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Abstract 

Mangroves play a crucial role in providing valuable ecosystem services, particularly as highly efficient 

carbon sinks that mitigate climate change impacts Understanding their contribution to the global carbon 

cycle requires accurate assessment of carbon stocks, which typically depends on the estimation of biomass, 

especially aboveground biomass (AGB). Existing studies on accurate estimation of mangrove AGB have 

been constrained by uncertainties in modelling efforts, limited field data and methodological challenges in 

integrating multisource remote sensing datasets. This research develops improved methodologies of 

mangrove AGB estimation by addressing these challenges. First, two local mangrove forests in Mexico 

were used to evaluate the feasibility and performance of open access global digital elevation models 

(NASADEM, ALOS DSM and Copernicus GLO-30 DEM) for AGB estimation. After calibration with 

spaceborne LiDAR (Light Detection and Ranging) datasets, the DEMs produced comparable and spatially 

consistent AGB estimates. For stands with a mean canopy height of 15 m, the standard error was ~30% of 

the estimated AGB. Second, an approach was developed to upscale localised field inventory to a continental 

level (the Americas), by incorporating spaceborne LiDAR data. Third, a novel data fusion framework was 

introduced using extensive spaceborne LiDAR derived AGB estimates to train high-resolution optical 

mosaics and rasterised environmental variables through a machine learning algorithm. This integration 

produced wall-to-wall mangrove AGB estimates across the Americas, achieving a validation accuracy of 

R2 = 0.72 and root mean square error (RMSE) = 37.24 Mg/ha. Ultimately, applying the improved 

methodologies of mangrove AGB estimation to the Americas revealed not only high agreements in AGB 

estimates across country-level undisturbed mangrove forests but also 5.10 million Mg AGB gains in 

regrowing mangroves between 2000 and 2020. The findings underscore the resilience of mangroves and 

their capacity to recover as significant carbon sinks, which is particularly relevant to climate change 

adaptation and conservation efforts. Overall, this research provides improved methodologies in mangrove 

AGB estimation by integrating multisource datasets at a local and a continental scale, which is transferable 

and valuable to other tropical coastal ecosystems, offering researchers and practitioners an effective means 

to better integrate mangrove carbon dynamics into global climate mitigation frameworks. Additionally, 

spatially explicit mangrove AGB estimates derived from the improved methodologies can inform 

conservation priorities, restoration strategies and national carbon accounting efforts.  
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Chapter 1 Introduction 

1.1 Mangrove distribution and ecosystem services  

Mangroves are trees or shrubs that typically grow in the intertidal zone on tropical and subtropical coastlines 

between about 30°N and 30°S. Mangrove species do not belong to a single taxonomic group; they comprise 

a vast diversity of halophytic plants that are categorized into true mangroves and mangrove associates 

(Wang et al., 2011; Woodroffe et al., 2015). According to the most recent United Nations Food and 

Agriculture Organization (UN FAO)’s report on the world’s mangroves, the total area of global mangroves 

in 2020 was 14.8 million ha, with the majority of mangroves concentrated in South and Southeast Asia 

(6.48 million ha, 43.8%) followed by South America (2.14 million ha), West and Central Africa (2.09 

million ha), North and Central America (1.85 million ha) and Oceania (1.46 million ha) (FAO, 2023). The 

Indo-West Pacific is known to have the highest diversity of mangrove plants in the world as all mangrove 

species are postulated to originate in this region (Ellison et al., 1999) (Figure 1-1).   

 
Figure 1-1. Global mangrove distribution in 2020 retrieved from Jia et al. (2023) and species counts by country adapted from 

Spalding et al. (2010). 

As described in Worthington et al. (2020), major ecosystem services provided by mangroves include 

fisheries, coastal protection, timber and fuel provision, climate regulation, water purification and tourism 

(Figure 1-2). Located in the fringe of coastal zones, mangroves are considered a natural barrier for shoreline 

stabilization against coastal hazards such as storm surges, tsunamis, erosion and sea level rise (Cochard et 

al., 2008; McIvor et al., 2015; Spalding et al., 2014). Wave energy is attenuated when swelling waves pass 

through the dense aerial root systems and branches. Mangrove roots also contribute to increasing the soil 

volume through the sequestration of riverine and coastal sediment, preventing shoreline erosion and 

mitigating the impact of sea level rise. Large Tsunamis and extreme storm surges can overwhelm and even 

destroy mangroves, but a moderate reduction in inundation areas resulting from mangroves can help reduce 

both human and economic losses. Meanwhile, mangroves can catch the floating wrecks of buildings and 
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provide shelters and resources (timber and wood fuel) for disaster-affected communities in the secondary 

flooding and post-disaster reconstruction (Spalding et al., 2014). 

Intricate roots of mangroves trap fine particles and nutrients from rivers and adjoining habitats, making 

mangroves an ideal nursery habitat that supports aquatic food chains (Hutchison et al., 2014), whereby 

marine fauna such as oysters, crabs and cockles can be collected from mangrove roots and mud, which 

birds, reptiles and mammals dwelling in the mangroves feed on (Cannicci et al., 2008; Nagelkerken et al., 

2008). Fisheries in areas adjacent to mangrove forests benefit because many commercially important fish 

and shrimps use mangroves as nursery grounds before migrating to offshore habitats such as coral reefs 

(Brander et al., 2012; Carrasquilla-Henao and Juanes, 2017; Mumby et al., 2004). Also, mangroves can act 

as biological filters for water purification (Ouyang and Guo, 2016; Walters et al., 2008) and have great 

potential in recreational fishing and tourism (Spalding and Parrett, 2019). 

 

Figure 1-2. Ecosystem services provided by mangrove ecosystems (Source: Worthington et al., 2020) 

Among these ecosystem services, the importance of mangroves for climate regulation has been receiving 

greater attention in the context of stronger climate change awareness. Mangroves are inundated by periodic 

flooding with saline water that leads to anoxic conditions of soil and slower decomposition of organic 

matter. Generally, mangroves are perceived as an efficient blue carbon sink which can contribute to mitigate 

climate change at national and global scales (Song et al., 2023; Taillardat et al., 2018; Uddin et al., 2023). 

As one of the most productive ecosystems, mangroves store an average of 738.9 Mg organic carbon per 

hectare, with an annual sequestration rate of 1.796 Mg/ha (Alongi, 2020). Organic carbon is distributed 

among aboveground biomass, belowground biomass, and soil. On average, belowground carbon accounts 
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for 85% of total mangrove carbon stocks (Kauffman, 2020), however, this can be quickly broken down 

with the clearance of mangroves and the drainage of soil (Worthington and Spalding, 2018).  

1.2 Status of global mangroves  

Coastal wetlands are currently faced with the “triple whammy” of threats, that is, growing industrialization 

and urbanization, a continuous decline in biological and physical resources (such as wading birds, fish, 

water, space and energy), and a weakened resilience to the impact of global warming and sea level rise 

(Waltham et al., 2020). Globally, there had been 677,000 ha of mangroves lost between 2000 and 2020 

(FAO, 2023). The conversion of mangroves into economic commodity production accounted for the 

majority of the loss, such as the conversion to aquaculture ponds, rice paddies and oil palm plantations, 

especially in East and Southeast Asia (Bryan-Brown et al., 2020; FAO, 2023; Ma et al., 2019; Thomas et 

al., 2017). These conversions can be traced back to the 1900s and have often been backed by governmental 

incentives (Friess et al., 2016). For example, the Philippines officially prioritized the development of 

brackish water ponds in the 1970s, funded by the Central Bank and the Development Bank of the 

Philippines (Primavera, 2000). State governments in Malaysia, Penang and Selangor, neglected and 

repealed the federal guidelines for coastal buffer strips and permanent mangrove reserves to permit the 

construction of aquaculture ponds (Jusoff, 2013).  

The removal of mangrove forests is alarming and explicit, but it should not be overlooked that mangrove 

forests may face degradation problems; changing environment such as sea level rise or alteration of rain 

patterns, can reduce fresh-water availability with increased salinity and further physiological changes that 

result in lower-stature trees and shrubs, or sometimes in obviously dieback with sparse forest coverage or 

even bare mudflats where mangroves once exhibited continuous growth (Chowdhury et al., 2019; 

Worthington and Spalding, 2018). For example, Rakhine mangroves in Myanmar exhibit sparse forest 

cover due to anthropogenic disturbances such as sea wall construction and aquaculture conversion, leading 

to the disruption of sea-freshwater exchange (Lee et al., 2021). Extreme weather events such as tropical 

cyclones and drought induced by climate change can also lead to mangrove degradations (Gilman et al., 

2008; Lovelock et al., 2015; Mafi-Gholami et al., 2017). The mangrove forest in the Everglades National 

Park, USA is degraded with the loss of foliage and structural damage due to periodic hurricanes (Han et al., 

2018; Lee et al., 2021). The tropical moist forest (TMF) dataset developed by Joint Research Centre (JRC) 

(Vancutsem et al., 2021) reported an estimated area of 271,500 ha of the world’s mangroves classified as 

degraded during 2014-2022.  

Recognising the importance of the ecosystem services provided by mangroves, different nations and 

international organizations have put forward various policies and actions against the loss and degradation 
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of mangroves (Table 1-1). In the last 20 years (2000-2020), the annual rate of global mangrove loss dropped 

from 0.12% in 2000-2010 to 0.07% in 2010-2020 with around half of total mangrove loss counteracted by 

mangrove afforestation (393,000 ha) (FAO, 2023). To ensure the effectiveness of mangrove restoration 

efforts, about 812,000 ha of global mangroves were identified as restorable areas in 2016, of which 303,710 

ha were located in Southeast Asia (Worthington and Spalding, 2018), while China was estimated to have 

16,800 ha of restorable mangrove area (Hu et al., 2020). 

Table 1-1. Regional, national and international ecosystem restoration actions specific or related to mangrove forest.  

Location Actions Organization/ Bureau in charge Source 

Global 

To conserve and sustainably 

use the oceans, seas and 

marine resources for UN 

SDG 14: Life Below Water 

UN Department of Economic and 

Social Affairs 
Katila et al. (2019) 

Global 

Appeal a global 

effort to restore 150 million 

ha degraded and deforested 

lands by 2020 and 350 

million ha by 2030. 

Bonn Challenge led by IUCN and 

Global Partnership of Forest 

Landscape Restoration 

Worthington and Spalding 

(2018) 

Global 

To prevent, halt and reverse 

the degradation of 

ecosystems worldwide by 

2030 

UN Environment Programme and 

FAO 
Waltham et al. (2020) 

Mainland China 

To plant and restore 

mangrove forest to 9050 ha 

and 9750 ha by 2025, 

respectively 

Ministry of Natural Resources and 

the National Forestry and 

Grassland Administration 

http://english.www.gov.cn/st

atecouncil/ministries/202008

/28/content_WS5f490ae4c6d

0f7257693b3cb.html 

Philippines 

To protect the remaining 

mangroves and restore lost 

forests, especially through 

fishpond reversion 

Zoological Society of London 

https://www.zsl.org/conserva

tion/regions/asia/rehabilitatin

g-mangroves-in-the-

philippines 

Mexico 

To restore and conserve over 

4,000 ha of mangroves across 

10 sites  

World Resources Institute 
https://www.wri.org/mangro

ve-guardians 

Benin, Africa 

By 2030, 15 million 

mangrove trees have been 

planted in the Ouémé MAB-

UNESCO Reserve around 

Nokoué Lake 

 

United Nations Environment 

Programme (UNEP) 

https://www.bees-ong.org/ 

Guinea, Africa 

To restore hydrology and soil 

conditions of 2,800 ha of 

abandoned lands to facilitate 

the natural recruitment of 

millions of seedlings 

 

Wetlands International 

https://www.wetlands.org/pu

blications/conserving-

biodiversity-cacheu-

mangroves-national-park-

guinea-bissau/ 

FAO: Food and Agriculture Organization; IUCN: International Union for Conservation of Nature; SDG: Sustainable 

Development Goal; UN: United Nations.  
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1.3 Remote sensing applied in mangrove research 

Mangrove forests are generally remote and physically inaccessible with dense prop roots (e.g., Rhizophora 

genus) above muddy flats, making large-scale surveys time-consuming and laborious. Remote sensing has 

been used to investigate mangrove forests over the past decade (e.g., Jia et al., 2023; Lucas et al., 2020; 

Maurya et al., 2021; Pham et al., 2019; Wang et al., 2019). Remotely sensed data can be derived from 

airborne and spaceborne platforms, ranging from optical, microwave and LiDAR (Light Detection and 

Ranging) data, providing large amounts of multi-dimensional, spatially explicit and highly resolved 

observations for monitoring, mapping and characterizing mangrove forests.  

Each source of remote sensing data has their own strengths and limitations. For instance, optical data 

enables spectral investigations over mangrove forests. However, due to cloud cover, spaceborne optical 

data can be limited in data availability, while longer wavelength microwaves from Synthetic Aperture 

Radar (SAR) can penetrate the cloud and be backscattered by ground objects, albeit not with spectral 

information as broad as multispectral and hyperspectral imagery. Different from two-dimensional 

observations, LiDAR data explicitly demonstrates forest vertical structures enabling the extraction of 

mangrove biophysical parameters, such as canopy height and crown diameter of whole forests. Additionally, 

owing to low flight altitude and mobility, the introduction of unmanned aerial vehicles (UAVs), facilitates 

very-high-resolution data acquisition such as hyperspectral and LiDAR data across inaccessible areas.  

Mangrove research based on remote sensing can be technically categorized into extent and species 

identification, and biophysical parameters retrieval such as biomass, canopy height and leaf area index 

(LAI). For mangrove extent and species identification, remote sensing-based approaches comprise visual 

interpretation, object-based image analysis (OBIA), unsupervised classification and supervised 

classification (machine learning). For biophysical parameter retrieval, the approaches can be categorized 

into empirical, physical, and machine learning models that are particularly advantageous for both 

classification and regression tasks. Through characterising mangrove forests, these methods enable deeper 

investigation into the provision of ecosystem services and mangrove resilience under the scenarios of 

increasing anthropogenic interference and climate change impacts (e.g., Asbridge et al., 2018; Dahdouh-

Guebas et al., 2004; Jia et al., 2014; Quoc Vo et al., 2015; Romer et al., 2012; Servino et al., 2018; Zhai et 

al., 2019).  

1.4 Aim, objectives and research questions 

Accurate quantity information on mangrove biomass is essential for carbon stock estimation and resilience 

determination. The importance of using remote sensing techniques has been highlighted due to the difficulty 
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in accessing these ecosystems (Worthington et al., 2020). Therefore, the aim of this research is to develop 

approaches for improved aboveground biomass (AGB) estimation of mangroves using multiple sources of 

remote sensing data and to quantify AGB dynamics of regrowing mangroves relevant to climate change 

adaptation and ongoing conservation efforts. The following objectives and specific research questions are: 

Objective 1 – to develop the methodology of mangrove AGB estimation in the mangrove forests around La 

Mancha and El Llano lagoons in Mexico using freely accessible DEMs (digital elevation models) (Chapter 

3) 

• What is the relationship between plot-level mean canopy height and aboveground biomass? 

• How can DEMs be calibrated to identical ground-based vertical datum and represent mangrove 

mean canopy height? 

• How does the developed methodology perform in comparison to existing mangrove AGB products? 

Objective 2 – to develop a novel approach for mangrove AGB estimation across the Americas using 

compiled field inventory data and multisource remote sensing data (Chapter 4) 

• How are localised field inventory data introduced to realise mangrove AGB estimation at a 

continental scale? 

• How can spaceborne LiDAR data be integrated with spaceborne optical imagery? 

• How does mangrove AGB estimation benefit from high-resolution imagery? 

Objective 3 – to quantify AGB dynamics of mangrove regrowth areas across the Americas between 2000 

and 2020, reflecting mangrove resilience relevant to climate change adaptation and conservation efforts 

(Chapter 5) 

• How is the mangrove regrowth identified and discriminated between 2000 and 2020? 

• Are the approaches of mangrove AGB estimation for 2000 and 2020 consistent or comparable? 

• How resilient were mangrove forests across the Americas in regrowing from disturbances during 

2000-2020? 

1.5 Study area  

This research targets mangrove forests across the Americas (Figure 1-3). The mangroves in the Americas, 

including North and Central America, and South America, covered an estimated area of 3.99 million ha in 
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2020, making up 27% of worldwide mangroves (FAO, 2023). The Americas have the highest regional 

inclusion of mangroves within formal protected areas, with 72% of mangroves in South America and 67% 

of mangroves in North and Central America and the Caribbean under protection (Spalding and Leal, 2022). 

While the Indo-West Pacific region hosts a high diversity of mangrove species with 62 species identified, 

the Americas are home to only 13 native mangrove species (Spalding et al., 2010). In the Americas, the 

dominant genera of frontal mangroves include Rhizophora, Avicennia, Laguncularia and Conocarpus 

(Twomey and Lovelock, 2024).  

 

Figure 1-3. The distribution of mangrove forests across the Americas in 2020 derived from Jia et al. (2023) and species counts 

by country adapted from Spalding et al. (2010). 

Regionally, this research focuses on mangrove forests bordering the lagoons of La Mancha (19°33′ – 19°36′ 

N, 96°22′ – 96°24′W) and El Llano (19°38′ – 19°40′N, 96°24′ – 96°25′W) in the state of Veracruz, Mexico 

(Figure 1-4). There are four mangrove species: Avicennia germinans, Rhizophora mangle, Laguncularia 

racemosa and Conocarpus erectus. The climate is classified as a sub-humid warm climate (Aw2), with 

annual precipitation ranging from 1,000 to 1,500 mm and an average annual temperature of around 24°C 

(RAMSAR, 2004). La Mancha lagoon and El Llano lagoon have surface areas of 135 ha and 226 ha, 

respectively (Chávez-López and Rocha-Ramírez, 2020; Vovides et al., 2021). La Mancha lagoon receives 

freshwater primarily from the Caño Gallegos River at its southern end of the lagoon and marine water from 

the Gulf of Mexico through an intermittently opened inlet in the northeastern end (Chacón Abarca et al., 

2021; Chávez-Cerón et al., 2016; Harte Research Institute for Gulf of Mexico, 2021a). Salinity in the lagoon 

increases northward regardless of the season, influencing mangrove species zonation; A. germinans 

dominates the northern region with few R. mangle, while mixed forests of A. germinans with either R. 

mangle or L. racemosa is observed in the southern part of the lagoon (Méndez-Alonzo et al., 2012; Vovides 
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et al., 2018). C. erectus is less common, typically found in the eastern side of the area (Moreno-Casasola et 

al., 2009). Unlike La Mancha lagoon, the salinity of El Llano lagoon is regulated exclusively by marine 

water entering through an inlet in the northeastern part, which opens to the Gulf of Mexico only during 

rainfall. From November to January (dry season), a natural sandy bar forms, isolating the lagoon from the 

ocean. This separation leads to hyper-salinity in the lagoon during the low-water season (Chávez-López 

and Rocha-Ramírez, 2020; Harte Research Institute for Gulf of Mexico, 2021b). Figure 1-5 provides 

supplementary context for the study area, showing field conditions and measurement activities carried out 

during the July 2022 field campaign. 

 

Figure 1-4. Geographical location of mangrove forests bordering El Llano (top) and La Mancha (bottom) lagoons (outlined in 

red) in Mexico. 

 

Figure 1-5. Field photographs taken from the fieldwork in July 2022: (a) measurement of canopy height in the mangrove forest 

around El Llano lagoon by Alejandra Vovides and her assistant Alvaro Gonzalez Ruiz; (b) measurement of the diameter of a 

large Rhizophora mangle tree in the mangrove forest on the southeastern side of La Mancha lagoon by Kangyong Zhang.  
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1.6 Thesis structure 

This thesis consists of seven chapters. Chapter 1 provides an introduction to the research and study areas, 

as well as outlining the aim, objectives and research questions. Chapter 2 is a literature review on how 

mangrove remote sensing has evolved, referring to remotely sensed data from spaceborne and airborne 

platforms and methodologies applied to mangrove research such as extent and species identification and 

biophysical parameter retrieval, as well as future opportunities. Chapter 3 proposes a methodology of 

mangrove AGB estimation across the mangrove forests around La Mancha and El Llano lagoon in Mexico. 

In this chapter, mangrove field data collected in 2022 was combined with historical field data for the 

development of plot-level biomass-height allometry. This allometry was subsequently applied to freely 

accessible DEMs calibrated with spaceborne LiDAR data to retrieve AGB estimation of mangroves in the 

study area. Chapter 4 proposes a methodology for mangrove AGB estimation across the Americas in 2020. 

A compilation of mangrove field data across the Americas was introduced to develop plot-level biomass-

height allometry. Then, this allometry was applied to newer spaceborne LiDAR data from the mission of 

Global Ecosystem Dynamics Investigation (GEDI) for footprint-level AGB estimation. Due to the discrete 

nature of GEDI footprints, high-resolution spaceborne mosaics with environmental variables were 

employed with the help of Random Forests regression algorithm for wall-to-wall mangrove AGB retrieval 

at a continental level. Chapter 5 quantifies AGB dynamics of regrowing mangrove areas across the 

Americas over the last 20 years (2000-2020). This chapter defines the mangrove regrowth as regrowing 

mangroves in previously forested or non-forested areas, delineated using the annual tropical moist forest 

coverage dataset from Joint Research Centre (JRC). AGB estimates were derived for regrowing mangroves 

in 2000 and 2020 based on period-specific methodologies. Therefore, mangrove resilience was investigated 

by quantifying two-decade AGB dynamics in regrowth areas to discern post-disturbance recovery patterns. 

Chapter 6 synthesises the findings from the empirical chapters, providing further discussions on the 

methodological contributions, the transferability of the approaches and the implications for broader 

research. It also outlines the limitations of this research and key recommendations for future research. 

Finally, Chapter 7 concludes the thesis by reflecting on the challenges, insights and advances achieved in 

this research. 
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Chapter 2 Evolution of mangrove remote sensing 

2.1 Introduction 

Remote sensing allows for large-scale surveys over mangrove forests, offering spatially explicit, highly 

resolved and temporally revisited observations to support mangrove research areas such as distribution 

mapping, species discrimination, and biophysical parameter retrieval. It leverages passive and active 

sensors on board satellites, aircrafts and UAVs to acquire multispectral and hyperspectral imagery, along 

with radar and LiDAR data. Remote sensing therefore facilitates the assessment of mangrove health, the 

monitoring of deforestation and restoration efforts, and the evaluation of their resilience in the context of 

anthropogenic activities and climate change through integrated data analyses. The approaches to the 

analysis of remotely sensed data include visual interpretation, object-oriented methods, empirical models 

and machine learning algorithms, which can be deployed independently or in combinations to meet varied 

research objectives. Recent trends suggest that data fusion and deep learning provide significant potentials 

in improved accuracy, greater reliability and comprehensive insights for high-resolution canopy height 

estimation and dynamic mangrove monitoring system. 

2.2 Remote sensing data for monitoring mangroves 

2.2.1 Spaceborne optical imagery 

Remote sensing datasets can be obtained through satellites, aircrafts or UAVs with varied data coverage 

(Figure 2-1). Spaceborne optical remote sensing is a passive technique featuring sensors such as 

radiometers or spectroradiometers onboard satellites that capture radiation reflected and emitted from the 

earth’s surfaces between the visible wavelengths (0.4-0.7 μm) to near infrared (NIR, 0.7-1.5 μm) and up to 

thermal infrared (TIR, 8-14 μm). Since the launch of the first Landsat satellite in 1972 on which the 

Multispectral Scanner (MSS) was mounted (NASA, 2021), the availability and capabilities of spaceborne 

optical remote sensing missions have improved, varying in spatial and spectral resolutions (see Table 2-1). 

These remote sensors support global observation of earth's surfaces at frequent time intervals, providing 

multispectral or hyperspectral information. Given spatially explicit spectrum-rich information and intensive 

revisit time, spaceborne optical remote sensing has therefore become one of the most appropriate candidates 

in ecosystem monitoring, although the strong interaction of the electromagnetic radiation at these 

frequencies with the atmosphere and the occurrence of clouds constrains from retrieving valid observations. 
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Figure 2-1. Remote sensing datasets acquired for monitoring mangroves. 

Spaceborne optical imagery, capturing spectral and textural characteristics of mangrove canopies, delivers 

valuable data for advancing mangrove research (Wang et al., 2019). Landsat imagery is widely accepted as 

an appropriate spaceborne dataset for monitoring mangroves, due to its provision of global 30 m 

multispectral observations featuring long-term time-series and free access. These characteristics make 

Landsat images effective for mapping mangrove extent (e.g., Giri et al., 2011; Monsef and Smith, 2017; 

Rogers et al., 2017; Spalding et al., 2010; Wang et al., 2018), particularly for consistent mappings over time 

(FAO, 2023; Goldberg et al., 2020; Hamilton and Casey, 2016). However, it is challenging to outline 

mangrove patches smaller than moderate resolution images (~30 m), particularly in West Africa where 

mangroves are found as narrow riverine fringes (Liu et al., 2021). The delineation of mangrove distribution 

is finer using very high resolution (VHR) spaceborne imagery (<10 m) such as Gaofen-2, Pleiades and 

Ziyuan-3, providing finer textural information of canopies to detect scattered and small mangrove patches 

(e.g., Friess et al., 2016; Jia et al., 2023; Zhang et al., 2021a; Zhang et al., 2021b). Due to the trade-off 

between spectral and spatial resolution in spaceborne datasets, spaceborne VHR imagery typically includes 

only the blue, green, red and NIR bands (Table 2-1). Nevertheless, VHR imagery can capture finer textures 

of mangrove canopies, which helps avoid saturation in high biomass estimation (Proisy et al., 2007). 

Moreover, combining VHR imagery with spectral features can improve biomass estimation accuracy (Pham 
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and Brabyn, 2017), and the introduction of VHR imagery provides species discrimination performance 

comparable to that of hyperspectral imagery at similar fine resolutions (Jia et al., 2014; Lassalle et al., 2023).  

Apart from the provision of finer textures, spaceborne optical imagery enables finer spectral investigation 

over mangroves, such as Gaofen-5, Hyperion, PRISMA, and DESIS (Jia et al., 2014; Kumar et al., 2019; 

Lassalle et al., 2023; Wan et al., 2020). In situ spectral reflectance measurements with portable 

spectroradiometers highlighted the detectability of hyperspectral signal for subtle spectral variations 

between mangrove species (Xu et al., 2019, Figure 2-2). The reflectance of mangrove leaves in NIR and 

shortwave infrared (SWIR) channels shows better spectral separability for species discrimination (Hoa et 

al., 2017; Kuenzer et al., 2011; Lassalle et al., 2023; Wang and Sousa, 2009; Zulfa et al., 2020). However, 

spaceborne hyperspectral imagery generally has a spatial resolution of 30 m, limiting the application in 

identifying mangrove species within highly mixed communities or small-patch (i.e., narrow) areas (Jia et 

al., 2014; Mondal et al., 2019). Since its launch in 2015, Sentinel-2 imagery, with high resolution (up to 10 

m) and multispectral information including red edge and SWIR bands, has become another appropriate 

spaceborne optical dataset in mangrove research (e.g., Jia et al., 2023, 2024; Manna and Raychaudhuri, 

2020; Maung and Sasaki, 2021; Navarro et al., 2019; Parida and Kumari, 2021; Zhang et al., 2023).  

 
Figure 2-2. The smoothed reflectance spectrum of four mangrove species in China and field photos of corresponding mangrove 

species (Source: Xu et al. (2019)). 
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Table 2-1. The specifications of spaceborne optical sensors. 

Satellite and Sensor Band names with pixel size and wavelength (μm) Revisit time Operating period 

Landsat 1-5 MSS 

60 m Green: 0.5 – 0.6 

60 m Red: 0.6 – 0.7 

60 m NIR 1: 0.7 – 0.8 

60 m NIR 2: 0.8 – 1.1  

18 days for Landsat 1/2/3 

 16 days for Landsat 4/5 

23/07/1972 – 06/01/1978 (Landsat 1)  

22/01/1975 – 27/07/1983 (Landsat 2) 

05/03/1978 – 07/09/1983 (Landsat 3) 

Landsat 4/5 TM 

30 m Blue: 0.45 – 0.52 

30 m Green:0.52 – 0.60 

30 m Red:0.63 – 0.69 

30 m NIR: 0.76 – 0.90 

30 m SWIR-1: 1.55 – 1.75 

120 m TIR: 10.41 – 12.5 

30 m SWIR-2: 2.08 – 2.35 

16 days 
16/07/1982 – 15/06/2001 (Landsat 4)  

01/03/1984 – 19/06/2013 (Landsat 5) 

Landsat 7 ETM+ 

30 m Blue: 0.441 – 0.514 

30 m Green: 0.519 – 0.601 

30 m Red: 0.631 – 0.692 

30 m NIR: 0.772 – 0.898 

30 m SWIR-1: 1.547 – 1.749  

60 m TIR: 10.31 – 12.36 

30 m SWIR-2: 2.064 - 2.345 

15 m PAN: 0.515 – 0.896  

16 days (when combined with Landsat 8, revisit time for 

data collection can be every 8 days) 

15/04/1999 to present  

(Scan Line Corrector failure on 

31/05/2003) 

Landsat 8/9  

OLI/OLI-2 

30 m Coastal/Aerosol: 0.435 – 0.451 

30 m Blue: 0.452 – 0.512 

30 m Green: 0.533 – 0.590 

30 m Red: 0.636 – 0.673 

30 m NIR: 0.851 – 0.879 

30 m SWIR-1: 1.566 – 1.651 

30 m SWIR-2: 2.107 – 2.294 

15 m PAN: 0.503 – 0.676 

30 m Cirrus: 1.363 – 1.384 

100 m TIR-1: 10.60 – 11.19 

100 m TIR-2: 11.50 – 12.51 

16 days (the combination of Landsat 8 and 9 can make 

revisit time for data collection every 8 days)  

11/02/2013 to present (Landsat 8)  

27/09/2021 to present (Landsat 9) 
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Table 2-1. Continued. 

Satellite and Sensor Band names with pixel size and wavelength (μm) Revisit time Operating period 

Sentinel-2A/B MSI 

Note: wavelengths here are central wavelength 

60 m Coastal/Aerosol: 0.444 (S2A) / 0.442 (S2B) 

10 m Blue: 0.497 (S2A) / 0.492 (S2B)  

10 m Green: 0.560 (S2A) / 0.559 (S2B) 

10 m Red: 0.664 (S2A) / 0.665 (S2B)  

20 m Red Edge-1: 0.704 (S2A) / 0.704 (S2B) 

20 m Red Edge-2: 0.740 (S2A) / 0.739 (S2B) 

20 m Red Edge-3: 0.783 (S2A) / 0.780 (S2B) 

10 m NIR: 0.835 (S2A) / 0.833 (S2B) 

20 m Red Edge-4: 0.865 (S2A) / 0.864 (S2B) 

60 m Water vapour: 0.945 (S2A) / 0.943 (S2B) 

60 m Cirrus: 1.374 (S2A) / 1.377 (S2B) 

20 m SWIR-1: 1.614 (S2A) / 1.610 (S2B)  

20 m SWIR-2: 2.202 (S2A) / 2.186 (S2B) 

10 days for each, 5 days for combined constellation   

23/06/2015 to present (Sentinel-2A) 

07/03/2017 to present (Sentinel-2B) 

 

 

SPOT-1/2/3 HRV 

20 m Green: 0.50 – 0.59 

20 m Red: 0.61 – 0.68  

20 m NIR: 0.79 – 0.89 

10 m PAN: 0.51 – 0.73 

About 1 to 4 days depending on the latitude due to 

oblique viewing capability 

22/02/1986 – 17/11/2003 (SPOT 1) 

22/01/1990 – 30/07/2009 (SPOT 2) 

26/09/1993 – 14/11/1996 (SPOT 3) 

SPOT-4  

HRVIR/VGT 

10 m Green: 0.50 – 0.59 

10 m Red: 0.61 – 0.68  

10 m NIR: 0.78 – 0.89 

20 m SWIR: 1.58 – 1.75  

10 m PAN: 0.61 – 0.71  

(VGT) 1.15 km Blue: 0.437 - 0.480 

(VGT) 1.15 km Red: 0.615 - 0.700 

(VGT) 1.15 km NIR: 0.773 - 0.894  

(VGT) 1.15 km SWIR: 1.603 - 1.695 

About 1 to 4 days depending on the latitude due to 

oblique viewing capability (During February to end of 

May in 2013, repeat interval was changed to 5 days as 

the altitude of SPOT 4 had been lowered.) 

24/03/1998 – 29/06/2013 
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Table 2-1. Continued. 

Satellite and Sensor Band names with pixel size and wavelength (μm) Revisit time Operating period 

SPOT-5 

HRG/HRS/VGT-2 

20 m Green: 0.50 – 0.59 

20 m Red: 0.61 – 0.68  

20 m NIR: 0.79 – 0.89 

20 m SWIR: 1.53 – 1.75  

2.5/5 m PAN: 0.48 – 0.71 

5/10 m PAN: 0.48 – 0.70 (for stereo pair images)  

(VGT-2) 1.15 km Blue: 0.439 - 0.476 

(VGT-2) 1.15 km Red: 0.616 - 0.690 

(VGT-2) 1.15 km NIR: 0.783 - 0.892  

(VGT-2) 1.15 km SWIR: 1.584 - 1.685 

About 2-3 days depending on latitude due to oblique 

viewing capability 
04/05/2002 – 31/03/2015 

SPOT-6/7 NAOMI  

SPOT-7 VGT-2 

(Commercial) 

6 m Blue: 0.45 – 0.52  

6 m Green: 0.53 – 0.60 

6 m Red: 0.62 – 0.69  

6 m NIR: 0.76 – 0.89 

1.5 m PAN: 0.45 – 0.75 

(VGT-2) 1.15 km Blue: 0.439 - 0.476 

(VGT-2) 1.15 km Red: 0.616 - 0.690 

(VGT-2) 1.15 km NIR: 0.783 - 0.892  

(VGT-2) 1.15 km SWIR: 1.584 - 1.685 

1 day when SPOT 6 and 7 operate simultaneously,  

around 1 to 3 days when only one satellite does. 

09/09/2012 to present (SPOT 6) 

30/06/2014 to present (SPOT 7) 

IKONOS OSA 

(Commercial) 

4 m Blue: 0.45 – 0.53 

4 m Green: 0.52 – 0.61  

4 m Red: 0.64 – 0.72  

4 m NIR: 0.76 – 0.86 

1 m PAN: 0.45 – 0.90 

Approximately 3 days at 40° latitude 24/09/1999 – 31/03/2015 

RapidEye REIS 

(Commercial) 

5 m Blue: 0.440 – 0.510 

5 m Green: 0.520 – 0.590  

5 m Red: 0.630 – 0.685  

5 m Red Edge: 0.690 – 0.730 

5 m NIR: 0.760 – 0.850 

Daily revisit with body-pointing capability, 5.5 days 

at nadir over mid-latitude regions (± 84° latitude) 

29/08/2008 – 31/03/2020 (constellation 

was deactivated) 

QuickBird BGIS2000 

(Commercial) 

2.4 – 2.6 m Blue: 0.45 – 0.52 

2.4 – 2.6 m Green: 0.52 – 0.60  

2.4 – 2.6 m Red: 0.63 – 0.69  

2.4 – 2.6 m NIR: 0.76 – 0.90 

0.61 - 0.72 m PAN: 0.45 – 0.90 

2.8 days at 1-metre GSD resolution 

1.5 days at 1.5-metre GSD resolution 

(Both are at 20° latitude) 

18/10/2001 – 27/01/2015 
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Table 2-1. Continued. 

Satellite and Sensor Band names with pixel size and wavelength (μm) Revisit time Operating period 

WorldView-1 WV60 

(Commercial) 
0.50 - 0.55 m PAN: 0.45 – 0.90 

1.7 days at 1 m GSD or less, 5.9 days at 20º off-nadir or 

less (0.51 m GSD) 
18/09/2007 to present 

WorldView-2  

WV-110 

(Commercial) 

1.85 - 2.07 m Coastal Blue: 0.400 – 0.450 

1.85 - 2.07 m Blue: 0.450 – 0.510 

1.85 - 2.07 m Green: 0.510 – 0.580 

1.85 - 2.07 m Yellow: 0.585 – 0.625 

1.85 - 2.07 m Red: 0.630 – 0.690 

1.85 - 2.07 m Red Edge: 0.705 – 0.745 

1.85 - 2.07 m NIR-1: 0.770 – 0.895 

1.85 - 2.07 m NIR-2: 0.860 – 1.040 

0.46 - 0.52 m PAN: 0.45 – 0.80 

 1.1 days at 1 m GSD or less, 3.7 days at 20° off-

nadir or less (0.52 m GSD) 
08/10/2009 to present 

WorldView-3  

WV-110 

(Commercial) 

1.24 – 1.38 m Coastal Blue: 0.400 – 0.450 

1.24 – 1.38 m Blue: 0.450 – 0.510 

1.24 – 1.38 m Green: 0.510 – 0.580 

1.24 – 1.38 m Yellow: 0.585 – 0.625 

1.24 – 1.38 m Red: 0.630 – 0.690 

1.24 – 1.38 m Red Edge: 0.705 – 0.745 

1.24 – 1.38 m NIR-1: 0.770 – 0.895 

1.24 – 1.38 m NIR-2: 0.860 – 1.040 

0.31 - 0.34 m PAN: 0.45 – 0.80 

3.70 – 4.10 m SWIR-1: 1.195 – 1.225 

3.70 – 4.10 m SWIR-2: 1.550 – 1.590 

3.70 – 4.10 m SWIR-3: 1.640 – 1.680 

3.70 – 4.10 m SWIR-4: 1.710 – 1.750 

3.70 – 4.10 m SWIR-5: 2.145 – 2.185 

3.70 – 4.10 m SWIR-6: 2.185 – 2.225 

3.70 – 4.10 m SWIR-7: 2.235 – 2.285 

3.70 – 4.10 m SWIR-8: 2.295 – 2.365 

About 1 day at 1 m GSD, 4.5 days at 20° off-nadir or less 

(0.59 m GSD) 
13/08/2014 to present 

WorldView-4  

WV-110 

(Commercial) 

1.24/1.38/4 m Blue: 0.450 – 0.510 

1.24/1.38/4 m Green: 0.510 – 0.580 

1.24/1.38/4 m Red: 0.655 – 0.690 

1.24/1.38/4 m NIR: 0.780 – 0.920 

0.31/0.34/1 m PAN: 0.45 – 0.80 

Less than 1.0 day at 1 m GSD (at 40° N latitude), more 

than 4.5 accesses per day for combined constellation   
11/11/2016 – 07/01/2019 
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Table 2-1. Continued. 

Satellite and Sensor Band names with pixel size and wavelength (μm) Revisit time Operating period 

Gaofen-2 PMC-2 

(Chargeable) 

3.24 m Blue: 0.45 - 0.52 

3.24 m Green: 0.52 - 0.59 

3.24 m Red: 0.63 - 0.69 

3.24 m NIR: 0.77 - 0.89 

0.81 m PAN: 0.45 - 0.90 

5 days 19/08/2014 to present 

Gaofen-5  

AHSI/ VIMS 

(Commercial) 

30 m spectral bands (from 0.4 to 2.5 μm) with the 

bandwidths of 5 nm for VNIR bands and 10 nm for 

SWIR bands (AHSI sensor)  

20/40 m 12 spectral bands from 0.45 to 12.5 μm 

(VIMS sensor) 

2 days 09/05/2018 to present 

PlanetScope PSB.SD 

(Commercial) 

3.7 - 4.2 m Coastal Blue: 0.431 – 0.452  

3.7 - 4.2 m Blue: 0.465 – 0.515  

3.7 - 4.2 m Green I: 0.513 – 0.549  

3.7 - 4.2 m Green: 0.547 – 0.583  

3.7 - 4.2 m Yellow: 0.600 – 0.620  

3.7 - 4.2 m Red: 0.650 – 0.680  

3.7 - 4.2 m Red Edge: 0.697 – 0.713 

3.7 - 4.2 m NIR: 0.845 – 0.885 

daily Mid-Mach 2020 to present 

EnMap 

30 m 224 spectral bands with intervals of 6.5 nm and 

10 nm in the VNIR (420 - 1000 nm) and SWIR (900 

- 2450 nm) channels, respectively 

27 days 01/04/2022 to present 

EO-1 Hyperion 
30 m 220 spectral bands (from 0.357 to 2.576 μm) 

with a 10 nm bandwidth 
16 days 21/11/2000 – 22/02/2017 

OLI: Operational Land Imager; NIR: Near Infrared; SWIR: Shortwave Infrared; MSI: Multi-Spectral Instrument; SPOT: Système Pour l'Observation de la Terre; HRV: High-Resolution 

Visible; HRVIR: High-Resolution Visible and InfraRed; HRG: High-Resolution Geometric; HRS: High-Resolution Stereoscopic; NAOMI: New AstroSat Optical Modular Instrument; 

VGT: Vegetation Monitoring Instrument; OSA: Optical Sensor Assembly; REIS: RapidEye Earth-imaging System; BGIS2000: Ball Global Imagery System 2000; GSD: Ground Sample 

Distance; WV60:  WorldView-60 camera; WV110: WorldView-110 camera; PMC-2: Panchromatic and Multispectral Camera Suite-2; AHSI: Advanced Hyper-Spectral Imager;  VIMS: 

Visual and Infrared Multispectral Sensor; VNIR: Visible and Near Infrared; PSB.SD: PlanetScope Blue SuperDove; EnMap: Environmental Mapping and Analysis Program.
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2.2.2 Spaceborne radar imagery 

There is a fundamental challenge with spaceborne optical imagery as clouds have adverse impacts on the 

retrieval of spectral data from the ground, particularly in humid tropical areas, where cloud cover is frequent, 

persistent, and often dense. In contrast, synthetic aperture radar (SAR) data can be obtained independent of 

the weather conditions or time of day. SAR operates as an active sensor, generating and transmitting 

microwave signals and subsequently receives the returned or backscattered signals from the earth surface. 

The wavebands of spaceborne SAR data used in mangrove research include X-, C- and L-bands (see Table 

2-2). Shorter wavelengths such as X-band (2.5-3.75 cm) and C-band (3.75-7.5 cm) strongly interact with 

the top of the canopy, while longer wavelengths such as L-band (15-30 cm) can penetrate through the 

canopy and interact with the larger tree structures such as trunks and larger branches (Figure 2-3). As SAR 

collects returned signals either horizontally or vertically, the type of SAR data consist of horizontal (HH), 

vertical (VV), and cross (HV or VH) polarization, which is a crucial parameter for understanding the 

interaction between electromagnetic waves and vegetation structures.  

Table 2-2. The specifications of spaceborne radar sensors used in mangrove research. 

Satellite and sensor Waveband Imaging mode and resolution (m) Revisit time Operating period 

TanDEM-X X 12 m (DEM product) 11 days 21/06/2010 

Sentinel-1 A/B C 

Strip map: 3.5/10/40 

Interferometric Wide swath: 10/40 

Extra-Wide swath: 25/40 

Wave: 25 

6 - 12 days 03/04/2014 to present 

RADARSAT C 

Extended High: 18 - 27  

Extended Low: 30 

ScanSAR Wide: 100  

ScanSAR Narrow: 50 

Wide: 30 

Standard: 30  

Fine: 8 

24 days 04/11/1995 – 29/03/2013 

RADARSAT-2 C 
1 – 100 m depending on polarization 

and imaging modes 
24 days 14/12/2007 to present 

Envisat ASAR C 

Image: 30  

Alternate Polarization: 30 

Wide Swath: 150 

Global Monitoring: 1000  

Wave: 10 

35 days 01/03/2002 – 08/04/2012 

ERS-2 AMI C 
Image: 30 

Wave: 30 
35 days 21/04/1995 – 04/07/2011 

JERS-1 L 
18 m (range) x 18 m (azimuth, 3 

looks) 
44 days 11/02/1992 – 12/10/1998 

ALOS PALSAR L 

Fine: 10/20 

ScanSAR: 100  

Polarimetric: 30 

46 days 24/01/2006 – 12/05/2011 
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Table 2-2. Continued. 

Satellite and sensor Waveband Imaging mode and resolution (m) Revisit time Operating period 

ALOS-2 PALSAR-2 L 

Strip map: 3/6/10  

ScanSAR: 60/100 

Spotlight: 1×3 

24 days 24/05/2014 to present 

ASAR: Advanced Synthetic Aperture Radar; AMI: Along-Track Scanning Radiometer; JERS: Japanese Earth Resources 

Satellite; ALOS: Advanced Land Observing Satellite; PALSAR: Phased Array L-band Synthetic Aperture Radar. 

 
Figure 2-3. Schematic diagram of different wavelengths of radar system penetrating through mangroves. 

Mangroves exhibit relatively higher backscattering coefficient on SAR data than the adjacent non-forest 

land covers. Applying thresholds on backscattering coefficient on spaceborne SAR imagery enables 

mangrove extent mapping (Bunting et al., 2022b; Kumar and Patnaik, 2013; Lucas et al., 2007). The 

sensitivity of SAR data relates to mangrove canopy cover, moisture content and vegetation volume, 

alongside physical parameters of SAR sensors such as baseline and radar wavelengths. Differences between 

mangroves and other forests are subtle when using L-band SAR data with shorter baseline (distance 

between antennas at 2 m) (Lucas et al., 2007). Meanwhile, intact mangrove forests with dense canopies and 

foliage strongly impact penetration of shorter radar wavelengths (Kumar and Patnaik, 2013). L-band SAR 

data with a larger baseline (several hundred meters) such as ALOS PALSAR facilitates improved mangrove 

discrimination (Lucas et al., 2007) and mangrove change monitoring (Bunting et al., 2022a), while C-band 

SAR data are found not to have significant relationships with mangrove biophysical parameters, i.e., stem 

density, basal area, and mean diameter at breast height (Kovacs et al., 2008). However, the performance 

using individual radar wavelength for mangrove extent and species discrimination is limited, since the 

thresholds are unlikely to be consistent across different study sites (Lucas et al., 2007; Bunting et al., 2022b). 
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The integration with spaceborne optical data such as Landsat, Sentinel-2 and Worldview-3 imagery 

enhanced the accuracy of mangrove extent and species discrimination (e.g., Bunting et al., 2022a; Huang 

et al., 2022; Wang et al., 2023; Zhang et al., 2018). 

The relationships between backscattering coefficient and mangrove foliage and woody components are also 

employed to estimate mangrove leaf area index (LAI) and AGB (e.g., Fu et al., 2022, 2023; Kovacs et al., 

2008; Lucas et al., 2020; Nedd et al., 2023). However, mangrove AGB estimation using backscattering 

coefficient faces challenges of saturation, due to an asymptotic relationship between these two variables 

(Pham et al., 2019). The level of saturation depends on the wavelength, polarizations and ground condition. 

At L-band, saturation typically occurs at AGB levels between 100 and 150 Mg/ha (Shugart et al., 2010). 

Not only electromagnetic but temporal characteristics does spaceborne SAR imagery provide. By 

differentiating two or more radar images of the same area acquired at different times from similar vantage 

points (Interferometric SAR; InSAR), mangrove canopy height models (CHMs) can be established (e.g., 

Berninger et al., 2019; Lee and Fatoyinbo, 2015; Suab et al., 2024). A variety of mangrove canopy height 

retrieval algorithms based on InSAR measurements have been developed and applied. These approaches 

differ in terms of model assumptions such as low-lying and flat growing environments of mangroves 

(Simard et al., 2006, 2008, 2019), number of baselines utilized (Lee et al., 2018) and wavelengths (Aslan 

and Aljahdali, 2022; Lee and Fatoyinbo, 2015). Since taller trees are considered to have higher proportion 

of AGB, deploying biomass-height regression analyses with CHMs provided significant potential to 

extrapolate higher AGB estimates of mangroves, mitigating the saturation of AGB estimation (e.g., Lucas 

et al., 2020; Pham et al., 2019; Simard et al., 2019; Tang et al., 2016).  

2.2.3 Spaceborne LiDAR data 

LiDAR is an active remote sensing technology that emits laser pulses towards the land and records the 

returned signals as laser pulses. When there is a vegetated surface, the returned signals, or waveforms, are 

a function of vertical distribution of vegetation and ground surfaces within the footprint (laser-illuminated 

area). Compared to optical and SAR sensors primarily providing two-dimensional representations of the 

earth’s surface, LiDAR instruments enable three-dimensional investigations offering detailed vertical 

characteristics, particularly forest vertical structure. GLAS (Geoscience Laser Altimeter System) is the first 

spaceborne LiDAR instrument onboard NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat), 

collecting global coverage data from 2003 to August 2010 with a footprint of 70 m in diameter (Simard et 

al., 2008). Its successor, ICESat-2, has been equipped with the Advanced Topographic Laser Altimeter 

System (ATLAS) instrument, enabling denser and finer global observations since September 2018. 

Currently, there is first-ever spaceborne LiDAR mission in orbit aiming at global vegetation vertical 
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investigations, known as the Global Ecosystem Dynamics Investigation (GEDI), providing full-waveform 

observations of 25 m footprints (Duncanson et al., 2022; Markus et al., 2017) (Table 2-3). A schematic 

diagram of the ground tracks of ICESat-2 ATL08 and GEDI L2A products is provided in Figure 2-4. 

Similar to GEDI observations, ICESat also provides full-waveform observations where the distribution of 

returned energy is recorded, while ICESat-2 ATLAS employs photon counting LiDAR altimetry technique 

measuring the transit time of individual photons to determine surface height along track (Liu et al., 2021).  

Table 2-3. The specifications of spaceborne LiDAR sensors used in mangrove research. 

Satellite and 

sensor 

Laser 

wavelength 

Pulse Repetition Frequency 

(PRF) 

Footprint resolution 

(in diameter) 
Operating period 

ICESat GLAS 1064 nm 40 Hz (170 m spacing) 70 m 12/01/2003 – 14/08/2010 

ICESat-2 ATLAS 532 nm 10 kHz (0.7 m spacing) 17 m 15/09/2018 to present 

GEDI 1064 nm 242 Hz (60 m spacing) averaging 25 m 25/03/2019 – 17/03/2023 

ICESat: Ice, Cloud, and Land Elevation Satellite; GLAS: Geoscience Laser Altimeter System; ATLAS: Advanced Topographic 

Laser Altimeter System; GEDI: Global Ecosystem Dynamics Investigation. 

 
Figure 2-4. Schematic diagrams of the ground tracks of different spaceborne LiDAR datasets: a) ICESat-2 ATL08, b) GEDI 

L2A. Note that the across-track distances are not shown to scale for clarity and compactness (Source: Liu et al. (2021)). 

Spaceborne LiDAR data have been used to estimate forest canopy height which can be determined through 

relative height (RH) metrics representing certain quantiles of returned energy relative to the ground or 

height values computed from identified canopy photons minus the interpolated ground surface. ICESat-2 

and GEDI yield accurate canopy height estimates with root mean square error of 5.02 m and 3.56 m, 

respectively, as compared with locally calibrated airborne LiDAR products for USA territories (Liu et al., 

2021). Given the importance of accurate canopy height estimation, spaceborne LiDAR data have been 

employed to link LiDAR-derived RH with field measurements of Lorey’s mean canopy height (Saatchi et 
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al., 2011), plot-level canopy height at various quantiles (Baccini et al., 2012; Duncanson et al., 2022), and 

to calibrate medium resolution digital elevation models (DEMs) to pixel level canopy height estimates 

(Fatoyinbo and Simard, 2013; Simard et al., 2006, 2019). Canopy height is significantly correlated with 

AGB, making LiDAR observations a viable tool to estimate AGB with litter or even no saturation in high 

AGB estimation, while optical reflectance and SAR backscatter signals have been shown to saturate at 

relatively low AGB levels (Rodríguez-Veiga et al., 2019; Jagadish et al., 2024). However, unlike optical or 

radar sensors that provide wall-to-wall imagery, spaceborne LiDAR instruments (e.g., GLAS, GEDI, 

ATLAS) acquire data only along narrow tracks, resulting in discrete sampling footprints rather than 

continuous global coverage. For instance, GEDI was projected to acquire over 10 billion cloud-free 

observations, about 4% of the land surface, over a two-year nominal mission (Dubayah et al., 2020). 

Nonetheless, the LiDAR-derived canopy height estimates are a valuable resource for scaling limited field 

data, especially for typically remote and inaccessible mangrove forests in which it is physically difficult to 

conduct fieldwork at a large extent. 

2.2.4 Airborne datasets 

Before the prevailing application of satellite remote sensing, aerial photography was the primary source of 

remotely sensed data and the only means of assessing mangrove extent and health (Kuenzer et al., 2011; 

Liu et al., 2022). Given the mobility and low operation altitude of aircrafts, airborne remote sensing, with 

the advent of UAVs, offers time-sensitive and highly resolved geospatial data. Airborne remote sensing 

datasets primarily comprise hyperspectral and LiDAR data (Kuenzer et al., 2011; Pham et al., 2019; 

Wannasiri et al., 2013). Airborne hyperspectral data collected by sensors such as CASI (Compact Airborne 

Spectrographic Imager), AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) and AISA (Airborne 

Imaging Spectrometer for Applications) have proven effective for regional-scale mangrove monitoring, 

offering detailed spectral information that improves the discrimination of mangrove species (e.g., Liu et al., 

2019; Prakash Hati et al., 2020; Yang et al., 2009). Compared with spaceborne hyperspectral data Hyperion, 

and EnMap (Storch et al., 2023) with a spatial resolution of 30 m, airborne hyperspectral data record rich 

spectral information at higher resolution which can be up to sub-meter (0.5 m) depending on flight altitude 

(Lassalle et al., 2023). Airborne LiDAR data were found as ‘gold standard’ to have the best estimation of 

mangrove canopy height in Zambezi River (Lagomasino et al., 2016) and to have the best vertical accuracy 

of topography in Mexico when compared with geodetic benchmarks (Carrera-Hernández, 2021). However, 

the acquisition of airborne data is opportunistic with regards to data availability as the fight campaign is 

costly and weather-dependent, and more importantly, covering limited area of a specific region (Hancock 

et al., 2021; Kuenzer et al., 2011; Lagomasino et al., 2016). 
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2.3 Remote sensing approaches in mangrove research 

2.3.1 Distribution mapping and species discrimination 

A generalised methodological workflow of remote sensing approaches in mangrove research is presented 

in Figure 2-5. The schematic diagram synthesises common practices reported in the literature, covering 

data sources, analytical methods, outputs, and applications. Within this context, investigating mangrove 

distribution and species discrimination is beneficial to the effective management of mangrove forests. 

Remote sensing approaches for mangrove extent delineation and species discrimination are broadly 

categorized into traditional and machine learning based supervised methods (Table 2-4).  

 
Figure 2-5. Generalised methodological workflow of remote sensing approaches in mangrove research. 

Traditional methods comprise visual interpretation, object-based image analysis (OBIA) and unsupervised 

classification. Before the wider introduction of satellite images, mangrove extent and species identification 

relied on visual interpretation of aerial black and white photographs (Dahdouh-Guebas et al., 2002; Kuenzer 

et al., 2011; Liu et al., 2022). Figure 2-6 presents an aerial photograph captured in 1964 by the Hong Kong 

Lands Department, illustrating its application in historical mangrove extent mapping (Liu et al., 2022). 

High-resolution aerial photographs provide highly resolved and spatially explicit information for regional 

mangrove recognition at a finer scale with the image attributes of grey levels, texture, shape, shadows. 

Verheyden et al. (2002) employed these image attributes to visually interpret mangrove extent and species 

distribution in Sri Lanka and yielded overall satisfactory results of genus-level recognition. Since the spatial 

resolution of aerial photographs can be very high depending on flight height, the visual interpretation on 

archived aerial photographs aids in yielding high-resolution ground samples to train or validate the 

classification methods developed for lower-resolution satellite imagery (Hsu et al., 2020; Kamal et al., 2014; 



29 

 

Liu et al., 2022). However, visual interpretation on aerial interpretation requires expert knowledge on 

classified categories and is time-consuming for fragmented mangrove forests.  

 
Figure 2-6. Aerial photograph taken on 14 December 1964 by the Hong Kong Lands Department, used for historical mangrove 

extent mapping. The Mai Po Nature Reserve is outlined in white, and land covers are annotated as mangroves (M), mudflats 

(MF), and gei wai (GW) (Source: Liu et al., 2022). 

Considering rich spatially explicit information that high-resolution images (generally ≤10 m) deliver, OBIA 

has been deployed for effective mangrove extent mapping and species discrimination (e.g., Bihamta Toosi 

et al., 2020; Jia et al., 2023; Wang et al., 2004; Zhang et al., 2021; Zhang et al., 2021). OBIA includes two 

basic principles, segmentation and classification. Different from pixel-based methods, OBIA segments an 

image into representative vector shapes of different size and geometry of similar characteristics using the 

methods, such as watershed segmentation (Biswas et al., 2020) and multi-resolution (Zhang et al., 2023). 

Adjacent pixels are grouped in terms of image attributes, such as texture, shape and context (Blaschke, 

2010). Subsequently, spectral, textural, and geometric features are extracted from these pixel groups for 

further classification. Zhang et al. (2021) found the incorporation of OBIA with random forest algorithm 

on 0.8 m Gaofen-2 imagery works successfully in detecting small mangrove patches. Mangrove species 

discrimination also benefits from OBIA using 0.5 m WorldView-2 image (Heenkenda et al., 2014) or 4 m 

airborne CASI-2 data (Kamal and Phinn, 2011).  

Similar to OBIA, unsupervised classification methods such as iterative self-organizing data analysis 

techniques (ISODATA) and k-means clustering are grouping pixels of similar spectral properties into 

clusters which will be manually labelled (classified). However, these methods are pixel-based, not taking 

into account any of the information from neighbouring pixels, which leads to a ‘salt and pepper’ effect. For 
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mangrove extent mapping, when prior knowledge of field data or a well-trained interpreter is unavailable, 

remote sensing image pixels can be clustered into predefined classes on some statistical or mathematical 

relationship in unsupervised classification methods (Giri et al., 2011; Spalding et al., 2010). Usually, 

unsupervised classification methods are employed for preliminary analysis of data before conducting 

supervised classification (Maurya et al., 2021). 

Supervised classification is significantly dependent on training samples derived from domain knowledge 

or the expertise of an analyst for the relationship between imagery and classes that can be established. 

Supervised machine learning algorithms such as maximum likelihood classification, artificial neural 

networks, random forests, support vector machine and Gradient Boosting Machine work well in mangrove 

extent mapping and species discrimination with the input data of optical (e.g., Bihamta Toosi et al., 2020; 

Kanniah et al., 2015; Liu et al., 2022; X. Liu et al., 2021; Peng et al., 2020; Wang et al., 2018, 2008), 

hyperspectral (e.g. Jia et al., 2014; Kumar et al., 2019; Lassalle et al., 2023; Wan et al., 2020) and SAR 

(e.g. Abdel-Hamid et al., 2018; Fu et al., 2023). Maximum likelihood classification (MLC) is a parametric 

model assuming a known form for the data distribution (i.e., normal distribution), while other machine 

learning algorithms are non-parametric models without the assumption of a specific distribution, relying on 

data-driven patterns. Non-parametric models yield satisfactory results in identifying mangrove extent and 

species with textural and spectral features (Table 2-4). The most commonly used of these models, support 

vector machines, random forests and artificial neural networks are explained further below. 

Support vector machines (SVM) was introduced and developed by Vladimir Vapnik and his colleagues in 

the 1990s (Boser et al., 1992; Cortes and Vapnik, 1995) and has been widely applied to classification 

problems within machine learning domain, particularly in remote sensing application with limited training 

datasets (Mountrakis et al., 2011; Sheykhmousa et al., 2020). SVM can also be applied to regression tasks, 

where the relationships between predictor variables and output variables can be obtained.  This type of 

SVM is referred to as support vector regression (SVR). SVM is a non-parametric statistical learning 

algorithm that is insensitive to training data distribution. Initially, SVM was designed to distinguish two 

classes by determining the optimal hyperplane which is the maximum margin between the closest data 

points of opposite classes. Then, a method called “kernel trick” (the use of kernel function) was applied to 

SVM for non-linearly separable data. The kernel functions such as polynomial kernels, radial basis function 

(RBF) kernels and sigmoid kernels are used to transform the data into a higher-dimensional space to enable 

linear separation, improving the separability between classes. Therefore, the performance of SVM largely 

depends on the suitable selection of a kernel function with correct kernel parameters. However, optimizing 

SVM parameters is very resource-intensive, and also, the classification over big data is always expensive 
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in computation, especially multiclass classification scenarios normally in remote sensing applications 

(Sheykhmousa et al., 2020).  

Random forests (RF) use ensemble learning methods (i.e., Bagging, short for Bootstrap Aggregating) to 

solve classification or regression problems, making it much more robust against overfitting. The algorithm 

operates by constructing a number of decision trees at the training stage and producing the mean prediction 

for regression tasks and the mode prediction for classification tasks (Breiman, 2001). Given a training 

dataset with corresponding responses, RF repeatedly selects a random sample with replacement of the 

training dataset and fits trees to the samples. Different from general bagging method, RF selects a random 

subset of features at each candidate split when constructing decision trees. Consequently, RF performs well 

with high accuracy, robustness, and efficiency in dealing with high-dimensional data. Additionally, it is 

straightforward to train and tune RF to achieve satisfactory results. However, the procedure of constructing 

decision trees in RF is unknown, generally referred to as “black box” (Zhao et al., 2023). And, when it 

comes to regression, RF is not able to extrapolate from the training inputs as the predictions are the average 

of observed labels.  

Artificial neural networks (ANN), inspired by biological nervous processing in the human brain, are 

interconnected neurons that aim to simulate neural processing and powerfully capable of nonlinear 

classification and regression tasks (Dey et al., 2023; Maung and Sasaki, 2021). ANN was first introduced 

by McCulloch and Pitts (1943) and proposed a simplified neuron model for logical operations. Multilayer 

perceptron (MLP) is the most widely recognized ANN, comprising an input and output layers in addition 

to one or more hidden layers. Thus, the capability of the MLP to discover the hidden relations between 

inputs and outputs heavily depends on the number of hidden layers. Initially, each node is connected with 

others and has randomly assigned weight. When there is the computed difference between actual values 

(classes) and predicted values (classes), weight values will be refined through a backpropagation algorithm 

iteratively. The backpropagation algorithm computes the gradient of loss function (e.g., mean squared error 

for regression tasks, cross-entropy for classification tasks), and then, updates the weight values using an 

optimization algorithm for the next iteration until the MLP model is well-trained with satisfactory results 

of the loss function (Hecht-nielsen, 1992). There are some drawbacks though that the MLP model is also 

resource-intensive for training big datasets, and prone to overfitting with small datasets. Also, the selection 

of model architecture and optimization of model hyperparameters can be complex and inefficient (Yuan et 

al., 2020). 

Currently convolutional neural networks (CNNs), as a type of ANN, is gaining popularity in classification 

tasks in remote sensing (Kattenborn et al., 2021). CNN has an input and an output layer alongside stacked 
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units of convolutional, pooling and activation layers. The output layer is generally obtained with the same 

dimension as the input layer. In the convolutional layer, the input data is processed with convolution 

operation through local filters. And the pooling layer reduces the dimensions of the input data through 

operations like max-pooling and average-pooling. The activation layer introduces non-linearity into the 

CNN, enabling to learn complex patterns in the data. Similar to the MLP model, the weights of the CNN 

model are iteratively updated through backpropagation (Yuan et al., 2020). Due to the effectiveness of CNN 

models in capturing spatial patterns of remote sensing imagery, a broad spectrum of mangrove properties 

is able to be extracted, including mangrove extent, species, tree crowns and canopy gaps (e.g. Lassalle and 

de Souza Filho, 2022; Li et al., 2021; Lu and Wang, 2024; Tran et al., 2024; Wan et al., 2019).  

Table 2-4. Remote sensing-based approaches for mangrove extent mapping and species discrimination. 

Approach Data source Location and year Performance Reference 

Visual interpretation Aerial photographs 

Pambala–Chilaw 

Lagoon complex in Sri 

Lanka, 1994 

- 

Dahdouh-

Guebas et al. 

(2002) 

ANN 
IKONOS Geo-

Bundle images 

Caribbean coast of 

Panama, 2004 
Kappa=0.93 (best) 

Wang et al. 

(2008) 

SAM 

LSU 

MSS 

CASI-2 

hyperspectral data 

Brisbane River area in 

Australia, 2004 

SAM: OA=69% 

Kappa=0.57  

LSU: OA=56% 

Kappa=0.41  

MSS: OA=76% 

Kappa=0.67 

Kamal and 

Phinn (2011) 

MSS 

Nearest neighbour 

EO-1 Hyperion 

SPOT-5 

Mai Po Marshes Nature 

Reserve in China, 2008 

OA=88% 

Kappa=0.83 
Jia et al. (2014) 

MLC Landsat imagery 
Iskandar Malaysia, 

1989-2014 

OA: 73.10-94.07% 

Kappa: 0.67-0.94 

Kanniah et al. 

(2015) 

RF 

SVM 

CART 

ALOS/PALSAR 

RapidEye 

Worldview-1  

Red Sea coastline in 

Egypt, 2007 

OA=92.15% 

Kappa=0.90  

(RF works best with 

combined data) 

Abdel-Hamid et 

al. (2018) 

MRS 

RF 

Landsat-8 

Sentinel-2A 

Pleiades-1B 

Dongzhaigang in China, 

2014 and 2016  

OA=91.89-96.52% 

Kappa=0.87-0.94 

Wang et al. 

(2018) 

Minimum Distance 

SAM 

SVM 

EO-1 Hyperion 
Indian Sundarbans, 

2014 

OA=99.08% 

Kappa=0.97 (SVM 

best) 

Kumar et al. 

(2019) 

CNN WorldView-2 

Shenzhen Mangrove 

Forest Nature Reserve 

and Mai Po Marshes 

Nature Reserve in 

China, 2010 

OA=98.81% 

Kappa=0.986 

Wan et al. 

(2019) 

RF 

SVM 

Gaofen-5 

hyperspectral data 

Mai Po Marshes Nature 

Reserve in China, 2018 

OA=87.12% 

Kappa=0.835 

(RF best) 

Wan et al. 

(2020) 
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Table 2-4. Continued. 

Approach Data source Location and year Performance Reference 

MSS 

CART 

AdaBoost  

RF  

RoF 

Gaofen-2 

RapidEye-4 

Qi’ao Island in China, 

2016-2017 

OA=92.01% 

Kappa=0.9016  

(RoF works best with 

combined data) 

Peng et al. 

(2020) 

Upscaling approach 

RF 

Sentinel-2 

WorldView-2 

Qeshm Island in Iran, 

2017 

OA=65.5% 

Kappa=0.63 

Bihamta Toosi et 

al. (2020) 

Visual interpretation UAV RGB images 

Baja California Sur 

(BCS) in Mexico, 2018 

and 2019 

OA=98.3% ± 2.1% Hsu et al. (2020) 

MRS 

SVM 

Gaofen-1 

 Ziyuan-3 
China, 2018 

OA=99.3% 

Kappa=0.985 

Zhang et al. 

(2021) 

RF 

SVM 

CNN 

WorldView-3 

Airborne 

hyperspectral and 

LiDAR data 

Mai Po Marshes Nature 

Reserve in China, 2018 

OA=89% 

Kappa=0.86  

(CNN best with WV-

3 PS and LiDAR) 

Li et al. (2021) 

Ensemble of RF, 

GBM, and ANN 

SRTM 

Sentinel-1/2 
West Africa, 2017 

OA: 95-99%  

Kappa: 0.93-0.99 
Liu et al. (2021) 

Mask R-CNN 
WorldView-3  

WorldView-4 

Four mangrove sites in 

Brazil, USA, Australia 

and Gabon, 

respectively, 2016-2019 

OA=91.4% 

Kappa=0.89 

Lassalle and de 

Souza Filho 

(2022) 

Thresholding 
L-band SAR from 

JAXA 
Global, 1996-2020 

OA=87.4% (95th 

conf. int.) 

Bunting et al. 

(2022) 

RF 

Visual interpretation 

Aerial photographs 

Landsat imagery 

Greater Bay Area in 

China, 1924-2020 

OA>99%  

Kappa > 0.99 
Liu et al. (2022) 

NGBoost 

CatBoost 

LightGBM 

UAV RGB images 

Sentinel 1/2 

Maowei Sea nature 

reserves in China, 2019 

OA=93.18% 

(CatBoost best) 
Fu et al. (2023) 

MT-EDv3 NN 

Spaceborne multi- 

and hyperspectral 

imagery 

Airborne 

hyperspectral 

images 

Sao Paulo in Brazil, 

2021 

Airborne: OA=95% 

Kappa=0.93 

Spaceborne:  

OA up to 97% 

Kappa up to 0.95 

Lassalle et al. 

(2023) 

U-Net Sentinel-2A/B 
southern coast of 

Vietnam, 2016-2023 
OA= 94.53-96.89% 

Tran et al. 

(2024) 

Mask R–CNN UAV LiDAR data 
Dandou Sea coast in 

China, 2019 
OA= 70.83% 

Lu and Wang 

(2024) 

OA: Overall Accuracy; ANN: Artificial Neural Network; SAM: Spectral Angle Mapper; LSU: Linear Spectral Unmixing; MLC: 

Maximum Likelihood Classification; GBM: Gradient Boosting Machine; MSS/MRS: Multi-scale (Multi-resolution) 

Segmentation; SVM: Support Vector Machine; RF: Random Forests; CNN: Convolutional Neural Network CART: 

Classification and Regression Trees; AdaBoost: Adaptive Boosting; RoF: Rotation Forest; JAXA: Japan Aerospace Exploration 

Agency; MT-EDv3: Multi-Task Encoder-Decoder; Mask R–CNN: Mask Region-based Convolutional Network.    
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2.3.2 Biophysical parameters retrieval 

Biophysical parameters of mangrove forests are essential for assessing health condition, quantifying gross 

primary production (GPP) and carbon stock (Parida and Kumari, 2021). These biophysical parameters 

range from tree level to community level, such as canopy height, basal area, crown diameter, leaf area index 

(LAI), leaf chlorophyll concentration (LCC) and biomass. Remote sensing-based approaches for 

biophysical parameter retrieval are categorized in two ways through radiative transfer models (RTMs) or 

empirical models (Pham et al., 2019). RTMs are mathematical frameworks used to simulate the transfer of 

electromagnetic radiation through the atmosphere and the interacts with vegetation canopies, deployed to 

inverse forest biophysical parameters such as LAI and LCC (e.g., Miao et al., 2024; Zhao et al., 2023). 

Empirical models leverage spectral indices derived from remotely sensed multispectral and hyperspectral 

data to retrieve biophysical parameters using statistical regression equations (e.g., Díaz and Blackburn, 

2003; Guo et al., 2021; Kovacs et al., 2004; Verrelst et al., 2015). Additionally, these models incorporate 

machine learning regression algorithms such as decision tress, ANN and SVR, which demonstrate 

flexibility in integrating prior knowledge from diverse datasets to analyse biophysical parameters (Verrelst 

et al., 2019) 

2.3.2.1 Leaf area index 

LAI is a significant indicator of mangrove health conditions, reflecting the characteristics of canopy 

structure and growth development (Luo et al., 2023; Manna and Raychaudhuri, 2020). As such, LAI 

inversion is one of the most common applications in remote sensing-based mangrove research (Pham et al., 

2019; Wang et al., 2019). Many studies have employed regression analyses to estimate LAI, using spectral 

indices, backscattering coefficients or LiDAR observations (e.g., Guo et al., 2017; Kamal et al., 2016; 

Kovacs et al., 2004; Luo et al., 2023; Pu and Cheng, 2015).  

For LAI estimation using RTMs, PROSAIL is one of the most popular RTMs combining PROSPECT (Leaf 

Optical Properties Model) and SAIL (Scattering by Arbitrarily Inclined Leaves) together (Bhadra et al., 

2024). The PROSPECT model simulates the reflectance, transmittance and absorption of light by the leaves, 

while the SAIL model simulates the scattering of light in a plant canopy. By integrating these two models, 

PROSAIL can take several leaf and canopy level attributes as inputs such as LCC, Equivalent water 

thickness (EWT) and LAI, and then output a reflectance spectrum (400-2400 nm). Therefore, biophysical 

parameters can be inversed from remotely sensed multispectral data based on numerical optimization or 

look-up table (LUT) (Verrelst et al., 2019). Although PROSAIL shows reproducibility and generalization 

across various vegetation types, a plethora of input parameters are required to simulate canopy reflectance. 
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Recently, there has been an increasing use of hybrid regression, combining RTMs and machine learning 

algorithms, and thereby taking into account both the generalization of RTMs and computational efficiency 

of machine learning methods. This approach replaces ground truthing needed for training empirical models 

by setting RTM inputs. LUT-based RTMs generate a look-up table demonstrating a group of canopy 

realizations, and then a machine learning regression model employs all available data in this look-up table 

for training (Binh et al., 2022; Jia et al., 2024; Miao et al., 2024). Zhao et al. (2023) found spaceborne 

hyperspectral imagery (Zhuhai-1) outperformed other spaceborne multispectral imagery (Landsat-8, 

Sentinel-2 and Worldview-2) for mangrove LAI mapping using a hybrid approach combining the 

PROSAIL model and XGBoost. For mangrove forests, this is considered a promising approach to estimate 

LAI at regional or national scale due to the difficulty of collecting sufficient field data (Binh et al., 2022; 

Zhao et al., 2023). 

2.3.2.2 Aboveground biomass 

Mangrove biomass refers to the total mass of living organic matter of mangrove trees, divided into 

aboveground and belowground components (IPCC, 2003). Biomass estimation allows for the conversion 

into carbon stocks, forming the foundation for investigating the critical role mangroves play in carbon 

cycling (Alongi, 2020). Since belowground biomass is more challenging to investigate and less explicitly 

estimated through remote sensing observations, aboveground biomass has garnered greater research focus, 

where AGB estimation is conducive to monitoring mangrove health as healthy mangroves secure effective 

carbon sequestration. The remote sensing-based approaches for estimating AGB can be grouped into two 

main categories: (1) utilising the relationships between AGB and spectral information or radar 

backscattering coefficients, and (2) deriving tree structural parameters (i.e., canopy height) from remotely 

sensed data to estimate AGB using biomass-height allometric equations.  

Since mangrove appearance is characterised by species composition, canopy cover and height distribution, 

the interaction between mangrove tree components and spectra or radar signals has been well investigated 

during field campaigns (e.g., Lucas et al., 2007; Mougin et al., 1999; Xu et al., 2019; Zulfa et al., 2020). 

Thus, spectral information and backscattering coefficient from spaceborne datasets have been introduced 

to mangrove biomass estimation in parametric or non-parametric regression models (Table 2-5). Parametric 

models normally include linear, logarithmic and polynomial models with assumptions of a specific 

relationship between AGB and selected surrogate variables such as reflectance in multispectral bands, 

vegetation indices and backscatter coefficient. For example, EVI (Enhanced Vegetation Index) and NDVI 

(Normalized Difference Vegetation Index) exhibit strong relationships with AGB estimates, which can be 

modelled using linear, logarithmic, or polynomial functions (Pandey et al., 2019), while reflectance in 
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multispectral bands and backscattering coefficient was used effectively in linear models for AGB 

estimation (Castillo et al., 2017; Friess et al., 2016; Pham and Yoshino, 2017). However, both spectral 

indices and backscattering coefficient are found to be saturated at low AGB level (Li et al., 2007; Shugart 

et al., 2010). Compared to parametric models, non-parametric models were deployed to yield more complex 

relationships between spaceborne variables and mangrove AGB, as they do not rely on the assumption of 

a predefined relationship. These models contain supervised machine learning models such as ANN, RF, 

SVR and XGBR, driven by input data with varied predictor variables. Predictor variables may include 

spaceborne, environmental, or a combination of both types. As the range of predictor variables expands, 

the models can harness more comprehensive information, enhancing their predictive capabilities (Table 

2-5). 

The introduction of canopy height models (CHMs) and biomass-height allometry is another remote sensing-

based approach for mangrove AGB estimation. Canopy height has been seen as functionally related 

parameters to biomass estimation as taller trees dominate higher AGB (Duncanson et al., 2022). Mangrove 

CHMs can be derived from InSAR and LiDAR measurements, UAV overlapping images using Structure 

of Motion (SfM) photogrammetry, and stereo-pair or multiple-stereo aerial or spaceborne photographs (e.g., 

Dandois and Ellis, 2013; Hirschmugl et al., 2007; Lucas et al., 2000, 2020; St-Onge et al., 2008; Treuhaft 

et al., 2004; Wannasiri et al., 2013). The conversion from mangrove CHMs to AGB estimates generally 

employed parametric models that establish relationships between AGB and canopy height. These 

relationships are determined by correlating field plot level AGB with corresponding field plot level mean 

or maximum canopy height (Simard et al., 2006, 2019), height values derived from CHMs (Aslan et al., 

2016), or relative height metrics obtained from LiDAR measurements (Duncanson et al., 2022). After AGB 

estimation, it is common practice to covert AGB into aboveground carbon stock with a multiplier between 

0.46 to 0.5 when no region- or species-specific values exist (e.g., Harishma et al.,2020; Kauffman and 

Donato, 2012). As strong positive linear relationships are observed between the aboveground and 

belowground carbon stocks in mangroves, it is also viable to estimate belowground carbon stocks based on 

aboveground carbon stock estimates (e.g., Jachowski et al., 2013; Meng et al., 2021).  
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Table 2-5. Remote sensing-based approaches for mangrove biomass estimation. 

Approach Data source Location and year Performance Reference 

Genetic model 
Landsat TM images, 

Radarsat 

Qi’ao Island, Zhuhai 

in China, 2004 

R²=0.769 

RMSD=0.738 kg/m2 
Li et al. (2007) 

MaxEnt 

Field inventory data 

ICESat 

SRTM 

Global quick 

scatterometer (QSCAT)  

MODIS NDVI and LAI 

Global, circa 2000 

(not specific to 

mangroves) 

Uncertainty at ±30% at a 

global scale 
Saatchi et al. (2011) 

RF 

Field inventory data 

ICESat 

SRTM 

MODIS Land Surface 

Temperature 

MODIS reflectance 

bands 

Global, 2000–2010 

(not specific to 

mangroves) 

R²=0.83 

RMSD=25 Mg C/ha 
Baccini et al. (2012) 

SVR 
GeoEye-1, 

ASTER GDEM V2 

Andaman Coast of 

Thailand, 2011 

R²=0.66 

RMSD=53.4 Mg/ha 
Jachowski et al. (2013) 

BP ANN Worldview-2 
Qi’ao Island, Zhuhai 

in China, 2010 

Average RMSE=40.15 

Mg/ha  

(with species information as 

dummy variable) 

Zhu et al. (2015) 

GLMs 

Pleiades imagery, 

SRTM,  

geographic distance 

variable 

Singapore, April 

2012 to August 2013 

r=0.54 for AGB 

r=0.56 for BGB 
Friess et al. (2016) 

Empirical 

modelling 
ALOS AVNIR-2 

Karimunjawa Islands 

in Indonesia, 2010 

R²=0.688, SE=5.89 kg C m-2 

for AGC 

R²=0.567, SE=2.54 kg C m-2 

for BGC 

Wicaksono et al. 

(2016) 

Spatially explicit 

analytical 

framework 

SRTM West Africa, 2000 - Tang et al. (2016) 

ESH 

Mangrove field data 

Environmental drivers 

such as temperature and 

precipitation 

Neotropics adjusted R²=0.19 Rovai et al. (2016) 

NLQR SRTM 
Indonesian Papua, 

2000 
r=0.55 Aslan et al. (2016) 

Linear regression, 

Machine Learning 

Algorithm 

SRTM, 

Sentinel-1, 

Sentinel-2 

Southern coast of 

Honda Bay in 

Philippines, 2015 and 

2016 

r=0.83 

RMSE=27.75 Mg/ha 
Castillo et al. (2017) 

CHM 

Airborne LiDAR, 

TanDEM-X, 

WorldView-2 

Everglades National 

Park in USA, 2012 

R²=0.82 

Relative RMSE=37% 
Feliciano et al. (2017) 

RF 
SPOT 4 

SPOT 5 

Cangio mangrove 

forest in Vietnam, 

2000 and 2011 

adjusted R²=0.73 
Pham and Brabyn 

(2017) 
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Table 2-5. Continued. 

Approach Data source Location and year Performance Reference 

Stepwise 

multilinear 

regression models 

ALOS-2 PALSAR-2 
Hai Phong City in 

Vietnam, 2015 

R²=0.51, RMSE=35.5 Mg/ha 

for S. caseolaris 

R²=0.64, RMSE=41.3 Mg/ha 

for K. obovata 

Pham and Yoshino 

(2017) 

SVR 
ALOS-2 PALSAR-2 and 

Sentinel-2A 

Northern coast of 

Vietnam, 2015 

R²=0.596 

RMSE=1.54 Mg/ha 
Pham et al. (2018) 

SVR 

UAV RGB images, 

Sentinel-1 and Sentinel-2 

imagery 

Sine Saloum and 

Casamance Deltas in 

Senegal, 2017 

R²=0.89 

RMSE=2.35 Mg/ha 
Navarro et al. (2019) 

Linear and non-

linear regression 

models 

EO-1 Hyperion 

Bhitarkanika Forest 

Reserve in Odisha 

India, 2015 

R²=0.861(best result from 

polynomial model with EVI) 
Pandey et al. (2019) 

CHM 
ICESat LiDAR 

SRTM 
Global, 2000 

R²=0.55 

RMSE=134.3 Mg/ha 
Simard et al. (2019) 

CHM 

Landsat images, 

L-band SAR data, SRTM 

data, TanDEM-X-band 

and WorldView-2 stereo 

data 

Matang Mangrove 

Forest Reserve in 

Peninsular Malaysia, 

2000-2016 

R²=0.53 

RMSE=79 Mg/ha 
Lucas et al. (2020) 

UAV CHM UAV RGB images 
Southeastern coast of 

Australia, 2018 
Adjusted R²=0.932 Navarro et al. (2020) 

Linear regression ALOS-2 PALSAR-2 
Mahakam Delta, 

Indonesia, 2018 

R²=0.88 

RMSE=24.05 Mg/ha 
Nesha et al. (2020) 

ASO, ANFIS 
Sentinel-1A, 

SPOT-6 

Ca Mau coastal area 

in Vietnam, 2015 

R²=0.577 

RMSE=70.882 Mg/ha 
Pham et al. (2020) 

RF UAV LiDAR, Sentinel-2 
Northeast Hainan 

Island in China, 2018 

R²=0.62 

RMSE=50.36 Mg/ha 
Wang et al. (2020) 

RF 
Worldview-2 

UAV RGB images 

Qi’ao Island, Zhuhai 

in China, 2010 and 

2016 

RMSE=50.99 Mg/ha 

Relative RMSE=30.48% 
Zhu et al. (2020) 

ANN Sentinel-1 A/B 

Bhitarkanika Wildlife 

Sanctuary in India, 

2018 

R²=0.45 

RMSE=103.99 Mg/ha 

Ghosh and Behera 

(2021) 

RF 
Field plot data 

Environmental variables 
Global, present 

R²=0.36 

RMSE=108 Mg/ha 
Rovai et al. (2021) 

PRVI Sentinel 1A 
Mundra Taluka in 

India, 2015-2018 
R²=0.56 Vaghela et al. (2021) 

UAV CHM 

XGBR 
UAV RGB images 

Beibu Gulf in China, 

2019 

R²=0.83 

RMSE=22.76 Mg/ha 
Tian et al. (2021) 

UAV CHM UAV RGB images 
Lubuk Kertang in 

Indonesia, 2022 
- Basyuni et al. (2023) 

SVR: Support Vector Regression; BP ANN: Backpropagation – Artificial Neural Network; GLMs: Generalised Linear Models; 

ESH: Environmental Signature Hypothesis; NLQR: Nonlinear Quantile Regression; RF: Random Forests; CHM: Canopy 
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height model; ASO: Atom Search Algorithm; ANFIS: Adaptive Neuro-Fuzzy Inference System; PRVI: Polarimetric Radar 

Vegetation Index; XGBR: XGBoost regressor; MaxEnt: Maximum Entropy.    

2.3.3 Mangrove resilience investigation 

In the last two decades (2000-2020), mangroves have been threatened by anthropogenic activities such as 

aquaculture development and commercial crop conversion, and natural retraction induced by climate 

change and human activities (FAO, 2023). Due to increasing awareness of mangrove protection and 

restoration, the global loss of mangrove area has been 58% offset by afforestation and 42% of all the world’s 

remaining mangroves have fallen within protected area status (FAO, 2023; Spalding and Leal, 2022). Since 

mangroves are still facing the impacts from anthropogenic activities and climate change (Friess et al., 2024), 

the investigation of mangrove resilience can shape mangrove management and restoration to be more 

scientific and effective (Dahdouh-Guebas et al., 2022; Ong and Ellison, 2021).  

Resilience is traditionally defined as the capacity to withstand and recover from disturbances while 

maintaining structure, functions and identity, involving adaptive, absorptive, and transformative capacities 

(Ong and Ellison, 2021). Mangrove resilience is assessed through ecological and socioeconomic indicators, 

further classified into biotic, abiotic, social, economic and political factors (Day et al., 2018; McLeod and 

Salm, 2006). Biotic factors involve mangrove extent and biophysical parameters such as AGB, while 

abiotic factors refer to NDVI, sea level, tropical cyclone path, etc. Social, economic and political factors 

cover mangrove protection legislation, stakeholder involvement and local community well-being (Ong and 

Ellison, 2021). Generally, resilience investigation requires spatiotemporal analyses of these indicators. 

remote sensing primarily supports the estimation of ecological factors including mangrove extent 

delineation, AGB and NDVI, while socioeconomic indicator investigations predominantly depend on field 

surveys and literature review (Table 2-6). For example, as NDVI is highly correlated with LAI, species 

richness and AGB, the analyses of NDVI before and after extreme weather events from spaceborne datasets 

indicate mangrove damage or recovery levels (e.g., Adame et al., 2021; Amaral et al., 2023; Lagomasino 

et al., 2021; Taillie et al., 2020). The dynamics of AGB estimated from L-band SAR data are used to 

indicate mangrove’s capacity to maintain functionality under sea level rise (Duncan et al., 2018). 
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Table 2-6. The approaches for mangrove resilience or health investigation. 

Environmental 

drivers 
Approaches Datasets Location and year Reference 

Extreme events 

Visually interpreted 

vegetation coverage 

and related NDVI to 

extreme events 

Climate and 

oceanographic data 

QuickBird 

 Worldview-2 

El Rosario Island in 

Columbia, 2002-2014 
Galeano et al. (2017) 

Sea level rise 

Detected the change of 

mangrove extent and 

biomass  

ALOS/PALSAR 

ENVISAT-MERIS 

SRTM 

Landsat-5/8 

Four mangrove sites from 

West Africa to South Asia, 

2007-2015 

Duncan et al. (2018) 

Sea level rise 

Detected the change of 

mangrove extent and 

island area 

historical aerial 

photographs 

Landsat images 

Florida Bay in the USA, 

1953-2014 
Zhai et al. (2019) 

Anthropogenic 

activities 

Formulated a 

Mangrove Quality 

Index 

Mangrove properties, 

soil, marine ecosystem, 

hydrology and socio-

economic variables 

Matang Mangrove Forest 

Reserve in Malaysia, 2015-

2016 

Faridah-Hanum et al. 

(2019) 

Sand deposition  

Produced NDVI and 

Tasselled Cap 

transformation indices 

mapping 

SPOT-6 

WorldView-2 

Tanjung Piai in Malaysia, 

2015-2016 
Razali et al. (2019) 

Rainfall and 

salinity variation 

Combined field 

campaign with remote 

sensing results to 

examine mangrove 

replantation and 

regrowth 

Landsat-4/5/7/8 
Saloum Delta in Senegal, 

1979-2015 
Andrieu et al. (2020) 

Shrimp farm 

Analysed spectral 

vegetation indices over 

time 

Landsat-5/8 

Sentinel-2A 

 Jazan Economic City in 

Saudi Arabia, 2016-2017 
Arshad et al. (2020) 

Anthropogenic 

activities 

Applied PSR model to 

establish a mangrove 

ecosystem health 

evaluation system 

Mangrove properties, 

environmental and 

socio-economic 

variables 

Mangrove forest in 

Guangdong Province, 

China  

Wang et al. (2021) 

Anthropogenic 

activities 

Developed mangrove 

health index to monitor 

mangrove health with 

spaceborne 

observations 

SPOT satellite images 
Mui Ca Mau mangroves in 

Vietnam, 1995-2017 
Hai et al. (2022) 

Tropical storms 

Calculated changes in 

mangrove forest 

greenness through the 

NDVI 

Mangrove extent maps 

Cyclones pathways 

Landsat imagery 

Mangrove forests of the 

Caribbean and the Gulf of 

Mexico regions, 1996-2020 

Amaral et al. (2023) 

Restoration post-

tsunami 

Conducted 

participatory 

workshops 

Transcripts from the 

recordings of the 

workshops 

Koh Klang in Thailand, 

2017 
Elwin et al. (2024) 
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2.4 Future opportunities 

As canopy height is a fundamental indicator of biomass and the associated carbon stock, canopy height has 

been ranked as a high-priority biodiversity variable from spaceborne observations (Skidmore et al., 2021). 

High-resolution CHMs better illustrate the heterogeneity of vegetation structure at a finer scale, showing 

significant potential in advancing the modelling of climate change impacts. As space-based observations 

continue to improve with higher spatial resolutions and enhanced capability for investigating forest 

structures, the integration of spaceborne LiDAR measurements with spaceborne optical imagery shows 

great potential for large-scale canopy height estimation. Potapov et al. (2021) incorporated Landsat imagery 

with GEDI-derived canopy height metrics to generate global 30 m canopy height map, while Lang et al. 

(2023) incorporated the same LiDAR measurements with Sentinel-2 images for global 10 m canopy height 

map. As deep learning exhibits great performance in high-resolution image interpretation, Tolan et al. (2024) 

deployed advanced deep learning algorithm to produce global 1 m canopy height estimation map with the 

integration of airborne LiDAR data and Maxar optical imagery. However, it should be noted that errors 

may be introduced by these modelled global products when applied in biodiversity models, as global 

datasets are designed to represent general vegetation patterns rather than specific species (Moudrý et al., 

2024). Several global mangrove canopy height products have been developed with spatial resolutions of 30 

m (Aslan and Aljahdali, 2022; Simard et al., 2019; Yu et al., 2024) and 12 m (Simard et al., 2025), but there 

is limited understanding of their consistency at a local scale or intercomparison between them (Stovall et 

al., 2021). 

Since increasing mangrove conservation and restoration efforts have been being carried out, there is a need 

to establish effective mangrove monitoring systems (Eger et al., 2022; Lovelock et al., 2022). Worthington 

et al. (2020) illustrated a new platform for visualizing and disseminating global mangrove dataset to 

stakeholders, including scientific communities, non-governmental organizations, governmental agencies, 

and those involved in restoration efforts. Gatt et al. (2022) developed a framework of key metrics and 

indicators on mangrove forest restoration, aiming at evaluating restoration efforts for restoration 

practitioners and providing the baseline for future restoration. As big data and remote sensing approaches 

have developed rapidly, particularly in spatiotemporal resolutions, mangrove monitoring systems are 

anticipated to be more dynamic (i.e., near-term) and frequently updated through high-frequency spaceborne 

observations. This will enable the timely mobilization of on-the-ground resources to address emerging 

threats to mangroves, while also allowing iterative comparisons between predictions and new observations, 

ultimately enhancing adaptive mangrove management (Dietze et al., 2018). 
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2.5 Summary 

This chapter summarizes various remote sensing data and approaches in mangrove research, including 

distribution mapping and species discrimination, LAI and AGB estimation, and resilience investigation. 

Each remote sensing data source exhibits distinct strengths and limitations. For example, optical imagery, 

with broader spectral range, enables more detailed mangrove species discrimination compared to SAR 

imagery; on the other hand, SAR imagery is less affected by cloud cover and time of acquisition than optical 

imagery. Spaceborne LiDAR measurements provide large scale three-dimensional information for 

mangrove vertical structure investigation but lack the provision of wall-to-wall data coverage. Based on 

these remote sensing data, the approaches in mangrove research are mainly grouped into parametric and 

non-parametric methods, alongside visual interpretation and object-oriented methods. These data and 

approaches can be introduced individually or combined for challenging research objectives. Furthermore, 

the advancement of deep learning with multisource data fusion shows significant potentials in high-

resolution canopy height estimation and dynamic mangrove monitoring system, propelling mangrove 

research with more comprehensive insights. 
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Abstract 

Estimation of mangrove aboveground biomass (AGB) is important for investigating mangrove health, 

succession and carbon storage. Canopy height is one of the best performing explanatory factors of AGB. 

As mangroves are normally located in low-lying and flat coastal regions, earth surface models can be used 

for canopy height investigation with the assumption of negligible topographic impacts. However, there is 

limited knowledge of the performance of using earth surface models for determining canopy height and 

AGB estimation at a local scale. In this study, three freely accessible Digital Elevation Models (DEMs), 

i.e., NASADEM, ALOS DSM and Copernicus GLO-30 DEM, were used to estimate mean canopy height 

and AGB for two mangrove forests of the central coast of the Gulf of Mexico (El Llano and La Mancha) 

by applying a power law equation for plot level aboveground biomass and mean canopy height. Even 

though the introduced DEMs represent different nominal time periods, plot-level mean canopy heights 

show high agreement with the DEMs as intact and well-established mangrove forests exhibit canopy height 

changes at finer resolution, where the DEMs with 30 m resolution suffice to demonstrate the distribution 

of mean canopy height. An ordinary least squares regression using field plot measurements achieved an R2 

of 0.61 between plot-level mean canopy height and AGB. Fixed 100 m ICESat-2 ATL08 segments were 

used to calibrate the DEMs for reducing the bias introduced from different DEM generation methods. 

Mangrove AGB of El Llano lagoon was predicted to in the range of 35.22 – 211.56 Mg/ha through 

NASADEM, 50.02 – 237.00 Mg/ha through ALOS DSM and 49.26 – 238.41 Mg/ha through Copernicus 

GLO-30 DEM at the 5th and 95th percentile. Mangroves around La Mancha lagoon were predicted to have 

AGB in the range of 106.75 – 468.78 Mg/ha through NASADEM, 92.91 – 438.49 Mg/ha through ALOS 

DSM and 67.61 – 435.69 Mg/ha through Copernicus GLO-30 DEM at the 5th and 95th percentile. Error 

propagation for mangrove AGB estimation involved regression coefficient error and mean canopy height 

estimation error, resulting in the standard error 𝜎𝐴𝐺𝐵 varying between ± 151.78 – 154.95 Mg/ha (~30% of 

the estimated AGB) for stands with estimated mean canopy height 𝐻𝑚𝑒𝑎𝑛 =15 m. The results of this study 

show comparable AGB estimates of the study area and the feasibility of using freely accessible DEMs for 

mean canopy height and AGB estimation of mangrove forests, providing further opportunities in the 

validation of global biomass estimations of mangroves.  

Keywords: Mangrove aboveground biomass estimation; Digital elevation models; Spaceborne LiDAR 

data; La Mancha and El Llano lagoons, Mexico  
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3.1 Introduction  

Mangroves occupy the transition between land and sea in tropical and sub-tropical regions, providing 

critical ecosystem services, including feeding and breeding habitats (e.g. Arceo-Carranza et al., 2021), 

protecting coastlines (e.g. Zhang et al., 2022), and sequestering carbon (e.g. Rosa et al., 2022). As one of 

the most productive ecosystems, mangroves store organic carbon per unit area with a mean value of 738.9 

±27.9Mg/ha where the sequestration rate is 1.796 Mg/ha per year (Alongi, 2020). Mangroves are therefore 

perceived as efficient blue carbon sinks that help mitigate climate change at national and global scales 

(Song et al., 2023; Taillardat et al., 2018; Uddin et al., 2023). However, confronted with human activities 

and climate change, there had been 284,000 ha of mangrove net loss between 2000 and 2020, though about 

half of the total loss was counteracted by mangrove afforestation (3,930 km2) (FAO, 2023). As aboveground 

biomass (AGB) is a proxy for above ground carbon stock and ecosystem resilience, quantifying AGB is 

important, not only to better understand the role of mangroves in the global carbon cycle, but also to 

quantify mangrove ecosystem dynamics (Duncan et al., 2018; Harishma et al., 2020; Jones et al., 2020; 

Tang et al., 2018; Worthington et al., 2020).  

AGB, also referred to as aboveground biomass density, is the total amount of living plant material (biomass) 

found above the ground surface in a particular area or ecosystem. It is accurately calculated from harvested 

or felled trees using laboratory weighing (Kauffman and Donato, 2012; Smith and Whelan, 2006). However, 

this destructive approach can be time consuming and often challenging to perform in areas that are difficult 

to access (Komiyama et al., 2005, 2008). To simplify AGB quantification, allometric equations can be 

developed using single measurements, i.e., diameter at breast height (DBH) or canopy height. For a given 

individual tree, the allometric equations are formulated as power-law functions, such as M = α𝑋β, where 

M represents tree mass (dry weight), 𝑋 represents DBH or canopy height, and 𝛼 and 𝛽 are the model’s 

fitted parameters. These equations are developed by felling trees to measure their heights and DBH, and 

then samples of their stems, branches and leaves are oven dried to determine dry weight (Chave et al., 2005; 

Day et al., 1987; Fromard et al., 1998; Komiyama et al., 2005; Smith and Whelan, 2006). After the 

allometric equations are determined, they are applied to all the individual trees in plots (defined areas) of 

whole forests. The total AGB of a plot equals the sum of the individual masses expressed in tonnes dry 

weight per hectare (Mg/ha). 

There are however considerable limitations associated with fieldwork in mangrove forests, such as 

restricted access and limited opportunities for height measurements under dense canopies. Remote sensing 

enables consistent large area surveys and has been utilised in the retrieval of mangrove cover and vegetation 

structure data (e.g., Maurya et al., 2021; Tran et al., 2022; Wang et al., 2019; Worthington et al., 2020). 
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This facilitates local, regional, or even global AGB mapping in areas with limited field data using the 

relationships between mangrove AGB and predictor variables derived from remotely sensed data (Pham et 

al., 2019).  

Canopy height is considered a key biophysical parameter to estimate aboveground biomass (Chave et al., 

2005, 2014). The availability of Digital Elevation Models (DEMs) allows for the estimation of mangrove 

canopy height with an assumption that mangroves exist in low-lying and flat coastal regions at sea level 

resulting in minimal impact from topography (Simard et al., 2006, 2019). Since the first near-global Shuttle 

Radar Topography Mission (SRTM) DEM was released in 2003, more advanced DEMs with a similar 

spatial resolution of approximately 30 meters, such as the ASTER GDEM, Copernicus GLO-30 DEM and 

ALOS DSM (Digital Surface Model) have become available. These DEMs were generated using data 

sources mainly acquired in a specific time period but remain stable over time with a medium resolution of 

30 m representing canopy height distribution in mature, intact mangrove forests as finer changes in the 

mangrove forests do not disturb the measurements (Lagomasino et al., 2016). This characteristic makes it 

feasible to investigate canopy height distribution of mangroves and facilitate AGB estimation with canopy 

height-based allometric equations. Various studies have been carried out at a continental or global scale 

(Aslan and Aljahdali, 2022; Fatoyinbo and Simard, 2013; Simard et al., 2008, 2019; Tang et al., 2018), but 

there is limited knowledge of the performance of these DEMs for the estimation of mangrove canopy height 

and AGB at a local scale.  

Mangrove forests around La Mancha and El Llano lagoons in Mexico are Ramsar sites of international 

ecological importance (Ramsar, 2004), however there is a lack of local AGB estimation of the area. This 

study aims to quantify mangrove AGB of these areas based on canopy height estimation, and to examine 

and compare the performance of DEMs for canopy height and AGB estimation at the forest scale. A 

comparison was conducted among mangrove AGB estimates derived from canopy height-based allometric 

equations in which canopy height was retrieved from different DEMs. Three freely accessible 30 m DEMs 

were analysed: 1) NASADEM, 2) ALOS DSM and 3) Copernicus GLO-30 DEM, which represent global 

vegetation surfaces. Due to the sensitivities of sensors, different vertical datum and time frames, there are 

discrepancies between DEMs. As LiDAR measurements have the best vertical accuracy aligned to geodetic 

benchmarks (Carrera-Hernández, 2021) and come with larger footprints than forest plot sizes, the DEMs, 

processed to the same datum, were calibrated with spaceborne ICESat-2 LiDAR data. Google Earth Engine 

(GEE) was used in this study for data processing and analysis. This study illustrates the performance of 

freely accessible DEMs for estimating mangrove mean canopy height and AGB, permitting enhanced 

validation and comparison of global biomass data and above ground carbon stock investigation.  
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3.2 Materials and methods 

3.2.1 Study sites 

The study area incorporates the lagoons of La Mancha (19°33′ - 19°36′ N, 96°22′ - 96°24′ W) and El Llano 

(19°38′ - 19°40′ N, 96°24′ - 96°25′ W) in the state of Veracruz, Mexico, along the central coast of the Gulf 

of Mexico (Figure 3-1). Four mangrove species are found at the study area: Avicennia germinans, 

Rhizophora mangle, Laguncularia racemosa, and Conocarpus erectus. The climate is recognized as sub-

humid warm climate (Aw2) with annual precipitation fluctuating between 1000 and 1500 mm and the mean 

annual temperature of approximately 24℃ (Méndez-Alonzo et al., 2012). The extent of the waterbody of 

La Mancha and El Llano lagoons is 135 ha and 226 ha, respectively (Chávez-López and Rocha-Ramírez, 

2020; Vovides et al., 2021). La Mancha lagoon receives fresh water mainly from a river (Caño Gallegos) 

in the southern end, and marine water through an intermittently opened inlet in the north-eastern to the Gulf 

of Mexico (Chacón Abarca et al., 2021; Chávez-Cerón et al., 2016; Harte Research Institute for Gulf of 

Mexico, 2021a). This geomorphologic arrangement, irrespective of season, results in a salinity gradient that 

increases northwards, influencing the mangrove species zonation. The northernmost side is dominated by 

A. germinans with few R. mangle, while A. germinans and R. mangle or A. germinans and L. racemosa co-

dominate towards the south of the lagoon (Méndez-Alonzo et al., 2012; Vovides et al., 2018). C. erectus 

accounts for a small number of trees, normally situated in the eastern side of the area (Moreno-Casasola et 

al., 2009).  

In contrast to La Mancha lagoon, the salinity of El Llano lagoon is mostly regulated by marine water 

through an inlet in the north-eastern part which only opens up to the Gulf of Mexico during rainfall. 

Spanning from November to January every year (dry season), a sandy bar naturally emerges separating the 

lagoon from the ocean. This occurrence results in the lagoon experiencing hyper-salinity during the low-

water season (Chávez-López and Rocha-Ramírez, 2020; Harte Research Institute for Gulf of Mexico, 

2021b). Oysters, clams and shrimp are fished regularly in both lagoons (Ramsar, 2004). The Instituto de 

Ecología, A.C. (INECOL) is located on the site, supporting ongoing research activities and developing 

community management plans.  



69 

 

 
Figure 3-1. Location of the study sites on the east coast of Mexico, connecting with the Gulf of Mexico (denoted with a red star) 

where red patches represent the mangrove forests bordering the lagoons of El Llano (north) and La Mancha (south), respectively. 

The mangrove extent was delineated for the year of 2020 obtained from CONABIO geoportal 

(http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/biodiv/monmang/bimagdmo/mx_man20gw). The base map was 

rendered through Esri World Image. 

3.2.2 Field data collection 

Permanent monitoring plots were established in the mangrove forests surrounding the lagoons of La 

Mancha and El Llano in 2010 and 2017. In 2010, 12 permanent plots (10 with 30 × 30 m, and two with 

20 × 20 m) were analysed, where trees with stem diameters >2.5 cm were tagged and measured (Vovides 

et al., 2018). A follow-up visit in 2017 established a new plot with 30 × 30 m (Vovides et al., 2021). 

Between 27 June and 13 July 2022, a total of 11 field plots were investigated, where six plots were located 

at El Llano lagoon, and five at La Mancha lagoon. Plot size varied in relation to stand density. Around the 

lagoon of El Llano, three plots of 10 × 10 m were delimited in the west of the lagoon and three plots of the 

same size on the east, neighbouring a system of stabilized dunes. Around La Mancha lagoon, two 10 × 10 

m plots and two 15 × 15 m subplots within existing 30 × 30 m permanent plots were established on the 

northern side, while a 20 × 20 m plot, specifically intended for large R. mangle trees, was sampled on the 

southeastern side of the lagoon. Species id, stem diameter (cm) at 1.3 m from ground surface, and tree 

height (m) were recorded within each plot. Additionally, trunk diameter at lowest living branch, canopy 
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width and length in the case of shrubs or young trees, and diameter above the highest prop root in the case 

of R. mangle were also recorded. The coordinates of all four corners of each plot were recorded using a 

Geode multi-GNSS receiver GNS2 which has a horizontal accuracy of 60 cm at 95% – 98% precision 

(2DRMS, twice the distance root mean square). In total, 24 field plot measurements were used for this study, 

comprising 6 plots at El Llano and 18 plots at La Mancha (Figure 3-2). 

 
Figure 3-2. The location and numbering of the plot centroids in the mangrove forest around the lagoons of El Llano (A) and La 

Mancha (B). Field measurement plots are coloured for different periods. The base map is rendered through Esri World Image. 

3.2.3 Mangrove extent maps 

Mexico’s Mangrove Monitoring System (SMMM, acronym in Spanish), mandated with cartographic 

information retrieval of mangroves through remote sensing technology, has generated national mangrove 

extent maps of Mexico for five time points: one composite map for the 1970-1980 period, and subsequent 

maps for 2005, 2010, 2015, and 2020 (Rodríguez-Zúñiga et al., 2022). The maps of 2005, 2010 and 2015 

represent the distribution of mangroves using SPOT 5 satellite images with a spatial resolution of 10 m 

(Valderrama-Landeros et al., 2020). These datasets were coordinated and delivered by the National 

Commission for the Knowledge and Use of Biodiversity (CONABIO) which is a Mexican inter-ministerial 

commission created in 1992 to form and develop the National System of Information on Biodiversity, 

Mexico (CONABIO, 2023a, 2023b). In this study, 2005, 2010 and 2015 mangrove extent maps of the study 
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area were downloaded and used to delineate mangrove boundaries, corresponding to the nominal years of 

the DEMs.   

3.3 Digital Elevation Models (DEMs) 

3.3.1 NASADEM 

The Shuttle Radar Topography Mission (SRTM) deployed two Synthetic Aperture Radars (C and X bands) 

mounted on the space shuttle Endeavor to capture the topography of the Earth in February 2000 and 

generated the near-global digital elevation model (Farr et al., 2007). Since its original release, the SRTM 

DEM has been improved (Grohman et al., 2006; NASA JPL, 2013). This study used the latest version of 

the SRTM DEM, NASADEM, with a resolution of 1 arc-second (approximately 30m). This dataset has 

been produced by reprocessing the original SRTM radar data and reducing voids with improved 

interferometric unwrapping algorithms, using ICESat data for better vertical control (Crippen et al., 2016).  

3.3.2 ALOS World 3D-30m   

ALOS World 3D-30m (AW3D30) is a global DSM dataset with a spatial resolution of approximately 30 

m. This dataset was resampled from 5 m ALOS World 3D (AW3D) DSM produced from millions of 

satellite stereoscopic images from 2006 to 2011 acquired by ALOS PRISM (Advanced Land Observing 

Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping) (Tadono et al., 2014; Takaku et al., 

2014).  

3.3.3 Copernicus GLO-30 DEM  

The Copernicus DEM, derived from an edited global DSM named WorldDEM, is provided in three 

instances: EEA-10 (European coverage), GLO-30 and GLO-90 (global coverage) with the resolutions of 

approximately 10 m, 30 m and 90 m, respectively (ESA, 2022). The WorldDEM with a resolution of 12 m 

is based on the Synthetic Aperture Radar data (X band) acquired during the TanDEM-X Mission spanning 

from 2011 to 2015, which is funded by a Public Private Partnership between the German Aerospace Centre 

(DLR) and Airbus Defence and Space (Riegler et al., 2015). Significant terrain and hydrological corrections 

have been made to the Copernicus DEM, such as water body flattening, river consistency, water lines and 

implausible terrain structures editing (AIRBUS, 2022). To enable comparison with the other two DEMs, 

Copernicus GLO-30 DEM was used to extract elevation values over the study area. Since Copernicus DEM 

deploys EGM2008 as a vertical datum, prior to the quantitative assessment, the vertical reference system 
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of Copernicus DEM is transformed from EGM2008 to EGM96 to provide a consistent comparison. The 

orthometric height (elevation data of DEM) conversion between EMG96 and EGM2008 was carried out 

using the MSP GEOTRANS 3.9 datum transformation tool (Table 3-1).  

Table 3-1. Summary of key characteristics of NASADEM, ALOS DSM, and Copernicus DEM. 

Data product Pixel spacing Time span Vertical datum Absolute vertical accuracy 

NASADEM 

Approx. 30 m 

2000 EGM96 < 9 m (90% linear error) 

ALOS DSM 2006-2011 EGM96 4.40 m (Root mean square error) 

Copernicus DEM 2011-2015 EGM2008 < 4 m (90% linear error) 

3.4 ICESat-2 LiDAR data  

ICESat-2 (Ice, Cloud, and land Elevation Satellite 2) is the successor to the ICESat mission, launched in 

2018. The spacecraft carries a single instrument onboard, the Advanced Topographic Laser Altimeter 

System (ATLAS), and operates in a near-polar orbit with a 91-day exact repeat cycle. The ATLAS is a 

photon counting lidar altimeter that transmits visible laser pulses with a wavelength of 532 nm (green), 

measuring the travel time of laser photons from ICESat-2 to earth and back. Six beams are coupled in three 

pairs and generate nominal 14 m footprints sampling every 0.7 m along track. Each pair is separated by 3.3 

km and the beams in each pair are spaced about 90 m apart comprising one strong beam and one weak 

beam at an energy ratio of 4:1 (Neumann et al., 2019). The land and vegetation height product (ATL08) 

was adopted in this study, which contains along-track heights for the ground and canopy surfaces. The 

product is processed in fixed 100 m segments (14 × 100 m), typically including more than 100 signal 

photons. As the geophysical boundary of the study area was set, 84 segments of ATL08 data (version 006) 

from 30 September 2019 to 16 July 2024 were returned and downloaded (in units of meters) from the 

NASA Earthdata Search website (https://search.earthdata.nasa.gov/search).  

3.5 DEM calibration  

In this study, DSM and DEM are interchangeable as the introduced topographic models represent 

vegetation surface on the earth. However, different from ALOS DSM, NASADEM and Copernicus GLO-

30 DEM are derived from interferometric Synthetic Aperture Radar (SAR) data, whereby NASADEM, 

derived from SRTM C-band microwave data, does not record the top of vegetation canopy but the 

interferometric scattering phase centre of the canopy. Thus, to reduce the elevation bias introduced by 

different DEM generation methods, ICESat-2 ATL08 segment data was utilised to calibrate DEMs as the 

segments are larger than the field plots and better for representing natural height variability. Since the 

segments are not square along the track, the centroids of the first and last segments were used to calculate 
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the track inclination, and then, generated a rectangular buffer of 100 × 14 m around the centroids of the 

segments. The elevation values of DEMs were averaged over overlapping segment areas and compared 

with mean canopy height (‘h_mean_canopy’) in the corresponding segments. The mean canopy height 

information is relative to the ground and therefore independent from the vertical datum. 

Linear regression models with OLS were fitted to relate ATL08 mean canopy height to DEM elevation 

values (Figure 3-3). The resulting calibration equations (Table 3-2) were subsequently applied to generate 

DEM-based mean canopy heights across the study area. 

 
Figure 3-3. Scatter plot with fitted linear regression models (95% confidence intervals) comparing mean canopy height within 

each 100 m ICESat/ATLAS ATL08 segment against mean DEM elevation values at the corresponding segments over the study 

area. 

Table 3-2. Calibration of DEMs using ICESat-2 ATL08 segments with regression equations and accuracy metrics, where 

𝐻𝑁𝐴𝑆𝐴𝐷𝐸𝑀 , 𝐻𝐴𝐿𝑂𝑆𝐷𝑆𝑀, and 𝐻𝐶𝑂𝑃𝐷𝐸𝑀  represent original elevation values of NASADEM, ALOS DSM and Copernicus GLO-30 

DEM, respectively; 𝑁𝐴𝑆𝐴𝐷𝐸𝑀𝐻𝑚𝑒𝑎𝑛 , 𝐴𝐿𝑂𝑆𝐷𝑆𝑀𝐻𝑚𝑒𝑎𝑛 , and 𝐶𝑂𝑃𝐷𝐸𝑀𝐻𝑚𝑒𝑎𝑛  are new datasets of mean canopy height 

estimation. 

DEM calibration equations R2 RMSE (m) 

𝑁𝐴𝑆𝐴𝐷𝐸𝑀𝐻𝑚𝑒𝑎𝑛 = 0.73 × 𝐻𝑁𝐴𝑆𝐴𝐷𝐸𝑀 + 3.48 0.50 2.45 

𝐴𝐿𝑂𝑆𝐷𝑆𝑀𝐻𝑚𝑒𝑎𝑛 = 0.57 × 𝐻𝐴𝐿𝑂𝑆𝐷𝑆𝑀 + 1.37 0.49 2.49 

𝐶𝑂𝑃𝐷𝐸𝑀𝐻𝑚𝑒𝑎𝑛 = 0.69 × 𝐻𝐶𝑂𝑃𝐷𝐸𝑀 + 2.97 0.51 2.43 
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3.6 Field AGB estimation methods 

As there are no site-specific allometric equations for the study area, a generalised allometric equation 

developed for pantropical forests of the world (Chave et al., 2014) was employed in this study. This 

equation integrates tree diameter, height and species-specific wood density as covariates, developed with 

more field inventory data, thereby reducing bias across tropical forest types compared to earlier models 

(Chave et al., 2005). Considering the demonstrated applicability and frequent application in mangrove 

studies (Simard et al., 2019), this allometric equation provides a reliable basis for AGB estimation in the 

absence of locally developed models. Wood density of different mangrove species was retrieved from the 

Global Wood Density Database (Zanne et al., 2009). The generalised allometric equation and wood density 

for each mangrove species are presented in Table 3-3.  

Table 3-3. Allometric equation for estimating mangrove aboveground biomass of the study area, where ρ, AGB, D, and H 

represents wood density (g/cm3), aboveground biomass (kg), diameter at breast height (cm) and canopy height (m), respectively.  

Species Equation Region Reference 
Wood density 

(g/cm3) 

A. germinans 

AGB = 0.0673 × (ρD2𝐻)0.976 Pantropical 
Chave et al. 

(2014) 

0.67 

R. mangle 0.84 

L. racemosa 0.6 

C. erectus 0.69 

Additionally, to assess the sensitivity of AGB estimation to allometric model selection, AGB was also 

calculated using allometric equations developed for American mangrove species in Laguna de Términos, 

Mexico (Day et al., 1987), French Guyana (Fromard et al., 1998) and the Everglades, Florida, USA (Smith 

& Whelan, 2006) (Table 3-4). These allometric equations are specific to mangrove species that are the 

same as the ones in the study area, except for C. erectus. Following Castañeda-Moya et al. (2013) and 

Simard et al. (2006), the allometric equation of L. racemosa was applied to C. erectus due to similar growth 

forms.  

Table 3-4. Regression equations developed by other studies. 

Species DBH range (cm) Equation Reference 

A. germinans 1-10 ln 𝐴𝐺𝐵 = 2.3023 × ln 𝐷𝐵𝐻 − 1.5852 

Day et al. (1987) L. racemosa 1-10 ln 𝐴𝐺𝐵 = 2.1924 × ln 𝐷𝐵𝐻 − 1.5919 

R. mangle 1-10 ln 𝐴𝐺𝐵 = 2.5072 × ln 𝐷𝐵𝐻 − 1.5605 

A. germinans 1-42 𝐴𝐺𝐵 = 0.140 × 𝐷𝐵𝐻2.4 

Fromard et al. (1998) L. racemosa 1-10 𝐴𝐺𝐵 = 0.102 × 𝐷𝐵𝐻2.5 

R. mangle 1-32 𝐴𝐺𝐵 = 0.128 × 𝐷𝐵𝐻2.6 

A. germinans 0.7-21.5 log10 𝐴𝐺𝐵 = 1.934 × log10 𝐷𝐵𝐻 − 0.395 

Smith & Whelan (2006) L. racemosa 0.5-18 log10 𝐴𝐺𝐵 = 1.930 × log10 𝐷𝐵𝐻 − 0.441 

R. mangle 0.5-20 log10 𝐴𝐺𝐵 = 1.731 × log10 𝐷𝐵𝐻 − 0.112 
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3.7 Allometric modelling of plot-level biomass and canopy height 

A power-law function of M = α𝑋β was used to yield the relationship between plot level AGB and mean 

canopy height, where M and 𝑋 denote plot level AGB and plot level mean canopy height, respectively, 𝛼 

and 𝛽 are the fitted parameters using field inventory measurements. The power-law function was linearized 

as ln 𝐴𝐺𝐵 = 𝑎 + 𝛽 ln 𝐻𝑚𝑒𝑎𝑛 , where 𝑎  = ln 𝛼 , 𝐻𝑚𝑒𝑎𝑛  represents the mean canopy height of each plot. 

Ordinary Least Squares (OLS) was used to fit this log-linear regression model by minimizing the sum of 

the squares of the differences between ln AGB and ln 𝐴𝐺𝐵̂ (estimated from the linear regression equation). 

However, there is a systematic bias resulting in the biomass underestimation in the original unit when log-

transformation was applied to the input data (Baskerville, 1972). Thus, for the unbiased estimation, 

Baskerville (1972) introduced a correction factor (CF) to the conversion of logarithmic estimates to 

arithmetic units; 𝐶𝐹 = 𝑒𝑥𝑝 (
σ2

2
), where σ2 stands for sample variance of the logarithmic equation. The 

unbiased estimate for σ2 is σ̂2 =
𝑅𝑆𝑆

𝑚
, where RSS stands for the sum of squared residuals and 𝑚 is residual 

degree of freedom (Clifford et al., 2013). CF should be multiplied to the AGB estimates; that is, 𝐴𝐺𝐵̂ =

𝑒𝑥𝑝 (𝑎̂ + β̂ ln 𝐻𝑚𝑒𝑎𝑛 +
𝑅𝑆𝑆

2∙𝑚
) where for a given 𝐻𝑚𝑒𝑎𝑛, 𝐴𝐺𝐵̂ is the unbiased estimates in the arithmetic unit 

(Mg/ha) for the given mean canopy height 𝐻𝑚𝑒𝑎𝑛 with the regressed constant 𝑎̂ and coefficient β̂.  

Applying this method to the plot-level AGB estimates in the study area, derived from field inventory data 

using the allometric equation in Table 3-3, the regression model was obtained as 

ln 𝐴𝐺𝐵 = 1.23 + 1.82 × ln 𝐻𝑚𝑒𝑎𝑛   (R2 = 0.92, p < 0.001) (Equation 3.1) 

where intercept 𝑎 = 1.23 with standard error 𝜎𝑎 = 0.26 and slope 𝛽 = 1.82 with standard error 𝜎𝛽 = 0.12. 

After incorporating the correction factor, the power-law function was yielded as: 

𝐴𝐺𝐵 = 3.64 × 𝐻𝑚𝑒𝑎𝑛
1.82  (Equation 3.2) 

with an R2 of 0.61 and an RMSE at 87.25 Mg/ha. This equation was then applied to the calibrated DEMs 

elevation values for DEM-based AGB estimation (Figure 3-4).  
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Figure 3-4. Scatterplot and model-fit of aboveground biomass as a function of mean canopy height (Hmean) for the field plots. 

OLS linear regression model with logarithmic transformation (left); Power-law function in arithmetic unit transformed from 

linear regression model in logarithmic unit including the correction factor (right). 

3.8 Results 

3.8.1 Field mean canopy height and AGB estimates  

Based on the field measurements of the study area, the summary statistics for each mangrove species 

demonstrate a wide range of tree measurements (Table 3-5). The plot-level AGB estimates therefore vary 

from 2.31 to 577.43 Mg/ha (Table 3-6). Compared with the mangrove forest around El Llano lagoon, higher 

AGB with higher mean canopy height was investigated in the mangrove forest around La Mancha (172.78-

577.43 Mg/ha; 7.87-14.68 m). In this study, most of field inventory data fall within the DBH range (5-103.4 

cm) except for Plot 9 which is situated to the east of El Llano lagoon with a young A. germinans stand and 

was not previously defined as mangrove (Figure 3-2). To incorporate AGB estimates across the entire 

range of mangrove canopy heights, the field AGB estimation of Plot 9 is included in the development of 

the proposed regression equation. 

Table 3-5. The summary statistics of field measurements based on mangrove species. 

Species 
DBH (cm) Canopy height (m) 

Min Max Mean Min Max Mean 

A. germinans 0.5 103.4 17.5 0.2 31 9.2 

R. mangle 0.7 82.7 8.7 1.2 25.2 8.1 

L. racemosa 1.8 54.8 27.8 2.7 32.2 17.5 

C. erectus 2.3 19.5 6.8 1.5 7.5 3.6 
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Table 3-6. Summary of mangrove tree data per plot (n = 24). 

Plot Region Year 
Number 

of trees 
Plot size (m2) 

Dominant 

species 

Mean canopy height 

(m) 
AGB (Mg/ha) 

1 El Llano 2022 12 100 A. germinans 5.23 48.43 

2 El Llano 2022 9 100 A. germinans 6.30 127.71 

3 El Llano 2022 73 100 A. germinans 5.16 83.41 

4 El Llano 2022 27 100 A. germinans 3.87 49.96 

5 La Mancha 2022 11 100 L. racemosa 14.57 577.43 

6 La Mancha 2022 14 225 R. mangle 12.09 270.02 

7 La Mancha 2022 11 225 A. germinans 11.01 172.78 

8 La Mancha 2022 17 100 R. mangle 8.35 177.45 

9 El Llano 2022 43 100 A. germinans 0.86 2.31 

10 El Llano 2022 17 100 C. erectus 3.83 25.26 

11 La Mancha 2022 15 400 R. mangle 14.49 239.49 

12 La Mancha 2010 58 400 A. germinans 11.71 395.62 

13 La Mancha 2010 58 900 R. mangle 14.68 459.66 

14 La Mancha 2010 123 900 R. mangle 9.89 322.38 

15 La Mancha 2010 83 900 A. germinans 10.25 312.67 

16 La Mancha 2010 47 900 A. germinans 11.52 252.14 

17 La Mancha 2010 54 900 A. germinans 10.56 189.44 

18 La Mancha 2010 38 900 A. germinans 10.38 187.57 

19 La Mancha 2010 27 900 A. germinans 9.59 224.22 

20 La Mancha 2010 56 400 A. germinans 7.87 331.95 

21 La Mancha 2010 43 900 A. germinans 12.21 246.78 

22 La Mancha 2010 77 900 A. germinans 12.06 408.16 

23 La Mancha 2010 80 900 A. germinans 10.06 327.94 

24 La Mancha 2017 58 900 A. germinans 12.29 230.76 

3.8.2 Comparison between different allometric equations 

Plot-level AGB estimates derived from the pantropical equation (Chave et al., 2014) exhibited a broader 

range than those obtained from localised allometric equations developed in Mexico, French Guiana, and 

the Everglades (Figure 3-5). Kernel density distributions show that Smith & Whelan (2006) generated 

significantly constrained values while central tendencies are generally consistent. The allometric equations 

of Day et al. (1987) and Fromard et al. (1998) produced similar estimates, but both of them were limited to 

derive AGB values higher than 500 Mg/ha. 
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Figure 3-5. Kernel density distribution of plot-level AGB estimates derived from different allometric equations for the study 

area. 

3.8.3 Performance of DEM calibration against field measurements 

The calibrated Copernicus GLO-30 DEM was found to have the highest agreement with plot-level mean 

canopy heights over the study area with an R2 of 0.82 and an RMSE of 1.51 m, followed by the calibrated 

NASADEM (R2: 0.76, RMSE: 1.76 m) and ALOS DSM (R2: 0.73, RMSE: 1.88 m) (Figure 3-6a). Also, 

the AGB estimates derived from the calibrated Copernicus GLO-30 DEM using Equation (3.2) agreed the 

most with plot-level AGB with the R2 of 0.66 and the RMSE of 81.93 Mg/ha, while using the calibrated 

ALOS DSM (R2: 0.54, RMSE: 95.09 Mg/ha) yielded a slightly better agreement than the calibrated 

NASADEM (R2: 0.49, RMSE: 99.91 Mg/ha) (Figure 3-6b). 

 
Figure 3-6. Field canopy height and AGB measurements against the estimations derived from calibrated DEMs with 95% 

confidence intervals: (a) plot-level mean canopy height and (b) AGB. 
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3.8.4 Mangrove AGB mapping based on calibrated DEMs 

Compared to mean canopy height distribution of calibrated DEMs over mangroves in El Llano, the values 

over La Mancha mangroves ranged up to ~16 m (Figure 3-7). However, unexpectedly high values of 

NASADEM and Copernicus GLO-30 DEM were observed for El Llano mangroves, leading to anomalously 

high AGB estimates in a small southeastern area (Figure 3-8, Figure 3-9). Generally, all the calibrated 

DEMs demonstrate comparable quartiles of height estimates over mangroves for each area. Due to data 

sources of different time periods for DEM generation, calibrated ALOS DSM and Copernicus GLO-30 

DEM demonstrated an increase in the distribution of higher height values as mangroves might have 

increased in height. For instance, mean canopy heights of La Mancha mangrove forests were distributed 

more at higher values in Copernicus GLO-30 DEM (10.34 m at 50th) than NASADEM (10.05 m at 50th).  

 
Figure 3-7. Probability density function of mean canopy heights over the mangrove forests around El Llano and La Mancha 

lagoons from calibrated DEMs using Gaussian kernel density estimation. Dash lines from bottom to top denote the values at 25th, 

50th and 75th percentile, respectively. 

Equation (3.2) was applied to calibrated DEMs for mangrove AGB estimation (Figure 3-8). Consistent 

with height estimates, mangroves on the south of La Mancha lagoon were predicted to have higher AGB, 

while El Llano mangroves had lower AGB distributed in the range of 35.22 – 211.56 Mg/ha using 

NASADEM, 50.02 – 237.00 Mg/ha using ALOS DSM and 49.26 – 238.41 Mg/ha using Copernicus GLO-

30 DEM at the 5th and 95th percentile. La Mancha mangrove forests were predicted to have AGB distributed 

in the range of 106.75 – 468.78 Mg/ha using NASADEM, 92.91 – 438.49 Mg/ha using ALOS DSM and 

67.61 – 435.69 Mg/ha using Copernicus GLO-30 DEM at the 5th and 95th percentile (Figure 3-9). The 

distribution of AGB estimates exhibits similar patterns to mean canopy height estimates from calibrated 

DEMs. 
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Figure 3-8. AGB estimation based on three calibrated DEMs of El Llano mangroves (left column) and La Mancha mangroves 

(right column). (a), (b) for NASADEM; (c), (d) for ALOS DSM, (e), (f) for Copernicus GLO-30 DEM. The base map is rendered 

through Esri World Image. Note that a diagonal black stripe situated in the southwest of mangrove extent maps of La Mancha 

lagoon is a physical gap (pathway) separating the mangrove forest. 
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Figure 3-9. Probability density function of estimated AGB over the mangrove forests around El Llano (left) and La Mancha 

(right) lagoons using Gaussian kernel density estimation. Dash lines from bottom to top denote the values at 25th, 50th and 75th 

percentile, respectively. 

3.8.5 Comparisons between AGB estimation maps 

The spatiotemporal variation of the AGB results was investigated over the study area for El Llano 

mangroves and La Mancha mangroves using difference percentage (i.e., 𝐷𝑖𝑓𝑓% =
𝐴𝐺𝐵𝑖−𝐴𝐺𝐵𝑗

𝐴𝐺𝐵𝑗
× 100%). 

For El Llano mangroves, the AGB estimation results of ALOS DSM and Copernicus GLO-30 DEM are 

nearly 30% higher than NASADEM. Considering NASADEM sourced from the data in 2000 and natural 

growth of mangroves, NASADEM captured lower canopy heights of that time resulting in lower AGB 

estimation (Figure 3-10a, b). The reported AGB accumulation rates for mangroves average 3.3 Mg/ha/yr 

(95% CI: 3.1 - 3.5) in tropical dry areas (IPCC, 2014), which also characterises the climatic conditions of 

the study area. It is a similar situation for the landward and seaward edges of La Mancha mangroves (Figure 

3-10b, f), where mangroves may experience significant changes, such as establishment and harvesting. 

AGB estimations of the south of La Mancha mangroves derived from ALOS DSM and Copernicus GLO-

30 DEM were in higher agreement between ± 12% difference (Figure 3-10d). Additionally, the mangrove 

AGB maps (𝐴𝐺𝐵𝑁𝐴𝑆𝐴𝐷𝐸𝑀, 𝐴𝐺𝐵𝐴𝐿𝑂𝑆𝐷𝑆𝑀, 𝐴𝐺𝐵𝐶𝑂𝑃𝐷𝐸𝑀) of this study show comparable R2 values (0.74 for 

𝐴𝐺𝐵𝑁𝐴𝑆𝐴𝐷𝐸𝑀  vs. 𝐴𝐺𝐵𝐴𝐿𝑂𝑆𝐷𝑆𝑀 , 0.72 for 𝐴𝐺𝐵𝑁𝐴𝑆𝐴𝐷𝐸𝑀  vs. 𝐴𝐺𝐵𝐶𝑂𝑃𝐷𝐸𝑀  and 0.78 for 𝐴𝐺𝐵𝐴𝐿𝑂𝑆𝐷𝑆𝑀 vs. 

𝐴𝐺𝐵𝐶𝑂𝑃𝐷𝐸𝑀) and the RMSE of around 60 Mg/ha (Figure 3-11). 

The 30m global mangrove AGB estimation map from Simard et al. (2019) was introduced for 

intercomparisons. This map was generated by applying the field-measured biomass–height allometry to 
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SRTM estimates of basal area weighted canopy height across the global mangrove extent. Simard’s map 

predicts a lower AGB over the mangrove forests in the study area, where the corresponding R2 values are 

-0.90, -1.23 and -1.16 for 𝐴𝐺𝐵𝑁𝐴𝑆𝐴𝐷𝐸𝑀 , 𝐴𝐺𝐵𝐴𝐿𝑂𝑆𝐷𝑆𝑀 , 𝐴𝐺𝐵𝐶𝑂𝑃𝐷𝐸𝑀  vs. 𝐴𝐺𝐵𝑆𝑖𝑚𝑎𝑟𝑑 , while showing 

apparent linear relationships with the AGB estimation results (Figure 3-11).  

 
Figure 3-10. Differences between mangrove AGB estimates of El Llano (left two columns) and La Mancha (right two columns) 

based on three calibrated DEM. (a), (b) for ALOS DSM vs. NASADEM; (c), (d) for Copernicus GLO-30 DEM vs. ALOS DSM; 

(e), (f) for Copernicus GLO-30 DEM vs. NASADEM. Left sub-subplot of each paired subplot is in the unit of Mg/ha, while the 

right one is in percentage terms. The base map is rendered through Esri World Image.  
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Figure 3-11. Pairwise comparisons with linear regression lines between the AGB estimation results derived from NASADEM, 

ALOS DSM, Copernicus GLO-30 DEM and Simard et al. (2019). Lower triangle plots are colour coded density plots as colour 

changes from purple to yellow for increasing density of data points. Each diagonal plot demonstrates probability density function 

of the AGB estimation corresponding to x/y axis label. 

3.9 Discussion 

3.9.1 Uncertainty of mangrove AGB estimation 

This study demonstrates the feasibility of using global DEMs for estimating the AGB of two local mangrove 

forests in Mexico. The main sources of uncertainty result from errors in DEM-derived mean canopy height 

estimation and errors in plot-level biomass-height model.  Field measurement errors and spaceborne LiDAR 

measurement errors are not considered here as ICESat-2 LiDAR metrics have low errors for mangrove 

canopy height estimation (Yu et al., 2022) and are deemed as canopy height reference to calibrate DEMs 

while field data were acquired through averaging repeated measurements. Thus, the uncertainty of the 
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proposed methodology for mangrove AGB estimation was computed as standard errors by propagating 

mean canopy height errors into plot-level AGB estimation errors. This was expressed as: 

𝜎𝐴𝐺𝐵 =  √(
𝜕𝐴𝐺𝐵

𝜕𝐻𝑚𝑒𝑎𝑛
)

2

𝜎𝐻𝑚𝑒𝑎𝑛

2 + (
𝜕𝐴𝐺𝐵

𝜕𝑎
)

2

𝜎𝑎
2 + (

𝜕𝐴𝐺𝐵

𝜕𝛽
)

2

𝜎𝛽
2 + 2 (

𝜕𝐴𝐺𝐵 

𝜕𝑎

𝜕𝐴𝐺𝐵

𝜕𝛽
) 𝜎𝑎𝛽

2  (Equation 3.3) 

where 𝜎𝐻𝑚𝑒𝑎𝑛
 represents standard errors of mean canopy height estimation from DEMs and 𝜎𝑎𝛽

2  is the 

covariance between the fitted parameters 𝑎 and 𝛽. The standard errors (RMSE) of mean canopy height 

estimation using NASADEM, ALOS DESM and Copernicus GLO-30 DEM are shown summarised shown 

in Table 3-2. Therefore, the standard errors of mangrove AGB estimation (𝜎𝐴𝐺𝐵 ) computed through 

Equation 3.3 are varying between ± 15.16 – 15.53 Mg/ha for stands with a mean canopy height 𝐻𝑚𝑒𝑎𝑛 = 1 

m, and ± 151.78 – 154.95 Mg/ha for 𝐻𝑚𝑒𝑎𝑛 = 15 m. Generally, the uncertainty is expected to be reduced 

when more field measurements are included for biomass-height allometry development. 

3.9.2 Discrepancies between local and global AGB estimates 

The AGB estimates obtained in this study are consistently higher than those reported by the global 

mangrove AGB map of Simard et al. (2019) (Figure 3-11). These discrepancies primarily stem from the 

differences in how biomass-height allometry was developed. As we developed biomass-height allometry 

using field measurements of the study area, the structural characteristics of local mangrove forests were 

captured. Conversely, Simard’s estimates relied on a global mangrove field inventory, from which a 

generalised biomass-height relationship was derived. While the global model provides a valuable baseline 

for global-scale assessments, its transferability to specific regions is limited. The global allometry captures 

the overall trend but systematically underestimates the values of mangrove AGB in the study area.  

3.9.3 Difference among allometric equations for field AGB estimation 

The differences in the kernel density distribution of AGB estimates highlight the influence of model 

calibration datasets and diameter ranges. The allometric equations from Smith & Whelan (2006) reflect the 

limited DBH range of harvested trees used in model development (Table 3-4). Similarly, the equations of 

Day et al. (1987) and Fromard et al. (1998) produced more realistic estimates but were developed from 

trees with smaller DBH ranges, meaning that many field measurements in this study (0.5–103.4 cm DBH; 

Table 3-5) fell outside their validity domains. 
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In contrast, the pantropical model of Chave et al. (2014) covers a broad DBH range (5–212 cm) that 

overlaps with most field observations in this study, making it more reliable and widely applicable. Although 

a small number of mangroves had DBH < 5 cm, Chave’s allometric equation was still applied given the 

lack of species-specific models for small individuals in the study area. Despite the availability of several 

allometric equations, the broader applicability and better alignment with field measurements justify the 

selection of Chave et al. (2014) for mangrove AGB estimation for this study. 

3.9.4 Limitations of AGB estimation using DEMs 

In this study, DEMs were used to estimate mangrove mean canopy height and AGB based on plot-level 

biomass-height allometry. This approach relies on the assumption that mangroves are situated in low-lying 

and flat coastal areas where topographic impacts are negligible, which does not compromise DEM-derived 

canopy height estimation. In reality, however, coastal topography invariably slopes upward out of the 

intertidal areas, leading to systematically higher canopy height estimation at the landward margin of 

mangrove forests. Nonetheless, mangroves rarely establish on steep slopes, meaning that DEMs remain 

broadly reliable for canopy height retrieval. Cannon et al. (2020) found that hydrodynamic habitat has 

shaped the mangrove distribution around a microtidal estuarine lagoon, with more than 90% of mangrove 

presence occurring where intertidal slopes were <0.5 and 80th percentile wave heights were <2.5 cm. 

Therefore, the impacts of increased slopes will cause significant overestimation of canopy height over a 

small number of mangroves and should be explicitly accounted for when higher-resolution or site-specific 

analyses are required. 

As intact and well-established mangrove forests normally exhibit canopy height changes at finer resolution, 

30 m DEMs are sufficient over time to demonstrate mean canopy height and its distribution (Lagomasino 

et al., 2016). Additionally, as the mangrove forest around El Llano lagoon is facing higher hydrological 

stress, i.e., high salinity regulated by seawater, it indicates that the growth of large mangrove trees is 

suppressed whilst small trees contribute to mangrove growth in high salinity areas (Ahmed et al., 2023). 

Though La Mancha lagoon receives freshwater in the south leading to low salinity, mangrove canopy 

heights response inversely to increasing salinity as there is a salinity gradient in the La Mancha lagoon 

(Vovides et al., 2014). All the factors make the introduced DEMs feasible and reliable to estimate mangrove 

canopy height over time across the study area. But the time lag of two decades should be carefully taken 

into account when the proposed methodology is applied to Sonneratia species mangroves that can exhibit 

significant natural canopy growth in several years (Wang et al., 2021). 
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Compared to the limited plot size and number in this study, fixed 100 m segments of ICESat-2 ATL08 were 

used to calibrate DEMs in mean canopy height estimation. However, because ICESat-2 data did not overlap 

with the established field plots, its accuracy relative to field measurements could not be directly validated 

in this study. Despite this limitation, ICESat-2 ATL08 data are widely considered reliable ground truths for 

canopy height, as these spaceborne LiDAR measurements provide high accuracy aligned with geodetic 

benchmarks (Carrera-Hernández, 2021). Copernicus GLO-30 DEM works the best in mean canopy height 

and AGB estimation, as it was produced using data sources temporally closer to the field plot measurements 

capturing small mangrove tree growth, especially where mangroves do not exist when the data was required 

for the generation of NASADEM and ALOS DSM (Figure 3-7). Calibrated ALOS DSM and NASADEM 

work similarly for the estimation of mean canopy height and AGB.  

3.10 Conclusions 

This study presents an approach for using DEMs to estimate AGB for the mangrove forests bordering the 

lagoons of La Mancha and El Llano in Mexico and examines the performance of using DEMs for mean 

canopy height and AGB estimation. With an assumption that the underlying environment of mangroves is 

flat and low-lying at sea level, DEMs can be sufficiently utilized to estimate canopy height. The metric of 

mean canopy relative height from ICESat-2 was used to calibrate DEM height measurements though there 

is a time lag between these datasets, since well-established mangrove forests have witnessed few significant 

canopy changes and high salinity limits mangrove tree growth. A power-law model 𝐴𝐺𝐵 = 𝛼𝐻𝑚𝑒𝑎𝑛
𝛽

 was 

introduced for the relationship between plot-level AGB estimation and mean canopy height, which was 

regressed by OLS using field plot measurements. The standard errors of mean canopy height estimation are 

2.45 m, 2.49 m and 2.43 m for NASADEM, ALOS DESM and Copernicus GLO-30 DEM, respectively. 

Therefore, the uncertainty was computed through error propagation of mean canopy height estimation 

errors and regression coefficient errors of biomass-height allometry, resulting in 𝜎𝐴𝐺𝐵 varying between ± 

15.16 – 15.53 Mg/ha for stands with mean canopy height 𝐻𝑚𝑒𝑎𝑛 = 1 m. Mangrove AGB of El Llano and 

La Mancha lagoons was estimated to be 212 – 239 Mg/ha and 436 – 469 Mg/ha at the 95th percentile, 

respectively. The intercomparisons of DEM-derived AGB estimates show comparable results with the R2 

ranging from 0.72 to 0.78 and RMSE ranging from 54.90 to 64.54 Mg/ha, while the comparisons with a 

global mangrove AGB estimation map from Simard et al. (2019) show significant discrepancies with 

negative R2 as the global biomass-height allometry is limited to capture the structural characteristics at a 

local scale.   

Overall, this study generated local AGB estimation of mangroves bordering the lagoons of La Mancha and 

El Llano in Mexico which can be used for future carbon stock assessments and mangrove health and 
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resilience investigations. Additionally, this study shows comparable mean canopy height and AGB 

estimation using calibrated DEMs, however, more contemporary DEM was recommended to be used for 

the investigation of small mangrove tree growth, i.e., Copernicus GLO-30 DEM. As there are about 79.4% 

(11,905 km2) of global lagoonal mangroves across North and Central America and the Caribbean region 

(Worthington et al., 2020), the proposed methodology is potentially transferable for AGB estimation in 

these areas.  
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Abstract 

The estimation of aboveground biomass (AGB) of mangroves serves as an important indicator for carbon 

stocks. Since well-established and mature mangrove forests exhibit changes at a finer scale, an accurate 

and high-resolution mangrove AGB estimation can facilitate spatially explicit delineation of mangrove 

carbon inventory. However, few studies have estimated and mapped finer-scale mangrove AGB (<10 m) 

at a continental level due to limited availability of high-resolution remote sensing datasets. This study 

proposes a novel approach for high-resolution mangrove AGB estimation that combines plot-level biomass-

height allometry and Random Forests (RF) regression model with sparse canopy height data from the 

Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR mission and continental cloudless 

mosaics from Planet NICFI Satellite Data Program. The large amount of GEDI data bridges the gap between 

limited field measurements and continental AGB estimation and mapping for the training of RF model. The 

results showed a plot level biomass-height allometry with an R2 of 0.36 and a root mean square error (RMSE) 

of 92.86 Mg/ha, while the RF model showed an R2 of 0.72 with the RMSE of 37.24 Mg/ha. A total of 362 

Tg AGB was found in the mangrove forests across the Americas in 2020, with approximately 31% 

distributed in Brazil. Compared with other AGB estimation maps, a higher agreement was found across the 

low AGB areas (<50 Mg/ha), showing the resulting map is consistent in mangrove AGB estimation at a 

finer scale. Overall, the approach can serve ongoing efforts for finer resolution investigation of mangroves 

and their management at continental or global levels and has the potential to provide highly resolved 

information for climate and carbon modelling. 

 

Keywords: Mangroves; Aboveground biomass; Planet NICFI imagery; GEDI LiDAR data; Random 

Forests  
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4.1 Introduction  

Mangroves are globally acknowledged as tropical ecosystems highly abundant in carbon and vital to various 

essential ecosystem services to surrounding coastal communities (Alongi, 2020; Uddin et al., 2023). They 

have historically been undervalued, particularly with large scale conversion to aquaculture and are being 

threatened by extreme weather events associated to changing climate (Friess et al., 2019; Goldberg et al., 

2020). As mangroves have become recognized as an important ecosystem that makes crucial contributions 

to many objectives outlined in the Sustainable Development Goals of the 2030 Agenda, mangrove 

restoration and protection strategies have been put forward locally, nationally and internationally (e.g., FAO, 

2023; Friess et al., 2024, 2016; Slobodian and Vidal, 2023). Aboveground biomass (AGB) estimation of 

mangroves is key for carbon stocks estimation and to understand mangrove carbon dynamics and its role 

in climate change mitigation. To facilitate the global community’s efforts in further restoring and protecting 

mangroves, it is crucial to know the amount of biomass stored in mangroves and monitor its change over 

time.  

Mangrove AGB refers to the total amount of living organic matter contained in the aboveground parts of 

mangrove trees within a specific area (generally expressed in megagram, Mg; 1 Mg = 106 g). As such, 

normally AGB also refers to AGB density (AGBD, in the unit of Mg/ha). Traditional AGB measurement 

requires field-based destructive tree sampling, which is further utilized to develop allometric equations, 

facilitating the inference of AGB based on single trait field measurements, i.e., diameter at breast height 

(DBH) or canopy height (Kauffman and Donato, 2012; Komiyama et al., 2008). But the environment of 

mangrove forests is generally muddy, remote and inaccessible, which poses difficulties to large-scale 

mangrove forest biomass inventories. Remote sensing enables large-area surveys providing spatially 

explicit information relying on passive (e.g., multispectral and hyperspectral) or active (Synthetic Aperture 

Radar (SAR) and Light Detection and Ranging (LiDAR)) sensors. These types of spaceborne data show 

practical capability in estimating mangrove AGB at regional, national and global scales (e.g., Hu et al., 

2020; Lucas et al., 2020; Prakash et al., 2022; Simard et al., 2019; Wang et al., 2020). 

National or global seamless AGB mapping relies on spaceborne optical and SAR imagery, such as tropical 

forest AGB mapping over Peru (Csillik et al., 2019) and European Space Agency (ESA) Climate Change 

Initiative (CCI) global biomass maps (Santoro and Cartus, 2023). Compared to medium resolution 

spaceborne imagery (e.g., 30 m Landsat images), high resolution imagery such as Sentinel-2 and SPOT-5 

delineates more detailed spectral and textural information across mangrove forests leading to AGB 

estimation at a 10 m scale (Pham and Brabyn, 2017; Pham et al., 2019). However, the high cost and limited 

coverage of very high resolution (VHR; spatial resolution <10 m) spaceborne images constrain the 
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application for mangrove AGB estimation at finer scales (Hojas Gascón et al., 2019). Planet, cooperating 

with Norway’s International Climate and Forest Initiative (NICFI) has provided biannual and monthly high-

resolution satellite mosaics with 4.77 m pixel spacing since 2015 and 2020, respectively. These mosaics 

are generated from PlanetScope satellite data to create cloudless and seamless datasets across the tropical 

Americas, Asia and Africa, normalised and harmonised with Landsat surface reflectance images (Pandey 

et al., 2023). 

The bio-physical relationship between spectral signatures and forest vertical structure are complex, with a 

lack of in-depth understanding due to limited availability of field inventory data (Rodríguez-Veiga et al., 

2017; Wang et al., 2019), resulting in challenging forest characteristics estimation such as canopy height 

or AGB from optical imagery (Lang et al., 2023). Therefore, fusing multisource remotely sensed data 

enables more comprehensive mapping of forest characteristics with complementary spatially explicit 

information (Hu et al., 2020; Lang et al., 2023; Shendryk, 2022; Wang et al., 2020). LiDAR measurements 

are considered a significant data source to advance AGB estimation in multisource data fusion as canopy 

height, a key parameter to estimate AGB, can be reliably obtained (Fatoyinbo et al., 2018; Salum et al., 

2020; Tian et al., 2022; Wang et al., 2020). The Global Ecosystem Dynamics Investigation (GEDI) 

spaceborne mission collected full-waveform LiDAR data for the purpose of measuring global forest vertical 

characteristics between approximately 51.6 °N and 51.6 °S (Duncanson et al., 2022). The GEDI full-

waveform observations show high capabilities to retrieve forest canopy height, which represents a certain 

quantile of returned energy relative to the ground. Also, the GEDI observations are considered circular 

footprints of 25 m in diameter, capable of more comprehensive vegetation structure mapping than ICESat 

GLAS data due to smaller footprint size and denser data coverage. Given the vast amount of GEDI 

observations spanning from April 2019 to March 2023, the gap between limited field data and global optical 

imagery can be bridged by exploiting biomass-height allometry to yield GEDI-based AGB estimates for 

supervised machine learning.  

This study aims to develop a novel approach for seamless VHR AGB estimation at a continental scale by 

incorporating transcontinental field data, spaceborne LiDAR data and high-resolution spaceborne imagery 

as well as various environmental variables. A three-steps approach was adopted: (i) obtaining plot-level 

biomass-height allometry based on field data across the Americas, (ii) applying the allometry to GEDI 

observations of relative canopy height for AGB estimates; (iii) splitting the vast amount of GEDI-based 

AGB estimates to train and validate the Random Forests regression model with spectral and environmental 

variables. This study estimates and maps mangrove AGB distribution at a finer scale over the Americas in 

2020 and evaluate the agreement between other AGB estimation products (i.e., ESA CCI biomass and 

GEDI L4B gridded biomass maps). The resultant continental AGB map over the Americas is made publicly 
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available to support conservation efforts and science in disciplines such as climate, carbon and biodiversity 

modelling at a finer scale. Specifically, as small mangrove patches provide significant ecosystem services 

for vulnerable communities in the low-lying coastal areas (Curnick et al., 2019), this study is also expected 

to reveal the AGB distribution of small-scale mangroves from a continental perspective.  

4.2 Material and methods 

4.2.1 Study area 

The study area of mangrove forests spanned the Americas. According to the report from UN FAO’s (United 

Nations Food and Agriculture Organization), a total of 3.99 million hectares mangrove forests were 

distributed across the Americas (including North and Central America, and South America) in 2020 

accounting for 27% of worldwide mangroves (FAO, 2023). While mangrove species richness is highest in 

the Indo-West Pacific region (62 species found), only 13 native mangrove species are recognized for the 

Americas (Spalding et al., 2010), at which the frontal mangrove genus mainly comprises Rhizophora, 

Avicennia, Laguncularia and Conocarpus (Twomey and Lovelock, 2024). A 10 m global mangrove extent 

map derived from Sentinel-2 imagery was used to delineate the mangrove distribution across the Americas 

(Figure 4-1). It has an overall accuracy of 93.6% (91.4-95.7%, 95% confidence interval) (Jia et al., 2023), 

delimited by the geographic regions defined by the Statistics Division of the United Nations, where the sub-

regions of Americas comprise Northern America, South America, Central America, and the Caribbean 

(UNSD, 1999).  

 
Figure 4-1. Locations of field sites and mangrove distribution in the Americas. The parenthesised numbers demonstrate the plot 

count at each corresponding site. Note that the small-scale basemap leads to closely spaced field plots visually condensed into a 

point. Two plots without geographic coordinates are not presented in this map. 
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4.2.2 Field inventory data 

The fieldwork was carried out in the mangrove forests bordering La Mancha and El Llano lagoons in 

Mexico in June and July 2022 with a total of 11 field plots. Individual tree measurements in each plot were 

carried out including canopy height and DBH (diameter at breast height) with mangrove species recorded. 

Here, the field measurements in the mangrove forest bordering La Mancha from 2010 and 2017 (13 plots) 

(Vovides et al., 2018, 2021) were also adopted as well as mangrove inventory data across the Americas 

within a nearly 10-year period from 02 November 2004 to 22 May 2014 (125 plots) (Simard et al., 2019). 

Therefore, the recorded mangrove species consists of Avicennia germinans, Rhizophora mangle, 

Laguncularia racemosa, Conocarpus erectus and Pelliciera rhizophorae. 

Field measurements were mainly collected within fixed size plots, but 64 plots of Simard’s field data have 

variable radii. Variable-radius plots sampling is a flexible sampling practice, also referred to as angle count 

sampling, point sampling or prism cruising, based on the idea that trees are to be sampled with probability 

proportional to size (Kershaw et al., 2017). In practice, an angle device (e.g., prism or angel gauge) is used 

to tally trees in a full-circled rotation around the point centre. The trees are sampled when the subtended 

angle is larger than the reference angle, whereby a group of concentric plots with varied sizes are obtained 

depending on every tree size. The angle gauge coming with a basal area factor (BAF, m2/ha or ft2/acre) 

estimates the amount of basal area represented by each sampled tree across 1 hectare/acre area. Therefore, 

tree density per hectare/acre at each site is calculated by multiplying the number of sampled trees and 

specific BAF (Kershaw et al., 2017). In Simard’s dataset, mangrove species, DBH, canopy height, and 

survival status (whether the tree is alive) were measured and recorded for each tallied tree at sites. Since 

these mangrove field data were collected from different sources under varied protocols, quality-control 

filters were used to acquire qualified tree measurements: (1) ‘use_for_allometry’ = 1, which represents the 

tree was used for allometry (Simard et al., 2019); (2) canopy height was properly measured; and (3) the 

most trees within the plot were not severely inclined. Thus, 89 plots in the Americas were selected from 

Simard’s dataset, representing about 27% of the 331 global in situ plots. Together with 24 plots from the 

field campaigns in the mangrove forest in Mexico, a total of 113 plots were introduced in this study to 

develop plot level biomass-height allometry (see Figure 4-1). 

4.2.3 Planet continental mosaics 

Planet, cooperating with Norway’s International Climate and Forest Initiative (NICFI) has provided 

biannual and monthly high-resolution cloudless satellite mosaics with 4.77 m pixel spacing since 2015 and 

2020, respectively. These mosaics come with four multispectral bands (i.e., blue, green, red, and near 
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infrared) and cover the tropics of Americas between 30° N and 30° S, excluding the extent of the United 

States of America, Puerto Rico, British Virgin Islands, and Virgin Islands. Between December 2015 and 

August 2020, Planet had produced the mosaics biannually; but since September 2020, the mosaics has been 

being produced monthly.  

In this study, a representative mosaic of 2020 was acquired for the mangrove forests across the Americas. 

Specifically, the images acquired in 2020 were used, including two biannual mosaics (December 2019 –

May 2020 and June – August 2020) and four monthly mosaics (September – December 2020). To evaluate 

a compositing strategy that can minimises temporal differences, the NDVI (normalized difference 

vegetation index) of the 2020 mangrove extent in each mosaic was computed, given that NDVI is a positive 

indicator correlated with vegetation biomass (Ruan et al., 2022). The distributions of mangrove NDVI 

across mosaics showed only subtle variation with comparable median values (Figure 4-2), suggesting 

overall temporal consistency. Negative NDVI values observed in all mosaics largely correspond to non-

vegetated surfaces (e.g., open water, residual cloud shadows), which persist due to misclassification in the 

10 m mangrove extent map when overlaid with the 4.77m mosaics. Therefore, in order to mitigate the 

impacts of extreme pixel values, this study generated a median composite from all mosaics in 2020, which 

provides a more stable and representative mosaic of mangrove forests for subsequent AGB estimation and 

mapping. 

 
Figure 4-2. Box plot of NDVI values across mangrove areas of the Americas from Planet NICFI mosaics for 2020. Low outliers 

represent misclassified areas (e.g., water pixels or non-vegetated surfaces labelled as mangroves) or residual cloud shadows, 

leading to NDVI < 0. 
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4.2.4 GEDI LiDAR data 

Launched on December 5, 2018, the GEDI instrument produces laser ranging observations of global 3D 

structure between 51.6º N and 51.6º S at the most highly resolved and densest sampling of any LiDAR 

instrument in orbit to date (Duncanson et al., 2022). There are three lasers within the instrument emitting 

eight beam ground transects (full power and coverage beams), whereby the beam transects are spaced 

approximately 600 m apart on the Earth's surface in the across-track direction and ~25 m footprint samples 

are spaced nearly every 60 m along-track (Dubayah et al., 2020). The return energy of each LiDAR footprint 

is contributed by a group of trees equal to a cylinder with a diameter of 25 m. On Google Earth Engine, 

GEDI LiDAR data were compiled and rasterized into monthly composites spanning from April 2019 to 

March 2023.  

In this study, GEDI footprints were delimited within mangrove area across the Americas using the 10 m 

global mangrove extent from Jia et al. (2023) as each GEDI footprint was considered as a circular plot 

investigating canopy height profile over the mangrove areas. However, GEDI footprint centres are expected 

to have a geolocation error of 10m (Roy et al., 2021), the footprints that fall less than 40 m away from 

mangrove forest edge were masked out to exclude potential mixed or non-mangrove footprints (Stovall et 

al., 2021). Additional filters were applied to the GEDI footprints for the quality check and better 

performance, where GEDI nighttime strong-beam observations are recommended for canopy height 

retrieval (Liu et al., 2021) (Table 4-1). In total, 139,904 GEDI footprints were obtained as the median 

values were extracted for repeated observations over 2020 demonstrating canopy height profile across 

mangrove forests in the Americas.  

Table 4-1. The filters to GEDI canopy height metrics for quality check and nighttime strong-beam data. 

Property Description Value used for filtering 

quality_flag Flag indicating waveform validity  = 1 (valid) 

degrade_flag Flag indicating pointing and/or positioning degradation = 0 (undegraded) 

beam 
Beam flag identifying full power beam (strong) and coverage 

beam (weak) 
>= 5 

solar_elevation 
The elevation of the sun position vector from the laser bounce 

point position is positive up. 
< 0 

sensitivity  Maximum canopy cover that can be penetrated > 0 and <= 1 

4.2.5 Field AGB estimation method 

The AGB of each single tree was calculated for each plot with an improved allometric equation developed 

for pantropical forests through a larger trunk diameter range (5-212 cm) from more tree harvest data 

including the data from South America (Chave et al., 2014). As wood density is a significant variable 
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introduced in this allometric equation, the wood density of the mangrove species in the field data was 

retrieved from the Global Wood Density Database (Zanne et al., 2009) (Table 4-2). However, the wood 

density of Pelliciera rhizophorae is missing in the database, this parameter was retrieved from the study of 

Southwell and Bultman (1971).  

The AGB of fixed radius plots is the summation of the AGB of each single tree normalized by plot area, 

converted to the unit of megagram per hectare (Mg/ha). But, in variable radius plots sampling where there 

is no fixed plot area, concentric plot area is determined as a function of the DBH of each tallied tree, 

whereby the tree density represented by a single tallied tree can be estimated through normalizing 

corresponding plot area by hectares. The concentric plot area was first calculated through the equation: Plot 

area (m2) = 𝜋 × (
𝐷𝐵𝐻

100×𝐶𝐴
)

2

, where CA stands for the cruising angle of 0.02249719 as the BAF is 5 in 

Simard’s dataset (Simard et al., 2019). Then, the AGB of individual tree was scaled up at a hectare scale, 

multiplied by corresponding tree density. Finally, the scaled AGB of single trees was summed at that site 

to yield plot-level AGB. 

Table 4-2. Allometric equation for mangrove AGB estimation, where ρ, AGB, D, and H represents wood density (g/cm3), AGB 

(kg), DBH (cm) and canopy height (m), respectively. 

Species Equation Region Reference 
Wood density 

(g/cm3) 

A. germinans 

AGB = 0.0673 × (ρD2𝐻)0.976 Pantropical 
Chave et al. 

(2014) 

0.67 

R. mangle 0.84 

L. racemosa 0.6 

C. erectus 0.69 

P. rhizophorae 0.75 

 

4.2.6 Allometric modelling of plot-level biomass and canopy height 

The relationship of plot level AGB against canopy height is determined by a power-law function of M =

α𝑋β , where M and 𝑋  denote plot level AGB and canopy height, respectively, and 𝛼 , 𝛽  are the fitted 

parameters using field measurements. Plot level canopy height can be mean, maximum and crown size or 

basal area weighted mean height (Simard et al., 2019; Simard et al., 2006, 2008). This study introduced 

maximum plot canopy height into plot level biomass-height allometry as maximum canopy height is a 

strong predictor of AGB where larger trees contribute a greater proportion of the AGB within the plots 

(Duncanson et al., 2022).  

The power-law function was linearized as ln 𝐴𝐺𝐵 = 𝑎 + 𝛽 ln 𝐻𝑚𝑎𝑥 , where 𝑎 = ln 𝛼, 𝐻𝑚𝑎𝑥  is maximum 

canopy height in each plot. Ordinary Least Squares (OLS) was used to fit this regression model by 
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minimizing the sum of squared residuals. However, there is a systematic bias leading to the AGB 

underestimation when log-transformation is converted back to original units (Baskerville, 1972). Hence, 

Baskerville (1972) introduced a correction factor (CF) to the conversion of logarithmic estimates to 

unbiased arithmetic estimation; 𝐶𝐹 = 𝑒𝑥𝑝 (
σ2

2
), where σ2 is sample variance of the logarithmic regression 

equation. The unbiased σ2 estimate is σ̂2 =
𝑅𝑆𝑆

𝑚
, where RSS stands for the sum of squared residuals and 𝑚 

is residual degree of freedom (Clifford et al., 2013). The CF was applied to the AGB estimation in this 

study. Therefore, the unbiased AGB estimation is  𝐴𝐺𝐵̂ = 𝑒𝑥𝑝 (ln 𝛼̂ + β̂ ln 𝐻𝑚𝑎𝑥 +
𝑅𝑆𝑆

2∙𝑚
), where 𝐴𝐺𝐵̂ is in 

the arithmetic unit (Mg/ha) for a given 𝐻𝑚𝑎𝑥 with the regressed constant ln α̂ and coefficient β̂.  

Applying this method to the plot-level AGB estimates across the Americas, derived from field inventory 

data using the allometric equation in Table 4-2, the regression model was obtained as: 

 

ln 𝐴𝐺𝐵 = 0.33 + 1.49 × ln 𝐻𝑚𝑎𝑥   (R2 = 0.67, 𝑝 < 0.001) (Equation 4.1) 

  

which, after incorporating the correction factor, yields the power-law function: 

 

𝐴𝐺𝐵 = 1.65 × 𝐻𝑚𝑎𝑥
1.49    (Equation 4.2) 

  

with a root mean squared error (RMSE) of 92.86 Mg/ha and an R2 of 0.36. This equation was subsequently 

applied to GEDI canopy height observations for footprint-based AGB estimates (Figure 4-3).  

 
Figure 4-3. Crossplot and model-fit of aboveground biomass as a function of maximum canopy height (𝐻𝑚𝑎𝑥) for the field plots. 

OLS linear regression model with logarithmic transformation (left); Power-law function in arithmetic unit transformed from 

linear model in logarithmic unit including the correction factor (right). 
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4.2.7 Random Forests regression model 

Random Forests (RF) is a type of supervised machine learning which uses ensemble learning methods (i.e., 

Bagging, short for Bootstrap Aggregating) to solve classification or regression problems. The model runs 

by constructing a number of decision trees at the training stage and outputting the mean or mode of 

prediction of the individual trees for regression or classification tasks (Breiman, 2001). Random forests 

perform well with high accuracy, robustness, and efficiency in dealing with high-dimensional data. 

However, RF is not able to extrapolate from the training inputs as the predictions are the average of 

observed labels (Simard et al., 2019).  

Random Forests has proved practical and efficient in mangrove AGB estimation (e.g., Ghosh et al., 2021; 

Hu et al., 2020; Prakash et al., 2022; Zhu et al., 2020) and was used in this study to estimate the AGB of 

the study area, implemented using Google Earth Engine (GEE). The median composite of Planet’s NICFI 

mosaics across the Americas in 2020 was used as the input to estimate and map mangrove AGB. As such, 

four original bands (i.e., blue, green, red and near infrared) of Planet’s NICFI mosaics and 17 derived 

vegetation spectral indices were considered as predictor variables in RF regression model (Table 4-3). 

These spectral indices are correlated with vegetation structure, coverage and health status, used in mangrove 

research (Gupta et al., 2018; Tran et al., 2022). Additionally, 20 environment variables that can influence 

mangrove AGB (Rovai et al., 2021; Simard et al., 2019) were also considered as predictor variables (Table 

4-4). Since these environment variables are 1 km rasterized datasets containing gaps, the neighbouring two 

pixels in all directions were averaged to interpolate the gaps.   

First, the biomass-height allometry was also applied to all the filtered GEDI observations of RH98 (relative 

height at the 98th percentile), which is considered a more reliable metric for maximum canopy height, for 

GEDI footprint-based AGB estimates. 119,175 out of 139,904 GEDI footprints were divided into ‘train’ 

(80%) and a hold-out ‘test’ (20%) dataset after the elimination of null data. This was done in a stratified 

manner by binning footprint-based AGB estimates into four 25th percentile bins. Then, apart from four 

original bands of Planet NICFI mosaic, the predictor variables include 17 derived vegetation spectral 

indices correlated with vegetation structure, coverage and health status used in mangrove research (Gupta 

et al., 2018; Tran et al., 2022), and 20 bioclimatic variables considered as environmental factors to influence 

mangrove AGB (Rovai et al., 2021; Simard et al., 2019). Recursive Feature Elimination (RFE) and Grid 

Search with a 5-fold cross-validation were carried out for the determination of optimal predictor variables 

and hyperparameters that yielded the most accurate RF regression model. Within the 5-fold cross-validation, 

the ‘train’ dataset was further divided into training and validation in the ratio of 4:1 in terms of the estimated 

AGB. Finally, the hold-out ‘test’ dataset was used to assess the performance of RF regression model.  
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Table 4-3. The formulae of spectral vegetation indices used in the RF regression model. 

Acronym Vegetation index Formula Reference 

NDVI 
Normalized Difference 

Vegetation Index 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Rouse et al. 

(1973) 

TVI 
Triangular Vegetation 

Index 
0.5 × [120 × (𝑁𝐼𝑅 − 𝐺) − 200 × (𝑅 − 𝐺)] 

Broge and 

Leblanc 

(2001) 

NDWI 
Normalized Difference 

Water Index 

𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 Gao (1996) 

CMRI 
Combined Mangrove 

Recognition Index 
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑊𝐼 

Gupta et al. 

(2018) 

GNDVI Green NDVI 
𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 

Gitelson et 

al. (1996) 

EVI 
Enhanced Vegetation 

Index  
2.5 ×

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 6 × 𝑅𝐸𝐷 − 7.5 × 𝐵𝐿𝑈𝐸 + 1
 

Huete et al. 

(2002) 

MTVI2 
Modified Triangular 

Vegetation Index 2 

1.5 ×
1.2 × (𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁) − 2.5 × (𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁)

√(2 × 𝑁𝐼𝑅 + 1)2 − (6 × 𝑁𝐼𝑅 − 5 × √𝑅𝐸𝐷) − 0.5)

 Haboudane 

et al. (2004) 

SR1 Simple Ratio 1 
𝑁𝐼𝑅

𝑅𝐸𝐷
 

Jordan 

(1969) 

SR2 Simple Ratio 2 
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
 - 

SR3 Simple Ratio 3 
𝑁𝐼𝑅

𝐵𝐿𝑈𝐸
 - 

MSR 
Modified Simple Ratio 

(MSR) 

𝑁𝐼𝑅
𝑅𝐸𝐷

− 1

√𝑁𝐼𝑅
𝑅𝐸𝐷

+ 1

 Chen (1996) 

SAVI 
Soil Adjusted Vegetation 

Index (SAVI) 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
× (1 + 𝐿), 𝐿 = 0.5 Huete (1988) 

GARI 
Green Atmospherically 

Resistant Index 

𝑁𝐼𝑅 − [𝐺𝑅𝐸𝐸𝑁 − 1.7 × (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷)]

𝑁𝐼𝑅 + [𝐺𝑅𝐸𝐸𝑁 − 1.7 × (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷)]
 

Gitelson et 

al. (1996) 

OSAVI 
Optimized Soil Adjusted 

Vegetation Index  

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.16
 

Rondeaux et 

al. (1996) 

CVI 
Chlorophyll Vegetation 

Index  

𝑁𝐼𝑅 × 𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁2
 

Vincini et al. 

(2007) 

ARVI 
Atmospherically Resistant 

Vegetation Index 

𝑁𝐼𝑅 − 2 × 𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 + 2 × 𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸
 

Kaufman and 

Tanre (1992) 

TDVI 
Transformed Difference 

Vegetation Index 
1.5 ×

𝑁𝐼𝑅 − 𝑅𝐸𝐷

√𝑁𝐼𝑅2 + 𝑅𝐸𝐷 + 0.5
 

Bannari et al. 

(2002) 
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Table 4-4. Environment variables included in the RF regression model. 

Alias Variable Units Period Resolution Source 

Bio-1 Annual Mean Temperature ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-2 
Mean Diurnal Range  

(Mean of monthly (max temp - min temp)) 
℃ 1970-2000 ~1x1 km 

Fick and 

Hijmans (2017) 

Bio-3 
Isothermality  

(Var2/Var7) (×100) 
- 1970-2000 ~1x1 km 

Fick and 

Hijmans (2017) 

Bio-4 
Temperature Seasonality  

(standard deviation ×100) 
℃ 1970-2000 ~1x1 km 

Fick and 

Hijmans (2017) 

Bio-5 Max Temperature of Warmest Month ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-6 Min Temperature of Coldest Month ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-7 Temperature Annual Range (Var5 - Var6) ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-8 Mean Temperature of Wettest Quarter ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-9 Mean Temperature of Driest Quarter ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-10 Mean Temperature of Warmest Quarter ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-11 Mean Temperature of Coldest Quarter ℃ 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-12 Annual Precipitation mm 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-13 Precipitation of Wettest Month mm 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-14 Precipitation of Driest Month mm 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-15 
Precipitation Seasonality  

(Coefficient of Variation) 
mm 1970-2000 ~1x1 km 

Fick and 

Hijmans (2017) 

Bio-16 Precipitation of Wettest Quarter mm 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-17 Precipitation of Driest Quarter mm 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-18 Precipitation of Warmest Quarter mm 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

Bio-19 Precipitation of Coldest Quarter mm 1970-2000 ~1x1 km 
Fick and 

Hijmans (2017) 

ET Annual Evapotranspiration  mm 2020 ~1x1 km 
Senay et al. 

(2020) 

4.2.8 Comparisons between mangrove AGB estimates based on remote 

sensing  

The most recently available global AGB product developed by the European Space Agency (ESA) Climate 

Change Initiative (CCI) for 2020 at 100 m resolution, Version 4 (Santoro and Cartus, 2023) as well as 

GEDI L4B Version 2 product for 2019 – 2021 at 1 km resolution (Duncanson et al., 2022) were used for 

inter-comparisons. Both biomass products are not specific to mangroves but have a global coverage. The 
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ESA CCI biomass map was generated using spaceborne SAR (Synthetic Aperture Radar) data, i.e., Sentinel 

1A/B and ALOS-2 PALSAR-2 (Advanced Land Observing Satellite-2 Phased Array type L-band Synthetic 

Aperture Radar-2) in addition to GEDI data. A globally consistent biomass retrieval framework for ESA’s 

GlobBiomass Project was deployed to develop the CCI AGB retrieval algorithm—CORE, merging the 

biomass estimates from BIOMASAR-C and -L algorithms resampled at 100 m (Santoro et al., 2023). The 

GEDI L4B product is gridded data that represents mean AGBD within the borders of each 1 km cell, where 

AGB was predicted by applying 13 pretrained allometric models over global categorized strata for GEDI 

RH metrics (Healey et al., 2023). In order to align the pixel resolution, the resulting AGB prediction map 

was resampled to average pixel values at 100 m and 1 km, whereby nearly 50,000 and 25,000 pixel values 

were sampled for inter-comparisons with ESA CCI biomass and GEDI L4B biomass maps, respectively. 

4.3 Results 

4.3.1 Determination of the optimal number of variables and hyperparameters 

When the number of selected variables reached 20 or more based on the results of RFE with 5-fold CV, the 

RMSE only exhibited subtle changes as the curve turned to be flat. 29 out of 41 variables were identified 

as the optimal predictor variables (Figure 4-4a). Among these variables, Temperature Seasonality showed 

the highest importance to the model performance, followed by GARI and green band (G) (Figure 4-4b). 

When the selected 29 variables were used in the Grid Search with 5-fold CV, a higher ‘number of trees’ 

and a smaller ‘minimum leaf population’ resulted in a higher R2 (Figure 4-5). As a large number of decision 

trees grow and develop with numerous ‘leaf nodes’ individually, the increase in R2 becomes more 

computation-intensive without significantly optimizing the regression coefficient. Considering the trade-

off between R2 and training time, the hyperparameters of ‘number of trees’ and ‘minimum leaf population’ 

were set to 100 and 4, respectively. 
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Figure 4-4. RFE with 5-fold CV results. (a) the change in negative RMSE as the number of selected predictor variables increases, 

where the red dash line indicates the lowest RMSE is obtained when the number is 29; (b) the feature importance of selected 29 

predictor variables of the best performance. 

 
Figure 4-5. The results of Grid Search with 5-fold CV for RF regression hyperparameter tuning. 

4.3.2 RF model performance assessment 

The remaining 20% of GEDI footprint-based AGB estimates were used to validate the proposed approach 

for mangrove AGB estimation in 2020. The 𝑅2 between predicted and observed AGB was 0.72 with the 
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RMSE of 37.24 Mg/ha. The proposed AGB estimation approach underestimated mangrove AGB at high 

values (>100 Mg/ha) and overestimated AGB densities at low values (<100 Mg/ha). However, there was 

high agreement in low mangrove AGB (<50 Mg/ha) (Figure 4-6). 

 
Figure 4-6. Validation of mangrove AGB estimated model. The density plot changes from purple to yellow with increasing data 

point density. 

4.3.3 Mangrove AGB estimation in 2020 over the Americas 

Mangrove AGB estimates in 2020 totalled 362 Tg (1 Tg = 106 Mg). When aggregated to 1° grid cells, the 

maximum was 19.10 Tg and the mean AGB was 0.97 Tg. Most AGB was distributed latitudinally across 

the areas between 2° S and 11° N, and longitudinally between 44° W and 62° W as well as 77° W and 83° 

W. Four regions with high AGB distribution were further investigated at a resolution of 4.77 m, showing 

pixel-level mangrove AGB estimation (Figure 4-7).   
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Figure 4-7.  Spatial distribution of mangrove AGB across the Americas aggregated to 1° grid cells. Grid cells are coloured with 

darker green indicating higher AGB aggregation. The histograms along the top and right panels show the longitudinal and 

latitudinal distributions of AGB, respectively. Red boxes (A–D) indicate regions that are enlarged in bottom figures to provide 

zoom-in views: A, Términos Lagoon, Mexico; B, Columbus Channel, Venezuela; C, Sanquianga National Natural Park, 

Colombia; and D, Tracuateua Marine Extractive Reserve, Brazil. 

Total AGB of mangroves across the Americas (excluding United States of America, Puerto Rico, British 

Virgin Islands, and Virgin Islands) was 362 Tg. Brazil, with the largest mangrove coverage, accounted for 

the highest total AGB representing about 31%, almost double Venezuela's contribution. In contrast, 

although Mexico's mangrove area was nearly twice that of Venezuela, its total AGB was only half of 

Venezuela's (Table 4-5).  
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Table 4-5. Mangrove AGB estimates summarised by country.  

Country 
Mangrove 

Area (ha) 

Total AGB 

(Tg) 
Country 

Mangrove 

Area (ha) 

Total AGB 

(Tg) 

Brazil 1,214,880 113.4111 The Bahamas 87,485 0.8816 

Venezuela 363,048 62.5112 Cayman Is. 11,590 0.7722 

Colombia 311,561 46.1180 Trinidad & Tobago 6,900 0.7400 

Mexico 775,477 32.2186 Haiti 20,408 0.5500 

Panama 169,964 26.1182 Jamaica 7,980 0.4356 

French Guiana 88,000 13.3155 Turks & Caicos Is. 20,195 0.2484 

Ecuador 154,400 13.0905 Guadeloupe 3,152 0.1903 

Cuba 369,516 9.7232 Martinique 1,698 0.1885 

Suriname 72,178 8.2765 Peru 3,295 0.1524 

Honduras 87,285 7.4332 Netherlands Antilles 2,697 0.1008 

Nicaragua 94,123 6.5970 Antigua & Barbuda 1,301 0.0694 

Costa Rica 41,284 5.2722 St. Lucia 158 0.0166 

Guatemala 31,953 3.4938 Grenada 134 0.0144 

El Salvador 37,835 3.4046 Aruba 116 0.0039 

Guyana 21,436 3.1462 
St. Vincent & the 

Grenadines 
43 0.0036 

Belize 33,648 1.2477 St. Kitts & Nevis 65 0.0027 

Dominican 

Republic 
11,540 0.8900 Barbados 12 0.0012 

4.3.4 Inter-comparison of mangrove AGB estimates 

Comparisons between the AGB estimates and ESA CCI biomass and GEDI L4B gridded biomass maps for 

2020 show good consistency in low AGB (<50 Mg/ha), although observed R2 is less than 0.5 from both 

comparisons (Figure 4-8). Compared to ESA CCI biomass estimates, GEDI L4B biomass estimation 

exhibits better alignment and consistency with the estimated mangrove biomass. However, the proposed 

methodology tends to underestimate mangrove AGB for high AGB areas. 

 
Figure 4-8. Comparisons between the AGB estimation and ESA CCI biomass (left) as well as GEDI L4B gridded biomass (right) 

maps for 2020, respectively. The density plot is colour coded as colour changes from purple to yellow for increasing density of 

data points.  
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4.4 Discussion 

4.4.1 Variations of country-level mangrove AGB estimates  

In this study, high-resolution (4.77 m) mangrove AGB estimates across the Americas were generated using 

Planet NICFI mosaics, providing one of the first continental-scale assessments at such a fine resolution. 

The results reveal total mangrove AGB of 362 Tg in the Americas, but this spatially explicit mapping 

highlights the strong spatial heterogeneity of mangrove AGB between countries (Table 4-5).  

The significant variation in country-level mangrove AGB across the Americas reflects the interplay of 

multiple drivers. Brazil dominates the continental AGB stock with 113.41 Tg accounting for 31% of the 

total, due to its extensive mangrove extent (1.21 million ha) and the high productivity of the Amazon-

influenced coast. Mangrove forests along Amazon Microtidal Mangrove Coast (AMMC) receive abundant 

rainfall and nutrient-rich river discharge, characterised by the tallest and most carbon-rich mangroves 

(Kauffman et al., 2018a). Total AGB and carbon accumulation reach their maximum values along the 

AMMC and show a steady decline with increasing latitude (de Lacerda et al., 2022). Previous studies 

reported maximum AGB values ranging from 290 to 451 Mg/ha for these mangrove forests (de Lacerda et 

al., 2022), while this study yielded maximum estimates of 318 Mg/ha, broadly consistent with the lower 

end of this range. In northeastern Brazil, climatic factors strongly constrain semiarid mangroves, with mean 

aboveground carbon biomass measured at 70 Mg C/ha (Kauffman et al., 2018b).  

Mexico represents the second largest contributor to continental mangrove AGB but exhibits a strong west-

east gradient. Mangrove forests along the Gulf of Mexico and Yucatán Peninsula benefit from humid 

conditions and freshwater inflows, sustaining tall stands, whereas mangroves on the drier Pacific coast are 

stunted and biomass-poor due to cold temperature and aridity (Ávila-Acosta et al., 2024; Ezcurra et al., 

2016; Guerra-Santos et al., 2014; Hutchison et al., 2014). Additionally, recurrent hurricanes in the northern 

Pacific region limit long-term biomass accumulation by repeatedly resetting canopy structure (Vizcaya-

Martínez et al., 2022). 

While climate and geomorphology explain much of the large-scale variation, disturbance regimes and 

governance account for many of the country-level differences. The Caribbean and Pacific coasts are 

repeatedly affected by hurricanes and tropical storms, which limit long-term biomass accumulation (Krauss 

and Osland, 2020). Also, where effective protection policies are implemented, such as in Trinidad & 

Tobago, where two of the largest mangrove areas are officially protected (Juman and Hassanali, 2013), 

AGB per hectare can reach 107 Mg/ha despite the country’s relatively small mangrove extent.  
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4.4.2 Feature importance of environmental variables 

Initially, 41 predictor variables were identified as correlated with mangrove AGB distribution, including 

21 spectral variables and 20 environmental variables. Among these, 29 variables were selected through 

RFE with a 5-fold cross validation, where nearly all the environmental variables were included except for 

Max Temperature of Warmest Month (Bio-5), Temperature Annual Range (Bio-7) and Precipitation of 

Driest Month (Bio-14). From the included variables, Temperature Seasonality (Bio-4) contributed most to 

the RF regression model. The feature importance of environmental variables here agrees with Rovai et al. 

(2021) and Simard et al. (2019), who found temperature, precipitation and evapotranspiration to 

significantly impact the variation of mangrove AGB. Although the bioclimatic variables are reanalysed 

climate data spanning 1970 to 2000, long-term climatic impacts still influence the environmental settings 

of mangrove forests. Across the Americas, the extent of mangrove forests between 2000 and 2020 has been 

primarily driven by natural expansion and retraction (FAO, 2023). However, as mangrove forests can be 

suppressed by high salinity and low nutrient and sediment deposition which tides largely regulate (Balke 

and Friess, 2016; Vovides et al., 2018), tidal amplitude and duration are recognized as important factors 

controlling global mangrove AGB (Rovai et al. 2021) and expected to be included in future studies. 

4.4.3 AGB estimation uncertainty 

The primary advantage of the proposed approach for AGB estimation is to generate finer-scale mangrove 

AGB maps using VHR imagery. Compared with existing products for the same period (i.e., ESA CCI for 

2020 and GEDI L4B for 2019 – 2021), this study demonstrates an improved capability to capture local-

scale AGB variation (Figure 4-9). However, a tendency to underestimate AGB was observed in dense 

vegetation areas where single tree crowns may exceed the 4.77m pixel size, while higher agreement among 

products was achieved in low-AGB regions (Figure 4-8). 

 
Figure 4-9. Visualization of AGB estimation maps clipped to mangrove areas in Rio Limbo, Venezuela. A, this study; B, ESA 

CCI biomass map; C, GEDI L4B gridded biomass map. 
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AGB estimation derived from the RF regression algorithm are the values averaged over an ensemble of 

decision trees, while the standard deviation (SD) of these results shows the uncertainty (Figure 4-10). 

Several sources of uncertainty were identified: (i) the error associated with the power-law function relating 

plot-level AGB to maximum canopy height, (ii) errors in GEDI L2A canopy height observations, and (iii) 

RF regression error. Importantly, errors from the power-law function and GEDI measurements were not 

propagated to per-pixel uncertainty of the AGB estimation. Field inventory data compiled from Simard et 

al. (2019), including plots in Mexico, were incorporated into developing the power-law function relating 

plot-level AGB to maximum canopy height, and an RMSE of 92.86 Mg/ha was obtained. However, this 

relationship is not fully representative of mangrove stands across the Americas due to limited availability 

of inventory data. Additionally, the GEDI Level 2A product is reported to have an uncertainty (i.e., RMSE) 

of 4.4 m and an underestimation bias of 1.0 m (mean error) (Lang et al., 2022). RH98 was used instead of 

RH100 as the maximum height metric, since RH98 has been shown to be more stable and reliable (Blair 

and Hofton, 1999) and is widely recognised as a significant predictor in AGB estimation (Duncanson et al., 

2022). Given that mangrove forests are normally dense and exhibit zonal distribution with relatively 

uniform canopy heights, RH98 was considered a reliable and representative metric for this study.  

 
Figure 4-10. Estimated AGB maps and corresponding standard deviation from Random Forest regression algorithm for 

mangrove areas in (A-B) Términos Lagoon, Mexico, and (C-D) Rio Limon, Venezuela. 

4.4.4 Implications for mangrove management and policy 

This study generates high-resolution AGB estimation map, improving the understanding of mangrove 

carbon dynamics and providing actionable insights for management and policy. In the context of the 
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imperative need to protect mangroves as critical blue carbon ecosystems, the ability to capture spatial 

heterogeneity in biomass distribution has several implications. First, carbon accounting and climate policy 

can be enhanced by incorporating fine-scale biomass estimates into national greenhouse gas inventories 

and climate mitigation strategies. Many countries in the Americas are engaged in initiatives such as REDD+ 

and nationally determined contributions (NDCs) under the Paris Agreement, where accurate and spatially 

explicit carbon data are essential for reporting and verification (Alongi, 2020; Taillardat et al., 2018). In 

particular, this study offers a transferable methodology that can improve transparency and consistency in 

carbon stock estimation. 

Second, conservation planning and land management can benefit from recognising high AGB hotspots that 

justify prioritisation for protection. Meanwhile, areas with lower biomass or evidence of degradation can 

be targeted for restoration, especially where mangroves provide coastal protection services against storms 

and sea-level rise (Spalding et al., 2014; Worthington and Spalding, 2018). These insights can support 

mangrove area management at both national and local levels, ensuring that limited resources are allocated 

effectively. 

Finally, ecosystem service assessments of mangroves can be improved. High-resolution AGB maps can be 

integrated with hydrological, geomorphological, and socioeconomic data to quantify the co-benefits of 

mangrove ecosystems, including biodiversity conservation, sediment stabilisation, and fisheries support 

(Friess et al., 2019; Sanderman et al., 2018). Therefore, decision-makers can be informed about trade-offs 

and synergies between development and conservation. 

4.5 Conclusions 

This study developed a novel methodology that deploys plot level biomass-height allometry and Random 

Forests regression algorithm with field inventory measurements, GEDI spaceborne LiDAR data, high-

resolution Planet NICFI satellite mosaics and environmental variables for high spatial resolution mangrove 

AGB estimation and mapping over the Americas. In this methodology, the plot-level biomass-height 

allometry was fitted by OLS with field inventory data across the Americas and applied to GEDI canopy 

height observations as GEDI data footprints were considered 25 m circular plots. Then, GEDI-based AGB 

estimates were used to train and validate RF regression model with the spectral and environmental variables. 

The most efficient RF model was identified using Recursive Feature Elimination and Grid Search both with 

a 5-fold cross-validation. It was found that 29 out of 41 variables were selected as the optimal feature 

combination, where temperature seasonality contributed most for the model performance. Compared with 

other AGB products in 2020, i.e., ESA CCI biomass and GEDI L4B gridded biomass maps, the resulting 
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map shows the capacity of finer AGB estimation as there is a higher agreement in low mangrove AGB (<50 

Mg/ha). Overall, the proposed methodology of high-resolution mangrove AGB mapping shows the 

feasibility of the finer mangrove investigation and has the potential to advance highly resolved carbon 

modelling. Additionally, this study highlights that high-resolution AGB mapping is a scientific advance 

and also a practical tool to guide climate mitigation, conservation, and sustainable management of 

mangroves in the Americas and beyond.  
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Abstract 

Mangroves are well-recognised for their importance in climate change mitigation through carbon 

sequestration and storage but historically have been underappreciated and largely deforested for timber 

harvesting, aquaculture and coastal development. Currently, increased recognition of their role in coastal 

protection and fishery productivity has shifted the tide for mangroves, incentivising people to carry out 

restoration and conservation efforts globally. However, little is known about mangrove resilience relevant 

to climate change adaptation and conservation efforts. In this study, aboveground biomass (AGB) dynamics 

were investigated over regrowing mangrove areas in the past two decades (2000-2020). This study targeted 

mangrove forests across the Americas as relatively strong conservation efforts have been implemented in 

this region. First, the tropical moist forest (TMF) annual coverage dataset from the Joint Research Centre 

(JRC) was used to determine the areas of mangrove regrowth through the analysis of land cover change 

between 2000 and 2020. Then, given the availability of data sources throughout the periods, the period-

specific methodologies were proposed to estimate mangrove AGB for 2000 and 2020. The results found 

that 0.17 million ha (Mha) of mangrove forests across the Americas were regrowing from previous 

mangrove areas (Type I regrowth) and 0.05 Mha were from previous non-forest areas during 2000-2020 

(Type II regrowth), while 2.52 Mha remained undisturbed. Both kinds of mangrove regrowth contributed 

to AGB gains of 2.71 Tg and 2.39 Tg, respectively. As normalized by their respective areas, Type II 

regrowth contributed 52 Mg/ha AGB, while Type I regrowth resulted in an AGB gain of 16 Mg/ha. These 

findings revealed that mangroves are actively colonising previously non-forested areas, resulting in 

significant AGB gains and indicating an expansion of suitable habitat. This study offers an insight into 

AGB dynamics related to mangrove regrowth, expected to serve as the first comprehensive investigation 

into mangrove resilience across the Americas for the first twenty years in the 21st century (2000-2020). 

 

Keywords: Mangrove resilience; Aboveground biomass dynamics; Mangrove regrowth; Remote sensing; 

Americas  
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5.1 Introduction  

Mangrove forests are of great importance in providing essential ecosystem services, including coastal 

protection, fisheries, and climate regulation through carbon sequestration and storage (Worthington et al., 

2020). Historically, the social and ecological significance of mangroves were underappreciated; an 

estimated 35% of the world’s mangrove area was lost in the 1980s and 1990s at an annual loss rate of 1-

2.1% (Friess et al., 2024). Since the 2000s, growing awareness around mangroves socioecological well-

being has led to global efforts on mangrove conservation and restoration, with annual loss rates declining 

to 0.1% and the establishment of 393,000 ha between 2000 and 2020 (FAO, 2023). However, less is known 

about how mangrove forest regrowth has contributed to carbon stocks during 2000-2020. Restoration 

typically refers to silviculture, including reforestation and afforestation. Reforestation is restoring forests 

in areas where forests previously existed but were deforested or degraded due to human activities or natural 

disasters, while afforestation is establishing forests in areas where there were no previous forests (Ellison, 

2000). Mangrove forest regrowth can also be accredited to natural expansion.  

Carbon stocks in mangroves are often inferred from aboveground biomass (AGB) estimations. AGB refers 

to the total amount of living organic matter contained in the aboveground parts of mangrove trees in area 

(normally using megagram per hectare, Mg/ha). Traditionally, AGB measurement requires field-based 

destructive sampling further used to develop allometric equations based on tree attributes such as diameter 

at breast height (DBH) and canopy height (Kauffman and Donato, 2012; Komiyama et al., 2008). However, 

as mangrove forests are characterised by closed canopies and dense stems in remote and muddy regions, 

this limited accessibility makes large-scale inventory efforts both labour-intensive and time-consuming. 

Remote sensing enables large-scale surveys by delivering spatially explicit information through passive 

sensors, such as multispectral and hyperspectral systems, or active sensors like Synthetic Aperture Radar 

(SAR) and Light Detection and Ranging (LiDAR). These remotely sensed data have proven effective for 

estimating mangrove AGB at regional, national, or global scales (e.g., Simard et al., 2019; Hu et al., 2020; 

Lucas et al., 2020; Wang et al., 2020; Zhu et al., 2020; Prakash et al., 2022). Consistency in mangrove AGB 

estimation approaches is essential through different years to ensure reliable estimates. However, varying 

acquisition periods lead to gaps in data availability between observed years when the same approach for 

mangrove AGB estimation is applied.  

The scarcity of mangrove field inventory data presents challenges in deciphering the intricate bio-physical 

relationship between spectral signatures and forest vertical structure (Rodríguez-Veiga et al., 2017; Wang 

et al., 2019). This limitation complicates the estimation of mangrove AGB using optical imagery (Lang et 

al., 2023). But the advancement of SAR and LiDAR sensors has greatly enhanced the ability to estimate 
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canopy height, a key biophysical parameter for AGB estimation; these technologies enable more accurate 

and reliable measurements of vertical forest structure, thereby improving the estimation of mangrove AGB 

(Fatoyinbo et al., 2018; Lang et al., 2023; Shendryk, 2022; Wang et al., 2020). Canopy height can simplify 

the process of estimating AGB, working as the dependent variable in linear regression equations (Baccini 

et al., 2012; Basyuni et al., 2023; Duncanson et al., 2022; Simard et al., 2019; Simard et al., 2006, 2008). 

The Shuttle Radar Topography Mission (SRTM), flown in February 2000, provided the first near-global 

topography including vegetation cover (Farr et al., 2007). The SRTM elevation product enabled the 

investigation of mangrove canopy height distribution across the world with the assumption that mangroves 

are generally located in low-lying and flat coastal regions with negligible topographic impacts (Simard et 

al., 2006, 2008). Simard et al. (2019) estimated the AGB of world’s mangroves with the SRTM DEM 

(digital elevation model) calibrated by ICESat LiDAR data which allows for comprehensive and accurate 

canopy height mapping. The first-ever spaceborne LiDAR mission specifically designed for vegetation 

structure investigation in orbit, Global Ecosystem Dynamics Investigation (GEDI), provides full-waveform 

LiDAR data between approximately 51.6 °N and 51.6 °S spanning from 2019 to 2023 (Duncanson et al., 

2022). The GEDI observations show high capabilities to retrieve forest canopy height which represents a 

certain quantile of returned energy relative to the ground within circular footprints of 25 m in diameter. 

However, GEDI LiDAR data are not wall-to-wall with significant coverage gaps, especially at the equator 

(Dubayah et al., 2020). Given the vast amount of GEDI observations, wall-to-wall mangrove AGB 

estimation can be realized with the introduction of optical imagery by exploiting biomass-height allometry 

to yield GEDI-based AGB estimates for supervised machine learning.  

Focusing on the mangrove forests across the Americas, this study aims to investigate the contribution of 

mangrove regrowth (new colonisation included) to AGB dynamics between 2000 and 2020. AGB losses 

(e.g., conversion or dieback) are not quantified here and are discussed as a limitation in the Discussion 

section. Mangrove forests over the Americas are characterized by the highest inclusion of protected 

mangrove areas, providing a unique setting for the investigation of the contribution of mangrove regrowth 

with less anthropogenic disruptions (e.g., logging and conversion to coastal land use). The European 

Commission Joint Research Centre (JRC) holds a dataset of tropical moist forest (TMF) cover over the past 

three decades (1990-2023) at a spatial resolution of 30 m. It provides annual wall-to-wall mapping of the 

TMF extent (including mangroves) and other land covers, demonstrating the feasibility of detecting 

mangrove regrowth extent during 2000 - 2020 (Vancutsem et al., 2021). This study is anticipated to serve 

as the first comprehensive investigation into mangrove regrowth with AGB gains across the Americas for 

the first twenty years in the 21st century. It further reveals the mangrove resilience relevant to climate 
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change adaptation and conservation efforts, helping shape the understanding the effective management of 

mangroves. 

5.2 Material and methods  

5.2.1 Study area 

This study focuses on the mangrove forests across the Americas and introduced the 10 m global mangrove 

extent map of 2020 to identify the mangrove areas (Figure 5-1). The global mangrove extent map is 

geographically delineated by both country boundaries and reserve divisions. Detailed description is 

provided in Section 4.2.1.  

 
Figure 5-1. The distribution of mangrove forests across the Americas in 2020 derived from Jia et al. (2023). 

5.2.2 JRC TMF data 

The JRC TMF dataset was initially developed for a long-term monitoring of tropical moist forests from 

1990 to 2019, comprising annual change collections where the extent of TMF was identified as undisturbed, 

degraded, deforested and regrowth, along with the identification of permanent and seasonal water and other 

land cover (Vancutsem et al., 2021). This dataset has been recently updated to 2023 and reprocessed using 

30m Landsat Collection-2 imagery for better quality input data and a larger number of valid observations, 

freely accessible in the Google Earth Engine platform (JRC, 2023a). Within the JRC TMF dataset, 
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deforestation refers to a permanent conversion from forest to non-forested land, starting at the latest the 

current year, and observed over 2.5 years with no detected vegetation regrowing. Degradation denotes a 

temporary disturbance, such as trunk harvesting, wildfires, or extreme weather events, lasting at most 2.5 

years in a forest and starting no later than the current year. Regrowth refers to the transition of vegetative 

regrowth on deforested lands which previously were TMF, as well as on other land cover, with a minimum 

duration of three years to avoid confusion with agriculture.  

5.2.3 Mangrove regrowth area determination between 2000 and 2020 

This study focuses on mangrove regrowth areas in the last 20 years (2000-2020) as most of AGB gains 

induced by regrowing mangroves occur in a 20-year period (Bourgeois et al., 2024). Across JRC TMF 

annual coverage products, TMF status has been reported as undisturbed, degraded, deforested and 

regrowing (JRC, 2023b). Here, the mangrove regrowth was determined as (1) forest regrowth from the 

undisturbed, degraded forests or deforested lands (Type I regrowth) and (2) forest regrowth from water or 

other land cover (Type II regrowth). The global mangrove extent map in 2020 was utilized to geographically 

delimit the mangrove forests based on country boundaries and reserve divisions across the Americas. 

5.2.4 Mangrove AGB estimation between 2000 and 2020 

The methodology of AGB estimation described in Chapter 3 was adopted to estimate mangrove AGB for 

2000, which was adapted here with the introduction of SRTM Version 3 DEM data (SRTMGL1 v003), 

void-filled with open-source data (i.e. ASTER GDEM2, GMTED2010 and NED), and the biomass-height 

allometry developed in Chapter 4 incorporating maximum canopy height as an independent variable. The 

SRTM DEM represents vegetated areas and reports elevations situated at the radar scattering phase height 

centre instead of the top of canopy (Lagomasino et al., 2016; Simard et al., 2008) (a detailed description of 

the SRTM is provided in Section 3.3.1). The approach developed in Simard et al. (2019) was deployed to 

estimate the distribution of mangrove canopy height in 2000, where a total of ~58,000 selected 

ICESat/GLAS LiDAR waveforms spanning 2003-2009 were related to SRTM DEM values over global 

mangrove areas. A regression model without an intercept was obtained between the relative height at the 

100th percentile (maximum canopy height) from GLAS waveforms and SRTM elevation measurements: 

𝑆𝑅𝑇𝑀𝐻𝑚𝑎𝑥 = 1.697 × 𝐻𝑆𝑅𝑇𝑀  (intercept = 0) (Equation 5.1) 

where 𝐻𝑆𝑅𝑇𝑀 represents the original SRTM DEM values, and 𝑆𝑅𝑇𝑀𝐻𝑚𝑎𝑥 is the derived maximum canopy 

height dataset. The SRTM values of 0 m over mangrove areas were assigned 0.5 m in which scrub or sparse 
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mangroves were not probably detected by SRTM. Additionally, maximum 𝑆𝑅𝑇𝑀𝐻𝑚𝑎𝑥 in each country 

was capped at the 95th percentile of the values in the corresponding country to mitigate the impact of errors 

in canopy height of potential misclassified mangrove pixels (Simard et al., 2019).  

However, as there is no open-access 2020-epoch global canopy-sensitive DSM comparable to SRTM, the 

SRTM/GLAS-based height proxy used for year 2000 cannot be validly applied to 2020. Therefore, AGB 

for 2000 and 2020 was estimated using period-specific models: an SRTM-based height proxy for 2000 

(Equation 5.1) and a maximum-height model using recent spaceborne LiDAR/imagery for 2020 (Chapter 

4) (Figure 5-2).  

 
Figure 5-2. Workflow diagram for estimating mangrove AGB across the Americas between 2000 and 2020. 

5.3 Results 

5.3.1 Mangrove regrowth area between 2000 and 2020 

Between 2000 and 2020, 0.17 million ha (Mha) of mangrove forests across the Americas were regrown 

from deforested land which used to be degraded or undisturbed mangroves (Type I regrowth), and 0.05 
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Mha were regrown on previous non-forest land (Type II regrowth), while 2.52 Mha remained undisturbed. 

Most mangrove regrowth areas were predominantly distributed around latitude 19° N with a total area of 

0.03 Mha, and along longitude 87° W accounting for a total area of 0.02 Mha (Figure 5-3). Generally, 

mangroves were more likely to regrow from previous forest areas than non-forest areas in almost all 

countries across the Americas, except for Aruba, St. Vincent & the Grenadines, French Guiana, Panama, 

and Peru. On average, the areas of Type I regrowth accounted for 68.2% of country-level mangrove 

regrowth, while Type II regrowth made up 31.8%. The top three countries with the largest mangrove 

regrowth area are Mexico (85,652 ha), Brazil (44,128 ha) and Cuba (37,673 ha). Meanwhile, undisturbed 

mangrove forests in these countries account for a significant proportion (53%) of total undisturbed 

mangrove coverage over the Americas.  

 
Figure 5-3. Mangrove regrowth across the Americas. Regrowth areas aggregated to 1° grid for better visualization (Data source: 

EC JRC). Two sites exhibited significant mangrove regrowth were marked by red rectangles: (A) Laguna de Términos protected 

area, Mexico; (B) Caeté-Taperaçu marine extractive reserve, Brazil. 

From the perspective of protected area inclusion, 70% of mangrove regrowth areas and 63% of undisturbed 

mangrove forests fell into reserve divisions, where mangrove reserves benefited from 72% of Type I 

regrowth and 62% of Type II regrowth (Table 5-1). A large proportion of mangrove regrowth occurred 

within protected areas in Mexico, Brazil and Cuba. Notably, Cuba exhibited 84% of Type I regrowth and 

79% of Type II regrowth situated within designated mangrove reserves. Furthermore, entire regrowth areas 

were found within mangrove reserves in several countries, including Aruba, Martinique, the Turks and 

Caicos Islands, El Salvador, the Cayman Islands, Peru, and Guadeloupe. 
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Table 5-1. Mangrove area (ha) summarized by country in terms of mangrove transition status (i.e., Type I regrowth, Type II 

regrowth and undisturbed) between 2000 and 2020, excluding Barbados, the United States of America, Puerto Rico, British 

Virgin Islands, and Virgin Islands. Numbers in parentheses represent areas falling into mangrove reserves. 

Country Type I regrowth Type II regrowth Undisturbed 

Antigua & Barbuda 26 (22) 15 (6) 252 (137) 

Aruba 2 (2) 6 (6) 19 (19) 

Belize 2,960 (1,536) 666 (337) 13,574 (4,595) 

Brazil 27,492 (16,722) 16,636 (8,909) 917,887 (564,784) 

Cayman Is. 417 (417) 159 (159) 1,963 (1,963) 

Colombia 4,316 (3,361) 1,571 (1,209) 254,223 (237,253) 

Costa Rica 809 (594) 654 (414) 33,890 (25,551) 

Cuba 31,326 (26,366) 6,347 (5,038) 149,566 (113,487) 

Dominican Republic 493 (209) 118 (42) 7,079 (3,373) 

Ecuador 1,109 (929) 849 (647) 129,229 (116,410) 

El Salvador 1,053 (1,053) 397 (397) 29,026 (29,026) 

French Guiana 772 (589) 938 (672) 65,947 (53,979) 

Grenada 6 (4) 1 (0.35) 62 (19) 

Guadeloupe 50 (50) 13 (13) 1,630 (1,630) 

Guatemala 1,950 (909) 540 (102) 19,548 (13,675) 

Guyana 249 150 16,384 

Haiti 1,244 (72) 190 (4) 11,413 (1,453) 

Honduras 3,112 (2,171) 1,209 (610) 59,583 (40,696) 

Jamaica 479 (431) 168 (160) 2,973 (2,690) 

Martinique 16 (16) 4 (4) 1,208 (1,208) 

Mexico 77,715 (59,834) 7,937 (5,429) 269,935 (201,363) 

Netherlands Antilles 20 (19) 15 (12) 1,499 (1,481) 

Nicaragua 3,578 (2,755) 1,912 (1,622) 44,215 (25,587) 

Panama 1,647 (580) 1,733 (515) 145,771 (78,772) 

Peru 41 (41) 43 (43) 2,146 (2,146) 

St. Kitts & Nevis 5 2 13 

St. Lucia 2 (1) 0.45 (0.28) 105 (85) 

St. Vincent & the Grenadines 1 3 7 

Suriname 3,491 (653) 1,532 (1,180) 42,516 (29,334) 

The Bahamas 1,519 (5) 518 (13) 5,658 (312) 

Trinidad & Tobago 201 (189) 44 (26) 4,827 (4,649) 

Turks & Caicos Islands 582 (582) 56 (56) 2,851 (2,851) 

Venezuela 2,102 (940) 1,761 (878) 288,906 (18,227) 

Total 168,785 (121,400) 46,187 (28,648) 2,523,907 (1,583,373) 

5.3.2 Mangrove AGB estimation on regrowth areas 

In 2020, the estimation of AGB for mangrove regrowth areas across the Americas totalled 11 Tg (1 Tg = 

106 Mg). This included contributions of 8 Tg from Type I regrowth and 3 Tg from Type II regrowth. 

Compared to whole AGB estimates in 2000, Type I regrowth led to an increase in AGB estimates from 

5.29 to 8 Tg (51%), and AGB led by Type II regrowth rose dramatically from 0.59 to 2.98 Tg (> 400% 

increase). 
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Table 5-2. Country-level mangrove AGB (Mg) in terms of Type I/II regrowth between 2000 and 2020, excluding Barbados, the 

United States of America, Puerto Rico, British Virgin Islands, and Virgin Islands.  

Country 

Type I regrowth Type II regrowth 

AGB 2000 

(Mg) 

AGB 2020 

(MG) 

AGB 2000 

(Mg) 

AGB 2020 

(Mg) 

Antigua & 

Barbuda 
865 1,314 260 702 

Aruba 57 87 55 178 

Belize 43,420 95,623 4,749 25,772 

Brazil 919,774 1,912,514 193,795 1,306,313 

Cayman Is. 13,982 18,229 3,238 10,037 

Colombia 94,745 345,272 13,786 122,653 

Costa Rica 34,313 88,110 14,474 77,747 

Cuba 1,386,597 825,738 123,046 162,318 

Dominican 

Republic 
7,654 35,437 941 8,283 

Ecuador 18,843 81,944 4,822 54,411 

El Salvador 60,137 70,603 11,730 31,918 

French Guiana 28,087 105,547 17,010 135,301 

Grenada 703 656 6 80 

Guadeloupe 666 2,141 137 515 

Guatemala 155,519 204,533 24,398 41,007 

Guyana 4,570 22,668 317 12,164 

Haiti 32,394 32,916 1,730 5,127 

Honduras 43,993 190,659 5,730 76,702 

Jamaica 14,899 24,488 1,979 10,026 

Martinique 637 1,403 13 418 

Mexico 1,859,079 2,925,547 92,079 297,655 

Netherlands 

Antilles 
291 548 110 438 

Nicaragua 103,971 180,184 12,310 81,429 

Panama 66,663 204,113 30,226 203,221 

Peru 606 1,605 339 1,610 

St. Kitts & Nevis 103 244 112 77 

St. Lucia 89 148 0 43 

St. Vincent & the 

Grenadines 
384 93 327 240 

Suriname 256,768 375,485 8,083 153,306 

The Bahamas 39,578 23,280 10,289 9,775 

Trinidad & 

Tobago 
16,920 19,149 1,308 5,142 

Turks & Caicos 

Islands 
14,758 7,416 1,508 711 

Venezuela 67,112 199,403 10,485 143,376 

Total 5,288,176 7,997,097 589,393 2,978,698 

Almost every country shows an increase in AGB over mangrove regrowth areas (Table 5-2). Brazil 

exhibited the highest AGB increases of 2.11 Tg, followed by Mexico (1.27 Tg) and Colombia (0.36 Tg). 

Together, the AGB increases in these three countries accounted for 73% of the total AGB gains observed 

in 2020. Different from Type I regrowth, Type II regrowth, indicative of mangrove regrowth in previous 
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non-forest areas, exhibited the most dramatic relative AGB increases. For example, AGB of Type II 

regrowth in Panama surged from 30,226 to 203,221 Mg, representing a roughly 7-fold gain; both Honduras 

and Venezuela experienced more than 13-fold increases in AGB due to Type II regrowth. When considering 

AGB dynamics per unit regrowth area across the Americas, mangrove regrowth resulted in AGB gains of 

24 Mg/ha, with Type I regrowth and Type II regrowth contributing to AGB gains of 16 Mg/ha and 52 

Mg/ha, respectively. Specifically, French Guiana exhibited the highest AGB increase of 114 Mg/ha, 

followed by Panama (92 Mg/ha), Costa Rico (80 Mg/ha) and Guyana (75 Mg/ha). However, the increase 

in AGB per hectare was 48 Mg/ha in Brazil, while Mexico reported an increase of 15 Mg/ha. 

5.3.3 Mangrove AGB estimation over undisturbed areas 

AGB estimates over undisturbed mangrove areas were summarised by country for 2000 and 2020 (Table 

5-3). At the continental scale, totals decreased from 338.37 Tg (2000) to 282.88 Tg (2020), a difference of 

−55.49 Tg (−16.4%). 

Table 5-3. Country-level mangrove AGB (Mg) over undisturbed mangrove areas between 2000 and 2020, excluding Barbados, 

the United States of America, Puerto Rico, British Virgin Islands, and Virgin Islands.  

Country 

Undisturbed 

Country 

Undisturbed 

AGB 2000 

(Mg) 

AGB 2020 

(Mg) 

AGB 2000 

(Mg) 

AGB 2020 

(Mg) 

Antigua & 

Barbuda 
2,133 13,975 Honduras 5,688,497 5,415,713 

Aruba 1,049 804 Jamaica 147,187 153,087 

Belize 436,233 561,760 Martinique 63,820 136,496 

Brazil 118,075,350 93,794,702 Mexico 21,799,665 16,019,246 

Cayman Is. 91,064 162,789 Netherlands Antilles 71,325 62,436 

Colombia 36,710,704 40,503,656 Nicaragua 3,664,682 3,075,830 

Costa Rica 6,339,821 4,381,803 Panama 31,748,738 23,235,700 

Cuba 7,709,478 4,120,524 Peru 131,946 103,398 

Dominican 

Republic 
493,401 548,666 St. Kitts & Nevis 316 578 

Ecuador 17,664,103 11,275,612 St. Lucia 11,441 11,116 

El Salvador 3,801,594 2,780,545 
St. Vincent & the 

Grenadines 
418 518 

French Guiana 11,419,199 10,619,049 Suriname 4,540,407 5,193,877 

Grenada 4,879 6,425 The Bahamas 113,028 92,774 

Guadeloupe 85,285 96,856 Trinidad & Tobago 618,824 546,347 

Guatemala 4,009,057 2,337,049 Turks & Caicos Islands 71,410 53,227 

Guyana 2,445,473 2,610,279 Venezuela 59,863,379 54,651,910 

Haiti 547,550 316,300 Total 338,371,454 282,883,049 

Country-level estimates remain broadly comparable between 2000 and 2020 for many countries, with 

notable absolute decreases in Brazil (-20.6%), Panama (-26.8%), Ecuador (-36.1%) and Mexico (-26.5%). 

Increases are observed in Colombia (+10.3%) and Suriname (+14.3%). Several small-island states show 
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relatively large percentage shifts on small absolute baselines (e.g., Antigua & Barbuda, Cayman Islands, 

Martinique), whereas most mid- to large-AGB countries exhibit smaller percentage deviations. 

Country-level AGB in 2020 plotted against 2000 for the undisturbed areas shows a near-linear relationship 

(Figure 5-4). The fitted line y = 0.83*x + 0.10 with R² = 0.93 and RMSE% = 38.21%, and most countries 

plot below the 1:1 line, indicating that 2020 estimates are generally lower than 2000 by roughly 15–20% 

on average.  The relative ranking of countries is largely unchanged, although the largest absolute difference 

occurs in Brazil. 

 
Figure 5-4. Country-level AGB estimates over undisturbed mangrove forests in 2020 versus 2000 (Tg). 

5.4 Discussion 

5.4.1 The variation of country-level mangrove regrowth areas 

This study has revealed the pattern of AGB gains within mangrove regrowth areas as JRC TMF annual 

coverage products were employed to identify regrowing mangrove (new colonisation included). In the 

Americas, mangrove regrowth patterns vary significantly between countries, reflecting protection 

frameworks, human pressures, geomorphological setting, and extreme weather event-driven disturbance.  

Mexico has exhibited the largest mangrove regrowth areas (> 85,000 ha), with hotspots around Laguna de 

Términos (Figure 5-3, Figure 5-5A). Numerous restoration projects have been implemented since 2016, 

particularly reforestation programs (Antúnez, 2024). Government reports indicate >5,000 ha of mangroves 
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were restored across several states between 2013 – 2016 (SEMARNAT, 2016), and ~56 ha of degraded 

mangroves were restored around Laguna de Términos by 2020 (CONANP, 2020), reflecting a mix of 

hydrologic rehabilitation and planting within protected areas. However, regrowth coexists with localised 

losses in Natural Protection Areas (NPAs), driven by human pressures in Términos (Osorio-Olvera et al., 

2023), shrimp aquaculture in Marismas Nacionales (Lithgow et al., 2019), urban/tourism expansion in La 

Paz (Giovanni Ávila-Flores et al., 2017), and hydrologic alteration (Kumagai et al., 2020). Overall, the 

mangrove regrowth pattern in Mexico is that net recovery concentrated in protected sites with concurrent 

losses in development-exposed frontiers. 

Brazil boasts the second largest mangrove coverage in the world, with nearly 85 – 87% of its mangroves 

legally designated within protected areas, such as marine extractive reserves and conservation units (de 

Lacerda et al., 2022; ICMBio, 2018). A total of 25,631 ha mangroves were found regrowing within these 

reserves, such as the Caeté-Taperaçu marine extractive reserve (Figure 5-5B), where there is a designated 

mangrove recovery area (Partelow et al., 2018). The high level of legal protection facilitates natural 

regeneration, however localised losses persist driven by coastal erosion in northern Brazil, shrimp 

aquaculture and salt ponds development on the Semiarid Equatorial Coast (SAE) (Vanin et al., 2025), and 

urbanisation in Espírito Santo (ETC) and South Granitic Coast (SGC) (de Lacerda et al., 2022). 

Mangroves in Cuba are largely protected through national conservation frameworks, resulting in relatively 

stable or expanding mangrove areas. Regrowth has been supported by effective regulation and limited 

large-scale conversion (Goulart et al., 2018). But meanwhile, the disturbance driven by extreme weather 

events can lead to severe mangrove losses. For example, Hurricane Irma (2017) caused widespread 

mangrove damage along the northern coast with a staggering 78% of mangrove and wetlands showing 

damage (Turner et al., 2023). 

Caribbean small-island states (e.g., Aruba, Cayman Islands, Guadeloupe, Trinidad & Tobago) exhibit 

regrowth largely confined to protected areas, consistent with natural recovery in low-disturbance settings 

but constrained by limited land and development pressure at the coast. In Trinidad & Tobago, mangrove 

conservation and restoration have been implemented within key sites, but industrial/urban expansion and 

sea level rise create localised vulnerabilities (Hassanali, 2017; Juman and Hassanali, 2013). 
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Figure 5-5. Zoom-in on intensive mangrove regrowth areas highlighted with red rectangles in Figure 5-1. (A) Laguna de 

Términos protected area, Mexico; (B) Caeté-Taperaçu marine extractive reserve, Brazil. 

5.4.2 Comparability of AGB estimation methodologies 

In this study, two approaches were developed for mangrove AGB estimation for the year 2000 and 2020, 

respectively. AGB is assumed to be stable across undisturbed, well-established and intact mangrove forests 

over time (Lagomasino et al., 2021). However, country-level AGB estimates in 2020 was lower than the 

ones in 2000 using the proposed methodologies over undisturbed mangrove forests (Table 5-3). Different 

resolutions of spaceborne datasets and regression limitation of RF algorithm may be the causes for these 

discrepancies. Mangrove AGB in 2020 was estimated and mapped on a 4.77 m resolution Planet mosaic, 

while in 2000 mangrove AGB was estimated and mapped on 30 m resolution SRTM DEM due to the 

availability of spaceborne datasets at that time. High resolution spaceborne imagery provides great 

potentials for investigating AGB distribution of mangrove regrowth at finer scales, however, AGB 

estimation for a specific region is more fragmented as the area covered by a 30 m pixel is covered by nearly 

40 pixels of 4.77 m.  

Unlike the approach for the AGB estimation in 2000, the biomass-height allometry (Equation 4.2) was 

applied to discrete GEDI footprints over 2020 instead of wall-to-wall DEM datasets, which were then 

utilised in the RF regression model to map on wall-to-wall Planet mosaic and environmental variables for 

mangrove AGB estimation of 2020. RF model works in a way that regression outcomes are derived from 

average prediction results from all the decision trees, which means RF regression model can extrapolate 

from input datasets. Also, mangrove AGB in 2000 is expected to be higher as using plot top heights in 

biomass-height allometry can lead to the overestimation of mangrove AGB (Rahman et al., 2021). However, 

except for the significant disagreement in Brazil (118 Tg in 2000 vs. 94 Tg in 2020), other countries 

represent comparable AGB estimates over undisturbed mangrove forests between 2000 and 2020. High 

agreements are therefore found in the comparisons of country-level AGB estimates across undisturbed 

mangrove forests between 2000 and 2020, demonstrating the compatibility of the proposed approaches 

(Figure 5-4). 
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5.4.3 Intercomparisons of AGB estimates on mangrove regrowth areas 

Maximum canopy height was valued as a proxy in mangrove AGB estimation across the Americas as taller 

trees typically dominate higher AGB. Spaceborne DEM products show significant potentials for 

correlations with mangrove canopy height, under the assumption that mangroves are situated in low-lying, 

flat areas with negligible topographic variability (Fatoyinbo and Simard, 2013; Simard et al., 2006). Simard 

et al. (2019) utilized ICESat GLAS LiDAR altimetry data as true canopy height to calibrate SRTM DEM 

for the retrieval of pixel-wise maximum canopy height estimates across the world’s mangrove forests as 

spaceborne LiDAR metrics demonstrate smaller measuring error than field measurements. This 

methodology was adopted to determine the distribution of maximum canopy height across mangrove forests 

in the Americas in 2000. However, since no follow-up DEMs have been developed in SRTM since 2000, 

i.e., the inconsistency in spaceborne ground elevation data between 2000 and 2020, it is challenging to 

estimate long-term mangrove AGB changes through consistent datasets. Ali and Rahman (2025) employed 

interpolated GEDI LiDAR observations to make spatiotemporal comparisons of canopy height and AGB 

with the ones derived from calibrated SRTM DEM. Instead, this study deployed discrete GEDI LiDAR 

observations as intermediate datasets in RF regression model with predictor variables of high-resolution 

spectral information and environmental variables to yield mangrove AGB estimates in 2020. Until now, 

there are GEDI L4B gridded AGB estimates and ESA CCI Biomass products freely available for global 

AGB estimation in 2020. Detailed descriptions of these two data products are in Section 4.2.8. Over 

mangrove regrowth areas, country-level AGB estimates from the approach are much higher than GEDI 

L4B AGB products which are average AGB values over 1×1 km grid (Figure 5-6). Higher agreements are 

found between the results and ESA biomass products as this dataset has a finer resolution of 100 m. 

 
Figure 5-6. Country-level AGB estimates across mangrove regrowth areas using the proposed approach versus (A) GEDI L4B 

gridded AGB estimates and (B) ESA CCI Biomass 2020 product. 
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5.4.4 Research uncertainties and limitations 

Compared to mangrove loss rates in the 20th century, the rates of mangrove loss have significantly 

decelerated since the beginning of the 21st century as mangrove conservation and restoration polices have 

been in place plus alternative coastal developments (Friess et al., 2024). Recent syntheses and global 

products provide consistent 2000-2020 indicators of mangrove extent and change (e.g., FAO 2023; GMW 

v3.0; JRC TMF), but few studies explicitly separate regrowth typologies (Type I vs. Type II) while also 

examining AGB dynamics, which is the contribution of this study. JRC TMF annual dataset (2000 and 

2020) were used here to detect land cover transitions and a 2020 mangrove mask (Jia et al., 2023) to delimit 

mangrove areas; regrowth includes reforestation/afforestation and natural regeneration.  

Formal confidence intervals are not computed for areas or AGB estimates in this study. Instead, the 

published validation of the input products is reported as indicative bounds. The JRC TMF dataset reports 

rigorous and independently validated change mapping for tropical moist forests with 91.4% overall 

accuracy (Vancutsem et al., 2021); likewise, the 2020 global mangrove mask from Jia et al., (2023) reports 

high overall accuracy of 95.2%. Therefore, area totals and fractions derived from these layers should be 

interpreted in light of the published accuracies of the input products, rather than as point-precise values. 

This caveat does not alter the direction of the main findings in this study, e.g., regrowth is more frequent 

on previously forested mangrove areas than non-forested lands; and a large proportion of regrowth occurs 

within protected areas. However, based on these indicative bounds, fine-grained country rankings should 

not be overinterpreted where differences are comparable in magnitude to the underlying product accuracies.  

Due to remote sensing data availability, period-specific methodologies were employed for year 2000 and 

2020 to investigate AGB dynamics. Error propagation for each AGB estimation methodology have been 

discussed in Section 3.9.1 and Section 4.4.3, respectively. The comparability between period-specific was 

assessed by comparing AGB estimates across undisturbed mangrove areas, which are assumed to be stable 

over time (Figure 5-4). However, methodological differences and associated errors among AGB estimates 

in regrowth areas between 2000 and 2020 remain unquantified and need to be well investigated in future 

study. As the analysis of AGB dynamics is conducted at country and continental levels, the results are still 

considered reliable to show broad trends, although the local and regional estimates should be interpreted 

with caution.       

The results of this study showed that mangrove AGB was similarly gained from Type I and Type II 

regrowth across the Americas for two decades, but Type II regrowth represented higher AGB gains per 

hectare than Type I regrowth, as Type II regrowth can refer to a more long-term mangrove regrowth. 
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According to the report of FAO (2023), mangrove gains across the Americas were primarily driven by 

natural expansion between 2000 and 2020. The results demonstrate that mangroves have a significant 

capacity for resilience in terms of AGB gains, relevant to climate change adaptation and ongoing 

conservation efforts, however the intensity of mangrove regrowth, i.e., the timing of regrowth, remains 

unquantified. Additionally, AGB gains are linked to mangrove regrowth and does not include a companion 

workflow for AGB losses. Interpretation of net AGB accumulation therefore requires combining the present 

regrowth-linked gains with independent estimates of loss-linked reductions in the future study. 

5.5 Conclusions 

This study put forward the first comprehensive investigation into mangrove regrowth areas (new 

colonisation included) with AGB gains across the Americas for the first twenty years in the 21st century 

(2000-2020). Mangrove regrowth was categorised into two types delimited within mangrove coverage in 

2020, identified using JRC TMF annual datasets; Type I regrowth refers to regrowing forests in 2020 from 

the undisturbed, degraded forests or deforested lands in 2000, while Type II regrowth includes forest 

regrowth in 2020 from water or other land cover in 2000. It is found that between 2000 and 2020 there was 

a total of 0.22 Mha mangrove regrowth over the Americas, including 0.17 Mha of Type I regrowth and 

0.05 Mha of Type II regrowth. The annual datasets demonstrate great applicability for recognising 

mangrove regrowth across the Americas, revealing that Mexico, Brazil and Cuba are top three countries 

exhibiting significant regrowing areas and mangroves are more likely to regrow in previous forest areas 

than non-forest areas. Meanwhile, AGB dynamics over mangrove regrowth areas were computed using 

multisource remote sensing data, incorporated with biomass-height allometry developed from a 

compilation of field inventory data. Although different remote sensing data were introduced to estimate 

mangrove AGB between 2000 and 2020 due to data availability, the proposed methodology represents high 

agreements on country-level AGB summations across undistributed mangrove forests, which are 

considered well-established, intact without any disturbances. Over mangrove regrowth areas, AGB gains 

totalled 5.10 Tg comprising 2.71 Tg led by Type I regrowth and 2.39 Tg from Type II regrowth. However, 

given Type I regrowth areas three times as large as Type II regrowth areas, Type II regrowth demonstrates 

a significantly higher AGB per hectare, with a value of 52 Mg/ha compared to Type I regrowth's 16 Mg/ha 

as Type II regrowth can refer to a more long-term regrowth. Nonetheless, both types of regrowth signal the 

significant resilience of mangroves in terms of AGB regeneration and expansion relevant to climate change 

adaption and ongoing conservation efforts. This study provides an insight into mangrove regrowth against 

AGB dynamics, expected to help better understand scientific management of mangroves. 
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Chapter 6 Discussion 

6.1 Methodological context and contributions 

The accurate estimation of mangrove AGB using remote sensing data remains a critical challenge in global 

carbon cycle research, as direct measurements are time-consuming, destructive and spatially limited. 

Therefore, recent studies on mangrove AGB estimation have focused on integrating mangrove forest 

inventory, remote sensing data and modelling efforts (e.g., Simard et al., 2006, 2008, 2019; Aslan et al., 

2016; Pham et al., 2020; Wang et al., 2020; Rovai et al., 2021; Vaghela et al., 2021). Remote sensing data 

used in mangrove AGB estimation include optical spaceborne imagery, SAR imagery, and airborne and 

spaceborne LiDAR data at various scales. Each of these data has associated strengths and weaknesses, 

making them naturally synergetic.  

A key methodological contribution of this thesis is in demonstrating the viability and performance of 

employing global DEMs to estimate AGB of local mangrove forests. Though the SRTM has been employed 

for canopy height and AGB estimation in the USA, Colombia and Indonesia (Simard et al., 2006, 2008; 

Aslan et al., 2016), the studies on the comparison between open access global DEMs are limited. 

Additionally, compared with global mangrove AGB estimates using SRTM from Simard et al. (2019), the 

findings reveal the significant discrepancies between local and global estimates and underscore the 

importance of using local estimates to further validate global estimates, as the global allometry captures the 

overall trend but systematically underestimate the local AGB values.  

Another key methodological contribution is in upscaling localised field inventory data to a continental level 

and integrating with high-resolution spaceborne imagery. Previous studies have relied on optical imagery 

(e.g., Landsat, WorldView, Pleiades) and SAR data (e.g., ALOS PALSAR, Sentinel-1) coupled with 

statistical or machine learning algorithms such as SVR (Jachowski et al.,2013; Pham et al. 2018; Navarro 

et al., 2019), RF (Pham & Brabyn, 2017; Wang et al., 2020) and ANN (Zhu et al., 2015; Ghosh & Behera, 

2021). While these studies have demonstrated varying levels of accuracy (R2 ranging from 0.45 to 0.93), 

their study areas normally cover local or regional mangrove forests with performance assessed using high-

resolution data. The methodology proposed in this thesis deployed the first vegetation-specific spaceborne 

LiDAR mission (GEDI) to upscale limited localised mangrove tree measurements and characterise 

structural attributes across the Americas. Extensive GEDI-derived AGB estimates were generated by 

applying biomass-height allometry to GEDI observations, providing a reliable dataset to train and validate 

a RF model integrated with high-resolution Planet mosaics and rasterised environmental variables, which 

enables wall-to-wall mangrove AGB mapping at a continental scale.  
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The methodological contributions of this thesis therefore lie not only in performance evaluation of open 

access global DEMs on local mangrove forests but also in the introduction of spaceborne LiDAR data to 

upscale limited field inventory data to a continental scale. The synergistic use of global DEMs (broad 

coverage), spaceborne LiDAR (structural characteristics calibration), and high-resolution optical imagery 

(fine-scale variability) represents a methodological innovation that bridges the gap between local accuracy 

and continental applicability. 

6.2 Transferability across regions and scales 

The methodologies developed in this thesis demonstrate clear potential for application beyond the study 

areas in Mexico and the Americas. Through the integration of field inventory data, open access DEMs, 

spaceborne LiDAR measurements, high-resolution optical imagery, and rasterised environmental variables, 

the methodologies provide flexible templates that can be adapted to diverse mangrove areas in the world. 

Nonetheless, the transferability requires careful consideration of regional geomorphology, data availability, 

and ecosystem dynamics. 

Mangroves exhibit diversity according to their geomorphic and sedimentary setting, which can be 

categorised as deltaic, estuarine, open coast, and lagoonal; among these, lagoonal mangroves are prominent 

in North and Central America and the Caribbean, accounting for about 79.4% (1,190,500 ha) of the global 

lagoonal mangrove extent (Worthington et al., 2020). The DEM-based approach for AGB estimation, 

developed and validated in lagoonal mangrove forests in Mexico, therefore holds significant potential for 

application to other extensive lagoonal mangrove systems in the Americas. However, in Southeast Asia, 

where the largest and most carbon-rich mangrove forests are located, and 1,352,200 ha mangroves (~31% 

of whole mangrove extent in Indonesia) are tide dominated (Worthington et al., 2020; Jia et al., 2023), the 

feasibility of DEM-based canopy height retrieval requires further studies due to complex topography and 

strong tidal influence (Darmawan et al., 2015; Chaudhuri et al., 2019), as the DEM-based approach is 

implemented under the assumption that mangroves are situated in low and flat coastal areas. Relying on 

spaceborne LiDAR observations and dense time-series optical imagery may be necessary to capture 

biomass variations at fine scales. Also, in regions such as Indonesia and Malaysia, where the mangrove 

conversion and fragmentation are still intense (Bryan-Brown et al., 2020; Goldberg et al., 2020; Friess et 

al., 2024), VHR spaceborne imagery such as Planet mosaics enables the detection and quantification of 

biomass changes in small patches of regrowing or degraded mangroves, complementing coarser global 

biomass products.  
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In Africa, many mangrove regions are characterised by relatively sparse field data and limited monitoring 

(Naidoo, 2023). Here, the multisource methodology offers a practical solution to bridge data gaps. 

Spaceborne LiDAR data such as GEDI canopy height metrics provide reliable vegetation structural 

characteristics at 25 m circular footprints, which can be considered ground truths in field data-scarce regions 

for model calibration (Liu et al., 2021). Coupling these datasets with freely available Sentinel-2 or Landsat 

imagery could deliver cost-effective AGB mapping for countries with fewer resources to support high-

resolution mangrove monitoring. Moreover, this methodology is adaptable with ICESat-2 LiDAR data and 

emerging missions such as NASA–ISRO SAR (NISAR) and ESA’s Biomass satellite. Integrating the 

forthcoming spaceborne LiDAR data will enhance applicability of the methodology at the global scale.  

Overall, the transferability of the proposed methodologies is found in the modular design: DEMs can be 

used where mangroves are located in low and flat coastal areas, spaceborne LiDAR missions such as GEDI 

and ICESat-2 can provide canopy height benchmarks across varied biogeographic regions, and high-

resolution optical imagery can refine local spatial estimates. Future studies benefit from the application of 

the proposed methodologies across regions to improve global carbon accounting, and reveal regional 

comparisons in mangrove resilience, thereby strengthening the evidence base for targeted conservation and 

restoration efforts.  

6.3 Implications for conservation, restoration, and carbon 

accounting 

The improved estimation of mangrove AGB presented in this thesis carries significant implications for 

conservation, restoration, and carbon accounting at multiple scales. As mangrove are recognised as one of 

the most carbon-rich ecosystems (Alongi, 2020), accurate and spatially explicit biomass data are necessary 

to put mangroves into climate policy and management frameworks. This thesis produces reliable and high-

resolution mangrove AGB estimates, addressing methodological challenges and strengthening the scientific 

foundations for both national and international decision-making. 

In the context of conservation, spatially explicit AGB estimation maps can be straightforward sources to 

recognise priority mangrove areas for protection. Mangroves with high AGB stocks represent not only 

critical carbon sinks but the hotspots of biodiversity and ecosystem services (Bai et al., 2021; Liu et al., 

2025). Through pinpointing these areas, governments and conservation organisations can target resources 

more efficiently to the most valuable mangrove forests against deforestation and degradation. The results 

in Chapter 5 underscore the resilience of regrowing mangroves, demonstrating substantial AGB gains 
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achieved over two decades of regrowth. This finding reinforces the ecological value of secondary forests 

and supports arguments for including them in mangrove conservation planning. 

From a restoration perspective, the proposed methodologies offer alternative means to monitor and evaluate 

the effectiveness of mangrove rehabilitation projects. High-resolution AGB estimates enable the 

quantification of regrowth dynamics at finer scales (<10 m), providing more detailed metrics for assessing 

restoration success over time. This is particularly effective for regions where large-scale mangrove planting 

projects are underway, as managers can be equipped to assess the actual AGB accumulation and ecosystem 

recovery achieved rather than simply measuring survival rates. 

For carbon accounting, countries with extensive mangrove cover can incorporate the results of this thesis 

into their national carbon emission inventories, supporting their commitments under the Paris Agreement 

and informing the participation in mechanisms such as REDD+ and voluntary carbon markets. Additionally, 

the capacity to detect and quantify mangrove AGB dynamics at finer scales improves the transparency and 

credibility of carbon accounting, which is important to attract international financial supports for 

conservation and restoration initiatives. 

Overall, this thesis ensures that conservation and restoration of mangroves can be better aligned with 

climate mitigation strategies through scalable, accurate and transferable AGB estimation. At a broader level, 

the methodological advances developed in this thesis contribute to ongoing efforts to mainstream mangrove 

carbon stock into global assessments of nature-based climate solutions (Macreadie et al., 2021).  

6.4 Research limitations and recommendations 

This thesis proposes methodologies for accurately estimating mangrove AGB by integrating field inventory 

data with multisource remote sensing data. However, further investigation is needed to refine and validate 

the proposed approaches from multiple perspectives. A primary limitation of this research is the limited 

field inventory data of mangroves to develop more comprehensive biomass-height allometry and validate 

the resulting AGB estimates across three experimental chapters, which does not adequately examine the 

consistency between the estimation and ground truth. As it is typically difficult to carry out large-scale field 

campaigns in mangrove forests, the field inventory data was compiled from different sources in this 

research. Chapter 3 examined the feasibility and reliability of using historical and recent field data with 

temporal discrepancies up to 20 years for mangrove AGB estimation, but it is still necessary to account for 

temporal discrepancies of more than 20 years between field inventory data, when introducing them for 

rapidly regrowing mangrove species. In Chapter 4, GEDI LiDAR data were introduced to upscale the 
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limited localised measurements to a continental level under the assumption that LiDAR measurements are 

considered ground truth measurements of canopy heights with higher accuracy. GEDI canopy height 

metrics were obtained within circular footprints of 25 m in diameter, covering ~25 pixels of Planet mosaics. 

The median of the pixel values from Planet mosaics was used to represent optical characteristics of 

corresponding GEDI canopy height metrics. High agreements were found between predicted and observed 

AGB using the hold-out GEDI-based AGB estimates in the RF regression algorithm (Figure 4-6). While 

the trained RF algorithm applied to high-resolution Planet imagery produced the finer-scale estimation that 

are valuable for investigating spatiotemporal changes of mangrove AGB, this approach also introduced 

greater heterogeneity and uncertainty in AGB distribution patterns. 

Mangrove forests are generally well-protected in the Americas, with 72% of mangroves in South America 

and 67% of mangroves in North and Central America and the Caribbean located within formally designated 

protected areas (Spalding and Leal, 2022). Additionally, FAO (2023) has reported mangrove gains between 

2000 and 2020 were primarily driven by natural expansion. Given the situations of mangrove forests in the 

Americas, this region serves as an appropriate study area for investigating mangrove resilience relevant to 

climate change adaptation and ongoing conservation efforts. The JRC TMF dataset was introduced to 

identify mangrove regrowth areas and found that AGB gains related to the regrowth from non-forested 

areas are higher than those from previous forested areas. However, Chapter 5 did not specify the intensity 

of regrowth, i.e., the starting time of regrowth, which is critical for a detailed analysis of mangrove AGB 

dynamics driven by regrowth.  

Future studies should focus on refining the correlation between plot-level AGB and canopy height metrics 

by incorporating more field inventory data across mangrove forests in varied ecological and geographical 

conditions, thereby improving model generalisability. When using remote sensing data to scale localised 

AGB estimates to broader areas, careful consideration must be given to temporal alignment with field 

inventory data and the spatial resolution requirements for accurate AGB estimation. Beyond investigating 

AGB dynamics in relation to mangrove areas and biomass gain and losses, future research should also 

equally prioritise investigating mangrove degradation impacts on AGB dynamics. Currently, mangroves 

are facing the challenge of being degraded by anthropogenic activities and extreme weather events. 

Degraded mangroves still maintain some ecosystem services at lower levels, generally prioritised to deploy 

restoration efforts which requires little more than a restriction or cessation of detrimental activities such as 

wastewater from adjoining aquaculture ponds and timber harvesting. The investigation of AGB dynamics 

across degraded mangroves can be an assessment to the level of degradation, beneficial to implement the 

restoration strategies. The ultimate goal of future studies is to refine AGB estimation methodologies to 

contribute valuable knowledge to supporting effective mangrove conservation and rehabilitation strategies. 
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Chapter 7 Conclusions 

This thesis presents improved mangrove AGB estimation methodologies integrated with compiled field 

inventory data and multisource remote sensing datasets, and quantifies AGB dynamics in mangrove 

regrowth areas. As outlined in Section 1.4, the research objectives focus on regional and continental 

mangrove AGB mapping and spatiotemporal analysis of AGB dynamics. Therefore, the objectives are 

achieved as follows:  

Objective 1 – to develop the methodology of mangrove AGB estimation in the mangrove forests around La 

Mancha and El Llano lagoons in Mexico using freely accessible DEMs (Chapter 3) 

Chapter 3 develops a mangrove AGB estimation approach through the integration of field inventory data 

of mangrove forests around La Mancha and El Llano lagoons in Mexico and open-access DEMs. Three 30 

m global DEMs were introduced and evaluated to assess their feasibility and performance in estimating 

mangrove canopy height and AGB. DEM biases were calibrated using ICESat-2 ATL08 data. Field plot 

canopy heights showed high agreements with the calibrated DEMs (R2 = 0.73–0.82). As a power-law 

parametric model was introduced to establish the relationship between plot-level AGB and mean canopy 

height, mangrove AGB across the study area was estimated by applying regressed parametric model to 

calibrated DEMs. The results demonstrated comparable AGB estimates and consistent spatial heterogeneity. 

Error analysis showed 𝜎𝐴𝐺𝐵  ranging between ± 151.78 – 154.95 Mg/ha (𝐻𝑚𝑒𝑎𝑛 =15 m). Overall, this 

chapter presents the viability of using freely accessible DEMs for local mangrove canopy height and AGB 

estimation, supporting validation of global-scale AGB assessments.  

Objective 2 – to develop a novel approach for mangrove AGB estimation across the Americas using 

compiled field inventory data and multisource remote sensing data (Chapter 4) 

Chapter 4 presents a comprehensive account of mangrove AGB estimation across the Americas through 

the development of a novel approach that incorporates field inventory data and multisource datasets 

including spaceborne LiDAR data, optical imagery and environmental variables, rendering AGB estimates 

at a fine scale (<5 m) with an R2 of 0.72 and an RMSE of 37.24 Mg/ha. The power-law parametric model 

was introduced to determine the relationship between field plot-level AGB and maximum canopy height, 

regressed by OLS with an R2 of 0.36 and the RMSE of 92.86 Mg/ha. Due to a huge amount of spaceborne 

LiDAR data over mangrove forests in the Americas, LiDAR-derived AGB estimates from regressed power-

law model demonstrated a significant capacity in RF algorithm training and validation with predictor 

variables of surface reflectance and vegetation indices from spaceborne optical imagery and environmental 
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variables. Precipitation and temperature worked better in explaining mangrove AGB variability than 

spectral information in terms of the performance of predictor variable selection. Mangrove AGB has been 

estimated across the Americas through the trained RF model with optimal hyperparameters and best 

selected predictor variables. Although environmental variables were found to contribute most to improving 

the performance of RF model, the introduction of high-resolution optical imagery helps investigate fine-

scale mangrove regrowth, compared to existing global AGB estimation products for the same period.  

Objective 3 – to quantify AGB dynamics of mangrove regrowth areas across the Americas between 2000 

and 2020, reflecting mangrove resilience relevant to climate change adaptation and conservation efforts 

(Chapter 5) 

Chapter 5 introduced annual TMF coverage maps for identifying mangrove regrowth areas in previously 

forested and non-forested areas between 2000 and 2020. The period-specific methodologies of AGB 

estimation were adopted due to the availability of remote sensing datasets. The methodology illustrated in 

Chapter 4 was utilised for the year of 2020, while the regressed power-law parametric model between field 

plot AGB and maximum canopy height was applied to a mangrove CHM derived from the calibrated SRTM 

DEM for AGB estimation in 2000. Country-level AGB estimates across undisturbed mangrove forests 

between 2000 and 2020 exhibited high agreements and comparable results. The analysis revealed that 

mangrove regrowth areas across the Americas totalled 0.17 Mha, contributing an estimated AGB gain of 

5.10 Tg. Regrowing mangroves from previously forested and non-forested areas represented high AGB 

gains per hectare at 16 Mg/ha and 52 Mg/ha, respectively. These findings demonstrate the exceptional 

resilience of mangrove forests across the Americas with AGB gains occurring in mangrove regrowth areas, 

relevant to climate change adaptation and conservation efforts. 

In summary, this thesis explores improved mangrove AGB estimation methodologies integrating field 

inventory data and multisource remote sensing datasets, including open-access DEMs, GEDI canopy height 

metrics, Planet continental mosaics, and rasterised environmental variables, and quantified AGB dynamics 

in regrowing mangrove areas across the Americas for two decades (2000-2020). To further refine mangrove 

AGB estimation, future research should: (i) incorporate more field inventory data through expanded field 

campaigns across various geographical settings to improve the relationship between field plot AGB and 

canopy height for generalisability; (ii) utilise temporally and spatially aligned remote sensing datasets with 

field measurements to reduce the uncertainty of AGB estimation, such as harmonising GEDI acquisitions 

with field survey dates to minimize biases in rapidly changing mangrove forests; and (iii) investigate AGB 

dynamics in regrowing, degraded, and dead mangroves in relation to the intensity of disturbances, using 

the JRC TMF transition dataset to achieve a more comprehensive understanding of mangrove resilience. 
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Overall, addressing these priorities will require coordinated efforts between remote sensing specialists and 

mangrove ecologists, but help better understand mangrove AGB distribution patterns and mangrove 

resilience regarding AGB gains and losses.  

 


	Thesis cover sheet
	2025ZhangPhD
	Abstract
	Acknowledgement
	Declaration
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Mangrove distribution and ecosystem services
	1.2 Status of global mangroves
	1.3 Remote sensing applied in mangrove research
	1.4 Aim, objectives and research questions
	1.5 Study area
	1.6 Thesis structure
	References

	Chapter 2 Evolution of mangrove remote sensing
	2.1 Introduction
	2.2 Remote sensing data for monitoring mangroves
	2.2.1 Spaceborne optical imagery
	2.2.2 Spaceborne radar imagery
	2.2.3 Spaceborne LiDAR data
	2.2.4 Airborne datasets

	2.3 Remote sensing approaches in mangrove research
	2.3.1 Distribution mapping and species discrimination
	2.3.2 Biophysical parameters retrieval
	2.3.2.1 Leaf area index
	2.3.2.2 Aboveground biomass

	2.3.3 Mangrove resilience investigation

	2.4 Future opportunities
	2.5 Summary
	References

	Chapter 3 Mapping aboveground biomass using global DEMs for the mangroves bordering the lagoons of La Mancha and El Llano, Mexico
	Abstract
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Study sites
	3.2.2 Field data collection
	3.2.3 Mangrove extent maps

	3.3 Digital Elevation Models (DEMs)
	3.3.1 NASADEM
	3.3.2 ALOS World 3D-30m
	3.3.3 Copernicus GLO-30 DEM

	3.4 ICESat-2 LiDAR data
	3.5 DEM calibration
	3.6 Field AGB estimation methods
	3.7 Allometric modelling of plot-level biomass and canopy height
	3.8 Results
	3.8.1 Field mean canopy height and AGB estimates
	3.8.2 Comparison between different allometric equations
	3.8.3 Performance of DEM calibration against field measurements
	3.8.4 Mangrove AGB mapping based on calibrated DEMs
	3.8.5 Comparisons between AGB estimation maps

	3.9 Discussion
	3.9.1 Uncertainty of mangrove AGB estimation
	3.9.2 Discrepancies between local and global AGB estimates
	3.9.3 Difference among allometric equations for field AGB estimation
	3.9.4 Limitations of AGB estimation using DEMs

	3.10 Conclusions
	References

	Chapter 4 Aboveground biomass estimation of mangrove forests across the Americas using multisource remote sensing data
	Abstract
	4.1 Introduction
	4.2 Material and methods
	4.2.1 Study area
	4.2.2 Field inventory data
	4.2.3 Planet continental mosaics
	4.2.4 GEDI LiDAR data
	4.2.5 Field AGB estimation method
	4.2.6 Allometric modelling of plot-level biomass and canopy height
	4.2.7 Random Forests regression model
	4.2.8 Comparisons between mangrove AGB estimates based on remote sensing

	4.3 Results
	4.3.1 Determination of the optimal number of variables and hyperparameters
	4.3.2 RF model performance assessment
	4.3.3 Mangrove AGB estimation in 2020 over the Americas
	4.3.4 Inter-comparison of mangrove AGB estimates

	4.4 Discussion
	4.4.1 Variations of country-level mangrove AGB estimates
	4.4.2 Feature importance of environmental variables
	4.4.3 AGB estimation uncertainty
	4.4.4 Implications for mangrove management and policy

	4.5 Conclusions
	References

	Chapter 5 Quantifying aboveground biomass dynamics of mangrove regrowth across the Americas
	Abstract
	5.1 Introduction
	5.2 Material and methods
	5.2.1 Study area
	5.2.2 JRC TMF data
	5.2.3 Mangrove regrowth area determination between 2000 and 2020
	5.2.4 Mangrove AGB estimation between 2000 and 2020

	5.3 Results
	5.3.1 Mangrove regrowth area between 2000 and 2020
	5.3.2 Mangrove AGB estimation on regrowth areas
	5.3.3 Mangrove AGB estimation over undisturbed areas

	5.4 Discussion
	5.4.1 The variation of country-level mangrove regrowth areas
	5.4.2 Comparability of AGB estimation methodologies
	5.4.3 Intercomparisons of AGB estimates on mangrove regrowth areas
	5.4.4 Research uncertainties and limitations

	5.5 Conclusions
	References

	Chapter 6 Discussion
	6.1 Methodological context and contributions
	6.2 Transferability across regions and scales
	6.3 Implications for conservation, restoration, and carbon accounting
	6.4 Research limitations and recommendations
	References

	Chapter 7 Conclusions


