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Abstract

Mangroves play a crucial role in providing valuable ecosystem services, particularly as highly efficient
carbon sinks that mitigate climate change impacts Understanding their contribution to the global carbon
cycle requires accurate assessment of carbon stocks, which typically depends on the estimation of biomass,
especially aboveground biomass (AGB). Existing studies on accurate estimation of mangrove AGB have
been constrained by uncertainties in modelling efforts, limited field data and methodological challenges in
integrating multisource remote sensing datasets. This research develops improved methodologies of
mangrove AGB estimation by addressing these challenges. First, two local mangrove forests in Mexico
were used to evaluate the feasibility and performance of open access global digital elevation models
(NASADEM, ALOS DSM and Copernicus GLO-30 DEM) for AGB estimation. After calibration with
spaceborne LiDAR (Light Detection and Ranging) datasets, the DEMs produced comparable and spatially
consistent AGB estimates. For stands with a mean canopy height of 15 m, the standard error was ~30% of
the estimated AGB. Second, an approach was developed to upscale localised field inventory to a continental
level (the Americas), by incorporating spaceborne LiDAR data. Third, a novel data fusion framework was
introduced using extensive spaceborne LiDAR derived AGB estimates to train high-resolution optical
mosaics and rasterised environmental variables through a machine learning algorithm. This integration
produced wall-to-wall mangrove AGB estimates across the Americas, achieving a validation accuracy of
R? = 0.72 and root mean square error (RMSE) = 37.24 Mg/ha. Ultimately, applying the improved
methodologies of mangrove AGB estimation to the Americas revealed not only high agreements in AGB
estimates across country-level undisturbed mangrove forests but also 5.10 million Mg AGB gains in
regrowing mangroves between 2000 and 2020. The findings underscore the resilience of mangroves and
their capacity to recover as significant carbon sinks, which is particularly relevant to climate change
adaptation and conservation efforts. Overall, this research provides improved methodologies in mangrove
AGB estimation by integrating multisource datasets at a local and a continental scale, which is transferable
and valuable to other tropical coastal ecosystems, offering researchers and practitioners an effective means
to better integrate mangrove carbon dynamics into global climate mitigation frameworks. Additionally,
spatially explicit mangrove AGB estimates derived from the improved methodologies can inform

conservation priorities, restoration strategies and national carbon accounting efforts.
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Chapter 1 Introduction
1.1 Mangrove distribution and ecosystem services

Mangroves are trees or shrubs that typically grow in the intertidal zone on tropical and subtropical coastlines
between about 30°N and 30°S. Mangrove species do not belong to a single taxonomic group; they comprise
a vast diversity of halophytic plants that are categorized into true mangroves and mangrove associates
(Wang et al., 2011; Woodroffe et al., 2015). According to the most recent United Nations Food and
Agriculture Organization (UN FAO)’s report on the world’s mangroves, the total area of global mangroves
in 2020 was 14.8 million ha, with the majority of mangroves concentrated in South and Southeast Asia
(6.48 million ha, 43.8%) followed by South America (2.14 million ha), West and Central Africa (2.09
million ha), North and Central America (1.85 million ha) and Oceania (1.46 million ha) (FAO, 2023). The
Indo-West Pacific is known to have the highest diversity of mangrove plants in the world as all mangrove

species are postulated to originate in this region (Ellison et al., 1999) (Figure 1-1).
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Figure 1-1. Global mangrove distribution in 2020 retrieved from Jia et al. (2023) and species counts by country adapted from
Spalding et al. (2010).

As described in Worthington et al. (2020), major ecosystem services provided by mangroves include
fisheries, coastal protection, timber and fuel provision, climate regulation, water purification and tourism
(Figure 1-2). Located in the fringe of coastal zones, mangroves are considered a natural barrier for shoreline
stabilization against coastal hazards such as storm surges, tsunamis, erosion and sea level rise (Cochard et
al., 2008; Mclvor et al., 2015; Spalding et al., 2014). Wave energy is attenuated when swelling waves pass
through the dense aerial root systems and branches. Mangrove roots also contribute to increasing the soil
volume through the sequestration of riverine and coastal sediment, preventing shoreline erosion and
mitigating the impact of sea level rise. Large Tsunamis and extreme storm surges can overwhelm and even
destroy mangroves, but a moderate reduction in inundation areas resulting from mangroves can help reduce

both human and economic losses. Meanwhile, mangroves can catch the floating wrecks of buildings and
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provide shelters and resources (timber and wood fuel) for disaster-affected communities in the secondary

flooding and post-disaster reconstruction (Spalding et al., 2014).

Intricate roots of mangroves trap fine particles and nutrients from rivers and adjoining habitats, making
mangroves an ideal nursery habitat that supports aquatic food chains (Hutchison et al., 2014), whereby
marine fauna such as oysters, crabs and cockles can be collected from mangrove roots and mud, which
birds, reptiles and mammals dwelling in the mangroves feed on (Cannicci et al., 2008; Nagelkerken et al.,
2008). Fisheries in areas adjacent to mangrove forests benefit because many commercially important fish
and shrimps use mangroves as nursery grounds before migrating to offshore habitats such as coral reefs
(Brander et al., 2012; Carrasquilla-Henao and Juanes, 2017; Mumby et al., 2004). Also, mangroves can act
as biological filters for water purification (Ouyang and Guo, 2016; Walters et al., 2008) and have great

potential in recreational fishing and tourism (Spalding and Parrett, 2019).

WATER
I CLIMATE REGULATION ] PURIFICATION

Figure 1-2. Ecosystem services provided by mangrove ecosystems (Source: Worthington et al., 2020)

Among these ecosystem services, the importance of mangroves for climate regulation has been receiving
greater attention in the context of stronger climate change awareness. Mangroves are inundated by periodic
flooding with saline water that leads to anoxic conditions of soil and slower decomposition of organic
matter. Generally, mangroves are perceived as an efficient blue carbon sink which can contribute to mitigate
climate change at national and global scales (Song et al., 2023; Taillardat et al., 2018; Uddin et al., 2023).
As one of the most productive ecosystems, mangroves store an average of 738.9 Mg organic carbon per
hectare, with an annual sequestration rate of 1.796 Mg/ha (Alongi, 2020). Organic carbon is distributed

among aboveground biomass, belowground biomass, and soil. On average, belowground carbon accounts
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for 85% of total mangrove carbon stocks (Kauffman, 2020), however, this can be quickly broken down

with the clearance of mangroves and the drainage of soil (Worthington and Spalding, 2018).
1.2 Status of global mangroves

Coastal wetlands are currently faced with the “triple whammy” of threats, that is, growing industrialization
and urbanization, a continuous decline in biological and physical resources (such as wading birds, fish,
water, space and energy), and a weakened resilience to the impact of global warming and sea level rise
(Waltham et al., 2020). Globally, there had been 677,000 ha of mangroves lost between 2000 and 2020
(FAO, 2023). The conversion of mangroves into economic commodity production accounted for the
majority of the loss, such as the conversion to aquaculture ponds, rice paddies and oil palm plantations,
especially in East and Southeast Asia (Bryan-Brown et al., 2020; FAO, 2023; Ma et al., 2019; Thomas et
al., 2017). These conversions can be traced back to the 1900s and have often been backed by governmental
incentives (Friess et al., 2016). For example, the Philippines officially prioritized the development of
brackish water ponds in the 1970s, funded by the Central Bank and the Development Bank of the
Philippines (Primavera, 2000). State governments in Malaysia, Penang and Selangor, neglected and
repealed the federal guidelines for coastal buffer strips and permanent mangrove reserves to permit the

construction of aquaculture ponds (Jusoft, 2013).

The removal of mangrove forests is alarming and explicit, but it should not be overlooked that mangrove
forests may face degradation problems; changing environment such as sea level rise or alteration of rain
patterns, can reduce fresh-water availability with increased salinity and further physiological changes that
result in lower-stature trees and shrubs, or sometimes in obviously dieback with sparse forest coverage or
even bare mudflats where mangroves once exhibited continuous growth (Chowdhury et al., 2019;
Worthington and Spalding, 2018). For example, Rakhine mangroves in Myanmar exhibit sparse forest
cover due to anthropogenic disturbances such as sea wall construction and aquaculture conversion, leading
to the disruption of sea-freshwater exchange (Lee et al., 2021). Extreme weather events such as tropical
cyclones and drought induced by climate change can also lead to mangrove degradations (Gilman et al.,
2008; Lovelock et al., 2015; Mafi-Gholami et al., 2017). The mangrove forest in the Everglades National
Park, USA is degraded with the loss of foliage and structural damage due to periodic hurricanes (Han et al.,
2018; Lee et al., 2021). The tropical moist forest (TMF) dataset developed by Joint Research Centre (JRC)
(Vancutsem et al., 2021) reported an estimated area of 271,500 ha of the world’s mangroves classified as

degraded during 2014-2022.

Recognising the importance of the ecosystem services provided by mangroves, different nations and

international organizations have put forward various policies and actions against the loss and degradation
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of mangroves (Table 1-1). In the last 20 years (2000-2020), the annual rate of global mangrove loss dropped
from 0.12% in 2000-2010 to 0.07% in 2010-2020 with around half of total mangrove loss counteracted by
mangrove afforestation (393,000 ha) (FAO, 2023). To ensure the effectiveness of mangrove restoration
efforts, about 812,000 ha of global mangroves were identified as restorable areas in 2016, of which 303,710
ha were located in Southeast Asia (Worthington and Spalding, 2018), while China was estimated to have
16,800 ha of restorable mangrove area (Hu et al., 2020).

Table 1-1. Regional, national and international ecosystem restoration actions specific or related to mangrove forest.

Location Actions Organization/ Bureau in charge Source
To conserve and sustainably
use the oceans, seas and UN Department of Economic and .
Global marine resources for UN Social Affairs Katila et al. (2019)
SDG 14: Life Below Water
Appeal a global
effort to restore 150 million ~ Bonn Challenge led by IUCN and . .
. Worthingt d Spald
Global ha degraded and deforested Global Partnership of Forest orting (0211)2112) palcing
lands by 2020 and 350 Landscape Restoration
million ha by 2030.
To prevent, halt and reverse
Global the degradation .of UN Environment Programme and Waltham et al. (2020)
ecosystems worldwide by FAO
2030
To plant and rest . http://english. .gov.cn/st
0 prant and restore Ministry of Natural Resources and P en“?’ 1S WWW gov.a’s
Mainland China mangrove forest to 9050 ha the National Forestrv and atecouncil/ministries/202008
and 9750 ha by 2025, Grassland A dministrr};tion /28/content_WS5f490ae4c6d
respectively 0£7257693b3cb.html
To protect the remaining https://www.zsl.org/conserva
Philippines mangroves an'd restore lost Zoological Society of London tion/regions/asia/rc?habilitatin
forests, especially through g-mangroves-in-the-
fishpond reversion philippines
To restore and conserve over https:// i ore/manero
Mexico 4,000 ha of mangroves across World Resources Institute PSIWWW.WILOIE &

10 sites

By 2030, 15 million
mangrove trees have been

ve-guardians

Benin, Africa planted in the Ouémé MAB- United Nations Environment https://www.bees-ong.org/
UNESCO Reserve around Programme (UNEP)
Nokoué Lake

Guinea, Africa

To restore hydrology and soil
conditions of 2,800 ha of
abandoned lands to facilitate
the natural recruitment of
millions of seedlings

Wetlands International

https://www.wetlands.org/pu
blications/conserving-
biodiversity-cacheu-
mangroves-national-park-
guinea-bissau/

FAO: Food and Agriculture Organization; IUCN: International Union for Conservation of Nature; SDG: Sustainable

Development Goal; UN: United Nations.



1.3 Remote sensing applied in mangrove research

Mangrove forests are generally remote and physically inaccessible with dense prop roots (e.g., Rhizophora
genus) above muddy flats, making large-scale surveys time-consuming and laborious. Remote sensing has
been used to investigate mangrove forests over the past decade (e.g., Jia et al., 2023; Lucas et al., 2020;
Maurya et al., 2021; Pham et al., 2019; Wang et al., 2019). Remotely sensed data can be derived from
airborne and spaceborne platforms, ranging from optical, microwave and LiDAR (Light Detection and
Ranging) data, providing large amounts of multi-dimensional, spatially explicit and highly resolved

observations for monitoring, mapping and characterizing mangrove forests.

Each source of remote sensing data has their own strengths and limitations. For instance, optical data
enables spectral investigations over mangrove forests. However, due to cloud cover, spaceborne optical
data can be limited in data availability, while longer wavelength microwaves from Synthetic Aperture
Radar (SAR) can penetrate the cloud and be backscattered by ground objects, albeit not with spectral
information as broad as multispectral and hyperspectral imagery. Different from two-dimensional
observations, LiDAR data explicitly demonstrates forest vertical structures enabling the extraction of
mangrove biophysical parameters, such as canopy height and crown diameter of whole forests. Additionally,
owing to low flight altitude and mobility, the introduction of unmanned aerial vehicles (UAVs), facilitates

very-high-resolution data acquisition such as hyperspectral and LiDAR data across inaccessible areas.

Mangrove research based on remote sensing can be technically categorized into extent and species
identification, and biophysical parameters retrieval such as biomass, canopy height and leaf area index
(LAI). For mangrove extent and species identification, remote sensing-based approaches comprise visual
interpretation, object-based image analysis (OBIA), unsupervised classification and supervised
classification (machine learning). For biophysical parameter retrieval, the approaches can be categorized
into empirical, physical, and machine learning models that are particularly advantageous for both
classification and regression tasks. Through characterising mangrove forests, these methods enable deeper
investigation into the provision of ecosystem services and mangrove resilience under the scenarios of
increasing anthropogenic interference and climate change impacts (e.g., Asbridge et al., 2018; Dahdouh-
Guebeas et al., 2004; Jia et al., 2014; Quoc Vo et al., 2015; Romer et al., 2012; Servino et al., 2018; Zhai et
al., 2019).

1.4 Aim, objectives and research questions

Accurate quantity information on mangrove biomass is essential for carbon stock estimation and resilience

determination. The importance of using remote sensing techniques has been highlighted due to the difficulty
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in accessing these ecosystems (Worthington et al., 2020). Therefore, the aim of this research is to develop
approaches for improved aboveground biomass (AGB) estimation of mangroves using multiple sources of
remote sensing data and to quantify AGB dynamics of regrowing mangroves relevant to climate change

adaptation and ongoing conservation efforts. The following objectives and specific research questions are:

Objective 1 —to develop the methodology of mangrove AGB estimation in the mangrove forests around La
Mancha and El Llano lagoons in Mexico using freely accessible DEMs (digital elevation models) (Chapter
3)

e What is the relationship between plot-level mean canopy height and aboveground biomass?

e How can DEMs be calibrated to identical ground-based vertical datum and represent mangrove

mean canopy height?

e How does the developed methodology perform in comparison to existing mangrove AGB products?

Objective 2 — to develop a novel approach for mangrove AGB estimation across the Americas using

compiled field inventory data and multisource remote sensing data (Chapter 4)

e How are localised field inventory data introduced to realise mangrove AGB estimation at a

continental scale?
e How can spaceborne LiDAR data be integrated with spaceborne optical imagery?

e How does mangrove AGB estimation benefit from high-resolution imagery?

Objective 3 — to quantify AGB dynamics of mangrove regrowth areas across the Americas between 2000

and 2020, reflecting mangrove resilience relevant to climate change adaptation and conservation efforts

(Chapter 5)

e How is the mangrove regrowth identified and discriminated between 2000 and 20207
e Are the approaches of mangrove AGB estimation for 2000 and 2020 consistent or comparable?

e How resilient were mangrove forests across the Americas in regrowing from disturbances during

2000-2020?
1.5 Study area

This research targets mangrove forests across the Americas (Figure 1-3). The mangroves in the Americas,

including North and Central America, and South America, covered an estimated area of 3.99 million ha in
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2020, making up 27% of worldwide mangroves (FAO, 2023). The Americas have the highest regional
inclusion of mangroves within formal protected areas, with 72% of mangroves in South America and 67%
of mangroves in North and Central America and the Caribbean under protection (Spalding and Leal, 2022).
While the Indo-West Pacific region hosts a high diversity of mangrove species with 62 species identified,
the Americas are home to only 13 native mangrove species (Spalding et al., 2010). In the Americas, the
dominant genera of frontal mangroves include Rhizophora, Avicennia, Laguncularia and Conocarpus

(Twomey and Lovelock, 2024).
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Figure 1-3. The distribution of mangrove forests across the Americas in 2020 derived from Jia et al. (2023) and species counts
by country adapted from Spalding et al. (2010).

Regionally, this research focuses on mangrove forests bordering the lagoons of La Mancha (19°33" — 19°36'
N, 96°22" —96°24'W) and EI Llano (19°38' — 19°40'N, 96°24' — 96°25'W) in the state of Veracruz, Mexico
(Figure 1-4). There are four mangrove species: Avicennia germinans, Rhizophora mangle, Laguncularia
racemosa and Conocarpus erectus. The climate is classified as a sub-humid warm climate (Aw2), with
annual precipitation ranging from 1,000 to 1,500 mm and an average annual temperature of around 24°C
(RAMSAR, 2004). La Mancha lagoon and El Llano lagoon have surface areas of 135 ha and 226 ha,
respectively (Chavez-Lopez and Rocha-Ramirez, 2020; Vovides et al., 2021). La Mancha lagoon receives
freshwater primarily from the Cafio Gallegos River at its southern end of the lagoon and marine water from
the Gulf of Mexico through an intermittently opened inlet in the northeastern end (Chacon Abarca et al.,
2021; Chéavez-Cerodn et al., 2016; Harte Research Institute for Gulf of Mexico, 2021a). Salinity in the lagoon
increases northward regardless of the season, influencing mangrove species zonation; 4. germinans
dominates the northern region with few R. mangle, while mixed forests of 4. germinans with either R.

mangle or L. racemosa is observed in the southern part of the lagoon (Méndez-Alonzo et al., 2012; Vovides
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et al., 2018). C. erectus is less common, typically found in the eastern side of the area (Moreno-Casasola et
al., 2009). Unlike La Mancha lagoon, the salinity of El Llano lagoon is regulated exclusively by marine
water entering through an inlet in the northeastern part, which opens to the Gulf of Mexico only during
rainfall. From November to January (dry season), a natural sandy bar forms, isolating the lagoon from the
ocean. This separation leads to hyper-salinity in the lagoon during the low-water season (Chavez-Lopez
and Rocha-Ramirez, 2020; Harte Research Institute for Gulf of Mexico, 2021b). Figure 1-5 provides
supplementary context for the study area, showing field conditions and measurement activities carried out

during the July 2022 field campaign.
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Figure 1-4. Geographical location of mangrove forests bordering El Llano (top) and La Mancha (bottom) lagoons (outlined in
red) in Mexico.

Figure 1-5. Field photographs taken from the fieldwork in July 2022: (a) measurement of canopy height in the mangrove forest
around El Llano lagoon by Alejandra Vovides and her assistant Alvaro Gonzalez Ruiz; (b) measurement of the diameter of a
large Rhizophora mangle tree in the mangrove forest on the southeastern side of La Mancha lagoon by Kangyong Zhang.



1.6 Thesis structure

This thesis consists of seven chapters. Chapter 1 provides an introduction to the research and study areas,
as well as outlining the aim, objectives and research questions. Chapter 2 is a literature review on how
mangrove remote sensing has evolved, referring to remotely sensed data from spaceborne and airborne
platforms and methodologies applied to mangrove research such as extent and species identification and
biophysical parameter retrieval, as well as future opportunities. Chapter 3 proposes a methodology of
mangrove AGB estimation across the mangrove forests around La Mancha and El Llano lagoon in Mexico.
In this chapter, mangrove field data collected in 2022 was combined with historical field data for the
development of plot-level biomass-height allometry. This allometry was subsequently applied to freely
accessible DEMs calibrated with spaceborne LiDAR data to retrieve AGB estimation of mangroves in the
study area. Chapter 4 proposes a methodology for mangrove AGB estimation across the Americas in 2020.
A compilation of mangrove field data across the Americas was introduced to develop plot-level biomass-
height allometry. Then, this allometry was applied to newer spaceborne LiDAR data from the mission of
Global Ecosystem Dynamics Investigation (GEDI) for footprint-level AGB estimation. Due to the discrete
nature of GEDI footprints, high-resolution spaceborne mosaics with environmental variables were
employed with the help of Random Forests regression algorithm for wall-to-wall mangrove AGB retrieval
at a continental level. Chapter 5 quantifies AGB dynamics of regrowing mangrove areas across the
Americas over the last 20 years (2000-2020). This chapter defines the mangrove regrowth as regrowing
mangroves in previously forested or non-forested areas, delineated using the annual tropical moist forest
coverage dataset from Joint Research Centre (JRC). AGB estimates were derived for regrowing mangroves
in 2000 and 2020 based on period-specific methodologies. Therefore, mangrove resilience was investigated
by quantifying two-decade AGB dynamics in regrowth areas to discern post-disturbance recovery patterns.
Chapter 6 synthesises the findings from the empirical chapters, providing further discussions on the
methodological contributions, the transferability of the approaches and the implications for broader
research. It also outlines the limitations of this research and key recommendations for future research.
Finally, Chapter 7 concludes the thesis by reflecting on the challenges, insights and advances achieved in

this research.



10

References

Alongi, D.M., 2020. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2,
67. https://doi.org/10.3390/s¢12030067

Asbridge, E., Lucas, R., Rogers, K., et al., 2018. The extent of mangrove change and potential for recovery
following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecology and
Evolution 8, 10416—10434. https://doi.org/10.1002/ece3.4485

Brander, L.M., Wagtendonk, A.J., Hussain, S.S., et al., 2012. Ecosystem service values for mangroves in
Southeast Asia: A meta-analysis and value transfer application. Ecosystem Services 1, 62—69.
https://doi.org/10.1016/j.ecoser.2012.06.003

Bryan-Brown, D.N., Connolly, R.M., Richards, D.R., et al., 2020. Global trends in mangrove forest
fragmentation. Scientific Reports 10. https://doi.org/10.1038/s41598-020-63880-1

Cannicci, S., Burrows, D., Fratini, S., et al., 2008. Faunal impact on vegetation structure and ecosystem
function in  mangrove forests: A  review. Aquatic Botany 89, 186-200.
https://doi.org/10.1016/j.aquabot.2008.01.009

Carrasquilla-Henao, M., Juanes, F., 2017. Mangroves enhance local fisheries catches: a global meta-
analysis. Fish and Fisheries 18, 79-93. https://doi.org/10.1111/faf.12168

Chacén Abarca, S., Chavez, V., Silva, R., et al., 2021. Understanding the Dynamics of a Coastal Lagoon:
Drivers, Exchanges, State of the Environment, Consequences and Responses. Geosciences 11.
https://doi.org/10.3390/geosciences11080301

Chavez-Ceron, V., Mendoza-Baldwin, E., Ramirez-Méndez, E., et al., 2016. Response of Empirically
Managed Sites to Winter Storms. Case Study: La Mancha, Veracruz, Mexico. Coastal Engineering
Proceedings 15—15. https://doi.org/10.9753/icce.v35.management.15

Chavez-Lopez, R., Rocha-Ramirez, A., 2020. Composicion de la comunidad de peces en el estuario ciego
laguna El Llano, Veracruz, Mé¢éxico. Revista Mexicana de Biodiversidad 91.
https://doi.org/10.22201/ib.20078706.2020.91.2494

Chowdhury, R., Sutradhar, T., Begam, Mst.M., et al., 2019. Effects of nutrient limitation, salinity increase,
and associated stressors on mangrove forest cover, structure, and zonation across Indian Sundarbans.
Hydrobiologia 842, 191-217. https://doi.org/10.1007/s10750-019-04036-9

Cochard, R., Ranamukhaarachchi, S.L., Shivakoti, G.P., et al., 2008. The 2004 tsunami in Aceh and
Southern Thailand: A review on coastal ecosystems, wave hazards and vulnerability. Perspectives
in Plant Ecology, Evolution and Systematics 10, 3—40. https://doi.org/10.1016/j.ppees.2007.11.001

Dahdouh-Guebas, F., Van Pottelbergh, 1., Kairo, J.G., et al., 2004. Human-impacted mangroves in Gazi
(Kenya): Predicting future vegetation based on retrospective remote sensing, social surveys, and

tree distribution. Marine Ecology Progress Series 272, 77-92. https://doi.org/10.3354/meps272077



11

Ellison, A.M., Farnsworth, E.J., Merkt, R.E., 1999. Origins of mangrove ecosystems and the mangrove
biodiversity anomaly. Global Ecology and Biogeography 8, 95—115. https://doi.org/10.1046/j.1466-
822X.1999.00126.x

FAO, 2023. The world’s mangroves 2000-2020. FAO, Rome. https://doi.org/10.4060/cc7044en

Friess, D.A., Thompson, B.S., Brown, B., et al., 2016. Policy challenges and approaches for the
conservation of mangrove forests in Southeast Asia. Conservation Biology 30, 933-949.
https://doi.org/10.1111/cobi.12784

Gilman, E.L., Ellison, J., Duke, N.C., et al., 2008. Threats to mangroves from climate change and adaptation
options: A review. Aquatic Botany 89, 237-250. https://doi.org/10.1016/j.aquabot.2007.12.009

Han, X., Feng, L., Hu, C., et al., 2018. Hurricane-Induced Changes in the Everglades National Park
Mangrove Forest: Landsat Observations Between 1985 and 2017. Journal of Geophysical Research:
Biogeosciences 123, 3470-3488. https://doi.org/10.1029/2018jg004501

Hu, W., Wang, Y., Zhang, D., et al., 2020. Mapping the potential of mangrove forest restoration based on
species distribution models: A case study in China. Science of The Total Environment 748, 142321.
https://doi.org/10.1016/].scitotenv.2020.142321

Hutchison, J., Spalding, M., zu Ermgassen, P., 2014. The role of mangroves in fisheries enhancement. The
Nature Conservancy and Wetlands International 54.

Jia, M., Wang, Z., Mao, D., et al., 2023. Mapping global distribution of mangrove forests at 10-m resolution.
Science Bulletin 68, 1306—1316. https://doi.org/10.1016/j.sc1b.2023.05.004

Jia, M.M., Zhang, Y.Z., Wang, Z.M., et al., 2014. Mapping the distribution of mangrove species in the Core
Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution
data. Int. J. Appl. Earth Obs. Geoinf. 33, 226-231. https://doi.org/10.1016/j.jag.2014.06.006

Jusoff, K., 2013. Malaysian Mangrove Forests and their Significance to the Coastal Marine Environment.
Polish journal of environmental studies 22.

Katila, P., Pierce Colfer, C.J., de Jong, W., et al., 2019. Sustainable Development Goals: Their Impacts on
Forests and People. https://doi.org/10.1017/9781108765015

Kauffman, J.B., Adame, M.F., Arifanti, V.B., et al., 2020. Total ecosystem carbon stocks of mangroves
across broad global environmental and physical gradients. Ecological Monographs 90, e01405.
https://doi.org/10.1002/ecm.1405

Lee, C.K.F., Duncan, C., Nicholson, E., et al., 2021. Mapping the Extent of Mangrove Ecosystem
Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sensing
13, 2047. https://doi.org/10.3390/rs13112047

Lovelock, C.E., Cahoon, D.R., Friess, D.A., et al., 2015. The vulnerability of Indo-Pacific mangrove forests
to sea-level rise. Nature 526, 559—-563. https://doi.org/10.1038/nature15538



12

Lucas, R., Van De Kerchove, R., Otero, V., et al., 2020. Structural characterisation of mangrove forests
achieved through combining multiple sources of remote sensing data. Remote Sensing of
Environment 237. https://doi.org/10.1016/j.rse.2019.111543

Ma, C., Ai, B., Zhao, J., et al., 2019. Change detection of mangrove forests in coastal Guangdong during
the past three decades based on remote sensing data. Remote Sensing 11.
https://doi.org/10.3390/rs11080962

Mafi-Gholami, D., Mahmoudi, B., Zenner, E.K., 2017. An analysis of the relationship between drought
events and mangrove changes along the northern coasts of the Persian Gulf and Oman Sea. Estuarine,
Coastal and Shelf Science 199, 141-151. https://doi.org/10.1016/j.ecss.2017.10.008

Maurya, K., Mahajan, S., Chaube, N., 2021. Remote sensing techniques: mapping and monitoring of
mangrove ecosystem—a review. Complex Intell. Syst. 7, 2797-2818.
https://doi.org/10.1007/s40747-021-00457-z

Mclvor, A., Spencer, T., Spalding, M., et al., 2015. Mangroves, Tropical Cyclones, and Coastal Hazard
Risk Reduction, in: Coastal and Marine Hazards, Risks, and Disasters. Elsevier, pp. 403—429.
https://doi.org/10.1016/b978-0-12-396483-0.00014-5

Méndez-Alonzo, R., Hernandez-Trejo, H., Lopez-Portillo, J., 2012. Salinity constrains size inequality and
allometry in two contrasting mangrove habitats in the Gulf of Mexico. Journal of Tropical Ecology
28, 171-179. https://doi.org/10.1017/S0266467412000016

Moreno-Casasola, P., Lopez Rosas, H., Infante Mata, D., et al., 2009. Environmental and anthropogenic
factors associated with coastal wetland differentiation in La Mancha, Veracruz, Mexico. Plant Ecol
200, 37-52. https://doi.org/10.1007/s11258-008-9400-7

Mumby, P.J., Edwards, A.J., Ernesto Arias-Gonzdlez, J., et al., 2004. Mangroves enhance the biomass of
coral reef fish communities in the  Caribbean. Nature 427, 533-536.
https://doi.org/10.1038/nature02286

Nagelkerken, I., Blaber, S.J.M., Bouillon, S., et al., 2008. The habitat function of mangroves for terrestrial
and marine fauna: A review. Aquatic Botany 89, 155-185.
https://doi.org/10.1016/j.aquabot.2007.12.007

Ouyang, X., Guo, F., 2016. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.
Science of The Total Environment 544, 971-979. https://doi.org/10.1016/j.scitotenv.2015.12.013

Pham, T.D., Yokoya, N., Bui, D.T., et al., 2019. Remote Sensing Approaches for Monitoring Mangrove
Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing 11, 230.
https://doi.org/10.3390/rs11030230

Primavera, J.H., 2000. Development and conservation of Philippine mangroves: institutional issues.

Ecological Economics 35, 91-106. https://doi.org/10.1016/s0921-8009(00)00170-1



13

Quoc Vo, T., Kuenzer, C., Oppelt, N., 2015. How remote sensing supports mangrove ecosystem service
valuation: A case study in Ca Mau province, Vietnam. Ecosystem Services 14, 67-75.
https://doi.org/10.1016/j.ecoser.2015.04.007

RAMSAR, 2004. La Mancha y El Llano: Ramsar sites information service. [WWW Document]. URL
https://rsis.ramsar.org/ris/1336?language=en

Romer, H., Jeewarongkakul, J., Kaiser, G., et al., 2012. Monitoring post-tsunami vegetation recovery in
Phang-Nga province, Thailand, based on IKONOS imagery and field investigations - a contribution
to the analysis of tsunami vulnerability of coastal ecosystems. Int. J. Remote Sens. 33, 3090-3121.
https://doi.org/10.1080/01431161.2011.628710

Servino, R.N., Gomes, L.E.D.O., Bernardino, A.F., 2018. Extreme weather impacts on tropical mangrove
forests in the Eastern Brazil Marine Ecoregion. Science of the Total Environment 628—629, 233—
240. https://doi.org/10.1016/j.scitotenv.2018.02.068

Song, S., Ding, Y., Li, W., et al., 2023. Mangrove reforestation provides greater blue carbon benefit than
afforestation  for mitigating global climate change. Nat Commun 14, 756.
https://doi.org/10.1038/s41467-023-36477-1

Spalding, M., Kainuma, M., Collins, L., 2010. World atlas of mangroves. Earthscan, London, Washington
D.C.

Spalding, M., Mclvor, A., Tonneijck, F., et al., 2014. Mangroves for coastal defence. Guidelines for coastal
managers and policy makers. Wetlands International and The Nature Conservancy 13-34.

Spalding, M., Parrett, C.L., 2019. Global patterns in mangrove recreation and tourism. Marine Policy 110.
https://doi.org/10.1016/j.marpol.2019.103540

Spalding, M.D., Leal, M. (Eds.), 2022. The State of the World’s Mangroves 2022. Global Mangrove
Alliance.

Taillardat, P., Friess, D.A., Lupascu, M., 2018. Mangrove blue carbon strategies for climate change
mitigation are most effective at the national scale. Biology Letters 14, 20180251.
https://doi.org/10.1098/rsbl.2018.0251

Thomas, N., Lucas, R., Bunting, P., et al., 2017. Distribution and drivers of global mangrove forest change,
1996-2010. PLOS ONE 12, e0179302. https://doi.org/10.1371/journal.pone.0179302

Twomey, A., Lovelock, C., 2024. Global spatial dataset of mangrove genus distribution in seaward and
riverine margins. Sci Data 11, 306. https://doi.org/10.1038/s41597-024-03134-1

Uddin, M.M., Abdul Aziz, A., Lovelock, C.E., 2023. Importance of mangrove plantations for climate
change mitigation in Bangladesh. Global Change Biology 29, 3331-3346.
https://doi.org/10.1111/gcb.16674

Vancutsem, C., Achard, F., Pekel, J.-F., et al., 2021. Long-term (1990-2019) monitoring of forest cover
changes in the humid tropics. Science Advances 7, eabel603.

https://doi.org/10.1126/sciadv.abe1603



14

Vovides, A.G., Berger, U., Grueters, U., et al., 2018. Change in drivers of mangrove crown displacement
along a salinity stress gradient. Functional Ecology 32, 2753-2765. https://doi.org/10.1111/1365-
2435.13218

Vovides, A.G., Wimmler, M.-C., Schrewe, F., et al., 2021. Cooperative root graft networks benefit
mangrove trees under stress. Communications Biology 4. https://doi.org/10.1038/s42003-021-
02044-x

Walters, B.B., Ronnbick, P., Kovacs, J.M., et al., 2008. Ethnobiology, socio-economics and management
of mangrove forests: A review. Aquatic Botany 89, 220-236.
https://doi.org/10.1016/j.aquabot.2008.02.009

Waltham, N.J., Elliott, M., Lee, S.Y., et al., 2020. UN Decade on Ecosystem Restoration 2021-2030—
What Chance for Success in Restoring Coastal Ecosystems? Frontiers in Marine Science 7.
https://doi.org/10.3389/fmars.2020.00071

Wang, L., Jia, M., Yin, D, et al., 2019. A review of remote sensing for mangrove forests: 1956-2018.
Remote Sensing of Environment 231, 111223. https://doi.org/10.1016/j.rse.2019.111223

Wang, L., Mu, M., Li, X., et al., 2011. Differentiation between true mangroves and mangrove associates
based on leaf traits and salt contents. Journal of Plant Ecology 4, 292-301.
https://doi.org/10.1093/jpe/rtq008

Woodroffe, C.D., Lovelock, C.E., Rogers, K., 2015. Mangrove Shorelines, in: Masselink, G., Gehrels, R.
(Eds.), Coastal Environments and Global Change. Wiley, New York, NY, USA, pp. 251-267.

Worthington, T.A., Andradi-Brown, D.A., Bhargava, R., et al., 2020. Harnessing Big Data to Support the
Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2, 429-443.
https://doi.org/10.1016/j.oneear.2020.04.018

Worthington, T., Spalding, M., 2018. Mangrove restoration potential: A global map highlighting a critical
opportunity. https://doi.org/10.17863/CAM.39153

Zhai, L., Zhang, B., Roy, S.S., et al., 2019. Remote sensing of unhelpful resilience to sea level rise caused
by mangrove expansion: A case study of islands in Florida Bay, USA. Ecological Indicators 97, 51—
58. https://doi.org/10.1016/j.ecolind.2018.09.063



15

Chapter 2 Evolution of mangrove remote sensing
2.1 Introduction

Remote sensing allows for large-scale surveys over mangrove forests, offering spatially explicit, highly
resolved and temporally revisited observations to support mangrove research areas such as distribution
mapping, species discrimination, and biophysical parameter retrieval. It leverages passive and active
sensors on board satellites, aircrafts and UAVs to acquire multispectral and hyperspectral imagery, along
with radar and LiDAR data. Remote sensing therefore facilitates the assessment of mangrove health, the
monitoring of deforestation and restoration efforts, and the evaluation of their resilience in the context of
anthropogenic activities and climate change through integrated data analyses. The approaches to the
analysis of remotely sensed data include visual interpretation, object-oriented methods, empirical models
and machine learning algorithms, which can be deployed independently or in combinations to meet varied
research objectives. Recent trends suggest that data fusion and deep learning provide significant potentials
in improved accuracy, greater reliability and comprehensive insights for high-resolution canopy height

estimation and dynamic mangrove monitoring system.
2.2 Remote sensing data for monitoring mangroves

2.2.1 Spaceborne optical imagery

Remote sensing datasets can be obtained through satellites, aircrafts or UAVs with varied data coverage
(Figure 2-1). Spaceborne optical remote sensing is a passive technique featuring sensors such as
radiometers or spectroradiometers onboard satellites that capture radiation reflected and emitted from the
earth’s surfaces between the visible wavelengths (0.4-0.7 pm) to near infrared (NIR, 0.7-1.5 pm) and up to
thermal infrared (TIR, 8-14 pm). Since the launch of the first Landsat satellite in 1972 on which the
Multispectral Scanner (MSS) was mounted (NASA, 2021), the availability and capabilities of spaceborne
optical remote sensing missions have improved, varying in spatial and spectral resolutions (see Table 2-1).
These remote sensors support global observation of earth's surfaces at frequent time intervals, providing
multispectral or hyperspectral information. Given spatially explicit spectrum-rich information and intensive
revisit time, spaceborne optical remote sensing has therefore become one of the most appropriate candidates
in ecosystem monitoring, although the strong interaction of the electromagnetic radiation at these

frequencies with the atmosphere and the occurrence of clouds constrains from retrieving valid observations.
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Figure 2-1. Remote sensing datasets acquired for monitoring mangroves.

Spaceborne optical imagery, capturing spectral and textural characteristics of mangrove canopies, delivers
valuable data for advancing mangrove research (Wang et al., 2019). Landsat imagery is widely accepted as
an appropriate spaceborne dataset for monitoring mangroves, due to its provision of global 30 m
multispectral observations featuring long-term time-series and free access. These characteristics make
Landsat images effective for mapping mangrove extent (e.g., Giri et al., 2011; Monsef and Smith, 2017;
Rogers et al., 2017; Spalding et al., 2010; Wang et al., 2018), particularly for consistent mappings over time
(FAO, 2023; Goldberg et al., 2020; Hamilton and Casey, 2016). However, it is challenging to outline
mangrove patches smaller than moderate resolution images (~30 m), particularly in West Africa where
mangroves are found as narrow riverine fringes (Liu et al., 2021). The delineation of mangrove distribution
is finer using very high resolution (VHR) spaceborne imagery (<10 m) such as Gaofen-2, Pleiades and
Ziyuan-3, providing finer textural information of canopies to detect scattered and small mangrove patches
(e.g., Friess et al., 2016; Jia et al., 2023; Zhang et al., 2021a; Zhang et al., 2021b). Due to the trade-off
between spectral and spatial resolution in spaceborne datasets, spaceborne VHR imagery typically includes
only the blue, green, red and NIR bands (Table 2-1). Nevertheless, VHR imagery can capture finer textures
of mangrove canopies, which helps avoid saturation in high biomass estimation (Proisy et al., 2007).

Moreover, combining VHR imagery with spectral features can improve biomass estimation accuracy (Pham
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and Brabyn, 2017), and the introduction of VHR imagery provides species discrimination performance

comparable to that of hyperspectral imagery at similar fine resolutions (Jia et al., 2014; Lassalle et al., 2023).

Apart from the provision of finer textures, spaceborne optical imagery enables finer spectral investigation
over mangroves, such as Gaofen-5, Hyperion, PRISMA, and DESIS (Jia et al., 2014; Kumar et al., 2019;
Lassalle et al., 2023; Wan et al., 2020). In situ spectral reflectance measurements with portable
spectroradiometers highlighted the detectability of hyperspectral signal for subtle spectral variations
between mangrove species (Xu et al., 2019, Figure 2-2). The reflectance of mangrove leaves in NIR and
shortwave infrared (SWIR) channels shows better spectral separability for species discrimination (Hoa et
al., 2017; Kuenzer et al., 2011; Lassalle et al., 2023; Wang and Sousa, 2009; Zulfa et al., 2020). However,
spaceborne hyperspectral imagery generally has a spatial resolution of 30 m, limiting the application in
identifying mangrove species within highly mixed communities or small-patch (i.e., narrow) areas (Jia et
al., 2014; Mondal et al., 2019). Since its launch in 2015, Sentinel-2 imagery, with high resolution (up to 10
m) and multispectral information including red edge and SWIR bands, has become another appropriate
spaceborne optical dataset in mangrove research (e.g., Jia et al., 2023, 2024; Manna and Raychaudhuri,

2020; Maung and Sasaki, 2021; Navarro et al., 2019; Parida and Kumari, 2021; Zhang et al., 2023).
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Figure 2-2. The smoothed reflectance spectrum of four mangrove species in China and field photos of corresponding mangrove
species (Source: Xu et al. (2019)).
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Satellite and Sensor

Band names with pixel size and wavelength (pm)

Revisit time

Operating period

Landsat 1-5 MSS

Landsat 4/5 TM

Landsat 7 ETM+

Landsat 8/9
OLI/OLI-2

60 m Green: 0.5 -0.6
60 m Red: 0.6 - 0.7
60 m NIR 1: 0.7 -0.8
60 mNIR 2: 0.8 — 1.1

30 m Blue: 0.45 —0.52
30 m Green:0.52 — 0.60
30 m Red:0.63 — 0.69
30 m NIR: 0.76 — 0.90
30 m SWIR-1: 1.55-1.75
120 m TIR: 10.41 — 12.5
30 m SWIR-2: 2.08 —2.35

30 m Blue: 0.441 - 0.514
30 m Green: 0.519 — 0.601
30 m Red: 0.631 —0.692
30 m NIR: 0.772 — 0.898
30 m SWIR-1: 1.547 — 1.749
60 m TIR: 10.31 - 12.36
30 m SWIR-2: 2.064 - 2.345
15 m PAN: 0.515 -0.896

30 m Coastal/Aerosol: 0.435 —0.451
30 m Blue: 0.452 - 0.512
30 m Green: 0.533 — 0.590
30 m Red: 0.636 — 0.673
30 m NIR: 0.851 — 0.879
30 m SWIR-1: 1.566 — 1.651
30 m SWIR-2: 2.107 —2.294
15 m PAN: 0.503 - 0.676
30 m Cirrus: 1.363 —1.384
100 m TIR-1: 10.60 - 11.19
100 m TIR-2: 11.50 — 12.51

18 days for Landsat 1/2/3
16 days for Landsat 4/5

16 days

16 days (when combined with Landsat 8, revisit time for
data collection can be every 8 days)

16 days (the combination of Landsat 8 and 9 can make
revisit time for data collection every 8 days)

23/07/1972 — 06/01/1978 (Landsat 1)
22/01/1975 —27/07/1983 (Landsat 2)
05/03/1978 — 07/09/1983 (Landsat 3)

16/07/1982 — 15/06/2001 (Landsat 4)
01/03/1984 — 19/06/2013 (Landsat 5)

15/04/1999 to present
(Scan Line Corrector failure on
31/05/2003)

11/02/2013 to present (Landsat 8)
27/09/2021 to present (Landsat 9)
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Satellite and Sensor

Band names with pixel size and wavelength (pm)

Revisit time

Operating period

Sentinel-2A/B MSI

SPOT-1/2/3 HRV

SPOT-4
HRVIR/VGT

Note: wavelengths here are central wavelength
60 m Coastal/Aerosol: 0.444 (S2A) / 0.442 (S2B)
10 m Blue: 0.497 (S2A) / 0.492 (S2B)
10 m Green: 0.560 (S2A) / 0.559 (S2B)
10 m Red: 0.664 (S2A) / 0.665 (S2B)
20 m Red Edge-1: 0.704 (S2A) / 0.704 (S2B)
20 m Red Edge-2: 0.740 (S2A) / 0.739 (S2B)
20 m Red Edge-3: 0.783 (S2A) / 0.780 (S2B)
10 m NIR: 0.835 (S2A) / 0.833 (S2B)

20 m Red Edge-4: 0.865 (S2A) / 0.864 (S2B)
60 m Water vapour: 0.945 (S2A) / 0.943 (S2B)
60 m Cirrus: 1.374 (S2A) / 1.377 (S2B)

20 m SWIR-1: 1.614 (S2A) / 1.610 (S2B)
20 m SWIR-2: 2.202 (S2A) /2.186 (S2B)

20 m Green: 0.50 — 0.59
20 m Red: 0.61 — 0.68
20 m NIR: 0.79 — 0.89
10 m PAN: 0.51 - 0.73

10 m Green: 0.50 — 0.59
10 m Red: 0.61 — 0.68
10 m NIR: 0.78 — 0.89
20 m SWIR: 1.58 - 1.75
10 m PAN: 0.61 - 0.71
(VGT) 1.15 km Blue: 0.437 - 0.480
(VGT) 1.15 km Red: 0.615 - 0.700
(VGT) 1.15 km NIR: 0.773 - 0.894
(VGT) 1.15 km SWIR: 1.603 - 1.695

10 days for each, 5 days for combined constellation

About 1 to 4 days depending on the latitude due to
oblique viewing capability

About 1 to 4 days depending on the latitude due to
oblique viewing capability (During February to end of
May in 2013, repeat interval was changed to 5 days as

the altitude of SPOT 4 had been lowered.)

23/06/2015 to present (Sentinel-2A)
07/03/2017 to present (Sentinel-2B)

22/02/1986 — 17/11/2003 (SPOT 1)
22/01/1990 — 30/07/2009 (SPOT 2)
26/09/1993 — 14/11/1996 (SPOT 3)

24/03/1998 — 29/06/2013
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Satellite and Sensor

Band names with pixel size and wavelength (pm)

Revisit time

Operating period

SPOT-5
HRG/HRS/VGT-2

SPOT-6/7 NAOMI
SPOT-7 VGT-2
(Commercial)

IKONOS OSA
(Commercial)

RapidEye REIS
(Commercial)

QuickBird BGIS2000
(Commercial)

20 m Green: 0.50 — 0.59
20 m Red: 0.61 — 0.68
20 m NIR: 0.79 — 0.89
20 m SWIR: 1.53 - 1.75
2.5/5m PAN: 0.48 - 0.71
5/10 m PAN: 0.48 — 0.70 (for stereo pair images)
(VGT-2) 1.15 km Blue: 0.439 - 0.476
(VGT-2) 1.15 km Red: 0.616 - 0.690
(VGT-2) 1.15 km NIR: 0.783 - 0.892
(VGT-2) 1.15 km SWIR: 1.584 - 1.685

6 m Blue: 0.45 -0.52
6 m Green: 0.53 — 0.60
6 m Red: 0.62 —0.69
6 m NIR: 0.76 — 0.89
1.5m PAN: 0.45-0.75
(VGT-2) 1.15 km Blue: 0.439 - 0.476
(VGT-2) 1.15 km Red: 0.616 - 0.690
(VGT-2) 1.15 km NIR: 0.783 - 0.892
(VGT-2) 1.15 km SWIR: 1.584 - 1.685

4 m Blue: 0.45 - 0.53
4 m Green: 0.52 - 0.61
4 mRed: 0.64 -0.72
4 mNIR: 0.76 — 0.86
1 m PAN: 0.45 -0.90

5 m Blue: 0.440 — 0.510
5 m Green: 0.520 — 0.590
5 m Red: 0.630 — 0.685
5 m Red Edge: 0.690 — 0.730
5 m NIR: 0.760 — 0.850

2.4 —-2.6 m Blue: 0.45-0.52
2.4 —2.6 m Green: 0.52 — 0.60
2.4 -2.6 mRed: 0.63 —0.69
24 —-2.6mNIR: 0.76 — 0.90
0.61-0.72 m PAN: 0.45-0.90

About 2-3 days depending on latitude due to oblique
viewing capability

1 day when SPOT 6 and 7 operate simultaneously,
around 1 to 3 days when only one satellite does.

Approximately 3 days at 40° latitude

Daily revisit with body-pointing capability, 5.5 days
at nadir over mid-latitude regions (+ 84° latitude)

2.8 days at 1-metre GSD resolution
1.5 days at 1.5-metre GSD resolution
(Both are at 20° latitude)

04/05/2002 — 31/03/2015

09/09/2012 to present (SPOT 6)
30/06/2014 to present (SPOT 7)

24/09/1999 — 31/03/2015

29/08/2008 — 31/03/2020 (constellation
was deactivated)

18/10/2001 — 27/01/2015
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Satellite and Sensor

Band names with pixel size and wavelength (pm)

Revisit time

Operating period

WorldView-1 WV60
(Commercial)

WorldView-2
WV-110
(Commercial)

WorldView-3
WV-110
(Commercial)

WorldView-4
WV-110
(Commercial)

0.50 - 0.55 m PAN: 0.45-0.90

1.85 - 2.07 m Coastal Blue: 0.400 — 0.450
1.85-2.07 m Blue: 0.450 - 0.510
1.85-2.07 m Green: 0.510 — 0.580
1.85-2.07 m Yellow: 0.585 — 0.625
1.85-2.07 m Red: 0.630 — 0.690
1.85 - 2.07 m Red Edge: 0.705 — 0.745
1.85-2.07 m NIR-1: 0.770 - 0.895
1.85-2.07 m NIR-2: 0.860 — 1.040
0.46 - 0.52 m PAN: 0.45 - 0.80

1.24 — 1.38 m Coastal Blue: 0.400 — 0.450
1.24 — 1.38 m Blue: 0.450 - 0.510
1.24 — 1.38 m Green: 0.510 — 0.580
1.24 —1.38 m Yellow: 0.585 —0.625
1.24 — 1.38 m Red: 0.630 — 0.690
1.24 — 1.38 m Red Edge: 0.705 — 0.745
1.24 — 1.38 m NIR-1: 0.770 — 0.895
1.24 — 1.38 m NIR-2: 0.860 — 1.040
0.31-0.34 m PAN: 0.45 —-0.80
370 —4.10 m SWIR-1: 1.195-1.225
3.70 —4.10 m SWIR-2: 1.550 — 1.590
3.70 —4.10 m SWIR-3: 1.640 — 1.680
3.70 —4.10 m SWIR-4: 1.710 - 1.750
3.70 —4.10 m SWIR-5:2.145 - 2.185
3.70 —4.10 m SWIR-6: 2.185 - 2.225
3.70 —4.10 m SWIR-7: 2.235 - 2.285
3.70 —4.10 m SWIR-8: 2.295 — 2.365

1.24/1.38/4 m Blue: 0.450 - 0.510
1.24/1.38/4 m Green: 0.510 — 0.580
1.24/1.38/4 m Red: 0.655 — 0.690
1.24/1.38/4 m NIR: 0.780 — 0.920
0.31/0.34/1 m PAN: 0.45 - 0.80

1.7 days at 1 m GSD or less, 5.9 days at 20° off-nadir or
less (0.51 m GSD)

1.1 days at 1 m GSD or less, 3.7 days at 20° off-
nadir or less (0.52 m GSD)

About 1 day at 1 m GSD, 4.5 days at 20° off-nadir or less
(0.59 m GSD)

Less than 1.0 day at 1 m GSD (at 40° N latitude), more
than 4.5 accesses per day for combined constellation

18/09/2007 to present

08/10/2009 to present

13/08/2014 to present

11/11/2016 — 07/01/2019
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Satellite and Sensor Band names with pixel size and wavelength (pm) Revisit time Operating period
3.24 m Blue: 0.45 - 0.52
3.24 m Green: 0.52 - 0.59
G?%fﬁzgzeixg_z 3.24 m Red: 0.63 - 0.69 5 days 19/08/2014 to present
8 3.24 m NIR: 0.77 - 0.89
0.81 m PAN: 0.45 - 0.90
30 m spectral bands (from 0.4 to 2.5 pm) with the
Gaofen-5 bandwidths of 5 nm for VNIR bands and 10 nm for
AHSI/ VIMS SWIR bands (AHSI sensor) 2 days 09/05/2018 to present
(Commercial) 20/40 m 12 spectral bands from 0.45 to 12.5 pm

PlanetScope PSB.SD
(Commercial)

EnMap

EO-1 Hyperion

(VIMS sensor)

3.7 - 4.2 m Coastal Blue: 0.431 — 0.452

3.7 - 4.2 m Blue: 0.465 - 0.515

3.7-42m Greenl: 0.513 —0.549

3.7 -4.2 m Green: 0.547 — 0.583 daily

3.7-4.2m Yellow: 0.600 —0.620
3.7 -4.2mRed: 0.650 —0.680

3.7-4.2 m Red Edge: 0.697 —0.713

3.7 -4.2 m NIR: 0.845 - 0.885

30 m 224 spectral bands with intervals of 6.5 nm and
10 nm in the VNIR (420 - 1000 nm) and SWIR (900 27 days
- 2450 nm) channels, respectively

30 m 220 spectral bands (from 0.357 to 2.576 pum) 16 d
with a 10 nm bandwidth ays

Mid-Mach 2020 to present

01/04/2022 to present

21/11/2000 — 22/02/2017

OLI: Operational Land Imager; NIR: Near Infrared; SWIR: Shortwave Infrared; MSI: Multi-Spectral Instrument; SPOT: Systéme Pour 'Observation de la Terre; HRV: High-Resolution
Visible; HRVIR: High-Resolution Visible and InfraRed; HRG: High-Resolution Geometric; HRS: High-Resolution Stereoscopic; NAOMI: New AstroSat Optical Modular Instrument;
VGT: Vegetation Monitoring Instrument; OSA: Optical Sensor Assembly; REIS: RapidEye Earth-imaging System; BGIS2000: Ball Global Imagery System 2000; GSD: Ground Sample
Distance; WV60: WorldView-60 camera; WV110: WorldView-110 camera; PMC-2: Panchromatic and Multispectral Camera Suite-2; AHSI: Advanced Hyper-Spectral Imager; VIMS:
Visual and Infrared Multispectral Sensor; VNIR: Visible and Near Infrared; PSB.SD: PlanetScope Blue SuperDove; EnMap: Environmental Mapping and Analysis Program.
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2.2.2 Spaceborne radar imagery

There is a fundamental challenge with spaceborne optical imagery as clouds have adverse impacts on the
retrieval of spectral data from the ground, particularly in humid tropical areas, where cloud cover is frequent,
persistent, and often dense. In contrast, synthetic aperture radar (SAR) data can be obtained independent of
the weather conditions or time of day. SAR operates as an active sensor, generating and transmitting
microwave signals and subsequently receives the returned or backscattered signals from the earth surface.
The wavebands of spaceborne SAR data used in mangrove research include X-, C- and L-bands (see Table
2-2). Shorter wavelengths such as X-band (2.5-3.75 cm) and C-band (3.75-7.5 cm) strongly interact with
the top of the canopy, while longer wavelengths such as L-band (15-30 cm) can penetrate through the
canopy and interact with the larger tree structures such as trunks and larger branches (Figure 2-3). As SAR
collects returned signals either horizontally or vertically, the type of SAR data consist of horizontal (HH),
vertical (VV), and cross (HV or VH) polarization, which is a crucial parameter for understanding the

interaction between electromagnetic waves and vegetation structures.

Table 2-2. The specifications of spaceborne radar sensors used in mangrove research.

Satellite and sensor ~ Waveband Imaging mode and resolution (m) Revisit time Operating period

TanDEM-X X 12 m (DEM product) 11 days 21/06/2010

Strip map: 3.5/10/40
. Interferometric Wide swath: 10/40
Sentinel-1 A/B C Extra-Wide swath: 25/40 6 - 12 days 03/04/2014 to present

Wave: 25

Extended High: 18 - 27
Extended Low: 30
ScanSAR Wide: 100
RADARSAT C ScanSAR Narrow: 50 24 days 04/11/1995 —29/03/2013
Wide: 30
Standard: 30
Fine: 8

1 — 100 m depending on polarization

RADARSAT-2 C S
and imaging modes

24 days 14/12/2007 to present
Image: 30
Alternate Polarization: 30
Envisat ASAR C Wide Swath: 150 35 days 01/03/2002 — 08/04/2012
Global Monitoring: 1000
Wave: 10

Image: 30

ERS-2 AMI C Wave: 30

35 days 21/04/1995 — 04/07/2011

18 m (range) x 18 m (azimuth, 3
looks)

Fine: 10/20
ALOS PALSAR L ScanSAR: 100 46 days 24/01/2006 — 12/05/2011
Polarimetric: 30

JERS-1 L 44 days 11/02/1992 — 12/10/1998
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Table 2-2. Continued.

Satellite and sensor Waveband Imaging mode and resolution (m) Revisit time Operating period
Strip map: 3/6/10
ALOS-2 PALSAR-2 L ScanSAR: 60/100 24 days 24/05/2014 to present

Spotlight: 1x3

ASAR: Advanced Synthetic Aperture Radar; AMI: Along-Track Scanning Radiometer; JERS: Japanese Earth Resources
Satellite; ALOS: Advanced Land Observing Satellite; PALSAR: Phased Array L-band Synthetic Aperture Radar.

L band C band X band

Figure 2-3. Schematic diagram of different wavelengths of radar system penetrating through mangroves.

Mangroves exhibit relatively higher backscattering coefficient on SAR data than the adjacent non-forest
land covers. Applying thresholds on backscattering coefficient on spaceborne SAR imagery enables
mangrove extent mapping (Bunting et al., 2022b; Kumar and Patnaik, 2013; Lucas et al., 2007). The
sensitivity of SAR data relates to mangrove canopy cover, moisture content and vegetation volume,
alongside physical parameters of SAR sensors such as baseline and radar wavelengths. Differences between
mangroves and other forests are subtle when using L-band SAR data with shorter baseline (distance
between antennas at 2 m) (Lucas et al., 2007). Meanwhile, intact mangrove forests with dense canopies and
foliage strongly impact penetration of shorter radar wavelengths (Kumar and Patnaik, 2013). L-band SAR
data with a larger baseline (several hundred meters) such as ALOS PALSAR facilitates improved mangrove
discrimination (Lucas et al., 2007) and mangrove change monitoring (Bunting et al., 2022a), while C-band
SAR data are found not to have significant relationships with mangrove biophysical parameters, i.e., stem
density, basal area, and mean diameter at breast height (Kovacs et al., 2008). However, the performance
using individual radar wavelength for mangrove extent and species discrimination is limited, since the

thresholds are unlikely to be consistent across different study sites (Lucas et al., 2007; Bunting et al., 2022b).
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The integration with spaceborne optical data such as Landsat, Sentinel-2 and Worldview-3 imagery
enhanced the accuracy of mangrove extent and species discrimination (e.g., Bunting et al., 2022a; Huang

etal., 2022; Wang et al., 2023; Zhang et al., 2018).

The relationships between backscattering coefficient and mangrove foliage and woody components are also
employed to estimate mangrove leaf area index (LAI) and AGB (e.g., Fu et al., 2022, 2023; Kovacs et al.,
2008; Lucas et al., 2020; Nedd et al., 2023). However, mangrove AGB estimation using backscattering
coefficient faces challenges of saturation, due to an asymptotic relationship between these two variables
(Pham et al., 2019). The level of saturation depends on the wavelength, polarizations and ground condition.
At L-band, saturation typically occurs at AGB levels between 100 and 150 Mg/ha (Shugart et al., 2010).
Not only electromagnetic but temporal characteristics does spaceborne SAR imagery provide. By
differentiating two or more radar images of the same area acquired at different times from similar vantage
points (Interferometric SAR; InSAR), mangrove canopy height models (CHMs) can be established (e.g.,
Berninger et al., 2019; Lee and Fatoyinbo, 2015; Suab et al., 2024). A variety of mangrove canopy height
retrieval algorithms based on InSAR measurements have been developed and applied. These approaches
differ in terms of model assumptions such as low-lying and flat growing environments of mangroves
(Simard et al., 2006, 2008, 2019), number of baselines utilized (Lee et al., 2018) and wavelengths (Aslan
and Aljahdali, 2022; Lee and Fatoyinbo, 2015). Since taller trees are considered to have higher proportion
of AGB, deploying biomass-height regression analyses with CHMs provided significant potential to
extrapolate higher AGB estimates of mangroves, mitigating the saturation of AGB estimation (e.g., Lucas

et al., 2020; Pham et al., 2019; Simard et al., 2019; Tang et al., 2016).

2.2.3 Spaceborne LIiDAR data

LiDAR is an active remote sensing technology that emits laser pulses towards the land and records the
returned signals as laser pulses. When there is a vegetated surface, the returned signals, or waveforms, are
a function of vertical distribution of vegetation and ground surfaces within the footprint (laser-illuminated
area). Compared to optical and SAR sensors primarily providing two-dimensional representations of the
earth’s surface, LIDAR instruments enable three-dimensional investigations offering detailed vertical
characteristics, particularly forest vertical structure. GLAS (Geoscience Laser Altimeter System) is the first
spaceborne LiDAR instrument onboard NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat),
collecting global coverage data from 2003 to August 2010 with a footprint of 70 m in diameter (Simard et
al., 2008). Its successor, ICESat-2, has been equipped with the Advanced Topographic Laser Altimeter
System (ATLAS) instrument, enabling denser and finer global observations since September 2018.

Currently, there is first-ever spaceborne LiDAR mission in orbit aiming at global vegetation vertical
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investigations, known as the Global Ecosystem Dynamics Investigation (GEDI), providing full-waveform
observations of 25 m footprints (Duncanson et al., 2022; Markus et al., 2017) (Table 2-3). A schematic
diagram of the ground tracks of ICESat-2 ATLO8 and GEDI L2A products is provided in Figure 2-4.
Similar to GEDI observations, ICESat also provides full-waveform observations where the distribution of
returned energy is recorded, while ICESat-2 ATLAS employs photon counting LiDAR altimetry technique

measuring the transit time of individual photons to determine surface height along track (Liu et al., 2021).

Table 2-3. The specifications of spaceborne LiDAR sensors used in mangrove research.

Satellite and Laser Pulse Repetition Frequency F ootpriqt resolution Operating period
sensor wavelength (PRF) (in diameter)
ICESat GLAS 1064 nm 40 Hz (170 m spacing) 70 m 12/01/2003 — 14/08/2010
ICESat-2 ATLAS 532 nm 10 kHz (0.7 m spacing) 17 m 15/09/2018 to present
GEDI 1064 nm 242 Hz (60 m spacing) averaging 25 m 25/03/2019 — 17/03/2023

ICESat: Ice, Cloud, and Land Elevation Satellite; GLAS: Geoscience Laser Altimeter System; ATLAS: Advanced Topographic
Laser Altimeter System; GEDI: Global Ecosystem Dynamics Investigation.

a) b)

@
~ ©
Along-track ‘| =] Weak beam O ®
digstion’ 4 I Strong beam '\\ ) ® & ®
\ PN
1—»12 {D l‘ ‘ \e“‘)fc{;& h
| A 5\@
|
100ml ‘
|
\
\
|

@ Coverage beam

@ Full power beam

ICESat-2 (ATLOS) GEDI (L2A)

Figure 2-4. Schematic diagrams of the ground tracks of different spaceborne LiDAR datasets: a) ICESat-2 ATL08, b) GEDI
L2A. Note that the across-track distances are not shown to scale for clarity and compactness (Source: Liu et al. (2021)).

Spaceborne LiDAR data have been used to estimate forest canopy height which can be determined through
relative height (RH) metrics representing certain quantiles of returned energy relative to the ground or
height values computed from identified canopy photons minus the interpolated ground surface. ICESat-2
and GEDI yield accurate canopy height estimates with root mean square error of 5.02 m and 3.56 m,
respectively, as compared with locally calibrated airborne LiDAR products for USA territories (Liu et al.,

2021). Given the importance of accurate canopy height estimation, spaceborne LiDAR data have been

employed to link LiDAR-derived RH with field measurements of Lorey’s mean canopy height (Saatchi et
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al., 2011), plot-level canopy height at various quantiles (Baccini et al., 2012; Duncanson et al., 2022), and
to calibrate medium resolution digital elevation models (DEMs) to pixel level canopy height estimates
(Fatoyinbo and Simard, 2013; Simard et al., 2006, 2019). Canopy height is significantly correlated with
AGB, making LiDAR observations a viable tool to estimate AGB with litter or even no saturation in high
AGB estimation, while optical reflectance and SAR backscatter signals have been shown to saturate at
relatively low AGB levels (Rodriguez-Veiga et al., 2019; Jagadish et al., 2024). However, unlike optical or
radar sensors that provide wall-to-wall imagery, spaceborne LiDAR instruments (e.g., GLAS, GEDI,
ATLAS) acquire data only along narrow tracks, resulting in discrete sampling footprints rather than
continuous global coverage. For instance, GEDI was projected to acquire over 10 billion cloud-free
observations, about 4% of the land surface, over a two-year nominal mission (Dubayah et al., 2020).
Nonetheless, the LiDAR-derived canopy height estimates are a valuable resource for scaling limited field
data, especially for typically remote and inaccessible mangrove forests in which it is physically difficult to

conduct fieldwork at a large extent.

2.2.4 Airborne datasets

Before the prevailing application of satellite remote sensing, aerial photography was the primary source of
remotely sensed data and the only means of assessing mangrove extent and health (Kuenzer et al., 2011;
Liu et al., 2022). Given the mobility and low operation altitude of aircrafts, airborne remote sensing, with
the advent of UAVs, offers time-sensitive and highly resolved geospatial data. Airborne remote sensing
datasets primarily comprise hyperspectral and LiDAR data (Kuenzer et al., 2011; Pham et al., 2019;
Wannasiri et al., 2013). Airborne hyperspectral data collected by sensors such as CASI (Compact Airborne
Spectrographic Imager), AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) and AISA (Airborne
Imaging Spectrometer for Applications) have proven effective for regional-scale mangrove monitoring,
offering detailed spectral information that improves the discrimination of mangrove species (e.g., Liu et al.,
2019; Prakash Hati et al., 2020; Yang et al., 2009). Compared with spaceborne hyperspectral data Hyperion,
and EnMap (Storch et al., 2023) with a spatial resolution of 30 m, airborne hyperspectral data record rich
spectral information at higher resolution which can be up to sub-meter (0.5 m) depending on flight altitude
(Lassalle et al., 2023). Airborne LiDAR data were found as ‘gold standard’ to have the best estimation of
mangrove canopy height in Zambezi River (Lagomasino et al., 2016) and to have the best vertical accuracy
of topography in Mexico when compared with geodetic benchmarks (Carrera-Hernandez, 2021). However,
the acquisition of airborne data is opportunistic with regards to data availability as the fight campaign is
costly and weather-dependent, and more importantly, covering limited area of a specific region (Hancock

et al., 2021; Kuenzer et al., 2011; Lagomasino et al., 2016).
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2.3 Remote sensing approaches in mangrove research

2.3.1 Distribution mapping and species discrimination

A generalised methodological workflow of remote sensing approaches in mangrove research is presented
in Figure 2-5. The schematic diagram synthesises common practices reported in the literature, covering
data sources, analytical methods, outputs, and applications. Within this context, investigating mangrove
distribution and species discrimination is beneficial to the effective management of mangrove forests.
Remote sensing approaches for mangrove extent delineation and species discrimination are broadly

categorized into traditional and machine learning based supervised methods (Table 2-4).

Data Sources — Analytical methods — Outputs — Applications
Spaceborne data Visual interpretation » Extent maps .
Multispectral + Species maps Conservation
Hyperspectral Object-base image « Canopy height gomtonqg
SAR analysis models estqratlon
LIDAR + AGB & carbon planning A
) stock maps » Carbon accoun.tmg
Airborne data Parametric models 5 IPRaEe Coastal protection
Multispectral ) lL-me:rzthmic recovery trends C'_'tf“attfa change
Hyperspectral P?J?ynomial mitigation
LiDAR
Non-parametric models
Auxiliary data + Machine learning
+ Field inventory + Deep learning
Environmental
variables

Figure 2-5. Generalised methodological workflow of remote sensing approaches in mangrove research.

Traditional methods comprise visual interpretation, object-based image analysis (OBIA) and unsupervised
classification. Before the wider introduction of satellite images, mangrove extent and species identification
relied on visual interpretation of aerial black and white photographs (Dahdouh-Guebas et al., 2002; Kuenzer
etal., 2011; Liu et al., 2022). Figure 2-6 presents an aerial photograph captured in 1964 by the Hong Kong
Lands Department, illustrating its application in historical mangrove extent mapping (Liu et al., 2022).
High-resolution aerial photographs provide highly resolved and spatially explicit information for regional
mangrove recognition at a finer scale with the image attributes of grey levels, texture, shape, shadows.
Verheyden et al. (2002) employed these image attributes to visually interpret mangrove extent and species
distribution in Sri Lanka and yielded overall satisfactory results of genus-level recognition. Since the spatial
resolution of aerial photographs can be very high depending on flight height, the visual interpretation on
archived aerial photographs aids in yielding high-resolution ground samples to train or validate the

classification methods developed for lower-resolution satellite imagery (Hsu et al., 2020; Kamal et al., 2014;
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Liu et al., 2022). However, visual interpretation on aerial interpretation requires expert knowledge on

classified categories and is time-consuming for fragmented mangrove forests.

Figure 2-6. Aerial photograph taken on 14 December 1964 by the Hong Kong Lands Department, used for historical mangrove
extent mapping. The Mai Po Nature Reserve is outlined in white, and land covers are annotated as mangroves (M), mudflats
(MF), and gei wai (GW) (Source: Liu et al., 2022).

Considering rich spatially explicit information that high-resolution images (generally <10 m) deliver, OBIA
has been deployed for effective mangrove extent mapping and species discrimination (e.g., Bihamta Toosi
et al., 2020; Jia et al., 2023; Wang et al., 2004; Zhang et al., 2021; Zhang et al., 2021). OBIA includes two
basic principles, segmentation and classification. Different from pixel-based methods, OBIA segments an
image into representative vector shapes of different size and geometry of similar characteristics using the
methods, such as watershed segmentation (Biswas et al., 2020) and multi-resolution (Zhang et al., 2023).
Adjacent pixels are grouped in terms of image attributes, such as texture, shape and context (Blaschke,
2010). Subsequently, spectral, textural, and geometric features are extracted from these pixel groups for
further classification. Zhang et al. (2021) found the incorporation of OBIA with random forest algorithm
on 0.8 m Gaofen-2 imagery works successfully in detecting small mangrove patches. Mangrove species
discrimination also benefits from OBIA using 0.5 m WorldView-2 image (Heenkenda et al., 2014) or 4 m
airborne CASI-2 data (Kamal and Phinn, 2011).

Similar to OBIA, unsupervised classification methods such as iterative self-organizing data analysis
techniques (ISODATA) and k-means clustering are grouping pixels of similar spectral properties into
clusters which will be manually labelled (classified). However, these methods are pixel-based, not taking

into account any of the information from neighbouring pixels, which leads to a ‘salt and pepper’ effect. For
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mangrove extent mapping, when prior knowledge of field data or a well-trained interpreter is unavailable,
remote sensing image pixels can be clustered into predefined classes on some statistical or mathematical
relationship in unsupervised classification methods (Giri et al., 2011; Spalding et al., 2010). Usually,
unsupervised classification methods are employed for preliminary analysis of data before conducting

supervised classification (Maurya et al., 2021).

Supervised classification is significantly dependent on training samples derived from domain knowledge
or the expertise of an analyst for the relationship between imagery and classes that can be established.
Supervised machine learning algorithms such as maximum likelihood classification, artificial neural
networks, random forests, support vector machine and Gradient Boosting Machine work well in mangrove
extent mapping and species discrimination with the input data of optical (e.g., Bihamta Toosi et al., 2020;
Kanniah et al., 2015; Liu et al., 2022; X. Liu et al., 2021; Peng et al., 2020; Wang et al., 2018, 2008),
hyperspectral (e.g. Jia et al., 2014; Kumar et al., 2019; Lassalle et al., 2023; Wan et al., 2020) and SAR
(e.g. Abdel-Hamid et al., 2018; Fu et al., 2023). Maximum likelihood classification (MLC) is a parametric
model assuming a known form for the data distribution (i.e., normal distribution), while other machine
learning algorithms are non-parametric models without the assumption of a specific distribution, relying on
data-driven patterns. Non-parametric models yield satisfactory results in identifying mangrove extent and
species with textural and spectral features (Table 2-4). The most commonly used of these models, support

vector machines, random forests and artificial neural networks are explained further below.

Support vector machines (SVM) was introduced and developed by Vladimir Vapnik and his colleagues in
the 1990s (Boser et al., 1992; Cortes and Vapnik, 1995) and has been widely applied to classification
problems within machine learning domain, particularly in remote sensing application with limited training
datasets (Mountrakis et al., 2011; Sheykhmousa et al., 2020). SVM can also be applied to regression tasks,
where the relationships between predictor variables and output variables can be obtained. This type of
SVM is referred to as support vector regression (SVR). SVM is a non-parametric statistical learning
algorithm that is insensitive to training data distribution. Initially, SVM was designed to distinguish two
classes by determining the optimal hyperplane which is the maximum margin between the closest data
points of opposite classes. Then, a method called “kernel trick” (the use of kernel function) was applied to
SVM for non-linearly separable data. The kernel functions such as polynomial kernels, radial basis function
(RBF) kernels and sigmoid kernels are used to transform the data into a higher-dimensional space to enable
linear separation, improving the separability between classes. Therefore, the performance of SVM largely
depends on the suitable selection of a kernel function with correct kernel parameters. However, optimizing

SVM parameters is very resource-intensive, and also, the classification over big data is always expensive
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in computation, especially multiclass classification scenarios normally in remote sensing applications

(Sheykhmousa et al., 2020).

Random forests (RF) use ensemble learning methods (i.e., Bagging, short for Bootstrap Aggregating) to
solve classification or regression problems, making it much more robust against overfitting. The algorithm
operates by constructing a number of decision trees at the training stage and producing the mean prediction
for regression tasks and the mode prediction for classification tasks (Breiman, 2001). Given a training
dataset with corresponding responses, RF repeatedly selects a random sample with replacement of the
training dataset and fits trees to the samples. Different from general bagging method, RF selects a random
subset of features at each candidate split when constructing decision trees. Consequently, RF performs well
with high accuracy, robustness, and efficiency in dealing with high-dimensional data. Additionally, it is
straightforward to train and tune RF to achieve satisfactory results. However, the procedure of constructing
decision trees in RF is unknown, generally referred to as “black box™ (Zhao et al., 2023). And, when it
comes to regression, RF is not able to extrapolate from the training inputs as the predictions are the average

of observed labels.

Artificial neural networks (ANN), inspired by biological nervous processing in the human brain, are
interconnected neurons that aim to simulate neural processing and powerfully capable of nonlinear
classification and regression tasks (Dey et al., 2023; Maung and Sasaki, 2021). ANN was first introduced
by McCulloch and Pitts (1943) and proposed a simplified neuron model for logical operations. Multilayer
perceptron (MLP) is the most widely recognized ANN, comprising an input and output layers in addition
to one or more hidden layers. Thus, the capability of the MLP to discover the hidden relations between
inputs and outputs heavily depends on the number of hidden layers. Initially, each node is connected with
others and has randomly assigned weight. When there is the computed difference between actual values
(classes) and predicted values (classes), weight values will be refined through a backpropagation algorithm
iteratively. The backpropagation algorithm computes the gradient of loss function (e.g., mean squared error
for regression tasks, cross-entropy for classification tasks), and then, updates the weight values using an
optimization algorithm for the next iteration until the MLP model is well-trained with satisfactory results
of the loss function (Hecht-nielsen, 1992). There are some drawbacks though that the MLP model is also
resource-intensive for training big datasets, and prone to overfitting with small datasets. Also, the selection
of model architecture and optimization of model hyperparameters can be complex and inefficient (Yuan et

al., 2020).

Currently convolutional neural networks (CNNs), as a type of ANN, is gaining popularity in classification

tasks in remote sensing (Kattenborn et al., 2021). CNN has an input and an output layer alongside stacked
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units of convolutional, pooling and activation layers. The output layer is generally obtained with the same
dimension as the input layer. In the convolutional layer, the input data is processed with convolution
operation through local filters. And the pooling layer reduces the dimensions of the input data through
operations like max-pooling and average-pooling. The activation layer introduces non-linearity into the
CNN, enabling to learn complex patterns in the data. Similar to the MLP model, the weights of the CNN
model are iteratively updated through backpropagation (Yuan et al., 2020). Due to the effectiveness of CNN
models in capturing spatial patterns of remote sensing imagery, a broad spectrum of mangrove properties
is able to be extracted, including mangrove extent, species, tree crowns and canopy gaps (e.g. Lassalle and

de Souza Filho, 2022; Li et al., 2021; Lu and Wang, 2024; Tran et al., 2024; Wan et al., 2019).

Table 2-4. Remote sensing-based approaches for mangrove extent mapping and species discrimination.

Approach Data source Location and year Performance Reference
Pambala—Chilaw Dahdouh-
Visual interpretation ~ Aerial photographs ~ Lagoon complex in Sri - Guebas et al.
Lanka, 1994 (2002)
IKONOS Geo- Caribbean coast of _ Wang et al.
ANN Bundle images Panama, 2004 Kappa=0.93 (best) (2008)
SAM: OA=69%
SAM Kappa=0.57
LSU CASI-2 Brisbane River area in LSU: OA=56% Kamal and
MSS hyperspectral data Australia, 2004 Kappa=0.41 Phinn (2011)
MSS: OA=76%
Kappa=0.67
MSS EO-1 Hyperion Mai Po Marshes Nature OA=88% Jia et al. (2014)
Nearest neighbour SPOT-5 Reserve in China, 2008 Kappa=0.83 '
. Iskandar Malaysia, OA: 73.10-94.07% Kanniah et al.
MLC Landsat imagery 1989-2014 Kappa: 0.67-0.94 (2015)
0A=92.15%
31\2111:\/[ AL(};SlI/)Ii’(ﬁEI;SeAR Red Sea coastline in Kappa=0.90 Abdel-Hamid et
CART Worldview-1 Egypt, 2007 (RF wor'ks best with al. (2018)
combined data)
Landsat-8 . . .
MRS Sentinel-2A Dongzhaigang in China, = OA=91.89-96.52% Wang et al.
RF Pleiades-1B 2014 and 2016 Kappa=0.87-0.94 (2018)
Minimum Distance . 0A=99.08%
SAM EO-1 Hyperion Indian gg‘l‘jarbans’ Kappa=0.97 (SVM K“ggrl g; al.
SVM best)
Shenzhen Mangrove
Forest Nature Reserve _ o
CNN WorldView-2  and Mai Po Marshes oA W(az‘z) fg;‘l
Nature Reserve in PPa=y.
China, 2010
— 0,
RF Gaofen-5 Mai Po Marshes Nature I?aA 310%3/; Wan et al.
SVM hyperspectral data ~ Reserve in China, 2018 ppa=y. (2020)

(RF best)




Table 2-4. Continued.

Approach Data source Location and year Performance Reference
ypel 0A=92.01%
AdaBoost Gaofen-2 Qi’ao Island in China, Kappa=0.9016 Peng et al.
RF RapidEye-4 2016-2017 (RoF works best with (2020)
RoF combined data)
Upscaling approach Sentinel-2 Qeshm Island in Iran, OA=65.5% Bihamta Toosi et
RF WorldView-2 2017 Kappa=0.63 al. (2020)

Visual interpretation

UAV RGB images

Baja California Sur
(BCS) in Mexico, 2018

0A=98.3% +2.1%

Hsu et al. (2020)

and 2019
MRS Gaofen-1 . 0A=99.3% Zhang et al.
SVM Ziyuan-3 China, 2018 Kappa=0.985 (2021)
RF WorldView-3 OA=89%
Airborne Mai Po Marshes Nature Kappa=0.86 .
3{]11\\1/[ hyperspectral and ~ Reserve in China, 2018  (CNN best with WV- Lietal. (2021)
LiDAR data 3 PS and LiDAR)
Ensemble of RF, SRTM . OA: 95-99% .
GBM, and ANN Sentinel-1/2 West Africa, 2017 Kappa: 0.93-099 v ctal (2021)
Four mangrove sites in
WorldView-3  Brazil, USA, Australia 0A=91.4% Lassalle and de
Mask R-CNN . N Souza Filho
WorldView-4 and Gabon, Kappa=0.89 (2022)
respectively, 2016-2019
. L-band SAR from OA=87.4% (95" Bunting et al.
Thresholding TAXA Global, 1996-2020 conf. int.) (2022)
. . 0
' ' RF ' Aerial phgtographs Gregter Bay Area in 0A>99% Liu et al. (2022)
Visual interpretation Landsat imagery China, 1924-2020 Kappa > 0.99
NGBoost UAV RGB images Maowei Sea nature 0A=93.18%
CatBoost Sentinel 1/2 reserves in China, 2019 (CatBoost best) Fuetal. (2023)
LightGBM ’
Spaceborne malti- Aitborne: OA=95%
and hyperspectral -
. . . Kappa=0.93
imagery Sao Paulo in Brazil, ] Lassalle et al.
MT-EDv3 NN . Spaceborne:
Airborne 2021 (2023)
hyperspectral OA up to 97%
YPETsp Kappa up to 0.95
images
. southern coast of _ o Tran et al.
U-Net Sentinel-2A/B Vietnam, 2016-2023 OA=94.53-96.89% (2024)
. Dandou Sea coast in _ 0 Lu and Wang
Mask R—CNN UAV LiDAR data China, 2019 OA=70.83% (2024)
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OA: Overall Accuracy; ANN: Artificial Neural Network; SAM: Spectral Angle Mapper; LSU: Linear Spectral Unmixing; MLC:
Maximum Likelihood Classification; GBM: Gradient Boosting Machine; MSS/MRS: Multi-scale (Multi-resolution)
Segmentation; SVM: Support Vector Machine; RF: Random Forests; CNN: Convolutional Neural Network CART:
Classification and Regression Trees; AdaBoost: Adaptive Boosting; RoF: Rotation Forest; JAXA: Japan Aerospace Exploration
Agency; MT-EDv3: Multi-Task Encoder-Decoder; Mask R—CNN: Mask Region-based Convolutional Network.
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2.3.2 Biophysical parameters retrieval

Biophysical parameters of mangrove forests are essential for assessing health condition, quantifying gross
primary production (GPP) and carbon stock (Parida and Kumari, 2021). These biophysical parameters
range from tree level to community level, such as canopy height, basal area, crown diameter, leaf area index
(LAI), leaf chlorophyll concentration (LCC) and biomass. Remote sensing-based approaches for
biophysical parameter retrieval are categorized in two ways through radiative transfer models (RTMs) or
empirical models (Pham et al., 2019). RTMs are mathematical frameworks used to simulate the transfer of
electromagnetic radiation through the atmosphere and the interacts with vegetation canopies, deployed to
inverse forest biophysical parameters such as LAI and LCC (e.g., Miao et al., 2024; Zhao et al., 2023).
Empirical models leverage spectral indices derived from remotely sensed multispectral and hyperspectral
data to retrieve biophysical parameters using statistical regression equations (e.g., Diaz and Blackburn,
2003; Guo et al., 2021; Kovacs et al., 2004; Verrelst et al., 2015). Additionally, these models incorporate
machine learning regression algorithms such as decision tress, ANN and SVR, which demonstrate
flexibility in integrating prior knowledge from diverse datasets to analyse biophysical parameters (Verrelst

et al., 2019)
2.3.2.1 Leaf area index

LAI is a significant indicator of mangrove health conditions, reflecting the characteristics of canopy
structure and growth development (Luo et al., 2023; Manna and Raychaudhuri, 2020). As such, LAI
inversion is one of the most common applications in remote sensing-based mangrove research (Pham et al.,
2019; Wang et al., 2019). Many studies have employed regression analyses to estimate LAI, using spectral
indices, backscattering coefficients or LIDAR observations (e.g., Guo et al., 2017; Kamal et al., 2016;
Kovacs et al., 2004; Luo et al., 2023; Pu and Cheng, 2015).

For LAI estimation using RTMs, PROSAIL is one of the most popular RTMs combining PROSPECT (Leaf
Optical Properties Model) and SAIL (Scattering by Arbitrarily Inclined Leaves) together (Bhadra et al.,
2024). The PROSPECT model simulates the reflectance, transmittance and absorption of light by the leaves,
while the SAIL model simulates the scattering of light in a plant canopy. By integrating these two models,
PROSAIL can take several leaf and canopy level attributes as inputs such as LCC, Equivalent water
thickness (EWT) and LAI, and then output a reflectance spectrum (400-2400 nm). Therefore, biophysical
parameters can be inversed from remotely sensed multispectral data based on numerical optimization or
look-up table (LUT) (Verrelst et al., 2019). Although PROSAIL shows reproducibility and generalization

across various vegetation types, a plethora of input parameters are required to simulate canopy reflectance.
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Recently, there has been an increasing use of hybrid regression, combining RTMs and machine learning
algorithms, and thereby taking into account both the generalization of RTMs and computational efficiency
of machine learning methods. This approach replaces ground truthing needed for training empirical models
by setting RTM inputs. LUT-based RTMs generate a look-up table demonstrating a group of canopy
realizations, and then a machine learning regression model employs all available data in this look-up table
for training (Binh et al., 2022; Jia et al., 2024; Miao et al., 2024). Zhao et al. (2023) found spaceborne
hyperspectral imagery (Zhuhai-1) outperformed other spaceborne multispectral imagery (Landsat-8,
Sentinel-2 and Worldview-2) for mangrove LAI mapping using a hybrid approach combining the
PROSAIL model and XGBoost. For mangrove forests, this is considered a promising approach to estimate
LALI at regional or national scale due to the difficulty of collecting sufficient field data (Binh et al., 2022;
Zhao et al., 2023).

2.3.2.2 Aboveground biomass

Mangrove biomass refers to the total mass of living organic matter of mangrove trees, divided into
aboveground and belowground components (IPCC, 2003). Biomass estimation allows for the conversion
into carbon stocks, forming the foundation for investigating the critical role mangroves play in carbon
cycling (Alongi, 2020). Since belowground biomass is more challenging to investigate and less explicitly
estimated through remote sensing observations, aboveground biomass has garnered greater research focus,
where AGB estimation is conducive to monitoring mangrove health as healthy mangroves secure effective
carbon sequestration. The remote sensing-based approaches for estimating AGB can be grouped into two
main categories: (1) utilising the relationships between AGB and spectral information or radar
backscattering coefficients, and (2) deriving tree structural parameters (i.e., canopy height) from remotely

sensed data to estimate AGB using biomass-height allometric equations.

Since mangrove appearance is characterised by species composition, canopy cover and height distribution,
the interaction between mangrove tree components and spectra or radar signals has been well investigated
during field campaigns (e.g., Lucas et al., 2007; Mougin et al., 1999; Xu et al., 2019; Zulfa et al., 2020).
Thus, spectral information and backscattering coefficient from spaceborne datasets have been introduced
to mangrove biomass estimation in parametric or non-parametric regression models (Table 2-5). Parametric
models normally include linear, logarithmic and polynomial models with assumptions of a specific
relationship between AGB and selected surrogate variables such as reflectance in multispectral bands,
vegetation indices and backscatter coefficient. For example, EVI (Enhanced Vegetation Index) and NDVI
(Normalized Difference Vegetation Index) exhibit strong relationships with AGB estimates, which can be

modelled using linear, logarithmic, or polynomial functions (Pandey et al., 2019), while reflectance in
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multispectral bands and backscattering coefficient was used effectively in linear models for AGB
estimation (Castillo et al., 2017; Friess et al., 2016; Pham and Yoshino, 2017). However, both spectral
indices and backscattering coefficient are found to be saturated at low AGB level (Li et al., 2007; Shugart
etal., 2010). Compared to parametric models, non-parametric models were deployed to yield more complex
relationships between spaceborne variables and mangrove AGB, as they do not rely on the assumption of
a predefined relationship. These models contain supervised machine learning models such as ANN, RF,
SVR and XGBR, driven by input data with varied predictor variables. Predictor variables may include
spaceborne, environmental, or a combination of both types. As the range of predictor variables expands,
the models can harness more comprehensive information, enhancing their predictive capabilities (Table

2-5).

The introduction of canopy height models (CHMs) and biomass-height allometry is another remote sensing-
based approach for mangrove AGB estimation. Canopy height has been seen as functionally related
parameters to biomass estimation as taller trees dominate higher AGB (Duncanson et al., 2022). Mangrove
CHMs can be derived from InSAR and LiDAR measurements, UAV overlapping images using Structure
of Motion (SfM) photogrammetry, and stereo-pair or multiple-stereo aerial or spaceborne photographs (e.g.,
Dandois and Ellis, 2013; Hirschmugl et al., 2007; Lucas et al., 2000, 2020; St-Onge et al., 2008; Treuhaft
et al., 2004; Wannasiri et al., 2013). The conversion from mangrove CHMs to AGB estimates generally
employed parametric models that establish relationships between AGB and canopy height. These
relationships are determined by correlating field plot level AGB with corresponding field plot level mean
or maximum canopy height (Simard et al., 2006, 2019), height values derived from CHMs (Aslan et al.,
2016), or relative height metrics obtained from LiDAR measurements (Duncanson et al., 2022). After AGB
estimation, it is common practice to covert AGB into aboveground carbon stock with a multiplier between
0.46 to 0.5 when no region- or species-specific values exist (e.g., Harishma et al.,2020; Kauffman and
Donato, 2012). As strong positive linear relationships are observed between the aboveground and
belowground carbon stocks in mangroves, it is also viable to estimate belowground carbon stocks based on

aboveground carbon stock estimates (e.g., Jachowski et al., 2013; Meng et al., 2021).
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Table 2-5. Remote sensing-based approaches for mangrove biomass estimation.

Approach Data source Location and year Performance Reference
. Landsat TM images, Qi’ao Island, Zhuhai R?=0.769 .
Genetic model Radarsat in China, 2004 RMSD=0.738 kg/m? Lietal. (2007)
Field inventory data
ICESat .
Global, circa 2000 . o
MaxEnt SRTM. (not specific to Uncertainty at £30% at a Saatchi et al. (2011)
Global quick mangroves) global scale
scatterometer (QSCAT) &
MODIS NDVI and LAI
Field inventory data
ICESat
SRTM Global, 2000-2010 R*=0.83
RF MODIS Land Surface (not specific to RMSD=25 Mg C/ha Baccini et al. (2012)
Temperature mangroves)
MODIS reflectance
bands
GeoEye-1, Andaman Coast of R*=0.66 .
SVR ASTER GDEM V2 Thailand, 2011 RMSD=53.4 Mg/ha Jachowski et al- (2013)
Average RMSE=40.15
. Qi’ao Island, Zhuhai Mg/ha
BP ANN Worldview-2 in China, 2010 (with species information as Zhu etal. (2015)
dummy variable)
Pleiades imagery,
SRTM, Singapore, April r=0.54 for AGB .
GLMs geographic distance 2012 to August 2013 r=0.56 for BGB Friess ctal. (2016)
variable
R?>=0.688, SE=5.89 kg C m~
Empirical Karimunjawa Islands for AGC Wicaksono et al.
modelling ALOS AVNIR-2 in Indonesia, 2010 R>=0.567, SE=2.54 kg C m™ (2016)
for BGC
Spatially explicit
analytical SRTM West Africa, 2000 - Tang et al. (2016)
framework
Mangrove field data
ESH Environmental drivers Neotropics adjusted R*=0.19 Rovai et al. (2016)
such as temperature and
precipitation
Indonesian Papua, _
NLQR SRTM 2000 r=0.55 Aslan et al. (2016)
Linear regression, SRTM, S?;g;i?g:;sitn()f =0.83
Machine Leammg Sentlinel-l, Philippines, 2015 and RMSE=27.75 Mg/ha Castillo et al. (2017)
Algorithm Sentinel-2
2016
Airborne LiDAR .
’ Everglades National R>=0.82 ..
CHM TanDEM-X, Park in USA, 2012 Relative RMSE=37% | cliciano etal. 2017)
WorldView-2
Cangio mangrove
SPOT 4 forest in Vietnam, adjusted R*=0.73 Pham ér(lﬁ 7]5;rabyn

RF
SPOT 5 2000 and 2011
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Table 2-5. Continued.

Approach Data source Location and year Performance Reference
. R?=0.51, RMSE=35.5 Mg/ha
Stepwise Hai Phong City in for S. caseolaris
multilinear ALOS-2 PALSAR-2 gL ;

. Vietnam, 2015
regression models

ALOS-2 PALSAR-2 and

Northern coast of
SVR Sentinel-2A Vietnam, 2015

UAV RGB images, Sine Saloum and
SVR

Sentinel-1 and Sentinel-2  Casamance Deltas in

imagery Senegal, 2017
Linear and non- Bhitarkanika Forest
linear regression EO-1 Hyperion Reserve in Odisha
models India, 2015
ICESat LIDAR
CHM SRTM Global, 2000
Landsat images,
L-band SAR data, SRTM I\I;Ia;anthMangroi\:
CHM data, TanDEM-X-band orest Rescrve in
and WorldView-2 stereo Peninsular Malaysia,
2000-2016
data
UAV CHM Southeastern coast of

UAV RGB images Australia, 2018

Mahakam Delta,
Indonesia, 2018

Linear regression ALOS-2 PALSAR-2

Sentinel-1A, Ca Mau coastal area
ASO, ANFIS SPOT-6 in Vietnam, 2015
. . Northeast Hainan
RF UAYV LiDAR, Sentinel-2 Island in China, 2018
RF Worldview-2 ?111 E(ljohirsl:mzdd lzoh;lxlllgl
UAV RGB images 2016
Bhitarkanika Wildlife
ANN Sentinel-1 A/B Sanctuary in India,
2018
Field plot data
RF Environmental variables Global, present
. Mundra Taluka in
PRVI Sentinel 1A India, 2015-2018
UAV CHM . Beibu Gulf in China,
XGBR UAV RGB images 2019
UAV CHM UAV RGB images Lubuk Kertang in

Indonesia, 2022

Pham and Yoshino

R*=0.64, RMSE=41.3 Mg/ha (2017)

for K. obovata

R?=0.596

RMSE=1.54 Mg/ha Pham et al. (2018)

R*=0.89

RMSE=2.35 Mg/ha Navarro et al. (2019)

R>=0.861(best result from

polynomial model with EVI) Pandey etal. (2019)

R>=0.55

RMSE=134.3 Mg/ha Simard et al. (2019)

R?*=0.53

RMSE=79 Mg/ha Lucas et al. (2020)

Adjusted R?=0.932 Navarro et al. (2020)

R*=0.88

RMSE=24.05 Mg/ha Nesha et al. (2020)

R>=0.577

RMSE=70.882 Mg/ha Pham et al. (2020)

R>=0.62

RMSE=50.36 Mg/ha Wang et al. (2020)

RMSE=50.99 Mg/ha

Relative RMSE=30.48% Zhu et al. (2020)

R>=0.45

Ghosh and Behera
RMSE=103.99 Mg/ha

(2021)

R>=0.36

RMSE=108 Mg/ha Rovai et al. (2021)

R>=0.56 Vaghela et al. (2021)

R>=0.83

RMSE=22.76 Mg/ha Tian et al. (2021)

- Basyuni et al. (2023)

SVR: Support Vector Regression; BP ANN: Backpropagation — Artificial Neural Network; GLMs: Generalised Linear Models;
ESH: Environmental Signature Hypothesis; NLQR: Nonlinear Quantile Regression; RF: Random Forests; CHM: Canopy
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height model; ASO: Atom Search Algorithm; ANFIS: Adaptive Neuro-Fuzzy Inference System; PRVI: Polarimetric Radar
Vegetation Index; XGBR: XGBoost regressor; MaxEnt: Maximum Entropy.

2.3.3 Mangrove resilience investigation

In the last two decades (2000-2020), mangroves have been threatened by anthropogenic activities such as
aquaculture development and commercial crop conversion, and natural retraction induced by climate
change and human activities (FAO, 2023). Due to increasing awareness of mangrove protection and
restoration, the global loss of mangrove area has been 58% offset by afforestation and 42% of all the world’s
remaining mangroves have fallen within protected area status (FAO, 2023; Spalding and Leal, 2022). Since
mangroves are still facing the impacts from anthropogenic activities and climate change (Friess et al., 2024),
the investigation of mangrove resilience can shape mangrove management and restoration to be more

scientific and effective (Dahdouh-Guebas et al., 2022; Ong and Ellison, 2021).

Resilience is traditionally defined as the capacity to withstand and recover from disturbances while
maintaining structure, functions and identity, involving adaptive, absorptive, and transformative capacities
(Ong and Ellison, 2021). Mangrove resilience is assessed through ecological and socioeconomic indicators,
further classified into biotic, abiotic, social, economic and political factors (Day et al., 2018; McLeod and
Salm, 2006). Biotic factors involve mangrove extent and biophysical parameters such as AGB, while
abiotic factors refer to NDVI, sea level, tropical cyclone path, etc. Social, economic and political factors
cover mangrove protection legislation, stakeholder involvement and local community well-being (Ong and
Ellison, 2021). Generally, resilience investigation requires spatiotemporal analyses of these indicators.
remote sensing primarily supports the estimation of ecological factors including mangrove extent
delineation, AGB and NDVI, while socioeconomic indicator investigations predominantly depend on field
surveys and literature review (Table 2-6). For example, as NDVI is highly correlated with LAI, species
richness and AGB, the analyses of NDVI before and after extreme weather events from spaceborne datasets
indicate mangrove damage or recovery levels (e.g., Adame et al., 2021; Amaral et al., 2023; Lagomasino
et al., 2021; Taillie et al., 2020). The dynamics of AGB estimated from L-band SAR data are used to

indicate mangrove’s capacity to maintain functionality under sea level rise (Duncan et al., 2018).



Table 2-6. The approaches for mangrove resilience or health investigation.
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Environmental
drivers

Approaches

Datasets

Location and year

Reference

Extreme events

Sea level rise

Sea level rise

Anthropogenic
activities

Sand deposition

Rainfall and
salinity variation

Shrimp farm

Anthropogenic
activities

Anthropogenic
activities

Tropical storms

Restoration post-
tsunami

Visually interpreted

vegetation coverage

and related NDVI to
extreme events

Detected the change of
mangrove extent and
biomass

Detected the change of
mangrove extent and
island area

Formulated a
Mangrove Quality
Index

Produced NDVI and
Tasselled Cap
transformation indices

mapping

Combined field
campaign with remote
sensing results to
examine mangrove
replantation and
regrowth

Analysed spectral
vegetation indices over
time

Applied PSR model to
establish a mangrove
ecosystem health
evaluation system

Developed mangrove
health index to monitor
mangrove health with
spaceborne
observations

Calculated changes in
mangrove forest
greenness through the
NDVI

Conducted
participatory
workshops

Climate and
oceanographic data
QuickBird
Worldview-2

ALOS/PALSAR
ENVISAT-MERIS
SRTM
Landsat-5/8

historical aerial
photographs
Landsat images

Mangrove properties,
soil, marine ecosystem,
hydrology and socio-
economic variables

SPOT-6
WorldView-2

Landsat-4/5/7/8

Landsat-5/8
Sentinel-2A

Mangrove properties,
environmental and
socio-economic
variables

SPOT satellite images

Mangrove extent maps
Cyclones pathways
Landsat imagery

Transcripts from the
recordings of the
workshops

E1 Rosario Island in
Columbia, 2002-2014

Four mangrove sites from
West Africa to South Asia,

2007-2015

Florida Bay in the USA,
1953-2014

Matang Mangrove Forest
Reserve in Malaysia, 2015-

2016

Tanjung Piai in Malaysia,

2015-2016

Saloum Delta in Senegal,
1979-2015

Jazan Economic City in

Saudi Arabia, 2016-2017

Mangrove forest in
Guangdong Province,
China

Mui Ca Mau mangroves in

Vietnam, 1995-2017

Mangrove forests of the

Caribbean and the Gulf of
Mexico regions, 1996-2020

Koh Klang in Thailand,
2017

Galeano et al. (2017)

Duncan et al. (2018)

Zhai et al. (2019)

Faridah-Hanum et al.

(2019)

Razali et al. (2019)

Andrieu et al. (2020)

Arshad et al. (2020)

Wang et al. (2021)

Hai et al. (2022)

Amaral et al. (2023)

Elwin et al. (2024)




41

2.4 Future opportunities

As canopy height is a fundamental indicator of biomass and the associated carbon stock, canopy height has
been ranked as a high-priority biodiversity variable from spaceborne observations (Skidmore et al., 2021).
High-resolution CHMs better illustrate the heterogeneity of vegetation structure at a finer scale, showing
significant potential in advancing the modelling of climate change impacts. As space-based observations
continue to improve with higher spatial resolutions and enhanced capability for investigating forest
structures, the integration of spaceborne LiDAR measurements with spaceborne optical imagery shows
great potential for large-scale canopy height estimation. Potapov et al. (2021) incorporated Landsat imagery
with GEDI-derived canopy height metrics to generate global 30 m canopy height map, while Lang et al.
(2023) incorporated the same LiDAR measurements with Sentinel-2 images for global 10 m canopy height
map. As deep learning exhibits great performance in high-resolution image interpretation, Tolan et al. (2024)
deployed advanced deep learning algorithm to produce global 1 m canopy height estimation map with the
integration of airborne LiDAR data and Maxar optical imagery. However, it should be noted that errors
may be introduced by these modelled global products when applied in biodiversity models, as global
datasets are designed to represent general vegetation patterns rather than specific species (Moudry et al.,
2024). Several global mangrove canopy height products have been developed with spatial resolutions of 30
m (Aslan and Aljahdali, 2022; Simard et al., 2019; Yu et al., 2024) and 12 m (Simard et al., 2025), but there
is limited understanding of their consistency at a local scale or intercomparison between them (Stovall et

al., 2021).

Since increasing mangrove conservation and restoration efforts have been being carried out, there is a need
to establish effective mangrove monitoring systems (Eger et al., 2022; Lovelock et al., 2022). Worthington
et al. (2020) illustrated a new platform for visualizing and disseminating global mangrove dataset to
stakeholders, including scientific communities, non-governmental organizations, governmental agencies,
and those involved in restoration efforts. Gatt et al. (2022) developed a framework of key metrics and
indicators on mangrove forest restoration, aiming at evaluating restoration efforts for restoration
practitioners and providing the baseline for future restoration. As big data and remote sensing approaches
have developed rapidly, particularly in spatiotemporal resolutions, mangrove monitoring systems are
anticipated to be more dynamic (i.e., near-term) and frequently updated through high-frequency spaceborne
observations. This will enable the timely mobilization of on-the-ground resources to address emerging
threats to mangroves, while also allowing iterative comparisons between predictions and new observations,

ultimately enhancing adaptive mangrove management (Dietze et al., 2018).
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2.5 Summary

This chapter summarizes various remote sensing data and approaches in mangrove research, including
distribution mapping and species discrimination, LAl and AGB estimation, and resilience investigation.
Each remote sensing data source exhibits distinct strengths and limitations. For example, optical imagery,
with broader spectral range, enables more detailed mangrove species discrimination compared to SAR
imagery; on the other hand, SAR imagery is less affected by cloud cover and time of acquisition than optical
imagery. Spaceborne LiDAR measurements provide large scale three-dimensional information for
mangrove vertical structure investigation but lack the provision of wall-to-wall data coverage. Based on
these remote sensing data, the approaches in mangrove research are mainly grouped into parametric and
non-parametric methods, alongside visual interpretation and object-oriented methods. These data and
approaches can be introduced individually or combined for challenging research objectives. Furthermore,
the advancement of deep learning with multisource data fusion shows significant potentials in high-
resolution canopy height estimation and dynamic mangrove monitoring system, propelling mangrove

research with more comprehensive insights.
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Abstract

Estimation of mangrove aboveground biomass (AGB) is important for investigating mangrove health,
succession and carbon storage. Canopy height is one of the best performing explanatory factors of AGB.
As mangroves are normally located in low-lying and flat coastal regions, earth surface models can be used
for canopy height investigation with the assumption of negligible topographic impacts. However, there is
limited knowledge of the performance of using earth surface models for determining canopy height and
AGB estimation at a local scale. In this study, three freely accessible Digital Elevation Models (DEMs),
1.e., NASADEM, ALOS DSM and Copernicus GLO-30 DEM, were used to estimate mean canopy height
and AGB for two mangrove forests of the central coast of the Gulf of Mexico (El Llano and La Mancha)
by applying a power law equation for plot level aboveground biomass and mean canopy height. Even
though the introduced DEMs represent different nominal time periods, plot-level mean canopy heights
show high agreement with the DEMs as intact and well-established mangrove forests exhibit canopy height
changes at finer resolution, where the DEMs with 30 m resolution suffice to demonstrate the distribution
of mean canopy height. An ordinary least squares regression using field plot measurements achieved an R?
of 0.61 between plot-level mean canopy height and AGB. Fixed 100 m ICESat-2 ATLOS segments were
used to calibrate the DEMs for reducing the bias introduced from different DEM generation methods.
Mangrove AGB of El Llano lagoon was predicted to in the range of 35.22 — 211.56 Mg/ha through
NASADEM, 50.02 — 237.00 Mg/ha through ALOS DSM and 49.26 — 238.41 Mg/ha through Copernicus
GLO-30 DEM at the 5™ and 95" percentile. Mangroves around La Mancha lagoon were predicted to have
AGB in the range of 106.75 — 468.78 Mg/ha through NASADEM, 92.91 — 438.49 Mg/ha through ALOS
DSM and 67.61 — 435.69 Mg/ha through Copernicus GLO-30 DEM at the 5™ and 95" percentile. Error
propagation for mangrove AGB estimation involved regression coefficient error and mean canopy height
estimation error, resulting in the standard error o455 varying between + 151.78 — 154.95 Mg/ha (~30% of
the estimated AGB) for stands with estimated mean canopy height H,,,.4,, =15 m. The results of this study
show comparable AGB estimates of the study area and the feasibility of using freely accessible DEMs for
mean canopy height and AGB estimation of mangrove forests, providing further opportunities in the

validation of global biomass estimations of mangroves.

Keywords: Mangrove aboveground biomass estimation; Digital elevation models; Spaceborne LiDAR

data; La Mancha and El Llano lagoons, Mexico
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3.1 Introduction

Mangroves occupy the transition between land and sea in tropical and sub-tropical regions, providing
critical ecosystem services, including feeding and breeding habitats (e.g. Arceo-Carranza et al., 2021),
protecting coastlines (e.g. Zhang et al., 2022), and sequestering carbon (e.g. Rosa et al., 2022). As one of
the most productive ecosystems, mangroves store organic carbon per unit area with a mean value of 738.9
+27.9Mg/ha where the sequestration rate is 1.796 Mg/ha per year (Alongi, 2020). Mangroves are therefore
perceived as efficient blue carbon sinks that help mitigate climate change at national and global scales
(Song et al., 2023; Taillardat et al., 2018; Uddin et al., 2023). However, confronted with human activities
and climate change, there had been 284,000 ha of mangrove net loss between 2000 and 2020, though about
half of the total loss was counteracted by mangrove afforestation (3,930 km?) (FAO, 2023). As aboveground
biomass (AGB) is a proxy for above ground carbon stock and ecosystem resilience, quantifying AGB is
important, not only to better understand the role of mangroves in the global carbon cycle, but also to
quantify mangrove ecosystem dynamics (Duncan et al., 2018; Harishma et al., 2020; Jones et al., 2020;

Tang et al., 2018; Worthington et al., 2020).

AGB, also referred to as aboveground biomass density, is the total amount of living plant material (biomass)
found above the ground surface in a particular area or ecosystem. It is accurately calculated from harvested
or felled trees using laboratory weighing (Kauffman and Donato, 2012; Smith and Whelan, 2006). However,
this destructive approach can be time consuming and often challenging to perform in areas that are difficult
to access (Komiyama et al., 2005, 2008). To simplify AGB quantification, allometric equations can be
developed using single measurements, i.e., diameter at breast height (DBH) or canopy height. For a given
individual tree, the allometric equations are formulated as power-law functions, such as M = aX®, where
M represents tree mass (dry weight), X represents DBH or canopy height, and a and § are the model’s
fitted parameters. These equations are developed by felling trees to measure their heights and DBH, and
then samples of their stems, branches and leaves are oven dried to determine dry weight (Chave et al., 2005;
Day et al., 1987; Fromard et al., 1998; Komiyama et al., 2005; Smith and Whelan, 2006). After the
allometric equations are determined, they are applied to all the individual trees in plots (defined areas) of
whole forests. The total AGB of a plot equals the sum of the individual masses expressed in tonnes dry

weight per hectare (Mg/ha).

There are however considerable limitations associated with fieldwork in mangrove forests, such as
restricted access and limited opportunities for height measurements under dense canopies. Remote sensing
enables consistent large area surveys and has been utilised in the retrieval of mangrove cover and vegetation

structure data (e.g., Maurya et al., 2021; Tran et al., 2022; Wang et al., 2019; Worthington et al., 2020).
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This facilitates local, regional, or even global AGB mapping in areas with limited field data using the
relationships between mangrove AGB and predictor variables derived from remotely sensed data (Pham et

al., 2019).

Canopy height is considered a key biophysical parameter to estimate aboveground biomass (Chave et al.,
2005, 2014). The availability of Digital Elevation Models (DEMs) allows for the estimation of mangrove
canopy height with an assumption that mangroves exist in low-lying and flat coastal regions at sea level
resulting in minimal impact from topography (Simard et al., 2006, 2019). Since the first near-global Shuttle
Radar Topography Mission (SRTM) DEM was released in 2003, more advanced DEMs with a similar
spatial resolution of approximately 30 meters, such as the ASTER GDEM, Copernicus GLO-30 DEM and
ALOS DSM (Digital Surface Model) have become available. These DEMs were generated using data
sources mainly acquired in a specific time period but remain stable over time with a medium resolution of
30 m representing canopy height distribution in mature, intact mangrove forests as finer changes in the
mangrove forests do not disturb the measurements (Lagomasino et al., 2016). This characteristic makes it
feasible to investigate canopy height distribution of mangroves and facilitate AGB estimation with canopy
height-based allometric equations. Various studies have been carried out at a continental or global scale
(Aslan and Aljahdali, 2022; Fatoyinbo and Simard, 2013; Simard et al., 2008, 2019; Tang et al., 2018), but
there is limited knowledge of the performance of these DEMs for the estimation of mangrove canopy height

and AGB at a local scale.

Mangrove forests around La Mancha and El Llano lagoons in Mexico are Ramsar sites of international
ecological importance (Ramsar, 2004), however there is a lack of local AGB estimation of the area. This
study aims to quantify mangrove AGB of these areas based on canopy height estimation, and to examine
and compare the performance of DEMs for canopy height and AGB estimation at the forest scale. A
comparison was conducted among mangrove AGB estimates derived from canopy height-based allometric
equations in which canopy height was retrieved from different DEMs. Three freely accessible 30 m DEMs
were analysed: 1) NASADEM, 2) ALOS DSM and 3) Copernicus GLO-30 DEM, which represent global
vegetation surfaces. Due to the sensitivities of sensors, different vertical datum and time frames, there are
discrepancies between DEMs. As LiDAR measurements have the best vertical accuracy aligned to geodetic
benchmarks (Carrera-Herndndez, 2021) and come with larger footprints than forest plot sizes, the DEMs,
processed to the same datum, were calibrated with spaceborne ICESat-2 LiDAR data. Google Earth Engine
(GEE) was used in this study for data processing and analysis. This study illustrates the performance of
freely accessible DEMs for estimating mangrove mean canopy height and AGB, permitting enhanced

validation and comparison of global biomass data and above ground carbon stock investigation.
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3.2 Materials and methods

3.2.1 Study sites

The study area incorporates the lagoons of La Mancha (19°33’ - 19°36' N, 96°22' - 96°24" W) and El Llano
(19°38" - 19°40" N, 96°24' - 96°25' W) in the state of Veracruz, Mexico, along the central coast of the Gulf
of Mexico (Figure 3-1). Four mangrove species are found at the study area: Avicennia germinans,
Rhizophora mangle, Laguncularia racemosa, and Conocarpus erectus. The climate is recognized as sub-
humid warm climate (Aw2) with annual precipitation fluctuating between 1000 and 1500 mm and the mean
annual temperature of approximately 24°C (Méndez-Alonzo et al., 2012). The extent of the waterbody of
La Mancha and El Llano lagoons is 135 ha and 226 ha, respectively (Chavez-Lopez and Rocha-Ramirez,
2020; Vovides et al., 2021). La Mancha lagoon receives fresh water mainly from a river (Cafio Gallegos)
in the southern end, and marine water through an intermittently opened inlet in the north-eastern to the Gulf
of Mexico (Chacén Abarca et al., 2021; Chavez-Ceron et al., 2016; Harte Research Institute for Gulf of
Mexico, 2021a). This geomorphologic arrangement, irrespective of season, results in a salinity gradient that
increases northwards, influencing the mangrove species zonation. The northernmost side is dominated by
A. germinans with few R. mangle, while A. germinans and R. mangle or A. germinans and L. racemosa co-
dominate towards the south of the lagoon (Méndez-Alonzo et al., 2012; Vovides et al., 2018). C. erectus
accounts for a small number of trees, normally situated in the eastern side of the area (Moreno-Casasola et

al., 2009).

In contrast to La Mancha lagoon, the salinity of El Llano lagoon is mostly regulated by marine water
through an inlet in the north-eastern part which only opens up to the Gulf of Mexico during rainfall.
Spanning from November to January every year (dry season), a sandy bar naturally emerges separating the
lagoon from the ocean. This occurrence results in the lagoon experiencing hyper-salinity during the low-
water season (Chéavez-Lopez and Rocha-Ramirez, 2020; Harte Research Institute for Gulf of Mexico,
2021b). Oysters, clams and shrimp are fished regularly in both lagoons (Ramsar, 2004). The Instituto de
Ecologia, A.C. (INECOL) is located on the site, supporting ongoing research activities and developing

community management plans.
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Figure 3-1. Location of the study sites on the east coast of Mexico, connecting with the Gulf of Mexico (denoted with a red star)
where red patches represent the mangrove forests bordering the lagoons of El Llano (north) and La Mancha (south), respectively.
The mangrove extent was delineated for the year of 2020 obtained from CONABIO geoportal
(http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/biodiv/monmang/bimagdmo/mx_man20gw). The base map was
rendered through Esri World Image.

3.2.2 Field data collection

Permanent monitoring plots were established in the mangrove forests surrounding the lagoons of La

Mancha and El Llano in 2010 and 2017. In 2010, 12 permanent plots (10 with 30 X 30 m, and two with
20 X 20 m) were analysed, where trees with stem diameters >2.5 cm were tagged and measured (Vovides

et al., 2018). A follow-up visit in 2017 established a new plot with 30 x 30 m (Vovides et al., 2021).
Between 27 June and 13 July 2022, a total of 11 field plots were investigated, where six plots were located
at El Llano lagoon, and five at La Mancha lagoon. Plot size varied in relation to stand density. Around the
lagoon of El Llano, three plots of 10 x 10 m were delimited in the west of the lagoon and three plots of the
same size on the east, neighbouring a system of stabilized dunes. Around La Mancha lagoon, two 10 x 10
m plots and two 15 X 15 m subplots within existing 30 x 30 m permanent plots were established on the
northern side, while a 20 x 20 m plot, specifically intended for large R. mangle trees, was sampled on the
southeastern side of the lagoon. Species id, stem diameter (cm) at 1.3 m from ground surface, and tree

height (m) were recorded within each plot. Additionally, trunk diameter at lowest living branch, canopy
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width and length in the case of shrubs or young trees, and diameter above the highest prop root in the case
of R. mangle were also recorded. The coordinates of all four corners of each plot were recorded using a
Geode multi-GNSS receiver GNS2 which has a horizontal accuracy of 60 cm at 95% — 98% precision
(2DRMS, twice the distance root mean square). In total, 24 field plot measurements were used for this study,

comprising 6 plots at El Llano and 18 plots at La Mancha (Figure 3-2).

Figure 3-2. The location and numbering of the plot centroids in the mangrove forest around the lagoons of El Llano (A) and La
Mancha (B). Field measurement plots are coloured for different periods. The base map is rendered through Esri World Image.

3.2.3 Mangrove extent maps

Mexico’s Mangrove Monitoring System (SMMM, acronym in Spanish), mandated with cartographic
information retrieval of mangroves through remote sensing technology, has generated national mangrove
extent maps of Mexico for five time points: one composite map for the 1970-1980 period, and subsequent
maps for 2005, 2010, 2015, and 2020 (Rodriguez-Zuiiiga et al., 2022). The maps of 2005, 2010 and 2015
represent the distribution of mangroves using SPOT 5 satellite images with a spatial resolution of 10 m
(Valderrama-Landeros et al., 2020). These datasets were coordinated and delivered by the National
Commission for the Knowledge and Use of Biodiversity (CONABIO) which is a Mexican inter-ministerial
commission created in 1992 to form and develop the National System of Information on Biodiversity,

Mexico (CONABIO, 2023a, 2023b). In this study, 2005, 2010 and 2015 mangrove extent maps of the study
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area were downloaded and used to delineate mangrove boundaries, corresponding to the nominal years of

the DEMs.

3.3 Digital Elevation Models (DEMs)

3.3.1 NASADEM

The Shuttle Radar Topography Mission (SRTM) deployed two Synthetic Aperture Radars (C and X bands)
mounted on the space shuttle Endeavor to capture the topography of the Earth in February 2000 and
generated the near-global digital elevation model (Farr et al., 2007). Since its original release, the SRTM
DEM has been improved (Grohman et al., 2006; NASA JPL, 2013). This study used the latest version of
the SRTM DEM, NASADEM, with a resolution of 1 arc-second (approximately 30m). This dataset has
been produced by reprocessing the original SRTM radar data and reducing voids with improved

interferometric unwrapping algorithms, using ICESat data for better vertical control (Crippen et al., 2016).

3.3.2 ALOS World 3D-30m

ALOS World 3D-30m (AW3D30) is a global DSM dataset with a spatial resolution of approximately 30
m. This dataset was resampled from 5 m ALOS World 3D (AW3D) DSM produced from millions of
satellite stereoscopic images from 2006 to 2011 acquired by ALOS PRISM (Advanced Land Observing

Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping) (Tadono et al., 2014; Takaku et al.,

2014).
3.3.3 Copernicus GLO-30 DEM

The Copernicus DEM, derived from an edited global DSM named WorldDEM, is provided in three
instances: EEA-10 (European coverage), GLO-30 and GLO-90 (global coverage) with the resolutions of
approximately 10 m, 30 m and 90 m, respectively (ESA, 2022). The WorldDEM with a resolution of 12 m
is based on the Synthetic Aperture Radar data (X band) acquired during the TanDEM-X Mission spanning
from 2011 to 2015, which is funded by a Public Private Partnership between the German Aerospace Centre
(DLR) and Airbus Defence and Space (Riegler et al., 2015). Significant terrain and hydrological corrections
have been made to the Copernicus DEM, such as water body flattening, river consistency, water lines and
implausible terrain structures editing (AIRBUS, 2022). To enable comparison with the other two DEMs,
Copernicus GLO-30 DEM was used to extract elevation values over the study area. Since Copernicus DEM

deploys EGM2008 as a vertical datum, prior to the quantitative assessment, the vertical reference system
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of Copernicus DEM is transformed from EGM2008 to EGM96 to provide a consistent comparison. The
orthometric height (elevation data of DEM) conversion between EMG96 and EGM2008 was carried out
using the MSP GEOTRANS 3.9 datum transformation tool (Table 3-1).

Table 3-1. Summary of key characteristics of NASADEM, ALOS DSM, and Copernicus DEM.

Data product Pixel spacing  Time span  Vertical datum Absolute vertical accuracy

NASADEM 2000 EGM96 <9 m (90% linear error)

ALOS DSM Approx. 30 m  2006-2011 EGM96 4.40 m (Root mean square error)
Copernicus DEM 2011-2015 EGM2008 <4 m (90% linear error)

3.4 ICESat-2 LiDAR data

ICESat-2 (Ice, Cloud, and land Elevation Satellite 2) is the successor to the ICESat mission, launched in
2018. The spacecraft carries a single instrument onboard, the Advanced Topographic Laser Altimeter
System (ATLAS), and operates in a near-polar orbit with a 91-day exact repeat cycle. The ATLAS is a
photon counting lidar altimeter that transmits visible laser pulses with a wavelength of 532 nm (green),
measuring the travel time of laser photons from ICESat-2 to earth and back. Six beams are coupled in three
pairs and generate nominal 14 m footprints sampling every 0.7 m along track. Each pair is separated by 3.3
km and the beams in each pair are spaced about 90 m apart comprising one strong beam and one weak
beam at an energy ratio of 4:1 (Neumann et al., 2019). The land and vegetation height product (ATLO0S)
was adopted in this study, which contains along-track heights for the ground and canopy surfaces. The
product is processed in fixed 100 m segments (14 x 100 m), typically including more than 100 signal
photons. As the geophysical boundary of the study area was set, 84 segments of ATLOS data (version 006)
from 30 September 2019 to 16 July 2024 were returned and downloaded (in units of meters) from the
NASA Earthdata Search website (https://search.earthdata.nasa.gov/search).

3.5 DEM calibration

In this study, DSM and DEM are interchangeable as the introduced topographic models represent
vegetation surface on the earth. However, different from ALOS DSM, NASADEM and Copernicus GLO-
30 DEM are derived from interferometric Synthetic Aperture Radar (SAR) data, whereby NASADEM,
derived from SRTM C-band microwave data, does not record the top of vegetation canopy but the
interferometric scattering phase centre of the canopy. Thus, to reduce the elevation bias introduced by
different DEM generation methods, ICESat-2 ATL08 segment data was utilised to calibrate DEMs as the
segments are larger than the field plots and better for representing natural height variability. Since the

segments are not square along the track, the centroids of the first and last segments were used to calculate
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the track inclination, and then, generated a rectangular buffer of 100 x 14 m around the centroids of the
segments. The elevation values of DEMs were averaged over overlapping segment areas and compared
with mean canopy height (‘h mean canopy’) in the corresponding segments. The mean canopy height

information is relative to the ground and therefore independent from the vertical datum.

Linear regression models with OLS were fitted to relate ATLO8 mean canopy height to DEM elevation
values (Figure 3-3). The resulting calibration equations (Table 3-2) were subsequently applied to generate

DEM-based mean canopy heights across the study area.
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Figure 3-3. Scatter plot with fitted linear regression models (95% confidence intervals) comparing mean canopy height within
each 100 m ICESat/ATLAS ATLO08 segment against mean DEM elevation values at the corresponding segments over the study
area.

Table 3-2. Calibration of DEMs using ICESat-2 ATLO8 segments with regression equations and accuracy metrics, where
Hyasapem> Harospsm»> and Heoppry represent original elevation values of NASADEM, ALOS DSM and Copernicus GLO-30
DEM, respectively; NASADEMH,,04r, » ALOSDSMH, 0, , and COPDEMH ., are new datasets of mean canopy height
estimation.

DEM calibration equations R?> RMSE (m)
NASADEMH,ppqn = 0.73 X Hyasapem + 348 050  2.45
ALOSDSMH,ppq = 0.57 X Hypospsy + 137 049 2.49

COPDEMH,ppqn = 0.69 X Heoppem +2.97 051 2.43
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3.6 Field AGB estimation methods

As there are no site-specific allometric equations for the study area, a generalised allometric equation
developed for pantropical forests of the world (Chave et al., 2014) was employed in this study. This
equation integrates tree diameter, height and species-specific wood density as covariates, developed with
more field inventory data, thereby reducing bias across tropical forest types compared to earlier models
(Chave et al., 2005). Considering the demonstrated applicability and frequent application in mangrove
studies (Simard et al., 2019), this allometric equation provides a reliable basis for AGB estimation in the
absence of locally developed models. Wood density of different mangrove species was retrieved from the
Global Wood Density Database (Zanne et al., 2009). The generalised allometric equation and wood density

for each mangrove species are presented in Table 3-3.

Table 3-3. Allometric equation for estimating mangrove aboveground biomass of the study area, where p, AGB, D, and H
represents wood density (g/cm?), aboveground biomass (kg), diameter at breast height (cm) and canopy height (m), respectively.

. . . Wood densit
Species Equation Region Reference ©0 e?SI Y
(g/cm’)
A. germinans 0.67
R. mangle . Chave et al. 0.84
AGB = 0.0673 x (pD?H)%%7¢ P 1
L. racemosa G 0.0673 % (p ) antropica (2014) 0.6
C. erectus 0.69

Additionally, to assess the sensitivity of AGB estimation to allometric model selection, AGB was also
calculated using allometric equations developed for American mangrove species in Laguna de Términos,
Mexico (Day et al., 1987), French Guyana (Fromard et al., 1998) and the Everglades, Florida, USA (Smith
& Whelan, 2006) (Table 3-4). These allometric equations are specific to mangrove species that are the
same as the ones in the study area, except for C. erectus. Following Castafieda-Moya et al. (2013) and

Simard et al. (2006), the allometric equation of L. racemosa was applied to C. erectus due to similar growth

forms.
Table 3-4. Regression equations developed by other studies.
Species DBH range (cm) Equation Reference
A. germinans 1-10 InAGB = 2.3023 X InDBH — 1.5852
L. racemosa 1-10 InAGB = 2.1924 X InDBH — 1.5919 Day et al. (1987)
R. mangle 1-10 InAGB = 2.5072 X InDBH — 1.5605
A. germinans 1-42 AGB = 0.140 x DBH?**
L. racemosa 1-10 AGB = 0.102 x DBH?*® Fromard et al. (1998)
R. mangle 1-32 AGB = 0.128 X DBH?*®
A. germinans 0.7-21.5 log,y AGB = 1.934 X log,, DBH — 0.395
L. racemosa 0.5-18 log,y AGB = 1.930 X log,, DBH — 0.441 Smith & Whelan (2006)

R. mangle 0.5-20 logyo AGB = 1.731 X log,o DBH — 0.112




75

3.7 Allometric modelling of plot-level biomass and canopy height

A power-law function of M = aX? was used to yield the relationship between plot level AGB and mean
canopy height, where M and X denote plot level AGB and plot level mean canopy height, respectively, a
and S are the fitted parameters using field inventory measurements. The power-law function was linearized
as InAGB = a + fInHpeqn, Where a = Ina, Hyeqn represents the mean canopy height of each plot.
Ordinary Least Squares (OLS) was used to fit this log-linear regression model by minimizing the sum of
the squares of the differences between In AGB and In AGB (estimated from the linear regression equation).
However, there is a systematic bias resulting in the biomass underestimation in the original unit when log-
transformation was applied to the input data (Baskerville, 1972). Thus, for the unbiased estimation,

Baskerville (1972) introduced a correction factor (CF) to the conversion of logarithmic estimates to
2
arithmetic units; CF = exp (c?), where 02 stands for sample variance of the logarithmic equation. The

. . . .o _ RSS . . .
unbiased estimate for 62 is 6% = — where RSS stands for the sum of squared residuals and m is residual

degree of freedom (Clifford et al., 2013). CF should be multiplied to the AGB estimates; that is, AGB =

RSS

2'm

exp (d + BIn Hypegn + ) where for a given H, .4, AGB is the unbiased estimates in the arithmetic unit

(Mg/ha) for the given mean canopy height H,,.4,, With the regressed constant @ and coefficient .

Applying this method to the plot-level AGB estimates in the study area, derived from field inventory data

using the allometric equation in Table 3-3, the regression model was obtained as
InAGB = 1.23 + 1.82 X In Hyppyy (R2=0.92,p<0.001)  (Equation 3.1)

where intercept a = 1.23 with standard error g, = 0.26 and slope f = 1.82 with standard error gg = 0.12.
After incorporating the correction factor, the power-law function was yielded as:
AGB = 3.64 X Hppoan ™ (Equation 3.2)

with an R? of 0.61 and an RMSE at 87.25 Mg/ha. This equation was then applied to the calibrated DEMs
elevation values for DEM-based AGB estimation (Figure 3-4).
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Figure 3-4. Scatterplot and model-fit of aboveground biomass as a function of mean canopy height (Hy,e,n) for the field plots.
OLS linear regression model with logarithmic transformation (left); Power-law function in arithmetic unit transformed from
linear regression model in logarithmic unit including the correction factor (right).

3.8 Results

3.8.1 Field mean canopy height and AGB estimates

Based on the field measurements of the study area, the summary statistics for each mangrove species
demonstrate a wide range of tree measurements (Table 3-5). The plot-level AGB estimates therefore vary
from 2.31 to 577.43 Mg/ha (Table 3-6). Compared with the mangrove forest around El Llano lagoon, higher
AGB with higher mean canopy height was investigated in the mangrove forest around La Mancha (172.78-
577.43 Mg/ha; 7.87-14.68 m). In this study, most of field inventory data fall within the DBH range (5-103.4
cm) except for Plot 9 which is situated to the east of El Llano lagoon with a young 4. germinans stand and
was not previously defined as mangrove (Figure 3-2). To incorporate AGB estimates across the entire
range of mangrove canopy heights, the field AGB estimation of Plot 9 is included in the development of

the proposed regression equation.

Table 3-5. The summary statistics of field measurements based on mangrove species.

) DBH (cm) Canopy height (m)
Species Min Max Mean Min Max Mean
A. germinans 0.5 103.4 17.5 0.2 31 9.2
R. mangle 0.7 82.7 8.7 1.2 25.2 8.1
L. racemosa 1.8 54.8 27.8 2.7 322 17.5
C. erectus 2.3 19.5 6.8 1.5 7.5 3.6




Table 3-6. Summary of mangrove tree data per plot (n = 24).

Plot Region Year I:)Ig?:eesr Plot size (m?) D;)Té?:;t Mean Cag?ll; y height AGB (Mg/ha)
1 ElLlano 2022 12 100 A. germinans 5.23 48.43
2 ElLlano 2022 9 100 A. germinans 6.30 127.71
3 ElLlano 2022 73 100 A. germinans 5.16 83.41
4 ElLlano 2022 27 100 A. germinans 3.87 49.96
5 La Mancha 2022 11 100 L. racemosa 14.57 577.43
6  LaMancha 2022 14 225 R. mangle 12.09 270.02
7 La Mancha 2022 11 225 A. germinans 11.01 172.78
8 LaMancha 2022 17 100 R. mangle 8.35 177.45
9 ElLlano 2022 43 100 A. germinans 0.86 231
10 ElLlano 2022 17 100 C. erectus 3.83 25.26
11  LaMancha 2022 15 400 R. mangle 14.49 239.49
12 LaMancha 2010 58 400 A. germinans 11.71 395.62
13 LaMancha 2010 58 900 R. mangle 14.68 459.66
14 LaMancha 2010 123 900 R. mangle 9.89 322.38
15 LaMancha 2010 83 900 A. germinans 10.25 312.67
16 LaMancha 2010 47 900 A. germinans 11.52 252.14
17 LaMancha 2010 54 900 A. germinans 10.56 189.44
18 LaMancha 2010 38 900 A. germinans 10.38 187.57
19 LaMancha 2010 27 900 A. germinans 9.59 224.22
20 LaMancha 2010 56 400 A. germinans 7.87 331.95
21 LaMancha 2010 43 900 A. germinans 12.21 246.78
22 LaMancha 2010 77 900 A. germinans 12.06 408.16
23 LaMancha 2010 80 900 A. germinans 10.06 327.94
24  LaMancha 2017 58 900 A. germinans 12.29 230.76

3.8.2 Comparison between different allometric equations

71

Plot-level AGB estimates derived from the pantropical equation (Chave et al., 2014) exhibited a broader

range than those obtained from localised allometric equations developed in Mexico, French Guiana, and

the Everglades (Figure 3-5). Kernel density distributions show that Smith & Whelan (2006) generated

significantly constrained values while central tendencies are generally consistent. The allometric equations

of Day et al. (1987) and Fromard et al. (1998) produced similar estimates, but both of them were limited to
derive AGB values higher than 500 Mg/ha.
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Figure 3-5. Kernel density distribution of plot-level AGB estimates derived from different allometric equations for the study

area.

3.8.3 Performance of DEM calibration against field measurements

The calibrated Copernicus GLO-30 DEM was found to have the highest agreement with plot-level mean

canopy heights over the study area with an R? of 0.82 and an RMSE of 1.51 m, followed by the calibrated
NASADEM (R?: 0.76, RMSE: 1.76 m) and ALOS DSM (R?: 0.73, RMSE: 1.88 m) (Figure 3-6a). Also,
the AGB estimates derived from the calibrated Copernicus GLO-30 DEM using Equation (3.2) agreed the
most with plot-level AGB with the R? of 0.66 and the RMSE of 81.93 Mg/ha, while using the calibrated
ALOS DSM (R?: 0.54, RMSE: 95.09 Mg/ha) yielded a slightly better agreement than the calibrated

NASADEM (R%: 0.49, RMSE: 99.91 Mg/ha) (Figure 3-6b).
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Figure 3-6. Field canopy height and AGB measurements against the estimations derived from calibrated DEMs with 95%
confidence intervals: (a) plot-level mean canopy height and (b) AGB.
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3.8.4 Mangrove AGB mapping based on calibrated DEMs

Compared to mean canopy height distribution of calibrated DEMs over mangroves in El Llano, the values
over La Mancha mangroves ranged up to ~16 m (Figure 3-7). However, unexpectedly high values of
NASADEM and Copernicus GLO-30 DEM were observed for El Llano mangroves, leading to anomalously
high AGB estimates in a small southeastern area (Figure 3-8, Figure 3-9). Generally, all the calibrated
DEMs demonstrate comparable quartiles of height estimates over mangroves for each area. Due to data
sources of different time periods for DEM generation, calibrated ALOS DSM and Copernicus GLO-30
DEM demonstrated an increase in the distribution of higher height values as mangroves might have
increased in height. For instance, mean canopy heights of La Mancha mangrove forests were distributed

more at higher values in Copernicus GLO-30 DEM (10.34 m at 50'") than NASADEM (10.05 m at 50').
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Figure 3-7. Probability density function of mean canopy heights over the mangrove forests around El Llano and La Mancha
lagoons from calibrated DEMs using Gaussian kernel density estimation. Dash lines from bottom to top denote the values at 25%,
50" and 75" percentile, respectively.

Equation (3.2) was applied to calibrated DEMs for mangrove AGB estimation (Figure 3-8). Consistent
with height estimates, mangroves on the south of La Mancha lagoon were predicted to have higher AGB,
while El Llano mangroves had lower AGB distributed in the range of 35.22 — 211.56 Mg/ha using
NASADEM, 50.02 —237.00 Mg/ha using ALOS DSM and 49.26 — 238.41 Mg/ha using Copernicus GLO-
30 DEM at the 5™ and 95™ percentile. La Mancha mangrove forests were predicted to have AGB distributed
in the range of 106.75 — 468.78 Mg/ha using NASADEM, 92.91 — 438.49 Mg/ha using ALOS DSM and
67.61 — 435.69 Mg/ha using Copernicus GLO-30 DEM at the 5™ and 95™ percentile (Figure 3-9). The
distribution of AGB estimates exhibits similar patterns to mean canopy height estimates from calibrated

DEM:s.
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Figure 3-8. AGB estimation based on three calibrated DEMs of El Llano mangroves (left column) and La Mancha mangroves
(right column). (a), (b) for NASADEM,; (c), (d) for ALOS DSM, (e), (f) for Copernicus GLO-30 DEM. The base map is rendered
through Esri World Image. Note that a diagonal black stripe situated in the southwest of mangrove extent maps of La Mancha
lagoon is a physical gap (pathway) separating the mangrove forest.
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3.8.5 Comparisons between AGB estimation maps

The spatiotemporal variation of the AGB results was investigated over the study area for El Llano
AGB;—AGB;
AGB;

For El Llano mangroves, the AGB estimation results of ALOS DSM and Copernicus GLO-30 DEM are
nearly 30% higher than NASADEM. Considering NASADEM sourced from the data in 2000 and natural

mangroves and La Mancha mangroves using difference percentage (i.e., Dif f% = X 100%).

growth of mangroves, NASADEM captured lower canopy heights of that time resulting in lower AGB
estimation (Figure 3-10a, b). The reported AGB accumulation rates for mangroves average 3.3 Mg/ha/yr
(95% CI: 3.1 - 3.5) in tropical dry areas (IPCC, 2014), which also characterises the climatic conditions of
the study area. It is a similar situation for the landward and seaward edges of La Mancha mangroves (Figure
3-10b, f), where mangroves may experience significant changes, such as establishment and harvesting.
AGB estimations of the south of La Mancha mangroves derived from ALOS DSM and Copernicus GLO-
30 DEM were in higher agreement between + 12% difference (Figure 3-10d). Additionally, the mangrove
AGB maps (AGBy asapem> AGBarospsm> AGBcoppem) of this study show comparable R? values (0.74 for
AGBpyasapEm VS- AGBarospsm » 0.72 for AGByasapem VS- AGBcoppem and 0.78 for AGB4rospsu VS-

AGBcoppgy) and the RMSE of around 60 Mg/ha (Figure 3-11).

The 30m global mangrove AGB estimation map from Simard et al. (2019) was introduced for

intercomparisons. This map was generated by applying the field-measured biomass—height allometry to
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SRTM estimates of basal area weighted canopy height across the global mangrove extent. Simard’s map
predicts a lower AGB over the mangrove forests in the study area, where the corresponding R? values are
-0.90, -1.23 and -1.16 for AGBNASADEM . AGBALOSDSM, AGBCOPDEM VS. AGBSimard , while ShOWing

apparent linear relationships with the AGB estimation results (Figure 3-11).

Figure 3-10. Differences between mangrove AGB estimates of El Llano (left two columns) and La Mancha (right two columns)
based on three calibrated DEM. (a), (b) for ALOS DSM vs. NASADEM,; (c¢), (d) for Copernicus GLO-30 DEM vs. ALOS DSM;
(e), (f) for Copernicus GLO-30 DEM vs. NASADEM. Left sub-subplot of each paired subplot is in the unit of Mg/ha, while the
right one is in percentage terms. The base map is rendered through Esri World Image.
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Figure 3-11. Pairwise comparisons with linear regression lines between the AGB estimation results derived from NASADEM,
ALOS DSM, Copernicus GLO-30 DEM and Simard et al. (2019). Lower triangle plots are colour coded density plots as colour
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3.9 Discussion

3.9.1 Uncertainty of mangrove AGB estimation

This study demonstrates the feasibility of using global DEMs for estimating the AGB of two local mangrove
forests in Mexico. The main sources of uncertainty result from errors in DEM-derived mean canopy height
estimation and errors in plot-level biomass-height model. Field measurement errors and spaceborne LiDAR
measurement errors are not considered here as ICESat-2 LiDAR metrics have low errors for mangrove
canopy height estimation (Yu et al., 2022) and are deemed as canopy height reference to calibrate DEMs

while field data were acquired through averaging repeated measurements. Thus, the uncertainty of the
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proposed methodology for mangrove AGB estimation was computed as standard errors by propagating

mean canopy height errors into plot-level AGB estimation errors. This was expressed as:

dAGB \* 9AGB\* dAGB\* dAGB 0AGB .
— 2 2 2 - 2 Equation 3.3
Oacs J(aymea) Hmean+( 3a ) % +< 3B > % +2< 3a_ 0B )”aﬁ (Eq )

where oy represents standard errors of mean canopy height estimation from DEMs and a(fﬁ is the

covariance between the fitted parameters a and . The standard errors (RMSE) of mean canopy height
estimation using NASADEM, ALOS DESM and Copernicus GLO-30 DEM are shown summarised shown
in Table 3-2. Therefore, the standard errors of mangrove AGB estimation (o455) computed through
Equation 3.3 are varying between + 15.16 — 15.53 Mg/ha for stands with a mean canopy height Hyp,0q, = 1
m, and = 151.78 — 154.95 Mg/ha for H,,cq, = 15 m. Generally, the uncertainty is expected to be reduced

when more field measurements are included for biomass-height allometry development.
3.9.2 Discrepancies between local and global AGB estimates

The AGB estimates obtained in this study are consistently higher than those reported by the global
mangrove AGB map of Simard et al. (2019) (Figure 3-11). These discrepancies primarily stem from the
differences in how biomass-height allometry was developed. As we developed biomass-height allometry
using field measurements of the study area, the structural characteristics of local mangrove forests were
captured. Conversely, Simard’s estimates relied on a global mangrove field inventory, from which a
generalised biomass-height relationship was derived. While the global model provides a valuable baseline
for global-scale assessments, its transferability to specific regions is limited. The global allometry captures

the overall trend but systematically underestimates the values of mangrove AGB in the study area.
3.9.3 Difference among allometric equations for field AGB estimation

The differences in the kernel density distribution of AGB estimates highlight the influence of model
calibration datasets and diameter ranges. The allometric equations from Smith & Whelan (2006) reflect the
limited DBH range of harvested trees used in model development (Table 3-4). Similarly, the equations of
Day et al. (1987) and Fromard et al. (1998) produced more realistic estimates but were developed from
trees with smaller DBH ranges, meaning that many field measurements in this study (0.5-103.4 cm DBH;

Table 3-5) fell outside their validity domains.
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In contrast, the pantropical model of Chave et al. (2014) covers a broad DBH range (5-212 cm) that
overlaps with most field observations in this study, making it more reliable and widely applicable. Although
a small number of mangroves had DBH < 5 cm, Chave’s allometric equation was still applied given the
lack of species-specific models for small individuals in the study area. Despite the availability of several
allometric equations, the broader applicability and better alignment with field measurements justify the

selection of Chave et al. (2014) for mangrove AGB estimation for this study.

3.9.4 Limitations of AGB estimation using DEMs

In this study, DEMs were used to estimate mangrove mean canopy height and AGB based on plot-level
biomass-height allometry. This approach relies on the assumption that mangroves are situated in low-lying
and flat coastal areas where topographic impacts are negligible, which does not compromise DEM-derived
canopy height estimation. In reality, however, coastal topography invariably slopes upward out of the
intertidal areas, leading to systematically higher canopy height estimation at the landward margin of
mangrove forests. Nonetheless, mangroves rarely establish on steep slopes, meaning that DEMs remain
broadly reliable for canopy height retrieval. Cannon et al. (2020) found that hydrodynamic habitat has
shaped the mangrove distribution around a microtidal estuarine lagoon, with more than 90% of mangrove
presence occurring where intertidal slopes were <0.5 and 80th percentile wave heights were <2.5 cm.
Therefore, the impacts of increased slopes will cause significant overestimation of canopy height over a
small number of mangroves and should be explicitly accounted for when higher-resolution or site-specific

analyses are required.

As intact and well-established mangrove forests normally exhibit canopy height changes at finer resolution,
30 m DEMs are sufficient over time to demonstrate mean canopy height and its distribution (Lagomasino
et al., 2016). Additionally, as the mangrove forest around El Llano lagoon is facing higher hydrological
stress, 1.e., high salinity regulated by seawater, it indicates that the growth of large mangrove trees is
suppressed whilst small trees contribute to mangrove growth in high salinity areas (Ahmed et al., 2023).
Though La Mancha lagoon receives freshwater in the south leading to low salinity, mangrove canopy
heights response inversely to increasing salinity as there is a salinity gradient in the La Mancha lagoon
(Vovides et al., 2014). All the factors make the introduced DEMs feasible and reliable to estimate mangrove
canopy height over time across the study area. But the time lag of two decades should be carefully taken
into account when the proposed methodology is applied to Sonneratia species mangroves that can exhibit

significant natural canopy growth in several years (Wang et al., 2021).
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Compared to the limited plot size and number in this study, fixed 100 m segments of ICESat-2 ATLOS were
used to calibrate DEMs in mean canopy height estimation. However, because ICESat-2 data did not overlap
with the established field plots, its accuracy relative to field measurements could not be directly validated
in this study. Despite this limitation, ICESat-2 ATLO0S data are widely considered reliable ground truths for
canopy height, as these spaceborne LiDAR measurements provide high accuracy aligned with geodetic
benchmarks (Carrera-Hernandez, 2021). Copernicus GLO-30 DEM works the best in mean canopy height
and AGB estimation, as it was produced using data sources temporally closer to the field plot measurements
capturing small mangrove tree growth, especially where mangroves do not exist when the data was required
for the generation of NASADEM and ALOS DSM (Figure 3-7). Calibrated ALOS DSM and NASADEM

work similarly for the estimation of mean canopy height and AGB.
3.10 Conclusions

This study presents an approach for using DEMs to estimate AGB for the mangrove forests bordering the
lagoons of La Mancha and EI Llano in Mexico and examines the performance of using DEMs for mean
canopy height and AGB estimation. With an assumption that the underlying environment of mangroves is
flat and low-lying at sea level, DEMs can be sufficiently utilized to estimate canopy height. The metric of
mean canopy relative height from ICESat-2 was used to calibrate DEM height measurements though there

is a time lag between these datasets, since well-established mangrove forests have witnessed few significant

canopy changes and high salinity limits mangrove tree growth. A power-law model AGB = aH,’/fwan was
introduced for the relationship between plot-level AGB estimation and mean canopy height, which was
regressed by OLS using field plot measurements. The standard errors of mean canopy height estimation are
2.45 m, 2.49 m and 2.43 m for NASADEM, ALOS DESM and Copernicus GLO-30 DEM, respectively.
Therefore, the uncertainty was computed through error propagation of mean canopy height estimation
errors and regression coefficient errors of biomass-height allometry, resulting in o455 varying between +
15.16 — 15.53 Mg/ha for stands with mean canopy height H,.4, = 1 m. Mangrove AGB of El Llano and
La Mancha lagoons was estimated to be 212 — 239 Mg/ha and 436 — 469 Mg/ha at the 95" percentile,
respectively. The intercomparisons of DEM-derived AGB estimates show comparable results with the R?
ranging from 0.72 to 0.78 and RMSE ranging from 54.90 to 64.54 Mg/ha, while the comparisons with a
global mangrove AGB estimation map from Simard et al. (2019) show significant discrepancies with
negative R? as the global biomass-height allometry is limited to capture the structural characteristics at a

local scale.

Overall, this study generated local AGB estimation of mangroves bordering the lagoons of La Mancha and

El Llano in Mexico which can be used for future carbon stock assessments and mangrove health and
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resilience investigations. Additionally, this study shows comparable mean canopy height and AGB
estimation using calibrated DEMs, however, more contemporary DEM was recommended to be used for
the investigation of small mangrove tree growth, i.e., Copernicus GLO-30 DEM. As there are about 79.4%
(11,905 km?) of global lagoonal mangroves across North and Central America and the Caribbean region

(Worthington et al., 2020), the proposed methodology is potentially transferable for AGB estimation in

these areas.
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Chapter 4 Aboveground biomass estimation of mangrove
forests across the Americas using multisource remote
sensing data
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Abstract

The estimation of aboveground biomass (AGB) of mangroves serves as an important indicator for carbon
stocks. Since well-established and mature mangrove forests exhibit changes at a finer scale, an accurate
and high-resolution mangrove AGB estimation can facilitate spatially explicit delineation of mangrove
carbon inventory. However, few studies have estimated and mapped finer-scale mangrove AGB (<10 m)
at a continental level due to limited availability of high-resolution remote sensing datasets. This study
proposes a novel approach for high-resolution mangrove AGB estimation that combines plot-level biomass-
height allometry and Random Forests (RF) regression model with sparse canopy height data from the
Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR mission and continental cloudless
mosaics from Planet NICFI Satellite Data Program. The large amount of GEDI data bridges the gap between
limited field measurements and continental AGB estimation and mapping for the training of RF model. The
results showed a plot level biomass-height allometry with an R? of 0.36 and a root mean square error (RMSE)
of 92.86 Mg/ha, while the RF model showed an R? of 0.72 with the RMSE of 37.24 Mg/ha. A total of 362
Tg AGB was found in the mangrove forests across the Americas in 2020, with approximately 31%
distributed in Brazil. Compared with other AGB estimation maps, a higher agreement was found across the
low AGB areas (<50 Mg/ha), showing the resulting map is consistent in mangrove AGB estimation at a
finer scale. Overall, the approach can serve ongoing efforts for finer resolution investigation of mangroves
and their management at continental or global levels and has the potential to provide highly resolved

information for climate and carbon modelling.

Keywords: Mangroves; Aboveground biomass; Planet NICFI imagery; GEDI LiDAR data; Random
Forests
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4.1 Introduction

Mangroves are globally acknowledged as tropical ecosystems highly abundant in carbon and vital to various
essential ecosystem services to surrounding coastal communities (Alongi, 2020; Uddin et al., 2023). They
have historically been undervalued, particularly with large scale conversion to aquaculture and are being
threatened by extreme weather events associated to changing climate (Friess et al., 2019; Goldberg et al.,
2020). As mangroves have become recognized as an important ecosystem that makes crucial contributions
to many objectives outlined in the Sustainable Development Goals of the 2030 Agenda, mangrove
restoration and protection strategies have been put forward locally, nationally and internationally (e.g., FAO,
2023; Friess et al., 2024, 2016; Slobodian and Vidal, 2023). Aboveground biomass (AGB) estimation of
mangroves is key for carbon stocks estimation and to understand mangrove carbon dynamics and its role
in climate change mitigation. To facilitate the global community’s efforts in further restoring and protecting
mangroves, it is crucial to know the amount of biomass stored in mangroves and monitor its change over

time.

Mangrove AGB refers to the total amount of living organic matter contained in the aboveground parts of
mangrove trees within a specific area (generally expressed in megagram, Mg; 1 Mg = 10° g). As such,
normally AGB also refers to AGB density (AGBD, in the unit of Mg/ha). Traditional AGB measurement
requires field-based destructive tree sampling, which is further utilized to develop allometric equations,
facilitating the inference of AGB based on single trait field measurements, i.e., diameter at breast height
(DBH) or canopy height (Kauffman and Donato, 2012; Komiyama et al., 2008). But the environment of
mangrove forests is generally muddy, remote and inaccessible, which poses difficulties to large-scale
mangrove forest biomass inventories. Remote sensing enables large-area surveys providing spatially
explicit information relying on passive (e.g., multispectral and hyperspectral) or active (Synthetic Aperture
Radar (SAR) and Light Detection and Ranging (LiDAR)) sensors. These types of spaceborne data show
practical capability in estimating mangrove AGB at regional, national and global scales (e.g., Hu et al.,

2020; Lucas et al., 2020; Prakash et al., 2022; Simard et al., 2019; Wang et al., 2020).

National or global seamless AGB mapping relies on spaceborne optical and SAR imagery, such as tropical
forest AGB mapping over Peru (Csillik et al., 2019) and European Space Agency (ESA) Climate Change
Initiative (CCI) global biomass maps (Santoro and Cartus, 2023). Compared to medium resolution
spaceborne imagery (e.g., 30 m Landsat images), high resolution imagery such as Sentinel-2 and SPOT-5
delineates more detailed spectral and textural information across mangrove forests leading to AGB
estimation at a 10 m scale (Pham and Brabyn, 2017; Pham et al., 2019). However, the high cost and limited

coverage of very high resolution (VHR; spatial resolution <10 m) spaceborne images constrain the
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application for mangrove AGB estimation at finer scales (Hojas Gascon et al., 2019). Planet, cooperating
with Norway’s International Climate and Forest Initiative (NICFT) has provided biannual and monthly high-
resolution satellite mosaics with 4.77 m pixel spacing since 2015 and 2020, respectively. These mosaics
are generated from PlanetScope satellite data to create cloudless and seamless datasets across the tropical
Americas, Asia and Africa, normalised and harmonised with Landsat surface reflectance images (Pandey

etal., 2023).

The bio-physical relationship between spectral signatures and forest vertical structure are complex, with a
lack of in-depth understanding due to limited availability of field inventory data (Rodriguez-Veiga et al.,
2017; Wang et al., 2019), resulting in challenging forest characteristics estimation such as canopy height
or AGB from optical imagery (Lang et al., 2023). Therefore, fusing multisource remotely sensed data
enables more comprehensive mapping of forest characteristics with complementary spatially explicit
information (Hu et al., 2020; Lang et al., 2023; Shendryk, 2022; Wang et al., 2020). LIDAR measurements
are considered a significant data source to advance AGB estimation in multisource data fusion as canopy
height, a key parameter to estimate AGB, can be reliably obtained (Fatoyinbo et al., 2018; Salum et al.,
2020; Tian et al., 2022; Wang et al., 2020). The Global Ecosystem Dynamics Investigation (GEDI)
spaceborne mission collected full-waveform LiDAR data for the purpose of measuring global forest vertical
characteristics between approximately 51.6 °N and 51.6 °S (Duncanson et al., 2022). The GEDI full-
waveform observations show high capabilities to retrieve forest canopy height, which represents a certain
quantile of returned energy relative to the ground. Also, the GEDI observations are considered circular
footprints of 25 m in diameter, capable of more comprehensive vegetation structure mapping than ICESat
GLAS data due to smaller footprint size and denser data coverage. Given the vast amount of GEDI
observations spanning from April 2019 to March 2023, the gap between limited field data and global optical
imagery can be bridged by exploiting biomass-height allometry to yield GEDI-based AGB estimates for

supervised machine learning.

This study aims to develop a novel approach for seamless VHR AGB estimation at a continental scale by
incorporating transcontinental field data, spaceborne LiDAR data and high-resolution spaceborne imagery
as well as various environmental variables. A three-steps approach was adopted: (i) obtaining plot-level
biomass-height allometry based on field data across the Americas, (i1) applying the allometry to GEDI
observations of relative canopy height for AGB estimates; (iii) splitting the vast amount of GEDI-based
AGB estimates to train and validate the Random Forests regression model with spectral and environmental
variables. This study estimates and maps mangrove AGB distribution at a finer scale over the Americas in
2020 and evaluate the agreement between other AGB estimation products (i.e., ESA CCI biomass and

GEDI L4B gridded biomass maps). The resultant continental AGB map over the Americas is made publicly
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available to support conservation efforts and science in disciplines such as climate, carbon and biodiversity
modelling at a finer scale. Specifically, as small mangrove patches provide significant ecosystem services
for vulnerable communities in the low-lying coastal areas (Curnick et al., 2019), this study is also expected

to reveal the AGB distribution of small-scale mangroves from a continental perspective.

4.2 Material and methods

4.2.1 Study area

The study area of mangrove forests spanned the Americas. According to the report from UN FAO’s (United
Nations Food and Agriculture Organization), a total of 3.99 million hectares mangrove forests were
distributed across the Americas (including North and Central America, and South America) in 2020
accounting for 27% of worldwide mangroves (FAO, 2023). While mangrove species richness is highest in
the Indo-West Pacific region (62 species found), only 13 native mangrove species are recognized for the
Americas (Spalding et al., 2010), at which the frontal mangrove genus mainly comprises Rhizophora,
Avicennia, Laguncularia and Conocarpus (Twomey and Lovelock, 2024). A 10 m global mangrove extent
map derived from Sentinel-2 imagery was used to delineate the mangrove distribution across the Americas
(Figure 4-1). It has an overall accuracy of 93.6% (91.4-95.7%, 95% confidence interval) (Jia et al., 2023),
delimited by the geographic regions defined by the Statistics Division of the United Nations, where the sub-
regions of Americas comprise Northern America, South America, Central America, and the Caribbean

(UNSD, 1999).
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Figure 4-1. Locations of field sites and mangrove distribution in the Americas. The parenthesised numbers demonstrate the plot
count at each corresponding site. Note that the small-scale basemap leads to closely spaced field plots visually condensed into a
point. Two plots without geographic coordinates are not presented in this map.
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4.2.2 Field inventory data

The fieldwork was carried out in the mangrove forests bordering La Mancha and El Llano lagoons in
Mexico in June and July 2022 with a total of 11 field plots. Individual tree measurements in each plot were
carried out including canopy height and DBH (diameter at breast height) with mangrove species recorded.
Here, the field measurements in the mangrove forest bordering La Mancha from 2010 and 2017 (13 plots)
(Vovides et al., 2018, 2021) were also adopted as well as mangrove inventory data across the Americas
within a nearly 10-year period from 02 November 2004 to 22 May 2014 (125 plots) (Simard et al., 2019).
Therefore, the recorded mangrove species consists of Avicennia germinans, Rhizophora mangle,

Laguncularia racemosa, Conocarpus erectus and Pelliciera rhizophorae.

Field measurements were mainly collected within fixed size plots, but 64 plots of Simard’s field data have
variable radii. Variable-radius plots sampling is a flexible sampling practice, also referred to as angle count
sampling, point sampling or prism cruising, based on the idea that trees are to be sampled with probability
proportional to size (Kershaw et al., 2017). In practice, an angle device (e.g., prism or angel gauge) is used
to tally trees in a full-circled rotation around the point centre. The trees are sampled when the subtended
angle is larger than the reference angle, whereby a group of concentric plots with varied sizes are obtained
depending on every tree size. The angle gauge coming with a basal area factor (BAF, m?/ha or ft*/acre)
estimates the amount of basal area represented by each sampled tree across 1 hectare/acre area. Therefore,
tree density per hectare/acre at each site is calculated by multiplying the number of sampled trees and
specific BAF (Kershaw et al., 2017). In Simard’s dataset, mangrove species, DBH, canopy height, and
survival status (whether the tree is alive) were measured and recorded for each tallied tree at sites. Since
these mangrove field data were collected from different sources under varied protocols, quality-control
filters were used to acquire qualified tree measurements: (1) ‘use for allometry’ = 1, which represents the
tree was used for allometry (Simard et al., 2019); (2) canopy height was properly measured; and (3) the
most trees within the plot were not severely inclined. Thus, 89 plots in the Americas were selected from
Simard’s dataset, representing about 27% of the 331 global in situ plots. Together with 24 plots from the
field campaigns in the mangrove forest in Mexico, a total of 113 plots were introduced in this study to

develop plot level biomass-height allometry (see Figure 4-1).

4.2.3 Planet continental mosaics

Planet, cooperating with Norway’s International Climate and Forest Initiative (NICFI) has provided
biannual and monthly high-resolution cloudless satellite mosaics with 4.77 m pixel spacing since 2015 and

2020, respectively. These mosaics come with four multispectral bands (i.e., blue, green, red, and near
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infrared) and cover the tropics of Americas between 30° N and 30° S, excluding the extent of the United
States of America, Puerto Rico, British Virgin Islands, and Virgin Islands. Between December 2015 and
August 2020, Planet had produced the mosaics biannually; but since September 2020, the mosaics has been

being produced monthly.

In this study, a representative mosaic of 2020 was acquired for the mangrove forests across the Americas.
Specifically, the images acquired in 2020 were used, including two biannual mosaics (December 2019 —
May 2020 and June — August 2020) and four monthly mosaics (September — December 2020). To evaluate
a compositing strategy that can minimises temporal differences, the NDVI (normalized difference
vegetation index) of the 2020 mangrove extent in each mosaic was computed, given that NDVT1 is a positive
indicator correlated with vegetation biomass (Ruan et al., 2022). The distributions of mangrove NDVI
across mosaics showed only subtle variation with comparable median values (Figure 4-2), suggesting
overall temporal consistency. Negative NDVI values observed in all mosaics largely correspond to non-
vegetated surfaces (e.g., open water, residual cloud shadows), which persist due to misclassification in the
10 m mangrove extent map when overlaid with the 4.77m mosaics. Therefore, in order to mitigate the
impacts of extreme pixel values, this study generated a median composite from all mosaics in 2020, which

provides a more stable and representative mosaic of mangrove forests for subsequent AGB estimation and

mapping.
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Figure 4-2. Box plot of NDVI values across mangrove areas of the Americas from Planet NICFI mosaics for 2020. Low outliers
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leading to NDVI < 0.
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4.2.4 GEDI LiDAR data

Launched on December 5, 2018, the GEDI instrument produces laser ranging observations of global 3D
structure between 51.6° N and 51.6° S at the most highly resolved and densest sampling of any LiDAR
instrument in orbit to date (Duncanson et al., 2022). There are three lasers within the instrument emitting
eight beam ground transects (full power and coverage beams), whereby the beam transects are spaced
approximately 600 m apart on the Earth's surface in the across-track direction and ~25 m footprint samples
are spaced nearly every 60 m along-track (Dubayah et al., 2020). The return energy of each LiDAR footprint
is contributed by a group of trees equal to a cylinder with a diameter of 25 m. On Google Earth Engine,
GEDI LiDAR data were compiled and rasterized into monthly composites spanning from April 2019 to
March 2023.

In this study, GEDI footprints were delimited within mangrove area across the Americas using the 10 m
global mangrove extent from Jia et al. (2023) as each GEDI footprint was considered as a circular plot
investigating canopy height profile over the mangrove areas. However, GEDI footprint centres are expected
to have a geolocation error of 10m (Roy et al., 2021), the footprints that fall less than 40 m away from
mangrove forest edge were masked out to exclude potential mixed or non-mangrove footprints (Stovall et
al., 2021). Additional filters were applied to the GEDI footprints for the quality check and better
performance, where GEDI nighttime strong-beam observations are recommended for canopy height
retrieval (Liu et al., 2021) (Table 4-1). In total, 139,904 GEDI footprints were obtained as the median
values were extracted for repeated observations over 2020 demonstrating canopy height profile across

mangrove forests in the Americas.

Table 4-1. The filters to GEDI canopy height metrics for quality check and nighttime strong-beam data.

Property Description Value used for filtering
quality flag Flag indicating waveform validity =1 (valid)
degrade flag Flag indicating pointing and/or positioning degradation =0 (undegraded)

beam Beam flag identifying full power beam (strong) and coverage -
beam (weak)
. The elevation of the sun position vector from the laser bounce
solar_elevation . o . <0
- point position 1s positive up.
sensitivity Maximum canopy cover that can be penetrated >0and <=1

4.2.5 Field AGB estimation method

The AGB of each single tree was calculated for each plot with an improved allometric equation developed
for pantropical forests through a larger trunk diameter range (5-212 cm) from more tree harvest data

including the data from South America (Chave et al., 2014). As wood density is a significant variable
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introduced in this allometric equation, the wood density of the mangrove species in the field data was
retrieved from the Global Wood Density Database (Zanne et al., 2009) (Table 4-2). However, the wood
density of Pelliciera rhizophorae is missing in the database, this parameter was retrieved from the study of

Southwell and Bultman (1971).

The AGB of fixed radius plots is the summation of the AGB of each single tree normalized by plot area,
converted to the unit of megagram per hectare (Mg/ha). But, in variable radius plots sampling where there
is no fixed plot area, concentric plot area is determined as a function of the DBH of each tallied tree,
whereby the tree density represented by a single tallied tree can be estimated through normalizing
corresponding plot area by hectares. The concentric plot area was first calculated through the equation: Plot

DBH
100XCA

2
area (m?) = X ( ) , where CA stands for the cruising angle of 0.02249719 as the BAF is 5 in

Simard’s dataset (Simard et al., 2019). Then, the AGB of individual tree was scaled up at a hectare scale,
multiplied by corresponding tree density. Finally, the scaled AGB of single trees was summed at that site

to yield plot-level AGB.

Table 4-2. Allometric equation for mangrove AGB estimation, where p, AGB, D, and H represents wood density (g/cm?), AGB
(kg), DBH (cm) and canopy height (m), respectively.

Species Equation Region Reference Wood de?sny
(g/em?)
A. germinans 0.67
R. mangle 0.84
L. racemosa AGB = 0.0673 x (pD2H)®976 Pantropical Chazv(;elzt al. 0.6
C. erectus ( ) 0.69
P. rhizophorae 0.75

4.2.6 Allometric modelling of plot-level biomass and canopy height

The relationship of plot level AGB against canopy height is determined by a power-law function of M =
aX®, where M and X denote plot level AGB and canopy height, respectively, and a, f are the fitted
parameters using field measurements. Plot level canopy height can be mean, maximum and crown size or
basal area weighted mean height (Simard et al., 2019; Simard et al., 2006, 2008). This study introduced
maximum plot canopy height into plot level biomass-height allometry as maximum canopy height is a
strong predictor of AGB where larger trees contribute a greater proportion of the AGB within the plots
(Duncanson et al., 2022).

The power-law function was linearized as In AGB = a + f In H,,4,, where a =In a, Hy,4, 1S maximum

canopy height in each plot. Ordinary Least Squares (OLS) was used to fit this regression model by
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minimizing the sum of squared residuals. However, there is a systematic bias leading to the AGB
underestimation when log-transformation is converted back to original units (Baskerville, 1972). Hence,

Baskerville (1972) introduced a correction factor (CF) to the conversion of logarithmic estimates to

2
unbiased arithmetic estimation; CF = exp (07), where 62 is sample variance of the logarithmic regression

equation. The unbiased o estimate is 62 = %SS, where RSS stands for the sum of squared residuals and m
is residual degree of freedom (Clifford et al., 2013). The CF was applied to the AGB estimation in this

study. Therefore, the unbiased AGB estimation is AGB = exp (lﬁ\ a+ BlnH,yg, + 1;_—“:), where AGB is in

the arithmetic unit (Mg/ha) for a given H,,,, with the regressed constant In o and coefficient f.

Applying this method to the plot-level AGB estimates across the Americas, derived from field inventory

data using the allometric equation in Table 4-2, the regression model was obtained as:
InAGB = 0.33 + 1.49 X In H,,q,, (R*=0.67,p <0.001) (Equation 4.1)
which, after incorporating the correction factor, yields the power-law function:
AGB = 1.65 X Hpg, - *° (Equation 4.2)

with a root mean squared error (RMSE) of 92.86 Mg/ha and an R? of 0.36. This equation was subsequently
applied to GEDI canopy height observations for footprint-based AGB estimates (Figure 4-3).
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Figure 4-3. Crossplot and model-fit of aboveground biomass as a function of maximum canopy height (H,,,, ) for the field plots.
OLS linear regression model with logarithmic transformation (/eff); Power-law function in arithmetic unit transformed from
linear model in logarithmic unit including the correction factor (right).
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4.2.7 Random Forests regression model

Random Forests (RF) is a type of supervised machine learning which uses ensemble learning methods (i.e.,
Bagging, short for Bootstrap Aggregating) to solve classification or regression problems. The model runs
by constructing a number of decision trees at the training stage and outputting the mean or mode of
prediction of the individual trees for regression or classification tasks (Breiman, 2001). Random forests
perform well with high accuracy, robustness, and efficiency in dealing with high-dimensional data.
However, RF is not able to extrapolate from the training inputs as the predictions are the average of

observed labels (Simard et al., 2019).

Random Forests has proved practical and efficient in mangrove AGB estimation (e.g., Ghosh et al., 2021;
Hu et al., 2020; Prakash et al., 2022; Zhu et al., 2020) and was used in this study to estimate the AGB of
the study area, implemented using Google Earth Engine (GEE). The median composite of Planet’s NICFI
mosaics across the Americas in 2020 was used as the input to estimate and map mangrove AGB. As such,
four original bands (i.e., blue, green, red and near infrared) of Planet’s NICFI mosaics and 17 derived
vegetation spectral indices were considered as predictor variables in RF regression model (Table 4-3).
These spectral indices are correlated with vegetation structure, coverage and health status, used in mangrove
research (Gupta et al., 2018; Tran et al., 2022). Additionally, 20 environment variables that can influence
mangrove AGB (Rovai et al., 2021; Simard et al., 2019) were also considered as predictor variables (Table
4-4). Since these environment variables are 1 km rasterized datasets containing gaps, the neighbouring two

pixels in all directions were averaged to interpolate the gaps.

First, the biomass-height allometry was also applied to all the filtered GEDI observations of RH98 (relative
height at the 98™ percentile), which is considered a more reliable metric for maximum canopy height, for
GEDI footprint-based AGB estimates. 119,175 out of 139,904 GEDI footprints were divided into ‘train’
(80%) and a hold-out ‘test’ (20%) dataset after the elimination of null data. This was done in a stratified
manner by binning footprint-based AGB estimates into four 25th percentile bins. Then, apart from four
original bands of Planet NICFI mosaic, the predictor variables include 17 derived vegetation spectral
indices correlated with vegetation structure, coverage and health status used in mangrove research (Gupta
etal., 2018; Tran et al., 2022), and 20 bioclimatic variables considered as environmental factors to influence
mangrove AGB (Rovai et al., 2021; Simard et al., 2019). Recursive Feature Elimination (RFE) and Grid
Search with a 5-fold cross-validation were carried out for the determination of optimal predictor variables
and hyperparameters that yielded the most accurate RF regression model. Within the 5-fold cross-validation,
the ‘train’ dataset was further divided into training and validation in the ratio of 4:1 in terms of the estimated

AGB. Finally, the hold-out ‘test’ dataset was used to assess the performance of RF regression model.



Table 4-3. The formulae of spectral vegetation indices used in the RF regression model.
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Acronym Vegetation index Formula Reference
NDVI Normalized Difference NIR — RED Rouse et al.
Vegetation Index NIR + RED (1973)
. . Broge and
T lar Vegetat
TVI rianguar vegetation 0.5 x [120 X (NIR — G) — 200 X (R — G)] Leblanc
Index
(2001)
N lized Diffs GREEN — NIR
NDWI ormalized Difference Gao (1996)
Water Index GREEN + NIR
Combined Mangrove Gupta et al.
CMRI .. NDVI — NDWI
Recognition Index (2018)
NIR — GREEN i
GNDVI Green NDVI kit Gitelson et
NIR + GREEN al. (1996)
EVI Enhanced Vegetation 25 x NIR — RED Huete et al.
Index “ " NIR + 6 x RED — 7.5 x BLUE + 1 (2002)
) ) 1.2 X (NIR — GREEN) — 2.5 X (RED — GREEN)
MTVD Modified Triangular .5 % Haboudane
Vegetation Index 2 \[(2 X NIR +1)2 — (6 x NIR — 5 X w/RED) —0.5) etal (2004)
NIR Jordan
SR1 Simple Ratio 1 R
P RED (1969)
. . NIR
SR2 Simple Ratio 2 -
GREEN
. . NIR
SR3 Simple Ratio 3 —_— -
BLUE
NIR 1
Modified Simple Ratio RED
MSR T— Chen (1996
(MSR) NIR | | en (1996)
RED
Soil Adjusted Vegetation NIR — RED
SAVI ——————x(1+L),L=0. Huete (1988
Index (SAVI) NIR + RED + L a+L), 05 ( )
GARI Green Atmospherically NIR — [GREEN — 1.7 X (BLUE — RED)] Gitelson et
Resistant Index NIR + [GREEN — 1.7 X (BLUE — RED)] al. (1996)
Optimized Soil Adjusted NIR — RED Rondeaux et
OSAVI .
Vegetation Index NIR + RED + 0.16 al. (1996)
CVI Chlorophyll Vegetation NIR X RED Vincini et al.
Index GREEN? (2007)
ARVI Atmospherically Resistant NIR — 2 X RED + BLUE Kaufman and
Vegetation Index NIR + 2 X RED — BLUE Tanre (1992)
i NIR — RED i
TDVI Transforme.d Difference 15 x Bannari et al.
Vegetation Index vNIR2 + RED + 0.5 (2002)




Table 4-4. Environment variables included in the RF regression model.

Alias Variable Units Period Resolution Source
Fick
Bio-1 Annual Mean Temperature °C 1970-2000 ~1x1 km .. ick and
Hijmans (2017)
Bio.2 Mean Diurnal Range . oC 1970-2000 x1 km ) Fick and
(Mean of monthly (max temp - min temp)) Hijmans (2017)
. Isothermality Fick and
Bio-3 - 1970-2000 ~1x1 km ..
10 (Var2/Var7) (x100) X Hijmans (2017)
. Temperature Seasonality Fick and
Bio-4 o °C 1970-2000 ~1x1 km .
10 (standard deviation x100) X Hijmans (2017)
. Fick and
Bio-5 Max Temperature of Warmest Month °C 1970-2000 ~1x1 km ..
Hijmans (2017)
. . Fick and
Bio-6 Min Temperature of Coldest Month °C 1970-2000 ~1x1 km ..
Hijmans (2017)
Bio-7 T ture Annual Range (Var5 - Var6) ~ °C  1970-2000 1x1 km Fick and
io- emperature Annual Range (Var5 - Var - ~1x .
P g Hijmans (2017)
Bio-8  MeanT ture of Wettest Quart °C 1970-2000 1x1 k Fick and
io- n Temperatur T - ~ m
0 ean Temperature of Wettest Quarte X Hijmans (2017)
Bio-9 Mean Temperature of Driest Quarter °C 1970-2000 1x1 km Fick and
- - ~1x
peratt 4 Hijmans (2017)
Bio-10 Mean Temperature of Warmest Quarter °C 1970-2000 1x1 km Fick and
- - ~1x
petati 4 Hijmans (2017)
' Fick and
Bio-11 Mean Temperature of Coldest Quarter °C 1970-2000 ~1x1 km ..
Hijmans (2017)
. o Fick and
Bio-12 Annual Precipitation mm  1970-2000 ~1x1 km ..
Hijmans (2017)
Bio-13 Precipitation of Wettest Month 1970-2000  ~Ixlk Fick and
io- recipitation n mm - ~ m
0 ecipitation of Wettest Mo X Hijmans (2017)
Bio-14 Precipitation of Driest Month mm  1970-2000 1x1 km Fick and
- - ~Ix
P Hijmans (2017)
. Precipitation Seasonality Fick and
Bio-15 . L 1970-2000 ~Ix1k .
10 (Coefficient of Variation) mm xhkm Hijmans (2017)
. s Fick and
Bio-16 Precipitation of Wettest Quarter mm  1970-2000 ~1x1 km Hijml:nsag 017)
Bio-17 Precipitation of Driest Quart 1970-2000 1x1 km Fick and
io- recipitation of Driest Quarter mm - ~1x
P Hijmans (2017)
Bio-18 Precipitation of Warmest Quart 1970-2000 1x1 k Fick and
io- recipitation rm T mm - ~ m
0 ecipitation of Warmest Quarte X Hijmans (2017)
Bio-19 Precipitation of Coldest Quarter mm  1970-2000 1x1 km Fick and
- - ~Ix
P u Hijmans (2017)
S t al.
ET Annual Evapotranspiration mm 2020 ~1x1 km ezl;gze:))a

4.2.8 Comparisons between mangrove AGB estimates based on remote

sensing

The most recently available global AGB product developed by the European Space Agency (ESA) Climate
Change Initiative (CCI) for 2020 at 100 m resolution, Version 4 (Santoro and Cartus, 2023) as well as
GEDI L4B Version 2 product for 2019 — 2021 at 1 km resolution (Duncanson et al., 2022) were used for

inter-comparisons. Both biomass products are not specific to mangroves but have a global coverage. The
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ESA CCI biomass map was generated using spaceborne SAR (Synthetic Aperture Radar) data, i.e., Sentinel
1A/B and ALOS-2 PALSAR-2 (Advanced Land Observing Satellite-2 Phased Array type L-band Synthetic
Aperture Radar-2) in addition to GEDI data. A globally consistent biomass retrieval framework for ESA’s
GlobBiomass Project was deployed to develop the CCI AGB retrieval algorithm—CORE, merging the
biomass estimates from BIOMASAR-C and -L algorithms resampled at 100 m (Santoro et al., 2023). The
GEDI L4B product is gridded data that represents mean AGBD within the borders of each 1 km cell, where
AGB was predicted by applying 13 pretrained allometric models over global categorized strata for GEDI
RH metrics (Healey et al., 2023). In order to align the pixel resolution, the resulting AGB prediction map
was resampled to average pixel values at 100 m and 1 km, whereby nearly 50,000 and 25,000 pixel values

were sampled for inter-comparisons with ESA CCI biomass and GEDI L4B biomass maps, respectively.

4.3 Results

4.3.1 Determination of the optimal number of variables and hyperparameters

When the number of selected variables reached 20 or more based on the results of RFE with 5-fold CV, the
RMSE only exhibited subtle changes as the curve turned to be flat. 29 out of 41 variables were identified
as the optimal predictor variables (Figure 4-4a). Among these variables, Temperature Seasonality showed
the highest importance to the model performance, followed by GARI and green band (G) (Figure 4-4b).
When the selected 29 variables were used in the Grid Search with 5-fold CV, a higher ‘number of trees’
and a smaller ‘minimum leaf population’ resulted in a higher R? (Figure 4-5). As a large number of decision
trees grow and develop with numerous ‘leaf nodes’ individually, the increase in R* becomes more
computation-intensive without significantly optimizing the regression coefficient. Considering the trade-
off between R? and training time, the hyperparameters of ‘number of trees’ and ‘minimum leaf population’

were set to 100 and 4, respectively.
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Figure 4-4. RFE with 5-fold CV results. (a) the change in negative RMSE as the number of selected predictor variables increases,
where the red dash line indicates the lowest RMSE is obtained when the number is 29; (b) the feature importance of selected 29
predictor variables of the best performance.

Figure 4-5. The results of Grid Search with 5-fold CV for RF regression hyperparameter tuning.
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4.3.2 RF model performance assessment

The remaining 20% of GEDI footprint-based AGB estimates were used to validate the proposed approach

for mangrove AGB estimation in 2020. The R? between predicted and observed AGB was 0.72 with the
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RMSE of 37.24 Mg/ha. The proposed AGB estimation approach underestimated mangrove AGB at high
values (>100 Mg/ha) and overestimated AGB densities at low values (<100 Mg/ha). However, there was
high agreement in low mangrove AGB (<50 Mg/ha) (Figure 4-6).
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Figure 4-6. Validation of mangrove AGB estimated model. The density plot changes from purple to yellow with increasing data
point density.

4.3.3 Mangrove AGB estimation in 2020 over the Americas

Mangrove AGB estimates in 2020 totalled 362 Tg (1 Tg = 10° Mg). When aggregated to 1° grid cells, the
maximum was 19.10 Tg and the mean AGB was 0.97 Tg. Most AGB was distributed latitudinally across
the areas between 2° S and 11° N, and longitudinally between 44° W and 62° W as well as 77° W and 83°
W. Four regions with high AGB distribution were further investigated at a resolution of 4.77 m, showing

pixel-level mangrove AGB estimation (Figure 4-7).
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Figure 4-7. Spatial distribution of mangrove AGB across the Americas aggregated to 1° grid cells. Grid cells are coloured with
darker green indicating higher AGB aggregation. The histograms along the top and right panels show the longitudinal and
latitudinal distributions of AGB, respectively. Red boxes (A—D) indicate regions that are enlarged in bottom figures to provide
zoom-in views: A, Términos Lagoon, Mexico; B, Columbus Channel, Venezuela; C, Sanquianga National Natural Park,

Colombia; and D, Tracuateua Marine Extractive Reserve, Brazil.

Total AGB of mangroves across the Americas (excluding United States of America, Puerto Rico, British
Virgin Islands, and Virgin Islands) was 362 Tg. Brazil, with the largest mangrove coverage, accounted for
the highest total AGB representing about 31%, almost double Venezuela's contribution. In contrast,
although Mexico's mangrove area was nearly twice that of Venezuela, its total AGB was only half of

Venezuela's (Table 4-5).
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Table 4-5. Mangrove AGB estimates summarised by country.

Country Mangrove Total AGB Country Mangrove Total AGB
Area (ha) (Tg) Area (ha) (Tg)
Brazil 1,214,880 1134111 The Bahamas 87,485 0.8816
Venezuela 363,048 62.5112 Cayman Is. 11,590 0.7722
Colombia 311,561 46.1180 Trinidad & Tobago 6,900 0.7400
Mexico 775,477 32.2186 Haiti 20,408 0.5500
Panama 169,964 26.1182 Jamaica 7,980 0.4356
French Guiana 88,000 13.3155 Turks & Caicos Is. 20,195 0.2484
Ecuador 154,400 13.0905 Guadeloupe 3,152 0.1903
Cuba 369,516 9.7232 Martinique 1,698 0.1885
Suriname 72,178 8.2765 Peru 3,295 0.1524
Honduras 87,285 7.4332 Netherlands Antilles 2,697 0.1008
Nicaragua 94,123 6.5970 Antigua & Barbuda 1,301 0.0694
Costa Rica 41,284 5.2722 St. Lucia 158 0.0166
Guatemala 31,953 3.4938 Grenada 134 0.0144
El Salvador 37,835 3.4046 Aruba 116 0.0039
Guyana 21,436 3.1462 St. Vincent & the 8 0.0036
Grenadines
Belize 33,648 1.2477 St. Kitts & Nevis 65 0.0027
Dominican 1y g4 0.8900 Barbados 12 0.0012
Republic

4.3.4 Inter-comparison of mangrove AGB estimates

Comparisons between the AGB estimates and ESA CCI biomass and GEDI L4B gridded biomass maps for
2020 show good consistency in low AGB (<50 Mg/ha), although observed R?is less than 0.5 from both
comparisons (Figure 4-8). Compared to ESA CCI biomass estimates, GEDI L4B biomass estimation
exhibits better alignment and consistency with the estimated mangrove biomass. However, the proposed

methodology tends to underestimate mangrove AGB for high AGB areas.
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Figure 4-8. Comparisons between the AGB estimation and ESA CCI biomass (left) as well as GEDI L4B gridded biomass (right)
maps for 2020, respectively. The density plot is colour coded as colour changes from purple to yellow for increasing density of
data points.
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4.4 Discussion

4.4.1 Variations of country-level mangrove AGB estimates

In this study, high-resolution (4.77 m) mangrove AGB estimates across the Americas were generated using
Planet NICFI mosaics, providing one of the first continental-scale assessments at such a fine resolution.
The results reveal total mangrove AGB of 362 Tg in the Americas, but this spatially explicit mapping
highlights the strong spatial heterogeneity of mangrove AGB between countries (Table 4-5).

The significant variation in country-level mangrove AGB across the Americas reflects the interplay of
multiple drivers. Brazil dominates the continental AGB stock with 113.41 Tg accounting for 31% of the
total, due to its extensive mangrove extent (1.21 million ha) and the high productivity of the Amazon-
influenced coast. Mangrove forests along Amazon Microtidal Mangrove Coast (AMMC) receive abundant
rainfall and nutrient-rich river discharge, characterised by the tallest and most carbon-rich mangroves
(Kauffman et al., 2018a). Total AGB and carbon accumulation reach their maximum values along the
AMMC and show a steady decline with increasing latitude (de Lacerda et al., 2022). Previous studies
reported maximum AGB values ranging from 290 to 451 Mg/ha for these mangrove forests (de Lacerda et
al., 2022), while this study yielded maximum estimates of 318 Mg/ha, broadly consistent with the lower
end of this range. In northeastern Brazil, climatic factors strongly constrain semiarid mangroves, with mean

aboveground carbon biomass measured at 70 Mg C/ha (Kauffman et al., 2018b).

Mexico represents the second largest contributor to continental mangrove AGB but exhibits a strong west-
east gradient. Mangrove forests along the Gulf of Mexico and Yucatdn Peninsula benefit from humid
conditions and freshwater inflows, sustaining tall stands, whereas mangroves on the drier Pacific coast are
stunted and biomass-poor due to cold temperature and aridity (Avila-Acosta et al., 2024; Ezcurra et al.,
2016; Guerra-Santos et al., 2014; Hutchison et al., 2014). Additionally, recurrent hurricanes in the northern
Pacific region limit long-term biomass accumulation by repeatedly resetting canopy structure (Vizcaya-

Martinez et al., 2022).

While climate and geomorphology explain much of the large-scale variation, disturbance regimes and
governance account for many of the country-level differences. The Caribbean and Pacific coasts are
repeatedly affected by hurricanes and tropical storms, which limit long-term biomass accumulation (Krauss
and Osland, 2020). Also, where effective protection policies are implemented, such as in Trinidad &
Tobago, where two of the largest mangrove areas are officially protected (Juman and Hassanali, 2013),

AGB per hectare can reach 107 Mg/ha despite the country’s relatively small mangrove extent.
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4.4.2 Feature importance of environmental variables

Initially, 41 predictor variables were identified as correlated with mangrove AGB distribution, including
21 spectral variables and 20 environmental variables. Among these, 29 variables were selected through
RFE with a 5-fold cross validation, where nearly all the environmental variables were included except for
Max Temperature of Warmest Month (Bio-5), Temperature Annual Range (Bio-7) and Precipitation of
Driest Month (Bio-14). From the included variables, Temperature Seasonality (Bio-4) contributed most to
the RF regression model. The feature importance of environmental variables here agrees with Rovai et al.
(2021) and Simard et al. (2019), who found temperature, precipitation and evapotranspiration to
significantly impact the variation of mangrove AGB. Although the bioclimatic variables are reanalysed
climate data spanning 1970 to 2000, long-term climatic impacts still influence the environmental settings
of mangrove forests. Across the Americas, the extent of mangrove forests between 2000 and 2020 has been
primarily driven by natural expansion and retraction (FAO, 2023). However, as mangrove forests can be
suppressed by high salinity and low nutrient and sediment deposition which tides largely regulate (Balke
and Friess, 2016; Vovides et al., 2018), tidal amplitude and duration are recognized as important factors

controlling global mangrove AGB (Rovai et al. 2021) and expected to be included in future studies.

4.4.3 AGB estimation uncertainty

The primary advantage of the proposed approach for AGB estimation is to generate finer-scale mangrove
AGB maps using VHR imagery. Compared with existing products for the same period (i.e., ESA CCI for
2020 and GEDI L4B for 2019 — 2021), this study demonstrates an improved capability to capture local-
scale AGB variation (Figure 4-9). However, a tendency to underestimate AGB was observed in dense
vegetation areas where single tree crowns may exceed the 4.77m pixel size, while higher agreement among

products was achieved in low-AGB regions (Figure 4-8).
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Figure 4-9. Visualization of AGB estimation maps clipped to mangrove areas in Rio Limbo, Venezuela. A, this study; B, ESA
CCI biomass map; C, GEDI L4B gridded biomass map.
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AGB estimation derived from the RF regression algorithm are the values averaged over an ensemble of
decision trees, while the standard deviation (SD) of these results shows the uncertainty (Figure 4-10).
Several sources of uncertainty were identified: (i) the error associated with the power-law function relating
plot-level AGB to maximum canopy height, (ii) errors in GEDI L2A canopy height observations, and (iii)
RF regression error. Importantly, errors from the power-law function and GEDI measurements were not
propagated to per-pixel uncertainty of the AGB estimation. Field inventory data compiled from Simard et
al. (2019), including plots in Mexico, were incorporated into developing the power-law function relating
plot-level AGB to maximum canopy height, and an RMSE of 92.86 Mg/ha was obtained. However, this
relationship is not fully representative of mangrove stands across the Americas due to limited availability
of inventory data. Additionally, the GEDI Level 2A product is reported to have an uncertainty (i.e., RMSE)
of 4.4 m and an underestimation bias of 1.0 m (mean error) (Lang et al., 2022). RH98 was used instead of
RH100 as the maximum height metric, since RH98 has been shown to be more stable and reliable (Blair
and Hofton, 1999) and is widely recognised as a significant predictor in AGB estimation (Duncanson et al.,
2022). Given that mangrove forests are normally dense and exhibit zonal distribution with relatively

uniform canopy heights, RH98 was considered a reliable and representative metric for this study.
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Figure 4-10. Estimated AGB maps and corresponding standard deviation from Random Forest regression algorithm for
mangrove areas in (A-B) Términos Lagoon, Mexico, and (C-D) Rio Limon, Venezuela.

4.4.4 Implications for mangrove management and policy

This study generates high-resolution AGB estimation map, improving the understanding of mangrove

carbon dynamics and providing actionable insights for management and policy. In the context of the
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imperative need to protect mangroves as critical blue carbon ecosystems, the ability to capture spatial
heterogeneity in biomass distribution has several implications. First, carbon accounting and climate policy
can be enhanced by incorporating fine-scale biomass estimates into national greenhouse gas inventories
and climate mitigation strategies. Many countries in the Americas are engaged in initiatives such as REDD+
and nationally determined contributions (NDCs) under the Paris Agreement, where accurate and spatially
explicit carbon data are essential for reporting and verification (Alongi, 2020; Taillardat et al., 2018). In
particular, this study offers a transferable methodology that can improve transparency and consistency in

carbon stock estimation.

Second, conservation planning and land management can benefit from recognising high AGB hotspots that
justify prioritisation for protection. Meanwhile, areas with lower biomass or evidence of degradation can
be targeted for restoration, especially where mangroves provide coastal protection services against storms
and sea-level rise (Spalding et al., 2014; Worthington and Spalding, 2018). These insights can support
mangrove area management at both national and local levels, ensuring that limited resources are allocated

effectively.

Finally, ecosystem service assessments of mangroves can be improved. High-resolution AGB maps can be
integrated with hydrological, geomorphological, and socioeconomic data to quantify the co-benefits of
mangrove ecosystems, including biodiversity conservation, sediment stabilisation, and fisheries support
(Friess et al., 2019; Sanderman et al., 2018). Therefore, decision-makers can be informed about trade-offs

and synergies between development and conservation.

4.5 Conclusions

This study developed a novel methodology that deploys plot level biomass-height allometry and Random
Forests regression algorithm with field inventory measurements, GEDI spaceborne LiDAR data, high-
resolution Planet NICFTI satellite mosaics and environmental variables for high spatial resolution mangrove
AGB estimation and mapping over the Americas. In this methodology, the plot-level biomass-height
allometry was fitted by OLS with field inventory data across the Americas and applied to GEDI canopy
height observations as GEDI data footprints were considered 25 m circular plots. Then, GEDI-based AGB
estimates were used to train and validate RF regression model with the spectral and environmental variables.
The most efficient RF model was identified using Recursive Feature Elimination and Grid Search both with
a 5-fold cross-validation. It was found that 29 out of 41 variables were selected as the optimal feature
combination, where temperature seasonality contributed most for the model performance. Compared with

other AGB products in 2020, i.e., ESA CCI biomass and GEDI L4B gridded biomass maps, the resulting



116

map shows the capacity of finer AGB estimation as there is a higher agreement in low mangrove AGB (<50
Mg/ha). Overall, the proposed methodology of high-resolution mangrove AGB mapping shows the
feasibility of the finer mangrove investigation and has the potential to advance highly resolved carbon
modelling. Additionally, this study highlights that high-resolution AGB mapping is a scientific advance
and also a practical tool to guide climate mitigation, conservation, and sustainable management of

mangroves in the Americas and beyond.
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mangrove regrowth across the Americas
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Abstract

Mangroves are well-recognised for their importance in climate change mitigation through carbon
sequestration and storage but historically have been underappreciated and largely deforested for timber
harvesting, aquaculture and coastal development. Currently, increased recognition of their role in coastal
protection and fishery productivity has shifted the tide for mangroves, incentivising people to carry out
restoration and conservation efforts globally. However, little is known about mangrove resilience relevant
to climate change adaptation and conservation efforts. In this study, aboveground biomass (AGB) dynamics
were investigated over regrowing mangrove areas in the past two decades (2000-2020). This study targeted
mangrove forests across the Americas as relatively strong conservation efforts have been implemented in
this region. First, the tropical moist forest (TMF) annual coverage dataset from the Joint Research Centre
(JRC) was used to determine the areas of mangrove regrowth through the analysis of land cover change
between 2000 and 2020. Then, given the availability of data sources throughout the periods, the period-
specific methodologies were proposed to estimate mangrove AGB for 2000 and 2020. The results found
that 0.17 million ha (Mha) of mangrove forests across the Americas were regrowing from previous
mangrove areas (Type I regrowth) and 0.05 Mha were from previous non-forest areas during 2000-2020
(Type II regrowth), while 2.52 Mha remained undisturbed. Both kinds of mangrove regrowth contributed
to AGB gains of 2.71 Tg and 2.39 Tg, respectively. As normalized by their respective areas, Type 1I
regrowth contributed 52 Mg/ha AGB, while Type I regrowth resulted in an AGB gain of 16 Mg/ha. These
findings revealed that mangroves are actively colonising previously non-forested areas, resulting in
significant AGB gains and indicating an expansion of suitable habitat. This study offers an insight into
AGB dynamics related to mangrove regrowth, expected to serve as the first comprehensive investigation

into mangrove resilience across the Americas for the first twenty years in the 21% century (2000-2020).

Keywords: Mangrove resilience; Aboveground biomass dynamics; Mangrove regrowth; Remote sensing;
Americas
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5.1 Introduction

Mangrove forests are of great importance in providing essential ecosystem services, including coastal
protection, fisheries, and climate regulation through carbon sequestration and storage (Worthington et al.,
2020). Historically, the social and ecological significance of mangroves were underappreciated; an
estimated 35% of the world’s mangrove area was lost in the 1980s and 1990s at an annual loss rate of 1-
2.1% (Friess et al., 2024). Since the 2000s, growing awareness around mangroves socioecological well-
being has led to global efforts on mangrove conservation and restoration, with annual loss rates declining
to 0.1% and the establishment of 393,000 ha between 2000 and 2020 (FAO, 2023). However, less is known
about how mangrove forest regrowth has contributed to carbon stocks during 2000-2020. Restoration
typically refers to silviculture, including reforestation and afforestation. Reforestation is restoring forests
in areas where forests previously existed but were deforested or degraded due to human activities or natural
disasters, while afforestation is establishing forests in areas where there were no previous forests (Ellison,

2000). Mangrove forest regrowth can also be accredited to natural expansion.

Carbon stocks in mangroves are often inferred from aboveground biomass (AGB) estimations. AGB refers
to the total amount of living organic matter contained in the aboveground parts of mangrove trees in area
(normally using megagram per hectare, Mg/ha). Traditionally, AGB measurement requires field-based
destructive sampling further used to develop allometric equations based on tree attributes such as diameter
at breast height (DBH) and canopy height (Kauffman and Donato, 2012; Komiyama et al., 2008). However,
as mangrove forests are characterised by closed canopies and dense stems in remote and muddy regions,
this limited accessibility makes large-scale inventory efforts both labour-intensive and time-consuming.
Remote sensing enables large-scale surveys by delivering spatially explicit information through passive
sensors, such as multispectral and hyperspectral systems, or active sensors like Synthetic Aperture Radar
(SAR) and Light Detection and Ranging (LiDAR). These remotely sensed data have proven effective for
estimating mangrove AGB at regional, national, or global scales (e.g., Simard et al., 2019; Hu et al., 2020;
Lucas et al., 2020; Wang et al., 2020; Zhu et al., 2020; Prakash et al., 2022). Consistency in mangrove AGB
estimation approaches is essential through different years to ensure reliable estimates. However, varying
acquisition periods lead to gaps in data availability between observed years when the same approach for

mangrove AGB estimation is applied.

The scarcity of mangrove field inventory data presents challenges in deciphering the intricate bio-physical
relationship between spectral signatures and forest vertical structure (Rodriguez-Veiga et al., 2017; Wang
et al., 2019). This limitation complicates the estimation of mangrove AGB using optical imagery (Lang et

al., 2023). But the advancement of SAR and LiDAR sensors has greatly enhanced the ability to estimate
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canopy height, a key biophysical parameter for AGB estimation; these technologies enable more accurate
and reliable measurements of vertical forest structure, thereby improving the estimation of mangrove AGB
(Fatoyinbo et al., 2018; Lang et al., 2023; Shendryk, 2022; Wang et al., 2020). Canopy height can simplify
the process of estimating AGB, working as the dependent variable in linear regression equations (Baccini

et al., 2012; Basyuni et al., 2023; Duncanson et al., 2022; Simard et al., 2019; Simard et al., 2006, 2008).

The Shuttle Radar Topography Mission (SRTM), flown in February 2000, provided the first near-global
topography including vegetation cover (Farr et al.,, 2007). The SRTM elevation product enabled the
investigation of mangrove canopy height distribution across the world with the assumption that mangroves
are generally located in low-lying and flat coastal regions with negligible topographic impacts (Simard et
al., 2006, 2008). Simard et al. (2019) estimated the AGB of world’s mangroves with the SRTM DEM
(digital elevation model) calibrated by ICESat LiDAR data which allows for comprehensive and accurate
canopy height mapping. The first-ever spaceborne LiDAR mission specifically designed for vegetation
structure investigation in orbit, Global Ecosystem Dynamics Investigation (GEDI), provides full-waveform
LiDAR data between approximately 51.6 °N and 51.6 °S spanning from 2019 to 2023 (Duncanson et al.,
2022). The GEDI observations show high capabilities to retrieve forest canopy height which represents a
certain quantile of returned energy relative to the ground within circular footprints of 25 m in diameter.
However, GEDI LiDAR data are not wall-to-wall with significant coverage gaps, especially at the equator
(Dubayah et al., 2020). Given the vast amount of GEDI observations, wall-to-wall mangrove AGB
estimation can be realized with the introduction of optical imagery by exploiting biomass-height allometry

to yield GEDI-based AGB estimates for supervised machine learning.

Focusing on the mangrove forests across the Americas, this study aims to investigate the contribution of
mangrove regrowth (new colonisation included) to AGB dynamics between 2000 and 2020. AGB losses
(e.g., conversion or dieback) are not quantified here and are discussed as a limitation in the Discussion
section. Mangrove forests over the Americas are characterized by the highest inclusion of protected
mangrove areas, providing a unique setting for the investigation of the contribution of mangrove regrowth
with less anthropogenic disruptions (e.g., logging and conversion to coastal land use). The European
Commission Joint Research Centre (JRC) holds a dataset of tropical moist forest (TMF) cover over the past
three decades (1990-2023) at a spatial resolution of 30 m. It provides annual wall-to-wall mapping of the
TMF extent (including mangroves) and other land covers, demonstrating the feasibility of detecting
mangrove regrowth extent during 2000 - 2020 (Vancutsem et al., 2021). This study is anticipated to serve
as the first comprehensive investigation into mangrove regrowth with AGB gains across the Americas for

the first twenty years in the 21% century. It further reveals the mangrove resilience relevant to climate
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change adaptation and conservation efforts, helping shape the understanding the effective management of

mangroves.

5.2 Material and methods

5.2.1 Study area

This study focuses on the mangrove forests across the Americas and introduced the 10 m global mangrove
extent map of 2020 to identify the mangrove areas (Figure 5-1). The global mangrove extent map is
geographically delineated by both country boundaries and reserve divisions. Detailed description is

provided in Section 4.2.1.
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Figure 5-1. The distribution of mangrove forests across the Americas in 2020 derived from Jia et al. (2023).

5.2.2 JRC TMF data

The JRC TMF dataset was initially developed for a long-term monitoring of tropical moist forests from
1990 to 2019, comprising annual change collections where the extent of TMF was identified as undisturbed,
degraded, deforested and regrowth, along with the identification of permanent and seasonal water and other
land cover (Vancutsem et al., 2021). This dataset has been recently updated to 2023 and reprocessed using
30m Landsat Collection-2 imagery for better quality input data and a larger number of valid observations,

freely accessible in the Google Earth Engine platform (JRC, 2023a). Within the JRC TMF dataset,
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deforestation refers to a permanent conversion from forest to non-forested land, starting at the latest the
current year, and observed over 2.5 years with no detected vegetation regrowing. Degradation denotes a
temporary disturbance, such as trunk harvesting, wildfires, or extreme weather events, lasting at most 2.5
years in a forest and starting no later than the current year. Regrowth refers to the transition of vegetative
regrowth on deforested lands which previously were TMF, as well as on other land cover, with a minimum

duration of three years to avoid confusion with agriculture.

5.2.3 Mangrove regrowth area determination between 2000 and 2020

This study focuses on mangrove regrowth areas in the last 20 years (2000-2020) as most of AGB gains
induced by regrowing mangroves occur in a 20-year period (Bourgeois et al., 2024). Across JRC TMF
annual coverage products, TMF status has been reported as undisturbed, degraded, deforested and
regrowing (JRC, 2023b). Here, the mangrove regrowth was determined as (1) forest regrowth from the
undisturbed, degraded forests or deforested lands (Type I regrowth) and (2) forest regrowth from water or
other land cover (Type Il regrowth). The global mangrove extent map in 2020 was utilized to geographically

delimit the mangrove forests based on country boundaries and reserve divisions across the Americas.

5.2.4 Mangrove AGB estimation between 2000 and 2020

The methodology of AGB estimation described in Chapter 3 was adopted to estimate mangrove AGB for
2000, which was adapted here with the introduction of SRTM Version 3 DEM data (SRTMGL1 v003),
void-filled with open-source data (i.e. ASTER GDEM2, GMTED2010 and NED), and the biomass-height
allometry developed in Chapter 4 incorporating maximum canopy height as an independent variable. The
SRTM DEM represents vegetated areas and reports elevations situated at the radar scattering phase height
centre instead of the top of canopy (Lagomasino et al., 2016; Simard et al., 2008) (a detailed description of
the SRTM is provided in Section 3.3.1). The approach developed in Simard et al. (2019) was deployed to
estimate the distribution of mangrove canopy height in 2000, where a total of ~58,000 selected
ICESat/GLAS LiDAR waveforms spanning 2003-2009 were related to SRTM DEM values over global
mangrove areas. A regression model without an intercept was obtained between the relative height at the

100" percentile (maximum canopy height) from GLAS waveforms and SRTM elevation measurements:
SRTMH,, 4, = 1.697 X Hgprp (intercept = 0) (Equation 5.1)

where Hgprp represents the original SRTM DEM values, and SRTMH,,,,, 1s the derived maximum canopy

height dataset. The SRTM values of 0 m over mangrove areas were assigned 0.5 m in which scrub or sparse
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mangroves were not probably detected by SRTM. Additionally, maximum SRTMH,,,, in each country
was capped at the 95™ percentile of the values in the corresponding country to mitigate the impact of errors

in canopy height of potential misclassified mangrove pixels (Simard et al., 2019).

However, as there is no open-access 2020-epoch global canopy-sensitive DSM comparable to SRTM, the
SRTM/GLAS-based height proxy used for year 2000 cannot be validly applied to 2020. Therefore, AGB
for 2000 and 2020 was estimated using period-specific models: an SRTM-based height proxy for 2000
(Equation 5.1) and a maximum-height model using recent spaceborne LiDAR/imagery for 2020 (Chapter

4) (Figure 5-2).
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Figure 5-2. Workflow diagram for estimating mangrove AGB across the Americas between 2000 and 2020.

5.3 Results

5.3.1 Mangrove regrowth area between 2000 and 2020

Between 2000 and 2020, 0.17 million ha (Mha) of mangrove forests across the Americas were regrown

from deforested land which used to be degraded or undisturbed mangroves (Type I regrowth), and 0.05
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Mha were regrown on previous non-forest land (Type II regrowth), while 2.52 Mha remained undisturbed.
Most mangrove regrowth areas were predominantly distributed around latitude 19° N with a total area of
0.03 Mha, and along longitude 87° W accounting for a total area of 0.02 Mha (Figure 5-3). Generally,
mangroves were more likely to regrow from previous forest areas than non-forest areas in almost all
countries across the Americas, except for Aruba, St. Vincent & the Grenadines, French Guiana, Panama,
and Peru. On average, the areas of Type I regrowth accounted for 68.2% of country-level mangrove
regrowth, while Type II regrowth made up 31.8%. The top three countries with the largest mangrove
regrowth area are Mexico (85,652 ha), Brazil (44,128 ha) and Cuba (37,673 ha). Meanwhile, undisturbed
mangrove forests in these countries account for a significant proportion (53%) of total undisturbed

mangrove coverage over the Americas.
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Figure 5-3. Mangrove regrowth across the Americas. Regrowth areas aggregated to 1° grid for better visualization (Data source:
EC JRC). Two sites exhibited significant mangrove regrowth were marked by red rectangles: (A) Laguna de Términos protected
area, Mexico; (B) Caeté-Taperagu marine extractive reserve, Brazil.

From the perspective of protected area inclusion, 70% of mangrove regrowth areas and 63% of undisturbed
mangrove forests fell into reserve divisions, where mangrove reserves benefited from 72% of Type I
regrowth and 62% of Type II regrowth (Table 5-1). A large proportion of mangrove regrowth occurred
within protected areas in Mexico, Brazil and Cuba. Notably, Cuba exhibited 84% of Type I regrowth and
79% of Type 1l regrowth situated within designated mangrove reserves. Furthermore, entire regrowth areas
were found within mangrove reserves in several countries, including Aruba, Martinique, the Turks and

Caicos Islands, El Salvador, the Cayman Islands, Peru, and Guadeloupe.
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Table 5-1. Mangrove area (ha) summarized by country in terms of mangrove transition status (i.e., Type I regrowth, Type II
regrowth and undisturbed) between 2000 and 2020, excluding Barbados, the United States of America, Puerto Rico, British
Virgin Islands, and Virgin Islands. Numbers in parentheses represent areas falling into mangrove reserves.

Country Type I regrowth ~ Type II regrowth Undisturbed
Antigua & Barbuda 26 (22) 15 (6) 252 (137)
Aruba 2(2) 6 (6) 19 (19)
Belize 2,960 (1,536) 666 (337) 13,574 (4,595)
Brazil 27,492 (16,722) 16,636 (8,909) 917,887 (564,784)
Cayman Is. 417 (417) 159 (159) 1,963 (1,963)
Colombia 4,316 (3,361) 1,571 (1,209) 254,223 (237,253)
Costa Rica 809 (594) 654 (414) 33,890 (25,551)
Cuba 31,326 (26,366) 6,347 (5,038) 149,566 (113,487)
Dominican Republic 493 (209) 118 (42) 7,079 (3,373)
Ecuador 1,109 (929) 849 (647) 129,229 (116,410)
El Salvador 1,053 (1,053) 397 (397) 29,026 (29,026)
French Guiana 772 (589) 938 (672) 65,947 (53,979)
Grenada 6(4) 1 (0.35) 62 (19)
Guadeloupe 50 (50) 13 (13) 1,630 (1,630)
Guatemala 1,950 (909) 540 (102) 19,548 (13,675)
Guyana 249 150 16,384
Haiti 1,244 (72) 190 (4) 11,413 (1,453)
Honduras 3,112 (2,171) 1,209 (610) 59,583 (40,696)
Jamaica 479 (431) 168 (160) 2,973 (2,690)
Martinique 16 (16) 4 (4) 1,208 (1,208)
Mexico 77,715 (59,834) 7,937 (5,429) 269,935 (201,363)
Netherlands Antilles 20 (19) 15 (12) 1,499 (1,481)
Nicaragua 3,578 (2,755) 1,912 (1,622) 44,215 (25,587)
Panama 1,647 (580) 1,733 (515) 145,771 (78,772)
Peru 41 (41) 43 (43) 2,146 (2,146)
St. Kitts & Nevis 5 2 13
St. Lucia 2(1) 0.45 (0.28) 105 (85)
St. Vincent & the Grenadines 1 3 7
Suriname 3,491 (653) 1,532 (1,180) 42,516 (29,334)
The Bahamas 1,519 (5) 518 (13) 5,658 (312)
Trinidad & Tobago 201 (189) 44 (26) 4,827 (4,649)
Turks & Caicos Islands 582 (582) 56 (56) 2,851 (2,851)
Venezuela 2,102 (940) 1,761 (878) 288,906 (18,227)
Total 168,785 (121,400) 46,187 (28,648) 2,523,907 (1,583,373)

5.3.2 Mangrove AGB estimation on regrowth areas

In 2020, the estimation of AGB for mangrove regrowth areas across the Americas totalled 11 Tg (1 Tg =

10% Mg). This included contributions of 8 Tg from Type I regrowth and 3 Tg from Type II regrowth.

Compared to whole AGB estimates in 2000, Type I regrowth led to an increase in AGB estimates from

5.29 to 8 Tg (51%), and AGB led by Type II regrowth rose dramatically from 0.59 to 2.98 Tg (> 400%

increase).
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Table 5-2. Country-level mangrove AGB (Mg) in terms of Type I/II regrowth between 2000 and 2020, excluding Barbados, the
United States of America, Puerto Rico, British Virgin Islands, and Virgin Islands.

Type I regrowth Type Il regrowth
Country AGB 2000 AGB2020  AGB 2000 AGB 2020
Mg) MG) Mg) Mg)
Anti
Bar%‘l‘f(‘lf‘ 865 1314 260 702
Aruba 57 87 55 178
Belize 43,420 95,623 4,749 25,772
Brazil 919,774 1,912,514 193,795 1,306,313
Cayman Is. 13,982 18,229 3,238 10,037
Colombia 94,745 345272 13,786 122,653
Costa Rica 34313 88,110 14,474 77,747
Cuba 1,386,597 825,738 123,046 162,318
Dﬁ’;ﬁ;“;ﬁiﬂ 7,654 35,437 941 8,283
Ecuador 18,843 81,944 4,822 54,411
El Salvador 60,137 70,603 11,730 31,918
French Guiana 28,087 105,547 17,010 135,301
Grenada 703 656 6 80
Guadeloupe 666 2,141 137 515
Guatemala 155,519 204,533 24,398 41,007
Guyana 4,570 22,668 317 12,164
Haiti 32,394 32,916 1,730 5,127
Honduras 43,993 190,659 5,730 76,702
Jamaica 14,899 24,488 1,979 10,026
Martinique 637 1,403 13 418
Mexico 1,859,079 2,925,547 92,079 297,655
Netherlands
P 291 548 110 438
Nicaragua 103,971 180,184 12,310 81,429
Panama 66,663 204,113 30,226 203,221
Peru 606 1,605 339 1,610
St. Kitts & Nevis 103 244 112 77
St. Lucia 89 148 0 43
St (\}/r‘ggzgitni‘sthe 384 93 327 240
Suriname 256,768 375,485 8,083 153,306
The Bahamas 39,578 23,280 10,289 9,775
TrT“(l)f:‘gO& 16,920 19,149 1,308 5,142
Turks & Caicos 14,758 7416 1,508 711
Islands
Venezuela 67,112 199,403 10,485 143,376
Total 5,288,176 7,997,097 589,393 2,978,698

Almost every country shows an increase in AGB over mangrove regrowth areas (Table 5-2). Brazil

exhibited the highest AGB increases of 2.11 Tg, followed by Mexico (1.27 Tg) and Colombia (0.36 Tg).

Together, the AGB increases in these three countries accounted for 73% of the total AGB gains observed

in 2020. Different from Type I regrowth, Type II regrowth, indicative of mangrove regrowth in previous
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non-forest areas, exhibited the most dramatic relative AGB increases. For example, AGB of Type II
regrowth in Panama surged from 30,226 to 203,221 Mg, representing a roughly 7-fold gain; both Honduras
and Venezuela experienced more than 13-fold increases in AGB due to Type Il regrowth. When considering
AGB dynamics per unit regrowth area across the Americas, mangrove regrowth resulted in AGB gains of
24 Mg/ha, with Type I regrowth and Type II regrowth contributing to AGB gains of 16 Mg/ha and 52
Mg/ha, respectively. Specifically, French Guiana exhibited the highest AGB increase of 114 Mg/ha,
followed by Panama (92 Mg/ha), Costa Rico (80 Mg/ha) and Guyana (75 Mg/ha). However, the increase
in AGB per hectare was 48 Mg/ha in Brazil, while Mexico reported an increase of 15 Mg/ha.

5.3.3 Mangrove AGB estimation over undisturbed areas

AGB estimates over undisturbed mangrove areas were summarised by country for 2000 and 2020 (Table
5-3). At the continental scale, totals decreased from 338.37 Tg (2000) to 282.88 Tg (2020), a difference of
—55.49 Tg (—16.4%).

Table 5-3. Country-level mangrove AGB (Mg) over undisturbed mangrove areas between 2000 and 2020, excluding Barbados,
the United States of America, Puerto Rico, British Virgin Islands, and Virgin Islands.

Undisturbed Undisturbed
Country AGB 2000 AGB 2020 Country AGB 2000 AGB 2020
Mg) Mg) Mg) Mg)
Antigua & 2,133 13,975 Honduras 5,688,497 5,415,713
Aruba 1,049 804 Jamaica 147,187 153,087
Belize 436,233 561,760 Martinique 63,820 136,496
Brazil 118,075,350 93,794,702 Mexico 21,799,665 16,019,246
Cayman Is. 91,064 162,789 Netherlands Antilles 71,325 62,436
Colombia 36,710,704 40,503,656 Nicaragua 3,664,682 3,075,830
Costa Rica 6,339,821 4,381,803 Panama 31,748,738 23,235,700
Cuba 7,709,478 4,120,524 Peru 131,946 103,398
Dﬁ’:}ﬁ;ﬁ“ 493,401 548,666 St. Kitts & Nevis 316 578
Ecuador 17,664,103 11,275,612 St. Lucia 11,441 11,116
El Salvador 3,801,594 2,780,545 3t Yincens & the 418 518
French Guiana 11,419,199 10,619,049 Suriname 4,540,407 5,193,877
Grenada 4,879 6,425 The Bahamas 113,028 92,774
Guadeloupe 85,285 96,856 Trinidad & Tobago 618,824 546,347
Guatemala 4,009,057 2,337,049 Turks & Caicos Islands 71,410 53,227
Guyana 2,445,473 2,610,279 Venezuela 59,863,379 54,651,910
Haiti 547,550 316,300 Total 338,371,454 282,883,049

Country-level estimates remain broadly comparable between 2000 and 2020 for many countries, with
notable absolute decreases in Brazil (-20.6%), Panama (-26.8%), Ecuador (-36.1%) and Mexico (-26.5%).

Increases are observed in Colombia (+10.3%) and Suriname (+14.3%). Several small-island states show
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relatively large percentage shifts on small absolute baselines (e.g., Antigua & Barbuda, Cayman Islands,

Martinique), whereas most mid- to large-AGB countries exhibit smaller percentage deviations.

Country-level AGB in 2020 plotted against 2000 for the undisturbed areas shows a near-linear relationship
(Figure 5-4). The fitted line y = 0.83*x + 0.10 with R? = 0.93 and RMSE% = 38.21%, and most countries
plot below the 1:1 line, indicating that 2020 estimates are generally lower than 2000 by roughly 15-20%
on average. The relative ranking of countries is largely unchanged, although the largest absolute difference

occurs in Brazil.
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Figure 5-4. Country-level AGB estimates over undisturbed mangrove forests in 2020 versus 2000 (Tg).

5.4 Discussion

5.4.1 The variation of country-level mangrove regrowth areas

This study has revealed the pattern of AGB gains within mangrove regrowth areas as JRC TMF annual
coverage products were employed to identify regrowing mangrove (new colonisation included). In the
Americas, mangrove regrowth patterns vary significantly between countries, reflecting protection

frameworks, human pressures, geomorphological setting, and extreme weather event-driven disturbance.

Mexico has exhibited the largest mangrove regrowth areas (> 85,000 ha), with hotspots around Laguna de
Términos (Figure 5-3, Figure 5-5A). Numerous restoration projects have been implemented since 2016,

particularly reforestation programs (Antinez, 2024). Government reports indicate >5,000 ha of mangroves
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were restored across several states between 2013 — 2016 (SEMARNAT, 2016), and ~56 ha of degraded
mangroves were restored around Laguna de Términos by 2020 (CONANP, 2020), reflecting a mix of
hydrologic rehabilitation and planting within protected areas. However, regrowth coexists with localised
losses in Natural Protection Areas (NPAs), driven by human pressures in Términos (Osorio-Olvera et al.,
2023), shrimp aquaculture in Marismas Nacionales (Lithgow et al., 2019), urban/tourism expansion in La
Paz (Giovanni Avila-Flores et al., 2017), and hydrologic alteration (Kumagai et al., 2020). Overall, the
mangrove regrowth pattern in Mexico is that net recovery concentrated in protected sites with concurrent

losses in development-exposed frontiers.

Brazil boasts the second largest mangrove coverage in the world, with nearly 85 — 87% of its mangroves
legally designated within protected areas, such as marine extractive reserves and conservation units (de
Lacerda et al., 2022; ICMBio, 2018). A total of 25,631 ha mangroves were found regrowing within these
reserves, such as the Caeté-Taperacu marine extractive reserve (Figure 5-5B), where there is a designated
mangrove recovery area (Partelow et al., 2018). The high level of legal protection facilitates natural
regeneration, however localised losses persist driven by coastal erosion in northern Brazil, shrimp
aquaculture and salt ponds development on the Semiarid Equatorial Coast (SAE) (Vanin et al., 2025), and
urbanisation in Espirito Santo (ETC) and South Granitic Coast (SGC) (de Lacerda et al., 2022).

Mangroves in Cuba are largely protected through national conservation frameworks, resulting in relatively
stable or expanding mangrove areas. Regrowth has been supported by effective regulation and limited
large-scale conversion (Goulart et al., 2018). But meanwhile, the disturbance driven by extreme weather
events can lead to severe mangrove losses. For example, Hurricane Irma (2017) caused widespread
mangrove damage along the northern coast with a staggering 78% of mangrove and wetlands showing

damage (Turner et al., 2023).

Caribbean small-island states (e.g., Aruba, Cayman Islands, Guadeloupe, Trinidad & Tobago) exhibit
regrowth largely confined to protected areas, consistent with natural recovery in low-disturbance settings
but constrained by limited land and development pressure at the coast. In Trinidad & Tobago, mangrove
conservation and restoration have been implemented within key sites, but industrial/urban expansion and

sea level rise create localised vulnerabilities (Hassanali, 2017; Juman and Hassanali, 2013).
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Figure 5-5. Zoom-in on intensive mangrove regrowth areas highlighted with red rectangles in Figure 5-1. (A) Laguna de
Términos protected area, Mexico; (B) Caeté-Taperacu marine extractive reserve, Brazil.

5.4.2 Comparability of AGB estimation methodologies

In this study, two approaches were developed for mangrove AGB estimation for the year 2000 and 2020,
respectively. AGB is assumed to be stable across undisturbed, well-established and intact mangrove forests
over time (Lagomasino et al., 2021). However, country-level AGB estimates in 2020 was lower than the
ones in 2000 using the proposed methodologies over undisturbed mangrove forests (Table 5-3). Different
resolutions of spaceborne datasets and regression limitation of RF algorithm may be the causes for these
discrepancies. Mangrove AGB in 2020 was estimated and mapped on a 4.77 m resolution Planet mosaic,
while in 2000 mangrove AGB was estimated and mapped on 30 m resolution SRTM DEM due to the
availability of spaceborne datasets at that time. High resolution spaceborne imagery provides great
potentials for investigating AGB distribution of mangrove regrowth at finer scales, however, AGB
estimation for a specific region is more fragmented as the area covered by a 30 m pixel is covered by nearly

40 pixels of 4.77 m.

Unlike the approach for the AGB estimation in 2000, the biomass-height allometry (Equation 4.2) was
applied to discrete GEDI footprints over 2020 instead of wall-to-wall DEM datasets, which were then
utilised in the RF regression model to map on wall-to-wall Planet mosaic and environmental variables for
mangrove AGB estimation of 2020. RF model works in a way that regression outcomes are derived from
average prediction results from all the decision trees, which means RF regression model can extrapolate
from input datasets. Also, mangrove AGB in 2000 is expected to be higher as using plot top heights in
biomass-height allometry can lead to the overestimation of mangrove AGB (Rahman et al., 2021). However,
except for the significant disagreement in Brazil (118 Tg in 2000 vs. 94 Tg in 2020), other countries
represent comparable AGB estimates over undisturbed mangrove forests between 2000 and 2020. High
agreements are therefore found in the comparisons of country-level AGB estimates across undisturbed
mangrove forests between 2000 and 2020, demonstrating the compatibility of the proposed approaches

(Figure 5-4).
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5.4.3 Intercomparisons of AGB estimates on mangrove regrowth areas

Maximum canopy height was valued as a proxy in mangrove AGB estimation across the Americas as taller
trees typically dominate higher AGB. Spaceborne DEM products show significant potentials for
correlations with mangrove canopy height, under the assumption that mangroves are situated in low-lying,
flat areas with negligible topographic variability (Fatoyinbo and Simard, 2013; Simard et al., 2006). Simard
et al. (2019) utilized ICESat GLAS LiDAR altimetry data as true canopy height to calibrate SRTM DEM
for the retrieval of pixel-wise maximum canopy height estimates across the world’s mangrove forests as
spaceborne LiDAR metrics demonstrate smaller measuring error than field measurements. This
methodology was adopted to determine the distribution of maximum canopy height across mangrove forests
in the Americas in 2000. However, since no follow-up DEMs have been developed in SRTM since 2000,
i.e., the inconsistency in spaceborne ground elevation data between 2000 and 2020, it is challenging to
estimate long-term mangrove AGB changes through consistent datasets. Ali and Rahman (2025) employed
interpolated GEDI LiDAR observations to make spatiotemporal comparisons of canopy height and AGB
with the ones derived from calibrated SRTM DEM. Instead, this study deployed discrete GEDI LiDAR
observations as intermediate datasets in RF regression model with predictor variables of high-resolution
spectral information and environmental variables to yield mangrove AGB estimates in 2020. Until now,
there are GEDI L4B gridded AGB estimates and ESA CCI Biomass products freely available for global
AGB estimation in 2020. Detailed descriptions of these two data products are in Section 4.2.8. Over
mangrove regrowth areas, country-level AGB estimates from the approach are much higher than GEDI
L4B AGB products which are average AGB values over 1 X1 km grid (Figure 5-6). Higher agreements are

found between the results and ESA biomass products as this dataset has a finer resolution of 100 m.
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Figure 5-6. Country-level AGB estimates across mangrove regrowth areas using the proposed approach versus (A) GEDI L4B
gridded AGB estimates and (B) ESA CCI Biomass 2020 product.
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5.4.4 Research uncertainties and limitations

Compared to mangrove loss rates in the 20" century, the rates of mangrove loss have significantly
decelerated since the beginning of the 21% century as mangrove conservation and restoration polices have
been in place plus alternative coastal developments (Friess et al., 2024). Recent syntheses and global
products provide consistent 2000-2020 indicators of mangrove extent and change (e.g., FAO 2023; GMW
v3.0; JRC TMF), but few studies explicitly separate regrowth typologies (Type I vs. Type II) while also
examining AGB dynamics, which is the contribution of this study. JRC TMF annual dataset (2000 and
2020) were used here to detect land cover transitions and a 2020 mangrove mask (Jia et al., 2023) to delimit

mangrove areas; regrowth includes reforestation/afforestation and natural regeneration.

Formal confidence intervals are not computed for arecas or AGB estimates in this study. Instead, the
published validation of the input products is reported as indicative bounds. The JRC TMF dataset reports
rigorous and independently validated change mapping for tropical moist forests with 91.4% overall
accuracy (Vancutsem et al., 2021); likewise, the 2020 global mangrove mask from Jia et al., (2023) reports
high overall accuracy of 95.2%. Therefore, area totals and fractions derived from these layers should be
interpreted in light of the published accuracies of the input products, rather than as point-precise values.
This caveat does not alter the direction of the main findings in this study, e.g., regrowth is more frequent
on previously forested mangrove areas than non-forested lands; and a large proportion of regrowth occurs
within protected areas. However, based on these indicative bounds, fine-grained country rankings should

not be overinterpreted where differences are comparable in magnitude to the underlying product accuracies.

Due to remote sensing data availability, period-specific methodologies were employed for year 2000 and
2020 to investigate AGB dynamics. Error propagation for each AGB estimation methodology have been
discussed in Section 3.9.1 and Section 4.4.3, respectively. The comparability between period-specific was
assessed by comparing AGB estimates across undisturbed mangrove areas, which are assumed to be stable
over time (Figure 5-4). However, methodological differences and associated errors among AGB estimates
in regrowth areas between 2000 and 2020 remain unquantified and need to be well investigated in future
study. As the analysis of AGB dynamics is conducted at country and continental levels, the results are still
considered reliable to show broad trends, although the local and regional estimates should be interpreted

with caution.

The results of this study showed that mangrove AGB was similarly gained from Type I and Type Il
regrowth across the Americas for two decades, but Type II regrowth represented higher AGB gains per

hectare than Type I regrowth, as Type II regrowth can refer to a more long-term mangrove regrowth.
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According to the report of FAO (2023), mangrove gains across the Americas were primarily driven by
natural expansion between 2000 and 2020. The results demonstrate that mangroves have a significant
capacity for resilience in terms of AGB gains, relevant to climate change adaptation and ongoing
conservation efforts, however the intensity of mangrove regrowth, i.e., the timing of regrowth, remains
unquantified. Additionally, AGB gains are linked to mangrove regrowth and does not include a companion
workflow for AGB losses. Interpretation of net AGB accumulation therefore requires combining the present

regrowth-linked gains with independent estimates of loss-linked reductions in the future study.

5.5 Conclusions

This study put forward the first comprehensive investigation into mangrove regrowth areas (new
colonisation included) with AGB gains across the Americas for the first twenty years in the 21% century
(2000-2020). Mangrove regrowth was categorised into two types delimited within mangrove coverage in
2020, identified using JRC TMF annual datasets; Type I regrowth refers to regrowing forests in 2020 from
the undisturbed, degraded forests or deforested lands in 2000, while Type II regrowth includes forest
regrowth in 2020 from water or other land cover in 2000. It is found that between 2000 and 2020 there was
a total of 0.22 Mha mangrove regrowth over the Americas, including 0.17 Mha of Type I regrowth and
0.05 Mha of Type II regrowth. The annual datasets demonstrate great applicability for recognising
mangrove regrowth across the Americas, revealing that Mexico, Brazil and Cuba are top three countries
exhibiting significant regrowing areas and mangroves are more likely to regrow in previous forest areas
than non-forest areas. Meanwhile, AGB dynamics over mangrove regrowth areas were computed using
multisource remote sensing data, incorporated with biomass-height allometry developed from a
compilation of field inventory data. Although different remote sensing data were introduced to estimate
mangrove AGB between 2000 and 2020 due to data availability, the proposed methodology represents high
agreements on country-level AGB summations across undistributed mangrove forests, which are
considered well-established, intact without any disturbances. Over mangrove regrowth areas, AGB gains
totalled 5.10 Tg comprising 2.71 Tg led by Type I regrowth and 2.39 Tg from Type Il regrowth. However,
given Type I regrowth areas three times as large as Type Il regrowth areas, Type Il regrowth demonstrates
a significantly higher AGB per hectare, with a value of 52 Mg/ha compared to Type I regrowth's 16 Mg/ha
as Type Il regrowth can refer to a more long-term regrowth. Nonetheless, both types of regrowth signal the
significant resilience of mangroves in terms of AGB regeneration and expansion relevant to climate change
adaption and ongoing conservation efforts. This study provides an insight into mangrove regrowth against

AGB dynamics, expected to help better understand scientific management of mangroves.
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Chapter 6 Discussion
6.1 Methodological context and contributions

The accurate estimation of mangrove AGB using remote sensing data remains a critical challenge in global
carbon cycle research, as direct measurements are time-consuming, destructive and spatially limited.
Therefore, recent studies on mangrove AGB estimation have focused on integrating mangrove forest
inventory, remote sensing data and modelling efforts (e.g., Simard et al., 2006, 2008, 2019; Aslan et al.,
2016; Pham et al., 2020; Wang et al., 2020; Rovai et al., 2021; Vaghela et al., 2021). Remote sensing data
used in mangrove AGB estimation include optical spaceborne imagery, SAR imagery, and airborne and
spaceborne LiDAR data at various scales. Each of these data has associated strengths and weaknesses,

making them naturally synergetic.

A key methodological contribution of this thesis is in demonstrating the viability and performance of
employing global DEMs to estimate AGB of local mangrove forests. Though the SRTM has been employed
for canopy height and AGB estimation in the USA, Colombia and Indonesia (Simard et al., 2006, 2008;
Aslan et al., 2016), the studies on the comparison between open access global DEMs are limited.
Additionally, compared with global mangrove AGB estimates using SRTM from Simard et al. (2019), the
findings reveal the significant discrepancies between local and global estimates and underscore the
importance of using local estimates to further validate global estimates, as the global allometry captures the

overall trend but systematically underestimate the local AGB values.

Another key methodological contribution is in upscaling localised field inventory data to a continental level
and integrating with high-resolution spaceborne imagery. Previous studies have relied on optical imagery
(e.g., Landsat, WorldView, Pleiades) and SAR data (e.g., ALOS PALSAR, Sentinel-1) coupled with
statistical or machine learning algorithms such as SVR (Jachowski et al.,2013; Pham et al. 2018; Navarro
et al., 2019), RF (Pham & Brabyn, 2017; Wang et al., 2020) and ANN (Zhu et al., 2015; Ghosh & Behera,
2021). While these studies have demonstrated varying levels of accuracy (R? ranging from 0.45 to 0.93),
their study areas normally cover local or regional mangrove forests with performance assessed using high-
resolution data. The methodology proposed in this thesis deployed the first vegetation-specific spaceborne
LiDAR mission (GEDI) to upscale limited localised mangrove tree measurements and characterise
structural attributes across the Americas. Extensive GEDI-derived AGB estimates were generated by
applying biomass-height allometry to GEDI observations, providing a reliable dataset to train and validate
a RF model integrated with high-resolution Planet mosaics and rasterised environmental variables, which

enables wall-to-wall mangrove AGB mapping at a continental scale.
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The methodological contributions of this thesis therefore lie not only in performance evaluation of open
access global DEMs on local mangrove forests but also in the introduction of spaceborne LiDAR data to
upscale limited field inventory data to a continental scale. The synergistic use of global DEMs (broad
coverage), spaceborne LiDAR (structural characteristics calibration), and high-resolution optical imagery
(fine-scale variability) represents a methodological innovation that bridges the gap between local accuracy

and continental applicability.
6.2 Transferability across regions and scales

The methodologies developed in this thesis demonstrate clear potential for application beyond the study
areas in Mexico and the Americas. Through the integration of field inventory data, open access DEMs,
spaceborne LiDAR measurements, high-resolution optical imagery, and rasterised environmental variables,
the methodologies provide flexible templates that can be adapted to diverse mangrove areas in the world.
Nonetheless, the transferability requires careful consideration of regional geomorphology, data availability,

and ecosystem dynamics.

Mangroves exhibit diversity according to their geomorphic and sedimentary setting, which can be
categorised as deltaic, estuarine, open coast, and lagoonal; among these, lagoonal mangroves are prominent
in North and Central America and the Caribbean, accounting for about 79.4% (1,190,500 ha) of the global
lagoonal mangrove extent (Worthington et al., 2020). The DEM-based approach for AGB estimation,
developed and validated in lagoonal mangrove forests in Mexico, therefore holds significant potential for
application to other extensive lagoonal mangrove systems in the Americas. However, in Southeast Asia,
where the largest and most carbon-rich mangrove forests are located, and 1,352,200 ha mangroves (~31%
of whole mangrove extent in Indonesia) are tide dominated (Worthington et al., 2020; Jia et al., 2023), the
feasibility of DEM-based canopy height retrieval requires further studies due to complex topography and
strong tidal influence (Darmawan et al., 2015; Chaudhuri et al., 2019), as the DEM-based approach is
implemented under the assumption that mangroves are situated in low and flat coastal areas. Relying on
spaceborne LiDAR observations and dense time-series optical imagery may be necessary to capture
biomass variations at fine scales. Also, in regions such as Indonesia and Malaysia, where the mangrove
conversion and fragmentation are still intense (Bryan-Brown et al., 2020; Goldberg et al., 2020; Friess et
al., 2024), VHR spaceborne imagery such as Planet mosaics enables the detection and quantification of
biomass changes in small patches of regrowing or degraded mangroves, complementing coarser global

biomass products.
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In Africa, many mangrove regions are characterised by relatively sparse field data and limited monitoring
(Naidoo, 2023). Here, the multisource methodology offers a practical solution to bridge data gaps.
Spaceborne LiDAR data such as GEDI canopy height metrics provide reliable vegetation structural
characteristics at 25 m circular footprints, which can be considered ground truths in field data-scarce regions
for model calibration (Liu et al., 2021). Coupling these datasets with freely available Sentinel-2 or Landsat
imagery could deliver cost-effective AGB mapping for countries with fewer resources to support high-
resolution mangrove monitoring. Moreover, this methodology is adaptable with ICESat-2 LiDAR data and
emerging missions such as NASA-ISRO SAR (NISAR) and ESA’s Biomass satellite. Integrating the
forthcoming spaceborne LiDAR data will enhance applicability of the methodology at the global scale.

Overall, the transferability of the proposed methodologies is found in the modular design: DEMs can be
used where mangroves are located in low and flat coastal areas, spaceborne LiIDAR missions such as GEDI
and ICESat-2 can provide canopy height benchmarks across varied biogeographic regions, and high-
resolution optical imagery can refine local spatial estimates. Future studies benefit from the application of
the proposed methodologies across regions to improve global carbon accounting, and reveal regional
comparisons in mangrove resilience, thereby strengthening the evidence base for targeted conservation and

restoration efforts.

6.3 Implications for conservation, restoration, and carbon

accounting

The improved estimation of mangrove AGB presented in this thesis carries significant implications for
conservation, restoration, and carbon accounting at multiple scales. As mangrove are recognised as one of
the most carbon-rich ecosystems (Alongi, 2020), accurate and spatially explicit biomass data are necessary
to put mangroves into climate policy and management frameworks. This thesis produces reliable and high-
resolution mangrove AGB estimates, addressing methodological challenges and strengthening the scientific

foundations for both national and international decision-making.

In the context of conservation, spatially explicit AGB estimation maps can be straightforward sources to
recognise priority mangrove areas for protection. Mangroves with high AGB stocks represent not only
critical carbon sinks but the hotspots of biodiversity and ecosystem services (Bai et al., 2021; Liu et al.,
2025). Through pinpointing these areas, governments and conservation organisations can target resources
more efficiently to the most valuable mangrove forests against deforestation and degradation. The results

in Chapter 5 underscore the resilience of regrowing mangroves, demonstrating substantial AGB gains
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achieved over two decades of regrowth. This finding reinforces the ecological value of secondary forests

and supports arguments for including them in mangrove conservation planning.

From a restoration perspective, the proposed methodologies offer alternative means to monitor and evaluate
the effectiveness of mangrove rehabilitation projects. High-resolution AGB estimates enable the
quantification of regrowth dynamics at finer scales (<10 m), providing more detailed metrics for assessing
restoration success over time. This is particularly effective for regions where large-scale mangrove planting
projects are underway, as managers can be equipped to assess the actual AGB accumulation and ecosystem

recovery achieved rather than simply measuring survival rates.

For carbon accounting, countries with extensive mangrove cover can incorporate the results of this thesis
into their national carbon emission inventories, supporting their commitments under the Paris Agreement
and informing the participation in mechanisms such as REDD+ and voluntary carbon markets. Additionally,
the capacity to detect and quantify mangrove AGB dynamics at finer scales improves the transparency and
credibility of carbon accounting, which is important to attract international financial supports for

conservation and restoration initiatives.

Overall, this thesis ensures that conservation and restoration of mangroves can be better aligned with
climate mitigation strategies through scalable, accurate and transferable AGB estimation. At a broader level,
the methodological advances developed in this thesis contribute to ongoing efforts to mainstream mangrove

carbon stock into global assessments of nature-based climate solutions (Macreadie et al., 2021).

6.4 Research limitations and recommendations

This thesis proposes methodologies for accurately estimating mangrove AGB by integrating field inventory
data with multisource remote sensing data. However, further investigation is needed to refine and validate
the proposed approaches from multiple perspectives. A primary limitation of this research is the limited
field inventory data of mangroves to develop more comprehensive biomass-height allometry and validate
the resulting AGB estimates across three experimental chapters, which does not adequately examine the
consistency between the estimation and ground truth. As it is typically difficult to carry out large-scale field
campaigns in mangrove forests, the field inventory data was compiled from different sources in this
research. Chapter 3 examined the feasibility and reliability of using historical and recent field data with
temporal discrepancies up to 20 years for mangrove AGB estimation, but it is still necessary to account for
temporal discrepancies of more than 20 years between field inventory data, when introducing them for

rapidly regrowing mangrove species. In Chapter 4, GEDI LiDAR data were introduced to upscale the
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limited localised measurements to a continental level under the assumption that LIDAR measurements are
considered ground truth measurements of canopy heights with higher accuracy. GEDI canopy height
metrics were obtained within circular footprints of 25 m in diameter, covering ~25 pixels of Planet mosaics.
The median of the pixel values from Planet mosaics was used to represent optical characteristics of
corresponding GEDI canopy height metrics. High agreements were found between predicted and observed
AGB using the hold-out GEDI-based AGB estimates in the RF regression algorithm (Figure 4-6). While
the trained RF algorithm applied to high-resolution Planet imagery produced the finer-scale estimation that
are valuable for investigating spatiotemporal changes of mangrove AGB, this approach also introduced

greater heterogeneity and uncertainty in AGB distribution patterns.

Mangrove forests are generally well-protected in the Americas, with 72% of mangroves in South America
and 67% of mangroves in North and Central America and the Caribbean located within formally designated
protected areas (Spalding and Leal, 2022). Additionally, FAO (2023) has reported mangrove gains between
2000 and 2020 were primarily driven by natural expansion. Given the situations of mangrove forests in the
Americas, this region serves as an appropriate study area for investigating mangrove resilience relevant to
climate change adaptation and ongoing conservation efforts. The JRC TMF dataset was introduced to
identify mangrove regrowth areas and found that AGB gains related to the regrowth from non-forested
areas are higher than those from previous forested areas. However, Chapter 5 did not specify the intensity
of regrowth, i.e., the starting time of regrowth, which is critical for a detailed analysis of mangrove AGB

dynamics driven by regrowth.

Future studies should focus on refining the correlation between plot-level AGB and canopy height metrics
by incorporating more field inventory data across mangrove forests in varied ecological and geographical
conditions, thereby improving model generalisability. When using remote sensing data to scale localised
AGB estimates to broader areas, careful consideration must be given to temporal alignment with field
inventory data and the spatial resolution requirements for accurate AGB estimation. Beyond investigating
AGB dynamics in relation to mangrove areas and biomass gain and losses, future research should also
equally prioritise investigating mangrove degradation impacts on AGB dynamics. Currently, mangroves
are facing the challenge of being degraded by anthropogenic activities and extreme weather events.
Degraded mangroves still maintain some ecosystem services at lower levels, generally prioritised to deploy
restoration efforts which requires little more than a restriction or cessation of detrimental activities such as
wastewater from adjoining aquaculture ponds and timber harvesting. The investigation of AGB dynamics
across degraded mangroves can be an assessment to the level of degradation, beneficial to implement the
restoration strategies. The ultimate goal of future studies is to refine AGB estimation methodologies to

contribute valuable knowledge to supporting effective mangrove conservation and rehabilitation strategies.
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Chapter 7 Conclusions

This thesis presents improved mangrove AGB estimation methodologies integrated with compiled field
inventory data and multisource remote sensing datasets, and quantifies AGB dynamics in mangrove
regrowth areas. As outlined in Section 1.4, the research objectives focus on regional and continental
mangrove AGB mapping and spatiotemporal analysis of AGB dynamics. Therefore, the objectives are

achieved as follows:

Objective 1 — to develop the methodology of mangrove AGB estimation in the mangrove forests around La

Mancha and El Llano lagoons in Mexico using freely accessible DEMs (Chapter 3)

Chapter 3 develops a mangrove AGB estimation approach through the integration of field inventory data
of mangrove forests around La Mancha and EI Llano lagoons in Mexico and open-access DEMs. Three 30
m global DEMs were introduced and evaluated to assess their feasibility and performance in estimating
mangrove canopy height and AGB. DEM biases were calibrated using ICESat-2 ATLOS data. Field plot
canopy heights showed high agreements with the calibrated DEMs (R? = 0.73-0.82). As a power-law
parametric model was introduced to establish the relationship between plot-level AGB and mean canopy
height, mangrove AGB across the study area was estimated by applying regressed parametric model to
calibrated DEMs. The results demonstrated comparable AGB estimates and consistent spatial heterogeneity.
Error analysis showed ag,,p ranging between + 151.78 — 154.95 Mg/ha (Hyeqn =15 m). Overall, this
chapter presents the viability of using freely accessible DEMs for local mangrove canopy height and AGB

estimation, supporting validation of global-scale AGB assessments.

Objective 2 — to develop a novel approach for mangrove AGB estimation across the Americas using

compiled field inventory data and multisource remote sensing data (Chapter 4)

Chapter 4 presents a comprehensive account of mangrove AGB estimation across the Americas through
the development of a novel approach that incorporates field inventory data and multisource datasets
including spaceborne LiDAR data, optical imagery and environmental variables, rendering AGB estimates
at a fine scale (<5 m) with an R? of 0.72 and an RMSE of 37.24 Mg/ha. The power-law parametric model
was introduced to determine the relationship between field plot-level AGB and maximum canopy height,
regressed by OLS with an R? of 0.36 and the RMSE of 92.86 Mg/ha. Due to a huge amount of spaceborne
LiDAR data over mangrove forests in the Americas, LIDAR-derived AGB estimates from regressed power-
law model demonstrated a significant capacity in RF algorithm training and validation with predictor

variables of surface reflectance and vegetation indices from spaceborne optical imagery and environmental
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variables. Precipitation and temperature worked better in explaining mangrove AGB variability than
spectral information in terms of the performance of predictor variable selection. Mangrove AGB has been
estimated across the Americas through the trained RF model with optimal hyperparameters and best
selected predictor variables. Although environmental variables were found to contribute most to improving
the performance of RF model, the introduction of high-resolution optical imagery helps investigate fine-

scale mangrove regrowth, compared to existing global AGB estimation products for the same period.

Objective 3 — to quantify AGB dynamics of mangrove regrowth areas across the Americas between 2000

and 2020, reflecting mangrove resilience relevant to climate change adaptation and conservation efforts

(Chapter 5)

Chapter 5 introduced annual TMF coverage maps for identifying mangrove regrowth areas in previously
forested and non-forested areas between 2000 and 2020. The period-specific methodologies of AGB
estimation were adopted due to the availability of remote sensing datasets. The methodology illustrated in
Chapter 4 was utilised for the year of 2020, while the regressed power-law parametric model between field
plot AGB and maximum canopy height was applied to a mangrove CHM derived from the calibrated SRTM
DEM for AGB estimation in 2000. Country-level AGB estimates across undisturbed mangrove forests
between 2000 and 2020 exhibited high agreements and comparable results. The analysis revealed that
mangrove regrowth areas across the Americas totalled 0.17 Mha, contributing an estimated AGB gain of
5.10 Tg. Regrowing mangroves from previously forested and non-forested areas represented high AGB
gains per hectare at 16 Mg/ha and 52 Mg/ha, respectively. These findings demonstrate the exceptional
resilience of mangrove forests across the Americas with AGB gains occurring in mangrove regrowth areas,

relevant to climate change adaptation and conservation efforts.

In summary, this thesis explores improved mangrove AGB estimation methodologies integrating field
inventory data and multisource remote sensing datasets, including open-access DEMs, GEDI canopy height
metrics, Planet continental mosaics, and rasterised environmental variables, and quantified AGB dynamics
in regrowing mangrove areas across the Americas for two decades (2000-2020). To further refine mangrove
AGB estimation, future research should: (i) incorporate more field inventory data through expanded field
campaigns across various geographical settings to improve the relationship between field plot AGB and
canopy height for generalisability; (i1) utilise temporally and spatially aligned remote sensing datasets with
field measurements to reduce the uncertainty of AGB estimation, such as harmonising GEDI acquisitions
with field survey dates to minimize biases in rapidly changing mangrove forests; and (iii) investigate AGB
dynamics in regrowing, degraded, and dead mangroves in relation to the intensity of disturbances, using

the JRC TMF transition dataset to achieve a more comprehensive understanding of mangrove resilience.
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Overall, addressing these priorities will require coordinated efforts between remote sensing specialists and
mangrove ecologists, but help better understand mangrove AGB distribution patterns and mangrove

resilience regarding AGB gains and losses.
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