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Abstract

We prove an asymptotic formula for the number of everywhere locally soluble diagonal
quadric surfaces
Yoo + Y12 + Yoy + Yz = 0

parametrised by points y € P3(Q) lying on the split quadric surface yoy; = y2y3 which
do not satisty —yoys = U nor —yoy3; = [J. Our methods involve proving asymptotic
formulae for character sums with a hyperbolic height condition and proving variations
of large sieve inequalities for quadratic characters.
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Notation

Let f be a complex valued functions and g be a positive, real valued function. We
will write both f(z) = O(g(x)) and f(x) < g(x) to mean that there exists a constant
C' € Ry such that |f(x)| < Cg(x) for sufficiently large x.
We will write f(x) ~ g(x) to denote that

lim M =1.
We will use the standard notation for projective n space, P" and its set of rational
points P"(Q). Whenever we write a € P*(Q) we will mean the primitive integer
representation @ = [ag : ... : a,], where ao, ..., a, € Z, gcd(ag, .. .,a,) = 1.



Chapter 1

Introduction

1.1 Background

A Diophantine equation is an equation of the form

flzo,...,x,) =0 (1.1.1)
where f € Z[xy,...,x,]. Given such an equation, we aim to determine whether it is
soluble over the rational numbers?, that is, do there exist Xy,..., X, € Q such that

f(Xo, ..., X,) =0.

Research into this problem goes back 2000 years, drawing on many fields and techniques
in mathematics and spawning new directions of investigation. Two of the most potent
directions in recent decades are Manin’s problem and Serre’s problem. The first of
these concerns counting rational points on a special class of algebraic varieties; the
second aims to count the number of Diophantine equations within a family which are
rationally soluble.

1.1.1 Manin’s Conjecture

Let X be a smooth projective variety over Q. (In this thesis, by variety, we mean
an integral and quasi-projective algebraic variety.) Then X is said to be Fano, if the
anticanonical line bundle of X is ample. It is conjectured that the set X (Q) of rational
points on a Fano variety X is Zariski dense as soon as it is non-empty?. To study
the set of rational points in a quantitative way, we make use of a anticanonical height

IClassically, one considers integral solubility instead of rational solubility. The Diophantine equa-
tions studied in this thesis, however, will be homogeneous. A consequence of this is that these notions

of solubility will be equivalent.
2This is a consequence of a more general conjecture of Colliot-Théléne [iT].



Chapter 1: Introduction Section 1.1

function H : X(Q) — R which measures the complexity of a rational point. A
key goal of rational points research is to determine the asymptotic behaviour of the
counting function

My(B) = #{z € U(Q) : H(z) < B} (1.1.2)

as B — oo, where U C X. The following conjecture is due to Manin and Batyrev:

Conjecture 1.1.1 (Manin et. al. [I6]). Let X be a Fano variety. Then there exists a
Zariski dense, open subset U C X, and constants a € Rsg, b € Z~o such that

My (B) ~ aB’(log B)Px ™,

where px is the rank of the Picard group of X and b has an explicit description.

To see why it is necessary to take a Zariski dense, open subset U C X in the above
conjecture, suppose that X is a cubic surface. It is well known that X contains 27 lines
and Manin’s conjecture predicts that b = 1. If one of these lines is rational, then the
rational points on this line will dominate the counting function Mx(B), leading to a
lower bound > B2. It therefore follows that for a cubic surface X to follow Conjecture
11, we must have U C X \ {lines}.

The removal of dominating rational subvarieties is also not enough. Following a
counter-example of earlier incarnations of Conjecture I by Batyrev and Tschinkel
[2], recent investigations into Manin’s conjecture take the open set U to be the com-
plement in X of accumulating thin sets (see, for example, [34, §8]). The following
definition may be found in Chapter 3 of [39].

Definition 1.1.2. Let X be a Fano variety over QQ and suppose 7" is a subset of X (Q).

o T is said to be a type 1 thin set of X if there is a proper, Zariski closed subset
W of X such that T C W(Q).

o Tissaid to be a type 2 thin set of X if there exists an irreducible, quasi-projective
variety X’ with dim(X’) = dim(X), and a generically surjective morphism ¢ :
X' — X of degree > 2 such that T C p(X'(Q)).

Lastly, T is said to be a thin set of X if it is contained in a finite union of type 1 and

type 2 thin sets.

In Peyre’s reformulation of Conjecture I, it is stated that there exists a thin set
T C X(Q) such that

Mx\r(B) =t{z € X(Q) : H(z) < B, x ¢ T} ~ aB’(log B)"™ .

Peyre also gives an explicit prediction for the constant a in terms of geometric invariants
of the variety X [33].

10



Section 1.1 Chapter 1: Introduction

Example 1.1.3. Of key importance to this thesis is the quadric surface Y C P? defined
by the equation yy; = y2y3. This is an example of a Fano variety of dimension 2. For
now, let H : P2(Q) — R be the naive Weil height on P?(Q) and restrict it to Y (Q).
A straightforward argument using the Q-isomorphism of Y from the product variety
P! x P! and the hyperbola method allows us to conclude Manin’s conjecture for Y,
that is:
t{y € Y(Q): H(y) < B} = cB’log B + O(B?)

for some positive constant ¢. Note that the Picard rank of Y is 2. Also of note is that
we have taken U =Y, i.e there is no need to remove any thin sets from Y to obtain
Conjecture I, To conclude this example, and this section, we will draw attention

to the following sets of rational points on Y

Ti={y=1[yo:y1:92: 93] €Y(Q) : —yoy» = I}
Tr={y=1yo:y1:92: 93] € Y(Q): —yoys = U}.
It can be proven with similar methods that
B*<i#{yeTi: Hly) < B} < B?

for i = 1,2. Although T' = T} U T, does not dominate the set of rational points on
Y, it is thin in the sense of Definition II-2. Indeed, if we take Y’ C P3 to be the
smooth variety defined by the equation —z2z; = 2323 and ¢ : Y/ — Y, and the degree

2 rational map ¢([z0 : 21 @ 22 @ 23]) = [—g D2t 2o 2’3}, then by blowing up Y’ along

the points where ¢ is undetermined (those points where z, = 0) to obtain a variety Y
and a degree 2 morphism ¢ : Y — Y such that Ty C ¢(Y (Q))2.

1.1.2 Serre’s problem

Suppose F C Z[xg, ..., x,] is an infinite family of polynomials. A natural question to
ask is: for how many f € F does the Diophantine equation (I_Il) have a rational
solution? More formally, if coef(f) is the set of coefficients of f, we want to study the
asymptotic behaviour of the following counting function:

- f(zo,...,z,) =0 has a Q solution
ﬂ{fef' maﬁ{|a|:a€coef(f)}<B }

We are particularly interested in families that can be parametrised by the rational
points of an algebraic variety. The earliest result in this direction is due to Serre,
who used the large sieve to prove upper bounds for the families of ternary conics
parametrised by projective space. He proved that

apx? + a1y2 +ag2? + asry + agxz + azyz =0 B
1¢acP(Q): has a solution over Q, L ——,
H(a) < B \/(log B)
(1.1.3)

3This argument on the thinness of the set T' was suggested by Florian Wilsch.

11
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and
aox® + a1y? + a2 =0 53
1{a € P?(Q): has a solution over Q, ; < (log B)772 (1.1.4)
H(a) < B

where H is the naive Weil height on P5(Q) and P?(Q) respectively. This was followed
by results of Hooley, who proved matching lower bounds for the family of diagonal
planar conics [23], and Guo, who proved asymptotics for the problem of diagonal
planar conics whose coefficients are restricted to be square-free and pairwise co-prime
[T9]. Subsequently, Hooley gave lower bounds for the family of general planar conics
[4].

In the case of families of conics, it is known that the Hasse Principle is satisfied;
this means that a variety in the family has a rational solution if and only if it has
a solution over every local field, Q, for p € {primes} U {oo}. A benefit of studying
families which satisfy this principle is that the otherwise difficult problem of asking
whether an equation has rational points is equivalent to the more tractable problem of
asking whether or not it has a solution in each of these local fields.

Not every family satisfies the Hasse Principle — for example, it is a famous example
of Selmer that the plane cubic cut out by the equation 323 + 4y® + 52% = 0 has points
in every local field over Q but fails to have a rational point [36]. In fact, Bhargava has
proven that a positive proportion of ternary plane cubics fail the Hasse Principle [3].
Such failures in the Hasse Principle mean that rational solubility requires more effort
to study than just considering local solubility. For this reason, we study the simpler
problem of counting equations in families which are everywhere locally soluble. The
general set-up in this direction is as follows: suppose that X and W are smooth, proper
projective varieties over Q and that ¢ : W — X is a dominant map with geometrically
integral generic fibre. The fibre of a rational point z € X(Q), ¢~!(z), is then an
algebraic variety corresponding to a for which we ask if it has points in every local field
of Q. We now aim to study the asymptotic behaviour of the counting function

Ny(6,B) = ¢ {$ cU(Q) g(lx()aﬁ)g((@éj) # ) for all p € {primes} U {oo} } (1.1.5)

where H is some height function on the variety X and U is some Zariski open subset
of X.

To understand the results we will need the following quantity, defined for X = P" by
Loughran and Smeets [80] and for more general varieties X by Browning and Loughran
in [7]. Set X to be the collection of codimension 1 points of X. Then recall that for
any D € X the absolute Galois group Gal(x(D)/k(D)) of the residue field of D acts
on the irreducible components of the reduced fibres 77! (D) ® k(D). Choose some finite
group I'p(¢) through which the action is factored and define I'},(¢) to be the collection
of v € Tp(¢) which fix some multiplicity 1 irreducible component of ¢~(D) ® k(D).
We then define dp(¢) = '}, (4) /80 p(¢) and

Ax(¢)= > (1—0p(e)). (1.1.6)

Dex®)

Note that the assumption that the generic fibre is geometrically integral ensures that
this sum is finite.

12
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Let us first consider (ITH) when X = P" for n > 1 with the naive Weil height.
Then Loughran and Smeets proved the following general upper bound:

Bn+1

Npn (¢, B —_— .
P (¢a ) < (log B)Aﬂm(@

(1.1.7)
This upper bound generalised those given by Serre for the families of conics over P*(Q)
or P2(Q) and gave a geometric interpretation to the growth rate. Indeed the value of
the invariants for the cases considered in (IZT-3) and (II4) are 1 and 2 respectively.
Loughran and Smeets further conjectured that this upper bound is optimal when at
least one fibre of ¢ has solutions in every local field and that the fibre over every
codimension 1 point has an irreducible component of multiplicity 1. They confirmed
this prediction in the cases where A(¢) = 0, generalising earlier work by Poonen and
Voloch on the local solubility of hypersurfaces [35]. Later, Loughran and Matthiesen
proved matching lower bounds for (IZI=2) for X = P! and for some special families
over P™ [28]. Loughran, Rome and Sofos have provided a conjecture on the leading
constant, as well as its geometric interpretation, for counting problems of this type [29].
Recently, Browning, Lyczak and Smeets investigated the paucity of rationally soluble
fibrations where the map ¢ is allowed to have multiple fibres [9].

Now let us consider (II23) for more general varieties X with an anticanonical
height function. By combining the conjecture of Loughran and Smeets with Manin’s
conjecture, we may predict that there exists a thin set 7' C X such that, for U = X\ T,

NU(¢7 B)

C MU<B)
; (1.1.8)

(log B)A@)

for some constant ¢ > 0. Of particular interest are the cases where X is a Fano variety
over Q with no accumulating thin subsets in the sense considered in §I1T1. In such
cases, it is natural to think that we may take U = X, as we do in Manin’s conjecture
when there are no accumulating subsets. This problem has been investigated when X
is a quadric of dimension > 3 by Browning and Loughran [[7], where the upper bound of
the shape (ICIR) is proven. Furthermore, when X is a quadratic form of rank > 5 and
all fibres over codimension 1 points of X are split (ensuring that A(¢) = 0), Browning
and Heath-Brown proved that a positive proportion of fibres are everywhere locally
soluble [5]. In these cases py = 1. Other examples include: fibrations over algebraic
groups, which have been studied by Loughran [27], and Loughran, Takloo-Bighash, and
Tanimoto [31]; and fibrations over hypersurfaces studied by Sofos and Visse-Martindale
[@2].

1.2 Main Result

This thesis investigates the Serre problem when the base variety is the split quadric
surface Y C IP? defined in Example IT13. Let Z C P? x P? be the variety cut out by
the equations

9093% + 9193% + ?/2933 + ?/393;2; = 0 and yoy1 = 123, (1.2.1)

and let 7 : Z — Y be the dominant morphism sending ([xo : ¥1 : @2 : @3], [yo 1 y1 1 Y2 :
ys]) € Z to the point [yo : y1 : y2 : y3] € Y. Write Z — Z for a desingularisation of Z

13
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and write @ : Z — Y for its composition with 7. Furthermore, from here on out we
will set H : P3(Q) — R to be the naive Weil height on P3(Q) and restrict it to Y/(Q).
Notice that the variety Z is a subvariety of the universal family of diagonal quadric
surfaces, (), say. Furthermore, since the product of coefficients of the quadric fibres is
always a square, Z is contained inside the accumulating subset for Manin’s conjecture

for @ [4].

This fibration problem was first considered by Browning, Lyczak and Sarapin [g].
In particular, they showed that

B* < Ny (7, B) < B*. (1.2.2)

In this case py = 2 and it is demonstrated in the paper of Browning, Lyczak and
Sarapin that Ay (7) = 2. It follows that (ITIR) predicts a growth rate of %7 as Y
has no accumulating thin sets. The anomaly in this particular case may be seen to
arise from the presence of the thin set of points 7" defined in Example I"1=3: the fibres
of the points in T each have a rational point and we saw in this example that the
number of rational points in 1" of height < B is of order B2. Following Peyre’s modern
reformulation of the Manin conjecture [32], it was conjectured in [R] that prediction
(IR) should hold for this fibration problem after the removal of the thin set 7. To

this purpose, we set

—yoy2 # U, —yoys # U
N(B) = Ny\¢(7,B) =4{y € Y(Q): 7 '(y) has a Q-point . (1.2.3)
H(y) < B

The main result of this thesis is the following.
Theorem 1.2.1. As B — oo,

B?%loglog B B?%\/loglog B
N(B):C og log Lo og log
log B log B

where ¢ is given by

-2
935 1 2 4 2 1

1+ - 1+-+—=+—=+—
367T2H<+p) <+p+p2+p3+ )

p#2 v
25 N2 2 2(0+(F) 2 1
+ 1+—) (14s+ 2 S )

which is > 0.

This result contradicts the prediction made by Browning, Lyczak and Sarapin that
(IT8) should hold for U = Y \ T. However, the primary novelty of this result is the
completely surprising appearance of the loglog B factor in the main term. Prior to
this paper the only loglog B factor occurring in a fibration problem was the following
example with X = P1(Q) x P1(Q) [29]: if H' : P1(Q) — Ry is the naive Weil height
on P*(Q) then it may be proven that

! ! < 'B2log log B
ﬁ{(tbtz)GQQ: H'(t)H'(t2) < B, }NC 08 208

each t; is the sum of two squares log B

14



Section 1.3 Chapter 1: Introduction

for some ¢ > 0%. In the broader topic of rational points, a double logarithmic factor
has also appeared in the study of Brauer-Manin obstruction for K3 surfaces [20]. A
geometric interpretation of either occurrence of the loglog B factor is yet to be found.

1.3 Outline

This thesis is broken into two parts: an arithmetic-geometric part consisting of Chapters
2 and B, and an analytic part comprised of Chapters @ and B.

Chapter 2 covers the proof of Theorem 21, assuming the analytical results proven in
Chapters @ and A.

In Chapter B we will discuss some geometric properties of the family of quadrics studied
in Theorem 2. Specifically, we will tie the family of quadrics to a family of conics,
and use this relationship to study the rational solubility for the conics using Theorem
21, We will also compute the subordinate Brauer group for these families, in an
attempt to understand the appearance of two Euler products in Theorem 2.

As we will discuss in more detail in Chapter B, the analytic methods required to prove
Theorem X1 comprise summing quadratic characters over hyperbolic regions. To
study these sums we adapt the character sum methods of Friedlander and Iwaniec [I7],
and Fouvry and Kliners [T5]. The primary tools used in these papers are the large sieve
for quadratic characters and Selberg—Delange methods. However, due to the nature
of our height conditions, we require more acute versions of the large sieve. We will
introduce and prove these large sieve results in Chapter @.

We conclude this thesis by proving the required bounds for our character sums in
Chapter B.

Lastly, we include an appendix with tables that list the solutions to certain congruence
equations mod8 required in the final stages of the proof of Theorem 2.

“Note that the product of two naive Weil heights on P!(Q) is the square root of the anticanonical
height on P1(Q) x P1(Q).

15



Chapter 2

Asymptotics for local solubility of
diagonal quadrics over a

biprojective base

2.1 Introduction

The purpose of this chapter is to prove the main theorem of this thesis, Theorem 2,
assuming the analytical results that will be proven in Chapters @ and B. First we will
give a brief overview of the section and outline the proof.

In §22 we prove some technical results that are required at various points through-
out the proof to simplify expressions. We will also use this section to list the main
results of Chapters @ and B for reference.

The proof of Theorem X is contained within §23-§2710. In §Z3 we apply the
parameterisation of the quadric surface Y by P! x P! and then express N(B) as a
counting problem over the integers. As well as transforming our height condition this
will change the form of the diagonal quadric fibres to the form

totg.’ll'g + tltgib’% + t1t2$g + totgfl'g =0.

Local conditions for the solubility of general diagonal quadrics are considered through-
out §Z4. Of particular note is that the real conditions result in N(B) being split into
two similar but separate counting problems, Ni(B) and Ny(B) depending on the sign
of the coefficients.

The next step is to reduce to odd, square-free, and co-prime variables, apply the
Hasse Principle to express the indicator function of the diagonal quadrics having a
rational point as a sum over Jacobi symbols in these new variables and sum over them.
This is the content of §Z51 and §Z752. With this we express each N;(B) and No(B)
as a sums over Jacobi symbols involving 40 variables. The purpose of §Z53 is to

16



Section 2.2 Chapter 2: Solubility of diagonal quadrics

decompose this expression into smaller pieces, isolating the main terms and the error
terms. At this stage, we will outline §ZB8-§29, where each of these smaller pieces is
dealt with using the results listed in §22. Finally, in §210, we express the constant as
a sum of Euler products.

Throughout this chapter, we use the notation ||a, b|| to denote the maximum of |a
and |b| for a,b € R.

2.2 Analytical pre-requisites

2.2.1 Simplification results

In this section we prove some lemmas which will help us simplify our multivariable
sums. Our first lemma will allow us to limit our count over our coefficents to one
where the square parts and common factors are small (see §23). We remark that
throughout this thesis, the set of natural numbers N does not contain 0.

Lemma 2.2.1. Fiz cy,c1,c2,c3 € N. Then for all B > 2 we have,

B?(log B)

t7t7t7t EN4t7t t7t B t
#H{(to, t1, t2, t3) [tos tal] - [lt2s ts]| < Bsealts} < CoC1C2C3

where the implied constant is absolute.

Proof. Let S¢(B) denote the expression on the left hand side. Then

ZZﬁ{to ez Mohll=n, }ﬂ{@2 b N HtZ,tguzm}

<D colto, c1lts Colta, cslts

Note that, if 1(c|k) denotes the indicator function for ¢ dividing k& then

[to, t1]| = n
colto, c1lts

ﬁ{(thh) e N?: ’ } < Z]l(co\n) + Cﬁll(cl\n)

0

and similarly

[, t3]] = m

Colta, cslts

i {(bﬂf?,) e N*: } < T]l(cﬂm) + C@]l(cg|m).
C3 2

Therefore, S.(B) is

<Y Yn ( (con)T (Cz|m)+1(00|n)]1(63\m)+]1(01|n)]1(62\m)+]1(01|n)11(03|m)>.

nm<B C1C3 C1C2 CoCs CoC2

17
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Let us look at the sum over the first term:

nm B
Y — (o) L(colm) < — Y > 1(co|n)L(ca|m)
nm<B C1C3 €163 m<B n<B/m
B? 1
> —1(calm).
CoC1C3 m<B m

<

This is
B? 1 B? 1 B?*(log B)
< —_ < L
CoC1C3 k<B/co Cgl{f CpC1C2C3 k<B k CpC1C2C3
The sums over the other terms above are equivalent. O

Here and throughout, let  denote the Mobius function. The next lemma will allow
us to get rid of terms regarding p?, which will make analysis over four dimensions
easier.

Lemma 2.2.2. Assume that go, g1, 92,93 : N — C are multiplicative functions with
lgs(n)| <1 for alln € N and all 0 <i < 3. Then for all X > 2, 0 < z,wp, w; < X4,
and q € N34, ¢ € N4,

20020 1(nomanang) (i[o gi(ni)>

neN* ||Ing,ni|,[|n2,n3(|>2
lnoco,nici]|-||n2ce,nacs||<X
n=q mod 8

3
- T ) EEEY (Lot cexm
r<wo n’eH?:O(Nﬁ[L’LUl]) =0
plngninyni=p|r
r2|ngnnyng
ged(2,m;)=1V i
X?(log X)
+O< 512 1/3 ’
min(wy' ", wy")epeicacs

where we have defined, for any a € N1,

CEEN » 5 (ﬁgxn;')) ,

n”eN ||nfag,nfa1|,||ny az,ny =0

laong co,a1nf c1l-[lazng cz,azny cs || <X
n=q;/a; mod 8V i
ged(nf r)=1

and the implied constant is absolute.

Proof. We begin by using the convolution identity *(s) = 32,2(s () with s = ngninons.
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Section 2.2 Chapter 2: Solubility of diagonal quadrics

Then

SYSY i) (ng<>)

neN* [lng,n1 ||,||n2,nal>2
lnoco,nict-[[n2ca,nses||<X
n=q mod 8

-Yu TYYY (Tlaw).

r<X neN? ||ng,n1||,||n2,ns||>2 =0
lnoco,nictl-[[naca,nacs||<X
n=q mod 8
r2|noninans

Now write n; = nin! for each ¢ where the n!' are co-prime to r and all prime factors of
each n} divide r. Notlce that because n; = ¢; mod 8 is odd, each of the n} will be odd.
This will yield

SYSY i) (ng<>)

neN* [|lng,n1 ||,|In2,nal|>2
lnoco,nict-[|n2ca,nses || <X

n=q mod 8
=X ul) YT ([t xa)
r<X /e[ [7_ (NN[1,X])
plnyn} n2n3§p\7‘
r2|nfninyng
ged(2,m)=1V 1

We may bound the G(X,n’) sum using Lemma P22

G(X,n') < 33N IS

n’ N4
Ingng co,nyny cl|| Hn2n2 ca,mgnycs||<X

X?%log X

cocyCacznyninhnb’

Therefore, the contribution coming from terms where n; > w; for some ¢ may be seen
to be:

X?log X
!/
D oplr) 2220 ng GXm) <> .20 ). T
r<X r<X o CoC1C2C3MyN TpT3
S nEH o (NN[1,XT) eH (NN[1,X])
|n0n1n2n3:>p|r plngn n2n3:>p|r
r2|nyn)nhn r2ngninyng
ged(2,n;)=1V1¢ ged(2,nf)=1Vi
n;>w;i for some 1% n}>w, for some i

X?log X T4(n)
< — > :
CoC1C2C3 r<X neN n
pln=p|r
r2|n
n>wi

(2.2.1)

where 74(n) denotes the number of ways n can be written as the product of 4 positive
integers. Then, noting that 74(a) < 73(a) < 73(a) < a'/1? for all a € N, this expression

becomes: )
X<log X 1
< 1/3 Z Z ni/12’
Wy €CpC1C2C3 r<X neN
pln=plr
rén
n>wi
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We now use Lemma 5.7 from [29] with € = 1/12 to determine that

1 1

% n7/12 < rl3/12°

ne

pln=-p|r

r2|n

n>wi

Therefore:
3 2
X*log X 1

) TEEY (Tath) ) < - -
r<X e[, (Nn[1,x]) \i=0 Wy CoC1C2C3 r<X

/7 i ! !
p|ngnln2n3:>p|r
! ! ! !
T ‘"0”/1”2”3
ged(2,n])=1V1
n;>w; for some i

X?%log X
1/3 '
W1 CpC1C2C3
Lastly we bound the terms r > wy. Again we use Lemma 22271 and the bound 74(a) <

a'’12 to obtain:

3
> ) LYY ([l 60xw) <
r>wo /e[, (NA[Law]) =0
p|n6n/1n’2n'3:>p\'r
r2Inyn)nhng
ged(2,nf)=1Vi

Then, using Lemma 5.7 of [29] with € = 5/12 this will be bounded by
<<X2logX 1 X?log X

Z r17/12 < 5/1

B .
CoC1C2C3 g Wy CpC1C2C3

X?log X 5 1 (22.2)
CoC1CoC nll/12° o

0 1 2 3 fr>w0 neN
p|n2:|>p|r

]

Lemma 2.2.3. Assume that go, g1, 92,93 : N — C are multiplicative functions with
lgi(n)| <1 for alln € N and all 0 < i < 3. Then for all X > 2, 0 < z,wg, w; < X4,
and q E Nédd? Co1, C23, M € N with Co1, C23, M < X1/4,

2000 Hi(nonangns) (ﬁ) gi(nz‘)>

neN?
[lnomicor,nanacas||- M<X
n=q mod 8

3
- ¥ ) XYY (Math) éxom)
r<wo nIEHj’IO(Nm[Lwl]) 1=0
plngninint=plr
r2Inyn;nhn
ged(2,n))=1V1i

X?(log X)?
O\ 5w 15 >
min(wy" ", wy’)corcas M

where we have defined, for any a € N2,

3
cxa-  YYYY (Ia)
n’ N4 1=0
llaoaingnf cor,azaznynycas||- M<X
n=q;/a; mod 8V i
ged(nf r)=1
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Section 2.2 Chapter 2: Solubility of diagonal quadrics

and the implied constant is absolute.

Proof. As in the previous proof we use the identity p*(noninans) = ,2pmeninans 4(1)
and then write n, = njn! for each ¢ where each n} are co-prime to r and all prime

factors of each n) divide r. It follows that

SYEY nonnang) (H )

[Ingnico1,manzcas|-M<X

n=q mod 8
- ) SYTY (TLat) Gox)
r<X n'e[[7_, (NA[1,X])
p|n0n n2n L=p|r
r2|n6n’1n’2ng
ged(2,n)=1Vi

It remains to bound the large terms. First note the following bound for G(X,n’):

G(X,n’)<<( > 1)( >3 1)

" // ! /7 1 // ! !
ngny <X/Mnyn|co1 nyny<X/Mnlnjcas

» (X(logX) ) (X(logX))
nonjcorM ) \ nhnscos M
X?(log X)?

noninhnicorcoaM?

<

Now, we sum over the large n; and large r terms as in the previous proof, yielding the

same result. ]

2.2.2 Large sieve results

As has already been mentioned, the large sieve for quadratic characters will make a
regular appearance throughout this thesis. For now, we will only need the following
two versions.

The first is due to Friedlander and Iwaniec over rectangular regions.

Lemma 2.2.4 (7], Lemma 2). Let N, M > 2 and suppose (ay,), (b)) are any complex
sequences supported on the odd integers such that |ay,|, |by| < 1. Then

> D m( ) < (MN®S 4+ M°°N)(log 3N M)™/6

n<N m<M

where the implied constant is absolute.

The second version is a result due to the author and will be proven in Chapter @.
The benefit of this result is that it exhibits cancellation for sums of Jacobi symbols in
a hyperbolic region, provided that the variables are bounded away from the axes.
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Section

2.2

Lemma 2.2.5 ([24], Theorem 1.1). Let X,z >

exists an € > 0 such that z < X3¢ then

n
Z anbm _ <<€
z<nm<X m
nm<X

where the implied constant depends at most on €.

2.2.3 Hyperbolic character sums

2 and let (a

quences supported on the odd square-free integers such that |a,|, |by,| <

X (log X)?

n)s (b)) be complex se-
1. Then if there

The following six results are the main results of Chapter B. They are the primary

technical tools for sections §272-§279.

The first will be used to handle the main term. For this result, we define

\F 11 fp<1—>1/2 and fp_1+z

p prime

J+1)pj

(2.2.3)

Proposition 2.2.6. Let X > 3, C1,Cy,Cs > 0 and take any q € (Z/8Z)**. Then for

any fized odd integers 1 < 1o, 1r1,79,73 < (log X)) and fized integers 1 <

(log X)%2, 1 < do,dy, dy,ds < (log X)%/% we have
1

Inocommes [resmaes<x T (10)T(n1)7(n2)7(n3)
Inodo,n1da ||,||n2dz,nzds > (log X)©3
ged(ni,ri)=1V 0<i<3
n;=q; mod 8V 0<i<3

coci1cac3 log X

Ss(r) X2 loglog X
_ G3(r)X*loglog <1+Ocl,02,cg<

7(ro)7(r1)7(ro)7(r3)

Vvl1oglog X

where the implied constant depends at most on Cy,Cs, C3 and we define

Afs

62([‘) =

¢(8)"* (Hp|2r0 fp) (Hp|27‘1 fp) (Hp|21“2 fp) (prrg fp).

Co,C1,C2,C3 X <

))

The next five will be used at various points to bound the error terms. For a positive

m

integer m we will henceforth denote by ), the Jacobi symbol (E) or (—) generically.

Proposition 2.2.7. Let X > 3, C1,C5,C35 > 0 and fix odd integers QQy, Q2 and some
q € (Z/872)*, q € (Z/8Z)**. Fizing some odd integers 1 < ro,71,72,73 < (log X))
such that ged(r;, Q;) = 1 for i = 0,2 and any 1 < cp,c1,00,03 < (logX)2, 1 <

do, dy, dy,ds < (log X)%/% we define, for any m € N*,

H(X,m) = 2220

neN4 |[ngmoco,nimici||-|[nemace,ngmses || <X

(6=23)

22
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Section 2.2 Chapter 2: Solubility of diagonal quadrics

where we use (B223) with D = Cs. Then for any Cy > 0:

ZZZZ 1% (2m0m1m2m3)]H(X, m)|

m€N4,||mo,m1 H,Ilmz,m3||<(logX)C3 T(m0)7-<m1)7-<m2)7-<m3)
ged(momi,Qorars)=ged(mams,Q1ror1)=1
m=q mod 8
Qomomy and Qamamsz#1

Qo X?

coc1Cacz(log X)Ca”

<KC1,C2,C5,C4

where the implied constant depends at most on Cy,Cy, C3, Cy.

Proposition 2.2.8. Let X > 3, C1,Cy > 0 be such that (Cyloglog X)) > 2. Fix
some odd square-free integers Q1,Q2,Qs € N such that Q; < (loglog X)“2, and
some q € (Z/8Z)**, q € (Z/8Z)**. Suppose xo and x3 are characters modulo Q-
and Qs respectively. Fizing any odd integers 1 < ro,71,72,73 < (log X) such that
ged(Q1, rorimars) = ged(Q2Q3,mar3) = 1 and fizing any 1 < co, c1, ¢z, ¢3 < (log X)CQ/?’Q;
1 < do,dy,dy,ds < (log X)“2/* we define, for any m € N?

H'(X,m) = Y YT Dmams (N2113)

T(no)T(n)7T(no)7(N3)
neN* |nodo,nds || n2dz nsds||>(log X)C2 (n0)7(n1)7(n2)7(n3)
[Inoco,mict||-||nemace,n3mscs||<X
ged(ng,2r;)=1V 0<i<3

n=q mod 8
Then,
2 2
p? (mamsz) x2(ma)xs(ms) ., 7(ro)7(r1) X
H(X
2.0 7(ma)T(mg) (X, m) <o, coc1cacz(log X)(loglog X)Cs’

meN2 ||ma,ms]|<(log X)©2
ged(m,2Q1Q2Q37;)=1V 2<i<3
m=q mod 8
Q1mam3#1

where C3 = Cy/2 — 1 and where the implied constant depends at most on Cy and Cs.

Lemma 2.2.9. Let X > 3, C1,Cy > 0. Suppose xo, X1, X2 and X3 are Dirichlet
characters modulo 8 such that x; and x; are non-principal for some pair (i, j) € {0,1}x
{2,3}. Then for any odd integers 1 < rog,71,72,73 < (log X)t and any integers 1 <
co1, a3, M < (log X)“2 we have,

Xo(10) X2 (n2) X1 (1) x3(n3) T(TO)T(Tl)T(T’z)T(TS)XQ
2000 T ) SO T cen o X)

[Inonico1,manzcas||-M<X
ged(ng,2r;)=1V 0<i<3

where the implied constant depends at most on Cs.

Proposition 2.2.10. Let X > 3, (1,5, C5 > 0, let Qoz, Q13 be odd integers and take
q € (Z/82)*, q € (Z/87)*. Let 1 < ro,11,72,73 < (log X) be odd integers such that
ged(Qij, 2rim;) =1 fori € {(0,2),(1,3)} and any 1 < ¢y, c1, ca, c3 < (log X)2. Define,
for any m € N*,

H"(X, m) = Z Z Z Z Y Qoamoms (11012)VQ5mym, (N113) ‘

7(no)7(n1)7(n2)7(n3)

[lnonico,nanzel|-||lmomica,mamacs||<X
ng(TLi,’I‘i):l \4 0<:i<3
n;=q; mod 8 V 0<i<3
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Then

ZZZZ p*(2momamems)|H” (X, m)|

m
m€N4,||mo,m1,m2,m3Hé(logX)c-’i T(m0)7_< I)T(mQ)T(m?))
ged(momz,2Qo2ror2)=gcd(mims,Q13717r3)=1
Qo2moma#1l and Qi13mims#1
m=q mod 8

Qu2Q13X?

CoC1C2C3 (log X)C4 ’

<01,C2,C3,C4

for any Cy > 0 where the implied constant depends at most on the C;.

Proposition 2.2.11. Let X >3, C1,Cy > 0. Let us fix vectors q € (Z/8Z)** and q €
(Z/8Z)**,t € N? be vectors of odd integers. Fiz odd integers 1 < ro,r1,72,73, 70,71 <
(log X)° and fiz 1 < co1, ca3, G0, &1 < (log X)2. Then for any m € N? we define

wm m <n0n2>
T(X,m) = 2020 - -
[lnonicor,nansces||-|[moéo,mié1||<X T(nO)T(nl)T(HQ)T(ni%)

ged(ng,2r;)=1V 0<i<3
n;=q; mod 8 V 0<i<3

Then for any C3 > 0,

7(r0)7(12) X?(log log X) 1/2
0010235051(108r X)

2(moem
ZZ " ( - 1) |T(X7 m)| <01,C2,05
Imogmili<tog xycs T(M)T(m2)
m;=q¢; mod 8 V 0<i<1
ged(m;,7)=1V 0<i<1
momi#1

Y

where the implied constant depends at most on the C;.

2.3 Geometric Input

Recall that Z C P? x P3 is the variety over Q cut out by the equations
Yoy + Y177 + yox3 + ysz3 = 0 and yoyr = yays,

and that 7 : Z(Q) — Y (Q) be the dominant map sending ([xg : 1 : 2 : 3], [yo : 1 :
Yot y3]) € Z(Q) to the point [yo : y1 @ v2 : y3] € Y(Q) where Y C P? is the rational
quadric surface cut out by the equation

YoUr = Yays-
We then want to find asymptotics for the following quantity:
—YoY2, —Yoys 7 L
N(B) =ty en(Z)(Q): 7 '(y) has a Q-point; (2.3.1)
H(y) < B

where H is the naive Weil height in P3(Q). The variety Y is Q-isomorphic to P! x P!
via the regular map ¢ : P! x P! — Y given by

Yo = tole, y1 = t1ls3, Y2 = t1te, Y3 = tots.
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We may then reformulate our counting function in the following way:

—tot1, —tats # L;
N(B) =ttt € P1(Q) x P*(Q): 7 1(¢~1(t)) has a Q-point; ;, (2.3.2)
H([to:t1])H([t2 : t3]) < B

where here H([a : b]) is the naive Weil height on P'(Q) and the fibre 71 (¢71(¢)) is
given by the equation

totaws + titsxt + titoxs + totsas = 0.

We now wish to write this counting problem as one over the integers. This is done by
noting the correspondence between P'(Q) x PH(Q) and Z ;,, X Z7 ;,, where Z2,  is the

set of all coprime integer pairs (n,m). For each point in P'(Q) x P}(Q) there are four

points in Z2 ;. x Z2 ;. corresponding to it. Therefore our counting problem becomes

totox? + t1t3x? + titax3 + totzx2 = 0 has a Q-point,
—toty, —tatz # L,
[0, tall - It2, 5]l < B

where, as before, ||to, t1|| = max{|to], |t1|} and ||ts, t3]] = max{|t2], |ts]}. We will hence-
forth write this as

prim prim °

1
N(B)zzﬁ t €72, xZ?

1 totod + t1t32} + titaxs + totzx2 = 0 has a Q-point,
N(B) = zﬁ teZ: ged(to, t1) = ged(ta, ts) = 1, —toty, —tots # O,
[0, ta| - [[t2, ts]] < B

(2.3.3)
To conclude this section, we consider the points t such that one of the entries is 0.
First, we assume ¢ty = 0. Then since ged(tg,t;) = 1 we must then have t; = +1.
In this case we therefore want pairs (t9,t3) such that |[to, 3] < B, —tat3 # O and
t323 + tow = 0 has a Q-point. For the latter to be true, however, we must have —tot3
equal to a square, which is a contradiction. Therefore there are no points with ¢y = 0
included in the count. A symmetric argument may be given for the cases t; =0, t, =0
and t3 = 0. We may therefore write our counting problem as

] totox? + t1t3x? + titaxs + totzx2 = 0 has a Q-point,
N(B) = Jiyte@ \{O})*: ged(to, t1) = ged(ta, ts) = 1, —toty, —tats # O,
[0, ta] - [t t3]| < B
(2.34)
Remark 2.3.1. Note that the point where one of the t;, = 0 correspond to points
[Yo : y1 : Y2 : ys] such that two of the y; = 0. These are the lines on the quadric
surface which have singular fibres under the map =, and thus we may ignore the

desingularisation used in the introduction.

2.4 Local Solubility

2.4.1 Real Points

Our first step is to guarantee that our quadrics have real points. This will occur
whenever the coefficients are not all positive and not all negative. However, we may
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Chapter 2: Solubility of diagonal quadrics Section 2.4

use the symmetry of our surface to ensure we are counting over purely positive integers
and simplify our argument. First, we split R* into 16 regions determined by the sign
of the t;. For 1€ {0,1}* we will write R; to be the regions defined by the points t € R*
such that ¢; > 0if [; = 0 and ¢; < 0 if [; = 1. For example, R 000 = {t € R* : t( <
0, t1,ta,t3 > 0}. We will then write

totgl'% + tltgx% + t1t2x§ + totgxg = 0 has a Q-point;
N](B) :]j t € (Z\{O})ZLQR] . ng(to,tl) = ng(tQ,tg) = 1, —totl, —t2t3 7é D,
[to, tall - [|t2, 3] < B

It is clear that N0,0,0)(B) = Na1,1,1)(8B) = 0 since in these cases the corresponding
quadrics have no real solutions. In order to streamline our argument we will prove the
following:

Lemma 2.4.1. For notation as above we have the following,
L Zf Z?:O lz =1o0r3 then, NI(B) = N(1707070)(B>,
o if Y2 Jli=2andl¢{(1,1,0,0),(0,0,1,1)} then, Ni(B) = N1,0,1,0)(B),

e if1€{(1,1,0,0),(0,0,1,1)} then Ny(B) = 0.

Proof. The last of these assertions is immediate from the fact that, if t € R 1,00 U

R0,0,1,1), then the coefficients of the equation
totzl’% + tltgl'% + tﬂfgl’% + totgxg =0

are all negative. We now look at the first assertion. The key observation is that, if
t € Ry where Y;1; = 1 or 3, then we may find a unique point t € R(1,0,0,0), of equal
height which corresponds to a quadric which is equivalent — under the natural action of
SL4(Z) on the set of quadratic forms in four variables — to the quadric corresponding
to t. Then the quadric defined by t, say C;, has a rational point if and only if the
quadric defined by t, say C, has a rational point. First suppose that >;/; = 1. Then
only one of the components is negative. If [ = 1, then the result is trivial. For a point

t = (to,t1,t2,t3) € R(0,1,0,0), the corresponding quadric is
Ct . totzl’g + tﬂfgl‘% + tltgxg + t0t3$§ =0

where here, the coefficients of #? and 2 are negative. We map t to the point t =

(t1,t0, ta,t3) € R(1,000)- Then the quadric corresponding to t is
CE : tltgl‘g + totgl’% + tthxg + t1t3$§ =0.

It is clear that C; is equivalent to Cy since we have only permuted the coefficients. This
mapping from R 10,0y to R(1,0,0,0) is clearly a bijection and it is easy to show that it
preserves height. Next we consider I, = 1. Here, t = (fo,t1,12,13) € R(00,1,0), With
quadric

Ci : totoxy + titsx? + titows + totszs = 0,
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where the coefficients of 33(2) and 23, toty and tits, are negative. We map t to t =
(t9,t3,to,t1), which has the quadric

C{; : totgl'g + tltgl'% + tgtol'% + tgtll’g =0.

Again, C; is equivalent to C; since we have only permuted the coefficients of 22 and 2.
This mapping is also a bijection and height preserving. Finally, if t = (tg,t,t2,13) €
R0,0,0,1), then we map to t = (t3,t2,t1,t0) € R000)- As before this is a height
preserving, bijective map such that C; and C; are equivalent quadrics. If >°,1; =
3, then we reduce to one of the above cases by sending t = (to,%1,t2,t3) € R to
t = (—tg, —t1, —ty, —t3) € Ry where ZJZ- = 1. This mapping is a height preserving
bijection and furthermore C; and C; are the same quadric. We have now proved the
first assertion. The strategy for the second assertion is the same: if Y ;/; = 2 and
1¢{(1,1,0,0),(0,0,1,1)} we find a height and quadric preserving, bijective mapping
from Ry to R101,0). For Raq,0) this is trivial. For t = (to,t1,t2,t3) € Ro1,0,1) We
have

Ct : totgl’(g) + tltgl'% + t1t2$g + t0t3x§ = O’

where the coefficients of z2 and x2, #;t, and tgt3 are negative. We send t to t =
Lto,ts, ts) € Ri1o10). Again, this map is bijective and height preserving, and the
t1,to,t3, 1) € Riio10). Again, thi is bijective and height ing, and th

quadric corresponding to t is
CE : tltgl'g + t()tg.’L'% + totgfL‘g + tltgflfg = 0,

which is equivalent to Cy. For t = (to,t1,%2,t3) € R(1,0,0,1) We map it tot = (to,t1,13,1) €
R(LO,LO) and for t = (to, tl,tg,tg) € R(O»LLO) we map it to E = (tl, to,tz,tg) € R(I,O,I,O)'
Both of these are easily checked to be height preserving bijections resulting in points

with equivalent quadrics. This completes the proof. Il

Lemma 22271 allows us to rephrase our counting problem so that we only count
over positive integers while ensuring all quadrics considered have real points. This is
encoded in the lemma below.

Proposition 2.4.2. We have N(B) = 2N;(B) + Na(B), where

—totox? + tit32? + titaxs — totzxs = 0 has a Q-point;
Nl(B) = ﬁ t e N4 : ng(to,tl) = ng(tQ,tg) = 1,t0t1 §£ D, s
[to, tall - [[t2, 23]l < B

and

totox? + titsx? — titaxs — totsz: = 0 has a Q-point;
Ny(B) =#{teN*': ged(to, t1) = ged(ta, t3) = 1, toty, tats # O; ;
to, tall - [[t2, 23| < B
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Proof. We may write 4N (B) = Y 1¢q0,134 Mi(B). Thus, using Lemma 22477,

1

N(B) =,

(8N(1707070) (B) —|— 4N(17071’0) (B)) - 2N1(B) —|— NQ(B)

This last equality comes from noting that N 00,0 (B) = Ni(B) and N 1,0(B) =
Ny (B). O

2.4.2 p-adic Points

Using the Hasse principle for quadrics, we may equate the problem of detecting rational
points to detecting p-adic points. We have already ensured that all quadrics we are
considering have a real point and so we only need to detect QQ,-points for every prime
p. The advantage of this is that we will be able to express solubility conditions as a
sum over Jacobi symbols. To do this we define, for (ag,ai, as,as3) € Z*, the indicator
function,

1 if D, has a Q,-point

0 otherwise,

<00,a17a27a3>p = {

where D, is the quadric defined by the equation
apTg + ay 75 + ax® + azz; = 0.
Then we obtain the following result:

Lemma 2.4.3. Let p be an odd prime and suppose ag, a1, as,az are square-free, non-

zero integers such that ged(ag, a1, as,a3) = 1. Then:
(a) If v,(aparazas) # 2 then (ag, a1, a2, as), = 1;

(b) Otherwise, if p | a;,a; for any distinct i,5 € {0,1,2,3} and p 1 axa; for the
distinct k,1 € {0,1,2,3} \ {i,j} then

ot = o (52 () () o).

where () is the quadratic Jacobi symbol.

Proof. Suppose v,(apaiazas) = 1. We may then assume without loss in generality that

plag and p { ajasas. Then D, will reduce to the smooth ternary quadratic
255 . C~L1ZE% + agl'g + &31’% =0

over [F,. By the Chevalley-Warning theorem, all smooth ternary quadratics over IF,
have a non-zero point, (1,2, ¥3), which we may lift to a Q,-point (y1,y2,ys) on the
ternary quadratic a;2? + asx3 + azz = 0 by Hensel’s lifting lemma. Then (0, y1, y2, y3)

will be a Q,-point on D,.
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If v,(aparazas) = 3 then we assume without loss in generality that p | ao,aq,as.
We may multiply the quadric D, by p and then apply the birational transformation
(wo, 21, T2, x3) = (T0/p, 21/, T2/p, x3) to obtain an equivalent quadric D(q, /p.a; /pas /ppas)
which is of the form considered above. The proof for v,(apaiasas) = 0 is similar to that
for v,(apaiasas) = 1. This completes the proof of (a) as the a; are square-free integers
with ged(ag, a1, a2, az) = 1, so that v,(apaasas) # 2 implies either v,(agaiazaz) = 0,1
or 3.

Finally we turn to case (b). Assume without loss in generality that p | ag,a; and
p 1 azas. Then it is clear that there is a Q, solution to the quadric D, if and only if
there exists some C' € QQ, such that

apzs + a1z} = C and agx3 + azz; = —C.

This is true if and only if the ternary quadratics

aprg + ay i = C2* and apx3 + azz = —Cw?

have a solution in Q,. Let (n,m), denote the Hilbert symbol for Q, and write ag = puy,
a1 = pu; and C' = p®v with ug, u; and v coprime to p. Then we have that D, has a

solution in Q, if and only if

(6:2),- (F57) v (2320, (55

If @« = 0 mod 2 then this condition simplifies to requiring that (%O“ﬁ =1 Ifa=
1 mod 2, the condition requires that (%) = 1. For the backwards direction, if
(%) = 1, then we may choose C' = 1; then a = 0 in the expressions above, and
both equalities hold. Similarly, if (%) = 1 then we may choose C' = p, in which case
a = 1 in the above expressions and both equalities above hold. Therefore, recalling

that ug = %0 and u; = %, we have proven that D, has a solution in Q, if and only if

<_(QOZI)/JD2> —1or <_CZG3> — 1.

We put these two conditions together to obtain the formula

e o+ (2 () () (i)

O

2.4.3 2-adic points

Our strategy will be similar as in the previous section, however we will only deal with
vectors a = (ag, a,as,as) such that the a; are square-free, non-zero integers with
ged(ag, a1, as, as) = 1 and vy(agaiasas) = 0 or 2. We begin by defining two sets:

A1 = {q € (Z/87)** : q satisfies (ZZ1)} and Ay = {q € (Z/8Z)** : q satisfies (Z22)},
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where

(2.4.1)

¢; + q; = 0,4 for at least one pair (7,7) € {0,1} x {2,3} or,
(QO +q1,q2 + Q3> S {(07 0)7 (27 0)7 (2> 6)7 (07 6)7 (67 0>7 (67 2)7 (07 2>}7

and

there is at least one choice of i, j, k, [ such that {(7, j), (k,0)} = {(0,1),(2,3)},
and some v € (Z/8Z)* such that (¢; +¢; =0 and (qx +v)(¢ +v) =0) or,

(¢ +q;=2v and (g +v)(q+v)=0).
(2.4.2)

Then we have the following.

Lemma 2.4.4. Suppose ag,a1,as,a3 € N are square-free and non-zero satisfying the
condition ged(ag, ay,as,as3) = 1. Then:
(a) if 2 1 aparasas then {ag,ay,as,as)s = 1 if and only if (ag, a1, as,as) reduces to a

vector in Ay modulo 8;
(b) if 2 | a;,a; for any distinct i,5 € {0,1,2,3} and 2 1 aya; for the distinct k,l €
{0,1,2,3}\{4,j} then (ag, a1, a2, as)s = 1 if and only if (a;/2,a;/2, ax, a;) reduces

to a vector in Ay, modulo 8.

Proof. Following the same strategy used in the proof of Lemma PZ4=3(b) we have that
the quadric D, has a solution in QQ, if and only if there exists a C' € Q5 such that

ap ap Q2  ag
(C’C) = 1and ( ok C) =1 (2.4.3)

where (-, )y is the Hilbert symbol over Q,. Let us first consider part (a). Writing
C = 2% for a unit v € Qq, we use the well known formulae for these Hilbert symbols

(for example see Chapter 3, Theorem 1 of [38]) to obtain the equivalent condition:

1 -1_ 4 2,,—2 2,2 _9
(agv L{(alv ) n a(%” + 68“” ) = 0 mod 2 (2.4.4)

and (agv™" 4+ 1)(azv" +1) (a3v™° + afv™ — 2)
2 3 + 2 3 = 0 mod 2. (2.4.5)

a

4 8
We have two cases: @« = 0 mod 2 and @ = 1 mod 2. In the former case we simplify to
the condition

_1_1 —1_1 -1 1 -1 1
((agv )4(a1v >50mod2> and <(G2U + L(a:sv + )50m0d2>,

which is equivalent to asking
(ap—v=0mod 4 ora; —v=0mod4) and (a3+v =0mod 4 or az+v =0 mod 4).

Putting these together we obtain the first condition in (2271). On the other hand, if

the coefficient vector (ao,ai, az, az) satisfies one of these conditions then we may set
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C = ag or a; to ensure that both Hilbert symbols are 1, giving the backwards direction.
Now, if & =1 mod 2 we write (244) and (2235) as

2 (aov_l — 1) (alv_l - 1) + (aov +ajv? — 2) = 0 mod 16
and
2 (agv_l + 1) (agv_l + 1) + (azv +ajv? — 2) = (0 mod 16.

Rearranging and collecting terms we obtain
v *(ag + a1)(ag + a; — 2v) = 0 mod 16 (2.4.6)

and
v~ %(ay + as)(ay + asz + 2v) = 0 mod 16. (2.4.7)

Now suppose x € Z is any even integer and v € Z any odd integer. Then
x(z 4 2v) = 0 mod 16 (2.4.8)

has a solution if and only if

T [T

Since v is odd, § and (
4]

+ ) have opposite parity. It follows that (Z2R) has a solution
if and only if 4|5 or 4] (§ +

s

v) Equivalently, (224R) has a solution if and only if
= 0 mod 8 or x + 2v = 0 mod 8.

Substituting in z = ag + a1 and x = ay + a3 into this tells us that (2248) and (Z27)

are equivalent to
(ap + a1) = 0 mod 8 or (ag + a;) = 2v mod 8,

and
(ag + a3z) = 0 mod 8 or (az + az) = —2v mod 8.

Now 2v = 2mod 8 or 2v = 6 mod 8 depending on whether v = 1,5 mod 8 or v =
3,7 mod 8. Thus we only need to consider v = 1,3 mod 8. Substituting these cases
into the two conditions above we obtain the second condition in (2Z1). In the other
direction, if one of these conditions is met then we may set C' = 2v, where v = 1 in the
first four cases and v = 3 in the last three cases, to ensure that the Hilbert symbols

are both 1. Thus we are done with case (a).

For case (b), we may assume without loss in generality that 2|ag, a; and 2 t asas.
This time we substitute ag = 2ug, a; = 2u; and C' = 2%v, where ug, u1, v are units in
Q2, into the formulae for the Hilbert symbols. Then (2423) becomes,

(upv™! = 1) (ugv™t = 1)
4

(ugv +ufv™? —2)
8

+ (1 —a) = 0 mod 2 (2.4.9)
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and
(agv™! + 1)(azv™! + 1) N Oé(a%zf2 +a3v? —2)
4 8

Again we consider the cases where « is even and « is odd separately. If « is even then

= 0 mod 2. (2.4.10)

we may simplify (2279) as in the second case of (a). Doing this and then combining it
with (2410) we obtain the condition

up + u; = 0,2v mod 8 and (az + v)(az + v) = 0 mod 8.

Since v = 1,3,5 or 7mod 8 we split into cases. Doing this, it can be seen that
(ug, u1, ag, az) must satisfy one of the conditions of (2222) with (i,5) = (0,1) and
(k,1) = (2,3). For the other direction, if any of these are satisfied then we may choose
v =1,3,5 or 7 appropriately and set C' = 2v so that each Hilbert symbol is 1. If « is
odd then we simplify (2410) as in case (a) and combine it with (22239) to obtain the

condition

as + a3 = 0,—2v mod 8 and (uy — v)(u; —v) = 0 mod 8.

Once more splitting into cases for v we see that (ug, uy, as, ag) must satisfy (2472) with
(1,7) = (2,3) and (k,l) = (0,1). Finally, if either of these 8 conditions are satisfied
then we may choose the appropriate v = 1,3,5 or 7 such that the Hilbert symbols are
1 by choosing C' = v. This concludes the proof. O

2.5 Simplification

In this section we simplify the functions N,(B) from Lemma P22 and express them
through quadratic symbols using the Hasse Principle. Let

5 1 ifr=1,
1 ifr=2

and define the quadrics

Cr,t . —5,«t0t21’g + tlth% + 6Tt1t2$g - totgxg =0.

2.5.1 Reduction to square-free and co-prime coefficients

To begin our simplification we remove the square parts of the ¢;. Write ¢; = a;b? for a;
square-free integers. Noting that C,; is equivalent to the quadric C,, we have that

N,.(B) = > N, p(B),
bEN4, bi§31/2
(=7)
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where

—0,a0a273 + arazx? + §,a1a273 — agazr3 = 0 has a Q-point;
d(aobo albl) = gcd(a2b2 a3b3) =1:
N,u(B) =tlac N*: 8¢ & ’ ’
b(B) =4 aoay, 5=azaz # 1, 4% (a;) = 1;
laobg, arbi|| - [lazb3, asb3|| < B

and
ged(bg, by) = ged (b, b3) = 1. (2.5.1)

Next, we want to remove any common factors of the a;’s. Writing ag = sgmo2mos,
a1 = S§1M19M13, A9 = S2M2T112 and a3 = S3MM 31113 where

moe = ged(ag, az); mes = ged(ag, az); mia = ged(ay, az); mys = ged(aq, as),

it is clear that p?(sgs1s283meamezmiamis) = 1, since ged(ag, ar) = ged(ag, az) = 1.
Next we note that the quadric C, , is equivalent to the quadric

) 2 2 2 2 _
Crsm © —0,5052M03M12T5 + S153Mo3M12T] + 0,.5152M2M13T5 — SoS3Mp2mMi3xsy = 0.

We then write

Nr,b(B) - Z Nr,b,m(B)
mEN4, ml‘ng
(z532)
where
N.bm(B) = ﬁ{s e N* - Crs.m has a Q-point; (225:3); (2254); (25 w)} ,
with
ng(mOQa blb3) = ng(mos, 5152) = ng(mm, 5053) = ng(mm, bobz) =1, (2 5 2)
12 (mogmozmaiagmyz) = 1
ng(Sm m02m03m12m13b1) = ng(81,m02m03m12m13bo) =1,
ng(b“z, m02m03m12m13b3) = gcd(83,m02m03m12m1362) =1, (2-5-3)
p(sos18283) = 1,
[[somoamasby, s1magmashi | - || s2meamaaby, ssmosmasbl| < B, (2.5.4)
50511 21M3111211013 7"é L, 255
1, (2.5.5)
5 5283M21M031111271013 # 1.

We deal with large values of b; and m;; using Lemma 221 which shows that
Nr,b,m(B) is

< ﬁ{t€N4i||toyt1||'||t2,753||<B; bamozmoz|te; bimizmaa|ty; bsmoamislts; b§m03m13|t3}

B?*(log B)

< .
(bob1b2b3m02m03m12m13)2
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Thus summing over m and b, where at least one m;; or b; is greater than z, = (log B)4
for some A > 0 we obtain

NGB =YY Nr,b,m<B>+o(

beN* meN4, (z5T), (Z52)
bi<z0,mi;<z0

Bz(logB)> . (2.5.6)

20

We have now reduced the counting problem N,.(B) over arbitrary positive integers to
the evaluation of the counting problems N, pm(B), which count over square-free and
pairwise co-prime positive integers. Next, we aim to remove factors of 2. Set o; = va(s;)
where vy is the 2-adic valuation, and (relabelling s; to henceforth be the odd part of
the s; above) and define

. go+o2 2 01403 2
Crsmo i — 0,2 50S2Mp3M12Ty + 2 5183M3M 1277

+ (5T2"1+”25132m02m13x§ — 2‘7°+°38033m02m13x§ =0.

Then we write

Nr,b7m(B) = Z Nr,b,m,o-(B)a
oc{0,1}4,(e=577)

where,

Nibmo(B) =1 {s € N2,y ¢ Crsmo has a Q-point, (Z5R), (259), (25 III)}

with
00 + 01+ 09 + 03 < 1, ged(270M TN mgamgzmagmaz) = 1 (2.5.7)
ged (290, by) = ged (271, by) = ged (292, bg) = ged(293,by) = 1, o
ged(so, 27 mgemoszmazmasby) = ged(si, 27°meemosmizmasby) = 1,
ged(sg, 27 mogmozmizmazbs) = ged(ss, 272mogmozmigmazhs) = 1, (2.5.8)
1% (280518283) = 1,
||2”080m02m0363, 2“181m12m13b§|| . ||2”232m02m12b§, 2”333m03m13b§|| < B, (259)
29091 g0 511023 M 121N 1,
. 301 02Mo3M12M13 # (2.5.10)
527293 89 83mgaMgzMi2maz 7 1.
We may now express our Ny pmo(B) as
Ny bmo(B) = Z 12(250515253)(s, m, o), (2.5.11)
seN?* (Em)
(59), (zo5m)

where
1if Cy ,m,» has a Q-point,

0 otherwise.

(s,m,o), = {
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2.5.2 Application of the Hasse Principle

We now use the Hasse principle for quadrics to write our indicator function in terms
of local conditions. For each prime p we define the functions

1 if C; s m,» has a Q,-point,
0 otherwise.

(s,m,o),, = {

Using Lemma 2473 we obtain the following;:

Lemma 2.5.1. Let p be an odd prime. Then for any m € N* satisfying (Z52) and
any o € {0,1}* satisfying (2252),

(a) <S, m, 0'>r,p =1 if p 1 s0S15283Mp2Mo3M12M13;

(b) pr|m02m03m12m13 then,

1 5T200+01+02+U3
(s,m,0'>r,p = 5 (1 + ( 80818253>> :
p

(¢) If p|sos1 then,

(s,m,0),, =

_5T202+03
(1 i < S2S3m02m03m12m13>> .

1
2 P ’

(d) If plsss then,

1 6r200+01
oy = (1 (S )|
p

Proof. Part (a) is an immediate application of part (a) of Lemma PZZ473. For part (b)
split into two cases: p|mozmiz and p|moamys. In the former, p divides the coefficients
of 22 and x? so that Lemma 2223(b) will yield

1 5T200+01+02+03
<s’m7a'>r7p = 5 (1 + ( 80818283>>
p

since the relation on the coefficients of our quadrics ensure that the Jacobi symbols
from Lemma P73 are equal, and so the indicator functions simplify to the above. The
case where p|mgamys is dealt with in the same way and yields the same result. Now
consider part (c¢). Here p|sgs;. Suppose first that p|sg, then p divides the coefficients
of 2 and z2. Using Lemma PZZ3(b), again noting that the Legendre symbols simplify,

we obtain:

1 _5T202+J3
(s,m,o),, = 5 (1 + ( 8283m02m03m12m13)) ‘
p

The same result will be obtained if p|s;. We also note that part (d) may be obtained by
the same methods, but the negative disappears since if p|sy, p divides the coefficients of

x2 and 3 and one is positive while the other is negative. The same happens if p|s3. [
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Next we want to collect this information to obtain an expression for the indicator
function (s, m, o), by applying the Hasse Principle. Henceforth, let (n),qq denote the
odd part of n. Further, for any fixed vectors m, s, d, d € N* such that dijd;j = (Mij)odds
and any o € {0, 1}, we define

(_1)fr(d’k) ~
Nymado(s;B) =22 o(d,d,k,1),

Kk 1eN4 7 (kolok1likalaksls(mogmozmiamis)oda)

kil;=s;
where
fu(d, k) = ((2 = 0, ) kok1 koksdoadosdiadrs — doadosdiadis + koky — koks — (1 — 0,.))
r 9 - 4
and

~ 200+U1+02+03l L1 2v2(m02m03m12m13)
@(d,d,k,l,a)_< 0”3>< )

doadozdiadis kokikoks
o 272498y lsdpadosdiadys \ [ 27077 ol dpadosdiadis
ko k'l k2 k3 '

We now apply the Hasse Principle and use the local conditions for odd primes given
in Lemma 2251 and quadratic reciprocity to express our indicator function as a sum
over Jacobi symbols.

Lemma 2.5.2. Fiz some b € N Suppose that m € N? satisfies (252), that
o € {0,1}* satisfies (252) and that s € N* satisfies (258). Then we have that

,u2(2"0+"1+"2+"380315253m02m03m12m13) =1 and

(s,m,o), = (s,m, o)y > Y Noga.(sB). (2.5.12)
d,dent
dijdij=(mij)odd

Proof. This follows from Lemma P25 and the Hasse Principle for quadrics. Indeed,

using the Hasse Principle we obtain

<S, m, G>T = <S, m, U>'r’,2 H <S, m, 0->r,p
Plsos15283mo2mozmi2mi3
p#2
=(s,m, o), II ((s,m,o),,) I] ((s,m,a),,) ] ((s,;m,0),,).
p|lmoz2mozmizmi3 plsos1 pls2s3
p#2 p#2 p#2

By now applying Lemma P25, we obtain a factor of 2(sosis2s3(mozmosmizmisloda) where
w(n) is the number of distinct primes dividing n. Since $g$15253(Me2mMo3M127M13)o0dd

is square-free by assumption, this factor is exactly 7(sos15253(mM0amo3mi2mi3)odd) " -
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Therefore:

<Sa m, a)r,Q

7’(30818283(m02m03m12m13)odd)

y H <1 N <5r200+01+02+0380818283))

(s, m,o), =

plmoamozmiami3 p
p#2

» H (1+ (_5r202+033283m02m03m12m13))

plsos1 p

PF#2

0,290191 g0 51 MgaMo3M1aMm

XH1+7~ 081M02M03M 127113

pls2s3 p

p72

Next we multiply out these products:

(s,m, o)y = (5,m, 0)r Y'Y Y Y radkLe |,

T<50515253(m02m03m12m13>0dd) d.dend K1eN

dijdij=(m;j)oaa \ Kili=si
where
~ 6T200+01+02+0.3kolok‘lllkglgkglg)
F(dd k1 o) =
( ) ( doodpzdiadis
y — 8,202 o3 Qua(momosmizmas) by 1o kaladogdoadosdosdiadiadiadys
kok1
% (5’“200+012”2(m°2m03m12m13)kolok‘l11d02d02d036203d12J12d13CZ13)
koks '

We are left to show that F(d,a,k, o) = (—1)fT(d’k)®(d,El,k,l,0'). This follows by
using quadratic reciprocity for Jacobi symbols and the fact that Jacobi symbols are

multiplicative in each variable. Indeed using multiplicativity:
~ -1 kokikaks > <d02d03d12d13> </€2/€3> (ko/ﬁ)
F(ddklo :( )<
( ) kok1 doado3dy2dy3 Kok koks Koky kaoks3
( 51’ ) (200+01+02+U3lol112l3> <2v2(m02m03m12m13)>
X
do2dozdy2di3kok1koks doadozdiadis Kok koks
o 202193 s dpadpsdindyz \ (270 ol doadosdiads
kok’l k2k3

_ ( -1 ) ( kokikoks > <d02d03d12d13>
koky doadozdi2dys kokikoks
k2k3> (kok1> < Or ) ~
X 0(d,d,k,1, o).
(kokl koks doadozdiadiskok kaks ( )

Finally we apply quadratic reciprocity of Jacobi symbols which states that for odd

(2)(2)- o=
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We also note that for an odd integer n,

Applying these to the remaining Jacobi symbols in the expression for F(d, El, k,1 o)

d k)

and collecting the powers of —1 will yield (—1)(@¥) as required. ]

Next we deal with the indicator function for 2-adic points. For this we will use the
conditions given by Lemma 2274 to split our sum into arithmetic progressions modulo
8. We will require some notation. Recall the set Ay defined in §22473. We will define
twists of this set. Let 4,7, k, [ be distinct elements of the set {0,1,2,3}. Then define

Aijiea = {a € (Z/8Z))" : (¢, 45, qu 1) € Az}
In particular, Ap;23 = As. Now for m € N* satisfying (252) and o € {0,1}*
satisfying (222-7) define the set function
Ay if 2 4 mogmozmiamiz & o, =0V i € {0,1,2,3},
Ao1231f 2 | mogmaz, 214 meemys & o, =0V i€ {0,1,2,3},
Asz01 if 2 | moamas, 24 mesmiz & 0, =0V i€ {0,1,2,3},
Am, o) = ¢ Agz12 if 2 meamozmizmiz & op =1& 0, =0V i € {1,2,3},
Ai203 if 21 moamogmiamiz & oy =1 & 0, =0V i € {0,2,3},
Aoaisif 21 meamesmiamis & oo =1& 0, =0V 1 € {0, 1,3},
Ai 302 if 21 mogmogmiamis & o3 =1& 0, =0V i € {0,1,2}.

Remark 2.5.3. To understand this notation, notice that the vectors m € N* and
o € {0,1}* indicate which of the coefficients of C, s m o are even. The value of A(m, o)

therefore only orders these coefficients in the way required by Lemma 242

The following two lemmas regard the solubility in Qs.

Lemma 2.5.4. Fiz some m = (mgy, mg3, M2, m13) € N* and o = (09,01, 02,03) €

{0,1}* such that the conditions (2252) and (22522) hold. Then (s,m, o)., = 1 if and

only if

(—5r5082(m03m12)odd,8183(m03m12)odd,5r8152(m02m13)odd, —5083(m02m13)odd)5qm0d 8
(2.5.13)

for some q € A(m, o).

Proof. By the conditions (252) and (2510), the set A(m, o) is well defined. Then the

result is immediate using Lemma 2274, ]

For fixed choices of b,m € N* and o € {0,1}* satisfying (252) and (Z51), any
d,d € N* such that d;;d;; = (mi;)odaa and any q € A(m, o) define

(=) @922k loky Ly kaloksls) o =
N 7 B — @ d7 d7 k7 17 o
Tybm’d’d’a’q( ) %e%‘; T (kolok1likaloksls) ( )
(e5), (253)
(e5m), (25T)

38



Section 2.5 Chapter 2: Solubility of diagonal quadrics

where

(2.5.14)

ng(kolm 2"1m02m03m12m1361) = ng(/ﬁll, 2"0m02m03m12m13bo) =1,
ged(kala, 273 moamosmiamiasbs) = ged(ksls, 272moamogmiamashs) = 1,

HQUO/‘Colomozmo:&bg, 27 k111m12m13b%H : H202k212m02m1253, 203k3l3m03m13b§H <B

(2.5.15)
o0tk 1kl 1
" olok1limeamosmizmas 7 1, (2.5.16)
Tr202+03k2l2k3l3m02m03m12m13 7é 17
—0rkolokala(mo3miz)odd = go mod 8; kilikzlsz(mosmiz)odad = q1 mod 8; (2.5.17)
Ork1likala(moamiz)oda = g2 mod 8; —koloksls(moamis)edd) = g3 mod 8.

Lemma 2.5.5. For a fized choice of b, m and o satisfying (2252) and (Z250) we
have:
1
Nr m.o B == NT m, Neg B
b (D) 7 ((mo2mo3mi2mi3)odd) qe%n,a) %EZN; bmadoalD)

dijdiz=(mij)oda

Proof. By applying Lemma 2224 we may write

Nipmo(B) = > > 112(250515253) (s, M, T),.

q€A(m,o) seN? . (Z53)
(5T), (), (B5513)

Then applying Lemma 252 and swapping the summation of s € N* and d,d € N*
gives,

Nibmo(B) = Z ZZ Z Nrmddo-(s B).

q€A(m,0o) d,deN? scN* (z=)
dudzj (m”)odd (2753),(255Tm), (25513)

Now observe that,

Z N, made(s, B)= Z ZZ

seN* (z53) seN* (z53) k,leN*
(m)( ) (z=Tm), (E) kili=s;
(5T13) (zm3)

(-1)/"dR¥e(d,d,k,1)
T k010k111k212k3l3(m02m03m12m13>0dd)

Swapping the order of summation of the s; with the k; and I; changes (253) to (22514),
(Z539) to (2513), (25110) to (25o1M@) and (25513) to (2517). Then, using the multi-
plicativity of 7 and condition (22514 we obtain:

N B B)= Nr,b,m,d,&p',q(B)
Z r,m,d,d,o-(s7 )_ (( ) )
seN4 (z=3) T (\Mp21M031M11277013 )odd
(=), (253)
(z5m3)
which concludes the proof. O]
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Condition (EZ211) is still an issue that needs to be considered as it involves products
of our variables. To deal with this we note that, for a fixed m and o, this condition is
solely determined on the reduction of k and 1 modulo 8. Therefore we will now split
these vectors into appropriate arithmetic progressions modulo 8. In doing so we may
also remove any even ordered characters such as (—1)7(4%) and any Jacobi symbol
involving a power of 2 from the sum over k and 1.

Fix some b, m € N* and o € {0, 1}* satisfying (252) and (225:7), some d, d € N*
such that d;;d;; = (my;)oaa and some q € A(m, o). Then for any K,L € (Z/8Z)*
define

900+0o1+02+03 902+03 900+0o1 9ua(mozmosmi2mis)
®T,1(d7K7U) - (_1>fr(d’K) ( ) ( > ( ) ( > ’
doadozdiadis KoK, KyK3 KoK 1Ky K3

(2.5.18)
-~ lol1 1213 ) <J02J03d12d13> (M) <z213>
0,(d,d, k,1) = , 2.5.19
2 ) <d02d03d12d13 Kok kaks koks ) \ ok ( )
(2kolok1l1k2l2k313) ~
N - (K,L,B) = 0,(d,d. k,1),
r,b,m,d,d,a,q( ) Z %Eg; Z (k0l0k111k212k3l3> 2( )
(k,))=(K,L) mod 8
(zmTa), (z513), (251d)
(2.5.20)

77777

will allow certain condltlons to be separated from our main sums since they only depend
on such conditions.

Lemma 2.5.6. For a fized choice of b, m and o satisfying (252) and (223-0) we

have:

Nr7b7m7d,&7a,q Z Z Z Z ©,1(d, K, o) r,b,m,d,d,a,q(Ka L, B).

K,Le(Z/87)*4
((zmemw)]

Proof. Using the multiplicity of Jacobi symbols we may write
(—1)4®0e(d,d,k,1,0) = 6,:(d, k,0)0(d,d, k,1).

Then by splitting the inner sum of N, pme(B) into arithmetic progressions modulo 8

we obtain.

,u nglokflllk’glgk?glg)@rl(d,k,O’)@Q(d,a,k, l)
N 5 B) = : :
T,b,m,d,d,o’,q( ) Z Z Z Z (koloklllkglgkglg)

K,Le(Z/8z)*4 k,1eN*
(k)= (K,L) mod 8
(z5a), (2513)
(e=518) , (Z5T)

Now notice that, by (225:2), ©,; will either be (—1)71(d¥) or (—1)/1(d%) multiplied by
a Jacobi symbol of the form (2) For a fixed d, both are determined completely by
the the reduction modulo 8 of the k and 1. Thus it is enough to assert that these
congruence classes satisfy (Z511) and bring out ©,; from the inner sum by replacing

k and 1 with K and L in them respectively. O]
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2.5.3 Isolating main terms and error terms

In this section we describe our strategy for the remainder of the proof of Theorem
210, We aim to use the character sum methods developed in §62 and §63 to handle
characters are of order (log B)® for some C' > 0. To ensure this, we split the sum over
k and 1 into smaller regions and manipulate the expression into a form considered in
§61, §62 or §63. Let 2; = (log B)¥™4 for A > 0 as given before (see the definition of
2o before Z54). The regions we will use are the following:

Hy = {(k,1) € N®: ||ko, k1 || < 21, ||k, ksl < 21, |[lo, La]| < 21, |ll2, G| < 21},

Hy = {(k.1) € N |lko, k|l < 21, [z, Ksll < 20, [llo, L]l > 20, 2y 5]l > 21}, (2.5.22

(2.5.21)
( )
Ha = {(k.1) € N*: |[ko, k| > 21, [lko, sl > 21, [llo, lall < 21, (|l sl < 20}, (25.23)
( )
( )

H4 - {(kvl) S N8 ||k27 k3|| X <1, Hl27l3|| X 21}’ 2.5.24
Hs = {(k,1) € N°: ||ko, ks || < 21, ||lo, ]| < 21}, 2.5.25

(2.5.26)

= {(k yens: (Fokill > 2 & i, Ll > =) or }

([[k2, ksl| > 21 & [[lo, || > 21)

These regions cover N® and the only intersections are between H;, H4 and Hs whose
pairwise intersections are just ;. The following describes the contributions from the
sum over each of these regions.

e Hy will trivially contribute an error term.

e H, and Hj3 will have an oscillating part which will be shown to contribute an
error term of order O (logB)ﬁlﬁzlogB) for any A > 0 by use of Selberg—Delange
methods and the neutraliser large sieve. There will also be a non-oscillating part

which will contribute the main term of Theorem 2.

e H4 and Hs both contribute an error term of order O (Lﬁ;g}g) by the methods
of Selberg—Delange and a result on averages of the L-functions L(1, x) as x ranges
over non-principle quadratic characters. It is for the contribution from these
regions that the non-square conditions of Theorem 21 play a crucial role as
they force certain characters modulo 8 to be non-trivial. If this were not the
case the sums over these regions would have a non-oscillating part which would
contribute a term of order B? as in the work of Browning-Lyczak-Sarapin, [R].

e Hg will contribute an error term of size O ( (Tog ) for any A > 0. The tools are
large sieve inequalitites of F' riedlander—lwamec Lemma 224, and the bound for
sums of Jacobi symbol over hyperbolic regions, Lemma P23.

We now express each contribution separately and bring in the other variables to
express the overall main terms and error terms as sums which are malleable to the
methods of §61, §62 and §6-3. Suppressing the dependence on b, o, and q, we define

12 (2koloky ly kaloksls)

d,d,k,1). (2.5.2
ol kalakaly) 02\ & kD) (2:5.27)

H,.;d,d,K,L,B) = 3
(k)EH;
(k,)=(K,L) mod 8

(zzT2), (E513), (Z2518)
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Then, it is clear that

6
(K,L,B) =Y H,;(d,d,K,L, B) — 2H,,(d,d, K, L). (2.5.28)

=1

N

T7b7m7d7a7a7q

for each 7 = 1,2. The main term will be obtained from the sums i = 2,3 in the
cases where either d or d is (1, 1,1, 1) respectively. Bringing in the other variables, our
overall main terms may therefore be expressed as

H,5(1,myq4,1,L, B

MoBb= Y ¥ % 2(1, Moaq )
meN? 5e{0,1}* g€ A(m,0) Le(Z/8Z)*4 T ((m02m03m12m13)odd)
mijS20  (Z503) (z5z3)

(232)

and

Meg(Bb)= > > > )

meN? €{0,1}* q€A(m,0) Ke(Z/8Z)*4
mijSzo0  (Z5) (z5z3)
(=2)

C'_')7',1<Inodd7 KJ O-)Hr,3<m0dda ]-7 K7 17 B)

7 ((Mmo2mo3mi2mis)oda)

where moqa = ((1M02)odd; (1103)odd; (M12)oad, (M13)oaa), 1 = (1,1,1,1) and
{L0L2<m03m12)odd = —0,qo mod 8, Ly Ls(mo3miz)oad = q1 mod 8, (2.5.29)

Ly Ly (moamis)oad = 0rq2 mod 8, LoL3(moamis)odd = —gs mod 8.

The even characters from ©,; are absent in the sums M, »(B,b) as this corresponds
to the terms where d = 1 and K = 1 mod 8, in which case this function is trivially
always 1. Notice that due to the height conditions Hy and H3 the non-square condition
(2518) implicitly holds and may therefore be ignored. This is not the case in H4 and
Hs. In these regions, we use (ZZA1H) to force ©,; to be a non-principal Dirichlet
character modulo 8. By re-ordering the sums over H4 and Hj, oscillation of this non-
principal even character will result in an error term. We will call the contribution of
the sums where this method is necessary “vanishing main terms”. These are given by

Vra(B,b) = > DD D I @HlKa) H,4(1,1,K,L, B)

meN?, (532) 0€{0,1}* qc A(m,o) K,LE(Z/8Z)**
(mo2mo3miami3)odda=1 (254) (z5=m)
and
V,.5(B,b) = > > > >3 6,1(1,K,0)H,5(1,1,K,L, B)
meN4 (52) 0c{0,1}* q€A(m,0) K,Le(Z/8Z)**
(moamo3miami3)oaa=1 (E53) (2=3)
where
KoLy = —4,q0 mod 8, KL, = ¢ mod 8,
K1L1 = (ST,QQ mod 8, K()LO = —(Q3 mod 8, (2530)
KQ, LQ, Kg, L3 =1 mod 8,
and

KsLy = —6,q0 mod 8, K3L3 = q; mod 8,
K2L2 = (STQQ mod 8, K3L3 = —(3 mod 8, (2531)
Ko, Lo, Kl, L1 = 1 mod 8.
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The remaining terms contribute to the error term. For convenience, we split
these errors into similar sections. Define meva,qu,L as the sum over the conditions
m € N, m;; < 20, (2552);0 € {0,1}*, (2570);q € A(m, o); K, L € (Z/8Z)*, (Z517).
Define also,

T(d.d) = ©,1(d. K, 0)H,(d,d, K, L, B) (25.52)
Y 7((mMo2mozmi2mas)odd)

Then the remaining error terms are

Ea(B,b) =" 33 Ti(d,d), &2(B,b)=>" 33 T.(dd),

rr:;{O-Lq d,a€N4 m,o,q d d€N4
' dijczij:(mij)odd ’ Ig f gnszg )fi(;(zl
=1 mo =

(2.5.33)
b b
EaBB)=Y LY Ta@d). fuBb =Y LY Tdd),
m.o.q d,deNt mo.q d,denN?
K,L . KL By
dijdi;=(mij)oda dijdij=(mij)odd
L=1 mod 8=d#1 d=d=1=> at least one of
Ko,L2,K3,L3#1 mod 8
(2.5.34)
b b ~
EsBB=Y LY Tsdd), &uBB)=Y" Y Tdd)
mo,q d,deN* mod  d,dent
K,L ~ K,L =
dijdij=(mij)odd dijdij=(mij)odd
d=d=1=> at least one of
Ko,Lo,K1,L1#1 mod 8
(2.5.35)

We summarise this section by bringing these contributions together and expressing
each N,(B) in a concise manner. Define

N.i(B) = > (Myi(B,b) + &.4(B,b)) (2.5.36)
beN*
bi<zo
(=)
for i = 2, 3,
N.i(B) = > (Voi(B,b) +&.4(B,b)) (2.5.37)
beN*
b;<z0
(=)
for i = 4,5 and
N.i(B)= Y &.:(B,b) (2.5.38)
beN*
b;<zo
(=)

for 1 = 1,6. The following therefore follows from summing (2528) over the remaining
variables:

Proposition 2.5.7. For B > 3,

N, (B) = i N,4(B) — 2N, (B) + O (BZ(IOgB)> .

i—1 <0

Moving forward we will suppress some notation by writing:

o 2 o 2 o 2 o 2
Mo =2 Omogmogbo, M1 =2 lmlgmlgbl, Mg =2 2m02m12b2, M3 =2 3m03m1363.
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2.6 Large Conductor Error Terms

In this section we bound the &, (B, b) using Lemma 2225. We begin by bounding the
H.¢(d,d,K,L, B):

Lemma 2.6.1. Fiz some b,m € N* and o € {0,1}* satisfying p*(moamozmiamis) =
1, (252) and (2257), some d,d € N* such that dijdi; = (mij)eaa- Fiz also some
K,L € (Z/8Z)** satisfying (22517). Then for r = 1,2 we have

B?(log B)®
M0M1M2M3Z%/2 '

H,¢(d,d,K,L,B) <

Proof. First we recall the height conditions for these expressions. The first is that
given in (22228) and the second is the hyperbolic height condition (22215). To handle
(22213) we will write

1(||kolo Mo, kily My || - || kolo Mo, kslsMs|| < B) = H 1(kyl Mk, l,M, < B).
(u,0)€{0,1}x{2,3}
(2.6.1)

Starting from height conditions from (2Z528), we will partition the space even

further. First suppose that ||ko, k1] > 21 and ||l2,l5]] > 2z1. Then we have 4 cases:

Rq: (kl >z, and l3 > Zl);

Ro: (]{70 >z, ki <z and l3 > Zl),

Rs: (l{il >z and Iy > 21, 13 < Zl),

Ry: (ko > 21, ki <z and [y > 21, 13 < 21>.
We also have regions where || ko, k1| < 21 or ||le,l3]] < 21 but ||ko, ksl]| > 21 and
llo, l1]| > 21. This gives 4 more regions:

Rs: (||ko, k1| < 21 01 ||lg, 3] < 21) and (k3 > 2z and [} > 21);

Re: (||ko, k1| < z1 01 ||lo, 3] < 21) and (kg > 21, k3 < 23 and [ > z7);

R7Z (Hk’o, le < Z1 Oor HZQ, Z3H < Zl) and (k)g > 21 and lo > 21, ll < Zl),

Ra: (H/{Io,klu < zp or ng,lgH < Zl) and (kg >z, ks < z and [y > 21, 1 < Zl)-
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Then we define

12 (2kolokyly kaloksls) N
©,(d,d, k,1
ZI;E;Z kolok1l1/€212k3l3) 2( )
(k,H= (K L) mod 8
(z5T3), (251m)

for 1 < h < 8. As our final notational manipulation of the section, we use the multi-
plicativity of the Jacobi symbol to write ©,(d, d, k, 1) as

o -(pnoman) () () ()22 E) ()2

where

l; ~ JOQCZOSJ12J13>
01(d,l;) = | ———— | and Oy(d,k;) = | ——=].
1(d, ) <d02d03d12d13> 2 ) < ki
Then, using (Z6), p?(2kolokilikalaksls) = 1 and the multiplicativity of 7 we may
arrange the order of summation of each S,(B) for 1 < h < 8 and apply the triangle

inequality to find that all of these satisfy an upper bound of the form

l4
J
VLD D o | 2> awby (k,, :
iué wMy<B éB 21<k;<B/(likj M; M;) v
vlo My<B g Zl<lj<B/(lik]’MlM])
(zmTa),(z51m)

where the indices i, j,u,v € {0,1,2,3} are all distinct and depend uniquely on 1 <
h < 8 and where |ay,|, |b;;| < 1 are complex sequences depending independently on
k; and [; respectively. These sequences contain the ged conditions from the p? factor,
the congruence conditions on the variables k; and [;, % factors, superfluous characters
containing k; or [; and superfluous height conditions (in the form of an indicator func-
tion).

The innermost sums here are exactly of the form considered in Lemma ZZ2Z3. We

therefore use this lemma to obtain:

B(log B)?
<< - O
2 T £, Ly M
koly My<B
kulukolo My M,<B
B(log B)®
<
SESS e
koly M,<B
kulukolo My M,<B
5 2 6
< B(log B) YY1« B*(log B)

M;M; 21/2 nm<B/(MyM,) ]\40]\41]\42]\/[321/2
for each 1 < h <8. O

Proposition 2.6.2. Let B > 3. Then forr =1,2,

B?*(log B)®

N,s(B) < 3
21
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Proof. Using the previous lemma we have

0,1(d,K,0)H,4(d,d, K,L, B)

EeBb)= 2> > > > 2D

mel! oe(01}! aeA(m,o) KLE(Z/s0)"  dden’ 7 ((Mo2mozmmiantiz)oda)
Téﬁo (m) (m) dz] dz] (mu)odd
B*(log B)®

<X X 2 ;

2 27127272 1/2
meN* €{0,1}* q€A(m,0) K,Le(Z/8Z)*4 Miamimiamisbibibsbs 2
mij <20 () (z5T2)
(252)

Summing this over b gives

By<> 2. > > 2

2 2 2127272 ,1/2°
beN* meN? 5€{0,1}4 g€ A(m,0) K Le(Z/8Z)* mymesmismisbgbibsbiz
bi<zo MijS20  (zm) (z517)

(z52)

B*(log B)®

The result follows since there are only finitely many o, q, K and L to consider and the

sums over m and b converge. O]

2.7 Small Conductor Error Term

In this section we will bound the error terms &, ;(B,b) for 1 < j < 5 using the bounds
from sections b2 and B33.

2.7.1 The Error Terms &, (B, b)

Here it is enough to use a trivial bound, since the variables in this region are all bounded
by a power of log B. We obtain:

Proposition 2.7.1. Let B > 3. Then for r = 1,2 we have

N,1(B) < (log B)™™*.

Proof. Recall &,.1(B,b) from (22533). Now, by summing trivially over the height

conditions in the region H;, we have

Hrl(d>a>K7LaB) 8 (lOgB)1200A

T 1 d,a - : << 1= '
Tra(d, ) 7((mozmo3miamisz)odd) b 7((momosmizmaz)odd)

Then,

~ o log 3)12004
ZZ ]Tm(d 4| < 7 ((moamogmizmis)eaq) (log B) = (log B)HOOA,
d,deN4 7((mo2mosmi12mi3)odd)
dijdij=(mij)oda
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where we have implicitly used (EZ22) to simplify the product of the 7(m;;). Since
there are only finitely many K, L, q and o to consider and the sum over m is trivially
bounded by zi = (log B)** we obtain

N.1(B) <« Z Zb (log B)™"4 « Z (log B)""4 « (log B)"%4,

beN4 M09 beN*
bi<zo KL bi<zo

2.7.2 The Error Terms &, 2(B,b) and &, 3(B,b)

These error terms are bounded using the fact that, given the conditions on the variables
m, K, L,d and d, the sums H,5(d,d,K,L, B) and H,3(d,d,K,L, B) are of type (b)
or (c) from §5A. We first remark that & 2(B,b) and &, 3(B,b) are symmetrically
equivalent, the latter being of the same form as the former with the variables d, K and
k switching roles with the variables d, L and 1. For this reason we will restrict our
focus to &.2(B,b). Our first aim is to examine the sums H, »(d, d,K,L,B).

Lemma 2.7.2. Fiz some b € N*, some m € N* satisfying (2252), some o € {0,1}*
satisfying (E250) and some q € A(m, o). Suppose that K, L € (Z/8Z)** and d,d e N*

satisfy the conditions

K, L satisfy (22510),
dijdi; = (Mij)oaq ¥ ij € {02,03,12,13}, (2.7.1)
K=1mod8=d#1.

Then

B2MAX(B)

H,,(d,d,K,L,B
2 ) <a Mo My M;Ms;

where MAX,(B) is defined as

1 (d _ 1) 7(mo2mozmizmis)?7(bo)7(b1)7(b2)7(b3)
max{ ’ }

(log B)(log log B)664
diod3sdiydis  (log B)(loglog B)*
(log B)1324 » (log B)A/3

Proof. Recall (22509),(225:22) and (22527). We order H,.»(d,d, K, L, B) to sum over

1 first and write

@2(d7 d7 ka l) = Xa(k)idkzkg(loll)%d,kokl (l213)
where o
doodp3diadis ) ~ ( n )
(k)= ——=—| and n)=|(———m——
Xa(K) ( kokikoks Xaq(n) doadozdr2d13Q)
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for any ),n € N. Then,

H,,(d,dK,LB)= YY % i koklk?k?’)’(d(k)flw(d,a,K,L,k, B)

llko ks | [z ks | <21 (kokykoks)

k=K mod 8
(=)
where
] lollzzz3> ) )
H’I”72(d7 d7 K7 LakaB ZZZZ l l dek2k3(l0l1)xd,k20k‘1 (l2l3)’

ll20,L1]],llE2, l3||>z1 ) ) ( 2) ( 3)

1=L mod 8
(z=5T3), ()

ged(ko, 27 mogmezmiamasby) = ged(ky, 27°moamozmiamasby) = 1, (2.72)
ged(ka, 273 mogmozmiamasbs) = ged(ks, 272moamozmizmasbs) = 1,

and

ged(lo, 27 moamosmaamaskokiby) = ged (1, 27°moamozmaamaskokiby) = 1, (2.73)
ged(la, 273 moamogmaamaskaksbs) = ged(ls, 272moamogmizmaskaksbe) = 1.

Notice that these sums are now very similar to those considered in Propositions 22277
and 2R, except for the p*(lplilzl3) term in the inner sum. To deal with this, we
apply Lemma 222 to the inner sums with: wy = w; = 2y = (log B)*, ¢; = k;M; for
0 <1 < 3, and g; encoding the characters, the factors and the ged Condltlons (22733).
Then have that H, »(d, d K,L Kk, B) is equal to

X koks (1011) Xa woks (1505) -, /
LD ey el L)

Pl Lyl =pls
sty 14 415, (=)

( B?(log B) )
k0k1k2k3M0M1M2M3M4Zé/3
where

H;”»Q(d’d’K’L’k’l/’ B) = Z Z Z Z " : " " Xd,l@ks (lgllll)yd,kokl (1/2/[/3/)7
i = (o)) T ()7 (15)
I/=L;/l, mod 8 V 0<i<3
(3),(=7m)

ged(ly, 27 moamozmaamaskokib) = ged(l], 270moamozmaamaskokiby) = 1, (2.7.4)
ged(ly, 273 moamozmaamaskaksbs) = ged(ly, 272moamozmaamaskoksbs) = 1,
ged(lf, 27 moamosmagmaskokisbr) = ged(l], 27°mogmozmiamaskokisby) = 1,
ged(ly, 273 mogmosmaiamyskakssbs) = ged(l3, 272moamesmiamiskakssby) = 1,

(2.7.5)
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and

||2”°k0l6lgm02m03bg, 2”1k1l’1l§’m12m13b%|| . H202k2lél,2/m02m12b%, 203]{?3[%[%,7710377113()3” < B
(2.7.6)
Next, we swap the summation order of k; and [;. By also summing the previous error

term over k;, we obtain:

(l ) / 3 /
H’”Q(ddKLB Z ZZZZ ()T (l/ (1, )T(l/)HTQ(d?d’K’L’l’B)
r<zo (126,25 1,115,151 <20 3
|161'1l'2l’3ép\7“
P2 LT (E)

B?(log B)(loglog B)*
+ Oy i
MoMlMQMgz

where H!,(d,d, K,L,1, B) is defined to be

/{;k/{:k 1 (kok o (kok B
ZZZZ 0K1R2 3)X(}€lll€(k2k3)Xdll ( 0 I)HT,Q(d,d,K,L,k,l’,B),
ko Jex 1| o s [ <21 (kok1koks)

k=K mod 8
(=)

ged(ly, 27 moamozmagmasby) = ged(lh, 27°moamozmiamasby) = 1,

(2.7.7)
ged(ly, 273mogmozmiamasbs) = ged(ly, 272meemesmazmasbs) = 1,
ged(ko, 27 mozmozmazmaslylibi) = ged(k1, 270 mozmozmiamaslylibo) = 1, (2.7.8)
ng(k27 203m02m03m12m13léléb3) - gcd<k3, 202m02m03m12m13l’2l’3b2) = 1

and for any Q,n € Nyqq, d,1 € (N'\ {0})* we have set

W)= (lohibls Ny = ((dedediadiaQ)
Xd do2do3di2dy3 Xd@\n n

Now we claim that the sums H; ,(d, d K, LY, B) are either of the form considered in
Proposition 22271 or of the form considered in Proposition ZZ8. To do so we compare

notation as follows:

 the n; in §62 correspond to the [7;

o the m; in §62 correspond to the k;;

« the d; in §52 correspond to I

 the ¢; in §672 correspond to the product [;M;;

o the Q; in §62 correspond to products of I} and d
that the product corresponding to )y and ()5 in Proposition 22277 are independent

;> though we note specifically

of the [}, and that (); in Proposition ZZR is equal to 1 in all applications of this
proposition (it is the product of all the d;;). All characters in this application

are Jacobi symbols of the corresponding modulus;
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o the r; in §52 are moilg‘g’o’:;lel:wj, with 7 =1,0,3,2 for i = 0, 1,2, 3 respectively.

Using this dictionary we find that conditions 2222, 22771 and PZZ8 ensure that at least
one of the characters xa kok, OF Xd koks 1S DON-trivial, ensuring that at least one of these
results can be used. For the cases in which we use Proposition 2228, which are the

cases when

doadosdiadis = 1, ||ko, k|| = 1, [[ko, k3|l > 1
and

d02d03d12d13 = ]-7 ||k07k1|| > ]'7 ||k2’k3|| = 1’

we note also that the constants ¢;, here given by I/M;, are all < (log B)**, the
constants d; are If), 1}, 15,15 < (log B)* and the lower bound in the inner most sum
Hng(d,d,K,L,k,l’, B) is (log B)"**4, meaning that the constants satisfy the desired
bounds. Applying these propositions then give:
1(d = 1)7(memimams)?7(s)?7(b) 7 (b1 )7 (bo)7(b3) B?
111515 Mo My Mo M3 (log B)(log log B)324
oy A diodis B
11515 Mo My Mo M3 (log X )664°

H,(d,d,K,LY, B) <4

+

Therefore we may deduce

RB2MAX,(B)
Mo M,y Mo M

Hr,Q(da aa K7 L7 B) <4

where

(s)
R — | (2.7.9)
2 22 2 iy () ()T
pllglyIhl=pls
FIARAA

To conclude the proof we show that R < 1. We have 7(1y)7(17)7(15)7(15) = T(I[11515).

Then, by writing u = ({1151}, we have

2

Rey y R 5oy )
$<20 u<z $<20 u<z
p|u=>p\ p|u=>p\
s2|u s2|u

where in the last step above we have used the bound 74(u) < (7(u))* < 7(u)u'/%. Now

using Lemma 5.7 from [29] with e = 1/4 we have,

5 Lo
= udlA > g5/
p\u:wl
s2|u
thus R < Yyesy T8 < 1. O
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Proposition 2.7.3. Fiz some b € N*. Then

T(b@)T(bl)T(bg)T(bg)Bz
b3b3b3b3(log B)(loglog B)%6A

ET’Q(B, b) <4

Proof. Recall &,5(B,b) from (ZZ2233). Now we apply the Lemma 2272 and use trivial
bounds for the finite sums over o, q, K and L. This will give:
MAX(B)
&.2(B,b) <4 B?
(BR)<aB 2 L2 R R
mZJSZO d d (mu)odd

(22)

since MyM;MyM;z = 200T01+o2t03m2 m2 m2 m2,02030302. When d = 1 then,

7(momimams)7(bo)7(b1)7(b2)7 (b3)
X1 (
m%;ﬂ MA )< m%;]z; mimgsmi;misbibibibs(log B)(log log B)564
M2 M5 <2
('Ziﬂ)O (!2"--?—‘3)O
< 7(bo)7(b1)7(b2)7(b3)
bab3b3b3 (log B)(log log B)%64°
Otherwise,
1
MAX(
m§]4 %e% 1(B) < %4 bzb262b2(logX)132A
m;; <2 m m;; <2
(m)od d ( zg)odd (m)o
Py (log B)(log log B)*
meN4 miggmismi;misbgbibibs(log X )A/3
mij <2
(l235?3)0

1
< Bu203K3 (log B)AF2

]

As alluded to above, we may use the same argument with the variables d, K and k
switching roles with the variables d, L and 1 to obtain,

Proposition 2.7.4. Fix some b € N*. Then

7(bo)7(b1)7(b2) 7 (b3) B
bab3b3b3 (log B)(log log B)%64°

5T73(B, b) <A

2.7.3 The Error Terms &, 4(B,b) and &, 5(B,b)

For these error terms we note that the conditions on the variables m, K, L,d and d
guarantee that the sums Hr74(d,(~l,K,L,B) and HT,5(d,El,K,L,B) are of types (b)
and (c) from §63. Similar to the symmetry of &.5(B,b) and &, 3(B,b) in the last
section, &, 4(B,b) and &, 5(B,b) are symmetrically equivalent, the latter being of the
same form of the former with the variables ko, lo, k3,3, Ko, Lo, K3, L3 switching roles
with ko, lo, k1, 11, Ko, Lo, K1, L. We will therefore focus on &, 4(B,b). We first examine
H,4(d,d,K,L, B).
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Lemma 2.7.5. Fiz some b € N*, some m € N* satisfying (252), some o € {0,1}*
satisfying (25520) and some q € A(m, o). Suppose that K, L € (Z/8Z)** and d,d € N*
satisfying the conditions
K, L satisfy (22511),
dijdi; = (mij)oaa ¥ ij € {02,03,12,13}, (2.7.10)
d=d=1= one of K, Lo, K3, Ly Z 1 mod 8.
Then

B2MAX,(B)

H,,(d,d,K,L, B
al ) <a Mo M, MyM;(log B)

where we define MAXo(B) as
- { 1(d = d = 1)r(bo)(by)7(bs)7(by)Iog Tog B. }
X (log .

B)3(loglog B)*  dg,dg;di,d7;(log B)
(log B)A/B ) (log B)140A

Proof. Recall (225109),(255-24) and (22527). We order H,.4(d,d, K, L, B) to sum over

ko, lo, k1 and [y first and therefore write

©s(d, (~17 k1) = Xa(k2k3)>2d(12l3)xa71213 (kok1)Xd kaks (lol1),

where s -
Xa(koks) = (W)  Xallols) = <d02dol§i?12dla> ’
and
Xa,lglg,(kokl) - <d02d03]i1]z1dl3l2l3> » Xaohs (loh) = (dozdogéii;m@ki’a) .
Then
K Lp - Yy sy bbby g 4 K L5

k2.3l lli2 i3] <21 (k2l2k313)
k;=K; mod 8 V i€{2,3}
l;=L; mod 8V i€{2,3}
(eozrm)

where klys = (ko, l2, k3, 13),

~ k lokql ) ~
Hr,4(d,d,K,L,k123, ZZZZ k o 0)0(;1) i )X&leg(kokl)xdvk2k3(l0ll)’
ko,lo,k1,l1 €N 0 1 1
ki=K; modSVzG{Ol}
l;=L; mod 8V ic{0,1}
(e5T3),(r12)

ng(k‘QZQ, 2”3m02m03m12m1363) = ng(k’glg, 2"2m02m03m12m13b2) = ]_, (2711)

and

ng(k07 20—177102771037711277113/€2/7<?3b1) = ng(k’h 2”0m02m03m12m13k2k3b0) =1,
ged(lo, 27 mgamogmaamaslalsby) = ged(ly, 27°moamozmiamaslalsby) = 1.

(2.7.12)
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Section 2.7 Chapter 2: Solubility of diagonal quadrics

Next we aim to remove the p? term in these inner sums. For this we use Lemma
with Wy = W1 = Zp, Co1 = Ml, Co2 — M2 and M = HkglgMg,kglgMgH. Then
H,4(d,d, K, L, kly, B) is equal to

Xa.ii, (KoF1)X Iyl -
>ouls) DD ‘“ l‘°’ )) Fk]j2>k3((l,())1>Hr,4(d,d,K,L,klgg,klE)pB)
s<z0 k/ l’ k’ l’1§20

IR s
s2|kolpki 1y, (Z12)

O ( B?(log B)? )
kngkgl?,MQMlMQMng/g

where kl, = (k), [, k7, 1}) and

: s, () Vst (041
Hr74(d,d,K,L,k123,kl/ ,B) = 2°3 ’
D I (s (L ATy
ki=K; mod 8 V i€{0,1}
li=L; mod 8 ¥ i€{0,1}
(r13),(e=13)

oo 1. 1.7 7! 2 o1t g 2 o 2 oo 2
||2 Ok0k0l0l0m02m03b0,2 1k51k1l1l1m12m1361||~||2 2k2l2m02m12b2,2 3k3l3m03m1363|| < B

(2.7.13)

ged (K, 27 moamogmaiamaskaksby) = ged (K], 27°moamozmiamiskaksby) = 1,

ged(lh, 27 moamozmiamaslalzby) = ged (1], 27°moamogmiamaslalsby) = 1,
(2.7.14)

and

ng(k‘g, 2"1m02m03m12m13k2k38b1) = ng(ki’, 2"0m02m03m12m13k2k35b0) = 17

ng(lg, 2"1m02m03m12m13l2l3361) = ng(llll, 2"0m02m03m12m13l2l33b0) =1.
(2.7.15)

Now we swap the summation of k{, [, k7, 1] with ko, s, k3, l3. This will yield,

H,,(d,d,K L B) = Xd lOli)Xd(klk/) H,,d,d KLk B
r,4( s by )y )_ <Z/'L ZZZZ ) (k'/) (l,) 7',4( ) Wy )4y 01> )
s<20 k§10,k 1 <zo

p|k(/)l6k/1l,1:>p|
s2|k) 1 K 1y, (222T8)

Lo (Bz(log B)? (loglogB)4>
MoMlMQMgzé/g

where H,4(d,d,K,L,kl,, B) is equal to

k2l2k3l3)X / ’(k2k3)Xd Kkl K, (l213) ~
ZZZZ (:Ell{fgllgkglg) HT,4(d7d7K7L7k1237k161>B)7

lk2 k3l [ll2,5]|<21
k‘iEKi mod 8 V 16{2,3}
l;=L; mod 8 V i€{2,3}
()

ged(kg, 27 moamogmaamazbi) = ged(ky, 27°moamozmiamazbo) = 1, (2.7.16)
ged(ly, 27 moamozmaamasby) = ged(l], 27°moamozmiamaghy) = 1,
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and
ng(leQ, 2”3m02m03m12m133b3) = ng(kglg, 2U2m02m03m12m135b2) =1. (2717)
Now note that the condition (2-710) guarantees that H,4(d,d, K, L, kl,, B) is of

the form considered in either Proposition 22210 or Proposition 22211 as it guarantees

that either xg,;, Or Xd ks 18 non-principal. The notational dictionary is as follows:

the n; in §63 correspond to kg, Iy, kY, 11;
e the m; in §833 correspond to ko, lo, k3, l3;

 the quadruple (co, 1, ¢2, ¢3) in Proposition 22210 and the quadruple (coy, ¢23, Co, ¢1)
in Proposition 22211 both correspond to the quadruple (ki Mo, k113 My, Ma, M3);

e the Q02 and Q13 in Pl"OpOSitiOIl P20 correspond to dogdogdlgdlg and Jogdogczlgjlg

respectively;

e the r; in §E.‘3 correspond to m02m03m12m138bj divided by d02d03d12d13 or J02J03J12J13
depending on whether n; corresponds to a k”-variable or a [”-variable and where
j =0 or 1 depending on whether the n; corresponds to a ” variable indexed by 1

or 0 respectively;

 the 7; in Proposition 2221 are just mpemozmiamizsb; for some j.

Finally we note that the characters Xau (k2ks) and Xa gk, (l2l3) in the sum over
ko, ls, k3, I3 are of no import in these applications as we first use the triangle inequality
to obtain the absolute value of the inner sums. Noting that we only need to apply
Proposition 22210 when d = d = 1 we thus have that H, 4(d, d,K,L, kly,, B) is,

1(d = d = 1)7(by)7(by)7(b2)7(bs)7(s)2B*/1og log B
Ay i3 didiy B?
k(’)léklllllMoMlMgMg(log B>140A.

<4

_|_

Now, the sum over k), [j), k], [} is given by

7(s)? 7(s)?
< < L
Py ;lzilzz SRy Ry TR, < 22 Z ut/t
plkLU K, 1 =pls plu=pls
82|kl kq 1y, (=1m) s2|u

The details of this bound are the same as those bounding (EZ79) in the previous
subsection. Substituting these bounds into H, 4(d, d,K,L, B) concludes the result. [
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Proposition 2.7.6. Fiz some b € N*. Then

7(bo)7(b1)7(b2)7(b3) B?y/loglog B
b2b3b3b3(log B) '

&.4(B,b) <

Proof. Recall &, 4(B,b) from (25234). Then, upon applying the Lemma 2273 we are
left with

MAX,(B)
8T4(B7b)<<A 10 B Z Z Z ZZ ZZ MM MoMa
g B) i oC{01) acA(m o) KLEZ/52)"!  adent 04212523

Tﬁgf (e52) (E5TD)  dyjdij=(mij)odd

Now, since 1(d =d = 1) = 1 if and only if m,qq = 1, and since (2252) guarantees that
12 (meamosmiamys) = 1, the only possibilities for m are (1,1,1,1), (2,1,1,1), (1,2,1,1),
(1,1,2,1) or (1,1,1,2) when this condition holds. Thus there are only finitely many
m to consider and since there are only finitely many q, K, L and o we have,

MAX,(B) 7(bo)T(b1)7(b2)7(b3)+/loglog B
DD DD DD P) D VATV EIETETe '

meN?  0€{0,1}* q€A(m,0) K,LE(Z/8Z)*4
MmijSZ0  (e5) (z=T2)
(IZ“..:__‘Z) meodqq= 1

Otherwise, we remark that there are only finitely many q,K,L and o and that the

sum over 2 converges so that the expression becomes bounded by
Mg

(log B)3(log log B)* (log B)*4
bibb303 (log B)A/3 bbibib3(log B)1404

Noting that by choosing A to be sufficiently large and that each b; < (log B)*, we
obtain the result. O

It follows by the same argument with the variables ko, lo, k3, I3, Ko, Lo, K3, L3 switch-
iIlg roles with k?(), lo, k?l, ll, K(), LO, Kl, L1 that:

Proposition 2.7.7. Fiz some b € N*. Then

7(bo) 7 (b1)7(b2)7(b3) B*\/log log B'

(B.D
Eralllb) < IROE (102 )

2.8 Vanishing Main Terms

In this section we handle the vanishing main terms V, 4(B,b) and V, 5(B,b). As in the
arguments of the previous section these are similar, almost obtained from each other by
switching the roles of ko, ls, k3, l3, Ko, Lo, K3, Ly with ko, lo, k1,11, Ko, Lo, K1, L1. The
key obstruction to this is condition (22518), which creates an asymmetry in this “role”
switching of variables when r» = 1. For this reason, and the fact that the even characters
found in ©,.; will play a key role in the following arguments and this function changes
with the value of r, we must separate the cases r =1 and r = 2.

95
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2.8.1 The Vanishing Main Term V), 4(B,b)

We begin with an examination of the inner sums H; 4(1,1, K, L, B). Recall that

2
1% (2]€0l0k1l1k2l2k’3l3) loll lgl3
H 41,1, KL, B) = E E E E .
174( T T ) k1€7-l4 T(kolokllleZnglg) k?gkg k‘okl

(k,))=(K,L) mod 8
(zzT3), (”"“_"“)7 (e5m)

We separate out the terms for which ky =l = k3 = I3 = 1:
H1,4(17 ]-7 K7 L7 B) = ‘/1,4(K7 Lv B) + E‘/IA(Ka L7 B)

e 2(2kolok!
VWKLB =  YYYy o AZhlkl)
ko,lo,k1,l1€N4 T (k(JlOklll)
(ki,l;)=(K;,L;) mod 8 V i€{0,1}
(e-53), (251m), (250)

2
12 (Qkoloklllkglgkg,lg) loll l2l3
EVi4K,L,B) =
1’4( T ) Z;g{:z T(k?oloklll]{?glgk}glg) ]fgkg kokl ’
(k)= (K L) mod 8
kalokslz#1
(zmT132), (E51T), (Z251E)

and
||2"°k0l0m02m03b(2), 201 kflllmlgmlgb?H . ||2”2m02m12b§, 2U3m03m13b§|| < B (281)

Now EVi4(K, L, B) may be treated like H, 4(d, d, K, L, B) in §273, by noting that,
after breaking the p? function, the condition kyloksls # 1 guarantees that Propositions
2210 and 22711 may be used. Summing over the m, o, q, K and L as in Proposition
P70 we are thus left with:

Via(B,b) = > oY Y)Y e11(1,K, 0)Viu(K,L, B)

meN? (Zm) 0e{0,1}* q€A(m,0) K,Le(Z/8Z)**
(mo2moszmi12mi3)odqa=1 (Z52) (z==m)

10, (T(bO)T(bl)T(bz)T(bg)B2W) |

B376303 (log B)

Now we wish to re-integrate the even characters into the sum over ky,ly, k1,l;. By
doing this we obtain that V; 4(B,b) is equal to

3 3 S V(B +OA<T(bo)T(bl)T(bg)T(bg)BQ\/loglog B)

21.271,27,2
meN* (Z252) 0c{0,1}* q€A(m,5) bobibabs (log B)
(mo2mosmizmis)ead=1 (Z51)

(2.8.2)
where

2 o o2+03+v2 (m02m03m12m13)
VB =YY Yy AZhlkil) s (2 |
| 7 (Kolok1l1) koky

ko,lo,k1,l1 €N*
(zzxTm), (2mx4), (22%3), (22%4)

{ng(k?olm 27 mgamosmiamasby ) = ged(kily, 27°moamosmaamasby) = 1, (2.8.3)

ng(k’Qloklll, 2) = 1,
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and

kolg = —qo mod 8, kily = ¢y mod 8, kily = ¢ mod 8, kolg = —g3 mod 8. (2.8.4)

(koky =1) ( 1

Notice that since (—1)" 2z = kok1> we may write

(koky—1) 202+03+v2(m02m03m12m13) _202+03+v2(m02m03m12m13)
1) =2 = .
(=1) koky kok

Let us now consider (2Z84). We first note that these conditions require that any
q € A(m, o) must satisfy

go = ¢z mod 8 and ¢; = ¢» mod 8. (2.8.5)

We now make use of the identity

1 _
1(a = gmod 8) = 1 > X'(a)X'(q) (2.8.6)
X’ char.
mod 8

to break to congruence conditions in (Z84) using (283). Putting this into V{,(B)
gives:

m’,4<B>=116 S XX @V, B < XY VLo x,B).

X,X' char. mod 8 X,X" char. mod 8

where V7 ,(x, X', B) is defined as

12
ZZZZ T (koloklll) kok‘l

ko,lo,k1,l1€N4
(z=Tm), (=), (23)

2kolok 1) x (kolo) X' (k111) (_202+03+Ug(m02m03m12m13)>

The next lemma tells us that, in all of the cases we consider, we are always summing
over a non-principal character.

Lemma 2.8.1. Fiz m and o satisfying the conditions (22532), (moamozmi2mi3)edd = 1

and (Z572). Then for any character x modulo 8 at least one of the characters

—_902+03+v2(Mo2mozmi2m3)
( )t and ()

is not principal.

Proof. For any choice of m and o satisfying the conditions, the quadratic character
_9oa+o3+va(mgamgzmiamig)

) is a non-principal character modulo 8, since it is either equal to

(;1) or (;2) . It follows that, (’202”3%2@02%3%2%3)) x(+) is the principal character
_9g0o2+03+va(moamozmigmi3) )

in which case x is not the

modulo 8 if and only if x(-) = (

principal character. O

Therefore we should expect to see some cancellation in V7 ,(x, X', B) resulting from
the oscillation in these non-principal characters.
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Lemma 2.8.2. Fiz some b € N* and fir m € N* and o € {0,1}* satisfying the
conditions (Z252), (moamosmiamis)esq = 1 and (22321). Then

T(mOmlm2m3)4T(bo)T(bl)T(bg)T(bg)Bz.

Vi (B
1,4( ) < Mo M, My Ms(log B)

Proof. We first consider V{,(x, x’, B) for x, x' some characters modulo 8. The first
thing we wish to do is remove the square-free condition. To do this we use Lemma
P23 (with wy = wy = zp), as well as noting that the characters of even modulus take

care of the coprimality to 2. Then V{,(x, X', B) satisfies the bound

\‘/1’4 x x ,klépB)\ ( B )
< +0

P ZZZZ (k)T (B7) Mo M, My M (log B)A/%
|k’0l6k’1l’1:>p|s

s2 k{1 k) 1, (=)

where,

k”lﬂ) /(k//l//) _202+03+v2(MO2m03m12m13)
1% kl,,,B) = A 11

14(X X 01> ) %l%”;@\]; l//) (kil)T(lll/) k” i )
(IZEEB) (rz:a:s) (ex39)

ged(kjll, 27 moamoezmiamiasby) = ged(kl], 27°moamogmaamasby) = 1,

(2.8.7)
sed(Rylyhi 11, 2) = 1,
ged(koly, 27 moamogmaamasshy) = ged(k{1Y, 27°mozmozmiamassbo) = (2.8.8)

ged(kyIIkYLY,2) = 1,

and

1270 k) kg 1ol moamosby, 27 kK U U myamysb?]| - [|272meamiaabs, 273 mosmashs|| < B
(2.8.9)
Now we use Lemma 2281 on both x and x’ to note that these sums satisfy the conditions
of Lemma 2279:

« the n; in Lemma 22229 correspond to kg, lj, k7, 11;

_9og+og+va(moampzmiamy3)

e Xo in Lemma 229 is thus x(-) ( ); X1 in Lemma X9 is

/( ) (_202+03+v2(m02m03m12m13))

X(+); x2 in Lemma 229 is x
is x'();

and ys3 in Lemma 2279

o the remaining notation is assigned similarly to the applications of Propositions
P27, P28, 222710 and 2221

o8



Section 2.8 Chapter 2: Solubility of diagonal quadrics

Upon using Lemma 2229 we obtain

T(S>4T(m0m1m2m3>4T<bo)7'(b1)T(bg)T(bg)BQ

V14(X7X klj,, B) <

Similar to how we dealt with (22779), it can be shown that

7(s)*
D200 e < 1
s<z0 KoK,k <zo kolokrlyT k )T(ZO)T(kl)T<l1)
p|k6l6k’ll’1:>p\
s2|k{l) k1, (22%2)

Thus

7(momymams )7 (bo)7(b1)7(be)7(b3) B N B?

V/ !/ B .
e X, B) < Mo M, MyMs(log B) Mo M, My Ms(log B)A/

Now, by summing over the finitely many characters modulo 8:

7'(mom1m2m3)47'(50)7(51)T(b2>7(b3)32
MoMleMg(lOg B)

V(B < XY Vo x.B)| <

X,X' char. mod 8

as required. N
Proposition 2.8.3. Fiz some b € N*. Then

7(bo)7(b1)7(b2)7(b3) B*\/loglog B
b2b3b3b3(log B) '

Vi4(B,b) <«

Proof. Recall from (22X2) that V, 4(B, b) is equal to

, 7(bo)7(b1)7(by)7(b3) B*\/log log B
> 3 I B +on (MR EED ),

meN4 (57) 0c{0,1}* q€A(m,o)
(mo2mozmiamis)oaa=1 (E52)

Using Lemma 282 we therefore have:

Via(B,b) < 3 DS 7(momamams)* 7 (bo)7(b1) 7 (b2) 7 (bs) B>

meN?, (252) 0c{0,1}* q€A(m,0) Mo My M;Ms;(log B)

(mo2mozmiamis)oaa=1 (2Z53)

L0 7(bo)7(b1)7(b2)7(b3) B?y/loglog B
4 b262202 (log B) '

For the front term we note that in each case there are only finitely many q € A(m, o)
and o € {0,1}*. Also, given the conditions (2252) and (mg2me3mi2mi3)edd = 1, we
must have (mog, mos, mi2, mi3) € {(1,1,1,1),(2,1,1,1),(1,2,1,1),(1,1,2,1),(1,1,1,2)}.
Thus there are only finitely many choices here as well. Thus after summing the first

expression, the second error term will clearly dominate, giving the result. O]
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2.8.2 The Vanishing Main Term V), (B, b)

The argument in this subsection will differ to the previous one in that the condi-
tion (Z518) will play a key role. We begin once again by examining the inner
sums H,5(1,1,K,L, B), i.e (Z522) with d = d = 1. We split off the terms where
ko = lo = k1 = l; = 1, however in this case we must preserve the condition (ZZ218).
Thus we write:

H1,5(17 1K, L, B) = 1(200+Ulm02m03m12m13 7’é 1)‘/1,5(K7 L, B) + EV1,5(K7 L, B)

where 2( |
% 2]{32[2]63[3
Vis (K, L, B) = IS T (Falokals)
ko,l2,k3,l3€N* T (Kal2R3l3
(kisli)=(K;,L;) mod 8 V i€{2,3}
(o), (e=m)
11° (2kolokr b koloksls) ( loly ) < Ils )
EVis5(K,L, B) 7
ol Z%:)GZH:Z 7 (kolokylikaloksls)  \ koks ) \ kok:
(k,1)=(K,L) mod 8
kolok1l1#1
(z513), (25I3)
and
1270 moamosby, 27 maamashi | - [|272kolomoamiabs, 27 kslymegmashs|| < B (2.8.10)

Similar to the previous section, we may handle the EV; 5(K, L, B) in the same way as
we handled H175(d,(~i,K, L, B) in §Z°73 this time by noting that, after breaking the
p? function, the condition kglokil; # 1 guarantees that the conditions of Propositions
2210 or 22211 are satisfied. Summing this error term over the m, o, q, K and L we
are thus left with:

Vi5(B,b) = > > > >3 611(1L,K,0)Vi5(K, L, B)

meN4 (Z52) 0€{0,1}* qc A(m,o) K,LE(Z/8Z)**
(mo2mo3mi2mi3)oaa=1 (EZX13) (omsz3m)

Lo 7(bo)7(b1)7(b2)7(b3) B*\/log log B
A b3b203b3 (log B) ‘

Now we wish to re-integrate the even characters into the sum over ko, ls, k3,l3. By
doing this we obtain:

T(bg)T(bl)T(bg)T(bg)BQ
V175(B, b) = %4 + OA(
m@%m) 06%1}4 L2 VislP 0276303 (log B) (log log B) 172
(mo2moszmiami3)oda=1 (E=X13)

(2.8.11)
where

2(2kyloksl 2‘70+‘71+U2(m02m03m12m13)
V/.(B) = Y YT 1= (2kal 33)( ))
7 7 (kaloksls) koks

ka,la,k3,l3€N
(D'H_FH)7 (u |(|)7 (u T A), (m)

{gcd(k’ng, 27 moamozmiamaszbs) = ged(ksls, 27°mozmozmizmazbe) = 1, (2.8.12)

ng(k’ngk‘glg, 2) =1
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Section 2.8 Chapter 2: Solubility of diagonal quadrics

(o) + 01 + 09 + 0'3 ]_ ng(200+01+02+03 mogmogmlgmlg) =1
ng(Qooa bl) = ng(2017 bO) = ng(2027 b3) = ng(2037 bZ) =1, (2813)
270F T mgamogmigmas # 1,

and

koly = —qo mod 8, ksls = ¢y mod 8, k3ls = ¢ mod 8, koly = —g3 mod 8. (2.8.14)

Remark 2.8.4. An important comparison to the previous case is the absence of a
factor coming from (—1)f1(d’k). This is because, when dgdyzdiadizkok; = 1, as is
the case here, fi(d,k) = 0 regardless of the choices of ky and k3. In the previous
subsection we relied on this factor to guarantee the non-principality of the characters
modulo 8, see Lemma PZX; in this subsection we will instead rely on the condition
200 magmozmiamys # 1 from (ZX13) to play this role, see Lemma 2283 below.

Given the condition (¥4, any q € A(m, o) we consider must satisfy
go = ¢z mod 8 and ¢; = ¢» mod 8. (2.8.15)

Once again we make use of the identity (Z28W), this time to break to congruence
conditions (Z814) using (Z=13). Putting this into V] 5(B) gives:

VBl = XY XCoW@Viso. B < XY [Watox.B)

X,X' char. mod 8 X,X' char. mod 8

where

2]{2 loksl kolo) v (kal 900+0o1+v2(mo2mozmiami3)
Vl/SXXB ZZZZ 2233)(22)){(33) .
7 (kaloksls) koks

ka,l2,ks,lseN4

(r/ 51m), (X1m), (X IA)

The next lemma is analogous to Lemma 22X

Lemma 2.8.5. Fiz m and o satisfying the conditions (2252), (moamozmi2mi3)eds = 1
and (ZZ¥13). Then for any character x modulo 8 at least one of the characters
<200+U1 +v2(mo2mo3mi2m13) >

x(+) and x(-)

is not principal.

Proof. For any m and o satisfying (22813) we have (2U°+01+”2(m(_)2m°3m12m13>) - (2> It

op+o1+va(moamozmizmiz) s s
2 . ) X(+) to be non-principal, we must have

follows that, in order for (

x(+) = (2), in which case y is non-principal. O

From here we may now follow directly the argument of the previous subsection, ap-
plying Proposition 22 to the V{5 (x, X', B) and summing over the remaining variables
to obtain the following:

Proposition 2.8.6. Fix some b € N*. Then

7(bo)7(b1)7(by)7(b3) B*\/log log B ‘

B,b
Vis(Bb) < RbIA (08 B)
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2.8.3 The Vanishing Main Term V»4(B,b)

Following the same procedure as in the previous subsections, we may write

V24(B,b) = > Y. > 2 02(1LK,0)Vau(K L, B)

meN?, (532) 0c{0,1}* g€ A(m,0) K,Le(Z/87)**
(mo2moszmi2mi3)oqa=1 (Z52) (z==m)

4 O T(bo)T(bl)Ta)g)T(bg)Bz\/log IOg B
A b2b262b2 (log B)

Returning the even characters into the sum over kg, ly, k1, ; we obtain:

T(bQ)T(bl)T(bg)T(bg)B2
Vou(B,b) = Vi (B) + 0A<
4 mGN%:m) 66%1}4 qe%n 6)2 al b2b20202 (log B) (log log B)~1/2

(mo2mo3mi2mi3)oaa=1 (EXI3)

(2.8.16)
where

‘/2/,4(3) = ZZZZ Iu7- (koloklll) k’()k’l

ko,lo,k1,l1 €N
(rrh—rn)7 (I7T_H|)7 (II |q), (l/ vl l)

?(2kolokaly) (2”2+"3+”2(m02m03m12m13) )

||2‘7°k‘0l0m02m03b(2), 2”1k:111m12m1362|| . ||2”2m02m12b2 2”3m03m13b2|| < B7 (2817)

oo+ 01+ 02 + 0'3 1 ng(200—’—01—’—02—’—03 mogmogmlgmlg) =1
ged (290, by) = ged (271, by) = ged (292, b3) = ged(293,by) = 1, (2.8.18)

29278 momgzmiamas # 1,

{gcd(kolo, 27 moamogmizmashy) = ged(kily, 27°mogmosmazmasho) = 1, (2.8.19)

ng(kolgklll, 2) =1

and

kolo = —qo mod 8, kily = ¢ mod 8, kily = —ge mod 8, koly = g3 mod 8. (2.8.20)

Again, we do not have any factor coming from (—1)/2(4¥) This is because
fo(d, k) = koky — 1

when dgodpsdiadizkoks = 1 as is the case here. Since kgky is always odd in our sums,
koky — 1 is always even, and so this factor is just 1. Considering (ZZ8720), we note that
any q € A(m, o) we consider must satisfy

go = —¢q3 mod 8 and ¢; = —¢» mod 8. (2.8.21)

Using this and (ZZ¥8) to break to congruence conditions in (2820) and putting this
into V5 ,(B) gives:

1 —
ViaB)=15 XX oW (@Vaiox B < X3 [Walox' B
X,X' char. mod 8 X,x' char. mod 8
where
12 (2kolok 1) X (Kolo) X' (k1) (202+03+U2(m02m03m12m13)>
Vi B)
a6 X %%ZZENZ 7 (kolokaly) Foky

(V'H_FH)’ (I/ |/|)7 (U |u)
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Lemma 2.8.7. Fiz m and o satisfying the conditions (E252), (mo2mozmi2mi3)edd = 1

and (ZZXIR). Then for any character x modulo 8 at least one of the characters

202+03+02 (mo2mo3mi2mi3)
( Jr) and ()

s not principal.

. . og+o3+vz(mgompozm 113)
Proof. For any m and o satisfying (E.81IR) we have (222378 M02msmzmsl ) _ (2) Tt
y ying : i
90 +o3+va(moamo3zmiam13)
( . ) x()

follows that, in order for to be non-principal, we must have

x(+) = (2), in which case y is non-principal. L

Now we may repeat the argument of §&1, applying Proposition 2229 and summing
over the remaining variables to obtain:

Proposition 2.8.8. Fiz some b € N*. Then

T(bo)T(bl)T(b2>T(b3)B2\/log lOgB
B376363 (log B) |

V2,4(B, b) <

2.8.4 The Vanishing Main Term V,;(B,b)

We are left only to bound V, 5(B,b). We follow the same procedure as in the previous
subsections to obtain

V25(B,b) = > > 2 XY 6K oKL B)

meN? (z52) ac{0,1}* q€A(m,0) K,Le(Z/87Z)**
(mo2mo3miami3)oaa=1 (Z53) (e=3m)

L0 7(bo)7(b1)7(by)7(b3) B*\/log log B
. b3b303b3 (log B) '

Returning the even characters into the sum over ks, ls, k3, [3 we obtain:

T(bo)T(bl)T(bg)T(bg)B2
Vas(B.b) = Vis(5) + 0
v mEN;(:IZEZ) ae%:l}‘l q&%lr:n 0')2 5 bbib3b3(log B)(log log B)~1/2
(mo2mo3mi2mi3)eaq=1 (ZZ=24)

(2.8.22)
where

2(2kylyksls) kokg—1 [ 200F01+v2(mozmozmizms)
V! (B) = 12 (2kslaksls) kot
275( ) ZZZZ T(leQk'glg) ( ) 2 k’zk’3 5

ka,l2 k3 ls€N4
(z=Tm), (28323), (Zx29), (Z==528)

||2”0m02m03b(2), 2‘”m12m13bf|| : ||2”2k212m02m12b§, 2”3k53l3m03m13b§|| < B, (2823)

o9+ 01+ 09+ 03 1 ng(200+01+02+03 mogmogmlgmlg) =1
ng<2007 bl) = ng<2ala bo) = ng(2027 b3) = ng(2037 b2) = 17 (2824)

2790 magmogmiamag # 1,
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(2.8.25)

ged(kala, 273 moamogmaamasbs) = ged(ksls, 272moamogmiamasbs) = 1,
ng(kzl2/€3l37 2) =1,

and

koly = —qo mod 8, ksls = ¢y mod 8, ksls = —qo mod 8, koly = g3 mod 8. (2.8.26)

We note here that

kokg—1 [ Q00FO1+v2(Mmo2mozmizms) _900+01+v2(mozmosmizmis)
1) = .

Considering (ZZ828), we again note that any q € A(m, o) we consider must satisfy
go = —q3 mod 8 and ¢; = —¢o mod 8§, (2.8.27)

and apply (2Z¥0) to break to congruence conditions in (22828) using (228721). Putting
this into V} 5(B) gives:

‘/2’,5(3):116 S XX (@)Vistux B < 3> |[Vist6 X, B)

x,X' char. mod 8 X,X" char. mod 8

9

where Vy5(x, X, B) is defined as

2 / __900+014v2(moz2mozmiami3)
% (2/€2l2k3l3)){(l€212)x <k3lg) ( 200To1TV2 )
ZZZZ T(lenglg) k2k‘3 .

ko l2,ks ls€N4
(=), (2=523), (2=523)

Lemma 2.8.9. Fiz m and o satisfying the conditions (2252), (mo2mozmi2mi3)eds = 1

and (2824). Then for any character x modulo 8 at least one of the characters

_200+U1 +v2(mo2mo3mi2mi13)
( ) anaxty

s not principal.

Proof. For any m and o satisfying (Z8724)) we have (

—902+03+v3(moamozmizami3) ) o (;2)

It follows that, in order for (_20#03”2@02%37”127”13)) X(+) to be non-principal, we must

have x(-) = (;2), in which case y is non-principal. O

Now we may repeat the argument of §&, applying Proposition 2229 and summing
over the remaining variables to obtain the following.

Proposition 2.8.10. Fiz some b € N*. Then

7(bo)7(b1)7(by)7(b3) B*\/log log B '

Vos(B,b) <
2ol BB < b30T3b3 (log B)
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2.8.5 Bounding of N, 4(B) and N, 5(B)

We may now prove the following:
Proposition 2.8.11. Let B > 3. Then

B2%\/loglog B

Nea(B), Nos(B) <4 = E5

Proof. By Propositions P2Z76,277771 783 786,788 and 2810 we have

7(bo)7(b1)7(b2)7(b3) B*\/log log B < B2%\/loglog B
2020202 (log B) 47 (log B)

NT’Z‘(B) < Z

beN4

forr=1,2and v =4,5. O]

2.9 Main Terms

In this section we will finally isolate the true main terms from M, ;(B,b) where r €
{1,2} and i € {2,3}. This is achieved by trimming the remaining contributions from
summing over oscillating characters in these regions. Recall that the inner sums of
M, 2(B,b) and M, 3(B,b) are of the form (ZZ5-Z7) within the regions (ZZ5-22) and
(2523) and such that d,d € {1, moqq} and are not equal. We split these inner sums
into two. In H,2(1,muqq,1,L, B) we separate the parts where kokikoks = 1 and in
H, 3(moqq4, 1, K, 1, B) we separate the parts where lylylsl3 = 1:

Hr,Z(lu M4, ]—7 L7 B) - Mr,2(17 Modd, 1; L7 B) + EMT,2(17 Modd, 1; L7 B)7

and
H'r‘,3(m0dd) 17 Ka 17 B) - Mr,3(modd7 17 K7 17 B) + EMT,3<m0dd7 ]-7 Ka 17 B)7
where
210l112l3)
Mrvg(l,modd,]_,L,B ZZZZ / l N (291)
ll0,01 1], [1E2,L5][>21 ( 0t12 3)
1I=L mod 8
(23:5), (IZE:E)
2k kikok
Myg(mon, LK, 1,B) = Y Yy K (2hokikaks) (2.9.2)
ko k1 ||, k2 k3| >21 (kgk1k2k3)
k=K mod 8
(), (TIR)
2k lok1likolyksl-
EMT,Q(]-amOd(h 17L7B ZZZZ Iu e 3)62(1am0dd7k71)7
Gan = 7 (kolokilikaloksls)
(k,1)=(1,L) mod 8
Kok kaks£1

(), (aE)
(2.9.3)
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2
1% (2k0[0]€1l1k2l2k3[3)
EM,5(muqq, 1, K, 1,B) = > > Y O2(meaq, 1,k, 1),

(s ) ( 7 (kolok1l kaloksls) 2o )

k,1)eHs
(k,1)=(K,1) mod 8
lolllzlg;ﬁl
(z5T3), (251F)
(2.9.4)
ng(l(), 2"1m02m03m12m1361) = ng(lb 2U°m02m03m12m13b0) =1, (2 9 5)
ged(la, 273 moamozmiamisbs) = ged(ls, 272mgamosmiamasbe) = 1,
||2”°lom02m03b8, 2”1l1m12m13bﬂ| . ||2”212m02m12b§, 2”313m03m131)§\| < B, (296)
ged(ko, 27 mogmogmiamasby) = ged(ky, 27°moamogmazmasby) = 1, (2.9.7)
ged(ka, 273 moagmozmiamasbs) = ged(ks, 272mpamozmiamasbs) = 1,
Hzgokgmogmogbg, 291 klmlgmlgb%H . H2‘72k2m02m12b§, 2”3k3m03m13l)§|] < B. (298)

Remark 2.9.1. Note that the we have dropped non-square condition (2518). This is
because the lower bounds ||ly, l1]|, ||l2, Is|| > 21 and || ko, k1]|, || k2, k3|| > 21 from Hs and

‘Hs automatically ensure that it is satisfied.

2.9.1 The Error Terms EM,, and EM, 3

To deal with EM, 5(1, myqq4, 1, L, B) we note that

(m02m03m12m13)odd loly lols
O5(1, moaq, k,1) = :
2(1, Moaa, k1) ( Fokrkaks Faks ) \Fokr

From this we can see that the conditions kokikoks # 1 and p?(kokikoks) = 1 dic-
tate that, by summing first over the [;, we are summing over non-trivial characters.
Similarly, for the error term EM, 5(moqaq, 1, K, 1, B) we note that

lolylsl3 loly lol3
@ (0] J 17 k? l - J
2(rn ad ) ((m02m03m12m13>odd> <k2k3> (k()]ﬁ)

and so the same observation holds here with the k; and [; switched. Thus we may
repeat the arguments used in §2772 to obtain the following:

Lemma 2.9.2. Fiz some b € N*, some m € N* satisfying (2252), some o € {0,1}*
satisfying (2254) and some q € A(m, o). Then for L € (Z/8Z)** satisfying (25-29)
we have

T(bo)T(bl)T(bg)T(bg)BQ
M[)MlMQMg(lOg B)(lOglOg B)GGA'

EMT,2(1? m,qq, 17 La B) <
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Similarly, for K € (Z/8Z)** satisfying (Z5529) we have

T(bQ)T(bl)T(bg)T(bg)BQ
A Mo M, My Ms(log B)(log log B)564°

EMT,3(modd7 17 K7 17 B) <

Then by summing over H, (1, moqq4,1,L, B) and H, 3(myaq, 1, K, 1, B), using the
same methods used to prove Propositions 22723 and 2274 to sum over these error parts
above, we obtain:

Mr,2(17 Myqd, 17 Lv B)

((m02m03m12m13)odd)

Mea(Bb)= > > > )

meN? 0¢€{0,1}* qcA(m,o) Le(Z/87)** T
mijSZo  (pZE) (=)
(=22)

7(bo)7(b1)7(b2)7(b3) B
bb3b3b3 (log B)(log log B)%64

+oA(
and

Mea(Bb)= > > > )

meN? 0¢{0,1}* qeA(m,0) Ke(Z/82)**
™Mij 20 (2Z50) (z529)
=2

T(bo)T(bl)T(b2>T(b3)B2
bEb3b3b3(log B)(loglog B)664 |-

@r,l(modda K, U)MT,S(modda 17 K> 17 B)

T ((m02m03m12m13)odd)

+ou (

2.9.2 The Inner Main Terms M, and M, 3

In this subsection, we deal with the inner sums. Once this is done, we will only be left
to compute the constants. Define

4f0 & a7 -1
S(b,m,v) = i [ I st 1 I &'

2 =0 plv 1=0 | p|moamiamozmizb;
pimo2mi2mozmizb; p odd
p odd
and
S(b, m,v)
¢(b,m, o) p(v S
vGZN %E}%g;% a0a1a2a37'< 0)7'(&1)7'(&2)7'(&3)
plapaiazaz=plv
v2|apaiazas
(=)
where

ged(ag, 27 mogmozmaiamasghy) = ged(ar, 27°mgamosmiamisby) = 1,
ged(ag, 27 moymozmizmasbs) = ged(as, 272moamoezmiamasby) = 1, (2.9.9)

gcd(a0a1a2a3, 2) =1.
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Remark 2.9.3. We note here that &(b, m, v) is obtained by re-arranging &, (r) from
Proposition 2228 with r = (rg, 1,72, 73) being equal to

( 2m03m12m13) davbr,
(M02M03M121M13)0da Vb0,
(02103112113 ) 0da V03,
( )

Mo2M03M12M13 )0dd Vb2
respectively, using the conditions (2252), (22277) and (2299).

Lemma 2.9.4. Let B> 3. Firb € N, fir m € N* and o € {0,1}* satisfying (2252)
and (2Z210). Then
¢(b,m,o)B%loglog B

MQMlMQMg IOgB

X O T(m02m03m12m13)4T(b0)7(bl)7'(b2)T(bg)BQ\/log IOg B
A MyM, MyM; log B

Mr,i(]-a M4, 17 La B) -

fori=23.

Proof. By switching [; with k; the proofs for i = 2 and ¢« = 3 may be seen to be identical.
We therefore only deal with M, (1, mgqq, 1, L, B). Recall (ZZ01) and Remark 2291, By
applying (2222) with wy = wy = 2o as we have done previously M, »(1, myqq, 1, L, B)

becomes equal to

M;2 1 modd,l L 1/ B) BQ(logB)
Z'u ZZZZ ) (l’) (l’) MMMM(lO B)A/3
v<zo 1,0 1,15 <=0 e
p|16l’1l'2l’3¢p|v
2|l6l’1l'2l3 ()
(2.9.10)
where
1

M;',2(1’m0dd717L71/’B) = ZZZZ l” l// l// l// )
T = T00)T ()T (2)7 ()
I/=L;/l; mod 8
(IZZ:EI]), (=r12)

ng(lg, 2"1m02m03m12m13vb1) = ng(llll, 2"0m02m03m12m13vbo) = 1, (2 9 11)

ng(lga 2”3m02m03m12m13vb3) = ng(lg, 202m02m03m12m13v62) =1,
12708 lg moamosby, 27 1 1 magmaght|| - [|272 1515 moamasby, 27 1yl mozmasbs || < B
(2.9.12)
Now we apply Proposition 2228 with the previous remark to these sums yielding that
y

M (1, mp4q, 1, L, 1, B) is:

_ 6(b,m,v)B?loglog B

L1 Mo My Mo Ms log B

L0 7 (moamozmiamaz )27 (v)47 (b ) 7(by) 7 (bo)T(b3) B%\/log log B
A 101,151 Mo My My Ms log B '

68



Section 2.9 Chapter 2: Solubility of diagonal quadrics

Now substitute this into (ZZ010). Then we have found M, 5(1, meq4q4, 1, L, B) to be

B?loglog B S(b,m,v)
“MMAGMlog B 2 M) 2 222 2 T

pllpli 151 =plv

A
i O T(m02m03m12m13)47(bo)7(bl)T(bg)T(bg)R’BQ\/log 10gB
A MoM, MyMs;log B

To deal with the error term it is enough to show that

7(v)*
=D 220 e < L
v<zo 111,14 <20 Lol lls (o) T (1) 7 (1) 7(15)
p|l(’)l’1l’2lé¢p|v
02|l 1517, (E0T9)

which is done using an identical method used to deal with (2279). Finally, we need to
show that

S(b, m,v) 1
w(v = ¢(b,m,o) + O
222 Y Gy By ) e
\l(’)l’lléléﬁp\
V2|10 15151 (20)
This may be seen by noting that the following sums are O(z, Y 3):
1 1

R T B BT

Pl T Sl Pl 514 =l

02101141, (2mera) v il 1yl

1;>2zg for some 1

which may be shown by adhering to the bounding of the error terms (22211) and (22=22)
of Lemma 222, The error term of the M, ; resulting from the error term z, 173 above

will be absorbed into the error terms already present. O]

2.9.3 The Main Terms M, (b, B) and M, 3(b, B)

Define
> 2(1’1’1 0') = Z Z 1,
q€A(m,o) Le(Z/87)*4
(e529)
ZT,3(m7 J) = Z Z 67’ l(modda K U)
q€A(m,0) Ke(Z/8Z)**
(z=529)
and
B Z Z C(b,m,o0)%,;(m, o)

meN* oef0,1}4 200 tortortosmB mismiymis T ((mo2mosmizmis)odd)

(EB2) (=)
for i = 2, 3.
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Proposition 2.9.5. Let B > 3 and fix some b € N*. Then,

¢,;(b)B*loglog B L0 <T(b0)7(bl)7(b2)7(b3)B%/loglogB)
A )

T baB =
Mei(b, B) = =1 o B R0 log B

fori=23.

Proof. The error terms above are obtained by summing the error terms of Lemma
2294 over the finitely many L (or K) in (Z/8Z)**, finitely many q € A(m, o), finitely

many o € {0,1}* and finally summing the T(Z%)zl over m € N* which converges. For

the main term we note that €(b,m, o) is indgpendent of q and L (or K) and that
¢(b,m,o),%,;(m,0) < 1 independently of b,m and o so that we may extend the
sum over the m;; to all of N? at the cost of a sufficient error term. It is then clear that
we may re-arrange the sums in the remaining variables to obtain €, 5(b) (or €, 5(b)).

This concludes the result. O

Finally, by setting
¢,..(b)
b3brb303

Q:r,i = Z

beN*
(=)

for i = 2,3 and summing the results of Propositions 2273, 2274 and 2293 over b; < 2
and then extending to N* at the cost of another error term, we obtain the following:

Proposition 2.9.6. For B > 3 we have

.. B%loglog B B2\/log log B
N”-(B):Q:’ og log oy og log
’ log B log B

when @ = 2, 3.

2.10 The Constants

In this section we would like to express €,.; in a more concise manner. First we will
compute the 3, ;(m, o):

2.10.1 Computation of %,

Recall that

Y, o(m,o) = Z Z 1.

We first deal with the inner sum. We break the conditions (22329) using the orthogon-
ality relation (2288). This time however, there is no easy relation between the ¢; and
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so we use this relation to replace all four of the congruence relations above. It follows
that

Y2 = > Y X(=0,g0(mozmiz) i) X (1 (Mosmaa) oda)

a€A(m,o) x,x",x",x"
char. mod 8

X ?(5&2(mozmls);dld)W(—Q3(m02m13)gdld)zr,2(m, g, X)

where, 3, 5(m, o, Xx) is given by

=— > X(LoLa)X'(L1Ls)x"(L1L2)X" (LoLs),
Le(7,/87)%4

=— > xxX"(Lo)xX'X"(L1)xx"(L2)x'x" (Ls),

Le(Z/8Z)*4
_ 1 " L 1 ! // 1 12 L 1 ! ///
=3 > xx"(Lo) 1 > XX (L) > xx" (L) 1 > X'x
Lo€(Z/8Z)* L1€(Z/8T) Lo€(Z/8Z)* L3€(Z/8Z)*

)
Nyl Nyl )

= ﬂ(XXW = Xo)]l(X X = XO)H(XX = XO)H(X X = Xo),

e~ |

and x( denotes the principal character modulo 8. Since the group of principal characters
modulo 8 is isomorphic to Z/27Z x Z/2Z, every element is equal to its own inverse. This
leads us to deduce that

TOex" = x0)1(X'X" = x0)1(xX" = xo)L(X'X" =x0) =1 (x = X' =x" =x") (2.10.1)

Thus, ¥, 2(m, o, x) = L(x = X’ = x” = x"). Substituting this into the expression for
Y, 2(m, o) we obtain

Yr2(m, o) = Z Z X(90q14293(— 8- (Mo2mozmizmiz)odd) )
q€A(m,o) x char. mod 8

= Z Z X(9091G243)

q€A(m,o) x char. mod 8

=4 > 1 =4f{q € A(m, o) : goq1g2g3 = 1 mod 8}.
q€A(m,0o)
40919293=1 mod 8

Now, recalling the definition of A(m, ), it follows that ¥, »(m, o) is exactly equal to

4ﬁ{q & .Al 1 Q019293 = 1 mod 8} if 2 T Mo2Mo3M12M13 & o; = 0Vie {0, 1, 2, 3},
48{q € A3 : 90q192g3 = 1 mod 8} otherwise.

This is because A(m, o) is equal to 4; in the first case and is easily seen to be bijective
to Ay by applying a single permutation to the components of each of its elements other-
wise, an operation which does not effect the condition ¢pqi1g2q3 = 1 mod 8. This extra
condition significantly simplifies the counting process. This is done in the following
lemma:

Lemma 2.10.1. We have the following

192 Zf2 'f MoaMMp31 1277113 & 0; = 0V e {0, 1, 2, 3},
128 otherwise.

ET,Q(I'IL O') =
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Proof. First assume that 2 f moamosmiamis & o, = 0V i € {0,1,2,3}. Then we want
compute £{q € A; : vq1g2g3 = 1 mod 8}. Substituting in the definition of A; this is
then equal to #{q € (Z/8Z)** : q satisfies (Z102)} where

(A.1.1) : go + g2 = 0 mod 8 and gyq1¢293 = 1 mod 8 or,

(A.1.2) : go + g3 = 0 mod 8 and ¢yq1g2g3 = 1 mod 8 or,

(A.1.3) : ¢1 + g2 = 0 mod 8 and ¢pq1g293 = 1 mod 8 or,

(A.1.4) : g1 + g3 = 0 mod 8 and gyq1¢g293 = 1 mod 8 or,

(A.1.5) : go + g2 = 4 mod 8 and gyq1g293 = 1 mod 8 or,

(A.1.6) : o + g3 = 4 mod 8 and ¢pq1g293 = 1 mod 8 or,

(A.1.7) : g1 + g2 = 4 mod 8 and ¢pq1¢g2g3 = 1 mod 8 or,

(A.1.8) : ¢1 + g3 = 4 mod 8 and ¢yq1¢293 = 1 mod 8 or,

(A.1.9) : g0 + ¢ = 0 mod 8 and ¢z + g3 = 0 mod 8 and ¢pq1¢2g3 = 1 mod 8 or,
(A.1.10) : g0 + g1 = 2 mod 8 and g2 + g3 = 0 mod 8 and ¢yq1¢2g3 = 1 mod 8 or,
(A.1.11) : go + ¢1 = 2 mod 8 and ¢z + ¢3 = 6 mod 8 and ¢pq1¢2g3 = 1 mod 8 or,
(A.1.12) : g0 + ¢1 = 0 mod 8 and g2 + g3 = 6 mod 8 and ¢pq1¢2g3 = 1 mod 8 or,
(A.1.13) : g + ¢1 = 6 mod 8 and g2 + g3 = 0 mod 8 and ¢yq1¢2g3 = 1 mod 8 or,
(A.1.14) : g0 + ¢1 = 6 mod 8 and ¢2 + ¢3 = 2 mod 8 and ¢pq1¢2¢g3 = 1 mod 8 or,
(A.1.15) : go + ¢1 = 0 mod 8 and ¢2 + ¢3 = 2 mod 8 and ¢pq1¢2g3 = 1 mod 8.

(2.10.2)

Some elementary congruence computations then give

A.1.1),(A.1.4) : solutions are exactly those vectors (a, b, —a, —b) for any a,b € (Z/87)%;

), (A14) :
A.1.2),(A.1.3) : solutions are exactly those vectors (a, b, —b, —a) for any a,b € (Z/8Z)*;
A.15), (A.1.8) :

)

(

(

( solutions are exactly those vectors(3a, b, a, 3b) for any a,b € (Z/87)*;
(A.1.6), (A.1.7) : solutions are exactly those vectors(3a, b, 3b, a) for any a,b € (Z/8Z)*;
(

(

(

(

(
(
(
(
A.1.9) : solutions are exactly those vectors (a, —a, b, —b) for any a,b € (Z/87)*;
A.1.11), (A.1.14) : solutions are exactly those vectors(a,2 + 7a,7a,6 + a),

a,6 + 7a, 7a,2 + a) respectively for any a,b € (Z/87)%;

A.1.10), (A.1.12), (A.1.13), (A.1.15)have no solutions in (Z/8Z)**.

(2.10.3)
From here it is easy to check directly that there are exactly 48 distinct points in
(Z/8Z)** of at least one of the forms given above (see Tables BEI-A® in the ap-
pendix). Multiplying this by 4 gives the first case of the result. For the second
case, if 2|mgamogmiamis or o; = 1 for some i € {0,1,2,3}, then we want to com-

pute #{q € A3 : ¢0q1¢293 = 1 mod 8}, which, by substituting in the definition of A, is
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the same as computing #{q € (Z/8Z)** : q satisfies (Z104) } where

(A2.1): g0+ ¢ =0mod8, (g2 + 1)(g3 + 1) = 0 mod 8 and ¢pq1¢2g3 = 1 mod 8 or,
(A.2.2) 1 g0+ ¢ =0mod8, (g2 + 3)(gs + 3) = 0 mod 8 and ¢pq1¢2g3 = 1 mod 8 or,
(A.2.3): go+ ¢ = 0mod8, (g2 +5)(g3 +5) = 0 mod 8 and ¢pq1¢293 = 1 mod 8 or,
(A24): g+ ¢ =0mod8, (g2 + 7)(gs +7) = 0 mod 8 and ¢pq1¢293 = 1 mod 8 or,
(A.2.5): go+ ¢ =2mod8, (g2 +1)(¢gz + 1) =0 mod 8 and ¢pg1¢2g3 = 1 mod 8 or,
(A.2.6) : go+ ¢ =2mod8, (g2 + 5)(gs +5) = 0 mod 8 and ¢pq1¢2g3 = 1 mod 8 or,
(A.2.7): go+ ¢ = 6mod8, (¢2+ 3)(g3 +3) = 0 mod 8 and ¢pq1¢293 = 1 mod 8 or,
(A.2.8): go+ ¢ =6mod8, (g2 + 7)(gs +7) = 0 mod 8 and ¢pq1¢2g3 = 1 mod 8 or,
(A.2.9) — (A.2.16) : same as (A.2.1) — (A.2.8) with ¢y and ¢; switched
with ¢o and g3 respectively.

(2.10.4)

Congruence calculations then show:

(A.2.1),(A.2.2),(A.2.3),(A.2.4) : solutions are exactly those vectors (a, 7a,1,7),
(a,7a,7,1),(a,7a,3,5), (a,7a,5,3) for any a € (Z/8Z)*;

(A.2.5), (A.2.6) : solutions are exactly those vectors (a,2+7a,6a+1,7),
(a,2+7a,7,6a+1), (a,2+7a,6a+5,3), (a,2+7a,3,6a+5) for any a € (Z/8Z)*;
(A.2.7),(A.2.8) : solutions are exactly those vectors (a,6+7a,6a+3,5),

(

(

a,6+7a,5,6a+3), (a,6+7a,6a+7,1), (a,6+7a,1,6a+7) for any a € (Z/87)*;
A.2.9) — (A.2.16) : solutions are solutions to (A.2.1) — (A.2.8) with qo, g1 swapped

with gs, g3 respectively.

(2.10.5)

As before it is now easy to check directly that there are exactly 32 distinct points in
(Z/8Z)** of at least one of the forms given above (see Table B in the appendix).
Multiplying this by 4 gives the second part of the result. ]

2.10.2 Computation of ¥, 3(m, o)

Recall that
Erg(m O') = Z Z @r,l(modd7K7U)7

qcA(m,o) Ke(Z/87)**
canenz)

where ©,.1(m,qq, K, o) is defined as
1)f ( K) 200+01+02+03 202-1-03 200+U1 2v2(m02m03m12m13)
_ r(Modd,
( (m02m03m12m13)odd KoK, KyK5 KoK 1Ky K3
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and

{K0K2(m03m12)odd = —0,go mod 8, K1 K3(mo3miz)eaa = g1 mod 8, (2.10.6)

K1 K3(mo2mis)oad = 0-g2 mod 8, KoK3(moz2miz)edd = —¢3 mod 8.
We may then use (ZI08) to write f,.(moqq, K) as

(KoK + (6, — 2) K2 K3)(qoge + 1) + (1 = 6,) (Ko K3 — 1)
4

mod 2

to remove the dependence on myqq. Now notice that
4 | (K()Kl + ((57n — 2)K2K3)((]0Q2 + 1) and 4 | (1 — (ST)(KgKg — 1)

Thus we write
(1=5p)
2

—1

) mK) (L 1)fr@K) (
(1) (1) K :

where
(KoK + (0, — 2) K2 K3)(qog2 + 1)

fr(qv K) = 4 .

Once more appealing to (Z100) we may see that

fr(q, K) = (—QOQQ + (1 . 25r)q0q3)<m22m03m12m13)0dd(q0q2 + 1) od 2
(26, — 1)q095 + 4042) (9042 + 1)

4

mod 2

since (Mmeamosmiamis)odq is odd. Now by expanding out the numerator and recalling
that (ZI06) asserts that gog1g2gs = 1 mod 8,

26, — 1)qoqs + 90q2)(qoq2 + 1)
4

_ Golqo + @2 + (QCZ ~Dlate)

(90 + g2 + (20, — 1)(q1 + g3))

4

mod 2

fr(a,K) = (

mod 2.

Setting the final ratio above to be f,.(q), we therefore write

_ _ 200+01 D02+03 202(m02mo377112m13)
nitm,a.a) = (- (50 (220 ( ,

0rG0q3 7q0q2 70,q01

and thus obtain

(1—=6r)

~ —1 2
Er,S(ma U) =4 Z @r,l(m7 q, U) Z <K K
q€A(m,0) Ke(Z/87)%4 2533
(eTmm)

Using the orthogonality relation (2288) to break the condition (ZI08) the inner most
sum over K becomes

> X(—6rqo(mosmia)oqa) X (g1 (mosmia) oqq)

XX HX X
char. mod8

X X"(0,g2(moamaz) o qa) X7 (— g3 (Moamiz) iq) Srs(m, o, X)
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where

(1-3r)
1

-1 \N =2
Sralm,o ) =5 X XERY (KUK (KK (Koko) (1= )
Ke(z/82)* 2443

(1-5) (1-5y)
1) T ()T )

using the same method as for 3, 5(m, o, x) previously, noting that the reasoning behind
(210m) also applies here. Then

(1—-6r)
2

(1-=9r)
-1 2 _ -1
> *4<K2K3> = > X(qoq1q2q3)<

-1
57‘q1q2(m02m03m12m13>0dd

Ke(Z/8Z x char.
(IZ:E{IE)) mod 8
(1=6r)
-1 —
= 1(€IOC.71€]2(.I2 = 1 mod 8) ( )
5rQ1Q2(m02m03m12m13)odd
Collecting this information gives
(1—6r)
5, (m, o) = 4 ( = ) Y eLmoq
r3\M, 0) = r1\IN, 0,
(Mo2mo3mM121M13)0dd =yl 5
q0919293=1 mod 8
where
N N ( ) 1-sr)
~ 20'0 g1 20'2 g3 2U2 mop21Mmop3mMi12MmM13 _1 2
il )==1) 6+q0q3 ) \ Tq0qo 75-q0h 6142
(1-sp)
2

_ (_1)fr(q) (200+01> <202+U3> (2vz(m02m03m12m13)> ( -1 >
9093 q0q2 qoq1 0rq1G2

since (%) = (53) = 1. We now split into cases r =1 and r = 2.

T

The Case r =1

In this case,

,1 1(m, q, 0') = (_1)f1 (@) <200+Ul ) (202+03> (2”2(m02m03m12m13)>
| Q093 d092 Qo1

f1(q) _ (@1 +Q2ZCI3+QO>‘

We note that, since q € A(m, o) and ¢yq1g2gs = 1 mod 8, this exponent is always
an integer. This can be seen by noting that such q € (Z/8Z)** are component-wise
permutations of points which are at least one of the forms given in (Z1023) or (Z113),
and it is easy to check that such points have a component sum which is 0 or 4 modulo
8. Now we split into cases determined by the values of vy(mgemozmiam3) and o. Here
the precise definition of A(m, o) is required since the relative positions of the ¢; will
effect the value of the Jacobi symbol. We have the following cases:

and
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((Z) if 2 '|' Mo2MMp3M127113, and g; = 0V e {0, 1, 2, 3},

Prg(m, o) =4 ) D ) B w

qeA;
q091G293=1 mod 8

(b) if 2 | Mop3Mi2, 2Tm02m13 and 0; = 0Vie {0, 1, 2,3},

gq0+4g1+92+4g3 2
Siplme)=4 Y (cp)ms ()
qcAo,1,2,3 qoq1
G0q19293=1 mod 8

(C) if 2 | Mo2MM 13, 2Tm02m13 and 0; = 0Vie {0, 1, 2,3},

gq0t+4q1+tg2+a3 2
Sume) =1 ¥ (pre (L)
qcA2 30,1 qoq1
q0919293=1 mod 8

(d) if 2 1’ Mo3M12Mp2MM13, O = 1 and g; = 0V e {O, 1, 2, 3} \ {O},

go+taq1+tazs+tas 2
Yi3(m,o) =4 > (=) () :
qc€Ao,3,1,2 9093
G0919293=1 mod 8

(6) if 2 J[ Mop3M12Mo2M13,01 = 1 and o; = 0V € {07 1,2,3} \ {1},

gq0+4g1+92+4g3 2
Splmo) =4 Y (o1t ()
q€A1,2,0,3 4093
G0q19293=1 mod 8

(f) lf 2 Jf Mo3M12Mp2MM13, 09 = 1 and g; = 0 \V/Z € {O, 1,2,3} \ {2},

gqot+4g1+tg2+4q3 2
Sutme) =1 ¥ (pre (2,
qcAo,2,1,3 q092
q0919293=1 mod 8

(g) if 2 1’ Mop3MM12Mp2M13,03 = 1 and g; = 0V € {O, 1,2,3} \ {3},

go+taq1tas+tas 2
Yi3(m,o) =4 > (=17 <> '
q€A1,.3,0,2 q092
G0919293=1 mod 8

Case (a): Looking at the conditions given in (ZZI03) we can see that gy + ¢ +
g2 + g3 = 0 mod 8. Thus, we are once more just counting elements in A; satisfying

9091G293 = 1 mod 8, giving

q0+91+a2+4q3
Sis(m,o) =4 > (-~ 7 =4 > 1=192.
qeA; qeA;
G0q19293=1 mod 8 G09192q3=1 mod 8

Case (b): Here we note that Agj23 = As. Thus q € Ap123 must be of at least
one of the forms considered in (2103). For q of the forms solving (A.2.1) — (A.2.4) or
(A.2.9) — (A.2.12), o + ¢1 + g2 + g3 = 0 mod 8 and ¢pg; = 7 mod 8 and thus

(_1>qo+q1zq2+q3 (2) _ 1
qoq1
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For q of the forms solving (A.2.5), (A.2.6), (A.2.13),(A.2.14), g0 + ¢1 + ¢2 + q3 = 6a +
2 mod 8 and ¢pq; = 2a + 7 mod 8 for some a € (Z/8Z)* and so it follows that

(_1)q0+r111-q2+q3 l _ (_1)% ( 2 > :1
qoq1 2a+7

Similarly, for q of the forms solving (A.2.7), (A.2.8), (A.2.15), (A.2.16), go+q1 +q2+q3 =
6a + 6 mod 8 and goq; = 6a + 7 mod 8 for some a € (Z/8Z)* and so again it follows

that
(_1)q0+q11q2+q3 2 _ (_1)% ( 2 ) _ 1
7q0q1 6a + 7

Thus in this case,

2173(111,0') =4 Z 1=128.

qc€Ao,1,2,3

Case (c): Since we also have Ay 301 = Aj, the only difference to the previous case
is that the product ggg; now considers the last two components instead of the first
two. However, since the set Ajs is closed under the operation of swapping the Oth and
2nd coordinates and 1st and 3rd coordinates, this does not change anything from the
previous argument. Thus we also have

Yi3(m, o) =128

in this case.

Case (d): Here we begin by noting that q € A 312 is equivalent to (qo, g3, q1,¢2) €
As. Thus by taking the product gyqs we are once again just taking the product of the
first two components of the solutions in (210H). Following the same procedure as in
case (b) it may therefore be seen that

(_1)qo+q1142+q3 <2> _ 1,

qoq3

for any q € A0’3,172. Thus
2173(1’1’1, CT) = 128.

Case (e): This case is symmetric to case (d) and so we will also obtain

2173(1’n, 0') = 128.

Case (f): Noting that q € Ag21 3 is equivalent to (qo, ¢2, 1, q3) € As, it is easy to
see that the same arguments as before give

2173(1’n, 0') = 128.

Case (g): Being symmetric to case (f) this case will also give

2173(11'1, O') = 128.

Thus we have shown the following;

7
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Lemma 2.10.2. We have the following

192 ’Lf2 Jf MooMMo311 12713 & 0; = 0V e {O, 1, 2, 3},
21,3(m, O') =
128 otherwise.

The Case r = 2

In this case

L1(m,q,0) = (—1)72@ (2"“”1) (2"2“’3> <2v2<mozmosmmm13)> ( —1 )
| Qo3 q092 qoq1 7(]1q2

7 (g0 + 5¢1 + g2 + 5¢3)

fa(meaq,q) = 1 .

We split up into similar cases as before, again noting that the precise definition of
A(m, o) is once more required since the relative positions of the ¢; will effect the value
of the Jacobi symbol and the reciprocity factor. We have the following cases:

and

(a) if 2 )( Mo2MMp3112713, and g; = 0Vie {0, 1, 2, 3},

-1 q q1+492+5¢ -1
22,3(m, o) :4( ) Z (_1)M < > |

(™o2m03M 12113 )0dd qcA: 7¢1G2
9091¢293=1 mod 8

(b) if 2 ’ Moz 12, 2+m02m13 and g; = 0Vie {0, 1, 2,3},

-1 2 —1
Sastm ) 4 ) 3 e (2 (1)
(Mo2moami2mi3)oda q€Ao1 .23 qoq1 7¢142

q0919293=1 mod 8

(C) if 2 ’ Mo2M 3, 2{m02m13 and g; = 0V e {0, 1, 2,3},

Yo 3(m, o) :4( —1 ) 5 FUM‘W (2) ( -1 >7
(M021mo3m12Mi3)odd /) qe 5 g0, wi ) \Tan

q0914293=1 mod 8

(d) if 2 *’ Mop3M12Mo2MM13, O = 1 and g; = 0V e {O, 1, 2, 3} \ {O},

-1 ( sa3) [ 2 -1
Sy4(m, o) = 4 ( > > (—ye () (7 ) :
(Mo2mo3miamis)odd a€Aos.1.2 4oq3 4192

q0919293=1 mod 8

(6) if 2 )( Mop3M12Mo2M13,01 — 1 and g; = 0Vie {O, 1,2,3} \ {1},

-1 2 -1
Yo3(m, o) =4 ( > S (—1) e () (7 ) ,
(Mo2mo3miamis)oda q€A 2,03 4oq3 4192

q09192g3=1 mod 8
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(f) lf 2{m03m12m02m13,02 =1 and g; = O VZ € {0, 1, 2,3} \ {2},

-1 (40+5 sa3) [ 2 -1
2273(m’ a') =4 ( ) Z (_1) 90+ q11q2+ a3 ( ) (7 ) 7
(Mo2mo3miamis)odd a€Ao2.1.3 doq2 192

q0919293=1 mod 8

(g) if 2+m03m12m02m13,03 =1 and g; = 0Viee {O, 1, 2,3} \ {3},

-1 2 -1
Yo3(m,o) =4 ( ) > (_1)(q0+5q1:q2+5q3) () (7 ) .
(Mo2mo3miamis)oda q€A1 302 4oq2 4192

G0919293=1 mod 8

Case (a): Denote by A;(7) the solutions to (A.1.7) for 1 < j < 15. Noting that by
adhering to (ZI033), (g0 + 5¢1 + g2 + 5¢g3) = 0 mod 8 for any choice of q € A;. We may
therefore write this sum as follows:

e )£ ()

(m02m03m12m13)odd =1 qeAL() Tq1q2
q@Ui< ;A1 (0)

The distinct points of each set q € A;(j) \ Ui<;A;1(4) are displayed in Tables ATHA™A
of §Al. Note also that the inner sums above are empty for j = 3,4,7,8 as A;(j) =
Ay (i) for i = 2,1,6,5 respectively. More generally, A;(j) \ Uic;A1(7) = 0 for j €
{3,4,7,8,10,11,12,13,14,15}. For q € A;(1), ¢19o» = 7abmod 8 for any a,b €

(Z/SZ)™, so B By
2 <7q1qg>: 2 <ab>:0'

qeA(1) a,be(Z/8Z)**

For q € A;(2) \ A1(1), 12 = 7 mod 8, and so by looking at Table B2,

—1
3 ( ) - Y 1=12
aedr(2) \ (0@ a,be(Z,/8Z)*

ag A1 (i) a#b

For q € A;(5) \ UicsA1 (), q1q2 = ab mod 8 for a,b € (Z/8Z)**, ab = 1,3 mod 8 so,

acA;(5) 74192 a,be(Z/8Z)** Tab
q¢U;<5.A1(7) ab=1,3 mod 8

For q € A;(6) \ Ui<6A1(7), ¢1g2 = 3 mod 8, and looking at Table A4 we have

-1
> ( ) = ) l=4
qeA;(6) e a,be(Z/8Z)*4
A¢Ui<6.A1(2) a=b mod 8

Finally, for g € A;(9) \ Ui<0A;1(7), 12 = —ab mod 8 for a,b € (Z/8Z)** such that
ab = 3,5 mod 8§ giving

acd(9) \ 71 a,be(Z/87)* Tab
q#U;<9 A1 (7) ab=3,5 mod 8
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Therefore, in case (a),

¥y 3(m, o) = 64 ( ! ) :

(m02m03m12m13)odd

Case (b): Following the same method of case (a) we write ¥ 3(m, o) as,

-1 8 (90+591 +a2+543) 2 —1
-4(; 2E L2 e ) ()
M02MM0o3M12M13)odd / | 121 qedoy0.5(5) qoq1 4192

q¥U;i<jAo,1,2,3(%)

where here Ag123(j) is set of solutions to (A.2.5) for 1 < j < 16. Looking at Table A2
it may be seen that we can ignore the inner sums for j = 2,3,4,6,8 and 57 > 9. When
j = 1 there are 16 elements of Ag 1 23(j), all of the form (a, 7a, b, 7b) for a,b € (Z/8Z)*.
Then (g0 +5¢1 + g2 +5¢3) = (a+3a+ b+ 3b) = 0 mod 8 for all possible solutions. Also
doq1 = 7 mod 8, while 7¢;q2 = 7ab mod 8 for some a,b € (Z/8Z)*. Thus, we may write

(a0+5491 +92+5a3) 2 -1 —1
g () ) - 5 )
Z (=1) <QOQI> <7Q1Q2> mbe%%)* Tab

q€Ap,1,2,3(1)

Since the sums over q € Ag123(j) \ UicjAo123(j) for 7 = 2,3,4 is empty we turn to
j = 5. Here, every solution has (g0 + 5¢1 + ¢2 + 5g3) = 6a + 2 mod 8 and qoq1 = 2a+ 7
for some a € (Z/8Z)*. There are 8 elements of Ag123(5) \ UicsAo123(¢): the first
4 solutions have 7q1qga = a mod 8 for a € (Z/8Z)*; the next 2 solutions correspond
to a = 3,7mod 8 and have 7¢;g2 = 3 mod 4 and the last 2 solutions correspond to
a = 1,5 mod 8 have 7¢;¢g2 = 1 mod 4. We obtain

(ap+591+92+593) 2 —1 2 2
-1 T | = = —
Z 1) <QOQ1> <7Q1Q2> Z (2a+ 7) e Z (2a+ 7)

q€Ao,1,2,3(5) ac(Z/8Z)* (Z./87)*
q@Ui<5A0,1,2,3(%)

=0.

For j = 6, the sum is once again empty. For j = 7, every solution has (g0 + 5¢1 + g2 +
5¢3) = 6a 4+ 6 mod 8 and ¢pq; = 6a + 7 for some a € (Z/8Z)*. There are 8 elements
of Ap123(7) \ UicrAg123(7): the first 4 solutions have 7¢;¢» = 3a mod 8; the next
2 solutions correspond to a = 1,5 mod 8 and have 7¢;qo = 3 mod 4 and the last 2
solutions correspond to a = 3,7 mod 8 where 7¢;g2 = 1 mod 4 and so

(90+591+492+593) 2 -1 2
5 () () 5 e
qoq1 4192 ae( 6a + 7

q€Ap,1,2,3(7) 7/87)*
q@Ui<7Ao,1,2,3(%)

=0.
Finally, since the inner sums are once again empty for j > 8, we have Yo 3(m, o) =0

for case (b).

Case (c): Recall that q € Ay 301 is equivalent to (g2, ¢s, o, 1) € Az. Since A, is
invariant under this permutation, and for each q € Az, o1 = ¢2g3 mod 8, we may

30
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re-order the sum:

-1 ( ) [ 2 -1
Ez,g(m,a'):4< ) S (e () (7 )
(02031213 )0dd Q€A 3,01 doq1 4192

q09192q3=1 mod 8

:4< -1 > Z (_1)(q0+5q11q2+5q3) ( 2 ) ( -1 )
(M02m03M121M13 ) 0dd acAs doq1 79192

q0919293=1 mod 8

This is now just case (b), and thus is equal to 0.
Case (d) and Case (e): Note that we may compare cases (d) and (e) in the same way

as we compared (b) and (c¢). Thus we only need to handle (d). Noting that q € Ap 312
implies (qo, g3, q1, 2) € Az, we may write 3y 3(m, o) in this case as follows:

:4< —1 > Z (_1)(qo+ql+fqz+5%) <2> ( -1 )
(Mo2mo3miamis)odd QEA, qoq1 7¢143

G0q19293=1 mod 8

-1 8 (90+91+592+593) 2 -1
-(; s 2, o ) )
Mo2Mo3M12M13 )odd J=1  qeAs(j) o1 7q193

agUi<; A2(j)

Examining each of the inner sums individually, looking at each the forms of solutions
for each (A.2.5), and their solutions in Table A7 as with case (b), we will obtain:

Z (_1)(q0+q1+jq2+5q3) ( 2 ) ( —1 > 0
acA2(5) qoq1 7q143

agUi<; A2(j)

for all 1 < j < 16. Thus X9 3(m, o) = 0 in these cases as well.

Cases (f) and (g): As with (b) and (c), cases (f) and (g) are symmetric. Dealing
with (f) we write

—1 q0+q q q- 2 _1
Yos(m,o) =4 ( ) Z (_DM () ( >
(Mo2mosm12mis)ada qcAs Qoq1 7q1G2

G0q19293=1 mod 8

-1 8 (aota1+502+5a3) [ 2 -1
-4(; |5 Ze = (G )|
M02MM03M 12113 )odd J=1  qeAa(j) qoq1 4192

afUi<;A2(5)

Similar calculations to before give 3 3(m, o) = 0 here as well.
Overall, when r = 2 we have proven the following:

Lemma 2.10.3. We have the following

-1 . . .
2273(1117 0-) _ 64<(m02m03m12m13)0dd) Zf2 T MpoMMp31M 12113 & g; = 0 \V/ 1€ {0, ]., 2, 3}7

0 otherwise.
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2.10.3 Removing Dependency on o

In this section we deal with the condition (2257). In doing so we will simplify our
expression for € into sums over b and m whose components are all odd. To start
we note that a close examination of &(b, m,v) and (ZI9) tells us that ¢(b,m, o) is
independent of both o and ve(meamozmiamisz). Write

¢,.(b) = 4f°4z >

2 meN* 5e{0,1}*
(E52)  (e=3)

S(b,m)¢€(b,m)%, ;(m, o)

2 5 . 9.9
200010203 m B MEamiymisT((Mo2Moes12Mi3)odd)

for ¢+ = 2,3 where

o &'(v)
IEDNODIDIIY (ao)7 ()7 (az)7(as)

veEN ap,a1,a2,a3€N QApa1G2a37\a
p\aoa1a2a3=>10\v
v?|agaiazaz,(ZZI9)

with
— 3 o 3
S(b,m) =[] 11 £ and &) = ] 11 5
1=0 | plmoami2mozmi3b; i=0 plv
podd ptmozmi2mo3zmi3b;

p odd

noting that the dependency of €(b, m) on b and m is contained in the condition (2299).
Now we observe that only the ¥, ;(m, o) depend on o and ve(moamesmiamys) € {0, 1},
allowing us to write €, ;(b) as

4]"61 Z @(b’ m)@(b, m) Er,i(mv g, &>
¢<8)4f§1 meN4dd m32m33m%2m%37(m02m03m12m13) o 5elo1) 9o0+o1+02+03/4602+603+512+6513
O b b
(z=2) ()
where

00+ 01+ 02+ 03+ 002 + o3 + 012+ 013 < 1,
ged(270 by) = ged (270, by) = ged(272, by) = ged (275, by) = 1, (210.7)
ng(2602, blbg) = ng(2503, blbg) = ng(2612, bobg) = ng(2613, bobg) =1
and
Er,i(m7 g, &> - Er,i(ma 0)7

where here m = (27°2mygy, 2793myg3, 27125, 2°3my3). Now using the previous subsec-
tion, we may compute the sum over o and &, which we will call A, ;(b, m). We have
the following:

Avs(b,m) = 19244{0 < j < 3: 2} b} 220 +ti{0 J<120b 2 < <3240, }%
for i = 2,3 and
Ago(b,m) =192+8{0 < 7 < 3:210b; } +ﬂ{0 F<1:240;14{2<j <3 2“@}?,
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A273(b, 1’1’1) =64 ( -1 ) .

(m02m03m12m13)odd
It follows that we may write
43 S(b,m)¢(b,m)A,;(b,m
ey = My Sbmiem). (b m)

¢(8)*f2 meN? | mymismismisT(mogmozmizmaz)
o
(zz2)

Next, we remove the even parts in the sum over b;. Noting that only the A(b, m)
depend on the even part of the b;, we write b; = (b;)oqa2" for p; = vo(b;). Then

o83 bmeNgddb(z)b%b%bgm&mg?)mﬂm%ﬂ(m02m03m12m13) He(NU{0}) 4otitpatps
(=), (52) (zTs)
where
ged(2k0,21) = ged(2#2,213) = 1. (2.10.8)
Now,
3 1 %
He(NU{0}) Aro+p1+p2+ps 9
(=)
H{0<j<3:p;, =0} 1 1 80
> Amo+p1+hztHis =4+12 Z Afi +8 ZZ qiotin g
pe(NU{0})* AEN fio,fi1 €N
(rs) >0 fio,fi1>0
and
Zﬁ{0<j< 11Mj:0}'ﬂ{2<j<3iuj:0}_4+8Z 1+4Z I 64
Abo+p1-Hp2+us N AR fat Lt pfio+in O
pe(NU{0})* REN Ro,f1EN
(z1o=) a>0 fo,p1>0
It follows that
Z Aii(b,m) 4800 N 5120 n 2048 11968
pe(NU{0}) Aro+p1+p2+ps3 9 9 9 9
(=)
for (r,i) = (1,2),(1,3),(2,2), and
5 Ay s(b,m) 1600 < -1 )
e uqoyys drotrtret 9\ (mo2mozmiamiz)oad )
(1)

Now for m € N and (r,i) € {(1,2),(1,3),(2,2

),(2,3)} define
L8 if (r4) € {
P(ri) = { 2 (

(1,2),(1,3),(2,2)},
B0 it (r,i) = (2,3),
and
' (m) = 1 if (r,4) € {(1,2),(1,3),(2,2)},
et (1)t () = (2,3).
Then

6(b7 m)Qf(b, m)ﬂ’(m) (m02m03m12m13)

4,
er,’i = fgi;;f) Z
2 bmeN:,
(257),(52)

for all (r,1) € {(1,2), (1,3), (2,2), (2,3)}.

212712122 92 . 2 9
boblb2b3m02mo3m12m137(m02m03m12m13)

83



Chapter 2: Solubility of diagonal quadrics Section 2.10

2.10.4 Simplification of (b, m)

Let x € N* and define

&'(v,x)
Cx)=>» uv 7
( ) ,L% ( ) Za(:),(%:agge%: CLQCLlCLQCLgT(CLQ)T(CLl)T(CLQ)T(CLg)’
plagaiazaz=-plv
v2|apaiazas
ged(aq,2x;)=1V1

where
3 1
S'(v,x) =[] Iy
=0 H plv
p‘\’2$i

Then we have the following,

Lemma 2.10.4. For any x € N4,

Q;(X)_H1}<1+ﬁ{0<¢<3:pm}>.

0<i<3:pfx;
PF#2 f 5{ Pt 2p

Proof. We write,

— 1 1
¢(x) = p(v)&' (v, x) — .
2 2w X o))
v?w éﬁ‘)&? G -S)iqivw
plw=ply BRI
Then the sum over w is
H ii Z ﬁ( 1 ) :H pHOSiS3REY g _ Ho<i<3:ptua}
— pj ~o\e; +1 p 2p

plv | 7=2 eGZ‘;O =0 plv

eotei+eat+ez=j
ged(p®i,z;)=1V 1

the equality coming from adding in the terms for which 7 = 0 and j = 1. Call the term

inside the product ¢, for each prime p then by summing over v we conclude that

c 1 H{o<i<3:pta}
s fﬁ{K <3:plzi} s f]g{og <3:pfw;} 2p

From this we may prove the following:

Lemma 2.10.5. For b,m € N?, satisfying (2251 and (252),

H (1 B 1>2 (1 . H{0<i<3 ipmeo2mo3m12m13bi}> ‘
b

p#2 2p

fo= 1
f—%G(b,m)(’:(b,m) = W
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Proof. From Lemma P14 we have

H 1 (1 n H{0<i<3:pt m02m03m12m13bi}>

fﬁ{0<l<3 :pfmoamoszmiamisb;} 2p

¢C(b,m) =

pF~2

and by re-arranging we have

3
_ 1 1
G(bv m) = H H f = H < ﬁ{Ogig3:p|m02m03m12mlgbi}) '
i=0 plmo2mia2mozmizb; Jp p#£2 P
p odd
Thus
_ 1 0<1<3: b;
¢(b,m)S(b,m) = H — <1 + it ! P f mozmogmizmg }> ,
Iy 2
p#2 Jp p
and by recalling the definition of fy, the result follows. n

Define the function ~y : N2,, — R by

() = H<1—>< L HOs 23 pmz})

p#2 p p

Then what we have now shown is that

7(m02m03m12m13b)p’(r i) (m02m03m12m13)

271272 2 2
bgbib bsm02m03m12m13 (m02m03m12m13)

P(ry)
Q:r,i =
64(27)? b,m%%ﬁd
(=), (2252)

2.10.5 Sum over m

Noting that the summand only depends on the product of the components of m we
collect terms to write

¢, = p(r i) Z Z (mb) ( )
T 64(2m)2 beNd, méNaa b262b2b§m2 (m)
(m)

> 1

mp2Mmp3mi2Mmi3=m

This inner sum is a four-fold Dirichlet convolution of multiplicative functions (indicator
functions of the ged conditions in (2252)) applied to a square-free integer m. By
considering its behaviour for m prime, we may therefore deduce that this inner sum
can be written as

pf(m)B(m,b) = p*(m) [T (H{0<i<1:pth}-#{2<i<3:pth}),
plm
p#2

which is multiplicative in m. Note also that we may untangle the dependence of m

from ~(mb) since
7(mb) = y(b)y(m,b)
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where

%(m’b):H< L HOS 23 pfb}> |

plm P
p#2

which is also multiplicative in m. Therefore the sum over m in €, ; becomes

12 (m)yo(m, b)B(m, b)pf,  (m) (1 N iy (P)70(p, B)B(p, b))
m27(m) 2p? '

>

mEN,aa

-11

p#2

Writing vo(p) = 70(p, 1) and 5(p) = B(p, 1) we define /@ ) and /<; as

2 / /
1 - (P)0(p)B(p 2 2p0,.(p
(1 - > ~o(p) ™" and yo(p) ! <1 4 Aean®) 02( A )> — (1 +i4 p<2><)> ,
P 2p P p
respectively. Then
— (H ,{I()l)) g(l)
Dp#2
and
plr,i (p)'yo(]% b)ﬁ( 7
H (1 + = 2]?2 H 70 (2)(b)7
PF2 PFA~2

where g(V)(b) and ¢®(b) are defined by

1T @), b)” 'and 11 (’yo(p)ﬁ](f))’l <1+

p|bob1b2b3 p|bob1b2b3
p#2 P#2

Plriy (P)70(, B)B(, b))
2p?

respectively. We are left with

2 M) (b)g@ (b)
¢, = 1— =) &k@ g 29 %) 2.10.9
7 2567T2 11 (( p) K )be%)dd b3brb3b3 (210:9)
(e=)

2.10.6 Sum over b

Let g(b) = ¢ (b)g®(b). Then g(b) may be seen to be

II(Mm)1G+wm<i<3m+m}+mmeND<i<1mf@}~M2<i<&p%mg
plbabibat 2p 2p?
p#2

which is clearly multiglicatNive in the~sense that, if the products bybibob3 and 50515253
are coprime, then g(bobg, b1y, baba, b3bs) = g(b)g(b). Therefore,

g(p*, p, p=, p)
. % b2b2b2b2 H (NZ{O}) pPeo+2ert2es+2es (2.10.10)
eNA ec(NU
(m) mln(eo 61):
min(ez,e3)=0
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We now consider the sums inside the product. There is a single term for which
e; =0 for all i € {0, 1,2, 3} given by

2 /
B (P 20+ 20,.()
9(1,1,1,1) = (&) (k) = (x5) 7 ( p2 7 (2.10.11)
When e; > 1 for a single i € {0, 1,2, 3},
3 Py ) 1/p?
2 e (2) -~ (r,) _
g, p°, p=, p° K 14+ —+ nd S Ao
( D= (14 B -

There are four such terms, together giving a contribution of
2 !
(k)1 4p” + 6p + 4p(, ()
? p*(p* —1)

When e; > 1 for exactly two i € {0, 1,2,3}, the minimum conditions on the e; dictate
that

e e e e ( ) 1/p2 )2
0 pfl pe2 pes) — (p(2) = — .
9(17 PP, P ) ( D ) <1 + = + 2 ) nd Z 261+2€] ((1 _ 1/p2)

p 2p o1 P

(2.10.12)

There are four possible pairs (i,5) € {0,1,2,3}* (i < j) in which this can occur,
together giving a contribution of

4p* +4p + 2p),.,
(e ) 21013
p*(p*—1)
The condition min(eg, e;) = min(ey, e3) = 0 does not allow any contribution from
e € (NU{0})* where three or four ¢; > 1. Therefore, inputting (20L),(2I0I12)

and (Z013) into the right hand side of (2Z10M) for each prime p # 2 tells us that
(2101M) is equal to

11 (ﬂ@))1<p2+2p+2p o) | A7 +0p+4pt () | AP +Ap+2p0 (p)>
p#2 8 p? p?(p?—1) P2(p?—1)2
_ H(/{(2))—1<p6+2p5+2(P/(7»,,)(p)+1)p4+2p3+2p2)

i p?(p*—1)2 :

Inputting this into (Z104) and using (p* — 1) = p*(1 — 1/p)(1 + 1/p), we have now
proved the following:

Proposition 2.10.6. For each (r,i) € {(1,2),(1,3),(2,2),(2,3)}, the constant €, ; is

equal to
-2 /
D) 2 2ppp+l) 2 1
1 1+—-+—="4+—4+—.
2567T2H<+p> <+p+ p2 +p3+p4

2.10.7 Conclusion of the proof of Theorem 2T

We combine Propositions 22574, 22811 and 2298 to obtain

(€2 + €,.3)B%loglog B B2%\/loglog B
Lo, (e
log B log B

N (B) =
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for sufficiently large A > 0. Then, by Proposition 22472,

(2€15 + 2€; 3 + €55 + €5 3) B?loglog B B?%\/loglog B
’ ’ : : +O0s | ——5— .
log B log B

N(B) =

Finally, using Proposition 108, (2¢; 5 + 2¢; 3 + €9 + €5 3) is then

-2
935 1 2 4 2 1

+-] (1+5+=+5+—
367T2||<+p) <+p+p2% + )

p#2 oy
25 N2 2 200+(3) 2 1
+ 14-) (142422 =g )
3672 pl;[? ( p) ( P p? » o pl
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Chapter 3

Local solubility for a family of

conics

3.1 Introduction

In this chapter, we will relate the family of quadric surfaces covered in Theorem 21
with a family of planar conics. As a result of this comparison, we will obtain the
asymptotic for the rational solubility of this family of conics for free. We will also
compute the Subordinate Brauer group for these families.

3.2 Set-up

To begin with, we make some key remarks about our family of quadric surfaces that will
allow us to understand the geometric invariants of our family. Recall that Z C P3 x P3
is the variety cut out by the equations

Yoy + i + yoxs + yszs = 0 and yoyr = yays,
that Y C P? is the quadric surface cut out by the equation

YoY1 = Y2Y3

and that 7 : Z — Y is the dominant map sending ([zo : 1 : 2 : @3], (Yo : Y1 : Yo :
ys]) € Z to [yo : y1 : Yo : y3] € Y. It was presented in §23 that by applying the
Q-isomorphism from P! x P! to Y given by,

Yo = tol2, Y1 = tils, Y2 = tita, Y3 = lots,
that Z is Q-isomorphic to the variety Z’ C P3 x (P! x P!) given by

totgl'g + tltgx% + tth.T% + totng?)) =0 (321)
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where [z : 1 @ To ¢ 23] € P and ([t : 1], [t2 : t3]) € P! x P'. Furthermore, setting
o1 P! xP' =Y and ¢, : Z — Z' to be the isomorphisms described above, we obtain
the dominant map ¢ : Z/ — P! x P! defined by ¢ = ¢;' omo ¢, '. It is in this form
that we will consider our problem in this section. We will denote by @); the quadric
fibre p~1(t) associated to the point t € P! x PL.

We now remark that the variety Z’ (and by consequence Z) is singular. Indeed the
Jacobian of this variety is given by

(22507522[‘0, 2t1t3$1, 2t1t2$2, 2t0t3$3, (tzl’g + tgl’g), (tgl'% + tglg), (tol’g + tll’g), (tll'% + tol’g))

and so it has a singular locus contained in the union
3
S=U{(z,t) e PP x (P' x P") 1 t; =0, zp = 2y =0, tya +t;z5 =0} (3.2.2)

=0

where we have:

(3,2,1)ifi =0
o @30)ifi=1
Ud.7) = (0,1,3)if i = 2
(1,0,2) if i = 3.

Note that this singular locus is the image of the singular locus for Z defined in section 2
of [8] under the isomorphism ¢,. Now let L; denote the line defined by ¢; = 0 in P! x P!
and £ = U?_jL;. Then we find that S lies above the union of lines £. Henceforth we
will use the notation V := (P! x P')\ £ and remark that this is an open subset of P* x P!.

Remark 3.2.1. Recall the thin set T'= T, UT; of Y from Example 123, which gave
the abundance of rational points in [8]. Let 7 C P}(Q) x P}(Q) be the image of this

thin set under the isomorphism ¢;. Then
T == {([to : tl], [tg : tg]) € P1<Q) X PI(Q) : _tOtl = |:|, —t2t3 = D}

Considering the conditions of the form tyx? 4 t;27 = 0 in the definition of S, we see
that £(Q) C T. This observation was used in §23 to remove the points t; = 0 from

the counting problem.

Finally, we pre-compose ¢ with a desingularisation Z — Z' of Z' to obtain a
dominant map @ : Z — P! x P'. The precise form of the fibres along £ under ¢ will
not affect our results; the fibres of points outside £ are unchanged.

Proposition 3.2.2. For every quadratic fibre, (Q;, over a point t € V, there exists a
conic Cy such that Q;(Q) # 0 if and only if Ct(Q) # (0. Furthermore, Q; = Cy x Cy,
and we may choose the desingularisation @ : Z — P! x P! to be a smooth proper model
of the fibre product Cy x Cy — V.
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Proof. We note that for t € V, the quadric surface @)y is smooth and has square
determinant (fotitst3)?. It follows from [, Théoréme 2.5] that Q; = Cy x Cy over Q
and that Q;(Q) # 0 if and only if C,(Q) # 0. That we may choose @ : Z — P! x P!
to be a smooth model of the fibre product follows from Hironaka’s theorem for the

resolution of singularities. ]

Before we continue, it is worth examining the form of the conics C; for a fixed
t € P1(Q) x P(Q). Upon remarking that @ is birational to the quadric

l’g + totl.%% + t2t3x§ + totltgtg.%?)) =0

we may take [, Théoreme 2.5] and [T2, Proposition 1.1.8] to see that C; can be written
as
Cy : 25 + tot1 27 + totzzs = 0. (3.2.3)

Note that we are working with ¢ € V here so that none of the ¢; are 0. From [IZ,
Proposition 1.1.8] we also obtain a quaternion algebra g, = (—tot1, —tat3) over Q.

3.3 Solubility for a family of conics

We can now prove the main theorem for this chapter. Keeping the notation of the
previous section, we will now consider the variety C C P? x P? defined by the equations

Yoy + Y127 + yors = 0 and yoy1 = yoys

and the obvious dominant map v : C — Y. As with the quadric fibre bundle, this conic
fibre bundle has an isomorphism ¢ : C — C’ where C' C P? x (P! x P!) is defined by the
equation

tgtgl‘g + tltgl’% + tltgl’% =0
with t = ([to : t1], [t2 : t3]) € P! x PL. Following [R], we consider a desinguarisation of
this problem, namely the maps 7 : C — Y and 7 : C — C’. Using the notation of the
introduction, we aim to consider the counting problem

—yoy2 7 L, —yoys # U
Ny\r(7,B) =ty € Y(Q): v '(y) has a Q-point . (3.3.1)
H(y)< B

In [8], they note that using their methods, one may prove
B? < Ny(7,B) < B>

In other words, including the thin set T', we have the same upper and lower bounds for
the count over the family of quadrics. The next theorem shows that the asymptotic
formula for Ny\p(7, B) is the same as that for N(B) = Ny\¢(7, B).

Theorem 3.3.1. As B — o0,

Ny\r(7, B) =

cB?loglog B B?%\/loglog B
— = o|———==
log B log B

where ¢ > 0 is the same constant given in the statement of Theorem ITZ1.
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Proof. We begin, as usual, with the parameterisation of Y by P! x P! to transform the

counting problem to

—toty # 0, —tatz # U
Ny\7(7, B) = Np1spip7(@0, B) = 4t € PH(Q) x P'(Q) : @ '(¢) has a Q-point
H([to . tl])H([tQ . t3]) < B

where @ = ¢, o v o1, For the set of points ¢ € T, the fibres w1 (t) are given by the
conic
O; . totg[)?% + tltgl’% + tltgl’g = 0. (332)

We see from Remark B271 that points ([to : t1], [t2 : t3]) € PHQ) x P}(Q) with t; =0
for some 0 < ¢ < 3 lie inside 7. Therefore, by multiplying the equation (B=322) by ¢;t,
and permuting the variables we find that the fibres C} for t & T are equivalent to the
conic Cy as defined in (B2233). Thus, by Proposition BZ2, we have

CHQ) #0 = CQ) # 0 = (Q) #0

for t € PH(Q) x P}Y(Q) \ 7. In particular, we have the equality,
Ny\T(ﬁ, B) = N(B)

where we recall that N(B), as defined in (I"23), is the counting problem determined
by Theorem [CZ1. An application of this theorem, therefore, concludes this proof. [

3.4 The Subordinate Brauer Group

In this section, we will recall the subordinate Brauer group of a proper morphism
f X — Y of integral Noetherian schemes over a field, and compute this group for our
map ¢ : 7' — P! x PL.

3.4.1 The Brauer Group

For a scheme X over a field &, we will define its Brauer group by Br(X) := HZ (X, G,,)
where G,,, denotes the multiplicative algebraic torus. Furthermore, we will write k(X))
for the function field of X and X to be the set of codimension 1 points of X. The
following is Grothendieck’s Purity Theorem (see [I2, Theorem 3.7.2]):

Theorem 3.4.1. Suppose X is a reqular, integral scheme over a field k of characteristic

0. Then we have the following exact sequence:

0 — Br(X) — Br(k(X)) — @ H'(k(D),Q/Z)

Dex (@)
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where the last map is the direct sum of the residue maps Op : Br(k(X)) — H'(k(D),Q/Z)

at the codimension 1 points D.

An element of the Brauer group b € Br(X) is called unramified at a point D if
dp(b) = 0.

Now suppose that k is a number field. The following exact sequence is a well-known
result of class field theory:

0— Br(k) — & Br(k,) — Q/Z—0 (3.4.1)
veVal(k)

where the last non-trivial map is the sum of local invariant maps inv, : Br(k,) — Q/Z.
Let Ay denote the adelic numbers over k. Then X (Aj) denotes the adelic points of X.
We will also make use of the Brauer-Manin pairing

X(Ay) x Br(X) — Q/Z, ((z)vevaia, b) —> Y inv, (b(zy)).

We remark here that Br(P}) = Br(A}) = Br(k).

3.4.2 The Subordinate Brauer Group

Let f: W — X be a proper morphism of regular, integral Noetherian schemes over a
field £ with geometrically irreducible fibre. Suppose throughout that £ has character-
istic 0.

Definition 3.4.2 ([29], Definition 2.1). For f : W — X above, we define the subor-

dinate Brauer group as

Bron(X, )= ) {aeBr(k(X)):

Dex (@)

e f*(a) = 0 for all irreducible components }
EcCf! '

(a
f7H(D) of multiplicity 1

Now suppose that X admits an ample line bundle. Let U C X be an open subset
and suppose that # is a finite multi-set of elements in Br(U). Denote by (%) the
subgroup of Br(U) generated by . Then we may also define the following.

Definition 3.4.3 ([29], Definition 2.8). We say that an element b € Br(k(X)) is
subordinate to A if for every D € X, 0p(b) lies in dp({#)). We may also define

Braun(X, 2) = {a € Br(k(X)) : p(b) € dp(()) for all D € X1},
Since X admits an ample line bundle, every element b € Br(U) is the Brauer class
of a Severi-Brauer scheme Vj,. This follows from a theorem of Gabber. In our setting,

U=V and & = {qc,,qc,} where q¢, is the quaternion algebra associated to a given
conic C; from Proposition BZ272.
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Lemma 3.4.4 ([29], Lemma 2.9). Suppose that X and W, U C X, A are as defined
above. Suppose that f : W — X is a smooth proper model of the fibre product F :
Xbe% Vi, = U. Then

Broun (X, f) = Brauw (X, ).

Remark 3.4.5. The exposition in §2.4 of [29] does not explicitly define Z to be a
multi-set, instead defining it to be a finite subset of Br(U). The inclusion of multi-sets
does not change the definition of Brg,, (X, %) as this depends only on the group (%),
which remains unchanged. Allowing multi-sets also does not change the proof of the

above lemma.

We are now ready to compute Brsub(Z D).

Lemma 3.4.6. We have

Brow(Z, §)/Br(Q) = (qc,) = Z/2L.

Proof. By taking # = {qc,, qc, }, then we may use Proposition B22 and Lemma B2
therefore we aim to compute Brsub(Z ,#). Recall that qo, = (—tot1, —tat3), which
ramifies precisely at the lines £; = {t; = 0}. Using [I8, Example 7.1.5] the residues of

qc, at L; are

—(tztg)il = —tyt3 € Q(ﬁZ)X/@(ﬁz)X2 ifi e {O, 1}

Or,(qc,) =
S 7\ Lty € () 012 ifi € {2,3}.

Now suppose b € Brsub(Z ,A). Then by definition, b can only ramify along a subset of
the £; with the prescribed residues above. If b is unramified, b € Br(P! x P!) = Br(Q)
and so is constant. If b is ramified only along one of the £; then b € Br(P! x P!\ L;) =
Br(A! x P!) = Br(Q) and so is also constant. Similarly, if b ramifies at exactly three
of the lines £; then b — q¢, is ramified at only one line and so is constant. We therefore

suppose that b ramifies at precisely 2 of the lines £;. Since
]pl XIEDl\(,CiU,Cj) §A2

when (7, 7) € {0,1} x {2,3}, we therefore have that b will be constant or equivalent to
dc, unless it ramifies along Ly U L1 or Lo U L3. We may deal with each case similarly,
so suppose that b ramifies along Ly U £;. Then it must ramify along each line with
residue —tot3. Furthermore, since the residue maps are homomorphisms, the residue
of 2b along these lines is (tat3)? = 1 € Q(L;)*/Q(L;)*?, ¢ € {0,1}. It follows that 2b
is unramified everywhere, and thus constant. This implies that b is of order at most
2 in Brow(Z, %) /Br(Q). Assume it is of order exactly 2; otherwise, it is constant. By
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the Merkuyev-Susin Theorem, [T, Theorem 2.5.7], this implies that up to addition by
Br(Q),

L
b= Z ai
1=0
for ¢; quaternion algebras over Q(P! x P'). Write ¢; = (ay, ;) for oy, B € Q(P! x P1).

Writing v; for the valuation map at the place ¢;, we may decompose the oy and j3; as

o = tioio(az)til)l(az)tSQ(al)tgs(al)&l and 3, = tSO(ﬁl)tll)l(BZ)tSQ(ﬁl)t§3(6Z)BI

where @, £, € Q(P' x P') and v;(a;) = v;(8;) = 0 for all j and all /. Then, upon using
(I8, Example 7.1.5] we have,

3 K U, (O
De,(b) = (1)@ | ] £ [Ha?tk“”] [m 01 QL) QL)
j=0

Jj= l l
J#k

where

£F = S (v (an) o (Br) — v;(Boi(cn)) = =k

!
Since b ramifies precisely on Lo U £ and is subordinate to ¢¢,, we know that 0., (b) =
—tats € Q(Lo)*/Q(Ly)**. From this, and the general formula above, we can see that

Y9 = 1 mod 2; therefore we must also have 32 = 1 mod 2. Then,

3 2 _
Oe,(0) = to |(—~1)7 @) | T] ¢, [H&;zzml lHBI e Q(Ly)* QL) .
=1 l

J= l
42

But since ¢y, 3, ayq, . .., ar, B1, - . ., Bz all have valuation 0 at ¢o, this implies that O, (b) #
1€ Q(L2)*/Q(Ly)** - i.e that b is ramified at L. This is a contradiction. Therefore,

b cannot be subordinate to g¢, and ramify at precisely Lo U L. The result follows. [
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Chapter 4

Variations on the Large Sieve

4.1 Introduction

In this chapter, we prove the bounds for bilinear sums over the Jacobi symbol (%)
which are necessary for the conclusion of Theorem I271. First, let us recall the previous
results in this direction. Suppose a,, and b, are arbitrary complex sequences bounded
in magnitude by 1 and supported on the odd integers. Let N, M > 2. Then we have
the following well-known bounds:

o Elliott |14, 22]:

3 by (”) < NM (N7V2 4 NV2M~2log N) ; (4.1.1)
<N, m<M m

« Heath-Brown [22]: for any € > 0,

S 12(20) (2m)anb (Z) < (NMYY (N2 M 2)5 (41.2)

n<N, m<M
o Friedlander-Iwaniec [I7]:

SN anbn (:;) < NM (N7Y6 4 MY (log 3N M)7/°. (4.1.3)

n<N, m<M

These bounds have been used in many problems, for example:

Values of L-functions (Soundararajan [43]);

4-ranks of class groups (Fouvry—Kliners [I5]);

Manin’s conjecture (Browning-Heath-Brown [4]);

Bateman-Horn’s conjecture on average (Baier—Zhao [l]).
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When N? <« M the Elliott bound is the most effective bound; when N and M are of
comparable size the Heath-Brown result is more effective. In applications to rational
points problems the Friedlander—Iwaniec bound is more versatile as the presence of
(NM)¢ in the Heath-Brown bound may lead to problems when we require no loss of
logarithms. One may also combine the Elliott and Heath-Brown results into one as in
the work of Fouvry and Kliiners on the 4-rank of class groups [I5, Lemma 15].

For the hyper-skewed regions that occur in our problem, each of the above results
will fail to give bounds that are smaller than the main term. To solve this problem
we provide two variations of the above bounds which suffice for our purposes. The
first is an improved version of Elliott’s bound for when the complex sequence b, has
some multiplicative structure and will play a crucial role in Chapter B. The second is
Theorem 223 for sums of the Jacobi symbol in hyperbolic regions, which was used in
Chapter B, §28 to bound the regions of our character sum where the Jacobi symbols
have large conductions.

4.1.1 Hooley neutralisers and the large sieve

To prove Propositions 228 and 22211 we will require improvements over (E—1) in
regions that are hyper-skewed. The following result states that this may be achieved
when the complex sequence b,, has some multiplicative structure.

Theorem 4.1.1. Let M, N > 2, and fix some ¢ > 0. Let f be any multiplicative
function such that 0 < f(p) < 1 and f(p™) < f(p) for all primes p and all m > 2.
Suppose also that there exists an 0 < a < 1 such that for all X > 2 we have,

> J(p) = aloglog X + O(1). (4.1.4)
p<X
Then for any complex sequences ay,b,, which are supported on the odd integers such
that |a,| < 1 and |by,| < 1 we have:

MN1/2 loe N M1/2+6N3/2 loc N 1/2
m (log M)(1=e) (log M)(1=e)/2

n<N, m<M

where the implied constant depends at most on €.

This theorem is most effective when N? <« M. The main benefit here is that
we have maintained saving from summing over the multiplicative function. Indeed, it

follows from a result of Shiu [0, Theorem 1] that for a multiplicative function satisfying
the conditions of Theorem BT that we have

M
X, Gogane

m<M

We will prove this in §2 by using Hooley Neutralisers to insert the Brun Sieve into
standard large sieve methods. Using partial summation we obtain further improvement
when a,, contains a harmonic factor:
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Corollary 4.1.2. Let M > N > W > 2, and fixr some € > 0. Let f be any multiplicat-
ive function such that 0 < f(p) < 1 and f(p™) < f(p) for all primes p and all m > 2.
Suppose also that for all X > 2 we have,

> /) = aloglog X + O(1) (4.1.5)
p<X p
for some 0 < a < 1. Then for any complex sequences a,,b,, which are supported on

the odd integers such that |a,| < 1 and |b,| < 1 we have:

" M(loe N M1/2+6N1/2 loc N 1/2
S L ) () < rlos ) e
n m W1/2(log M)(1—2) (log M)(1-a)/2

W<n<N, m<M

where the implied constant depends at most on e.

The benefit of this result is that it encodes not only the saving from the mul-

tiplicative function but also the convergence from the sum >y, < N% (ﬂ) when m

m
is non-square. Again, this result is most effective when N? < M. This, however,

will be sufficient for our purposes provided that they are aptly applied alongside the
Friedlander—Iwaniec bound (B1=3). For the proof of Theorem 21 the corollary will
be applied with the multiplicative function ﬁ

As an example of how these results may be applied elsewhere, we remark that in
the proof of Proposition 22211, we encounter the simultaneous average of % and

special values of L-functions, L (1, (E)) An application of Corollary 12 will yield
the following bound:

Corollary 4.1.3. For all X > 3 we have

> L) < ey

Since the average of ﬁ is —=L— for some constant c; and the average of L (1, (—))
og M m

is a constant, this bound suggests that the distributions of these two functions are

independent. This result is a consequence of Lemma BZ3A, which will be proven in

Chapter B.

4.1.2 Averages of Jacobi symbols over hyperbolic regions

The second variation of the large sieve for quadratic characters is a bound for sums
over hyperbolic regions. These are sums of the general following shape:

S anbn (Z) (4.1.6)

n,meN
1<nm<T
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where (a,,) and (b,,) are arbitrary complex sequences with |ay,|, |b,| < 1. For general
choices of complex sequences a,, and b,, these sums do not exhibit much cancellation -
for example, we will see later that

n
> () > T,
n,meN m
2tnm
1<nm<T

which gives only logarithmic saving over the hyperbolic region of area T'(logT"). The
main contribution of this sum will be seen to come from the points where either n or m
is a square. This contribution is explained by the fact that such points have relatively
large density in the hyperbolic region compared to their density in a rectangular one.
For this reason we turn to study sums over pairs (n,m) where n and m are odd and
square-free.

Remark 4.1.4. Throughout this chapter Z* will denote a sum over odd, square-free

integers. As usual, p will denote the Mobius function.

In this case, however, there may still be a large contribution from points close to the
axes, particularly from the lines n = 1 and m = 1. Another example which gives very
small cancellation is the following: choosing a,, = (&) and b,, to be the characteristic

11
function for the condition m = 11, one sees that

Z* u2(2nm)anbm(;;>: > @i (22n) > T,

1<n,m<T 1<n<T/11
1<nm<T

It is therefore clear that in order to obtain further cancellation, we must impose the
extra condition that n,m > z for some parameter z = z(7') which tends to infinity
with 7. Our first bound, which is a more complete version of Lemma 2223, shows that
these conditions are sufficient to provide the required cancellation.

Theorem 4.1.5. Let T,z > 2 and let (a,), (bn) be any complex sequences such that
|an, [bm| < 1. If there exists an € > 0 such that z = T3¢, then

* n 7—‘1+6
Z anbm () < 17/27
z<n,m<T m z
nm<T

where the implied constant depends at most on €. If there exists an € > 0 such that
2 < TY3¢, then

X T(logT)3
5 (1) T
z<n,m<T m z /
mﬁgT

where the implied constant depends at most on €.

Theorem B3 fails to give a saving over the trivial bound of T'(logT) if z <«
(log T)*. This is satisfactory for most applications, however it is also possible to obtain
cancellation for any z which tends to infinity with 7" with the cost of a smaller exponent
of z.
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Theorem 4.1.6. For all T,z > 2 and all complex sequences (ay), (by) such that

x n T(logT)
> abo(5) < i

z<n,m<T
nm<T

lan|, [bm| < 1 we have,

where the implied constant is absolute.

Remark 4.1.7. It is impossible to improve the exponent of z in Theorem EZT@ to be
> 1 in general: using a similar example to before, if we take any z < T/, p a prime

satisfying z < p < 2z, a, = (%) and by, the characteristic function for the condition

m = p, one finds that

* n 2 T T1/2

b () = 1 (2pn) = ( —~ z> +0 ( > .

zfr%r:zgg m z<nz<:T/p 3(1+1/p)¢(2) \p p/?
<M<

This is > % > T since 2pz < 422 < T. If this were O(T1221) logT ), then z*~!' = O(log T),
which may be contradicted by taking z = (log T)* for A > 0 suitably large.

In order to prove Theorems B3 and B8 we will actually prove the following
more general results.

Theorem 4.1.8. Let T,z > 2, ¢ > 0, and let (a,), (by) be any complezx sequences such
that |a,|, |bnm| < 1. If there exists an € > 0 such that z > T3¢ then,

* c n 7—‘14_6—"_E
Z (nm) anbm — <<c,e 1/2 )
z<nm<T m z
nm<T

where the implied constant depends at most on ¢ and €. If there exists an € > 0 such
that z < TY37¢, then

. n T (logT)?
> (nm)anby, () Lee =15
z<n,m<T m 21/2
nm<T

where the implied constant depends at most on ¢ and €.

Theorem 4.1.9. For all T,z > 2, ¢ > 0, and all complex sequences (a,), (by) such
that |ay|, |bm| < 1. Then

* n T1+C 1 T
Z (nm)canbm <> <<c (1/O4g)7
z<n,m<T m z
nné,éT

where the implied constant depends at most on c.

Theorems B4 and B8 will then follow from the cases where ¢ = 0. The methods
in [I7, 22] do not interact well with the hyperbolic region as they exploit the linear
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structure of the rectangular regions through the use of Holder’s inequality. We will cir-
cumvent this problem by applying the following version of Perron’s formula to eliminate
the hyperbolic height condition [21, Lemma 2.2]:

L™ )1 (0 = 1o < ) + OB log(om) — ()| ), (41.7)

where f.(t) = M and

lifpu<r
1<N<T>:{Oifu>7‘

This will allow us to apply existing results. In particular, we apply Corollary 4 and
Theorem 1 of [22]:

S Y anbn (”) <o (MN) (MNY2 4 MY2N), (4.1.8)
m<M n<N m
2tm

and, for I C [1, N]N N of size ||,

>

m<M

% an<:;) ‘2 <. (MN)(max(M, N)|1], (4.1.9)

nel

for any € > 0. It will also be necessary to make use of the following version of Elliott’s

result:
Z*

m<M

3 an(:l>'2 < (M + N*log(N))|1|. (4.1.10)

nel

This inequality goes back to Elliott [14], but was proven by Heath-Brown [22, Equation
(6)]. Recall that this bound is superior to (E9) if N < M2, In our proof, this will
be necessary when lopsided rectangles appear in our coverings of the hyperbolic region.
We cannot use (219) for such lopsided rectangles, since if z = (log T)# for some A > 0,
we will obtain bounds of the form < ﬁ, which just fails to give Theorem ET.

To prove Theorem B8 we will use these results along with a dyadic covering of
the hyperbolic regions. In order to obtain saving for arbitrary z in Theorem B9 it
will be necessary to cover parts of the hyperbolic region with rectangles of equal width
before applying Cauchy—Schwarz and (B-1T10) to each of these rectangles and summing
over the results.

Lastly, we prove asymptotics for the Jacobi sums over all odd integers within the
hyperbolic region, namely we have the following:

Theorem 4.1.10. For allT > 2,

1<T§<T (Z) = <$§E§§> T + O(T¥*(log T))

2tnm
nm<T

where  is the Riemann-zeta function.

101



Chapter 4: Variations on the Large Sieve Section 4.2

This result is obtained using Dirichlet’s hyperbola method. A similar method will

give
* n
> (2)~er
1<n,m<T m
nm<T

for some constant ¢ > 0, proving that we may not obtain saving in the square-free
setting when we include points close to the axes.

4.2 Hooley Neutralisers and the Large Sieve

In this section will prove Theorem B-T. This is done with the use of Hooley neutral-
isers. We will begin with the following lemma, which is a slight modification of [dT,
Proposition 4.1] and has a similar proof.

Lemma 4.2.1. Let P(z2) be the product of all odd primes < z and suppose (N} ) is any

sequence satisfying
S A = 1(n=1). (4.2.1)

dln
For any function f: N — [0,1] such that

(1) f is multiplicative,
(2) f(p™) < f(p) for all primes p and all m > 1,

define the multiplicative function f : N — R by f(n) = [In(1 = f(p)). Then for all

mntegers n.:

fln) < X N,
d\CIll?Z)

Proof. We let n be a square-free integer composed only of primes p < z, i.e. n|P(z),
then

fn) = 3 Fm)f () 2m = 1.

mln
Since f and f are non-negative, we may use (=21 to get the upper bound:
A n
fo) < 3 fomf () (Z A;) .
m|n dlm

By writing m = dd’ and reversing the order of summation we get
A n - , n
> fomf () (Z A;) = N (z flad)f ())
m — dd
mln dlm d|n d |E
A / i
> fd)s (dd,)) ,

e

S (

din
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this last equality being obtained by noting that since n is square-free and dd’|n, d and

d’ must be square-free and co-prime. Now
)1 () =141 (3)
d

where  denotes Dirichlet convolution. Then since f and f are multiplicative, f* f will
also be multiplicative. However, f x f(p) = 1 for all primes p since f(p) = (1— f(p)).

Therefore f * f(n) =1 for all square-free integers n. Thus
FanF () =
F

It follows that
Fn) <S° M f(d).
din

Since we assumed that n|P(z) we are done in this case. For more general integers n

we write:

n = H pvp(n) H qvq(”)
p|

n qln
p|P(z) atP(z)

Then, since f is multiplicative and has image in [0, 1] we use assumption (2) to obtain:

f <l II vl < X MA@,
p@?@ d\ﬂ?Z)

where we use the previous case in this last inequality. Il

We will be interested in using this for upper bound sieve coefficents. Fix some z > 0
and let y = 2!°. Then in particular we define the upper bound sieve coefficients

A =1(d € D")u(d)
where

Dt={d=pi...pr €N:z2>p > ... > pp, Pm < Ym for m odd}

for y,, = ( 4 )1/5 and some > 1. It is well known that

S > Y ) = 1(n=1) (4.2.2)

dn dn

and that the A\ are supported on the interval [1,y]. We note also that any multiplic-
ative function f satisfying the conditions of Lemma B=21 will also satisfy conditions
(1) and (i7) of [0, Section 2]. We may then use [A0, Theorem 1] with, k =1, Y = X
to obtain the bound

3 fn) < g e (z f@)) . (123)

n<X p<x P

103



Chapter 4: Variations on the Large Sieve Section 4.2

Furthermore, we will require that our multiplicative functions satisty,
> /) = aloglog X + O(1)
p<X
for some o > 0. With this in mind, (E=223) becomes,
X
fin) < ——. 4.2.4
n;{ (n) Tog X)i== (4.2.4)
The following lemma encodes the insertion of the Brun Sieve into the large sieve,

Lemma 4.2.2. Let X > 2. Fiz some ¢ > 0 and set z = X' and y = X. Let f be
any function f: N — [0,1] such that

(1) f is multiplicative,

(2) f(p™) < f(p) for all primes p and all m > 1.

Suppose also that there exists some 0 < a < 1 such that, for all2 <Y,

> f(p) = aloglogY + O(1). (4.2.5)

p<Y

Then for the sieve coefficients (\}) defined above and any integer n,

o(m)X N

M f(d | <€ —— 1——= X

d;{ 4 f(d) gx < llog XT° pl}}z) ) T
d|P(z) dlm pln

ged(d,n)=1 ged(m,n)=1

where the implied constant depends at most on €.

Proof. Using the fact that A} is supported on [1,y] we have,

S oaf) S 1= s I oy

d<X m<X n d<y d
d|P(z) dim d|P(2)
ged(d,n)=1 ged(m,n)=1 ged(d,n)=1
Xo(n fld
=X i T o),
T ape)
ged(d,n)=1

Next, we would like to apply the fundamental lemma of sieve theory to the sum over
d, [?5, Fundamental Lemma 6.3, pg.159]. In order to do so, we first need to satisfy the

condition

P log w

0 <1 _ ged(n,d) = 1>f<p>>‘1 <K <1ogz>

wLp<z
p prime
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for any 0 < w < 2z where K is some absolute constant. For this we note that, by
assumption (E=23) on f it follows that

W) () )

pin pln

< <logz> H <1_ f(p)) < <logz>
log w w<p<z P log w

pln

since [, ( — %) < 1 for all n. Thus we may apply the fundamental lemma to the

sum over d to obtain the upper bound:

5 yHestnd U0 7 (el = /)
d

d|P(z) pIP(2) p
-1
<] <l_f(p)> 10 ( _f(p)>
p|P‘(z> p p[P(2) P

)

<
(log Z) punl(z) p
p|n

Recalling that z = X° and y = X¢ we substitute this into the our equalities above
to obtain the result. O

We now prove the main result of this section.

Proof of Theorem [-1-1. Set the sum on the left to be S(N, M). Then by the Cauchy—

Schwarz inequality:

SN, M)* < (Z Ibm\f(m)) (Z (bl f (112)

m<M m<M

The first sum over m is bounded using (E=24):

M
2 bl f(m) < > f(m < llog Mo

m<M m<M

Fix z = M0 and y = 2' = M°. Using Lemma B2 we have

bl £ (m) < X Af)

dm
d|P(z)
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where f is as defined in Lemma E=270 and (A1) are the sieve coefficients defined previ-

ously. Therefore,

2 2
5 Bl tm) | an (2)] < 50 @)X an ()
m<M n<N m m<M djm n<N m
d|P(z)
2
P n
<Y MO X [T a(2)
d<M m<M |n<N m
d|P(z) dlm

Now, by expanding the square this becomes:

o ()

> [bmlf(m)

2 _ Z )\;f(d) Z ( Z G, <n1n2)>

m<M n<N A<M m<M \ni,na<N m
d|P(z) dlm
— + o
< Y nan, Y Af() Y1
n1,ne<N d<M m<M
nine=0 d|P(z) dlm

ged(m,ning)=1

+ Y a3 N Y (”””).

ny,na SN asM m<M m
ning#0 d|P(z) dlm

We first consider the sum over nin, # . Here we write m = m’d and note that
the sieve coefficents A} are supported on the interval [1,y]. Then, using the Pélya—

Vinogradov inequality:

S aan, S M) Y (";:2) < ¥ ¥

ml

)

n1,m2<N <M mSM n1,n2<N d<y |m/'<M/d
ning#0 d|P(z) dlm ning#0
1/2 1/2
<y > n''ny (logniny)
n1,ne<N
ning#0

< yN*(log N).

For the sum over the squares we have

p— I 2 A
> mln, > A > 1< r(mY) X A > 1)
n1,ne<N d<M m<M n<N d<M m<M
ning=0 p|P(z) dm d|P(z) dlm
ged(d,ning)=1 ged(m,ning)=1 ged(d,n)=1 ged(m,n)=1

Note that, by assumption (E14) on f, and the definition of f, we may write,

Z@:Zl_f(p)

= (1 —a)loglog X + O(1)
p<X p p<X p

for 2 < X. Note also that f(p™) = f(p) for all primes p and all m > 1. It follows that

f satisfies the conditions of 222, Thus we may use this lemma to bound the inner
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sum by

—_
A

>OANf@ Y

d<M m<M
d|P(z) dlm
ged(d,n)=1 ged(m,n)=1
where we have set .
fp
plP(2) p
pln

Substituting this into the sum over nyny = [J we get,

SN i, M@ Y 1<, ((log%)l_azr<n2>gz<n>+yzf<n2>f<n

ni,no<N d<M m<M n<N n<N
ning=0 p|P(z) dlm
ged(d,ning)=1 ged(m,ningz)=1
M N (log N)? 5
———— N(log N
< ogaryia Y (log N)

where we have used (E=23) to obtain

Z 7(n*)g.(n) < N(log N)? and Z 7(n*)7(n) < N(log N)?,

n<N n<N

since g,(p) < 2 for all primes p. To conclude, we now have

M MN (log N)?
S(N,M)* <, (log AJa ( (1og(Mg)16>v +yN(logN)5+yN3(logN)>
< M?*N (log N)? yMN3(log N)

(log M)'=(log M)~ (log M )1 ~«

Taking square roots and noting that (x + y)'/? < (/2 + y'/?) for 2,y > 0 gives the
result, since y = M¢. O]

4.3 Proof of Theorem

Our strategy for this proof will be to cover the hyperbolic region in dyadic rectangles
and apply (E20)-(2110). Set

S(Ir)y= > " (nm)canbm(n>.
z<nm<T m
nm<T

If z > T2 then the sum is 0, so that the bound is trivially true. If z = T'Y/2 then the
sum has magnitude < 1, so again the bound is trivial. We are now left with z < T2,
Our first step is to split the sum over the hyperbolic region into 4 pieces. We write
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where

ST = X e, (Z);

z1<n,m<T
nm<T

SI0)= 3 5 e ):

2<n<z] z<m<% m

ST = Y 3 <nm)canbm(:;);

z<m<2zy z<n< L
m

Sy(T) = Z* Z* (nm)canbm<:1>.

z<n<z1 z<m<z1

where z; = max(z, %) We now aim to bound each of these sums individually. First
note that if z > % So(T) = S3(T) = S4(T) = 0 and so we only need to consider

T
them whenever z < %. For Sy(T) we apply (BEIR) with N = M = [ ;/;: divide
and multiply the sum by 7 so that we have |25a,|, |225b,| < 1. Then (EI8) with

€ < 1/6 gives

T2/3+c  if 4 < T3
Su(T) < log 77
«(7) c{o itz > 10

We now turn to the remaining 3 sums. If 2z < 17;;/73“7 then So(7) and S3(7") may be dealt

with using symmetric arguments as a consequence of reciprocity for Jacobi symbols,
(%)= (—1)W (™), and so we only need to deal with one: since n and m are odd
and square-free, we may split S3(7") into 4 sums using the conditions n,m = 1 or 3
(mod 4) and then reciprocity will give 4 sums in the same form as S5(7"). Thus we
only need to consider Sy(7") and S(7"). We aim to use Perron’s formula. For S;(T)
we split (21, 7] into dyadic intervals to obtain < (log7T)? dyadic regions of the form
(N,2N] x (M,2M] where N, M € (z;,T]. For Sy(T), split the intervals (z, 2] and
(2,T) into dyadic intervals to obtain < (logT)? dyadic regions (N,2N] x (M,2M]
where N € (z, 2] and M € (z,T]. This will give bounds of the form

2 : .
S1(T) < (logT) erg%zT\S(T, N, M)|;
21<M<LT
NM<T

So(T) < (log T)* max [S(T; N, M)];
SoM<T
NM<LT

where in each case
n

S(T;N,M) = Z* (nm)canbm<m>.

N<n<2N
M<m<2M
nm<T

Next, we apply Perron’s formula to deal with the hyperbolic conditions. Let 6 &
[—1/2,1/2] be such that T+ 0 € Z + % and take 7 = T + 6 in (E1-7). Then (217)
becomes

i/z(nm)itf:rw(t)dt = 1(nm < T) + O(R|log(nm) — log(T + 6)| ™)
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for any R > 0 where fr4(t) = w. Noting that here (log(nm)—1log(T+6)) >
we substitute this into S(T; N, M) to obtain

(nm)“t"a, by, (;)dt +0 (W) .

T?

S(T;N, M) = / freo(t)

N<n<2N
M<m<2M
Before we move forward, we deal with the (nm)“t term: write 1 = %, then by
setting a,, = (2 N) -a,, and b = (27]74)66 we have
* ctit, ) ﬁ — (AN M)¢ * it~ itg E
Z (nm) anOm - ( ) Z n " ap,m Op
N<n<2N m N<n<2N m
M<m<2M M<m<2M

where |na,|, |m™b,| < 1. By applying (BI8) and substituting into S(T; N, M) we
get

R NM)trer
S(T; N, M) < 4°(MN)* / | frao(t)|dt(MN)® (MNl/2 - M1/2N) + (]%.
-R
(4.3.1)
By instead applying Cauchy—Schwarz and (E110) we obtain
R NM 1+cT
S(T; N, M) < 4°(MN)° / | frio(t)|dt (MNl/2 + MY2N3/2(log N)1/2) + M) T
-R
(4.3.2)
We will apply (B231) to the dyadic regions in S;(7") to obtain
R T*(log T)?
c 2 ¢ 1/2 1/2
Si(T) <o T(log T) [ fro®ldt max (MN) (MNY2 4 MYV2N )+ ——
21 <M<LT
NM<T

. R T1+e T2+c<log T)Q
<<c,6 T (1OgT)2 /_R’fTJr@( )’dt ( % 2) R )

For S5(T") however, we may assume z < lTli SO that the dyadic rectangles either have
the lopsided condition N(log N)/? < M2 < 1/2 or have M'/? < N(log N)'/? «

ﬁ. Thus we may use (E=32) to obtain
R T2+c 1 T 2
Su(T) < T*(10g TV | freo(ldt max, (MNY24MY2NY(10g N)'/2)+ T *(logT)°
f 2<N< T R
2<M<LT
NM<T

" T1/2 T1/3 T (log T)?
. ) 1/2
<, T%(logT) LR|fT+9(t)|dt (T <z1/2 + (logT)1/2>> R

R T T (log T)?
c 2
<. T¢(logT) /R\fT+9(t)|dt (21/2) R ’

if 2 < L5 T and S3(7T) = 0 otherwise. Choosing R = T*(logT)? the integral becomes
bounded by (logT') therefore giving

T1+c+e (10g T)3

Sl (T) <<c,e 1/2 )
21
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and
THe(logT)? . T1/3
— =) jfz<
Sg T) < 21/2 log T’
() < 0 if z > ITU;,.
og

Finally, recalling that Sy(7') and S3(7") are symmetrically equivalent and that z; =

T1/3
? logT

max(z ), we may put all of these bounds together to obtain

T1+C(1172gT) +T5/6+c+e(logT)7/2+T2/3+c if2 < T1/3

S(T) < e log 77
(1) { i oo i

for any € > 0. Now suppose there exists an € > 0 such that z > T3

z > % we use the second case of the above bound with €/2 to obtain:

T1+c+e/2(log T)3 T1+cte
2172 ¢e 12

S(T) Kepe

If T3 < 2 < 17‘; ;/; then consider the first bound with €/2. Then,

T <(log T)? Titete

S(T) Lo oy +T5/6+c+6/2(10gT)7/2+T2/3+c Lo W

Then if

Lastly, 1f there exists an € > 0 such that z < T3¢, then consider the bound for

z < T T ’ with /2. In this case the first term dommates since

THC(log T)3

S 2 T (log T) > T/ (log )72,

which implies the result.

4.4 Proof of Theorem

The key idea of this proof is to cover parts of the hyperbolic region with rectangles of
equal width and apply Theorem B-T8 along with the Cauchy—Schwarz inequality and
(AT10) to the sums over each of these rectangles and then sum over the results. The

following lemma encodes the covering we will use:

Lemma 4.4.1. Fizc >0 and 0 < 6 < 1/2. Then for any T > 2 and any 2 <

T1+c>

we have,
Z* Z* (nm)a,b ( ) Z Z Z nm anm< >+O<
z<n<Td z<m<% keH nel, medy
where

8
{keN 21?2 < kgT—1};

~1/2

Ik:{nEN:zl/2k<n<zl/2(k+1)};
Jo={meN: <1
E=4m c .Z<m\m .

110
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m

Td

(k+ 1)21/2 T YT,

kz1/2

T

T
z (k+1)2172 =

n

Figure 4.4.1: Lemma =271 [llustration

Remark 4.4.2. By partitioning the interval over n into intervals of equal length we

are then able to make use of the fact that, close to the hyperbolic curve, the gradient

d(z/n) _
dn

leftover from the covering boxes having small volume.

—-%, decreases rapidly in magnitude. This observation will lead to the regions

Proof. We begin by partitioning the interval (0,7°] into % intervals of equal length
212 say (kz'/2, (k+41)2'/?] for integers 0 < k < 1;;2 1, and intersecting this partition
with (z,T°]. Then notice that

U I € (2, T°] NN,

keH

where the leftover part of this partition, L', satisfies

L'=((zTNN)\ U I € ((z,2 + 22U (T° = 22, T°]) NN,
keH
Fix a k. Then for an n € [, the summation index m ranges from z to % where
W < % < kz% To create our rectangles we split all ranges over m into a range
z<m <

nEIk,(

giving us the intervals Jj, and
W7n]ﬂNC<}k {m e N : m
ranges, for each k we have a rectangle I x J; and a small section Ly = {(n,m) €
N :n € I, W <m < %} close to the hyperbolic curve which is contained in
the small rectangle I, x J;. We also have the leftover regions coming from n € L',
L={(n,m)eN?:neL, z<m< L} Then we have:

W < m < =. Notice that for

<m < m} Combining the

T
(k+1)z1/27

{(n,m) eN*:nm < T, n<T°, n,m >z} = U e x J)u |J Le UL
keH keH

See Figure 1 for an illustration of these seltls1
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It follows that

Z* z:*(nm)c () ZZananm<)

z<n<T? z<m<% keH nel, meJy

" n
+> > (nm)°anbn, ()
kEH (n,m)eLy, m
n
+ 3 ()
(n,m)eL m
We conclude by bounding the second and third sums trivially. For the second we use
the triangle inequality and then expand the sum to [} x Jj:

> Z*(nm)ca <><<ZZ ZTC

keH (n,m)eLy, kEH nel, melJ]

Note that |1, x J}| < Summing this over k > 2!/2 gives

= k(k+1

* c n T1+C
> > (nm) anbm(m> <z

k€H (n,m)eLy

For the leftovers we use the triangle inequality again and expand the double sum to
the region ((z,z + 2% x (z, L] U (T° — 2V/2,T°] x ( 2, 75—75]) N N2 The number of
integer pairs in this region is < zl% + T2 « W using the assumption z < T°.
Thus we obtain the bound

Tlte

* c n
> (nm)anby, (m) < SR
Overall, this gives the expression

S5 () =% T S a4 0 (T ).

z<n<Td z<mg% keH nel, meJdy

]

We now complete our proof of Theorem ET9. This Theorem follows directly from

Theorem B8 whenever z > (logT)?!: in these cases, (lolg/?z = 0(1), so we obtain

" T ¢(log T
Z (nm)canbm (TL) <<c (1/(1g)
z<nm<T m z
nm<T

We are left with the case where 2 < (logT)?!, for which we aim to apply (E-I10)
and Lemma BZ270. However, in order for (AI1M) to be effective, we cannot allow
N = max(I) to exceed M'/? = (max(J;))"/? in any of our covering rectangles, as then
the N?(log N) term in (E110) would dominate the M term, and may lead to bounds
which are too large for our purposes. To avoid this we split the hyperbolic region as
before:

S (m)anbn () = Ri(T) + RalT) + Ro(T) ~ Ra(T)

z<n,m<T
nm<T
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where

R(T)= Y (nm)canbm(n>;
T1/4<n,m<T m
nm<T

BT = 3 X () anbn ()

z<n<T4 z<mg %

Ry = Y5 Y (nm)canme;);

z<m<T1/4 z<n§%

Ry(T) = Z* Z* (nm)canbm(g).

z<n<T1/4 z<m<T1/4

This splitting allows us to apply Lemma B-271 to Ry(7") (and R3(T")) and obtain integer
intervals I, whose maximums do not get too large, therefore allowing us to apply
(z1m) effectively. First, we bound R;(T") and Ry(T). For Ry(T) we use Theorem
TR with z; = TV

Tl-i-c(log T)3
1/3
21

Ri(T) <. = T /12 e(log T)?,

Tc

Next, we use (E18) with N = M = T4 to deal with R4(T). Multiplying by 1 = L
b 1. Then applying (E13R)

and setting a, = T”C—Zan, b, = Tmc—;bm, we have |a,|, |5m| <
gives
R4(T) <. T3/8+C+6’

which is sufficient by choosing € < 13/24, as it may then be absorbed into the bound
for Ry(T).

We are left with Ro(7") and R3(7T"). Note that these sums are symmetrically equi-
valent using the same argument as that of Sy(7") and S3(7) in Section B=3. Thus we
only need to deal with Ry(7T). For this we use the covering Lemma B2 with § = 1/4:

D)= % 5 S (L) +0 (55 ),

keH nely meJy

where

H

1/4
{kEN:zl/ngST—l};

~1/2

Iy = {nGN:z1/2k<n<zl/2(k+1)};

T

To deal with this sum, we will consider the sum over n and m for a fixed k. First deal
with the power term:

* * c n e X F * n¢ mczc/2(k +1) n
Sl (8) - e T (1)

nel, meJy meJ, nely
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n mzt/2(k+1)
21/2(k+1)? T

addition to b,, = meze 2 (kt1)°

< 1, so that we may define the sequences @, = —z%——a, in

Now 22 (k+1)

by, which satisfy the condition |d,|, |bm| < 1. Finally we

TC
apply the Cauchy—Schwarz inequality and (B110) with M = max(Jy) < % and
N = max(I;,) < 22(k + 1):
* * n * * ~ n
DS (nm)canbm<) 7y Y ’dnbm(>
nel, meJdy m meJr mnely m
e Im\ 2\ /2
ST 3|X2 a”() )
eJr 'mely m
T 1/2 T 1/2
Tl — ~ s I 1/2
< <z1/2(k+ 1)) (z1/2(k+ 1)) [
T1+c
S AR
where we used the fact that k%z(log(kz'/?)) < T'2(log T), while % > T3/* to

simplify the application of (B-I10). Summing this bound over the given k introduces
a logarithmic term, and so

T (log T)
Ryo(T), R3(T) < By —
Combining all the bounds we get:
« T (log T T (log T
Z (nm)canbm E <, (Og ) + T11/12+C(log T)B <, (Og )
m S1/4 S1/4
z<n,m<T
nm<T

(since z < (logT)?*) as required.

4.5 Proof of Theorem 4.1T.10

To begin we once more cut the hyperbolic region into regions depending on the sizes
of each variable. We write

n
> () = NlT) + No(T) = No(T),
1<n,m<T m
2tnm
nm<T

where

MO= ¥ ¥ ()

1<n<TY/2 1<m<T/n
2tn 2tm

Ny(T)= > >

1<m<TY/2 1<n<T/m
2tm 2tn

ND= Y% (”)

m
1<n<TY 2 1<m<TY/2
2tn 2tm

9

n
m
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Let us first deal with N1(T"). We begin by separating the square values of n:

MO = XY (B X% (5

1<n<TV/2 1<m<T/n L<n<T/2 1<m<T/n N
2tn 2tm 2tn 2tm
n=0 n#0

To deal with the second of these sums we use the Pdlya—Vinogradov inequality for the
sum over m, and then sum over 1 < n < T2, Thus the second sum is O(T%/*(logT)).
For the first sum, we note that since n is a square the Jacobi symbol is the trivial
character modulo n. Thus

<n)_ 1if ged(n,m) =1,
m) 0 if ged(n, m) > 1.

It is well-known that for a fixed odd n, the number of odd 1 < m < % co-prime to n
is given by

T

. M + O(TLE)

2n n

for any € > 0. Summing this error over the square values of n less than T2 we will
obtain an error of size O(T"/**), which is satisfactory. For the main term we use the
change of variables n = k*:

3 ;W:ig » AU T o),

4 4
1<n<TY/? n 1<kgT/4 k k=1 k
2n 21k 2tk
n=0

Noting that Ny(T') may be dealt with using the same methods we obtain

Ni(T) + No(T) = i ¢§§) T + O(T**(log T)).
S

Using Theorem 1 of [I3] with X =Y = T2 we obtain, N3(T) < T%*. Thus we have

00 k2
) (”) =Y il - ) T+ O(T**(log T)).
1<n,m<T m k=1 k

2tnm 2tk

nm<T

Lastly we evaluate the constant. To do this, let g(n) = Loga(n)1o(n)¢(n) where 1ogq
and 15 are the indicator functions for odd numbers and squares respectively. We will
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consider the Dirichlet series and Euler product of this multiplicative function:

LS
-1 (Hle p*me )

p#2

=11 (1 DS pzm%s—l))

pF#£2 p m=1

(1 _ 1/p(25—1)>
e p7$2 1 _ 1/p(2$—2)
1-20@729¢(25 — 2)
C1-20-29¢(25 - 1)’

8

—

where ( is the Riemann-zeta function. By taking s = 2 we obtain the equality

i ¢(k?) _ 6¢(2)

=k )
2k

as required.
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Chapter 5

Hyperbolic Character Sums

The goal of this chapter is to prove Propostions ZZ2ZB-222T1 which we assumed in
Chapter B to prove Theorem XTI

5.1 Technical Lemmas

In this section, we record and prove some technical lemmas that will be heavily used
moving forward.

5.1.1 Large Conductor Lemmas

We first list the results on bilinear sums in the Jacobi symbol which we will need in
this chapter. Recall the following result of Freidlander and Iwaniec:

Lemma 5.1.1 (7], Lemma 2). Let N, M > 2 and suppose (ay,), (b)) are any complex

sequences supported on the odd integers such that |ay,|, |by| < 1. Then
SN anbn (”) < (MN®/® + M°/°N)(log 3N M)™/6
n<N m<M m

where the implied constant is absolute.

We will also need the following modification to Lemma G171

Lemma 5.1.2. Let NJM > 2 and 2 < W < N, M. Suppose (ay), (bn) are any

complex sequences supported on the odd integers such that |a,|, |by| < 1.

n n M (log 3N M )7/
2 2 b <m> < W/

W<n<N m<M
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Chapter 5: Hyperbolic character sums Section 5.1

Proof. For this proof, set

Stu, M)=>" > aybm (n)

n<u m<M m

Using partial summation in the n variable we have

> oy

W<n<Nm<M

du.

v, (1) - SV M) SOV S

N N w wou?
Then bounding S(u, M) using Lemma P24, and noting that M, N > W, we may
obtain the result by trivially bounding the logarithms and computing the integral. [J

This result is particularly useful when N < M. Next, we will need the following

W
special case Corollary B-12:

Lemma 5.1.3. Let M > N > W > 2, and fix some € > 0. For any complex sequences

b which are supported on the odd integers such that |a,| < 1 and |by,| < 1 we have:

Ty anb ()<< M (log N) M2+ N1/2(Jog N2
<, nr(m) \m/) % W/2(log M)'/? (log M)1/4 ’

W<n<N m<

where the implied constant depends at most on €.

Proof. This result is a straightforward application of Corollary B2, Indeed % is a
multiplicative function satisfying all conditions of this lemma. In particular it satisfies
assumption (E14) with o = 1/2, giving the result. O

This result is particularly useful in regions where N2 < M.

5.1.2 Small Conductor Lemmas

In order to deal with regions where our sums involve Jacobi symbols which have small
conductors, we will require Siegel-Walfisz methods. Define

\/_ 11 fp< )1/2 and f,,_1+z

p prime

o 1)pj (5.1.1)

Our key lemma for this purpose is Lemma 5.9 from [29]:

Lemma 5.1.4. Let r and Q) be integers such that ged(r, Q) = 1. Let x(n) be a character
modulo Q). Fiz any C > 0. Then for all X > 2 we have:

ged(n,r)=1
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Section 5.2 Chapter 5: Hyperbolic character sums

where xo 1S the principal character modulo () and

fo
S = —.
o(Qr) (HPWQ fp)

Furthermore, if Q and r are odd and q € (Z/8Z)*, then we have

> x(n)  1(x = x0)G0(Qr)X {1 L0 ((loglog 37“62)3/2)} ey (T(T)QX> '

x T(n) N #(8)v/log X log X (log X)¢
ged(n,r)=1
n=q mod 8

Proof. We may use the same contour argument performed for Lemma 1 in [I7], along
with the fact that, if x # xo, the Dirichlet series

neN
ged(n,r)=1

c(e)
log Im

is holomorphic for R(s) > 1 — G logtm(e)y for any € > 0, where c(e) is some positive

constant depending only on €. For full details see [I'7, Lemma 1]. For the second part

we have (n) . () (1)
X\n — X\n)x \n
—— == X' (q) —
o, 2 s
ged(n,r)=1 mod 8 ged(n,r)=1
n=q mod 8
and so this follows via an application of the first part. O

This result with x = xo is used to obtain the main term in section 4 of [29]. We
shall do the same, however due to difficulties arising from our height conditions, we
will also require use of this result to obtain part of our error term (see Sections b2 and

5.2 Character sums over hyperbolic regions I

In this section we evaluate bounds for sums over hyperbolic height conditions. In
particular we will deal with sums of the form:

ZZZZ Xo(10)X1(n1)X2(n2)x3(n3) (5.2.1)

7(no)7(n1)7(n2)7(N3)

[noco,nical-||nzcz nges|| <X
ged(ng,2r;)=1V 0<i<3
ni=q; mod 8 V 0<i<3

where the sum is over n € N*, ¢;, 75, ¢; € N are fixed, odd constants for each 0 < i < 3
and x; are some characters. Our methods vary depending on which of the characters
are principal. In particular, we will have three cases to consider:

(a) Main Term: each y; is principal;
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(b) Small Conductor - Symmetric Hyperbola Method: x( or x; is non-principal and
X2 Or X3 is non-principal;

(¢) Small Conductor - Asymmetric Hyperbola Method: xq or x; is non-principal but
X2 and Y3 are principal or vice versa.

Each case will be handled using the hyperbola method, and Lemma BT4. For cases (b)
and (c) we will also provide results which average over the conductors of the characters.

5.2.1 Main Term

We first provide asymptotics for (6221) when all of the x; are principal. First we will
require some preliminary lemmas:

Lemma 5.2.1. Let X > 3, C1,Cy > 0 and take any qo,q1 € (Z/8Z)" . Then for any
odd integers 1 < ro,71 < (log X)' and any fized 1 < ¢, c; < (log X)©2:

ZZ 1 ~ &y(r,71)loglog X
o Troto e Prng)(on)
ged(n;,r;)=1 Vie{0,1}
n;=¢; mod 8 Vi€{0,1}
7(ro)7(r1)v/1og log X
+ 001702 coc s
0C1

where the implied constant depends only on Cy and Cy and for any odd ry, r1 we have
2f3
(8) (Ipizro fo) (Tpjar o)

61(7"0,7“1) =

and fo, f, are as defined in (B10).

Remark 5.2.2. Note that the presence of ¢y and ¢; in the denominator of this asymp-
totic is due to their presence in the denominator of the summand and not due to their
presence in the range of the n;. It will be seen in the proof that they become untangled

from the maximum.

Proof. Set the sum to be H(X). We split it into three regions depending on the value

of ||noco, nycy||:

H(X) = Ho(X) + Hi(X) — Hy(X)

where

1
Ho(X) =
noggx mg%;o/cl ngch(no)T(m) 7
ged(no,ro)=1 ged(ng,ri)=1
no=qo mod 8 n;=g; mod 8

1
Hy(X) =
e gy
ged(n1,m1)=1 ged(ng,ro)=1
n1=q1 mod 8 ny=go mod 8
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and
1

ngcgT(no)7(n1)

Hy(X) = >

llnoco,nic1||<X
ged(ng,r;)=1Vvie{0,1}
n;=q; mod 8 Vi€{0,1}
noco=nici

Let us first consider Hy(X). In order to use Lemma 614 on the inner sum we need

to ensure that ngcy/c; > 2. We write:

1 1
Ho(X) = Z Z +0 Z Z
2c1<noco<X ni<noco/c1 ngch(nO)T(nl) nopco<2c1 ni<nocop/c1 n%ch(no)T(Th) |
ged(no,ro)=1 ged(ni,r1)=1
no=qo mod 8 n;=g; mod 8

To deal with this second sum we note that n; < 2 and swap the order of summation.
Then it becomes

1 1
KDY > <

n1<2 n101/00<n0 Ono CoC1

Thus we are left with

1 1
W= Y % ro(L).
ngcdr(ng)7(ny) cocC
2c1<noco<X ni<noco/e; 0707 M0 1 0%1
ged(nog,ro)=1 ged(ny,ri)=1
no=qo mod 8 n;=¢; mod 8

Now applying Lemma 614 with ¢ = 1 and C' = 3/2 to the sum over n; we obtain:

7(r1)(log log 3T1)3/2E(X)> ,

CoC1

60(7‘1)

HolX) = d(8)coct

M(X)+O<

1 1
M(X) = and E(X) = .
2c1 énzogoéx noT(Tlo) \/ 10g nOCO/Cl 2c1<ngco <X nOT(nO)(lOg n060/01)3/2

ged(ng,ro)=1
np=qo mod 8

Note that for small ny the error terms are roughly the same size as the main term;
however, upon summing the ny over a large range, the dominance of the main term is
maintained. Since (loglogr;)*? <¢, (logloglog X)3/? it suffices to show that E(X) <
1. To see this, apply partial summation and Lemma bT4:

B(X) < Co Z 1 +/X/Co 1 Z L
X (log X/cy)3/? (no)  J2er/eo t2(logteg/cy)3/? 7(ng)

-
2c1<npco<X 261/60<n0<t

dt,

< L + /X/CO ! dt
(log X)?  Ji2:2e1/eoll t(log teg/c1)?/?(log 1)1/
2 1
1 <1 /
+1(c1/co ) 2e1/eo 2(log teg /1 )32 Z

2c1/co<no<t T (TLO)

1
dt

X/co 1
<1+ / dt < 1,
12,2¢1 /eol t(log teo/cr)?/? (log £)1/2
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where in the leading term of the second step we have used the fact that ¢; < (log X)©?
and a Taylor expansion to assert that
1 1
(log X/cl)3/2 (logX)?’/2
To see that the final integral converges, use the fact that \/logt > y/log 2 in this interval

and we use the linear substitution y = tcg/c;. For M (X) we increase the lower bound

of this sums range:

1 1
M(X) = > +0 ( > ) .
(log X)2%2 <no<X/co M0T(N0)y/10g noco /1 o< (log X)?C2 no7(no)

ged(no,ro)=1
no=qo mod 8

A straightforward partial summation argument shows that this error term is bounded

by < v/loglog X. For the other range we note that since ng > (co/c1)?, we may use

the Taylor series expansion

1 1 L0 ((10g00/01)> .

\/91ogngco/cy ~ Vlogng (log ng)?/2
We then have

1 (logco/cr)
M(X) = +0 S0/
(log X)chnoéx/co noT (1) V1og 1o <<1og X)'g; cnpex M0(l0g70)2

ged(no,ro)=1
no=qo mod 8

+ Og¢, (\/loglogX) )

The central error term sum converges and so,

(logco/c1) (logco/c1)
E \/loglog X.
no(logng)3/2 <cs log log X <o yloglos

(log X)292<no<X/co

For the leading sum in M (X) we use partial summation to obtain

dtm(

/X/Co 1 Z 1 Z
(log x)2¢2 t2y/logt == T(no) XVlog X = 7 (ng)

ged(no,ro)=1
np=qo mod 8

X
0 /2 t2( logt )3/2 Z

Using the trivial bound for the sums in the error terms it is clear that they are O(1).

Finally we may apply Lemma 614 with ) = 1 and C' = 3 to the sum inside the main

term, this time maintaining the constant:

_ Go(rg) [Xeo X (loglog 3r()®/?
M(X) = *(8) /(1ogx)202 t(logt)d 0 (/z t(logt)? dt)

+0 (/f 25(17(;22?))7/2&) + Oc¢, (\/loglogX> :
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These latter integrals will converge as X tends to infinity using ro < (log X)* to deal

with the presence of ry. The integral in the main term is

X/Co 1
dt = (loglog X O+ (log log log X
/(logX)QC2 t(lOg t) ( 0g 10g /CO) + C2( 0g log 10g )

= (loglog X) 4+ O¢,(logloglog X)

so that

M(X)= Ggég)) loglog X + O, («/loglogX> .

Substituting our expressions for M (X) and E(X) into Hy(X):

Vloglog X log log log X)3/2
Ho(X):W(loglogX)jLOcl,cQ( oglog X 7(ro)7(rs)(logloglog X) )
¢(8) CoC1 CoC1 CoCy

We will similarly obtain the same expression for Hy(X):
So(r0)So(r Vioglog X 7(ro)7(r1)(loglog log X )3/?
Hi(X) = W(loglogX)—i—OCLCQ( g log X (10)7(r1)(logloglog X) >
¢(8) CoC1 CoC1 CoCy

For Hy(X), suppose without loss in generality that ¢y > ¢;. Then

1 1 1
HBX)<5 Y S<—.
&4 no<X/co ng CoC1
Since &4 (rg, 1) = %, we are done. O

Using the same methods we can obtain the following variation:

Lemma 5.2.3. Let X >3, C1,Cy > 0. Then for any fized 1 < cy,c; < (log X)¢:

log [|noco, nic || log X
> 0 <
Inoco,nict||<X ||nOCO7 nic || T(nO)T(TLI) CoC1
Inodo,n1dy ||>(log X )2

where the implied constant depends only on Cy,Cy > 0.

Remark 5.2.4. By being more careful in the following proof we may also obtain the

asymptotic

ZZ log ||noco, nic || Si(rg,r1)log X

Y
Inoco,nic1]| <X |noco, nica||?7(no)7(n1) B(8)2cocy

ged(n;,2r;)=1 Vie{0,1}
n;=q; mod 8

but this is not needed later.

Proof. Call the sum on the left-hand side H(X). Then as before we may write
H(X) < Ho(X) + Hi(X)
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where

(log noco) (lognycy)

= > > 2 2 and I, (X) = ). > 2 2 :
noco<X n1<noco/c1 nOCOT(nO)T(nl) nic1 <X no<n1cl/co nlclT(nO) ( )

Looking at Hy(X) first as in the previous proof we once more ensure the range over n,

> 2 in order to apply Lemma BT In order to use Lemma BT on the inner sum

we need to ensure that ngco/c; = 2. We write:

HX= Y Y Sl 5y L)

2c1<npco<X n1<noco/c1 noc T( noco<2cy n1<n0c0/01 nOCOT(nO)T(nl)

_ ¥ 5 (log noco) + Oe ((loglogX)>‘

2c1<nopco<X ni<noco/c1 nOCOT(nO) (nl) ct

Now applying Lemma BT as an upper bound to the inner sum we obtain:

1 |
HO(X) < — ( 0og nOCO)

CoC1 2c1<nogco<X noT(no) \/ IOg noco/cl .

We split this sum into two:

1 Z (log moco) N 1 (loglog X)
COCL (105 x)2C2<np<x /o 0T (0)y/log oco/c1 COCT | (100 x )20 no7(n0)

The second sum here may be seen to be

1 (loglog X) (log log X )3/

CoC1

Ho(X> <<02

noT(ng) 2 cocC
noé(lOgX)QCZ 0 0 0¢1

using a standard partial summation argument. For the first sum above we use a Taylor

series expansion since we have ng > (log X)2“2. Thus

1 1
<L, ——.
v/ 9og noco/cq * Vlogng

Using the logarithmic rule we may also get rid of the ¢y in the numerator of the

summand. Overall, we have,

v1ogn log log X 1
g0+gg Z

Ho X <<C’ —
( ) : COC]. (logX)202<no<X/co nOT(nO) \% log nO

COCL (10 3122 mny X e "0 (100)
log log X)3/4
+( glog X)

CoC1

Note that the second sum above is of the same form as the main term of M(X) in
Lemma b2, which we evaluated to be of order loglog X. For the leading term above

we use partial summation and Lemma bE14:

1 V1ogng Viog X X /logt 1

— < dt
Qo (1ogx)202§<:no<x/co not(no) " coerX 2 <X 7(no) 0001752 : 7(no)
1 1 /Xdt log X
<o —+— | =<, .
CoC1 CoC1 J2 t CoC1
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Vlogt

.= for brevity.

Note that in the above computation, we bounded the derivative of
Thus,

CoC1
and we may similarly obtain the same bound for H;(X). O

The following result regards similar sums to the above, but over shorter ranges. We
will see that they have a similar flavour to sums already seen in the above proofs:

Lemma 5.2.5. Let X > 3, C1,Cy > 0. Then for any fired 1 < cy,c; < X, 1 <
do,dl < X02/2.'
1

lnoco, nici]|?7(no) 7 (1

2.

Inodo,n1di || <X 2

\/W»

<
) 01702< CoC1

where the implied constant only depends on Cy and Cs.

Remark 5.2.6. The key point to note here is that the constants ¢y and ¢; are not
included in the ranges for ng and ny. This will cause trouble in the unwrapping ar-
gument before, especially since the constants may be larger than either variable very

often. Instead it is enough just to use trivial bounds.

Proof. The sum is at most Ho(X) + H;(X) where

1 1
H()(X): and Hl(X): .
IR O Oy R T Ty
Here we can use a trivial bound for the inner sums, giving
1
Ho(X), Hi(X) < _
nexCy ncoerT(n)
Upon using partial summation and Lemma BT we obtain the desired bound. Il

Next we put these together to obtain Proposition 2Z2Z8.
Proposition 5.2.7. Let X > 3, Cy,Cy,Cs > 0 and take any q € (Z/8Z)**. Then for

any fized odd integers 1 < 1o, 71,729,713 < (log X) and fized integers 1 < ¢, ¢1, ¢, 03 <
(log X)°2, 1 < dy, dy,ds, ds < (log X)*/2 we have

YYYY .

[Inoco,mict]|-In2ce,naes||<X T(nO)T<n1)T(n2)T(n3)
Hnodo,nldl||,Hn2d2,n3d3H>(10gX)C3
ged(ng,r;)=1V 0<i<3
n;=q; mod 8V 0<i<3

_ 6y(r)X?loglog X L+0 7(ro)7(r1)7(r2)7(13)
T cpercacslog X C1,02,Cs cocicacsy/loglog X

where the implied constant depends at most on Cy, Csy, C3 and we define
Afg
¢(8)4 (Hp\ng fp) (Hp\Zn fp) (Hp|2r2 fp) (Hp|2r3 fp)
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Proof. Call the sum on the left hand side H(X). Then using the hyperbola method
we may write

H(X) = Ho(X) + Hi(X) + O(H2(X))

where
1
7(no)T(n1)7(n2)7(n3)’

Ho(X) = X000

Inoco,n1cr||<X1/2
In2c2,n3cs||<X/|Inoco,nical|
||n0d0,n1d1||,||n2d2,n3d3||>(logX)c3
ng(ni,2T’i):1 v 0<i<3
n;=q; mod 8 V 0<i<3

Hi(X) = 2000

||n262,n303||<X1/2
[lnoco,nict||<X/||n2c2,nscs|
Inodo,m1dx ||,[[n2d2,nads||>(log X)“3
ged(ng,2r;)=1V 0<i<3
ni=q; mod 8V 0<i<3

1

7(n0)7(n1)7(n2)7(N3)°

and
1

Hy(X)= > > > > 7(no)7T(n1)7T(n2)7T(N3) "

lnoco,nier]|<X/2
In2e2,nzes||<X/2

Let us first deal with Hy(X). We write

HQ(X)<<ﬁ( > T(;)><< X2

27
i=0 \porexi/? cocrczc3(log X)

by Lemma 65T4. Now let us consider Hy(X ). Here we may add in the terms for which

|n2dy, nads|| < (log X)©* at the cost of a negligible error term since,

2.2

Inoco,n1cr || <X1/?
|In2da,nads||<(log X)©3

1

7(no)7(n1)7(n2)7(N3)

< X(log X)?%s. (5.2.2)

Then
1

7(no)7(n1)7(n2)7(N3)

+ O(X (log X)*%).

Ho(X)=  >>.>.>.

Inoco,nic]|<X /2
In2c2,n3cs||<X/|Inoco,nicr |
l[nodo,n1ds [|>(log X)3
ged(ng,2r;)=1V 0<i<3
n;=q; mod 8 V 0<i<3

Using Lemma BT the sum over ny, and ng is

_ 60(T2)60(T3)X2
?(8)%cacs||noco, nicr||?(log(X/||noco, nicil]))
O ( X?(loglog [[3ry, 3rs||)*/* ) .

cacs|Inoco, mer||*(log(X/[Inoco, maca ))?

Note that we have suppressed the arbitrary log saving error term in this calculation.

This can be done by noting that @ = 1 and 7(r;) <¢, i/ <, (log X) so that

7(r;) X2 < X?(loglog ||37“2,37“3||)3/2
(log X/||noco, e |[)¥s — (log(X/||Inoco, nicall))?
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for Cy4 chosen sufficiently large. Therefore we have

My(X)+ O (XQEO(X)> + O(X (log X)?%%)

CaC3

60(T2)60(T3)X2

C2C3

H()(X) =

where

1

Inoco, nici[|*7(no)7(n1) (log X/[|noco, nici )

Mo(X) = >0

Inoco,nict]|<X/?
Inodo,n1d1 ||>(log X)©3
ged(ng,2r;)=1V 0<i<1

n;=q; mod 8V 0<i<1

and
(log log ||3ry, 3r3||)3/2

Inoco, nici||?7(no)7(n1)(log X/||noco, nicy||)?

Ey(X)= > >

[noco,nier||<X1/2
Using ||noco, nici]| < X2, the usual Taylor series manoeuvre and Lemma G271 we
have

3/2

1 (loglog ||3rq, 3r3]|)
EX) < ——
)< o2 2 gty mrer Prng) o)

. (loglog X )(log log ||3r2, 3r3||)>/?
cocy (log X)?

which is sufficient. Now we turn to My(X). Since ||ngco, nici|| < VX we may use a

geometric series argument to write

1 1 log ||noco, nic ||
_ +0 .
log X/||noco, n1c1|]  log X (log X)?

We have from Lemma 52710 (with Lemma B3 to add in the terms for which we have
Inodo, nids|| < (log X)),

Ty 1 _ S1(ro,m1)loglog(X /)
[Inoco,nicr||<X1/2 Hnoco,nlcl||27'(n0)7'(n1) “C1
Hnodo,n1d1|\>(logX)C3
ged(ng,2r;)=1V 0<i<1
n;=q; mod 8 V 0<i<1
7(ro)7(r1)4/1log log( X1/?)
+ 001702703 (
CoC1
and from Lemma B3 that
lOg ||n000,n101|| IOgX
Z Z 2 C1,02,C3 .
Hn()C(), 71161” T(TLQ)T(TH) CoC1

[noco,nicr||<X1/2
||n0do,n1d1||>(logX)C3
ged(ng,2r;)=1V 0<i<1
n;=q; mod 8V 0<i<1

We therefore conclude that

&1 (ro, 11) loglog(X'/?)
CoC1

MU(X) =

Vl1oglog X
+OC’1,02703 D

CoC1
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Note that when using the Taylor series above, the error term may in fact be of the same
order as the main term. In writing it this way we are in fact splitting a constant into
two parts - one independant of the n;, which contributes to the (loglog X) by Lemma
621 and a part dependent on the n; which contributes to an error of O(1) by Lemma
6273, We have now shown

~ 6y(r2)S0(r3)61(ro, 1) X ? log log X
N ?(8)2cocrcacs(log X)
Evaluating H;(X) in the same way we obtain the same result with ry and r, switched
with 7, and r3. Noting that GO(T")G(;(Zgl))fl(”’T3) = GO(TZ)G(;)((;))le(TO’Tl) = 622(r) we combine
the expressions for Hy(X), Hi(X) and Hy(X) to conclude the proof. O

Hy(X)

7(ro)7(r1) X?y/loglog X
+ OCLCQ,C?, .

coc1cocs(log X))

5.2.2 Small Conductors - Symmetric Hyperbola Method

This is the easiest of the three cases: all that is required for us to do is to apply the
hyperbola method and Lemma BT appropriately. To save space we introduce the
following summation conditions:

||n0d0,n1d1||, ||n2d2,n3d3|| > (1OgX)D
ged(ng,r) =1V0<i<3 (5.2.3)
n; =¢ mod 8V 0 <1< 3,

where D > 0 and the r; and d; are some integers and ¢; € (Z/8Z)* for each i.

Lemma 5.2.8. Let X > 3, (,C5,C3 > 0 and fix odd integers Qo, Q2 and some
q € (Z/8Z)**. Suppose xo and X2 are non-principal Dirichlet characters modulo Qg and
Q)2 and that g1, g3 : N — C are multiplicative functions such that |g1(n)|, |gs(n)| < 1 for
alln € N. Then for any odd integers 1 < ro,r1,72,73 < (log X ) such that ged(r;, Q;)
fori=10,2 and any fived 1 < co,c1,ca,c3 < (log X)2, 1 < dy,dy, dy,ds < (log X)3/?

we have

YT S Xo0(10)g1(n1)x2(n2)gs(n3) 040X

< ¢y,09,C5,C4 Cr)
neNA [nacn ol Tmacamcs [<X T(no)7(n1)7(n2)7(N3) cocycacz(log X))
23

for any Cy > 0 where the implied constant depends at most on Cy,Cs, C3 and Cy. Note
we have used D = Cy in (A223).

Proof. Call this sum H(X). Then using the hyperbola method we obtain
H(X) = Ho(X)+ Hi(X) — Hy(X),

where

Ho(X) = YT S Xo(no)gl(nl)X2(n2)93(n3)’ (5.2.4)

Hn()co,nlclﬂgXl/z T(no)T(nl)T(nQ)T(n?))

[In2e2,n3es]|<X/||noco,nicrl|
623
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Hy(X) = ZZZZ Xo(no)gl(nl)X2(”2)g3(n3)7 (5.2.5)

7(no)7(n1)7(n2)7(N3)

Inzca,nacs||<X/?
[lnoco,n1c1||<X/||n2c2,n3cs3]|
623

and

Hy(X) = TYYY Xo(no)gl(nl)X2(n2)93(n3). (5.2.6)

||n000,n101||,H7I2627n303”§X1/2 T(”O)T(nl)T(nQ)T(n?))

We deal with Hy(X) first. Using the trivial bound (6222), we may add in the terms
for which ||ngdo, nid;|| > (log X)* or ||nads, nsds|| > (log X)© at the cost of a small

error term:

M= YT Sl e )

[noco,nact |, lInzes,nacs||<X1/2
ged(ng,ri)=1 V0<i<3
n;=q; mod 8 V0<i<3

This sum is now separable so that, using trivial bounds for the sums over n; and ns

and Lemma 614 for the sums over ny and ns we obtain:

HQ(X) _ Z Xo(m) Z gl(m) Z w Z g3(n3)

noco<X1/2 T(no) nici<X1/2 T<n1> naca<X1/2 T(n2) nacs<X1/2 T(n?))
ged(no,ro)=1 ged(ng,r1)=1 ged(na,r2)=1 ged(ns,rs)=1
np=qo mod 8 n1=q; mod 8 na2=q2 mod 8 n3=q3 mod 8
+O(X (log X)*)
< T(ro)QoX 2\ (X2 (7(ry)Qu X2\ [ X1/
1200\ " (log X)Cn 1 c2(log X)C4 Cs
QoQ2X?

<Ly,05,05,C .
1,02,03,04 00610203(10gX)C4

Note also that by the assumption r; < (log X ) we may ignore the 7(r;) upon choosing

C, appropriately large, and since ¢; < (log X)¢? for all i we may use the bound

1
(log X/c)0 S {log X)OF

We will use these remarks again without mentioning. Next we deal with Hy(X).
Add in the terms where [|nyds, nsds|| < (log X)©* at the cost of an error term of
size O(X (log X)2“#) using a trivial bound. Then, performing the sum over ny and nz

first we write,

Hy(X) <eres D) > Xa(n2) 3 g3(ns)

TN TN
noco,nier <X1/2 [naca<X/|lcono,cima| (n2) nacs<X/|lcono,cina | (123)
ged(ng,r2)=1 ged(ns,rs)=1

ng=qg2 mod 8 n3=q3 mod 8

+ O(X (log X)?%).

129



Chapter 5: Hyperbolic character sums Section 5.2

Using a trivial bound for the sum over n3 and Lemma BT for non-trivial characters
(noting that the range is relatively large since that ||ngco, nici|| < X/2) we obtain

T(TQ)QQXZ Z 1

cocz(log X)2Ca+2 172 lnoco, i |2

Q2 X
coc1cacs(log X )¢

Hy(X) <ey,00,05.04

npco,n1c1<

<L¢y,04,C5,C4

where we have used the straightforward bound

Z 1 (log X1'/2/co)(log X'/2 /cy) < (log X)?
noco,nicr <X1/2 [noco, nic || CoC1 coc1

For Hi(X) we use an identical argument to that of Hy(X) with ng,n; switching roles
with n9,n3. This yields

QoX?
CoC1C2C3 (log X)C4 '

Hy(X) <¢y,00,05,04

Combining these three bounds gives the result. O

To conclude this section we want to average this result over a small range of con-
ductors to obtain Proposition ZZ2270. For this purpose it will be necessary to specialise
to the case where the characters are Jacobi symbols. For m € N odd, let #,,(-) denote

generically either the Jacobi symbol (E) or the Jacobi symbol (m)
Proposition 5.2.9. Let X > 3, C1,C5,C35 > 0 and fix odd integers QQy, Q2 and some
q € (Z/8Z)*, q € (Z/8Z)**. Fizing some odd integers 1 < ro,71,72,73 < (log X)
such that ged(r;, Q;) = 1 for i = 0,2 and any 1 < cp,c1,00,03 < (logX)2, 1 <
do, dy, dy,ds < (log X)*/% we define, for any m € N*,

H(X,m) = Z Z Z Z VQomomi (11213)VQamams (Non1) 7

7(no)7(n1)7(n2)7(N3)

neN? |lnomoco,nimici|-|[nemace ,namses || <X
(B=Z3)

where we use (223) with D = Cs. Then for any Cy > 0:
2 2
p=(2momamams )| H (X, m)| QoQ2X
2222

LC1,0,C5,Ca
et g |z gl og ) T ()T ()7 (m2)7(ms)
ged(momi,Qorars)=gcd(mams,Q1ror1)=1
m=g mod 8
Qomom1 and Qamaomsz#1

C[)ClCQCg<lOg X>C4 .

Proof. By the ged conditions on @; and the m;, the condition that Qgmgm, and
Qamams # 1 and the term p?(momymaems) = 1, we know that for each m considered in
the average, the quadratic characters ¥)gymgm, and ¥g,m,m, are non-principal. There-

fore, Lemma BZ8 tells us that, for each m considered in the average,

Q0Q2m0m1m2m3X2

H(X, m) <¢, 0,050
(X, m) evcroacy momymamszcocicacs(log X )CataCs

QuQ2X?

coc1Cacz(log X )Catals”

<¢y,09,C5,C4
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Therefore, by summing over the given m, the average can be seen to be bounded by

QoQ2X?(log X )= < QoQ2X?
cocyCacz(log X )CatiCs 01,02,05,Ca cocrcacz(log X)C4

<C1,C2,05,C4

5.2.3 Small Conductors: Asymmetric Hyperbola Method

We begin with a technical lemma similar in form to Lemma G271,

Lemma 5.2.10. Let X > 3, C1,Cy > 1, 0 < € < 1 and define Y = exp((log X)).
Fiz some odd integers Qo, Q1 and some q € (Z/8Z)** and suppose xo and X, are
non-principal characters modulo Qo and Q1 respectively. Then for any odd integers
1 < ro,r1 < (log X)C and any fized integers 1 < cp,c; < (log X)©2/18, 1 < dy, dy <
(log X)2/* we have

Z Z Xo(n0)x1(n1) <o o 7(10)7(11)(Qo + Q1)
noco,n1c1<Y HnoCo,TL161H2T(n0)T<TLl) b cocl(loglogX)C3

Inodo,n1di ||>(log X )2
ged(ng,ri)=1 V0<i<1
n;=q; mod 8 V0<i<1

?

for any C5 > 1 where the implied constant depends at most on Cy,Cy and Cj.

Remark 5.2.11. The philosophy with this sum, as with many others like it that
appear throughout this chapter, is that it should converge and so the lower bounds
should yield some saving. To see this, note that the sums considered above are similar
to

ZZ Xo(10)X1(n1)
nocom1c1<Y nonlCoclT(no)T<'fL1) ’
ged(ng,r;)=1 V0<i<1
n;=q; mod 8 YO<i<1

which is separable in each variable and is more readily seen to converge by comparing

the two sums to the Dirichlet series

D(lei) = i ;C;_((T;L))

n=1

More will be said about this idea in §073.

Proof. Call the sum H(X). The key difference to the above remark is that we run into
some difficulty when trying to untangle the constants cg, dy, ¢; and d;. Indeed we have
to split both maximums simultaneously in order to obtain sums of a familiar form. We

have four cases:
(1) NoCo 2 nicy and nodo 2 nldl;
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(2) nicy > nocg and nydy > nody;
(3) noco = nycy and nydy > nody;
(4) nicy > ngcg and ngdy = nyd;.

We note immediately that the conditions of (3) imply that j—é > & while the conditions
of (4) imply Z—; < ¢t and so only one of them will apply. Without loss in generality, we
will assume that (3) case holds. Now we split H(X) into regions in which ny and n,

satisfy these conditions. We have

H(X) = Hi(X)+ Hy(X) + H3(X),

where
Hi(X) = Z Z Xo(no)Xl(nl)
2.2 )
(log X)€2 /dy<no<Y/co m1<min(nodo/d1,moco/c1) nOCOT(nO)T(nl)
ged(no,ro)=1 ged(ny,r)=1
no=qo mod 8 n1=q1 mod 8
Hy(X) = Z Z Xo(n0)x1(n1)
2.2 )
(log X)©2 /d1<n1<Y/c1 no<min(nidi/do,nic1/co) nlclT(nO)T(nl)
ged(ny,r1)=1 ged(ny,r)=1
n1=q; mod 8 n1=q; mod 8
and
Hy(X) = Z Z Xo(n0)x1(n1)
- 2.2 :
no<Y/co  ||(log X)€2 /d1,nodo/d1||<n1<noco/c1 nOCOT(nO)T(nI)
ged(no,ro)=1 ged(ny,ri1)=1
no=qo mod 8 n1=q; mod 8

The sums H,(X) and Ho(X) may be dealt with similarly. For H;(X) we note that in
these regions min ("%, nece

X. We therefore apply Lemma BT to it to obtain:

7'(7’1)@1 mil’l(dg/dl, Cg/Cl>
nocd(log(ne min(dy/dy, co/c1)))<s’

) > (log X)3¢2/* and so the range over n; increases with

H1<X) <Lcy Z

(log X)“2 /dg<no

for any C5 > 1. Now we use min(dy/dy, co/c1) < ¢o/c1 to bound the numerator and
no > (log X) /dy > (log X)3“2/* > min(dy/d,, co/c1)? with a Taylor series expansion
to bound the denominator. This will yield

Hl(X) <<C3 Z T(Tl)Ql

Cs”
(log X)C2 /do<no NoCoC1 (1Og no)

Since C3 > 1, this is the tail of a convergent series and so we obtain

7(r1)@s
coc1 (loglog X)Cs”

Hy (X) <Ly, 03

Similarly,
7(r0)Qo
cocy (loglog X)Cs”

H2 (X)C'z,cs <<02703
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We now turn to Hz(X). First note that this sum is 0 unless

NoCo S (log X)C2
C1 - d1 ’

We may therefore add this condition to the sum of H3(X) with no cost. This will lead

to:

Hs(X) = 3 3 Xo(n0)x1 (1)

2.2 '
noCo7 (Mo )TN
c1(log X)©2 /cod1 <no<Y/co [|(log X)“2 /d1,nodo/d1||<ni<noco/c1 0™0 ( 0) ( 1)
ged(no,ro)=1 ged(ng,r)=1
no=qo mod 8 n1=q1 mod 8

In this case it is unclear whether or not the range over n; is guaranteed to increase

with X. In order to deal with this we write the sum over n; as

3 xi(n1) ) X1(n1).

ni1<noco/c1 T(nl) n1<|(log X)©2 /d1,nodo /di | 7(m)
ged(ni,r1)=1 ged(ni,r1)=1
ni1=q1 mod 8 n1=q1 mod 8

Both of these are sums with ranges which grow with X and so we may apply Lemma
614 to them. Upon doing this to the first sum above and then summing over ny we

obtain,

Z 7’(7“1)@1 7'<7“1)Q1

<
S0 nococt (logngco /1) 2.8 cocy (loglog X)©s

(log X)11C2/16 <<y
using the usual Taylor series expansion to deal with the ¢; inside of the logarithm.
Note also that we have extended the range over ny by positivity of the summand.
Now applying Lemma BT to the second sum above and summing over ny we obtain

(extending the range as above):

3 7(r1) Q1| (log X)©2 /dy, nody /d ||
ngcp(log || (log X)2 /dy, nodo /dy ||) %

<Ly

(log X)11C2/16 <Y

Here we use the upper bound

1(log X)%2 /dy, nody/dy|| < “22
1
for the numerator and the lower bound
d
o )% /dy, modo /dy | > “5=
1

and the usual Taylor series expansion for the denominator. Then the above is

3 7(r1)@: . 7(r1)Q1
(log X)11C2/16 <Y NoCoC1 (log n0>C3 2 CoCq1 (lOg lOg X)C3
This concludes the proof. u
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Next we prove a similar result to Lemma b=2R:

Lemma 5.2.12. Let X > 3, C1,Cy > 0 and fix some odd integers QQy, Q1 and some
q € (Z/8Z)**. Suppose xo and x1 are non-principal characters modulo Qo and Q
respectively. Then for any odd integers 1 < ro,71,72,73 < (log X)°' and any fived
integers 1 < co, c1, ¢z, c5 < (log X )92/ 1 < dy, dy, dy, ds < (log X)©?/* we have

ZZZZ Xo(no)x1(n1) 7(ro)7(r1)(Qo + Q1) X?

(o) ()T ()7 (m) O e (log X) (log log X )05

neN? |lngco,nictl-||n2ce,nacs|| <X
523

for any C5 > 0, where the implied constant depends at most on C1,Cs and Cs. Here
we use (B23) with D = Cs.

Proof. Once more, let the sum be denoted by H(X). Defining the parameter Y =
exp((log X)) for some 0 < € < 1 we use the hyperbola method to write

H(X) = Ho(X) + Hi(X) — Ha(X)

where Hy(X), Hi(X) and Hy(X) are

ZZZZ Xo(n0)x1(n1) ZZZZ Xo(n0)x1(n1)

Imoomeri<y T(10)7(01)7(n2)7(na)’ Inaeames<xgy  T(0)7(n1)7(n2)7(ns)
In2c2,n3csl|<X/|lcomo,cinal| lnoco,mic1||<X/||n2ez,nses||
73 573

and

2220

Inoco,nic1||<Y
[[n2c2,nzes||<X/Y
23

Xo(no)Xl (nl)
7(no)7(n1)7(n2)7(N3)

respectively. Following the same strategy as in the proof of Lemma B™Z8, we may
obtain

7(10)7(r1)QoQ1.X>

CoC1C2C3 (lOg X)4C3 .

Hy, Hy(X) <cy,00,05

Unlike in Lemma 628 however, Hy(X) and H;(X) are not symmetric. Trying to use
the same method as before for Hy(X) will result in a bound of X?(log X)? which is
too big. This is because we lose the information of the characters when we apply the
triangle inequality and trivial bounds on the sum over ny and nz. In order to maintain
this information and obtain some saving over the character sum we will instead use
Lemma BT to provide an asymptotic for the inner sum. Using the trivial bound
(622), we first add in the terms for which ||nyds, n3ds|| < (log X)2 at the cost of a
small error term:
_ Xo(no)x1(n1) 205
0= 2220 g 0BT
In2c2,naes||<X/||cono,cin ||
l[nodo,n1di [|>(log X)“2

gcd(ni,m)zl V0<i<3
n;=q; mod 8 VO<i<3
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The lower bound ||ngdy, n1d;|| > (log X)¢? cannot be removed as easily, and is in fact
necessary for the result to hold. Using Lemma 614 on the sum over n, and ng we
obtain that Hy(X) is

_ 60(7“2)60(7’3))( ZZ XO(RO)XI(RI)

*(8)2%cacs nosamio <Y Inoco, nica||?7(no)7(n1) (log(X/cacs||noco, nical|))
|lnodo,n1d1||>(log X)C2
ged(ng,r;)=1 V0<i<1
n;=q; mod 8 Y0<i<1

X2 (loglog 3ryrs)*/? 1
O :
R

noco,n1c1 <Y ||n0607 nic ||27'(n0)7(n1)

Here we have to be careful with the logarithmic term in the denominator of the “main
02/8

term”. To deal with this we note that, since cocs||noco, nic1|| < Y (log X)2/°, we may
write:
1 _ 1 I 0 ((log(0203||n000, nchH)))
(log(X/cacs|lnoco, mar])) — (log X) (log X)?

S +0 !
~ (log X) (log X)2=¢ )
Substituting this into the expression for Hy(X) we will get

XZ
Ca2C3 (log X)

X2(log log 3ryrs)3/?

Hy(X) < cacs(log X)2—¢ O(X)>

My(X)+ O <
where My(X) and Ey(X) are

n n
ZZ XO( 0);(1( 1) and ZZ
noco,n1c1 <Y Hnoco’nlcln T(no)T(nl) noco,n1c1<Y
||7“L0d0,n1d1H>(10gX)02 ng(TLi,T’i)Zl V0o<i<l
ged(ng,r;)=1 V0<i<1 n;=q; mod 8 V0<i<1
n;=q; mod 8 YO<i<1

1

Inoco, nici||?7(no)(n1)

respectively. For My(X) we apply Lemma 52710, giving:

7(ro)7(r1)(Qo + Q1)
coct(loglog X))@

My (X> < y,05

For Ey(X) we can just apply Lemma B2 to see

loglog Y log log X
og log ><<6<0g0g )

CoC1 CoC1

Ey(X) <« (

Substituting these bounds into our expression shows that:

7(ro)7(r1)(Qo+Q1) X? X?(loglog X)(loglog 3ryrs)3/2
coc1czc3(log X)) (loglog X)©s cocrcacs(log X)2—¢

7(ro)7(r1)(Qo + Q1) X?
* cocrcacz(log X)(log log X)©s

HO (X) <<02103

<<027C

concluding the proof. O
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Lemma b2T72 is only effective when the conductors, (); are bounded by a power of
loglog X. Therefore we must turn to other methods to deal with the larger parts of
such averages. In particular, we will use the large sieve results from §h.

Lemma 5.2.13. Suppose a,,b,, are any complex sequences supported on odd integers
such that |a,| < 1 and |b,| < 1. Then for any X > 3, C1,Cy > 1 such that
(C1loglog X)© > 2, and any firved integers 1 < ¢y, ¢; < (log X)/32 we have

1 b, (M1
2 ngeiT(no) 22 mr(ny) \m
(log X)3C1/4<ngco< X /2 (C1loglog X)©2 <m<(log X)2C1
n1c1<Nneco

1
cocy (loglog X)©s

<Ly,

where C3 = Cy/2 — 1 and the implied constant depends at most on Cy and Cj.

Proof. For convenience we will write Z = (log X)“*. Setting the sum on the left-hand
side to be T'(X), we have

T(X) < Th(X) + To(X) + T3(X)

where
1 ambn ny
Ty(X) = ey Ao (1)),
ZlO<n0<ZX1/2/c0 n(QJC%T(n(J) (log Z)ZC2§n<Z2 mT<n1> m
n1¢1<N0Co
1 ambn ni
Ty(X) = T Ao (1)),
Z3/4/C(§LO<Z10 n(Q)C%T(nO) (log Z)%:<§:<Zl/10 m7-<n1> m
n1C1<NCo
1 ambn ny
A= I
Z3/4/c02<210<210 n%C%T(nO) Zl/%:<£22 mT<n1) m
n1c1<Noco
For T1(X) we apply Corollary 513. Then 73(X) is
< 3 1 ( noco(log Z) (noco)*®Z(log Z)1/2>
210 << XY/ e ngcgT(no) \ c1(log Z2)“2/2(log ngco/cr)'/? ci’/s(log noco/c1) /4 ’

<« ¥ ( (log Z) )

210 a1/ g \T0COCL (log Z)“2/2(log ngco/c1) /27 (ng)

S ( Z(log Z)V/? ) |

219 <np <X/ e (noco)7/5c§’/5 (log ngco/c1) V47 (ng)

Since noco/c; > Z ¢, /c1 > 2 by assumption, the second sum is

Z(log Z)'?  (log Z)/?
Z4cg/5c§’/5 Z3cg/5c“;’/5 '
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Using similar methods used to compute M (X) in Lemma 521, we can bound the first
sum by

1
© < loglog X.
nog(:l/z nO(IOg nOCO/Cl)1/27'<nO)

Substituting the previous two bounds into 77 (X) will give

(log log X) (log Z)"/2 (loglog X)
Th (X
1( ) <oy cocl(log Z)02/2,1 chg/scil’)/s <e, 0001(10g Z)CQ/2*17

using the fact that Z > cf/ ® to determine the dependence on cy and c¢;. Using the
same approach we can obtain the same bound for T5(X). Finally we deal with T3(X).
Here it is better to apply Lemma BT since the ranges of the inner double sum are of

comparable size. Doing this we obtain,

log 7)7/6
T3(X) < ( gl/go
Z3/% Jeo<no<Z 10 NoCoC1 4 T(no)
log 7)7/6
< (og2)"”
coc1 Z1/60

We are now ready to prove Proposition Z°XS.

Proposition 5.2.14. Let X > 3, C,Cy > 0 be such that (C;loglog X)¢2 > 2.
Fiz some odd square-free integers Q1,Q2, Qs € N such that Q; < (loglog X)“2, and
some q € (Z/87)**, q € (Z/8Z)**. Suppose xo and x3 are characters modulo Q,
and Qs respectively. Fiving any odd integers 1 < ro,r1,72,73 < (log X)' such that
ged(Qq, ror1rars) = ged(Q2Qs, rors) = 1 and fiving any 1 < cg, ¢1, ¢a, c3 < (log X)©2/32,
1 < dy,dy,dy, ds < (log X)©2/* we define, for any m € N?

Fxm = YYYY Cmaminane)
nEN4,||TL0d0,TL1d1H,||n2d2,n3d3||>(10gX)02 7—<n0)7—(n1)7—(n2)7(n3)
[[noco,nict||-||[nemace,namses|| <X
ged(ng,2r;)=1V 0<i<3
n=q mod 8

Then,

Sy 12 (mams)x2(ma)xs(ms)

meN?,|[ma,ms|<(log X )2 T(mQ)T(m?))

ged(m;,2Q1Q2Q3r;)=1 V2<i<3
m=q mod 8
Q1mams3#1

H'(X,m)

7(ro)7(r1) X?

<e cocrcacz(log X)(log log X)Cs’

where C3 = Cy/2 — 1 and where the implied constant depends at most on Cy and Cs.
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Proof. Denote W = (log X)“? and recall that ,,(-) = (E) Call the average sum
S(X). Then we write

S(X) = S1(X) + S2(X)
where S;(X) and Sy(X) are defined as S(X) with the extra conditions ||mg, ms|| <
(log W) and (log W) < ||ma, ms|| < W respectively. First we deal with S;(X). For
each fixed m such that ged(my, 2Q1Q2Q37;) = 1, p?(mams) = 1 and Qymayms # 1, the
sum H'(X, m) is precisely of the form considered in Lemma 6212, Furthermore, the

range of my and mg in S;(X) is small enough for this lemma to be effective. Thus,

Sl(X) <L0y,05 ZZ 'u2(m2m3)T(TO)T<T1)Q1m2m3X2

e o s TS (027 ) (o X) log W)

T(To)T(T‘l)Ql)(Q
cocicacs(log X)) (log W)©s”

Next we deal with S3(X). We first use the hyperbola method on the H'(X, m) terms
again with the parameter Y = exp((log X)) to obtain

<<C2703

H'(X,m) = H)(X,m)+ H(X,m) — Hy(X,m)

where

Hy(X,m) = 202 T(nO)T(n1)1T(n2)T(n3) ( o )’

[[roco,nica||<Y Q1maoms
||n2m2627n3m303||<X/||n000,n101 ||
623

and H{ (X, m), H,(X, m) are defined as H}(X, m) with the height conditions {||ngcy, nic1 || <

Y, ||Inamace, ngmacs|| < X/||noco, nic1||} replaced with
{HnngCQ,nngC'g,” X/Y Hnoco,nlclH X/HanQCQ,nngCgH}

and

{Hn()C(],nlCl“ Y ||n2mgc2,n3m203\| X/Y}

respectively. H{(X,m) and H5(X, m) may be dealt with using Lemma BT since the
ranges of the sums over ng and n; are guaranteed to be exponential in the size of
QQ1maems. The conditions on ¢y, my and mg3 guarantee that g, m,m, is non-principal.
Then Lemma BT will give arbitrary logarithmic saving in the sums over ny and ny

so that, upon summing over ny and n3 we obtain

7(ro)7(r) @imams X Qimams X°

H{<X’ m),Hé(X, m) <cy,0 <cy,0n

mamscocicacs(log X )6C2 coc1cacz(log X)5C2

See the bounds for (5224) and (5228) in Lemma 2R for analogous proofs. Summing

these over trivially over the m; will then give

(% (mams) xa(ma)xs(ms) .., 7(ro)T(r1) X?
ZZ T(mso)T(ms) H(X,m) <c coc1cac3(log X)©2

meN?
(log W) 3 <|/ma,ma||<W
ged(mg, 2Q1Q2Q3T )=1V2<i<3
m=q mod 8
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and likewise,

7(ro)T(ry) X2
* cocreacz(log X)©2

Sy 1% (mams) xa(mz) xs(ms)

HI(X
7(ms)7(ms) 2( 7m) <Loy,0

meN?
(log W)C <[jma,ms | <W

ged(m,2Q1Q2Qs7m;)=1 V2<i<3
m=q mod 8

since W = (log X)“2. We now turn to H)(X,m). We add in the terms for which
|In2ds, n3ds|] < (log X)©? at the cost of a small error term (see, for example (622)):

1 No1y
H\(X,m) = ( ) +0(X (log X)?2).
0 %glczlng 7(no)7(n1)7(n2)7(n3) \ Qrmaoms
In2macz,ngmacs||<X/||noco,nica||
[[nodo,nidi||>W
ged(ng,ri)=1 V0<i<3
n;=q; mod 8 VO<i<3

Next we apply Lemma 614 for non-principal characters with @ = 1 and C' = 3/2 on
the sum over ny and ns, allowing us to preserve the Jacobi symbol. Upon using the
standard Taylor series method to the logarithmic factors (as in Lemma 5212 since

mamacacs||noco, nic || < Y (log X)3¢t = o(X)), we obtain

Hy(X, m) = Hi(X, m) + O(Hp, (X, m))

where
HY (X, m) = So(r2)So(r3) X* 3 (grees)
00{Xs ¢(8)*mamscacs(log X) | = =\ |Inoco, naca|[*7(no)7(n1) ;
||n0d0,n1d1H>W

ged(ng,r;)=1 V0<i<1
n;=q; mod 8 YO<i<1

and

X2 1

H(/)l(Xv m) =

2.2

[lnoco,nica||<Y
H’nodo,nldl ||>W

mamscocs(log X )2—¢ |noco, nicr||?7(ng)T(ny)

Note that we have used r; < (log X)©* to absorb (loglog 3ror3)*/? and 7(ry)7(r3) into
(log X)¢. Let us first deal with the H}, (X, m). By Lemma 5271 the sum is O (M),

coc1
so that overall,
X?(loglog X)
cocrCacgmamy(log X )2=¢

H(l)l(Xa m) <

Summing over m will give

X2(log log X )*
CpC1C2C3 (10g X)2_€ )

< ZZ |H(/)1(X7 m)| <<02703

[lma2,m3||[<W

To deal with H{,(X, m) we use the averaging over m. Specifically, we are left to bound

2
p?(mamg)xa2(me)xs(ms) .,
Sa00(X) = Hly(X,m).
%:e% T(ma)7(ms3) 00
(logW)C2<||m2,m3H<W
ged(m;,2Q1Q2Q37;)=1 V2<i<3
m=q mod 8
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This is bounded by

X? 3 Ty (1% (mams) x2(ma) x3(ms) (%)
CQCg(lOg X) meN? neNt Inocomier||<Y m2m3||noco,n101||27'(m2m3)7(n0)7'(n1)
(log W)€ <|lmz2,ms||<W lnodo,n1dy||>W
ged(m;,2Q1Q2Qar; ) =1 vV2<i<3 ged(ng,ry)=1 0<i<1
m=q mod 8 n;=q; mod 8 0<i<1

To begin we will write m = mgymg and define

T(m) = > Xa(ma)xs(ms3).

mama=m,||ma,ms||>(log W)¢
ged(m;,2Q1Q2Q37;)=1 V2<i<3
m;=§; mod 8 V2<i<3

Then, by rewriting, we see that Ssgo(X) is

X? p2(m)7(m) nony
< loe X)) > > 2 :
0203( 0g ) (log W)C<m<W?  |[noco,nicr||<Y mHnOC(%nlcl” T(m)7<n0)7—(n1) Qim
||n0d0,n1d1||>W
ged(ng,r;)=1 V0<i<1
n;=q; mod 8 VO<i<1

Next we split the sum over ng and ny into a region where nyc; < ngcy and a second
region where ngcy < nyc;. The sum over each region will be of the same order, so that
Sa00(X) becomes

< L > b 3 3 (2 (m)7(m) <n0n1>
CQCS(IOg X) W3/4/C0<n0<Y/COn%C%T(nO) (log W)C<mgw2 n101<n000 T(m)T(nl) le
ged(no,ro)=1 [lnodo,nady||>W

nog=qo mod 8 ged(ny,ri)=1
n1=q; mod 8

Here we note that, although ngcy > nici, we may still have ngdy < nidy; however, this

can only occur when
L . n d
d0_ 20

< .
Co ny dy

If this were the case, then we use the fact that ||nodo, nid;|| > W to assert

We nidic
L mdie

X nodh
Co Co
from which it follows that -
c
noCy = Tl P W3/47
1

giving the lower bound in the sum over ng. The bound ||ngdy, n1d; || > W is maintained

as a condition on n;. Next we define
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and

n
by, = 1(ged(ny, 1) = 1)1 (ny; = ¢ mod 8)1(||nodo, n1dy|| > W) <Ql> .
1

Then, using the triangle inequality,

X? 1 Ambn, (M
Sa00(X) € ————= U AN — () .
CQCB<10gX> W3/4/C()Z<;L()<Y/Co n(Q)C%T(nO> (logw¥2§ngw2 mT(nl) m
ni1<noco/c1

Finally, by applying Lemma BE=2T3, we obtain

X2
Sa00(X
200(X) <e,.04 cocrcacs(log X) (log log X )905/20-2”

which is sufficient. 0

5.3 Character sums over hyperbolic regions II

In this section we deal sums where characters are arranged in a different manner with
respect to the hyperbolic height conditions. The type of sum considered is of the form

S S rtnrinint 63

[[noni,nens||<X 1 T(nQ)T(n3)

where x and v are some Dirichlet characters. Just as in §62 we have three cases:

(a) Main Term: both y and % are principal;

(b) Small Conductor — Symmetric Hyperbola Method: both y and i are non-
principal;

(¢) Small Conductor — Non-symmetric Hyperbola Method: only one of y or i) are
non-principal

The main term in this case may be seen to be of order X2 but in our counting prob-
lem however, expressions like this come from the contribution from fibres of points
[Yo; Y15 Y2; y3] where —yoys or —yoys are squares, which are excluded. To see this in
practice see §23 and §28. We set up the preliminaries for this in the first subsection
and handle the symmetric and non-symmetric cases using the results of §571.

5.3.1 Sums Over Fixed Conductors

First we prove Lemma 229, which is the technical result in having the X? term vanish
is the following:
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Lemma 5.3.1. Let X > 3, C,Cy > 0. Suppose Xo, X1, X2 and X3 are Dirichlet
characters modulo 8 such that x; and x; are non-principal for some pair (4, j) € {0,1} x
{2,3}. Then for any odd integers 1 < ro,71,72,73 < (log X)“* and any integers 1 <
co1, 23, M < (log X)©2 we have,

Xo(10)X2(n2)x1 (1) x3(n3) T(TO)T(H)T(W)T(?“?))XQ
2200 T ) rm) SO T e M2 (log X)

[lnonicor,nanscas|-M<X
ged(ng,2r;)=1V 0<i<3

where the implied constant depends at most on Cs.

Proof. We write the sum under consideration as Hyy(X)Ha3(X) where,

Hn(X) = ZZ —XO(nO)Xl(nl) and Ha3(X) = ZZ —XQ(nQ)Xg(nS).
non1<X/co1M, T(no)T(nl) nan3<X/casM T(?’Lg)’i’(ng)
ged(n;,2r;)=1V i€{0,1} ged(ng,2r;)=1V i€{2,3}
These are symmetric and thus we will focus on Hy; (X) and note that any bound for this
may also be obtained for H3(X). Further, we will assume without loss in generality

that yo and Y, are non-principal. Letting Y = exp((log X)'/%) we use the classical
hyperbola method to write

Ho(X) = Z Xo(n0) Z x1(n1) n Z x1(n1) Z Xo(no)

no<Y T(no) n1<X/nocor M T<n1) n1<X/cot MY T(nl) no<X/n1cor M T(no)
ged(no,2ro)=1 ged(ng,2r1)=1 ged(ng,2r1)=1 ged(no,2ro)=1

. ZZ Xo(70) Xl(nl).

no<Y,n1<X/cot MY T(no) T(nl)
ged(ni,2r;)=1

For the second and third sums we use Lemma 514 for the sum over yg(ng) with Q = 8
and C' = 2025, noting that for the second sum we use,

1 1 1

(log X/nyco1 M)20% < (log Y7)2025 < (log X )2025/6

since ny < X/Ycgi M. In each case, upon summing over ny, we obtain

T(ro) X

<c co1 M (log X )2025/6°

We are left with

XO(nO) X1 (nl) T(TO)X
Ho(X) = + O¢ )
nozg:y 7(ng) n1<X%;)001M T(n1) cor M (log X)2025/6
ged(ng,2r9)=1 ged(ny,2r)=1

This error term is sufficient since 7(ry) <¢, (log X)Y5. Now, if y; is non-principal
then this remaining sum may be handled in the same way as the second. We therefore

assume that it is the principal character modulo 8. Then, given the height conditions,
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we may use Lemma B4 for principal characters modulo 8 on the inner sum over n,
with C' = 2025. This will give Hy;(X) equal to

So(r)X Xo(n0) L0 X (loglog 3r;)%/? 1
coM sy no7(no)(log X /ngcer M)1/? co1 M (log X')3/2 sy no7(ng)
ged(no,2ro)=1 ged(no,2rg)=1

Using the bound
1

ooy noT(no)
ged(no,2ro)=1

< (log V)% < (log X)'/?

and the typical Taylor series expansion

1 1 1
- of— "
(log X /ngcot M)V/2  (log X )1/2 - <(logX)4/3>

(the latter a result of ngcoi M < Y (log X)2¢2), this becomes

X X (log log 31 )3/
H()l(X) Z Xo(no) L0 (og 0g 7’1) ’
co1 M (log X)1/2 W=y noT(no) cor M (log X)5/4

ged(no,2ro)=1

Now let us consider the remaining sum over ng. To do this first consider the Dirichlet

series - (n)
Xo(n
D = .
GX)= 2 )
ged(n,2r)=1

Using the Euler product we may write

D(Su XO) = P<87 r, XO)R(Su XO)L(SJ X0>1/2

where P(s,r, xo) and R(s,xo) are

= Xo(p)! - xop)\"?

p pr‘lme p prime
plr

respectively, the second product converging absolutely when ®(s) > 1/2, and

L) = TI (1_X0(P)>_1

s
p prime p

is the L-function for the character yo. It follows from this decomposition that the
Dirichlet series converges whenever R(s) > 1/2 and L(s,xo) # 0. Using the zero
free region for L-functions of primitive characters and Siegel’s Theorem it follows, in

particular, that D(1, xo) converges and that
D(L T, XO) = P(L T, XO)R(17 XO)L(L XO)1/2 <K T(?“)
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Therefore,

n
s Xl )
no<Y noT(no)
ged(ng,2rg)=1

from which it follows that
T(ro)T(r1) X
cor M (log X)V/2

Hn(X) <

Similarly,
T(re)T(r3) X
casM (o8 )12

Hys(X) <

5.3.2 Small Conductor — Symmetric Hyperbola Method

As with case (b) of §5-2, we only need to apply Lemmas 514 and the hyperbola method
appropriately.

Lemma 5.3.2. Let X > 3, C;,Cy > 0, Qo2, Q13 be odd integers and q € (Z/87)**.
Suppose Xoz2, X13 are non-principal Dirichlet characters modulo QQoa, Q13 respectively.
Then for any odd integers 1 < ro,71,79,73 < (log X)©* such that ged(Qij, 2rir;) = 1
whenever (i,7) € {(0,2),(1,3)} and any integers 1 < coy, caz, M < (log X )2 we have,

Z Z Z Z X02(n0n2)X13(n1n3) Q02Q13X2

<Loy,0 .
Inomaon o TA <X 7(no)7(n1)1(n2)7(n3) 278 corco3 M2 (log X)Cs

gcd(ni,Qri):lv 0<i<3
n;=q; mod 8V 0<i<3

for any C5 > 0, where the implied constant depends at most on the C;.

Proof. Write the sum under consideration as Ho; (X )Ho23(X) where,

Hy(X)= Y% Xoz2(10) x13(n1) and Hyp(X) = 3% X()Q(TZQ)X13(TL3).

non1<X/co1 M, T(no)T(nl) nan3<X/caz M T<n2)7-(n3)
ged(ni,2r;)=1V i€{0,1} ged(n;,2r;)=1V i€{2,3}
n;=q; mod 8Y i€{0,1} n;=q; mod 8 i€{2,3}

These sums are symmetric and so we focus on Hp;(X). The hyperbola method gives

Ho(X) = 3 Xo2(70) 5 xis(n1)

<X1/2/cl/2M1/2 T(no) ’I’L1<X/7’L0001M 7-(77/1)
1o o1 ged(ng,2r1)=1

2rg)=1
ged(no,2ro) n1=q; mod 8

no=qo mod 8

+ Z x13(n1) Z X02(no)

n1<X1/2/c(1){2M1/2 T(nl) TZ()<X/TL1001M T(no)
ged(ng,2r1)=1 ged(no,2ro)=1

n1=q; mod 8 no=qo mod 8

o Z Z on(no) X13(n1)

7(ng) 7(ny)

no,n1<X1/2/c(1){2M1/2 ( 0) ( 1)
ged(ng,2r;)=1
n;=q; mod 8
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The last of these sums may be written as the product of the sum over ny and the sum
over ny. Since both g2 and y13 are non-principal, we use Lemma BT on each part of

this product and multiply the results to show that the contribution from this sum is

7(r0)7(r1)Qo2Q13X < Qo2Q13X
Co1 M(log X/COlM)2CS+1 2,05 001M(1Og X)CS+1 )

<cy,Co

This last bound is obtained using the assumption cq;, M < (log X)¢2. The first two
sums in the expression for Hy; are dealt with in the same way since both characters

are non-principal. Looking at the first sum, we use Lemma BT for the sum over n;.
This leads to

Z 7’(7‘1)Q13X

<< .
“ , NoCo1 M (log X /ngcor M )2C3+2

n0<X1/2/Cé{2M1/
Now, since ng < Xl/z/c(l]{zj\/ll/2 and cg;, M < (log X)©2 it follows that the first sum is
then bounded by

Z 7(7’1)@13X Q13X

< < .
©2.05 nocor M (log X )2Cs+2 C2:0s cor M (log X )Cs+1

TL0<X1/2

Thus
Qou2Q13X

Hn(X) <cy.04 cor M (log X)05 71"

Putting this together with the trivial bound % for Hos(X) gives the result. [

We conclude this subsection with Proposition ZZ210. Its proof is a direct application
of Lemma b=33.

Proposition 5.3.3. Let X > 3, C1,C5,C3 > 0, let Qo2, Q13 be odd integers and take
q € (Z/82)*, q € (Z/8Z)*. Let 1 < ro,r1,72,73 < (log X)) be odd integers such that
gcd(Qyj, 2rir;) =1 fori € {(0,2),(1,3)} and any 1 < cg, ¢y, ca, c3 < (log X)©2. Define,
for any m € N*,

H(X,m) = Z Z Z Z YQuamoms (10712) V@ 15m 1 ms (M1723)
) neNt T(no)T(nl)T(n2)T(n3)
||n0n1607n2n301H-”momlcQ’QO:,)CBHgX
ged(ng,r;)=1 V0<i<3
n;=¢q; mod 8 VO<i<3

Then

YyYyy o dlmommmg) B m)
meN? ||mo,m1,ma2,ms||<(log X)¢3 T(mO)T(ml)T(mQ)T(mZ%)
ng(m0m272Q027’07’2):ng(m1m3,Q13r1r3):1

Qoamoma#1 and Qizmims#1
m=q mod 8

Qo2Q13X >

CoC1C2C3 (lOg X)C4 .

<¢1,05,C3,C4
for any Cy > 0 where the implied constant depends at most on the C;.
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5.3.3 Small Conductor — Non-Symmetric Hyperbola Method

As in the analogous part of §62 the asymmetry of these sums leads to difficulty. In
the previous case the lower bounds on some of the variables and averaging over the
characters with the neutraliser large sieve led to saving over the desired bound. In
this case we will likewise have to exploit the averaging over the conductor to obtain a
valid bound, but our methods will differ as the convex factors 1 and W switch
roles from §52. The argument begins in a similar fashion to that of Lemma 6231, but
deviates in order to handle the need to average over our conductors. Assume that the

character yqs is non-principal with conductor Qg2 and consider

A= TYyy e (5:3.2)

[lronicor,nanseas||-M<X
ged(ng,r;)=1V 0<i<3
ni=q; mod 8Y 0<i<3

Define also the Dirichlet series

L(lx)= Y x(n)

= nr(n)
ged(n,r)=1
n=q mod 8

for any odd integer r, any ¢ € (Z/8Z)* and any non-principal Dirichlet character y.
Our first step is to prove the following:

Lemma 5.3.4. Let X > 3, C1,Cy,C3,Cy,C5 > 0 and fir some q € (Z/8Z)**. Let
2 < Qo < (logX)® and 1 < ro,r1,7m9,73 < (log X)2 be odd integers such that
ged(Qo2, 2rore) = 1. Suppose X2 is a non-principal character modulo Q. Then for

any integers 1 < cop, co3 < (log X)%, 1 < M < (log X)% we have

60(27“1)60 27“3 _
AX g2) Ly (1 Ly, (1, x02X’
( ) 16601023M2 10gX szm§8 X Q() 0( 7X02X) 2( X02X )
X2 - B
+O 1,02 4, LT 1’ + Lr2 1,
C1,02,C3,C4,Cs 601623M2(10gX)3/2 X%g(‘ 0( XO2X)‘ ‘ ( XOQX)D)

where the implied constant depends at most on the C;.

Proof. We write A(X) as the product of two hyperbolic sums Hy; (X )Ha3(X), where

Hy (X) = ZZ M and Hy3(X) = ZZ M

nonléX/C(nM T(no)T(n1> n2n3<X/023M T(n2)7—(n3)
ng(’rLi,Tj,):lv 0<i<1 gcd(ni,m):lv 2<i<3
n;=q; mod 8V 0<i<1 n;=q; mod 8V 2<i<3

We look at Hy;(X). Defining the parameter Y = exp((log X)/?), we use the standard
hyperbola method we deduce that

Hoy (X) = Ho, (X) + Hoy (X) = Hep (X)
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where
Xo2(n0) 1
H61<X ) = Z Z )
no<Y T<n0) n1<X/nocor M T(nl)
ged(no,ro)=1 ged(n,r1)=1
np=qo mod 8 n1=q1 mod 8
1 on(no)
B = T ooy 7000
m<X/eor MY T\ o< X /meo T \MO
ged(ny,ri)=1 ged(no,ro)=1
n1=q; mod 8 no=qo mod 8
and

Xo2(n0)
Hi(X)= Y>> .
no<Y,n1<X/cot MY T(nO)T(nl)

ng(ni,’r‘i):lv 0<i<1
n;=q; mod 8V 0<i<1

Using Lemma BT for the sums over ng we see that

X
H"(X , T(TO) Q02 :
) S R lIog X)1(10g X7

and

7(r0) Qo2 X 7(70) Qo2 X
3 (r0)@ (r0)@

/ L
nicot M (log X /nycor MY )(G+D/3 ¢

H (X / —.
01( ) <<05 5 001M(10gX)C5/3

n1<X/coitMY
In each case we have used the bound (log X/coyMY) = (log X)(1 4+ O((log X)~%/3))
which follows from the fact that log co; MY < (log X)'/3. In the above bounds we can
write Cf = 3C}5 for some C5 > 0 to obtain

T(To)QozX
co1M (log X)%

H(IJII(X)’ H(,)/{ (X) <cs

For H,(X) we apply Lemma BT for non-principal characters with C5 > 0 sufficiently
large. This will give

Hg (X) =

o nozgzy 7(no) \nocmM\/(logX/nocmM)
gcd(n0,2r021:81

np=qo mo

Xoz(no) [ So(2r)X L of Xloglog 3r,)3/2
nocor M (log X)3/2 7

where we have used log X/co1 M > log X coming from cy;, M < (log X)2. Using the
bound

< y/logY < (log X))V,

>

no<Y n07<n0)

we obtain

HY, (X) ~6p(2r) X Z Xo2(no) N (X(log log 3r1)3/2>
01 —_— ( .
con M no<Y noT(no)\/(log X /ngco1 M) "\ corM (log X)*/3

ged(no,2rg)=1
np=qo mod 8

For the front term we use the following:

1:1.1:1<1+0<1>>
\/(logX/nocmM) (log X) (1_M>1/2 (log X) (log X)2/3) )

log X
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It follows that

60(27’1))( Xog(no) X
Hy (X)) = ———F—— O [ —Z ).
01(X) corM+/log X ngy no7(ng) + e, co1 M log X

ged(no,2ro)=1
nog=qo mod 8

Next we detect the condition 8|ng — go using Dirichlet characters. Thus the main term

sum in H{,(X) becomes

_ Xoz2X (120)

3 x ) > Ao 5.3.3

x mod ’ noY nOT(nO) ( )
ged(no,ro)=1

Nl

where x02X(n0) = Xo2(n0)x(n0) is a non-principal character modulo 8@y, and are non-
principal since ()2 is odd and xg2 non-principal. Using a similar argument to that seen

in the proof of Lemma B=3T, Zro(l, Xo2)X) converges and
-Zro(laXOQX) = P(LTOuXOQX,)R(LXOQX)L(17X02X)1/2
where P(1, 79, xo2x) and R(1, xo2x) are

xorx @\ <. Yo2x(p) Xoox(p)\*
H (+Zj+1 ) and H (1+Z<1)]ﬂ)<1_ )

p pfime p prime p
plro

respectively, and

L(Lxoex) = ] (1—X02X(m>_1

p prime b
is the L-function for the character ygpox. Seeing this, we may extend the sum over ng

in (B=33) at the cost of an error term. This equation then becomes

12 _ Qw
XH%SX 40) P (1,70, X02X) R(1, Xo2) L (1, X02X)""* + O, ((logX)C5> :

where we have used partial summation and Lemma b4 to bound the tail of this series.
We therefore see that Hy,(X) is equal to

60(27’1 1 X
(1 R(1 L(1 2400 | —2 ),
4001M\/WXH§18X q0) P(1, 70, x02X) R(1, X02x) L(1, X02x)"* + Oc, o log X

Putting this together with H{,(X) and H{[(X) we see that Hy (X) is then

60(27”1 1 X
(1 R(1 L(1 2400 | ———— ).
4001M\/WX§38X q0) P(1, 70, x02X) R(1, X02x) L(1, x02x)"* + Oc, oM log X

Similarly we may obtain that Hys(X) is

60(2T3 / / N1 X
(1,73, R(1, L(1, 24 0c | ———— .
oM Vlos X X%:,arx q0) P (1,73, XooX) R(L, xo2X) L(L, X02X') o \ i og %
mod 8
Multiplying these together we obtain the result. O]
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_ In order to take the desired averages over the characters, we will use the fact that
L. (1,%) looks roughly like L(1, x)/2. In fact, by noting the bounds

P(1,7r9,x) < 7(rg), R(1,x) < 1
for any non-principal character y and absolute implied constants, we observe
L(1,x)? < 7(r)*L(1, x) (5.3.4)
since L(1,x) > 0 for real non-principal characters x.

Recall that we use the notation 1, () for an odd integer m to denote generically the
Jacobi symbol (E) or (m) We may use quadratic reciprocity to interchange between

the two if necessary (in the following proof, the characters modulo 8 and square-free
functions ensure that the variables are odd).

Theorem 5.3.5. Let x be a character modulo 8, and my be an integer in [1, X]. Then
for all X > 3 we have

2
> ML(LXWWJ « X

1<m<X 7(m)

Proof. We begin by splitting the L-function in two:

LX2J

n=1 n>|[X2|

Using partial summation and the Pélya—Vinogradov inequality [25], the tail sum may

be seen to be

(mmy)"/? log(mmy) < (log X)
X2 X

Summing trivially over m will give O(log X') which is sufficient. The expression we

sy 12 (2mmy) X(n) i, (n) <”> (5.3.5)

X ne [X2) T(m) n m

have left is

We will make use of the double oscillation of the character ¢, (n) in the variables m

and n. By partial summation we get

>y ) ) SEXD L TSRy s

m<X n<Lx2 ( ) n m X2 t2

where

= 3 S g ) ().

m<X n<t m
Using Lemma 224 we obtain

S(X,X?)  X?®

= <1 (X164 X713 (log 3X)™° < X*/%(log 3X)7/°.
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The integral equals:

X2 x1/2 X2
/ S(X’t)dt :/ S(X’t)dt / S(X, t)dt.
2 2

12 12 x12  t?

In the first range we apply Lemma 613 with e = 1/6, N = X and M =t as t* < X.
In the second range we once more apply Lemma PZ=24. The integral therefore becomes
bounded by:

X2 X(logt)  XY3(logt)l/? X2 X X6
dt / log 3X)7/Sdt,
<</2 <t3/2\/10gX * tl/z(logX)l/A‘) * X1/2 (757/6 * t ) (log 3X)

which is O(X (log X)~/2). O

Corollary 5.3.6. Let X > 3 and C' > 0. Fizx some real number 0 < ¢ < 1. Suppose
that x s a character modulo 8. Then
2 2
w1 (2momy) X
——— = L(1 * Ymoma T A/
ZZ ( s X " Ymg ) < C\/m

llmo,cma ||<X 7(mo)7(m1)
mom1#1

where the implied constant is absolute.

Proof. When m; = 1 then we use Lemma =33 for the sum over my, since mgom; # 1.

When m; > 1 then we may use Lemma B=31 to bound the sum over m;. In this case:

2.0

[mo,cma ||<X 7(mo)7(m1)
m1>1

u*(2momy ) X?

L(L, X - Ymgmy) .
o mogxc\/logX/c c\/logX

We conclude this chapter with the proof of Proposition P22

Proposition 5.3.7. Let X > 3, C,Cy > 0 and firq € (Z/8Z)** and G € (Z/8Z)**. Fix
odd integers 1 < 19,71, 79,73,70,71 < (log X)' and fix 1 < cop, co3, 0,1 < (log X)©2
Then for any m € N? we define
wm m <n0n2)
T(X,m) = me :
o 2 o ) ) )

ged(ng,2r;)=1V 0<i<3
n;=q; mod 8Y 0<i<3

Then for any C3 > 0,

7(ro)7(r2) X*?(log log X)l/2
co1¢23C0C1 (log X))

2(mom
S ) G )] e

Hmo m1||<(log X)©3 (m ) ( 2)
=@; mod 8 V0<i<1
gcd(ml Q7;)=1V0<i<1
momi#1

where the implied constant depends at most on the C;.
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Proof. Using Lemma B34 on the T'(X, m) and using the triangle inequality we see

that the sum over m is equal to

60(27’1)60(2T3)X2
Cp1C23 (lOg X)

Y > M(X,x,x)+0 (001623(f(igX)3/2 > B(X, X)) ,

x,X" mod 8 x mod 8

where

MX )= 3% 2 (mormi) oo (1, om0l s (1, oo )]
T e T(ma)T(ma) [mog,myy[2 70 From A o
m;=q; mod 8 V0<i<1
ged(m;,7)=1 V0<i<1
momi#1

and

EXy-Y Y% p(morm) Lo, (1, g ).

3502 <o x)0» T ()T (m2)l Mmoo, iy

We first bound M (X, x, x’). We may write this sum in the form

M(X, X X,) = Z Z a(mo,m1)b(mo,m1)c(m07m1)

llmo,ma1|<(log X)“s

where binomi) = |Lro (1, mgms X)|s Comoms) = s (1, mgmy X')| @0d @y my) Tepresents
the remaining summands and conditions. We may therefore re-index this sum as a sum

over a single variable,

M(X7X7X/) = Z dlblél-

1<(log X)2Cs
Using Cauchy’s inequality, and then returning to the original double indexing, we

obtain

1/2 1/2
M(Xa X X/> = ( Z Z a(moaml)b%mo,mﬂ) ( Z Z a’(mo:ml)c%mo,mﬂ) :

l[mo,ma [|<(log X)“3 l[mo,ma [|<(log X)“3

In other words, we have now obtained M (X, X') < R, (X, X)"?R,,(X, x')"/? where

2
p*(2momy) = 2
RT(X, X) == ~ ~ ‘Lr<1awm m1X)’ ’
D P e e A L
mom1#1
By (B334) we have
2
M (2m0m1)
RT(X,X) <<7'(7")2 ~ ~ L(1777Z}m m X)
||m0,m§:<(zlo:gX)c3 T(m1>7'(m2)||m000, m101||2 M1
momi#1
Writing
2
W (2mem
(I(M) = ZZ ML(lawmoml)C)

m6N27Hm0607m151||:M T(ml)T(m2>

momi#1
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we obtain
R(X,x) < 7(r)>? > “%). (5.3.7)

2< M <||éo,é1 || (log X)C3

By partial summation the sum on the right hand side of (52371) is then

: S a2 [ D)
2

|0, &1 |2 (log X)2Cs pe Mt 1og X1 13

Using the fact that a(M) = 0 unless M > ||, ¢1]| and the change of variables t =

||éo, &1 ||u the integral becomes

H607éll|(10g X)CB 22<M<t Q(M) (IOgX ZZ<M<||CO cl||u (M>
=== dt= du.
2 t3 1 || éo, ¢ |[?u?
Thus
R(XX) 1 S a(M)+ (0820% Zacnreeo eafu (M) o,
(r)? 1o, &1[*(log X)*Cs ‘ [0, &1[[*u? '
T €, 1”08 2<M<éoér|(log X)%s 7! o, Calfu
(5.3.8)
Now, upon unwrapping a(M), we may see that,
2
M(Wmﬂh)
2<M<||60751HY Hmoﬁ,mlmHgY
momi#1
By Corollary 538 with ¢ = mﬁr;((fgl"ﬁl) we get
R.(X 1 (log X)© 1
(X, x) <, dt.

T(r)? mln(co,cl)||co,cl||\/loglogX min co,cl)||co,cl||u\/logu
This is O(v/loglog X /¢y¢1), hence

T
M(X7 X5 X/) <<CQ,C3

To deal with E(X,yx) we treat the sum over each Erj(l,wmoml X) separately. Call-
ing each one E;(X,x) we once more use Cauchy’s inequality to get E;(X,x) <
(& (X, X)SJ’»(X))l/2 where

(X0 =7 XY LTV S R

Imosmali<iog x)s T (M7 (m2) [mofo, maey

momi#1

and 2( |
B Mgy
lmo,m1||<(log X)°3 1)T\m2 0Co, M1C1
momi#1

Using similar techniques to those used to bound M (X, x,x’) to bound &;(X, x) and
Lemma B3 to bound &(X) we obtain
&(X, x)
7(ro)?

(loglog X)'/?

(CoC1)

E(X) <
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from which it follows that

7(ro)7(r1 ) (log log X )1/2
E(X,X) <cy05 (ro) <1)é0§ 8X) :

Finally, we inject the bounds for M (X, x, x’) and E;(X, x’) into our overall expression,
summing over finitely many characters x and x’ modulo 8 and noting that Sy(r;) < 1

for all integers, we conclude the proof.
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Appendix A

Tables of Elements for 47 and A»

A.1 Elements of A; with ¢yq1¢2g3 = 1 mod 8

Tables B0, A=, A3, A4, AH and A4 display the points in (Z/8Z)** which satisfy one
of the forms in (Z203). Note that there are 48 unique vectors displayed throughout

these tables.

b\ a 1 3 5 7
1| (1,1,7,7) | (3,1,5,7) | (5,1,3,7) | (7,1,1,7)
31 (1,3,7,5) | (3,3,55) | (5,3,3,5) | (7,3,1,5)
5 | (1,5,7.3) | (35,53) | (5,5,3,3) | (7,5,1,3)
7, | (3,7,51) | (5,7,3.1) | (7,7,1,1)

Table A.1: Solutions to (A.1.1) & (A.1.4)

b\ a 1 3 5 7
1 A5 (3,1,7,5) | (5,1,7,3) | (7,1,7.1)
3 (1,3,5,7) 73595 (5,3,5,3) | (7,3,5,1)
5 (1,5,3,7) | (3,5,3,5) 9795 (7,5,3,1)
7 (1,717 | (3,7,1,5) | (5,7,1,3) AR

Table A.2: Solutions to (A.1.2) & (A.1.3)
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b\ a 1 3 5 7
1| (3,1,1,3) | (33,1,1) | 3:5:% 71
31 (1,1,33) | (1,33,1) | {553, 7.3
5 15 351) | (7,5,5,7) | (7,7,5,5)
7 17 371y | (5,5,7,7) | (5,7,7,5)

Table A.3: Solutions to (A.1.5) & (A.1.8)

b\ a 1 3 5 7
1 (3,1,3,1) P IES e 15
3 1535 (1,3,1,3) D795 535
5 1555 3595 (7,5,7,5) 1595
7 4575 3515 o515 (5,7,5,7)

Table A.4: Solutions to (A.1.6) & (A.1.7)

b\a| 1 3 5 7
1 P (3’5’]‘77) (5737177) P
3 (1777375) I I (7717375)
5 (1777573) I I (7717573)
7 280t (3’57771) (5737771) R
Table A.5: Solutions to (A.1.9)
Equation \a 1 3 5 7
(A'1'11> P ] P ] I I
(A'1'14> P I I A A

Table A.6: Solutions to (A.1.11)&(A.1.14)

155



Chapter 5: Hyperbolic character sums Section A.2

A.2 Elements of A; with ¢yq1g2g3 = 1 mod 8

Table B2 displays the points in (Z/8Z)** which satisfy the forms in (ZIIH). We
remark that here are 32 distinct points in this table.

Equation \a a=1 a=3 a=5 a="7
(A.2.1)-(A.2.4)
(a,7a,1,7) (1L,7.17) | 3517 | (5:3.1.7) | (7.1,1,7)
(a,7a,7,1) 1,7.7.1) | 357.1) | (5.37.1) | (7,1,7.1)
(a,7a,3,5) (1,7,3,5) | (3,5,35) | (5:3,3,5) | (7,1,3,5)
(a,7a,5,3) (1,7,5,3) | (3,5,5,3) | (53,5,3) | (7,1,5,3)
(A.2.5)&(A.2.6)
(a,2+7a,6a+1,7) | (LL7,7) | (3,7.3.7) | (55,7.7) | (7,3,3,7)
(a,2+7a,7,6a+ 1) | 5757 | (3,7,7.3) | 5557 | (7,3,7,3)
(4,2 +7a,6a+5,3) | (1,1,3,3) | 3773} | (5,5.3.3) | (7:3.7
(a,2+ 7a,3,6a +5) A3 T3 5.3 3.3
(A2.7)&(A.2.8)
(4,6 +7a,6a+3,5) | (1,5,1,5) | (3,3,5,5) | (5,1,1,5) | (7,7,5,5)
(a,6 4+ 7a,5,6a+3) | (1,5,51) | {3:3:5:5) | (5,1,5,1) | 775
(4,6 +7a,6a+7,1) | 4555 | (33.1,1) | B:L510 | (7,7.1,1)
(a,6 4 7a,1,6a+7) Al 3.1 e T

(A.2.9)-(A.2.16)

No new solutions A =95 1593 15

Table A.7: Solutions to (A.2.1)-(A.2.16)
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