-OH 116 

 

 

2-Cl-Tritylchloride resin (3g) and Fmoc-Phe-OH 108 (775 mg, 2 mmol) were 

suspended in CH2Cl2 (50 mL) and DiPEA (0.35 mL, 2 mmol) was added to the 

mixture. After 5 min another portion of DiPEA (0.52 mL, 2.5 mmol) was added and 

the reaction mixture stirred at RT overnight. Remaining 2-Cl-tritylchloride on the 

resin was capped by addition of MeOH (5 mL) and DiPEA (1.2 mL) were added to 

the mixture which was stirred for 30 min. The mixture was then transferred to a 

plastic solid phase synthesis syringe and washed with CH2Cl2 (3 × 15 mL), MeOH (3 

× 15 mL) and Et2O (3 × 15 mL). The resin was dried in vacuo for 3 h, affording the 

crude product Fmoc-Phe-resin 109 (3.82 g, 0.82 mmol, 41%). The resin was shaken 

with 20% piperidine in DMF (2 × 10 mL) for 15 min. The deprotected resin was 

washed with DMF (3 × 15 mL) and CH2Cl2 (3 × 15 mL) and suspended in DMF (30 

mL). Fmoc-Leu-OH 110 (870 mg, 2.46 mmol), HCTU reagent (1.02g, 2.46 mmol) 

and DiPEA (0.4 mL, 2.46 mmol) were added and the reaction mixture shaken 

overnight. The deprotection sequence was repeated and the resin 11 was 

suspended in DMF (30 mL) and shaken with Fmoc-hPhe-OH 112 (1 g, 2.46 mmol), 
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HCTU reagent (1.02g, 2.46 mmol) and DiPEA (0.4 mL, 2.46 mmol) overnight. The 

deprotection sequence was repeated and the resin 113 was capped with 2-

morpholino acetic acid 114 (500 mg, 5.5 mmol), HCTU reagent (1.02g, 2.46 mmol) 

and DiPEA (0.4 mL, 2.46 mmol) in DMF (30 mL) overnight. Finally, the peptide was 

cleaved from the resin 115 by treatment with 30% HFIP in CH2Cl2 (30 mL) at RT for 

30 min. The resin was washed with CH2Cl2 (3 × 30 mL) and the solvent removed in 

vacuo. The residue was dissolved in a 1:1 mixture of water and t-BuOH (30 mL) 

and freeze dried. The crude product was purified by preparative HPLC (0%B to 

80%B-buffer in 60 min) affording the desired compound 116 (382 mg, 0.67 mmol, 

81% over 7 steps) as a white solid.  

1H NMR (500 MHz, CDCl3) δ 9.21 (br s, 1H, NH), 8.43 (d, J = 8.0 Hz, 1H, NH), 7.57 

(d, J = 7.5 Hz, 1H, NH), 7.32 – 6.98 (m, 10H, Ph), 4.66 (dt, J = 14.0, 7.5 Hz, 1H, 

CH-C4), 4.38 (dt, J = 14.0, 8.0 Hz, 1H, CH-C6), 4.26 (app dt, J = 13.2, 6.2 Hz, 

1H, CH-C2), 4.01 (d, J = 15.8 Hz, 1H, CH2-C8a), 3.92 (br s, 4H, CH2-C11, C12), 

3.81 (d, J = 15.8 Hz, 1H, CH2-C8b), 3.33 (br s, 4H, CH2-C9, C10), 3.22 (dd, J = 

13.8, 6.2 Hz, 1H, CH2-C19a), 2.97 (dd, J = 13.8, 9.2 Hz, 1H, CH2-C19b), 2.81 – 

2.71 (m, 1H, CH2-C14a), 2.71 – 2.61 (m, 1H, CH2-C14b), 2.15 – 1.99 (m, 2H, CH2-

C13), 1.49 – 1.40 (m, 1H, CH-C16), 1.39 – 1.23 (m, 2H, CH2-C15), 0.76 (d, J = 6.0 

Hz, 3H, CH3-C17), 0.72 (d, J = 6.0 Hz, 3H, CH3-C18). 

13C NMR (126 MHz, CDCl3) δ 174.6 (C-C1), 173.2 (C-C5), 172.8 (C-C3), 164.4 (C-

C7), 140.2 (C-Ph), 136.4 (C-Ph), 129.3 (CH-Ph), 128.6 (CH-Ph), 128.5 (CH-Ph), 

128.4 (CH-Ph), 126.9 (CH-Ph), 126.4 (CH-Ph), , 63.4 (CH2-C11, C12), 57.5 (CH2-

C8), 55.9 (CH-C2), 53.9 (CH-C4), 53.5 (CH-C6), 53.0 (CH2-C9, C10), 40.4 (CH2-C15), 

37.5 (CH2-C13), 33.6 (CH2-C14), 32.2 (CH2-C19), 24.7 (CH-C16), 22.5 (CH3-C17), 

21.6 (CH3-C18). 

HRMS (ESI positive) calcd for C31H42N4NaO6 [M+Na]+ 589.2997, found 589.2976. 

tR = 36.3 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 30B to 100B in 80 min). 

Spectroscopic data are in accordance with literature.99 
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General coupling procedure 

The Cbz-protected sulfonyl fluoride 70 or 71 was treated with a 1:1 mixture of a 

30% HBr/HOAc solution:CH2Cl2 at RT for 1 h. After evaporation of the solvents in 

vacuo, the crude product was dissolved in water, stirred with Dowex-Cl resin (60 

mg/0.1 mmol crude product) for 10 min and freeze dried, affording the 

deprotected salt. The salt was dissolved in THF and treated with Zn powder (2 eq) 

at RT for 30 min generating the free amine in situ. The solution was filtered and 

added to a mixture of the peptide backbone 103, 107 or 116 (1 eq), DCC (1.1 eq) 

and HOBt-Cl (1.1 eq) in THF, which had been previously pre-activated for 10 min. 

The reaction was stirred at RT overnight. After removal of the solvent in vacuo, 

the crude product was dissolved in buffer A:B (1:3) and purified by preparative 

HPLC affording the desired compound. 

 

Cbz-Leu-Leu-[Leu-SO2F] 120 

 

 

The general procedure was followed on a 0.157 mmol scale delivering the desired 

product 120 as a 2.5:1 mixture of diasteroisomers (15 mg, 0.027 mmol, 18%) as a 

white solid.  

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.30 (m, 5H, CH-Ph, CH-Ph*), 7.13 (s, 0.7H, NH), 

6.95 (s, 0.3H, NH*), 6.47 (d, J = 8.0 Hz, 0.3H, NH*), 6.41 (d, J = 8.0 Hz, 0.7H, NH), 

5.18 – 5.08 (m, 3H, NH, NH*, CH2-C8, CH2-C8*), 4.50 – 4.35 (m, 1H, CH-C4, CH-

C4*), 4.18 – 4.09 (m, 1H, CH-C6, CH-C6*), 3.83 – 3.69 (m, 1.7H, CH2-C2a, CH2-C2a*, 

CH-C1), 3.65 – 3.48 (m, 1.3H, CH2-C2b, CH2-C2b*, CH-C1*), 1.97 – 1.43 (m, 9H, 

CH2-C9, C13, C17, CH-C10 C14, C18, CH2-C9*, C13*, C17*, CH-C10*, C14*, C18*), 

1.05 – 0.84 (m, 18H, CH3-C11, C12, C15, C16, C19, C20, CH3-C11*, C12*, C15*, 

C16*, C19*, C20*). 
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13C NMR (101 MHz, CDCl3) δ 172.6, 172.4, 172.3 (C-C5, C3, C-C5*, C3*), 156.8 (C-

C7, C-C7*), 135.9 (C-Ph*), 135.8 (C-Ph), 128.6, 128.4, 128.3, 128.2, 128.1 (CH-Ph, 

CH-Ph*)), 67.6 (CH2-C8), 67.4 (CH2-C8*), 61.0 (d, J = 9.4 Hz, CH-C1*), 60.5 (d, J = 

9.7 Hz, CH-C1) 54.2 (CH-6), 53.9 (CH-C6*), 52.0 (CH-C4*), 51.7 (CH-C4), 40.7, 

40.2, 40.1 (CH2-C9, C13, CH2-C9*, C13*), 38.7 (CH2-C2, C2*), 35.9(CH2-C17, CH2-

C17*), 25.3, 24.9, 24.8, 24.7 (CH-C10, C14, C18, CH-C10*, C14*, C18*), 22.9, 22.7, 

21.7, 21.6, 21.5, 21.4 (CH3-C11, C12, C15, C16, C19, C20). 

19F NMR (377 MHz, CDCl3) δ 48.8, 48.4 (2 s). 

HRMS (ESI positive) calcd for C26H42FN3NaO6S [M+Na]+ 566.2671, found 566.2647. 

tR = 53.8 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 0B to 100B in 80 min). 

 

Cbz-Leu-Leu-[Phe-SO2F] 121 

 

 

The general procedure was followed on a 0.14 mmol scale to afford the desired 

product 121 (10 mg, 0.017 mmol, 12%) as a 4:1 mixture of diasteroisomers as a 

white solid.  

1H NMR (500 MHz, CDCl3) δ 7.35 – 7.22 (m, 10.2H, CH-Ph, CH-Ph*, NH*), 7.08 – 

7.00 (br s, 0.8H, NH), 6.80 (br s, 0.2H, NH*), 6.30 (br s, 1H, NH, NH*), 5.17 – 5.09 

(m, 2H, CH2-C8, CH2-C8*), 5.08 – 5.03 (br s, 0.8H, NH), 4.36 (m, 1H,CH-C4, CH-

C4*), 4.09 (m, 1.6H, CH-C6, CH-C1), 3.91 (m, 0.4H, CH-C6*, C1*), 3.73 (m, 1H, 

CH2-C2a, CH2-C2a*), 3.56 (app dt, J = 14.6, 7.0 Hz, 1H, CH2-C2b, CH2-C2b*), 3.39 

(dd, J = 14.5, 4.9 Hz, 1H, CH2-C17a, CH2-C17a*), 2.99 (dd, J = 14.5, 9.3 Hz, 1H, 

CH2-C17b, CH2-C17b*), 1.79 – 1.42 (m, 6H, CH2-C9, C13, CH-C10, C14, CH2-C9*, 

C13*, CH-C10*, C14*), 0.97 – 0.85 (m, 12H, CH3-C11, C12, C15, C16, CH3-C11*, 

C12*, C15*, C16*). 
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13C NMR (101 MHz, CDCl3) δ 172.5, 172.2 (C-C4, C6, C-C4*, C6*), 156.8 (C-C7, C-

C7*), 135.8, 135.7 , 134.6 (C-Ph, C-Ph*), 129.1, 129.0, 128.6, 128.4, 128.2, 128.1, 

127.7 (CH-Ph, CH-Ph*), 67.6 (CH2-C8), 67.4 (CH2-C8*), 63.4 (CH-C1*), 62.8 (d, J = 

8.6 Hz, CH-C1), 54.2 (CH-C6, CH-C6*), 51.9 (CH-C4*), 51.7 (CH-C4), 40.6, 40.2, 

40.0 (CH2-C9, C13, CH2-C9*, C13*), 38.2 (CH2-C2), 37.9 (CH2-C2*), 33.4 (CH2-C17, 

CH2-C17*), 24.9, 24.8, 24.7 (CH-C10, C14, CH-C10*, C14*), 22.9, 21.7, 21.5 (CH3-

C11, C12, C15, C16, CH3-C11*, C12*, C15*, C16*). 

19F NMR (377 MHz, CDCl3) δ 51.3, 50.8 (2 s). 

HRMS (ESI positive) calcd for C29H40FN3NaO6S [M+Na]+ 600.2514, found 600.2492. 

tR = 44.0 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 10B to 100B in 80 min). 

 

Cbz-Leu-Leu-[Phe-SO2F] 121 

 

 

(±)-Cbz-protected sulfonyl fluoride 71 (50 mg, 0.14 mmol) was dissolved in with a 

1:1 mixture of a 30% HBr/HOAc solution:CH2Cl2 (8 mL) at RT and the mixture 

stirred for 1 h. After evaporation of the solvents in vacuo, the crude material was 

dissolved in water (4 mL), stirred with Dowex-Cl resin (70 mg) for 10 min and 

freeze dried to afford the deprotected salt. The salt was added to a mixture of 

Cbz-Leu2-OH 103 (49 mg, 0.13 mmol), BOP (61 mg, 0.14 mmol) and DiPEA (48 μL, 

0.27 mmol) in CH2Cl2 (4 mL). The reaction mixture was stirred at RT overnight. 

Solvent was removed in vacuo and the crude material was dissolved in EtOAc (25 

mL) and a 1 Ϻ KHSO4 aq. solution (25 mL) was added. The layers were separated 

and the organic phase was washed with a 1 Ϻ NaHCO3 aq. solution (1 x 25 mL) and 

brine (1 x 25 mL), dried over MgSO4, filtered and the solvent removed in vacuo. 

The crude product was dissolved in buffer A:B (1:3) and purified by preparative 

HPLC (30B to 100B in 80 min) affording the desired compound 121 (12 mg, 0.021 

mmol, 15%) as a 1.2:1mixture of diasteroisomers as a white solid.  
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1H NMR (400 MHz, CDCl3) δ 7.35 – 7.22 (m, 0H, CH-Ph, CH-Ph*), 7.17 (d, J = 6.0 

Hz, 0.55H, NH), 6.70 (d, J = 7.9 Hz, 0.45H, NH*), 6.64 (d, J = 7.9 Hz, 0.45H, NH*), 

5.42 (d, J = 6.9 Hz, 0.55H, NH), 5.38 (d, J = 6.9 Hz, 1H, NH, NH*), 5.17 – 5.01 (m, 

2H, CH2-C8, CH2-C8*), 4.41 (td, J = 8.8, 5.3 Hz, 1H, CH-C4, CH-C4*), 4.21 – 4.10 

(m, 0.55H, CH-C6), 4.07 – 4.02 (m, 1H, CH-C1, CH-C6*), 3.96 – 3.90 (m, 0.45H, CH-

C1*), 3.75 – 3.62 (m, 1H, CH2-C2a, CH2-C2a*), 3.56 (app dt, J = 14.6, 7.0 Hz, 1H, 

CH2-C2b, CH2-C2b*), 3.35 (app dt, J = 14.5, 5.6 Hz, 1H, CH2-C17a, CH2-C17a*), 

2.99 (dd, J = 14.5, 9.3 Hz, 1H, CH2-C17b, CH2-C17b*), 1.79 – 1.42 (m, 6H, CH2-C9, 

C13, CH-C10, C14, CH2-C9*, C13*, CH-C10*, C14*), 0.97 – 0.78 (m, 12H, CH3-C11, 

C12, C15, C16, CH3-C11*, C12*, C15*, C16*). 

13C NMR (101 MHz, CDCl3) δ 172.5, 172.2 (C-C5, C3, C-C5*, C3*), 156.8, 156.6 (C-

C7, C-C7*), 135.8, 135.7, 134.6 (C-Ph, C-Ph*), 129.1, 129.0, 128.6, 128.4, 128.2, 

128.1, 128.0, 127.8, 127.7 (CH-Ph, CH-Ph*), 67.7 (CH2-C8), 67.4 (CH2-C8*), 63.36 

(d, J = 8.8 Hz, CH-C1*), 62.83 (d, J = 8.6 Hz, CH-C1), 54.2 (CH-C6), 53.8 (CH-C6*), 

51.9 (CH-C4*), 51.7 (CH-C4), 40.7, 40.6, 40.2, 40.0 (CH2-C9, C13, CH2-C9*, C13*), 

38.2 (CH2-C2*), 37.9 (CH2-C2), 33.4 (CH2-C17, CH2-C17), 24.9, 24.8, 24.7, 24.6 

(CH-C10, C14, CH-C10*, C14*), 22.9, 22.8, 21.8, 21.7, 21.6, 21.5 (CH3-C11, C12, 

C15, C16, CH3-C11*, C12*, C15*, C16*). 

19F NMR (377 MHz, CDCl3) δ 51.3, 50.8 (2 s). 

HRMS (ESI positive) calcd for C29H40FN3NaO6S [M+Na]+ 600.2514, found 600.2490. 

tR = 44.1 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 10B to 100B in 80 min). 

 

  



141 

Cbz-Leu-Leu-[Leu-SO2F] 120 

 

 

(±)-Cbz-protected sulfonyl fluoride 70 (50 mg, 0.14 mmol) was dissolved in with a 

1:1 mixture of a 30% HBr/HOAc solution:CH2Cl2 (8 mL) at RT and the mixture 

stirred for 1 h. After evaporation of the solvents in vacuo , the crude material was 

dissolved in water (4 mL), stirred with Dowex-Cl resin (70 mg) for 10 min and 

freeze dried to afford the deprotected salt. The salt was added to a mixture of 

Cbz-Leu2-OH 103 (49 mg, 0.13 mmol), BOP (61 mg, 0.14 mmol) and DiPEA (48 μL, 

0.27 mmol) in CH2Cl2 (4 mL) and the reaction mixture was stirred at RT overnight. 

Solvent was removed in vacuo and the crude material was dissolved in EtOAc (25 

mL) and a 1 Ϻ KHSO4 aq. solution (25 mL) was added. The layers were separated 

and the organic phase was washed with a 1 Ϻ NaHCO3 aq. solution (1 x 25 mL) and 

brine (1 x 25 mL), dried over MgSO4, filtered and the solvent removed in vacuo. 

The crude product was dissolved in buffer A:B (1:3) and purified by preparative 

HPLC (30B to 100B in 80 min) affording the desired compound 120 (10 mg, 0.018 

mmol, 13%) as a mixture of a 1:3 mixture of diasteroisomers.  

1H NMR (400 MHz, CDCl3) δ 7.43 – 7.24 (m, 5H, CH-Ph, CH-Ph*), 7.10 (s, 0.25H, 

NH), 6.88 (Br s, 0.75H, NH*), 6.40 (d, J = 7.9 Hz, 0.75H, NH*), 6.35 (d, J = 7.9 Hz, 

0.25H, NH), 5.19 – 5.04 (m, 3H, NH, CH2-C8, NH*, CH2-C8*), 4.50 – 4.35 (m, 1H, 

CH-C4, CH-C4*), 4.19 – 4.05 (m, 1H, CH-C6, CH-C6*), 3.86 – 3.71 (m, 1.5H, CH2-

C2, CH2-C2a*, CH-1), 3.66 – 3.50 (m, 1.5H, CH2-C2b*, CH-1*), 1.97 – 1.44 (m, 9H, 

CH2-C9, C13, C17, CH-C10 C14, C18, CH2-C9*, C13*, C17,* CH-C10* C14*, C18*), 

1.03 – 0.87 (m, 18H, CH3-C11, C12, C15, C16, C19, C20, CH3-C11*, C12*, C15*, 

C16*, C19*, C20*). 

13C NMR (101 MHz, CDCl3) δ 172.6, 172.4, 172.3 (C-C5, C3, C-C5*, C3*), 156.8 (C-

C7, C-C7*), 135.9 (C-Ph*), 135.8 (C-Ph), 128.6, 128.5, 128.4, 128.2, 128.1 (CH-Ph, 

CH-Ph*), 67.6 (CH2-C8), 67.4 (CH2-C8*), 61.0 (d, J = 9.4 Hz, CH-C1*), 60.5 (d, J = 

9.7 Hz, CH-C1) 54.2 (CH-C6*), 53.9 (CH-C6), 52.0 (CH-C4*), 51.7 (CH-C4), 40.7, 
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40.2, 40.1 (CH2-C9, C13, CH2-C9*, C13*), 38.7 (CH2-C2), 38.4 (CH2-C2*), 35.9 (CH2-

C17, CH2-C17*), 25.3, 25.2, 24.9, 24.8, 24.7 (CH-C10, C14, C18, CH-C10*, C14*, 

C18*), 23.0, 22.9, 22.7, 22.6, 21.7, 21.5, 21.4 (CH3-C11, C12, C15, C16, C19, C20, 

CH3-C11*, C12*, C15*, C16*, C19*, C20*). 

19F NMR (377 MHz, CDCl3) δ 48.8, 48.4 (2 s). 

HRMS (ESI positive) calcd for C26H42FN3NaO6S [M+Na]+ 566.2671, found 566.2648. 

tR = 53.8 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 0B to 100B in 80 min). 

 

Cbz-Leu-Leu-Leu-[Leu-SO2F] 122 

 

 

 

The general procedure was followed on a 0.17 mmol scale to afford the desired 

product 122 (15 mg, 0.023 mmol, 14%) as a 4:1 mixture of diasteroisomers as a 

white solid.  

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.28 (m, 6H, CH-Ph, NH, CH-Ph*, NH*), 7.17 (br 

s, 0.2H, NH*), 6.95 (d, J = 7.7 Hz, 1H, NH, NH*), 6.46 (br s, 0.8H, NH), 5.21 – 5.05 

(m, 3H, NH, CH2-C10, NH*, CH2-C10*), 4.45 – 4.37 (m, 1H, CH-C6, CH-C6*), 4.29 – 

4.22 (m, 1H, CH-C4, CH-C4*), 4.12 (app dt, J = 17.0, 8.5 Hz, 1H, CH-C8, CH-C8*), 

3.82 – 3.71 (m, 2H, CH2-C2a, CH-C1, CH2-C2a*, CH-C1*), 3.69 – 3.63 (m, 0.2H, CH2-

C2b *), 3.58 – 3.49 (m, 0.8H, CH2-C2b), 1.98 – 1.44 (m, 12H, CH2-C11, C15, C19, 

C23, CH-C12, C16, C20, C24, CH2-C11, C15, C19, C23, CH-C12*, C16*, C20*, C24*), 

1.03 – 0.81 (m, 24H, CH3-C13, C14, C17, C18, C21, C22, C25, C26, CH3-C13*, C14*, 

C17*, C18*, C21*, C22*, C25*, C26*). 

13C NMR (126 MHz, CDCl3) δ 173.4, 173.1, 171.8 (C-C7, C5, C3, C-C7*, C5*, C3*), 

156.9 (C-C9, C-C9*) , 135.6 (C-Ph, C-Ph*), 128.7, 128.6, 128.0 (CH-Ph, CH-Ph*), 

67.6 (CH2-C10, CH2-C10*), 60.2 (d, J = 8.1 Hz, CH-C1), 54.7 (CH-C8, CH-C8*), 53.4 
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(CH-C4, CH-C4*), 52.1, 51.9 (CH-C6, CH-C6*), 40.6, 39.9, 39.8, (CH2-C11, C15, 

C19, CH2-C11*, C15*, C19*), 39.1 (CH2-C2, CH2-C2*), 36.1 (CH2-C23, CH2-C23*), 

25.4, 25.3, 25.01, 24.9, 24.8 (CH-C12, C16, C20, C24, CH-C12*, C16*, C20*, C24*), 

23.2, 23.0, 22.9, 22.6, 21.6, 21.5, 21.1 (CH3-C13, C14, C17, C18, C21, C22, C25, 

C26, CH3-C13*, C14*, C17*, C18*, C21*, C22*, C25*, C26*). 

19F NMR (471 MHz, CDCl3) δ 49.7, 48.7 (2 s). 

HRMS (ESI positive) calcd for C32H53FN4NaO7S [M+Na]+ 679.3511, found 679.3474. 

tR = 26.3 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 30B to 100B in 80 min). 

 

Cbz-Leu-Leu-Leu-[Phe-SO2F] 123 

 

 

The general procedure was followed on a 0.19 mmol scale to afford the desired 

product 123 (13 mg, 0.019 mmol, 10%) as a 3:1 mixture of diasteroisomers as a 

white solid.  

1H NMR (500 MHz, CDCl3) δ 7.38 – 7.16 (m, 11H, CH-Ph, NH, CH-Ph*, NH*), 7.03 

(br s, 1H, NH, NH*), 6.54 (br s, 1.25H, NH, NH*, NH*), 5.19 (d, J = 7.4 Hz, 0.75H, 

NH), 5.17-5.10 (s, 2H, CH2-C10, CH2-C10*), 4.46 – 4.35 (m, 1H, CH-C6, CH-C6*), 

4.30 – 4.23 (m, 1H, CH-C4, CH-C4*), 4.17 – 4.12 (m, 1H, CH-C8, CH-C8*), 4.12 – 

4.07 (m, 0.75H, CH-C1), 4.05 – 3.99 (m, 0.25H, CH-C1*), 3.74 – 3.67 (m, 1H, CH2-

C2a, CH2-C2a*), 3.63 – 3.53 (m, 1H, CH2-C2b, CH2-C2b*), 3.35 (dd, J = 14.5, 5.3 

Hz, 1H, CH2-C23a, CH2-C23a*), 3.06 (dd, J = 14.5, 8.3 Hz, 0.75H, CH2-C23b), 2.99 

(m, 0.25H, CH2-C23b*), 1.92 – 1.39 (m, 9H, CH2-C11, C15, C19, CH-C12, C16, C20, 

CH2-C11*, C15*, C19*, CH-C12*, C16*, C20*), 0.95 – 0.83 (m, 18H, CH3-C13, C14, 

C17, C18, C21, C22, CH3-C13*, C14*, C17*, C18*, C21*, C22*). 

13C NMR (126 MHz, CDCl3) δ 173.4, 173.1, 171.9 (C-C7, C5, C3, C-C7*, C5*, C3*), 

156.8 (C-C9, C-C9*), 135.6, 134.9 (C-Ph, C-Ph*), 129.2, 128.9, 128.7, 128.6, 128.0, 
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127.5 (CH-Ph, CH-Ph*), 67.5 (CH2-C10, CH2-C10*), 62.7 (d, J = 7.7 Hz, CH-C1), 54.6 

(CH-C8, CH-C8*), 53.0 (CH-C4, CH-C4*), 52.0 (CH-C6, CH-C6*), 40.8, 40.0, 39.8 

(CH2-C11, C15, C19, CH2-C11*, C15*, C19*), 38.6 (CH2-C2, CH2-C2*), 33.4 (CH2-C23, 

CH2-C23*), 25.0, 24.9, 24.8 (CH-C12, C16, C20, CH-C12*, C16*, C20*), 23.2, 22.9, 

22.8, 21.8, 21.6, 21.2 (CH3-C13, C14, C17, C18, C21, C22, CH3-C13*, C14*, C17*, 

C18*, C21*, C22*). 

19F NMR (471 MHz, CDCl3) δ 52.5, 51.6 (2 s). 

HRMS (ESI positive) calcd for C35H51FN4NaO7S [M+Na]+ 713.3355, found 713.3322. 

tR = 27.8 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 30B to 100B in 80 min). 

 

Morph-hPhe-Leu-Phe-[Leu-SO2F] 124 

 

 

The general procedure was followed on a 0.13 mmol scale to afford the desired 

product 124 (20 mg, 0.027 mmol, 21%) as a white solid. No ratio of diasteroisomers 

could be calculated. 

1H NMR (600 MHz, CDCl3) δ 8.69 (br s, 3H, NH), 7.36 – 6.89 (m, 10H, CH-Ph), 4.78 

(m, 3H, CH- C4, C6, C8), 3.93 – 3.45 (m, 9H, CH2-C13, C14, CH2-C10, CH2-C2, CH-

C1), 3.28 – 2.89 (m, 6H, CH2-C11, C12, CH2-C21), 2.55 (s, 2H, CH2-C16), 2.17 – 1.71 

(m, 5H, CH2-C15, CH2-C22, CH-C23), 1.57 (m, 3H, CH2-C17, CH-C18), 1.01 – 0.89 

(m, 6H, CH3-C24, C25), 0.84 (d, J = 5.6 Hz, 3H, CH3-C19), 0.80 (d, J = 5.6 Hz, 3H, 

CH3-C20). 

13C NMR (151 MHz, CDCl3) δ 172.7, 172.1, 171.7, 165.3 (C-C3, C5, C7, C9) , 140.6, 

136.6 (C-Ph), 129.3, 128.8, 128.6, 128.5, 128.3, 127.1, 126.5 (CH-Ph), 64.0 (CH2-

C13, C14), 61.0 (d, J = 8.1 Hz, CH-C1), 58.2 (CH2-C10), 54.6, 53.7 (CH-C4, C6), 

53.6 (CH2-C11, C12), 52.3 (CH-C8), 41.7(CH2-C17) , 38.9 (CH2-C2), 38.1 (CH2-C21), 
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36.3 (CH2-C22), 33.4 (CH2-C15), 32.2 (CH2-C16), 25.5, 25.0, (CH-C18, C23), 22.8, 

22.6, 22.4, 21.6 (CH3-C19, C20, C24, C25). 

19F NMR (471 MHz, CDCl3) δ 49.7 (s). 

HRMS (ESI positive) calcd for C37H55FN5O7S [M+H]+ 732.3801, found 732.3765. 

tR = 26.8 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 30B to 100B in 80 min). 

 

Morph-hPhe-Leu-Phe-[Phe-SO2F] 125 

 

 

The general procedure was followed on a 0.12 mmol scale to afford the desired 

product 125 (10 mg, 0.013 mmol, 11%) as a white solid.  No ratio of 

diasteroisomers could be calculated. 

1H NMR (600 MHz, CDCl3) δ 7.37 – 6.99 (m, 15H, CH-Ph), 4.66 (br s, 2H, CH-C8,) 

4.42 (br s, 1H, CH-C4), 3.98 (br s, 1H, CH-C1), 3.83 (m, 8H, CH2-C13, C14, CH2-

C10, CH2-C2) 3.33 – 2.87 (m, 8H, CH2-C22, CH2-C11, C12, CH2-C21), 2.65 – 2.59 (m, 

2H, CH2-C16), 2.05 (dd, J = 13.2, 6.3 Hz, 1H, CH2-C15b), 1.96 (app p, J = 7.5, 7.0 

Hz, 1H, CH2-C15b), 1.48 (br s, 3H, CH2-C17, CH-C18), 0.83 (d, J = 5.0 Hz, 3H, CH3-

C19), 0.79 (d, J = 5.0 Hz, 3H, CH3-C20). 

13C NMR (151 MHz, CDCl3) δ 173.0, 172.8, 172.1, 172.0 (C-C3, C5, C7, C9), 140.5, 

136.7, 136.6, 134.8 (C-Ph), 129.42, 129.3, 129.2, 129.2, 129.1, 128.8, 128.7, 

128.5, 128.4, 127.9, 127.1, 126.5 (CH-Ph), 64.6, 64.4(CH2-C13, C14), 63.1 (d, J = 

8.2 Hz, CH-C1), 59.0 (CH2-C10), 54.5, 53.8 (CH-C4, C6), 53.2 (CH2-C11, C12), 52.9 

(CH-C8), 40.8 (CH2-C17), 38.4 (CH2-C2), 37.4 (CH2-C21), 33.70 (CH2-C22), 33.4 

(CH2-C15), 32.2 (CH2-C16), 24.9 (CH-C18), 22.7, 21.9 (CH3-C19,C20)  

19F NMR (471 MHz, CDCl3) δ 51.7 (s). 

HRMS (ESI positive) calcd for C40H53FN5O7S [M+H]+ 766.3644, found 766.3608. 

tR = 27.8 min (Gemini column C18, 10 µm, 250 x 21.2 mm, 30B to 100B in 80 min). 



146 

Cbz-Leucinol 129 

 

 

Cbz-Leucine 101 (12.9 g, 48.8 mmol) was dissolved in dry DME (50 mL) and cooled 

to 0 °C. NMM (5.40 mL, 48.8 mmol) and isobutylchloroformate (6.40 mL, 48.8 

mmol) were slowly added and the mixture was stirred at RT for 3h. The resultant 

white precipitate was removed by filtration over celite. The residue was washed 

with DME (3 x 10 mL) and the collected filtrate was cooled to 0 °C. NaBH4 (2.77 

g, 73.2 mmol) was dissolved in water (25 mL) separately and slowly added. When 

gas evolution ceased the reaction was quenched with water (500 mL). DME was 

removed in vacuo and CH2Cl2 (300 mL) was added. The layers were separated and 

the aqueous phase was extracted with CH2Cl2 (2 x 300 mL). The combined organic 

extracts were dried over MgSO4, filtered and the solvent removed in vacuo. The 

crude material was purified by silica column chromatography (CH2Cl2) to afford 

the desired compound 129 (7.8 g, 31 mmol, 63%) as a colourless oil.  

1H NMR (500 MHz, CDCl3) δ 7.38 – 7.29 (m, 5H, CH-Ph), 5.10 (s, 2H, CH2-C4), 4.77 

(d, J = 7.0 Hz, 1H, NH), 3.84-3.76 (m, 1H, CH-C2), 3.66 (dd, J = 11.3, 3.7 Hz, 1H, 

CH2-C1a), 3.58-3.52 (m, 1H, CH2-C1b), 2.37 (br s, 1H, OH), 1.66 – 1.58 (m, 1H, CH-

C7), 1.39 – 1.28 (m, 2H, CH2-C6), 0.93 (d, J = 6.5 Hz, 6H, CH3-C8, C9).  

13C NMR (126 MHz, CDCl3) δ 156.9 (C-C3), 136.5 (C-C5), 128.6 (CH-Ph), 128.3 (CH-

Ph), 128.2 (CH-Ph), 66.9 (CH2-C4), 66.1 (CH2-C1), 51.6 (CH-C2), 40.6 (CH2-C6), 

24.9 (CH-C7), 23.2 (CH3-C8), 22.3 (CH3-C9).  

HRMS (CI iso-butane) calcd for C14H22NO3 [M+H]+252.1600, found 252.1602.  

Spectroscopic data are in accordance with literature.127 
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Cbz-Leucinal 130 

 

 

Oxalyl chloride (4.4 mL, 51 mmol) was dissolved in dry CH2Cl2 (75 mL) and cooled 

to −63 °C. A solution of DMSO (7.30 mL, 102 mmol) in dry CH2Cl2 (12 mL) was 

added dropwise over 20 min. A solution of Cbz-Leucinol 129 (7.8 g, 31 mmol) in 

dry CH2Cl2 (20 mL) was subsequently added dropwise over 20 min, and the mixture 

was stirred at −63 °C for 30 min. A solution of DIPEA (32.0 mL, 186 mmol) in dry 

CH2Cl2 (7 mL) was then added dropwise over 20 min. After 30 min, the mixture 

was warmed to RT and water (10 mL) was added under vigorous stirring. The 

biphasic mixture was poured into Et2O (175 mL) and the layers were separated. 

The organic phase was washed with a 1 Ϻ KHSO4 aq. solution (2 x 50 mL) and the 

aqueous phase was extracted with Et2O (1 x 50 mL). The combined organic 

extracts were dried over MgSO4, filtered and the solvent removed in vacuo to 

afford the crude product 130 (7.9 g, 30 mmol, 97%) as a yellow oil. The compound 

was used in the next reaction without further purification.  

1H NMR (500 MHz, CDCl3) δ 9.59 (s, 1H, CH-C1), 7.38 – 7.31 (m, 5H, CH-Ph), 5.25 

(d, J = 7.4 Hz, 1H, NH), 5.11 (s, 2H, CH2-C4), 4.33 (ddd, J = 9.4, 7.4, 4.8 Hz, 1H, 

CH-C2), 1.77 – 1.60 (m, 1H, CH-C7), 1.68 (ddd, J = 13.5, 8.6, 4.8 Hz, 1H, CH2-

C6a), 1.42 (ddd, J = 13.5, 9.4, 5.5 Hz, 1H, CH2-C6b), 0.98 (d, J = 6.7 Hz, 3H, CH3-

C8), 0.96 (d, J = 6.7 Hz, 3H, CH3-C9). 

13C NMR (126 MHz, CDCl3) δ 199.8 (CH-C1), 156.3 (C-C3), 136.2 (C-C5), 128.6 (CH-

Ph), 128.3 (CH-Ph), 128.2 (CH-Ph), 67.2 (CH2-C4), 58.9 (CH-C2), 38.2 (CH2-C6), 

24.7 (CH-C7), 23.1 (CH3-C8), 22.0 (CH3-C9).  

HRMS (CI iso-butane) calcd for C14H20NO3 [M+H]+250.1443, found 250.1445.  

Spectroscopic data are in accordance with literature.128 

  



148 

Diethylphosphoryl methanesulfonate 131 

 

 

Ethyl methanesulfonate 136 (10 g, 80 mmol) was dissolved in dry THF (200 mL) 

and cooled to −78 °C before the addition of n-BuLi (2.5 Ϻ in hexanes, 35 mL, 89 

mmol) over 30 min. After 15 min, diethylchlorophosphate 137 (6.5 mL, 45 mmol) 

was added and the solution was stirred for 30 min before cooling to −50 °C and 

stirring for 1 h. The mixture was removed in vacuo and the residue diluted with 

water (100 mL) and extracted with CH2Cl2 (3 x 120 mL). The layers were separated 

and the combined organic extracts were dried over MgSO4, filtered and the 

solvent removed in vacuo. Purification of the crude material by silica column 

chromatography (PE:EtOAc, 1:1) afforded the product 131 (6.5 g, 25 mmol, 56%) 

as a colourless oil.  

1H NMR (500 MHz, CDCl3) δ 4.36 (q, J = 7.1 Hz, 2H, CH2-C2), 4.23 – 4.13 (m, 4H, 

CH2-C6, C4), 3.69 (d, 2JPH = 17.2 Hz, 2H, CH2-C3), 1.38 (t, J = 7.1 Hz, 3H, CH3-C1), 

1.32 (t, J = 7.1 Hz, 6H, CH3-C5, C7).  

13C NMR (126 MHz, CDCl3) δ 68.3 (CH2-C2), 63.7 (CH2-C4, C6), 47.8 (d, J = 140.0 

Hz, CH2-C3), 16.3 (CH3-C5), 16.2 (CH3-C7), 15.0 (CH3-C1).  

HRMS (CI iso-butane) calcd for C7H18O6PS [M+H]+ 261.0562, found 261.0561.  

Spectroscopic data are in accordance with literature.129 
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Cbz-Leucine inspired vinyl sulfonate 132 

 

 

Diethylphosphoryl methanesulfonate 131 (6.5 g, 25 mmol) was dissolved in dry 

THF (100 mL) and cooled to −78 °C. n-BuLi (2.5 Ϻ in hexanes, 10.5 mL, 26.2 mmol) 

was slowly added and the mixture was stirred for 20 min. A solution of Cbz-

Leucinal 130 (7.5 g, 30 mmol) in dry THF (25 mL) was then added and the mixture 

stirred for an additional 45 min before warming to RT and stirring overnight. 

Solvent was removed in vacuo and the residue was treated with water (450 mL) 

and extracted with CH2Cl2 (3 x 450 mL). The layers were separated and the 

combined organic extracts were dried over MgSO4, filtered and the solvent 

removed in vacuo. Purification of the crude material by silica column 

chromatography (PE:EtOAc, 4:1) afforded the desired product 132 (6.1 g, 17 

mmol, 68%) as a yellow oil.  

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.32 (m, 5H, CH-Ph), 6.79 (dd, J = 15.2, 5.3 Hz, 

1H, CH-C2), 6.30 (dd, J = 15.2, 1.3 Hz, 1H, CH-C1), 5.10 (s, 2H, CH2-C5), 4.79 (d, 

J = 7.8 Hz, 1H, NH), 4.49 – 4.41 (m, 1H, CH-C3), 4.13 (q, J = 6.8 Hz, 2H, CH2-C11), 

1.74 – 1.64 (m, 1H, CH-C8), 1.44 (dd, J = 7.2 Hz, 7.2 Hz, 2H, CH2-C7), 1.35 (t, J = 

6.8 Hz, 3H, CH3-C12), 0.94 (d, J = 6.6 Hz, 6H, CH3-C9, C10). 

13C NMR (126 MHz, CDCl3) δ 155.6 (C-C4), 148.6 (CH-C2), 136.2 (C-C6), 128.7 (CH-

Ph), 128.4 (CH-Ph), 128.2 (CH-Ph), 124.6 (CH-C1), 67.2 (CH2-C5), 67.1 (CH2-C11), 

50.1 (CH-C3), 43.2 (CH2-C7), 24.8 (CH-C8), 22.8 (CH3-C9), 22.0 (CH3-C10), 14.9 

(CH3-C12).  

HRMS (ESI negative) calcd for C17H24NO5S [M-H]- 354.1381, found 354.1366.  
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Cbz-Leucine inspired vinyl sulfonate salt 133 

 

 

Sulfonate ester 132 (6.1 g, 17 mmol) was treated with tetrabutylammonium 

iodide (6.3 g, 17 mmol) in refluxing acetone and the reaction mixture was stirred 

overnight. The solvent was removed in vacuo to afford the desired compound 133 

(11.3 g) as a yellow oil. The salt was directly used in the next step without further 

purification. 

1H NMR (400 MHz, CDCl3) δ 7.37 – 7.28 (m, 5H, CH-Ph), 6.48 (dd, J = 15.3, 1.1 Hz, 

1H, CH-C1), 6.40 (dd, J = 15.3, 4.6 Hz, 1H, CH-C2), 5.10 (d, J = 6.1 Hz, 1H, CH2-

C5a),5.05 (d, J = 6.1 Hz, 1H, CH2-C5b), 4.61 (d, J = 9.1 Hz, 1H, NH), 4.40 – 4.34 

(m, 1H, CH-C3), 3.34 – 3.26 (m, 8H, CH2-C14), 1.72 – 1.60 (m, 9H, CH2-C13, CH-

C8), 1.50 – 1.35 (m, 10H, CH2-C12, C7), 1.00 (t, J = 7.3 Hz, 12H, CH3-C11), 0.91 – 

0.84 (m, 6H, CH3-C9, C10).  

13C NMR (126 MHz, CDCl3) δ 155.4 (C-C4), 136.4 (C-C5), 134.5 (CH-C1), 133.8 (CH-

C2), 128.3 (CH-Ph), 127.8 (CH-Ph), 66.4 (CH2-C5), 58.8 (CH2-C14), 49.3 (CH-C3), 

44.3 (CH2-C7), 24.4 (CH-C8), 24.0 (CH2-C13), 22.6 (CH3-C9), 22.1 (CH3-C10), 19.6 

(CH2-C12), 13.5 (CH3-C11).  

HRMS (ESI negative) calcd for C15H20NO5S [M-H]- 326.1068, found 326.1055.  
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Cbz-Leucine inspired vinyl sulfonyl fluoride 134 

 

 

Sulfonate salt 133 (4.8 g, 8.5 mmol) was dissolved in dry CH2Cl2 (170 mL), 

XtalFluor- M 69 (3.72 g, 15.3 mmol) and Et3N.3HF (59 µL, 0.36 mmol) were added 

and the reaction was stirred at reflux overnight. The solvent was removed in 

vacuo and the crude product was purified by silica column chromatography 

(CH2Cl2:PE, 2:1) to afford the desired compound 134 (720 mg, 2.18 mmol, 26%) 

as a white solid. 

1H NMR (500 MHz, CDCl3) δ 7.41 – 7.33 (m, 5H, CH-Ph), 7.06 (dd, J = 15.0, 4.7 Hz, 

1H, CH-C2), 6.49 (d, J = 15.0 Hz, 1H, CH-C1), 5.12 (s, 2H, CH2-C5), 4.72 (d, J = 

7.1 Hz, 1H, NH), 4.57 – 4.50 (m, 1H, CH-C3), 1.76 – 1.65 (m, 1H, CH-C8), 1.47 (dd, 

J = 7.3 Hz, 7.3 Hz, 2H, CH2-C7), 0.96 (d, J = 6.6 Hz, 6H, CH3-C9, C10).  

13C NMR (126 MHz, CDCl3) δ 155.8 (C-C4), 153.7 (CH-C2), 136.2 (C-C5), 129.0 (CH-

Ph), 128.8 (CH-Ph), 128.6 (CH-Ph), 122.3 (d, J = 27.7 Hz, CH-C1), 67.8 (CH2-C5), 

50.5 (CH-C3), 43.1 (CH2-C7), 25.1 (CH-C8), 23.1 (CH3-C9), 22.2 (CH3-C10).  

19F NMR (471 MHz, CDCl3) δ 60.40 (s) 

HRMS (ESI negative) calcd for C15H19FNO4S [M-H]- 328.1024, found 328.1017.  

Melting point: 120 °C.  
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Ethyl methanesulfonate 136 

 

 

Ethanol (6.40 mL, 110 mmol) was dissolved in dry CH2Cl2 (400 mL) and the solution 

was cooled to 0 °C. NMM (22.0 mL, 200 mL) and methanesulfonyl chloride 135 

(7.70 mL, 100 mmol) were added and the mixture was stirred for 30 min. The 

mixture was then warmed to RT and the reaction stirred overnight. CH2Cl2 (200 

mL) was added and the resulting mixture was washed with a 1 Ϻ KHSO4 aq. 

solution (200 mL). The layers were separated and the organic phase was washed 

with water (200 mL), dried over MgSO4, filtered and the solvent removed in vacuo 

to afford the desired compound 136 (10 g, 80 mmol, 81%) as a colourless oil.  

1H NMR (500 MHz, CDCl3) δ 4.23 (q, J = 7.1 Hz, 2H, CH2-C2), 2.94 (s, 3H, CH3-C1), 

1.34 (t, J = 7.1 Hz, 3H, CH3-C3).  

13C NMR (126 MHz, CDCl3) δ 66.4 (CH2-C2), 37.3 (CH3-C1), 14.9 (CH3-C3).  

HRMS (CI iso-butane) calcd for C3H9O3S [M+H]+ 125.0272, found 125.0270.  

Spectroscopic data are in accordance with the commercially available compound 

(Sigma-Aldrich). 

 

Double substituted VSF 147 

 

Vinyl sulfonyl fluoride 134 (30 mg, 0.1 mmol) was dissolved in dry CH2Cl2 (2 mL) 

and treated with piperidine (32 µL, 0.3 mmol). The reaction was stirred at RT 

overnight. Solvent was removed in vacuo and the crude material was purified by 

silica column chromatography (n-hex:EtOAc, 8:15:1) to afford the double-
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substituted product 147 (20 mg, 0.04 mmol, 40%) followed by the five-membered 

ring 148 (20 mg, 0.05 mmol, 50%) both as off-white oils. 

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.28 (m, 5H, CH-Ph), 5.20 – 5.09 (m, 2H, NH, 

CH2-C5a), 5.04 (d, J = 12.4 Hz, 2H, CH2-C5b), 3.81 (app qd, J = 10.4, 2.6 Hz, 1H, 

CH-C3), 3.12 – 3.01 (m, 5H, CH2-C1a, C15, C19), 2.94 (ddd, J = 8.9, 6.1, 2.6 Hz, 

1H, CH-C2), 2.78 (dd, J = 14.0, 6.1 Hz, 1H, CH2-C1b), 2.57 (ddd, J = 11.0, 7.0, 

3.5 Hz, 2H, CH2-C10a, C14a), 2.33 (ddd, J = 11.0, 6.8, 3.4 Hz, 2H, CH2-C10b, 

C14b), 1.77 – 1.70 (m, 2H, CH2-C7a, CH-C8), 1.70 – 1.64 (m, 10H, CH2-C11, C12, 

C13, C16, C18), 1.42 (app p, J = 5.9 Hz, 2H, CH2-C17), 1.31 – 1.20 (m, 1H, CH2-

C7b), 0.92 (d, J = 6.3 Hz, 6H, CH3-C9, C10).  

13C NMR (126 MHz, CDCl3) δ 156.9 (C-C4), 136.8 (CH2-C6), 128.6 (CH-Ph), 128.1 

(CH-Ph), 128.0 (CH-Ph), 66.7 (CH2-C5), 64.4 (CH-C2), 51.1 (CH-C3), 50.2 (CH2-

C10, C14), 46.7 (CH2-C15, C19), 44.0 (CH2-C7), 43.4 (CH2-C1), 26.4 (CH2-C16, 

C18), 25.5 (CH2-C11, C13), 24.9 (CH-C8), 24.7 (CH2-C17), 23.9 (CH2-C12), 23.8 

(CH3-C9), 21.8 (CH3-C10).  

HRMS (ESI positive) calcd for C25H41N3NaO4S [M+Na]+ 502.2710, found 502.2685. 

 

Five-membered ring 148 

 

 

1H NMR (500 MHz, CDCl3) δ 7.44 – 7.29 (m, 5H, CH-Ph), 5.37 – 5.23 (m, 2H, CH2-

C5), 4.26 (app dt, J = 9.6, 3.1 Hz, 1H, CH-C3), 3.49 (d, J = 6.5 Hz, 2H, CH2-C1), 

3.34 (td, J = 6.5, 3.1 Hz, 1H, CH-C2), 2.56 – 2.50 (m, 2H, CH2-C12a, C14a), 2.49 – 

2.43 (m, 2H, CH2-C12b, C14b), 1.70 – 1.62 (m, 2H, CH2-C7a, CH-C8), 1.60 – 1.52 

(m, 5H, CH2-C7b, C11, C15), 1.43 (app dt, J = 8.8, 4.4 Hz, 2H, CH2-C13), 0.94 (d, 

J = 6.2 Hz, 6H, CH3-C9), 0.92 (d, J = 6.2 Hz, 6H, CH3-C10). 

13C NMR (126 MHz, CDCl3) δ 150.8 (C-C4), 135.4 (C-C6), 128.9 (CH-Ph), 128.7(CH-

Ph), 128.2 (CH-Ph), 69.0 (CH2-C5), 63.4 (CH-C2), 57.9 (CH-C1), 50.6, 49.4 (CH2-
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C12, C14), 43.8 (CH2-C1), 26.4 (CH2- C11, C15), 25.1 (CH-C18), 24.5 (CH2-C13), 

23.7 (CH3-C9), 22.1 (C10).  

HRMS (ESI positive) calcd for C20H30N2NaO4S [M+Na]+ 417.1818, found 417.1798. 

 

β-sultam 149 

 

 

VSF 134 (50 mg, 0.15 mmol) was dissolved in CH2Cl2 (3 mL) and treated with 

benzylamine (50 µL, 0.45 mmol). The reaction was stirred at RT overnight. The 

solvent was removed in vacuo and the crude material was purified by silica column 

chromatography (n-hex:EtOAc, 6:14:1) to afford the major (10 mg, 0.02 mmol, 

16%) followed by the minor (3 mg, 0.007 mmol, 5%) diasteroisomer of the β-sultam 

149 as colourless oils. 

Major isomer  

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.22 (m, 10H, Ph), 5.15 (d, J = 12.3 Hz, 1H, 

CH2-C5a), 5.05 (d, J = 12.3 Hz, 1H, CH2-C5b), 4.43 (d, J = 14.5 Hz, 1H, CH2-C11a), 

4.32 (d, J = 8.2 Hz, 1H, NH), 4.10 (d, J = 14.5 Hz, 1H, CH2-C11b), 4.02 (dd, J = 

12.6, 8.3 Hz, 1H, CH2-C1a),3.90 – 3.87 (m, 1H, CH-C3), 3.86 (dd, J = 12.6, 6.2 Hz, 

1H, CH2-C1b), 3.34 – 3.25 (m, 1H, CH-C2), 1.62 – 1.52 (m, 1H, CH-C8), 1.19 (dd, J 

= 8.6, 4.4 Hz, 2H, CH2-C7), 0.84 (d, J = 6.7 Hz, 3H, CH3-C9), 0.82 (d, J = 6.7 Hz, 

3H, CH3-C10). 

13C NMR (126 MHz, CDCl3) δ 150.0 (C-C4), 134.7 (C-C6, C12), 128.9 (CH-Ph), 128.6 

(CH-Ph), 128.4 (CH-Ph), 128.0 (CH-Ph), 67.2 (CH2-C5) 59.0 (CH2-C1), 50.9 (CH-C2), 

50.0 (CH-C3, CH2-C11), 39.4 (CH2-C7), 24.5 (CH-C8), 23.1 (CH3-C9), 21.3 (CH3-

C10). 

HRMS (ESI positive) calcd for C22H28N2NaO4S [M+Na]+ 439.1662, found 439.1645. 
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β-sultam 151 

 

 

VSF 134 (50 mg, 0.15 mmol) was dissolved in dry CH2Cl2 (3 mL) and treated with 

methylamine (22 µL, 0.45 mmol). The reaction was stirred at RT overnight. The 

solvent was removed in vacuo and the crude material was purified by silica column 

chromatography (n-hex:EtOAc, 4:1) to provide the β-sultam 151 (10 mg, 0.03 

mmol, 20%) as a 3:1 mixture of diasteroisomers as a yellow oil.  

1H NMR (500 MHz, Chloroform-d) δ 7.40 – 7.12 (m, 5H, CH-Ph, Ph*), 5.26 – 4.80 

(m, 3H, CH2-C5, C5*, NH, NH*), 4.06 – 3.89 (m, 1H, CH-C3*, CH2-C1a), 3.89 – 3.75 

(m, 1.75H, CH-C3, CH2-C1b, C1a*), 3.66 (dd, J = 12.6, 8.5 Hz, 0.25H, CH2-C1b*), 

3.10 (ddd, J = 8.5, 6.0, 2.7 Hz, 0.25H, CH-C2*), 3.03 – 2.93 (m, 0.75H, CH-C2), 

2.67 (s, 0.75H, CH3-C11*), 2.65 (s, 2.25H, CH3-C11), 1.68 – 1.55 (m, 1H, CH-C8, 

C8*), 1.36 (ddd, J = 13.8, 10.6, 4.9 Hz, 0.25H, CH2-C7a*), 1.26 – 1.01 (m, 1.75H, 

CH2-C7b*, C7), 0.89 – 0.82 (m, 6H, CH3-C9, C10, C9*, C10*). 

13C NMR (126 MHz, CDCl3) δ 156.6 (C-C4*), 156.5 (C-C4), 136.4 (C-C6*), 136.2 (C-

C6), 128.6 (CH-Ph, CH-Ph*), 128.3 (CH-Ph, CH-Ph*), 128.2, 127.8 (CH-Ph, CH-Ph*), 

67.1 (CH2-C5), 66.9 (CH2-C5*), 59.9 (CH2-C1), 58.9 (CH2-C1*), 52.6 (CH-C2), 52.0 

(CH-C2*), 50.6 (CH-C3), 49.7 (CH-C3*), 42.3 (CH2-C7*), 40.0 (CH2-C7), 33.6 (CH3-

C11*), 31.6 (CH3-C11), 24.9, 24.7 (CH-C8, CH-C8*), 23.3, 23.2, 21.7, 21.5 (CH3-C9, 

C10, C9*, C10*). 

HRMS (ESI positive) calcd for C16H24N2NaO4S [M+Na]+ 363.1349, found 363.1333. 
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β-sultam 153 

 

 

VSF 134 (100 mg, 0.3 mmol) was dissolved in CH2Cl2 (6 mL) and treated with 

ethanolamine (55 µL, 0.9 mmol). The reaction was stirred at RT overnight. The 

solvent was removed in vacuo and the crude material was purified by silica 

column chromatography (n-hex:EtOAc, 2:1) to give β-sultam 153 (70 mg, 0.19 

mmol, 63%) as a 2.3:1 mixture of diasteroisomers as a colourless oil.  

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.28 (m, 5H, CH-Ph, CH-Ph*), 5.60 – 5.48 (m, 

0.3H, NH*), 5.38 (br s, 0.7H, NH), 5.12 – 4.99 (m, 2H, CH2-C5, CH2-C5*), 4.13 – 

4.05 (m, 1.3H,CH-C3, C3*,CH2-C1a*), 4.04 – 3.90 (m, 2.4H, CH-C2, C2*, CH2-C1), 

3.89 – 3.80 (m, 0.3H, CH2-C1b*), 3.71 – 3.51 (m, 3H, CH2-C11a, CH2-C12, CH2-

C11a*, CH2-C12*), 3.25 – 3.10 (m, 1H, CH-C2, C2*), 2.96 – 2.89 (m, 1H, CH2-C11b, 

C11b*), 1.72 – 1.63 (m, 1H, CH-C8, CH-C8*), 1.43 (ddd, J = 13.6, 10.9, 4.6 Hz, 

0.3H, CH2-C7a*).1.23 – 1.07 (m, 1.7H,CH2-C7, CH2-C7b*), 0.94 – 0.88 (m, 6H, CH3-

C9, C10, CH3-C9*, C10*).  

13C NMR (126 MHz, CDCl3) δ 157.3 (C-C4), 156.6 (C-C4*), 136.1 (C-C6*), 136.0 (C-

C6), 128.4 (CH-Ph, CH-Ph*), 128.1(CH-Ph, CH-Ph*), 127.8(CH-Ph, CH-Ph*), 127.7 

(CH-Ph, CH-Ph*), 67.1 (CH2-C5), 66.9 (CH2-C5*), 60.7 (CH2-C12, C12*), 57.6 (CH2-

C1, CH2-C1*), 50.8 (CH-C2*), 50.0 (CH-C2) , 49.9 (CH-C3, C3*), 49.4, (CH2-C11, 

CH2-C11*), 41.4 (CH2-C7*), 39.9 (CH2-C7), 24.7, (CH-C8*) 24.6 (CH-C8), 23.1, 23.0, 

21.4 (CH3-C9, C10, CH3-C9*, C10*).  

HRMS (ESI positive) calcd for C17H26N2NaO5S [M+Na]+ 393.1455, found 393.1440. 
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Silil protected β-sultam 154 

 

 

β-sultam 153 (70 mg, 0.19 mmol) was dissolved in dry CH2Cl2 (5 mL) and treated 

with imidazole (26 mg, 0.38 mmol) and TBDMSCl (57 mg, 0.38 mmol).The reaction 

was stirred at RT overnight. The mixture was diluted with CH2Cl2 (10 mL) and 

washed with brine (10 mL). The layers were separated and the aqueous phase was 

extracted with CH2Cl2 (10 mL). The combined organic extracts were dried over 

MgSO4, filtered and the solvent removed in vacuo. Purification of the crude 

product by silica column chromatography (n-hex:EtOAc, 11:17:1) afforded the 

minor (5 mg, 0.01 mmol, 5%) followed by the major (36 mg, 0.07 mmol, 37%) 

diasteroisomer of the β-sultam 154 as colourless oils. 

 

Major isomer  

1H NMR (500 MHz, CDCl3) δ 7.31 – 7.18 (m, 5H, CH-Ph), 5.33 (d, J = 9.1 Hz, 1H, 

NH), 5.11 – 4.97 (m, 2H, CH2-C5), 3.98 – 3.89 (m, 2H, CH2-C1a, CH-C3), 3.76 (dd, 

J = 12.7, 6.1 Hz, 1H, CH2-C1b), 3.74 – 3.62 (m, 2H, CH2-C12), 3.50 – 3.41 (m, 1H, 

CH2-C11a), 3.35 – 3.26 (m, 1H, CH-C2), 2.84 (ddd, J = 14.4, 6.7, 4.5 Hz, 1H, CH2-

C11b), 1.68 – 1.58 (m, 1H, CH-C8), 1.45 – 1.32 (m, 1H, CH2-C7a), 1.23 – 1.10 (m, 

1H, CH2-C7b), 0.87 (d, J = 6.7 Hz, 6H, CH3-C9, C10), 0.82 (s, 9H, CH3-C16, C17, 

C18), 0.01 (s, 3H, CH3-C13), 0.00 (s, 3H, CH3-C14).  

13C NMR (126 MHz, CDCl3) δ 156.2 (C-C4), 136.4 (C-C6), 128.5 (CH-Ph), 128.1 (CH-

Ph), 127.9 (CH-Ph), 66.8 (CH2C5), 62.7 (CH2-C12), 58.6 (CH2-C1), 51.4 (CH-C2), 

49.9 (CH-C3), 48.5 (CH2-C11), 38.2 (CH2-C7), 26.0 (CH3-C16, C17, C18), 24.6 (CH-

C8), 23.5 (CH3-C9), 21.4 (CH3-C10), 18.4 (C-C15), -5.4 (CH3-C13, C14).  

HRMS (ESI positive) calcd for C23H40N2NaO5SSi [M+Na]+ 507.2319, found 507.2298. 
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Minor isomer  

1H NMR (500 MHz, CDCl3) δ 7.31 – 7.15 (m, 5H, CH-Ph), 5.25 – 5.18 (br s, 1H, NH), 

5.06 (d, J = 12.2 Hz, 1H, CH2-C5a), 5.03 (d, J = 12.2 Hz, 1H, CH2-C5b),3.96 (dd, J 

= 12.7, 8.2 Hz, 1H, CH2-C1a), 3.88 – 3.81 (m, 1H, CH-C3), 3.76 (dd, J = 12.7, 5.8 

Hz, 1H, CH2-C1b), 3.71 – 3.62 (m, 2H, CH2-C12), 3.48 (dt, J = 14.0, 4.5 Hz, 1H, 

CH2-C11a), 3.34 – 3.29 (m, 1H, CH-C2), 2.80 (ddd, J = 14.0, 7.3, 5.4 Hz, 1H, CH2-

C11b), 1.64 – 1.53 (m, 1H, CH-C8), 1.49 – 1.41 (m, 1H, CH2-C7a), 1.25 – 1.12 (m, 

1H, CH2-C7b), 0.85 (d, J = 6.8 Hz, 6H, CH3-C9, C10), 0.80 (s, 9H, CH3- C16, C17, 

C18), 0.01 (s, 3H, CH3-C13), 0.00 (s, 3H, CH3-C14).  

13C NMR (126 MHz, CDCl3) δ 156.8 (C-C4), 136.5 (C-C6), 128.6 (CH-Ph), 128.2 (CH-

Ph), 127.9 (CH-Ph), 67.1 (CH2- C5), 62.2 (CH2-C12), 59.8 (CH2-C1), 50.8 (CH-C2), 

50.3 (CH-C3), 49.6 (CH2-C11), 42.4 (CH2-C7), 26.0 (CH3- C16, C17, C18), 25.0 (CH-

C8), 23.4 (CH3-C9), 21.7 (CH3-C10), 18.5 (C-C15), -5.2 (CH3- C13, C14).  

 

β-sultam 161 

 

 

Ethensulfonyl fluoride 156 (150 µL, 1.8 mmol) was dissolved in CH2Cl2 (8 mL) and 

treated with ethanolamine (326 µL, 5.4 mmol). The reaction was stirred at RT for 

2 h. The solvent was removed in vacuo and the crude material was purified by 

silica column chromatography (EtOAc:CH2Cl2, 1:1,) to afford the β-sultam 161 

(200 mg, 1.3 mmol, 72%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δ 4.13 (t, J = 6.6 Hz, 2H, CH2-C1), 3.78 (dt, J = 4.2, 4.2, 

4.2 Hz, 2H, CH2-C4), 3.30 (t, J = 6.6 Hz, 2H, CH2-C2), 3.26 – 3.21 (m, 2H, CH2-

C3), 2.10 (br s, 1H, OH).  

13C NMR (126 MHz, CDCl3) δ 60.4 (CH2-C4), 57.8 (CH2-C1), 49.2 (CH2-C3), 36.2 

(CH2-C2).  

HRMS (ESI positive) calcd for C4H9NNaO3S [M+Na]+ 174.0202, found 174.0195. 
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Biological activity evaluation 

Enzymatic activity was determined by monitoring the inhibition of the hydrolysis 

of the fluorogenic substrate Suc-LLVY-AMC 126 at RT for 1 h. Fluorescence was 

measured at λexc = 360, λem = 460 nm. Point-measurements were performed after 

1 h incubation of the enzyme with the inhibitors on a shaker, previous to substrate 

addition. Assays were performed in 96-wells CORNING half area plates using a final 

volume of 50 µL. The assays were performed in duplicates with three repetitions. 

The inhibitory activities of compounds were expressed as IC50 values. The values 

were obtained by plotting the percentage of enzymatic activity against the 

logarithm of the inhibitor concentrations.  

The experimental data were fitted to the equation: 

% Residual Activity =
100

1 + 10((LogIC50 − Log𝑐 (inhibitor))∗ Hill Slope)
  

using GraphPad Prism software version 5. 

 

Compounds 120-125 

Inhibition of the proteasome by compounds 120-125 was determined with an Enzo 

Life Sciences® 20S Proteasome Assay Kit for Dug Discovery. The enzyme solution 

(12.5 nM) was prepared by dilution of the supplied 20S proteasome (1 mg/mL) in 

assay buffer (50 mM Tris/HCl, pH 7.5, 25 mM KCl, 10 mM NaCl, 1 mM MgCl2). A 

37.5 mM stock solution of the substrate was made by dissolving Suc-LLVY-AMC 126 

(500 μg) in DMSO. This was diluted with assay buffer, resulting in a 375 μM 

substrate solution. DMSO was used for the inhibitor stock solution (4 mM) and the 

corresponding dilutions.  

Procedure 1: To each well in a typical assay it was added enzyme solution (10 

μL), inhibitor solution (5 μL), substrate solution (10 μL) and buffer (25 μL). Final 

concentrations in the wells were: enzyme: 2.5 nM; substrate: 75 μM; inhibitor: 

0.002, 0.25, 2.5, 25, 50, 75, 100, 200, 300 and 400 μM. Epoxomicin (29) was used 

as reference inhibitor. For the positive controls DMSO was added instead of 

inhibitor solution, thereby maintaining a final concentration of 10% DMSO per well.  
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Procedure 2: To each well in a typical assay it was added enzyme solution (10 

μL), inhibitor solution (5 μL), substrate solution (10 μl), buffer (20 μL) and extra 

DMSO (5 μL). Final concentrations in the wells were: enzyme: 2.5 nM; substrate: 

75 μM; inhibitor: 0.002, 0.25, 2.5, 25, 50, 75, 100, 200, 300 and 400 μM. 

Epoxomicin (29) was used as reference inhibitor. For the positive controls DMSO 

was added instead of inhibitor solution, thereby maintaining a final concentration 

of 20% DMSO per well. 

Experimental data could not be fit to the equation. 

 

Compounds 138, 139, 30 and 32 

Inhibition of the proteasome by compounds 138, 139, 30 and 32 was determined 

with a VIVAdetectTM 20S Proteasome Assay Kit PLUS. The enzyme solution (25 nM) 

was prepared by dilution of the supplied 20S proteasome (1 mg/mL) in VIVA buffer. 

A 10 mM stock solution of the substrate was made by dissolving Suc-LLVY-AMC 126 

(500 μg) in DMSO, this was diluted with VIVA buffer, resulting in a 100 μM substrate 

solution. DMSO was used for the inhibitor stock solution (500 μM) and the 

corresponding dilutions. To each well in a typical assay it was added enzyme 

solution (5 μL), inhibitor solution (4 μL), substrate solution (5 μl) and buffer (36 

μL). Final concentrations in the wells were: enzyme: 2.5 nM; substrate: 100 μM; 

inhibitor: 0.4, 2, 10, 50, 100, 200, 400, 800, 1600 and 8000 nM. MG 132 (28) was 

used as reference inhibitor. For the positive controls DMSO was added instead of 

inhibitor solution, thereby maintaining a final concentration of 9% DMSO per well.  

 

log(inhibitor) vs. normalized response -- Variable slope

Best-fit values

LogIC50

HillSlope

IC50

Std. Error

LogIC50

HillSlope

95% Confidence Intervals

LogIC50

HillSlope

IC50

Goodness of Fit

Degrees of Freedom

R²

Absolute Sum of Squares

Sy.x

Number of points

Analyzed

Leu3-VSF 138

2.339

-0.8372

218.3

0.02227

0.03850

2.294 to 2.384

-0.9145 to -0.7600

196.9 to 241.9

53

0.9780

1398

5.137

55

Leu4-VSF 139

1.994

-0.7070

98.52

0.04302

0.05145

1.907 to 2.080

-0.8104 to -0.6037

80.75 to 120.2

52

0.9445

3531

8.241

54

Leu3-PSF 30

1.950

-0.9853

89.06

0.03518

0.07623

1.877 to 2.022

-1.142 to -0.8286

75.40 to 105.2

26

0.9757

898.5

5.879

28

Leu4-PSF 32

1.251

-0.7479

17.82

0.1005

0.09885

1.043 to 1.458

-0.9519 to -0.5439

11.05 to 28.74

24

0.9079

2808

10.82

26
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Buffer stability studies 

The aqueous stability of the peptido sulfonyl fluorides 120-125 was 

determined in phosphate buffered saline (PBS) at pH 6.5, 7.4 and 8.0. The 

compounds were dissolved in DMSO to a final concentration of 500 μM. 90 

μL of stock solution was added to 910 μL of the different buffer systems; 

giving a final percentage of DMSO of 9%. The degree of hydrolysis under 

these conditions was monitored by analytical HPLC over 12 h. First 

measurement (time = 0 h) was taken as the reference peak and the 

remaining percentage of inhibitor was plotted against the time. 
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7. Appendices 
 

NMR and LC-MS Spectra of Selected Compounds 
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C:\Xcalibur\data\Natalia\nat274 1/10/2017 9:09:43 PM

RT: 0.00 - 60.01 SM: 9G
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NL:

1.67E6

TIC  MS 

nat274

NL:

5.83E5

UV_VIS_1  

UV nat274

nat274 #2090 RT: 35.04 AV: 1 NL: 4.69E4
T: ITMS + p ESI Full ms [150.00-2000.00]
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C:\Xcalibur\...\nat275_170110200728 1/10/2017 8:07:28 PM

RT: 0.00 - 60.00 SM: 9G
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NL:

2.40E6

TIC  MS 

nat275_1701

10200728

NL:

1.14E6

UV_VIS_1  

UV 

nat275_1701

10200728

nat275_170110200728 #2073-2113 RT: 34.58-35.07 AV: 41 NL: 3.69E4
T: ITMS + p ESI Full ms [150.00-2000.00]
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C:\Xcalibur\data\Natalia\nat269 1/10/2017 11:13:59 PM

RT: 0.00 - 60.00 SM: 9G
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NL:

4.53E6

TIC  MS 

nat269

NL:

2.81E6

UV_VIS_1  

UV nat269

nat269 #1610 RT: 26.51 AV: 1 NL: 2.30E5
T: ITMS + p ESI Full ms [150.00-2000.00]
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C:\Xcalibur\data\Natalia\nat268 1/10/2017 10:11:52 PM

RT: 0.00 - 59.98 SM: 9G
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NL:

2.59E6

TIC  MS 

nat268

NL:

2.57E6

UV_VIS_1  

UV nat268

nat268 #1636 RT: 27.11 AV: 1 NL: 9.99E4
T: ITMS + p ESI Full ms [150.00-2000.00]

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

m/z

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

766.33

1530.75

1552.75207.00 850.75 1699.42735.42 944.58382.25 1744.751496.671328.17268.00 1883.08684.92 1109.08461.50 537.42 1046.42
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