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Abstract

We prove an asymptotic formula for the number of everywhere locally soluble diagonal
quadric surfaces

y0x
2
0 + y1x

2
1 + y2x

2
2 + y3x

2
3 = 0

parametrised by points y ∈ P3(Q) lying on the split quadric surface y0y1 = y2y3 which
do not satisfy −y0y2 = □ nor −y0y3 = □. Our methods involve proving asymptotic
formulae for character sums with a hyperbolic height condition and proving variations
of large sieve inequalities for quadratic characters.
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Notation

Let f be a complex valued functions and g be a positive, real valued function. We
will write both f(x) = O(g(x)) and f(x) � g(x) to mean that there exists a constant
C ∈ R⩾0 such that |f(x)| ⩽ Cg(x) for sufficiently large x.
We will write f(x) ∼ g(x) to denote that

lim
x→∞

f(x)
g(x)

= 1.

We will use the standard notation for projective n space, Pn and its set of rational
points Pn(Q). Whenever we write a ∈ Pn(Q) we will mean the primitive integer
representation a = [a0 : . . . : an], where a0, . . . , an ∈ Z, gcd(a0, . . . , an) = 1.

8



Chapter 1

Introduction

1.1 Background

A Diophantine equation is an equation of the form

f(x0, . . . , xn) = 0 (1.1.1)

where f ∈ Z[x0, . . . , xn]. Given such an equation, we aim to determine whether it is
soluble over the rational numbers1, that is, do there exist X0, . . . , Xn ∈ Q such that

f(X0, . . . , Xn) = 0.

Research into this problem goes back 2000 years, drawing on many fields and techniques
in mathematics and spawning new directions of investigation. Two of the most potent
directions in recent decades are Manin’s problem and Serre’s problem. The first of
these concerns counting rational points on a special class of algebraic varieties; the
second aims to count the number of Diophantine equations within a family which are
rationally soluble.

1.1.1 Manin’s Conjecture

Let X be a smooth projective variety over Q. (In this thesis, by variety, we mean
an integral and quasi-projective algebraic variety.) Then X is said to be Fano, if the
anticanonical line bundle of X is ample. It is conjectured that the set X(Q) of rational
points on a Fano variety X is Zariski dense as soon as it is non-empty2. To study
the set of rational points in a quantitative way, we make use of a anticanonical height

1Classically, one considers integral solubility instead of rational solubility. The Diophantine equa-
tions studied in this thesis, however, will be homogeneous. A consequence of this is that these notions
of solubility will be equivalent.

2This is a consequence of a more general conjecture of Colliot-Thélène [10].
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Chapter 1: Introduction Section 1.1

function H : X(Q) → R⩾0 which measures the complexity of a rational point. A
key goal of rational points research is to determine the asymptotic behaviour of the
counting function

MU(B) = ♯{x ∈ U(Q) : H(x) ⩽ B} (1.1.2)

as B → ∞, where U ⊆ X. The following conjecture is due to Manin and Batyrev:

Conjecture 1.1.1 (Manin et. al. [16]). Let X be a Fano variety. Then there exists a
Zariski dense, open subset U ⊆ X, and constants a ∈ R⩾0, b ∈ Z>0 such that

MU(B) ∼ aBb(logB)ρX−1,

where ρX is the rank of the Picard group of X and b has an explicit description.

To see why it is necessary to take a Zariski dense, open subset U ⊆ X in the above
conjecture, suppose that X is a cubic surface. It is well known that X contains 27 lines
and Manin’s conjecture predicts that b = 1. If one of these lines is rational, then the
rational points on this line will dominate the counting function MX(B), leading to a
lower bound � B2. It therefore follows that for a cubic surface X to follow Conjecture
1.1.1, we must have U ⊆ X \ {lines}.

The removal of dominating rational subvarieties is also not enough. Following a
counter-example of earlier incarnations of Conjecture 1.1.1 by Batyrev and Tschinkel
[2], recent investigations into Manin’s conjecture take the open set U to be the com-
plement in X of accumulating thin sets (see, for example, [34, §8]). The following
definition may be found in Chapter 3 of [39].

Definition 1.1.2. Let X be a Fano variety over Q and suppose T is a subset of X(Q).

• T is said to be a type 1 thin set of X if there is a proper, Zariski closed subset
W of X such that T ⊆ W (Q).

• T is said to be a type 2 thin set of X if there exists an irreducible, quasi-projective
variety X ′ with dim(X ′) = dim(X), and a generically surjective morphism φ :
X ′ → X of degree ⩾ 2 such that T ⊂ φ(X ′(Q)).

Lastly, T is said to be a thin set of X if it is contained in a finite union of type 1 and
type 2 thin sets.

In Peyre’s reformulation of Conjecture 1.1.1, it is stated that there exists a thin set
T ⊆ X(Q) such that

MX\T (B) = ♯{x ∈ X(Q) : H(x) ⩽ B, x 6∈ T} ∼ aBb(logB)ρX−1.

Peyre also gives an explicit prediction for the constant a in terms of geometric invariants
of the variety X [33].
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Section 1.1 Chapter 1: Introduction

Example 1.1.3. Of key importance to this thesis is the quadric surface Y ⊆ P3 defined
by the equation y0y1 = y2y3. This is an example of a Fano variety of dimension 2. For
now, let H : P3(Q) → R⩾0 be the naive Weil height on P3(Q) and restrict it to Y (Q).
A straightforward argument using the Q-isomorphism of Y from the product variety
P1 × P1 and the hyperbola method allows us to conclude Manin’s conjecture for Y ,
that is:

♯{y ∈ Y (Q) : H(y) ⩽ B} = cB2 logB +O(B2)

for some positive constant c. Note that the Picard rank of Y is 2. Also of note is that
we have taken U = Y , i.e there is no need to remove any thin sets from Y to obtain
Conjecture 1.1.1. To conclude this example, and this section, we will draw attention
to the following sets of rational points on Y

T1 = {y = [y0 : y1 : y2 : y3] ∈ Y (Q) : −y0y2 = □}

T2 = {y = [y0 : y1 : y2 : y3] ∈ Y (Q) : −y0y3 = □}.

It can be proven with similar methods that

B2 � ♯{y ∈ Ti : H(y) ⩽ B} � B2

for i = 1, 2. Although T = T1 ∪ T2 does not dominate the set of rational points on
Y , it is thin in the sense of Definition 1.1.2. Indeed, if we take Y ′ ⊆ P3 to be the
smooth variety defined by the equation −z2

0z1 = z2
2z3 and φ : Y ′ → Y , and the degree

2 rational map φ([z0 : z1 : z2 : z3]) =
[
− z2

0
z2

: z1 : z2 : z3
]
, then by blowing up Y ′ along

the points where φ is undetermined (those points where z2 = 0) to obtain a variety Ỹ
and a degree 2 morphism φ̃ : Ỹ → Y such that T1 ⊆ φ̃(Ỹ (Q))3.

1.1.2 Serre’s problem

Suppose F ⊆ Z[x0, . . . , xn] is an infinite family of polynomials. A natural question to
ask is: for how many f ∈ F does the Diophantine equation (1.1.1) have a rational
solution? More formally, if coef(f) is the set of coefficients of f , we want to study the
asymptotic behaviour of the following counting function:

♯

{
f ∈ F : f(x0, . . . , xn) = 0 has a Q solution

max{|a| : a ∈ coef(f)} ⩽ B

}
.

We are particularly interested in families that can be parametrised by the rational
points of an algebraic variety. The earliest result in this direction is due to Serre,
who used the large sieve to prove upper bounds for the families of ternary conics
parametrised by projective space. He proved that

♯

a ∈ P5(Q) :
a0x

2 + a1y
2 + a2z

2 + a3xy + a4xz + a5yz = 0
has a solution over Q,

H(a) ⩽ B

 � B6√
(logB)

,

(1.1.3)
3This argument on the thinness of the set T was suggested by Florian Wilsch.
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Chapter 1: Introduction Section 1.1

and

♯

a ∈ P2(Q) :
a0x

2 + a1y
2 + a2z

2 = 0
has a solution over Q,

H(a) ⩽ B

 � B3

(logB)3/2 , (1.1.4)

where H is the naive Weil height on P5(Q) and P2(Q) respectively. This was followed
by results of Hooley, who proved matching lower bounds for the family of diagonal
planar conics [23], and Guo, who proved asymptotics for the problem of diagonal
planar conics whose coefficients are restricted to be square-free and pairwise co-prime
[19]. Subsequently, Hooley gave lower bounds for the family of general planar conics
[24].

In the case of families of conics, it is known that the Hasse Principle is satisfied;
this means that a variety in the family has a rational solution if and only if it has
a solution over every local field, Qp for p ∈ {primes} ∪ {∞}. A benefit of studying
families which satisfy this principle is that the otherwise difficult problem of asking
whether an equation has rational points is equivalent to the more tractable problem of
asking whether or not it has a solution in each of these local fields.

Not every family satisfies the Hasse Principle — for example, it is a famous example
of Selmer that the plane cubic cut out by the equation 3x3 + 4y3 + 5z3 = 0 has points
in every local field over Q but fails to have a rational point [36]. In fact, Bhargava has
proven that a positive proportion of ternary plane cubics fail the Hasse Principle [3].
Such failures in the Hasse Principle mean that rational solubility requires more effort
to study than just considering local solubility. For this reason, we study the simpler
problem of counting equations in families which are everywhere locally soluble. The
general set-up in this direction is as follows: suppose that X and W are smooth, proper
projective varieties over Q and that ϕ : W → X is a dominant map with geometrically
integral generic fibre. The fibre of a rational point x ∈ X(Q), ϕ−1(x), is then an
algebraic variety corresponding to a for which we ask if it has points in every local field
of Q. We now aim to study the asymptotic behaviour of the counting function

NU(ϕ,B) = ♯

{
x ∈ U(Q) : ϕ−1(x)(Qp) 6= ∅ for all p ∈ {primes} ∪ {∞}

H(x) ⩽ B

}
(1.1.5)

where H is some height function on the variety X and U is some Zariski open subset
of X.

To understand the results we will need the following quantity, defined for X = Pn by
Loughran and Smeets [30] and for more general varieties X by Browning and Loughran
in [7]. Set X(1) to be the collection of codimension 1 points of X. Then recall that for
any D ∈ X(1), the absolute Galois group Gal(κ(D)/κ(D)) of the residue field of D acts
on the irreducible components of the reduced fibres π−1(D)⊗κ(D). Choose some finite
group ΓD(ϕ) through which the action is factored and define Γ◦

D(ϕ) to be the collection
of γ ∈ ΓD(ϕ) which fix some multiplicity 1 irreducible component of ϕ−1(D) ⊗ κ(D).
We then define δD(ϕ) = ♯Γ◦

D(ϕ)/♯ΓD(ϕ) and

∆X(ϕ) =
∑

D∈X(1)

(1 − δD(ϕ)). (1.1.6)

Note that the assumption that the generic fibre is geometrically integral ensures that
this sum is finite.
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Section 1.2 Chapter 1: Introduction

Let us first consider (1.1.5) when X = Pn for n ⩾ 1 with the naive Weil height.
Then Loughran and Smeets proved the following general upper bound:

NPn(ϕ,B) � Bn+1

(logB)∆Pn (ϕ) . (1.1.7)

This upper bound generalised those given by Serre for the families of conics over P5(Q)
or P2(Q) and gave a geometric interpretation to the growth rate. Indeed the value of
the invariants for the cases considered in (1.1.3) and (1.1.4) are 1

2 and 3
2 respectively.

Loughran and Smeets further conjectured that this upper bound is optimal when at
least one fibre of ϕ has solutions in every local field and that the fibre over every
codimension 1 point has an irreducible component of multiplicity 1. They confirmed
this prediction in the cases where ∆(ϕ) = 0, generalising earlier work by Poonen and
Voloch on the local solubility of hypersurfaces [35]. Later, Loughran and Matthiesen
proved matching lower bounds for (1.1.7) for X = P1 and for some special families
over Pn [28]. Loughran, Rome and Sofos have provided a conjecture on the leading
constant, as well as its geometric interpretation, for counting problems of this type [29].
Recently, Browning, Lyczak and Smeets investigated the paucity of rationally soluble
fibrations where the map ϕ is allowed to have multiple fibres [9].

Now let us consider (1.1.5) for more general varieties X with an anticanonical
height function. By combining the conjecture of Loughran and Smeets with Manin’s
conjecture, we may predict that there exists a thin set T ⊆ X such that, for U = X \T ,

NU(ϕ,B) ∼ c′MU(B)
(logB)∆(ϕ) (1.1.8)

for some constant c′ > 0. Of particular interest are the cases where X is a Fano variety
over Q with no accumulating thin subsets in the sense considered in §1.1.1. In such
cases, it is natural to think that we may take U = X, as we do in Manin’s conjecture
when there are no accumulating subsets. This problem has been investigated when X
is a quadric of dimension ⩾ 3 by Browning and Loughran [7], where the upper bound of
the shape (1.1.8) is proven. Furthermore, when X is a quadratic form of rank ⩾ 5 and
all fibres over codimension 1 points of X are split (ensuring that ∆(ϕ) = 0), Browning
and Heath-Brown proved that a positive proportion of fibres are everywhere locally
soluble [5]. In these cases ρX = 1. Other examples include: fibrations over algebraic
groups, which have been studied by Loughran [27], and Loughran, Takloo-Bighash, and
Tanimoto [31]; and fibrations over hypersurfaces studied by Sofos and Visse-Martindale
[42].

1.2 Main Result

This thesis investigates the Serre problem when the base variety is the split quadric
surface Y ⊆ P3 defined in Example 1.1.3. Let Z ⊂ P3 × P3 be the variety cut out by
the equations

y0x
2
0 + y1x

2
1 + y2x

2
2 + y3x

2
3 = 0 and y0y1 = y2y3, (1.2.1)

and let π : Z → Y be the dominant morphism sending ([x0 : x1 : x2 : x3], [y0 : y1 : y2 :
y3]) ∈ Z to the point [y0 : y1 : y2 : y3] ∈ Y . Write Z̃ → Z for a desingularisation of Z

13



Chapter 1: Introduction Section 1.2

and write π̃ : Z̃ → Y for its composition with π. Furthermore, from here on out we
will set H : P3(Q) → R⩾0 to be the naive Weil height on P3(Q) and restrict it to Y (Q).
Notice that the variety Z is a subvariety of the universal family of diagonal quadric
surfaces, Q, say. Furthermore, since the product of coefficients of the quadric fibres is
always a square, Z is contained inside the accumulating subset for Manin’s conjecture
for Q [4].

This fibration problem was first considered by Browning, Lyczak and Sarapin [8].
In particular, they showed that

B2 � NY (π̃, B) � B2. (1.2.2)

In this case ρY = 2 and it is demonstrated in the paper of Browning, Lyczak and
Sarapin that ∆Y (π̃) = 2. It follows that (1.1.8) predicts a growth rate of B2

log B
, as Y

has no accumulating thin sets. The anomaly in this particular case may be seen to
arise from the presence of the thin set of points T defined in Example 1.1.3: the fibres
of the points in T each have a rational point and we saw in this example that the
number of rational points in T of height ⩽ B is of order B2. Following Peyre’s modern
reformulation of the Manin conjecture [32], it was conjectured in [8] that prediction
(1.1.8) should hold for this fibration problem after the removal of the thin set T . To
this purpose, we set

N(B) := NY \T (π̃, B) = ♯

y ∈ Y (Q) :
−y0y2 6= □, −y0y3 6= □
π̃−1(y) has a Q-point

H(y) ⩽ B

 . (1.2.3)

The main result of this thesis is the following.

Theorem 1.2.1. As B → ∞,

N(B) = cB2 log logB
logB

+O

(
B2√log logB

logB

)

where c is given by

935
36π2

∏
p6=2

(
1 + 1

p

)−2 (
1 + 2

p
+ 4
p2 + 2

p3 + 1
p4

)

+ 25
36π2

∏
p 6=2

(
1 + 1

p

)−2
1 + 2

p
+

2
(
1 +

(
−1
p

))
p2 + 2

p3 + 1
p4

 ,
which is > 0.

This result contradicts the prediction made by Browning, Lyczak and Sarapin that
(1.1.8) should hold for U = Y \ T . However, the primary novelty of this result is the
completely surprising appearance of the log logB factor in the main term. Prior to
this paper the only log logB factor occurring in a fibration problem was the following
example with X = P1(Q) × P1(Q) [29]: if H ′ : P1(Q) → R⩾0 is the naive Weil height
on P1(Q) then it may be proven that

♯

{
(t1, t2) ∈ Q2 : H ′(t1)H ′(t2) ⩽ B,

each ti is the sum of two squares

}
∼ c′B2 log logB

logB

14



Section 1.3 Chapter 1: Introduction

for some c′ > 04. In the broader topic of rational points, a double logarithmic factor
has also appeared in the study of Brauer–Manin obstruction for K3 surfaces [20]. A
geometric interpretation of either occurrence of the log logB factor is yet to be found.

1.3 Outline

This thesis is broken into two parts: an arithmetic-geometric part consisting of Chapters
2 and 3, and an analytic part comprised of Chapters 4 and 5.
Chapter 2 covers the proof of Theorem 1.2.1, assuming the analytical results proven in
Chapters 4 and 5.
In Chapter 3 we will discuss some geometric properties of the family of quadrics studied
in Theorem 1.2.1. Specifically, we will tie the family of quadrics to a family of conics,
and use this relationship to study the rational solubility for the conics using Theorem
1.2.1. We will also compute the subordinate Brauer group for these families, in an
attempt to understand the appearance of two Euler products in Theorem 1.2.1.
As we will discuss in more detail in Chapter 2, the analytic methods required to prove
Theorem 1.2.1 comprise summing quadratic characters over hyperbolic regions. To
study these sums we adapt the character sum methods of Friedlander and Iwaniec [17],
and Fouvry and Klüners [15]. The primary tools used in these papers are the large sieve
for quadratic characters and Selberg–Delange methods. However, due to the nature
of our height conditions, we require more acute versions of the large sieve. We will
introduce and prove these large sieve results in Chapter 4.
We conclude this thesis by proving the required bounds for our character sums in
Chapter 5.
Lastly, we include an appendix with tables that list the solutions to certain congruence
equations mod8 required in the final stages of the proof of Theorem 1.2.1.

4Note that the product of two naive Weil heights on P1(Q) is the square root of the anticanonical
height on P1(Q) × P1(Q).
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Chapter 2

Asymptotics for local solubility of
diagonal quadrics over a
biprojective base

2.1 Introduction

The purpose of this chapter is to prove the main theorem of this thesis, Theorem 1.2.1,
assuming the analytical results that will be proven in Chapters 4 and 5. First we will
give a brief overview of the section and outline the proof.

In §2.2 we prove some technical results that are required at various points through-
out the proof to simplify expressions. We will also use this section to list the main
results of Chapters 4 and 5 for reference.

The proof of Theorem 1.2.1 is contained within §2.3-§2.10. In §2.3 we apply the
parameterisation of the quadric surface Y by P1 × P1 and then express N(B) as a
counting problem over the integers. As well as transforming our height condition this
will change the form of the diagonal quadric fibres to the form

t0t2x
2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0.

Local conditions for the solubility of general diagonal quadrics are considered through-
out §2.4. Of particular note is that the real conditions result in N(B) being split into
two similar but separate counting problems, N1(B) and N2(B) depending on the sign
of the coefficients.

The next step is to reduce to odd, square-free, and co-prime variables, apply the
Hasse Principle to express the indicator function of the diagonal quadrics having a
rational point as a sum over Jacobi symbols in these new variables and sum over them.
This is the content of §2.5.1 and §2.5.2. With this we express each N1(B) and N2(B)
as a sums over Jacobi symbols involving 40 variables. The purpose of §2.5.3 is to

16



Section 2.2 Chapter 2: Solubility of diagonal quadrics

decompose this expression into smaller pieces, isolating the main terms and the error
terms. At this stage, we will outline §2.6-§2.9, where each of these smaller pieces is
dealt with using the results listed in §2.2. Finally, in §2.10, we express the constant as
a sum of Euler products.

Throughout this chapter, we use the notation ‖a, b‖ to denote the maximum of |a|
and |b| for a, b ∈ R.

2.2 Analytical pre-requisites

2.2.1 Simplification results

In this section we prove some lemmas which will help us simplify our multivariable
sums. Our first lemma will allow us to limit our count over our coefficents to one
where the square parts and common factors are small (see §2.5). We remark that
throughout this thesis, the set of natural numbers N does not contain 0.

Lemma 2.2.1. Fix c0, c1, c2, c3 ∈ N. Then for all B ⩾ 2 we have,

♯{(t0, t1, t2, t3) ∈ N4 : ‖t0, t1‖ · ‖t2, t3‖ ⩽ B; ci|ti} � B2(logB)
c0c1c2c3

where the implied constant is absolute.

Proof. Let Sc(B) denote the expression on the left hand side. Then

Sc(B) =
∑∑
nm⩽B

♯

(t0, t1) ∈ N2 :
‖t0, t1‖ = n,

c0|t0, c1|t1

 ♯
(t2, t3) ∈ N2 :

‖t2, t3‖ = m

c2|t2, c3|t3

 .
Note that, if 1(c|k) denotes the indicator function for c dividing k then

♯

(t0, t1) ∈ N2 :
‖t0, t1‖ = n,

c0|t0, c1|t1

 � n

c1
1(c0|n) + n

c0
1(c1|n)

and similarly

♯

(t2, t3) ∈ N2 :
‖t2, t3‖ = m

c2|t2, c3|t3

 � m

c3
1(c2|m) + m

c2
1(c3|m).

Therefore, Sc(B) is

�
∑∑
nm⩽B

nm

(
1(c0|n)1(c2|m)

c1c3
+ 1(c0|n)1(c3|m)

c1c2
+ 1(c1|n)1(c2|m)

c0c3
+ 1(c1|n)1(c3|m)

c0c2

)
.

17
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Let us look at the sum over the first term:

∑∑
nm⩽B

nm

c1c3
1(c0|n)1(c2|m) � B

c1c3

∑
m⩽B

∑
n⩽B/m

1(c0|n)1(c2|m)

� B2

c0c1c3

∑
m⩽B

1
m
1(c2|m).

This is

� B2

c0c1c3

∑
k⩽B/c2

1
c2k

� B2

c0c1c2c3

∑
k⩽B

1
k

� B2(logB)
c0c1c2c3

.

The sums over the other terms above are equivalent.

Here and throughout, let µ denote the Möbius function. The next lemma will allow
us to get rid of terms regarding µ2, which will make analysis over four dimensions
easier.

Lemma 2.2.2. Assume that g0, g1, g2, g3 : N → C are multiplicative functions with
|gi(n)| ⩽ 1 for all n ∈ N and all 0 ⩽ i ⩽ 3. Then for all X ⩾ 2, 0 ⩽ z, w0, w1 ⩽ X1/4,
and q ∈ N4

odd, c ∈ N4,

∑∑∑∑
n∈N4,‖n0,n1‖,‖n2,n3‖>z

‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X
n≡q mod 8

µ2(n0n1n2n3)
( 3∏

i=0
gi(ni)

)

=
∑

r⩽w0

µ(r)
∑∑∑∑

n′∈
∏3

i=0(N∩[1,w1])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,ni)=1 ∀ i

( 3∏
i=0

gi(n′
i)
)
G(X,n′)

+O

(
X2(logX)

min(w5/12
0 , w

1/3
1 )c0c1c2c3

)
,

where we have defined, for any a ∈ N4
odd,

G(X, a) =
∑∑∑∑

n′′∈N4,‖n′′
0 a0,n′′

1 a1‖,‖n′′
2 a2,n′′

3 a3‖>z
‖a0n′′

0 c0,a1n′′
1 c1‖·‖a2n′′

2 c2,a3n′′
3 c3‖⩽X

n′′
i ≡qi/ai mod 8 ∀ i

gcd(n′′
i ,r)=1

( 3∏
i=0

gi(n′′
i )
)
,

and the implied constant is absolute.

Proof. We begin by using the convolution identity µ2(s) = ∑
r2|s µ(r) with s = n0n1n2n3.

18
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Then
∑∑∑∑

n∈N4,‖n0,n1‖,‖n2,n3‖>z
‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X

n≡q mod 8

µ2(n0n1n2n3)
( 3∏

i=0
gi(ni)

)

=
∑
r⩽X

µ(r)
∑∑∑∑

n∈N4,‖n0,n1‖,‖n2,n3‖>z
‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X

n≡q mod 8
r2|n0n1n2n3

( 3∏
i=0

gi(ni)
)
.

Now write ni = n′
in

′′
i for each i where the n′′

i are co-prime to r and all prime factors of
each n′

i divide r. Notice that because ni ≡ qi mod 8 is odd, each of the n′
i will be odd.

This will yield

∑∑∑∑
n∈N4,‖n0,n1‖,‖n2,n3‖>z

‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X
n≡q mod 8

µ2(n0n1n2n3)
( 3∏

i=0
gi(ni)

)

=
∑
r⩽X

µ(r)
∑∑∑∑

n′∈
∏3

i=0(N∩[1,X])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,ni)=1 ∀ i

( 3∏
i=0

gi(n′
i)
)
G(X,n′).

We may bound the G(X,n′) sum using Lemma 2.2.1:

G(X,n′) �
∑∑∑∑

n′′∈N4

‖n′
0n′′

0 c0,n′
1n′′

1 c1‖·‖n′
2n′′

2 c2,n′
3n′′

3 c3‖⩽X

1 � X2 logX
c0c1c2c3n′

0n
′
1n

′
2n

′
3
.

Therefore, the contribution coming from terms where n′
i > w1 for some i may be seen

to be:
∑
r⩽X

µ(r)
∑∑∑∑

n′∈
∏3

i=0(N∩[1,X])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,ni)=1 ∀ i

ni>w1 for some i

( 3∏
i=0

gi(n′
i)
)
G(X,n′) �

∑
r⩽X

∑∑∑∑
n′∈
∏4

i=0(N∩[1,X])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,n′

i)=1 ∀ i

n′
i>w1 for some i

X2 logX
c0c1c2c3n′

0n
′
1n

′
2n

′
3

� X2 logX
c0c1c2c3

∑
r⩽X

∑
n∈N

p|n⇒p|r
r2|n

n>w1

τ4(n)
n

,

(2.2.1)

where τ4(n) denotes the number of ways n can be written as the product of 4 positive
integers. Then, noting that τ4(a) ⩽ τ 3(a) ⩽ τ 3(a) � a1/12 for all a ∈ N, this expression
becomes:

� X2 logX
w

1/3
1 c0c1c2c3

∑
r⩽X

∑
n∈N

p|n⇒p|r
r2|n

n>w1

1
n7/12 .
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We now use Lemma 5.7 from [29] with ϵ = 1/12 to determine that∑
n∈N

p|n⇒p|r
r2|n

n>w1

1
n7/12 � 1

r13/12 .

Therefore:∑
r⩽X

µ(r)
∑∑∑∑

n′∈
∏4

i=0(N∩[1,X])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,n′

i)=1 ∀ i

n′
i>w1 for some i

( 3∏
i=0

gi(n′
i)
)
G(X,n′) � X2 logX

w
1/3
1 c0c1c2c3

∑
r⩽X

1
r13/12

� X2 logX
w

1/3
1 c0c1c2c3

.

Lastly we bound the terms r > w0. Again we use Lemma 2.2.1 and the bound τ4(a) �
a1/12 to obtain:∑

r>w0

µ(r)
∑∑∑∑

n′∈
∏4

i=0(N∩[1,w1])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,n′

i)=1 ∀ i

( 3∏
i=0

gi(n′
i)
)
G(X,n′) � X2 logX

c0c1c2c3

∑
r>w0

∑
n∈N

p|n⇒p|r
r2|n

1
n11/12 . (2.2.2)

Then, using Lemma 5.7 of [29] with ϵ = 5/12 this will be bounded by

� X2 logX
c0c1c2c3

∑
r>w0

1
r17/12 � X2 logX

w
5/12
0 c0c1c2c3

.

Lemma 2.2.3. Assume that g0, g1, g2, g3 : N → C are multiplicative functions with
|gi(n)| ⩽ 1 for all n ∈ N and all 0 ⩽ i ⩽ 3. Then for all X ⩾ 2, 0 ⩽ z, w0, w1 ⩽ X1/4,
and q ∈ N4

odd, c01, c23,M ∈ N with c01, c23,M ⩽ X1/4,
∑∑∑∑

n∈N4

‖n0n1c01,n2n3c23‖·M⩽X
n≡q mod 8

µ2(n0n1n2n3)
( 3∏

i=0
gi(ni)

)

=
∑

r⩽w0

µ(r)
∑∑∑∑

n′∈
∏3

i=0(N∩[1,w1])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,n′

i)=1 ∀ i

( 3∏
i=0

gi(n′
i)
)
G̃(X,n′)

+O

(
X2(logX)2

min(w5/12
0 , w

1/3
1 )c01c23M2

)

where we have defined, for any a ∈ N4
odd,

G̃(X, a) =
∑∑∑∑

n′′∈N4

‖a0a1n′′
0 n′′

1 c01,a2a3n′′
2 n′′

3 c23‖·M⩽X
n′′

i ≡qi/ai mod 8 ∀ i

gcd(n′′
i ,r)=1

( 3∏
i=0

gi(n′′
i )
)
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and the implied constant is absolute.

Proof. As in the previous proof we use the identity µ2(n0n1n2n3) = ∑
r2|n0n1n2n3 µ(r)

and then write ni = n′
1n

′′
i for each i where each n′′

i are co-prime to r and all prime
factors of each n′

i divide r. It follows that

∑∑∑∑
n∈N4

‖n0n1c01,n2n3c23‖·M⩽X
n≡q mod 8

µ2(n0n1n2n3)
( 3∏

i=0
gi(ni)

)

=
∑
r⩽X

µ(r)
∑∑∑∑

n′∈
∏3

i=0(N∩[1,X])
p|n′

0n′
1n′

2n′
3⇒p|r

r2|n′
0n′

1n′
2n′

3
gcd(2,n′

i)=1 ∀ i

( 3∏
i=0

gi(n′
i)
)
G̃(X,n′).

It remains to bound the large terms. First note the following bound for G̃(X,n′):

G̃(X,n′) �

 ∑∑
n′′

0 n′′
1⩽X/Mn′

0n′
1c01

1

 ∑∑
n′′

2 n′′
3⩽X/Mn′

2n′
3c23

1


�
(
X(logX)
n′

0n
′
1c01M

)(
X(logX)
n′

2n
′
3c23M

)

� X2(logX)2

n′
0n

′
1n

′
2n

′
3c01c02M2 .

Now, we sum over the large n′
i and large r terms as in the previous proof, yielding the

same result.

2.2.2 Large sieve results

As has already been mentioned, the large sieve for quadratic characters will make a
regular appearance throughout this thesis. For now, we will only need the following
two versions.

The first is due to Friedlander and Iwaniec over rectangular regions.

Lemma 2.2.4 ([17], Lemma 2). Let N,M ⩾ 2 and suppose (an), (bm) are any complex
sequences supported on the odd integers such that |an|, |bm| ⩽ 1. Then∑

n⩽N

∑
m⩽M

anbm

(
n

m

)
� (MN5/6 +M5/6N)(log 3NM)7/6

where the implied constant is absolute.

The second version is a result due to the author and will be proven in Chapter 4.
The benefit of this result is that it exhibits cancellation for sums of Jacobi symbols in
a hyperbolic region, provided that the variables are bounded away from the axes.
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Lemma 2.2.5 ([44], Theorem 1.1). Let X, z ⩾ 2 and let (an), (bm) be complex se-
quences supported on the odd square-free integers such that |an|, |bm| ⩽ 1. Then if there
exists an ϵ > 0 such that z ⩽ X1/3−ϵ then

∑
z<n,m⩽X

nm⩽X

anbm

(
n

m

)
�ϵ

X(logX)3

z1/2 ,

where the implied constant depends at most on ϵ.

2.2.3 Hyperbolic character sums

The following six results are the main results of Chapter 5. They are the primary
technical tools for sections §2.7-§2.9.

The first will be used to handle the main term. For this result, we define

f0 = 1√
π

∏
p prime

fp

(
1 − 1

p

)1/2

and fp = 1 +
∞∑

j=1

1
(j + 1)pj

. (2.2.3)

Proposition 2.2.6. Let X ⩾ 3, C1, C2, C3 > 0 and take any q ∈ (Z/8Z)∗4. Then for
any fixed odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 and fixed integers 1 ⩽ c0, c1, c2, c3 ⩽
(logX)C2, 1 ⩽ d0, d1, d2, d3 ⩽ (logX)C3/2 we have

∑∑∑∑
‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X

‖n0d0,n1d1‖,‖n2d2,n3d3‖>(log X)C3
gcd(ni,ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

1
τ(n0)τ(n1)τ(n2)τ(n3)

= S2(r)X2 log logX
c0c1c2c3 logX

(
1+OC1,C2,C3

(
τ(r0)τ(r1)τ(r2)τ(r3)√

log logX

))
,

where the implied constant depends at most on C1, C2, C3 and we define

S2(r) = 4f 4
0

ϕ(8)4
(∏

p|2r0 fp

) (∏
p|2r1 fp

) (∏
p|2r2 fp

) (∏
p|2r3 fp

) .

The next five will be used at various points to bound the error terms. For a positive
integer m we will henceforth denote by ψm the Jacobi symbol

(
·

m

)
or
(

m
·

)
generically.

Proposition 2.2.7. Let X ⩾ 3, C1, C2, C3 > 0 and fix odd integers Q0, Q2 and some
q ∈ (Z/8Z)∗4, q̃ ∈ (Z/8Z)∗4. Fixing some odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1

such that gcd(ri, Qi) = 1 for i = 0, 2 and any 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2, 1 ⩽
d0, d1, d2, d3 ⩽ (logX)C3/2 we define, for any m ∈ N4,

H(X,m) =
∑∑∑∑

n∈N4,‖n0m0c0,n1m1c1‖·‖n2m2c2,n3m3c3‖⩽X
(5.2.3)

ψQ0m0m1(n2n3)ψQ2m2m3(n0n1)
τ(n0)τ(n1)τ(n2)τ(n3)

,

22



Section 2.2 Chapter 2: Solubility of diagonal quadrics

where we use (5.2.3) with D = C3. Then for any C4 > 0:
∑∑∑∑

m∈N4,‖m0,m1‖,‖m2,m3‖⩽(log X)C3
gcd(m0m1,Q0r2r3)=gcd(m2m3,Q1r0r1)=1

m≡q̃ mod 8
Q0m0m1 and Q2m2m3 6=1

µ2(2m0m1m2m3)|H(X,m)|
τ(m0)τ(m1)τ(m2)τ(m3)

�C1,C2,C3,C4

Q0Q2X
2

c0c1c2c3(logX)C4
,

where the implied constant depends at most on C1, C2, C3, C4.

Proposition 2.2.8. Let X ⩾ 3, C1, C2 > 0 be such that (C1 log logX)C2 > 2. Fix
some odd square-free integers Q1, Q2, Q3 ∈ N such that Q1 ⩽ (log logX)C2, and
some q ∈ (Z/8Z)∗4, q̃ ∈ (Z/8Z)∗2. Suppose χ2 and χ3 are characters modulo Q2

and Q3 respectively. Fixing any odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 such that
gcd(Q1, r0r1r2r3) = gcd(Q2Q3, r2r3) = 1 and fixing any 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2/32,
1 ⩽ d0, d1, d2, d3 ⩽ (logX)C2/4 we define, for any m ∈ N2

H ′(X,m) =
∑∑∑∑

n∈N4,‖n0d0,n1d1‖,‖n2d2,n3d3‖>(log X)C2
‖n0c0,n1c1‖·‖n2m2c2,n3m3c3‖⩽X

gcd(ni,2ri)=1 ∀ 0⩽i⩽3
n≡q mod 8

ψm2m3(n2n3)
τ(n0)τ(n1)τ(n2)τ(n3)

.

Then,
∑∑

m∈N2,‖m2,m3‖⩽(log X)C2
gcd(mi,2Q1Q2Q3ri)=1 ∀ 2⩽i⩽3

m≡q̃ mod 8
Q1m2m3 6=1

µ2(m2m3)χ2(m2)χ3(m3)
τ(m2)τ(m3)

H ′(X,m) �C2

τ(r0)τ(r1)X2

c0c1c2c3(logX)(log logX)C3
,

where C3 = C2/2 − 1 and where the implied constant depends at most on C1 and C2.

Lemma 2.2.9. Let X ⩾ 3, C1, C2 > 0. Suppose χ0, χ1, χ2 and χ3 are Dirichlet
characters modulo 8 such that χi and χj are non-principal for some pair (i, j) ∈ {0, 1}×
{2, 3}. Then for any odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 and any integers 1 ⩽
c01, c23,M ⩽ (logX)C2 we have,

∑∑∑∑
‖n0n1c01,n2n3c23‖·M⩽X

gcd(ni,2ri)=1 ∀ 0⩽i⩽3

χ0(n0)χ2(n2)χ1(n1)χ3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

�C2

τ(r0)τ(r1)τ(r2)τ(r3)X2

c01c23M2(logX)
,

where the implied constant depends at most on C2.

Proposition 2.2.10. Let X ⩾ 3, C1, C2, C3 > 0, let Q02, Q13 be odd integers and take
q ∈ (Z/8Z)∗4, q̃ ∈ (Z/8Z)∗2. Let 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 be odd integers such that
gcd(Qij, 2rirj) = 1 for i ∈ {(0, 2), (1, 3)} and any 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2. Define,
for any m ∈ N4,

H ′′(X,m) =
∑∑∑∑

n∈N4

‖n0n1c0,n2n3c1‖·‖m0m1c2,m2m3c3‖⩽X
gcd(ni,ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

ψQ02m0m2(n0n2)ψQ13m1m2(n1n3)
τ(n0)τ(n1)τ(n2)τ(n3)

.
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Then ∑∑∑∑
m∈N4,‖m0,m1,m2,m3‖⩽(log X)C3

gcd(m0m2,2Q02r0r2)=gcd(m1m3,Q13r1r3)=1
Q02m0m2 6=1 and Q13m1m3 6=1

m≡q̃ mod 8

µ2(2m0m1m2m3)|H ′′(X,m)|
τ(m0)τ(m1)τ(m2)τ(m3)

�C1,C2,C3,C4

Q02Q13X
2

c0c1c2c3(logX)C4
,

for any C4 > 0 where the implied constant depends at most on the Ci.

Proposition 2.2.11. Let X ⩾ 3, C1, C2 > 0. Let us fix vectors q ∈ (Z/8Z)∗4 and q̃ ∈
(Z/8Z)∗2, r̃ ∈ N2 be vectors of odd integers. Fix odd integers 1 ⩽ r0, r1, r2, r3, r̃0, r̃1 ⩽
(logX)C1 and fix 1 ⩽ c01, c23, c̃0, c̃1 ⩽ (logX)C2. Then for any m ∈ N2 we define

T (X,m) =
∑∑∑∑

‖n0n1c01,n2n3c23‖·‖m0c̃0,m1c̃1‖⩽X
gcd(ni,2ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

ψm0m1(n0n2)
τ(n0)τ(n1)τ(n2)τ(n3)

.

Then for any C3 > 0,

∑∑
‖m0,m1‖⩽(log X)C3

mi≡q̃i mod 8 ∀ 0⩽i⩽1
gcd(mi,r̃)=1 ∀ 0⩽i⩽1

m0m1 6=1

µ2(m0m1)
τ(m1)τ(m2)

|T (X,m)| �C1,C2,C3

τ(r0)τ(r2)X2(log logX)1/2

c01c23c̃0c̃1(logX)
,

where the implied constant depends at most on the Ci.

2.3 Geometric Input

Recall that Z ⊂ P3 × P3 is the variety over Q cut out by the equations

y0x
2
0 + y1x

2
1 + y2x

2
2 + y3x

2
3 = 0 and y0y1 = y2y3,

and that π : Z(Q) → Y (Q) be the dominant map sending ([x0 : x1 : x2 : x3], [y0 : y1 :
y2 : y3]) ∈ Z(Q) to the point [y0 : y1 : y2 : y3] ∈ Y (Q) where Y ⊂ P3 is the rational
quadric surface cut out by the equation

y0y1 = y2y3.

We then want to find asymptotics for the following quantity:

N(B) = ♯

y ∈ π(Z)(Q) :
−y0y2,−y0y3 6= □;

π−1(y) has a Q-point;
H(y) ⩽ B

 , (2.3.1)

where H is the naive Weil height in P3(Q). The variety Y is Q-isomorphic to P1 × P1

via the regular map ϕ : P1 × P1 → Y given by

y0 = t0t2, y1 = t1t3, y2 = t1t2, y3 = t0t3.
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We may then reformulate our counting function in the following way:

N(B) = ♯

t ∈ P1(Q) × P1(Q) :
−t0t1,−t2t3 6= □;

π−1(ϕ−1(t)) has a Q-point;
H([t0 : t1])H([t2 : t3]) ⩽ B

 , (2.3.2)

where here H([a : b]) is the naive Weil height on P1(Q) and the fibre π−1(ϕ−1(t)) is
given by the equation

t0t2x
2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0.

We now wish to write this counting problem as one over the integers. This is done by
noting the correspondence between P1(Q) ×P1(Q) and Z2

prim ×Z2
prim where Z2

prim is the
set of all coprime integer pairs (n,m). For each point in P1(Q) × P1(Q) there are four
points in Z2

prim × Z2
prim corresponding to it. Therefore our counting problem becomes

N(B) = 1
4
♯

t ∈ Z2
prim × Z2

prim :
t0t2x

2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0 has a Q-point,

−t0t1,−t2t3 6= □,
‖t0, t1‖ · ‖t2, t3‖ ⩽ B


where, as before, ‖t0, t1‖ = max{|t0|, |t1|} and ‖t2, t3‖ = max{|t2|, |t3|}. We will hence-
forth write this as

N(B) = 1
4
♯

t ∈ Z4 :
t0t2x

2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0 has a Q-point,

gcd(t0, t1) = gcd(t2, t3) = 1,−t0t1,−t2t3 6= □,
‖t0, t1‖ · ‖t2, t3‖ ⩽ B

 .
(2.3.3)

To conclude this section, we consider the points t such that one of the entries is 0.
First, we assume t0 = 0. Then since gcd(t0, t1) = 1 we must then have t1 = ±1.
In this case we therefore want pairs (t2, t3) such that ‖t2, t3‖ ⩽ B, −t2t3 6= □ and
t3x

2
1 + t2x

2
2 = 0 has a Q-point. For the latter to be true, however, we must have −t2t3

equal to a square, which is a contradiction. Therefore there are no points with t0 = 0
included in the count. A symmetric argument may be given for the cases t1 = 0, t2 = 0
and t3 = 0. We may therefore write our counting problem as

N(B) = 1
4
♯

t ∈ (Z \ {0})4 :
t0t2x

2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0 has a Q-point,

gcd(t0, t1) = gcd(t2, t3) = 1,−t0t1,−t2t3 6= □,
‖t0, t1‖ · ‖t2, t3‖ ⩽ B

 .
(2.3.4)

Remark 2.3.1. Note that the point where one of the ti = 0 correspond to points
[y0 : y1 : y2 : y3] such that two of the yj = 0. These are the lines on the quadric
surface which have singular fibres under the map π, and thus we may ignore the
desingularisation used in the introduction.

2.4 Local Solubility

2.4.1 Real Points

Our first step is to guarantee that our quadrics have real points. This will occur
whenever the coefficients are not all positive and not all negative. However, we may
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use the symmetry of our surface to ensure we are counting over purely positive integers
and simplify our argument. First, we split R4 into 16 regions determined by the sign
of the ti. For l ∈ {0, 1}4 we will write Rl to be the regions defined by the points t ∈ R4

such that ti > 0 if li = 0 and ti < 0 if li = 1. For example, R(1,0,0,0) = {t ∈ R4 : t0 <
0, t1, t2, t3 > 0}. We will then write

Nl(B) = ♯

t ∈ (Z\{0})4 ∩Rl :
t0t2x

2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0 has a Q-point;

gcd(t0, t1) = gcd(t2, t3) = 1; −t0t1,−t2t3 6= □;
‖t0, t1‖ · ‖t2, t3‖ ⩽ B

 .
It is clear that N(0,0,0,0)(B) = N(1,1,1,1)(B) = 0 since in these cases the corresponding
quadrics have no real solutions. In order to streamline our argument we will prove the
following:

Lemma 2.4.1. For notation as above we have the following,

• if ∑3
i=0 li = 1 or 3 then, Nl(B) = N(1,0,0,0)(B),

• if ∑3
i=0 li = 2 and l 6∈ {(1, 1, 0, 0), (0, 0, 1, 1)} then, Nl(B) = N(1,0,1,0)(B),

• if l ∈ {(1, 1, 0, 0), (0, 0, 1, 1)} then Nl(B) = 0.

Proof. The last of these assertions is immediate from the fact that, if t ∈ R(1,1,0,0) ∪
R(0,0,1,1), then the coefficients of the equation

t0t2x
2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0

are all negative. We now look at the first assertion. The key observation is that, if
t ∈ Rl where ∑i li = 1 or 3, then we may find a unique point t̃ ∈ R(1,0,0,0), of equal
height which corresponds to a quadric which is equivalent – under the natural action of
SL4(Z) on the set of quadratic forms in four variables – to the quadric corresponding
to t. Then the quadric defined by t, say Ct, has a rational point if and only if the
quadric defined by t̃, say Ct̃, has a rational point. First suppose that ∑i li = 1. Then
only one of the components is negative. If l0 = 1, then the result is trivial. For a point
t = (t0, t1, t2, t3) ∈ R(0,1,0,0), the corresponding quadric is

Ct : t0t2x2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0

where here, the coefficients of x2
1 and x2

2 are negative. We map t to the point t̃ =
(t1, t0, t2, t3) ∈ R(1,0,0,0). Then the quadric corresponding to t̃ is

Ct̃ : t1t2x2
0 + t0t3x

2
1 + t0t2x

2
2 + t1t3x

2
3 = 0.

It is clear that Ct̃ is equivalent to Ct since we have only permuted the coefficients. This
mapping from R(0,1,0,0) to R(1,0,0,0) is clearly a bijection and it is easy to show that it
preserves height. Next we consider l2 = 1. Here, t = (t0, t1, t2, t3) ∈ R(0,0,1,0), with
quadric

Ct : t0t2x2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0,
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where the coefficients of x2
0 and x2

2, t0t2 and t1t2, are negative. We map t to t̃ =
(t2, t3, t0, t1), which has the quadric

Ct̃ : t0t2x2
0 + t1t3x

2
1 + t3t0x

2
2 + t2t1x

2
3 = 0.

Again, Ct̃ is equivalent to Ct since we have only permuted the coefficients of x2
2 and x2

3.
This mapping is also a bijection and height preserving. Finally, if t = (t0, t1, t2, t3) ∈
R(0,0,0,1), then we map to t̃ = (t3, t2, t1, t0) ∈ R(1,0,0,0). As before this is a height
preserving, bijective map such that Ct and Ct̃ are equivalent quadrics. If ∑i li =
3, then we reduce to one of the above cases by sending t = (t0, t1, t2, t3) ∈ Rl to
t̃ = (−t0,−t1,−t2,−t3) ∈ Rl̃ where ∑i l̃i = 1. This mapping is a height preserving
bijection and furthermore Ct and Ct̃ are the same quadric. We have now proved the
first assertion. The strategy for the second assertion is the same: if ∑i li = 2 and
l 6∈ {(1, 1, 0, 0), (0, 0, 1, 1)} we find a height and quadric preserving, bijective mapping
from Rl to R(1,0,1,0). For R(1,0,1,0) this is trivial. For t = (t0, t1, t2, t3) ∈ R(0,1,0,1) we
have

Ct : t0t2x2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0,

where the coefficients of x2
2 and x2

3, t1t2 and t0t3 are negative. We send t to t̃ =
(t1, t0, t3, t2) ∈ R(1,0,1,0). Again, this map is bijective and height preserving, and the
quadric corresponding to t̃ is

Ct̃ : t1t3x2
0 + t0t2x

2
1 + t0t3x

2
2 + t1t2x

2
3 = 0,

which is equivalent to Ct. For t = (t0, t1, t2, t3) ∈ R(1,0,0,1) we map it to t̃ = (t0, t1, t3, t2) ∈
R(1,0,1,0) and for t = (t0, t1, t2, t3) ∈ R(0,1,1,0) we map it to t̃ = (t1, t0, t2, t3) ∈ R(1,0,1,0).
Both of these are easily checked to be height preserving bijections resulting in points
with equivalent quadrics. This completes the proof.

Lemma 2.4.1 allows us to rephrase our counting problem so that we only count
over positive integers while ensuring all quadrics considered have real points. This is
encoded in the lemma below.

Proposition 2.4.2. We have N(B) = 2N1(B) +N2(B), where

N1(B) = ♯

t ∈ N4 :
−t0t2x2

0 + t1t3x
2
1 + t1t2x

2
2 − t0t3x

2
3 = 0 has a Q-point;

gcd(t0, t1) = gcd(t2, t3) = 1, t0t1 6= □;
‖t0, t1‖ · ‖t2, t3‖ ⩽ B

 ,
and

N2(B) = ♯

t ∈ N4 :
t0t2x

2
0 + t1t3x

2
1 − t1t2x

2
2 − t0t3x

2
3 = 0 has a Q-point;

gcd(t0, t1) = gcd(t2, t3) = 1, t0t1, t2t3 6= □;
‖t0, t1‖ · ‖t2, t3‖ ⩽ B

 ,
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Proof. We may write 4N(B) = ∑
l∈{0,1}4 Nl(B). Thus, using Lemma 2.4.1,

N(B) = 1
4
(
8N(1,0,0,0)(B) + 4N(1,0,1,0)(B)

)
= 2N1(B) +N2(B).

This last equality comes from noting that N(1,0,0,0)(B) = N1(B) and N(1,0,1,0)(B) =
N2(B).

2.4.2 p-adic Points

Using the Hasse principle for quadrics, we may equate the problem of detecting rational
points to detecting p-adic points. We have already ensured that all quadrics we are
considering have a real point and so we only need to detect Qp-points for every prime
p. The advantage of this is that we will be able to express solubility conditions as a
sum over Jacobi symbols. To do this we define, for (a0, a1, a2, a3) ∈ Z4, the indicator
function,

〈a0, a1, a2, a3〉p =

1 if Da has a Qp-point
0 otherwise,

where Da is the quadric defined by the equation

a0x
2
0 + a1x

2
1 + a2x

2 + a3x
2
3 = 0.

Then we obtain the following result:

Lemma 2.4.3. Let p be an odd prime and suppose a0, a1, a2, a3 are square-free, non-
zero integers such that gcd(a0, a1, a2, a3) = 1. Then:

(a) If vp(a0a1a2a3) 6= 2 then 〈a0, a1, a2, a3〉p = 1;

(b) Otherwise, if p | ai, aj for any distinct i, j ∈ {0, 1, 2, 3} and p ∤ akal for the
distinct k, l ∈ {0, 1, 2, 3} \ {i, j} then

〈a0, a1, a2, a3〉p = 1
4

(
3 +

(
−akal

p

)
+
(

−(aiaj)/p2

p

)
−
(

−akal

p

)(
−(aiaj)/p2

p

))
,

where
(

·
·

)
is the quadratic Jacobi symbol.

Proof. Suppose vp(a0a1a2a3) = 1. We may then assume without loss in generality that
p|a0 and p ∤ a1a2a3. Then Da will reduce to the smooth ternary quadratic

D̃ã : ã1x
2
1 + ã2x

2
2 + ã3x

2
3 = 0

over Fp. By the Chevalley–Warning theorem, all smooth ternary quadratics over Fp

have a non-zero point, (ỹ1, ỹ2, ỹ3), which we may lift to a Qp-point (y1, y2, y3) on the
ternary quadratic a1x

2
1 + a2x

2
2 + a3x

2
3 = 0 by Hensel’s lifting lemma. Then (0, y1, y2, y3)

will be a Qp-point on Da.
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If vp(a0a1a2a3) = 3 then we assume without loss in generality that p | a0, a1, a2.
We may multiply the quadric Da by p and then apply the birational transformation
(x0, x1, x2, x3) 7→ (x0/p, x1/p, x2/p, x3) to obtain an equivalent quadric D(a0/p,a1/p,a2/p,pa3)

which is of the form considered above. The proof for vp(a0a1a2a3) = 0 is similar to that
for vp(a0a1a2a3) = 1. This completes the proof of (a) as the ai are square-free integers
with gcd(a0, a1, a2, a3) = 1, so that vp(a0a1a2a3) 6= 2 implies either vp(a0a1a2a3) = 0, 1
or 3.
Finally we turn to case (b). Assume without loss in generality that p | a0, a1 and
p ∤ a2a3. Then it is clear that there is a Qp solution to the quadric Da if and only if
there exists some C ∈ Qp such that

a0x
2
0 + a1x

2
1 = C and a2x

2
2 + a3x

2
3 = −C.

This is true if and only if the ternary quadratics

a0x
2
0 + a1x

2
1 = Cz2 and a2x

2
2 + a3x

2
3 = −Cw2

have a solution in Qp. Let (n,m)p denote the Hilbert symbol for Qp and write a0 = pu0,
a1 = pu1 and C = pαv with u0, u1 and v coprime to p. Then we have that Da has a
solution in Qp if and only if(

a0

C
,
a1

C

)
p

=
(

(−u0u1)1−α

p

)
= 1 and

(−a2

C
,
−a3

C

)
p

=
(

(−a2a3)α

p

)
= 1.

If α ≡ 0 mod 2 then this condition simplifies to requiring that
(

−u0u1
p

)
= 1. If α ≡

1 mod 2, the condition requires that
(

−a2a3
p

)
= 1. For the backwards direction, if(

−u0u1
p

)
= 1, then we may choose C = 1; then α = 0 in the expressions above, and

both equalities hold. Similarly, if
(

−a2a3
p

)
= 1 then we may choose C = p, in which case

α = 1 in the above expressions and both equalities above hold. Therefore, recalling
that u0 = a0

p
and u1 = a1

p
, we have proven that Da has a solution in Qp if and only if(
−(a0a1)/p2

p

)
= 1 or

(
−a2a3

p

)
= 1.

We put these two conditions together to obtain the formula

〈a0, a1, a2, a3〉p = 1
4

(
3 +

(
−a2a3

p

)
+
(

−(a0a1)/p2

p

)
−
(

−a2a3

p

)(
−(a0a1)/p2

p

))
.

2.4.3 2-adic points

Our strategy will be similar as in the previous section, however we will only deal with
vectors a = (a0, a1, a2, a3) such that the ai are square-free, non-zero integers with
gcd(a0, a1, a2, a3) = 1 and v2(a0a1a2a3) = 0 or 2. We begin by defining two sets:

A1 = {q ∈ (Z/8Z)∗4 : q satisfies (2.4.1)} and A2 = {q ∈ (Z/8Z)∗4 : q satisfies (2.4.2)},
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whereqi + qj = 0, 4 for at least one pair (i, j) ∈ {0, 1} × {2, 3} or,
(q0 + q1, q2 + q3) ∈ {(0, 0), (2, 0), (2, 6), (0, 6), (6, 0), (6, 2), (0, 2)},

(2.4.1)

and
there is at least one choice of i, j, k, l such that {(i, j), (k, l)} = {(0, 1), (2, 3)},
and some v ∈ (Z/8Z)∗ such that (qi + qj = 0 and (qk + v)(ql + v) = 0) or,
(qi + qj = 2v and (qk + v)(ql + v) = 0) .

(2.4.2)
Then we have the following.

Lemma 2.4.4. Suppose a0, a1, a2, a3 ∈ N are square-free and non-zero satisfying the
condition gcd(a0, a1, a2, a3) = 1. Then:

(a) if 2 ∤ a0a1a2a3 then 〈a0, a1, a2, a3〉2 = 1 if and only if (a0, a1, a2, a3) reduces to a
vector in A1 modulo 8;

(b) if 2 | ai, aj for any distinct i, j ∈ {0, 1, 2, 3} and 2 ∤ akal for the distinct k, l ∈
{0, 1, 2, 3}\{i, j} then 〈a0, a1, a2, a3〉2 = 1 if and only if (ai/2, aj/2, ak, al) reduces
to a vector in A2 modulo 8.

Proof. Following the same strategy used in the proof of Lemma 2.4.3(b) we have that
the quadric Da has a solution in Q2 if and only if there exists a C ∈ Q2 such that(

a0

C
,
a1

C

)
2

= 1 and
(

−a2

C
,−a3

C

)
2

= 1 (2.4.3)

where (·, ·)2 is the Hilbert symbol over Q2. Let us first consider part (a). Writing
C = 2αv for a unit v ∈ Q2, we use the well known formulae for these Hilbert symbols
(for example see Chapter 3, Theorem 1 of [38]) to obtain the equivalent condition:

(a0v
−1 − 1)(a1v

−1 − 1)
4

+ α
(a2

0v
−2 + a2

1v
−2 − 2)

8
≡ 0 mod 2 (2.4.4)

and
(a2v

−1 + 1)(a3v
−1 + 1)

4
+ α

(a2
2v

−2 + a2
3v

−2 − 2)
8

≡ 0 mod 2. (2.4.5)

We have two cases: α ≡ 0 mod 2 and α ≡ 1 mod 2. In the former case we simplify to
the condition(

(a0v
−1 − 1)(a1v

−1 − 1)
4

≡ 0 mod 2
)

and
(

(a2v
−1 + 1)(a3v

−1 + 1)
4

≡ 0 mod 2
)
,

which is equivalent to asking

(a0 −v ≡ 0 mod 4 or a1 −v ≡ 0 mod 4) and (a2 +v ≡ 0 mod 4 or a3 +v ≡ 0 mod 4) .

Putting these together we obtain the first condition in (2.4.1). On the other hand, if
the coefficient vector (a0, a1, a2, a3) satisfies one of these conditions then we may set
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C = a0 or a1 to ensure that both Hilbert symbols are 1, giving the backwards direction.
Now, if α ≡ 1 mod 2 we write (2.4.4) and (2.4.5) as

2
(
a0v

−1 − 1
) (
a1v

−1 − 1
)

+
(
a2

0v
−2 + a2

1v
−2 − 2

)
≡ 0 mod 16

and
2
(
a2v

−1 + 1
) (
a3v

−1 + 1
)

+
(
a2

2v
−2 + a2

3v
−2 − 2

)
≡ 0 mod 16.

Rearranging and collecting terms we obtain

v−2(a0 + a1)(a0 + a1 − 2v) ≡ 0 mod 16 (2.4.6)

and
v−2(a2 + a3)(a2 + a3 + 2v) ≡ 0 mod 16. (2.4.7)

Now suppose x ∈ Z is any even integer and v ∈ Z any odd integer. Then

x(x+ 2v) ≡ 0 mod 16 (2.4.8)

has a solution if and only if
x

2

(
x

2
+ v

)
≡ 0 mod 4.

Since v is odd, x
2 and

(
x
2 + v

)
have opposite parity. It follows that (2.4.8) has a solution

if and only if 4|x
2 or 4|

(
x
2 + v

)
. Equivalently, (2.4.8) has a solution if and only if

x ≡ 0 mod 8 or x+ 2v ≡ 0 mod 8.

Substituting in x = a0 + a1 and x = a2 + a3 into this tells us that (2.4.6) and (2.4.7)
are equivalent to

(a0 + a1) ≡ 0 mod 8 or (a0 + a1) ≡ 2v mod 8,

and
(a2 + a3) ≡ 0 mod 8 or (a2 + a3) ≡ −2v mod 8.

Now 2v ≡ 2 mod 8 or 2v ≡ 6 mod 8 depending on whether v ≡ 1, 5 mod 8 or v ≡
3, 7 mod 8. Thus we only need to consider v ≡ 1, 3 mod 8. Substituting these cases
into the two conditions above we obtain the second condition in (2.4.1). In the other
direction, if one of these conditions is met then we may set C = 2v, where v = 1 in the
first four cases and v = 3 in the last three cases, to ensure that the Hilbert symbols
are both 1. Thus we are done with case (a).

For case (b), we may assume without loss in generality that 2|a0, a1 and 2 ∤ a2a3.
This time we substitute a0 = 2u0, a1 = 2u1 and C = 2αv, where u0, u1, v are units in
Q2, into the formulae for the Hilbert symbols. Then (2.4.3) becomes,

(u0v
−1 − 1)(u1v

−1 − 1)
4

+ (1 − α)(u2
0v

−2 + u2
1v

−2 − 2)
8

≡ 0 mod 2 (2.4.9)
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and
(a2v

−1 + 1)(a3v
−1 + 1)

4
+ α

(a2
2v

−2 + a2
3v

−2 − 2)
8

≡ 0 mod 2. (2.4.10)

Again we consider the cases where α is even and α is odd separately. If α is even then
we may simplify (2.4.9) as in the second case of (a). Doing this and then combining it
with (2.4.10) we obtain the condition

u0 + u1 ≡ 0, 2v mod 8 and (a2 + v)(a3 + v) ≡ 0 mod 8.

Since v = 1, 3, 5 or 7 mod 8 we split into cases. Doing this, it can be seen that
(u0, u1, a2, a3) must satisfy one of the conditions of (2.4.2) with (i, j) = (0, 1) and
(k, l) = (2, 3). For the other direction, if any of these are satisfied then we may choose
v = 1, 3, 5 or 7 appropriately and set C = 2v so that each Hilbert symbol is 1. If α is
odd then we simplify (2.4.10) as in case (a) and combine it with (2.4.9) to obtain the
condition

a2 + a3 ≡ 0,−2v mod 8 and (u0 − v)(u1 − v) ≡ 0 mod 8.

Once more splitting into cases for v we see that (u0, u1, a2, a3) must satisfy (2.4.2) with
(i, j) = (2, 3) and (k, l) = (0, 1). Finally, if either of these 8 conditions are satisfied
then we may choose the appropriate v = 1, 3, 5 or 7 such that the Hilbert symbols are
1 by choosing C = v. This concludes the proof.

2.5 Simplification

In this section we simplify the functions Nr(B) from Lemma 2.4.2 and express them
through quadratic symbols using the Hasse Principle. Let

δr =

 1 if r = 1,
−1 if r = 2,

and define the quadrics

Cr,t : −δrt0t2x
2
0 + t1t3x

2
1 + δrt1t2x

2
2 − t0t3x

2
3 = 0.

2.5.1 Reduction to square-free and co-prime coefficients

To begin our simplification we remove the square parts of the ti. Write ti = aib
2
i for ai

square-free integers. Noting that Cr,t is equivalent to the quadric Cr,a we have that

Nr(B) =
∑

b∈N4, bi⩽B1/2

(2.5.1)

Nr,b(B),
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where

Nr,b(B) = ♯

a ∈ N4 :

−δra0a2x
2
0 + a1a3x

2
1 + δra1a2x

2
2 − a0a3x

2
3 = 0 has a Q-point;

gcd(a0b0, a1b1) = gcd(a2b2, a3b3) = 1;
a0a1,

1−δr

2 a2a3 6= 1, µ2(ai) = 1;
‖a0b

2
0, a1b

2
1‖ · ‖a2b

2
2, a3b

2
3‖ ⩽ B

 ,
and

gcd(b0, b1) = gcd(b2, b3) = 1. (2.5.1)

Next, we want to remove any common factors of the ai’s. Writing a0 = s0m02m03,
a1 = s1m12m13, a2 = s2m02m12 and a3 = s3m03m13 where

m02 = gcd(a0, a2); m03 = gcd(a0, a3); m12 = gcd(a1, a2); m13 = gcd(a1, a3),

it is clear that µ2(s0s1s2s3m02m03m12m13) = 1, since gcd(a0, a1) = gcd(a2, a3) = 1.
Next we note that the quadric Cr,a is equivalent to the quadric

Cr,s,m : −δrs0s2m03m12x
2
0 + s1s3m03m12x

2
1 + δrs1s2m02m13x

2
2 − s0s3m02m13x

2
3 = 0.

We then write
Nr,b(B) =

∑
m∈N4, mij⩽B

(2.5.2)

Nr,b,m(B)

where

Nr,b,m(B) = ♯
{
s ∈ N4 : Cr,s,m has a Q-point; (2.5.3); (2.5.4); (2.5.5)

}
,

withgcd(m02, b1b3) = gcd(m03, b1b2) = gcd(m12, b0b3) = gcd(m13, b0b2) = 1,
µ2(m02m03m12m13) = 1

(2.5.2)


gcd(s0,m02m03m12m13b1) = gcd(s1,m02m03m12m13b0) = 1,
gcd(s2,m02m03m12m13b3) = gcd(s3,m02m03m12m13b2) = 1,
µ2(s0s1s2s3) = 1,

(2.5.3)

‖s0m02m03b
2
0, s1m12m13b

2
1‖ · ‖s2m02m12b

2
2, s3m03m13b

2
3‖ ⩽ B, (2.5.4)

s0s1m02m03m12m13 6= 1,
1−δr

2 s2s3m02m03m12m13 6= 1.
(2.5.5)

We deal with large values of bi and mij using Lemma 2.2.1 which shows that
Nr,b,m(B) is

� ♯
{
t∈N4:‖t0, t1‖·‖t2, t3‖⩽B; b2

0m03m02|t0; b2
1m13m12|t1; b2

2m02m12|t2; b2
3m03m13|t3

}
� B2(logB)

(b0b1b2b3m02m03m12m13)2 .
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Thus summing over m and b, where at least one mij or bi is greater than z0 = (logB)A

for some A > 0 we obtain

Nr(B) =
∑∑

b∈N4,m∈N4,(2.5.1),(2.5.2)
bi⩽z0,mij⩽z0

Nr,b,m(B) +O

(
B2(logB)

z0

)
. (2.5.6)

We have now reduced the counting problem Nr(B) over arbitrary positive integers to
the evaluation of the counting problems Nr,b,m(B), which count over square-free and
pairwise co-prime positive integers. Next, we aim to remove factors of 2. Set σi = v2(si)
where v2 is the 2-adic valuation, and (relabelling si to henceforth be the odd part of
the si above) and define

Cr,s,m,σ : − δr2σ0+σ2s0s2m03m12x
2
0 + 2σ1+σ3s1s3m03m12x

2
1

+ δr2σ1+σ2s1s2m02m13x
2
2 − 2σ0+σ3s0s3m02m13x

2
3 = 0.

Then we write
Nr,b,m(B) =

∑
σ∈{0,1}4,(2.5.7)

Nr,b,m,σ(B),

where,

Nr,b,m,σ(B) = ♯
{
s ∈ N4

odd : Cr,s,m,σ has a Q-point, (2.5.8), (2.5.9), (2.5.10)
}

with σ0 + σ1 + σ2 + σ3 ⩽ 1, gcd(2σ0+σ1+σ2+σ3 ,m02m03m12m13) = 1
gcd(2σ0 , b1) = gcd(2σ1 , b0) = gcd(2σ2 , b3) = gcd(2σ3 , b2) = 1,

(2.5.7)


gcd(s0, 2σ1m02m03m12m13b1) = gcd(s1, 2σ0m02m03m12m13b0) = 1,
gcd(s2, 2σ3m02m03m12m13b3) = gcd(s3, 2σ2m02m03m12m13b2) = 1,
µ2(2s0s1s2s3) = 1,

(2.5.8)

‖2σ0s0m02m03b
2
0, 2σ1s1m12m13b

2
1‖ · ‖2σ2s2m02m12b

2
2, 2σ3s3m03m13b

2
3‖ ⩽ B, (2.5.9)

2σ0+σ1s0s1m02m03m12m13 6= 1,
1−δr

2 2σ2+σ3s2s3m02m03m12m13 6= 1.
(2.5.10)

We may now express our Nr,b,m,σ(B) as

Nr,b,m,σ(B) =
∑

s∈N4,(2.5.8)
(2.5.9), (2.5.10)

µ2(2s0s1s2s3)〈s,m,σ〉r, (2.5.11)

where

〈s,m,σ〉r =

1 if Cr,s,m,σ has a Q-point,
0 otherwise.
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2.5.2 Application of the Hasse Principle

We now use the Hasse principle for quadrics to write our indicator function in terms
of local conditions. For each prime p we define the functions

〈s,m,σ〉r,p =

1 if Cr,s,m,σ has a Qp-point,
0 otherwise.

Using Lemma 2.4.3 we obtain the following:

Lemma 2.5.1. Let p be an odd prime. Then for any m ∈ N4 satisfying (2.5.2) and
any σ ∈ {0, 1}4 satisfying (2.5.7),

(a) 〈s,m,σ〉r,p = 1 if p ∤ s0s1s2s3m02m03m12m13;

(b) If p|m02m03m12m13 then,

〈s,m,σ〉r,p = 1
2

(
1 +

(
δr2σ0+σ1+σ2+σ3s0s1s2s3

p

))
;

(c) If p|s0s1 then,

〈s,m,σ〉r,p = 1
2

(
1 +

(
−δr2σ2+σ3s2s3m02m03m12m13

p

))
;

(d) If p|s2s3 then,

〈s,m,σ〉r,p = 1
2

(
1 +

(
δr2σ0+σ1s0s1m02m03m12m13

p

))
.

Proof. Part (a) is an immediate application of part (a) of Lemma 2.4.3. For part (b)
split into two cases: p|m03m12 and p|m02m13. In the former, p divides the coefficients
of x2

0 and x2
1 so that Lemma 2.4.3(b) will yield

〈s,m,σ〉r,p = 1
2

(
1 +

(
δr2σ0+σ1+σ2+σ3s0s1s2s3

p

))

since the relation on the coefficients of our quadrics ensure that the Jacobi symbols
from Lemma 2.4.3 are equal, and so the indicator functions simplify to the above. The
case where p|m02m13 is dealt with in the same way and yields the same result. Now
consider part (c). Here p|s0s1. Suppose first that p|s0, then p divides the coefficients
of x2

0 and x2
3. Using Lemma 2.4.3(b), again noting that the Legendre symbols simplify,

we obtain:

〈s,m,σ〉r,p = 1
2

(
1 +

(
−δr2σ2+σ3s2s3m02m03m12m13

p

))
.

The same result will be obtained if p|s1. We also note that part (d) may be obtained by
the same methods, but the negative disappears since if p|s2, p divides the coefficients of
x2

0 and x2
2 and one is positive while the other is negative. The same happens if p|s3.
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Next we want to collect this information to obtain an expression for the indicator
function 〈s,m,σ〉r by applying the Hasse Principle. Henceforth, let (n)odd denote the
odd part of n. Further, for any fixed vectors m, s,d, d̃ ∈ N4 such that dij d̃ij = (mij)odd,
and any σ ∈ {0, 1}, we define

Nr,m,d,d̃,σ(s, B) =
∑∑
k,l∈N4

kili=si

(−1)fr(d,k)

τ (k0l0k1l1k2l2k3l3(m02m03m12m13)odd)
Θ(d, d̃,k, l),

where

fr(d,k) = ((2 − δr)k0k1k2k3d02d03d12d13 − d02d03d12d13 + k0k1 − k2k3 − (1 − δr))
4

and

Θ(d, d̃,k, l,σ) =
(

2σ0+σ1+σ2+σ3l0l1l2l3
d02d03d12d13

)(
2v2(m02m03m12m13)

k0k1k2k3

)

×
(

2σ2+σ3l2l3d̃02d̃03d̃12d̃13

k0k1

)(
2σ0+σ1l0l1d̃02d̃03d̃12d̃13

k2k3

)
.

We now apply the Hasse Principle and use the local conditions for odd primes given
in Lemma 2.5.1 and quadratic reciprocity to express our indicator function as a sum
over Jacobi symbols.

Lemma 2.5.2. Fix some b ∈ N4. Suppose that m ∈ N4 satisfies (2.5.2), that
σ ∈ {0, 1}4 satisfies (2.5.7) and that s ∈ N4 satisfies (2.5.8). Then we have that
µ2(2σ0+σ1+σ2+σ3s0s1s2s3m02m03m12m13) = 1 and

〈s,m,σ〉r = 〈s,m,σ〉r,2
∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

Nr,m,d,d̃,σ(s, B). (2.5.12)

Proof. This follows from Lemma 2.5.1 and the Hasse Principle for quadrics. Indeed,
using the Hasse Principle we obtain

〈s,m,σ〉r = 〈s,m,σ〉r,2
∏

p|s0s1s2s3m02m03m12m13
p 6=2

〈s,m,σ〉r,p

= 〈s,m,σ〉r,2
∏

p|m02m03m12m13
p 6=2

(〈s,m,σ〉r,p)
∏

p|s0s1
p 6=2

(〈s,m,σ〉r,p)
∏

p|s2s3
p 6=2

(〈s,m,σ〉r,p) .

By now applying Lemma 2.5.1, we obtain a factor of 2−ω(s0s1s2s3(m02m03m12m13)odd) where
ω(n) is the number of distinct primes dividing n. Since s0s1s2s3(m02m03m12m13)odd

is square-free by assumption, this factor is exactly τ(s0s1s2s3(m02m03m12m13)odd)−1.
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Therefore:

〈s,m,σ〉r = 〈s,m,σ〉r,2

τ(s0s1s2s3(m02m03m12m13)odd)

×
∏

p|m02m03m12m13
p6=2

(
1 +

(
δr2σ0+σ1+σ2+σ3s0s1s2s3

p

))

×
∏

p|s0s1
p6=2

(
1 +

(
−δr2σ2+σ3s2s3m02m03m12m13

p

))

×
∏

p|s2s3
p6=2

(
1 +

(
δr2σ0+σ1s0s1m02m03m12m13

p

))
.

Next we multiply out these products:

〈s,m,σ〉r = 〈s,m,σ〉r,2

τ(s0s1s2s3(m02m03m12m13)odd)
∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

∑∑
k,l∈N4

kili=si

F (d, d̃,k, l,σ)

 ,

where

F (d, d̃,k, l,σ) =
(
δr2σ0+σ1+σ2+σ3k0l0k1l1k2l2k3l3

d02d03d12d13

)

×
(

−δr2σ2+σ32v2(m02m03m12m13)k2l2k3l3d02d̃02d03d̃03d12d̃12d13d̃13

k0k1

)

×
(
δr2σ0+σ12v2(m02m03m12m13)k0l0k1l1d02d̃02d03d̃03d12d̃12d13d̃13

k2k3

)
.

We are left to show that F (d, d̃,k, l,σ) = (−1)fr(d,k)Θ(d, d̃,k, l,σ). This follows by
using quadratic reciprocity for Jacobi symbols and the fact that Jacobi symbols are
multiplicative in each variable. Indeed using multiplicativity:

F (d, d̃,k, l,σ) =
( −1
k0k1

)(
k0k1k2k3

d02d03d12d13

)(
d02d03d12d13

k0k1k2k3

)(
k2k3

k0k1

)(
k0k1

k2k3

)

×
(

δr

d02d03d12d13k0k1k2k3

)(
2σ0+σ1+σ2+σ3l0l1l2l3

d02d03d12d13

)(
2v2(m02m03m12m13)

k0k1k2k3

)

×
(

2σ2+σ3l2l3d̃02d̃03d̃12d̃13

k0k1

)(
2σ0+σ1l0l1d̃02d̃03d̃12d̃13

k2k3

)

=
( −1
k0k1

)(
k0k1k2k3

d02d03d12d13

)(
d02d03d12d13

k0k1k2k3

)

×
(
k2k3

k0k1

)(
k0k1

k2k3

)(
δr

d02d03d12d13k0k1k2k3

)
Θ(d, d̃,k, l,σ).

Finally we apply quadratic reciprocity of Jacobi symbols which states that for odd
integers n,m we have (

n

m

)(
m

n

)
= (−1)

(n−1)(m−1)
4 .
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We also note that for an odd integer n,(−1
n

)
= (−1)

(n−1)
2 .

Applying these to the remaining Jacobi symbols in the expression for F (d, d̃,k, l,σ)
and collecting the powers of −1 will yield (−1)fr(d,k) as required.

Next we deal with the indicator function for 2-adic points. For this we will use the
conditions given by Lemma 2.4.4 to split our sum into arithmetic progressions modulo
8. We will require some notation. Recall the set A2 defined in §2.4.3. We will define
twists of this set. Let i, j, k, l be distinct elements of the set {0, 1, 2, 3}. Then define

Ai,j,k,l = {q ∈ ((Z/8Z)∗)4 : (qi, qj, qk, ql) ∈ A2}.

In particular, A0,1,2,3 = A2. Now for m ∈ N4 satisfying (2.5.2) and σ ∈ {0, 1}4

satisfying (2.5.7) define the set function

A(m,σ) =



A1 if 2 ∤ m02m03m12m13 & σi = 0 ∀ i ∈ {0, 1, 2, 3},
A0,1,2,3 if 2 | m03m12, 2 ∤ m02m13 & σi = 0 ∀ i ∈ {0, 1, 2, 3},
A2,3,0,1 if 2 | m02m13, 2 ∤ m03m12 & σi = 0 ∀ i ∈ {0, 1, 2, 3},
A0,3,1,2 if 2 ∤ m02m03m12m13 & σ0 = 1 & σi = 0 ∀ i ∈ {1, 2, 3},
A1,2,0,3 if 2 ∤ m02m03m12m13 & σ1 = 1 & σi = 0 ∀ i ∈ {0, 2, 3},
A0,2,1,3 if 2 ∤ m02m03m12m13 & σ2 = 1 & σi = 0 ∀ i ∈ {0, 1, 3},
A1,3,0,2 if 2 ∤ m02m03m12m13 & σ3 = 1 & σi = 0 ∀ i ∈ {0, 1, 2}.

Remark 2.5.3. To understand this notation, notice that the vectors m ∈ N4 and
σ ∈ {0, 1}4 indicate which of the coefficients of Cr,s,m,σ are even. The value of A(m,σ)
therefore only orders these coefficients in the way required by Lemma 2.4.4

The following two lemmas regard the solubility in Q2.

Lemma 2.5.4. Fix some m = (m02,m03,m12,m13) ∈ N4 and σ = (σ0, σ1, σ2, σ3) ∈
{0, 1}4 such that the conditions (2.5.2) and (2.5.7) hold. Then 〈s,m,σ〉r,2 = 1 if and
only if

(−δrs0s2(m03m12)odd,s1s3(m03m12)odd,δrs1s2(m02m13)odd,−s0s3(m02m13)odd)≡qmod 8
(2.5.13)

for some q ∈ A(m,σ).

Proof. By the conditions (2.5.2) and (2.5.7), the set A(m,σ) is well defined. Then the
result is immediate using Lemma 2.4.4.

For fixed choices of b,m ∈ N4 and σ ∈ {0, 1}4 satisfying (2.5.2) and (2.5.7), any
d, d̃ ∈ N4 such that dij d̃ij = (mij)odd and any q ∈ A(m,σ) define

Nr,b,m,d,d̃,σ,q(B) =
∑∑
k,l∈N4

(2.5.14), (2.5.15)
(2.5.16), (2.5.17)

(−1)fr(d,k)µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

Θ(d, d̃,k, l,σ)
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wheregcd(k0l0, 2σ1m02m03m12m13b1) = gcd(k1l1, 2σ0m02m03m12m13b0) = 1,
gcd(k2l2, 2σ3m02m03m12m13b3) = gcd(k3l3, 2σ2m02m03m12m13b2) = 1,

(2.5.14)

‖2σ0k0l0m02m03b
2
0, 2σ1k1l1m12m13b

2
1‖ · ‖2σ2k2l2m02m12b

2
2, 2σ3k3l3m03m13b

2
3‖ ⩽ B,

(2.5.15)

2σ0+σ1k0l0k1l1m02m03m12m13 6= 1,
1−δr

2 2σ2+σ3k2l2k3l3m02m03m12m13 6= 1,
(2.5.16)

−δrk0l0k2l2(m03m12)odd ≡ q0 mod 8; k1l1k3l3(m03m12)odd ≡ q1 mod 8;
δrk1l1k2l2(m02m13)odd ≡ q2 mod 8; −k0l0k3l3(m02m13)odd) ≡ q3 mod 8.

(2.5.17)

Lemma 2.5.5. For a fixed choice of b, m and σ satisfying (2.5.2) and (2.5.7) we
have:

Nr,b,m,σ(B) = 1
τ ((m02m03m12m13)odd)

∑
q∈A(m,σ)

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

Nr,b,m,d,d̃,σ,q(B).

Proof. By applying Lemma 2.5.4 we may write

Nr,b,m,σ(B) =
∑

q∈A(m,σ)

∑
s∈N4

odd,(2.5.8)
(2.5.9),(2.5.10),(2.5.13)

µ2(2s0s1s2s3)〈s,m,σ〉r.

Then applying Lemma 2.5.2 and swapping the summation of s ∈ N4 and d, d̃ ∈ N4

gives,

Nr,b,m,σ(B) =
∑

q∈A(m,σ)

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

∑
s∈N4,(2.5.8)

(2.5.9),(2.5.10),(2.5.13)

Nr,m,d,d̃,σ(s, B).

Now observe that,
∑

s∈N4,(2.5.8)
(2.5.10),(2.5.9)

(2.5.13)

Nr,m,d,d̃,σ(s, B)=
∑

s∈N4,(2.5.8)
(2.5.10),(2.5.9)

(2.5.13)

∑∑
k,l∈N4

kili=si

(−1)fr(d,k)Θ(d, d̃,k, l)
τ (k0l0k1l1k2l2k3l3(m02m03m12m13)odd)

.

Swapping the order of summation of the si with the ki and li changes (2.5.8) to (2.5.14),
(2.5.9) to (2.5.15), (2.5.10) to (2.5.16) and (2.5.13) to (2.5.17). Then, using the multi-
plicativity of τ and condition (2.5.14) we obtain:

∑
s∈N4,(2.5.8)

(2.5.10),(2.5.9)
(2.5.13)

Nr,m,d,d̃,σ(s, B)=
Nr,b,m,d,d̃,σ,q(B)

τ ((m02m03m12m13)odd)

which concludes the proof.
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Condition (2.5.17) is still an issue that needs to be considered as it involves products
of our variables. To deal with this we note that, for a fixed m and σ, this condition is
solely determined on the reduction of k and l modulo 8. Therefore we will now split
these vectors into appropriate arithmetic progressions modulo 8. In doing so we may
also remove any even ordered characters such as (−1)fr(d,k) and any Jacobi symbol
involving a power of 2 from the sum over k and l.

Fix some b,m ∈ N4 and σ ∈ {0, 1}4 satisfying (2.5.2) and (2.5.7), some d, d̃ ∈ N4

such that dij d̃ij = (mij)odd and some q ∈ A(m,σ). Then for any K,L ∈ (Z/8Z)∗4

define

Θr,1(d,K,σ) = (−1)fr(d,K)
(

2σ0+σ1+σ2+σ3

d02d03d12d13

)(
2σ2+σ3

K0K1

)(
2σ0+σ1

K2K3

)(
2v2(m02m03m12m13)

K0K1K2K3

)
,

(2.5.18)

Θ2(d, d̃,k, l) =
(

l0l1l2l3
d02d03d12d13

)(
d̃02d̃03d̃12d̃13

k0k1k2k3

)(
l0l1
k2k3

)(
l2l3
k0k1

)
, (2.5.19)

Nr,b,m,d,d̃,σ,q(K,L, B) =
∑∑∑∑

k,l∈N4

(k,l)≡(K,L) mod 8
(2.5.14), (2.5.15), (2.5.16)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

Θ2(d, d̃,k, l),

(2.5.20)

Then we may split Nr,b,m,d,d̃,σ,q(B) into arithmetic progressions modulo 8. Doing so
will allow certain conditions to be separated from our main sums since they only depend
on such conditions.

Lemma 2.5.6. For a fixed choice of b, m and σ satisfying (2.5.2) and (2.5.7) we
have:

Nr,b,m,d,d̃,σ,q(B) =
∑∑∑∑
K,L∈(Z/8Z)∗4

(2.5.17)

Θr,1(d,K,σ)Nr,b,m,d,d̃,σ,q(K,L, B).

Proof. Using the multiplicity of Jacobi symbols we may write

(−1)fr(d,K)Θ(d, d̃,k, l,σ) = Θr,1(d,k,σ)Θ2(d, d̃,k, l).

Then by splitting the inner sum of Nr,b,m,σ(B) into arithmetic progressions modulo 8
we obtain.

Nr,b,m,d,d̃,σ,q(B) =
∑∑

K,L∈(Z/8Z)∗4

∑∑
k,l∈N4

(k,l)≡(K,L) mod 8
(2.5.14), (2.5.15)
(2.5.16),(2.5.17)

µ2(2k0l0k1l1k2l2k3l3)Θr,1(d,k,σ)Θ2(d, d̃,k, l)
τ (k0l0k1l1k2l2k3l3)

.

Now notice that, by (2.5.7), Θr,1 will either be (−1)f1(d,k) or (−1)f1(d,k) multiplied by
a Jacobi symbol of the form

(
2
·

)
. For a fixed d, both are determined completely by

the the reduction modulo 8 of the k and l. Thus it is enough to assert that these
congruence classes satisfy (2.5.17) and bring out Θr,1 from the inner sum by replacing
k and l with K and L in them respectively.
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2.5.3 Isolating main terms and error terms

In this section we describe our strategy for the remainder of the proof of Theorem
1.2.1. We aim to use the character sum methods developed in §5.2 and §5.3 to handle
the sums Nr,b,m,d,d̃,σ,q(K,L, B). To do so we must first ensure that the size of any
characters are of order (logB)C for some C > 0. To ensure this, we split the sum over
k and l into smaller regions and manipulate the expression into a form considered in
§5.1, §5.2 or §5.3. Let z1 = (logB)150A for A > 0 as given before (see the definition of
z0 before 2.5.6). The regions we will use are the following:

H1 = {(k, l) ∈ N8 : ‖k0, k1‖ ⩽ z1, ‖k2, k3‖ ⩽ z1, ‖l0, l1‖ ⩽ z1, ‖l2, l3‖ ⩽ z1}, (2.5.21)

H2 = {(k, l) ∈ N8 : ‖k0, k1‖ ⩽ z1, ‖k2, k3‖ ⩽ z1, ‖l0, l1‖ > z1, ‖l2, l3‖ > z1}, (2.5.22)
H3 = {(k, l) ∈ N8 : ‖k0, k1‖ > z1, ‖k2, k3‖ > z1, ‖l0, l1‖ ⩽ z1, ‖l2, l3‖ ⩽ z1}, (2.5.23)

H4 = {(k, l) ∈ N8 : ‖k2, k3‖ ⩽ z1, ‖l2, l3‖ ⩽ z1}, (2.5.24)
H5 = {(k, l) ∈ N8 : ‖k0, k1‖ ⩽ z1, ‖l0, l1‖ ⩽ z1}, (2.5.25)

H6 =
{

(k, l) ∈ N8 : (‖k0, k1‖ > z1 & ‖l2, l3‖ > z1) or
(‖k2, k3‖ > z1 & ‖l0, l1‖ > z1)

}
. (2.5.26)

These regions cover N8 and the only intersections are between H1, H4 and H5 whose
pairwise intersections are just H1. The following describes the contributions from the
sum over each of these regions.

• H1 will trivially contribute an error term.

• H2 and H3 will have an oscillating part which will be shown to contribute an
error term of order O

(
B2

(log B)(log log B)A

)
for any A > 0 by use of Selberg–Delange

methods and the neutraliser large sieve. There will also be a non-oscillating part
which will contribute the main term of Theorem 1.2.1.

• H4 and H5 both contribute an error term of order O
(

B2√
log log B

log B

)
by the methods

of Selberg–Delange and a result on averages of the L-functions L(1, χ) as χ ranges
over non-principle quadratic characters. It is for the contribution from these
regions that the non-square conditions of Theorem 1.2.1 play a crucial role as
they force certain characters modulo 8 to be non-trivial. If this were not the
case the sums over these regions would have a non-oscillating part which would
contribute a term of order B2 as in the work of Browning–Lyczak–Sarapin, [8].

• H6 will contribute an error term of size O
(

B2

(log B)A

)
for any A > 0. The tools are

large sieve inequalitites of Friedlander–Iwaniec, Lemma 2.2.4, and the bound for
sums of Jacobi symbol over hyperbolic regions, Lemma 2.2.5.

We now express each contribution separately and bring in the other variables to
express the overall main terms and error terms as sums which are malleable to the
methods of §5.1, §5.2 and §5.3. Suppressing the dependence on b,σ, and q, we define

Hr,i(d, d̃,K,L, B) =
∑∑
(k,l)∈Hi

(k,l)≡(K,L) mod 8
(2.5.14), (2.5.15), (2.5.16)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

Θ2(d, d̃,k, l). (2.5.27)
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Then, it is clear that

Nr,b,m,d,d̃,σ,q(K,L, B) =
6∑

i=1
Hr,i(d, d̃,K,L, B) − 2Hr,1(d, d̃,K,L). (2.5.28)

for each r = 1, 2. The main term will be obtained from the sums i = 2, 3 in the
cases where either d̃ or d is (1, 1, 1, 1) respectively. Bringing in the other variables, our
overall main terms may therefore be expressed as

Mr,2(B,b) =
∑

m∈N4
mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑
L∈(Z/8Z)∗4

(2.5.29)

Hr,2(1,modd,1,L, B)
τ ((m02m03m12m13)odd)

and

Mr,3(B,b) =
∑

m∈N4
mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑
K∈(Z/8Z)∗4

(2.5.29)

Θr,1(modd,K,σ)Hr,3(modd,1,K,1, B)
τ ((m02m03m12m13)odd)

where modd = ((m02)odd, (m03)odd, (m12)odd, (m13)odd), 1 = (1, 1, 1, 1) andL0L2(m03m12)odd ≡ −δrq0 mod 8, L1L3(m03m12)odd ≡ q1 mod 8,
L1L2(m02m13)odd ≡ δrq2 mod 8, L0L3(m02m13)odd ≡ −q3 mod 8.

(2.5.29)

The even characters from Θr,1 are absent in the sums Mr,2(B,b) as this corresponds
to the terms where d = 1 and K ≡ 1 mod 8, in which case this function is trivially
always 1. Notice that due to the height conditions H2 and H3 the non-square condition
(2.5.16) implicitly holds and may therefore be ignored. This is not the case in H4 and
H5. In these regions, we use (2.5.16) to force Θr,1 to be a non-principal Dirichlet
character modulo 8. By re-ordering the sums over H4 and H5, oscillation of this non-
principal even character will result in an error term. We will call the contribution of
the sums where this method is necessary “vanishing main terms”. These are given by

Vr,4(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.30)

Θr,1(1,K,σ)Hr,4(1,1,K,L, B)

and

Vr,5(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.31)

Θr,1(1,K,σ)Hr,5(1,1,K,L, B)

where 
K0L0 ≡ −δrq0 mod 8, K1L1 ≡ q1 mod 8,
K1L1 ≡ δrq2 mod 8, K0L0 ≡ −q3 mod 8,
K2, L2, K3, L3 ≡ 1 mod 8,

(2.5.30)

and 
K2L2 ≡ −δrq0 mod 8, K3L3 ≡ q1 mod 8,
K2L2 ≡ δrq2 mod 8, K3L3 ≡ −q3 mod 8,
K0, L0, K1, L1 ≡ 1 mod 8.

(2.5.31)
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The remaining terms contribute to the error term. For convenience, we split
these errors into similar sections. Define ∑ ♭

m,σ,q,K,L as the sum over the conditions
m ∈ N4,mij ⩽ z0, (2.5.2); σ ∈ {0, 1}4, (2.5.7); q ∈ A(m,σ); K,L ∈ (Z/8Z)∗4, (2.5.17).
Define also,

Tr,i(d, d̃) = Θr,1(d,K,σ)Hr,i(d, d̃,K,L, B)
τ((m02m03m12m13)odd)

. (2.5.32)

Then the remaining error terms are

Er,1(B,b) =
∑

♭

m,σ,q
K,L

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

Tr,1(d, d̃), Er,2(B,b) =
∑

♭

m,σ,q
K,L

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd
K≡1 mod 8⇒d6=1

Tr,2(d, d̃),

(2.5.33)
Er,3(B,b) =

∑
♭

m,σ,q
K,L

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd
L≡1 mod 8⇒d̃6=1

Tr,3(d, d̃), Er,4(B,b) =
∑

♭

m,σ,q
K,L

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd
d=d̃=1⇒ at least one of
K2,L2,K3,L3 6≡1 mod 8

Tr,4(d, d̃),

(2.5.34)
Er,5(B,b) =

∑
♭

m,σ,q
K,L

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd
d=d̃=1⇒ at least one of
K0,L0,K1,L1 6≡1 mod 8

Tr,5(d, d̃), Er,6(B,b) =
∑

♭

m,σ,q
K,L

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

Tr,6(d, d̃)

(2.5.35)

We summarise this section by bringing these contributions together and expressing
each Nr(B) in a concise manner. Define

Nr,i(B) =
∑

b∈N4
bi⩽z0
(2.5.1)

(Mr,i(B,b) + Er,i(B,b)) (2.5.36)

for i = 2, 3,
Nr,i(B) =

∑
b∈N4
bi⩽z0
(2.5.1)

(Vr,i(B,b) + Er,i(B,b)) (2.5.37)

for i = 4, 5 and
Nr,i(B) =

∑
b∈N4
bi⩽z0
(2.5.1)

Er,i(B,b) (2.5.38)

for i = 1, 6. The following therefore follows from summing (2.5.28) over the remaining
variables:

Proposition 2.5.7. For B ⩾ 3,

Nr(B) =
6∑

i=1
Nr,i(B) − 2Nr,1(B) +O

(
B2(logB)

z0

)
.

Moving forward we will suppress some notation by writing:

M0 = 2σ0m02m03b
2
0, M1 = 2σ1m12m13b

2
1, M2 = 2σ2m02m12b

2
2, M3 = 2σ3m03m13b

2
3.
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2.6 Large Conductor Error Terms

In this section we bound the Er,6(B,b) using Lemma 2.2.5. We begin by bounding the
Hr,6(d, d̃,K,L, B):

Lemma 2.6.1. Fix some b,m ∈ N4 and σ ∈ {0, 1}4 satisfying µ2(m02m03m12m13) =
1, (2.5.2) and (2.5.7), some d, d̃ ∈ N4 such that dij d̃ij = (mij)odd. Fix also some
K,L ∈ (Z/8Z)∗4 satisfying (2.5.17). Then for r = 1, 2 we have

Hr,6(d, d̃,K,L, B) � B2(logB)6

M0M1M2M3z
1/2
1
.

Proof. First we recall the height conditions for these expressions. The first is that
given in (2.5.26) and the second is the hyperbolic height condition (2.5.15). To handle
(2.5.15) we will write

1(‖k0l0M0, k1l1M1‖ · ‖k2l2M2, k3l3M3‖ ⩽ B) =
∏

(u,v)∈{0,1}×{2,3}
1(kuluMukvlvMv ⩽ B).

(2.6.1)

Starting from height conditions from (2.5.26), we will partition the space even
further. First suppose that ‖k0, k1‖ > z1 and ‖l2, l3‖ > z1. Then we have 4 cases:

R1: (k1 > z1, and l3 > z1);

R2: (k0 > z1, k1 ⩽ z1 and l3 > z1);

R3: (k1 > z1 and l2 > z1, l3 ⩽ z1);

R4: (k0 > z1, k1 ⩽ z1 and l2 > z1, l3 ⩽ z1).

We also have regions where ‖k0, k1‖ ⩽ z1 or ‖l2, l3‖ ⩽ z1 but ‖k2, k3‖ > z1 and
‖l0, l1‖ > z1. This gives 4 more regions:

R5: (‖k0, k1‖ ⩽ z1 or ‖l2, l3‖ ⩽ z1) and (k3 > z1 and l1 > z1);

R6: (‖k0, k1‖ ⩽ z1 or ‖l2, l3‖ ⩽ z1) and (k2 > z1, k3 ⩽ z1 and l1 > z1);

R7: (‖k0, k1‖ ⩽ z1 or ‖l2, l3‖ ⩽ z1) and (k3 > z1 and l0 > z1, l1 ⩽ z1);

R8: (‖k0, k1‖ ⩽ z1 or ‖l2, l3‖ ⩽ z1) and (k2 > z1, k3 ⩽ z1 and l0 > z1, l1 ⩽ z1).
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Then we define

Sh(B) =
∑∑∑∑

(k,l)∈R1a

(k,l)≡(K,L) mod 8
(2.5.14), (2.5.16)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

Θ2(d, d̃,k, l)

for 1 ⩽ h ⩽ 8. As our final notational manipulation of the section, we use the multi-
plicativity of the Jacobi symbol to write Θ2(d, d̃,k, l) as

Θ2(d, d̃,k, l) =
( 3∏

i=0
θ1(d, li)θ2(d̃, ki)

)(
l0
k2

)(
l0
k3

)(
l1
k2

)(
l1
k3

)(
l2
k0

)(
l2
k1

)(
l3
k0

)(
l3
k1

)
,

where
θ1(d, li) =

(
li

d02d03d12d13

)
and θ2(d̃, ki) =

(
d̃02d̃03d̃12d̃13

ki

)
.

Then, using (2.6.1), µ2(2k0l0k1l1k2l2k3l3) = 1 and the multiplicativity of τ we may
arrange the order of summation of each Sh(B) for 1 ⩽ h ⩽ 8 and apply the triangle
inequality to find that all of these satisfy an upper bound of the form

Sh(B) �
∑∑∑∑

kuluMu⩽B
kvlvMv⩽B

kulukvlvMuMv⩽B

1
τ(kulu)τ(kvlv)

∑∑
li⩽B
kj⩽B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑∑

z1<ki⩽B/(likjMiMj)
z1<lj⩽B/(likjMiMj)
kilj⩽B/(likjMiMj)

(2.5.14),(2.5.16)

aki
blj

(
lj
ki

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the indices i, j, u, v ∈ {0, 1, 2, 3} are all distinct and depend uniquely on 1 ⩽
h ⩽ 8 and where |aki

|, |blj | ⩽ 1 are complex sequences depending independently on
kj and lj respectively. These sequences contain the gcd conditions from the µ2 factor,
the congruence conditions on the variables ki and lj, 1

τ
factors, superfluous characters

containing ki or lj and superfluous height conditions (in the form of an indicator func-
tion).
The innermost sums here are exactly of the form considered in Lemma 2.2.5. We
therefore use this lemma to obtain:

Sh(B) �
∑∑∑∑

kuluMu⩽B
kvlvMv⩽B

kulukvlvMuMv⩽B

1
τ(kulu)τ(kvlv)

∑∑
li,kj⩽B

B(logB)3

likjMiMjz
1/2
1

�
∑∑∑∑

kuluMu⩽B
kvlvMv⩽B

kulukvlvMuMv⩽B

1
τ(kulu)τ(kvlv)

B(logB)5

MiMjz
1/2
1

� B(logB)5

MiMjz
1/2
1

∑∑
nm⩽B/(MuMv)

1 � B2(logB)6

M0M1M2M3z
1/2
1

for each 1 ⩽ h ⩽ 8.

Proposition 2.6.2. Let B ⩾ 3. Then for r = 1, 2,

Nr,6(B) � B2(logB)6

z
1/2
1

.
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Proof. Using the previous lemma we have

Er,6(B,b) =
∑

m∈N4
mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.17)

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

Θr,1(d,K,σ)Hr,6(d, d̃,K,L, B)
τ ((m02m03m12m13)odd)

�
∑

m∈N4
mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.17)

B2(logB)6

m2
02m

2
03m

2
12m

2
13b

2
0b

2
1b

2
2b

2
3z

1/2
1
.

Summing this over b gives

Nr,6(B) �
∑

b∈N4
bi⩽z0

∑
m∈N4

mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.17)

B2(logB)6

m2
02m

2
03m

2
12m

2
13b

2
0b

2
1b

2
2b

2
3z

1/2
1
.

The result follows since there are only finitely many σ,q,K and L to consider and the
sums over m and b converge.

2.7 Small Conductor Error Term

In this section we will bound the error terms Er,j(B,b) for 1 ⩽ j ⩽ 5 using the bounds
from sections 5.2 and 5.3.

2.7.1 The Error Terms Er,1(B,b)

Here it is enough to use a trivial bound, since the variables in this region are all bounded
by a power of logB. We obtain:

Proposition 2.7.1. Let B ⩾ 3. Then for r = 1, 2 we have

Nr,1(B) � (logB)1208A.

Proof. Recall Er,1(B,b) from (2.5.33). Now, by summing trivially over the height
conditions in the region H1, we have

|Tr,1(d, d̃)| = Hr,1(d, d̃,K,L, B)
τ((m02m03m12m13)odd)

� z8
1 = (logB)1200A

τ((m02m03m12m13)odd)
.

Then,

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

|Tr,1(d, d̃)| � τ((m02m03m12m13)odd)(logB)1200A

τ((m02m03m12m13)odd)
= (logB)1200A,
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where we have implicitly used (2.5.2) to simplify the product of the τ(mij). Since
there are only finitely many K,L,q and σ to consider and the sum over m is trivially
bounded by z4

0 = (logB)4A we obtain

Nr,1(B) �
∑

b∈N4
bi⩽z0

∑
♭

m,σ,q
K,L

(logB)1200A �
∑

b∈N4
bi⩽z0

(logB)1204A � (logB)1208A.

2.7.2 The Error Terms Er,2(B,b) and Er,3(B,b)

These error terms are bounded using the fact that, given the conditions on the variables
m,K,L,d and d̃, the sums Hr,2(d, d̃,K,L, B) and Hr,3(d, d̃,K,L, B) are of type (b)
or (c) from §5.2. We first remark that Er,2(B,b) and Er,3(B,b) are symmetrically
equivalent, the latter being of the same form as the former with the variables d̃,K and
k switching roles with the variables d,L and l. For this reason we will restrict our
focus to Er,2(B,b). Our first aim is to examine the sums Hr,2(d, d̃,K,L, B).

Lemma 2.7.2. Fix some b ∈ N4, some m ∈ N4 satisfying (2.5.2), some σ ∈ {0, 1}4

satisfying (2.5.7) and some q ∈ A(m,σ). Suppose that K,L ∈ (Z/8Z)∗4 and d, d̃ ∈ N4

satisfy the conditions
K,L satisfy (2.5.17),

dij d̃ij = (mij)odd ∀ ij ∈ {02, 03, 12, 13},

K ≡ 1 mod 8 ⇒ d 6= 1.

(2.7.1)

Then

Hr,2(d, d̃,K,L, B) �A
B2MAX 1(B)
M0M1M2M3

where MAX 1(B) is defined as

max

 1(d = 1) τ(m02m03m12m13)2τ(b0)τ(b1)τ(b2)τ(b3)
(log B)(log log B)66A ,

d2
02d2

03d2
12d2

13
(log B)132A , (log B)(log log B)4

(log B)A/3

 .

Proof. Recall (2.5.19),(2.5.22) and (2.5.27). We order Hr,2(d, d̃,K,L, B) to sum over
l first and write

Θ2(d, d̃,k, l) = χd̃(k)χ̃d,k2k3(l0l1)χ̃d,k0k1(l2l3)

where

χd̃(k) =
(
d̃02d̃03d̃12d̃13

k0k1k2k3

)
and χ̃d,Q(n) =

(
n

d02d03d12d13Q

)
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for any Q,n ∈ N. Then,

Hr,2(d, d̃,K,L, B) =
∑∑∑∑

‖k0,k1‖,‖k2,k3‖⩽z1
k≡K mod 8

(2.7.2)

µ2(k0k1k2k3)χd̃(k)
τ(k0k1k2k3)

Hr,2(d, d̃,K,L,k, B)

where

Hr,2(d, d̃,K,L,k, B) =
∑∑∑∑
‖l0,l1‖,‖l2,l3‖>z1

l≡L mod 8
(2.5.15),(2.7.3)

µ2(l0l1l2l3)
τ(l0)τ(l1)τ(l2)τ(l3)

χ̃d,k2k3(l0l1)χ̃d,k0k1(l2l3),

gcd(k0, 2σ1m02m03m12m13b1) = gcd(k1, 2σ0m02m03m12m13b0) = 1,

gcd(k2, 2σ3m02m03m12m13b3) = gcd(k3, 2σ2m02m03m12m13b2) = 1,
(2.7.2)

andgcd(l0, 2σ1m02m03m12m13k0k1b1) = gcd(l1, 2σ0m02m03m12m13k0k1b0) = 1,

gcd(l2, 2σ3m02m03m12m13k2k3b3) = gcd(l3, 2σ2m02m03m12m13k2k3b2) = 1.
(2.7.3)

Notice that these sums are now very similar to those considered in Propositions 2.2.7
and 2.2.8, except for the µ2(l0l1l2l3) term in the inner sum. To deal with this, we
apply Lemma 2.2.2 to the inner sums with: w0 = w1 = z0 = (logB)A, ci = kiMi for
0 ⩽ i ⩽ 3, and gi encoding the characters, the 1

τ
factors and the gcd conditions (2.7.3).

Then have that Hr,2(d, d̃,K,L,k, B) is equal to

∑
s⩽z0

µ(s)
∑∑∑∑
‖l′0,l′1‖,‖l′2,l′3‖⩽z0

p|l′0l′1l′2l′3⇒p|s
s2|l′0l′1l′2l′3,(2.7.4)

χ̃d,k2k3(l′0l′1)χ̃d,k0k1(l′2l′3)
τ(l′0)τ(l′1)τ(l′2)τ(l′3)

H ′
r,2(d, d̃,K,L,k, l′, B)

+O

(
B2(logB)

k0k1k2k3M0M1M2M3M4z
1/3
0

)

where

H ′
r,2(d,d̃,K,L,k,l′,B) =

∑∑∑∑
‖l′0l′′0 ,l′1l′′1 ‖,‖l′2l′′2 ,l′3l′′3 ‖>z1
l′′i ≡Li/l′i mod 8 ∀ 0⩽i⩽3

(2.7.5),(2.7.6)

1
τ(l′′0)τ(l′′1)τ(l′′2)τ(l′′3)

χ̃d,k2k3(l′′0 l′′1)χ̃d,k0k1(l′′2 l′′3),

gcd(l′0, 2σ1m02m03m12m13k0k1b1) = gcd(l′1, 2σ0m02m03m12m13k0k1b0) = 1,

gcd(l′2, 2σ3m02m03m12m13k2k3b3) = gcd(l′3, 2σ2m02m03m12m13k2k3b2) = 1,
(2.7.4)

gcd(l′′0 , 2σ1m02m03m12m13k0k1sb1) = gcd(l′′1 , 2σ0m02m03m12m13k0k1sb0) = 1,

gcd(l′′2 , 2σ3m02m03m12m13k2k3sb3) = gcd(l′′3 , 2σ2m02m03m12m13k2k3sb2) = 1,
(2.7.5)
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and

‖2σ0k0l
′
0l

′′
0m02m03b

2
0, 2σ1k1l

′
1l

′′
1m12m13b

2
1‖ · ‖2σ2k2l

′
2l

′′
2m02m12b

2
2, 2σ3k3l

′
3l

′′
3m03m13b

2
3‖ ⩽ B.

(2.7.6)
Next, we swap the summation order of ki and l′i. By also summing the previous error
term over ki, we obtain:

Hr,2(d, d̃,K,L, B) =
∑
r⩽z0

µ(r)
∑∑∑∑
‖l′0,l′1‖,‖l′2,l′3‖⩽z0

p|l′0l′1l′2l′3⇒p|r
r2|l′0l′1l′2l′3,(2.7.7)

χd(l′)
τ(l′0)τ(l′1)τ(l′2)τ(l′3)

H ′
r,2(d, d̃,K,L, l′, B)

+OA

(
B2(logB)(log logB)4

M0M1M2M3z
1/3
0

)

where H ′
r,2(d, d̃,K,L, l′, B) is defined to be

∑∑∑∑
‖k0,k1‖,‖k2,k3‖⩽z1

k≡K mod 8
(2.7.8)

µ2(k0k1k2k3)χ̃d̃,l′0l′1
(k2k3)χd̃,l′3l′2

(k0k1)
τ(k0k1k2k3)

Hr,2(d, d̃,K,L,k, l′, B),

gcd(l′0, 2σ1m02m03m12m13b1) = gcd(l′1, 2σ0m02m03m12m13b0) = 1,

gcd(l′2, 2σ3m02m03m12m13b3) = gcd(l′3, 2σ2m02m03m12m13b2) = 1,
(2.7.7)

gcd(k0, 2σ1m02m03m12m13l
′
0l

′
1b1) = gcd(k1, 2σ0m02m03m12m13l

′
0l

′
1b0) = 1,

gcd(k2, 2σ3m02m03m12m13l
′
2l

′
3b3) = gcd(k3, 2σ2m02m03m12m13l

′
2l

′
3b2) = 1,

(2.7.8)

and for any Q,n ∈ Nodd, d, l ∈ (N \ {0})4 we have set

χ̃d(l) =
(

l0l1l2l3
d02d03d12d13

)
and χd,Q(n) =

(
d02d03d12d13Q

n

)
.

Now we claim that the sums H ′
r,2(d, d̃,K,L, l′, B) are either of the form considered in

Proposition 2.2.7 or of the form considered in Proposition 2.2.8. To do so we compare
notation as follows:

• the ni in §5.2 correspond to the l′′i ;

• the mi in §5.2 correspond to the ki;

• the di in §5.2 correspond to l′i;

• the ci in §5.2 correspond to the product l′iMi;

• the Qi in §5.2 correspond to products of l′i and dij, though we note specifically
that the product corresponding toQ0 andQ2 in Proposition 2.2.7 are independent
of the l′i, and that Q1 in Proposition 2.2.8 is equal to 1 in all applications of this
proposition (it is the product of all the dij). All characters in this application
are Jacobi symbols of the corresponding modulus;
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• the ri in §5.2 are m02m03m12m13sbj

d02d03d12d13
, with j = 1, 0, 3, 2 for i = 0, 1, 2, 3 respectively.

Using this dictionary we find that conditions 2.5.2, 2.7.1 and 2.7.8 ensure that at least
one of the characters χd,k0k1 or χd,k2k3 is non-trivial, ensuring that at least one of these
results can be used. For the cases in which we use Proposition 2.2.8, which are the
cases when

d02d03d12d13 = 1, ‖k0, k1‖ = 1, ‖k2, k3‖ > 1

and

d02d03d12d13 = 1, ‖k0, k1‖ > 1, ‖k2, k3‖ = 1,

we note also that the constants ci, here given by l′iMi, are all � (logB)5A, the
constants di are l′0, l

′
1, l

′
2, l

′
3 ⩽ (logB)A and the lower bound in the inner most sum

Hr,2(d, d̃,K,L,k, l′, B) is (logB)150A, meaning that the constants satisfy the desired
bounds. Applying these propositions then give:

H ′
r,2(d, d̃,K,L, l′, B) �A

1(d = 1)τ(m0m1m2m3)2τ(s)2τ(b0)τ(b1)τ(b2)τ(b3)B2

l′0l
′
1l

′
2l

′
3M0M1M2M3(logB)(log logB)132A

+ d2
02d

2
03d

2
12d

2
13B

2

l′0l
′
1l

′
2l

′
3M0M1M2M3(logX)66A

.

Therefore we may deduce

Hr,2(d, d̃,K,L, B) �A
RB2MAX 1(B)
M0M1M2M3

where

R =
∑
s⩽z0

∑∑∑∑
‖l′0,l′1‖,‖l′2,l′3‖⩽z0

p|l′0l′1l′2l′3⇒p|s
s2|l′0l′1l′2l′3

τ(s)2

l′0l
′
1l

′
2l

′
3τ(l′0)τ(l′1)τ(l′2)τ(l′3)

. (2.7.9)

To conclude the proof we show that R � 1. We have τ(l′0)τ(l′1)τ(l′2)τ(l′3) ⩾ τ(l′0l′1l′2l′3).
Then, by writing u = l′0l

′
1l

′
2l

′
3, we have

R �
∑
s⩽z0

∑
u⩽z4

0
p|u⇒p|s

s2|u

τ(s)2τ4(u)
uτ(u)

�
∑
s⩽z0

∑
u⩽z4

0
p|u⇒p|s

s2|u

τ(s)2

u3/4

where in the last step above we have used the bound τ4(u) ⩽ (τ(u))4 � τ(u)u1/4. Now
using Lemma 5.7 from [29] with ϵ = 1/4 we have,

∑
u⩽z4

0
p|u⇒p|s

s2|u

1
u3/4 � 1

s5/4 ,

thus R � ∑
s⩽z0

τ(s)2

s5/4 � 1.
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Proposition 2.7.3. Fix some b ∈ N4. Then

Er,2(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2

b2
0b

2
1b

2
2b

2
3(logB)(log logB)66A

.

Proof. Recall Er,2(B,b) from (2.5.33). Now we apply the Lemma 2.7.2 and use trivial
bounds for the finite sums over σ,q,K and L. This will give:

Er,2(B,b) �A B2 ∑
m∈N4

mij⩽z0
(2.5.2)

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

MAX 1(B)
m2

02m
2
03m

2
12m

2
13b

2
0b

2
1b

2
2b

2
3

since M0M1M2M3 = 2σ0+σ1+σ2+σ3m2
02m

2
03m

2
12m

2
13b

2
0b

2
1b

2
2b

2
3. When d = 1 then,∑

m∈N4
mij⩽z0
(2.5.2)

MAX 1(B) �
∑

m∈N4
mij⩽z0
(2.5.2)

τ(m0m1m2m3)τ(b0)τ(b1)τ(b2)τ(b3)
m2

02m
2
03m

2
12m

2
13b

2
0b

2
1b

2
2b

2
3(logB)(log logB)66A

� τ(b0)τ(b1)τ(b2)τ(b3)
b2

0b
2
1b

2
2b

2
3(logB)(log logB)66A

.

Otherwise,∑
m∈N4

mij⩽z0
(2.5.2)

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

MAX 1(B) �
∑

m∈N4
mij⩽z0
(2.5.2)

1
b2

0b
2
1b

2
2b

2
3(logX)132A

+
∑

m∈N4
mij⩽z0
(2.5.2)

(logB)(log logB)4

m2
02m

2
03m

2
12m

2
13b

2
0b

2
1b

2
2b

2
3(logX)A/3

� 1
b2

0b
2
1b

2
2b

2
3(logB)A/3−2 .

As alluded to above, we may use the same argument with the variables d,K and k
switching roles with the variables d̃,L and l to obtain,

Proposition 2.7.4. Fix some b ∈ N4. Then

Er,3(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2

b2
0b

2
1b

2
2b

2
3(logB)(log logB)66A

.

2.7.3 The Error Terms Er,4(B,b) and Er,5(B,b)

For these error terms we note that the conditions on the variables m,K,L,d and d̃
guarantee that the sums Hr,4(d, d̃,K,L, B) and Hr,5(d, d̃,K,L, B) are of types (b)
and (c) from §5.3. Similar to the symmetry of Er,2(B,b) and Er,3(B,b) in the last
section, Er,4(B,b) and Er,5(B,b) are symmetrically equivalent, the latter being of the
same form of the former with the variables k2, l2, k3, l3, K2, L2, K3, L3 switching roles
with k0, l0, k1, l1, K0, L0, K1, L1. We will therefore focus on Er,4(B,b). We first examine
Hr,4(d, d̃,K,L, B).
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Lemma 2.7.5. Fix some b ∈ N4, some m ∈ N4 satisfying (2.5.2), some σ ∈ {0, 1}4

satisfying (2.5.7) and some q ∈ A(m,σ). Suppose that K,L ∈ (Z/8Z)∗4 and d, d̃ ∈ N4

satisfying the conditions
K,L satisfy (2.5.17),

dij d̃ij = (mij)odd ∀ ij ∈ {02, 03, 12, 13},

d = d̃ = 1 ⇒ one of K2, L2, K3, L3 6≡ 1 mod 8.

(2.7.10)

Then

Hr,4(d, d̃,K,L, B) �A
B2MAX 2(B)

M0M1M2M3(logB)

where we define MAX 2(B) as

max

 1(d = d̃ = 1)τ(b0)τ(b1)τ(b2)τ(b3)
√

log logB,
(log B)3(log log B)4

(log B)A/3 ,
d2

02d2
03d2

12d2
13(log B)

(log B)140A

 .

Proof. Recall (2.5.19),(2.5.24) and (2.5.27). We order Hr,4(d, d̃,K,L, B) to sum over
k0, l0, k1 and l1 first and therefore write

Θ2(d, d̃,k, l) = χd̃(k2k3)χ̃d(l2l3)χd̃,l2l3
(k0k1)χ̃d,k2k3(l0l1),

where
χd̃(k2k3) =

(
d̃02d̃03d̃12d̃13

k2k3

)
, χ̃d(l2l3) =

(
l2l3

d02d03d12d13

)
,

and

χd̃,l2l3
(k0k1) =

(
d̃02d̃03d̃12d̃13l2l3

k0k1

)
, χ̃d,k2k3(l0l1) =

(
l0l1

d02d03d12d13k2k3

)
.

Then

Hr,4(d, d̃,K,L, B) =
∑∑∑∑

‖k2,k3‖,‖l2,l3‖⩽z1
ki≡Ki mod 8 ∀ i∈{2,3}
li≡Li mod 8 ∀ i∈{2,3}

(2.7.11)

µ2(k2l2k3l3)χd̃(k2k3)χ̃d(l2l3)
τ(k2l2k3l3)

Hr,4(d,d̃,K,L,kl23,B)

where kl23 = (k2, l2, k3, l3),

Hr,4(d, d̃,K,L,kl23, B) =
∑∑∑∑

k0,l0,k1,l1∈N
ki≡Ki mod 8 ∀ i∈{0,1}
li≡Li mod 8 ∀ i∈{0,1}

(2.5.15),(2.7.12)

µ2(k0l0k1l1)
τ(k0)τ(l0)τ(k1)τ(l1)

χd̃,l2l3
(k0k1)χ̃d,k2k3(l0l1),

gcd(k2l2, 2σ3m02m03m12m13b3) = gcd(k3l3, 2σ2m02m03m12m13b2) = 1, (2.7.11)

and gcd(k0, 2σ1m02m03m12m13k2k3b1) = gcd(k1, 2σ0m02m03m12m13k2k3b0) = 1,

gcd(l0, 2σ1m02m03m12m13l2l3b1) = gcd(l1, 2σ0m02m03m12m13l2l3b0) = 1.
(2.7.12)
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Next we aim to remove the µ2 term in these inner sums. For this we use Lemma
2.2.3 with w0 = w1 = z0, c01 = M1, c02 = M2 and M = ‖k2l2M2, k3l3M3‖. Then
Hr,4(d, d̃,K,L,kl23, B) is equal to

∑
s⩽z0

µ(s)
∑∑∑∑

k′
0,l′0,k′

1,l′1⩽z0
p|k′

0l′0k′
1l′1⇒p|s

s2|k′
0l′0k′

1l′1, (2.7.14)

χd̃,l2l3
(k′

0k
′
1)χ̃d,k2k3(l′0l′1)

τ(k′
0)τ(l′0)τ(k′

1)τ(l′1)
Hr,4(d, d̃,K,L,kl23,kl′

01, B)

+O

(
B2(logB)2

k2l2k3l3M0M1M2M3z
1/3
0

)

where kl′
01 = (k′

0, l
′
0, k

′
1, l

′
1) and

Hr,4(d, d̃,K,L,kl23,kl′
01, B) =

∑∑∑∑
k′′

0 ,l′′0 ,k′′
1 ,l′′1 ∈N

ki≡Ki mod 8 ∀ i∈{0,1}
li≡Li mod 8 ∀ i∈{0,1}

(2.7.13),(2.7.15)

χd̃,l2l3
(k′′

0k
′′
1)χ̃d,k2k3(l′′0 l′′1)

τ(k′′
0)τ(l′′0)τ(k′′

1)τ(l′′1)
,

‖2σ0k′
0k

′′
0 l

′
0l

′′
0m02m03b

2
0, 2σ1k′

1k
′′
1 l

′
1l

′′
1m12m13b

2
1‖·‖2σ2k2l2m02m12b

2
2, 2σ3k3l3m03m13b

2
3‖ ⩽ B,

(2.7.13)

gcd(k′
0, 2σ1m02m03m12m13k2k3b1) = gcd(k′

1, 2σ0m02m03m12m13k2k3b0) = 1,

gcd(l′0, 2σ1m02m03m12m13l2l3b1) = gcd(l′1, 2σ0m02m03m12m13l2l3b0) = 1,
(2.7.14)

andgcd(k′′
0 , 2σ1m02m03m12m13k2k3sb1) = gcd(k′′

1 , 2σ0m02m03m12m13k2k3sb0) = 1,

gcd(l′′0 , 2σ1m02m03m12m13l2l3sb1) = gcd(l′′1 , 2σ0m02m03m12m13l2l3sb0) = 1.
(2.7.15)

Now we swap the summation of k′
0, l

′
0, k

′
1, l

′
1 with k2, l2, k3, l3. This will yield,

Hr,4(d, d̃,K,L, B) =
∑
s⩽z0

µ(s)
∑∑∑∑

k′
0,l′0,k′

1,l′1⩽z0
p|k′

0l′0k′
1l′1⇒p|s

s2|k′
0l′0k′

1l′1, (2.7.16)

χ̃d(l′0l′1)χd̃(k′
0k

′
1)

τ(k′
0)τ(l′0)τ(k′

1)τ(l′1)
Hr,4(d,d̃,K,L,kl′

01,B)

+O

(
B2(logB)2(log logB)4

M0M1M2M3z
1/3
0

)

where Hr,4(d, d̃,K,L,kl′
01, B) is equal to

∑∑∑∑
‖k2,k3‖,‖l2,l3‖⩽z1

ki≡Ki mod 8 ∀ i∈{2,3}
li≡Li mod 8 ∀ i∈{2,3}

(2.7.17)

µ2(k2l2k3l3)χd̃,l′0l′1
(k2k3)χd,k′

0k′
1
(l2l3)

τ(k2l2k3l3)
Hr,4(d, d̃,K,L,kl23,kl′

01, B),

gcd(k′
0, 2σ1m02m03m12m13b1) = gcd(k′

1, 2σ0m02m03m12m13b0) = 1,

gcd(l′0, 2σ1m02m03m12m13b1) = gcd(l′1, 2σ0m02m03m12m13b0) = 1,
(2.7.16)
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and

gcd(k2l2, 2σ3m02m03m12m13sb3) = gcd(k3l3, 2σ2m02m03m12m13sb2) = 1. (2.7.17)

Now note that the condition (2.7.10) guarantees that Hr,4(d, d̃,K,L,kl′
01, B) is of

the form considered in either Proposition 2.2.10 or Proposition 2.2.11 as it guarantees
that either χd̃,l2l3

or χd,k2k3 is non-principal. The notational dictionary is as follows:

• the ni in §5.3 correspond to k′′
0 , l

′′
0 , k

′′
1 , l

′′
1 ;

• the mi in §5.3 correspond to k2, l2, k3, l3;

• the quadruple (c0, c1, c2, c3) in Proposition 2.2.10 and the quadruple (c01, c23, c̃0, c̃1)
in Proposition 2.2.11 both correspond to the quadruple (k′

0l
′
0M0, k

′
1l

′
1M1,M2,M3);

• the Q02 and Q13 in Proposition 2.2.10 correspond to d02d03d12d13 and d̃02d̃03d̃12d̃13

respectively;

• the ri in §5.3 correspond tom02m03m12m13sbj divided by d02d03d12d13 or d̃02d̃03d̃12d̃13

depending on whether ni corresponds to a k′′-variable or a l′′-variable and where
j = 0 or 1 depending on whether the ni corresponds to a ′′ variable indexed by 1
or 0 respectively;

• the r̃i in Proposition 2.2.11 are just m02m03m12m13sbj for some j.

Finally we note that the characters χd̃,l′0l′1
(k2k3) and χd,k′

0k′
1
(l2l3) in the sum over

k2, l2, k3, l3 are of no import in these applications as we first use the triangle inequality
to obtain the absolute value of the inner sums. Noting that we only need to apply
Proposition 2.2.11 when d = d̃ = 1 we thus have that Hr,4(d, d̃,K,L,kl′

01, B) is,

�A
1(d = d̃ = 1)τ(b0)τ(b1)τ(b2)τ(b3)τ(s)2B2√log logB

k′
0l

′
0k

′
1l

′
1M0M1M2M3(logB)

+ d2
02d

2
03d

2
12d

2
13B

2

k′
0l

′
0k

′
1l

′
1M0M1M2M3(logB)140A

.

Now, the sum over k′
0, l

′
0, k

′
1, l

′
1 is given by

∑
s⩽z0

∑∑∑∑
k′

0,l′0,k′
1,l′1⩽z0

p|k′
0l′0k′

1l′1⇒p|s
s2|k′

0l′0k′
1l′1,(2.7.16)

τ(s)2

τ(k′
0)τ(l′0)τ(k′

1)τ(l′1)k′
0l

′
0k

′
1l

′
1

�
∑
s⩽z0

∑
u⩽z4

0
p|u⇒p|s

s2|u

τ(s)2

u3/4 � 1.

The details of this bound are the same as those bounding (2.7.9) in the previous
subsection. Substituting these bounds into Hr,4(d, d̃,K,L, B) concludes the result.
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Proposition 2.7.6. Fix some b ∈ N4. Then

Er,4(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

.

Proof. Recall Er,4(B,b) from (2.5.34). Then, upon applying the Lemma 2.7.5 we are
left with

Er,4(B,b) �A
B2

(logB)
∑

m∈N4
mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.17)

∑∑
d,d̃∈N4

dij d̃ij=(mij)odd

MAX 2(B)
M0M1M2M3

.

Now, since 1(d = d̃ = 1) = 1 if and only if modd = 1, and since (2.5.2) guarantees that
µ2(m02m03m12m13) = 1, the only possibilities for m are (1, 1, 1, 1), (2, 1, 1, 1), (1, 2, 1, 1),
(1, 1, 2, 1) or (1, 1, 1, 2) when this condition holds. Thus there are only finitely many
m to consider and since there are only finitely many q,K,L and σ we have,

∑
m∈N4

mij⩽z0
(2.5.2),modd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.17)

MAX 2(B)
M0M1M2M3

� τ(b0)τ(b1)τ(b2)τ(b3)
√

log logB
b2

0b
2
1b

2
2b

2
3

.

Otherwise, we remark that there are only finitely many q,K,L and σ and that the
sum over 1

m2
ij

converges so that the expression becomes bounded by

� (logB)3(log logB)4

b2
0b

2
1b

2
2b

2
3(logB)A/3 + (logB)4A

b2
0b

2
1b

2
2b

2
3(logB)140A

Noting that by choosing A to be sufficiently large and that each bi ⩽ (logB)A, we
obtain the result.

It follows by the same argument with the variables k2, l2, k3, l3, K2, L2, K3, L3 switch-
ing roles with k0, l0, k1, l1, K0, L0, K1, L1 that:

Proposition 2.7.7. Fix some b ∈ N4. Then

Er,5(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

.

2.8 Vanishing Main Terms

In this section we handle the vanishing main terms Vr,4(B,b) and Vr,5(B,b). As in the
arguments of the previous section these are similar, almost obtained from each other by
switching the roles of k2, l2, k3, l3, K2, L2, K3, L3 with k0, l0, k1, l1, K0, L0, K1, L1. The
key obstruction to this is condition (2.5.16), which creates an asymmetry in this “role”
switching of variables when r = 1. For this reason, and the fact that the even characters
found in Θr,1 will play a key role in the following arguments and this function changes
with the value of r, we must separate the cases r = 1 and r = 2.
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2.8.1 The Vanishing Main Term V1,4(B,b)

We begin with an examination of the inner sums H1,4(1,1,K,L, B). Recall that

H1,4(1,1,K,L, B) =
∑∑∑∑

(k,l)∈H4
(k,l)≡(K,L) mod 8

(2.5.14), (2.5.15), (2.5.16)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

(
l0l1
k2k3

)(
l2l3
k0k1

)
.

We separate out the terms for which k2 = l2 = k3 = l3 = 1:

H1,4(1,1,K,L, B) = V1,4(K,L, B) + EV1,4(K,L, B)

where
V1,4(K,L, B) =

∑∑∑∑
k0,l0,k1,l1∈N4

(ki,li)≡(Ki,Li) mod 8 ∀ i∈{0,1}
(2.5.14), (2.5.16), (2.8.1)

µ2(2k0l0k1l1)
τ (k0l0k1l1)

,

EV1,4(K,L, B) =
∑∑∑∑

(k,l)∈H4
(k,l)≡(K,L) mod 8

k2l2k3l3 6=1
(2.5.14), (2.5.15), (2.5.16)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

(
l0l1
k2k3

)(
l2l3
k0k1

)
,

and

‖2σ0k0l0m02m03b
2
0, 2σ1k1l1m12m13b

2
1‖ · ‖2σ2m02m12b

2
2, 2σ3m03m13b

2
3‖ ⩽ B. (2.8.1)

Now EV1,4(K,L, B) may be treated like Hr,4(d, d̃,K,L, B) in §2.7.3, by noting that,
after breaking the µ2 function, the condition k2l2k3l3 6= 1 guarantees that Propositions
2.2.10 and 2.2.11 may be used. Summing over the m,σ,q,K and L as in Proposition
2.7.6 we are thus left with:

V1,4(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.30)

Θ1,1(1,K,σ)V1,4(K,L, B)

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

)
.

Now we wish to re-integrate the even characters into the sum over k0, l0, k1, l1. By
doing this we obtain that V1,4(B,b) is equal to

∑
m∈N4,(2.5.2)

(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

V ′
1,4(B) +OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

)

(2.8.2)
where

V ′
1,4(B) =

∑∑∑∑
k0,l0,k1,l1∈N4

(2.5.16), (2.8.1), (2.8.3), (2.8.4)

µ2(2k0l0k1l1)
τ (k0l0k1l1)

(−1)
(k0k1−1)

2

(
2σ2+σ3+v2(m02m03m12m13)

k0k1

)
,

gcd(k0l0, 2σ1m02m03m12m13b1) = gcd(k1l1, 2σ0m02m03m12m13b0) = 1,
gcd(k0l0k1l1, 2) = 1,

(2.8.3)
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and

k0l0 ≡ −q0 mod 8, k1l1 ≡ q1 mod 8, k1l1 ≡ q2 mod 8, k0l0 ≡ −q3 mod 8. (2.8.4)

Notice that since (−1)
(k0k1−1)

2 =
(

−1
k0k1

)
we may write

(−1)
(k0k1−1)

2

(
2σ2+σ3+v2(m02m03m12m13)

k0k1

)
=
(

−2σ2+σ3+v2(m02m03m12m13)

k0k1

)
.

Let us now consider (2.8.4). We first note that these conditions require that any
q ∈ A(m,σ) must satisfy

q0 ≡ q3 mod 8 and q1 ≡ q2 mod 8. (2.8.5)

We now make use of the identity

1(a ≡ q mod 8) = 1
4

∑
χ′ char.
mod 8

χ′(a)χ′(q) (2.8.6)

to break to congruence conditions in (2.8.4) using (2.8.5). Putting this into V ′
1,4(B)

gives:

V ′
1,4(B) = 1

16
∑∑

χ,χ′ char. mod 8
χ(−q0)χ′(q1)V ′

1,4(χ, χ′, B) �
∑∑

χ,χ′ char. mod 8

∣∣∣V ′
1,4(χ, χ′, B)

∣∣∣ .
where V ′

1,4(χ, χ′, B) is defined as

∑∑∑∑
k0,l0,k1,l1∈N4

(2.5.16), (2.8.1), (2.8.3)

µ2(2k0l0k1l1)χ(k0l0)χ′(k1l1)
τ (k0l0k1l1)

(
−2σ2+σ3+v2(m02m03m12m13)

k0k1

)
.

The next lemma tells us that, in all of the cases we consider, we are always summing
over a non-principal character.

Lemma 2.8.1. Fix m and σ satisfying the conditions (2.5.2), (m02m03m12m13)odd = 1
and (2.5.7). Then for any character χ modulo 8 at least one of the characters(

−2σ2+σ3+v2(m02m03m12m13)

·

)
χ(·) and χ(·)

is not principal.

Proof. For any choice of m and σ satisfying the conditions, the quadratic character(
−2σ2+σ3+v2(m02m03m12m13)

·

)
is a non-principal character modulo 8, since it is either equal to(

−1
·

)
or

(
−2
·

)
. It follows that,

(
−2σ2+σ3+v2(m02m03m12m13)

·

)
χ(·) is the principal character

modulo 8 if and only if χ(·) =
(

−2σ2+σ3+v2(m02m03m12m13)

·

)
in which case χ is not the

principal character.

Therefore we should expect to see some cancellation in V ′
1,4(χ, χ′, B) resulting from

the oscillation in these non-principal characters.
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Lemma 2.8.2. Fix some b ∈ N4 and fix m ∈ N4 and σ ∈ {0, 1}4 satisfying the
conditions (2.5.2), (m02m03m12m13)odd = 1 and (2.5.7). Then

V ′
1,4(B) � τ(m0m1m2m3)4τ(b0)τ(b1)τ(b2)τ(b3)B2

M0M1M2M3(logB)
.

Proof. We first consider V ′
1,4(χ, χ′, B) for χ, χ′ some characters modulo 8. The first

thing we wish to do is remove the square-free condition. To do this we use Lemma
2.2.3 (with w0 = w1 = z0), as well as noting that the characters of even modulus take
care of the coprimality to 2. Then V ′

1,4(χ, χ′, B) satisfies the bound

�
∑
s⩽z0

∑∑∑∑
k′

0,l′0,k′
1,l′1⩽z0

p|k′
0l′0k′

1l′1⇒p|s
s2|k′

0l′0k′
1l′1,(2.8.7)

∣∣∣V ′
1,4(χ, χ′,kl′

01, B)
∣∣∣

τ(k′
0)τ(l′0)τ(k′

1)τ(l′1)
+O

(
B2

M0M1M2M3(logB)A/3

)

where,

V ′
1,4(χ, χ′,kl′

01, B) =
∑∑∑∑
k′′

0 ,l′′0 ,k′′
1 ,l′′1 ∈N4

(2.5.16), (2.8.8), (2.8.9)

χ(k′′
0 l

′′
0)χ′(k′′

1 l
′′
1)

τ(k′′
0)τ(l′′0)τ(k′′

1)τ(l′′1)

(
−2σ2+σ3+v2(m02m03m12m13)

k′′
0k

′′
1

)
,

gcd(k′
0l

′
0, 2σ1m02m03m12m13b1) = gcd(k′

1l
′
1, 2σ0m02m03m12m13b0) = 1,

gcd(k′
0l

′
0k

′
1l

′
1, 2) = 1,

(2.8.7)

gcd(k′′
0 l

′′
0 , 2σ1m02m03m12m13sb1) = gcd(k′′

1 l
′′
1 , 2σ0m02m03m12m13sb0) = 1,

gcd(k′′
0 l

′′
0k

′′
1 l

′′
1 , 2) = 1,

(2.8.8)

and

‖2σ0k′
0k

′′
0 l

′
0l

′′
0m02m03b

2
0, 2σ1k′

1k
′′
1 l

′
1l

′′
1m12m13b

2
1‖ · ‖2σ2m02m12b

2
2, 2σ3m03m13b

2
3‖ ⩽ B.

(2.8.9)
Now we use Lemma 2.8.1 on both χ and χ′ to note that these sums satisfy the conditions
of Lemma 2.2.9:

• the ni in Lemma 2.2.9 correspond to k′′
0 , l

′′
0 , k

′′
1 , l

′′
1 ;

• χ0 in Lemma 2.2.9 is thus χ(·)
(

−2σ2+σ3+v2(m02m03m12m13)

·

)
; χ1 in Lemma 2.2.9 is

χ(·); χ2 in Lemma 2.2.9 is χ′(·)
(

−2σ2+σ3+v2(m02m03m12m13)

·

)
and χ3 in Lemma 2.2.9

is χ′(·);

• the remaining notation is assigned similarly to the applications of Propositions
2.2.7, 2.2.8, 2.2.10 and 2.2.11.
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Upon using Lemma 2.2.9 we obtain

V ′
1,4(χ, χ′,kl′

01, B) � τ(s)4τ(m0m1m2m3)4τ(b0)τ(b1)τ(b2)τ(b3)B2

k′
0l

′
0k

′
1l

′
1M0M1M2M3(logB)

.

Similar to how we dealt with (2.7.9), it can be shown that

∑
s⩽z0

∑∑∑∑
k′

0,l′0,k′
1,k′

1⩽z0
p|k′

0l′0k′
1l′1⇒p|s

s2|k′
0l′0k′

1l′1,(2.8.7)

τ(s)4

k′
0l

′
0k

′
1l

′
1τ(k′

0)τ(l′0)τ(k′
1)τ(l′1)

� 1.

Thus

V ′
1,4(χ, χ′, B) � τ(m0m1m2m3)4τ(b0)τ(b1)τ(b2)τ(b3)B2

M0M1M2M3(logB)
+ B2

M0M1M2M3(logB)A/3 .

Now, by summing over the finitely many characters modulo 8:

V ′
1,4(B) �

∑∑
χ,χ′ char. mod 8

∣∣∣V ′
1,4(χ, χ′, B)

∣∣∣ � τ(m0m1m2m3)4τ(b0)τ(b1)τ(b2)τ(b3)B2

M0M1M2M3(logB)

as required.

Proposition 2.8.3. Fix some b ∈ N4. Then

V1,4(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

.

Proof. Recall from (2.8.2) that V1,4(B,b) is equal to

∑
m∈N4,(2.5.2)

(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

V ′
1,4(B) +OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

)
.

Using Lemma 2.8.2 we therefore have:

V1,4(B,b) �
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

τ(m0m1m2m3)4τ(b0)τ(b1)τ(b2)τ(b3)B2

M0M1M2M3(logB)

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

)
.

For the front term we note that in each case there are only finitely many q ∈ A(m,σ)
and σ ∈ {0, 1}4. Also, given the conditions (2.5.2) and (m02m03m12m13)odd = 1, we
must have (m02,m03,m12,m13) ∈ {(1, 1, 1, 1),(2, 1, 1, 1),(1, 2, 1, 1),(1, 1, 2, 1),(1, 1, 1, 2)}.
Thus there are only finitely many choices here as well. Thus after summing the first
expression, the second error term will clearly dominate, giving the result.
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2.8.2 The Vanishing Main Term V1,5(B,b)

The argument in this subsection will differ to the previous one in that the condi-
tion (2.5.16) will play a key role. We begin once again by examining the inner
sums H1,5(1,1,K,L, B), i.e (2.5.27) with d = d̃ = 1. We split off the terms where
k0 = l0 = k1 = l1 = 1, however in this case we must preserve the condition (2.5.16).
Thus we write:

H1,5(1,1,K,L, B) = 1(2σ0+σ1m02m03m12m13 6= 1)V1,5(K,L, B) + EV1,5(K,L, B)

where
V1,5(K,L, B) =

∑∑∑∑
k2,l2,k3,l3∈N4

(ki,li)≡(Ki,Li) mod 8 ∀ i∈{2,3}
(2.5.14), (2.8.10)

µ2(2k2l2k3l3)
τ (k2l2k3l3)

,

EV1,5(K,L, B) =
∑∑∑∑

(k,l)∈H5
(k,l)≡(K,L) mod 8

k0l0k1l1 6=1
(2.5.14), (2.5.15)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

(
l0l1
k2k3

)(
l2l3
k0k1

)
,

and

‖2σ0m02m03b
2
0, 2σ1m12m13b

2
1‖ · ‖2σ2k2l2m02m12b

2
2, 2σ3k3l3m03m13b

2
3‖ ⩽ B. (2.8.10)

Similar to the previous section, we may handle the EV1,5(K,L, B) in the same way as
we handled H1,5(d, d̃,K,L, B) in §2.7.3 this time by noting that, after breaking the
µ2 function, the condition k0l0k1l1 6= 1 guarantees that the conditions of Propositions
2.2.10 or 2.2.11 are satisfied. Summing this error term over the m,σ,q,K and L we
are thus left with:

V1,5(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.8.13)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.31)

Θ1,1(1,K,σ)V1,5(K,L, B)

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

)
.

Now we wish to re-integrate the even characters into the sum over k2, l2, k3, l3. By
doing this we obtain:

V1,5(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.8.13)

∑
q∈A(m,σ)

V ′
1,5(B) +OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2

b2
0b

2
1b

2
2b

2
3(logB)(log logB)−1/2

)

(2.8.11)
where

V ′
1,5(B) =

∑∑∑∑
k2,l2,k3,l3∈N4

(2.5.16), (2.8.10), (2.8.12), (2.8.14)

µ2(2k2l2k3l3)
τ (k2l2k3l3)

(
2σ0+σ1+v2(m02m03m12m13)

k2k3

)
,

gcd(k2l2, 2σ1m02m03m12m13b3) = gcd(k3l3, 2σ0m02m03m12m13b2) = 1,
gcd(k2l2k3l3, 2) = 1,

(2.8.12)
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
σ0 + σ1 + σ2 + σ3 ⩽ 1, gcd(2σ0+σ1+σ2+σ3 ,m02m03m12m13) = 1
gcd(2σ0 , b1) = gcd(2σ1 , b0) = gcd(2σ2 , b3) = gcd(2σ3 , b2) = 1,
2σ0+σ1m02m03m12m13 6= 1,

(2.8.13)

and

k2l2 ≡ −q0 mod 8, k3l3 ≡ q1 mod 8, k3l3 ≡ q2 mod 8, k2l2 ≡ −q3 mod 8. (2.8.14)

Remark 2.8.4. An important comparison to the previous case is the absence of a
factor coming from (−1)f1(d,k). This is because, when d02d03d12d13k0k1 = 1, as is
the case here, f1(d,k) = 0 regardless of the choices of k2 and k3. In the previous
subsection we relied on this factor to guarantee the non-principality of the characters
modulo 8, see Lemma 2.8.1; in this subsection we will instead rely on the condition
2σ0+σ1m02m03m12m13 6= 1 from (2.8.13) to play this role, see Lemma 2.8.5 below.

Given the condition (2.8.14), any q ∈ A(m,σ) we consider must satisfy

q0 ≡ q3 mod 8 and q1 ≡ q2 mod 8. (2.8.15)

Once again we make use of the identity (2.8.6), this time to break to congruence
conditions (2.8.14) using (2.8.15). Putting this into V ′

1,5(B) gives:

V ′
1,5(B) = 1

16
∑∑

χ,χ′ char. mod 8
χ(−q0)χ′(q1)V ′

1,5(χ, χ′, B) �
∑∑

χ,χ′ char. mod 8

∣∣∣V ′
1,5(χ, χ′, B)

∣∣∣ .
where

V ′
1,5(χ, χ′, B) =

∑∑∑∑
k2,l2,k3,l3∈N4

(2.5.16), (2.8.10), (2.8.12)

µ2(2k2l2k3l3)χ(k2l2)χ′(k3l3)
τ (k2l2k3l3)

(
2σ0+σ1+v2(m02m03m12m13)

k2k3

)
.

The next lemma is analogous to Lemma 2.8.1.

Lemma 2.8.5. Fix m and σ satisfying the conditions (2.5.2), (m02m03m12m13)odd = 1
and (2.8.13). Then for any character χ modulo 8 at least one of the characters(

2σ0+σ1+v2(m02m03m12m13)

·

)
χ(·) and χ(·)

is not principal.

Proof. For any m and σ satisfying (2.8.13) we have
(

2σ0+σ1+v2(m02m03m12m13)

·

)
=
(

2
·

)
. It

follows that, in order for
(

2σ0+σ1+v2(m02m03m12m13)

·

)
χ(·) to be non-principal, we must have

χ(·) =
(

2
·

)
, in which case χ is non-principal.

From here we may now follow directly the argument of the previous subsection, ap-
plying Proposition 2.2.9 to the V ′

1,5(χ, χ′, B) and summing over the remaining variables
to obtain the following:

Proposition 2.8.6. Fix some b ∈ N4. Then

V1,5(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

.
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2.8.3 The Vanishing Main Term V2,4(B,b)

Following the same procedure as in the previous subsections, we may write

V2,4(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.30)

Θ2,1(1,K,σ)V2,4(K,L, B)

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

)

Returning the even characters into the sum over k0, l0, k1, l1 we obtain:

V2,4(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.8.18)

∑
q∈A(m,σ)

V ′
2,4(B) +OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2

b2
0b

2
1b

2
2b

2
3(logB)(log logB)−1/2

)

(2.8.16)
where

V ′
2,4(B) =

∑∑∑∑
k0,l0,k1,l1∈N4

(2.5.16), (2.8.17), (2.8.19), (2.8.20)

µ2(2k0l0k1l1)
τ (k0l0k1l1)

(
2σ2+σ3+v2(m02m03m12m13)

k0k1

)
,

‖2σ0k0l0m02m03b
2
0, 2σ1k1l1m12m13b

2
1‖ · ‖2σ2m02m12b

2
2, 2σ3m03m13b

2
3‖ ⩽ B, (2.8.17)

σ0 + σ1 + σ2 + σ3 ⩽ 1, gcd(2σ0+σ1+σ2+σ3 ,m02m03m12m13) = 1
gcd(2σ0 , b1) = gcd(2σ1 , b0) = gcd(2σ2 , b3) = gcd(2σ3 , b2) = 1,
2σ2+σ3m02m03m12m13 6= 1,

(2.8.18)

gcd(k0l0, 2σ1m02m03m12m13b1) = gcd(k1l1, 2σ0m02m03m12m13b0) = 1,
gcd(k0l0k1l1, 2) = 1,

(2.8.19)

and

k0l0 ≡ −q0 mod 8, k1l1 ≡ q1 mod 8, k1l1 ≡ −q2 mod 8, k0l0 ≡ q3 mod 8. (2.8.20)

Again, we do not have any factor coming from (−1)f2(d,k). This is because

f2(d,k) = k0k1 − 1

when d02d03d12d13k2k3 = 1 as is the case here. Since k0k1 is always odd in our sums,
k0k1 − 1 is always even, and so this factor is just 1. Considering (2.8.20), we note that
any q ∈ A(m,σ) we consider must satisfy

q0 ≡ −q3 mod 8 and q1 ≡ −q2 mod 8. (2.8.21)

Using this and (2.8.6) to break to congruence conditions in (2.8.20) and putting this
into V ′

2,4(B) gives:

V ′
2,4(B) = 1

16
∑∑

χ,χ′ char. mod 8
χ(−q0)χ′(q1)V ′

2,4(χ, χ′, B) �
∑∑

χ,χ′ char. mod 8

∣∣∣V ′
2,4(χ, χ′, B)

∣∣∣ .
where

V ′
2,4(χ, χ′, B) =

∑∑∑∑
k0,l0,k1,l1∈N4

(2.5.16), (2.8.17), (2.8.19)

µ2(2k0l0k1l1)χ(k0l0)χ′(k1l1)
τ (k0l0k1l1)

(
2σ2+σ3+v2(m02m03m12m13)

k0k1

)
.
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Lemma 2.8.7. Fix m and σ satisfying the conditions (2.5.2), (m02m03m12m13)odd = 1
and (2.8.18). Then for any character χ modulo 8 at least one of the characters(

2σ2+σ3+v2(m02m03m12m13)

·

)
χ(·) and χ(·)

is not principal.

Proof. For any m and σ satisfying (2.8.18) we have
(

2σ2+σ3+v3(m02m03m12m13)

·

)
=
(

2
·

)
. It

follows that, in order for
(

2σ2+σ3+v2(m02m03m12m13)

·

)
χ(·) to be non-principal, we must have

χ(·) =
(

2
·

)
, in which case χ is non-principal.

Now we may repeat the argument of §2.8.1, applying Proposition 2.2.9 and summing
over the remaining variables to obtain:

Proposition 2.8.8. Fix some b ∈ N4. Then

V2,4(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

.

2.8.4 The Vanishing Main Term V2,5(B,b)

We are left only to bound V2,5(B,b). We follow the same procedure as in the previous
subsections to obtain

V2,5(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑∑
K,L∈(Z/8Z)∗4

(2.5.31)

Θ2,1(1,K,σ)V2,5(K,L, B)

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

)
.

Returning the even characters into the sum over k2, l2, k3, l3 we obtain:

V2,5(B,b) =
∑

m∈N4,(2.5.2)
(m02m03m12m13)odd=1

∑
σ∈{0,1}4

(2.8.24)

∑
q∈A(m,σ)

V ′
2,5(B) +OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2

b2
0b

2
1b

2
2b

2
3(logB)(log logB)−1/2

)

(2.8.22)
where

V ′
2,5(B) =

∑∑∑∑
k2,l2,k3,l3∈N4

(2.5.16), (2.8.23), (2.8.25), (2.8.26)

µ2(2k2l2k3l3)
τ (k2l2k3l3)

(−1)
k2k3−1

2

(
2σ0+σ1+v2(m02m03m12m13)

k2k3

)
,

‖2σ0m02m03b
2
0, 2σ1m12m13b

2
1‖ · ‖2σ2k2l2m02m12b

2
2, 2σ3k3l3m03m13b

2
3‖ ⩽ B, (2.8.23)

σ0 + σ1 + σ2 + σ3 ⩽ 1, gcd(2σ0+σ1+σ2+σ3 ,m02m03m12m13) = 1
gcd(2σ0 , b1) = gcd(2σ1 , b0) = gcd(2σ2 , b3) = gcd(2σ3 , b2) = 1,
2σ0+σ1m02m03m12m13 6= 1,

(2.8.24)
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gcd(k2l2, 2σ3m02m03m12m13b3) = gcd(k3l3, 2σ2m02m03m12m13b2) = 1,
gcd(k2l2k3l3, 2) = 1,

(2.8.25)

and

k2l2 ≡ −q0 mod 8, k3l3 ≡ q1 mod 8, k3l3 ≡ −q2 mod 8, k2l2 ≡ q3 mod 8. (2.8.26)

We note here that

(−1)
k2k3−1

2

(
2σ0+σ1+v2(m02m03m12m13)

k2k3

)
=
(

−2σ0+σ1+v2(m02m03m12m13)

k2k3

)
.

Considering (2.8.26), we again note that any q ∈ A(m,σ) we consider must satisfy

q0 ≡ −q3 mod 8 and q1 ≡ −q2 mod 8, (2.8.27)

and apply (2.8.6) to break to congruence conditions in (2.8.26) using (2.8.27). Putting
this into V ′

1,5(B) gives:

V ′
2,5(B) = 1

16
∑∑

χ,χ′ char. mod 8
χ(−q0)χ′(q1)V ′

2,5(χ, χ′, B) �
∑∑

χ,χ′ char. mod 8

∣∣∣V ′
2,5(χ, χ′, B)

∣∣∣ ,
where V ′

2,5(χ, χ′, B) is defined as

∑∑∑∑
k2,l2,k3,l3∈N4

(2.5.16), (2.8.23), (2.8.25)

µ2(2k2l2k3l3)χ(k2l2)χ′(k3l3)
τ (k2l2k3l3)

(
−2σ0+σ1+v2(m02m03m12m13)

k2k3

)
.

Lemma 2.8.9. Fix m and σ satisfying the conditions (2.5.2), (m02m03m12m13)odd = 1
and (2.8.24). Then for any character χ modulo 8 at least one of the characters(

−2σ0+σ1+v2(m02m03m12m13)

·

)
χ(·) and χ(·)

is not principal.

Proof. For any m and σ satisfying (2.8.24) we have
(

−2σ2+σ3+v3(m02m03m12m13)

·

)
=
(

−2
·

)
.

It follows that, in order for
(

−2σ2+σ3+v2(m02m03m12m13)

·

)
χ(·) to be non-principal, we must

have χ(·) =
(

−2
·

)
, in which case χ is non-principal.

Now we may repeat the argument of §2.8.1, applying Proposition 2.2.9 and summing
over the remaining variables to obtain the following.

Proposition 2.8.10. Fix some b ∈ N4. Then

V2,5(B,b) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3(logB)

.
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2.8.5 Bounding of Nr,4(B) and Nr,5(B)

We may now prove the following:

Proposition 2.8.11. Let B ⩾ 3. Then

Nr,4(B), Nr,5(B) �A
B2√log logB

(logB)
.

Proof. By Propositions 2.7.6,2.7.7,2.8.3,2.8.6,2.8.8 and 2.8.10 we have

Nr,i(B) �A

∑
b∈N4

τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB
b2

0b
2
1b

2
2b

2
3(logB)

�A
B2√log logB

(logB)

for r = 1, 2 and i = 4, 5.

2.9 Main Terms

In this section we will finally isolate the true main terms from Mr,i(B,b) where r ∈
{1, 2} and i ∈ {2, 3}. This is achieved by trimming the remaining contributions from
summing over oscillating characters in these regions. Recall that the inner sums of
Mr,2(B,b) and Mr,3(B,b) are of the form (2.5.27) within the regions (2.5.22) and
(2.5.23) and such that d, d̃ ∈ {1,modd} and are not equal. We split these inner sums
into two. In Hr,2(1,modd,1,L, B) we separate the parts where k0k1k2k3 = 1 and in
Hr,3(modd,1,K,1, B) we separate the parts where l0l1l2l3 = 1:

Hr,2(1,modd,1,L, B) = Mr,2(1,modd,1,L, B) + EMr,2(1,modd,1,L, B),

and

Hr,3(modd,1,K,1, B) = Mr,3(modd,1,K,1, B) + EMr,3(modd,1,K,1, B),

where
Mr,2(1,modd,1,L, B) =

∑∑∑∑
‖l0,l1‖,‖l2,l3‖>z1

l≡L mod 8
(2.9.5), (2.9.6)

µ2(2l0l1l2l3)
τ (l0l1l2l3)

, (2.9.1)

Mr,3(modd,1,K,1, B) =
∑∑∑∑

‖k0,k1‖,‖k2,k3‖>z1
k≡K mod 8

(2.9.7), (2.9.8)

µ2(2k0k1k2k3)
τ (k0k1k2k3)

, (2.9.2)

EMr,2(1,modd,1,L, B) =
∑∑∑∑

(k,l)∈H2
(k,l)≡(1,L) mod 8

k0k1k2k3 6=1
(2.5.14), (2.5.15)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

Θ2(1,modd,k, l),

(2.9.3)
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EMr,3(modd,1,K,1, B) =
∑∑∑∑

(k,l)∈H3
(k,l)≡(K,1) mod 8

l0l1l2l3 6=1
(2.5.14), (2.5.15)

µ2(2k0l0k1l1k2l2k3l3)
τ (k0l0k1l1k2l2k3l3)

Θ2(modd,1,k, l),

(2.9.4)gcd(l0, 2σ1m02m03m12m13b1) = gcd(l1, 2σ0m02m03m12m13b0) = 1,
gcd(l2, 2σ3m02m03m12m13b3) = gcd(l3, 2σ2m02m03m12m13b2) = 1,

(2.9.5)

‖2σ0l0m02m03b
2
0, 2σ1l1m12m13b

2
1‖ · ‖2σ2l2m02m12b

2
2, 2σ3l3m03m13b

2
3‖ ⩽ B, (2.9.6)

gcd(k0, 2σ1m02m03m12m13b1) = gcd(k1, 2σ0m02m03m12m13b0) = 1,
gcd(k2, 2σ3m02m03m12m13b3) = gcd(k3, 2σ2m02m03m12m13b2) = 1,

(2.9.7)

‖2σ0k0m02m03b
2
0, 2σ1k1m12m13b

2
1‖ · ‖2σ2k2m02m12b

2
2, 2σ3k3m03m13b

2
3‖ ⩽ B. (2.9.8)

Remark 2.9.1. Note that the we have dropped non-square condition (2.5.16). This is
because the lower bounds ‖l0, l1‖, ‖l2, l3‖ > z1 and ‖k0, k1‖, ‖k2, k3‖ > z1 from H2 and
H3 automatically ensure that it is satisfied.

2.9.1 The Error Terms EMr,2 and EMr,3

To deal with EMr,2(1,modd,1,L, B) we note that

Θ2(1,modd,k, l) =
(

(m02m03m12m13)odd

k0k1k2k3

)(
l0l1
k2k3

)(
l2l3
k0k1

)
.

From this we can see that the conditions k0k1k2k3 6= 1 and µ2(k0k1k2k3) = 1 dic-
tate that, by summing first over the li, we are summing over non-trivial characters.
Similarly, for the error term EMr,3(modd,1,K,1, B) we note that

Θ2(modd,1,k, l) =
(

l0l1l2l3
(m02m03m12m13)odd

)(
l0l1
k2k3

)(
l2l3
k0k1

)
,

and so the same observation holds here with the ki and li switched. Thus we may
repeat the arguments used in §2.7.2 to obtain the following:

Lemma 2.9.2. Fix some b ∈ N4, some m ∈ N4 satisfying (2.5.2), some σ ∈ {0, 1}4

satisfying (2.5.7) and some q ∈ A(m,σ). Then for L ∈ (Z/8Z)∗4 satisfying (2.5.29)
we have

EMr,2(1,modd,1,L, B) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2

M0M1M2M3(logB)(log logB)66A
.
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Similarly, for K ∈ (Z/8Z)∗4 satisfying (2.5.29) we have

EMr,3(modd,1,K,1, B) �A
τ(b0)τ(b1)τ(b2)τ(b3)B2

M0M1M2M3(logB)(log logB)66A
.

Then by summing over Hr,2(1,modd,1,L, B) and Hr,3(modd,1,K,1, B), using the
same methods used to prove Propositions 2.7.3 and 2.7.4 to sum over these error parts
above, we obtain:

Mr,2(B,b) =
∑

m∈N4
mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑
L∈(Z/8Z)∗4

(2.5.29)

Mr,2(1,modd,1,L, B)
τ ((m02m03m12m13)odd)

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2

b2
0b

2
1b

2
2b

2
3(logB)(log logB)66A

)
,

and

Mr,3(B,b) =
∑

m∈N4
mij⩽z0
(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

∑
q∈A(m,σ)

∑
K∈(Z/8Z)∗4

(2.5.29)

Θr,1(modd,K,σ)Mr,3(modd,1,K,1, B)
τ ((m02m03m12m13)odd)

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2

b2
0b

2
1b

2
2b

2
3(logB)(log logB)66A

)
.

2.9.2 The Inner Main Terms Mr,2 and Mr,3

In this subsection, we deal with the inner sums. Once this is done, we will only be left
to compute the constants. Define

S(b,m, v) = 4f 4
0

ϕ(8)4f 4
2

3∏
i=0


∏
p|v

p∤m02m12m03m13bi

p odd

f−1
p


3∏

i=0

 ∏
p|m02m12m03m13bi

p odd

f−1
p

 ,

and

C(b,m,σ) =
∑
v∈N

µ(v)
∑∑∑∑

a0,a1,a2,a3∈N
p|a0a1a2a3⇒p|v

v2|a0a1a2a3
(2.9.9)

S(b,m, v)
a0a1a2a3τ(a0)τ(a1)τ(a2)τ(a3)

where


gcd(a0, 2σ1m02m03m12m13b1) = gcd(a1, 2σ0m02m03m12m13b0) = 1,
gcd(a2, 2σ3m02m03m12m13b3) = gcd(a3, 2σ2m02m03m12m13b2) = 1,
gcd(a0a1a2a3, 2) = 1.

(2.9.9)
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Remark 2.9.3. We note here that S(b,m, v) is obtained by re-arranging S2(r) from
Proposition 2.2.6 with r = (r0, r1, r2, r3) being equal to

(m02m03m12m13)oddvb1,

(m02m03m12m13)oddvb0,

(m02m03m12m13)oddvb3,

(m02m03m12m13)oddvb2.

respectively, using the conditions (2.5.2), (2.5.7) and (2.9.9).

Lemma 2.9.4. Let B ⩾ 3. Fix b ∈ N4, fix m ∈ N4 and σ ∈ {0, 1}4 satisfying (2.5.2)
and (2.5.7). Then

Mr,i(1,modd,1,L, B) = C(b,m,σ)B2 log logB
M0M1M2M3 logB

+OA

(
τ(m02m03m12m13)4τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

M0M1M2M3 logB

)
for i = 2, 3.

Proof. By switching li with ki the proofs for i = 2 and i = 3 may be seen to be identical.
We therefore only deal with Mr,2(1,modd,1,L, B). Recall (2.9.1) and Remark 2.9.1. By
applying (2.2.2) with w0 = w1 = z0 as we have done previously Mr,2(1,modd,1,L, B)
becomes equal to∑

v⩽z0

µ(v)
∑∑∑∑

l′0,l′1,l′2,l′3⩽z0
p|l′0l′1l′2l′3⇒p|v

v2|l′0l′1l′2l′3,(2.9.9)

M ′
r,2(1,modd,1,L, l′, B)
τ(l′0)τ(l′1)τ(l′2)τ(l′3)

+O

(
B2(logB)

M0M1M2M3(logB)A/3

)

(2.9.10)

where

M ′
r,2(1,modd,1,L, l′, B) =

∑∑∑∑
‖l′0l′′0 ,l′1l′′1 ‖,‖l′2l′′2 ,l′3l′′3 ‖>z1

l′′i ≡Li/l′i mod 8
(2.9.11), (2.9.12)

1
τ(l′′0)τ(l′′1)τ(l′′2)τ(l′′3)

,

gcd(l′′0 , 2σ1m02m03m12m13vb1) = gcd(l′′1 , 2σ0m02m03m12m13vb0) = 1,

gcd(l′′2 , 2σ3m02m03m12m13vb3) = gcd(l′′3 , 2σ2m02m03m12m13vb2) = 1,
(2.9.11)

‖2σ0l′0l
′′
0m02m03b

2
0, 2σ1l′1l

′′
1m12m13b

2
1‖ · ‖2σ2l′2l

′′
2m02m12b

2
2, 2σ3l′3l

′′
3m03m13b

2
3‖ ⩽ B.

(2.9.12)
Now we apply Proposition 2.2.6 with the previous remark to these sums yielding that
M ′

r,2(1,modd,1,L, l′, B) is:

= S(b,m, v)B2 log logB
l′0l

′
1l

′
2l

′
3M0M1M2M3 logB

+OA

(
τ(m02m03m12m13)4τ(v)4τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

l′0l
′
1l

′
2l

′
3M0M1M2M3 logB

)
.
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Now substitute this into (2.9.10). Then we have found Mr,2(1,modd,1,L, B) to be

= B2 log logB
M0M1M2M3 logB

∑
v⩽z0

µ(v)
∑∑∑∑

l′0,l′1,l′2,l′3⩽z0
p|l′0l′1l′2l′3⇒p|v

v2|l′0l′1l′2l′3
(2.9.9)

S(b,m, v)
l′0l

′
1l

′
2l

′
3τ(l′0)τ(l′1)τ(l′2)τ(l′3)

+OA

(
τ(m02m03m12m13)4τ(b0)τ(b1)τ(b2)τ(b3)R′B2√log logB

M0M1M2M3 logB

)

To deal with the error term it is enough to show that

R′ =
∑
v⩽z0

∑∑∑∑
l′0,l′1,l′2,l′3⩽z0

p|l′0l′1l′2l′3⇒p|v
v2|l′0l′1l′2l′3,(2.9.9)

τ(v)4

l′0l
′
1l

′
2l

′
3τ(l′0)τ(l′1)τ(l′2)τ(l′3)

� 1,

which is done using an identical method used to deal with (2.7.9). Finally, we need to
show that∑

v⩽z0

µ(v)
∑∑∑∑

l′0,l′1,l′2,l′3⩽z0
p|l′0l′1l′2l′3⇒p|v

v2|l′0l′1l′2l′3,(2.9.9)

S(b,m, v)
l′0l

′
1l

′
2l

′
3τ(l′0)τ(l′1)τ(l′2)τ(l′3)

= C(b,m,σ) +O

(
1
z

1/3
0

)
.

This may be seen by noting that the following sums are O(z−1/3
0 ):∑

v>z0

∑∑∑∑
l′0,l′1,l′2,l′3∈N

p|l′0l′1l′2l′3⇒p|v
v2|l′0l′1l′2l′3,(2.9.9)

1
l′0l

′
1l

′
2l

′
3τ(l′0)τ(l′1)τ(l′2)τ(l′3)

,
∑
v⩽z0

∑∑∑∑
l′0,l′1,l′2,l′3∈N

p|l′0l′1l′2l′3⇒p|v
v2|l′0l′1l′2l′3

li>z0 for some i

1
l′0l

′
1l

′
2l

′
3τ(l′0)τ(l′1)τ(l′2)τ(l′3)

which may be shown by adhering to the bounding of the error terms (2.2.1) and (2.2.2)
of Lemma 2.2.2. The error term of the Mr,i resulting from the error term z

−1/3
0 above

will be absorbed into the error terms already present.

2.9.3 The Main Terms Mr,2(b, B) and Mr,3(b, B)

Define
Σr,2(m,σ) =

∑
q∈A(m,σ)

∑
L∈(Z/8Z)∗4

(2.5.29)

1,

Σr,3(m,σ) =
∑

q∈A(m,σ)

∑
K∈(Z/8Z)∗4

(2.5.29)

Θr,1(modd,K,σ),

and

Cr,i(b) =
∑

m∈N4

(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

C(b,m,σ)Σr,i(m,σ)
2σ0+σ1+σ2+σ3m2

02m
2
03m

2
12m

2
13τ((m02m03m12m13)odd)

for i = 2, 3.
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Proposition 2.9.5. Let B ⩾ 3 and fix some b ∈ N4. Then,

Mr,i(b, B) = Cr,i(b)B2 log logB
b2

0b
2
1b

2
2b

2
3 logB

+OA

(
τ(b0)τ(b1)τ(b2)τ(b3)B2√log logB

b2
0b

2
1b

2
2b

2
3 logB

)
,

for i = 2, 3.

Proof. The error terms above are obtained by summing the error terms of Lemma
2.9.4 over the finitely many L (or K) in (Z/8Z)∗4, finitely many q ∈ A(m,σ), finitely
many σ ∈ {0, 1}4 and finally summing the τ(mij)4

m2
ij

over m ∈ N4 which converges. For
the main term we note that C(b,m,σ) is independent of q and L (or K) and that
C(b,m,σ),Σr,i(m,σ) � 1 independently of b,m and σ so that we may extend the
sum over the mij to all of N4 at the cost of a sufficient error term. It is then clear that
we may re-arrange the sums in the remaining variables to obtain Cr,2(b) (or Cr,3(b)).
This concludes the result.

Finally, by setting
Cr,i =

∑
b∈N4

(2.5.1)

Cr,i(b)
b2

0b
2
1b

2
2b

2
3

for i = 2, 3 and summing the results of Propositions 2.7.3, 2.7.4 and 2.9.5 over bi ⩽ z0
and then extending to N4 at the cost of another error term, we obtain the following:

Proposition 2.9.6. For B ⩾ 3 we have

Nr,i(B) = Cr,iB
2 log logB
logB

+OA

(
B2√log logB

logB

)

when i = 2, 3.

2.10 The Constants

In this section we would like to express Cr,i in a more concise manner. First we will
compute the Σr,i(m,σ):

2.10.1 Computation of Σr,2

Recall that
Σr,2(m,σ) =

∑
q∈A(m,σ)

∑
L∈(Z/8Z)∗4

(2.5.29)

1.

We first deal with the inner sum. We break the conditions (2.5.29) using the orthogon-
ality relation (2.8.6). This time however, there is no easy relation between the qi and
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so we use this relation to replace all four of the congruence relations above. It follows
that

Σr,2(m,σ) =
∑

q∈A(m,σ)

∑
χ,χ′,χ′′,χ′′′

char. mod 8

χ(−δrq0(m03m12)−1
odd)χ′(q1(m03m12)−1

odd)

× χ′′(δrq2(m02m13)−1
odd)χ′′′(−q3(m02m13)−1

odd)Σr,2(m,σ,χ)

where, Σr,2(m,σ,χ) is given by

= 1
44

∑
L∈(Z/8Z)∗4

χ(L0L2)χ′(L1L3)χ′′(L1L2)χ′′′(L0L3),

= 1
44

∑
L∈(Z/8Z)∗4

χχ′′′(L0)χ′χ′′(L1)χχ′′(L2)χ′χ′′′(L3),

=

1
4

∑
L0∈(Z/8Z)∗

χχ′′′(L0)

1
4

∑
L1∈(Z/8Z)∗

χ′χ′′(L1)

1
4

∑
L2∈(Z/8Z)∗

χχ′′(L2)

1
4

∑
L3∈(Z/8Z)∗

χ′χ′′′(L3)

 ,
= 1(χχ′′′ = χ0)1(χ′χ′′ = χ0)1(χχ′′ = χ0)1(χ′χ′′′ = χ0),

and χ0 denotes the principal character modulo 8. Since the group of principal characters
modulo 8 is isomorphic to Z/2Z×Z/2Z, every element is equal to its own inverse. This
leads us to deduce that

1(χχ′′′ = χ0)1(χ′χ′′ = χ0)1(χχ′′ = χ0)1(χ′χ′′′ = χ0) = 1(χ = χ′ = χ′′ = χ′′′) (2.10.1)

Thus, Σr,2(m,σ,χ) = 1(χ = χ′ = χ′′ = χ′′′). Substituting this into the expression for
Σr,2(m,σ) we obtain

Σr,2(m,σ) =
∑

q∈A(m,σ)

∑
χ char. mod 8

χ(q0q1q2q3(−δr(m02m03m12m13)odd)−2)

=
∑

q∈A(m,σ)

∑
χ char. mod 8

χ(q0q1q2q3)

= 4
∑

q∈A(m,σ)
q0q1q2q3≡1 mod 8

1 = 4♯{q ∈ A(m,σ) : q0q1q2q3 ≡ 1 mod 8}.

Now, recalling the definition of A(m,σ), it follows that Σr,2(m,σ) is exactly equal to4♯{q ∈ A1 : q0q1q2q3 ≡ 1 mod 8} if 2 ∤ m02m03m12m13 & σi = 0 ∀ i ∈ {0, 1, 2, 3},
4♯{q ∈ A2 : q0q1q2q3 ≡ 1 mod 8} otherwise.

This is because A(m,σ) is equal to A1 in the first case and is easily seen to be bijective
to A2 by applying a single permutation to the components of each of its elements other-
wise, an operation which does not effect the condition q0q1q2q3 ≡ 1 mod 8. This extra
condition significantly simplifies the counting process. This is done in the following
lemma:

Lemma 2.10.1. We have the following

Σr,2(m,σ) =

192 if 2 ∤ m02m03m12m13 & σi = 0 ∀ i ∈ {0, 1, 2, 3},

128 otherwise.
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Proof. First assume that 2 ∤ m02m03m12m13 & σi = 0 ∀ i ∈ {0, 1, 2, 3}. Then we want
compute ♯{q ∈ A1 : q0q1q2q3 ≡ 1 mod 8}. Substituting in the definition of A1 this is
then equal to ♯{q ∈ (Z/8Z)∗4 : q satisfies (2.10.2)} where

(A.1.1) : q0 + q2 ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.2) : q0 + q3 ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.3) : q1 + q2 ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.4) : q1 + q3 ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.5) : q0 + q2 ≡ 4 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.6) : q0 + q3 ≡ 4 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.7) : q1 + q2 ≡ 4 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.8) : q1 + q3 ≡ 4 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.9) : q0 + q1 ≡ 0 mod 8 and q2 + q3 ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.10) : q0 + q1 ≡ 2 mod 8 and q2 + q3 ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.11) : q0 + q1 ≡ 2 mod 8 and q2 + q3 ≡ 6 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.12) : q0 + q1 ≡ 0 mod 8 and q2 + q3 ≡ 6 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.13) : q0 + q1 ≡ 6 mod 8 and q2 + q3 ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.14) : q0 + q1 ≡ 6 mod 8 and q2 + q3 ≡ 2 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.1.15) : q0 + q1 ≡ 0 mod 8 and q2 + q3 ≡ 2 mod 8 and q0q1q2q3 ≡ 1 mod 8.
(2.10.2)

Some elementary congruence computations then give

(A.1.1), (A.1.4) : solutions are exactly those vectors (a, b,−a,−b) for any a, b ∈ (Z/8Z)∗;

(A.1.2), (A.1.3) : solutions are exactly those vectors (a, b,−b,−a) for any a, b ∈ (Z/8Z)∗;

(A.1.5), (A.1.8) : solutions are exactly those vectors(3a, b, a, 3b) for any a, b ∈ (Z/8Z)∗;

(A.1.6), (A.1.7) : solutions are exactly those vectors(3a, b, 3b, a) for any a, b ∈ (Z/8Z)∗;

(A.1.9) : solutions are exactly those vectors (a,−a, b,−b) for any a, b ∈ (Z/8Z)∗;

(A.1.11), (A.1.14) : solutions are exactly those vectors(a, 2 + 7a, 7a, 6 + a),

(a, 6 + 7a, 7a, 2 + a) respectively for any a, b ∈ (Z/8Z)∗;

(A.1.10), (A.1.12), (A.1.13), (A.1.15)have no solutions in (Z/8Z)∗4.

(2.10.3)

From here it is easy to check directly that there are exactly 48 distinct points in
(Z/8Z)∗4 of at least one of the forms given above (see Tables A.1-A.6 in the ap-
pendix). Multiplying this by 4 gives the first case of the result. For the second
case, if 2|m02m03m12m13 or σi = 1 for some i ∈ {0, 1, 2, 3}, then we want to com-
pute ♯{q ∈ A2 : q0q1q2q3 ≡ 1 mod 8}, which, by substituting in the definition of A2, is
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the same as computing ♯{q ∈ (Z/8Z)∗4 : q satisfies (2.10.4)} where

(A.2.1) : q0 + q1 ≡ 0 mod8, (q2 + 1)(q3 + 1) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.2) : q0 + q1 ≡ 0 mod8, (q2 + 3)(q3 + 3) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.3) : q0 + q1 ≡ 0 mod8, (q2 + 5)(q3 + 5) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.4) : q0 + q1 ≡ 0 mod8, (q2 + 7)(q3 + 7) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.5) : q0 + q1 ≡ 2 mod8, (q2 + 1)(q3 + 1) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.6) : q0 + q1 ≡ 2 mod8, (q2 + 5)(q3 + 5) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.7) : q0 + q1 ≡ 6 mod8, (q2 + 3)(q3 + 3) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.8) : q0 + q1 ≡ 6 mod8, (q2 + 7)(q3 + 7) ≡ 0 mod 8 and q0q1q2q3 ≡ 1 mod 8 or,

(A.2.9) − (A.2.16) : same as (A.2.1) − (A.2.8) with q0 and q1 switched

with q2 and q3 respectively.
(2.10.4)

Congruence calculations then show:

(A.2.1), (A.2.2), (A.2.3), (A.2.4) : solutions are exactly those vectors (a, 7a, 1, 7),

(a, 7a, 7, 1), (a, 7a, 3, 5), (a, 7a, 5, 3) for any a ∈ (Z/8Z)∗;

(A.2.5), (A.2.6) : solutions are exactly those vectors (a, 2+7a, 6a+1, 7),

(a, 2+7a, 7, 6a+1), (a, 2+7a, 6a+5, 3), (a, 2+7a, 3, 6a+5) for any a ∈ (Z/8Z)∗;

(A.2.7), (A.2.8) : solutions are exactly those vectors (a, 6+7a, 6a+3, 5),

(a, 6+7a, 5, 6a+3), (a, 6+7a, 6a+7, 1), (a, 6+7a, 1, 6a+7) for any a ∈ (Z/8Z)∗;

(A.2.9) − (A.2.16) : solutions are solutions to (A.2.1) − (A.2.8) with q0, q1 swapped

with q2, q3 respectively.
(2.10.5)

As before it is now easy to check directly that there are exactly 32 distinct points in
(Z/8Z)∗4 of at least one of the forms given above (see Table A.7 in the appendix).
Multiplying this by 4 gives the second part of the result.

2.10.2 Computation of Σr,3(m,σ)

Recall that
Σr,3(m,σ) =

∑
q∈A(m,σ)

∑
K∈(Z/8Z)∗4

(2.10.6)

Θr,1(modd,K,σ),

where Θr,1(modd,K,σ) is defined as

(−1)fr(modd,K)
(

2σ0+σ1+σ2+σ3

(m02m03m12m13)odd

)(
2σ2+σ3

K0K1

)(
2σ0+σ1

K2K3

)(
2v2(m02m03m12m13)

K0K1K2K3

)
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and K0K2(m03m12)odd ≡ −δrq0 mod 8, K1K3(m03m12)odd ≡ q1 mod 8,
K1K2(m02m13)odd ≡ δrq2 mod 8, K0K3(m02m13)odd ≡ −q3 mod 8.

(2.10.6)

We may then use (2.10.6) to write fr(modd,K) as

≡ (K0K1 + (δr − 2)K2K3)(q0q2 + 1) + (1 − δr)(K2K3 − 1)
4

mod 2

to remove the dependence on modd. Now notice that

4 | (K0K1 + (δr − 2)K2K3)(q0q2 + 1) and 4 | (1 − δr)(K2K3 − 1).

Thus we write

(−1)fr(m,K) = (−1)f̃r(q,K)
( −1
K2K3

) (1−δr)
2

,

where
f̃r(q,K) = (K0K1 + (δr − 2)K2K3)(q0q2 + 1)

4
.

Once more appealing to (2.10.6) we may see that

f̃r(q,K) ≡ (−q0q2 + (1 − 2δr)q0q3)(m02m03m12m13)odd(q0q2 + 1)
4

mod 2

≡ ((2δr − 1)q0q3 + q0q2)(q0q2 + 1)
4

mod 2

since (m02m03m12m13)odd is odd. Now by expanding out the numerator and recalling
that (2.10.6) asserts that q0q1q2q3 ≡ 1 mod 8,

f̃r(q,K) ≡ ((2δr − 1)q0q3 + q0q2)(q0q2 + 1)
4

mod 2

≡ q0(q0 + q2 + (2δr − 1)(q1 + q3))
4

mod 2

≡ (q0 + q2 + (2δr − 1)(q1 + q3))
4

mod 2.

Setting the final ratio above to be f̃r(q), we therefore write

Θ̃r,1(m,q,σ) = (−1)f̃r(q)
(

2σ0+σ1

δrq0q3

)(
2σ2+σ3

7q0q2

)(
2v2(m02m03m12m13)

7δrq0q1

)
,

and thus obtain

Σr,3(m,σ) = 4
∑

q∈A(m,σ)
Θ̃r,1(m,q,σ)

∑
K∈(Z/8Z)∗4

(2.10.6)

( −1
K2K3

) (1−δr)
2

.

Using the orthogonality relation (2.8.6) to break the condition (2.10.6) the inner most
sum over K becomes∑

χ,χ′,χ′′,χ′′′

char. mod8

χ(−δrq0(m03m12)−1
odd)χ′(q1(m03m12)−1

odd)

× χ′′(δrq2(m02m13)−1
odd)χ′′′(−q3(m02m13)−1

odd)Σr,3(m,σ,χ)
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where

Σr,3(m,σ,χ) = 1
44

∑
K∈(Z/8Z)∗4

χ(K0K2)χ′(K1K3)χ′′(K1K2)χ′′′(K0K3)
( −1
K2K3

) (1−δr)
2

= 1

χ = χ′
(−1

·

) (1−δr)
2

= χ′′
(−1

·

) (1−δr)
2

= χ′′′


using the same method as for Σr,2(m,σ,χ) previously, noting that the reasoning behind
(2.10.1) also applies here. Then

∑
K∈(Z/8Z)∗4

(2.10.6)

( −1
K2K3

) (1−δr)
2

=
∑

χ char.
mod 8

χ(q0q1q2q3)
(

−1
δrq1q2(m02m03m12m13)−1

odd

) (1−δr)
2

= 1(q0q1q2q2 ≡ 1 mod 8)
(

−1
δrq1q2(m02m03m12m13)odd

) (1−δr)
2

.

Collecting this information gives

Σr,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) (1−δr)
2 ∑

q∈A
q0q1q2q3≡1 mod 8

Θ′
r,1(m,σ,q)

where

Θ′
r,1(m,σ,q) = (−1)f̃r(q)

(
2σ0+σ1

δrq0q3

)(
2σ2+σ3

7q0q2

)(
2v2(m02m03m12m13)

7δrq0q1

)(
−1
δrq1q2

) (1−δr)
2

= (−1)f̃r(q)
(

2σ0+σ1

q0q3

)(
2σ2+σ3

q0q2

)(
2v2(m02m03m12m13)

q0q1

)(
−1
δrq1q2

) (1−δr)
2

since
(

2
7

)
=
(

2
δr

)
= 1. We now split into cases r = 1 and r = 2.

The Case r = 1

In this case,

Θ′
1,1(m,q,σ) = (−1)f̃1(q)

(
2σ0+σ1

q0q3

)(
2σ2+σ3

q0q2

)(
2v2(m02m03m12m13)

q0q1

)

and
f̃1(q) = (q1 + q2 + q3 + q0)

4
.

We note that, since q ∈ A(m,σ) and q0q1q2q3 ≡ 1 mod 8, this exponent is always
an integer. This can be seen by noting that such q ∈ (Z/8Z)∗4 are component-wise
permutations of points which are at least one of the forms given in (2.10.3) or (2.10.5),
and it is easy to check that such points have a component sum which is 0 or 4 modulo
8. Now we split into cases determined by the values of v2(m02m03m12m13) and σ. Here
the precise definition of A(m,σ) is required since the relative positions of the qi will
effect the value of the Jacobi symbol. We have the following cases:
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(a) if 2 ∤ m02m03m12m13, and σi = 0 ∀ i ∈ {0, 1, 2, 3},

Σ1,3(m,σ) = 4
∑

q∈A1
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4 ,

(b) if 2 | m03m12, 2 ∤ m02m13 and σi = 0 ∀ i ∈ {0, 1, 2, 3},

Σ1,3(m,σ) = 4
∑

q∈A0,1,2,3
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4

(
2
q0q1

)
,

(c) if 2 | m02m13, 2 ∤ m02m13 and σi = 0 ∀ i ∈ {0, 1, 2, 3},

Σ1,3(m,σ) = 4
∑

q∈A2,3,0,1
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4

(
2
q0q1

)
,

(d) if 2 ∤ m03m12m02m13, σ0 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {0},

Σ1,3(m,σ) = 4
∑

q∈A0,3,1,2
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4

(
2
q0q3

)
,

(e) if 2 ∤ m03m12m02m13, σ1 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {1},

Σ1,3(m,σ) = 4
∑

q∈A1,2,0,3
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4

(
2
q0q3

)
,

(f) if 2 ∤ m03m12m02m13, σ2 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {2},

Σ1,3(m,σ) = 4
∑

q∈A0,2,1,3
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4

(
2
q0q2

)
,

(g) if 2 ∤ m03m12m02m13, σ3 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {3},

Σ1,3(m,σ) = 4
∑

q∈A1,3,0,2
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4

(
2
q0q2

)
.

Case (a): Looking at the conditions given in (2.10.3) we can see that q0 + q1 +
q2 + q3 ≡ 0 mod 8. Thus, we are once more just counting elements in A1 satisfying
q0q1q2q3 ≡ 1 mod 8, giving

Σ1,3(m,σ) = 4
∑

q∈A1
q0q1q2q3≡1 mod 8

(−1)
q0+q1+q2+q3

4 = 4
∑

q∈A1
q0q1q2q3≡1 mod 8

1 = 192.

Case (b): Here we note that A0,1,2,3 = A2. Thus q ∈ A0,1,2,3 must be of at least
one of the forms considered in (2.10.5). For q of the forms solving (A.2.1) − (A.2.4) or
(A.2.9) − (A.2.12), q0 + q1 + q2 + q3 ≡ 0 mod 8 and q0q1 ≡ 7 mod 8 and thus

(−1)
q0+q1+q2+q3

4

(
2
q0q1

)
= 1.
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For q of the forms solving (A.2.5), (A.2.6), (A.2.13), (A.2.14), q0 + q1 + q2 + q3 ≡ 6a+
2 mod 8 and q0q1 ≡ 2a+ 7 mod 8 for some a ∈ (Z/8Z)∗ and so it follows that

(−1)
q0+q1+q2+q3

4

(
2
q0q1

)
= (−1)

3a+1
2

( 2
2a+ 7

)
= 1.

Similarly, for q of the forms solving (A.2.7), (A.2.8), (A.2.15), (A.2.16), q0+q1+q2+q3 ≡
6a + 6 mod 8 and q0q1 ≡ 6a + 7 mod 8 for some a ∈ (Z/8Z)∗ and so again it follows
that

(−1)
q0+q1+q2+q3

4

(
2

7q0q1

)
= (−1)

3a+3
2

( 2
6a+ 7

)
= 1.

Thus in this case,
Σ1,3(m,σ) = 4

∑
q∈A0,1,2,3

1 = 128.

Case (c): Since we also have A2,3,0,1 = A2, the only difference to the previous case
is that the product q0q1 now considers the last two components instead of the first
two. However, since the set A2 is closed under the operation of swapping the 0th and
2nd coordinates and 1st and 3rd coordinates, this does not change anything from the
previous argument. Thus we also have

Σ1,3(m,σ) = 128

in this case.

Case (d): Here we begin by noting that q ∈ A0,3,1,2 is equivalent to (q0, q3, q1, q2) ∈
A2. Thus by taking the product q0q3 we are once again just taking the product of the
first two components of the solutions in (2.10.5). Following the same procedure as in
case (b) it may therefore be seen that

(−1)
q0+q1+q2+q3

4

(
2
q0q3

)
= 1,

for any q ∈ A0,3,1,2. Thus
Σ1,3(m,σ) = 128.

Case (e): This case is symmetric to case (d) and so we will also obtain

Σ1,3(m,σ) = 128.

Case (f): Noting that q ∈ A0,2,1,3 is equivalent to (q0, q2, q1, q3) ∈ A2, it is easy to
see that the same arguments as before give

Σ1,3(m,σ) = 128.

Case (g): Being symmetric to case (f) this case will also give

Σ1,3(m,σ) = 128.

Thus we have shown the following;
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Lemma 2.10.2. We have the following

Σ1,3(m,σ) =

192 if 2 ∤ m02m03m12m13 & σi = 0 ∀ i ∈ {0, 1, 2, 3},

128 otherwise.

The Case r = 2

In this case

Θ′
2,1(m,q,σ) = (−1)f̃2(q)

(
2σ0+σ1

q0q3

)(
2σ2+σ3

q0q2

)(
2v2(m02m03m12m13)

q0q1

)(
−1

7q1q2

)

and
f̃2(modd,q) = (q0 + 5q1 + q2 + 5q3)

4
.

We split up into similar cases as before, again noting that the precise definition of
A(m,σ) is once more required since the relative positions of the qi will effect the value
of the Jacobi symbol and the reciprocity factor. We have the following cases:

(a) if 2 ∤ m02m03m12m13, and σi = 0 ∀ i ∈ {0, 1, 2, 3},

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A1

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
−1

7q1q2

)
,

(b) if 2 | m03m12, 2 ∤ m02m13 and σi = 0 ∀ i ∈ {0, 1, 2, 3},

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A0,1,2,3

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)
,

(c) if 2 | m02m13, 2 ∤ m02m13 and σi = 0 ∀ i ∈ {0, 1, 2, 3},

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A2,3,0,1

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)
,

(d) if 2 ∤ m03m12m02m13, σ0 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {0},

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A0,3,1,2

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q3

)(
−1

7q1q2

)
,

(e) if 2 ∤ m03m12m02m13, σ1 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {1},

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A1,2,0,3

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q3

)(
−1

7q1q2

)
,
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(f) if 2 ∤ m03m12m02m13, σ2 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {2},

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A0,2,1,3

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q2

)(
−1

7q1q2

)
,

(g) if 2 ∤ m03m12m02m13, σ3 = 1 and σi = 0 ∀ i ∈ {0, 1, 2, 3} \ {3},

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A1,3,0,2

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q2

)(
−1

7q1q2

)
.

Case (a): Denote by A1(j) the solutions to (A.1.j) for 1 ⩽ j ⩽ 15. Noting that by
adhering to (2.10.3), (q0 + 5q1 + q2 + 5q3) ≡ 0 mod 8 for any choice of q ∈ A1. We may
therefore write this sum as follows:

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

)
15∑

j=1

∑
q∈A1(j)

q 6∈∪i<jA1(i)

(
−1

7q1q2

) .

The distinct points of each set q ∈ A1(j) \ ∪i<jA1(i) are displayed in Tables A.1-A.4
of §A. Note also that the inner sums above are empty for j = 3, 4, 7, 8 as A1(j) =
A1(i) for i = 2, 1, 6, 5 respectively. More generally, A1(j) \ ∪i<jA1(i) = ∅ for j ∈
{3, 4, 7, 8, 10, 11, 12, 13, 14, 15}. For q ∈ A1(1), q1q2 ≡ 7ab mod 8 for any a, b ∈
(Z/8Z)∗4, so ∑

q∈A1(1)

(
−1

7q1q2

)
=

∑
a,b∈(Z/8Z)∗4

(−1
ab

)
= 0.

For q ∈ A1(2) \ A1(1), q1q2 ≡ 7 mod 8, and so by looking at Table A.2,

∑
q∈A1(2)
q 6∈A1(i)

(
−1

7q1q2

)
=

∑
a,b∈(Z/8Z)∗4

a6=b

1 = 12.

For q ∈ A1(5) \ ∪i<5A1(i), q1q2 ≡ ab mod 8 for a, b ∈ (Z/8Z)∗4, ab ≡ 1, 3 mod 8 so,

∑
q∈A1(5)

q 6∈∪i<5A1(i)

(
−1

7q1q2

)
=

∑
a,b∈(Z/8Z)∗4

ab≡1,3 mod 8

(−1
7ab

)
= 0.

For q ∈ A1(6) \ ∪i<6A1(i), q1q2 ≡ 3 mod 8, and looking at Table A.4 we have

∑
q∈A1(6)

q 6∈∪i<6A1(i)

(
−1

7q1q2

)
=

∑
a,b∈(Z/8Z)∗4

a≡b mod 8

1 = 4.

Finally, for q ∈ A1(9) \ ∪i<9A1(i), q1q2 ≡ −ab mod 8 for a, b ∈ (Z/8Z)∗4 such that
ab ≡ 3, 5 mod 8 giving

∑
q∈A1(9)

q 6∈∪i<9A1(i)

(
−1

7q1q2

)
=

∑
a,b∈(Z/8Z)∗4

ab≡3,5 mod 8

(−1
7ab

)
= 0.
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Therefore, in case (a),

Σ2,3(m,σ) = 64
(

−1
(m02m03m12m13)odd

)
.

Case (b): Following the same method of case (a) we write Σ2,3(m,σ) as,

= 4
(

−1
(m02m03m12m13)odd

)
8∑

j=1

∑
q∈A0,1,2,3(j)

q 6∈∪i<jA0,1,2,3(i)

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

) ,

where here A0,1,2,3(j) is set of solutions to (A.2.j) for 1 ⩽ j ⩽ 16. Looking at Table A.7
it may be seen that we can ignore the inner sums for j = 2, 3, 4, 6, 8 and j ⩾ 9. When
j = 1 there are 16 elements of A0,1,2,3(j), all of the form (a, 7a, b, 7b) for a, b ∈ (Z/8Z)∗.
Then (q0 + 5q1 + q2 + 5q3) ≡ (a+ 3a+ b+ 3b) ≡ 0 mod 8 for all possible solutions. Also
q0q1 ≡ 7 mod 8, while 7q1q2 ≡ 7ab mod 8 for some a, b ∈ (Z/8Z)∗. Thus, we may write

∑
q∈A0,1,2,3(1)

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)
=

∑
a,b∈(Z/8Z)∗

(−1
7ab

)
= 0.

Since the sums over q ∈ A0,1,2,3(j) \ ∪i<jA0,1,2,3(j) for j = 2, 3, 4 is empty we turn to
j = 5. Here, every solution has (q0 + 5q1 + q2 + 5q3) ≡ 6a+ 2 mod 8 and q0q1 ≡ 2a+ 7
for some a ∈ (Z/8Z)∗. There are 8 elements of A0,1,2,3(5) \ ∪i<5A0,1,2,3(i): the first
4 solutions have 7q1q2 ≡ a mod 8 for a ∈ (Z/8Z)∗; the next 2 solutions correspond
to a ≡ 3, 7 mod 8 and have 7q1q2 ≡ 3 mod 4 and the last 2 solutions correspond to
a ≡ 1, 5 mod 8 have 7q1q2 ≡ 1 mod 4. We obtain

∑
q∈A0,1,2,3(5)

q 6∈∪i<5A0,1,2,3(i)

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)
=

∑
a∈(Z/8Z)∗

( 2
2a+ 7

)
−

∑
a∈(Z/8Z)∗

( 2
2a+ 7

)

= 0.

For j = 6, the sum is once again empty. For j = 7, every solution has (q0 + 5q1 + q2 +
5q3) ≡ 6a + 6 mod 8 and q0q1 ≡ 6a + 7 for some a ∈ (Z/8Z)∗. There are 8 elements
of A0,1,2,3(7) \ ∪i<7A0,1,2,3(i): the first 4 solutions have 7q1q2 ≡ 3a mod 8; the next
2 solutions correspond to a ≡ 1, 5 mod 8 and have 7q1q2 ≡ 3 mod 4 and the last 2
solutions correspond to a ≡ 3, 7 mod 8 where 7q1q2 ≡ 1 mod 4 and so

∑
q∈A0,1,2,3(7)

q 6∈∪i<7A0,1,2,3(i)

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)
= 2

∑
a∈(Z/8Z)∗

( 2
6a+ 7

)

= 0.

Finally, since the inner sums are once again empty for j ⩾ 8, we have Σ2,3(m,σ) = 0
for case (b).

Case (c): Recall that q ∈ A2,3,0,1 is equivalent to (q2, q3, q0, q1) ∈ A2. Since A2 is
invariant under this permutation, and for each q ∈ A2, q0q1 ≡ q2q3 mod 8, we may
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re-order the sum:

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A2,3,0,1

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)

= 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A2

q0q1q2q3≡1 mod 8

(−1)
(q0+5q1+q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)
.

This is now just case (b), and thus is equal to 0.

Case (d) and Case (e): Note that we may compare cases (d) and (e) in the same way
as we compared (b) and (c). Thus we only need to handle (d). Noting that q ∈ A0,3,1,2
implies (q0, q3, q1, q2) ∈ A2, we may write Σ2,3(m,σ) in this case as follows:

= 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A2

q0q1q2q3≡1 mod 8

(−1)
(q0+q1+5q2+5q3)

4

(
2
q0q1

)(
−1

7q1q3

)

= 4
(

−1
(m02m03m12m13)odd

)
8∑

j=1

∑
q∈A2(j)

q 6∈∪i<jA2(j)

(−1)
(q0+q1+5q2+5q3)

4

(
2
q0q1

)(
−1

7q1q3

) .

Examining each of the inner sums individually, looking at each the forms of solutions
for each (A.2.j), and their solutions in Table A.7 as with case (b), we will obtain:

∑
q∈A2(j)

q 6∈∪i<jA2(j)

(−1)
(q0+q1+5q2+5q3)

4

(
2
q0q1

)(
−1

7q1q3

)
= 0

for all 1 ⩽ j ⩽ 16. Thus Σ2,3(m,σ) = 0 in these cases as well.

Cases (f) and (g): As with (b) and (c), cases (f) and (g) are symmetric. Dealing
with (f) we write

Σ2,3(m,σ) = 4
(

−1
(m02m03m12m13)odd

) ∑
q∈A2

q0q1q2q3≡1 mod 8

(−1)
(q0+q1+5q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

)

= 4
(

−1
(m02m03m12m13)odd

)
8∑

j=1

∑
q∈A2(j)

q 6∈∪i<jA2(j)

(−1)
(q0+q1+5q2+5q3)

4

(
2
q0q1

)(
−1

7q1q2

) .

Similar calculations to before give Σ2,3(m,σ) = 0 here as well.

Overall, when r = 2 we have proven the following:

Lemma 2.10.3. We have the following

Σ2,3(m,σ) =

64
(

−1
(m02m03m12m13)odd

)
if 2 ∤ m02m03m12m13 & σi = 0 ∀ i ∈ {0, 1, 2, 3},

0 otherwise.
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2.10.3 Removing Dependency on σ

In this section we deal with the condition (2.5.7). In doing so we will simplify our
expression for C into sums over b and m whose components are all odd. To start
we note that a close examination of S(b,m, v) and (2.9.9) tells us that C(b,m,σ) is
independent of both σ and v2(m02m03m12m13). Write

Cr,i(b) = 4f 4
0

ϕ(8)4f 4
2

∑
m∈N4

(2.5.2)

∑
σ∈{0,1}4

(2.5.7)

S(b,m)C(b,m)Σr,i(m,σ)
2σ0+σ1+σ2+σ3m2

02m
2
03m

2
12m

2
13τ((m02m03m12m13)odd)

for i = 2, 3 where

C(b,m) =
∑
v∈N

µ(v)
∑∑∑∑

a0,a1,a2,a3∈N
p|a0a1a2a3⇒p|v

v2|a0a1a2a3,(2.9.9)

S′(v)
a0a1a2a3τ(a0)τ(a1)τ(a2)τ(a3)

with

S(b,m) =
3∏

i=0

 ∏
p|m02m12m03m13bi

p odd

f−1
p

 and S′(v) =
3∏

i=0


∏
p|v

p∤m02m12m03m13bi

p odd

f−1
p

 ,

noting that the dependency of C(b,m) on b and m is contained in the condition (2.9.9).
Now we observe that only the Σr,i(m,σ) depend on σ and v2(m02m03m12m13) ∈ {0, 1},
allowing us to write Cr,i(b) as

4f 4
0

ϕ(8)4f 4
2

∑
m∈N4

odd
(2.5.2)

S(b,m)C(b,m)
m2

02m
2
03m

2
12m

2
13τ(m02m03m12m13)

∑
σ,σ̃∈{0,1}4

(2.10.7)

Σr,i(m,σ, σ̃)
2σ0+σ1+σ2+σ34σ̃02+σ̃03+σ̃12+σ̃13

where
σ0 + σ1 + σ2 + σ3 + σ̃02 + σ̃03 + σ̃12 + σ̃13 ⩽ 1,
gcd(2σ0 , b1) = gcd(2σ1 , b0) = gcd(2σ2 , b3) = gcd(2σ3 , b2) = 1,
gcd(2σ̃02 , b1b3) = gcd(2σ̃03 , b1b2) = gcd(2σ̃12 , b0b3) = gcd(2σ̃13 , b0b2) = 1.

(2.10.7)

and
Σr,i(m,σ, σ̃) = Σr,i(m̃,σ),

where here m̃ = (2σ̃02m02, 2σ̃03m03, 2σ̃12m12, 2σ̃13m13). Now using the previous subsec-
tion, we may compute the sum over σ and σ̃, which we will call ∆r,i(b,m). We have
the following:

∆1,i(b,m) = 192+♯{0 ⩽ j ⩽ 3 : 2 ∤ bj}
128
2

+♯{0 ⩽ j ⩽ 1 : 2 ∤ bj}·♯{2 ⩽ j ⩽ 3 : 2 ∤ bj}
128
4

for i = 2, 3 and

∆2,2(b,m) = 192+♯{0 ⩽ j ⩽ 3 : 2 ∤ bj}
128
2

+♯{0 ⩽ j ⩽ 1 : 2 ∤ bj}·♯{2 ⩽ j ⩽ 3 : 2 ∤ bj}
128
4
,
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∆2,3(b,m) =64
(

−1
(m02m03m12m13)odd

)
.

It follows that we may write

Cr,i(b) = 4f 4
0

ϕ(8)4f 4
2

∑
m∈N4

odd
(2.5.2)

S(b,m)C(b,m)∆r,i(b,m)
m2

02m
2
03m

2
12m

2
13τ(m02m03m12m13)

.

Next, we remove the even parts in the sum over bi. Noting that only the ∆(b,m)
depend on the even part of the bi, we write bi = (bi)odd2µi for µi = v2(bi). Then

Cr,i = 4f 4
0

ϕ(8)4f 4
2

∑
b,m∈N4

odd
(2.5.1),(2.5.2)

S(b,m)C(b,m)
b2

0b
2
1b

2
2b

2
3m

2
02m

2
03m

2
12m

2
13τ(m02m03m12m13)

∑
µ∈(N∪{0})4

(2.10.8)

∆r,i(b,m)
4µ0+µ1+µ2+µ3

where
gcd(2µ0 , 2µ1) = gcd(2µ2 , 2µ3) = 1. (2.10.8)

Now, ∑
µ∈(N∪{0})4

(2.10.8)

1
4µ0+µ1+µ2+µ3

= 25
9
,

∑
µ∈(N∪{0})4

(2.10.8)

♯{0 ⩽ j ⩽ 3 : µj = 0}
4µ0+µ1+µ2+µ3

= 4 + 12
∑
µ̃∈N
µ̃>0

1
4µ̃

+ 8
∑∑
µ̃0,µ̃1∈N
µ̃0,µ̃1>0

1
4µ̃0+µ̃1

= 80
9
,

and ∑
µ∈(N∪{0})4

(2.10.8)

♯{0⩽j⩽ 1:µj =0} · ♯{2⩽j⩽3:µj =0}
4µ0+µ1+µ2+µ3

= 4+8
∑
µ̃∈N
µ̃>0

1
4µ̃

+4
∑∑
µ̃0,µ̃1∈N
µ̃0,µ̃1>0

1
4µ̃0+µ̃1

= 64
9
.

It follows that ∑
µ∈(N∪{0})4

(2.10.8)

∆1,i(b,m)
4µ0+µ1+µ2+µ3

= 4800
9

+ 5120
9

+ 2048
9

= 11968
9

for (r, i) = (1, 2), (1, 3), (2, 2), and∑
µ∈(N∪{0})4

(2.10.8)

∆2,3(b,m)
4µ0+µ1+µ2+µ3

= 1600
9

(
−1

(m02m03m12m13)odd

)
.

Now for m ∈ N and (r, i) ∈ {(1, 2), (1, 3), (2, 2), (2, 3)} define

ρ(r,i) =


11968

9 if (r, i) ∈ {(1, 2), (1, 3), (2, 2)},
1600

9 if (r, i) = (2, 3),

and

ρ′
(r,i)(m) =

1 if (r, i) ∈ {(1, 2), (1, 3), (2, 2)},(
−1
m

)
if (r, i) = (2, 3).

Then

Cr,i =
f 4

0ρ(r,i)

64f 4
2

∑
b,m∈N4

odd
(2.5.1),(2.5.2)

S(b,m)C(b,m)ρ′
(r,i)(m02m03m12m13)

b2
0b

2
1b

2
2b

2
3m

2
02m

2
03m

2
12m

2
13τ(m02m03m12m13)

for all (r, i) ∈ {(1, 2), (1, 3), (2, 2), (2, 3)}.
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2.10.4 Simplification of C(b,m)

Let x ∈ N4 and define

C(x) =
∑
v∈N

µ(v)
∑∑∑∑

a0,a1,a2,a3∈N
p|a0a1a2a3⇒p|v

v2|a0a1a2a3
gcd(ai,2xi)=1 ∀ i

S′(v,x)
a0a1a2a3τ(a0)τ(a1)τ(a2)τ(a3)

,

where

S′(v,x) =
3∏

i=0

 1∏
p|v

p∤2xi

fp

 .
Then we have the following,

Lemma 2.10.4. For any x ∈ N4,

C(x) =
∏
p 6=2

1
f

♯{0⩽i⩽3:p∤xi}
p

(
1 + ♯{0 ⩽ i ⩽ 3 : p ∤ xi}

2p

)
.

Proof. We write,

C(x) =
∑

v∈Nodd

µ(v)S′(v,x)
∑

w∈N4
odd

v2|w
p|w⇒p|v

1
w

∑
a∈N4

a0a1a2a3=w
gcd(ai,2xi)=1∀i

1
τ(a0)τ(a1)τ(a2)τ(a3)

.

Then the sum over w is

∏
p|v


∞∑

j=2

1
pj

∑
e∈Z4

⩾0
e0+e1+e2+e3=j
gcd(pei ,xi)=1 ∀ i

3∏
i=0

( 1
ei + 1

)
 =

∏
p|v

(
f ♯{0⩽i⩽3:p∤xi}

p − 1 − ♯{0 ⩽ i ⩽ 3 : p ∤ xi}
2p

)

the equality coming from adding in the terms for which j = 0 and j = 1. Call the term
inside the product cp for each prime p then by summing over v we conclude that

C(x) =
∏
p6=2

(
1 − cp

f
♯{0⩽i⩽3:p∤xi}
p

)
=
∏
p 6=2

1
f

♯{0⩽i⩽3:p∤xi}
p

(
1 + ♯{0 ⩽ i ⩽ 3 : p ∤ xi}

2p

)
.

From this we may prove the following:

Lemma 2.10.5. For b,m ∈ N4
odd satisfying (2.5.1) and (2.5.2),

f 4
0
f 4

2
S(b,m)C(b,m) = 1

(2π)2

∏
p6=2

(
1 − 1

p

)2 (
1 + ♯{0 ⩽ i ⩽ 3 : p ∤ m02m03m12m13bi}

2p

)
.

84



Section 2.10 Chapter 2: Solubility of diagonal quadrics

Proof. From Lemma 2.10.4 we have

C(b,m) =
∏
p 6=2

1
f

♯{0⩽i⩽3:p∤m02m03m12m13bi}
p

(
1 + ♯{0 ⩽ i ⩽ 3 : p ∤ m02m03m12m13bi}

2p

)
,

and by re-arranging we have

S(b,m) =
3∏

i=0

 1∏
p|m02m12m03m13bi

p odd
fp

 =
∏
p 6=2

(
1

f
♯{0⩽i⩽3:p|m02m03m12m13bi}
p

)
.

Thus

C(b,m)S(b,m) =
∏
p6=2

1
f 4

p

(
1 + ♯{0 ⩽ i ⩽ 3 : p ∤ m02m03m12m13bi}

2p

)
,

and by recalling the definition of f0, the result follows.

Define the function γ : N4
odd → R by

γ(x) =
∏
p6=2

(
1 − 1

p

)2 (
1 + ♯{0 ⩽ i ⩽ 3 : p ∤ xi}

2p

)
.

Then what we have now shown is that

Cr,i =
ρ(r,i)

64(2π)2

∑
b,m∈N4

odd
(2.5.1),(2.5.2)

γ(m02m03m12m13b)ρ′
(r,i)(m02m03m12m13)

b2
0b

2
1b

2
2b

2
3m

2
02m

2
03m

2
12m

2
13τ(m02m03m12m13)

.

2.10.5 Sum over m

Noting that the summand only depends on the product of the components of m we
collect terms to write

Cr,i =
ρ(r,i)

64(2π)2

∑
b∈N4

odd
(2.5.1)

∑
m∈Nodd

µ2(m)γ(mb)ρ′
(r,i)(m)

b2
0b

2
1b

2
2b

2
3m

2τ(m)

 ∑
m02m03m12m13=m

(2.5.2)

1

 .

This inner sum is a four-fold Dirichlet convolution of multiplicative functions (indicator
functions of the gcd conditions in (2.5.2)) applied to a square-free integer m. By
considering its behaviour for m prime, we may therefore deduce that this inner sum
can be written as

µ2(m)β(m,b) = µ2(m)
∏
p|m
p 6=2

(♯{0 ⩽ i ⩽ 1 : p ∤ bi} · ♯{2 ⩽ i ⩽ 3 : p ∤ bi}) ,

which is multiplicative in m. Note also that we may untangle the dependence of m
from γ(mb) since

γ(mb) = γ(b)γ0(m,b)
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where

γ0(m,b) =
∏
p|m
p 6=2

(
1 + ♯{0 ⩽ i ⩽ 3 : p ∤ bi}

2p

)−1

,

which is also multiplicative in m. Therefore the sum over m in Cr,i becomes

∑
m∈Nodd

µ2(m)γ0(m,b)β(m,b)ρ′
(r,i)(m)

m2τ(m)
=
∏
p 6=2

(
1 +

ρ′
(r,i)(p)γ0(p,b)β(p,b)

2p2

)
.

Writing γ0(p) = γ0(p,1) and β(p) = β(p,1) we define κ(1)
p and κ(2)

p as
(

1 − 1
p

)2

γ0(p)−1 and γ0(p)−1
(

1 +
ρ′

(r,i)(p)γ0(p)β(p)
2p2

)
=
(

1 + 2
p

+
2ρ′

(r,i)(p)
p2

)
,

respectively. Then

γ(b) =

∏
p 6=2

κ(1)
p

 g(1)(b),

and ∏
p 6=2

(
1 +

ρ′
(r,i)(p)γ0(p,b)β(p,b)

2p2

)
=

∏
p 6=2

γ0(p)κ(2)
p

 g(2)(b),

where g(1)(b) and g(2)(b) are defined by

∏
p|b0b1b2b3

p6=2

γ0(p)γ0(p,b)−1 and
∏

p|b0b1b2b3
p6=2

(γ0(p)κ(2)
p )−1

(
1 +

ρ′
(r,i)(p)γ0(p,b)β(p,b)

2p2

)

respectively. We are left with

Cr,i =
ρ(r,i)

256π2

∏
p 6=2

(1 − 1
p

)2

κ(2)
p

 ∑
b∈N4

odd
(2.5.1)

g(1)(b)g(2)(b)
b2

0b
2
1b

2
2b

2
3

. (2.10.9)

2.10.6 Sum over b

Let g(b) = g(1)(b)g(2)(b). Then g(b) may be seen to be

∏
p|b0b1b2b3

p 6=2

(κ(2)
p )−1

(
1+ ♯{0⩽ i⩽3:p ∤ bi}

2p
+
ρ′

(r,i)(p)♯{0⩽ i⩽1:p ∤ bi} · ♯{2⩽ i⩽3:p ∤ bi}
2p2

)

which is clearly multiplicative in the sense that, if the products b0b1b2b3 and b̃0b̃1b̃2b̃3
are coprime, then g(b0b̃0, b1b̃1, b2b̃2, b3b̃3) = g(b)g(b̃). Therefore,

∑
b∈N4

odd
(2.5.1)

g(b)
b2

0b
2
1b

2
2b

2
3

=
∏
p 6=2


∑

e∈(N∪{0})4

min(e0,e1)=0
min(e2,e3)=0

g(pe0 , pe1 , pe2 , pe3)
p2e0+2e1+2e2+2e3

 (2.10.10)
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We now consider the sums inside the product. There is a single term for which
ei = 0 for all i ∈ {0, 1, 2, 3} given by

g(1, 1, 1, 1) = (κ(2)
p )−1(κ(2)

p ) = (κ(2)
p )−1

(
p2 + 2p+ 2ρ′

(r,i)(p)
p2

)
. (2.10.11)

When ei ⩾ 1 for a single i ∈ {0, 1, 2, 3},

g(pe0 , pe1 , pe2 , pe3) = (κ(2)
p )−1

(
1 + 3

2p
+
ρ′

(r,i)(p)
p2

)
and

∑
e⩾1

1
p2e

= 1/p2

(1 − 1/p2)
.

There are four such terms, together giving a contribution of

(κ(2)
p )−1

(4p2 + 6p+ 4ρ′
(r,i)(p)

p2(p2 − 1)

)
. (2.10.12)

When ei ⩾ 1 for exactly two i ∈ {0, 1, 2, 3}, the minimum conditions on the ei dictate
that

g(pe0 , pe1 , pe2 , pe3) = (κ(2)
p )−1

(
1 + 1

p
+
ρ′

(r,i)(p)
2p2

)
and

∑
ei,ej⩾1

1
p2ei+2ej

=
(

1/p2

(1 − 1/p2)

)2

.

There are four possible pairs (i, j) ∈ {0, 1, 2, 3}2 (i < j) in which this can occur,
together giving a contribution of

(κ(2)
p )−1

(4p2 + 4p+ 2ρ′
(r,i)(p)

p2(p2 − 1)2

)
. (2.10.13)

The condition min(e0, e1) = min(e2, e3) = 0 does not allow any contribution from
e ∈ (N ∪ {0})4 where three or four ei ⩾ 1. Therefore, inputting (2.10.11),(2.10.12)
and (2.10.13) into the right hand side of (2.10.10) for each prime p 6= 2 tells us that
(2.10.10) is equal to

∏
p6=2

(κ(2)
p )−1

(
p2+2p+2ρ′

(r,i)(p)
p2 +

4p2+6p+4ρ′
(r,i)(p)

p2(p2−1)
+

4p2+4p+2ρ′
(r,i)(p)

p2(p2−1)2

)

=
∏
p6=2

(κ(2)
p )−1

(
p6+2p5+2(ρ′

(r,i)(p)+1)p4+2p3+2p2

p2(p2−1)2

)
.

Inputting this into (2.10.9) and using (p2 − 1) = p2(1 − 1/p)(1 + 1/p), we have now
proved the following:

Proposition 2.10.6. For each (r, i) ∈ {(1, 2), (1, 3), (2, 2), (2, 3)}, the constant Cr,i is
equal to

ρ(r,i)

256π2

∏
p6=2

(
1+ 1

p

)−2(
1+ 2

p
+

2(ρ′
(r,i)(p)+1)
p2 + 2

p3 + 1
p4

)
.

2.10.7 Conclusion of the proof of Theorem 1.2.1

We combine Propositions 2.5.7, 2.8.11 and 2.9.6 to obtain

Nr(B) = (Cr,2 + Cr,3)B2 log logB
logB

+OA

(
B2√log logB

logB

)
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for sufficiently large A > 0. Then, by Proposition 2.4.2,

N(B) = (2C1,2 + 2C1,3 + C2,2 + C2,3)B2 log logB
logB

+OA

(
B2√log logB

logB

)
.

Finally, using Proposition 2.10.6, (2C1,2 + 2C1,3 + C2,2 + C2,3) is then

935
36π2

∏
p6=2

(
1 + 1

p

)−2 (
1 + 2

p
+ 4
p2 + 2

p3 + 1
p4

)

+ 25
36π2

∏
p 6=2

(
1 + 1

p

)−2
1 + 2

p
+

2
(
1 +

(
−1
p

))
p2 + 2

p3 + 1
p4

 .
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Chapter 3

Local solubility for a family of
conics

3.1 Introduction

In this chapter, we will relate the family of quadric surfaces covered in Theorem 1.2.1
with a family of planar conics. As a result of this comparison, we will obtain the
asymptotic for the rational solubility of this family of conics for free. We will also
compute the Subordinate Brauer group for these families.

3.2 Set-up

To begin with, we make some key remarks about our family of quadric surfaces that will
allow us to understand the geometric invariants of our family. Recall that Z ⊂ P3 ×P3

is the variety cut out by the equations

y0x
2
0 + y1x

2
1 + y2x

2
2 + y3x

2
3 = 0 and y0y1 = y2y3,

that Y ⊂ P3 is the quadric surface cut out by the equation

y0y1 = y2y3

and that π : Z → Y is the dominant map sending ([x0 : x1 : x2 : x3], [y0 : y1 : y2 :
y3]) ∈ Z to [y0 : y1 : y2 : y3] ∈ Y . It was presented in §2.3 that by applying the
Q-isomorphism from P1 × P1 to Y given by,

y0 = t0t2, y1 = t1t3, y2 = t1t2, y3 = t0t3,

that Z is Q-isomorphic to the variety Z ′ ⊂ P3 × (P1 × P1) given by

t0t2x
2
0 + t1t3x

2
1 + t1t2x

2
2 + t0t3x

2
3 = 0 (3.2.1)
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Chapter 3: Relation to a family of conics Section 3.2

where [x0 : x1 : x2 : x3] ∈ P3 and ([t0 : t1], [t2 : t3]) ∈ P1 × P1. Furthermore, setting
ϕ1 : P1 × P1 → Y and ϕ2 : Z → Z ′ to be the isomorphisms described above, we obtain
the dominant map φ : Z ′ → P1 × P1 defined by φ = ϕ−1

1 ◦ π ◦ ϕ−1
2 . It is in this form

that we will consider our problem in this section. We will denote by Qt the quadric
fibre φ−1(t) associated to the point t ∈ P1 × P1.

We now remark that the variety Z ′ (and by consequence Z) is singular. Indeed the
Jacobian of this variety is given by(
2t0t2x0, 2t1t3x1, 2t1t2x2, 2t0t3x3, (t2x2

0 + t3x
2
3), (t3x2

1 + t2x
2
2), (t0x2

0 + t1x
2
2), (t1x2

1 + t0x
2
3)
)

and so it has a singular locus contained in the union

S =
3⋃

i=0
{(x, t) ∈ P3 × (P1 × P1) : ti = 0, xi′ = xj′ = 0, ti′x2

i + tjx
2
j = 0} (3.2.2)

where we have:

(j, i′, j′) =


(3, 2, 1) if i = 0
(2, 3, 0) if i = 1
(0, 1, 3) if i = 2
(1, 0, 2) if i = 3.

Note that this singular locus is the image of the singular locus for Z defined in section 2
of [8] under the isomorphism ϕ2. Now let Li denote the line defined by ti = 0 in P1 ×P1

and L = ∪3
i=0Li. Then we find that S lies above the union of lines L. Henceforth we

will use the notation V := (P1×P1)\L and remark that this is an open subset of P1×P1.

Remark 3.2.1. Recall the thin set T = T1 ∪ T2 of Y from Example 1.1.3, which gave
the abundance of rational points in [8]. Let T ⊂ P1(Q) × P1(Q) be the image of this
thin set under the isomorphism ϕ1. Then

T = {([t0 : t1], [t2 : t3]) ∈ P1(Q) × P1(Q) : −t0t1 = □,−t2t3 = □}.

Considering the conditions of the form ti′x2
i + tjx

2
j = 0 in the definition of S, we see

that L(Q) ⊂ T . This observation was used in §2.3 to remove the points ti = 0 from
the counting problem.

Finally, we pre-compose φ with a desingularisation Z̃ → Z ′ of Z ′ to obtain a
dominant map φ̃ : Z̃ → P1 × P1. The precise form of the fibres along L under φ̃ will
not affect our results; the fibres of points outside L are unchanged.

Proposition 3.2.2. For every quadratic fibre, Qt, over a point t ∈ V, there exists a
conic Ct such that Qt(Q) 6= ∅ if and only if Ct(Q) 6= ∅. Furthermore, Qt

∼= Ct × Ct,
and we may choose the desingularisation φ̃ : Z̃ → P1 ×P1 to be a smooth proper model
of the fibre product Ct × Ct → V.
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Proof. We note that for t ∈ V , the quadric surface Qt is smooth and has square
determinant (t0t1t2t3)2. It follows from [11, Théorème 2.5] that Qt

∼= Ct × Ct over Q
and that Qt(Q) 6= ∅ if and only if Ct(Q) 6= ∅. That we may choose φ̃ : Z̃ → P1 × P1

to be a smooth model of the fibre product follows from Hironaka’s theorem for the
resolution of singularities.

Before we continue, it is worth examining the form of the conics Ct for a fixed
t ∈ P1(Q) × P1(Q). Upon remarking that Qt is birational to the quadric

x2
0 + t0t1x

2
1 + t2t3x

2
2 + t0t1t2t3x

2
3 = 0

we may take [11, Théorème 2.5] and [12, Proposition 1.1.8] to see that Ct can be written
as

Ct : x2
0 + t0t1x

2
1 + t2t3x

2
2 = 0. (3.2.3)

Note that we are working with t ∈ V here so that none of the ti are 0. From [12,
Proposition 1.1.8] we also obtain a quaternion algebra qCt = (−t0t1,−t2t3) over Q.

3.3 Solubility for a family of conics

We can now prove the main theorem for this chapter. Keeping the notation of the
previous section, we will now consider the variety C ⊂ P3 ×P3 defined by the equations

y0x
2
0 + y1x

2
1 + y2x

2
2 = 0 and y0y1 = y2y3

and the obvious dominant map ν : C → Y . As with the quadric fibre bundle, this conic
fibre bundle has an isomorphism ι : C → C ′ where C ′ ⊆ P3 × (P1 ×P1) is defined by the
equation

t0t2x
2
0 + t1t3x

2
1 + t1t2x

2
2 = 0

with t = ([t0 : t1], [t2 : t3]) ∈ P1 × P1. Following [8], we consider a desinguarisation of
this problem, namely the maps ν̃ : C̃ → Y and ι̃ : C̃ → C̃ ′. Using the notation of the
introduction, we aim to consider the counting problem

NY \T (ν̃, B) = ♯

y ∈ Y (Q) :
−y0y2 6= □, −y0y3 6= □
ν̃−1(y) has a Q-point

H(y) ⩽ B

 . (3.3.1)

In [8], they note that using their methods, one may prove

B2 � NY (ν̃, B) � B2.

In other words, including the thin set T , we have the same upper and lower bounds for
the count over the family of quadrics. The next theorem shows that the asymptotic
formula for NY \T (ν̃, B) is the same as that for N(B) = NY \T (π̃, B).

Theorem 3.3.1. As B → ∞,

NY \T (ν̃, B) = cB2 log logB
logB

+O

(
B2√log logB

logB

)
where c > 0 is the same constant given in the statement of Theorem 1.2.1.
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Proof. We begin, as usual, with the parameterisation of Y by P1 ×P1 to transform the
counting problem to

NY \T (ν̃, B) = N(P1×P1)\T (w̃, B) = ♯

t ∈ P1(Q) × P1(Q) :
−t0t1 6= □, −t2t3 6= □
w̃−1(t) has a Q-point

H([t0 : t1])H([t2 : t3]) ⩽ B

 ,
where w̃ = ϕ1 ◦ ν̃ ◦ ι−1. For the set of points t 6∈ T , the fibres w̃−1(t) are given by the
conic

C ′
t : t0t2x2

0 + t1t3x
2
1 + t1t2x

3
2 = 0. (3.3.2)

We see from Remark 3.2.1 that points ([t0 : t1], [t2 : t3]) ∈ P1(Q) × P1(Q) with ti = 0
for some 0 ⩽ i ⩽ 3 lie inside T . Therefore, by multiplying the equation (3.3.2) by t1t2
and permuting the variables we find that the fibres C ′

t for t 6∈ T are equivalent to the
conic Ct as defined in (3.2.3). Thus, by Proposition 3.2.2, we have

C ′
t(Q) 6= ∅ ⇐⇒ Ct(Q) 6= ∅ ⇐⇒ Qt(Q) 6= ∅

for t ∈ P1(Q) × P1(Q) \ T . In particular, we have the equality,

NY \T (ν̃, B) = N(B)

where we recall that N(B), as defined in (1.2.3), is the counting problem determined
by Theorem 1.2.1. An application of this theorem, therefore, concludes this proof.

3.4 The Subordinate Brauer Group

In this section, we will recall the subordinate Brauer group of a proper morphism
f : X → Y of integral Noetherian schemes over a field, and compute this group for our
map φ : Z ′ → P1 × P1.

3.4.1 The Brauer Group

For a scheme X over a field k, we will define its Brauer group by Br(X) := H2
ét(X,Gm)

where Gm denotes the multiplicative algebraic torus. Furthermore, we will write k(X)
for the function field of X and X(1) to be the set of codimension 1 points of X. The
following is Grothendieck’s Purity Theorem (see [12, Theorem 3.7.2]):

Theorem 3.4.1. Suppose X is a regular, integral scheme over a field k of characteristic
0. Then we have the following exact sequence:

0 −→ Br(X) −→ Br(k(X)) −→
⊕

D∈X(1)

H1(k(D),Q/Z)
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Section 3.4 Chapter 3: Relation to a family of conics

where the last map is the direct sum of the residue maps ∂D : Br(k(X)) → H1(k(D),Q/Z)
at the codimension 1 points D.

An element of the Brauer group b ∈ Br(X) is called unramified at a point D if
∂D(b) = 0.

Now suppose that k is a number field. The following exact sequence is a well-known
result of class field theory:

0 −→ Br(k) −→
⊕

v∈Val(k)
Br(kv) −→ Q/Z −→ 0 (3.4.1)

where the last non-trivial map is the sum of local invariant maps invv : Br(kv) → Q/Z.
Let Ak denote the adelic numbers over k. Then X(Ak) denotes the adelic points of X.
We will also make use of the Brauer-Manin pairing

X(Ak) × Br(X) −→ Q/Z, ((xv)v∈Val(k), b) 7−→
∑

v

invv(b(xv)).

We remark here that Br(Pn
k) ∼= Br(An

k) ∼= Br(k).

3.4.2 The Subordinate Brauer Group

Let f : W → X be a proper morphism of regular, integral Noetherian schemes over a
field k with geometrically irreducible fibre. Suppose throughout that k has character-
istic 0.

Definition 3.4.2 ([29], Definition 2.1). For f : W → X above, we define the subor-
dinate Brauer group as

Brsub(X, f) =
⋂

D∈X(1)

α ∈ Br(k(X)) :
∂Ef

∗(α) = 0 for all irreducible components
E ⊆ f−1(D) of multiplicity 1

 .

Now suppose that X admits an ample line bundle. Let U ⊂ X be an open subset
and suppose that B is a finite multi-set of elements in Br(U). Denote by 〈B〉 the
subgroup of Br(U) generated by B. Then we may also define the following.

Definition 3.4.3 ([29], Definition 2.8). We say that an element b ∈ Br(k(X)) is
subordinate to B if for every D ∈ X(1), ∂D(b) lies in ∂D(〈B〉). We may also define

Brsub(X,B) =
{
α ∈ Br(k(X)) : ∂D(b) ∈ ∂D(〈B〉) for all D ∈ X(1)

}
.

Since X admits an ample line bundle, every element b ∈ Br(U) is the Brauer class
of a Severi-Brauer scheme Vb. This follows from a theorem of Gabber. In our setting,
U = V and B = {qCt , qCt} where qCt is the quaternion algebra associated to a given
conic Ct from Proposition 3.2.2.
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Lemma 3.4.4 ([29], Lemma 2.9). Suppose that X and W , U ⊆ X, B are as defined
above. Suppose that f : W → X is a smooth proper model of the fibre product F :
×b∈B

Vb → U . Then
Brsub(X, f) = Brsub(X,B).

Remark 3.4.5. The exposition in §2.4 of [29] does not explicitly define B to be a
multi-set, instead defining it to be a finite subset of Br(U). The inclusion of multi-sets
does not change the definition of Brsub(X,B) as this depends only on the group 〈B〉,
which remains unchanged. Allowing multi-sets also does not change the proof of the
above lemma.

We are now ready to compute Brsub(Z̃, φ̃).

Lemma 3.4.6. We have

Brsub(Z̃, φ̃)/Br(Q) = 〈qCt〉 ∼= Z/2Z.

Proof. By taking B = {qCt , qCt}, then we may use Proposition 3.2.2 and Lemma 3.4.4;
therefore we aim to compute Brsub(Z̃,B). Recall that qCt = (−t0t1,−t2t3), which
ramifies precisely at the lines Li = {ti = 0}. Using [18, Example 7.1.5] the residues of
qCt at Li are

∂Li
(qCt) =

−(t2t3)−1 = −t2t3 ∈ Q(Li)×/Q(Li)×2 if i ∈ {0, 1}

−t0t1 ∈ Q(Li)×/Q(Li)×2 if i ∈ {2, 3}.

Now suppose b ∈ Brsub(Z̃,B). Then by definition, b can only ramify along a subset of
the Li with the prescribed residues above. If b is unramified, b ∈ Br(P1 × P1) ∼= Br(Q)
and so is constant. If b is ramified only along one of the Li then b ∈ Br(P1 ×P1 \ Li) ∼=
Br(A1 × P1) ∼= Br(Q) and so is also constant. Similarly, if b ramifies at exactly three
of the lines Li then b− qCt is ramified at only one line and so is constant. We therefore
suppose that b ramifies at precisely 2 of the lines Li. Since

P1 × P1 \ (Li ∪ Lj) ∼= A2

when (i, j) ∈ {0, 1} × {2, 3}, we therefore have that b will be constant or equivalent to
qCt unless it ramifies along L0 ∪ L1 or L2 ∪ L3. We may deal with each case similarly,
so suppose that b ramifies along L0 ∪ L1. Then it must ramify along each line with
residue −t2t3. Furthermore, since the residue maps are homomorphisms, the residue
of 2b along these lines is (t2t3)2 = 1 ∈ Q(Li)×/Q(Li)×2, i ∈ {0, 1}. It follows that 2b
is unramified everywhere, and thus constant. This implies that b is of order at most
2 in Brsub(Z̃,B)/Br(Q). Assume it is of order exactly 2; otherwise, it is constant. By
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the Merkuyev-Susin Theorem, [18, Theorem 2.5.7], this implies that up to addition by
Br(Q),

b =
L∑

l=0
ql

for ql quaternion algebras over Q(P1 × P1). Write ql = (αl, βl) for αl, βl ∈ Q(P1 × P1).
Writing vj for the valuation map at the place tj, we may decompose the αl and βl as

αl = t
v0(αl)
0 t

v1(αl)
1 t

v2(αl)
2 t

v3(αl)
3 α̃l and βl = t

v0(βl)
0 t

v1(βl)
1 t

v2(βl)
2 t

v3(βl)
3 β̃l

where α̃l, β̃l ∈ Q(P1 × P1) and vj(α̃l) = vj(β̃l) = 0 for all j and all l. Then, upon using
[18, Example 7.1.5] we have,

∂Lk
(b) = (−1)σk(α,β)

 3∏
j=0
j 6=k

t
Σk

j

j


[∏

l

α̃
vtk

(βl)
l

] [∏
l

β̃
−vtk

(αl)
l

]
∈ Q(Li)×/Q(Li)2×

where
Σk

j =
∑

l

(vj(αl)vk(βl) − vj(βl)vk(αl)) = −Σl
k.

Since b ramifies precisely on L0 ∪ L1 and is subordinate to qCt , we know that ∂L0(b) =
−t2t3 ∈ Q(L0)×/Q(L0)2×. From this, and the general formula above, we can see that
Σ0

2 ≡ 1 mod 2; therefore we must also have Σ2
0 ≡ 1 mod 2. Then,

∂L2(b) = t0

(−1)σ2(α,β)

 3∏
j=1
j 6=2

t
Σ2

j

j


[∏

l

α̃
vt2 (βl)
l

] [∏
l

β̃
−vt2 (αl)
l

] ∈ Q(L2)×/Q(L2)2×.

But since t1, t3, α̃1, . . . , α̃L, β̃1, . . . , β̃L all have valuation 0 at t0, this implies that ∂L2(b) 6=
1 ∈ Q(L2)×/Q(L2)2× - i.e that b is ramified at L2. This is a contradiction. Therefore,
b cannot be subordinate to qCt and ramify at precisely L0 ∪ L1. The result follows.
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Chapter 4

Variations on the Large Sieve

4.1 Introduction

In this chapter, we prove the bounds for bilinear sums over the Jacobi symbol
(

n
m

)
which are necessary for the conclusion of Theorem 1.2.1. First, let us recall the previous
results in this direction. Suppose an and bm are arbitrary complex sequences bounded
in magnitude by 1 and supported on the odd integers. Let N,M ⩾ 2. Then we have
the following well-known bounds:

• Elliott [14, 22]:

∑∑
n⩽N, m⩽M

anbm

(
n

m

)
� NM

(
N−1/2 +N1/2M−1/2 logN

)
; (4.1.1)

• Heath-Brown [22]: for any ϵ > 0,

∑∑
n⩽N, m⩽M

µ2(2n)µ2(2m)anbm

(
n

m

)
�ϵ (NM)1+ϵ

(
N−1/2 +M−1/2

)
; (4.1.2)

• Friedlander–Iwaniec [17]:

∑∑
n⩽N, m⩽M

anbm

(
n

m

)
� NM

(
N−1/6 +M−1/6

)
(log 3NM)7/6 . (4.1.3)

These bounds have been used in many problems, for example:

• Values of L-functions (Soundararajan [43]);

• 4-ranks of class groups (Fouvry–Klüners [15]);

• Manin’s conjecture (Browning–Heath-Brown [4]);

• Bateman–Horn’s conjecture on average (Baier–Zhao [1]).
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When N2 � M the Elliott bound is the most effective bound; when N and M are of
comparable size the Heath-Brown result is more effective. In applications to rational
points problems the Friedlander–Iwaniec bound is more versatile as the presence of
(NM)ϵ in the Heath-Brown bound may lead to problems when we require no loss of
logarithms. One may also combine the Elliott and Heath-Brown results into one as in
the work of Fouvry and Klüners on the 4-rank of class groups [15, Lemma 15].

For the hyper-skewed regions that occur in our problem, each of the above results
will fail to give bounds that are smaller than the main term. To solve this problem
we provide two variations of the above bounds which suffice for our purposes. The
first is an improved version of Elliott’s bound for when the complex sequence bm has
some multiplicative structure and will play a crucial role in Chapter 5. The second is
Theorem 2.2.5 for sums of the Jacobi symbol in hyperbolic regions, which was used in
Chapter 2, §2.6 to bound the regions of our character sum where the Jacobi symbols
have large conductions.

4.1.1 Hooley neutralisers and the large sieve

To prove Propositions 2.2.8 and 2.2.11 we will require improvements over (4.1.1) in
regions that are hyper-skewed. The following result states that this may be achieved
when the complex sequence bm has some multiplicative structure.

Theorem 4.1.1. Let M,N ⩾ 2, and fix some ϵ > 0. Let f be any multiplicative
function such that 0 ⩽ f(p) ⩽ 1 and f(pm) ⩽ f(p) for all primes p and all m ⩾ 2.
Suppose also that there exists an 0 < α ⩽ 1 such that for all X ⩾ 2 we have,

∑
p⩽X

f(p)
p

= α log logX +O(1). (4.1.4)

Then for any complex sequences an,bm which are supported on the odd integers such
that |an| ⩽ 1 and |bm| ⩽ 1 we have:

∑∑
n⩽N, m⩽M

anbmf(m)
(
n

m

)
�ϵ

MN1/2(logN)
(logM)(1−α) + M1/2+ϵN3/2(logN)1/2

(logM)(1−α)/2 ,

where the implied constant depends at most on ϵ.

This theorem is most effective when N2 � M . The main benefit here is that
we have maintained saving from summing over the multiplicative function. Indeed, it
follows from a result of Shiu [40, Theorem 1] that for a multiplicative function satisfying
the conditions of Theorem 4.1.1 that we have∑

m⩽M

f(m) � M

(logM)1−α
.

We will prove this in §4.2 by using Hooley Neutralisers to insert the Brun Sieve into
standard large sieve methods. Using partial summation we obtain further improvement
when an contains a harmonic factor:
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Corollary 4.1.2. Let M ⩾ N ⩾ W ⩾ 2, and fix some ϵ > 0. Let f be any multiplicat-
ive function such that 0 ⩽ f(p) ⩽ 1 and f(pm) ⩽ f(p) for all primes p and all m ⩾ 2.
Suppose also that for all X ⩾ 2 we have,

∑
p⩽X

f(p)
p

= α log logX +O(1) (4.1.5)

for some 0 < α < 1. Then for any complex sequences an,bm which are supported on
the odd integers such that |an| ⩽ 1 and |bm| ⩽ 1 we have:

∑∑
W <n⩽N, m⩽M

an

n
bmf(m)

(
n

m

)
�ϵ

M(logN)
W 1/2(logM)(1−α) + M1/2+ϵN1/2(logN)1/2

(logM)(1−α)/2 ,

where the implied constant depends at most on ϵ.

The benefit of this result is that it encodes not only the saving from the mul-
tiplicative function but also the convergence from the sum ∑

W <n⩽N
1
n

(
n
m

)
when m

is non-square. Again, this result is most effective when N2 � M . This, however,
will be sufficient for our purposes provided that they are aptly applied alongside the
Friedlander–Iwaniec bound (4.1.3). For the proof of Theorem 1.2.1 the corollary will
be applied with the multiplicative function 1

τ(m) .

As an example of how these results may be applied elsewhere, we remark that in
the proof of Proposition 2.2.11, we encounter the simultaneous average of 1

τ(m) and
special values of L-functions, L

(
1,
(

·
m

))
. An application of Corollary 4.1.2 will yield

the following bound:

Corollary 4.1.3. For all X ⩾ 3 we have

∑
1<m⩽X

µ2(2m)
τ(m)

L
(

1,
( ·
m

))
� X√

logX
.

Since the average of 1
τ(m) is c1√

log M
for some constant c1 and the average of L

(
1,
(

·
m

))
is a constant, this bound suggests that the distributions of these two functions are
independent. This result is a consequence of Lemma 5.3.5, which will be proven in
Chapter 5.

4.1.2 Averages of Jacobi symbols over hyperbolic regions

The second variation of the large sieve for quadratic characters is a bound for sums
over hyperbolic regions. These are sums of the general following shape:

∑
n,m∈N

1⩽nm⩽T

anbm

(
n

m

)
, (4.1.6)
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where (an) and (bm) are arbitrary complex sequences with |an|, |bm| ⩽ 1. For general
choices of complex sequences an and bm these sums do not exhibit much cancellation -
for example, we will see later that ∑

n,m∈N
2∤nm

1⩽nm⩽T

(
n

m

)
� T,

which gives only logarithmic saving over the hyperbolic region of area T (log T ). The
main contribution of this sum will be seen to come from the points where either n or m
is a square. This contribution is explained by the fact that such points have relatively
large density in the hyperbolic region compared to their density in a rectangular one.
For this reason we turn to study sums over pairs (n,m) where n and m are odd and
square-free.

Remark 4.1.4. Throughout this chapter
∑∗ will denote a sum over odd, square-free

integers. As usual, µ will denote the Möbius function.

In this case, however, there may still be a large contribution from points close to the
axes, particularly from the lines n = 1 and m = 1. Another example which gives very
small cancellation is the following: choosing an = ( n

11) and bm to be the characteristic
function for the condition m = 11, one sees that∑∗

1<n,m⩽T
1<nm⩽T

µ2(2nm)anbm

(
n

m

)
=

∑
1<n⩽T/11

µ2(22n) � T.

It is therefore clear that in order to obtain further cancellation, we must impose the
extra condition that n,m > z for some parameter z = z(T ) which tends to infinity
with T . Our first bound, which is a more complete version of Lemma 2.2.5, shows that
these conditions are sufficient to provide the required cancellation.

Theorem 4.1.5. Let T, z ⩾ 2 and let (an), (bm) be any complex sequences such that
|an|, |bm| ⩽ 1. If there exists an ϵ > 0 such that z ⩾ T 1/3−ϵ, then

∑∗

z<n,m⩽T
nm⩽T

anbm

(
n

m

)
�ϵ

T 1+ϵ

z1/2 ,

where the implied constant depends at most on ϵ. If there exists an ϵ > 0 such that
z ⩽ T 1/3−ϵ, then ∑∗

z<n,m⩽T
nm⩽T

anbm

(
n

m

)
�ϵ

T (log T )3

z1/2 ,

where the implied constant depends at most on ϵ.

Theorem 4.1.5 fails to give a saving over the trivial bound of T (log T ) if z �
(log T )4. This is satisfactory for most applications, however it is also possible to obtain
cancellation for any z which tends to infinity with T with the cost of a smaller exponent
of z.
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Theorem 4.1.6. For all T, z ⩾ 2 and all complex sequences (an), (bm) such that
|an|, |bm| ⩽ 1 we have, ∑∗

z<n,m⩽T
nm⩽T

anbm

(
n

m

)
� T (log T )

z1/4 ,

where the implied constant is absolute.

Remark 4.1.7. It is impossible to improve the exponent of z in Theorem 4.1.6 to be
> 1 in general: using a similar example to before, if we take any z ⩽ T 1/4, p a prime
satisfying z < p ⩽ 2z, an = (n

p
) and bm the characteristic function for the condition

m = p, one finds that

∑∗

z<n,m⩽T
1⩽nm⩽T

anbm

(
n

m

)
=

∑
z<n⩽T/p

µ2(2pn) = 2
3(1 + 1/p)ζ(2)

(
T

p
− z

)
+O

(
T 1/2

p1/2

)
.

This is � T
p

� T
z

since 2pz < 4z2 ⩽ T . If this were O(T (log T )
zα ), then zα−1 = O(log T ),

which may be contradicted by taking z = (log T )A for A > 0 suitably large.

In order to prove Theorems 4.1.5 and 4.1.6 we will actually prove the following
more general results.

Theorem 4.1.8. Let T, z ⩾ 2, c ⩾ 0, and let (an), (bm) be any complex sequences such
that |an|, |bm| ⩽ 1. If there exists an ϵ > 0 such that z ⩾ T 1/3−ϵ then,

∑∗

z<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
�c,ϵ

T 1+c+ϵ

z1/2 ,

where the implied constant depends at most on c and ϵ. If there exists an ϵ > 0 such
that z ⩽ T 1/3−ϵ, then

∑∗

z<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
�c,ϵ

T 1+c(log T )3

z1/2 ,

where the implied constant depends at most on c and ϵ.

Theorem 4.1.9. For all T, z ⩾ 2, c ⩾ 0, and all complex sequences (an), (bm) such
that |an|, |bm| ⩽ 1. Then

∑∗

z<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
�c

T 1+c(log T )
z1/4 ,

where the implied constant depends at most on c.

Theorems 4.1.5 and 4.1.6 will then follow from the cases where c = 0. The methods
in [17, 22] do not interact well with the hyperbolic region as they exploit the linear
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structure of the rectangular regions through the use of Hölder’s inequality. We will cir-
cumvent this problem by applying the following version of Perron’s formula to eliminate
the hyperbolic height condition [21, Lemma 2.2]:

1
π

∫ R

−R
(nm)itfτ (t)dt = 1(nm ⩽ τ) +O(R−1|log(nm) − log(τ)|−1), (4.1.7)

where fτ (t) = sin(t log(τ))
t

and

1(µ ⩽ τ) =

1 if µ ⩽ τ

0 if µ > τ.

This will allow us to apply existing results. In particular, we apply Corollary 4 and
Theorem 1 of [22]:

∑
m⩽M
2∤m

∑
n⩽N

anbm

(
n

m

)
�ϵ (MN)ϵ(MN1/2 +M1/2N), (4.1.8)

and, for I ⊆ [1, N ] ∩ N of size |I|,

∑∗

m⩽M

∣∣∣∣∑∗

n∈I

an

(
n

m

)∣∣∣∣2 �ϵ (MN)ϵ(max(M,N))|I|, (4.1.9)

for any ϵ > 0. It will also be necessary to make use of the following version of Elliott’s
result: ∑∗

m⩽M

∣∣∣∣∑∗

n∈I

an

(
n

m

)∣∣∣∣2 � (M +N2 log(N))|I|. (4.1.10)

This inequality goes back to Elliott [14], but was proven by Heath-Brown [22, Equation
(6)]. Recall that this bound is superior to (4.1.9) if N ⩽ M1/2. In our proof, this will
be necessary when lopsided rectangles appear in our coverings of the hyperbolic region.
We cannot use (4.1.9) for such lopsided rectangles, since if z = (log T )A for some A > 0,
we will obtain bounds of the form � T 1+c+ϵ

(log T )A/2 , which just fails to give Theorem 4.1.8.

To prove Theorem 4.1.8 we will use these results along with a dyadic covering of
the hyperbolic regions. In order to obtain saving for arbitrary z in Theorem 4.1.9 it
will be necessary to cover parts of the hyperbolic region with rectangles of equal width
before applying Cauchy–Schwarz and (4.1.10) to each of these rectangles and summing
over the results.

Lastly, we prove asymptotics for the Jacobi sums over all odd integers within the
hyperbolic region, namely we have the following:

Theorem 4.1.10. For all T ⩾ 2,

∑
1⩽n,m⩽T

2∤nm
nm⩽T

(
n

m

)
=
(

6ζ(2)
7ζ(3)

)
T +O(T 3/4(log T ))

where ζ is the Riemann-zeta function.

101



Chapter 4: Variations on the Large Sieve Section 4.2

This result is obtained using Dirichlet’s hyperbola method. A similar method will
give ∑∗

1⩽n,m⩽T
nm⩽T

(
n

m

)
∼ c′T.

for some constant c′ > 0, proving that we may not obtain saving in the square-free
setting when we include points close to the axes.

4.2 Hooley Neutralisers and the Large Sieve

In this section will prove Theorem 4.1.1. This is done with the use of Hooley neutral-
isers. We will begin with the following lemma, which is a slight modification of [41,
Proposition 4.1] and has a similar proof.

Lemma 4.2.1. Let P (z) be the product of all odd primes ⩽ z and suppose (λ+
d ) is any

sequence satisfying ∑
d|n
λ+

d ⩾ 1(n = 1). (4.2.1)

For any function f : N → [0, 1] such that

(1) f is multiplicative,

(2) f(pm) ⩽ f(p) for all primes p and all m ⩾ 1,

define the multiplicative function f̂ : N → R by f̂(n) = ∏
p|n(1 − f(p)). Then for all

integers n:
f(n) ⩽

∑
d|n

d|P (z)

λ+
d f̂(d).

Proof. We let n be a square-free integer composed only of primes p ⩽ z, i.e. n|P (z),
then

f(n) =
∑
m|n

f̂(m)f
(
n

m

)
1(m = 1).

Since f and f̂ are non-negative, we may use (4.2.1) to get the upper bound:

f(n) ⩽
∑
m|n

f̂(m)f
(
n

m

)∑
d|m

λ+
d

 .
By writing m = dd′ and reversing the order of summation we get

∑
m|n

f̂(m)f
(
n

m

)∑
d|m

λ+
d

 =
∑
d|n
λ+

d

∑
d′| n

d

f̂(dd′)f
(
n

dd′

)
=
∑
d|n
λ+

d f̂(d)

∑
d′| n

d

f̂(d′)f
(
n

dd′

) ,
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this last equality being obtained by noting that since n is square-free and dd′|n, d and
d′ must be square-free and co-prime. Now∑

d′| n
d

f̂(d′)f
(
n

dd′

)
= f̂ ∗ f

(
n

d

)
,

where ∗ denotes Dirichlet convolution. Then since f and f̂ are multiplicative, f̂ ∗f will
also be multiplicative. However, f̂ ∗ f(p) = 1 for all primes p since f̂(p) = (1 − f(p)).
Therefore f̂ ∗ f(n) = 1 for all square-free integers n. Thus∑

d′| n
d

f̂(d′)f
(
n

dd′

)
= 1.

It follows that
f(n) ⩽

∑
d|n
λ+

d f̂(d).

Since we assumed that n|P (z) we are done in this case. For more general integers n
we write:

n =

 ∏
p|n

p|P (z)

pvp(n)


 ∏

q|n
q∤P (z)

qvq(n)

 .
Then, since f is multiplicative and has image in [0, 1] we use assumption (2) to obtain:

f(n) ⩽ f

 ∏
p|n

p|P (z)

p

 ⩽
∑
d|n

d|P (z)

λ+
d f̂(d),

where we use the previous case in this last inequality.

We will be interested in using this for upper bound sieve coefficents. Fix some z > 0
and let y = z10. Then in particular we define the upper bound sieve coefficients

λ+
d = 1(d ∈ D+)µ(d)

where

D+ = {d = p1 . . . pk ∈ N : z > p1 > . . . > pk, pm < ym for m odd}

for ym =
(

y
p1...pm

)1/β
and some β > 1. It is well known that∑

d|n
λ+

d ⩾
∑
d|n
µ(d) = 1(n = 1) (4.2.2)

and that the λ+
d are supported on the interval [1, y]. We note also that any multiplic-

ative function f satisfying the conditions of Lemma 4.2.1 will also satisfy conditions
(i) and (ii) of [40, Section 2]. We may then use [40, Theorem 1] with, k = 1, Y = X
to obtain the bound ∑

n⩽X

f(n) � X

logX
exp

∑
p⩽X

f(p)
p

 . (4.2.3)
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Furthermore, we will require that our multiplicative functions satisfy,

∑
p⩽X

f(p)
p

= α log logX +O(1)

for some α > 0. With this in mind, (4.2.3) becomes,

∑
n⩽X

f(n) � X

(logX)1−α
. (4.2.4)

The following lemma encodes the insertion of the Brun Sieve into the large sieve,

Lemma 4.2.2. Let X ⩾ 2. Fix some ϵ > 0 and set z = Xϵ/10 and y = Xϵ. Let f be
any function f : N → [0, 1] such that

(1) f is multiplicative,

(2) f(pm) ⩽ f(p) for all primes p and all m ⩾ 1.

Suppose also that there exists some 0 < α ⩽ 1 such that, for all 2 ⩽ Y ,

∑
p⩽Y

f(p)
p

= α log log Y +O(1). (4.2.5)

Then for the sieve coefficients (λ+
d ) defined above and any integer n,∣∣∣∣∣∣∣∣∣∣∣∣

∑
d⩽X

d|P (z)
gcd(d,n)=1

λ+
d f(d)

∑
m⩽X
d|m

gcd(m,n)=1

1

∣∣∣∣∣∣∣∣∣∣∣∣
�ϵ

ϕ(n)X
n(logX)α

∏
p|P (z)

p|n

(
1 − f(p)

p

)−1

+Xϵτ(n)

where the implied constant depends at most on ϵ.

Proof. Using the fact that λ+
d is supported on [1, y] we have,

∑
d⩽X

d|P (z)
gcd(d,n)=1

λ+
d f(d)

∑
m⩽X
d|m

gcd(m,n)=1

1 = Xϕ(n)
n

∑
d⩽y

d|P (z)
gcd(d,n)=1

λ+
d

f(d)
d

+O(yτ(n))

= Xϕ(n)
n

∑
d|P (z)

gcd(d,n)=1

λ+
d

f(d)
d

+O(yτ(n)).

Next, we would like to apply the fundamental lemma of sieve theory to the sum over
d, [25, Fundamental Lemma 6.3, pg.159]. In order to do so, we first need to satisfy the
condition

∏
w⩽p<z
p prime

(
1 − 1(gcd(n, d) = 1)f(p)

p

)−1

⩽ K

(
log z
logw

)
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for any 0 < w ⩽ z where K is some absolute constant. For this we note that, by
assumption (4.2.5) on f it follows that

∏
w<p⩽z

p∤n

(
1 − f(p)

p

)−1

=
∏

w<p⩽z
p|n

(
1 − f(p)

p

) ∏
w<p⩽z

(
1 − f(p)

p

)−1

,

�
(

log z
logw

)α ∏
w<p⩽z

p|n

(
1 − f(p)

p

)
�
(

log z
logw

)α

since ∏p|n

(
1 − f(p)

p

)
< 1 for all n. Thus we may apply the fundamental lemma to the

sum over d to obtain the upper bound:

∑
d|P (z)

λ+
d

1(gcd(n, d) = 1)f(d)
d

�
∏

p|P (z)

(
1 − 1(gcd(n, d) = 1)f(p)

p

)

�
∏

p|P (z)
p|n

(
1 − f(p)

p

)−1 ∏
p|P (z)

(
1 − f(p)

p

)

� 1
(log z)α

∏
p|P (z)

p|n

(
1 − f(p)

p

)−1

.

Recalling that z = Xϵ/10 and y = Xϵ we substitute this into the our equalities above
to obtain the result.

We now prove the main result of this section.

Proof of Theorem 4.1.1. Set the sum on the left to be S(N,M). Then by the Cauchy–
Schwarz inequality:

S(N,M)2 �

 ∑
m⩽M

|bm|f(m)


 ∑

m⩽M

|bm|f(m)

∣∣∣∣∣∣
∑

n⩽N

an

(
n

m

)∣∣∣∣∣∣
2


The first sum over m is bounded using (4.2.4):

∑
m⩽M

|bm|f(m) �
∑

m⩽M

f(m) � M

(logM)1−α
.

Fix z = M ϵ/10 and y = z10 = M ϵ. Using Lemma 4.2.1 we have

|bm|f(m) ⩽ f(m) ⩽
∑
d|m

d|P (z)

λ+
d f̂(d)
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where f̂ is as defined in Lemma 4.2.1 and (λ+
d ) are the sieve coefficients defined previ-

ously. Therefore,

∑
m⩽M

|bm|f(m)

∣∣∣∣∣∣
∑

n⩽N

an

(
n

m

)∣∣∣∣∣∣
2

⩽
∑

m⩽M

∑
d|m

d|P (z)

λ+
d f̂(d)

∣∣∣∣∣∣
∑

n⩽N

an

(
n

m

)∣∣∣∣∣∣
2

⩽
∑

d⩽M
d|P (z)

λ+
d f̂(d)

∑
m⩽M
d|m

∣∣∣∣∣∣
∑

n⩽N

an

(
n

m

)∣∣∣∣∣∣
2

.

Now, by expanding the square this becomes:

∑
m⩽M

|bm|f(m)

∣∣∣∣∣∣
∑

n⩽N

an

(
n

m

)∣∣∣∣∣∣
2

⩽
∑

d⩽M
d|P (z)

λ+
d f̂(d)

∑
m⩽M
d|m

 ∑
n1,n2⩽N

an1 ān2

(
n1n2

m

)
⩽

∑
n1,n2⩽N
n1n2=□

an1 ān2

∑
d⩽M

d|P (z)

λ+
d f̂(d)

∑
m⩽M
d|m

gcd(m,n1n2)=1

1

+
∑

n1,n2⩽N
n1n2 6=□

an1 ān2

∑
d⩽M

d|P (z)

λ+
d f̂(d)

∑
m⩽M
d|m

(
n1n2

m

)
.

We first consider the sum over n1n2 6= □. Here we write m = m′d and note that
the sieve coefficents λ+

d are supported on the interval [1, y]. Then, using the Pólya–
Vinogradov inequality:

∑
n1,n2⩽N
n1n2 6=□

an1 ān2

∑
d⩽M

d|P (z)

λ+
d f̂(d)

∑
m⩽M
d|m

(
n1n2

m

)
�

∑
n1,n2⩽N
n1n2 6=□

∑
d⩽y

∣∣∣∣∣∣
∑

m′⩽M/d

(
n1n2

m′

)∣∣∣∣∣∣
� y

∑
n1,n2⩽N
n1n2 6=□

n
1/2
1 n

1/2
2 (log n1n2)

� yN3(logN).

For the sum over the squares we have

∑
n1,n2⩽N
n1n2=□

an1 ān2

∑
d⩽M

p|P (z)
gcd(d,n1n2)=1

λ+
d f̂(d)

∑
m⩽M
d|m

gcd(m,n1n2)=1

1 �
∑

n⩽N

τ(n2)

∣∣∣∣∣∣∣∣∣∣∣∣
∑

d⩽M
d|P (z)

gcd(d,n)=1

λ+
d f̂(d)

∑
m⩽M
d|m

gcd(m,n)=1

1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that, by assumption (4.1.4) on f , and the definition of f̂ , we may write,

∑
p⩽X

f̂(p)
p

=
∑
p⩽X

1 − f(p)
p

= (1 − α) log logX +O(1)

for 2 ⩽ X. Note also that f̂(pm) = f̂(p) for all primes p and all m ⩾ 1. It follows that
f̂ satisfies the conditions of 4.2.2. Thus we may use this lemma to bound the inner
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sum by ∣∣∣∣∣∣∣∣∣∣∣∣
∑

d⩽M
d|P (z)

gcd(d,n)=1

λ+
d f̂(d)

∑
m⩽M
d|m

gcd(m,n)=1

1

∣∣∣∣∣∣∣∣∣∣∣∣
�ϵ

ϕ(n)Mgz(n)
n(logM)1−α

+O(yτ(n)),

where we have set

gz(n) =
∏

p|P (z)
p|n

1 − f̂(p)
p

−1

.

Substituting this into the sum over n1n2 = □ we get,

∑∑
n1,n2⩽N
n1n2=□

an1 ān2

∑
d⩽M

p|P (z)
gcd(d,n1n2)=1

λ+
d f̂(d)

∑
m⩽M
d|m

gcd(m,n1n2)=1

1 �ϵ

 M

(logM)1−α

∑
n⩽N

τ(n2)gz(n) + y
∑

n⩽N

τ(n2)τ(n)



�ϵ
MN(logN)2

(logM)1−α
+ yN(logN)5

where we have used (4.2.3) to obtain
∑

n⩽N

τ(n2)gz(n) � N(logN)2 and
∑

n⩽N

τ(n2)τ(n) � N(logN)5,

since gz(p) ⩽ 2 for all primes p. To conclude, we now have

S(N,M)2 �ϵ
M

(logM)1−α

(
MN(logN)2

(logM)1−α
+ yN(logN)5 + yN3(logN)

)

�ϵ
M2N(logN)2

(logM)1−α(logM)1−α
+ yMN3(logN)

(logM)1−α
.

Taking square roots and noting that (x + y)1/2 � (x1/2 + y1/2) for x, y ⩾ 0 gives the
result, since y = M ϵ.

4.3 Proof of Theorem 4.1.8

Our strategy for this proof will be to cover the hyperbolic region in dyadic rectangles
and apply (4.1.7)-(4.1.10). Set

S(T ) =
∑∗

z<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
.

If z > T 1/2 then the sum is 0, so that the bound is trivially true. If z = T 1/2 then the
sum has magnitude ⩽ 1, so again the bound is trivial. We are now left with z < T 1/2.
Our first step is to split the sum over the hyperbolic region into 4 pieces. We write

S(T ) = S1(T ) + S2(T ) + S3(T ) − S4(T )
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where

S1(T ) =
∑∗

z1<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
;

S2(T ) =
∑∗

z<n⩽z1

∑∗

z<m⩽T
n

(nm)canbm

(
n

m

)
;

S3(T ) =
∑∗

z<m⩽z1

∑∗

z<n⩽ T
m

(nm)canbm

(
n

m

)
;

S4(T ) =
∑∗

z<n⩽z1

∑∗

z<m⩽z1

(nm)canbm

(
n

m

)
.

where z1 = max(z, T 1/3

log T
). We now aim to bound each of these sums individually. First

note that if z > T 1/3

log T
, S2(T ) = S3(T ) = S4(T ) = 0 and so we only need to consider

them whenever z ⩽ T 1/3

log T
. For S4(T ) we apply (4.1.8) with N = M = T 1/3

log T
: divide

and multiply the sum by T c so that we have | nc

T c/2an|, | mc

T c/2 bm| ⩽ 1. Then (4.1.8) with
ϵ < 1/6 gives

S4(T ) �c

T
2/3+c if z ⩽ T 1/3

log T
,

0 if z > T 1/3

log T
.

We now turn to the remaining 3 sums. If z ⩽ T 1/3

log T
, then S2(T ) and S3(T ) may be dealt

with using symmetric arguments as a consequence of reciprocity for Jacobi symbols,
( n

m
) = (−1)

(n−1)(m−1)
4 (m

n
), and so we only need to deal with one: since n and m are odd

and square-free, we may split S3(T ) into 4 sums using the conditions n,m ≡ 1 or 3
(mod 4) and then reciprocity will give 4 sums in the same form as S2(T ). Thus we
only need to consider S1(T ) and S2(T ). We aim to use Perron’s formula. For S1(T )
we split (z1, T ] into dyadic intervals to obtain � (log T )2 dyadic regions of the form
(N, 2N ] × (M, 2M ] where N,M ∈ (z1, T ]. For S2(T ), split the intervals (z, z1] and
(z, T ] into dyadic intervals to obtain � (log T )2 dyadic regions (N, 2N ] × (M, 2M ]
where N ∈ (z, z1] and M ∈ (z, T ]. This will give bounds of the form

S1(T ) � (log T )2 max
z1<N⩽T
z1<M⩽T
NM⩽T

|S(T ;N,M)|;

S2(T ) � (log T )2 max
z<N⩽z1
z<M⩽T
NM⩽T

|S(T ;N,M)|;

where in each case
S(T ;N,M) =

∑∗

N<n⩽2N
M<m⩽2M

nm⩽T

(nm)canbm

(
n

m

)
.

Next, we apply Perron’s formula to deal with the hyperbolic conditions. Let θ ∈
[−1/2, 1/2] be such that T + θ ∈ Z + 1

2 and take τ = T + θ in (4.1.7). Then (4.1.7)
becomes

1
π

∫ R

−R
(nm)itfT +θ(t)dt = 1(nm ⩽ T ) +O(R−1|log(nm) − log(T + θ)|−1)

108



Section 4.3 Chapter 4: Variations on the Large Sieve

for any R > 0 where fT +θ(t) = sin(t log(T +θ))
t

. Noting that here (log(nm)− log(T +θ)) �
1
T

, we substitute this into S(T ;N,M) to obtain

S(T ;N,M) = 1
π

∫ R

−R
fT +θ(t)

∑∗

N<n⩽2N
M<m⩽2M

(nm)c+itanbm

(
n

m

)
dt+O

(
(NM)1+cT

R

)
.

Before we move forward, we deal with the (nm)c+it term: write 1 = (4NM)c

(4NM)c , then by
setting ãn = nc

(2N)can and b̃m = mc

(2M)c bm we have

∑∗

N<n⩽2N
M<m⩽2M

(nm)c+itanbm

(
n

m

)
= (4NM)c

∑∗

N<n⩽2N
M<m⩽2M

nitãnm
itb̃m

(
n

m

)

where |nitãn|, |mitb̃m| ⩽ 1. By applying (4.1.8) and substituting into S(T ;N,M) we
get

S(T ;N,M) �ϵ 4c(MN)c
∫ R

−R
|fT +θ(t)|dt(MN)ϵ

(
MN1/2 +M1/2N

)
+ (NM)1+cT

R
.

(4.3.1)
By instead applying Cauchy–Schwarz and (4.1.10) we obtain

S(T ;N,M) �ϵ 4c(MN)c
∫ R

−R
|fT +θ(t)|dt

(
MN1/2 +M1/2N3/2(logN)1/2

)
+ (NM)1+cT

R
.

(4.3.2)
We will apply (4.3.1) to the dyadic regions in S1(T ) to obtain

S1(T ) �c,ϵ T
c(log T )2

∫ R

−R
|fT +θ(t)|dt max

z1<N⩽T
z1<M⩽T
NM⩽T

(MN)ϵ
(
MN1/2 +M1/2N

)
+T 2+c(log T )2

R

�c,ϵ T
c(log T )2

∫ R

−R
|fT +θ(t)|dt

(
T 1+ϵ

z
1/2
1

)
+ T 2+c(log T )2

R
.

For S2(T ) however, we may assume z ⩽ T 1/3

log T
so that the dyadic rectangles either have

the lopsided condition N(logN)1/2 ⩽ M1/2 ⩽ T 1/2

z1/2 or have M1/2 ⩽ N(logN)1/2 �
T 1/3

(log T )1/2 . Thus we may use (4.3.2) to obtain

S2(T ) �c T
c(log T )2

∫ R

−R
|fT +θ(t)|dt max

z<N⩽T 1/3
log T

z<M⩽T
NM⩽T

(MN1/2+M1/2N3/2(logN)1/2)+T 2+c(log T )2

R

�c T
c(log T )2

∫ R

−R
|fT +θ(t)|dt

(
T 1/2

(
T 1/2

z1/2 + T 1/3

(log T )1/2

))
+ T 2+c(log T )2

R

�c T
c(log T )2

∫ R

−R
|fT +θ(t)|dt

(
T

z1/2

)
+ T 2+c(log T )2

R
,

if z ⩽ T 1/3

log T
and S2(T ) = 0 otherwise. Choosing R = T 2(log T )2 the integral becomes

bounded by (log T ) therefore giving

S1(T ) �c,ϵ
T 1+c+ϵ(log T )3

z
1/2
1

,
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and

S2(T ) �c


T 1+c(log T )3

z1/2 if z ⩽ T 1/3

log T
,

0 if z > T 1/3

log T
.

Finally, recalling that S2(T ) and S3(T ) are symmetrically equivalent and that z1 =
max(z, T 1/3

log T
), we may put all of these bounds together to obtain

S(T ) �c,ϵ


T 1+c(log T )3

z1/2 + T 5/6+c+ϵ(log T )7/2 + T 2/3+c if z ⩽ T 1/3

log T
,

T 1+c+ϵ(log T )3

z1/2 if z > T 1/3

log T
,

for any ϵ > 0. Now suppose there exists an ϵ > 0 such that z ⩾ T 1/3−ϵ. Then if
z > T 1/3

log T
we use the second case of the above bound with ϵ/2 to obtain:

S(T ) �c,ϵ
T 1+c+ϵ/2(log T )3

z1/2 �c,ϵ
T 1+c+ϵ

z1/2 .

If T 1/3−ϵ ⩽ z ⩽ T 1/3

log T
then consider the first bound with ϵ/2. Then,

S(T ) �c,ϵ
T 1+c(log T )3

z1/2 + T 5/6+c+ϵ/2(log T )7/2 + T 2/3+c �c,ϵ
T 1+c+ϵ

z1/2 .

Lastly, if there exists an ϵ > 0 such that z ⩽ T 1/3−ϵ, then consider the bound for
z ⩽ T 1/3

log T
with ϵ/2. In this case the first term dominates since

T 1+c(log T )3

z1/2 ⩾ T 5/6+c+ϵ(log T )3 � T 5/6+c+ϵ/2(log T )7/2,

which implies the result.

4.4 Proof of Theorem 4.1.9

The key idea of this proof is to cover parts of the hyperbolic region with rectangles of
equal width and apply Theorem 4.1.8 along with the Cauchy–Schwarz inequality and
(4.1.10) to the sums over each of these rectangles and then sum over the results. The
following lemma encodes the covering we will use:

Lemma 4.4.1. Fix c ⩾ 0 and 0 < δ ⩽ 1/2. Then for any T ⩾ 2 and any 2 ⩽ z < T δ

we have,
∑∗

z<n⩽T δ

∑∗

z<m⩽T
n

(nm)canbm

(
n

m

)
=
∑
k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm

(
n

m

)
+O

(
T 1+c

z1/2

)
,

where

H =
{
k ∈ N : z1/2 ⩽ k ⩽ T δ

z1/2 − 1
}

;

Ik =
{
n ∈ N : z1/2k < n ⩽ z1/2(k + 1)

}
;

Jk =
{
m ∈ N : z < m ⩽ T

z1/2(k + 1)

}
.
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Figure 4.4.1: Lemma 4.4.1 Illustration

Remark 4.4.2. By partitioning the interval over n into intervals of equal length we
are then able to make use of the fact that, close to the hyperbolic curve, the gradient
d(x/n)

dn
= − x

n2 , decreases rapidly in magnitude. This observation will lead to the regions
leftover from the covering boxes having small volume.

Proof. We begin by partitioning the interval (0, T δ] into T δ

z1/2 intervals of equal length
z1/2, say (kz1/2, (k+1)z1/2] for integers 0 ⩽ k ⩽ T δ

z1/2 −1, and intersecting this partition
with (z, T δ]. Then notice that

⋃
k∈H

Ik ⊆ (z, T δ] ∩ N,

where the leftover part of this partition, L′, satisfies

L′ = ((z, T δ] ∩ N) \
⋃

k∈H

Ik ⊆ ((z, z + z1/2] ∪ (T δ − z1/2, T δ]) ∩ N.

Fix a k. Then for an n ∈ Ik, the summation index m ranges from z to T
n

where
T

(k+1)z1/2 ⩽ T
n
< T

kz1/2 . To create our rectangles we split all ranges over m into a range
z < m ⩽ T

(k+1)z1/2 , giving us the intervals Jk, and T
(k+1)z1/2 < m ⩽ T

n
. Notice that for

n ∈ Ik, ( T
(k+1)z1/2 ,

T
n

] ∩ N ⊆ J ′
k = {m ∈ N : T

z1/2(k+1) < m ⩽ T
z1/2k

}. Combining the
ranges, for each k we have a rectangle Ik × Jk and a small section Lk = {(n,m) ∈
N : n ∈ Ik,

T
(k+1)z1/2 < m ⩽ T

n
} close to the hyperbolic curve which is contained in

the small rectangle Ik × J ′
k. We also have the leftover regions coming from n ∈ L′,

L = {(n,m) ∈ N2 : n ∈ L′, z < m ⩽ T
n

}. Then we have:

{(n,m) ∈ N2 : nm ⩽ T, n ⩽ T δ, n,m > z} =
⋃

k∈H

(Ik × Jk) ∪
⋃

k∈H

Lk ∪ L.

See Figure 1 for an illustration of these sets.111
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It follows that∑∗

z<n⩽T δ

∑∗

z<m⩽T
n

(nm)canbm

(
n

m

)
=
∑
k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm

(
n

m

)

+
∑
k∈H

∑∗

(n,m)∈Lk

(nm)canbm

(
n

m

)

+
∑∗

(n,m)∈L

(nm)canbm

(
n

m

)
.

We conclude by bounding the second and third sums trivially. For the second we use
the triangle inequality and then expand the sum to Ik × J ′

k:∑
k∈H

∑∗

(n,m)∈Lk

(nm)canbm

(
n

m

)
�

∑
k∈H

∑∗

n∈Ik

∑∗

m∈J ′
k

T c.

Note that |Ik × J ′
k| ⩽ T

k(k+1) . Summing this over k > z1/2 gives

∑
k∈H

∑∗

(n,m)∈Lk

(nm)canbm

(
n

m

)
� T 1+c

z1/2 .

For the leftovers we use the triangle inequality again and expand the double sum to
the region ((z, z + z1/2] × (z, T

z
] ∪ (T δ − z1/2, T δ] × (z, T

T δ−z1/2 ]) ∩ N2. The number of
integer pairs in this region is � T

z1/2 + T 1−δ/2 � T
z1/2 using the assumption z < T δ.

Thus we obtain the bound ∑∗

(n,m)∈L

(nm)canbm

(
n

m

)
� T 1+c

z1/2 .

Overall, this gives the expression

∑∗

z<n⩽T δ

∑∗

z<m⩽T
n

(nm)canbm

(
n

m

)
=
∑
k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm

(
n

m

)
+O

(
T 1+c

z1/2

)
.

We now complete our proof of Theorem 4.1.9. This Theorem follows directly from
Theorem 4.1.8 whenever z ⩾ (log T )24: in these cases, (log T )2

z1/12 = O(1), so we obtain

∑∗

z<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
�c

T 1+c(log T )
z1/4 .

We are left with the case where z < (log T )24, for which we aim to apply (4.1.10)
and Lemma 4.4.1. However, in order for (4.1.10) to be effective, we cannot allow
N = max(Ik) to exceed M1/2 = (max(Jk))1/2 in any of our covering rectangles, as then
the N2(logN) term in (4.1.10) would dominate the M term, and may lead to bounds
which are too large for our purposes. To avoid this we split the hyperbolic region as
before: ∑∗

z<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
= R1(T ) +R2(T ) +R3(T ) −R4(T )
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where

R1(T ) =
∑∗

T 1/4<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
;

R2(T ) =
∑∗

z<n⩽T 1/4

∑∗

z<m⩽T
n

(nm)canbm

(
n

m

)
;

R3(T ) =
∑∗

z<m⩽T 1/4

∑∗

z<n⩽ T
m

(nm)canbm

(
n

m

)
;

R4(T ) =
∑∗

z<n⩽T 1/4

∑∗

z<m⩽T 1/4

(nm)canbm

(
n

m

)
.

This splitting allows us to apply Lemma 4.4.1 to R2(T ) (and R3(T )) and obtain integer
intervals Ik whose maximums do not get too large, therefore allowing us to apply
(4.1.10) effectively. First, we bound R1(T ) and R4(T ). For R1(T ) we use Theorem
4.1.8 with z1 = T 1/4:

R1(T ) �c
T 1+c(log T )3

z
1/3
1

= T 11/12+c(log T )3.

Next, we use (4.1.8) with N = M = T 1/4 to deal with R4(T ). Multiplying by 1 = T c

T c

and setting ãn = nc

T c/2an, b̃m = mc

T c/2 bm, we have |ãn|, |b̃m| ⩽ 1. Then applying (4.1.8)
gives

R4(T ) �ϵ T
3/8+c+ϵ,

which is sufficient by choosing ϵ < 13/24, as it may then be absorbed into the bound
for R1(T ).

We are left with R2(T ) and R3(T ). Note that these sums are symmetrically equi-
valent using the same argument as that of S2(T ) and S3(T ) in Section 4.3. Thus we
only need to deal with R2(T ). For this we use the covering Lemma 4.4.1 with δ = 1/4:

R2(T ) =
∑
k∈H

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm

(
n

m

)
+O

(
T 1+c

z1/2

)
,

where

H =
{
k ∈ N : z1/2 ⩽ k ⩽ T 1/4

z1/2 − 1
}

;

Ik =
{
n ∈ N : z1/2k < n ⩽ z1/2(k + 1)

}
;

Jk =
{
m ∈ N : z < m ⩽ T

z1/2(k + 1)

}
.

To deal with this sum, we will consider the sum over n and m for a fixed k. First deal
with the power term:

∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm

(
n

m

)
= T c

∑∗

m∈Jk

∑∗

n∈Ik

nc

zc/2(k + 1)c

mczc/2(k + 1)c

T c
anbm

(
n

m

)
.
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Now n
z1/2(k+1) ,

mz1/2(k+1)
T

⩽ 1, so that we may define the sequences ãn = nc

zc/2(k+1)can in
addition to b̃m = mczc/2(k+1)c

T c bm which satisfy the condition |ãn|, |b̃m| ⩽ 1. Finally we
apply the Cauchy–Schwarz inequality and (4.1.10) with M = max(Jk) ⩽ T

z1/2(k+1) and
N = max(Ik) ⩽ z1/2(k + 1):∑∗

n∈Ik

∑∗

m∈Jk

(nm)canbm

(
n

m

)
= T c

∑∗

m∈Jk

∑∗

n∈Ik

ãnb̃m

(
n

m

)

� T c|Jk|1/2
(∑∗

m∈Jk

∣∣∣∣∑∗

n∈Ik

ãn

(
n

m

)∣∣∣∣2)1/2

� T c
(

T

z1/2(k + 1)

)1/2( T

z1/2(k + 1)

)1/2
|Ik|1/2

� T 1+c

z1/4(k + 1)
where we used the fact that k2z(log(kz1/2)) � T 1/2(log T ), while T

z1/2(k+1) ⩾ T 3/4 to
simplify the application of (4.1.10). Summing this bound over the given k introduces
a logarithmic term, and so

R2(T ), R3(T ) � T 1+c(log T )
z1/4 .

Combining all the bounds we get:∑∗

z<n,m⩽T
nm⩽T

(nm)canbm

(
n

m

)
�c

T 1+c(log T )
z1/4 + T 11/12+c(log T )3 �c

T 1+c(log T )
z1/4

(since z < (log T )24) as required.

4.5 Proof of Theorem 4.1.10

To begin we once more cut the hyperbolic region into regions depending on the sizes
of each variable. We write∑

1⩽n,m⩽T
2∤nm

nm⩽T

(
n

m

)
= N1(T ) +N2(T ) −N3(T ),

where

N1(T ) =
∑

1⩽n⩽T 1/2

2∤n

∑
1⩽m⩽T/n

2∤m

(
n

m

)
;

N2(T ) =
∑

1⩽m⩽T 1/2

2∤m

∑
1⩽n⩽T/m

2∤n

(
n

m

)
;

N3(T ) =
∑

1⩽n⩽T 1/2

2∤n

∑
1⩽m⩽T 1/2

2∤m

(
n

m

)
.
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Let us first deal with N1(T ). We begin by separating the square values of n:

N1(T ) =
∑

1⩽n⩽T 1/2

2∤n
n=□

∑
1⩽m⩽T/n

2∤m

(
n

m

)
+

∑
1⩽n⩽T 1/2

2∤n
n6=□

∑
1⩽m⩽T/n

2∤m

(
n

m

)
.

To deal with the second of these sums we use the Pólya–Vinogradov inequality for the
sum over m, and then sum over 1 ⩽ n ⩽ T 1/2. Thus the second sum is O(T 3/4(log T )).
For the first sum, we note that since n is a square the Jacobi symbol is the trivial
character modulo n. Thus

(
n

m

)
=

1 if gcd(n,m) = 1,
0 if gcd(n,m) > 1.

It is well-known that for a fixed odd n, the number of odd 1 ⩽ m ⩽ T
n

co-prime to n
is given by

T

2n
· ϕ(n)
n

+O(nϵ)

for any ϵ > 0. Summing this error over the square values of n less than T 1/2 we will
obtain an error of size O(T 1/4+ϵ), which is satisfactory. For the main term we use the
change of variables n = k2:

∑
1⩽n⩽T 1/2

2∤n
n=□

T

2n
· ϕ(n)
n

= T

2
∑

1⩽k⩽T 1/4

2∤k

ϕ(k2)
k4 =

 ∞∑
k=1
2∤k

ϕ(k2)
k4

 T

2
+O(T 3/4).

Noting that N2(T ) may be dealt with using the same methods we obtain

N1(T ) +N2(T ) =

 ∞∑
k=1
2∤k

ϕ(k2)
k4

T +O(T 3/4(log T )).

Using Theorem 1 of [13] with X = Y = T 1/2 we obtain, N3(T ) � T 3/4. Thus we have

∑
1⩽n,m⩽T

2∤nm
nm⩽T

(
n

m

)
=

 ∞∑
k=1
2∤k

ϕ(k2)
k4

T +O(T 3/4(log T )).

Lastly we evaluate the constant. To do this, let g(n) = 1odd(n)1□(n)ϕ(n) where 1odd
and 1□ are the indicator functions for odd numbers and squares respectively. We will
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consider the Dirichlet series and Euler product of this multiplicative function:
∞∑

k=1

g(n)
ns

=
∏
p

(
1 +

∞∑
m=1

g(p)
pms

)

=
∏
p6=2

(
1 +

∞∑
m=1

ϕ(p2m)
p2ms

)

=
∏
p6=2

(
1 + (p− 1)

p

∞∑
m=1

1
p2m(s−1)

)

=
∏
p6=2

(
1 − 1/p(2s−1)

1 − 1/p(2s−2)

)

= 1 − 2(2−2s)

1 − 2(1−2s)
ζ(2s− 2)
ζ(2s− 1)

,

where ζ is the Riemann-zeta function. By taking s = 2 we obtain the equality
∞∑

k=1
2∤k

ϕ(k2)
k4 = 6ζ(2)

7ζ(3)

as required.
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Chapter 5

Hyperbolic Character Sums

The goal of this chapter is to prove Propostions 2.2.6-2.2.11 which we assumed in
Chapter 2 to prove Theorem 1.2.1.

5.1 Technical Lemmas

In this section, we record and prove some technical lemmas that will be heavily used
moving forward.

5.1.1 Large Conductor Lemmas

We first list the results on bilinear sums in the Jacobi symbol which we will need in
this chapter. Recall the following result of Freidlander and Iwaniec:

Lemma 5.1.1 ([17], Lemma 2). Let N,M ⩾ 2 and suppose (an), (bm) are any complex
sequences supported on the odd integers such that |an|, |bm| ⩽ 1. Then

∑
n⩽N

∑
m⩽M

anbm

(
n

m

)
� (MN5/6 +M5/6N)(log 3NM)7/6

where the implied constant is absolute.

We will also need the following modification to Lemma 5.1.1:

Lemma 5.1.2. Let N,M ⩾ 2 and 2 ⩽ W < N,M . Suppose (an), (bm) are any
complex sequences supported on the odd integers such that |an|, |bm| ⩽ 1.

∑
W <n⩽N

∑
m⩽M

an

n
bm

(
n

m

)
� M(log 3NM)7/6

W 1/6 .
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Proof. For this proof, set

S(u,M) =
∑
n⩽u

∑
m⩽M

anbm

(
n

m

)
.

Using partial summation in the n variable we have

∑
W <n⩽N

∑
m⩽M

an

n
bm

(
n

m

)
= S(N,M)

N
− S(W,M)

W
+
∫ N

W

S(u,M)
u2 du.

Then bounding S(u,M) using Lemma 2.2.4, and noting that M,N ⩾ W , we may
obtain the result by trivially bounding the logarithms and computing the integral.

This result is particularly useful when N ⩽ M
W

. Next, we will need the following
special case Corollary 4.1.2:

Lemma 5.1.3. Let M ⩾ N ⩾ W ⩾ 2, and fix some ϵ > 0. For any complex sequences
an,bm which are supported on the odd integers such that |an| ⩽ 1 and |bm| ⩽ 1 we have:

∑
W <n⩽N

∑
m⩽M

anbm

nτ(m)

(
n

m

)
�ϵ

M(logN)
W 1/2(logM)1/2 + M1/2+ϵN1/2(logN)1/2

(logM)1/4 ,

where the implied constant depends at most on ϵ.

Proof. This result is a straightforward application of Corollary 4.1.2. Indeed 1
τ

is a
multiplicative function satisfying all conditions of this lemma. In particular it satisfies
assumption (4.1.4) with α = 1/2, giving the result.

This result is particularly useful in regions where N2 ⩽M .

5.1.2 Small Conductor Lemmas

In order to deal with regions where our sums involve Jacobi symbols which have small
conductors, we will require Siegel–Walfisz methods. Define

f0 = 1√
π

∏
p prime

fp

(
1 − 1

p

)1/2

and fp = 1 +
∞∑

j=1

1
(j + 1)pj

. (5.1.1)

Our key lemma for this purpose is Lemma 5.9 from [29]:

Lemma 5.1.4. Let r and Q be integers such that gcd(r,Q) = 1. Let χ(n) be a character
modulo Q. Fix any C > 0. Then for all X ⩾ 2 we have:

∑
n⩽X

gcd(n,r)=1

χ(n)
τ(n)

= 1(χ = χ0)S0(Qr)X√
logX

{
1 +O

(
(log log 3rQ)3/2

logX

)}
+OC

(
τ(r)QX
(logX)C

)
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where χ0 is the principal character modulo Q and

S0(Qr) = f0(∏
p|2rQ fp

) .
Furthermore, if Q and r are odd and q ∈ (Z/8Z)∗, then we have

∑
n⩽X

gcd(n,r)=1
n≡q mod 8

χ(n)
τ(n)

= 1(χ = χ0)S0(Qr)X
ϕ(8)

√
logX

{
1 +O

(
(log log 3rQ)3/2

logX

)}
+OC

(
τ(r)QX
(logX)C

)
.

Proof. We may use the same contour argument performed for Lemma 1 in [17], along
with the fact that, if χ 6= χ0, the Dirichlet series

∑
n∈N

gcd(n,r)=1

χ(n)
τ(n)ns

is holomorphic for <(s) > 1 − c(ϵ)
Qϵ(log Im(s)) for any ϵ > 0, where c(ϵ) is some positive

constant depending only on ϵ. For full details see [17, Lemma 1]. For the second part
we have ∑

n⩽X
gcd(n,r)=1
n≡q mod 8

χ(n)
τ(n)

= 1
ϕ(8)

∑
χ′char.
mod 8

χ′(q)
∑

n⩽X
gcd(n,r)=1

χ(n)χ′(n)
τ(n)

,

and so this follows via an application of the first part.

This result with χ = χ0 is used to obtain the main term in section 4 of [29]. We
shall do the same, however due to difficulties arising from our height conditions, we
will also require use of this result to obtain part of our error term (see Sections 5.2 and
5.3).

5.2 Character sums over hyperbolic regions I

In this section we evaluate bounds for sums over hyperbolic height conditions. In
particular we will deal with sums of the form:

∑∑∑∑
‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X

gcd(ni,2ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

χ0(n0)χ1(n1)χ2(n2)χ3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

(5.2.1)

where the sum is over n ∈ N4, ci, ri, qi ∈ N are fixed, odd constants for each 0 ⩽ i ⩽ 3
and χi are some characters. Our methods vary depending on which of the characters
are principal. In particular, we will have three cases to consider:

(a) Main Term: each χi is principal;
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(b) Small Conductor - Symmetric Hyperbola Method: χ0 or χ1 is non-principal and
χ2 or χ3 is non-principal;

(c) Small Conductor - Asymmetric Hyperbola Method: χ0 or χ1 is non-principal but
χ2 and χ3 are principal or vice versa.

Each case will be handled using the hyperbola method, and Lemma 5.1.4. For cases (b)
and (c) we will also provide results which average over the conductors of the characters.

5.2.1 Main Term

We first provide asymptotics for (5.2.1) when all of the χi are principal. First we will
require some preliminary lemmas:

Lemma 5.2.1. Let X ⩾ 3, C1, C2 > 0 and take any q0, q1 ∈ (Z/8Z)∗ . Then for any
odd integers 1 ⩽ r0, r1 ⩽ (logX)C1 and any fixed 1 ⩽ c0, c1 ⩽ (logX)C2:∑∑

‖n0c0,n1c1‖⩽X
gcd(ni,ri)=1 ∀i∈{0,1}
ni≡qi mod 8 ∀i∈{0,1}

1
‖n0c0, n1c1‖2τ(n0)τ(n1)

= S1(r0, r1) log logX
c0c1

+OC1,C2

(
τ(r0)τ(r1)

√
log logX

c0c1

)
,

where the implied constant depends only on C1 and C2 and for any odd r0, r1 we have

S1(r0, r1) = 2f 2
0

ϕ(8)2
(∏

p|2r0 fp

) (∏
p|2r1 fp

)
and f0, fp are as defined in (5.1.1).

Remark 5.2.2. Note that the presence of c0 and c1 in the denominator of this asymp-
totic is due to their presence in the denominator of the summand and not due to their
presence in the range of the ni. It will be seen in the proof that they become untangled
from the maximum.

Proof. Set the sum to be H(X). We split it into three regions depending on the value
of ‖n0c0, n1c1‖:

H(X) = H0(X) +H1(X) −H2(X)

where

H0(X) =
∑

n0c0⩽X
gcd(n0,r0)=1
n0≡q0 mod 8

∑
n1⩽n0c0/c1

gcd(n1,r1)=1
n1≡q1 mod 8

1
n2

0c
2
0τ(n0)τ(n1)

,

H1(X) =
∑

n1c1⩽X
gcd(n1,r1)=1
n1≡q1 mod 8

∑
n0⩽n1c1/c0

gcd(n0,r0)=1
n0≡q0 mod 8

1
n2

1c
2
1τ(n0)τ(n1)

,
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and
H2(X) =

∑
‖n0c0,n1c1‖⩽X

gcd(ni,ri)=1 ∀i∈{0,1}
ni≡qi mod 8 ∀i∈{0,1}

n0c0=n1c1

1
n2

0c
2
0τ(n0)τ(n1)

.

Let us first consider H0(X). In order to use Lemma 5.1.4 on the inner sum we need
to ensure that n0c0/c1 ⩾ 2. We write:

H0(X) =
∑

2c1⩽n0c0⩽X
gcd(n0,r0)=1
n0≡q0 mod 8

∑
n1⩽n0c0/c1

gcd(n1,r1)=1
n1≡q1 mod 8

1
n2

0c
2
0τ(n0)τ(n1)

+O

 ∑
n0c0<2c1

∑
n1⩽n0c0/c1

1
n2

0c
2
0τ(n0)τ(n1)

 ,

To deal with this second sum we note that n1 ⩽ 2 and swap the order of summation.
Then it becomes

�
∑

n1⩽2

∑
n1c1/c0⩽n0

1
c2

0n
2
0

� 1
c0c1

.

Thus we are left with

H0(X) =
∑

2c1⩽n0c0⩽X
gcd(n0,r0)=1
n0≡q0 mod 8

∑
n1⩽n0c0/c1

gcd(n1,r1)=1
n1≡q1 mod 8

1
n2

0c
2
0τ(n0)τ(n1)

+O
( 1
c0c1

)
.

Now applying Lemma 5.1.4 with Q = 1 and C = 3/2 to the sum over n1 we obtain:

H0(X) = S0(r1)
ϕ(8)c0c1

M(X) +O

(
τ(r1)(log log 3r1)3/2

c0c1
E(X)

)
,

where

M(X) =
∑

2c1⩽n0c0⩽X
gcd(n0,r0)=1
n0≡q0 mod 8

1
n0τ(n0)

√
log n0c0/c1

and E(X) =
∑

2c1⩽n0c0⩽X

1
n0τ(n0)(log n0c0/c1)3/2 .

Note that for small n0 the error terms are roughly the same size as the main term;
however, upon summing the n0 over a large range, the dominance of the main term is
maintained. Since (log log r1)3/2 �C1 (log log logX)3/2 it suffices to show that E(X) �
1. To see this, apply partial summation and Lemma 5.1.4:

E(X) � c0

X(logX/c1)3/2

∑
2c1⩽n0c0⩽X

1
τ(n0)

+
∫ X/c0

2c1/c0

1
t2(log tc0/c1)3/2

∑
2c1/c0⩽n0⩽t

1
τ(n0)

dt,

� 1
(logX)2 +

∫ X/c0

‖2,2c1/c0‖

1
t(log tc0/c1)3/2(log t)1/2dt

+ 1(c1/c0 < 1)
∫ 2

2c1/c0

1
t2(log tc0/c1)3/2

∑
2c1/c0⩽n0⩽t

1
τ(n0)

dt

� 1 +
∫ X/c0

‖2,2c1/c0‖

1
t(log tc0/c1)3/2(log t)1/2dt � 1,
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where in the leading term of the second step we have used the fact that c1 ⩽ (logX)C2

and a Taylor expansion to assert that
1

(logX/c1)3/2 � 1
(logX)3/2 .

To see that the final integral converges, use the fact that
√

log t ⩾
√

log 2 in this interval
and we use the linear substitution y = tc0/c1. For M(X) we increase the lower bound
of this sums range:

M(X) =
∑

(log X)2C2⩽n0⩽X/c0
gcd(n0,r0)=1
n0≡q0 mod 8

1
n0τ(n0)

√
log n0c0/c1

+O

 ∑
n0⩽(log X)2C2

1
n0τ(n0)

 .

A straightforward partial summation argument shows that this error term is bounded
by �

√
log logX. For the other range we note that since n0 ⩾ (c0/c1)2, we may use

the Taylor series expansion

1√
log n0c0/c1

= 1√
log n0

+O

(
(log c0/c1)
(log n0)3/2

)
.

We then have

M(X) =
∑

(log X)2C2⩽n0⩽X/c0
gcd(n0,r0)=1
n0≡q0 mod 8

1
n0τ(n0)

√
log n0

+O

 ∑
(log X)2C2⩽n0⩽X

(log c0/c1)
n0(log n0)3/2



+OC2

(√
log logX

)
.

The central error term sum converges and so,
∑

(log X)2C2⩽n0⩽X/c0

(log c0/c1)
n0(log n0)3/2 �C2

(log c0/c1)√
log logX

�C2

√
log logX.

For the leading sum in M(X) we use partial summation to obtain
∫ X/c0

(log X)2C2

1
t2

√
log t

∑
n0⩽t

gcd(n0,r0)=1
n0≡q0 mod 8

1
τ(n0)

dt+O

 1
X

√
logX

∑
n0⩽X

1
τ(n0)



+O

∫ X

2

1
t2(log t)3/2

∑
n0⩽t

1
τ(n0)

dt

 .
Using the trivial bound for the sums in the error terms it is clear that they are O(1).
Finally we may apply Lemma 5.1.4 with Q = 1 and C = 3 to the sum inside the main
term, this time maintaining the constant:

M(X) =S0(r0)
ϕ(8)

∫ X/c0

(log X)2C2

1
t(log t)

dt+O

(∫ X

2

(log log 3r0)3/2

t(log t)2 dt

)

+O

(∫ X

2

τ(r0)
t(log t)7/2dt

)
+OC2

(√
log logX

)
.
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These latter integrals will converge as X tends to infinity using r0 ⩽ (logX)C1 to deal
with the presence of r0. The integral in the main term is∫ X/c0

(log X)2C2

1
t(log t)

dt = (log logX/c0) +OC2(log log logX)

= (log logX) +OC2(log log logX)

so that
M(X) = S0(r0)

ϕ(8)
log logX +OC2

(√
log logX

)
.

Substituting our expressions for M(X) and E(X) into H0(X):

H0(X) = S0(r0)S0(r1)
ϕ(8)2c0c1

(log logX)+OC1,C2

(√
log logX
c0c1

+ τ(r0)τ(r1)(log log logX)3/2

c0c1

)
.

We will similarly obtain the same expression for H1(X):

H1(X) = S0(r0)S0(r1)
ϕ(8)2c0c1

(log logX)+OC1,C2

(√
log logX
c0c1

+ τ(r0)τ(r1)(log log logX)3/2

c0c1

)
.

For H2(X), suppose without loss in generality that c0 ⩾ c1. Then

H2(X) � 1
c2

0

∑
n0⩽X/c0

1
n2

0
� 1

c0c1
.

Since S1(r0, r1) = 2S0(r0)S0(r1)
ϕ(8)2 , we are done.

Using the same methods we can obtain the following variation:

Lemma 5.2.3. Let X ⩾ 3, C1, C2 > 0. Then for any fixed 1 ⩽ c0, c1 ⩽ (logX)C1:

∑∑
‖n0c0,n1c1‖⩽X

‖n0d0,n1d1‖>(log X)C2

log ‖n0c0, n1c1‖
‖n0c0, n1c1‖2τ(n0)τ(n1)

�C1

logX
c0c1

where the implied constant depends only on C1, C2 > 0.

Remark 5.2.4. By being more careful in the following proof we may also obtain the
asymptotic

∑∑
‖n0c0,n1c1‖⩽X

gcd(ni,2ri)=1 ∀i∈{0,1}
ni≡qi mod 8

log ‖n0c0, n1c1‖
‖n0c0, n1c1‖2τ(n0)τ(n1)

∼ S1(r0, r1) logX
ϕ(8)2c0c1

,

but this is not needed later.

Proof. Call the sum on the left-hand side H(X). Then as before we may write

H(X) ⩽ H0(X) +H1(X)
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where

H0(X) =
∑

n0c0⩽X

∑
n1⩽n0c0/c1

(log n0c0)
n2

0c
2
0τ(n0)τ(n1)

and H1(X) =
∑

n1c1⩽X

∑
n0⩽n1c1/c0

(log n1c1)
n2

1c
2
1τ(n0)τ(n1)

.

Looking at H0(X) first as in the previous proof we once more ensure the range over n1

is ⩾ 2 in order to apply Lemma 5.1.4: In order to use Lemma 5.1.4 on the inner sum
we need to ensure that n0c0/c1 ⩾ 2. We write:

H0(X) =
∑

2c1⩽n0c0⩽X

∑
n1⩽n0c0/c1

(log n0c0)
n2

0c
2
0τ(n0)τ(n1)

+
∑

n0c0<2c1

∑
n1⩽n0c0/c1

(log n0c0)
n2

0c
2
0τ(n0)τ(n1)

.

=
∑

2c1⩽n0c0⩽X

∑
n1⩽n0c0/c1

(log n0c0)
n2

0c
2
0τ(n0)τ(n1)

+OC1

(
(log logX)

c0c1

)
.

Now applying Lemma 5.1.4 as an upper bound to the inner sum we obtain:

H0(X) � 1
c0c1

∑
2c1⩽n0c0⩽X

(log n0c0)
n0τ(n0)

√
log n0c0/c1

.

We split this sum into two:

H0(X) �C2

1
c0c1

∑
(log X)2C2⩽n0⩽X/c0

(log n0c0)
n0τ(n0)

√
log n0c0/c1

+ 1
c0c1

∑
n0⩽(log X)2C2

(log logX)
n0τ(n0)

.

The second sum here may be seen to be

1
c0c1

∑
n0⩽(log X)2C2

(log logX)
n0τ(n0)

�C2

(log logX)3/4

c0c1

using a standard partial summation argument. For the first sum above we use a Taylor
series expansion since we have n0 ⩾ (logX)2C2 . Thus

1√
log n0c0/c1

�C2

1√
log n0

.

Using the logarithmic rule we may also get rid of the c0 in the numerator of the
summand. Overall, we have,

H0(X) �C2

1
c0c1

∑
(log X)2C2⩽n0⩽X/c0

√
log n0

n0τ(n0)
+ log logX

c0c1

∑
(log X)2C2⩽n0⩽X/c0

1
n0τ(n0)

√
log n0

+ (log logX)3/4

c0c1
.

Note that the second sum above is of the same form as the main term of M(X) in
Lemma 5.2.1, which we evaluated to be of order log logX. For the leading term above
we use partial summation and Lemma 5.1.4:

1
c0c1

∑
(log X)2C2⩽n0⩽X/c0

√
log n0

n0τ(n0)
�C2

√
logX
c0c1X

∑
n0⩽X

1
τ(n0)

+
∫ X

2

√
log t

c0c1t2
∑
n0⩽t

1
τ(n0)

dt

�C2

1
c0c1

+ 1
c0c1

∫ X

2

dt

t
�C2

logX
c0c1

.
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Note that in the above computation, we bounded the derivative of
√

log t
t

for brevity.
Thus,

H0(X) �C2

logX
c0c1

,

and we may similarly obtain the same bound for H1(X).

The following result regards similar sums to the above, but over shorter ranges. We
will see that they have a similar flavour to sums already seen in the above proofs:

Lemma 5.2.5. Let X ⩾ 3, C1, C2 > 0. Then for any fixed 1 ⩽ c0, c1 ⩽ XC1, 1 ⩽
d0, d1 ⩽ XC2/2:

∑∑
‖n0d0,n1d1‖⩽XC2

1
‖n0c0, n1c1‖2τ(n0)τ(n1)

�C1,C2

(√
logX
c0c1

)
,

where the implied constant only depends on C1 and C2.

Remark 5.2.6. The key point to note here is that the constants c0 and c1 are not
included in the ranges for n0 and n1. This will cause trouble in the unwrapping ar-
gument before, especially since the constants may be larger than either variable very
often. Instead it is enough just to use trivial bounds.

Proof. The sum is at most H0(X) +H1(X) where

H0(X) =
∑

n0⩽XC2

∑
n1⩽n0c0/c1

1
n2

0c
2
0τ(n0)τ(n1)

and H1(X) =
∑

n1⩽XC2

∑
n0⩽n1c1/c0

1
n2

1c
2
1τ(n0)τ(n1)

.

Here we can use a trivial bound for the inner sums, giving

H0(X), H1(X) �
∑

n⩽XC2

1
nc0c1τ(n)

.

Upon using partial summation and Lemma 5.1.4 we obtain the desired bound.

Next we put these together to obtain Proposition 2.2.6.

Proposition 5.2.7. Let X ⩾ 3, C1, C2, C3 > 0 and take any q ∈ (Z/8Z)∗4. Then for
any fixed odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 and fixed integers 1 ⩽ c0, c1, c2, c3 ⩽
(logX)C2, 1 ⩽ d0, d1, d2, d3 ⩽ (logX)C3/2 we have∑∑∑∑

‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X

‖n0d0,n1d1‖,‖n2d2,n3d3‖>(log X)C3
gcd(ni,ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

1
τ(n0)τ(n1)τ(n2)τ(n3)

= S2(r)X2 log logX
c0c1c2c3 logX

(
1 +OC1,C2,C3

(
τ(r0)τ(r1)τ(r2)τ(r3)
c0c1c2c3

√
log logX

))
where the implied constant depends at most on C1, C2, C3 and we define

S2(r) = 4f 4
0

ϕ(8)4
(∏

p|2r0 fp

) (∏
p|2r1 fp

) (∏
p|2r2 fp

) (∏
p|2r3 fp

) .
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Proof. Call the sum on the left hand side H(X). Then using the hyperbola method
we may write

H(X) = H0(X) +H1(X) +O(H2(X))

where
H0(X) =

∑∑∑∑
‖n0c0,n1c1‖⩽X1/2

‖n2c2,n3c3‖⩽X/‖n0c0,n1c1‖
‖n0d0,n1d1‖,‖n2d2,n3d3‖>(log X)C3

gcd(ni,2ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

1
τ(n0)τ(n1)τ(n2)τ(n3)

,

H1(X) =
∑∑∑∑

‖n2c2,n3c3‖⩽X1/2

‖n0c0,n1c1‖⩽X/‖n2c2,n3c3‖
‖n0d0,n1d1‖,‖n2d2,n3d3‖>(log X)C3

gcd(ni,2ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

1
τ(n0)τ(n1)τ(n2)τ(n3)

,

and
H2(X) =

∑∑∑∑
‖n0c0,n1c1‖⩽X1/2

‖n2c2,n3c3‖⩽X1/2

1
τ(n0)τ(n1)τ(n2)τ(n3)

.

Let us first deal with H2(X). We write

H2(X) �
3∏

i=0

 ∑
nici⩽X1/2

1
τ(ni)

 � X2

c0c1c2c3(logX)2 ,

by Lemma 5.1.4. Now let us consider H0(X). Here we may add in the terms for which
‖n2d2, n3d3‖ ⩽ (logX)C3 at the cost of a negligible error term since,

∑∑∑∑
‖n0c0,n1c1‖⩽X1/2

‖n2d2,n3d3‖⩽(log X)C3

1
τ(n0)τ(n1)τ(n2)τ(n3)

� X(logX)2C3 . (5.2.2)

Then

H0(X) =
∑∑∑∑

‖n0c0,n1c1‖⩽X1/2

‖n2c2,n3c3‖⩽X/‖n0c0,n1c1‖
‖n0d0,n1d1‖>(log X)C3
gcd(ni,2ri)=1 ∀ 0⩽i⩽3
ni≡qi mod 8 ∀ 0⩽i⩽3

1
τ(n0)τ(n1)τ(n2)τ(n3)

+O(X(logX)2C3).

Using Lemma 5.1.4 the sum over n2 and n3 is

= S0(r2)S0(r3)X2

ϕ(8)2c2c3‖n0c0, n1c1‖2(log(X/‖n0c0, n1c1‖))

+O

(
X2(log log ‖3r2, 3r3‖)3/2

c2c3‖n0c0, n1c1‖2(log(X/‖n0c0, n1c1‖))2

)
.

Note that we have suppressed the arbitrary log saving error term in this calculation.
This can be done by noting that Q = 1 and τ(ri) �C1 r

1/C1
i �C1 (logX) so that

τ(ri)X2

(logX/‖n0c0, n1c1‖)C4
� X2(log log ‖3r2, 3r3‖)3/2

(log(X/‖n0c0, n1c1‖))2
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for C4 chosen sufficiently large. Therefore we have

H0(X) = S0(r2)S0(r3)X2

c2c3
M0(X) +O

(
X2

c2c3
E0(X)

)
+O(X(logX)2C3)

where

M0(X) =
∑∑

‖n0c0,n1c1‖⩽X1/2

‖n0d0,n1d1‖>(log X)C3
gcd(ni,2ri)=1 ∀ 0⩽i⩽1
ni≡qi mod 8 ∀ 0⩽i⩽1

1
‖n0c0, n1c1‖2τ(n0)τ(n1)(logX/‖n0c0, n1c1‖)

and
E0(X) =

∑∑
‖n0c0,n1c1‖⩽X1/2

(log log ‖3r2, 3r3‖)3/2

‖n0c0, n1c1‖2τ(n0)τ(n1)(logX/‖n0c0, n1c1‖)2 .

Using ‖n0c0, n1c1‖ ⩽ X1/2, the usual Taylor series manoeuvre and Lemma 5.2.1 we
have

E0(X) � 1
(logX)2

∑∑
‖n0c0,n1c1‖⩽X1/2

(log log ‖3r2, 3r3‖)3/2

‖n0c0, n1c1‖2τ(n0)τ(n1)

� (log logX)(log log ‖3r2, 3r3‖)3/2

c0c1(logX)2

which is sufficient. Now we turn to M0(X). Since ‖n0c0, n1c1‖ ⩽
√
X we may use a

geometric series argument to write

1
logX/‖n0c0, n1c1‖

= 1
logX

+O

(
log ‖n0c0, n1c1‖

(logX)2

)
.

We have from Lemma 5.2.1 (with Lemma 5.2.5 to add in the terms for which we have
‖n0d0, n1d1‖ ⩽ (logX)C3),

∑∑
‖n0c0,n1c1‖⩽X1/2

‖n0d0,n1d1‖>(log X)C3
gcd(ni,2ri)=1 ∀ 0⩽i⩽1
ni≡qi mod 8 ∀ 0⩽i⩽1

1
‖n0c0, n1c1‖2τ(n0)τ(n1)

= S1(r0, r1) log log(X1/2)
c0c1

+OC1,C2,C3

τ(r0)τ(r1)
√

log log(X1/2)
c0c1


and from Lemma 5.2.3 that

∑∑
‖n0c0,n1c1‖⩽X1/2

‖n0d0,n1d1‖>(log X)C3
gcd(ni,2ri)=1 ∀ 0⩽i⩽1
ni≡qi mod 8 ∀ 0⩽i⩽1

log ‖n0c0, n1c1‖
‖n0c0, n1c1‖2τ(n0)τ(n1)

�C1,C2,C3

logX
c0c1

.

We therefore conclude that

M0(X) = S1(r0, r1) log log(X1/2)
c0c1

+OC1,C2,C3

(√
log logX
c0c1

)
.
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Note that when using the Taylor series above, the error term may in fact be of the same
order as the main term. In writing it this way we are in fact splitting a constant into
two parts - one independant of the ni, which contributes to the (log logX) by Lemma
5.2.1 and a part dependent on the ni which contributes to an error of O(1) by Lemma
5.2.3. We have now shown

H0(X) = S0(r2)S0(r3)S1(r0, r1)X2 log logX
ϕ(8)2c0c1c2c3(logX)

+OC1,C2,C3

(
τ(r0)τ(r1)X2√log logX

c0c1c2c3(logX)

)
.

Evaluating H1(X) in the same way we obtain the same result with r0 and r1 switched
with r2 and r3. Noting that S0(r0)S0(r1)S1(r2,r3)

ϕ(8)2 = S0(r2)S0(r3)S1(r0,r1)
ϕ(8)2 = S2(r)

2 we combine
the expressions for H0(X), H1(X) and H2(X) to conclude the proof.

5.2.2 Small Conductors - Symmetric Hyperbola Method

This is the easiest of the three cases: all that is required for us to do is to apply the
hyperbola method and Lemma 5.1.4 appropriately. To save space we introduce the
following summation conditions:

‖n0d0, n1d1‖, ‖n2d2, n3d3‖ > (logX)D

gcd(ni, ri) = 1 ∀ 0 ⩽ i ⩽ 3
ni ≡ qi mod 8 ∀ 0 ⩽ i ⩽ 3,

(5.2.3)

where D > 0 and the ri and di are some integers and qi ∈ (Z/8Z)∗ for each i.

Lemma 5.2.8. Let X ⩾ 3, C1, C2, C3 > 0 and fix odd integers Q0, Q2 and some
q ∈ (Z/8Z)∗4. Suppose χ0 and χ2 are non-principal Dirichlet characters modulo Q0 and
Q2 and that g1, g3 : N → C are multiplicative functions such that |g1(n)|, |g3(n)| ⩽ 1 for
all n ∈ N. Then for any odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 such that gcd(ri, Qi)
for i = 0, 2 and any fixed 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2, 1 ⩽ d0, d1, d2, d3 ⩽ (logX)C3/2

we have∑∑∑∑
n∈N4,‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X

(5.2.3)

χ0(n0)g1(n1)χ2(n2)g3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

�C1,C2,C3,C4

Q0Q2X
2

c0c1c2c3(logX)C4
,

for any C4 > 0 where the implied constant depends at most on C1, C2, C3 and C4. Note
we have used D = C3 in (5.2.3).

Proof. Call this sum H(X). Then using the hyperbola method we obtain

H(X) = H0(X) +H1(X) −H2(X),

where
H0(X) =

∑∑∑∑
‖n0c0,n1c1‖⩽X1/2

‖n2c2,n3c3‖⩽X/‖n0c0,n1c1‖
(5.2.3)

χ0(n0)g1(n1)χ2(n2)g3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

, (5.2.4)
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H1(X) =
∑∑∑∑

‖n2c2,n3c3‖⩽X1/2

‖n0c0,n1c1‖⩽X/‖n2c2,n3c3‖
(5.2.3)

χ0(n0)g1(n1)χ2(n2)g3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

, (5.2.5)

and
H2(X) =

∑∑∑∑
‖n0c0,n1c1‖,‖n2c2,n3c3‖⩽X1/2

(5.2.3)

χ0(n0)g1(n1)χ2(n2)g3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

. (5.2.6)

We deal with H2(X) first. Using the trivial bound (5.2.2), we may add in the terms
for which ‖n0d0, n1d1‖ > (logX)C3 or ‖n2d2, n3d3‖ > (logX)C3 at the cost of a small
error term:

H2(X) =
∑∑∑∑

‖n0c0,n1c1‖,‖n2c2,n3c3‖⩽X1/2

gcd(ni,ri)=1 ∀0⩽i⩽3
ni≡qi mod 8 ∀0⩽i⩽3

χ0(n0)g1(n1)χ2(n2)g3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

+O(X(logX)2C3).

This sum is now separable so that, using trivial bounds for the sums over n1 and n3

and Lemma 5.1.4 for the sums over n2 and n4 we obtain:

H2(X) =


∑

n0c0⩽X1/2

gcd(n0,r0)=1
n0≡q0 mod 8

χ0(n0)
τ(n0)




∑

n1c1⩽X1/2

gcd(n1,r1)=1
n1≡q1 mod 8

g1(n1)
τ(n1)




∑

n2c2⩽X1/2

gcd(n2,r2)=1
n2≡q2 mod 8

χ2(n2)
τ(n2)




∑

n3c3⩽X1/2

gcd(n3,r3)=1
n3≡q3 mod 8

g3(n3)
τ(n3)


+O(X(logX)2C2)

�C1,C2,C3,C4

(
τ(r0)Q0X

1/2

c0(logX)C4

)(
X1/2

c1

)(
τ(r2)Q2X

1/2

c2(logX)C4

)(
X1/2

c3

)

�C1,C2,C3,C4

Q0Q2X
2

c0c1c2c3(logX)C4
.

Note also that by the assumption ri ⩽ (logX)C1 we may ignore the τ(ri) upon choosing
C4 appropriately large, and since ci ⩽ (logX)C2 for all i we may use the bound

1
(logX/ci)C4

�C2,C4

1
(logX)C′

4
.

We will use these remarks again without mentioning. Next we deal with H0(X).
Add in the terms where ‖n2d2, n3d3‖ ⩽ (logX)C3 at the cost of an error term of
size O(X(logX)2C3) using a trivial bound. Then, performing the sum over n2 and n3

first we write,

H0(X) �C1,C3

∑∑
n0c0,n1c1⩽X1/2

∣∣∣∣∣∣∣∣∣∣∣∣
∑

n2c2⩽X/‖c0n0,c1n1‖
gcd(n2,r2)=1
n2≡q2 mod 8

χ2(n2)
τ(n2)

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∑

n3c3⩽X/‖c0n0,c1n1‖
gcd(n3,r3)=1
n3≡q3 mod 8

g3(n3)
τ(n3)

∣∣∣∣∣∣∣∣∣∣∣∣
+O(X(logX)2C3).
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Using a trivial bound for the sum over n3 and Lemma 5.1.4 for non-trivial characters
(noting that the range is relatively large since that ‖n0c0, n1c1‖ ⩽ X1/2) we obtain

H0(X) �C1,C2,C3,C4

τ(r2)Q2X
2

c2c3(logX)2C4+2

∑
n0c0,n1c1⩽X1/2

1
‖n0c0, n1c1‖2

�C1,C2,C3,C4

Q2X
2

c0c1c2c3(logX)C4

where we have used the straightforward bound
∑

n0c0,n1c1⩽X1/2

1
‖n0c0, n1c1‖2 � (logX1/2/c0)(logX1/2/c1)

c0c1
� (logX)2

c0c1
.

For H1(X) we use an identical argument to that of H0(X) with n0, n1 switching roles
with n2, n3. This yields

H1(X) �C1,C2,C3,C4

Q0X
2

c0c1c2c3(logX)C4
.

Combining these three bounds gives the result.

To conclude this section we want to average this result over a small range of con-
ductors to obtain Proposition 2.2.7. For this purpose it will be necessary to specialise
to the case where the characters are Jacobi symbols. For m ∈ N odd, let ψm(·) denote
generically either the Jacobi symbol

(
·

m

)
or the Jacobi symbol

(
m
·

)
.

Proposition 5.2.9. Let X ⩾ 3, C1, C2, C3 > 0 and fix odd integers Q0, Q2 and some
q ∈ (Z/8Z)∗4, q̃ ∈ (Z/8Z)∗4. Fixing some odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1

such that gcd(ri, Qi) = 1 for i = 0, 2 and any 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2, 1 ⩽
d0, d1, d2, d3 ⩽ (logX)C3/2 we define, for any m ∈ N4,

H(X,m) =
∑∑∑∑

n∈N4,‖n0m0c0,n1m1c1‖·‖n2m2c2,n3m3c3‖⩽X
(5.2.3)

ψQ0m0m1(n2n3)ψQ2m2m3(n0n1)
τ(n0)τ(n1)τ(n2)τ(n3)

,

where we use (5.2.3) with D = C3. Then for any C4 > 0:
∑∑∑∑

m∈N4,‖m0,m1‖,‖m2,m3‖⩽(log X)C3
gcd(m0m1,Q0r2r3)=gcd(m2m3,Q1r0r1)=1

m≡˜̄q mod 8
Q0m0m1 and Q2m2m3 6=1

µ2(2m0m1m2m3)|H(X,m)|
τ(m0)τ(m1)τ(m2)τ(m3)

�C1,C2,C3,C4

Q0Q2X
2

c0c1c2c3(logX)C4
.

Proof. By the gcd conditions on Qi and the mi, the condition that Q0m0m1 and
Q2m2m3 6= 1 and the term µ2(m0m1m2m3) = 1, we know that for each m considered in
the average, the quadratic characters ψQ0m0m1 and ψQ1m2m3 are non-principal. There-
fore, Lemma 5.2.8 tells us that, for each m considered in the average,

H(X,m) �C1,C2,C3,C4

Q0Q2m0m1m2m3X
2

m0m1m2m3c0c1c2c3(logX)C4+4C3

�C1,C2,C3,C4

Q0Q2X
2

c0c1c2c3(logX)C4+4C3
.
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Therefore, by summing over the given m, the average can be seen to be bounded by

�C1,C2,C3,C4

Q0Q2X
2(logX)4C3

c0c1c2c3(logX)C4+4C3
�C1,C2,C3,C4

Q0Q2X
2

c0c1c2c3(logX)C4
.

5.2.3 Small Conductors: Asymmetric Hyperbola Method

We begin with a technical lemma similar in form to Lemma 5.2.1.

Lemma 5.2.10. Let X ⩾ 3, C1, C2 > 1, 0 < ϵ < 1 and define Y = exp((logX)ϵ).
Fix some odd integers Q0, Q1 and some q ∈ (Z/8Z)∗2 and suppose χ0 and χ1 are
non-principal characters modulo Q0 and Q1 respectively. Then for any odd integers
1 ⩽ r0, r1 ⩽ (logX)C1 and any fixed integers 1 ⩽ c0, c1 ⩽ (logX)C2/16, 1 ⩽ d0, d1 ⩽
(logX)C2/4 we have

∑∑
n0c0,n1c1⩽Y

‖n0d0,n1d1‖>(log X)C2
gcd(ni,ri)=1 ∀0⩽i⩽1
ni≡qi mod 8 ∀0⩽i⩽1

χ0(n0)χ1(n1)
‖n0c0, n1c1‖2τ(n0)τ(n1)

�C1,C2,C3

τ(r0)τ(r1)(Q0 +Q1)
c0c1(log logX)C3

,

for any C3 > 1 where the implied constant depends at most on C1, C2 and C3.

Remark 5.2.11. The philosophy with this sum, as with many others like it that
appear throughout this chapter, is that it should converge and so the lower bounds
should yield some saving. To see this, note that the sums considered above are similar
to ∑∑

n0c0,n1c1⩽Y
gcd(ni,ri)=1 ∀0⩽i⩽1
ni≡qi mod 8 ∀0⩽i⩽1

χ0(n0)χ1(n1)
n0n1c0c1τ(n0)τ(n1)

,

which is separable in each variable and is more readily seen to converge by comparing
the two sums to the Dirichlet series

D(1, χi) =
∞∑

n=1

χi(n)
nτ(n)

.

More will be said about this idea in §5.3.

Proof. Call the sum H(X). The key difference to the above remark is that we run into
some difficulty when trying to untangle the constants c0, d0, c1 and d1. Indeed we have
to split both maximums simultaneously in order to obtain sums of a familiar form. We
have four cases:

(1) n0c0 ⩾ n1c1 and n0d0 ⩾ n1d1;
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(2) n1c1 > n0c0 and n1d1 > n0d0;

(3) n0c0 ⩾ n1c1 and n1d1 > n0d0;

(4) n1c1 > n0c0 and n0d0 ⩾ n1d1.

We note immediately that the conditions of (3) imply that d1
d0
> c1

c0
while the conditions

of (4) imply d1
d0
< c1

c0
and so only one of them will apply. Without loss in generality, we

will assume that (3) case holds. Now we split H(X) into regions in which n0 and n1

satisfy these conditions. We have

H(X) = H1(X) +H2(X) +H3(X),

where
H1(X) =

∑
(log X)C2 /d0<n0⩽Y/c0

gcd(n0,r0)=1
n0≡q0 mod 8

∑
n1⩽min(n0d0/d1,n0c0/c1)

gcd(n1,r1)=1
n1≡q1 mod 8

χ0(n0)χ1(n1)
n2

0c
2
0τ(n0)τ(n1)

,

H2(X) =
∑

(log X)C2 /d1<n1⩽Y/c1
gcd(n1,r1)=1
n1≡q1 mod 8

∑
n0<min(n1d1/d0,n1c1/c0)

gcd(n1,r1)=1
n1≡q1 mod 8

χ0(n0)χ1(n1)
n2

1c
2
1τ(n0)τ(n1)

,

and
H3(X) =

∑
n0⩽Y/c0

gcd(n0,r0)=1
n0≡q0 mod 8

∑
‖(log X)C2 /d1,n0d0/d1‖<n1⩽n0c0/c1

gcd(n1,r1)=1
n1≡q1 mod 8

χ0(n0)χ1(n1)
n2

0c
2
0τ(n0)τ(n1)

.

The sums H1(X) and H2(X) may be dealt with similarly. For H1(X) we note that in
these regions min(n0d0

d1
, n0c0

c1
) > (logX)3C2/4, and so the range over n1 increases with

X. We therefore apply Lemma 5.1.4 to it to obtain:

H1(X) �C3

∑
(log X)C2 /d0<n0

τ(r1)Q1 min(d0/d1, c0/c1)
n0c2

0(log(n0 min(d0/d1, c0/c1)))C3
,

for any C3 > 1. Now we use min(d0/d1, c0/c1) ⩽ c0/c1 to bound the numerator and
n0 > (logX)C2/d0 ⩾ (logX)3C2/4 ⩾ min(d0/d1, c0/c1)2 with a Taylor series expansion
to bound the denominator. This will yield

H1(X) �C3

∑
(log X)C2 /d0<n0

τ(r1)Q1

n0c0c1(log n0)C3
.

Since C3 > 1, this is the tail of a convergent series and so we obtain

H1(X) �C2,C3

τ(r1)Q1

c0c1(log logX)C3
.

Similarly,

H2(X)C2,C3 �C2,C3

τ(r0)Q0

c0c1(log logX)C3
.
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We now turn to H3(X). First note that this sum is 0 unless

n0c0

c1
⩾ (logX)C2

d1
.

We may therefore add this condition to the sum of H3(X) with no cost. This will lead
to:

H3(X) =
∑

c1(log X)C2 /c0d1<n0⩽Y/c0
gcd(n0,r0)=1
n0≡q0 mod 8

∑
‖(log X)C2 /d1,n0d0/d1‖<n1⩽n0c0/c1

gcd(n1,r1)=1
n1≡q1 mod 8

χ0(n0)χ1(n1)
n2

0c
2
0τ(n0)τ(n1)

.

In this case it is unclear whether or not the range over n1 is guaranteed to increase
with X. In order to deal with this we write the sum over n1 as

∑
n1⩽n0c0/c1

gcd(n1,r1)=1
n1≡q1 mod 8

χ1(n1)
τ(n1)

−
∑

n1⩽‖(log X)C2 /d1,n0d0/d1‖
gcd(n1,r1)=1
n1≡q1 mod 8

χ1(n1)
τ(n1)

.

Both of these are sums with ranges which grow with X and so we may apply Lemma
5.1.4 to them. Upon doing this to the first sum above and then summing over n0 we
obtain,

�C3

∑
(log X)11C2/16<n0⩽Y

τ(r1)Q1

n0c0c1(log n0c0/c1)C3
�C2,C3

τ(r1)Q1

c0c1(log logX)C3

using the usual Taylor series expansion to deal with the ci inside of the logarithm.
Note also that we have extended the range over n0 by positivity of the summand.
Now applying Lemma 5.1.4 to the second sum above and summing over n0 we obtain
(extending the range as above):

�C3

∑
(log X)11C2/16<n0⩽Y

τ(r1)Q1‖(logX)C2/d1, n0d0/d1‖
n2

0c
2
0(log ‖(logX)C2/d1, n0d0/d1‖)C3

.

Here we use the upper bound

‖(logX)C2/d1, n0d0/d1‖ ⩽ n0c0

c1

for the numerator and the lower bound

‖(logX)C2/d1, n0d0/d1‖ ⩾ n0d0

d1

and the usual Taylor series expansion for the denominator. Then the above is

∑
(log X)11C2/16<n0⩽Y

τ(r1)Q1

n0c0c1(log n0)C3
�C2,C3

τ(r1)Q1

c0c1(log logX)C3
.

This concludes the proof.
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Next we prove a similar result to Lemma 5.2.8:

Lemma 5.2.12. Let X ⩾ 3, C1, C2 > 0 and fix some odd integers Q0, Q1 and some
q ∈ (Z/8Z)∗4. Suppose χ0 and χ1 are non-principal characters modulo Q0 and Q1

respectively. Then for any odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 and any fixed
integers 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2/16, 1 ⩽ d0, d1, d2, d3 ⩽ (logX)C2/4 we have

∑∑∑∑
n∈N4,‖n0c0,n1c1‖·‖n2c2,n3c3‖⩽X

(5.2.3)

χ0(n0)χ1(n1)
τ(n0)τ(n1)τ(n2)τ(n3)

�C1,C2,C3

τ(r0)τ(r1)(Q0 +Q1)X2

c0c1c2c3(logX)(log logX)C3

for any C3 > 0, where the implied constant depends at most on C1, C2 and C3. Here
we use (5.2.3) with D = C2.

Proof. Once more, let the sum be denoted by H(X). Defining the parameter Y =
exp((logX)ϵ) for some 0 < ϵ < 1 we use the hyperbola method to write

H(X) = H0(X) +H1(X) −H2(X)

where H0(X), H1(X) and H2(X) are
∑∑∑∑
‖n0c0,n1c1‖⩽Y

‖n2c2,n3c3‖⩽X/‖c0n0,c1n1‖
(5.2.3)

χ0(n0)χ1(n1)
τ(n0)τ(n1)τ(n2)τ(n3)

,
∑∑∑∑

‖n2c2,n3c3‖⩽X/Y
‖n0c0,n1c1‖⩽X/‖n2c2,n3c3‖

(5.2.3)

χ0(n0)χ1(n1)
τ(n0)τ(n1)τ(n2)τ(n3)

and ∑∑∑∑
‖n0c0,n1c1‖⩽Y

‖n2c2,n3c3‖⩽X/Y
(5.2.3)

χ0(n0)χ1(n1)
τ(n0)τ(n1)τ(n2)τ(n3)

respectively. Following the same strategy as in the proof of Lemma 5.2.8, we may
obtain

H1, H2(X) �C1,C2,C3

τ(r0)τ(r1)Q0Q1X
2

c0c1c2c3(logX)4C3
.

Unlike in Lemma 5.2.8 however, H0(X) and H1(X) are not symmetric. Trying to use
the same method as before for H0(X) will result in a bound of X2(logX)2 which is
too big. This is because we lose the information of the characters when we apply the
triangle inequality and trivial bounds on the sum over n2 and n3. In order to maintain
this information and obtain some saving over the character sum we will instead use
Lemma 5.1.4 to provide an asymptotic for the inner sum. Using the trivial bound
(5.2.2), we first add in the terms for which ‖n2d2, n3d3‖ ⩽ (logX)C2 at the cost of a
small error term:

H0(X) =
∑∑∑∑
‖n0c0,n1c1‖⩽Y

‖n2c2,n3c3‖⩽X/‖c0n0,c1n1‖
‖n0d0,n1d1‖>(log X)C2

gcd(ni,ri)=1 ∀0⩽i⩽3
ni≡qi mod 8 ∀0⩽i⩽3

χ0(n0)χ1(n1)
τ(n0)τ(n1)τ(n2)τ(n3)

+O(X(logX)2C2).
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The lower bound ‖n0d0, n1d1‖ > (logX)C2 cannot be removed as easily, and is in fact
necessary for the result to hold. Using Lemma 5.1.4 on the sum over n2 and n3 we
obtain that H0(X) is

= S0(r2)S0(r3)X2

ϕ(8)2c2c3

∑∑
n0c0,n1c1⩽Y

‖n0d0,n1d1‖>(log X)C2
gcd(ni,ri)=1 ∀0⩽i⩽1
ni≡qi mod 8 ∀0⩽i⩽1

χ0(n0)χ1(n1)
‖n0c0, n1c1‖2τ(n0)τ(n1)(log(X/c2c3‖n0c0, n1c1‖))

+O

X2(log log 3r2r3)3/2

c2c3(logX)2

∑∑
n0c0,n1c1⩽Y

1
‖n0c0, n1c1‖2τ(n0)τ(n1)

 .
Here we have to be careful with the logarithmic term in the denominator of the “main
term”. To deal with this we note that, since c2c3‖n0c0, n1c1‖ � Y (logX)C2/8, we may
write:

1
(log(X/c2c3‖n0c0, n1c1‖))

= 1
(logX)

+O

(
(log(c2c3‖n0c0, n1c1‖))

(logX)2

)

= 1
(logX)

+O

(
1

(logX)2−ϵ

)
.

Substituting this into the expression for H0(X) we will get

H0(X) � X2

c2c3(logX)
M0(X) +O

(
X2(log log 3r2r3)3/2

c2c3(logX)2−ϵ
E0(X)

)

where M0(X) and E0(X) are

∑∑
n0c0,n1c1⩽Y

‖n0d0,n1d1‖>(log X)C2
gcd(ni,ri)=1 ∀0⩽i⩽1
ni≡qi mod 8 ∀0⩽i⩽1

χ0(n0)χ1(n1)
‖n0c0, n1c1‖2τ(n0)τ(n1)

and
∑∑

n0c0,n1c1⩽Y
gcd(ni,ri)=1 ∀0⩽i⩽1
ni≡qi mod 8 ∀0⩽i⩽1

1
‖n0c0, n1c1‖2τ(n0)τ(n1)

respectively. For M0(X) we apply Lemma 5.2.10, giving:

M0(X) �C2,C3

τ(r0)τ(r1)(Q0 +Q1)
c0c1(log logX)C3

.

For E0(X) we can just apply Lemma 5.2.1 to see

E0(X) �
(

log log Y
c0c1

)
�ϵ

(
log logX
c0c1

)
.

Substituting these bounds into our expression shows that:

H0(X) �C2,C3

τ(r0)τ(r1)(Q0+Q1)X2

c0c1c2c3(logX)(log logX)C3
+X2(log logX)(log log 3r2r3)3/2

c0c1c2c3(logX)2−ϵ

�C2,C3

τ(r0)τ(r1)(Q0 +Q1)X2

c0c1c2c3(logX)(log logX)C3

concluding the proof.
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Lemma 5.2.12 is only effective when the conductors, Qi are bounded by a power of
log logX. Therefore we must turn to other methods to deal with the larger parts of
such averages. In particular, we will use the large sieve results from §5.1.

Lemma 5.2.13. Suppose an,bm are any complex sequences supported on odd integers
such that |an| ⩽ 1 and |bm| ⩽ 1. Then for any X ⩾ 3, C1, C2 > 1 such that
(C1 log logX)C2 > 2, and any fixed integers 1 ⩽ c0, c1 ⩽ (logX)C1/32 we have

∑
(log X)3C1/4<n0c0⩽X1/2

1
n2

0c
2
0τ(n0)

∣∣∣∣∣∣∣∣∣
∑∑

(C1 log log X)C2 <m⩽(log X)2C1
n1c1⩽n0c0

ambn1

mτ(n1)

(
n1

m

)∣∣∣∣∣∣∣∣∣
�C1,C2

1
c0c1(log logX)C3

where C3 = C2/2 − 1 and the implied constant depends at most on C1 and C2.

Proof. For convenience we will write Z = (logX)C1 . Setting the sum on the left-hand
side to be T (X), we have

T (X) ⩽ T1(X) + T2(X) + T3(X)

where

T1(X) =
∑

Z10<n0⩽X1/2/c0

1
n2

0c
2
0τ(n0)

∣∣∣∣∣∣∣∣∣
∑∑

(log Z)C2 <m⩽Z2

n1c1⩽n0c0

ambn1

mτ(n1)

(
n1

m

)∣∣∣∣∣∣∣∣∣ ,

T2(X) =
∑

Z3/4/c0<n0⩽Z10

1
n2

0c
2
0τ(n0)

∣∣∣∣∣∣∣∣∣
∑∑

(log Z)C2 <m⩽Z1/10

n1c1⩽n0c0

ambn1

mτ(n1)

(
n1

m

)∣∣∣∣∣∣∣∣∣ ,

T3(X) =
∑

Z3/4/c0<n0⩽Z10

1
n2

0c
2
0τ(n0)

∣∣∣∣∣∣∣∣
∑∑

Z1/10<m⩽Z2
n1c1⩽n0c0

ambn1

mτ(n1)

(
n1

m

)∣∣∣∣∣∣∣∣ .
For T1(X) we apply Corollary 5.1.3. Then T1(X) is

�
∑

Z10<n0⩽X1/2/c0

1
n2

0c
2
0τ(n0)

(
n0c0(logZ)

c1(logZ)C2/2(log n0c0/c1)1/2 + (n0c0)3/5Z(logZ)1/2

c
3/5
1 (log n0c0/c1)1/4

)
,

�
∑

Z10<n0⩽X1/2/c0

(
(logZ)

n0c0c1(logZ)C2/2(log n0c0/c1)1/2τ(n0)

)

+
∑

Z10<n0⩽X1/2/c0

(
Z(logZ)1/2

(n0c0)7/5c
3/5
1 (log n0c0/c1)1/4τ(n0)

)
.

Since n0c0/c1 > Z10c0/c1 > 2 by assumption, the second sum is

� Z(logZ)1/2

Z4c
7/5
0 c

3/5
1

� (logZ)1/2

Z3c
7/5
0 c

3/5
1
.
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Using similar methods used to compute M(X) in Lemma 5.2.1, we can bound the first
sum by

�
∑

n0⩽X1/2

1
n0(log n0c0/c1)1/2τ(n0)

� log logX.

Substituting the previous two bounds into T1(X) will give

T1(X) �C2

(log logX)
c0c1(logZ)C2/2−1 + (logZ)1/2

Z3c
7/5
0 c

3/5
1

�C2

(log logX)
c0c1(logZ)C2/2−1 ,

using the fact that Z > c
2/5
1 to determine the dependence on c0 and c1. Using the

same approach we can obtain the same bound for T2(X). Finally we deal with T3(X).
Here it is better to apply Lemma 5.1.2 since the ranges of the inner double sum are of
comparable size. Doing this we obtain,

T3(X) �
∑

Z3/4/c0<n0⩽Z10

(logZ)7/6

n0c0c1Z1/60τ(n0)

� (logZ)7/6

c0c1Z1/60 .

We are now ready to prove Proposition 2.2.8.

Proposition 5.2.14. Let X ⩾ 3, C1, C2 > 0 be such that (C1 log logX)C2 > 2.
Fix some odd square-free integers Q1, Q2, Q3 ∈ N such that Q1 ⩽ (log logX)C2, and
some q ∈ (Z/8Z)∗4, q̃ ∈ (Z/8Z)∗2. Suppose χ2 and χ3 are characters modulo Q2

and Q3 respectively. Fixing any odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 such that
gcd(Q1, r0r1r2r3) = gcd(Q2Q3, r2r3) = 1 and fixing any 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2/32,
1 ⩽ d0, d1, d2, d3 ⩽ (logX)C2/4 we define, for any m ∈ N2

H ′(X,m) =
∑∑∑∑

n∈N4,‖n0d0,n1d1‖,‖n2d2,n3d3‖>(log X)C2
‖n0c0,n1c1‖·‖n2m2c2,n3m3c3‖⩽X

gcd(ni,2ri)=1 ∀ 0⩽i⩽3
n≡q mod 8

ψm2m3(n2n3)
τ(n0)τ(n1)τ(n2)τ(n3)

.

Then,

∑∑
m∈N2,‖m2,m3‖⩽(log X)C2

gcd(mi,2Q1Q2Q3ri)=1 ∀2⩽i⩽3
m≡q̃ mod 8
Q1m2m3 6=1

µ2(m2m3)χ2(m2)χ3(m3)
τ(m2)τ(m3)

H ′(X,m)

�C2

τ(r0)τ(r1)X2

c0c1c2c3(logX)(log logX)C3
,

where C3 = C2/2 − 1 and where the implied constant depends at most on C1 and C2.
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Proof. Denote W = (logX)C2 and recall that ψm(·) =
(

·
m

)
. Call the average sum

S(X). Then we write
S(X) = S1(X) + S2(X)

where S1(X) and S2(X) are defined as S(X) with the extra conditions ‖m2,m3‖ ⩽
(logW )C3 and (logW )C3 < ‖m2,m3‖ ⩽ W respectively. First we deal with S1(X). For
each fixed m such that gcd(mi, 2Q1Q2Q3ri) = 1, µ2(m2m3) = 1 and Q1m2m3 6= 1, the
sum H ′(X,m) is precisely of the form considered in Lemma 5.2.12. Furthermore, the
range of m2 and m3 in S1(X) is small enough for this lemma to be effective. Thus,

S1(X) �C2,C3

∑∑
m∈N2,‖m2,m3‖⩽(log W )C3

µ2(m2m3)τ(r0)τ(r1)Q1m2m3X
2

m2m3τ(m2)τ(m3)c0c1c2c3(logX)(logW )3C3

�C2,C3

τ(r0)τ(r1)Q1X
2

c0c1c2c3(logX)(logW )C3
.

Next we deal with S2(X). We first use the hyperbola method on the H ′(X,m) terms
again with the parameter Y = exp((logX)ϵ) to obtain

H ′(X,m) = H ′
0(X,m) +H ′

1(X,m) −H ′
2(X,m)

where

H ′
0(X,m) =

∑∑∑∑
‖n0c0,n1c1‖⩽Y

‖n2m2c2,n3m3c3‖⩽X/‖n0c0,n1c1‖
(5.2.3)

1
τ(n0)τ(n1)τ(n2)τ(n3)

(
n0n1

Q1m2m3

)
,

andH ′
1(X,m), H ′

2(X,m) are defined asH ′
0(X,m) with the height conditions {‖n0c0, n1c1‖ ⩽

Y, ‖n2m2c2, n3m3c3‖ ⩽ X/‖n0c0, n1c1‖} replaced with

{‖n2m2c2, n3m2c3‖ ⩽ X/Y, ‖n0c0, n1c1‖ ⩽ X/‖n2m2c2, n3m2c3‖}

and
{‖n0c0, n1c1‖ ⩽ Y, ‖n2m2c2, n3m2c3‖ ⩽ X/Y }

respectively. H ′
1(X,m) and H ′

2(X,m) may be dealt with using Lemma 5.1.4 since the
ranges of the sums over n0 and n1 are guaranteed to be exponential in the size of
Q1m2m3. The conditions on Q1,m2 and m3 guarantee that ψQ1m2m3 is non-principal.
Then Lemma 5.1.4 will give arbitrary logarithmic saving in the sums over n0 and n1

so that, upon summing over n2 and n3 we obtain

H ′
1(X,m), H ′

2(X,m) �C1,C2

τ(r0)τ(r1)Q2
1m

2
2m

2
3X

2

m2m3c0c1c2c3(logX)6C2
�C1,C2

Q2
1m2m3X

2

c0c1c2c3(logX)5C2
.

See the bounds for (5.2.4) and (5.2.6) in Lemma 5.2.8 for analogous proofs. Summing
these over trivially over the mi will then give

∑∑
m∈N2

(log W )C3 <‖m2,m3‖⩽W
gcd(mi,2Q1Q2Q3ri)=1 ∀2⩽i⩽3

m≡q̃ mod 8

µ2(m2m3)χ2(m2)χ3(m3)
τ(m2)τ(m3)

H ′
1(X,m) �C2,C3

τ(r0)τ(r1)X2

c0c1c2c3(logX)C2
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and likewise,
∑∑
m∈N2

(log W )C3 <‖m2,m3‖⩽W
gcd(mi,2Q1Q2Q3ri)=1 ∀2⩽i⩽3

m≡q̃ mod 8

µ2(m2m3)χ2(m2)χ3(m3)
τ(m2)τ(m3)

H ′
2(X,m) �C2,C3

τ(r0)τ(r1)X2

c0c1c2c3(logX)C2

since W = (logX)C2 . We now turn to H ′
0(X,m). We add in the terms for which

‖n2d2, n3d3‖ ⩽ (logX)C2 at the cost of a small error term (see, for example (5.2.2)):

H ′
0(X,m) =

∑∑∑∑
‖n0c0,n1c1‖⩽Y

‖n2m2c2,n3m3c3‖⩽X/‖n0c0,n1c1‖
‖n0d0,n1d1‖>W

gcd(ni,ri)=1 ∀0⩽i⩽3
ni≡qi mod 8 ∀0⩽i⩽3

1
τ(n0)τ(n1)τ(n2)τ(n3)

(
n0n1

Q1m2m3

)
+O(X(logX)2C2).

Next we apply Lemma 5.1.4 for non-principal characters with Q = 1 and C = 3/2 on
the sum over n2 and n3, allowing us to preserve the Jacobi symbol. Upon using the
standard Taylor series method to the logarithmic factors (as in Lemma 5.2.12 since
m2m3c2c3‖n0c0, n1c1‖ ⩽ Y (logX)3C1 = o(X)), we obtain

H ′
0(X,m) = H ′

00(X,m) +O(H ′
01(X,m))

where

H ′
00(X,m) = S0(r2)S0(r3)X2

ϕ(8)2m2m3c2c3(logX)


∑∑

‖n0c0,n1c1‖⩽Y
‖n0d0,n1d1‖>W

gcd(ni,ri)=1 ∀0⩽i⩽1
ni≡qi mod 8 ∀0⩽i⩽1

(
n0n1

Q1m2m3

)
‖n0c0, n1c1‖2τ(n0)τ(n1)


,

and

H ′
01(X,m) = X2

m2m3c2c3(logX)2−ϵ

∑∑
‖n0c0,n1c1‖⩽Y
‖n0d0,n1d1‖>W

1
‖n0c0, n1c1‖2τ(n0)τ(n1)

.

Note that we have used ri � (logX)C1 to absorb (log log 3r2r3)3/2 and τ(r2)τ(r3) into
(logX)ϵ. Let us first deal with the H ′

01(X,m). By Lemma 5.2.1 the sum is O
(

log log X
c0c1

)
,

so that overall,

H ′
01(X,m) � X2(log logX)

c0c1c2c3m2m3(logX)2−ϵ
.

Summing over m will give

�
∑∑

‖m2,m3‖⩽W

|H ′
01(X,m)| �C2,C3

X2(log logX)4

c0c1c2c3(logX)2−ϵ
.

To deal with H ′
00(X,m) we use the averaging over m. Specifically, we are left to bound

S200(X) =
∑∑
m∈N2

(log W )C2 <‖m2,m3‖⩽W
gcd(mi,2Q1Q2Q3ri)=1 ∀2⩽i⩽3

m≡q̃ mod 8

µ2(m2m3)χ2(m2)χ3(m3)
τ(m2)τ(m3)

H ′
00(X,m).
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This is bounded by

X2

c2c3(logX)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑∑

m∈N2,n∈N4

(log W )C<‖m2,m3‖⩽W
gcd(mi,2Q1Q2Q3ri)=1 ∀2⩽i⩽3

m≡q̃ mod 8

∑∑
‖n0c0,n1c1‖⩽Y
‖n0d0,n1d1‖>W

gcd(ni,ri)=1 0⩽i⩽1
ni≡qi mod 8 0⩽i⩽1

µ2(m2m3)χ2(m2)χ3(m3)
(

n0n1
Q1m2m3

)
m2m3‖n0c0,n1c1‖2τ(m2m3)τ(n0)τ(n1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
To begin we will write m = m2m3 and define

τ̄(m) =
∑∑

m2m3=m,‖m2,m3‖>(log W )C

gcd(mi,2Q1Q2Q3ri)=1 ∀2⩽i⩽3
mi≡q̃i mod 8 ∀2⩽i⩽3

χ2(m2)χ3(m3).

Then, by rewriting, we see that S200(X) is

� X2

c2c3(logX)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑

(log W )C<m⩽W 2

∑∑
‖n0c0,n1c1‖⩽Y
‖n0d0,n1d1‖>W

gcd(ni,ri)=1 ∀0⩽i⩽1
ni≡qi mod 8 ∀0⩽i⩽1

µ2(m)τ̄(m)
m‖n0c0, n1c1‖2τ(m)τ(n0)τ(n1)

(
n0n1

Q1m

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Next we split the sum over n0 and n1 into a region where n1c1 ⩽ n0c0 and a second
region where n0c0 < n1c1. The sum over each region will be of the same order, so that
S200(X) becomes

� X2

c2c3(logX)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑

W 3/4/c0<n0⩽Y/c0
gcd(n0,r0)=1
n0≡q0 mod 8

1
n2

0c
2
0τ(n0)

∑
(log W )C<m⩽W 2

∑
n1c1⩽n0c0

‖n0d0,n1d1‖>W
gcd(n1,r1)=1
n1≡q1 mod 8

µ2(m)τ̄(m)
mτ(m)τ(n1)

(
n0n1

Q1m

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here we note that, although n0c0 ⩾ n1c1, we may still have n0d0 < n1d1; however, this
can only occur when

c1

c0
⩽ n0

n1
<
d0

d1
.

If this were the case, then we use the fact that ‖n0d0, n1d1‖ > W to assert

Wc1

c0
<
n1d1c1

c0
⩽ n0d1,

from which it follows that
n0c0 ⩾ Wc1

d1
⩾ W 3/4,

giving the lower bound in the sum over n0. The bound ‖n0d0, n1d1‖ > W is maintained
as a condition on n1. Next we define

am = µ2(m)τ̄(m)
τ(m)

(
n0

m

)
,
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and

bn1 = 1(gcd(n1, r1) = 1)1(n1 ≡ q1 mod 8)1(‖n0d0, n1d1‖ > W )
(
n1

Q1

)
.

Then, using the triangle inequality,

S200(X) � X2

c2c3(logX)
∑

W 3/4/c0<n0⩽Y/c0

1
n2

0c
2
0τ(n0)

∣∣∣∣∣∣∣∣∣
∑∑

(log W )C2 <m⩽W 2

n1⩽n0c0/c1

ambn1

mτ(n1)

(
n1

m

)∣∣∣∣∣∣∣∣∣ .

Finally, by applying Lemma 5.2.13, we obtain

S200(X) �C2,C3

X2

c0c1c2c3(logX)(log logX)9C3/20−2 ,

which is sufficient.

5.3 Character sums over hyperbolic regions II

In this section we deal sums where characters are arranged in a different manner with
respect to the hyperbolic height conditions. The type of sum considered is of the form

∑∑∑∑
‖n0n1,n2n3‖⩽X

χ(n0n2)ψ(n1n3)
τ(n0)τ(n1)τ(n2)τ(n3)

(5.3.1)

where χ and ψ are some Dirichlet characters. Just as in §5.2 we have three cases:

(a) Main Term: both χ and ψ are principal;

(b) Small Conductor – Symmetric Hyperbola Method: both χ and ψ are non-
principal;

(c) Small Conductor – Non-symmetric Hyperbola Method: only one of χ or ψ are
non-principal

The main term in this case may be seen to be of order X2 but in our counting prob-
lem however, expressions like this come from the contribution from fibres of points
[y0; y1; y2; y3] where −y0y2 or −y0y3 are squares, which are excluded. To see this in
practice see §2.5 and §2.8. We set up the preliminaries for this in the first subsection
and handle the symmetric and non-symmetric cases using the results of §5.1.

5.3.1 Sums Over Fixed Conductors

First we prove Lemma 2.2.9, which is the technical result in having the X2 term vanish
is the following:
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Lemma 5.3.1. Let X ⩾ 3, C1, C2 > 0. Suppose χ0, χ1, χ2 and χ3 are Dirichlet
characters modulo 8 such that χi and χj are non-principal for some pair (i, j) ∈ {0, 1}×
{2, 3}. Then for any odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 and any integers 1 ⩽
c01, c23,M ⩽ (logX)C2 we have,

∑∑∑∑
‖n0n1c01,n2n3c23‖·M⩽X

gcd(ni,2ri)=1∀ 0⩽i⩽3

χ0(n0)χ2(n2)χ1(n1)χ3(n3)
τ(n0)τ(n1)τ(n2)τ(n3)

�C2

τ(r0)τ(r1)τ(r2)τ(r3)X2

c01c23M2(logX)

where the implied constant depends at most on C2.

Proof. We write the sum under consideration as H01(X)H23(X) where,

H01(X) =
∑∑

n0n1⩽X/c01M,
gcd(ni,2ri)=1∀ i∈{0,1}

χ0(n0)χ1(n1)
τ(n0)τ(n1)

and H23(X) =
∑∑

n2n3⩽X/c23M
gcd(ni,2ri)=1∀ i∈{2,3}

χ2(n2)χ3(n3)
τ(n2)τ(n3)

.

These are symmetric and thus we will focus on H01(X) and note that any bound for this
may also be obtained for H23(X). Further, we will assume without loss in generality
that χ0 and χ2 are non-principal. Letting Y = exp((logX)1/6) we use the classical
hyperbola method to write

H01(X) =
∑

n0⩽Y
gcd(n0,2r0)=1

χ0(n0)
τ(n0)

∑
n1⩽X/n0c01M
gcd(n1,2r1)=1

χ1(n1)
τ(n1)

+
∑

n1⩽X/c01MY
gcd(n1,2r1)=1

χ1(n1)
τ(n1)

∑
n0⩽X/n1c01M
gcd(n0,2r0)=1

χ0(n0)
τ(n0)

−
∑∑

n0⩽Y,n1⩽X/c01MY
gcd(ni,2ri)=1

χ0(n0)
τ(n0)

χ1(n1)
τ(n1)

.

For the second and third sums we use Lemma 5.1.4 for the sum over χ0(n0) with Q = 8
and C = 2025, noting that for the second sum we use,

1
(logX/n1c01M)2025 � 1

(log Y )2025 � 1
(logX)2025/6

since n1 ⩽ X/Y c01M . In each case, upon summing over n1, we obtain

�C
τ(r0)X

c01M(logX)2025/6 .

We are left with

H01(X) =
∑

n0⩽Y
gcd(n0,2r0)=1

χ0(n0)
τ(n0)

∑
n1⩽X/n0c01M
gcd(n1,2r1)=1

χ1(n1)
τ(n1)

+OC

(
τ(r0)X

c01M(logX)2025/6

)
.

This error term is sufficient since τ(r0) �C1 (logX)1/6. Now, if χ1 is non-principal
then this remaining sum may be handled in the same way as the second. We therefore
assume that it is the principal character modulo 8. Then, given the height conditions,
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we may use Lemma 5.1.4 for principal characters modulo 8 on the inner sum over n1

with C = 2025. This will give H01(X) equal to

S0(r1)X
c01M

∑
n0⩽Y

gcd(n0,2r0)=1

χ0(n0)
n0τ(n0)(logX/n0c01M)1/2 +O

X(log log 3r1)3/2

c01M(logX)3/2

∑
n0⩽Y

gcd(n0,2r0)=1

1
n0τ(n0)

 .
Using the bound

∑
n0⩽Y

gcd(n0,2r0)=1

1
n0τ(n0)

� (log Y )1/2 � (logX)1/2

and the typical Taylor series expansion

1
(logX/n0c01M)1/2 = 1

(logX)1/2 +O

(
1

(logX)4/3

)

(the latter a result of n0c01M ⩽ Y (logX)2C2), this becomes

H01(X) � X

c01M(logX)1/2

∣∣∣∣∣∣∣∣
∑

n0⩽Y
gcd(n0,2r0)=1

χ0(n0)
n0τ(n0)

∣∣∣∣∣∣∣∣+O

(
X(log log 3r1)3/2

c01M(logX)5/4

)
.

Now let us consider the remaining sum over n0. To do this first consider the Dirichlet
series

D(s, χ0) =
∞∑

n=1
gcd(n,2r)=1

χ0(n)
nsτ(n)

.

Using the Euler product we may write

D(s, χ0) = P (s, r, χ0)R(s, χ0)L(s, χ0)1/2

where P (s, r, χ0) and R(s, χ0) are

∏
p prime

p|r

1 +
∞∑

j=1

χ0(p)j

(j + 1)pjs

−1

and
∏

p prime

1 +
∞∑

j=1

χ0(p)j

(j + 1)pjs

(1 − χ0(p)
ps

)1/2

respectively, the second product converging absolutely when <(s) > 1/2, and

L(s, χ0) =
∏

p prime

(
1 − χ0(p)

ps

)−1

is the L-function for the character χ0. It follows from this decomposition that the
Dirichlet series converges whenever <(s) > 1/2 and L(s, χ0) 6= 0. Using the zero
free region for L-functions of primitive characters and Siegel’s Theorem it follows, in
particular, that D(1, χ0) converges and that

D(1, r, χ0) = P (1, r, χ0)R(1, χ0)L(1, χ0)1/2 � τ(r)
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Therefore, ∑
n0⩽Y

gcd(n0,2r0)=1

χ0(n0)
n0τ(n0)

� τ(r0)

from which it follows that

H01(X) � τ(r0)τ(r1)X
c01M(logX)1/2 .

Similarly,
H23(X) � τ(r2)τ(r3)X

c23M(logX)1/2 .

5.3.2 Small Conductor – Symmetric Hyperbola Method

As with case (b) of §5.2, we only need to apply Lemmas 5.1.4 and the hyperbola method
appropriately.

Lemma 5.3.2. Let X ⩾ 3, C1, C2 > 0, Q02, Q13 be odd integers and q ∈ (Z/8Z)∗4.
Suppose χ02, χ13 are non-principal Dirichlet characters modulo Q02, Q13 respectively.
Then for any odd integers 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 such that gcd(Qij, 2rirj) = 1
whenever (i, j) ∈ {(0, 2), (1, 3)} and any integers 1 ⩽ c01, c23,M ⩽ (logX)C2 we have,∑∑∑∑

‖n0n1c01,n2n3c23‖·M⩽X
gcd(ni,2ri)=1∀ 0⩽i⩽3
ni≡qi mod 8∀ 0⩽i⩽3

χ02(n0n2)χ13(n1n3)
τ(n0)τ(n1)τ(n2)τ(n3)

�C2,C3

Q02Q13X
2

c01c23M2(logX)C3
.

for any C3 > 0, where the implied constant depends at most on the Ci.

Proof. Write the sum under consideration as H01(X)H23(X) where,

H01(X) =
∑∑

n0n1⩽X/c01M,
gcd(ni,2ri)=1∀ i∈{0,1}
ni≡qi mod 8∀ i∈{0,1}

χ02(n0)χ13(n1)
τ(n0)τ(n1)

and H23(X) =
∑∑

n2n3⩽X/c23M
gcd(ni,2ri)=1∀ i∈{2,3}
ni≡qi mod 8∀ i∈{2,3}

χ02(n2)χ13(n3)
τ(n2)τ(n3)

.

These sums are symmetric and so we focus on H01(X). The hyperbola method gives

H01(X) =
∑

n0⩽X1/2/c
1/2
01 M1/2

gcd(n0,2r0)=1
n0≡q0 mod 8

χ02(n0)
τ(n0)

∑
n1⩽X/n0c01M
gcd(n1,2r1)=1
n1≡q1 mod 8

χ13(n1)
τ(n1)

+
∑

n1⩽X1/2/c
1/2
01 M1/2

gcd(n1,2r1)=1
n1≡q1 mod 8

χ13(n1)
τ(n1)

∑
n0⩽X/n1c01M
gcd(n0,2r0)=1
n0≡q0 mod 8

χ02(n0)
τ(n0)

−
∑∑

n0,n1⩽X1/2/c
1/2
01 M1/2

gcd(ni,2ri)=1
ni≡qi mod 8

χ02(n0)
τ(n0)

χ13(n1)
τ(n1)

.
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The last of these sums may be written as the product of the sum over n0 and the sum
over n1. Since both χ02 and χ13 are non-principal, we use Lemma 5.1.4 on each part of
this product and multiply the results to show that the contribution from this sum is

�C1,C2

τ(r0)τ(r1)Q02Q13X

c01M(logX/c01M)2C3+1 �C2,C3

Q02Q13X

c01M(logX)C3+1 .

This last bound is obtained using the assumption c01,M ⩽ (logX)C2 . The first two
sums in the expression for H01 are dealt with in the same way since both characters
are non-principal. Looking at the first sum, we use Lemma 5.1.4 for the sum over n1.
This leads to

�C3

∑
n0⩽X1/2/c

1/2
01 M1/2

τ(r1)Q13X

n0c01M(logX/n0c01M)2C3+2 .

Now, since n0 ⩽ X1/2/c
1/2
01 M

1/2 and c01,M ⩽ (logX)C2 it follows that the first sum is
then bounded by

�C2,C3

∑
n0⩽X1/2

τ(r1)Q13X

n0c01M(logX)2C3+2 �C2,C3

Q13X

c01M(logX)C3+1 .

Thus
H01(X) �C2,C3

Q02Q13X

c01M(logX)C3+1 .

Putting this together with the trivial bound X(log X)
c23M

for H23(X) gives the result.

We conclude this subsection with Proposition 2.2.10. Its proof is a direct application
of Lemma 5.3.2.

Proposition 5.3.3. Let X ⩾ 3, C1, C2, C3 > 0, let Q02, Q13 be odd integers and take
q ∈ (Z/8Z)∗4, q̃ ∈ (Z/8Z)∗2. Let 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C1 be odd integers such that
gcd(Qij, 2rirj) = 1 for i ∈ {(0, 2), (1, 3)} and any 1 ⩽ c0, c1, c2, c3 ⩽ (logX)C2. Define,
for any m ∈ N4,

H ′′(X,m) =
∑∑∑∑

n∈N4

‖n0n1c0,n2n3c1‖·‖m0m1c2,m2m3c3‖⩽X
gcd(ni,ri)=1 ∀0⩽i⩽3
ni≡qi mod 8 ∀0⩽i⩽3

ψQ02m0m2(n0n2)ψQ13m1m2(n1n3)
τ(n0)τ(n1)τ(n2)τ(n3)

.

Then
∑∑∑∑

m∈N4,‖m0,m1,m2,m3‖⩽(log X)C3
gcd(m0m2,2Q02r0r2)=gcd(m1m3,Q13r1r3)=1

Q02m0m2 6=1 and Q13m1m3 6=1
m≡q̃ mod 8

µ2(2m0m1m2m3)|H ′′(X,m)|
τ(m0)τ(m1)τ(m2)τ(m3)

�C1,C2,C3,C4

Q02Q13X
2

c0c1c2c3(logX)C4
.

for any C4 > 0 where the implied constant depends at most on the Ci.
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5.3.3 Small Conductor – Non-Symmetric Hyperbola Method

As in the analogous part of §5.2 the asymmetry of these sums leads to difficulty. In
the previous case the lower bounds on some of the variables and averaging over the
characters with the neutraliser large sieve led to saving over the desired bound. In
this case we will likewise have to exploit the averaging over the conductor to obtain a
valid bound, but our methods will differ as the convex factors 1

n0n1
and 1

‖n0,n1‖2 switch
roles from §5.2. The argument begins in a similar fashion to that of Lemma 5.3.1, but
deviates in order to handle the need to average over our conductors. Assume that the
character χ02 is non-principal with conductor Q02 and consider

A(X) =
∑∑∑∑

‖n0n1c01,n2n3c23‖·M⩽X
gcd(ni,ri)=1∀ 0⩽i⩽3
ni≡qi mod 8∀ 0⩽i⩽3

χ02(n0n2)
τ(n0)τ(n1)τ(n2)τ(n3)

. (5.3.2)

Define also the Dirichlet series

L̃r(1, χ) =
∞∑

n=1
gcd(n,r)=1
n≡q mod 8

χ(n)
nτ(n)

for any odd integer r, any q ∈ (Z/8Z)∗ and any non-principal Dirichlet character χ.
Our first step is to prove the following:

Lemma 5.3.4. Let X ⩾ 3, C1, C2, C3, C4, C5 > 0 and fix some q ∈ (Z/8Z)∗4. Let
2 < Q02 ⩽ (logX)C1 and 1 ⩽ r0, r1, r2, r3 ⩽ (logX)C2 be odd integers such that
gcd(Q02, 2r0r2) = 1. Suppose χ02 is a non-principal character modulo Q02. Then for
any integers 1 ⩽ c01, c23 ⩽ (logX)C3, 1 ⩽M ⩽ (logX)C4 we have

A(X) =S0(2r1)S0(2r3)X2

16c01c23M2 logX

 ∑∑
χ,χ′ mod 8

χ(q0)χ′(q2)L̃r0(1, χ02χ)L̃r2(1, χ02χ
′)


+OC1,C2,C3,C4,C5

 X2

c01c23M2(logX)3/2

∑
χ mod 8

(|L̃r0(1, χ02χ)| + |L̃r2(1, χ02χ)|))


where the implied constant depends at most on the Ci.

Proof. We write A(X) as the product of two hyperbolic sums H01(X)H23(X), where

H01(X) =
∑∑

n0n1⩽X/c01M
gcd(ni,ri)=1∀ 0⩽i⩽1
ni≡qi mod 8∀ 0⩽i⩽1

χ02(n0)
τ(n0)τ(n1)

and H23(X) =
∑∑

n2n3⩽X/c23M
gcd(ni,ri)=1∀ 2⩽i⩽3
ni≡qi mod 8∀ 2⩽i⩽3

χ02(n2)
τ(n2)τ(n3)

.

We look at H01(X). Defining the parameter Y = exp((logX)1/3), we use the standard
hyperbola method we deduce that

H01(X) = H ′
01(X) +H ′′

01(X) −H ′′′
01(X)
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where

H ′
01(X) =

∑
n0⩽Y

gcd(n0,r0)=1
n0≡q0 mod 8

χ02(n0)
τ(n0)

∑
n1⩽X/n0c01M
gcd(n1,r1)=1
n1≡q1 mod 8

1
τ(n1)

,

H ′′
01(X) =

∑
n1⩽X/c01MY
gcd(n1,r1)=1
n1≡q1 mod 8

1
τ(n1)

∑
n0⩽X/n1c01M
gcd(n0,r0)=1
n0≡q0 mod 8

χ02(n0)
τ(n0)

,

and
H ′′′

01(X) =
∑∑

n0⩽Y,n1⩽X/c01MY
gcd(ni,ri)=1∀ 0⩽i⩽1
ni≡qi mod 8∀ 0⩽i⩽1

χ02(n0)
τ(n0)τ(n1)

.

Using Lemma 5.1.4 for the sums over n0 we see that

H ′′′
01(X) �C′

5

τ(r0)Q02X

c01M(logX)1/2(logX)C′
5/3 ,

and

H ′′
01(X) �C′

5

∑
n1⩽X/c01MY

τ(r0)Q02X

n1c01M(logX/n1c01MY )(C′
5+1)/3 �C′

5

τ(r0)Q02X

c01M(logX)C′
5/3 .

In each case we have used the bound (logX/c01MY ) = (logX)(1 + O((logX)−2/3))
which follows from the fact that log c01MY � (logX)1/3. In the above bounds we can
write C ′

5 = 3C5 for some C5 > 0 to obtain

H ′′
01(X), H ′′′

01(X) �C5

τ(r0)Q02X

c01M(logX)C5
.

For H ′
01(X) we apply Lemma 5.1.4 for non-principal characters with C5 > 0 sufficiently

large. This will give

H ′
01(X) =

∑
n0⩽Y

gcd(n0,2r0)=1
n0≡q0 mod 8

χ02(n0)
τ(n0)

 S0(2r1)X
n0c01M

√
(logX/n0c01M)

+O

(
X(log log 3r1)3/2

n0c01M(logX)3/2

) ,

where we have used logX/c01M � logX coming from c01,M ⩽ (logX)C2 . Using the
bound ∑

n0⩽Y

1
n0τ(n0)

�
√

log Y � (logX)1/6.

we obtain

H ′
01(X) =S0(2r1)X

c01M

∑
n0⩽Y

gcd(n0,2r0)=1
n0≡q0 mod 8

χ02(n0)
n0τ(n0)

√
(logX/n0c01M)

+OC3

(
X(log log 3r1)3/2

c01M(logX)4/3

)
.

For the front term we use the following:

1√
(logX/n0c01M)

= 1√
(logX)

· 1(
1− log n0c01M

log X

)1/2 = 1√
(logX)

(
1+O

(
1

(logX)2/3

))
.
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It follows that

H ′
01(X) = S0(2r1)X

c01M
√

logX
∑

n0⩽Y
gcd(n0,2r0)=1
n0≡q0 mod 8

χ02(n0)
n0τ(n0)

+OC3

(
X

c01M logX

)
.

Next we detect the condition 8|n0 − q0 using Dirichlet characters. Thus the main term
sum in H ′

01(X) becomes

1
4

∑
χ mod 8

χ(q0)
∑

n0⩽Y
gcd(n0,r0)=1

χ02χ(n0)
n0τ(n0)

, (5.3.3)

where χ02χ(n0) = χ02(n0)χ(n0) is a non-principal character modulo 8Q02 and are non-
principal since Q02 is odd and χ02 non-principal. Using a similar argument to that seen
in the proof of Lemma 5.3.1, L̃r0(1, χ02χ) converges and

L̃r0(1, χ02χ) = P (1, r0, χ02χ
′)R(1, χ02χ)L(1, χ02χ)1/2

where P (1, r0, χ02χ) and R(1, χ02χ) are

∏
p prime

p|r0

1 +
∞∑

j=1

χ02χ(p)j

(j + 1)pj

−1

and
∏

p prime

1 +
∞∑

j=1

χ02χ(p)j

(j + 1)pj

(1 − χ02χ(p)
p

)1/2

respectively, and

L(1, χ02χ) =
∏

p prime

(
1 − χ02χ(p)

p

)−1

is the L-function for the character χ02χ. Seeing this, we may extend the sum over n0

in (5.3.3) at the cost of an error term. This equation then becomes

= 1
4

∑
χ mod 8

χ(q0)P (1, r0, χ02χ)R(1, χ02χ)L(1, χ02χ)1/2 +OC5

(
Q02

(logX)C5

)
,

where we have used partial summation and Lemma 5.1.4 to bound the tail of this series.
We therefore see that H ′

01(X) is equal to

S0(2r1)X
4c01M

√
logX

∑
χ mod 8

χ(q0)P (1, r0, χ02χ)R(1, χ02χ)L(1, χ02χ)1/2 +OC3

(
X

c01M logX

)
.

Putting this together with H ′′
01(X) and H ′′′

01(X) we see that H01(X) is then

S0(2r1)X
4c01M

√
logX

∑
χ mod 8

χ(q0)P (1, r0, χ02χ)R(1, χ02χ)L(1, χ02χ)1/2 +OC3

(
X

c01M logX

)
.

Similarly we may obtain that H23(X) is

S0(2r3)X
4c23M

√
logX

∑
χ′ char.
mod 8

χ′(q0)P (1, r3, χ02χ
′)R(1, χ02χ

′)L(1, χ02χ
′)1/2 +OC3

(
X

c23M logX

)
.

Multiplying these together we obtain the result.
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In order to take the desired averages over the characters, we will use the fact that
L̃r(1, χ) looks roughly like L(1, χ)1/2. In fact, by noting the bounds

P (1, r0, χ) � τ(r0), R(1, χ) � 1

for any non-principal character χ and absolute implied constants, we observe

L̃r(1, χ)2 � τ(r)2L(1, χ) (5.3.4)

since L(1, χ) > 0 for real non-principal characters χ.

Recall that we use the notation ψm(·) for an odd integer m to denote generically the
Jacobi symbol

(
·

m

)
or
(

m
·

)
. We may use quadratic reciprocity to interchange between

the two if necessary (in the following proof, the characters modulo 8 and square-free
functions ensure that the variables are odd).

Theorem 5.3.5. Let χ be a character modulo 8, and m1 be an integer in [1, X]. Then
for all X ⩾ 3 we have

∑
1<m⩽X

µ2(2mm1)
τ(m)

L(1, χ · ψmm1) � X√
logX

.

Proof. We begin by splitting the L-function in two:

L(1, χ · ψmm1) =
bX2c∑
n=1

χ(n)ψmm1(n)
n

+
∑

n>bX2c

χ(n)ψmm1(n)
n

.

Using partial summation and the Pólya–Vinogradov inequality [25], the tail sum may
be seen to be

� (mm1)1/2 log(mm1)
X2 � (logX)

X
.

Summing trivially over m will give O(logX) which is sufficient. The expression we
have left is ∑

m⩽X

∑
n⩽bX2c

µ2(2mm1)
τ(m)

χ(n)ψm1(n)
n

(
n

m

)
. (5.3.5)

We will make use of the double oscillation of the character ψmm1(n) in the variables m
and n. By partial summation we get

∑
m⩽X

∑
n⩽bX2c

µ2(2mm1)
τ(m)

χ(n)ψm1(n)
n

(
n

m

)
� S(X,X2)

X2 +
∫ X2

2

S(X, t)
t2

dt, (5.3.6)

where
S(X, t) =

∑
m⩽X

∑
n⩽t

µ2(2mm1)
τ(m1)

χ(n)ψm1(n)
(
n

m

)
.

Using Lemma 2.2.4 we obtain

S(X,X2)
X2 � X3

X2

(
X−1/6 +X−1/3

)
(log 3X)7/6 � X5/6(log 3X)7/6.

149



Chapter 5: Hyperbolic character sums Section 5.3

The integral equals:
∫ X2

2

S(X, t)
t2

dt =
∫ X1/2

2

S(X, t)
t2

dt+
∫ X2

X1/2

S(X, t)
t2

dt.

In the first range we apply Lemma 5.1.3 with ϵ = 1/6, N = X and M = t as t2 � X.
In the second range we once more apply Lemma 2.2.4. The integral therefore becomes
bounded by:

�
∫ X1/2

2

(
X(log t)
t3/2

√
logX

+ X1/3(log t)1/2

t1/2(logX)1/4

)
dt+

∫ X2

X1/2

(
X

t7/6 + X5/6

t

)
(log 3X)7/6dt,

which is O(X(logX)−1/2).

Corollary 5.3.6. Let X ⩾ 3 and C > 0. Fix some real number 0 < c ⩽ 1. Suppose
that χ is a character modulo 8. Then

∑∑
‖m0,cm1‖⩽X

m0m1 6=1

µ2(2m0m1)
τ(m0)τ(m1)

L(1, χ · ψm0m1) � X2

c
√

logX
,

where the implied constant is absolute.

Proof. When m1 = 1 then we use Lemma 5.3.5 for the sum over m0, since m0m1 6= 1.
When m1 > 1 then we may use Lemma 5.3.5 to bound the sum over m1. In this case:

∑∑
‖m0,cm1‖⩽X

m1>1

µ2(2m0m1)
τ(m0)τ(m1)

L(1, χ · ψm0m1) �
∑

m0⩽X

X

c
√

logX/c
� X2

c
√

logX
.

We conclude this chapter with the proof of Proposition 2.2.11.

Proposition 5.3.7. Let X ⩾ 3, C1, C2 > 0 and fix q ∈ (Z/8Z)∗4 and q̃ ∈ (Z/8Z)∗2. Fix
odd integers 1 ⩽ r0, r1, r2, r3, r̃0, r̃1 ⩽ (logX)C1 and fix 1 ⩽ c01, c23, c̃0, c̃1 ⩽ (logX)C2.
Then for any m ∈ N2 we define

T (X,m) =
∑∑∑∑

‖n0n1c01,n2n3c23‖·‖m0c̃0,m1c̃1‖⩽X
gcd(ni,2ri)=1∀ 0⩽i⩽3
ni≡qi mod 8∀ 0⩽i⩽3

ψm0m1(n0n2)
τ(n0)τ(n1)τ(n2)τ(n3)

.

Then for any C3 > 0,

∑∑
‖m0,m1‖⩽(log X)C3
mi≡q̃i mod 8 ∀0⩽i⩽1

gcd(mi,Qr̃i)=1 ∀0⩽i⩽1
m0m1 6=1

µ2(m0m1)
τ(m1)τ(m2)

|T (X,m)| �C1,C2,C3

τ(r0)τ(r2)X2(log logX)1/2

c01c23c̃0c̃1(logX)
.

where the implied constant depends at most on the Ci.
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Proof. Using Lemma 5.3.4 on the T (X,m) and using the triangle inequality we see
that the sum over m is equal to

S0(2r1)S0(2r3)X2

c01c23(logX)
∑∑

χ,χ′ mod 8
M(X,χ, χ′)+O

 X2

c01c23(logX)3/2

∑
χ mod 8

E(X,χ)

 ,
where

M(X,χ, χ′) =
∑∑

‖m0,m1‖⩽(log X)C3
mi≡q̃i mod 8 ∀0⩽i⩽1
gcd(mi,r̃i)=1 ∀0⩽i⩽1

m0m1 6=1

µ2(m0m1)
τ(m1)τ(m2)‖m0c̃0,m1c̃1‖2 |L̃r0(1, ψm0m1χ)||L̃r2(1, ψm0m1χ

′)|

and

E(X,χ) =
∑

j=0,2

∑∑
‖m0,m1‖⩽(log X)C3

µ2(m0m1)
τ(m1)τ(m2)‖m0c̃0,m1c̃1‖2 |L̃rj

(1, ψm0m1χ)|.

We first bound M(X,χ, χ′). We may write this sum in the form

M(X,χ, χ′) =
∑∑

‖m0,m1‖⩽(log X)C3

a(m0,m1)b(m0,m1)c(m0,m1)

where b(m0,m1) = |L̃r0(1, ψm0m1χ)|, c(m0,m1) = |L̃r2(1, ψm0m1χ
′)| and a(m0,m1) represents

the remaining summands and conditions. We may therefore re-index this sum as a sum
over a single variable,

M(X,χ, χ′) =
∑

l⩽(log X)2C3

ãlb̃lc̃l.

Using Cauchy’s inequality, and then returning to the original double indexing, we
obtain

M(X,χ, χ′) =

 ∑∑
‖m0,m1‖⩽(log X)C3

a(m0,m1)b
2
(m0,m1)

1/2 ∑∑
‖m0,m1‖⩽(log X)C3

a(m0,m1)c
2
(m0,m1)

1/2

.

In other words, we have now obtained M(X,χ, χ′) � Rr0(X,χ)1/2Rr2(X,χ′)1/2 where

Rr(X,χ) =
∑∑

‖m0,m1‖⩽(log X)C3
m0m1 6=1

µ2(2m0m1)
τ(m1)τ(m2)‖m0c̃0,m1c̃1‖2 |L̃r(1, ψm0m1χ)|2.

By (5.3.4) we have

Rr(X,χ) � τ(r)2 ∑∑
‖m0,m1‖⩽(log X)C3

m0m1 6=1

µ2(2m0m1)
τ(m1)τ(m2)‖m0c̃0,m1c̃1‖2L(1, ψm0m1χ).

Writing

a(M) =
∑∑

m∈N2,‖m0c̃0,m1c̃1‖=M
m0m1 6=1

µ2(2m0m1)
τ(m1)τ(m2)

L(1, ψm0m1χ)
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we obtain
Rr(X,χ) � τ(r)2 ∑

2⩽M⩽‖c̃0,c̃1‖(log X)C3

a(M)
M2 . (5.3.7)

By partial summation the sum on the right hand side of (5.3.7) is then

1
‖c̃0, c̃1‖2(logX)2C3

∑
2⩽M⩽‖c̃0,c̃1‖(log X)C3

a(M) + 2
∫ ‖c̃0,c̃1‖(log X)C3

2

∑
2⩽M⩽t a(M)

t3
dt.

Using the fact that a(M) = 0 unless M ⩾ ‖c̃0, c̃1‖ and the change of variables t =
‖c̃0, c̃1‖u the integral becomes∫ ‖c̃0,c̃1‖(log X)C3

2

∑
2⩽M⩽t a(M)

t3
dt =

∫ (log X)C3

1

∑
2⩽M⩽‖c̃0,c̃1‖u a(M)

‖c̃0, c̃1‖2u3 du.

Thus
Rr(X,χ)
τ(r)2 � 1

‖c̃0, c̃1‖2(logX)2C3

∑
2⩽M⩽‖c̃0,c̃1‖(log X)C3

a(M) +
∫ (log X)C3

1

∑
2⩽M⩽‖c̃0,c̃1‖u a(M)

‖c̃0, c̃1‖2u3 dt.

(5.3.8)

Now, upon unwrapping a(M), we may see that,

∑
2⩽M⩽‖c̃0,c̃1‖Y

a(M) =
∑∑

‖m0
c̃0

‖c̃0,c̃1‖ ,m1
c̃1

‖c̃0,c̃1‖ ‖⩽Y

m0m1 6=1

µ2(m0m1)
τ(m1)τ(m2)

L(1, ψm0m1χ
′).

By Corollary 5.3.6 with c = min(c̃0,c̃1)
‖c̃0,c̃1‖ we get

Rr(X,χ)
τ(r)2 �C2,C3

1
min(c̃0, c̃1)‖c̃0, c̃1‖

√
log logX

+
∫ (log X)C3

1

1
min(c̃0, c̃1)‖c̃0, c̃1‖u

√
log u

dt.

This is O(
√

log logX/c̃0c̃1), hence

M(X,χ, χ′) �C2,C3

τ(r0)τ(r2)
√

log logX
c̃0c̃1

.

To deal with E(X,χ) we treat the sum over each L̃rj
(1, ψm0m1χ) separately. Call-

ing each one Ej(X,χ) we once more use Cauchy’s inequality to get Ej(X,χ) �
(Ej(X,χ)E ′

j(X))1/2 where

Ej(X,χ) = τ(rj)2 ∑∑
‖m0,m1‖⩽(log X)C3

m0m1 6=1

µ2(m0m1)
τ(m1)τ(m2)‖m0c̃0,m1c̃1‖2L(1, ψm0m1χ)

and
E ′

j(X) =
∑∑

‖m0,m1‖⩽(log X)C3
m0m1 6=1

µ2(m0m1)
τ(m1)τ(m2)‖m0c̃0,m1c̃1‖2 .

Using similar techniques to those used to bound M(X,χ, χ′) to bound Ej(X,χ) and
Lemma 5.2.5 to bound E ′

j(X) we obtain

Ej(X,χ)
τ(r0)2 , E ′

j(X) � (log logX)1/2

(c̃0c̃1)
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from which it follows that

E(X,χ′) �C2,C3

τ(r0)τ(r1)(log logX)1/2

c̃0c̃1
.

Finally, we inject the bounds for M(X,χ, χ′) and Ej(X,χ′) into our overall expression,
summing over finitely many characters χ and χ′ modulo 8 and noting that S0(ri) � 1
for all integers, we conclude the proof.
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Appendix A

Tables of Elements for A1 and A2

A.1 Elements of A1 with q0q1q2q3 ≡ 1 mod 8

Tables A.1, A.2, A.3, A.4, A.5 and A.6 display the points in (Z/8Z)∗4 which satisfy one
of the forms in (2.10.3). Note that there are 48 unique vectors displayed throughout
these tables.

b \ a 1 3 5 7
1 (1,1,7,7) (3,1,5,7) (5,1,3,7) (7,1,1,7)
3 (1,3,7,5) (3,3,5,5) (5,3,3,5) (7,3,1,5)
5 (1,5,7,3) (3,5,5,3) (5,5,3,3) (7,5,1,3)
7 (1,7,7,1) (3,7,5,1) (5,7,3,1) (7,7,1,1)

Table A.1: Solutions to (A.1.1) & (A.1.4)

b \ a 1 3 5 7
1 (1,1,7,7) (3,1,7,5) (5,1,7,3) (7,1,7,1)
3 (1,3,5,7) (3,3,5,5) (5,3,5,3) (7,3,5,1)
5 (1,5,3,7) (3,5,3,5) (5,5,3,3) (7,5,3,1)
7 (1,7,1,7) (3,7,1,5) (5,7,1,3) (7,7,1,1)

Table A.2: Solutions to (A.1.2) & (A.1.3)
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b \ a 1 3 5 7
1 (3,1,1,3) (3,3,1,1) (3,5,1,7) (3,7,1,5)
3 (1,1,3,3) (1,3,3,1) (1,5,3,7) (1,7,3,5)
5 (7,1,5,3) (7,3,5,1) (7,5,5,7) (7,7,5,5)
7 (5,1,7,3) (5,3,7,1) (5,5,7,7) (5,7,7,5)

Table A.3: Solutions to (A.1.5) & (A.1.8)

b \ a 1 3 5 7
1 (3,1,3,1) (3,3,1,1) (3,5,1,7) (3,7,1,5)
3 (1,1,3,3) (1,3,1,3) (1,5,3,7) (1,7,3,5)
5 (7,1,5,3) (7,3,5,1) (7,5,7,5) (7,7,5,5)
7 (5,1,7,3) (5,3,7,1) (5,5,7,7) (5,7,5,7)

Table A.4: Solutions to (A.1.6) & (A.1.7)

b \ a 1 3 5 7
1 (1,7,1,7) (3,5,1,7) (5,3,1,7) (7,1,1,7)
3 (1,7,3,5) (3,5,3,5) (5,3,3,5) (7,1,3,5)
5 (1,7,5,3) (3,5,5,3) (5,3,5,3) (7,1,5,3)
7 (1,7,7,1) (3,5,7,1) (5,3,7,1) (7,1,7,1)

Table A.5: Solutions to (A.1.9)

Equation \a 1 3 5 7
(A.1.11) (1,1,7,7) (3,7,5,1) (5,5,3,3) (7,3,1,5)
(A.1.14) (1,5,7,3) (3,3,5,5) (5,1,3,7) (7,7,1,1)

Table A.6: Solutions to (A.1.11)&(A.1.14)
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A.2 Elements of A2 with q0q1q2q3 ≡ 1 mod 8

Table A.7 displays the points in (Z/8Z)∗4 which satisfy the forms in (2.10.5). We
remark that here are 32 distinct points in this table.

Equation \a a = 1 a = 3 a = 5 a = 7
(A.2.1)-(A.2.4)

(a, 7a, 1, 7) (1,7,1,7) (3,5,1,7) (5,3,1,7) (7,1,1,7)
(a, 7a, 7, 1) (1,7,7,1) (3,5,7,1) (5,3,7,1) (7,1,7,1)
(a, 7a, 3, 5) (1,7,3,5) (3,5,3,5) (5,3,3,5) (7,1,3,5)
(a, 7a, 5, 3) (1,7,5,3) (3,5,5,3) (5,3,5,3) (7,1,5,3)

(A.2.5)&(A.2.6)
(a, 2 + 7a, 6a+ 1, 7) (1,1,7,7) (3,7,3,7) (5,5,7,7) (7,3,3,7)
(a, 2 + 7a, 7, 6a+ 1) (1,1,7,7) (3,7,7,3) (5,5,7,7) (7,3,7,3)
(a, 2 + 7a, 6a+ 5, 3) (1,1,3,3) (3,7,7,3) (5,5,3,3) (7,3,7,3)
(a, 2 + 7a, 3, 6a+ 5) (1,1,3,3) (3,7,3,7) (5,5,3,3) (7,3,3,7)

(A.2.7)&(A.2.8)
(a, 6 + 7a, 6a+ 3, 5) (1,5,1,5) (3,3,5,5) (5,1,1,5) (7,7,5,5)
(a, 6 + 7a, 5, 6a+ 3) (1,5,5,1) (3,3,5,5) (5,1,5,1) (7,7,5,5)
(a, 6 + 7a, 6a+ 7, 1) (1,5,5,1) (3,3,1,1) (5,1,5,1) (7,7,1,1)
(a, 6 + 7a, 1, 6a+ 7) (1,5,1,5) (3,3,1,1) (5,1,1,5) (7,7,1,1)

(A.2.9)-(A.2.16)
No new solutions (1,7,1,7) (1,7,3,5) (1,7,5,3) (1,7,7,1)

(7,1,1,7) (7,1,3,5) (7,1,5,3) (7,1,7,1)
(3,5,1,7) (3,5,3,5) (3,5,5,3) (3,5,7,1)
(5,3,1,7) (5,3,3,5) (5,3,5,3) (5,3,7,1)
(7,7,1,1) (3,7,3,7) (7,7,5,5) (3,7,7,3)
(7,7,1,1) (7,3,3,7) (7,7,5,5) (7,3,7,3)
(3,3,1,1) (7,3,3,7) (3,3,5,5) (7,3,7,3)
(3,3,1,1) (3,7,3,7) (3,3,5,5) (3,7,7,3)
(1,5,1,5) (5,5,3,3) (1,5,5,1) (5,5,7,7)
(5,1,1,5) (5,5,3,3) (5,1,5,1) (5,5,7,7)
(5,1,1,5) (1,1,3,3) (5,1,5,1) (1,1,7,7)
(1,5,1,5) (1,1,3,3) (1,5,5,1) (1,1,7,7)

Table A.7: Solutions to (A.2.1)-(A.2.16)
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