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Abstract

This thesis describes the research carried out by the author in simulating resonant tunnel-

ling diodes (RTDs), nanoelectronic devices which exhibit a region of negative differential

resistance (NDR) due to quantum tunnelling, with device variation. This research was car-

ried out with the nano-electronic simulation software (NESS), which is under development

at the University of Glasgow. Chapter 1 describes the background and theory of RTDs,

before following up with chapter 2 on the theory and methodology of using NESS with

the non-equilibrium Green’s function (NEGF) transport solver module within this thesis.

In the following chapters 3, 4 and 5, respectively the effects of device dimension variation,

random discrete dopants (RDDs) and interface roughness (IR) on RTD were investigated.

Variation in current-voltage characteristics (IV) due to RDDs and IR were additionally

shown to allow RTDs to encode information, and thus provides support for the potential

of RTDs to compose physical unclonable functions (PUFs) which can uniquely identify

items which they are placed on.
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section is 10nm×10nm, with an overall length of 55nm for this baseline case.

The 19nm thick source-drain regions are 2×1018cm−3 n-doped. The central

17nm region for the baseline case, including two 3nm spacers enclosing the

barriers, is 1×1015cm−3 n-doped. This figure [8] is licensed under CC BY 4.0. . 73

3.2 IV characteristic for the baseline RTD [8] shown in Fig. 3.1. The resonant peak,

or local maximum in current Ir at bias Vr, and the valley, the local minima Iv

at Vv, are two key points for this nonlinear IV characteristic. These bound the

NDR, and define the figure of merit PVCR Ir/Iv. Fig. 3.3(a), Fig. 3.3(b) and

Fig. 3.4 are measured for the resonant peak in this figure. Similarly, Fig. 3.3(c)

and Fig. 3.3(d) and correspond to the valley. This IV characteristic includes

electron-phonon scattering. This figure [8] is licensed under CC BY 4.0. . . . . 75

3.3 Figure(a) depicts the LDOS (Local Density of States), with colourbar units of

eV−1, and energy dependent transmission T(E), a red vertical line, for the res-

onant peak at 0.22V shown in Fig. 3.2. Figure(b) is the CS (Current Spectra),

with colourbar units of µAeV−1, for this resonant peak. Similarly, figure(c) and

figure(d) respectively represent the LDOS and CS for the valley at 0.24V. The

white dashed lines are the CBM (Conductance Band Minima), and the black

dash-dot lines are the average potential energy. This figure is reproduced based

on Figure 6 from [8], which is licensed under CC BY 4.0. . . . . . . . . . . . . 76

3.4 Line plot of electron charge density through the centre of the baseline RTD de-

picted in Fig. 3.1 for the resonant peak 0.22V seen in Fig. 3.2. Barrier interface

positions are noted with slightly transparent vertical lines with corresponding

markers. This figure is reproduced based on Figure 7 from [8], which is licensed

under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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3.5 A comparison of IV characteristics for an RTD as depicted in Fig. 3.1, for

the cases with phonons (black solid line with circle markers) and the ballistic

case (orange dashed line with plus markers). The latter case in the ballistic

regime is also plotted in Fig. 2.18, with corresponding LDOS and CS for the

resonant peak shown in Fig. 3.7. The LDOS and CS for the resonant peak for

the phonon case is shown in Fig. 3.6. This figure [8] is licensed under CC BY

4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Figure(a) depicts the LDOS (with colourbar units of eV−1) and energy depend-

ent transmission (a red vertical line) for the resonant peak at 0.22V shown in

Fig. 3.2, and figure(b) is the CS (with colourbar units of µAeV−1) for the res-

onant peak. The white dashed lines are the CBM, and the black dash-dot lines

are the average potential energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7 Figure(a) is the LDOS and transmission (red horizontal line plot), and Fig-

ure(b) is the CS, both of which correspond to the resonant peak bias of 0.24V

for the ballistic regime in Fig. 3.5. The white dashed lines are the CBM, and

the black dash-dot lines are the average potential energy. . . . . . . . . . . . . 82

3.8 Figure(a) is the LDOS and transmission (red horizontal line plot), and Fig-

ure(b) is the CS, both of which correspond to the perturbation in current at

0.28V for the IV characteristic with electron-phonon scattering in Fig. 3.5. The

white dashed lines are the CBM, and the black dash-dot lines are the average

potential energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Comparison of IV characteristics and electron charge density, through the

centre of RTD cross-sections, for different symmetric barrier thicknesses LB1=LB2

with figure(a) and figure(b) respectively. Barriers of 2nm (orange dashed line

with plus markers) and 4nm (blue dotted line with diagonal cross markers) are

compared with the baseline case of 3nm (black solid line with dot markers).

Within figure(b), barrier interface positions are noted with slightly transparent

vertical lines with corresponding markers. This figure is reproduced based on

Figure 9 from [8], which is licensed under CC BY 4.0. . . . . . . . . . . . . . . 86
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3.10 Comparison of IV characteristics and electron charge density, through the

centre of RTD cross-sections, for different QW widths LQW with figure(a)

and figure(b) respectively. QW widths of 4nm (orange dashed line with plus

markers) and 6nm (blue dotted line with diagonal cross markers) are compared

with the baseline case of 5nm (black solid line with dot markers). Within fig-

ure(b), barrier interface positions are noted with slightly transparent vertical

lines with corresponding markers. This figure is reproduced based on Figure

10 from [8], which is licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . 88

3.11 LDOS (with colourbar units of eV−1) and CS (with colourbar units of µAeV−1)

for an RTD with a QW width LQW=4nm for the resonant peak at 0.31V, with

figure(a) and figure(b) respectively. The LDOS plot (figure(a)) includes energy

dependent transmission as a red line. The white dashed lines are the CBM,

and the black dash-dot lines are the average potential energy. This figure is

reproduced based on Figure 11 from [8], which is licensed under CC BY 4.0. . 89

3.12 Comparison of IV characteristics and electron charge density, through the

centre of RTD cross-sections, for different first barrier thicknesses LB1 with

figure(a) and figure(b) respectively. The second barrier thickness LB2 is 3nm

as in the baseline case. Barriers of LB1=2nm (orange dashed line with plus

markers) and LB1=4nm (blue dotted line with diagonal cross markers) are

compared with the baseline case of 3nm (black solid line with dot markers).

Within figure(b), barrier interface positions are noted with slightly transparent

vertical lines with corresponding markers. This figure is reproduced based on

Figure 12 from [8], which is licensed under CC BY 4.0. . . . . . . . . . . . . . 92
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3.13 Comparison of IV characteristics and electron charge density, through the

centre of RTD cross-sections, for different second barrier thicknesses LB2 with

figure(a) and figure(b) respectively. The first barrier thickness LB1 is 3nm as

in the baseline case. Barriers of LB2=2nm (orange dashed line with plus mark-

ers) and LB2=4nm (blue dotted line with diagonal cross markers) are compared

with the baseline case of 3nm (black solid line with dot markers). Within fig-

ure(b), barrier interface positions are noted with slightly transparent vertical

lines with corresponding markers. This figure is reproduced based on Figure

13 from [8], which is licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . 93

4.1 A schematic illustration of the GaAs-Al0.3Ga0.7As device under investigation,

which has a square cross-section with dimensions of 10nm×10nm, and an over-

all length of 55nm. The device is divided into distinct sections shown by the

black lines, namely the 19nm source and drain, two 3nm buffer regions, two

3nm Al0.3Ga0.7As barriers, and a 5nm QW. This figure is licensed under CC

BY 4.0, attached to an archived copy of [7] held by the University of Glasgow.

The University of Glasgow has an agreement with IEEE allowing authors to

self-archive manuscripts with an attached CC BY licence. © 2024, IEEE. . . . 98

4.2 IV characteristics of a smooth GaAs-Al0.3Ga0.7As nanowire RTD device with

phonon scattering, comparing the base ‘smooth’ case shown in Fig. 4.1 (black

line with plus markers) with a ‘double doping’ case (red line with dot markers)

with twice the n-doping level of the base device. This figure is licensed under

CC BY 4.0, attached to an archived copy of [7] held by the University of

Glasgow. The University of Glasgow has an agreement with IEEE allowing

authors to self-archive manuscripts with an attached CC BY licence. © 2024,

IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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4.3 The IV characteristics of devices No. 57, 65 and 39 are depicted, accompanied

by an inset illustrating the distribution of RDDs represented by green dots.

PVCRs for No. 57, No. 65, and No. 39 are 2.303, 2.077, and 1.784, respectively.

The corresponding Ir and Vr are 0.2708µA at 0.175V, 0.2477µA at 0.15V and

0.3098µA at 0.1V. This figure is licensed under CC BY 4.0, attached to an

archived copy of [7] held by the University of Glasgow. The University of Glas-

gow has an agreement with IEEE allowing authors to self-archive manuscripts

with an attached CC BY licence. © 2024, IEEE. . . . . . . . . . . . . . . . . 100

4.4 The upper row shows the combined LDOS and T(E) of three RTD devices,

specifically devices No. 57, 65 and 39. These calculations were performed at the

bias voltages corresponding to the first resonant peak, which are 0.175V, 0.15V,

and 0.1V, respectively. Consequently, the bottom row illustrates the energy-

resolved CS of the aforementioned devices. This figure is licensed under CC

BY 4.0, attached to an archived copy of [7] held by the University of Glasgow.

The University of Glasgow has an agreement with IEEE allowing authors to

self-archive manuscripts with an attached CC BY licence. © 2024, IEEE. . . 101

4.5 The central figure(a) is a scatter plot of resonant peak current Ir against res-

onant peak voltage Vr for the 65 devices that showed an NDR. The attached

figure(b) and figure(c) respectively show the histograms of the current and

voltage distribution with bin-widths of 0.05V and 0.05µA respectively. Normal

distributions were fitted onto the histograms with a mean µ = 0.1554V and

standard deviation σ = 0.0549V for the peak voltage distribution in figure(b),

and µ = 0.3053µA and σ = 0.0971µA in figure(c). Figure(a) was also split

into four quadrants with the mean of the normal distributions in figure(b) and

figure(c), with annotations for the number of data points in the quadrant. This

figure is licensed under CC BY 4.0, attached to an archived copy of [7] held by

the University of Glasgow. The University of Glasgow has an agreement with

IEEE allowing authors to self-archive manuscripts with an attached CC BY

licence. © 2024, IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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4.6 Quantile-Quantile plots for the resonant peak voltage Vr and current Ir in

figures (a) and (b) respectively. Figure(a) plots the ordered peak bias val-

ues Vr against corresponding quantiles from a normal distribution fit to it in

Fig. 4.5(b), with mean µ = 0.1554V and standard deviation σ = 0.0549V.

Figure(b) similarly plots ordered peak current values Ir against correspond-

ing quantiles from a normal distribution fit to it in Fig. 4.5(c), with mean

µ = 0.3053µA and standard deviation σ = 0.0971µA. This figure is licensed

under CC BY 4.0, attached to an archived copy of [7] held by the University

of Glasgow. The University of Glasgow has an agreement with IEEE allowing

authors to self-archive manuscripts with an attached CC BY licence. © 2024,

IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 IV characteristics of the 65 RTD devices which exhibited an NDR (grey dashed

lines). Two IV characteristics with ‘smooth’ doping such as the base ‘smooth’

case (solid black line with plus markers) and ‘double doping’ case (solid red line

with dot markers), which has double the n-doping of the base case, are plotted

for reference. This figure is licensed under CC BY 4.0, attached to an archived

copy of [7] held by the University of Glasgow. The University of Glasgow has

an agreement with IEEE allowing authors to self-archive manuscripts with an

attached CC BY licence. © 2024, IEEE. . . . . . . . . . . . . . . . . . . . . . 105

4.8 The IV curve of Device No. 40 is shown, which has no NDR, along with an

inset of Device No. 40 showing the distribution of RDDs as green dots. This

figure is licensed under CC BY 4.0, attached to an archived copy of [7] held by

the University of Glasgow. The University of Glasgow has an agreement with

IEEE allowing authors to self-archive manuscripts with an attached CC BY

licence. © 2024, IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 The IV curve of Device No. 2 is shown, which has no NDR, along with an inset

of Device No. 2 showing the distribution of RDDs as green dots. . . . . . . . . 107
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5.1 Comparison of IV characteristics (figure(a)) and electron charge density (fig-

ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black

solid line with dot markers) depicted in Fig. 5.7 and device 2 with IR along the

inside of the QW (purple dashed line with star markers). Within figure(b), bar-

rier interface positions are noted with slightly transparent vertical lines with

dot markers. Figure(a) also depicts the average IV characteristic (red dotted

line with diagonal cross markers), and the Al0.3Ga0.7As barriers for device 2

with a rough second barrier as an inset. This figure is reproduced based on

Figure 14 from [8], which is licensed under CC BY 4.0. . . . . . . . . . . . . . 114

5.2 Comparison of IV characteristics (figure(a)) and electron charge density (fig-

ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black

solid line with dot markers) depicted in Fig. 5.7 and device 1 with IR along the

first Al0.3Ga0.7As barrier (green dashed line with square markers). Within fig-

ure(b), barrier interface positions are noted with slightly transparent vertical

lines with dot markers. Figure(a) also depicts the average IV characteristic

(red dotted line with diagonal cross markers), and the Al0.3Ga0.7As barriers

for device 1 with a rough first barrier as an inset. This figure is reproduced

based on Figure 15 from [8], which is licensed under CC BY 4.0. . . . . . . . . 116

5.3 Comparison of IV characteristics (figure(a)) and electron charge density (fig-

ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black

solid line with dot markers) depicted in Fig. 5.7 and device 1 with IR along the

second Al0.3Ga0.7As barrier (pink dashed line with diamond markers). Within

figure(b), barrier interface positions are noted with slightly transparent vertical

lines with dot markers. Figure(a) also depicts the average IV characteristic

(red dotted line with diagonal cross markers), and the Al0.3Ga0.7As barriers

for device 1 with a rough second barrier as an inset. This figure is reproduced

based on Figure 16 from [8], which is licensed under CC BY 4.0. . . . . . . . . 118

5.4 A depiction of device 3 with IR along all Al0.3Ga0.7As/GaAs interfaces. The

rough Al0.3Ga0.7As barriers are red, and are situated in the partially transpar-

ent blue GaAs body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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5.5 IV characteristics of 25 randomly generated RTDs (grey dashed lines) with IR

along all Al0.3Ga0.7As/GaAs interfaces [8], with an average (red dotted line

with diagonal cross markers) and a ‘smooth’ RTD with no IR (black solid line

with dot markers) plotted for comparison. This figure [8] is licensed under CC

BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Comparison of IV characteristics (figure(a)) and electron charge density (fig-

ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black

solid line with dot markers) depicted in Fig. 5.7 and device 3 with full IR along

all Al0.3Ga0.7As/GaAs interfaces (grey dashed line with diagonal cross mark-

ers) depicted in Fig. 5.4. Within figure(b), barrier interface positions are noted

with slightly transparent vertical lines with dot markers. For comparison, the

average IV characteristic (red dotted line with diagonal cross markers) is also

plotted in figure(a). The inset for figure(a) are the Al0.3Ga0.7A barriers of device

3. This figure is reproduced based on Figure 18 from [8], which is licensed under

CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 The GaAs-Al0.3Ga0.7As RTD under investigation [9]. This is a 55nm long GaAs

nanowire with a 10nm×10nm cross-section, interrupted by two Al0.3Ga0.7As

barriers. The device can be split into three regions, the 19nm source and drain

which are 2×1018cm−3 n-doped, and the central 17nm device region which is

1×1015cm−3 n-doped. This central region has two 3nm buffer regions enclosing

the 3nm Al0.3Ga0.7As, which themselves enclose a 5nm QW. This particular

device is ‘smooth’ because IR has not been implemented. This figure [9] is

licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 The annotated IV characteristic of the ‘smooth’ RTD [9] shown in Fig. 5.7,

simulated in the ballistic regime. This figure [9] is licensed under CC BY 4.0. . 124

5.9 Al0.3Ga0.7As barriers for Device No. 1 with IR with an LC of 7.5nm and ∆RMS

of 0.3nm [9]. This figure [9] is licensed under CC BY 4.0. . . . . . . . . . . . . 125

5.10 IV characteristics for Device No. 1 (orange dashed line) [9], corresponding to

the rough Al0.3Ga0.7As barriers in Fig. 5.9, and a ‘smooth’ RTD IV character-

istic (black solid line) as shown in Fig. 5.8. This figure [9] is licensed under CC

BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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5.11 Colour-map of the mean of PVCR of 25 RTDs with randomly generated IR, for

different LC and ∆RMS. This figure is reproduced based on Figure 7 from [9],

which is licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12 Colour-map of standard deviation of fitted normal curves to the distribution

of the resonant peak voltage Vr, of 25 RTDs with randomly generated IR, for

different LC and ∆RMS. This figure is reproduced based on Figure 7 from [9],

which is licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . 127

5.13 Colour-map of standard deviation of fitted normal curves to the distribution

of the resonant peak current Ir, of 25 RTDs with randomly generated IR, for

different LC and ∆RMS. This figure is reproduced based on Figure 7 from [9],

which is licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . 128

5.14 IV characteristics for 150 randomly generated RTDs with exponential IR of

LC=7.5nm and ∆RMS=0.3nm as grey dashed lines [9]. The mean current-

voltage characteristic is a solid red line with plus markers. This figure [9] is

licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.15 The resonant peak, or local maxima, of each current-voltage characteristic in

Fig. 5.14 is shown in figure(a) and is split into 4 quadrants by the mean for

the voltage (0.2717 V) and current (0.1903 µA) distributions as seen in fig-

ure(b) and figure(c) respectively. Figure(b) and figure(c) also show histograms

and fitted normal distributions for occurrence of resonant peak values. This

figure [9] is licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . 130

5.16 Visualisation of device 3 generated with an IR of correlation length LC=2.5nm [10],

one of 25 such RTD devices. The rough Al0.3Ga0.7As barriers (shown in red) are

embedded within a GaAs (transparent blue) nanowire body. This figure [10] is

licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.17 Visualisation of device 15 generated with ‘improved’ IR of isotropic correl-

ation lengths LY
C=LZ

C=2.5nm [10], one of 25 such RTD devices. The rough

Al0.3Ga0.7As barriers (shown in red) are embedded within a GaAs (transpar-

ent blue) nanowire body. This figure [10] is licensed under CC BY 4.0. . . . . 133
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5.18 Visualisation of device 23 generated with ‘improved’ IR of anisotropic cor-

relation lengths LY
C=2.5nm and LZ

C=5nm [10], one of 25 such RTD devices.

The rough Al0.3Ga0.7As barriers (shown in red) are embedded within a GaAs

(transparent blue) nanowire body. This figure [10] is licensed under CC BY 4.0.133

5.19 IV characteristic for the baseline RTD [10] shown in Fig. 5.7. The resonant

peak, or local maxima in current Ir=0.2661µA at bias Vr=0.24V, and the

valley, or local minima Iv=0.0793µA at Vv=0.25V, are two key points for this

nonlinear IV characteristic. These bound the NDR, and define the figure of

merit PVCR Ir/Iv. This figure [10] is licensed under CC BY 4.0. . . . . . . . . 134

5.20 A composite figure [10] visualising the IV characteristics of 25 RTDs gener-

ated with an IR of correlation length LC=2.5nm. Figure(a) depicts all the IV

characteristics (grey dashed lines), with an average (red dotted line with dot

markers) and a ‘smooth’ RTD (solid black line with plus markers) for com-

parison. Figure(b) is a scatterplot of the resonant peak IV values taken from

figure(a), and is bifurcated with dashed lines at the mean values of the res-

onant peak values, Vr=0.2736V and Ir=0.1918µA. Figure(c) and figure(d) are

accompanying histograms and fitted normal distributions for the resonant peak

voltage Vr and current Ir distributions respectively. This figure [10] is licensed

under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.21 A composite figure [10] visualising the IV characteristics of 25 RTDs gen-

erated with an ‘improved’ isotropic IR of correlation lengths LY
C=LZ

C=2.5nm.

Figure(a) depicts all the IV characteristics (grey dashed lines), with an average

(red dotted line with dot markers) and a ‘smooth’ RTD (solid black line with

plus markers) for comparison. Figure(b) is a scatterplot of the resonant peak

IV values taken from figure(a), and is bifurcated with dashed lines at the mean

values of the resonant peak values, Vr=0.2680V and Ir=0.2270µA. Figure(c)

and figure(d) are accompanying histograms and fitted normal distributions for

the resonant peak voltage Vr and current Ir distributions respectively. This

figure [10] is licensed under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . 135
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5.22 IV characteristics for device 3 (green dashed line with square markers) and

the average (green dotted line) with IR of correlation length LC=2.5nm, com-

pared against the ‘smooth’ device IV characteristic (black solid line with plus

markers) [10]. The inset contains the rough Al0.3Ga0.7As barriers for device 3,

which is shown in Fig. 5.16. This figure [10] is licensed under CC BY 4.0. . . . 136

5.23 IV characteristics for device 15 (cyan dashed line with diamond markers)

and the average (cyan dotted line) with ‘improved’ IR of correlation lengths

LY
C=LZ

C=2.5nm, compared against the ‘smooth’ device IV characteristic (black

solid line with plus markers) [10]. The inset contains the rough Al0.3Ga0.7As

barriers for device 15, which is shown in Fig. 5.17. This figure [10] is licensed

under CC BY 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.24 Mean of current peak Ir in microampere for different anisotropic correlation
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6 Diagram of node-centred control volume [205] (shown in grey) centred around a

node ‘C’ at coordinate (i, j, k), with a fractional control sub-volume associated

with vertex 1 of this control volume (shown in green). Neighbouring real-space
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compass and ‘F’ for ‘front’ and ‘B’ for ‘back’. . . . . . . . . . . . . . . . . . . 152

7 3D grid visualising red-black ordering [211], with nearest neighbour nodes for

any given node being of the opposite colour. Permission has been granted by
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licence.
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Output

Over the course of researching my thesis I have achieved different outputs which are worth

briefly mentioning.

Except for chapters 2 and 6, this thesis is composed based on first author papers by myself,

which have either been accepted or are currently under review. Four of these papers [7–

10] are currently published. One of these papers [9] corresponds to a presentation at the

EuroSOI-ULIS 24 conference.

On top of this, two further NEGF simulation studies were co-authored [11, 12], includ-

ing a SISPAD 2024 conference paper [11] using Machine Learning to accelerate NEGF

simulations. As they are not directly related to this thesis, they will not be mentioned

further.

Lastly, throughout my thesis I have improved the modular technology computer-aided

design (TCAD) software NESS under development at the University of Glasgow, as noted

in my papers [7–10]. Specifically, I have improved the structure generator module by

allowing greater control over the occurrence of RDDs [7] and by extending the imple-

mentation surface roughness [13] to IR which is along heterostructure interfaces normal

to the direction of current flow. I have also improved this IR to be correlated along two

dimensions [10].
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Overview

Except for chapters 2 and 6, this thesis is composed based on first author papers by myself,

which have either been accepted or are currently under review. Chapter 1 is a literature

review on RTDs, intended as an introduction for those new to this device. Chapter 2 serves

as an introduction to the theory involved in performing RTD research with the modular

TCAD software NESS under development at the University of Glasgow, especially NEGF.

Chapter 3 is a design of device study for RTD section thicknesses [8], covering both

the symmetric variation of both barriers and the QW and asymmetric variation of both

barriers. Chapter 4 is a study on the effects of RDDs on RTD device behaviour [7], and how

the resulting variation in IV characteristics allows RTDs to encode information, and thus

potentially be used to construct PUFs. Chapter 5 is a comprehensive study on the impact

of IR on RTD device behaviour [8–10], investigating the impact of RTDs on different parts

of the RTD [8] and for IR of different correlation lengths and roughness asperity [9, 10].

IR was also found to cause variation which similarly positions RTDs as a potential PUF

building block. Finally, chapter 6 concludes the research achieved in this thesis.
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Chapter 1

Literature Review

1.1 Introduction

Resonant tunnelling diodes (RTDs) are diodes which allow electrons (and holes) with

certain resonant energies to pass through due to quantum tunnelling, leading to their

prized characteristic of a region of negative differential resistance (NDR) R = dI
dV

< 0.

This means that an RTD is an active device which can compensate for energy losses in a

paired resonator, such as an LRC circuit, allowing for RTD oscillators to be built [14].

Moreover, because quantum tunnelling allows RTDs to achieve Terahertz (THz) frequency

oscillations at room temperature [15], these RTD oscillators can function as THz elec-

tronics [16] which can fill the THz gap in sources [17, 18]. This THz potential means that

RTDs have drawn interest for applications such as high-speed telecommunications [19] and

sensing [20]. RTDs are also sensitive to stochastic variation, which can be intentionally

leveraged to encode information in parameter variation. This has prompted research [2,

7, 21, 22] into using RTDs to construct physical unclonable functions (PUFs) [23, 24] on

integrated circuits (ICs) in order to uniquely identify them for combating semiconductor

counterfeiting and for cryptographic purposes.

1
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The basics of RTDs are covered in section 1.2, including a brief history, and different types

of materials and RTD structures are noted in section 1.3. The different types of stochastic

variation RTDs experience are introduced in section 1.4, followed by an exploration of

RTDs for PUFs in section 1.5. Issues faced by RTDs and countermeasures for them are

listed in section 1.6. Research on RTD oscillators as THz electronics is reviewed in sec-

tion 1.7, including design of device considerations, before concluding this review article in

section 1.8.

1.2 RTD

This section is composed of a brief history of RTDs in subsection 1.2.1, followed by the

theory of their operation in subsection 1.2.2, before ending with mentions of applications

in subsection 1.2.3.

1.2.1 RTD History

RTDs with two or more barriers were demonstrated theoretically with simulations in

1973 [25], and RTDs were realised experimentally shortly afterwards in 1974 [26]. Though

even before this, the behaviour of resonant tunnelling was theoretically predicted [27].

Roughly a decade after this initial demonstration of RTDs [26], RTDs with an NDR at

room temperature were developed [28, 29]. The capacity of RTDs for THz technology [15]

prompted early research interest [30], leading to a rapid early increase in frequencies of

RTD oscillators [30–32] leading to oscillations above 700GHz observed in 1991 [32].
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Later progress slowed down somewhat, with THz frequencies achieved at room temperat-

ure with higher harmonics in 2005 [33]. After this, THz fundamental frequencies at room

temperature were attained in 2010 [34], and nearly 2 THz fundamental frequencies were

realised in 2017 [35]. Since then, there has been a surge of research for arrays of multiple

RTDs [36–43] which can achieve higher powers as THz sources.
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1.2.2 Theory of Operation

Current
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Figure 1.1: Sketches of an idealised RTD band diagram under different bias and a corres-
ponding IV characteristic in figure(a) and figure(b) respectively, with points of interest labelled.
Point A at the origin has zero bias and current, point B is the resonant peak or local maxima
with bias Vr and current peak Ir, and point C is the valley or local minima with bias Vv and
current minima Iv. Figure(a) contains band diagram sketches through the centre of a double
barrier quantum well RTD, with each subfigure under a different bias corresponding to the
annotated points in figure(b). The conductance band minima (CBM) EC for each subfigure
within figure(a) (a black solid line) forms two potential barriers separating the emitter region
on the left with an emitter Fermi level EF,E (black dotted line), the QW in the middle with
a ground quasibound energy of EQW (red solid line), and a collector region to the right with
a collector Fermi level EF,C (black dotted line). Within figure(b), the resonant peak at point
B and the valley at point C bound the NDR region. Figure(b) also does not account for the
space-charge effect [44], which is shown in Fig. 1.3.
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Figure 1.2: This figure is a schematic of a Al0.3Ga0.7As/GaAs RTD from [7], with key positions
along the horizontal ‘x’ axis (and direction of current flow) labelled with nanometre values from
0nm to 55nm. The dimensions are 55nm×10nm×10nm, with 2×1018cm−3 n-doped source
(0nm-19nm) and emitter (36nm-55nm) GaAs regions and a central 1×1015cm−3 n-doped
heterostructure region. This central region is composed of 3nm GaAs spacers (19nm-22nm
and 33nm-36nm) enclosing two 3nm Al0.3Ga0.7As barriers (22nm-25nm and 30-33nm) and a
5nm GaAs QW (25nm-30nm) in the middle. This figure is licensed under CC BY 4.0, attached
to an archived copy of [7] held by the University of Glasgow. The University of Glasgow has
an agreement with IEEE allowing authors to self-archive manuscripts with an attached CC BY
licence. © 2024, IEEE.
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Current
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Figure 1.3: A modification of the RTD IV characteristic sketch shown in Fig. 1.1(b), with the
inclusion of the space-charge effect [44] which perturbs regions of higher current to greater
bias, due to the greater charge present within the QW at greater current, thereby leading to
an ‘N’ shaped IV characteristic.

The defining features of RTDs are their nonlinear IV characteristic and their extremely

fast operation reaching THz speeds [35] at room temperature. The heterostructure of

RTDs is formed by layers of material with different band structures, resulting in mis-

matches in band structure which act as potential barriers as seen in Fig. 1.1(a). A local

maxima in current as seen in Figure 1.1(b) occurs because for low bias current is dom-

inated by quantum tunnelling through the barriers formed by the band structure of the

heterostructure, for which the transparency is voltage dependent as explained below.
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In the case of Al0.3Ga0.7As/GaAs RTDs like Fig. 1.2 the nanowire body of GaAs has

a greater electron affinity than Al0.3Ga0.7As [45], leading to a CBM lower than the

Al0.3Ga0.7As layers. Hence, the CBM in the Al0.3Ga0.7As acts as the barriers of a quantum

well (QW), which consequently have quantised quasi-bound electron energy levels. When

the energy of incoming electron from the emitter region matches with the aforementioned

quasi-bound energy levels in the QW, transmission probability maximises, and otherwise

is suppressed. This alignment of the emitter region and the QW is controlled by bias

voltage, introducing the voltage dependence of transmission and thus current, leading to

the resonant peak and NDR.

Fig. 1.1(a) demonstrates how the CBM deforms under bias, corresponding to different

points of Fig. 1.1(b). As drain-source bias voltage is increased from zero bias at point ‘A’

in Fig. 1.1(b), the drain side of the CBM is perturbed to lower energies, also perturb-

ing the QW and quasi-bound states to lower energy. When the resonant peak bias Vr is

reached at point ‘B’, the emitter Fermi level aligns with the ground QW energy level,

allowing maximal tunnelling current. As bias increases further, these energy levels mis-

align and the ground QW energy drops below the emitter-side CBM, suppressing elastic

tunnelling. The device hence reaches a local minimum or resonant valley at point ‘C’ with

valley voltage Vv. The region of decreasing current bound by the peak ‘B’ and valley ‘C’

has a differential resistance R = dV
dI

that is effectively negative, and is thus referred to as

the NDR (negative differential resistance) region. For higher bias than this local minima

‘C’, thermionic emission of bias starts to dominate which leads to ohmic current which

increases with bias. Another effect which comes into play is the space-charge effect [44],

or Coulomb repulsion due to charge in the QW, which results in the ‘N’ shaped IV char-

acteristic shown in Fig. 1.3(b). When current through the QW is greater, electron charge

within the QW at that moment is also greater which results in greater Coulomb repulsion

potential from said charge. This repulsion potential needs to be overcome with greater

drain-source bias, consequently points of higher current are skewed to greater bias, result-
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ing in the ‘N’ shape of Fig. 1.3. Additionally, the quasibound QW energies in electronvolts,

with respect to the emitter-side Fermi level, are roughly half the corresponding resonant

peak voltage values[26, 29], because bias voltage perturbs the drain to lower energies while

only roughly half this reduction in energy is observed in the QW.

The nonlinear curved shape of RTD IV characteristics can also be explained with the

conservation of transverse momenta[46, 47] during tunnelling. The longitudinal component

of electron momenta kx for incoming electronics is important for RTDs [29], because the

transverse component of momenta is conserved during elastic tunnelling [46] into the QW,

limiting states allowing tunnelling. The electron energy in the emitter region is given by

the following equation 1.1 where the transverse component of momenta is defined by

k⊥ =
√

k2
y + k2

z

EE = EC +
ℏ2k2

x

2mx

+
ℏ2k2

⊥
2m⊥

(1.1)

Similarly, we can split the QW energies into the quantised longitudinal component Ex,n

and the transverse momenta component [47], which for the ground state where n = 0 is

given by the following equation 1.2

EQW = Ex,0 +
ℏ2k2

⊥
2m⊥

(1.2)

Since emitter electrons energies are bounded by the emitter Fermi level EF,E and the CBM,

this constrains longitudinal momenta to k
′
x =

√
2mx

ℏ2 (Ex,0 − EC) ≤ kF,E for electrons

which tunnel elastically into the QW into the quasibound ground state. Transmission due

to resonant tunnelling for electrons is maximal when the states of incoming electrons align

with those in the QW with an energy of EQW as seen in Fig. 1.1(a). Bias controls the

alignment of the QW energy EQW and the emitter region. Assuming the conservation of

transverse momenta, this means that a maxima is reached at k
′
x=0, in other words when

Ex,0 overlaps with the emitter-side EC , leading to maximum resonant tunnelling current

at the resonant tunnelling current peak. As bias increases further Ex,0 drops below EC and

emitter electrons can no longer tunnel into the QW while conserving transverse momenta,

leading to a sharp drop in current.
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1.2.3 RTD Applications

RTDs have garnered interest for a variety of use cases. As room temperature THz devices,

RTDs are well positioned for various applications [16] such as telecommunications and

high speed data transmission [19], and for sensing applications [20]. Within the purview

of sensing, an advantage for medical and security applications is that THz radiation is

non-ionising [16] and transparent [48, 49] to a wide range of materials, and RTDs are

highly sensitive detectors [6, 50]. Sensing applications also include radar [51], high resol-

ution imaging [20] and spectroscopy [52]. As explored later in section 1.5 RTDs also have

potential [2, 7, 21, 22] as PUFs [23, 24] to uniquely identify ICs [53] in order to combat

the issue of semiconductor chip counterfeiting [54, 55]. RTDs have also recently attracted

interest for neuromorphic computing [56, 57].

1.3 Materials and Types of RTDs

This section notes the different materials and configurations used for RTDs respectively

in subsections 1.3.1 and 1.3.2.

1.3.1 Materials

RTD research began with AlGaAs/GaAs [25, 26, 28] RTDs, including their demonstration

as a simulation study [25], the first experimentally realised RTDs [26] and room temper-

ature RTDs [28]. AlAs/GaAs were also used in early research [29, 31], with sub-TH RTD

oscillators reaching 420GHz [31]. These GaAs based RTDs were appealing [58] because of

the lattice matching [59] of GaAs with AlAs or AlGaAs which meant that there was less

strain between materials.
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Unfortunately a limiting factor of such RTDs [58] is their low barrier height formed from

the CBM offset between GaAs and AlAs or AlGaAs, which allows thermionic emission over

the barrier and thus a valley current which limits peak-to-valley current ratio (PVCR),

which is especially the case for AlGaAs/GaAs RTDs. PVCR is considered a figure of merit

for RTDS in literature that measures the distinctiveness of the NDR in RTD IV character-

istics. Due to the limited CBM offset, PVCR values in literature for Al0.3Ga0.7As/GaAs

RTDs [60–62] vary roughly around 1.5 to 3.5, with an early experimental paper [60],

achieving a PVCR of 1.8. For the latter paper, a simulation comparison assumed a CBM

offset of 0.23eV. Further details on such RTDs can be found in the following review pa-

per [58].

The use of indium is a solution to the low barrier heights [63] experienced with the

above GaAs based RTDs, albeit necessitating thin barriers due to strain [59, 64], with

the achievement of fundamental THz oscillations at room temperature [34] with In-

GaAs/AlAs. An advantage of using indium is that different mole fractions of indium

in InxGax−1As can be used, allowing modification of the CBM band structure such as

creating a lower energy InGaAs QW with a greater indium mole fraction [65] or a InAs

QW subwell [66] and graded InGaAs emitter regions [34, 67], which as discussed in sec-

tion 1.6 all improve the performance of RTDs for THz applications. Subwells [66] refer to

a layer within a QW with a lower offset, as is achieved with InAs [66] within an InGaAs

QW, which achieves the effect of reducing QW ground energy level for the whole QW [68].

Graded emitters are emitters where the bandstructure is graded with intermediate offsets

rather than having one offset with the barrier, and can be achieved through grading the

mole fraction of the material [34, 67]. Graded emitters are also called step emitters [67].

InGaAs is currently very dominant in THz RTD research [37, 43, 65, 66, 69–73].
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Group III nitride GaN/AlN RTDs [74–77] have gained interest due to their high voltage

operations and their high current density [76], which along with their thermal stability

is promising for high power oscillators [74]. High contact resistance [78], a large lattice

mismatch and polarisation charges are among the issues [74] faced by such RTDs. Efforts

are being made to improve their PVCR, with values over 2 recently achieved [77], and

frequencies achieved remain somewhat limited, with a 17GHz GaN/AlN RTD oscillator

demonstrated recently [75]. A review article delving further into such RTDs is [74].

InAs/AlSb RTDs [32, 79, 80] have achieved the then record-breaking sub-THz frequencies

of 712GHz in 1991 [32], though currently they are not as dominant in recent THz RTD

research [79]. A key disadvantage of such RTDs is poor growth quality due to lattice

mismatch with commonly used substrates [80] like GaAs and GaSb. Such antimonide-

based RTDs can also be constructed to function based on interband tunnelling between

the valence and conduction bands through staggering the type II heterostructure offsets,

such as by including a GaSb QW [80], in which case they are referred to as resonant

interband tunnelling Diodes (RITDs) [81, 82] which is explained further below and shown

in Fig. 1.4(c).

Si/SiGe RTDs [83–87] are another material type which has been researched. The appeal

of such RTDs is CMOS integration [88], but they are disadvantaged by limited barrier

heights [89]. Such RTDs have been researched with both hole [83] and electron tunnel-

ling [84], and can also construct RITDs [85] and triple barrier RTDs [86].

Recently, graphene based RTDs have also been begun to be researched [90–92], with an

NDR shown even in single barrier structures [91, 92] as well as the triple barrier case [93],

although it is debatable whether such single barrier structures can be considered ‘true’

RTDs.
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1.3.2 Types of RTDs
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(a) Double Barrier QW RTD (b)Triple Barrier RTD
(c) Resonant Interband 

Tunneling Diode

Figure 1.4: Band diagram sketches for (a) double barrier RTDs with a single QW, (b) triple
barrier RTDs which have two QWs, and (c) double barrier interband RTDs which depend on
tunnelling between the valence and conductance bands.

The three main types of RTDs are presented in Fig. 1.4. The most extensively researched

type of RTDs are Double Barrier QW RTD, sometimes referred to as a DBQW RTD in

literature, which function with intraband tunnelling within the conductance band through

a single QW confined by two potential barriers. Unless otherwise specified, when RTDs

are mentioned in literature it refers to these DBQW RTDs, and similarly this is the type

of RTD explained in section 1.2.

Two variations on this basic structure are triple barrier RTDs, which are known for their

sensitivity [94], and interband RTDs, or RITDs [81], where tunnelling occurs between the

valence and conductance bands. Triple barrier RTDs [87, 94–96], with a band diagram

sketch depicted in Fig. 1.4(b), hold potential as sensitive nonlinear THz detectors [94]

with tunnelling based on alignment between two QW energy levels. Zero bias operation

with direct detection is possible with triple barrier RTDs, aiding their sensitivity [94].
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RITDs [81, 82, 85] depend on interband tunnelling between the valence and conduction

bands, as shown in Fig. 1.4(c) where electrons tunnel into the hole states in the QW. Very

high PVCRs have been achieved with RITDs [82, 97], even going up to 144 [97]. Currently

though, as far as I am aware, sub-THz or THz RITD devices have not yet been realised.

1.4 Stochastic Device Variation

As nanoelectronic devices which function based on quantum phenomena [98], like QW

energy level quantisation and tunnelling, RTDs are sensitive to stochastic nanometre-

scale device variations. This includes both the barriers [99–101] and the QW [100, 102,

103]. Such device variation can alter device behaviour and degrade key metrics [7, 104,

105] such as PVCR and resonant peak current. Thankfully, this has not stopped the

development of RTDs for THz applications.

On the other hand, stochastic variation also imbues RTDs with the potential to con-

struct [7, 21, 22] PUFs [23, 24]. PUFs can uniquely identify devices they are placed on

against a manufacturer database, and in the case of integrated circuits [53] deal with the

semiconductor chip counterfeiting issue [54, 55]. Details of RTDs as PUFs are further

expanded upon in section 1.5.

Interface roughness (IR) [68, 104, 105] along the heterostructure interfaces lining the bar-

riers and QW in RTDs affects barrier thickness, which has an exponential influence on

tunnelling probability and thus current [99–101], and QW width, which similarly has a

strong influence on the ground quasibound energy level [106] and thus resonant peak

voltage [100]. The latter is due to the QW formed by RTDs, which can be interpreted as

a finite square QW [106] where the energy levels are inversely correlated to the square of

the QW width. Roughness has become a major issue in semiconductor devices generally
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as they have scaled down to nanometre dimensions [107, 108], and with RTDs especially

due to its impact on the highly sensitive device structure [100]. IR appears in RTDs

composed of different materials [109–112] and RTDs created by different manufacturing

processes [113, 114]. The main degradation in device performance due to IR is an in-

creased valley current [104, 115, 116], which along with a reduction in peak current [104,

115] degrades PVCR. Thankfully, with modern RTDs such variations are limited to mono-

layers [117], which while still having an impact on device performance [99], still allows the

use of RTDs for THz applications.

Semiconductor doping is another factor which RTDs are sensitive to [100] and stochastic

local concentrations in doping are called random discrete dopants (RDDs) [7, 118–126],

and alternatively termed Random Dopant Fluctuations [119, 122]. RDDs are of concern

to modern nanoelectronic devices in general as they have scaled down [7, 118–126]. RDD

research for RTDs[7, 118] indicates the variation caused by taking into account RDDs

for device simulations, and with resonant peak IV values varying to follow normal dis-

tributions [7]. Similarly, a normal distribution of voltage [121–124] and current [124] is

observed with other devices with RDDs in literature such as MOSFETs. RDDs are also

a concern for InGaAs devices [119, 120], indicating that RDDs could be of concern for

manufacturing reproducible THz InGaAs based RTDs.

For RTDs, especially those used in THz applications, uniformity of material composition

is important [99, 127]. Thankfully such issues are not a major concern for THz RTDs,

with a high degree of control over Indium molar fraction in InGaAs RTDs [99, 127] and

in any case such factors have a lower influence on resonant peak IV values in comparison

to thickness or dopant variation [100].
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To summarise, stochastic device variations impact RTDs and cause variations in device

performance, but are still under enough control to allow the manufacture of RTDs for THz

applications. And such variations conversely allow RTDs to construct PUFs to uniquely

identify items they are placed on as explored in the following section 1.5.

1.5 Physical Unclonable Functions

PUFs [23, 128–130] are, as the name implies, physical devices which act as functions with

random outputs for given inputs and which are practically unfeasible to clone. Recent stud-

ies have demonstrated the potential for RTDs with stochastic variation to create PUFs [2,

7, 21, 22]. RTDs can also be integrated onto ICs [22]. This positions RTDs to combat the

major issue of semiconductor chip counterfeiting, which costs billions annually [53, 54]

and causes security issues for infrastructure [55], including military systems [131]. This

section briefly introduces the basics of PUFs in subsection 1.5.1, and discusses the current

state of literature regarding the use of RTDs for PUFs in the following subsection 1.5.2.

1.5.1 PUF basics

PUFs encode information in the format of Challenge-Response-Pairs (CRPs), where for a

given challenge or read request/input a random output in given as the response. Multiple

of these CRPs for a given PUF form a random ‘fingerprint’ which uniquely identifies

that PUF. This means that devices with PUFs can be checked against a manufacturer

database [23], to make sure that the device in question is authentic and not counterfeited.
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The most important aspect of PUFs is their uncloneability [132], which RTDs excel at

due to the stochastic variation they can experience, as discussed in section 1.4, which can

consequently alter device behaviour. The sensitivity of RTD to atomic scale variations in

the RTD, such as the QW [100] and barriers [99–101] or with RDDs [7], means that clon-

ing RTD PUFs would require atomic level manufacturing which makes counterfeiting in

this manner unfeasible [21]. This sensitivity is due to RTDs functioning based on quantum

confinement, which effectively magnifies the effect of this structural variation [132]. Ran-

domness is also an important aspect of PUFs, avoiding patterns in information encoded

in the PUF which could otherwise give attackers a statistical advantage in predicting

responses [132].

Uniformity and uniqueness are two other aspects of PUFs which concerns CRPs within and

between individual PUFs respectively. First addressing uniformity, if bits of information

are assigned to the CRPs within a PUF they can be quantified with the Hamming Weight

percentage [128, 129] as shown below in equation 1.3. Here, rn,m is the value of n out of

p bits of information encoded within PUF m out of q PUFs.

wH = 100%× 1

p× q

q∑
m=1

p∑
n=1

rn,m (1.3)

An ideal uniform distribution results in a Hamming weight of 50% according to equa-

tion 1.3. If the CRPs were to each encode exactly one bit of information, in this case

would mean that on average a CRP within a PUF has a 50% chance of encoding a ‘1’ bit

state, with this as an average for multiple PUFs. Hence, an attacker would not be able to

gain a statistical advantage by knowing that one state is more likely than the other.

Uniqueness on the other hand refers to the difference between PUFs, or the inter-chip

Hamming Distance [128, 129] which should also in an ideal case lead to 50% in equa-

tions 1.4 and 1.5.

H inter
D = 100%× 2

p× q(q − 1)

q−1∑
i=1

q∑
j=i+1

HD(Ri, Rj) (1.4)
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H inter
D = 100%× 2

p× q(q − 1)

q−1∑
i=1

q∑
j=i+1

p∑
n

|rn,i − rn,j| (1.5)

Ri and Rj refers to the bit-strings, composed of p bits, respectively within the PUFs i

and j out of q PUFs. The Hamming Distance HD between Ri and Rj is the number of

bits which are different between them, leading to equation 1.5. Another way of looking at

uniqueness is that a given CRP located within a PUF should not be biased to a particular

value, so if exactly one bit were to be encoded in each CRP then the chance of encoding

a ‘1’ bit state within the CRP n would be 50% when averaged over multiple PUFs.

Reliability, or repeatable measurements, is another aspect which means that repeated

measurement under different conditions achieve the same results. A way of quantifying

the bit error rate is the intra-chip Hamming Distance H intra
D [128, 129] as shown below in

equation 1.6, which can be subtracted from 100% to get the reliability.

H intra
D = 100%× 1

p× q × s

q∑
m=1

s∑
t=1

HD(Rm, R
′

m,t) (1.6)

Within equation 1.6 the bit string of length p measured for a PUF under normal condi-

tions is Rm, and is compared against measurements of the same PUFs under s different

conditions which each result in a bit string R
′
m,t. The Hamming Distance comparisons

can then be averaged among PUFs to get a measurement of bit error rate, or reliability

with 100%−H intra
D . In the context of reliability, RTDs are reliable even with temperature

variation [22] because near room temperature RTDs do not experience much dependence

on temperature [133].

To summarise, a good PUF is one which is unclonable and random, with a high uniformity

within a PUF and a high uniqueness between PUFs, which can also be read reliably. This

means that in an ideal case the respective values are a Hamming weight of 50%, an

inter-chip Hamming Distance of 50%, and an intra-chip Hamming Distance of 0%.
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PUFs can be further separated into weak and strong PUFs [134], which depends on how

well their quantity of CRPs scales with device size. Generally speaking weak PUFs do not

scale as well, with linear or low-order polynomial scaling, while strong PUFs can scale

exponentially or with high-order polynomial scaling. The key difference this introduces is

that weak PUFs can have all their CRPs measured to create a virtual model of the device,

without actually cloning the device, whereas this is not feasible for strong PUFs. This

consequently means that for weak PUFs authentication needs to be carried out through

in situ measurement next to the device, rather than by remotely requesting responses to

challenges. Conversely, for strong PUFs with large enough CRP sets there is even the

potential to only use each CRP set once, which is helpful for secure communications while

protecting against third parties [132].

A review article discussing different types of RTDs is [134] which attempts to classify the

different types of PUFs, including RTDs, and is useful for further reading on the topic of

PUFs as a whole.



1.5. Physical Unclonable Functions 19

1.5.2 RTDs as PUFs

Figure 1.5: A scatterplot (figure a) of resonant peak IV values and attached histograms for
the Vr (figure b) and Ir (figure c) for RTDs simulated with RDDs [7] in chapter 4. This figure
is licensed under CC BY 4.0, attached to an archived copy of [7] held by the University of
Glasgow. The University of Glasgow has an agreement with IEEE allowing authors to self-
archive manuscripts with an attached CC BY licence. © 2024, IEEE.
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Figure 1.6: Combined figure [2] of schematic of a 3 RTD PUF array in figure(a) and an IV
characteristic response in figure(b), from Figures 4 and 6 respectively of the paper [2]. Within
figure(a) ‘Vchallenge’ is the input bias voltage, ‘Iresponse’ is the output current, ‘SW’ refers to
the bilateral/analogue switches [135], and ‘SWBp’ refers to the bypass switches which can be
used to bypass certain RTDs if they fail [2]. A further explanation of the schematic array in
figure(a) and the IV characteristic in figure(b) is given in the paper [2]. The figures [2] used
in this combined figure are licensed under CC BY 4.0.

While RTDs are weak PUFs, they have nonetheless attracted a research focus due to

their robustness to repeated measurements leading to a strong bit error rate, and their

dependence on atomic scale variation which makes reproducing them for counterfeiting

purposes unfeasible.

There is also the potential for RTDs to create strong PUFs [2, 132] by combining mul-

tiple RTDs in series to achieve a complicated IV characteristic with greater scaling of

CRPs. This is seen in Figure 1.6 from a recent proof of concept study[2] on encoding of

information in the PDR of RTDs which form an array.

RTDs also have the potential to be integrated onto CMOS chips [22], positioning them

for combatting chip counterfeiting [53, 54].
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Since RTDs have potential for use in wireless and 6G technology [19], this opens up the

possibility of use in security schemes involved in such. Even on a small scale with 128 bits,

the popular Advanced Encryption Standard can be used to encode wireless devices [136],

which is more than feasible with one RTD PUF paper [22] mentioning the ability to

construct 50000 devices on one 8 inch wafer.

RTDs are classified under the category of quantum PUFs [134], and make use of quantum

confinement to magnify the effects of atomic variation. Information can be encoded in the

resulting variation in the resonant peak IV values [7, 22].

Even more than one bit can be encoded into an RTD, by using Vr and Ir variation simultan-

eously [7, 9], as quantified by min-entropy [137]. Min-entropy [137] Hmin = −log2(Pmax),

where Pmax is the probability of the most likely outcome, is the most conservative measure

of information stored in probabilistic systems. Such a probabilistic system can be obtained

by splitting the distribution of resonant peaks values into 4 quadrants and then measuring

probabilities for each quadrant such as seen in Fig. 1.5.

RTDs have also been demonstrated for the related concept of random number genera-

tion [138]. Currently, the use of RTDs as weak PUFs is promising yet research is limited,

with no applications utilising RTD PUFs for security demonstrated yet.

1.6 Issues and Countermeasures

Thermionic emission over barriers is a major point of concern for RTDs, and a limiting

factor for the range of bias over which RTDs can perform with their nonlinear IV char-

acteristic and also the PVCR [139]. Thermionic emission is the emission of high energy

electrons over the CBM barriers [47]. For great enough bias, thermionic bias dominates
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resonant tunnelling current, destroying the NDR which would correspond to higher QW

quasibound energy levels. For RTDs with limited barrier heights like with a GaAs body

and AlGaAs and AlAs barriers, this is of particular concern. The most obvious coun-

termeasure to thermionic emission is using heterostructure barriers with a greater offset,

which has motivated the incorporation of Indium to form InGaAs/As RTDs as noted

in subsection 1.3.1. The greater barrier height offered by such InGaAs RTDs suppresses

the contribution to valley current from room temperature thermionic emission, thereby

increasing PVCR [63].

Strain in RTDs is a consequence of different lattice constants for the materials compos-

ing RTDs [59]. Strain imposes a critical thickness[59, 64], beyond which the formation of

dislocations is energetically favourable [59], which partially motivates the extremely nar-

row central device dimensions observed in THz InGaAs based RTDs [43, 69–72]. Strain

compensation [95, 102] is a technique where tensile and compressive strains of layers can

compensate for each other, thereby surpassing the critical thickness limit [140]. Strain

can also be used intentionally such as for InP substrate InGaAs/AlAs RTDs [140], where

the AlAs barriers are under tensile strain [102] with lattice constant smaller than the

InP substrate and consequently their CBM increases, which leads to greater barriers. The

compressively strained InGaAs QW also leads to a lower energy CBM, and consequently

a reduced quasibound ground QW level and therefore a reduced resonant peak bias [65].

Strain can also be used to reduce contact resistance, by avoiding lattice matching with

the substrate for the parts of the RTD in contact with electrodes [65, 72]. Further details

of strain in RTDs can be found in the following PhD thesis [140].

Resistance is a limiting factor for RTD device performance including power and fre-

quency [141] as noted in subsection 1.7.4, and is composed of multiple parts including

contact, spreading and bulk resistances. Contact resistance is the resistance between the

RTD semiconductor and the metal contacts. Heavy doping of the layers in contact with

the metal electrodes are used to reduce Ohmic contact resistance [65, 72]. As noted above,

indium rich strained layers [65, 72] are also used to reduce contact resistance. Increasing
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mesa area is another method that leads to a reduction in contact resistance [141], though

this also increases current and thus causes self heating effects and additional parasitic

resistance [141]. A mesa is the cross-section of the semiconductor nanoelectronic device,

such as an RTD.

The spreading resistance associated with current spreading from the mesa to the under-

layer connecting the RTD to the contact [141–144] is another contribution to RTD resist-

ance, which is due to the skin effect which becomes greater as frequency increases [141–

143]. The spreading resistance can be minimised through reducing the dimensions of this

highly doped layer connecting the RTD to the contact to submicron sizes [67, 141, 142,

144], and even more so by removing it [72]. Bulk resistance of the RTD mesa itself [145]

is also another component of RTD which needs to be taken into account [67, 141], and

can be reduced with smaller device lengths and through doping [146].

As noted in section 1.4, IR [104, 115, 116] increases valley current and thus degrades

the PVCR of RTDs. Moreover, IR variation is stochastic, which is problematic for the

reproducibility of RTDs. To combat the influence of IR, there is a focus on achieving a

high degree of uniformity [99, 117].

Thermal effects are important to take into account for RTDs and have motivated in-

novations, such as graded emitters [34, 67] and subwells [66], which are seen in RTDs

that have achieved THz frequencies. Self heating [147, 148] occurs due to resistive losses,

which can become more of an issue with higher current densities and resonant peak voltage

Vr. Thermally activated current contributes to and increases valley current Iv, and con-

sequently reduces the PVCR and the theoretical maximum power of an RTD [127], which

is Pmax = 3
16
(Vv −Vr)(Ir − Iv). Though for valley current, thermal current is less of a con-

cern than structural imperfections brought about by IR [127]. While temperature variation

has been found to cause variations in output power [133] due to resistive losses in a THz

RTD oscillator [72], this was minimal around room temperature [133]. Thermal break-
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down is a major concern for high frequency RTDs, which is exacerbated by the trend of

using thin barriers to achieve high current densities [149]. Thermal breakdown is a break-

down of nanoelectronic devices due to resistive heating, which can occur at high currents.

RTDs with large mesa areas are also prone to thermal breakdown [40]. Hence, consider-

ations in managing thermal effects are to not have too great of a current density [149]

and mesa size [40, 141]. Thermal degradation is a related issue resulting in alterations

in the IV characteristic [150]. Under accelerated ageing simulated with thermal anneal-

ing [150], the degradation of Ohmic contacts and the alteration of the IV characteristic

has been observed. Metal contacts are a point of concern for such thermal degradation

which motivates the use of contact materials which are thermally stable at high temper-

ature [151], such as TiW [152], though currently stacked Ti/Pd/Au contacts [40, 153] are

more widely used in RTD literature. Minimising the resonant peak bias Vr is a key way

to minimise self heating, through reducing the energy difference at zero bias between the

ground quasibound energy level EQW and the emitter Fermi level EF,E, depicted in Fig-

ure 1.1(a), such as through graded emitters [34] and subwells [66]. Graded emitters [34,

67] with a raised CBM due to a lower Indium mole fraction, and which vary the indium

concentration in layers, raise the emitter Fermi level EF,E. Indium rich QWs [65, 100] and

InAs subwells [66, 100] both achieve the purpose of lowering the QW quasibound ground

energy level with respect to the emitter region. Rapid thermal annealing has also been

found to be a potential means to reduce the bias peak voltage Vr [154]. Heatsinking is

also recommended [127] as a way to manage temperature, such as through embedding a

highly doped InP layer in the InP substrate to dissipate heat away [151].

While doping is a crucial part of RTD design which increases charge mobility [146], it

also leads to RDDs [7, 118–126] as discussed in section 1.4. As also mentioned previously,

doping helps reduce contact [65, 72] and bulk resistance [146], and the source and drain

regions are often highly doped [3] to achieve high current densities. High n-doping in the

emitter region [63] increases the current density. Doped collector layers are also important

for reaching high frequencies of operation [155]. Less doped spacer layers are needed to

surround the central RTD structure including the barriers and the QW, in order to protect
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this active region from this diffusion of dopants during wafer growth [63, 156], due to the

large influence which RDDs can have on the IV characteristics there [7]. Even just having

RDDs in the source and drain regions can potentially have a stochastic effect on IV

characteristics [7, 118]. Depending on the doping process used, lattice mismatch can also

be influenced to either increase or decrease as doping concentration increases [157].

Phonons [158, 159], which are lattice vibrations, need to be taken into account for mod-

elling RTDs [47, 160–162] due to their influence on RTD mechanisms, such as being

absorbed or emitted by incoming electrons to assist with resonant tunnelling [47]. The

PVCR is reduced due to phonon scattering [160], and a replica phonon peak can appear

in the valley regions due to phonon assisted inelastic scattering [163]. A further discussion

of phonons in RTDs can be found in the following textbook chapters [158, 159].

Beyond the direct bandgap Γ valley which forms the CBM, intervalley scattering [159,

164] involving the indirect bandgap L [65, 165] and X [159, 166] valleys also contributes

to RTD operation. Indeed, one of the motivations for graded emitters was to suppress

transitions to the indirect L valley [34, 167], which are believed to possibly contribute to

the transition time in the collector region of the RTD.

1.7 RTDs for THz electronics

This section reviews research on RTDs as THz devices, starting with the introduction

of the ‘THz gap’ [20], before reviewing RTDs oscillators and the powers and frequencies

achieved by them. Following this, a brief overview of RTDs as THz detectors is made,

before finishing with design of device considerations for RTD oscillators.
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1.7.1 THz gap

The ETSI (European Telecommunications Standards Institute) defines the frequency band

of 100GHz to 10THz as ‘THz’ [168], which corresponds to wavelengths ranging from 3

millimetres to 0.03 millimetres due to the relation λ = c
f
, hence another name for THz

radiation is millimetre waves. The THz band of electromagnetic radiation has been re-

ceiving attention [16], which can be explained by the wide range of applications enabled

by THz electronics, which range from sensing [20, 48, 169] to high-speed telecommunica-

tions [19]. Historically there has been a lack of mass-producible options for the generation

and detection of THz waves, which has been referred to as the ‘THz gap’. In order to fill

this gap, multiple competing technologies are under development [16], including RTDs.

As seen in the following subsections 1.7.2 and 1.7.3, over the past two decades research

has been pushing RTDs to fill the THz gap, and has made it a strong contender [16].

Further recommended reading on other THz devices under development is the following

chapter [16].
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1.7.2 RTD Oscillators

Figure 1.7: Scatterplot of powers and fundamental frequencies achieved by single RTD os-
cillators. The labels correspond to the following papers with the most recent ones listed first:
a [4], b [69], c [70], d [43], e [71], f [72], g [73], h [170], i [171], j [172], k [34], l [173], and
m [33]. Note that the marker ‘g’ overlaps on the ‘e’ marker because both have reported powers
of 40µW [71, 73] and frequencies of 510GHz [73] and 507GHz [71] respectively.
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Figure 1.8: Scatterplot of powers and frequencies achieved by arrays of RTDs, including
oscillators making use of 2 RTDs. The labels correspond to the following papers with the most
recent ones listed first: I [36], II [37], III [38], IV [39], V [40], VI [41], VII [42], VIII [43], and
IX [174].

RTDs when coupled with lossy resonators, like an LC circuit, can compensate for these

losses when biased into the NDR, leading to an oscillator with energy moving back and

forth between these components. With room temperature quantum tunnelling, the funda-

mental operation frequency of RTD oscillators reach into THz frequencies [35, 72], opening

up the potential for RTDs as THz devices [16]. RTD oscillators act as DC to Resonant

Frequency (RF) converters, and if the resonator includes an antenna as the load then this

power can be radiated out through the antenna [175]. Powers and frequencies achieved

for single RTD oscillators, with fundamental frequencies, and RTD arrays are depicted in

Fig. 1.7 and Fig. 1.8 respectively.
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Figure 1.9: Figure(a) is a schematic diagram of an amplitude-modulated(AM) continuous
wave THz RTD radar and figure(b) is the error evaluated for different distances. This figure
is from the following paper [3]. In figure(a) a sinusoidal modulation signal generated by the
signal generator (SG) is superimposed on the bias voltage which causes the RTD signal to be
amplitude-modulated, thus leading to an emitted AM-THz signal which hits a target object.
The reflected signal is measured by a detector, in this case a Schottky barrier diode (SBD),
which also demodulates the AM-THz wave to re-extract the sinusoidal signal. The time of
flight (ToF) of the AM-THz signal is determined by the phase difference between a reference
signal from the SG and the demodulated signal. Further discussion regarding this figure is
given in [3]. This figure [3] is licensed under CC BY 4.0.

One way of using THz RTD emitters is for THz radar [3], as shown in Fig. 1.9 which is

from [3].

There are different types of oscillators developed, with slot antennas [4, 36, 38, 145, 170–

172, 176] being the dominant modality which has achieved nearly 2THz fundamental fre-

quencies [35, 72]. The output of the slot antenna is then often directed with a hemispherical

Si lens [33, 35, 72].



1.7. RTDs for THz electronics 30

Figure 1.10: A schematic of a slot antenna [4] setup. The MIM (metal-insulator-metal)
capacitor is formed by a separation of the upper and lower electrodes. The slot antenna is
formed by a gap in the lower electrode and neighbouring dielectric and the highly n++ doped
InGaAs layer. The ITO (indium-tin-oxide) shunt resistor suppresses parasitic oscillations at low
frequencies. This figure [4] .is licensed under CC BY 4.0.

A schematic of a slot antenna RTD setup is seen in Fig. 1.10, where the top and bottom

electrodes form a MIM (metal-insulator-metal) capacitor and a slot gap in the lower elec-

trode and neighbouring layers forms the slot antenna. The MIM acts as a short circuit,

which allows current flow [177], at the operating frequencies of the RTD oscillator and

an open circuit, which stops current flow [177], with a DC voltage. The ITO (indium-

tin-oxide) stabilising shunt resistor is there to suppress parasitic oscillations at low fre-

quencies [4, 141]. Recommended reading for further explanations of slot antenna RTD

oscillators includes [4, 176].



1.7. RTDs for THz electronics 31

Split ring oscillators [70] are a recent development on top of slot antenna oscillators [149].

For this, MIMs are first removed from the slot antenna [178], along with stabilising resist-

ors being placed on either side of the slot. To combat the limited oscillation frequency due

to the Ohmic loss of these stabilisation resistors, the split ring resonator is used [70, 179,

180], which concentrates the electric field at the split gap and thus reduces loss [70]. The

benefit of split ring oscillators is the simplification of manufacturing through the removal

of MIMs [149]. A reduced variation in resonators due to this simplification in manufac-

turing [180] also provides potential for building large arrays with these resonators [149].

Slot-ring oscillators [39, 42, 181, 182] are a recent development of dual RTD planar arrays

using one or two slot-ring antennas [39] which promise high directivity and power [39] along

with THz frequencies [181, 182] of operation. High powers over 1mW with frequencies

greater than 600GHz have also been very recently achieved with a dual RTD slot-ring

array integrated with a cavity resonator [37].

Patch antennas are another RTD oscillator configuration which have made use of two

RTD arrays [40, 183] to achieve THz operations with fundamental frequencies [40]. With

a greater array of 72 RTDs and 36 patch antennas [41] powers over 10mW and a high

directivity, potentially not requiring a Si lens to focus, has been achieved. An integration

of patch antennas with a slot resonator RTD oscillator can also replace the use of a Si

lens [73].

Terminated stubs of coplanar waveguides or microstrip lines can also be used to construct

RTD oscillators [43], resulting in relatively high powers ranging up to 1mW above 200GHz

in the case of microstrip lines, with output waves guided by coplanar waveguides. Coplanar

waveguides can also be integrated into other oscillators, such as a patch antenna RTD

oscillator [69].
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Similar to patch antennas, Yagi-Uda [184] and Vivaldi [66] antennas have both been used

to direct radiation in place of Si lens for slot antenna RTD oscillators which have achieved

THz frequencies. Radial line slot antennas [71] have achieved a similar focussing feat with

a circularly polarised output. Advantages of such a circular polarisation, as opposed to the

more common linear polarisation [3], are that wireless communications can continue even if

receivers and transmitters rotate [149] and a robustness [3, 185] to external reflections [186]

since the polarisation of reflected waves rotates in the reverse direction [185].

Varactor diodes can be used to vary the frequency of operation of RTD oscillators [187],

making it useful for applications such as spectroscopy [52]. Varactor diodes can also be

used to suppress linewidths of RTD oscillators (measured as Full-Width-at-Half-Minimum)

to less than 1 Hz [188, 189] from values of the order of 1 [188] to 10 [189] MHz. A fur-

ther explanation of varactor diodes in RTD oscillators is given in the following review

article [3].
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1.7.3 THz Detectors

Figure 1.11: IV characteristic of an RTD detector [6]. Direct detection occurs when the
RTD is biased in the PDR (Positive Differential Region) of current close to the resonant peak
(labelled A and B) due to strong non-linearity in current. Coherent detection makes use of the
NDR (Negative Differential Resistance), which is similarly annotated and labelled, wherein the
RTD acts as an oscillator. This figure is sourced from a paper[6] first published and copyrighted
by Engineers Australia© 2011, Engineers Australia.

Aside from being THz sources, RTDs also function well as THz frequency detectors. This

dual-capability as transmitter and receiver in the THz regime positions RTDs for high

speed wireless communication [19] and for imaging [20]. Detection modes for RTDs can be

split into two modes [19, 20], direct detection [6, 94] and indirect/coherent detection [50],

with the regimes noted in Fig. 1.11. Direct detection with RTDs occurs when the bias is in

the PDR (Positive Differential Region) of current, with bias lesser than the resonant peak

Vr, and depends on the non-linearity in current and is hence the greatest near the resonant

peak Vr [6]. RTD detectors have been found to be more sensitive than Schottky barrier
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diodes (SBD) at room temperature at 300GHz [6], though with a lower dynamic range in

detectable frequencies due to being positioned close to the Vr in these cases, where a high

enough amplitude can perturb the RTD state into the NDR [19]. Triple barrier RTDs [94,

96], where current depends on alignment between the energy levels in the two QW, have

also been manufactured as direct detectors with a highly non-linear IV characteristic at

zero bias. This zero bias operation of triple barrier RTDs has the advantages of reducing

noise, thus increasing sensitivity, and of reducing the need for circuitry to bias the RTD,

thereby making it more compact and power-efficient [94].

Coherent detection [50, 190] is a relatively recent development for RTDs [19, 20]. Coherent

detection has been shown to be much more sensitive than direct detection in a comparison

at 300GHz [50] and promises the measurement of data beyond just amplitude, including

phase, frequency, and polarisation. A further explanation of coherent detection is given in

the following papers [50, 190].

1.7.4 Design of Device

RTD oscillators can be designed to achieve higher powers and frequencies of operation

as THz devices. This subsection will briefly touch on such design considerations beyond

what was covered in sections 1.4 and 1.6 which focus on the issues faced by the RTD

device itself.
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Figure 1.12: Annotated IV characteristic of a simulated RTD [9]. The NDR (Negative Dif-
ferential Resistance) between the resonant peak Ir at Vr and the valley Iv at Vv is highlighted
blue. This figure [9] is licensed under CC BY 4.0.

RTD oscillators work due to RTDs themselves possessing a negative differential conduct-

ance which can compensate for the load of antenna, leading to the oscillating behaviour,

but this is frequency dependent [14] and limited by internal and external conditions which

impose a frequency limit [191]. Internal to the RTD is the time it takes for charge to travel

through the device, which has encouraged the manufacture of thin RTD dimensions [43,

69–72], and external issues are device parasitics such as contact resistance, for which

measures to minimise are noted in section 1.6. Maximum theoretical power, without tak-

ing into account impedance matching [175, 192] and parasitics, can be estimated as [127]

Pmax = 3
16
(Vv −Vr)(Ir − Iv), hence increasing current and PVCR are key ways to increase

power.



1.7. RTDs for THz electronics 36

Reducing the conductance loss which needs to be compensated [72] is a method to achieve

higher frequencies, such as by thickening antenna electrodes [149]. Conductance loss can

also be reduced by integrating cavity resonators onto RTD oscillators [37] to achieve very

high frequencies [193, 194]. This increased area, and thus current, brought about by cavity

resonators along with reduced current loss has also helped to achieve a power exceeding

1mW above 600GHz [37].

Reducing thicknesses for device sections such as the barrier and the QW reduces the transit

times [67] for electrons, and thus increases the frequency of operation. Such a reduction in

thicknesses also increases the current density [141], and thus the output power of RTDs,

albeit at the cost of heating and possible thermal breakdown as noted in section 1.6. This

increase in frequency and power has motivated the use of very thin ∼1nm barriers, such

as with the first room temperature THz RTD [34], and thin QWs [67, 72]. Optimising the

spacer regions [63, 65, 67, 156, 170, 187] is also a way to reduce transit times associated

with them. Though, protection against unwanted dopants [7] entering this active device

region during manufacture limits how thin spacers can be [63, 156].

Using higher harmonics [33, 181, 191] is another method to achieve higher frequencies

than the fundamental frequency, albeit at the cost of reduced output power.

Current can be increased through measures such as increased mesa size [195], though

as noted in section 1.6 this needs to balanced with self-heating effects such as thermal

breakdown in these large mesa areas [40]. Decreasing valley current can be done through

better more uniform smooth RTDs with less IR [127], which is another way of increasing

PVCR and thus power. Impedance matching [175, 192] between the RTD and antenna is

an important factor in maximising RTD output power [174]. Directivity of RTD output

is also important, which is a reason for the use of Si lens [33, 35, 72] or other additional

antennas integrated on an RTD oscillator as noted in subsection 1.7.2.
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As mentioned in subsection 1.7.2, arrays of RTDs are a method to increase output power,

with it being a focus of a lot of recent research [36–43], with resulting powers and fre-

quencies displayed in Fig. 1.8.

1.8 Conclusion

This chapter serves as an introductory guide to RTDs, their theory of operation, variations

and other issues and corresponding countermeasures for them, and RTDs as THz devices

and PUFs. RTD research has developed to the point where applications as THz devices

and PUFs are within reach. A direction for future RTD research is to focus on realising

RTDs for such applications.



Chapter 2

Theory and Methods

2.1 Introduction

This chapter serves as an introduction to the theory involved in performing RTD research

with the modular technology computer-aided design (TCAD) nano-electronic simulation

software (NESS) under development at the University of Glasgow.

38
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Figure 2.1: Schematic of the modular structure of NESS, from [5]. Of these modules, this
thesis makes use of the structure generator, the NEGF solver, and the Poisson solver. This
figure [5] is licensed under CC BY 4.0.
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To simulate RTDs, a Structure Generator module is necessary to first generate the device,

which is explored in the following section 2.2. This device generation includes variation

such as RDDs and IR in subsections 2.2.2 and 2.2.3 respectively. Within the aforemen-

tioned subsections additions to NESS over the source of this thesis are noted; the ability

to choose RDD generation probability on top of a separate smooth doping, and the ad-

dition and development of IR. These additions to NESS are then made use of later in

chapters 4 and 5, which study RDDs and IR respectively. As nanoelectronic devices, elec-

trostatic potential needs to be taken into account during simulations. For this, NESS

has a Poisson Solver module which can solve the Poisson equation to get the electro-

static potential profile, which is briefly explained in section 2.3, depending on the charge.

This charge as well as current can be obtained from the non-equilibrium Green’s function

(NEGF) solver module, which is covered in section 2.4 and itself depends on the potential

profile. Before this thesis began, NESS could already self-consistently solve the Poisson

and NEGF solver modules to capture the quantum behaviour that define RTDs such as

energy-dependent quantum tunnelling, and sections 2.3 and 2.4 describe their capabilit-

ies. This self-consistent loop is then repeated for each bias voltage specified. A schematic

describing the modular structure of NESS is shown in Fig. 2.1. Finishing off this chapter,

a smooth ‘baseline’ RTD is shown in section 2.5.
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2.2 Structure Generator

2.2.1 Device Generation

Figure 2.2: An example of a heterostructure nanowire structure created by the structure
generator of NESS [196], with materials for mesh cells visualised. This nanowire is composed
of 1nm wide cubic cells, with dimensions of 8nm×3nm×3nm, and GaAs material composes
the first 4nm along the X axis, and Al0.3Ga0.7As composes other 4nm.
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Figure 2.3: An example of an n-doped nanowire structure created by the structure generator
of NESS [196], with dopant concentration NDcm

−3 visualised. This nanowire is composed of
1nm wide cubic cells, with dimensions of 8nm×3nm×3nm, with a base dopant concentration
of 1×1015cm−3 and a raised dopant concentration of 2×1018cm−3 for the nodes composing
the first and last 2nm along the X axis.

The structure generator in NESS generates devices with a 3D cuboid mesh, with a chosen

doping for the nodes and chosen materials filling the cuboid mesh cells. A key advantage

of the structure generator in NESS is the inclusion of device variation [196], of which I

have made use of RDDs and IR as noted in subsections 2.2.2 and 2.2.3 respectively.

An example of an n-doped heterostructure device generated by the structure generator is

shown in Fig. 2.2 and Fig. 2.3, which respectively visualise the material type in cells and

the dopant concentrations assigned to nodes bounding the cells.
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Figure 2.4: This figure is a schematic of a Al0.3Ga0.7As/GaAs RTD from [7]. The dimensions
are 55nm×10nm×10nm, with 2×1018cm−3 n-doped source (0nm-19nm) and emitter (36nm-
55nm) GaAs regions and a central 1×1015cm−3 n-doped heterostructure region. This central
region is composed of 3nm GaAs spacers (19nm-22nm and 33nm-36nm) enclosing two 3nm
Al0.3Ga0.7As barriers (22nm-25nm and 30-33nm) and a 5nm GaAs QW (25nm-30nm) in the
middle. This figure is licensed under CC BY 4.0, attached to an archived copy of [7] held by
the University of Glasgow. The University of Glasgow has an agreement with IEEE allowing
authors to self-archive manuscripts with an attached CC BY licence. © 2024, IEEE.

A visualisation akin to Fig. 2.2, except for RTDs is Fig. 2.4

2.2.2 Random Discrete Dopants

Figure 2.5: RTD with RDD (Random Discrete Dopant) positions shown as green spheres.
The GaAs body and Al0.3Ga0.7As barriers are both partially transparent volumes, which are
blue and red respectively, to allow the visualisation of RDDs.
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Figure 2.6: Frequency distribution of RDDs (Random Discrete Dopants) generated for 75
RTDs generated within this chapter, with a fitted Poisson Probability Mass Function curve. De-
tails of the Poisson Probability Mass Function formulation and parameters (N=75, µ=4.348,
and ∇k=2.261) are noted within the inset. N is the total number of RTDs and k is a variable
describing the number of RDDs, corresponding to the ‘x’ axis in the plot.

RDDs (Random Discrete Dopants) are a feature of NESS used to take into account statist-

ical variability [7, 118, 197], which can be defined during device creation by the structure

generator, where discrete points of doping implanted within the mesh cell volumes rep-

resent ionised dopant atoms in nanometre-scale devices instead of using a smooth doping

distribution. As devices have shrunk to the nanometre scale, taking into account the

discrete variation of semiconductor doping is increasingly important [198].

The possible positions of RDDs in NESS by default follow a face-centred-cubic lattice

structure as seen with diamond and silicon, modelled as if an RDD had substituted a

lattice position, with the lattice parameter of 0.543nm chosen by default. Unfortunately,

I only noticed this after completing chapter 4, but thankfully it will lead to a similar
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RDD distribution as with the case of using a lattice parameter of 0.565nm [45] due to the

probability of RDDs appearing within a given device volume being independent of this

lattice parameter and instead depending on the doping concentration. At each possible

RDD position, there is a probability of an RDD appearing, and a randomly generated

number is compared with this probability. If the randomly generated number is less than

this RDD probability, than an RDD is added to that point. By default, the probability of

RDDs appearing in a region chosen to have RDDs is linearly proportional to the defined

doping level multiplied by the volume corresponding to that RDD point. I modified the

structure generator RDD probability to also be able to be manually chosen, by allowing

the choice of an effective doping level for RDDs which feeds into the probability of RDD

occurrence. This modification also means that RDD doping can be applied on top of a

base ‘smooth’ doping, and has been used to explore the impact of RDDs in the published

paper [7], and chapter 4 which is based on it.

The frequency distribution of RDDs generated for a given RTD device follows a Pois-

son Mass Function as shown in Fig. 2.6 which corresponds to the RTDs with RDDs in

chapter 4.

For the case of n-type doping, as seen in the simulated RTD in Fig. 2.5, the RDDs are

donor dopants and the surrounding mesh nodes have greater n-type doping, which is taken

into account when the Poisson solver calculates the electrostatic potential. This doping

is of the same type as the doping chosen in a region of the device, which for the RTD is

p-doping with RDD donor dopants.
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Whichever mesh cell is within RDD leads to a raised dopant value for the surrounding 8

mesh node vertices dependent on how close they are to the RDD. The doping added for a

node at rN = xN x̂+yN ŷ+ zN ẑ with a dopant at rD = xDx̂+yDŷ+ zDẑ is proportional to

(1− |xN−xD|
∆x

)(1− |yN−yD|
∆y

)(1− |zN−zD|
∆z

), where mesh spacing is given by ∆x, ∆y, and ∆z.

Furthermore, the doping value added by the RDD to a given node is inversely proportional

to the volume which corresponds to the node. Research on the impact of RDDs on RTD

performance is explored in chapter 4.

2.2.3 Interface Roughness

Figure 2.7: Figure(a) is created using AFM (Atomic Force Microscopy) image data of an
Al0.3Ga0.7As surface, which was graciously provided by the authors of [1]. Figure(b) is an
autocorrelation function analysing the height data from figure(a) (along the x-axis), shown as
a black solid line, with correlation length LC=22.6nm fitted. Here Gaussian and exponential
functions are fitted as dashed blue and dotted red lines respectively.
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Figure 2.8: GaAs/Al0.3Ga0.7As RTD with IR (Interface Roughness) along the Al0.3Ga0.7As
barriers [8], which has a correlation length of 2.5nm and an RMS (Root Mean Square) asperity
of 0.3nm. The GaAs is a partially transparent blue volume to allow the visualisation of the IR
on the red Al0.3Ga0.7As barriers. This figure [8] is licensed under CC BY 4.0.

Figure 2.9: Average exponential autocorrelation function (black solid line) for 25 randomly
generated RTDs, with IR (Interface Roughness) along all Al0.3Ga0.7As/GaAs interfaces [8].
An exponential autocorrelation function fit (red dashed line), e−|x|/LC , is plotted as well. This
figure [8] is licensed under CC BY 4.0.
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IR [199, 200] appears in heterostructure interfaces between two materials when manufac-

turing quantum devices like RTDs, hence it is important to include it in RTD simula-

tions [104, 105]. RTDs are sensitive to such variations in device structure [105], such as

QW thickness [103] and the two tunnelling barriers [101] which enclose the QW. Respect-

ively, tunnelling probability through a barrier and the energy levels of a QW depend on

these thicknesses. Multiple factors influence IR, including manufacturing process condi-

tions [113, 114], and the mole fraction of Al for AlxGa1−xAs/GaAs [201]. IR also appears in

RTDs composed of different materials [109–112], where similarly the manufacture process

controls IR formation.

Previously only surface roughness was implemented in NESS [13], and IR is an exten-

sion of this. The IR functionality generates roughness along flat heterostructure interfaces

normal to current flow, with a correlation length LC and root-mean-square (RMS) as-

perity variation ∆RMS from this interface. To justify the implementation of IR for the

Al0.3Ga0.7As/GaAs interface, I have analysed an AFM (atomic force microscopy) image

of Al0.3Ga0.7As in Fig. 2.7. I was graciously provided the raw RGB colour AFM image cor-

responding to Figure 4(d) in [1]. This was converted into greyscale with the ITU-R 601-2

luma transform (which converts RGB colour values as L = R× 299
1000

+G× 587
1000

+B× 114
1000

)

and sampled a central 400-by-400 pixel section, resulting in Fig. 2.7(a). For the image 205

pixel-lengths correspond to ∼1µm, so the dimensions of Fig. 2.7(a) are roughly 1.95µm

by 1.95µm. To extract height data z for each pixel, I rescaled the 8 greyscale shading

distribution to have the provided RMS standard deviation of 0.401nm for this image and

centred this distribution on the mean of ‘0’. I then sampled the greyscale image in a line

across the ‘x’ axis for each ‘y’ value, to calculate its autocorrelation function (ACF) for

that ‘y’ value in the following equation 2.1.

R(r = md) =
σ2

N −m

N−m∑
i=md

zi × zi+m (2.1)
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In equation 2.1 d is the pixel density of ∼4.88nm, N is the length of the line array (400

pixels), and r is the displacement between two points (separated by m pixels). The mean

ACF for different ‘y’ values was then plotted in Fig. 2.7(b) as a black line. From Fig. 2.7(b),

I fitted a vertical line for the correlation length LC=22.6nm where the ACF drops to e−1.

Based around this correlation length I also fitted two commonly used ACF for simulating

IR [202], the Gaussian correlation function e
−
(

x
LC

)2

and the exponential correlation func-

tion e
−| x

LC
|
, as blue and red dashed lines respectively. The exponential ACF in Fig. 2.7(b)

visually appears to be a better fit, so this has been used for IR simulations going forward

in this thesis. For Al0.3Ga0.7As/GaAs experimental [199] and simulation [200] papers RMS

roughness height ∆RMS is roughly ∼0.24-0.3nm, corresponding to the monolayer thick-

ness [200] ∼0.28nm of Al0.3Ga0.7As and GaAs, which itself is half the lattice constants

of both [45]. With the isometric lattice spacing of 0.2nm used in my RTD simulations,

it seems appropriate to choose an RMS 0.3nm because it is exactly 1.5 times this lattice

spacing. This also fits in with the exploration of evenly spaced RMS asperity parameters

(of 0.1nm, 0.2nm, 0.3nm, 0.4nm, 0.5nm, and 0.6nm) in section 5.3, differing from each

other by increments equal to half the lattice spacing of 0.2nm. Hence, the default value

of ∆RMS used going forward in chapter 4 is 0.3nm.

Roughness, as originally implemented in NESS was parallel to the direction of current

transport, the ‘x’ direction [13]. I extended this to work along flat heterostructure planes

normal to the current direction, as seen in Fig. 2.8 where I defined IR with a correlation

length of 2.5nm and RMS of 0.3nm at the interface between the Al0.3Ga0.7As barriers and

the GaAs body.

To summarise briefly, the positions along this interface plane correspond to indexes of a

correlated 1D list, where the value of the elements are the displacement of the preceding

material from the chosen mean of the heterostructure interface plane at ‘x’. For example,

if at a given point on the y-z interface at x=19nm, between a preceding GaAs region

and the first Al0.3Ga0.7As barrier, the value is ∆x=-0.3nm then the GaAs would end at

x=18.8nm and Al0.3Ga0.7As would be shifted back by 0.2nm. The mode of operation here
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is that whichever cell volume x+∆x appears in for a given yz position is the position of the

preceding material, which in this example is GaAs. An example for the average ACF for

25 RTDs (with all 4 planes of IR included) is given in Fig. 2.9, with a fitted exponential

ACF as a red dashed line. NESS [13] generates this aforementioned correlated list by

convolving [203, 204] a list of randomly generated numbers with either a Gaussian or

exponential kernel, resulting in the corresponding Autocorrelation Function (ACF) with

a specified correlation length LC . Specifically, weights of e
− |i|

2LC∗c with a spacing correction

factor c = 1
5∆s

(which is 1 for a spacing ∆s of 0.2nm), are then normalised where used in

the case of the exponential kernel. ACF plots for generated devices as demonstrated by

Fig. 2.8 and other ACF plots in this subsection and chapter 5, confirm that this approach

generates random exponential roughness described with the expected correlation length

and RMS asperity.

Figure 2.10: Visualisation of a device generated with an IR (Interface Roughness) of cor-
relation length LC=2.5nm and an RMS (Root Mean Square) asperity of 0.3nm [10], one of
25 such RTD devices. The rough Al0.3Ga0.7As barriers (shown in red) are embedded within a
GaAs (transparent blue) nanowire body. This figure [10] is licensed under CC BY 4.0.
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Figure 2.11: Visualisation of a device generated with ‘improved’ IR (Interface Roughness)
of isotropic correlation lengths LY

C=LZ
C=2.5nm and an RMS (Root Mean Square) asperity of

0.3nm [10], one of 25 such RTD devices. The rough Al0.3Ga0.7As barriers (shown in red) are
embedded within a GaAs (transparent blue) nanowire body. This figure [10] is licensed under
CC BY 4.0.

Figure 2.12: Visualisation of a device generated with ‘improved’ IR (Interface Roughness) of
anisotropic correlation lengths LY

C=2.5nm and LZ
C=5nm and an RMS (Root Mean Square)

asperity of 0.3nm [10], one of 25 such RTD devices. The rough Al0.3Ga0.7As barriers (shown in
red) are embedded within a GaAs (transparent blue) nanowire body. This figure [10] is licensed
under CC BY 4.0.
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Figure 2.13: Average ACF (Autocorrelation Function) for GaAs/Al0.3Ga0.7As interfaces
of 25 RTD devices generated with an ‘improved’ IR of isotropic correlation lengths
LY
C=LZ

C=2.5nm [10], plotted as solid blue and yellow lines for the Y and Z directions re-
spectively. The exponential ACF [202] fits are given as dashed lines with the corresponding
colours. This figure [10] is licensed under CC BY 4.0.
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Figure 2.14: Average ACF (Autocorrelation Function) for GaAs/Al0.3Ga0.7As interfaces of 25
RTD devices generated with an ‘improved’ IR of anisotropic correlation lengths LY

C=2.5nm
and LZ

C=5nm [10], plotted as solid blue and yellow lines for the Y and Z directions respectively.
The exponential ACF [202] fits are given as dashed lines with the corresponding colours. This
figure [10] is licensed under CC BY 4.0.
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Figure 2.15: Average ACF (Autocorrelation Function) for GaAs/Al0.3Ga0.7As interfaces of
25 RTD devices generated with an ‘improved’ IR of anisotropic correlation lengths LY

C=5nm
and LZ

C=10nm and with a square cross-section of 20nm×20nm [10], plotted as solid blue and
yellow lines for the Y and Z directions respectively. The exponential ACF [202] fits are given
as dashed lines with the corresponding colours. This figure [10] is licensed under CC BY 4.0.

Another addition made during this PhD was to add a second correlation length. After

some exploration, it was found that simply correlating in both directions after effectively

transposing the equivalent matrix was an effective solution which fit the ACF for devices in

Fig. 2.11 and Fig. 2.12 and corresponding ACF plots Fig. 2.13 and Fig. 2.14. As mentioned

above in the previous implementation of roughness [9, 13], correlation was generated

using a 1D randomly generated list, which was applied along one direction (the Y axis

in this case) before incrementing along the other direction (the Z axis) and repeating the

process. This resulted in devices like those shown in Fig. 2.10, with a correlation length of

LC=2.5nm. I have expanded on this approach by including another correlation parameter,

allowing for correlation along both axes with their own correlation lengths LY
C and LZ

C .

The isotropic case of correlation lengths LY
C=LZ

C=2.5nm creates devices such as Fig. 2.11,
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and the anisotropic case of LY
C=2.5nm and LZ

C=5nm creates devices such as Fig. 2.12. This

correlation along both directions was achieved by taking the output from the correlated

1D list (with a kernel with a given LZ
C already applied), effectively transposing so that the

physical axes corresponding to each element ‘switches’, then applying correlation again

(with a kernel for a given LY
C). The unusual artefact of increased ACF in comparison to

the ACF fit (dashed lines) past a correlation length of 5nm in Fig. 2.13 and Fig. 2.14 is

due to the lack of data points for such a high correlation length. Indeed, when the width

of the square cross-section of the RTD was increased to 20nm, which is twice that of

10nm, the ACF was observed to follow the fit for up to 10nm, as illustrated in Fig. 2.15.

As explored in section 5.4, including two correlation lengths increases variation due to

IR, which highlights both the strong influence of IR on RTD IV characteristics and the

subsequent importance of including IR in simulations of heterostructure nanoelectronic

devices like RTDs.

2.3 Poisson solver

NESS self-consistently uses a NEGF and Poisson solver [196]. After charge carrier concen-

tration is calculated in NEGF, the Poisson equation can be solved to acquire the potential

V as follows

∇ · (ϵ∇V ) = −q(p(r)− n(r) +ND(r)−NA(r)) (2.2)

Wherein ND(r) and NA(r) are respectively the donor and acceptor concentrations for

location (r), and q is the electron charge magnitude. This Poisson potential is then used

in the NEGF charge and transport calculations, which then feed back into the Poisson

solver. This loop occurs until the chosen convergence criteria are met, which in the case

of this thesis is the error in absolute potential between iterations.
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Figure 2.16: Diagram of node-centred control volume [205] (shown in grey) centred around
a node ‘C’ at coordinate (i, j, k), with a fractional control sub-volume associated with vertex
1 of this control volume (shown in green). Neighbouring real-space nodes are denoted by red
circles and labelled according to the directions of the compass and ‘F’ for ‘front’ and ‘B’ for
‘back’.

The Poisson solver in NESS uses finite volume discretisation [196], specifically a node-

centred control volume scheme [205], where each control-volume is centred on a node

instead of coinciding with the mesh cells. Further details are noted in the appendix A1.

NESS makes use of the Newton-Raphson method [206] to iteratively solve a vector of

electrostatic potential V , which is sped up using [207] the successive-over-relaxation (SOR)

method [208, 209] with the Chebyshev acceleration method [210] used to determine the

relaxation factor, and the red-black method of parallelisation [211]. Further details are

given within the appendix A2.
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2.4 Non-Equilibrium Green’s Function (NEGF) Formalism

This section describes the NEGF formalism which is used within NESS [196] for the NEGF

solver module.

As this NEGF module was not modified or a research focus of this thesis itself, derivations

related to the NEGF formalism are listed within appendix A rather than being listed here.

This is excluded for brevity’s sake, but still kept within the appendix A to provide further

reading for future readers, which is itself based on the following sources [196, 212–221].

2.4.1 Green’s Functions

The NEGF formalism describes transport in nano-electronic devices through the language

of Quantum-Field Theory, where particles are created and destroyed, and the eponym-

ous Green’s function is a correlation function which describes the evolution of particles.

For instance, the Green’s function G(r,k, t; r′,k′, t′) is the probability amplitude that a

particle created at position r′ with momentum k′ at time t′, will propagate to position

r with momenta k at time t where it is annihilated. The lesser Green’s function G<

describes electron correlation, and the greater Green’s function G> describes hole correl-

ation. Corresponding lesser/greater self-energies Σ≶ take into account the electron/hole

interactions. This is why lesser/greater self-energies Σ≶ are used to calculate electron/hole

charge density [212], as well as the corresponding current.
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Two other Green’s functions which can also describe a nano-electronic device with con-

tacts, and can be used to calculate G≶, are the retarded Green’s function GR and its

self-adjoint, the advanced Green’s function GA = [GR]†. GR and GA have correspond-

ing self-energies ΣR and ΣA, which both have components for electron interactions with

contacts and electron-phonon scattering.

N1 2 N- 1

N layer DeviceLeft semi-infinite Contact Right semi-infinite Contact

012 0 1 2

Figure 2.17: Layer representation of two-terminal device with N layers along the direction of
current flow, and two semi-infinite contacts.

The NEGF solver in NESS treats devices as a layered structure, as seen in Figure 2.17.

With this layered structure the one particle effective mass hamiltonian h can be represen-

ted with a block tridiagonal representation when discretised in NESS [196] as seen below

in equation 2.3.

h(r) =



h1,1 h1,2 0 · · · · · · · · · 0

h2,1 h2,2 h2,3 0 · · · · · · ...

0 h3,2 h3,3 h3,4 0 · · · ...

... 0 h4,3
. . . . . . . . .

...

...
... 0

. . . . . . . . .
...

...
...

...
...

. . . . . . hN−1,N

0 · · · · · · · · · 0 hN,N−1 hN,N


(2.3)
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Note, each ‘block’ hi,i and hi,i+1 is a matrix of size NyNz×NyNz representing respectively

the transverse layer i, out of Nx layers, or coupling between layers i and i + 1. This is a

common approximation for such layered structures [212], where off-diagonal elements in

the matrix being zero represents vanishing coupling beyond nearest neighbour layers.

Using this single particle hamiltonian h and self-energy ΣR, GR and GA can be calculated

as seen below.

GR(E) =
[
(E + iη) · I− h− ΣR(E)

]−1
(2.4)

GA(E) =
[
GR(E)

]†
(2.5)

G≶(E) = GR(E) · Σ≶(E) ·GA(E) (2.6)

Here, E is the energy of the particle and ΣR (Σ≶) is the leads’ retarded (lesser/greater)

self-energy. η is an infinitesimal positive real number and I is the identity matrix.

Self energy Σ can be split as Σ = ΣC +ΣS, into contact self energy ΣC and scattering self

energy ΣS. The contact or lead self energies ΣC take into account interactions with the

contacts [196], which is further expanded in subsection 2.4.2. The scattering self energies

ΣS similarly take into account the scattering of particles, including the electron-phonon

scattering which is briefly covered in subsection 2.4.4.

Similar to equation 2.3, G<
l+1,l are the matrix elements between the basis states on layers

l and l+ 1, and only tridiagonal elements have to be calculated [196, 213, 214] under the

assumption of tridiagonal hamiltonians and only local scattering in real space. This allows

the use of an efficient recursive algorithm [218] to solve only tridiagonal elements within

NESS, as explained in appendix A6.
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The retarded Green’s function GR contains information about the allowed electronic states

and hence can be used to calculate the spectral function A, the diagonal elements of which

are the local density of states (LDOS) ρ, and the trace of which is the density of states

N , as seen in the relations below [212].

A(r, r’;E) = i[GR(r, r’;E)−GA(r, r’;E)] (2.7)

ρ(r;E) =
1

2π
A(r, r;E) = − 1

π
ℑ
{
GR(r, r;E)

}
(2.8)

N(E) = Tr[A(E)] (2.9)

N(E) =

∫
drA(r, r;E) (2.10)

The lesser/greater Green’s functions which are calculated from the retarded (and ad-

vanced) Green’s function and self-energies as shown in equation 2.6 contain information

about particle statistics, and can consequently be used to calculate charge and current

density as shown below in equations 2.11 and 2.12.

n(r) =
−i

2π

∫
dE

(
G<(r, r;E)

)
(2.11)

Jl→l+1(E) =
−2e

ℏ

∫
dE

2π
× 2ℜ

(
Tr[hl,l+1G

<
l+1,l(E)]

)
(2.12)

Equation 2.11 can be explained as the correlation of electrons with themselves in real

space, −iℏG<(r, t; r, t), which is integrated over energy in steady state conditions, as

described in [212]. Equation 2.12 assumes the layered structure as seen in Figure 2.17.

So equation 2.12 calculates current density Jl→l+1(E) between layers l and l + 1 can be

calculated.
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2.4.2 Contacts

NEGF can be used to split two terminal nanoelectronic devices into an active region of N

layers composed of the device itself and two semi-infinite contacts [212] as seen in Fig. 2.17

which only affect layers ‘1’ and ‘N’ of the device. As described in appendix A3, this allows

us to derive a relation for the surface Green’s functions gRC for a contact C. For RTDs

there are two contacts, as seen in Fig. 2.17; the left and right contacts. The surface Green’s

functions [212] for a given contact are the elements of the Green’s function corresponding

to the neighbouring contact layer 0 in Fig. 2.17 for that given contact.

The Sancho-Rubio iterative method [215], noted in appendix A4, can then be used to

efficiently solve the surface Green’s functions, effectively by repeatedly halving the semi-

infinite contact layers through i iterations until effectively 2i layers are included in layer

0 connected to the device itself.

This retarded contact self-energy ΣR
C for a given contact can then be used to calculate

the corresponding rate operator ΓC with equation 2.13 [196, 216]. The lesser and greater

contact self-energy for a contact C can then be calculated using the corresponding rate

operator ΓC and Fermi level µC , in equations 2.14 and 2.15 respectively [216].

ΓC(E) = i[ΣR
C(E)− ΣA

C(E)] (2.13)

Σ<
C = iΓC(E)f(E − µC) (2.14)

Σ>
C = −iΓC(E)(1− f(E − µC)) (2.15)
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2.4.3 Coupled Mode Space Approximation

Another approximation NEGF can take, which NESS makes use of [196], is carrying out

simulations in coupled mode space rather than real space, which will be explained in this

subsection. A real space hamiltonian is composed of the transverse component hT which

describes the layers in Fig. 2.17, and the longitudinal component hL which describes the

coupling between them, as depicted below in equation 2.16.

h(x) =

[
− ℏ2

2m∗
y,z

∆y,z + V (r)

]
︸ ︷︷ ︸

hT

− ℏ2

2m∗
y,z

∂2

∂x2︸ ︷︷ ︸
hL

(2.16)

In such a case, the transverse directions have either a closed or periodic boundary con-

dition [212], which in the case of NESS is closed due a limited cross-section with finite

width along both transverse dimensions.

Each slice is a 2D cross-section confined in both y and z dimensions represented by

hT , and its two-dimensional Schrödinger equation which can be solved to determine

the eigenvalues and eigenmodes ϕm(y, z; l) for each layer l corresponding to hl,l in real-

space. These eigenmodes ϕm(y, z; l) form an orthogonal basis set of eigenvectors ϕm(l) =

[ϕm(y1, z1; l) · · ·ϕm(yNy , zNz ; l)] for mode m and layer l. The eigenvectors ϕm(l) hold the

following properties [217]

hl,lϕm(l) = Emϕm(l) (2.17)∫
dydzϕn(y, z; l)ϕ

∗
m(y, z; l) = δn,m (2.18)∑

m

ϕn(y1, z1; l)ϕ
∗
m(y2, z2; l) = δ(y1 − y2)δ(z1 − z2) (2.19)
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For nanostructures with strong confinement along transverse directions, only a few modes

Nm are needed to describe it [217] because only these lower energy eigenmodes are occu-

pied, meaning that the computational cost can be greatly reduced.

These eigenvectors ϕm(l) can be used to construct a block diagonal transform matrix U

of size NxNyNz × NxNm as noted in [217], which converts the Hamiltonian and Green’s

functions into the Coupled Mode Space representation,

U =


U1,1 0 · · · · · · 0

0 U2,2 · · · · · · 0

...
...

. . . · · · 0

0 · · · · · · · · · UNx,Nx


(2.20)

where the block diagonal components are Ul,l = [ϕ1(l) · · ·ϕNm(l)] of size NyNz × Nm. So

the relation Hm=U †HU is used to compress the dimensions from NxNyNz × NxNyNz

to NxNm × NxNm, reducing the tridiagonal elements by a factor of roughly (NyNz

Nm
)2.

This lets us convert the non-zero tridiagonal elements in the real-space Hamiltonian h in

equation 2.3 into the coupled mode space hamiltonian h with the following relations [196,

217].

h̃l,l = U †
l,lhl,lUl,l (2.21)

h̃l,l+1 = U †
l,lhl,l+1Ul+1,l+1 (2.22)

For the elements of Green’s functions, including retarded/advancedGR/A and lesser/greater

G≶ Green’s functions, the same relation holds. This means that for the Green’s function

matrix elements corresponding to modes n and m respectively on layers l and l′ = l ± 1

can be calculated as seen below in equation 2.23 [196]

G̃(l, n; l′,m;E) =
∑
y,z

∑
y′,z′

ϕ∗
n(y, z, l)G(l, y, z; l′, y′, z′;E)ϕm(y

′, z′, l′) (2.23)
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Then, these slices are coupled along the transport direction and the carrier transport

is calculated using a 1D NEGF solver [196], implemented using the recursive Green’s

function algorithm [218], which is described in appendix A6.

As seen in this subsection the advantage of coupled mode space is that by describing

the confined transverse states in terms of eigenstates rather than physical locations, the

computational cost can be reduced while still taking into the device physics [212, 219].

The coupled mode space approximation can also reproduce behaviour caused by device

variations like roughness and RDDs [196, 219].

2.4.4 Electron-Phonon interactions

Electron-phonon interactions can be included in scattering self-energies, and solved self-

consistently with the Green’s functions using the self-consistent Born approximation

(SCBA) in NESS [196]. NESS has currently implemented acoustic and optical electron-

phonons interactions [196], with their self-energies assumed [196, 212, 213, 220] to be local

in time and space. This makes such self-energies block diagonal [212, 220], allowing the use

of the efficient recursive method [218] mentioned in appendix A6. A further explanation

of this assumption is given in subsection 7.3 of the following textbook [212].

Though currently, optical phonons in polar materials like GaAs, which is a type III-V

semiconductor alloy, have not been implemented in NESS yet, because of which I will not

simulate optical phonon interactions within NESS for my thesis. Of these optical phonons

in polar materials, longitudinal optical phonons lead to a secondary current peak in the

RTD IV characteristics [158, 159, 163]. Thankfully for the purposes of studying the impact

of variation in this thesis, the main value of interest is the resonant current peak while

longitudinal optical phonon phonons create secondary phonon peaks for biases greater

than this.
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The implementation of electron-phonon scattering self-energies in NESS is described

within appendix A5, which is based on the explanation within a paper describing NESS [196].

To summarise, acoustic and optical coupling constants [196, 213, 221, 222] are used to cal-

culate lesser/greater electron-phonon scattering self energies, which can also be calculated

in coupled mode space, and can be converted into retarded self energy with the relation

in equation 2.24 below.

ΣR =
1

2
[Σ<(r;E)− Σ>(r;E)] (2.24)

ΣR = ΣR
C + ΣR

S (2.25)

Σ≶ = Σ≶
C + Σ≶

S (2.26)

As also noted in subsection 2.4.1, Σ = ΣC +ΣS which can be specified for ΣR and Σ≶ in

equations 2.25 and 2.26 respectively.

Within NESS [214], the SCBA [213, 214] implements a self-consistent solving of the

Green’s functions in equations 2.4, 2.5, and 2.6 and the self-energies in equations 2.24, 2.25,

and 2.26. The self-consistency here refers to how they influence one another [212].
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2.5 Resonant Tunnelling Diode

Figure 2.18: IV characteristic of a smooth RTD [10], such as the one visualised in Fig. 2.4,
which is simulated in the ballistic regime. Key points of the IV characteristic are annotated, and
the NDR (Negative Differential Resistance) region is shaded blue. This figure [10] is licensed
under CC BY 4.0.
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Figure 2.19: LDOS (Local Density of States) and CS (Current Spectra) for a smooth RTD,
as shown in Fig. 2.4 along the x-axis, corresponding to the resonant current peak for the bias
Vr =0.24V in Fig. 2.18. Figure(a) is the LDOS and in units of eV−1, wherein the red line
along the y-axis is energy dependent transmission T(E), and figure(b) is the CS and in units
of µAeV−1. For both subfigures, the black dashed line is the electrostatic potential energy, the
white dashed line is the CBM (Conductance Band Minima), and the magenta dashed line is
the energy corresponding to the 6th mode used for coupled mode simulations.



2.5. Resonant Tunnelling Diode 68

For this thesis, 6 modes in coupled mode space have been used. This can be visualised by

plotting a magenta dashed line for the energy corresponding to the sixth mode in Fig. 2.19,

which are the LDOS and CS for the resonant peak for the baseline RTD without device

variation shown in Fig. 2.4. For reference, the first mode corresponds with the CBM.

For this thesis, the energy mesh has energy steps of 1meV. For two terminal devices like

RTDs, NESS defines the energy range with regards to the Fermi levels at the source

and drain contacts, EF,S and EF,D respectively. For this thesis, the minimum energy is

chosen as 0.3eV, so Emin = EF,D − 0.3eV, and the maximum energy is chosen as 0.5eV,

so Emax = EF,S + 0.5eV. Within this thesis, including LDOS and CS (Current Spectra)

plots, ‘zero’ energy is a reference set as the Fermi level of the source contact EF,S.

As apparent in Fig. 2.4, the drain-source bias is applied over the central 17nm of the RTD

including the 3nm spacers, 3nm barriers, and 5nm QW. If the thickness of these sections

within central device region changes, then the length over which the bias is applied scales

with the dimensions of these sections, as seen in chapter 3.

Device material parameters are taken from [45], and electron-phonon scattering paramet-

ers for Al0.3Ga0.7As were obtained through linear interpolation [223] from AlAs and GaAs

parameters from [224] as XAl0.3Ga0.7As = 0.3XAlAs + 0.7XGaAs.

An issue with RTD simulations with NESS was that the expected non-differential con-

ductance didn’t appear for simulations when using bulk values for Al0.3Ga0.7As and GaAs.

I investigated why this happened by varying parameters and checking the NESS code. The

issue turned out to be that NESS currently does not exhibit quantum tunnelling across

a heterojunction when the density of states on either side is unequal. NESS uses an ef-

fective mass approximation, and the bulk effective masses [45] for Al0.3Ga0.7As and GaAs

are different, which has lead to this situation. A current workaround for this is using the

same electron effective masses for both materials in the RTD, which is the mean of the
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Γ effective masses for both materials (the Γ valley is the lowest valley of the conduct-

ance band for GaAs and Al0.3Ga0.7As [45]). I believe this approximation is valid because

as a nanometre-scale device the effective masses used are not the same as bulk devices.

This approximation was supported by a comparison with the NEMO 1D RTD NEGF

simulator [225] as shown in Fig. 2.20.

Figure 2.20: RTD current-voltage curve for NESS (blue line with plus markers) compared
with the 1D RTD NEGF simulator [225] powered by NEMO5 and based on NEMO 1-D (red
line with diagonal cross markers). The current-voltage curves match up until the current valley,
whereafter the equal effective mass approximation has led to increased transmission between
the source and QW for NESS.

The simulation showcase [225] in particular was powered by NEMO5 [226], which is also

licenced commercially as ‘Victory Atomistic’ [227] by Silvaco, and used a tight-binding

Hamiltonian and single band physics as described in the following paper [228], unlike the

atomistic NESS. The PVCR for both curves in Fig. 2.20 are similar, with 2.92 for the

NEMO simulation and 3.07 for NESS. Though, it does seem that the NESS simulation

leads to higher current after the NDR, which is likely due to the approximation taken.
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This approximation likely meant that the conductance band density of states between

the source and QW was higher than expected, causing greater current after the NDR.

Fortunately for RTD applications the key region is the NDR, and not the second region

of increasing current, which was simulated with the expected behaviour by NESS. This

validates that NESS reproduces the quantum tunnelling based phenomena of resonant

tunnelling and provides grounding for further simulations. This does however mean cur-

rent values after the resonant valley cannot be studied. The NEGF models in NESS are

furthermore verified with the atomistic tool OMEN [229]. I equated the simulation para-

meters as far as possible for the given comparison. For the NEMO simulation I chose the

option to use the Hartree approximation, which is solved self consistently with NEGF to

capture the quantum character of charge, like confinement of charge in the QW, according

to their manual [225]. To compare with NESS with NEGF-Poisson self-consistent loops,

naturally a method which treats charge as being quantum rather than semi-classical is

more accurate and appropriate. I set up the same length and doping for regions as noted

above and used Al0.3Ga0.7As barriers. I also equated Poisson error for the simulation at

1meV, used an energy discretisation of 1meV, and an energy range of 0.3eV below the

source Fermi level to 0.5eV above the Fermi level. For the NESS simulation, I used the

same conduction band-edge offset between GaAs and Al0.3Ga0.7As of 0.2779eV which the

NEMO had set as constant. I also set the NESS effective electron masses as the mean of the

NEMO effective electron masses for GaAs and Al0.3Ga0.7As,m
∗
e =

0.067+0.0919
2

= 0.07945m0

compared to the free electron mass m0. Further details of the NEMO simulation are given

in their supporting documents [225], including a user manual and a video demonstration.

For simulations explained within this thesis, energy mesh is discretised by steps of 1meV,

and the 3D spatial mesh used is isotropic in all directions and the spacing is 0.2nm. The

temperature of the device simulations is 300K.
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A specific limitation faced in carrying out device simulations was that the simulations

were run on a shared computing cluster. To manage this shared computing cluster, ad-

ministrators would sometimes kill long-running jobs when loads got too high, and issued

complaints when there were too many of such jobs. To avoid such scenarios, convergence

loop limits were necessary. This unfortunately lead to some devices not converging within

the convergence loop limits, but was necessary for shared usage of finite computing re-

sources.

Within this thesis, NEGF-Poisson convergence is chosen to be checked with an absolute

difference in potential between the latest and current NEGF-Poisson iterations. To exit the

loop, this absolute difference needs to be less than or equal to the error criterion chosen,

while the number of loops so far has not overstepped the maximum number of iterations

specified. For this thesis, the error criterion was chosen to be 1meV, though differing

maximum numbers of convergence loops were chosen depending on the availability of

computing resources at the time.

Within the Poisson solver, iterations are carried out until the difference between iterations

in potential is less than the chosen Poisson error, with a default maximum of 100000

Poisson iterations. For this thesis, the convergence criteria was chosen as 1× 10−5eV.

The following chapters 3, 4, and 5 use the methods and theory expanded within this

section and chapter to investigate RTDs with device variation.



Chapter 3

Design of Experiment

3.1 Introduction

This chapter is based on material from my first author paper [8], and is a variation study

of double barrier RTDs which investigates thickness variation of the barriers and the QW.

Regarding device dimension variation, while there has been previous research [61, 230–

232], this study is a more comprehensive study of barrier and QW thickness variation.

This includes both the symmetric variation, of both barriers and the QW, and asymmetric

variation of both barriers [230].

A brief methodology section 3.2 is followed by the results section 3.3. Firstly within the

results section 3.3, the baseline device is demonstrated in subsection 3.3.1, along with an

explanation of the impact of including acoustic electron-phonon scattering in subsubsec-

tion 3.3.1.2. Symmetric and asymmetric device variation for the thicknesses of barriers

and QW is explored in subsection 3.3.2 and subsection 3.3.3 respectively. Concluding this

chapter, the observed behaviour is summarised in the conclusion section 3.4. These ob-

servations are referred to later in section 5.2 within chapter 5 to describe the influence of

IR along different GaAs/Al0.3Ga0.7As interfaces in terms of such device variation.

72
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3.2 Methodology

Figure 3.1: A schematic illustration of the baseline GaAs-Al0.3Ga0.7As RTD device [8] with
symmetric barrier widths LB1=LB2=3nm and QW width LQW=5nm. The GaAs body is col-
oured blue and the Al0.3Ga0.7As barriers are red. The cross-section is 10nm×10nm, with
an overall length of 55nm for this baseline case. The 19nm thick source-drain regions are
2×1018cm−3 n-doped. The central 17nm region for the baseline case, including two 3nm
spacers enclosing the barriers, is 1×1015cm−3 n-doped. This figure [8] is licensed under CC
BY 4.0.

The baseline RTD as shown in Fig. 3.1 follows the simulation parameters noted in sec-

tion 2.5, with other details noted here. Acoustic electron-phonon scattering is included,

with the effects explored in subsubsection 3.3.1.2. A maximum of 25 NEGF-Poisson con-

vergence loops are allowed in the case with electron-phonon interactions, due to the long

times such tasks took with the acoustic plot in Fig 3.5 taking 22917.6 minutes or ∼15.9

days of computational time on 8 cores from an AMD EPYC 7401 24-Core Processor node.

In subsection 3.3.2 and subsection 3.3.3 barrier or QW thicknesses are varied by increments

of 1nm, but otherwise the same simulation parameters hold.
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3.3 Results and Discussion

In this section, I first investigate the baseline RTD with 3nm symmetric barriers and a

5nm QW in subsection 3.3.1, and investigate the effects of acoustic electron-phonon scat-

tering in subsubsection 3.3.1.2. In subsection 3.3.2 I symmetrically vary barrier thicknesses

LB1=LB2 to 2nm and 4nm and vary QW width LQW to 4nm and 6nm. For subsection 3.3.3

I asymmetrically vary each barrier to 2nm and 4nm whilst keeping the other barrier at

3nm. Of the ‘smooth’ devices studied I also found that the baseline RTD had the maximal

PVCR. The PVCR is the ratio of current between the resonant peak and valley Ir/Iv,

and is a key figure of merit for RTDs.
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3.3.1 Baseline Device

3.3.1.1 Baseline Device Behaviour

Figure 3.2: IV characteristic for the baseline RTD [8] shown in Fig. 3.1. The resonant peak,
or local maximum in current Ir at bias Vr, and the valley, the local minima Iv at Vv, are two
key points for this nonlinear IV characteristic. These bound the NDR, and define the figure
of merit PVCR Ir/Iv. Fig. 3.3(a), Fig. 3.3(b) and Fig. 3.4 are measured for the resonant
peak in this figure. Similarly, Fig. 3.3(c) and Fig. 3.3(d) and correspond to the valley. This IV
characteristic includes electron-phonon scattering. This figure [8] is licensed under CC BY 4.0.
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Figure 3.3: Figure(a) depicts the LDOS (Local Density of States), with colourbar units of
eV−1, and energy dependent transmission T(E), a red vertical line, for the resonant peak
at 0.22V shown in Fig. 3.2. Figure(b) is the CS (Current Spectra), with colourbar units of
µAeV−1, for this resonant peak. Similarly, figure(c) and figure(d) respectively represent the
LDOS and CS for the valley at 0.24V. The white dashed lines are the CBM (Conductance
Band Minima), and the black dash-dot lines are the average potential energy. This figure is
reproduced based on Figure 6 from [8], which is licensed under CC BY 4.0.
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Figure 3.4: Line plot of electron charge density through the centre of the baseline RTD
depicted in Fig. 3.1 for the resonant peak 0.22V seen in Fig. 3.2. Barrier interface positions
are noted with slightly transparent vertical lines with corresponding markers. This figure is
reproduced based on Figure 7 from [8], which is licensed under CC BY 4.0.

The baseline 55nm long RTD shown in Fig. 3.1 results in the IV characteristic Fig. 3.2,

and the corresponding LDOS (Local Density of States) and CS (Current Spectra) graphs

for the resonant peak at 0.22V and valley at 0.24V depicted in Fig. 3.3. The Al0.3Ga0.7As

barriers raise the CBM (Conductance Band Minima) with respect to the GaAs body,

which is depicted as white dashed lines in Fig. 3.3, and bounds a GaAs QW.

The nonlinear IV characteristic of RTDs, with a NDR (Negative Differential Resistance)

of conductance between the resonant peak and valley in Fig. 3.2, is due to current for such

biases in RTDs being dominated by resonant tunnelling, which reaches a local maximum

at the resonant peak bias Vr. Resonant tunnelling in RTDs is the quantum tunnelling

of electrons from the emitter region into the QW and back out again, and hence largely
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depends on the alignment of LDOS between the emitter and QW. The conservation of

transverse momenta during tunnelling works to exclude states that are not aligned in

reciprocal space. The LDOS for the resonant peak at Vr=0.22V, Fig. 3.3(a), has the ground

QW eigenvalue aligned with the emitter Fermi level, which leads the energy dependent

transmission function T(E) (red line) to reach a local maximum for this energy. The

resulting CS for the resonant peak in Fig. 3.3(b) depicts a strong band of current through

the ground QW and a smaller current channel through the first excited QW eigenvalue.

With the increase of bias to the valley at Vv=0.24V, the ground QW LDOS in Fig. 3.3(c)

is perturbed below the CBM on the source and thus the emitter-side LDOS, suppressing

transmission and the CS bands shown in Fig. 3.3(d). The PVCR in this case is 2.923. For

bias greater than the valley, thermionic emission of electrons over the barrier begins to

dominate.

Fig. 3.4 is a lineplot of electron charge density through the centre of the RTD, for the

resonant peak Vr=0.22V corresponding to Fig. 3.2. Fig. 3.4 has local maxima where charge

accumulates in the emitter region, where a triangular QW forms as seen in Fig. 3.3, and

the QW. Charge in the QW results in the space-charge effect [14], which is responsible for

the ‘N’ shape of the IV characteristics in Fig. 3.2. This is because when current is greater,

any charge within the QW at a given moment is greater, resulting in greater Coulomb

repulsion caused by this QW charge. The repulsion causes a positive perturbation in the

potential profile of the RTD which needs to be overcome with greater bias. Consequently,

points of higher current in Fig. 3.2 are skewed to greater bias. The space-charge effect is

also important in explaining the effects of varying barrier widths on the IV characteristics

in subsection 3.3.2 and subsection 3.3.3, due to how they control the accumulation of

charge in the QW.



3.3. Results and Discussion 79

3.3.1.2 Comparison with Ballistic Regime

Figure 3.5: A comparison of IV characteristics for an RTD as depicted in Fig. 3.1, for the
cases with phonons (black solid line with circle markers) and the ballistic case (orange dashed
line with plus markers). The latter case in the ballistic regime is also plotted in Fig. 2.18, with
corresponding LDOS and CS for the resonant peak shown in Fig. 3.7. The LDOS and CS for
the resonant peak for the phonon case is shown in Fig. 3.6. This figure [8] is licensed under
CC BY 4.0.



3.3. Results and Discussion 80

Figure 3.6: Figure(a) depicts the LDOS (with colourbar units of eV−1) and energy dependent
transmission (a red vertical line) for the resonant peak at 0.22V shown in Fig. 3.2, and figure(b)
is the CS (with colourbar units of µAeV−1) for the resonant peak. The white dashed lines are
the CBM, and the black dash-dot lines are the average potential energy.
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Fig. 3.5 shows the effect of including electron-phonon scattering as a black solid line,

specifically with acoustic phonons [224] taken into account, in comparison to the ballistic

regime as an orange dashed line. There is a reduction in current and the perturbation of

the resonant peak bias Vr to lower bias, caused by the inclusion of acoustic electron-phonon

scattering as shown in Fig. 3.5. Additionally, the PVCR drops from 3.552 to 2.923. This

change in the IV characteristic supports the use of acoustic electron-phonon scattering

in this study, consequently, the results in subsection 3.3.2 and subsection 3.3.3 take this

into account. As discussed in subsection 2.4.4 in chapter 2, optical phonons have not been

included because currently NESS cannot simulate optical phonons in polar materials such

as GaAs. The main effect of optical phonons on RTDs is the creation of a replica secondary

current peak [158, 159, 163]. Thankfully, the main focus of this chapter is the resonant

peak rather than such high bias behaviour.
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Figure 3.7: Figure(a) is the LDOS and transmission (red horizontal line plot), and Figure(b)
is the CS, both of which correspond to the resonant peak bias of 0.24V for the ballistic regime
in Fig. 3.5. The white dashed lines are the CBM, and the black dash-dot lines are the average
potential energy.
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The impact of acoustic phonons can also be observed somewhat with the LDOS and

CS plots for the resonant IV peaks for the ballistic case at 0.22V in Fig. 3.7, and the

phonon regime at 0.24V in Fig. 3.6. Specifically, a suppression in the energy-dependent

transmission, the solid red line, and a slight blurring of the lower CS bands is observed.

This observed reduction in current transport likely lead to the reduced current peak from

0.2235µA to 0.2660 µA with the inclusion of electron-phonon scattering, and a consequen-

tial reduction of the PVCR (Peak-to-Valley Current Ratio) of the IV characteristics from

3.552 to 2.923.
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Figure 3.8: Figure(a) is the LDOS and transmission (red horizontal line plot), and Figure(b)
is the CS, both of which correspond to the perturbation in current at 0.28V for the IV charac-
teristic with electron-phonon scattering in Fig. 3.5. The white dashed lines are the CBM, and
the black dash-dot lines are the average potential energy.
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Specifically in Fig. 3.5 a perturbation is observed for 0.28V with phonon scattering, with

LDOS and CS for this voltage visualised in Fig. 3.8. The small peak in transmission in

Fig. 3.8(a) and the slight CS band in Fig. 3.8(b) show that there is some current flow

through the barrier which is likely due to acoustic phonons scattering assisting tunnelling

from the emitter-side Fermi level to the ground QW energy.

The baseline 55nm long RTD shown in Fig. 3.1 results in the IV characteristic Fig. 3.2,

and the corresponding LDOS and CS graphs for the resonant peak at 0.22V and valley at

0.24V depicted in Fig. 3.3. The Al0.3Ga0.7As barriers raise the CBM with respect to the

GaAs body, which is depicted as white dashed lines in Fig. 3.3, and bounds a GaAs QW.

3.3.2 Symmetric Barrier and QW Thickness Variation

In this subsection I investigate symmetric barrier variation, of 2nm and 4nm in Fig. 3.9,

and variation of QW widths, of 4nm and 6nm in Fig. 3.10. This was compared to the

baseline case of two 3nm Al0.3Ga0.7As barriers and a 5nm QW shown in the previous

subsection 3.3.1.
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Figure 3.9: Comparison of IV characteristics and electron charge density, through the centre
of RTD cross-sections, for different symmetric barrier thicknesses LB1=LB2 with figure(a)
and figure(b) respectively. Barriers of 2nm (orange dashed line with plus markers) and 4nm
(blue dotted line with diagonal cross markers) are compared with the baseline case of 3nm
(black solid line with dot markers). Within figure(b), barrier interface positions are noted with
slightly transparent vertical lines with corresponding markers. This figure is reproduced based
on Figure 9 from [8], which is licensed under CC BY 4.0.
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Symmetric barrier widths LB1=LB2 in Fig. 3.9 are shown to inversely impact current

and the resonant peak bias Vr, including the resonant peak. Narrower 2nm barriers lead

to greater current flow in Fig. 3.9(a) due to the higher transmission through narrower

barriers. This greater current flow leads to a greater charge density within the QW as

shown in Fig. 3.9(b). This greater charge density means there’s a greater space-charge

effect [14], in other words, there is a greater Coulomb repulsion to be overcome by bias,

increasing the resonant bias peak Vr from 0.22V to 0.25V. Increasing barrier thicknesses

to 4nm (blue dotted line with diagonal cross markers in Fig. 3.9) causes the opposite

effects of reducing current and QW charge density, thus perturbing the resonant peak to

the reduced Vr=0.2V.
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Figure 3.10: Comparison of IV characteristics and electron charge density, through the centre
of RTD cross-sections, for different QW widths LQW with figure(a) and figure(b) respectively.
QW widths of 4nm (orange dashed line with plus markers) and 6nm (blue dotted line with
diagonal cross markers) are compared with the baseline case of 5nm (black solid line with
dot markers). Within figure(b), barrier interface positions are noted with slightly transparent
vertical lines with corresponding markers. This figure is reproduced based on Figure 10 from [8],
which is licensed under CC BY 4.0.
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Figure 3.11: LDOS (with colourbar units of eV−1) and CS (with colourbar units of µAeV−1)
for an RTD with a QW width LQW=4nm for the resonant peak at 0.31V, with figure(a) and
figure(b) respectively. The LDOS plot (figure(a)) includes energy dependent transmission as
a red line. The white dashed lines are the CBM, and the black dash-dot lines are the average
potential energy. This figure is reproduced based on Figure 11 from [8], which is licensed under
CC BY 4.0.
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Variation of QW width LQW inversely affects the resonant peak bias Vr. A thinner QW

increases the ground QW eigenvalue energy [233]. This greater ground QW eigenvalue

requires a greater bias Vr=0.31V to align the QW ground state and the emitter Fermi

level to reach the resonant peak as shown in Fig. 3.11. This causes a perturbation of the

resonant peak bias Vr to greater values. For a wider QW of 6nm, the resonant peak bias

Vr is reduced to Vr=0.17V.

In Fig. 3.10(b), I observed changes in the QW charge density similar to that seen with

symmetric barrier variation in Fig. 3.9(b). For both 4nm QW and 2nm barriers, where

these regions are narrower than the baseline, there is an increase in QW charge density.

For the narrow 4nm QW, the resonant peak current is greater because the resonant peak

bias Vr itself is greater due to the greater ground eigenvalue energy. This greater current

flowing through the QW results in a greater charge density within the QW at a given

moment, resulting in a greater bias.

Unlike for the QW region, variations in the emitter region charge density are not the

same for QW and symmetric barrier variations. For the narrower LQW=4nm emitter

charge density increases, while variation of such a magnitude has not been observed for

symmetric barrier variation. The greater charge density in the emitter region for the

4nm QW, unlike the LB1=LB2=2nm barrier case in Fig. 3.9, is due to the higher energy

ground QW eigenvalue for a narrower QW. With such a greater ground QW eigenvalue,

a correspondingly greater bias Vr is needed to reach the resonant peak, and unlike the

space-charge effect, it does not perturb the band-structure to greater energies with the

Coulomb repulsion potential. This likely means that the triangular QW that forms in the

emitter region becomes ‘deeper’, leading to greater charge density accumulating in the

emitter region for the resonant peak. Whilst a narrower QW leads to similar effects as

narrower symmetric barriers for the IV characteristic and QW charge density, this is not



3.3. Results and Discussion 91

the case for emitter region charge density. The differences observed in the emitter charge

density effects demonstrate that the mechanisms for their impact are different, with LQW

controlling ground QW energy eigenvalue and LB1=LB2 modulating the space-charge

effect.

3.3.3 Asymmetric Barrier Thickness Variation

For this subsection, I investigate the asymmetric variation of RTD barrier thickness and

compare it against the baseline RTD studied in subsection 3.3.1. I first investigate varying

the first barrier width LB1 to 2nm and 4nm in Fig. 3.12 whilst keeping the second barrier

width LB2 constant at 3nm. Following this I similarly vary the second barrier width LB2

whilst keeping LB1 constant in Fig. 3.13. The perturbation of the resonant peak bias Vr

with respect to the baseline IV characteristic in Fig. 3.2 appears to be due to changes

in charge accumulation in the QW which in turn modulates the space-charge effect, as

was seen with the symmetric barrier variation in Fig. 3.9. This was in turn caused by

differences in the transparency between the two barriers.
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Figure 3.12: Comparison of IV characteristics and electron charge density, through the centre
of RTD cross-sections, for different first barrier thicknesses LB1 with figure(a) and figure(b)
respectively. The second barrier thickness LB2 is 3nm as in the baseline case. Barriers of
LB1=2nm (orange dashed line with plus markers) and LB1=4nm (blue dotted line with di-
agonal cross markers) are compared with the baseline case of 3nm (black solid line with dot
markers). Within figure(b), barrier interface positions are noted with slightly transparent ver-
tical lines with corresponding markers. This figure is reproduced based on Figure 12 from [8],
which is licensed under CC BY 4.0.
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Figure 3.13: Comparison of IV characteristics and electron charge density, through the centre
of RTD cross-sections, for different second barrier thicknesses LB2 with figure(a) and figure(b)
respectively. The first barrier thickness LB1 is 3nm as in the baseline case. Barriers of LB2=2nm
(orange dashed line with plus markers) and LB2=4nm (blue dotted line with diagonal cross
markers) are compared with the baseline case of 3nm (black solid line with dot markers).
Within figure(b), barrier interface positions are noted with slightly transparent vertical lines
with corresponding markers. This figure is reproduced based on Figure 13 from [8], which is
licensed under CC BY 4.0.
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A thinner first barrier with LB1=2nm in Fig. 3.12 has higher transmission than the second

barrier LB2=3nm, hence it is comparatively easier for electrons to tunnel into the QW

than to tunnel out, thereby increasing QW charge density. This comparatively increased

QW charge density in Fig. 3.12(b) results in a greater space-charge effect, perturbing the

resonant peak bias Vr to Vr=0.32V from the baseline of Vr=0.22V. I also observe a near

disappearance of the NDR for the LB1=2nm case, due to the domination of thermionic

emission with such a high bias, leading to a PVCR of 1.026. A thicker first barrier with

LB1=4nm leads to a weaker space-charge effect due to a lower QW charge density, leading

to the resonant peak bias Vr comparatively reducing to Vr=0.17V.

A similar but inverse effect occurs for second barrier variation, where a thicker second

barrier LB2=4nm, whilst keeping LB1=3nm, results in greater QW charge accumulation

behind the second barrier, and thus a perturbation of the resonant peak bias Vr to greater

bias with Vr=0.27V. With a thinner second barrier LB2=2nm, the resonant peak bias Vr

relatively perturbs to lower bias with Vr=0.18V.

The perturbations in the resonant peak current Ir from the baseline of 0.224µA brought

about by first barrier variation are greater than for the second barrier variation. For first

barrier variation, peak current reduces to Ir=0.064µA for LB1=4nm, and increases to

Ir=0.686µA for LB1=2nm. Whilst for second barrier variation, peak current only reduces

to Ir=0.153µA for LB2=4nm, and only increases to Ir=0.293µA for LB2=2nm. For both

cases, narrower barriers lead to greater current like with symmetric barrier variation.

As discussed above, variations in LB1 and LB2 lead to similar but opposite effects on the

resonant peak bias Vr and the charge density for such a bias. For both barriers, barrier

width inversely correlates with resonant peak current Ir. Changes in LB1 have a greater

impact than LB2 as seen by the greater perturbation of resonant peak IV values, and for

LB1=2nm the NDR almost disappears. The perturbation in Vr from the baseline of 0.22V
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is lower for changes in symmetric barrier widths, with only an increase to Vr=0.25V for

2nm barriers and a decrease to Vr=0.2V for 4nm barriers. This weaker variation in Vr

suggests that different barriers cancel out their space-charge effects to an extent, with

changes in the first barrier width winning out.

3.4 Conclusion

In this work, I have done a NEGF study of the RTD barrier/quantum-well thickness

perturbations and captured the pronounced effects on the device characteristics. Variation

of barrier thickness from a baseline of 3nm modulates the accumulation of charge in the

QW. The resonant peak bias Vr is controlled by the intensity of the space-charge effect

due to this QW charge.

Narrower 2nm symmetric barriers have increased current flow, and thus more charge in

the QW at a given moment, which perturbs the resonant peak bias Vr to greater bias.

Narrower 2nm first barriers, with an unchanged 3nm second barrier, lead to greater charge

accumulation and thus a perturbation of the resonant peak bias Vr to greater bias, and also

causes the near elimination of the PVCR. A thicker 4nm second barrier, with a 3nm first

barrier, similarly leads to greater charge accumulation and consequential perturbation to

greater bias. In all such cases, narrower barriers leads to greater current, with the first

barrier having a greater effect in this respect. QW width inversely affects the ground QW

eigenvalue, so narrowing the QW width from 5nm to 4nm perturbs the resonant peak bias

Vr to greater bias.

In summarising the results, three main observations can be made:
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1. A narrower 4nm QW and thinner 2nm symmetric barriers, compared to a baseline

RTD with a 5nm QW and 3nm symmetric barriers, both resulted in a perturbation

of resonant peak bias Vr to greater values of 0.31V and 0.25V respectively from a

baseline of 0.22V.

2. Asymmetric variation of the barriers controlled the perturbation of the resonant

peak bias Vr, with a thinner 2nm first barrier resulting in a perturbation to a greater

bias of Vr=0.32V, and a thinner 2nm second barrier resulting in the inverse effect

of reduced bias of Vr=0.18V.

3. Both barrier thicknesses inversely impacted the current, with the first barrier having

a greater impact. Specifically, a thicker 4nm first barrier reduced resonant peak

current Ir from 0.224µA to 0.064µA, while a thicker 4nm second barrier only reduced

Ir to 0.153µA.

These observations are later used to describe the influence of IR along different GaAs/

Al0.3Ga0.7As interfaces in terms of such device variation in section 5.2 within chapter 5.

The conclusions drawn here can be used to assist design of RTDs. For example, if optim-

ising for a lower resonant peak voltage, a thinner first barrier or thicker second barrier or

wider QW can be considered.



Chapter 4

Random Discrete Dopants

4.1 Introduction

ICs (Integrated Circuits) described within section 1.5, RTDs (Resonant Tunnelling Di-

odes) have the potential to construct [7, 21, 22] PUFs (Physical Unclonable Functions) [23,

24] due to stochastic device variation. These PUFs can then be used to uniquely identify

integrated chips [53] in order to combat the issue of semiconductor chip counterfeiting [54,

55]. This has motivated me to study the impact of RDDs (Random Discrete Dopants) on

the current-voltage (IV) characteristics of RTDs, and investigate the potential of RTDs

with RDDs as PUF components. This has led me to publish a paper [7] on this, the

material of which is used to write this chapter.

The simulation methodology is described in section 2.5, and like in chapter 3 there is a

maximum of 25 NEGF-Poisson convergence loops. RDDs within this chapter are applied

on top of smooth doping, as is described in subsection 2.2.2, allowing an exploration of

the impact of RDDs on top of a base ‘smooth’ doping. Moreover, such a choice allowed

this study to build on top of a previous study [118] by investigating the impact of RDDs

within the QW.

97
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In Section 4.2.1, I have described the RTD device operations of so called ‘smooth’ devices

(with no sources of variability). In Section 4.2.2 I have used NESS to introduce RDDs as

a source of variability, and investigated their impact on the current-voltage (IV) charac-

teristics of devices. Also in the same section 4.2.2 I have discussed how this randomness

can be used to encode information in RTDs for use as a PUF building block [22] through

analysing the min-entropy. Finally, I conclude by summarising the key findings in Sec-

tion 4.3.

4.2 Results and discussions

4.2.1 ‘Smooth’ RTD device—without RDDs

Figure 4.1: A schematic illustration of the GaAs-Al0.3Ga0.7As device under investigation,
which has a square cross-section with dimensions of 10nm×10nm, and an overall length of
55nm. The device is divided into distinct sections shown by the black lines, namely the 19nm
source and drain, two 3nm buffer regions, two 3nm Al0.3Ga0.7As barriers, and a 5nm QW. This
figure is licensed under CC BY 4.0, attached to an archived copy of [7] held by the University
of Glasgow. The University of Glasgow has an agreement with IEEE allowing authors to self-
archive manuscripts with an attached CC BY licence. © 2024, IEEE.
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Figure 4.2: IV characteristics of a smooth GaAs-Al0.3Ga0.7As nanowire RTD device with
phonon scattering, comparing the base ‘smooth’ case shown in Fig. 4.1 (black line with plus
markers) with a ‘double doping’ case (red line with dot markers) with twice the n-doping level
of the base device. This figure is licensed under CC BY 4.0, attached to an archived copy of [7]
held by the University of Glasgow. The University of Glasgow has an agreement with IEEE
allowing authors to self-archive manuscripts with an attached CC BY licence. © 2024, IEEE.

It should be emphasised that the baseline ‘smooth’ RTD has a smooth 2×1018cm−3 n-

doped source and drain regions which are both 19nm long, as described in section 2.5 in

chapter 2. As noted in subsection 2.2.2, the addition of RDDs increases n-type doping

of the mesh nodes. To provide another comparison device with similarly such increased

doping, I have also simulated a ‘double doping’ device where I have uniformly doubled the

doping levels across the base ‘smooth’ device described by Fig. 4.1. As show in Fig. 4.2

this results in an increased current, with an Ir of 0.3177µA, and a decreased PVCR of

1.157 compared to the base ‘smooth’ device due to an increased valley current.
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4.2.2 Effect of RDDs on the device characteristics

In order to evaluate the impact of statistical variability of the device characteristics in

this subsection, I have simulated 75 RTDs with unique RDD configurations, which vary

the number and position of RDDs. RDD doping is applied across three regions, from 3nm

to 19nm in the source, the central 3nm of the QW, and 36nm to 52nm in the drain. I have

avoided the generation of RDDs close to the contact (where the boundary conditions are

applied) due to convergence issues. Hence, the dopants are applied only in the GaAs III-V

material 3nm far away for the contact region. Considering all 75 RTDs I have obtained

a mean number of RDDs of 6.87. I have presented three devices with very different IV

curve profiles and different positions and numbers of RDDs in Fig. 4.3.

In this subsection, as a first step, I demonstrate how RDDs cause variations in RTD IV

characteristics. This is followed by a visualization of resonant peak IV values from an

ensemble of RDD doped devices, before finishing with an assessment of the capacity of

these IV values to encode information for the use of RTDs as PUF building blocks.

Figure 4.3: The IV characteristics of devices No. 57, 65 and 39 are depicted, accompanied
by an inset illustrating the distribution of RDDs represented by green dots. PVCRs for No.
57, No. 65, and No. 39 are 2.303, 2.077, and 1.784, respectively. The corresponding Ir and
Vr are 0.2708µA at 0.175V, 0.2477µA at 0.15V and 0.3098µA at 0.1V. This figure is licensed
under CC BY 4.0, attached to an archived copy of [7] held by the University of Glasgow. The
University of Glasgow has an agreement with IEEE allowing authors to self-archive manuscripts
with an attached CC BY licence. © 2024, IEEE.
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Figure 4.4: The upper row shows the combined LDOS and T(E) of three RTD devices,
specifically devices No. 57, 65 and 39. These calculations were performed at the bias voltages
corresponding to the first resonant peak, which are 0.175V, 0.15V, and 0.1V, respectively.
Consequently, the bottom row illustrates the energy-resolved CS of the aforementioned devices.
This figure is licensed under CC BY 4.0, attached to an archived copy of [7] held by the
University of Glasgow. The University of Glasgow has an agreement with IEEE allowing authors
to self-archive manuscripts with an attached CC BY licence. © 2024, IEEE.

The impact of RDDs is shown in Fig. 4.3, and Fig. 4.4 with devices No. 57, 65, and

39, with 4, 6 and 6 RDDs respectively. Fig. 4.3 shows the IV characteristics, with inset

devices where the green dots are the distribution of RDDs. Generalising the impact of

RDDs in the drain and QW regions, there is a shift of the resonant peak voltage and

the NDR to a more negligible value because of the shifting of the ground QW state to

lower energies relative to the source Fermi level. Device No. 57 has 3 RDDs in the drain

region (compared to 1 in the source). In this case the NDR is observed to be between

0.175V and 0.200V. This can be explained with perturbation of the potential and hence

the conduction band profile in the source and drain region (please see the dips in the white

dashed lines in Fig. 4.4(a)). Furthermore, a lower bias of 0.175V needs to be applied to

achieve a resonant peak compared to 0.225V with no RDDs.



4.2. Results and discussions 102

Device No. 39 has an RDD in the QW which visibly perturbs the band structure and

density of states in the QW down with respect to the Al0.3Ga0.7As barriers, resulting in a

much lower resonant peak voltage Vr of 0.1V, showing the greater impact of RDDs in the

QW compared to ones in the source region.

All three devices shown in Fig. 4.3 have RDDs in the source region which increases the

conductivity. I believe this behaviour is due to RDDs increasing the overall n-doping in

the source region, and thus the charge carrier concentration and conductance. As a result,

the resonant current peak Ir for all three is comparable to the double doping resonant

peak current Ir=0.3177µA, and greater than the Ir of 0.2238µA for a smooth device with

phonon scattering.

The results show that there is a direct relation between the distribution of the RDDs and

the resulting Ir and Vr which can indeed be used as a fingerprint for unique identification.

Furthermore, in Fig. 4.4 the changes due to the number and the position of the RDDs

are visible in terms of the average potential (black dashed lines), and the band structure

(white dashed lines). I also observed that energy-dependent transmission T(E), plotted

as a red solid line, spikes at different energy levels, and the current conduction through

the channels has different weights for each case. I would like to emphasise that the results

discussed above are a 2D representation of 3D quantum mechanical simulations. Hence,

although some perturbation in the potential or the LDOS might not seem notable, this is

due to the 2D representation. Indeed, the change of the potential from device to device

due to the position and the number of RDDs is pronounced.

The notable differences in terms of the potential, band alignment conditions, and transmis-

sion spectra all reflect the variations in the IV characteristics of these devices—displaying

how the quantum nature of the resonance condition can be noticeably altered with the

variability of RDDs in these III-V nanowire RTD structures.
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Figure 4.5: The central figure(a) is a scatter plot of resonant peak current Ir against resonant
peak voltage Vr for the 65 devices that showed an NDR. The attached figure(b) and figure(c)
respectively show the histograms of the current and voltage distribution with bin-widths of
0.05V and 0.05µA respectively. Normal distributions were fitted onto the histograms with a
mean µ = 0.1554V and standard deviation σ = 0.0549V for the peak voltage distribution
in figure(b), and µ = 0.3053µA and σ = 0.0971µA in figure(c). Figure(a) was also split
into four quadrants with the mean of the normal distributions in figure(b) and figure(c), with
annotations for the number of data points in the quadrant. This figure is licensed under CC
BY 4.0, attached to an archived copy of [7] held by the University of Glasgow. The University
of Glasgow has an agreement with IEEE allowing authors to self-archive manuscripts with an
attached CC BY licence. © 2024, IEEE.
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Figure 4.6: Quantile-Quantile plots for the resonant peak voltage Vr and current Ir in figures
(a) and (b) respectively. Figure(a) plots the ordered peak bias values Vr against corresponding
quantiles from a normal distribution fit to it in Fig. 4.5(b), with mean µ = 0.1554V and
standard deviation σ = 0.0549V. Figure(b) similarly plots ordered peak current values Ir
against corresponding quantiles from a normal distribution fit to it in Fig. 4.5(c), with mean
µ = 0.3053µA and standard deviation σ = 0.0971µA. This figure is licensed under CC BY
4.0, attached to an archived copy of [7] held by the University of Glasgow. The University
of Glasgow has an agreement with IEEE allowing authors to self-archive manuscripts with an
attached CC BY licence. © 2024, IEEE.
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Figure 4.7: IV characteristics of the 65 RTD devices which exhibited an NDR (grey dashed
lines). Two IV characteristics with ‘smooth’ doping such as the base ‘smooth’ case (solid black
line with plus markers) and ‘double doping’ case (solid red line with dot markers), which has
double the n-doping of the base case, are plotted for reference. This figure is licensed under CC
BY 4.0, attached to an archived copy of [7] held by the University of Glasgow. The University
of Glasgow has an agreement with IEEE allowing authors to self-archive manuscripts with an
attached CC BY licence. © 2024, IEEE.
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Figure 4.8: The IV curve of Device No. 40 is shown, which has no NDR, along with an inset of
Device No. 40 showing the distribution of RDDs as green dots. This figure is licensed under CC
BY 4.0, attached to an archived copy of [7] held by the University of Glasgow. The University
of Glasgow has an agreement with IEEE allowing authors to self-archive manuscripts with an
attached CC BY licence. © 2024, IEEE.



4.2. Results and discussions 107

Figure 4.9: The IV curve of Device No. 2 is shown, which has no NDR, along with an inset
of Device No. 2 showing the distribution of RDDs as green dots.

In this chapter, I have simulated 75 RTDs in total. Of 75 RTDs with RDDs, 65 showed an

NDR region in their IV characteristics, which are shown in Fig. 4.7, with a local resonant

peak voltage Vr and corresponding Ir at the start of the NDR. The remaining 10 devices

did not exhibit NDRs, and for this reason, I have decided to exclude them from further

analysis of the Vr and Ir distributions in Fig. 4.5 and Fig. 4.6. These devices without an

NDR were identified through the lack of a local maxima in current identified by a script

going through the IV characteristics. One such device with no NDR is device No. 40 in

Fig. 4.8, in contrast to device No. 39 in Fig. 4.3(c) which also has 1 RDD in the QW yet

still has an NDR. Additionally, another device with no NDR is device No. 2 in Fig. 4.9,

which has no RDDs in the QW. Though device No. 2 was the only one of the 10 devices

without an NDR to not feature an RDD in the QW. For reference, 25 RTDs featured

an RDD within the QW, and for 9 of these devices there was no NDR. This shows that

including RDDs within the QW holds a great risk of removing the NDR of RTDs.
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The resonant values for the 65 RTDs with an NDR are demonstrated as a scatter plot

in Fig. 4.5(a), with attached histograms and fitted normal distributions in Fig. 4.5(b)

and Fig. 4.5(c). The mean Vr=0.1554V is lower than the Vr=0.225V for the smooth and

double doping devices with IV characteristics depicted in Fig. 4.2, due to the presence

of RDDs in the QW and drain on average shifting the QW ground resonant state to

lower energy as noted previously. Due to the increase in doping brought about by RDDs,

mean Ir=0.3053µA is comparable to the Ir of 0.3177µA for the ‘double doping’ case and

greater than the Ir=0.2238µA for smooth device with phonon scattering. This mean Ir

is marginally less than that for the double doping case, likely due to RDDs not being

generated within 3nm of the source and drain contact region. This influence of increased

doping also reflects in how the double doping IV characteristic (red solid line with dot

markers) shown in Fig. 4.7 appears to be more similar to the IV characteristics of devices

with RDDs (grey dashed lines) than the base smooth case (black solid line with plus

markers). The mean PVCR of the 65 devices with NDR is 1.414, and by including devices

without NDR as a PVCR of 0 this average PVCR decreases to 1.225, which is comparable

to the PVCR of 1.157 for the double doping case.

To further investigate whether these distributions fit a normal distribution, Quantile-

Quantile plots for these measured values against the normal distributions were taken

in Fig. 4.6. Quantiles are points that divide a distribution into equal portions, and the

Quantile-Quantile plots in Fig. 4.6 compare the quantiles of the measured distribution

against the expected quantiles for the fitted normal distributions, with a line fit through

the quantiles. The measured quantiles, in this case, are the 65 devices with PVCR, ordered

by increasing value along the y-axis, with an x value corresponding to the similarly ordered

65 normal distribution quantiles. Of note is that the measured Vr values are discrete here

with ‘steps’ forming at simulated bias values in Fig. 4.6(a), whereas experimental measured

Vr would be continuous and result in a smoother curve akin to that in Fig. 4.6(b). Vr is

light-tailed, with an ‘s’ shape due to the sharp cut-off measured at 0.075V and a less

steep one at 0.275V. Ir is right skewed, with a tail for higher current spreading out in

comparison to the fitted normal distribution. Other than that, both Vr and Ir Quantile-
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Quantile plots follow the normal distribution for the central part of the distribution,

so it seems appropriate to split both distributions with the mean of the fitted normal

distributions, leading to the quadrants shown in Fig. 4.5(a). This division means that I can

determine whether a data point is before or after the mean in a given distribution to encode

information. The standard deviation of the fitted Vr normal distribution σ = 0.0549V is

greater than the voltage mesh spacing of 0.025V, allowing me to fit the voltage normal

distribution.

In order to check the randomness of the data (Vr and Ir) for information encoding pur-

poses, I performed three different non-parametric statistical tests to compare these two

datasets. These are the Wilcoxon Signed-Rank test [234], Kolmogorov−Smirnov test [235]

and Mann−Whitney test [236]. For all 3 tests, I rejected the null hypothesis for a signific-

ance level of 0.001, which implies that the two datasets are not from the same population

and are significantly different. The Pearson correlation coefficient [237] between Vr and Ir

was 0.663 indicating a strong correlation, and as seen in Fig. 4.5(a) it is clear that there

is a positive correlation between Vr and Ir, with quadrants I and III having the majority

of data points.

With these non-equivalent yet correlated datasets, it is appropriate to encode information

in both distributions simultaneously using the probability of getting a result within a

given quadrant, for which the min-entropy can be calculated. The min-entropy is the

most conservative measure of information [22] and is Hmin = − log2(pmax) where pmax

is the probability of the most likely result, which in this case is 29 for quadrant III. If I

only look at the 65 results with NDRs, Hmin = − log2(
29
65
) = 1.164. If I include the 10

results without NDR, and thereby the fifth possibility of measuring an RTD with no NDR,

Hmin = − log2(
29
75
) = 1.371. This result appears robust, even under a finer voltage spacing

and with the devices at Vr=0.15V which are close to the voltage mean of µ=0.1554. If

when simulated with a finer voltage spacing a few devices measured as having Vr=0.15

were to move from below the mean to above it, that would lead to a reduction in the

number of points in quadrant III and the pmax, and therefore min-entropy Hmin would
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increase. This means that if 100 RTDs were produced and combined into a PUF, one

could reasonably expect to encode a fingerprint composed of ∼137 bits of information.

This is enough to generate a 128-bit secret key for the popular Advanced Encryption

Standard to authenticate wireless devices[136]. While this is an idealized result, that does

not consider possible issues such as mismeasuring resonant current and voltage as being

in the wrong quadrant, it nonetheless presents a promising case for the use of RTDs with

RDDs to generate PUFs.

4.3 Conclusion

I have investigated an ensemble of 75 NEGF simulations of RTDs with RDDs, enabled

with the nano-electronic device simulator NESS, 65 of which exhibited NDR behaviour.

I have shown that the positions and the number of RDDs strongly perturb the electronic

and transport properties of RTDs. This is clearly projected in the resulting resonant peak

current and voltage for each RTD. These resonant peak current and voltage distributions

were proven through non-parametric tests to not be equivalent distributions and yet were

strongly correlated, with a Pearson coefficient of 0.663. When taking into account both

distributions and devices without an NDR a min-entropy of 1.371 was achieved. The

unique, random, and difficult to predict nature of RTDs with RDDs along with their

information encoding capacity makes them promising candidates for PUF applications.

Furthermore, the results demonstrate that NESS can indeed be used to predict and tailor

RTD behaviour as the main building block in PUF circuits.

In summary, the following key three points were concluded within this chapter

1. RDDs strongly perturb the IV characteristics of RTDs, as well as the LDOS and

CS for the resonant peak
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2. The variation of resonant peak current Ir and resonant peak voltage Vr values due to

RDDs form strongly correlated normal-like distributions which are not equivalent,

with a Pearson coefficient of 0.663

3. When taking into account both Ir and Vr distributions and devices without an

NDR, a min-entropy of 1.371 can be assigned to a given RTD with RDDs. This

shows promise for composing a PUF out of multiple such RTDs with RDDs.

For future research and design of RTD based PUFs, RDDs provide the potential to act

as PUF components, though they also hold the potential to destroy the NDR, especially

when within the QW. Hence, for the design of PUFs with RDDs, I would suggest either

to avoid doping the QW region where there is a risk of destroying the NDR and/or take

into account RTDs without an NDR to also encode information.



Chapter 5

Interface Roughness

5.1 Introduction

Due to the importance of IR in RTDs, I have studied and submitted multiple papers

on the topic. This chapter is composed of content from three such first author papers of

mine [8–10]. Sections 5.2, 5.3 and 5.4 each correspond to the papers [8], [9], and [10]

respectively.

Section 5.2 investigates the influence of IR at different GaAs/Al0.3Ga0.7As interfaces,

comparing to the variation in barrier and QW thicknesses in chapter 3. Section 5.3 in-

vestigates how varying the correlation length and RMS (Root-Mean Square) asperity of

IR on RTDs influences them within subsection 5.3.1, and how RTDs with IR can be used

as PUFs (Physical able Functions) in subsection 5.3.2. Section 5.4 builds upon the pre-

ceding section by improving the implementation of IR to allow two correlation lengths,

which is compared to the previous implementation and found to increase variation in IV

(Current-Voltage) characteristics further, further emphasising the importance of taking

into account IR in RTDs. Additionally, anisotropic IR for different correlation lengths is

briefly investigated. Finally, section 5.5 concludes the chapter and draws key points.

112
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5.2 Sensitivity of RTDs to IR

This section investigates the influence of IR at different GaAs/Al0.3Ga0.7As interfaces,

comparing to the variation in barrier and QW thicknesses in chapter 3. Similarly, the

parameters as noted in chapter 3 are used, including acoustic electron-phonon scattering.

5.2.1 IR with Different Interface Configurations

In this subsection, I investigate the selective inclusion of IR along different interfaces. The

configurations are roughness along the QW (at x=25nm and x=30nm), the ‘first’ barrier

(at x=22nm and x=25nm), and the ‘second’ barrier (at x=30nm and x=33nm). The IR fol-

lows the exponential autocorrelation model of roughness [202], and has an RMS roughness

asperity ∆RMS=0.3nm and correlation length LC [199, 200]. For each such configuration,

I randomly generated and simulated 25 devices, resulting in an average IV characteristic

(red dotted line with diagonal cross markers) and a comparison with the ‘smooth’ case

(black solid line with dot markers) in Fig. 5.1, Fig. 5.2 and Fig. 5.3. In the aforemen-

tioned figures, I also investigate individual devices for their IV characteristic and charge

density at the resonant peak, and in the insets there are visualizations of Al0.3Ga0.7As

barriers for those particular devices. All devices chosen had an IV characteristic which

was representative of the average of their IR configuration.

Acoustic electron-phonon scattering is included for simulations within this section, with

the effects explored in subsubsection 3.3.1.2. A maximum of 25 NEGF-Poisson convergence

loops were allowed for this section.

The IV characteristic for the ‘smooth’ baseline device is as shown in Fig. 3.2 in chapter 3.



5.2. Sensitivity of RTDs to IR 114

Figure 5.1: Comparison of IV characteristics (figure(a)) and electron charge density (fig-
ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black solid line
with dot markers) depicted in Fig. 5.7 and device 2 with IR along the inside of the QW
(purple dashed line with star markers). Within figure(b), barrier interface positions are noted
with slightly transparent vertical lines with dot markers. Figure(a) also depicts the average IV
characteristic (red dotted line with diagonal cross markers), and the Al0.3Ga0.7As barriers for
device 2 with a rough second barrier as an inset. This figure is reproduced based on Figure 14
from [8], which is licensed under CC BY 4.0.
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For roughness along the QW, I observed behaviour similar to narrowing the QW width

in Fig. 3.10, with a perturbation of the resonant peak bias Vr to greater bias and an

increase in emitter region charge density compared to the baseline ‘smooth’ case. Unlike

the ‘smooth’ LQW=4nm case however, I see a slight reduction in current with the addition

of IR along the QW, including a drop of Ir from 0.224µA to 0.217µA. I also observe a

consequential slight reduction in QW charge density as seen in Fig. 5.1(b). This lack of

increased QW charge density also means that the space-charge effect due to QW charge

did not contribute to the perturbation of the resonant peak bias Vr to higher bias, with Vr

increasing from 0.22V to 0.26V. Instead, as noted for the LQW=4nm case, the narrower

QW led to a greater ground state eigenvalue [233], which necessitated a greater bias Vr to

align with the source Fermi level and thus reach the resonant peak. The average resonant

peak IV values of 25 devices with IR along the QW shows a similar perturbation from

Ir=0.224µA and Vr=0.22V, with a decrease to Ir=0.212µA and an increase to Vr=0.256V.
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Figure 5.2: Comparison of IV characteristics (figure(a)) and electron charge density (fig-
ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black solid line
with dot markers) depicted in Fig. 5.7 and device 1 with IR along the first Al0.3Ga0.7As barrier
(green dashed line with square markers). Within figure(b), barrier interface positions are noted
with slightly transparent vertical lines with dot markers. Figure(a) also depicts the average IV
characteristic (red dotted line with diagonal cross markers), and the Al0.3Ga0.7As barriers for
device 1 with a rough first barrier as an inset. This figure is reproduced based on Figure 15
from [8], which is licensed under CC BY 4.0.
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A rough first barrier in Fig. 5.2 exhibits an IV characteristic akin to thickening the barrier

as seen in Fig. 3.12 for LB1=4nm, with a reduction in current, with Ir reducing from

0.224µA to 0.138µA, and a lower charge QW charge density as seen in Fig. 5.2(b). There

is also a slight perturbation of the resonant peak bias Vr to lower bias measured, with Vr

reducing from 0.22V to 0.21V. Though unlike for LB1=4nm, I observe a slight increase

in the emitter region charge density, perhaps due to IR scattering keeping some charge

confined there. The average resonant peak IV values of 25 devices with IR along the first

barrier shows a similar perturbation from Ir=0.224µA and Vr=0.22V, with a decrease to

Ir=0.138µA and a slight decrease to Vr=0.212V.
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Figure 5.3: Comparison of IV characteristics (figure(a)) and electron charge density (fig-
ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black solid line
with dot markers) depicted in Fig. 5.7 and device 1 with IR along the second Al0.3Ga0.7As
barrier (pink dashed line with diamond markers). Within figure(b), barrier interface positions
are noted with slightly transparent vertical lines with dot markers. Figure(a) also depicts the
average IV characteristic (red dotted line with diagonal cross markers), and the Al0.3Ga0.7As
barriers for device 1 with a rough second barrier as an inset. This figure is reproduced based
on Figure 16 from [8], which is licensed under CC BY 4.0.
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With Fig. 5.3(a), the IV characteristic of the rough second barrier acts as if the barrier

was thicker than the ‘smooth’ baseline RTD, similar to what is seen in Fig. 3.13(a) with

LB2=4nm. There is a perturbation of the resonant peak bias Vr to greater bias, with Vr

increasing from 0.22V to 0.25V, and a slight reduction in current, with Ir decreasing from

0.224µA to 0.208µA. I also observe greater QW charge density in Fig. 5.3(b), as with

LB2=4nm, due to charge accumulating behind the second barrier. The average resonant

peak IV values of 25 devices with IR along the second barrier shows a similar perturbation

from Ir=0.224µA and Vr=0.22V, with a slight reduction to Ir=0.214µA and an increase

to Vr=0.266V.

To summarise this subsection, IR along barriers leads to effective thickening of barriers,

except for slightly increased emitter region charge density with rough first barriers. Sim-

ilarly, IR along the QW leads to an effective narrowing of the QW, aside from a slightly

reduced current and charge density.

5.2.2 RTDs with Full IR

Figure 5.4: A depiction of device 3 with IR along all Al0.3Ga0.7As/GaAs interfaces. The rough
Al0.3Ga0.7As barriers are red, and are situated in the partially transparent blue GaAs body.
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In this subsection I depict the case with IR along all four Al0.3Ga0.7As/GaAs interfaces,

plotting the IV characteristics for the 25 randomly generated devices (grey dashed lines)

in Fig. 5.5 along with an average (red dotted line with diagonal cross markers) and a

comparison to the ‘smooth’ device (black solid line with dot markers) in Fig. 3.2. In

particular, I investigate device 3 with full roughness, as depicted in Fig. 5.4.

Figure 5.5: IV characteristics of 25 randomly generated RTDs (grey dashed lines) with IR
along all Al0.3Ga0.7As/GaAs interfaces [8], with an average (red dotted line with diagonal
cross markers) and a ‘smooth’ RTD with no IR (black solid line with dot markers) plotted for
comparison. This figure [8] is licensed under CC BY 4.0.

As shown in Fig. 5.5, IR leads to a noticeable decrease in current and a perturbation of

the resonant peak bias Vr to greater bias for all devices in comparison to the ‘smooth’

case. This strong impact by IR with an RMS roughness asperity of 0.3nm, close to only

one monolayer, showcases the importance of taking IR in RTD simulations. To further

explore the behaviour of IR I have investigated device 3 with full IR, which is depicted in

Fig. 5.4 with red coloured rough Al0.3Ga0.7As barriers.
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Figure 5.6: Comparison of IV characteristics (figure(a)) and electron charge density (fig-
ure(b)), through the centre of RTD cross-sections, for the ‘smooth’ RTD (black solid line
with dot markers) depicted in Fig. 5.7 and device 3 with full IR along all Al0.3Ga0.7As/GaAs
interfaces (grey dashed line with diagonal cross markers) depicted in Fig. 5.4. Within figure(b),
barrier interface positions are noted with slightly transparent vertical lines with dot markers.
For comparison, the average IV characteristic (red dotted line with diagonal cross markers) is
also plotted in figure(a). The inset for figure(a) are the Al0.3Ga0.7A barriers of device 3. This
figure is reproduced based on Figure 18 from [8], which is licensed under CC BY 4.0.
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Device 3 with full IR is representative of the ensemble of randomly generated devices,

as shown by the similarity of its IV characteristic (grey dashed line with diagonal cross

markers) with the average (red dotted line with diagonal cross markers) in Fig. 5.6(a).

Compared to the ‘smooth’ case, current has reduced from Ir=0.224µA to 0.144µA and

the resonant peak bias Vr has perturbed to greater bias with Vr increasing from 0.22V

to 0.25V. The average resonant peak IV values of 25 devices with full IR shows a similar

perturbation from Ir=0.224µA and Vr=0.22V, with a decrease to Ir=0.142µA and an

increase to Vr=0.258V. There is also a slight reduction in QW charge density and an

increase in emitter charge density plotted for the resonant peak, compared to the smooth

case, in Fig. 5.6(b).

The contributions from IR along different parts of the RTD to device 3 with full roughness

in Fig. 5.6 can be considered by comparing with the preceding subsection 5.2.1. The

reduction in current and QW charge density seems to be due to effectively thicker barriers

with IR. This behaviour is also observed for thicker ‘smooth’ symmetrical LB1=LB2=4nm

barriers in Fig. 3.9. The perturbation of the resonant peak bias Vr to higher bias appears

to be caused by the effectively narrower QW brought about by IR along the QW. The

slight reduction in QW charge density in Fig. 5.6(b) means that this perturbation in

the resonant peak bias Vr to higher bias is not due to the space-charge density. The

perturbation in the resonant peak bias Vr to higher bias can instead be explained by the

increased ground QW energy eigenvalue brought about by an effectively narrower QW.

The pronounced impact observed in Fig. 5.6 is caused by IR with an RMS asperity of only

0.3nm, close to a monolayer. This notable change caused by IR highlights the importance

of including IR in RTD simulations. And the observed changes in the effective barrier and

QW thicknesses puts forward considerations for future design and optimisation of RTDs.
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5.3 Interface Roughness in RTDs for PUFs

The purpose of this section is to first study the impact of IR with different asperity ∆RMS

and correlation lengths LC on ensembles of 25 RTDs in subsection 5.3.1, and to then

explore the possibility of using the variation of the resonant peak of RTDs with IR to

encode information as part of a PUF in subsection 5.3.2.

All simulations were in the ballistic regime for this section. A maximum of 120 NEGF-

Poisson convergence loops were allowed for this section due to the comparatively quicker

simulations in the ballistic regime and greater availability of computing resources at the

time. Other simulation parameters are as described within section 2.5.

5.3.1 Variation in Asperity and Correlation Length

Figure 5.7: The GaAs-Al0.3Ga0.7As RTD under investigation [9]. This is a 55nm long GaAs
nanowire with a 10nm×10nm cross-section, interrupted by two Al0.3Ga0.7As barriers. The
device can be split into three regions, the 19nm source and drain which are 2×1018cm−3 n-
doped, and the central 17nm device region which is 1×1015cm−3 n-doped. This central region
has two 3nm buffer regions enclosing the 3nm Al0.3Ga0.7As, which themselves enclose a 5nm
QW. This particular device is ‘smooth’ because IR has not been implemented. This figure [9]
is licensed under CC BY 4.0.
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Figure 5.8: The annotated IV characteristic of the ‘smooth’ RTD [9] shown in Fig. 5.7,
simulated in the ballistic regime. This figure [9] is licensed under CC BY 4.0.

A smooth RTD is depicted in 5.7, with the corresponding IV characteristic shown in

Fig. 5.8 as an object of comparison.
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Figure 5.9: Al0.3Ga0.7As barriers for Device No. 1 with IR with an LC of 7.5nm and ∆RMS

of 0.3nm [9]. This figure [9] is licensed under CC BY 4.0.

Figure 5.10: IV characteristics for Device No. 1 (orange dashed line) [9], corresponding to
the rough Al0.3Ga0.7As barriers in Fig. 5.9, and a ‘smooth’ RTD IV characteristic (black solid
line) as shown in Fig. 5.8. This figure [9] is licensed under CC BY 4.0.
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Figure 5.11: Colour-map of the mean of PVCR of 25 RTDs with randomly generated IR,
for different LC and ∆RMS. This figure is reproduced based on Figure 7 from [9], which is
licensed under CC BY 4.0.
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Figure 5.12: Colour-map of standard deviation of fitted normal curves to the distribution of
the resonant peak voltage Vr, of 25 RTDs with randomly generated IR, for different LC and
∆RMS. This figure is reproduced based on Figure 7 from [9], which is licensed under CC BY
4.0.
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Figure 5.13: Colour-map of standard deviation of fitted normal curves to the distribution of
the resonant peak current Ir, of 25 RTDs with randomly generated IR, for different LC and
∆RMS. This figure is reproduced based on Figure 7 from [9], which is licensed under CC BY
4.0.
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Figure 5.14: IV characteristics for 150 randomly generated RTDs with exponential IR of
LC=7.5nm and ∆RMS=0.3nm as grey dashed lines [9]. The mean current-voltage character-
istic is a solid red line with plus markers. This figure [9] is licensed under CC BY 4.0.
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Figure 5.15: The resonant peak, or local maxima, of each current-voltage characteristic
in Fig. 5.14 is shown in figure(a) and is split into 4 quadrants by the mean for the voltage
(0.2717 V) and current (0.1903 µA) distributions as seen in figure(b) and figure(c) respectively.
Figure(b) and figure(c) also show histograms and fitted normal distributions for occurrence of
resonant peak values. This figure [9] is licensed under CC BY 4.0.

The Al0.3Ga0.7As barriers of Device No. 1 which has an IR with an LC of 7.5nm and ∆RMS

of 0.3nm are shown in Fig. 5.9, and the corresponding IV characteristic (orange dashed

line) is compared against the ‘smooth’ RTD (black solid line) in Fig. 5.10. IR leads to a

reduction in current and a drop in PVCR from ∼3.6 to ∼2.2, and a perturbation in the

NDR to higher bias by 0.02V.

To investigate the impact of varying correlation length LC and roughness asperity ∆RMS, I

randomly generated 25 RTD devices for each set of parameters. From these sets I extracted

the mean of the PVCR and the standard deviation of voltage and current for the resonant

peak, and plotted them respectively in Fig. 5.11, Fig. 5.12, and Fig. 5.13. In Fig. 5.11,

Fig. 5.12, and Fig. 5.13 the main effect is due to ∆RMS, which as it increases leads
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to a decrease in the PVCR and an increase in the standard deviations. Hence, for the

purposes of designing RTDs with IR to encode information with the variation of resonant

peak current and voltage, ∆RMS is an important factor to take into account for further

research and manufacturing.

5.3.2 Min-entropy of RTDs with IR

In Fig. 5.11, Fig. 5.12 and Fig. 5.13 ∆RMS=0.3nm and LC=7.5nm balance a moderate

PVCR with moderately large standard deviations, and is similar to the parameters studied

in [160], so further investigation was carried out with this set of parameters. I simulated

150 RTDs, resulting in the IV curves (grey dashed lines) in Fig. 5.14 and the scatterplot

of corresponding resonant peak values and attached histograms in Fig. 5.15. By splitting

the scatterplot in Fig. 5.15(a) into quadrants with the mean of the current and voltage

distributions, it is possible to encode information in which quadrant the resonant peak

appears in. Using the most conservative measure of information min-entropy [22, 137],

Hmin = − log2(pmax) where pmax is the probability of the most likely result, results in

Hmin = − log2(
62
150

) = 1.275. This means that a PUF composed of 100 RTDs can encode

127 bits. This described approach considers a PUF formed of RTDs as an array where

each element corresponds to an RTD in one of 4 possible quadrant states. While this

does not consider possible issues such as mismeasuring resonant current and voltage as

being in the wrong quadrant, it nevertheless supports the case of RTDs with IR as PUF

components.



5.4. Impact of IR Correlation on RTD Variation 132

5.4 Impact of IR Correlation on RTD Variation

Within this section, I introduce a new implementation of roughness that is described

within subsection 2.2.3, which can be generated using two correlation lengths along a

plane, allowing anisotropic IR and providing a more accurate model for practical devices.

RTDs serve as an ideal test case for verifying this methodology used in simulation structure

generation, due to their relatively simple structure.

Simulation parameters are set as listed within section 2.5, except with the ballistic regime

used for efficient statistical simulation. A rather generous NEGF-Poisson convergence loop

condition of 300 was used due to the great availability of computational resources with

few other users at the time and the comparatively quicker simulations in the ballistic

regime, compared to with electron-phonon scattering. In subsection 5.4.1 IR is compared

with the previous implementation and the following subsection 5.4.2 briefly investigates

anisotropic IR with two different correlation lengths.

Figure 5.16: Visualisation of device 3 generated with an IR of correlation length
LC=2.5nm [10], one of 25 such RTD devices. The rough Al0.3Ga0.7As barriers (shown in
red) are embedded within a GaAs (transparent blue) nanowire body. This figure [10] is li-
censed under CC BY 4.0.
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Figure 5.17: Visualisation of device 15 generated with ‘improved’ IR of isotropic correlation
lengths LY

C=LZ
C=2.5nm [10], one of 25 such RTD devices. The rough Al0.3Ga0.7As barriers

(shown in red) are embedded within a GaAs (transparent blue) nanowire body. This figure [10]
is licensed under CC BY 4.0.

Figure 5.18: Visualisation of device 23 generated with ‘improved’ IR of anisotropic correlation
lengths LY

C=2.5nm and LZ
C=5nm [10], one of 25 such RTD devices. The rough Al0.3Ga0.7As

barriers (shown in red) are embedded within a GaAs (transparent blue) nanowire body. This
figure [10] is licensed under CC BY 4.0.
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Figure 5.19: IV characteristic for the baseline RTD [10] shown in Fig. 5.7. The resonant
peak, or local maxima in current Ir=0.2661µA at bias Vr=0.24V, and the valley, or local
minima Iv=0.0793µA at Vv=0.25V, are two key points for this nonlinear IV characteristic.
These bound the NDR, and define the figure of merit PVCR Ir/Iv. This figure [10] is licensed
under CC BY 4.0.
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Figure 5.20: A composite figure [10] visualising the IV characteristics of 25 RTDs generated
with an IR of correlation length LC=2.5nm. Figure(a) depicts all the IV characteristics (grey
dashed lines), with an average (red dotted line with dot markers) and a ‘smooth’ RTD (solid
black line with plus markers) for comparison. Figure(b) is a scatterplot of the resonant peak
IV values taken from figure(a), and is bifurcated with dashed lines at the mean values of the
resonant peak values, Vr=0.2736V and Ir=0.1918µA. Figure(c) and figure(d) are accompa-
nying histograms and fitted normal distributions for the resonant peak voltage Vr and current
Ir distributions respectively. This figure [10] is licensed under CC BY 4.0.

Figure 5.21: A composite figure [10] visualising the IV characteristics of 25 RTDs generated
with an ‘improved’ isotropic IR of correlation lengths LY

C=LZ
C=2.5nm. Figure(a) depicts all the

IV characteristics (grey dashed lines), with an average (red dotted line with dot markers) and
a ‘smooth’ RTD (solid black line with plus markers) for comparison. Figure(b) is a scatterplot
of the resonant peak IV values taken from figure(a), and is bifurcated with dashed lines at
the mean values of the resonant peak values, Vr=0.2680V and Ir=0.2270µA. Figure(c) and
figure(d) are accompanying histograms and fitted normal distributions for the resonant peak
voltage Vr and current Ir distributions respectively. This figure [10] is licensed under CC BY
4.0.
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Figure 5.22: IV characteristics for device 3 (green dashed line with square markers) and the
average (green dotted line) with IR of correlation length LC=2.5nm, compared against the
‘smooth’ device IV characteristic (black solid line with plus markers) [10]. The inset contains
the rough Al0.3Ga0.7As barriers for device 3, which is shown in Fig. 5.16. This figure [10] is
licensed under CC BY 4.0.
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Figure 5.23: IV characteristics for device 15 (cyan dashed line with diamond markers) and the
average (cyan dotted line) with ‘improved’ IR of correlation lengths LY

C=LZ
C=2.5nm, compared

against the ‘smooth’ device IV characteristic (black solid line with plus markers) [10]. The
inset contains the rough Al0.3Ga0.7As barriers for device 15, which is shown in Fig. 5.17. This
figure [10] is licensed under CC BY 4.0.

5.4.1 Improved Isotropic Interface Roughness

IR Improved IR
LC (nm) Vr (V) Ir (µA) Vr (V) Ir (µA)

2.5 0.2736 0.1918 0.2680 0.2270
5.0 0.2764 0.1924 0.2716 0.2404
7.5 0.2788 0.1960 0.2640 0.2332
10.0 0.2748 0.1946 0.2536 0.2292

Table 5.1: Mean Vr and Ir for the previous and ‘improved’ IR for different correlation
lengths [10].
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IR Improved IR
LC (nm) σVr (mV) σIr (nA) σVr (mV) σIr (nA)

2.5 6.2 9.0 24.2 34.7
5.0 6.9 10.2 28.7 47.6
7.5 11.4 17.2 35.9 68.8
10.0 11.7 18.8 38.8 80.9

Table 5.2: Standard deviations of Vr and Ir for the previous and ‘improved’ IR for different
correlation lengths [10].

Within this subsection is a comparison of the previous implementation of IR with the

‘improved’ IR featuring isotropic correlation, while varying the correlation length from

LC=2.5nm to LC=10nm. Fig. 5.20 and Fig. 5.21 each illustrate a distribution of 25 devices

simulated with the previous and ‘improved’ IR models respectively, for LC=2.5nm. Cor-

respondingly, individual devices from these distributions are also presented in Fig. 5.22

and Fig. 5.23, and extracted values of the mean and standard deviation of resonant peak

IV values are compared in Table 5.1 and Table 5.2 respectively.

A comparison of Fig. 5.20 and Fig. 5.21 shows that the use of the ‘improved’ IR genera-

tion method results in greater variation in the IV characteristics and the corresponding

resonant peak current and voltage. The standard deviation of the resonant peak voltage

and current are nearly four times greater with the ‘improved’ IR, increasing from 6.2mV

and 9nA to 24.2mV and 34.7nA as shown in Table 5.2. For both distributions, the av-

erage resonant peak perturbs to a greater bias and lesser current than the ‘smooth’ case

of Ir=0.2661µA at bias Vr=0.24V. As shown in Table 5.1, this perturbation in mean res-

onant peak values holds true for all the distributions simulated with IR. Additionally,

for the ‘improved’ IR model, the mean Ir experiences a lesser reduction compared to the

previous IR model, with greater mean Ir for all correlation lengths. Two specific device

IV characteristics from these distributions of the previous and ‘improved’ IR are depicted

respectively in Fig. 5.22 and Fig. 5.23, with the corresponding rough Al0.3Ga0.7As barriers

shown in their inset and the average IV characteristics (dotted lines) also plotted. Stand-



5.4. Impact of IR Correlation on RTD Variation 139

ard deviations of resonant peak values for both IR models roughly double in magnitude

as correlation length increases from LC=2.5nm to LC=10nm as shown in Table 5.2, with

an increase from 6.2mV and 9nA to 11.7mV and 18.8nA for the previous IR model, and

an increase from 24.2mV and 34.7nA to 38.8mV and 80.9nA for the ‘improved’ IR model.

5.4.2 Improved Anisotropic Interface Roughness

Figure 5.24: Mean of current peak Ir in microampere for different anisotropic correlation
lengths LC [10]. This figure [10] is licensed under CC BY 4.0.
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Figure 5.25: Standard deviation of current peak Ir in nanoampere for different anisotropic
correlation lengths LC [10]. This figure [10] is licensed under CC BY 4.0.
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Figure 5.26: Mean of resonant voltage Vr in Volts for different anisotropic correlation lengths
LC [10]. This figure [10] is licensed under CC BY 4.0.
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Figure 5.27: Standard deviation of resonant voltage Vr in millivolts for different anisotropic
correlation lengths LC [10]. This figure [10] is licensed under CC BY 4.0.

A new capacity of the ‘improved’ IR generation brought about by considering two correla-

tion lengths is anisotropic IR, which is important because heterostructure interfaces often

feature such anisotropic IR [238]. Fig. 5.24 and Fig. 5.25 represent the mean and standard

deviation of Ir respectively for different anisotropic correlation lengths, and Fig. 5.26 and

Fig. 5.27 similarly represent the mean and standard deviation of Vr. The diagonal grid

values of these colour maps are for isotropic ‘improved’ isotropic roughness, as noted in

Table 5.1 and Table 5.2. From Fig. 5.25 and Fig. 5.27, I found some variation in the stand-

ard deviations of resonant peak values, supporting the importance of including anisotropic

IR for simulations of devices when studying device variation.
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I have presented an improved simulation of roughness using NESS by including two

correlation lengths to generate roughness along a plane, and used this to investigate

Al0.3Ga0.7As/GaAs RTDs with IR along the Al0.3Ga0.7As barriers. The improved IR simu-

lation approach has resulted in RTDs exhibiting greater variation in the IV characteristics

across distributions of 25 RTDs with different correlation lengths. This variation has been

quantified numerically as the standard deviation of resonant peak voltage Vr and cur-

rent Ir. For a correlation length LC=2.5nm, there is almost a four-fold increase in the

standard deviations of resonant peak values, from 6.2mV and 9nA using the previous

method to 24.2mV and 34.7nA with the improved IR method. Larger correlation lengths

were found to increase the standard deviation of resonant peak values for both the previ-

ous and the new method, with the standard deviation roughly doubling as LC increases

from 2.5nm to 10nm. The improved IR generation method has also allowed me to meas-

ure standard deviations for anisotropic correlation, which exhibit variation with different

correlation lengths. This increased variation and the ability to simulate anisotropic cor-

relation lengths highlight the importance of this improvement to NESS, and suggests that

future accurate simulations of device variation will require roughness with two correlation

lengths.

5.5 Conclusion

In conclusion, IR was shown to have a significant effect on RTD behaviour, highlighting

the importance of taking it into account for further research and development of RTDs.

IR along the first and second barriers leads to effectively thicker barriers regarding IV

and charge density, except for increased emitter charge density for the case of a rough

first barrier. IR along the inside of the QW results in an effectively thinner QW, except

for slightly reduced current and QW charge density. The impact of IR along all four

GaAs/Al0.3Ga0.7As interfaces can be explained by thicker effective barriers and a thinner
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QW. Secondly, for a distribution of random devices ∆RMS, not LC , was the main para-

meter to control IR. Increasing ∆RMS leads to a reduction of mean PVCR, and increased

standard deviation of resonant peak IV values. For ∆RMS=0.3nm and LC=7.5nm, I have

found that RTDs with such IR could encode 1.275 bits in min-entropy, showing promise

for RTDs with IR as a PUF component.

Lastly, an improved simulation of roughness using NESS, by including two correlation

lengths to generate roughness along a plane, was achieved. This improved IR was used

to investigate Al0.3Ga0.7As/GaAs RTDs with IR along the Al0.3Ga0.7As barriers. The im-

proved IR simulation approach has resulted in RTDs exhibiting greater variation in IV

characteristics across distributions of 25 RTDs with different correlation lengths. This vari-

ation has been quantified numerically as the standard deviation of resonant peak voltage

Vr and current Ir. For a correlation length LC=2.5nm, there is almost a four-fold increase

in the standard deviation of resonant peak values, from 6.2mV and 9nA using the previous

method to 24.2mV and 34.7nA with the improved IR method. Larger correlation lengths

were found to increase the standard deviation for both the previous and the new method,

with the standard deviation roughly doubling as LC increases from 2.5nm to 10nm. The

improved IR generation method has also allowed a measurement of standard deviations

for anisotropic correlation lengths, which exhibit different correlation lengths. This in-

creased variation and the ability to simulate anisotropic correlation lengths highlight the

importance of this improvement to NESS. I would go as far as to suggest that future IR

simulation research regarding RTDs and similar devices should model IR as being two-

dimensional due this large impact on IV characteristics. Future accurate simulations of

device variation with NESS will benefit from IR with two correlation lengths.

In summary, the key points from this chapter are that
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1. IR leads to effectively thicker barriers and a thinner QW according to IV charac-

teristics and charge lineplots. The mean resonant peak IV values for 25 RTDs with

IR along all Al0.3Ga0.7As/GaAs interfaces demonstrate this, with a reduction of Ir

from 0.224µA to 0.142µA, and an increase in Vr from 0.22V to 0.258V.

2. ∆RMS inversely affects mean PVCR, with a decrease of 3.72 for ∆RMS=0.1nm to

1.62 for ∆RMS=0.6nm, with LC=7.5nm.

3. For 150 RTDs with an IR of ∆RMS=0.3nm and LC=7.5nm a min-entropy of 1.275

bits was measured, showing promise for RTDs with IR as a PUF component.

4. Generating IR with two correlation lengths significantly increases device variation of

produced RTDs, with an increase in standard deviation of resonant IV peaks from

6.2mV and 9nA to 24.2mV and 34.7nA for LC=2.5nm

5. Larger correlation lengths were found to increase the standard deviation of resonant

IV peaks for both the previous and the new method with two correlation lengths,

with the latter showing an increase from 24.2mV and 34.7nA at LC=2.5nm to

38.8mV and 80.9nA at LC=10nm.

Design considerations for RTDs can be drawn from each of the aforementioned points.

Firstly, the effective thickening of barriers and narrowing of QW due to roughness is

especially important due to these effects being noticeable even with a roughness of 0.3nm.

This means that when developing an RTD to have an expected IV characteristic, barriers

will likely have to be made a bit narrower and the QW will have to be made slightly

bigger, though the quantity of this shift has not been elucidated here and is a topic of

further study. The second conclusion of the impact of RMS asperity shows that reducing

RMS asperity is important for achieving higher PVCR values. The third conclusion shows

that RTDs with IR are feasible for constructing PUFs, and with the variation in standard

deviation of resonant peak values shown in fourth and fifth conclusions suggests that such

RTDs should be developed with IR with long correlation lengths in both directions.



Chapter 6

Conclusion

6.1 Summary

RTDs (Resonant Tunnelling Diodes) were shown through NEGF (Non-equilibrium Green’s

Function) simulations with NESS (Nano-electronic Simulation Software) to be strongly

influenced by device variation. This thesis has strengthened the case for RTDs with device

variation to be used as PUF (Physical Unclonable Function) building blocks through

NEGF simulations. After a literature review on RTDs in chapter 1 the theory and methods

involved in this thesis were explored in chapter 2, forming a foundation for the research

in chapters 3, 4 and 5.

First, a design of device study from first author paper [8] is explained in chapter 3, wherein

three main observations were drawn

1. A narrower 4nm QW and thinner 2nm symmetric barriers, compared to a baseline

RTD with a 5nm QW and 3nm symmetric barriers, both resulted in a perturbation

of resonant peak bias Vr to greater values of 0.31V and 0.25V respectively from a

baseline of 0.22V.

146
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2. Asymmetric variation of the barriers controlled the perturbation of the resonant

peak bias Vr, with a thinner 2nm first barrier resulting in a perturbation to a greater

bias of Vr=0.32V, and a thinner 2nm second barrier resulting in the inverse effect

of reduced bias of Vr=0.18V.

3. Both barrier thicknesses inversely impacted the current, with the first barrier having

a greater impact. Specifically, a thicker 4nm first barrier reduced resonant peak

current Ir from 0.224µA to 0.064µA, while a thicker 4nm second barrier only reduced

Ir to 0.153µA.

The conclusions drawn here can be used to assist design of RTDs. For example, if optim-

ising for a lower resonant peak voltage, a thinner first barrier or thicker second barrier or

wider QW can be considered.

In the following chapter 4 based on a published paper [7] a study of the effects of RDDs

on RTDs was conducted with an ensemble of 75 NEGF simulations of RTDs with RDDs,

65 of which exhibited NDR behaviour. The following three points were concluded

1. RDDs strongly perturb the IV characteristics of RTDs, as well as the LDOS and

CS for the resonant peak

2. The variation of resonant peak current Ir and resonant peak voltage Vr values due to

RDDs form strongly correlated normal-like distributions which are not equivalent,

with a Pearson coefficient of 0.663

3. When taking into account both Ir and Vr distributions and devices without an NDR,

a min-entropy of 1.371 can be assigned to a given RTD with RDDs. This shows

promise for composing a PUF (Physical Unclonable Function) out of multiple such

RTDs with RDDs.
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As seen within chapter 4 RDDs provide the potential to act as PUF components though

also hold the potential to destroy the NDR, especially when within the QW. Hence, for

the design of PUFs with RDDs, I would suggest either to avoid doping the QW region

where there is a risk of destroying the NDR and/or take into account RTDs without an

NDR to also encode information.

In the final results chapter 5, NESS was modified to simulate IR, and the effects of this

on RTDs are explored in depth in three sections which are each based on a first author

paper of mine [8–10]. The effects of IR were explored through investigating distributions

of 25 RTDs with randomly generated IR for each configuration of IR, as well as indi-

vidual devices characteristic of such a distribution. Additionally, within section 5.4, IR

was improved to depend on two correlation lengths, which also allows anisotropic IR to

be generated. In summary, the key points from this chapter are that

1. IR leads to effectively thicker barriers and a thinner QW according to IV charac-

teristics and charge lineplots. The mean resonant peak IV values for 25 RTDs with

IR along all Al0.3Ga0.7As/GaAs interfaces demonstrate this, with a reduction of Ir

from 0.224µA to 0.142µA, and an increase in Vr from 0.22V to 0.258V.

2. RMS (root-mean-square) asperity ∆RMS inversely affects mean PVCR, with a de-

crease of 3.72 for ∆RMS=0.1nm to 1.62 for ∆RMS=0.6nm, with LC=7.5nm.

3. For 150 RTDs with an IR of ∆RMS=0.3nm and LC=7.5nm a min-entropy of 1.275

bits was measured, showing promise for RTDs with IR as a PUF component.

4. Generating IR with two correlation lengths increases device variation of produced

RTDs, with an increase in standard deviation of resonant IV peaks from 6.2mV and

9nA to 24.2mV and 34.7nA for LC=2.5nm

5. Larger correlation lengths were found to increase the standard deviation of resonant

IV peaks for both the previous and the new method with two correlation lengths,

with the latter showing an increase from 24.2mV and 34.7nA at LC=2.5nm to

38.8mV and 80.9nA at LC=10nm.
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Design considerations for RTDs can be drawn from each of the aforementioned points.

Firstly, the effective thickening of barriers and narrowing of QW due to roughness is

especially important due to these effects being noticeable even with a roughness of 0.3nm.

This means that when developing an RTD to have an expected IV characteristic, barriers

will likely have to be made a bit narrower and the QW will have to be made slightly

bigger, though the quantity of this shift has not been elucidated here and is a topic of

further study. The second conclusion of the impact of RMS asperity shows that reducing

RMS asperity is important for achieving higher PVCR values. The third conclusion shows

that RTDs with IR are feasible for constructing PUFs, and with the variation in standard

deviation of resonant peak values shown in fourth and fifth conclusions suggests that such

RTDs should be developed with IR with long correlation lengths in both directions.

6.2 Further Work

I believe that there are three main research directions for further work based on research

conducted within this thesis.

Firstly, a future research direction from this thesis includes demonstrating such RTD

PUFs, through construction and testing of PUFs composed of RTDs with RDDs or IR.

As can be preliminarily drawn from chapters 4 and 5, both RDDs and IR lead to noticeable

variation allowing the encoding of information in the IV value of the resonant peak, but

RDDs also risk destroying the NDR of RTDs. In light of this, I would suggest starting

RTD PUF research with IR first, and if further variation is desired to add RDDs on top

of this. If RDDs are added, then a way to deal with RTDs without an NDR also needs

to be implemented, such as perhaps encoding information in the fact that the NDR has

been destroyed as seen in chapter 4.
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Secondly, as a simulation based thesis, experimental validation of the key points in this

conclusion chapter, such as the relation between roughness and effective barrier thickness,

will also be helpful for further development of RTDs and similar tunnelling based devices

such as Josephson junctions.

Thirdly, another further research direction is studying how stochastic device variation

such as IR and RDDs are reflected in the behaviour of THz RTD oscillators, which is

directly applicable to the development of RTDs as THz devices.



Appendices

A Theory and Methods

A1 Node-Centred Finite Volume Discretisation

This and the following appendix A2 is based on material from the manual for NESS

(Nano-electronic Simulation Software), which is available upon request.
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Figure 6: Diagram of node-centred control volume [205] (shown in grey) centred around a
node ‘C’ at coordinate (i, j, k), with a fractional control sub-volume associated with vertex
1 of this control volume (shown in green). Neighbouring real-space nodes are denoted by red
circles and labelled according to the directions of the compass and ‘F’ for ‘front’ and ‘B’ for
‘back’.

The Poisson equation for electrostatic potential is

∇ · (ϵ∇V ) = −q(p(r)− n(r) +ND(r)−NA(r)) (1)

Wherein ND(r) and NA(r) are respectively the donor and acceptor concentrations for

location (r), and q is the electron charge magnitude.

The Poisson equation for a given node i can be calculated as seen in below in equation 2,

where Vi(D) is the electrostatic potential for the neighbouring node in one the 6 directions

(‘F’, ‘B’, ‘N’, ‘E’, ‘S’, ‘W’) as noted in Fig. 6.
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ϵi
Vi(E)− Vi(C)

dx
Syz + ϵi

Vi(W )− Vi(C)

δx
Syz+

ϵi
Vi(N)− Vi(C)

dz
Sxy + ϵi

Vi(S)− Vi(C)

δz
Sxz+

ϵi
Vi(F )− Vi(C)

dy
Sxz + ϵi

Vi(B)− Vi(C)

δy
Sxz = −q(ND,i −NA,i + ni − pi)∆Pi (2)

∆Pi is the control volume associated with node i. For a cuboid grid as shown here the

surface area Sij of each face along plane ij, with i, j = x, y, z, is Sij = δiδj where δi is

the length of the mesh cell in that direction.

Equation 2 can also be rearranged to depend on coefficients αD of V (D) as seen below

αE,iVi(E)− αW,iVi(W )+

αN,iVi(N)− αS,iVi(S)+

αN,iVi(F )− αS,iVi(B)+

αC,i = −q(ND,i −NA,i + ni − pi)∆Pi (3)

In NESS equation 3 has its coefficients calculated efficiently by summing contributions

for the different fractional control volumes which are cycled through. For example for the

fractional control volume ‘1’ in Fig. 6, the α values are iterated as follows

αC = αC − ϵ

(
Syz

4dx
+

Sxy

4dz
+

Sxz

4dy

)
(4)

αE = αE + ϵ

(
Syz

4dx

)
(5)

αN = αN + ϵ

(
Sxy

4dz

)
(6)

αF = αF + ϵ

(
Sxz

4dy

)
(7)

This is then repeated for the other fractional control volumes ‘2’ to ‘8’,
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A2 Efficient solving of Poisson Potential

This and the preceding appendix A2 is based on material from the manual for NESS

(Nano-electronic Simulation Software), which is available upon request.

The discretised Poisson potential equation for node i can be expressed as follows

Fi(V, n, p) = (8)

εi
Vi(E)− Vi(C)

dx
Syz + ϵi

Vi(W )− Vi(C)

δx
Syz+

ϵi
Vi(N)− Vi(C)

dz
Sxy + ϵi

Vi(S)− Vi(C)

δz
Sxy+

ϵi
Vi(F )− Vi(C)

dy
Sxz + ϵi

Vi(B)− Vi(C)

δy
Sxz+

q(ND,i −NA,i + ni − pi)∆Pi = 0 (9)

Equation 9 can be composed into the matrix form in equation 10 by taking into account

all N nodes

F (V, n, p) = A[V ]− b = 0 (10)

In equation 10, A is a matrix of coefficients, V is a vector of electrostatic potentials, and

b is a matrix of charge terms.

In NESS, the Newton-Raphson iterative method [206] is used to solve this nonlinear partial

differential Poisson equation, where electron and hole densities depend non-linearly on the

electrostatic potential.

J∆V k = −F (V k−1, n, p) (11)

V k = V k−1 +∆V k (12)
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The Jacobian J of F (V k−1, n, p) is equation 13 where there are N nodes in total

J =



∂F0(V k−1,n,p)
∂V0

∂F0(V k−1,n,p)
∂V1

. . . ∂F0(V k−1,n,p)
∂VN

∂F1(V k−1,n,p)
∂V0

∂F1(V k−1,n,p)
∂V1

. . . ∂F1(V k−1,n,p)
∂VN

...
. . .

...

∂FN (V k−1,n,p)
∂V0

∂FN (V k−1,n,p)
∂V1

. . . ∂FN (V k−1,n,p)
∂VN


(13)

SOR (successive over-relaxation) [208, 209] can help speed iterations with a relaxation

factor ω by multiplying with the change ∆xk = xk − xk−1 in iteration k

xk′

i = xk−1
i + ω∆xk

i (14)

xk′

i = ωxk
i + (1− ω)xk−1

i (15)

Using SOR, the update to V k
i for node i and iteration k within equation 12 is modified

as follows

V k′

i = ωV k
i + (1− ω)V k−1

i (16)

The Chebyshev acceleration scheme [210] is applied to modify this relaxation factor ω for

every iteration as noted below

ω′ =
1

1− 0.25ρ2OPTω
(17)

ρOPT =

√
(δyδz)2cos( π

Nx
) + (δxδz)2cos( π

Ny
) + (δxδy)2cos( π

Nz
)

(δyδz)2 + (δxδy)2 + (δxδz)2
(18)

Where δi for i = x, y, z is mesh spacing along direction i and Ni is the number of mesh

nodes along that direction. Within NESS, the default initial value is ω =1.6.
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Figure 7: 3D grid visualising red-black ordering [211], with nearest neighbour nodes for any
given node being of the opposite colour. Permission has been granted by Springer Nature to
include this figure [211] within this thesis. © 2018, Springer Nature.

Red-black parallelism [211] is a method of parallelising the solution of the above equations.

It splits the nodes into ‘red’ and ‘black’ nodes in a pattern similar to a chequerboard as

seen in the 3D sketch in Fig. 7. For a 3D grid, with nodes of position r = ix̂ + jŷ + kẑ,

red-black ordering can be split as shown below in equation 19


black, if (i+ j + k)%2 = 0

red, if (i+ j + k)%2 = 1

(19)

This means that for any ‘red’ node all its nearest neighbours are ‘black, and vice-versa,

which is advantageous in parallelising the solving of the Poisson solver.

A3 Contacts

NEGF can be used to split two terminal nanoelectronic devices into an active region of N

layers composed of the device itself and two semi-infinite contacts [212] as seen in Fig. 2.17

which only affect layers 1 and N of the device.
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This means that the following matrix relation for the retarded Green’s function GR [212],

where the matrix M describing the device and contacts is defined as [EI −H − ΣS] and

ΣS is the scattering self-energy, can be split into 9 portions for each matrix involved as

seen in equation 22 below. MLL, MDD, MRR correspond respectively to the left contact,

device, and right contact.

[EI −H − ΣS]G
R = I (20)

MGR = I (21)

Or in matrix representation


MLL MLD 0

MDL MDD MDR

0 MRD MRR



GR

LL GR
LD GR

LR

GR
DL GR

DD GR
DR

GR
RL GR

RD GR
RR

 =


I 0 0

0 I 0

0 0 I

 (22)

Where the left-hand side can be expanded as


MLLG

R
LL +MLDG

R
DL MLLG

R
LD +MLDG

R
DD MLLG

R
LR +MLDG

R
DR

MDLG
R
LL +MDDG

R
DL +MDRG

R
RL MDLG

R
LD +MDDG

R
DD +MDRG

R
RD MDLG

R
LR +MDDG

R
DR +MDRG

R
RR

MRDG
R
DL +MRRG

R
RR MRDG

R
DD +MRRG

R
RD MRDG

R
DR +MRRG

R
RR


(23)
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This results in the following equations for the middle column in equation 23

MLLG
R
LD +MLDG

R
DD = 0 (24)

MDLG
R
LD +MDDG

R
DD +MDRG

R
RD = I (25)

MRDG
R
DD +MRRG

R
RD = 0 (26)

Where rearranging equations 24 and 26 respectively leads to GR
LD = −M−1

LLMLDG
R
DL and

GR
RD = −M−1

RRMRDG
R
DD, which can then be substituted into equation 25 to result in

equation 27

[−MDLM
−1
LLMLD +MDD +MDRM

−1
RRMRD]G

R
DD = I (27)

The 1st and 3rd terms on the left-hand side of equation 27 are the self energies ΣC of

coupling the device region with the left and right contacts respectively.

This lets us define [212] the retarded Green’s function for both isolated semi-infinite

contacts, gRLM
1
LL = I and gRRM

1
RR = I, or equivalently gRL = M−1

LL and gRR = M−1
RR.

The surface Green’s functions are the values of the Green’s function of these isolated

contacts corresponding to the neighbouring contact layers 0 in Fig. 2.17. This means that

the surface which would correspond to the top left values of M−1
LL and M−1

RR, hence [212]

the retarded surface Green’s functions for the left and right contacts are respectively

gRL,00 = M−1
LL,00 and gRR,00 = M−1

RR,00.
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A4 Sancho-Rubio Iterative Method

The Sancho-Rubio iterative method [215] is used to efficiently solve the surface Green’s

function noted in the preceding appendix A3, effectively by repeatedly halving the semi-

infinite contact layers through i iterations until effectively 2i layers are included in layer

0 connected to the device itself.

The Hamiltonian of the contacts would be as seen in equations 2.3 and the Green’s function

representation for all the contact layers, omitting energy E and momentum dependence

for brevity, is equation 28.

GC(r) =



g0,0 g0,1 g0,2 g0,3 · · ·

g1,0 g1,1 g1,2 g1,3 · · ·

g2,0 g2,1 g2,2 g2,3 · · ·

g3,0 g3,1 g3,2 g3,3 · · ·
...

...
...

...
. . .


(28)

Taking the simplifying assumptions [215] of constancy for the diagonals in h, or in other

words h0,0 = h1,1 = hn,n and h0,1 = hn,n+1, a set of iterative equations 29 and 30 for

iteration i and can be derived. Within this, the components are noted in equations (31)

to (34) and initial conditions of such components are defined in equations (35) to (38).

For further reading a derivation of the Sancho-Rubio algorithm equations is outlined in

the following [212, 215].
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(EI − ϵsi )g0,0 = I + aig2in,0 (29)

(EI − ϵi)g2in,0 = βig2i(n−1),0 + αig2i(n+1),0 (30)

Where the components iterate as

ϵsi = ϵsi−1 + αi−1(EI − ϵi−1)
−1βi−1 (31)

ϵi = ϵi−1 + βi−1(EI − ϵi−1)
−1αi−1 + αi−1(EI − ϵi−1)

−1βi−1 (32)

αi = αi−1(EI − ϵi−1)
−1αi−1 (33)

βi = βi−1(EI − ϵi−1)
−1βi−1 (34)

With the initial values of ϵs, ϵ, α and β being

ϵs0 = h0,0 (35)

ϵ0 = h0,0 (36)

α0 = h0,1 (37)

β0 = h1,0 (38)

This can be repeated i times to minimise coupling constants αi and βi [212, 215].
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The resulting surface Green’s function g(C,C) = g0,0 for either contact, with contacts

represented by C, can be used to calculate the self-energy of that contact, which can

take into account interactions with the contact by assuming [196] that the contacts are

transitionally invariant under unit cell transformation and in equilibrium.

ΣR
C = HDCg

R(C,C)HC,D (39)

This retarded contact self-energy ΣR
C for a given contact can then be used to calculate [196,

216] the corresponding rate operator Γ with equation 40.

The lesser and greater contact self-energy for a contact C can then be calculated using the

corresponding rate operator ΓC and Fermi level µC , in equations 41 and 42 respectively.

ΓC(E) = i[ΣR
C(E)− ΣA

C(E)] (40)

Σ<
C = iΓ(E)f(E − µC) (41)

Σ>
C = −iΓ(E)(1− f(E − µC)) (42)

A5 Electron-Phonon interactions

This appendix explains the implementation of electron-phonon scattering within the

NEGF coupled mode space framework of NESS, and is based on an explanation of such

given in a paper on NESS [196].
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NESS has currently implemented acoustic and optical electron-phonons interactions [196],

with their self-energies are assumed [196, 212, 213, 220] to be local in time and space.

This makes such self-energies block diagonal, allowing the use of the efficient recursive

method [218] mentioned in appendix A6. A further explanation of this assumption is

given in subsection 7.3 of the following textbook [212].

The lesser/greater self-energies for acoustic and optical phonons can be calculated by

making use of the acoustic and optical coupling constants [196, 213, 221, 222] for electron-

phonon interactions which are respectively PAc and POp which are obtained from deform-

ation potential theory [222] and given as follows,

|PAc|2 =
Ξ2kBT

2ρv2s
(43)

|P γ,γ′

Op,q|
2 =

ℏ(DtKq)
2

2ρωq

(44)

Within equation 43 for a given material, Ξ is the acoustic deformation potential constant,

ρ is the density, and vs is the sound velocity. The optical deformation potential [196, 213,

221, 222] DtKq corresponds to the coupling to the phonons of the electronic valley γ′ [196],

and ωq is the corresponding angular frequency of the phonon.

These coupling constants are used in the following real-space self-energy equations for

electronic valley γ, with a summation over phonon frequencies and electronic valleys per-

formed for the optical self energies in equations 47 and 48.
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Σ<
Ac(r;E; γ) = |PAc|2G<(r;E; γ) (45)

Σ>
Ac(r;E; γ) = |PAc|2G>(r;E; γ) (46)

Σ<
Op(r;E; γ) =

∑
q,γ′

|P γ,γ′

Op,q|
2[nB,qG

<(r;E − ℏωq; γ
′) + (nB,q + 1)G<(r;E + ℏωq; γ

′)] (47)

Σ>
Op(r;E; γ) =

∑
q,γ′

|P γ,γ′

Op,q|
2[nB,qG

>(r;E + ℏωq; γ
′) + (nB,q + 1)G>(r;E − ℏωq; γ

′)] (48)

In coupled mode space these self energy equations [196, 212, 239] can be rewritten as the

following equations [196, 239] by making use of equation 2.23.

Σ̃<
Ac(l, n; l,m;E; γ) = |PAc|2

∑
u,v

F n,m
u,v (l)G̃<(l, u; l, v;E; γ) (49)

Σ̃>
Ac(l, n; l,m;E; γ) = |PAc|2

∑
u,v

F n,m
u,v (l)G̃>(l, u; l, v;E; γ) (50)

Σ̃<
Op(l, n; l,m;E; γ) =

∑
u,v

F n,m
u,v (l)

∑
q,γ′

|P γ,γ′

Op,q|
2[(nB,q +

1

2
± 1

2
)G̃<(l, u; l, v; (E ± ℏωq); γ

′)]

(51)

Σ̃>
Op(l, n; l,m;E; γ) =

∑
u,v

F n,m
u,v (l)

∑
q,γ′

|P γ,γ′

Op,q|
2[(nB,q +

1

2
± 1

2
)G̃>(l, u; l, v; (E ∓ ℏωq); γ

′)]

(52)

Where in the above equations the form factor F n,m
u,v (l) is

F n,m
u,v (l) =

∫
dydzϕ∗

n(y, z; l)ϕm(y, z; l)ϕu(y, z; l)ϕ
∗
v(y, z; l) (53)
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Lesser/greater self-energies can easily be converted into the retarded self-energy with the

following relation [196] in equation 54.

ΣR =
1

2
[Σ<(r;E)− Σ>(r;E)] (54)

The self energies corresponding to the contacts and scattering can then be summed as

follows [196]

ΣR = ΣR
C + ΣR

S (55)

Σ≶ = Σ≶
C + Σ≶

S (56)

A6 Recursive Solving of Green’s Functions

Since we have been using block tridiagonal matrices under the assumption of local scat-

tering [196] and calculating observables with these block diagonal terms, an efficient re-

cursive method [218, 240, 241] can be used to solve only for these blocks for the Dyson

equations [212, 218] of the Green’s functions.

Similar to what is described in appendix A4, the Green’s function gives rise to iterative

equations, though this time with a partitioned Green’s function describing the device. The

partitioning in this case divides the device region seen in Fig. 2.17, and moves through the

iterations from n = 1 to n = N to calculate layer n+ 1 from n in a ‘right-ward’ direction

before going in the reverse ‘left-ward’ direction to take into account coupling from the

layers with greater n on those with lower n, and then finally uses this to calculate the

lower and upper diagonal components.
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A6.1 Dyson Equations for Recursive Green’s Function Solution

Using equations 20 and 21 and partitioning the device from layer 1 to n as Z and layer

n+ 1 as Z ′ results in the equation 57 for the retarded Green’s function GR.

MZ,Z MZ,Z′

MZ′,Z MZ′,Z′

GR
Z,Z GR

Z,Z′

GR
Z′,Z GR

Z′,Z′

 =

I 0

0 I

 (57)

To simplify further calculations the following matricesM0, U andGR,0, whereM = M0−U

and GR,0 = (M0)−1, can be defined.

M =

MZ,Z MZ,Z′

MZ′,Z MZ′,Z′

 (58)

M0 =

MZ,Z 0

0 MZ′,Z′

 (59)

U =

 0 −MZ,Z′

−MZ′,Z 0

 (60)

GR =

GR
Z,Z GR

Z,Z′

GR
Z′,Z GR

Z′,Z′

 (61)

GR,0 =

GR,0
Z,Z 0

0 GR,0
Z′,Z′

 = (M0)−1 =

M−1
Z,Z 0

0 M−1
Z′,Z′

 (62)

(63)
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The above relations allows equation 57 to be rewritten as

(M0 − U)GR = I (64)

M0GR = I + UGR (65)

GR = (M0)−1 + (M0)−1UGR (66)

GR = GR,0 +GRUGR,0 (67)

An alternative formulation of GR = GR,0+GR,0UGR can also be achieved as described in

appendix A7. Hence, the Dyson equation [218] for the retarded Green’s function is

GR = GR,0 +GR,0UGR = GR,0 +GRUGR,0 (68)

For the advanced Green’s function GA = (GR)†, the Dyson equation is just the ad-

joint [218]

GA = GA,0 +GAU †GA,0 = GA,0 +GA,0U †GA (69)

The lesser/greater Green’s function G≶ can also be derived, which by making use of the

relations in equation 2.6 and equation 21, results in equation 72 as seen below.

G≶ = GRΣ≶GA (70)

MG≶ = (MGR)Σ≶GA (71)

MG≶ = Σ≶GA (72)

Equation 72 leads to the following matrix representation for lesser/greater Green’s func-

tion G≶ in equation 73.
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MZ,Z MZ,Z′

MZ′,Z MZ′,Z′

G≶
Z,Z G≶

Z,Z′

G≶
Z′,Z G≶

Z′,Z′

 =

Σ≶
Z,Z Σ≶

Z,Z′

Σ≶
Z′,Z Σ≶

Z′,Z′

GA
Z,Z GA

Z,Z′

GA
Z′,Z GA

Z′,Z′

 (73)

Equation 73 can be rewritten in the following Dyson equation in the following manner.

MG≶ = Σ≶GA (74)

(M0 − U)G≶ = Σ≶GA (75)

M0G≶ = Σ≶GA + UΣ≶GA (76)

G≶ = (M0)−1Σ≶GA + (M0)−1UG≶ (77)

G≶ = GR,0Σ≶GA +GR,0UG≶ (78)

A6.2 Recursive Iterative Equations for Retarded Green’s Function

Recursive iterative equations can be extracted for solving Green’s equations [218], starting

with the retarded Green’s function GR.

Corresponding to the first n layers of the device in Fig. 2.17 we can define a ‘left-connected’

retarded Green’s function gR,l
n , which exhibits the following behaviour.

Mn,ng
R,l
n = I (79)

gR,l
n = (Mn,n)

−1 (80)

gR,l
1 = (M1,1)

−1 (81)
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Equation 81 is the special case for n=1 and is the starting point for the recursive equations.

gR,l
n+1 is similar to gR,l

n , but instead takes into the first n+ 1 layers, and can be calculated

with the following equation 82 as noted in [218] and [212]

gR,l
n+1,n+1 = (Mn+1,n+1 +Mn+1,ng

R,l
n,nMn,n+1)

−1 (82)

A derivation of equation 82 from the Dyson equation for left connected retarded Green’s

function as defined in explained in appendix A8. Equation 82 can be repeated up to

n = N − 1 until gR,l
N,N is obtained, containing all the left connection effects leading which

is equal to the retarded full Green’s function GR
N,N for n = N [218].

The following iterating equation 83 for the full retarded Green’s function GR
n,n from

GR
n+1,n+1 and the left connected retarded Green’s function gR,l

n,n can then be iterated until

n = 1 to have a completed full retarded Green’s function [218].

GR
n,n = gR,l

n,n + gR,l
n,nMq,q+1G

R
n+1,n+1Mn,n+1g

R,l
n,n (83)

The derivation of equation 83 from the Dyson equation is described in appendix A8, along

with how to calculate the off-diagonal components of the full retarded Green’s function.

A6.3 Recursive Iterative Equations for Lesser/Greater Green’s Func-

tion

Using the Dyson equation 78 for lesser/greater Green’s function G≶, the following iterative

equations 84 and 85 can similarly be derived as described in [218], which follow a similar

format to those for the retarded Green’s function GR.
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g≶,l
n+1,n+1 = gR,l

n+1,n+1[Σ
≶
n+1,n+1 +Mn+1,qg

≶,l
n,nM

†
n,n+1

+ Σ≶
n+1,ng

A,l
n,nM

†
n,n+1 +Mn+1,ng

R,l
n,nΣ

≶
n,n+1]g

A,l
n+1,n+1 (84)

G≶
n,n = g≶,l

n,n + gR,l
n,nMn,n+1G

≶
n+1,n+1M

†
n+1,ng

A,l
n,n

+ (g≶,l
n,nM

†
n,n+1G

A
n+1,n +GR

n,n+1Mn+1,ng
≶,l
n,n)

+ (gR,0
n,nΣ

≶
n,n+1g

A,0
n+1,n+1M

†
n+1,nG

A
n,n +GR

n,nMn,n+1g
R,0
n+1,n+1Σ

≶
n+1,ng

A,0
n,n) (85)

Note, the terms in the round brackets of equation 85 are Hermitian conjugates of each

other [218].

The initial value [218] of the left connected lesser/greater Green’s function is given by

equation 86, which includes the left lead self energy Σ≶
L

g≶,l
1,1 = gR,0

1,1 Σ
≶
Lg

A,0
1,1 (86)

Equation 84 then iterates with incrementing n until G≶
n,n = g≶,l

N,N , which also similarly

includes the right lead self-energy Σ≶
R [241]. Equation 85 then decrements n until n = 1,

calculating the fully connected Greens function G≶
n,n.

For a further explanation and derivation of the equations, the following paper is recom-

mended [218].
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A7 Matrix Inversion for Retard Greens Function Dyson Equation

An alternative formulation to GR = GR,0 + GR,0UGR for the Dyson equation can be

achieved by substituting in A = M0 and B = U into the following equation 87, before

making use of M = M0 − U , GR,0 = (M0)−1 and GR = M−1I, as shown below

(A−B)−1 = A−1 + A−1B(A−B)−1 (87)

(M0 − U)−1 = (M0)−1 + (M0)−1U(M0 − U)−1 (88)

GR = GR,0 +GR,0UGR (89)

The matrix inversion lemma in equation 87 can be constructed as follows

I = (A−1A) (90)

I = A−1A+ (−A−1B + A−1B) (91)

I = A−1(A−B) + A−1B (92)

I = A−1(A−B) + A−1B((A−B)−1(A−B)) (93)

I(A−B)−1 = A−1((A−B)(A−B)−1) + A−1B(A−B)−1((A−B)(A−B)−1) (94)

(A−B)−1 = A−1 + A−1B(A−B)−1 (95)
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A8 Derivation of Iterative Equation for Left-Connected Retarded Green’s

Function

N1 2 N- 1

N layer DeviceLeft semi-infinite Contact Right semi-infinite Contact

012 0 1 2

Figure 8: Layer representation of two-terminal device with N layers along the direction of
current flow, and two semi-infinite contacts.

Corresponding to the first n layers of the device in Fig. 8 we can define a ‘left-connected’

retarded Green’s function gR,l
n [218], which exhibits the following behaviour.

Mn,ng
R,l
n,n = I (96)

gR,l
n = (Mn,n)

−1 (97)

gR,l
1 = (M1,1)

−1 (98)

Equation 98 is the special case for n=1 and is the starting point for the recursive equations.

gR,l
n+1 is similar to gR,l

n , but instead takes into the first n+1 layers. The Dyson equation for

a retarded Green’s function is MGR = I, hence with rearrangement the Dyson equation

for the left connected Green’s function can be presented as shown below

 gR,l
n,n gR,l

n,n+1

gR,l
n+1,n gR,l

n+1,n+1

 =

gR,l
n,n − gR,l

n,nMn,n+1G
R
n+1,n −gR,l

n,nMn,n+1G
R
n+1,n+1

−gR,l
n+1,n+1Mn+1,nG

R
n,n gR,l

n+1,n+1 − gR,l
n+1,n+1Mn+1,nG

R
n,n+1


(99)
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The upper left partition of the full Green’s function GR, GR
n,n is then

GR
n,n = gR,l

n,n − gR,l
n,nMn,n+1G

R
n+1,n (100)

Using an alternative arrangement of this Dyson equation 67, we can similarly extract the

lower left partition GR
n+1,n within equation 100

GR =gR,l + gR,lUGR (101) GR
n,n GR

n,n+1

GR
n+1,n GR

n+1,n+1

 =

gR,l
n,n 0

0 gR,l
n+1,n+1


+

 GR
n,n GR

n,n+1

GR
n+1,n GR

n+1,n+1

 0 −Mn,n+1

−Mn+1,n 0

gR,l
n,n 0

0 gR,l
n+1,n+1


(102) GR

n,n GR
n,n+1

GR
n+1,n GR

n+1,n+1

 =

gR,l
n,n −GR

n,n+1Mn+1,ng
R,l
n,n −GR

n,nMn,n+1g
R,l
n+1,n+1

−GR
n+1,n+1Mn+1,ng

R,l
n,n gR,l

n+1,n+1 −GR
n+1,nMn,n+1g

R,l
n+1,n+1


(103)

The off-diagonal GR
n+1,n within equation 100 can then be calculated as the lower left

partition of GR within equation 103

GR
n+1,n = −GR

n+1,n+1Mn+1,ng
R,l
n,n (104)
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Equation 104 can be substituted into equation 100 to create the following iterating equa-

tion 105 to acquire the full retarded Green’s function [218] GR
n,n from GR

n+1,n+1 and the

left connected retarded Green’s function gR,l
n,n

GR
n,n = gR,l

n,n + gR,l
n,nMn,n+1G

R
n+1,n+1Mn+1,ng

R,l
n,n (105)

For completeness, the other diagonal component of the full retarded Green’s function is

GR
n,n+1 = −GR

n,nMn,n+1g
R,l
n+1,n+1 (106)
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